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ABSTRACT

Fabric abrasion, especially pilling is a problem in textile industry. Pills on the

fabric surface are the result of damage to the garment, which cause unappealing

appearance. One of the requirements for the use of fabric in many applications is

high abrasion resistance.

In order to study the evolution of damage process during usage, and further inves-

tigate the relation between macro and micro mechanisms of abrasion, we performed

in-situ experiments on nonwoven fabric. At macroscopic scale, different morphology

of fabric have been identified when fabric rubs against a non-fiber abradant as well

as against a fiber abradant. At the microscopic scale, four abrasion mechanisms at

the individual fiber level have been identified. In addition, the correlation between

two types of pills and six types of precursors have been found.

To evaluate abrasion of nonwoven fabrics with minimal human interpretation,

we apply two-dimensional, discrete-wavelet transforms to the images of nonwoven

fabrics. We describe the degree of damage in terms of a gray-value ratio that is ex-

tracted from the details of the wavelet characterization, and show that this parameter

correlates well with an independent qualitative assessment of the damage.

In order to propose the next-generation design of fabric with better damage re-

sistance, a fiber-level model is established using Rayleigh-Ritz and Finite-Element

method based on Kirchhoff-rod theory. We have investigated the generation and

xiii



evolution of perversions (an inversion of chirality) between helical segments of a

fiber with uniform intrinsic curvature when the ends are restrained against rota-

tion. The twist function k3 changes sign in passing through a perversion and this

provides a convenient way to identify and approximate the morphology in more com-

plex situations. The shape of an isolated perversion is well approximated by a simple

Rayleigh-Ritz trial function. The lowest energy state is one in which perversions oc-

cur only when they are geometrically necessary because of the end restraint against

rotation. However, the energy differential is small when the fiber is almost straight,

so additional perversions may be introduced by noise in the early stages of unloading

when the fiber is almost straight. If the fiber is further unloaded, perversion pairs

may approach and annihilate each other, but if the perversions are too far from each

other or from the fiber ends, an effective energy barrier exists so that they may per-

sist well below the loading conditions where the energy differential is significant. A

sufficiently rapid unloading resulted in a higher density of perversions being frozen

into the fiber, than that obtained by slower rates of unloading, suggesting an analogy

to the retention of defects in solids after thermal quenching.

xiv



CHAPTER I

Introduction

1.1 Overview

Fabric as a human necessity has such a long history that even historians can

only roughly estimate the dates of fabric as an integral part of human daily life (at

least back to the late Stone Age, approximately 100,000 years ago). Methods of fabric

production have continuously been developed such as knitting, braiding, weaving and

non-weaving [75]. In addition, the sources of fabric have been also extended from

traditional natural materials like animals, plants or minerals to petroleum-derived

synthetic fibers for instance nylon, acrylic, spandex, polyester. With the burgeoning

of synthetic fibers, the usage of fabrics in modern society becomes more and more

extensive.

Extensive use of fabric in home supplies, hygiene, and even industry have expe-

dited perpetual development of low-cost, environment-friendly and robotized tech-

nique in the textile industry. In the past 40 years, nonwoven has been developed in

an overwhelming rate since it can be synthesized directly from raw materials in a

continuous production line. This process economizes previous tedious conventional

textile operations such as braiding, weaving or knitting [8, 68, 24]. The inexpensive,

simplicity and high-yield advantage enable the nonwoven to compete with traditional

1
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fabrics and occupy more market shares.

However, for either traditional knitted or woven fabrics or booming nonwoven

fabrics, fabric pilling during usage or laundering is a serious fabric fault that has been

recognized as a stubborn problem in many industry fields. For example, in apparel

and textile, since the development of pilling on a fabric surface not only causes the

abrasion or even damage of garment but also results in unshapely appearance which

makes customers feel uncomfortable.

When it comes to hygiene like baby’s diaper, it is severer since it is related to the

baby’s health. As we all know, disposable diapers provide a great convenience in the

modern life. Disposable diapers are generally composed of a top sheet, absorption

part and waterproof sheet. The top sheet, which is usually made of nonwoven fabrics,

is critical since it is in direct contact with the baby’s skin and the improper material

or defects such as fuzziness and pillings on the surface of the fabrics not only pose

an artistic problem but also may cause diaper dermatitis[73, 37].

However, research focusing on the abrasion property of nonwovens fabric is insuf-

ficient, and the possible mechanisms of abrasion (fuzziness and pilling) have not been

fully understood. Besides, the quantification of damage still relies on the traditional

methods. Moreover, the strategies of evaluating and improving abrasion resilience

in nonwovens also need to be further investigated. Therefore, there are three main

problems we need to solve:

• What is the abrasion mechanism of nonwoven fabric and which one is the dom-

inant mechanism;

• How to quantify the damage of nonwoven fabric;

• How to understand more physics behind the behavior so that we can design
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next-generation fabric.

1.2 Research advances in abrasion mechanism of fabrics

One of the main causes of fabric deterioration is fabric fuzziness or pilling which

occurs during abrasion. Abrasion will eventually terminate the use of products,

however, the service life or the end state of one specific fabric highly depends on

people’s requirements which can differ case by case. Many groups have studied the

possible abrasion mechanisms of different fabrics in various applications[21, 18, 19,

2, 20].

Mechanism of wear is complicated when related to a real condition in daily life.

Under fixed normal stress, the procedure of wear can be divided into three different

stages: primary stage during which surfaces adapt to each other and the wear rate

might vary between high and low, steady stage when the wear rate is constant and

tertiary stage when the deterioration is rapid [21]. Different surface condition can

result in varied wear mechanisms, for example, the abrasion mechanism of textile

materials rub against soft materials may not be the same with that against hard

materials.

Similarly, the abrasion mechanism of textile material rub against flat surface may

be different from that rub against rough surface. According to previous studies, wear

mechanisms of materials include: adhesive wear, abrasive wear, fretting wear, erosive

wear and surface fatigue [12]. Among these wear types, adhesive wear, abrasive wear

and surface fatigue mechanisms play important roles in the abrasion mechanism of

fabrics.

Adhesive wear occurs during frictional contact and generally refers to unwanted

displacement and attachment of wear debris and surface material from one surface to
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another, which is caused by strong adhesive forces between atoms and accumulation

of energy in the plastic zone between the asperities during relative motion [13]. The

adhesive wear is harmful to the fabrics because it can lead to transfer of material

which can be a part of pillings and accelerate pilling formation.

Abrasive wear occurs when a hard rough surface slides across a softer surface like

fabrics [11]. ASTM International (formerly American Society for Testing and Mate-

rials) defines it as the loss of material due to hard particles or hard protuberances

that are forced against and move along a solid surface [60]. There are two modes

of abrasive wear, one is two-body abrasive wear and another is three-body abrasive

wear. Two-body wear happens when the material is constrained and displaced by a

cutting or plowing operation, while in three-body wear material, the material is free

to slide or roll down a surface [26].

Fatigue wear occurs when contacts between asperities with repeated local stress

during sliding or rolling and the applied load is higher than the fatigue strength of

the materials. High plastic deformation causes crack initiation, crack growth, and

fracture. Fatigue crack starts at the single fiber surface and spread to the subsurface

regions. These cracks may connect with each other, resulting in delamination of

the single fiber pieces. Previous studies found unexpected but considerable fatigue

damage during fiber entanglement [20, 17]. And the presence of a certain amount of

fatigue breakdown and wear off prior to pilling formation will reduce density of fuzzy

fiber for potential pilling growth. In addition, the fatigue zone also acts as hinges

since fatigued fibers have substantially lower bending rigidities than the intact fibers.

During usage or laundering, fabrics are subject to a variety of different forces which

may result in combination of abrasion mechanism. Abrasion changes the surface

property, then damages the internal structure of fabrics and eventually results in



5

fabric failure. Fabric failure can be caused by the gradual breakdown of the fabric

geometry integrity and can also be related to the gradual deterioration of individual

fibers.

From energy perspective, abrasion resistance depends more on a high energy of

rupture than on a high tenacity at break [1]. Thus, to prevent abrasion damage, the

material must be capable of absorbing energy and releasing that energy upon the

removal of load. Energy under tension, compression, shear and bending should be

of great concern for the evaluation of surface abrasion; however, these energies are

unknown, and therefore understanding the evolution of energy under tension permits

at least a quantitative interpretation of abrasive damage in fabrics.

1.3 Research advances in objective evaluation of fabric damage

Although observation of fabric during friction test give us different damage mor-

phology and abrasion mechanism, we still need to know the degree of damage from

both scientific and industrial point of view. In the current industry, the degree of

pilling based on a visual comparison of the sample with a set of standard pilling im-

ages to determine the degree of pilling on a level ranging from 1 (very severe pilling)

to 5 (no pilling) [23]. Former subjective evaluation could be inconsistent and inaccu-

rate. Since it largely depends on human’s proficiency, pilling rating may vary from

one person to person. Developing reliable, accurate and simple objective evaluation

methods is necessary and urgent for current textile industry. Fuzziness and pillings

are the main features in the damage rating procedure [15, 48, 46, 47].

For a used fabric with fuzziness and pilling, their images by digital camera or

optical microscope usually include information such as illumination, fabric surface

unevenness, texture and pillings. The goal of image analysis or laser scanning is to
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try separating different parts of information. Objective pilling assessment methods,

such as image analysis techniques [82, 84] and laser scanning [86] have been reported

before. For image analysis, pilling and fuzziness can be extracted directly from the

spatial domain by analyzing pixel-based brightness value. It can also be obtained

in frequency domain by fast Fourier Transfer (FFT), Short-time Fourier Transfer

(Gabor) and Wavelet Analysis [87, 83, 54].

1.3.1 Binary by pixel-based brightness

A binary image is a digital image that has only two possible values (0 or 1)

for each pixel. Typically, the pixel with value of 0 is black while the pixel with

value of 1 is white. Binary images often arise in digital image processing such as

segmentation, thresholding, and dithering. With the images’ contrast enhanced by

histogram equalization and noise reducing depended on the pattern of neighboring

pixels, binary pattern can be obtained by the thresholding process . We can clearly

observe the locations of warp and weft yarns and spaces between them for woven

fibers [42]. It is very useful for woven fabrics, however, study related to nonwoven

fabrics is sparse and may need more deep explorations.

1.3.2 Fast Fourier transform techniques

The Fourier transform (FT) and the inverse transform provide an approach to al-

low a 2 dimensional (2D) image to be mutually converted between time domain and

frequency domain. Fast Fourier Transform (FFT) algorithms significantly enhance

the calculation efficiency. FT is one of useful technique for image processing such

as image enhancement and measurement. Images taken during the friction test con-

tains fuzziness, pillings, periodic structure (woven), nonperiodic information, light

unevenness and noise elements. It is quite difficult to separate different components
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of information in the spatial domain while in frequency domain, the information

will inevitably be decomposed into different components or peaks, especially for the

woven fabrics with desired periodic structure. Xu in 1997 has already demonstrated

that FFT is a useful tool in identifying fabric structures [84]. However, the vi-

tal shortcoming of FFT is that the spatial information will be lost when image is

transformed into the frequency domain, is applied low-frequency filter and then is

reconstructed into a new image that only contains pilling information. It is also

very hard to select a dynamic filter to obtain only pilling information with minimum

background elements. So FFT cannot provide enough information to localize and

detect pillings [23].

1.3.3 Wavelet analysis techniques

Image processing algorithms in previous report cannot achieve accurate pilling

prediction since it cannot separate the pilling and fuzziness information from fabrics

pattern information, illumination and fabric surface unevenness, especially when the

fabric pattern interfere with the ambiguous fuzz or small pillings. The multi-scale

transform is an effective tool to objective pilling ratings [23]. Wang and Palmer

in 2004 came up with a reasonable method in which the pilling intensity can be

identified by standard deviation (STD) of the detail coefficient of two-dimensional

discrete wavelet transform (2DDWT). Images with more fuzziness and pillings will

have a higher STD of detail coefficient[70]. However, this methods is sensitive to

rotation of the image and dilation of the image under analysis [70]. Kim and Kang

proposed the image reconstruction approach for fabrics with repetitive pattern based

on undecimated discrete wavelet transform (UDWT). The global repetitive pattern

can be attenuated and only pillings are emphasized at an appropriate decomposition

level [48]. Wang further suggests a multi-scale two-dimensional dual-tree complex
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wavelet transform (CWT) method to extract the pilling information and it can de-

compose the images into six orientations at different scales and then only the pilling

information will be reconstructed. Energy analysis methods have been employed for

optimal image decomposition and dynamically discriminate pilling information from

the obtained original image [23]. However, most research focus on the woven fabric

with periodic background.

1.4 Research advances in fiber modeling

1.4.1 Geometric model: Serret-Frenet frame

In Serret-Frenet frame, only geometric information of fiber is considered. A fixed

right-handed Cartesian basis {E1,E2,E3} is defined in Euclidean 3D space E3. To

describe a 3D curve, We further defined a position vector r = x1E1 + x2E2 + x3E3

Frenet triad {et, en, eb} with curvature k and torsion τ . Therefore we have:

(1.1)
∂et
∂s

= ken
∂en
∂s

= −ket + τeb
∂eb
∂s

= −τen

where et =
∂r

∂s
. The curvature k and torsion τ can be calculated based on the

definition.

(1.2) k =

∥∥∥∥∂et∂s

∥∥∥∥ =

∥∥∥∥∂2r

∂s2

∥∥∥∥ τ =
1

k2

[
∂r

∂s
,
∂2r

∂s2
,
∂3r

∂s3

]
For example, if the constant curvature k 6= 0 and twist τ = 0, then we have a

plane curve. If both curvature k and twist τ are constant and not equal to zero, then

we obtained a circular helix.

1.4.2 Mathematical and physical model: Kirchhoff Theory

The string model are limited to the assumption of complete flexibility. To re-

sist bending and torsion, we need to relate the material properties into the model.

Therefore, the Kirchhoff theory and the director basis are proposed.
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The Kirchhoff model provides a mathematical framework to describe the defor-

mation of a thin fiber in bending and torsion. We assume that the fiber is inex-

tensible, and define a path-length coordinate, s, such that the location of a point

on the fiber is defined by the position vector r(s). We also define a director basis

{d1(s),d2(s),d3(s)}, such that d3(s) is the unit vector in direction r′(s), where the

prime denotes the derivative with respect to s. The unit vectors d1(s) and d2(s)

are defined so as to align with the principal axes of the cross-section, for which the

second moments of area are I1 and I2, respectively. The local curvature and twist of

the fiber can be combined in a vector k(s), defined such that

(1.3) d ′i = k × di ; i = 1, 2, 3 .

In the unloaded state, the shape of the fiber is defined by an intrinsic curvature

vector k(0)(s) = {k(0)
1 , k

(0)
2 , k

(0)
3 }.

