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ABSTRACT

Single-molecule super-resolution imaging enables optical microscopy to study fea-

tures of nanometer size. It has been widely used in bioimaging. Plasmonic nanoantennas

couple the far �eld to the near �eld by converting propagating waves to localized �elds.

Plasmonic nanoantennas enhance applications from biosensing to light-emitting devices

and Raman spectroscopy. Combining single-molecule imaging and plasmonic nanoan-

tennas not only enables plasmon enhanced super-resolution imaging but also provides a

unique method to study the light-matter interaction between single molecules and plas-

monic nanoantennas. In this thesis, I focus on studying the emission coupling between sin-

gle emitters and plasmonic particles. Chapter I details the background of single-molecule

�uorescence imaging, some fundamental physics behind plasmonic nanoantennas and

some nanofabrication techniques used in this thesis. In Chapter II, I discuss my applica-

tion of single-molecule polarization resolved microscopy to study the emission polariza-

tion change of isolated �uorescent emitters with di�erent colors upon coupling to gold

nanorods. With the support of simulations, I show that the emission polarization from the

coupled system rotates toward the direction of the dominant nanoantenna-localized sur-

face plasmon mode. I also present a reduced-order analytical model that was informed by

my experiments to explain the emission polarization modi�cation. The model attributes

this emission polarization distribution to both far-�eld interference and resonant coupling

between the molecular dipole and the nanorod plasmon modes.

To study emission localization modi�cation (the mislocalization e�ect), in Chapter III,

I use the super-resolution imaging method of direct stochastic optical reconstruction mi-

x



croscopy (dSTORM) to image the coupling of single emitters to gold nanodisks. I demon-

strate that mislocalization is the result of �uorescence emission coupling, whereas �uores-

cence enhancement is the result of both absorption and emission coupling. I also discuss

how the analytical model is developed further to recover the orientation and localiza-

tion of a single emitter in the simulation. I show that this model �tting outperforms the

standard Gaussian �tting signi�cantly.

In addition to the study of organic �uorescent molecules, I use quantum dots (semi-

conductor nanocrystals, QDs) for super-resolution imaging in Chapter IV. I present the

methods that I developed to adapt our organic dye experiments for QDs. I discuss the pos-

sibility of using QDs and silver nanoparticles to achieve plasmon enhanced �uorescence

without emission coupling. I also characterize by two-channel single-molecule hyperspec-

tral imaging to the spectral shift (bluing) of single QDs upon photooxidation and I discuss

how a proximal gold nanoparticle a�ects the bluing.

Lastly, in Chapter V, I present a relevant future direction for doing single-QD imag-

ing with aluminum nanoparticles. It provides a possible approach to achieving plasmon

enhanced super-resolution imaging with reduced mislocalization.

The work presented in this thesis improves our understanding of the light-matter in-

teractions between plasmonic nanoantennas and single emitters. It also advances the ap-

plication of plasmon enhanced super-resolution microscopy.
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CHAPTER I

Introduction

1.1 Fluorescence

1Fluorescence occurs pretty commonly in our daily life. It has been widely used as

a readout for bioimaging and sensing. It enables people to see the structures of biologi-

cal systems, to observe biological activities and to unveil biological mechanisms. Besides

�uorescence emission intensity, many other things can be used as �uorescence readouts,

such as emission polarization, emission color (spectrum), and emission direction. How-

ever, it is not fully understood how the �uorescence emission is changed by coupling to

plasmonic nanoantennas. In this thesis I use single-molecule and single-particle experi-

ments to understand how an optical nanoantenna, which concentrates the local �eld thus

a�ecting �uorescence. To help explain how plasmonic nanoantennas a�ect �uorescence,

I will start with some underlying principles of �uorescence.

1.1.1 Fluorescence excitation and emission

Molecules that display �uorescence, such as large conjugated aromatic molecules,

quantum dots etc., are called �uorophores. Quinine, often used to impart bitterness to

tonic water, is a common �uorophore. The earliest observation of quinine �uorescing in
1Sec. 1.3 is from Zuo, Goldwyn et al. [1] and the �rst draft was written by my co-author Harrison Gold-

wyn.
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Figure 1.1:Energy diagram and absorption and emission spectra. The left side is
the Frank-Condon principle energy diagram. Blue arrows indicate absorption
from the lowest level in the ground electronic state E0 to the vibrational en-
ergy level in the excited state E1. The green arrows denote the decay from the
lowest level in the excited state to the ground state. The right shift of shape
between E0 and E1 shows the change in nuclear positions. The right side of this
�gure is the schematic representation of the absorption and emission spectra
corresponding to the energy diagram on the left, showed by blue and green
curves respectively. Courtesy of Kena-Cohen [3].