The conservative of linear and angular momentum leads to the Kirchhoff equations

(1.4) F ′ =

∫ ∫
S(s)

ρẌdS

(1.5) M ′ + x′ × F =

∫ ∫
S(s)

ρr × ẌdS

where S(s) is the cross-section,ρ is the mass density per unit area, r is the position

vector, F is the force, M is the moment and X(s, x1, x2, t) ≡ x(s, t) + r(s, t).

Assume that the rod has a uniform circular cross-section and hence the two principle

moment of inertia I1 and I2 are equal to each other, therefore,

(1.6) F ′′ = ρAd̈3

(1.7) M ′ + d3 × F = ρI(d1 × d̈1 + d2 × d̈2)

where I = I1 = I2 is the moment of inertia and A is the area of cross-section.
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1.4.3 Finite element method and finite difference method

Finite element method (FEM) is the most widely used method for solving engi-

neering or mathematical problems [88]. The FEM is a numerical method for solving

partial differential equations (PDEs). The FEM divides the whole system into smaller

parts (Finite elements) and generates a system of simple algebraic equations.

Finite difference method (FDM) are also used for solving ordinary differential equa-

tions (ODE) or non-linear partial differential equations (PDE) [58]. It approximate

the differential equations with difference equations that finite differences approximate

the derivatives and generates a system of equations that can be solved by matrix al-

gebra techniques.

In this thesis, we use the commercial software ‘ABAQUS’ to run the simulations.

This software covers stress/strain or force/displacement simulations, concentrating

on both linear and nonlinear static analyses as well as dynamic analyses.

This software has different modules for different functions, such as part, property,

section, profile, assembly and step.

1.4.4 Rayleigh-Ritz method

Ritz methods are a class of methods for converting a continuous operator problem

to a discrete problem. In principle, it is the equivalent of applying the method of

variation of parameters to a function space, by converting the equation to a weak

formulation. Typically one then applies some constraints on the function space to

characterize the space with a finite set of basis functions.

For Rayleigh-Ritz method, we can use the principle of stationary potential energy to

develop an approximate solution to the problem. We first assume some approximate
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form for the solution, containing a number of arbitrary constants, which constitute

the degrees of freedom in the solution. We then use the stationary potential energy

theorem to determine ‘optimal’ values for these constants. This is known as the

Rayleigh-Ritz method. It is similar to the process of fitting the best curve to a set of

data points, where ‘best’ is here interpreted in the sense of minimizing some measure

of error [9].

In this thesis, we use MATLAB to develop the Rayleigh-Ritz code.

1.4.5 Previous study about the evolution of fiber shape

Understanding the morphology and mechanics of long thin fiber structure under-

going large spatial deformation has been a central goal in the study of filaments in

nature and technology. This ranges from micro-structure like supramolecular helices

[85], nanobelts [25], DNA [62], polymer chain [81] to macro-structure: organs [5, 77],

for example, guts [74], flagella [29], plant tendrils [34, 27, 79], cables [35]. They can

generate similar shapes due to the twist and bend of the fibers.

The non-linear nature of Kirchoff equations can describe the behavior of fiber

within the framework of thin elastic one dimensional structure [32, 66, 14]. A variety

of solutions exist considering an infinitely long fiber, with different initial condition

or boundary conditions:

The first case is intrinsically straight fiber under tension or compression without

or with twist [76, 64]. Due to the growing interest about DNA, lots of research try

to understand the evolution of DNA structure and how that could related to func-

tionality of DNA. With similar boundary condition and also mechanical behaviors,

marine pipe and cables are also wildly studied.

Despite the significant difference in length scale and applications, some fundamen-

tal similarities exist. The early studies focus on the static mechanics using Euler-
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Bernoulli beam theory (ref). For example, Gere and Timoshenko described the linear

buckling analyses of rod under prescribed tension/compression and torsion. ’Elas-

tica’ model are also explored to describe the large rotation of the rod cross-section

using linear elastic constitutive law for both bending and torsion (Antman 29 Love

30). ’Loop’ and ’pop-out’ stability analysis are conducted using equilibrium rod

theory(P29). Further a bifurcation theory are used to interpret the stability of rod

with twist and tension. Later, Professor Perkins and lots of group further study the

evolution of fiber based on the Kirchhoff theory using numerical approach().

The second case is intrinsically curved fiber under tension [34, 59]. Goriely et.al.

considered a stationary solution within the frame of the Kirchoff equations and stud-

ied the linear stability of the fiber, and they applied this method to address the

problems for both intrinsically straight fiber and curved fiber with constant intrinsic

curvature [34, 31]. Once the tendril attached to a support, the net twist has to be

zero based on the topological term that Darwin proposed [59]. Two helices with op-

posite handiness formed and are connected by an inversion. Later, Liu et.al. further

used finite element method to perform the post-buckling analysis and concluded that

the geometry ratio between height and width is one of the key factors that influence

the final shape of rubber stripes [39, 55].

However, no mathematical or physical model is established for the application of

abrasion.

1.5 Structure of dissertation

The main part of this dissertation (Chapters 2-4) is composed of three separate

investigations as we mentioned above. They have been published or submitted to

peer-reviewed journals. As such, there might be some redundant information in these
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chapters. However, as a dissertation, I would like to put more details and thinking

in each chapters and hope it can help people who are interested.

In Chapter 2, I will first briefly talk about the research gap exits in non-woven

fabric. To fill the gap, we established an in-situ set-up to study the abrasion mech-

anism. Based on the set-up, we summarized a systematic abrasion mechanism for

fabric rub against different abradants. and then we discovered the both micro-level

and macro-level abrasion mechanism of pilling formation. We further correlate the

microscopic abrasion mechanism with the macroscopic abrasion mechanism.

Chapter 3 explores quantification method for nonwoven fabric. We talked about

how we choose the image processing technique. And how we successfully use the

wavelet transform to obtain the damage level of nonwoven fabric. We further dis-

cussed how different parameters might influence the results. And lastly I also talked

about how we developed both hardware and software for the potential application

in the industry.

In Chapter 4, a mathematical framework is presented and applied to the fiber under

abrasion. Both finite-element method and Rayleigh-Ritz method are used to describe

the shape of perversion due to the intrinsic curvature generated during the abrasion.

Further energy calculation shows that the geometrically-necessary perversion is not

energetically favorable in compassion with geometrically-necessary dislocation. Mul-

tiple perversions can be generated due to random noise or perturbation. The prop-

erties of perversion are discussed. Perversions can annihilate each other but can also

be persistent. And the evolution of perversions is also history-dependent.

Chapter 5 discuss the fabric design based on finite element method. And chapter 6

summarizes the major conclusion presented in Chapters 2-4, and I will also provides

possible directions that I am currently interested. Some of the work I already have
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some preliminary results for future study in the field.



CHAPTER II

In-situ Observations of Abrasion Mechanisms of Nonwoven
Fabric

2.1 Introduction

Fabric abrasion, and the resultant pilling, is a significant problem in the textile

industry [37, 10, 53]. Pills are balls of tangled fibers, often connected to the surface

of a fabric by anchoring fibers, and resulting from damage to the garment [40].

They degrade the appearance of the fabric and, in some applications, can cause

health concerns [7]. The formation of pills in knitted and woven fabrics has been

studied, and categorized into four stages. First, the free ends of fibers are pulled out

of the yarn to create areas of ‘fuzz’ [28]. Second, these free fibers form permanent

entanglements as a result of back-and-forth motion, and then tighten into balls [20].

Third, the fibers that anchor these balls to the structure of the yarn are pulled out

to form discrete pills [20]. Fourth, these pills can fall off the fabric if the anchoring

fibers fail.

The last three stages of pill formation may be similar for woven, knitted or non-

woven fabrics, once there are enough long, fuzzy fibers on the surface of the fabric

[17, 18, 19, 75]. However, the mechanisms by which the fibers form the initial fuzz

are expected to be different between woven and non-woven fabrics. In a woven or

knitted fabric made from a yarn, the fuzz can be formed if the free ends of the fibers

15
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are brushed out of the yarn, or if fiber loops pulled out of the yarn are broken [20].

Once a fiber is broken, it can be pulled out of the yarn if the frictional force between

the fibers is overcome.

In a thermo-bonded non-woven fabric, the individual fibers are not formed into

a yarn, but are joined together at discrete bonding sites. Therefore, the length of a

free fiber that might be formed when a fiber breaks is determined by the distance

to the nearest bond site to which it is attached, which can be longer than the dis-

tance between neighboring bonds, particularly if the bond sites themselves can be

broken. This fundamental difference in the basic structure of the two classes of fab-

ric motivated the present study to investigate the formation of fuzziness and pills in

non-woven fabrics.

Many studies of the abrasion of non-woven fabrics focus on parameter optimization

using the Martindale test [41]. Samples are evaluated by comparing images [10, 52,

44] or by measuring weight loss [37, 44], but these results provide no insight into the

mechanism of damage. Wang et al. [80] made SEM observations of a bi-component

fabric after abrasion and identified two damage mechanisms. The polypropylene (PP)

sheath of a bi-component fiber can peel and wear away owing to thermal-induced

shrinkage and thermal oxidative degradation of the PP. Also, as with woven fabrics,

fibers can be pulled out and rolled up during abrasion. However, the mechanism

of fuzziness formation at the initial stage of abrasion for non-woven fabrics is still

poorly understood.

In the present paper, we explore this question using experiments in which early

stages of the abrasion process can be observed in-situ.
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2.2 Experimental methods

To observe the abrasion process through the microscope when it happens, an

in-situ set-up (SU1) with larger magnification for samples of 20 × 20 mm2 (Figure

2.1) and another in-situ set-up (SU2) for test of larger fabric specimen with size of

200× 200 mm2 (Figure 2.3) was designed.

2.2.1 Set-up 1 for large magnification

The ‘SU1’ is designed based on an optical microscope with 40X-1500X phase

contrast inverted microscope. The ‘SU1’ focuses on small samples with size of 20×20

mm2 in rotation mode to observe the surface change of individual fibers during the

formation of pills.

The SU1 for abrasion experiments of one-direction and back-and-forth was es-

tablished. A transparent stationary frame was designed by software Solidworks and

manufactured by laser cutting machine to support the motor, loading devices and

transparent bulk to attach fabrics. A transparent glass disk with a diameter of 120

mm was connected to the motor to provide the rotational movement. It allows us to

run the abrasion experiments by one-direction and also back-and-forth rotation with

the speed in the range of 0 cycles/min to 60 cycles/min.
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Figure 2.1: A schematic illustration of the system used to study the mechanism of pill formation
in-situ during abrasion. The bottom camera records the morphology of the fabric when
the abradant moves.

The load is applied on the top of the transparent bulk (fabric was attached on

the bottom) by adjusting force of springs (Figure 2.2). The fabric was pressed down

against varied abrasive substances and cameras were set from the bottom to record

the abrasion process as shown in Figure 1. For this set-up, we can easily observe the

movements of several fibers or individual fiber. And it also allows us to observe the

surface change of individual fiber during the abrasion process. During the formation

of pills, we found the surface of fibers did not change significantly, therefore, it is not

one of the main factors that leads to the fuzziness and pills.

The experimental system used for in-situ abrasion observations (SU2) is shown

in Figure 2.3. A fabric sample of dimensions 200 mm × 200 mm was attached to the

top surface of a stationary frame and an abradant was moved over the fabric using
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Figure 2.2: Loading devices for In-situ set-up (SU1) for larger magnification with sample size of
20× 20 mm2.

a computer-numerical-control [CNC] machine with a changeable head. This system

is capable of executing any abrasion pattern within the fabric sample, including the

lissajous figures used in the Martindale test, but here we chose a simple 120 mm

back and forth pattern in the x-direction, as shown in Figure 2.3. During abrasion,

the surface of the fabric can be viewed from above, through an optical microscope,

and also from the side, using a digital camera. A nominal contact pressure of 690

Pa was used, which is consistent with that used in the Matindale test (0.1 psi). To

assess the variability of the observed phenomena, six experiments were conducted

for each test condition.
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Figure 2.3: A schematic illustration of the system used to study the mechanism of pill formation
in-situ during abrasion. Camera from top and side records the morphology of the fabric
from different angles.

2.2.2 Fabric samples

The fabric samples that were tested were manufactured from single-component

polypropylene fibers of 20 ± 2 µm diameter, bonded by a calender heat press. The

density of the samples was 15 ± 0.5 g/m2, and the thickness of the fabrics was

0.10 ± 0.03 mm.The tests were conducted at 23 ◦C ± 1 ◦C and relative humidity of

45%±5%. Figure 2.4 shows representative optical and scanning-electron-microscope

[SEM] images of fabrics bonded at 135 oC and 153 oC, respectively. The SEM images

were obtained using an FEI Helios 650 Nanolab SEM/FIB. The bonding sites can be

clearly seen in the images, with a center-to-center distance of about 1.5 mm. While

the morphology of these two samples appear to be similar in the optical images,

the SEM suggests less complete fusing in the fabric that was bonded at the lower
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temperature.

Figure 2.4: Optical image of fabric bonded (A) at 135 oC and (B) at 153 oC, before abrasion.
Corresponding SEM images are shown in (C) and (D) respectively, and suggest less
complete fusing of the fibers at the lower bonding temperature.

2.2.3 Choice of abradant

In preliminary experiments, we used a wide range of abradants, including both

fibrous materials [non-woven fabric, knitted fabric and toothbrush] and non-fibrous

[silicon carbide, glass]. Qualitative results showed that pills are formed more readily

when the abradant is fibrous, presumably because of the possibility of entanglement

between the fibers of the fabric and those of the abradant shown in Figure 2.5. It is

advantageous to use an abradant with a relatively small nominal contact area, since

the abraded surface can only be imaged after the abradant has passed. We therefore

used a ‘soft’ toothbrush with a nominal contact area of length 26 mm in the sliding

direction and 11 mm perpendicular to the sliding direction. There were 6.5 ± 0.3
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bristles/mm2, each of length 9.5 mm and diameter 0.13± 0.02 mm.

Figure 2.5: Qualitative results showed that pills are formed more readily when the abradant is
fibrous, presumably because of the possibility of entanglement between the fibers of the
fabric.

2.3 Results and discussion

2.3.1 In-situ observation of the abrasion process

Abrasion experiments were performed on the fabric bonded at 135 oC, and the

top and side views were recorded on video. A nominal contact pressure of 690 Pa

was used, which is consistent with that used in the Martindale test (0.1 psi). Back-

and-forth motion was imposed over a range of 120 mm at 5 cycles per minute, with

a uniform nominal speed of 20 mm/s.
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Figure 2.6: Top view (A-1, B-1, C-1) and side view (A-2, B-2, C-2) of the fabric bonded at 135 oC,
after 10, 20 and 30 minutes of abrasion respectively with a soft toothbrush.