solution was reported by Sir John Frederick in 1845 [2]. To understand how �uorophores

such as quinine can glow, let’s take a look at a simpli�ed Franck-Condon principle energy

diagram (Fig. 1.1). The Frank-Condon principle is a rule in quantum chemistry to describe

the intensities of vibronic transitions. Upon excitation of the molecule, if the incident en-

ergy matches the di�erence between the vibronic energy levels between the ground and

the excited electronic states, the electron will be excited to the excited states (blue arrows

in Fig. 1.1). Then, according to Kasha’s rule (black curly arrow in Fig. 1.1), the molecule

will thermally relax to the lowest level of excited electronic state. Finally it decays back to

2



the ground electronic states via photon emission (green arrows in Fig. 1.1). Because of this

non-radiative relaxation from higher vibrational levels to the lowest level in the excited

states and because of the Franck-Condon principle, the electron excitation happens much

faster than the timescale of a nuclear vibration, the emission energy will be lower than the

absorption energy. This energy shift is shown on the right side in Fig. 1.1, showed by blue

and green curves respectively. This shift between the absorption and emission spectra is

also called the Stokes Shift. The distribution in the spectra is due to the probabilities of

the di�erent transitions. Electronic transitions occur on a much smaller time scale than

the nuclear motions, i.e. electrons get excited/decay much faster than bonds can vibrate.

Thus, according to the Franck-Condon principle, change between vibrational energy lev-

els is more likely when the nuclear positions of the two levels are the same. In this �gure,

for example, transitions between v′ = 0 and v” = 2 (solid blue and green arrows) are

favored over the other possible transitions and therefore the intensities of those transi-

tions are the highest. The symmetry between the absorption and emission spectra is due

to the similar shape of the ground and excited states. The narrow black line spectrum can

only be observed in the gas phase. The curved spectra that we get in the solution is due

inhomogeneous broadening resulting from the interaction of electrons with the phonons

in the liquid [2, 4].

1.1.2 Fluorescence anisotropy

In the previous section, I talked about the process of �uorescence in terms of en-

ergy level transitions. Here, I will have discuss the molecular rotational movement dur-

ing absorption and emission. Molecular rotation changes the emission polarization. The

change of polarization in the emission is described as �uorescence anisotropy. Fluores-

cence anisotropy is important because it is caused not only by the rotational motion of

the molecules but also by coupling to optical nanoantennas, which will be introduced in

Chapter II.

3



Aromatic �uorophores, which have a certain preferred direction of electron oscilla-

tions (i.e., a permanent dipole moment) depending on the molecular structure, can be

treated as a radiating dipole upon excitation. Ground state molecules are randomly ori-

ented in a homogeneous solution. If polarized light is used to excite the molecules, the

sub-population of the molecules that align with the incident light is more likely to be

excited. Hence, the orientation distribution of excited state molecules will peak at the ori-

entation of the incident light. The lifetime of the excited state is around 5-10 nanoseconds

allowing many forms of depolarization before the molecules decay back to ground state

such as rotational di�usion. The dependence of anisotropy on molecule motions has led

to numerous applications in biochemical research such as studying the viscosity of the

solutions or measuring the binding constants of reactions [5,6]. In the next chapter, I will

discuss how I apply �uorescence anisotropy as a readout to the study of the interaction

between �uorophores and optical nanoantenna.

To quantify �uorescence anisotropy, let’s now consider a molecule (radiating dipole) in

the Cartesian coordinate system as shown in Fig. 1.2 with incident light polarized parallel

Figure 1.2: Fluorescence anisotropy measurement [5]. The two boxes with red and
green lines are polarizers. The black arrows show polarization of the light.
When the polarizer at the emission side is also parallel to incident light, the de-
tected �uorescent intensity is called Ip . Conversely, when the polarizer is per-
pendicular to the incident light, the intensity detected is denoted as Is . Copy-
right ©Springer Science

4



to the z-axis. When the polarizer at the emission side is also parallel to incident light, the

detected �uorescent intensity is called Ip . Conversely, when the polarizer is perpendicular

to the incident light, the intensity is denoted as Is . So in Fig. 1.2, Ip = Iz and Is = Ix . If we

assume the dipole has z-axis symmetry then Is = Iy . Anisotropy can be de�ned as:

r =
Ip − Is

Ip + 2Is
(1.1)

The denominator term represents the total energy which is the sum of Ix , Iy and Iz . With

z-axis symmetry, it can be rewritten to Ip + 2Is .