Figure 2.6 (A,B,C) shows selected frames from the in-situ video after 10, 20 and

30 minutes of abrasion respectively, representing three stages in the pill formation

process. Figure 2.6A [10 minutes, 50 cycles] shows the development of ‘fuzziness’

consisting of fibers pulled out from the fabric. In Figure 2.6B [20 minutes, 100

cycles], entanglement and twisting of these pulled-out fibers can be observed. This

is regarded as a precursor to pill formation. Finally, in Figure 2.6C [30 minutes, 150

cycles], we see the development of pills attached to the fabric by a few fibers. With

continued abrasion beyond 150 cycles, some of the pills become detached, but also

new pills form.

2.3.2 Morphology of fuzziness

Fuzziness can result from fiber fracture, or from fibers being pulled out of the

fabric without fracture. Fabric specimens abraded to the initial stage of fuzziness

[Figure 2.6A] were examined under the SEM to determine which mechanism is the

most prevalent. Four distinct mechanisms were identified. These are characterized
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by the inset cartoons in Figure 2.7, and exemplified by representative SEM images.

Type 1 and 2 involve fiber fracture, between bond sites [Type 1] or adjacent to

a bond site [Type 2]. In both cases, the fracture is identified by a circle in Figure

2.7. Notice that for Type 2, the fracture exhibits a locally damaged or fused region,

whereas for Type 1, the fracture is clean.

Figure 2.7: Forms of fabric damage associated with fuzziness: Type 1: Fiber fracture between bond
sites; Type 2: fiber fracture at a bond site; Type 3: Pull-out of a locally unbonded fiber;
Type 4: Detachment of an unbroken fiber from one or more bond sites. The cartoon
insets give a clearer picture of these mechanisms.

Types 3 and 4 describe situations where a fiber is pulled from the fabric without

fracture. In Type 4 the fiber is separated from one or more bond sites as shown by

the existence of locally damaged regions. By contrast, Type 3 describes fibers that

exhibit no such regions, indicating that they probably ‘by-passed’ several potential

bond sites in the original fabric manufacturing process. The fiber direction is some-

what influenced by the manufacturing direction, but the fiber length between bond

sites has a broad distribution and indeed fibers passing between bond sites without

attachment are clearly visible in the SEM images of Figure 2.7 [C and D].
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This distinction is seen more clearly in higher magnification optical images such as

Figure 2.8, which is a top view of fibers pulled out to a location above the main body

of the fabric. The blue arrows (i) in this figure indicate regions where an unbroken

fiber has been detached from a bond site, whereas the red arrow (ii) indicates a fiber

which is longer than the bond spacing [1.5 mm], but which shows no sign of bond site

detachment. Examination of a large number of images of this kind show that Types

3 and 4 occur more frequently than Types 1 and 2. In other words, the fuzziness

generated consists primarily of pulled out unbroken fibers at this stage.

Figure 2.8: Higher magnification optical image of fuzziness. The blue arrows (i) identify damaged
regions on fibers pulled out from bond sites [Type 4] and the red arrow (ii) indicates
an unbonded and unbroken fiber [Type 3].

2.3.3 Pill precursors

We recall from Section 2.3.1 and image C of Figure 2.6 that pill formation is

generally preceded by fiber entanglement and other morphological features that may

be regarded as pill precursors. Some typical forms are shown in Figure 2.9. Here we

tend to classify the precursors based on the intrinsic curvature and twist related to
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our simulation work in Chapter 4.

Figure 2.9: Types of precursor morphology.

We further summarized the probability of each precursor generated during the

abrasion experiment in Figure 2.10. We found that wavy fibers account for about

half of observed precursors, and twisted fibers for about 25%. We can see that the

wavy fiber, helical fiber and kink with free end could be related to the intrinsic

curvature, and twist, entanglement and self-entanglement is related to the intrinsic

twist. The definition of precursor here is purely based on our observation, it will be

given a more rigorous definition when it comes to simulation part.
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Figure 2.10: Types of precursor morphology.

2.3.4 Pill morphology and correlation with precursors

Figure 2.11 shows typical pills formed in the abrasion process. These can be

characterized as ball pills [Figure 2.11A], which are approximately equi-axed, or long

pills [Figure 2.11C], in which one dimension is significantly larger than the other two.

Ball pills are typically anchored to the fabric by only a few fibers, as shown in

Figure 2.11B. By contrast, long pills are anchored at both ends, as shown in Figure

2.11D, and most of the fibers in the pill are approximately aligned with the long

dimension.

In the experiments described in Section 2.3.1, most of the pills formed are ball

pills, and we recall that wavy fibers are the most common precursors observed. In
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Figure 2.11: Morphology of ball pills [A,B] and long pills [C,D].

fact, all kinds of precursors can often be seen in the vicinity of a partially formed

ball pill.

Geometrical considerations suggest that entanglements should be the most appro-

priate precursor for long pills, but the relative scarcity of these makes it impossible

to establish such a correlation from the results of Section 2.3.1. We therefore ex-

perimented with different abradants to find one that generates a preponderance of

long pills, the most effective being a small pad of silicone rubber, as shown in Figure

2.12A. Back-and-forth motion of amplitude approximately equal to the length of this

pad in the sliding direction (≈ 7 mm) then generates more than 50% entanglement

precursors, a typical example being shown in Figure 2.12B. The resulting long pills

are shown in Figure 2.12B.
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Figure 2.12: Silicone rubber abradant [A] and resulting entanglements [B].

Long pills generally tend to align with their long axes perpendicular to the di-

rection of sliding, but this conclusion is somewhat modified by fabric anisotropy.

Examination of unworn fabric shows that fiber orientation is preferentially aligned

with the direction of manufacture. In the early stages of abrasion [Figure 2.13A],

long pills tend to align with this direction, indicated by the dashed line. However,

as abrasion proceeds they tend to rotate towards an orientation approximately per-

pendicular to the sliding direction, indicated by the arrow in Figure 2.13B. Notice

also that the pills become ‘thicker’ as abrasion proceeds, indicating that more fibers

are entangled. These experiments were repeated with 12 different equispaced slid-

ing directions relative to the machine direction, and in all cases long pills tended to

become oriented approximately perpendicular to the sliding direction. We also note

that the numbers of ball pills and long pills generated was not found to depend upon

sliding direction.
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Figure 2.13: [A] Long pills form initially along the machine direction, indicated by the dashed line,
but after continued sliding [B], they become approximately perpendicular to the sliding
direction, indicated by the arrow.

2.3.5 Effect of bonding temperature

The abrasion experiments described so far involve the fabric of Figure 2.4 (A,C)

that was manufactured using a bonding temperature of 135 oC. Corresponding ex-

periments on a fabric bonded at a higher temperature of 153 oC show an initial stage

of fuzziness, but this does not then typically lead to significant pill formation.

It should be noted however that this improvement in abrasion resistance comes at

a cost, in that the resulting fabric is less ‘qualitatively soft’ to the touch, and hence

less attractive in applications involving contact with the skin [16], but while the

possibility of an optimization between softness and wear resistance is an important

question, it is beyond the scope of this paper.

We recall from Section 2.3.2 that abrasion damage for the 135 oC fabric often

starts from a Type 4 process [Figures 2.6, 2.7], in which a fiber is detached from one

or more bond sites without fiber fracture, and then is pulled out from the fabric.

Clearly this process is less likely if the bonding strength is increased.

To test this hypothesis, we performed peel tests on the two fabrics. Several fibers

were grasped by a sprung stall clamp and these were then pulled from the fabric
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using an Instron machine (5940 Series Single Column Table Top System). Figure

2.14 shows the force-extension curve and representative images at various stages of

loading. The maximum force reached is an order of magnitude lower for the 135 ◦C

fabric [Figure 2.14A] than for the 153 ◦C fabric [Figure 2.14B] and since the fibers are

the same for the two fabrics, we attribute this to the greater bond strength achieved

at 153 ◦C. If a fiber becomes detached from a bond site without breakage, it will

again contribute to the force once the extension increases sufficiently to take up the

slack. This behaviour explains the numerous downward jumps in the force extension

curve in Figure 2.14A], and also the greater extension to failure. By contrast, in

Figure 2.14B], most of the fibers break at or near the maximum load point.

Figure 2.14: Force-extension curves and representative images for peel tests on fabrics bonded at
135 oC (A) and 153 oC (B).
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2.3.6 Effect of fiber diameter

Since the fabrics tested comprise fibers of very small diameter [≈ 20 µm], it

might reasonably be hypothesised that intermolecular [e.g. van der Waals’] forces

are involved in the development of pills. We therefore performed some ‘qualitative’

experiments on fibers of larger diameter, notably human hair [≈ 50 µm] and cotton

yarn[≈ 1 mm]. Rolling a group of these fibers between two fingers, twist and entan-

glement precursors similar to those in Figure 2.9 are obtained [Figure 2.15(A,B)],

and indeed similar morphologies could be obtained even with a 3 mm cable (C).

With the cotton yarn, further ‘abrasion’ leads to the development of a ball pill [Fig-

ure 2.15(D–F)] if the ends are left free, but a long pill [Figure 2.15(G)] if the ends

are fixed. These results suggest that intermolecular forces do not play a significant

rôle in pill formation. Friction may also play a significant rôle in the entanglement

and self-adhesion of these fibers. We hope to investigate this mechanism in future

research.

Figure 2.15: Precursor and pill formation for larger diameter fibers.
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2.4 Conclusions

The development of abrasive damage to a non-woven fabric has been observed

using an in-situ experimental system. Fuzziness precedes the development of pills

and is characterized by pull-out of unbonded fibers or by separation of a fiber from

a bond site without fracture. For this reason, increased bond strength obtained by

a higher bonding temperature during manufacture reduces abrasion damage.

Various types of pill precursor have been identified. Small amplitude back-and-

forth abrasion using a silicone rubber abradant generates ‘entanglement’ precursors,

and leads to the development of long pills, with the long axis perpendicular to the

direction of motion. Larger amplitude motion with a fibrous abradant generates a

wider range of precursors and leads to a predominance of equi-axed ball pills.

Experiments with larger diameter fibers suggest that adhesive forces between

fibers is not a significant factor in pill generation.



CHAPTER III

Use of Wavelet Analysis for an Objective Evaluation of the
Formation of Pills in Nonwoven Fabrics

3.1 Introduction

Over the past 40 years, nonwoven fabrics have become an independent and tech-

nically sophisticated portion of the textile industry, playing a leading role in many

market segments [3]. The global market for nonwoven fabrics is rapidly growing,

worth 47 billion in 2018, up from 33 billion in 2013 [61]. The use of non-woven

fabrics has increased significantly because they can be produced directly from raw

materials, and manufactured in a continuous fashion that avoids complex conven-

tional textile operations such as braiding, weaving or knitting [72, 57, 45]. Non-woven

fabrics are used as the basis for more than 10 billion disposable diapers sold every

year for infants and toddlers. They are also used for other applications including

clothing, filtration products, and seat cushions.

During service both knitted and nonwoven fabrics experience fretting and abra-

sion. This can lead to damage such as ”fuzz”, in which fiber ends protrude from

the surface of a fabric [4, 40], and ”pills”, which are balls of tangled fibers held to

the surface of the fabric by one or more fibers [4, 40]. This damage is undesirable

since it degrades both the appearance and texture of a fabric in consumer applica-

tions, as well as reducing the integrity and function in both consumer and industrial

34
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applications. The applications for which non-woven fabrics are used can be just as

sensitive to concerns about wear from an appearance or texture perspective, as are

the applications for which woven fabrics are used.

The development of pill-resistant fabrics for both woven and non-woven fabrics

will require a fundamental understanding of the mechanics of wear mechanisms to

understand the formation of pills. However, these mechanisms are expected to be

somewhat different for woven and non-woven fabrics. For either case, there is a

need to develop quantitative methods to evaluate the formation of pills. While such

methods have been developed for woven fabrics, these rely on the underlying periodic

structure of the woven fabric. Such periodicity does not occur in non-woven fabrics,

and the current industry standard of ASTM 4970 [41] for evaluating pilling requires

the subjective opinion of trained experts. The only other technique that has been

described in the literature that could be used to evaluate pilling is to scan the surface

of a fabric from point to point using a laser, and to detect the presence of pills from

changes in the surface topography[86]. However, this entails the use of expensive

equipment, and is not very efficient. In this paper we describe a simple digital-image

approach that requires a minimal amount of human intervention, and can be used

for evaluating pills in non-woven fabrics.

Digital-image analyses have been explored previously for the purpose of identifying

pills[54, 83, 84, 82, 87, 70, 69, 38, 47, 48, 51, 49]. However, the inherent challenge with

digital-image techniques is developing methods to separate the signals associated

with the presence of pills from other confounding signals, such as differences in

illumination, unevenness of the fabric surface, and the texture.

One approach is to use a two-dimensional, discrete-Fourier-transform method

[83, 84] to separate the periodic structure of woven and knitted fabrics from the
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non-periodic structure of pills. However, this technique can only give frequency in-

formation over the entire domain, so if, for example, small perturbations or localized

features exist, such as isolated pills, they may be missed because the signal is diluted

during the transform procedure (Figure 3.1). Furthermore, the method does not give

any information about the location of pills. It can only identify whether there are

pills in the domain. Finally, it relies on a distinction between the periodic structure

of a woven fabric, and the non-periodic structure of pills. Therefore, it cannot be

used for identifying pills in non-woven fabrics.

Figure 3.1: Illustration of the difference between a two-dimensional, discrete-Fourier-transform and
a two-dimensional, discrete-wavelet transform based on a sinusoid with a small pertur-
bation. The limitation for two-dimensional, discrete-Fourier-transforms is that, since
the signal is diluted during the transform, small perturbations or localized features may
be missed. In order to capture localized data in both the frequency and spatial domains,
a wavelet analysis has been introduced to analyze digital images of fabrics.
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To capture localized data in both the frequency and spatial domains, wavelet

analyses have been used, mainly for woven or knitted fabrics [82, 87, 70, 69, 38, 47,

48, 51, 49, 23, 54]. One advantage of these techniques is that frequency information

is not lost during the inverse transformation. The technique works by describing the

digital image in terms of shifted and scaled versions of finite-length or fast-decaying

oscillating waveforms called ”mother wavelets.” Selections of data are compared to

the wavelets, producing coefficients that evaluate the degree of matching between

the data and wavelets. The presence of a disturbance at a suitable scale, such as a

pill, can then be identified.

In previous work, the standard deviation of the matching coefficients for scales

that corresponded to the periodic pitch of the fabric was used to quantify the degree

of damage. The concept behind this approach is that if data with the periodicity

of original pattern are compared to the wavelet, the coefficients will be similar.