1.2 Microscopy techniques

Microscopy is a widely used technique for imaging. Depending on the wavelength

of the electromagnetic spectrum used for imaging, two common types of microscopy

are optical and electron microscopy. Another big category is scanning probe microscopy

which includes atomic force microscopy and scanning tunneling microscopy. Fluores-

cence which occurs in the visible range of electromagnetic spectrum has been used heav-

ily on optical microscopy to generate better contrast and resolution. In this thesis, I use

an optical microscope to understand the interaction between �uorescence emitters and

optical antennas. I will go in depth into the fundamentals of optical microscopy in this

section.

1.2.1 Optical microscopy

In order to see any features in a sample, contrast needs to be created during illu-

mination or upon emission. Depending on the methods to introduce contrast, common

methods include to bright �eld illumination, dark-�eld illumination, polarized light illu-

mination and phase contrast illumination.

Bright �eld illumination is used in the upright microscopes Fig. 1.3. Sample illumina-

5



tion is through transmitted (green line in Fig. 1.3) or re�ected white light (yellow light in

Fig. 1.3). Depending on the samples, it sometimes creates relatively low contrast due the

fact that the background light is also being collected in the same time as the signal.

Figure 1.3:Upright microscope. A cartoon of a upright microscope. Green and yellow
lines are the transmitted and re�ected light path respectively. Red line shows
the common light path the light goes through. Copyright ©ThermoFisher

Dark-�eld illumination setup is similar to transmitted bright �eld illumination, except

that the direct light is blocked when it passes through dark-�eld condenser before it hits

the sample plane. At the place where there is no sample present, the incident light comes

across the sample plane at large angles and misses the low numerical aperture (NA) ob-

jective. This large angle illumination is introduced by a dark-�eld condenser. Only the

light scattered by the sample is collected by the objective. Dark-�eld illumination is often

used in inverted microscopes with light illuminating from the top then collected by the

objective after. This largely reduced background enables us to characterize less absorbing

features such as scattering of nanoparticles which will be mentioned in the later chapters.

Polarized light illumination is also similar to bright �eld illumination expect that the
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incident white light is polarized instead of unpolarized light. Contrast is created when

features have preference in re�ecting light with di�erent polarizations. There are other

more complex techniques that take advantage of polarization such as di�erential inter-

ference contrast microscopy [7]. Di�erential interference contrast microscopy is widely

used in single particle tracking in cells [8, 9] as it is highly selective and noninvasive.

Lastly, phase contrast illumination is a common technique we use in our lab. This

technique di�erentiates between structures by exploiting the di�erence in the refractive

index of di�erent parts in the sample even when there is no di�erence in absorption. This

simple technique can be easily realized in bright �eld illumination inverted microscope

by adding a phase condenser and a phase objective. These two pieces together introduces

a phase shift between the light direct from the light source and the light scattered by

the sample. Thus, phase contrast microscopy is great for imaging colorless/transparent

samples and it is commonly to be used in bio labs for imaging whole cells.

Consider using a microscope to image a light emitting point source. When light passes

through an aperture in the objective, due to the di�raction of the light [10], it will appear as

a di�racted pattern rather than an in�nitly small point on the image plane. The image has

the functional form of an Airy disk. We also call it a point spread function (PSF) because it

is the image of a point convolved with the microscope optics (Fig. 1.4a) [11]. The resolving

power between two PSFs is often described by the Abbe di�raction limit which is de�ned

as

d =
λ

2NA
(1.2)

where λ is the emission light wavelength andNA is the numerical aperture of the objective

which is a dimensionless number de�nes the range of angles over which the light can pass

through an objective. For example, if the optical microscope emits light with wavelength

λ=600 nm and has an objective with NA=1, then the resolving power for this microscope

is 300 nm. In other words, two PSFs are considered resolvable in this microscope, if the

distance between them is smaller than 300 nm.
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Figure 1.4:Airy disk and Gaussian �tting(a) 2D view of a Airy disk. (b) Grey scale
image of single emitter seen on a camera. (c) The intensity pro�le of (b) is �t
to a 2D Gaussian to more precisely locate the center. The scale bars in (b) and
(c) are 500 nm. (c) adapted from Tuson et al. [12].

1.2.2 Single-molecule �uorescence microscopy and super-resolution imaging

As I mentioned in the end of last section, the resolution of a typical optical microscope

is around 300 nm. Unfortunately, most of the biological objects in the cell are smaller than

that scale which makes it di�cult to use conventional optical microscope to observe bio-

logical systems especially the activities inside the cells. In this section, I will talk about how

I can combine �uorescence with optical microscopy to achieve super-resolution imaging.