Therefore, the standard deviation of these coefficients should be relatively small for

images of undamaged fabrics. Conversely, if there is a pill on the surface of the fabric,

the standard deviation of the coefficients should increase since any pills will disrupt

the underlying periodicity of the fabric.

The approach described above relies on the presence of a periodic structure, which

may not be present in a nonwoven fabric. By contrast, the technique described in this

paper focuses on capturing the pill information directly, rather than the modification

of a periodic texture. Although the fabrics used in this study do actually have an

underlying pattern associated with the array of bonding pins, this pattern is not used

in the analysis. The present approach focuses on an analysis at the scale of the pills

that are to be described. So, the analysis is performed at the specific scale associated

with the pills, and the signals associated with other scales are removed. This concept
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is used to develop a parameter based on a wavelet analysis that provides an objective

assessment for the degree of damage.

3.2 Reconstruction of pill information

Figure 3.2(A) shows an optical image of a nonwoven fabric before abrasion. The

hexagonal close-packed pattern of spots that can be seen is the result of the hot

pressing process used to bond the fibers together. Figure 3.2(B) shows an optical

image of a similar piece of fabric with a number of pills that formed after abrasion.

Although the pills are clearly visible to an observer, it is not obvious how to describe

the extent of pilling in a non-subjective fashion. A quantifiable method to describe

the pilling, in a fashion that is independent of the perceptions of an observer, was

the goal of this study.

Figure 3.2: (A) Image of fabric before abrasion. The periodic structure that can be observed in
this image results from the thermal bonding sites. (B) Image of fabric after abrasion,
showing the presence of pills of few millimeters in length. It is these features that our
technique focuses on, not the loss of periodicity at the smaller scale.
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A wavelet analysis involves correlating a single waveform of a given wavelength,

known as the ”mother wavelet.” with the digital signal of interest. In a fashion

similar to Fourier analysis, wavelet analysis involves decomposing the original signal

into shifted and scaled forms of the mother wavelet[63]. The process starts with the

finest scale of wavelet, and the correlated portion is subtracted from the original

signal. The image recreated from the subtracted portion of this first step is referred

to as ”level 1” in the images that follow. The remnant signal is then operated upon

by a wavelet with twice the wavelength of the previous one, and the image recreated

from this second signal is referred to as ”level 2.” This process is repeated until the

wavelength of the wavelet applied to the remaining signal is much coarser than any

scale of interest. In the present case, seven frequency scales were used, with the finest

corresponding to 1/256th of the image length, and the coarsest level corresponding

to a quarter of the image length.

The process of correlation and subtraction filters the signal into components that

incorporate information about features with characteristic sizes. The effect of this

digital manipulation on the image of an abraded sample shown in Fig 3.2(B) is

illustrated in Figure 3.3. This figure shows a sequence of images resulting from a

wavelet analysis from the final coarse levels (low frequency) to the initial fine levels

(high frequency).
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Figure 3.3: (A) Image of non-woven fabric after abrasion; (B-H) Decomposition of the original
image after subtraction of the digital information at increasingly fine scales.
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The specific form of the wavelet used to generate these images is shown in Figure

3.4. However, it is important to appreciate that the results do not depend on the

precise shape of the wavelet chosen.

Figure 3.4: The mother wavelet used to create the images of Figure 2.

The major issue of this technique that needs to be addressed is how to determine

the level or combination of levels that best characterizes the features of interest,

without excessive contamination from other features. This is the only step of the

process in which some human intervention is required: determining the appropriate

scale of the features.However, once this is decided, the process proceeds by recogniz-

ing that each level of wavelet detects features with dimensions that approximately

match their wavelengths (Figure 3.5). For example, consider a case in which the

physical size of the portion of the fabric contributing to an image is a× a mm2, the

digital size of the corresponding image is m×m pixels2, and the features of interest



42

have a physical size of d mm. Since the features of interest in this case are captured

by m× d/a pixels in the image, a wavelet level of Nc, given by

(3.1) Nc = log2(
md

a
)

will return coefficients whose magnitudes reflect the density of features at this size

scale.

Figure 3.5: Relation between the size of wavelet and the size of pill. If the size of the shifted and
scaled version of the wavelet matches the size of pill, the pill information will be picked
up by returning a large coefficient.

For the specific sample considered in this paper, the pills that form in the fabric

are in the range of 2.5 mm to 5 mm. The images of the fabric were cropped to a

size of 512×512 pixels2. This was found to provide a satisfactory level of resolution,

and amenable to a wavelet analysis. The microscope was calibrated so that a digital

image of this size image corresponded to a physical domain of 40×40mm2. Therefore,
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using Eqn.3.1, a level of N = 5 detects features of about 2.5 mm, and a level of

N = 6 detects features of about 5 mm. After the wavelet coefficients at these two

levels (N= 5, 6) were determined, the coefficients at the other levels were discarded.

The chosen coefficients were used to synthesize a new image matrix by an inverse

wavelet transform. A visualization of the synthesized image matrix is shown in

Figure 3.6(B), and compared to the original unfiltered image, Figure 3.6(A). Notice

that the reconstructed image broadly captures the morphology of the pills.

Figure 3.6: Reconstruction of the signals corresponding to levels 5 and 6 results in the image on
the right (B). This can be compared to the unfiltered image of the abraded specimen
on the left (A) to show that this reconstructed image broadly captures the pills.

The coefficients corresponding to the wavelets at levels 5 and 6 increase in magni-

tude with an increasing number of pills on a given area of fabric. This motivated the

use of a parameter P , defined as the sum of all positive elements in the coefficient

matrix of the synthesized image divided by the total number of the elements in that

matrix. It will be shown that this parameter correlates with the extent of damage,

in the form of pills, after an abrasion test.

In order to further compare the fabric before and after abrasion, P was normalized

by its initial value, Po, obtained from an unworn fabric that would usually be available
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as a reference sample. This normalized quantity is identified as the ”gray-value ratio”:

(3.2) δ =
P

Po

It is the gray-value ratio, δ that is used to provide a quantitative measure of the

damage.

3.3 Experimental methods

The hardware used included an optical microscope, a light source consisting of a

light-emitting diode, a digital camera, and a computer (Fig 3.7). The magnification

of the microscope and the resolution of the camera were matched by a one-time cali-

bration process to ensure that a 40×40 mm2 area corresponded to a 512×512 pixels2

image.
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Figure 3.7: Hardware set-up for wavelet analysis. The hardware set-up was composed of an optical
microscope, an LED light, a digital camera, and a computer. The magnification of the
microscope and the resolution of the camera was matched by a one-time calibration
process as described in Section 2. The appropriate magnification of the microscope and
camera resolution was such that the region of interest can be imaged to a size of 512 by
512 pixels or larger. This required a digital camera with a resolution of 0.3 M pixels or
higher.

The analysis was developed using the computer program MATLAB. First, the

image was cropped to a size of 512 × 512pixels2, so that it corresponded to the

correct area. The image was converted to a gray-scale. As described above, it was

determined that the coefficients at the fifth and sixth level would correspond to the
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length scales associated with the pills of interest. Then, the coefficients at these levels

were extracted by a multilevel, 2D, wavelet-decomposition, and an image containing

only the information at these two levels was reconstructed by an inverse wavelet-

transform. Finally, P was obtained, and a similar process was used to obtain Po

from an undamaged sample, so that the corresponding gray-value ratios could be

calculated.

This technique was used on several different surfaces to explore whether it could

discriminate between subtle gradations of surfaces that were all nominally white, but

clearly had different appearances. Once the discriminatory ability of the technique

had been verified, it was applied to micrographs of fabrics that had been worn to

different degrees, and compared the ratings we obtained with those of an independent,

qualitative evaluation based on ASTM 4970[41].

3.4 Results

The gray value, P , for a pure digital white image that is absolutely uniform,

should be zero. However, as shown in Figure 3.8, even nominally untextured sur-

faces do not have gray values of zero. The gray value contains information about

non-uniformities in the image corresponding to the wavelengths of level 5 and level

6. It is interesting that the gray value appears to scale systematically with what an

observer might qualitatively describe as a departure from uniformity in the image.

In particular, this figure emphasizes the need to normalize gray values by a reference

value. In the case of damaged fabrics, the reference value of P used is that of a

nominally undamaged fabric, Po.
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Figure 3.8: Gray value, P , of a pure digital, white image, paper-based materials, and fiber-based
materials.
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In order to compare our gray-value-ratio rating to a traditional, qualitative rating

method[48], the degree of damage on five non-woven fabrics was evaluated by both

methods. Fabric samples were abraded on a Martindale abrasion tester by an inde-

pendent employee at Procter & Gamble, who also read the worn samples using the

traditional rating method. For this procedure, the bottom of the non-woven samples

was clamped onto a felt layer, and a rubber-covered footer on the top abraded the

samples following a Lissajous curve. The resulting damage was then rated by com-

paring the damage with standard images from 1 (no pilling) to 5 (extreme pilling

and destruction of sample). The worn samples were then supplied to the University

of Michigan, and evaluated independently by the wavelet analysis described here.

The images were obtained and analyzed as described above, and the results com-

pared with the traditional ”Martindale Rating” methods in Figure 3.9. This figure

shows that there is excellent consistency between the two methods. The correlation

coefficient between the subjective results and the results obtained by the wavelet

technique was 0.9025. In conclusion, the technique we have developed not only re-

quires only a limited amount of human interpretation, but also agrees well with the

traditional rating method.
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Figure 3.9: The measured gray-value ratio, δ correlates well with a traditional rating method. (In-
dependent measurements, the ”traditional ratings” are courtesy of P&G.)

3.5 Discussion

Two factors that might influence the quantification of wear were also considered:

the choice of the mother wavelet, and the rotation of the samples during imaging.

To investigate the potential effect of using different forms of wavelet, a range of

different wavelets (Figure 3.10) were used to test whether there was any difference

in the resultant quantification. The six wavelets chosen came predominately from

two wavelet families: Daubechies and Coiflets[22]. The reason for choosing these

wavelets was that they are compactly supported and orthonormal, which makes

discrete wavelet-analyses practicable[23, 49, 63, 22, 36].
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Figure 3.10: Six different mother wavelets used to study the effect of the choice of wavelet.

In addition, other studies have chosen one of these wavelets because they can

successfully match the main features of woven fabric textures [82, 47, 48]. The

different mother wavelets that we used to detect features of the same size range are

shown in Figure 3.10. Similar results were obtained with all forms of the mother

wavelets tested (Figure 3.11). The difference in gray-value ratios obtained from all

the mother wavelets was only around 4%. Therefore, the choice of wavelet is not

critical when investigating pilling in nonwoven fabrics.
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Figure 3.11: In order to further optimize the wavelet analysis for a non-woven fabric, a range of
candidate wavelets were used to test the influence of different mother wavelets. The six
wavelets chosen were from two wavelet families: Daubechies and Coiflets (see Figure
3.10 in the main text for the key to the shapes of the wavelets). The samples from the
five groups analyzed in Figure 3.9 were used for this analysis. The error bars represent
one standard deviation for the results from the different samples. The plot shows that
the choice of mother wavelet has a negligible effect on the choice of wavelet.

Rotation of the sample should only affect the resulting measurements if the fabric

possesses significant anisotropy. Although the periodic structure of nonwoven fabrics

is not as obvious as that of woven fabrics, the hexagonal array of the bonding pattern

and the manufacturing orientation during fiber lay-down resulted in a certain degree

of anisotropy. Also, orientation effects might be introduced by the direction of sliding

during abrasion. In order to study this possible effect of anisotropy, we introduced a

deliberate rotation into the samples before quantifying the damage. We found that

the effect of rotation on the measured gray-value ratio was no more than 6% (Figure
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3.12). This lies well within other effects of experimental variability shown in Figure

3.9.

In order to study further how rotation might influence the results, a second exper-

iment was conducted. This experiment involved taking two sheets of white paper,

drawing a line in the center of one sheet, and drawing a solid circle in the center of

the other sheet. These sheets of paper were rotated through 0o, 30o, 60o, 90o, 120o,

150o, and 180o. For the paper with a line, the image was different upon rotation,

while the image was invariant for the circle. The difference in gray value for both

paper with line and paper with circle before and after rotation was small, also about

4%.
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Figure 3.12: Rotation of the fabric had negligible effect on the analysis method. A non-woven does
not have as obvious a periodic structure as a woven fabric does. However, for the
non-woven fabric in the present studies, there were several factors that could lead to
anisotropy. The first was the bonding pattern, which had a hexagonal close packing
form. The second was the production orientation, which was along the close packed
direction of the bond sites. The third was the wear direction. Despite these effects, the
difference of degree of damage before and after rotation was only around 6%. The error
bars represent one standard deviation in the variation for the five different specimens
analyzed from each of the sets of samples used to obtain the data of Figure 3.9.

3.6 Conclusion

A pill-level technique using two-dimensional, discrete-wavelet transforms has been

reported to provide an objective measure of pilling for nonwoven fabrics. It has been

shown that this approach using the gray-value ratio to quantify pilling correlates

very well with a traditional subjective approach. Since the approach we have devel-

oped requires minimal human interpretation (human interpretation is needed only

during the initial calibration for a specific type of fabric and abrasion conditions),
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it is expected that it can form the basis for an automated, integrated and efficient

system for evaluation of fabrics within industrial contexts. In addition, it will allow

a quantitative description of pilling that can be used for developing wear models.

This method was developed for non-woven fabrics, which lack an underlying pe-

riodicity that can be affected by the formation of pills. The loss of periodicity can

be used to detect damage in woven fabrics, so the present technique may not be

needed for such fabrics. However, it should be noted that the technique could be

used for woven fabrics, provided the pills have a scale that can be separated from

any underlying scale of the weave pattern. For example, by applying the technique

to published images of pills in a knitted fabric[69], it was possible to show that the

damage could be quantified by this approach.



CHAPTER IV

Generation of Perversions in Fibers with Intrinsic Curvature

4.1 Introduction

A recent experimental study of abrasion of non-woven fabrics [78] showed that the

formation of pills was generally preceded by individual fiber damage in the form of

waviness, twists, kinks and entanglements. Since in general only one side of the fiber

is abraded, it seems reasonable to assume that the resulting inelastic deformation

leads to a state of intrinsic curvature, and that these shapes are the response of the

fiber structure to end constraints or loads.

A simple experiment that illustrates this is as follows: take a hair, a piece of fiber,

or a ribbon, keep it taut, and use a finger nail to abrade one surface in a central

segment. Now, relax the tension gradually. If the ends were allowed to rotate, the

abraded segment would adopt a helical shape, but if they are prevented from rotating

it will exhibit two helical segments of opposite chirality separated by a ‘perversion’

[34, 59], as shown in Fig. 4.1.

55
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Figure 4.1: (a) The shape of a fiber abraded in a central segment; (b) Enlarged perspective view of
the abraded segment showing two helices separated by a perversion.

Long, thin fibers play an important role in many natural and technological sys-

tems. Applications range from microstructures such as supramolecular helices [85],

nanobelts [25], DNA [62], and polymer chains [81], to macro-structures including

animal organs [74], plant tendrils [34, 27, 79], and cables [35].

If a fiber is sufficiently long and thin, its deformation is dominated by bending and

twisting, and can be described using the Kirchhoff equations [32, 66, 14]. Analytical

solutions exist for an infinitely long fiber under tension or compression without twist

[76], and for a fiber with uniform intrinsic curvature under tension deforming into

a uniform helix [34, 59, 30]. If a fiber with intrinsic curvature is straightened and

the ends are then prevented from rotating during unloading, the requirement that

the end-to-end twist be zero causes it to form two equal helices of opposite chirality

separated by a perversion, as shown in Fig. 4.1. This was recognized by Darwin,

as explained by [71]. Domokos and Healey (2005) investigated and classified the

equilibrium configurations for a fiber with intrinsic curvature. They showed that a



57

state with a single perversion bifurcates stably from the straight configuration as the

tension is reduced, and that there are equilibria involving multiple perversions. A

more general computational approach for problems of this class was developed by

[50].

Goriely and coworkers [59, 34, 31] obtained an approximate description for the

shape of a perversion by perturbing the solution for a straight fiber. In particular,

they showed that this approach defines a shape that is asymptotically close to the

corresponding pure helices. However, it is clear that the shape illustrated in Figure

4.1, as well as those of fibers in abrasion experiments [78], do not generally meet the

condition of being almost straight. Therefore, in this paper, we use finite-element

solutions and Rayleigh-Ritz approximations to describe the shape of more relaxed

fibers. We also show that the resultant shapes are very sensitive to small perturba-

tions in the initial conditions and to the loading history.

4.2 Mathematical model

The Kirchhoff model provides a mathematical framework to describe the defor-

mation of a thin fiber in bending and torsion. We assume that the fiber is inex-

tensible, and define a path-length coordinate, s,such that the location of a point

on the fiber is defined by the position vector r(s). We also define a director basis

{d1(s),d2(s),d3(s)}, as shown in Figure 4.2, such that d3(s) is the unit vector in

direction r′(s), where the prime denotes the derivative with respect to s. The unit

vectors d1(s) and d2(s) are defined so as to align with the principal axes of the cross-

section, for which the second moments of area are I1 and I2, respectively. The local

curvature and twist of the fiber can be combined in a vector k(s), defined such that

(4.1) d ′i = k × di ; i = 1, 2, 3 .
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Figure 4.2: A fiber loaded by equal and opposite forces at its ends. We define a path coordinate s
and a director basis {d1(s),d2(s),d3(s)}. We also define the end-to-end distance h.

In the unloaded state, the shape of the fiber is defined by an intrinsic curvature

vector k(0)(s) = {k(0)
1 , k

(0)
2 , k

(0)
3 }.

We consider the case where the fiber is loaded only at the ends by equal and

opposite forces P . In this case the equilibrium of internal force F (s) and moment

M (s) leads to the quasistatic Kirchhoff equations

(4.2) F ′ = 0 ; M ′ + d3×F = 0

[59]. The moment M (s) is related to the local curvature k(s) by the constitutive

relation

(4.3) M = EI1(k1 − k(0)
1 )d1 + EI2(k2 − k(0)

2 )d2 +GK(k3 − k(0)
3 )d3 ,

where E is Young’s modulus, G is the shear modulus, and K is the torsional stiffness.

If this is substituted into equations (4.2), it is clear that we will have six ordinary

differential equations for the six unknowns k1, k2, k3, F1, F2 and F3.
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4.2.1 Dimensionless formulation

It is convenient to introduce dimensionless measures s̃, F̃ , P̃ ,M̃ , k̃ through the

definitions

(4.4) s = s̃/ko ; F = F̃EI1k
2
o ; P = P̃EI1k

2
o ; M = M̃EI1ko ; k = k̃ko ,

where ko is an appropriate scalar measure of intrinsic curvature or twist. Since

the numerical calculations that we discuss later are dynamic in nature, we will also

introduce a non-dimensional form, t̃, for time

(4.5) t = t̃L
√
E/ρ ,

where ρ is the density of the fibers. The Kirchhoff equations (4.2) retain the same

form with this substitution, and the constitutive relation reduces to

(4.6) M̃ = (k̃1 − k̃(0)
1 )d1 + Λ(k̃2 − k̃(0)

2 )d2 + Γ(k̃3 − k̃(0)
3 )d3 ,

where Λ = I2/I1 and Γ = GK/EI1.

From the equilibrium equation (4.2) and the constitutive law (4.6), we can obtain

a relationship between k1, k2 and k3:

(4.7) Γ
(
k̃ ′3 − k̃

(0) ′
3

)
−
(
k̃1 − k̃(0)

1

)
k̃2 + Λ

(
k̃2 − k̃(0)

2

)
k̃1 = 0 ,

where the prime now represents the derivative with respect to s̃.

In this paper, we restrict attention to incompressible fibers of circular cross-section

with uniform intrinsic curvature, so that

(4.8) k(0) =
{
k

(0)
1 , 0, 0

}
; Λ = 1 ; Γ =

2

3
.

If we further choose ko = k
(0)
1 ,

(4.9) k̃ ′3 = −3

2
k̃2 ,
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and the problem is completely characterized by the dimensionless parameters P̃ and

k
(0)
1 L, where L is the length of the fiber.

In this paper, we will also use the result that the elastic strain energy per unit

length, U , is given by

(4.10) Ũ ≡ U

EI1k2
o

=
1

2
(k̃1 − 1)2 +

1

2
k̃2

2 +
1

3
k̃2

3 .

4.3 Uniform helix solution

If the ends of a long fiber are pulled apart by a force P , and are not restrained

against rotation, the fiber forms a uniform helix except for a region near the ends.

The dimensionless curvature k̃1 and twist k̃3 of a pure helix are independent of s̃,

and hence k̃2 = 0 from Eqn. 4.9.

The shape of the helix is defined by two parameters: a length scale such as the

pitch p or the coil radius r, and a dimensionless parameter which could be any one

of the helix angle α, the ratio p/r or h/L, where the end-to-end distance h is defined

in Fig. 4.2. Here the curvature k1 and twist k3 are chosen as the two parameters, in

terms of which [67],

(4.11) ĥ =
h

L
=

k3√
k2

1 + k2
3

.

This equation retains the same form when it is expressed in terms of the non-

dimensional parameters k̃1, k̃2 and k̃3.

We can expressed all the variables in terms of k̃1 and k̃3. 1. pitch p and radius r

(4.12) p =
k3

k2
1 + k2

3

r =
k1

k2
1 + k2

3

The total energy per unit length Π consists of the strain energy, U , and the

potential energy, −Ph/L, of the applied force P . The dimensionless total energy for
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the uniform helix is therefore [34]:

(4.13) Π̃ = Ũ − P̃ ĥ =
1

2
(k̃1 − 1)2 +

1

3
k̃2

3 − P̃ ĥ

from equation (4.10). An equilibrium configuration is one that minimizes the total

energy, with

(4.14)
dΠ̃

dk̃1

= 0 ;
dΠ̃

dk̃3

= 0 .

Since from equation (4.13) and (4.11), we have

(4.15) Π̃ =
1

2
(k̃1 − 1)2 +

1

3
k̃3

2 − P̃ k̃3√
k̃2

1 + k̃2
3

Therefore,

(4.16)
dΠ

dk̃1

= k̃1 − k̃0 +
P̃ k̃3k̃1

(k̃3
2

+ k̃1
2
)3/2

= 0

(4.17)
dΠ

dk̃3

=
2

3
k̃3 −

P̃ k̃1
2

(k̃3
2

+ k̃1
2
)3/2

= 0

From (4.14) and (4.17), we have

(4.18) k̃1
2 − k̃1 +

2

3
k̃3

2
= 0

from (4.18),

(4.19) k̃3
2

=
3

2
(k̃1 − k̃1

2
)

from (4.17), we have

(4.20)
2

3
k̃3 =

P̃ k̃1
2

(k̃3
2

+ k̃1
2
)3/2

(4.21)
4

9
k̃3

2
=

P̃ 2k̃1
4

(k̃3
2

+ k̃1
2
)3
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(4.22)
4

9
k̃3

2
(k̃3

2
+ k̃1

2
)3 = P̃ 2k̃1

4

from (4.19) and (4.22), we have

(4.23)
4

9
(
3

2
(k̃0k̃1 − k̃1

2
))((

3

2
(k̃0k̃1 − k̃1

2
)) + k̃1

2
)3 = P̃ 2k̃1

4

(4.24) (k̃0 − k̃1)(3k̃0 − k̃1)3 = 12P̃ 2

This is the final results of k̃1 as a function of P̃ , but I can not have an explicit

form. So I solve the k̃1 numerically using Matlab ‘vpasolve’. These equations permit

all the dimensionless parameters to be expressed in terms of k̃1, and we obtain

(4.25) P̃ =

√
(1− k̃1)(3− k̃1)3

12
; k̃3 =

√
3

2
(k̃1 − k̃2

1); Ũ =
1− k̃1

2

[59]. The relations between the normalized curvature, k̃1, twist, k̃3, force, P̃ , strain

energy, Ũ , and the end-to-end distance, ĥ, are plotted parametrically in Fig. 4.3.
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(a)

(b)

Figure 4.3: (a) Normalized curvature k̃1 and twist k̃3, and (b) force P̃ and strain energy Ũ for a
uniform helix as functions of end-to-end distance h/L.

4.4 Shape of the perversion

When the tensile force at the end of the fiber is zero, it forms a coil in a plane.

Then, as mentioned previously, after the fiber has been pulled into a straight config-

uration, and the rotation of the ends is prevented as the force P is reduced again,

the fiber deforms into two similar helices of opposite handiness separated by a per-

version, as shown in Fig. 4.1. If h/L is only slightly less than unity, an analytical

approximation to the shape of the perversion can be obtained by perturbation meth-

ods [59]. For lower values of h/L, a numerical solution must be used. We will also

demonstrate the use of a Rayleigh-Ritz approach in the next section.
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Finite-element simulations were conducted using the software ‘ABAQUS/Explicit’

with elastic-beam elements.1 The ratio between the fiber diameter and length was

chosen to be very small (10−3), in order to render extensional effects negligible.

The quasi-static condition was satisfied by verifying that the kinetic energy was

negligible compared to the strain energy throughout the simulation. Automatic

time increments and a small damping coefficient were used. A Python script was

written to establish the shape of fiber by integrating the curvature. The initial set of

numerical results that will be presented were obtained under quasi-static conditions,

for which the kinetic energy was always negligible compared to the strain energy.

This condition was relaxed in a subsequent set of calculations conducted to explore

the effects of rate and noise on the formation of perversions.

To test the accuracy of the finite-element solution, we allowed end rotation so

that the shape was a pure helix, except near the ends. The strain energy of a

central helical segment is compared to that of the analytical solution in Fig. 4.4, and

shows excellent agreement. Notice that in this figure and throughout this section, we

present results as functions of h/L in a helical segment rather than as functions of the

force P̃ , since values for h/L show less variance than those for P̃ in the finite-element

solutions. The two parameters are related through Eqns. 4.15 and 4.19, which can

be solved to give

(4.26) P̃ =
6h/L

(3− h2/L2)2
.

1A mesh size of about 0.03k
(0)
1 was used, but a reasonable level of insensitivity to this choice was verified. A

similar insensitivity to the choice of damping coefficient was also verified by using values of 0.06 and 0.6. Unless
specified otherwise, dh̃/dt̃ = 9.7× 10−7 so as to ensure quasi-static conditions.
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Figure 4.4: The normalized strain energy of a helix segment as a function of the end-to-end
distance from finite-element calculations (points) and the analytical solution from
Eqn. 4.19(line). The numerical uncertainties in this plot are smaller than the data
points.

Figure 4.5 shows two views of the shape of a perversion generated in ABAQUS

for the case where h/L = 0.78 for the adjacent helical segments. However, it is easier

to characterize the properties of the perversion by plotting k̃1, k̃2 and k̃3 as functions

of s̃.
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Figure 4.5: Two views of a typical ABAQUS output showing helical coils of opposite chirality
separated by a perversion. h/L = 0.78.

Figure 4.6(a) shows this plot for the case h/L = 0.88 , where the finite-element

results are plotted as points. The curvatures k̃1, k̃2 are symmetric about the midpoint

of the perversion, whereas the twist k̃3 is anti-symmetric. The finite-element results

tend asymptotically to the appropriate values of a pure helix away from the mid-

point of the perversion, and the decay is fairly rapid, implying that the form of the

perversion is not influenced by the necessarily finite length of the fiber. There is also

a noticeable ‘overshoot’ implying oscillatory decay, particularly in the results for k̃3.
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(a)

(b)

Figure 4.6: (a) Finite-element results (points) for k̃1, k̃2 and k̃3 in the perversion segment as func-
tions of s̃ for h/L = 0.88. The solid lines are obtained from McMillan and Goriely’s
perturbation solution for a value of µ = −0.19, corresponding to h/L = 0.88. (b) The

same results plotted in k̃3 − k̃ space, where k̃ =
√
k̃21 + k̃22. The dashed line represents

the locus of fixed points defined by the pure helix relation (4.19)2. We also present
a similar comparison for h/L = 0.95 (corresponding to µ = −0.095), for which the
agreement with the perturbation solution is much closer. The numerical uncertainties
in this plot are smaller than the data points.

For comparison, the solid lines in Fig. 4.6(a) were obtained using McMillen and

Goriely’s perturbation solution [59], though we note that the corresponding value

of their parameter µ is −0.19 (equivalent to h/L = 0.88), is outside the range in

which they would claim the perturbation procedure provides a good approximation.

In particular, notice that the perturbation solution does not capture the oscillatory

decay observed in the numerical results.
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In Figure 4.6(b), the same results are plotted in k̃3− k̃ space, where k̃ =
√
k̃2

1 + k̃2
2

is the magnitude of the curvature. The dashed line represents the locus of fixed points

defined by the relationship for a pure helix (Eqn. 4.19). In this figure, we also show

the same comparison for h/L = 0.95 (µ = −0.095), confirming that the perturbation

solution gives a much better fit as h/L approaches unity.

4.4.1 Rayleigh-Ritz approximation to the shape

In their bifurcation analysis to determine the stability of small perturbations from

the straight configuration, Domokos and Healey (2005) defined a vector of labels

wi ∈ {−1, 0, 1}, each component of which essentially characterizes the chirality of a

helical segment comprising a single coil of the initial undeformed fiber. The sequence

of values wi then defines the approximate shape of the deformed fiber. In particu-

lar, perversions are identifiable as locations where adjacent segments have opposite

values of wi.

In our formulation, the chirality of a fiber segment is defined by sgn((k̃3(s̃)) and

a closely related approximation to the shape could be defined by representing k̃3(s̃)

as a piecewise constant function. This is equivalent to idealizing the perversion as a

point defect, which could lead to useful simplifications in the investigation of more

complex patterns. There are clear parallels here with dislocations, and in particular

with geometrically necessary dislocations [6, 65], since we have already remarked

that at least one perversion must exist under the conditions of loading such as those

in Figure 3.1. Dislocation is a concept in material science, it is a defect in the crys-

tal structure which contains the sudden change in the arrangement of atoms. The

movement of dislocations allows atoms to glide or slip over each other at low stress
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levels.

However, a step function in k̃3(s̃) implies a locally infinite value of k̃2(s̃) from Eqn.

8, and hence implies a non-integrable singularity in strain-energy density. Of course,

a similar problem is encountered with a discrete dislocation, and it can be avoided by

using an appropriate regularization. For example, in the Peierls-Nabarro dislocation

model [43], the relative displacement of the two halves of the crystal is approximated

by an arctan function. In the next section, we shall propose appropriate regulariza-

tions for the functions k̃1(s̃), k̃2(s̃), k̃3(s̃) near a perversion, and determine the values

of the corresponding parameters using the Rayleigh-Ritz method.

3.1. Rayleigh-Ritz approximation to the shape

The results in Fig. 4.6 that the functions k̃1(s), k̃2(s) might be approximated by

(4.15) k̃1(s̃) = a1 exp (−b1s̃
2) cos(c1s̃) + k̃helix

1 (ĥ)

(4.16) k̃2(s̃) = a2 exp (−b2s̃
2) cos(c2s̃) ,

where k̃helix
1 (ĥ) corresponds to the uniform helix value plotted in Fig. 3(a) and

a1, b1, c1, a2, b2, c2 are parameters to be determined. These expressions tend asymp-

totically to the uniform helix values from Eqns. 10 and 13 with increasing |s̃|.

Equation (4.9) can be integrated to give

(4.17) k̃3(s̃) = −3

2

∫ s̃

0

k̃2(s̃)ds̃ = −3
√
πa2

4
√
b2

exp

(
− c2

2

4b2

)
<
{

erf

(√
b2s̃+

ic2

2
√
b2

)}
,

and, since k̃3(s̃) must tend to the limiting value k̃helix
3 (ĥ) as |s̃| → ∞, we obtain

(4.18) a2 = − 4
√
b2k̃

helix
3 (ĥ)

3
√
π exp (−c2

2/4b2)
,
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which reduces the number of free parameters (degrees of freedom) in Eqns. 4.15, 4.16

and 4.17 to five (a1, b1, c1, b2, c2).

The Rayleigh-Ritz approximation is then obtained by substituting these trial func-

tions into Eqn. 4.10, integrating with respect to s̃, and then minimizing the total

energy Π̃ with respect to the free parameters. We used the MatLab ‘fminsearch’

package which is based on the Nelder-Mead simplex direct-search algorithm. If the

variation of the shape of the perversion is tracked as the tensile force, P̃ , or the

end-to-end length, h/L, is reduced, it is efficient to use the values of the parameters

at the previous step as an initial guess for the search algorithm. Computationally,

the Rayleigh-Ritz algorithm is about 100 times faster than the direct finite-element

solution.

Figure 4.7 compares the Rayleigh-Ritz approximation (solid lines) with finite-

element results (points) for h/L = 0.88 and 0.78. The agreement is clearly excellent.

(a) (b)

Figure 4.7: Rayleigh-Ritz approximations with five parameters for the curvature and twist functions
k̃1, k̃2 and k̃3 (lines) compared with finite element results (points) for (a) h/L = 0.88
and (b) h/L = 0.78. The numerical uncertainties in these plots are smaller than the
data points.

This is confirmed by a comparison of the three-dimensional shapes for h/L = 0.78
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in Fig. 4.8.

Figure 4.8: Comparison of the predicted fiber morphology from finite element and Rayleigh-Ritz
calculations for h/L = 0.78.

Lower values of h/L

The Rayleigh-Ritz approximation of Eqns. 4.15, 4.16 and 4.17 provides a good fit

to the finite-element results in the range 0.65 < h/L < 1, but significant errors are

obtained for lower values. Figure 4.9(a) compares the solutions for h/L = 0.32. It

can be seen that the finite-element results exhibit several cycles of oscillation that

are not captured by the Rayleigh-Ritz solution, and the asymptotic approach to the

helix value is slower. This should be compared to the good agreement seen at larger

values of h/L in Fig. 4.7.
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(a) (b)

Figure 4.9: Rayleigh-Ritz solution (solid line) (a) using Eqns. 4.15, 4.16 and 4.17 with five param-
eters, and (b) using Eqns. 4.19, 4.20 and 4.21 with eleven parameters, compared with
finite-element results (points) for h/L = 0.32. The numerical uncertainties in these
plots are smaller than the data points.

An improved fit at these lower values of h/L can be obtained by using a trial

function with more degrees of freedom. For example, Fig. 4.9(b) shows the fit using

the expressions

(4.19) k̃1 = a11 exp (−b11s̃
2) cos(c11s̃) + a12 exp (−b12s̃

2) cos(c12s̃
2) + k̃helix

1 (ĥ)

(4.20) k̃2 = a21 exp (−b21s̃
2) cos(c21s̃) + a22 exp (−b22s̃

2) cos(c22s̃
2)

(4.21) k̃3(s̃) = −3

2

∫ s̃

0

k̃2(s̃)ds̃ .

As with Eqns. 4.15, 4.16 and 4.17, we can eliminate one parameter by enforcing the

condition that k̃3(s̃)→ k̃helix
3 (ĥ) as |s̃| → ∞.

4.4.2 Energetic considerations

One of the obvious questions that arises when considering the introduction of

perversions into a coil, is whether the introduction of perversions is energetically fa-

vorable or not. In this context, it is important to appreciate that the key concept as
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to whether a defect such as a perversion is introduced into a body is always the change

in total energy, ∆Π, rather than the change in strain energy, ∆U . In this particular

situation the number of helical coils in the fiber is generally going to be sufficiently

large for them to control the relation between the end-to-end length and the force.

This means that even if the remote ends of the fiber are subject to displacement-

control, the local process of introducing a perversion must be considered as occurring

under force-control. The energy penalty associated with the introduction of a per-

version must include a potential-energy term, with the change in total energy being

given by ∆Π = ∆U − P∆h, where ∆h is the change in end-to-end length associ-

ated with the introduction of a perversion. To explore this expression, we evaluated

the difference between the properties of a fiber segment containing a perversion and

those of a segment of equal length but in the form of a pure helix. The asymptotic

behavior exhibited by Figs. 4.7 and 4.9 shows that these differences can be evaluated

by integrating over a modest region of the fiber near the perversion.

The first question we addressed was the difference in the end-to-end length of

a fiber associated with the introduction of a perversion, ∆h. This is plotted in

Fig. 4.10, in which ∆h is normalized by the intrinsic curvature, i.e., ∆h̃ = k
(0)
1 ∆h.

This calculation was performed numerically, and by using both the 5-parameter

and the 11-parameter Rayleigh-Ritz approximation. As can be seen in this figure,

the 5-parameter approximation provides an excellent description of the shape for

h/L ≥ 0.7, while the 11-parameter approximation provides an excellent description

of the shape down to at least h/L > 0.3. The important thing to note from this plot

is that while the introduction of a perversion causes an increase in h while h/L > 0.5,

the introduction of a perversion causes the ends of the fiber to move together when

h/L < 0.5.
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Figure 4.10: The change in normalized end-to-end distance ∆h̃ = k
(0)
1 ∆h between a pure helix and

a coil with a perversion, showing results obtained by both finite-element calculations
and the Rayleigh-Ritz method. The introduction of a perversion causes shrinkage of
the fiber if h/L is less than about 0.5. It should also be noted that the 5-parameter
Rayleigh-Ritz solution works very well for values of h/L greater than about 0.7.

Figure 4.11(a) shows the difference in the normalized strain energy, ∆Ũ , between

a segment of fiber containing a perversion and one that does not. Again, the plot

compares the numerical results with the 5- and 11-parameter approximations, show-

ing the agreement of each being in the same range as before. It will be noted that

Fig. 4.11(a) shows that the introduction of a perversion always increases the strain

energy in the range h/L > 0.325 over which it was feasible to do the numerical

calculations, but it also indicates that the strain-energy change may be negative

if h/L < 0.3. However, as discussed above, it is not the change in strain energy

that controls the energetics of introducing a perversion, but the change in total en-

ergy. Figure 4.10 indicates that the potential energy change associated with the

introduction of a perversion is positive when h/L < 0.5. This effect is bigger than

any negative change in the strain energy, resulting in the plot of Fig. 4.11(b) for
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the change in total energy. From this plot we can conclude that a perversion is

energetically unfavorable for all values of h/L.

(a) (b)

Figure 4.11: (a) The difference in strain energy between a purely helical portion of the fiber and
the same length of fiber containing a single perversion. Once again, the results are
well described by the 5-parameter Rayleigh-Ritz approximation of Eqns. 4.15, 4.16 and
4.17) for 0.65 < h/L < 1, and by the 11-parameter approximation below this range.
(b) The difference in total energy between a purely helical portion of the fiber and the
same length of fiber containing a single perversion. This plot is calculated using the
11-parameter Rayleigh-Ritz solution.

4.5 Persistence of perversions

Figure 4.11(b) shows that there is always a positive energy cost associated with

a perversion, suggesting that only geometrically-necessary perversions should be ob-

served. However, it can be seen from this figure that the energy cost is small when
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the fiber is almost straight (h/L very close to unity). In practice, this means that

there is a range of h/L where the energy costs of a perversion can be small compared

to numerical or experimental noise. This can lead to the generation of additional

perversions. In this section, we explore the persistence of these perversions as h/L

is reduced, and the energy cost of the perversions increases.

The formation and persistence of perversions was studied using our finite-element

code to generate examples of coiled fibers. Before presenting the results we first note

from Fig. 4.7 (for example) that k̃1 and k̃2 experience an excursion at a perversion, but

then return to the original helix value, whereas k̃3 changes sign, because a perversion

separates two segments of opposite chiralities. In more complex morphologies, a

perversion is therefore most easily characterized by a change in sign in the twist k̃3,

so in this section we plot this parameter as a function of distance along the fiber

length.

Figure 4.12 shows a typical progression of a finite-element plot of k̃3 for a fiber of

length L = 80π/k
(0)
1 (i.e., a fiber that would present 40 plane coils if the ends were

unloaded) as h/L is reduced from 1 to 0.967. Additional perversions, beyond the

single geometrically necessary one, were formed in this case, because a much longer

fiber was used than for the earlier results, probably allowing some entropic effects

to play a role. In the first plot for h/L = 0.990, sign changes for k̃3, representing

perversions, can be identified at the points A, B, C, D, E and F. The noise associated

with the numerical algorithm can be seen in this plot, and when h/L ≈ 1 the

variation associated with noise was similar to that associated with a perversion; this

is the stage at which perversions were generated. Figures 4.12(b), (c) and (d) show

the evolution of the pattern as h/L is reduced. The perversion at A moves to the end

of the fiber and has disappeared at h/L = 0.976. The ‘opposite’ perversions at D and
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E move closer together as the fiber is relaxed. They have annihilated each other [56]

by the time h/L = 0.967. However, if h/L is reduced further, down to h/L = 0.40,

no further annihilation is observed, even though the energetically optimal solution

would involve only a single perversion.

Figure 4.12: Perversions are identified by sign changes in k̃3(s̃). Those at A D and E are annihilated
as h/L is reduced.

When two perversions are widely separated (i.e., beyond the range in which they

interact), there is no energetic advantage in their moving together, so they are ex-

pected to persist under unloading. The process of reaching the most energetically

favorable state is also impeded by the fact that the net twist, and hence the area

under the curves in Fig. 4.12, must be zero. Thus, for example, B and C cannot sim-
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ply move closer together in Fig. 4.12(d) without a corresponding motion of F, since

otherwise this would increase the net area under the curve. Notice that when D and

E annihilate each other in passing from Figs. 4.12(a) to (d), there is a corresponding

motion of F to the left, to preserve the zero-net-twist condition.

Reloading

Figure 4.13 shows the evolution of k̃3(s̃) for the same fiber as h/L is decreased

from 0.972 to 0.953, and then increased again to 0.972. Notice that the perversions D

and E in Figure 4.13(a) are not regenerated on reloading, and indeed the perversion

at B moves towards the left end and has disappeared by the time h/L returns to

0.972 in Fig. 4.13(e). Thus, the fiber morphology exhibits significant loading-history

dependence.
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Figure 4.13: Evolution of perversions during unloading to h/L = 0.953 followed by reloading to
h/L = 0.972. Notice that perversions D and E are not regenerated during reloading,
and B moves to the left-hand end and disappears.

Effects of noise and quenching

The numerical results presented so far in this paper can be thought of as having

been obtained under quasi-static conditions, but with enough noise to generate per-

versions when the fiber is almost straight and the energy barrier is low. This raises
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the possibility of a potentially interesting future study of how these topological de-

fects might be influenced by noise, and whether there are any analogies to the effects

of temperature for defects in materials. Although a detailed study is beyond the

scope of this present paper, we present some preliminary observations.

The first set of studies were done to look at the effect of what might be an analogy

to quenching. In this context, quenching can be though of in the following terms.

When h/L is close to 1, the energetic distinction between the helical coils and per-

versions is small, and the probability of forming multiple perversions is high. As h/L

is reduced, the energy penalty of a perversion is increased, but coordinated motion of

the defects is needed for them to annihilate each other. Quenching would correspond

to a relaxation rate at which the perversions formed when h/l ≈ 1 are effectively

frozen into the fiber.

The effect of quenching was explored by varying dh̃/dt̃ over about two orders of

magnitude, between 3.50 × 10−7 and 2.43 × 10−5. The corresponding results for

the distributions of k3 for h/L = 0.5 are shown in Fig. 4.14. It was noted that at

the lower speeds corresponding to quasi-static conditions, the number of perversions

formed seemed to be constant, although the location of the defects varied slightly.

Unfortunately, numerical limitations associated with computational time prevented

exploring whether three perversions is an asymptotic limit for this length of fiber for

quasi-static conditions, or if a single perversion might ever be formed at slow-enough

relaxation rates. However, it can be seen unambiguously that rapid relaxation results

in many more perversions, and the number of defects increases with relaxation rate.

Having shown that quenching appears to result in additional defects being frozen

into the structure, the second question that arises is whether these can be annealed

by mechanical oscillations, which might be an analogy of temperature. The effects
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of vibration were explored by imposing an oscillating displacement on one end of the

fiber after it had been relaxed to h/L = 0.5 at different speeds. The results suggested

that a sufficiently strong mechanical vibration could induce the perversions to move

and to annihilate each other, but no obvious consistency between the magnitude of

the oscillations and the resultant defect density was observed.

Figure 4.14: The velocity at which the ends of the fiber are relaxed influences the number of per-
versions that are retained at h/L = 0.5. dh̃/dt̃ = (a) 3.5 × 10−7, (b) 9.7 × 10−7, (c)
9.7 × 10−6 and (d) 2.43 × 10−5. Notice that (b) corresponds to the conditions under
which Fig. 4.12 was obtained, and the perversions B, C and F have been retained down
to h/L = 0.5.
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4.6 Conclusions

We have investigated the generation and evolution of perversions between helical

segments of a fiber with uniform intrinsic curvature when the ends are restrained

against rotation. The twist function k̃3(s̃) changes sign in passing through a perver-

sion and this provides a convenient way to identify and approximate the morphology

in more complex situations.

The shape of an isolated perversion is well approximated by a simple Rayleigh-Ritz

trial function, and this method also gives accurate results for the associated changes

in strain energy and end-to-end length, with a considerable saving in computational

time relative to a direct finite-element solution.

The lowest energy state is one in which perversions occur only when they are

geometrically necessary because of the end restraint against rotation. However, the

energy differential is small when the fiber is almost straight, so additional perver-

sions may be introduced by noise in the early stages of unloading when the fiber is

almost straight. If the fiber is further unloaded, perversion pairs may approach and

annihilate each other, but if the perversions are too far from each other or from the

fiber ends, an effective energy barrier exists so that they may persist well below the

loading conditions where the energy differential is significant. A sufficiently rapid

unloading resulted in a higher density of perversions being frozen into the fiber, than

that obtained by slower rates of unloading, suggesting an analogy to the retention

of defects in solids after thermal quenching.

The numerical results in this paper can be thought of as having been obtained

under quasi-static conditions, with relatively little noise, but with enough to generate

perversions when the fiber is almost straight and the energy barrier is low. This raises
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the possibility of a potentially interesting future study of how the physics of these

topological defects might be influenced by the level of noise in the system.



CHAPTER V

Fabric Design Based on Finite Element Method

5.1 Introduction

After we understand the behavior of individual fiber, now we can design next-

generation fabric.

5.2 Conditional random walk to generate fibers

In order to ensure the smoothness of fibers, we add conditions on our random

walk by controlling the angle in the nodal point i+ 1 as follows (Figure 5.1):

(5.1) θi+1 = α(θi + rand)

where α is the coefficient to adjust orientation of fiber. Rand is the random angle

used to adjust the waviness of fiber, we use the normal distribution to generate the

random numbers.

From this algorithm, it is obvious that the variation along x and y will be

(5.2) dx = L cos(θ) dy = L sin(θ)

where L is the step length. Therefore,

(5.3) xi+1 = xi + dx yi+1 = yi + dy

84
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Figure 5.1: Random walk to generate natural fibers.

To generate fabric with rectangular shape, we add more constrain along the x, y

and z axis as shown in Figure 5.2.Further we need to add some constrain along the y

and x axis to obtain a rectangular shape of fabric. We first generate the coordinates

of nodes by random walk, and then we pick up nodes which belong to the range of

∆x and ∆y that we required. The fiber will be more natural and also the number

of nodes & the initial point for each fiber will not be fixed.

Figure 5.2: Conditional random walk to generate a piece of fabric.

Here is one example of fabric that we generated using our algorithm (Figure 5.3).

To generate a piece of fabric, several parameters need to be defined. Here we consider

fabric with 50 fibers. The nodal number for each fiber is in the range of 12 to 18.
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And the standard deviation for rand number is π/6 and the coefficient α is 0.95.

Figure 5.3: The algorithm to generate the fabric.

5.3 Algorithm of generating bonding site

After we can generate natural fibers, the next question is how we can generate

a proper bonding site so that we can maintain the properties of fabric and also

save the computational time. If we use bonding pattern from previous design in the

industry, the data are obtained from P&G and the SEM images (Figure 3.4). The

shape of individual bonding site is elliptical. And if we define the first row as odd

row and second row as even row, the rotation angle of first row and the second row

are opposite (60o or −60o). In addition, every row has certain offset compared to

adjacent row.
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Figure 5.4: Algorithm of generating bonding site

Figure 5.5 is one example how we generate the bonding site. First we establish the

bonding sites using elliptical shape as we mentioned previously and mesh the ellipse

by beam element. Second we merge the nodal points of fibers by using the merge

function in ABAQUS. Third we merge fibers and bonding sites by the criterion of

distance between the nodes. If the distance satisfy the distance we set, then these

points will be merged into one point and be treated as a bonding point. The density

of the bonding site, the shape of bonding site and also size of bonding site can be

easily changed based on the design.



88

Figure 5.5: Here is one example of bonding site used in the simulation before and after merge in
ABAQUS. Bonding site can be easily changed based on the design.

5.4 The average material properties of fabric

The average material property of individual fiber is obtained from the experi-

mental results (Figure 3.6). More than 100 tensile tests are conducted to obtain

the average Young’s modulus under the Dynamic Mechanical Analysis. The average

properties of plasticity and fracture from experiment directly input into the model in

the ABAQUS. The normal hard contact and tangential contact with friction coeffi-

cient of 0.1 are assumed in the model. The material properties can be changed if we

consider different materials like polyethylene or the core-shell structure of polyethy-

lene/polypropylene.



89

Figure 5.6: Material properties of individual fiber are obtained from the test and then are added
into the ABAQUS model. The material properties can also be changed based on the
design.

5.4.1 Different material properties for fiber and bonding site

Even the material of the fiber and bonding site are both polypropylene, the heat

treatment can change the material properties. To include the influence of heat treat-

ment, different sets for each individual fiber and bonding site are defined in the

model. Further we can consider a stronger or a weaker bonding site compared to the

properties of individual fiber.



90

Figure 5.7: Material properties of individual fiber are obtained from the test and then are added
into the ABAQUS model. The material properties can also be changed based on the
design.

5.4.2 Different material properties between individual fibers

Similarly, the material properties of fiber can not be the same. Therefore, the

variation of individual fiber are considered. Here a table of material properties of each

element using normal distribution are defined by MATLAB. Only a small standard

deviation are used so that each element have small variations in material properties.

Based on the design, elasticity, plasticity and fracture properties can be defined by

different distribution functions.

Figure 5.8: Normal distribution of material properties of individual fiber.
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After the material properties are defined, the names of fields are defined in both

MATLAB and FORTRAN code. The fields in ABAQUS are assigned by FORTRAN

code ’VUSDFLD’ so that each element can have its own material properties. The

material properties can be changed based on the distribution functions.

Figure 5.9: The fields in ABAQUS are assigned by FORTRAN code ’VUSDFLD’ so that each
element can have its own material properties. The material properties can be changed
based on the distribution functions.

5.4.3 Abrasion models considering different abradants

As mentioned in the experiments, different abradants will lead to different mor-

phology. For example, fabric rubbing against toothbrush will lead to the formation

of fuzziness and pilling, while fabric rubbing against silicon carbide only cause the

damage of individual fiber. We also consider different abradants in the simulation.

The first model we proposed is fabric rub against toothbrush which is consistent

with one of our experiments (Figure 5.10 ). The up and bottom board are defined

with the properties of steel or rigid body. The up and bottom board and both ends

of each fibers are fixed. The toothbrush are in the middle to remove the edge effect
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and back and forth movement is applied for the abrasion simulation.

Figure 5.10: Abrasion model with abradant of toothbrush.

To mimic the properties of skin for the application of baby’s diaper, Figure 5.11

shows the abrasion model with abradant of silicon rubber. This model is also con-

sistent with the Martindale test, which is a traditional test method used in the

industry. The up and bottom board with the properties of rigid body are defined

with the propertes of steel or rigid body. A piece of silicon rubber are put on the top

of fabric and apply back and forth movement with a constant pressure on the top of

fabric. We can control the amount of pressure (0.025, 0.05, 0.1 psi) in the model.

Figure 5.11: Abrasion model with abradant of silicon rubber.
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5.5 Quantification method for degree of fuzziness and degree of damage

Since we observed both fuzziness and pillings during the experiment, both degree

of fuzziness and damage are considered in the simulation.

5.5.1 Degree of fuzziness

The first quantification parameter we defined is the degree of fuzziness. One of

the phenomenon we expected from both experiment and simulation is the formation

of fuzziness. Figure 5.12 demonstrates that the morphology of fabric after abrasion

from our simulation are similar to experimental results, where obvious fuzziness is

observed on the surface of fabric.

Figure 5.12: The morphology of fabric after abrasion from our simulation are similar to experimen-
tal results, where obvious fuzziness is observed on the surface of fabric.

This inspired us to draw the distribution of height of individual fibers before and

after the abrasion. Figure 5.13 shows the height of fiber which is the z coordinate

before abrasion (black line) approximately obeys the normal distributions. After

abrasion, the heights of z coordinate increase, which are shown in the orange region.

Therefore, we can use ∆z to represent the degree of fuzziness.
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Figure 5.13: Degree of fuzziness using distribution of fiber height after abrasion.

5.5.2 Degree of damage

After we establish our models, a parameter to quantify degree of damage are

proposed.Since we use the ductile metal model to define the material properties of

our fibers, we can use the parameterD, Which demonstrates the damage of individual

element in the finite-element model. When D is large than 0, it means the damage

start to initiate for this element. And when D equals 1, it means the maximum

degradation and element removal. To evaluate the degree of damage, we define Da

as follow:

(5.4) Da =

∑
D(N)

N

where D(N) is the degree of damage for each element, and N is the number of

elements in the model. For example if all the elements have been damaged then D

will be 1 which means 100% damage. While we obtain a number from 0 to 1 to
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represent the percentage of damage of fabric.

Figure 5.14: Degree of damage using the average damage of all elements.

5.6 Design of simulations

To design next-generation fabric, lot of parameters can be considered in the model.

Based on the fiber level, fiber diameter, friction coefficient, curl ratio, orientation

and properties can be considered. While based on the fabric level, the influence of

bond spacing, bond size, bond orientation and also properties can be investigated.

And a set of optimization parameters can be provided to the lab for the design and

manufacturing of fabric.
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Figure 5.15: Design of simulation and parameter optimization using abrasion model.

5.7 Conclusion

Conditional random walk are considered to generate the individual fibers. Dif-

ferent parameters can vary to control the material properties of fibers. And merge

function are used to generate the bonding site. Based on the needs, different fabric

can be designed in the model. Different material properties are considered between

bonding site/individual fibers and also between fiber/fiber. Different abrasion mod-

els are proposed with two quantification parameters in the ABAQUS, the optimized

parameters can be provided based on the design of simulations.



CHAPTER VI

Conclusion and Preliminary Results for Future Work

6.1 Conclusion

Our main goals have been accomplished during five-year troubleshooting process.

To solve certain problems, first we ask why it happened and which parameters control

this events. And then we discover the dominant factors and the way to quantify those

factors. Last but most importantly, we further investigated what kind of actions or

design we will use to minimize the damage. Here I want to mention some excited

moments and results during my research.

In chapter 2, two in-situ experimental set-up have been designed and performed

in nonwoven fabric to study the evolution of abrasion process during usage. Using

the in-situ, we found different damage morphology based on our systematical study.

The formation of fuzziness and pilling appears in fiber-based abradant while dam-

age in individual fibers are shown in non-fiber based abradant. The interconnection

between macro and micro mechanisms are investigated and the dominant fiber-level

mechanisms for the formation of fuzziness and pilling are discovered during the ex-

periment. We found the stage of precursors before the formation of pillings which

will have more discussion in chapter 4 and also future work. Two types of pillings are

discovered after the formation of pills, which obviously benefit from the in-situ ex-

97
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perimental set-up. To make the in-situ set-up work, we spend a lot of time to discuss

and design. One of experience I have is to try and do not afraid of failure even you

do not have experience. At certain stage, you should push yourself to manufacturing

the set-up instead of making it perfect since it will not be perfect. I am glad that I

had the experience to design the set-up even it is difficult at the beginning (I tried

strain gauge and see the difference between cheap and expensive motors) which also

make my work and Ph.D. innovative and unique.

In chapter 3, an objective measure of fabric abrasion based on the wavelet analysis

has been developed with minimum human interpretation. A quantification parameter

is defined based on the coefficient of wavelet analysis at specific levels.The factors

that might influence the quantification parameters are discussed including the type

of wavelets, the rotation of images. Both hardware and software are established so

that the method can be used in the company. Because of previous experience, I had

the confidence to establish the set-up and also I am not afraid of learning something

that is new. I would say the excited moment is not I saw it works but I realized I

can learn the techniques that other people developed quickly and use them into my

research.

In chapter 4, the shape of an isolated perversion is well approximated by a simple

Rayleigh-Ritz trial function, and this method also gives accurate results for the

associated changes in strain energy and end-to-end length, with a considerable saving

in computational time. Fiber perversions are energetically unfavorable except when

geometrically necessary. The energy differential is small when the fiber is almost

straight, so additional perversions may be introduced by noise. If the fiber is now

unloaded, perversion pairs may approach and annihilate each other, but perversions

can persist in ranges where the energy cost is significant. I will also extend this work
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to fiber with intrinsic twist and maybe the combination of twist and curvature in the

future work.

In chapter 5, conditional random walk and merge function are used to generate

fabric, and then different material properties for bonding site and individual fibers

are established, and two different models are proposed with two quantification pa-

rameters in the ABAQUS. Using the models we established, we can calculate a set

of optimization parameters for the next-generation fabric. And we can also run the

analysis to see which parameters influence the abrasion properties most.

6.2 Limitation

While the work here represents a significant advance in the understanding of

nonwoven fabirc in the context of both experiments and simulations, there are some

limitations that should be considered.

In the experimental part, our materials are limited in polypropylene and polyethy-

lene, but other materials can be considered and might lead to a little bit different

behaviors. Maybe different precursors will be observed when different materials are

used in the fabric.

In the image-processing part, we only considered fabric that are used in the indus-

try. All the samples need to be taken images and input into our software manually.

The automatic software will be more helpful. In the near future, people may use

machine learning technique to extend the database and predict the degree of damage

based on the database we established now.

In the simulation part, although viscoelastic properties are measured by Dynamic

Mechanical Analysis, we did not put them into the model. We only considered

elasticity for simplicity.
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6.3 Future work

There are a lot of work can be done in the future.

For the experimental part, one of things can be done is to establish a small

database using the in-situ set-up so that people can use this database to choose the

materials based on their need. Here we only considered the mechanical properties,

however, in reality, people care the softness, smoothness and also some other surface

properties of fabric. Study the interaction between different properties and how to

optimize them together is a good research topic to follow up.

For the image processing part, since the current method still needs to take images

as inputs for our software, in the future, we might be able to take advantage of

machine learning or deep learning and build algorithms based on sample data or

training data so that we can predict or evaluate the comprehensive performance,

such as the abrasion, smoothness of a fabric. Further we might be able to establish

a database, so that people can search for the right fabric based on their demands.

For the simulation part, we can extend our fiber-level model into a fabric-level

model. We can design the fabric based on the parameter optimization. After we

get a set of optimized parameters, we can further analyze the influence of different

parameters on the performance of fabric. Therefore, only important parameters will

be considered so that computational time can be saved in the simulation. However, if

we need to design the fabric in a larger parameter space, another direction extended

from current model is to consider the supervised machine learning. As you can see,

if we extend the parameter space, the simulation process will be time-consuming

and machine learning will be a good way to fulfill such study. Based on the training,

supervised learning algorithms learn a function that can be used to predict the output



101

(the performance of fabric) associated with new inputs.

However, it is actually pretty exciting in chapter 4 that we can use mathematical

model to study the individual fiber with intrinsic curvature and also semi-analytical

solutions for perversions. In the future we can focus on the intrinsic curvature to get

a semi-analytical solution for the interaction of perversions. Or we can focus on the

fiber with intrinsic twist and even mixture of curvature and twist.

Here is some preliminary results for fiber with intrinsic twist.

6.4 Fiber-level model for intrinsic twist

6.4.1 Dynamic or static Kirchhoff equation

We can use both dynamic and static approach to proof that helical solution is

not stable. Based on the Kirchhoff theory, a perturbation scheme can be established

[33]. The basis itself can be expanded in powers of ε and demand that to first order

so that the new basis (perturbed basis) remains an orthonormal basis. All the other

parameters can be defined in the both unperturbed basis and perturbed basis.

(6.1) di = d
(0)
i + εd

(1)
i +O(ε2), i = 1, 2, 3

The correction d
(1)
i are defined in the unperturbed basis.

(6.2) d
(1)
i =

3∑
j=1

Aijd
(0)
j , i = 1, 2, 3.

where A is an anti-symmetric matrix (The detailed proof are in section 1.2.3) and A

only have 3 degree of freedom, we can define a vector α and use the cross product

to define d
(1)
i as follow. Therefore, the director basis takes the form

(6.3) di = d
(0)
i + ε(α× d(0)

i ) +O(ε2), i = 1, 2, 3

where

(6.4) d
(1)
i = α× d(0)

i
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where

(6.5) α = α1d
(0)
1 + α2d

(0)
2 + α3d

(0)
3

Therefore, we can transfer the perturbed basis into unperturbed basis (original basis)

using α and α is defined in the unperturbed basis.

A quantity V can be expressed in either unperturbed basis or perturbed basis. We

found the relationship between the perturbed and unperturbed basis for a quantity.

(6.6) V (1) = (α× v(0)
i d

(0)
i ) + v

(1)
i d

(0)
i

where V (1) = V
(1)
i d

(0)
i is a correction vector of parameter V = V (0) + εV (1) in the

unperturbed basis, and vector α is defined in the previous section, vi = v
(0)
i + εv

(1)
i

is a scalar that defined in the perturbed basis.

(6.7) V
(1)
i d

(0)
i = (α× v(0)

i d
(0)
i ) + v

(1)
i d

(0)
i

Now all the parameters are in the unperturbed basis, but note that V
(1)
i and v

(1)
i are

different.

For example k:

(6.8) K(1) = α′ +α× k(0)

We also have this relationship

(6.9) K(1) = (α× k(0)
i d

(0)
i ) + k

(1)
i d

(0)
i

Therefore

(6.10) k
(1)
i d

(0)
i = α′
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6.4.2 Newton’s equation

(6.11) F ′′ = d̈3

1. Linear expansion:

(6.12) F = F (0) + εF (1) d3 = d
(0)
3 + εd

(1)
3

From equation 6.11 and 6.12, we get

(6.13) (F (1))
′′

= d̈3
(1)

(6.14) d̈3
(1)

= α̈2d
(0)
1 − α̈1d

(0)
2

f (0) and f (1) is defined in the current basis, and is scalar.

3 PDEs in each direction about F are obtained.

(6.15) ¨(α2)d
(0)
1 =

(f
(1)
1

′′
+(α2

′′f
(0)
3 +α2

′f
(0)
3

′
+α2

′f
(0)
3

′
+α2f

(0)
3

′′
−α3

′′f
(0)
2 −α3

′f
(0)
2

′
−α3

′f
(0)
2

′
−α3f

(0)
2

′′
))d

(0)
1

+ 2(f
(1)
2

′
+ (α3

′f
(0)
1 + α3f

(0)
1

′
− α1

′f
(0)
3 − α1f

(0)
3

′
))(−k(0)

3 d
(0)
1 )

+ 2(f
(1)
3

′
+ (α1

′f
(0)
2 + α1f

(0)
2

′
− α2

′f
(0)
1 − α2f

(0)
1

′
))(k

(0)
2 d

(0)
1 )

+ (f
(1)
1 + (α2f

(0)
3 − α3f

(0)
2 ))([−(k

(0)
3 )2 − (k

(0)
2 )2]d

(0)
1 )

+ (f
(1)
2 + (α3f

(0)
1 − α1f

(0)
3 ))(k

(0)
1 k

(0)
2 d

(0)
1 )

+ (f
(1)
3 + (α1f

(0)
2 − α2f

(0)
1 ))(k

(0)
1 k

(0)
3 d

(0)
1 )
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(6.16) − ¨(α1)d
(0)
2 =

+(f
(1)
2

′′
+(α3

′′f
(0)
1 +α3

′f
(0)
1

′
+α3

′f
(0)
1

′
+α3f

(0)
1

′′
−α1

′′f
(0)
3 −α1

′f
(0)
3

′
−α1

′f
(0)
3

′
−α1f

(0)
3

′′
))d

(0)
2

+ 2(f
(1)
1

′
+ (α2

′f
(0)
3 + α2f

(0)
3

′
− α3

′f
(0)
2 − α3f

(0)
2

′
))(k

(0)
3 d

(0)
2 )

+ 2(f
(1)
3

′
+ (α1

′f
(0)
2 + α1f

(0)
2

′
− α2

′f
(0)
1 − α2f

(0)
1

′
))(−k(0)

1 d
(0)
2 )

+ (f
(1)
1 + (α2f

(0)
3 − α3f

(0)
2 ))(k

(0)
1 k

(0)
2 d

(0)
2 )

+ (f
(1)
2 + (α3f

(0)
1 − α1f

(0)
3 ))([−(k

(0)
1 )2 − (k

(0)
3 )2]d

(0)
2 )

+ (f
(1)
3 + (α1f

(0)
2 − α2f

(0)
1 ))(k

(0)
2 k

(0)
3 d

(0)
2 )

(6.17) (0)d
(0)
3 =

(f
(1)
3

′′
+(α1

′′f
(0)
2 +α1

′f
(0)
2

′
+α1

′f
(0)
2

′
+α1f

(0)
2

′′
−α2

′′f
(0)
1 −α2

′f
(0)
1

′
−α2

′f
(0)
1

′
−α2f

(0)
1

′′
))d

(0)
3

+ 2(f
(1)
1

′
+ (α2

′f
(0)
3 + α2f

(0)
3

′
− α3

′f
(0)
2 − α3f

(0)
2

′
))(−k(0)

2 d
(0)
3 )

+ 2(f
(1)
2

′
+ (α3

′f
(0)
1 + α3f

(0)
1

′
− α1

′f
(0)
3 − α1f

(0)
3

′
))(k

(0)
1 d

(0)
3 )

(f
(1)
1 + (α2f

(0)
3 − α3f

(0)
2 ))(k

(0)
1 k

(0)
3 d

(0)
3 )

+ (f
(1)
2 + (α3f

(0)
1 − α1f

(0)
3 ))(k

(0)
2 k

(0)
3 d

(0)
3 )

+ (f
(1)
3 + (α1f

(0)
2 − α2f

(0)
1 ))([−(k

(0)
1 )2 − (k

(0)
2 )2]d

(0)
3 )

6.4.3 Moment equation

(6.18) (M (1))′ + d
(0)
3 × F (1) + d

(1)
3 × F (0)

= d
(0)
1 ×

¨
d

(1)
1 + d

(1)
1 ×

¨
d

(0)
1 + d

(0)
2 ×

¨
d

(1)
2 + d

(1)
2 ×

¨
d

(0)
2
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3 PDEs in each direction about M are obtained as follows:

(6.19)

(α′′1 − α′2k
(0)
3 + α′2Γk

(0)
3 )d

(0)
1

+ (α′2 + α1k
(0)
3 − α1Γk

(0)
3 )(−k(0)

3 d
(0)
1 )

+ (Γ(α′3 − α1k
(0)
2 + α2k

(0)
1 ) + α1k

(0)
2 − α2k

(0)
1 )(k

(0)
2 d

(0)
1 )

− (f
(1)
2 + (α3f

(0)
1 − α1f

(0)
3 ))d

(0)
1

− α1f
(0)
3 d

(0)
1

= α̈1d
(0)
1

(6.20)

(α′′2 + α′1k
(0)
3 − α′1Γk

(0)
3 )d

(0)
2

+ (α′1 − α2k
(0)
3 + α2Γk

(0)
3 )(k

(0)
3 d

(0)
2 )

+ (Γ(α′3 − α1k
(0)
2 + α2k

(0)
1 ) + α1k

(0)
2 − α2k

(0)
1 )(−k(0)

1 d
(0)
2 )

+ (f
(1)
1 + (α2f

(0)
3 − α3f

(0)
2 ))d

(0)
2

− α2f
(0)
3 d

(0)
2

= α̈2d
(0)
2

(6.21)

(Γ(α′′3 − α′1k
(0)
2 + α′2k

(0)
1 ) + α′1k

(0)
2 − α′2k

(0)
1 )d

(0)
3

+ (α′1 − α2k
(0)
3 + α2Γk

(0)
3 )(−k(0)

2 d
(0)
3 )

+ (α′2 + α1k
(0)
3 − α1Γk

(0)
3 )(k

(0)
1 d

(0)
3 )

α2f
(0)
2 d

(0)
3 + α1f

(0)
1 d

(0)
3

= 2α̈3d
(0)
3
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If we use linear perturbation, we assume that:

(6.22) L(k(0),f (0))µ = 0

(6.23) µ = (α1, α2, α3, f
(1)
1 , f

(1)
2 , f

(1)
3 )

(6.24) (k
(0)
1 , k

(0)
2 , k

(0)
3 , f

(0)
1 , f

(0)
2 , f

(0)
3 ) = (0, k, τ, 0, (Γ− 1)kτ, (Γ− 1)τ 2)

Assume the solution is

(6.25) µ = ξn exp(σnt+ ins)



L11 L12 L13 L14 L15 L16

L21 L22 L23 L24 L25 L26

L31 L32 L33 L34 L35 L36

L41 L42 L43 L44 L45 L46

L51 L52 L53 L54 L55 L56

L61 L62 L63 L64 L65 L66



(6.26)

L11 = 2in(Γ− 1)τ(k2 + τ 2); L12 = −σ2
n − τ 2(Γ− 1)(n2 + τ 2 + k2);

L13 = kτ(Γ− 1)(τ 2 + k2 + n2); L14 = −(τ 2 + k2 + n2);

L15 = −2inτ ; L16 = 2ink;
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(6.27)

L21 = τ 2(Γ− 1)(n2 + τ 2 + k2) + σ2
n; L22 = 2inτ 3(Γ− 1);

L23 = −2inkτ 2(Γ− 1); L24 = 2inτ ;

L25 = −n2 − τ 2; L26 = kτ ;

(6.28)

L31 = −kτ(Γ− 1)(k2 + τ 2 + n2) L32 = −2inkτ 2(Γ− 1);

L33 = 2ink2τ(Γ− 1); L34 = −2ink;

L35 = kτ ; L36 = −k2 − n2;

(6.29)

L41 = −n2 − σ2
n + (1− Γ)k2 + (Γ− 1)τ 2; L42 = (Γ− 2)inτ ;

L43 = Γink; L44 = 0;

L45 = −1; L46 = 0;

(6.30)

L51 = (2− Γ)inτ ; L52 = −n2 − σ2
n + (Γ− 1)τ 2;

L53 = −(Γ− 1)kτ ; L54 = 1;

L55 = 0; L56 = 0;
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(6.31)

L61 = −Γink; L62 = 0

L63 = −Γn2 − 2σ2
n; L64 = 0;

L65 = 0; L66 = 0;

We found that the helical solution is not stable since we can get positive σ (Figure

6.1).

Figure 6.1: Positive σ are found so that the helical solution is not stable.

6.4.4 Energy method

Here the idea is to consider the static Kirchhoff equation, and then perturb the

solution a little bit and see whether we can get a configuration that has lower to-

tal energy. Therefore we compare the energy of pure helix with the energy after

perturbation.

Since we fixed the end-to-end distance, we do not have the change of potential
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energy and for pure helix, the strain energy is

(6.32) E(helix) =
k̃2

1

2
+
k̃2

2

2
+
k̃2

3

3
=
k̃2

2
+
τ̃ 2

3

For the perturbed shape, the strain energy is

(6.33) E(helix) =
k̃2

1

2
+
k̃2

2

2
+
k̃2

3

3
=

(εk̃
(1)
1 )2

2
+

(k̃ + εk̃
(1)
2 )2

2
+

(τ̃ + εk̃
(1)
3 )2

3

5.

(6.34) k
(1)
1 = (α′1 − α2k

(0)
3 + α3k

(0)
2 )d

(0)
1

(6.35) k
(1)
2 = (α′2 + α1k

(0)
3 − α3k

(0)
1 )d

(0)
2

(6.36) k
(1)
3 = (α′3 − α1k

(0)
2 + α2k

(0)
1 )d

(0)
3

(6.37) α1 = ξ1 exp(ins) α2 = ξ2 exp(ins) α3 = ξ3 exp(ins)

For the perturbed shape, the strain energy is

(6.38) E(perturbed) =

∫ (
(εk̃

(1)
1 )2

2
+

(k̃ + εk̃
(1)
2 )2

2
+

(τ̃ + εk̃
(1)
3 )2

3

)

(6.39) E(perturbed) =

∫
(ε exp(ins)(inξ1 − ξ2τ + ξ3k))2

2

+
(k̃ + ε exp(ins)(inξ2 + ξ1τ))2

2

+
(τ̃ + ε exp(ins)(inξ3 − ξ1k))2

3

We also found lower energy state which means that helical solution is not stable.

Therefore we can further use both RR and FE method to study the fiber with

intrinsic twist and investigate the shape evolution of fiber.
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