Combining �uorescence with optical microscopy is another way to further largely re-

duce the background noise and increase contrast. As we discussed in Sec. 1.1, �uorescent

emission has lower energy than the absorption (Stokes shift). Therefore, we can �lter

out the incident light, leaving only the �uorescent light coming from the sample to be

collected by the detectors with right �lters at emission end of the microscope. A proper

single wavelength light source such as laser is needed to excite the sample which con-

tains certain �uorophores. In this fashion, the background noise introduced by the inci-

dent light is largely reduced. Having a low-background (high-contrast) technique enables

singe-molecule detection. Therefore one can detect the movement of a single protein in-

side a cell with �uorescent labels. In the past two decades, many microscopy techniques
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have been applied to single-molecule imaging. These techniques are but not limited to:

epi�uorescence microscopy [13], confocal microscopy [14], total internal re�ection �uo-

rescence microscopy [13], highly inclined and laminated optical sheet [15], two-photon

excitation microscopy [16], light sheet �uorescence microscopy [17, 18], tilted light sheet

microscopy [19], dual-objective microscopy [20] and cryogenic �uorescence microscopy

[21, 22].

The images obtained from those techniques are still di�raction limited. In order to

obtain sub-di�raction limited images, data processing methods need to be introduced.

Knowing that the PSF of a single emitter is well approximated by a Gaussian function, we

can then �t the PSF to a 2D Gaussian model to more precisely locate the center (Fig. 1.4c).

This PSF �tting enables us to localize molecules with ∼30 nm precision which is around

10 times below di�raction limit. The more photons we collect, the better resolution we

can achieve [23]. PSF engineering has taken this �tting to the next step in recent years.

PSF engineering is a new technique using meta lenses to change the shape of a PSF in

order to obtain information more than just the in-plane position. The double-helix point

spread function [24] for example, encodes the 3D position information of a single emitter

in a 2D epi�uorescence image.

In order to use the PSF �tting technique to locate single molecules, we must ensure

that under each di�raction-limited spot, there is only one molecule emitting at a time.

These super-resolution approaches include: points accumulation for imaging in nanoscale

topography (PAINT) [25], stochastic optical reconstruction microscopy (STORM) [26],

direct stochastic optical reconstruction microscopy (dSTORM) [27], photoactivated local-

ization microscopy (PALM) [28,29], ground state depletion microscopy (GSD) [30], super-

resolution optical �uctuation imaging (SOFI) [31] and so on. They combine with the mi-

croscopy techniques mentioned above to ultimately achieve super resolution imaging.

PAINT and dSTORM are the ones used in my research which will be introduced Chapter

II and III respectively.
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Due to the great achievements mentioned above and so many others, optical mi-

croscopy can now achieve nanometer scale resolution. To honor this work, the 2014 Nobel

Prize in Chemistry was awarded to Eric Betzig, Stefan W. Hell and William E. Morener

who independently pioneered di�erent techniques for super-resolved �uorescence mi-

croscopy.

1.3 Plasmonic nanoantenna

2Let’s now switch gears to talk about the plasmonic nanoantenna, another important

part of my thesis. Plasmonics entails the study and application of plasmons, the oscillation

of free electrons in conductors. Antennas have been described by Novotny and coworkers:

is a device designed to e�ciently convert free-propagating optical radiation

to localized energy, and vice versa [32].

plasmonic nanoantennas are nm-scale antennas made from plasmonic nanoparticles [32–

40]. Plasmonic nanoantennas can be used to enhance the �uorescence intensity of single

emitters [41–43]. As I mentioned in Sec. 1.2.2, the localization precision in single molecule

imaging is inversely proportional to the totally number of collected photons. Therefore,

plasmonic nanoantennas can increase the resolution by enhancing the �uorescence. How-

ever, the way plasmonic nanoantenna alters �uorescence is not fully understood. In this

thesis, Goldwyn and I create an analytical model to explain and predict coupling between

the antenna and �uorescence in order to understand the interaction better and make it a

good candidate for enhancing �uorescent imaging.

In this section, I will brie�y explain some fundamental equations behind plasmonic

particles, serving as a foundation for the analytical model which will be introduced in

Chapter II and Chapter III.
2This section is from Zuo, Goldwyn et al. [1] and the �rst draft was written by my co-author Harrison

Goldwyn.
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1.3.1 Drude model of the metal permittivity

The permittivity or dielectric function ϵ(ω) encodes the material’s inherent frequency

dependent optical response. The simplest model for ϵ(ω) of a metal is related to Paul

Drude’s 1900 model of electrical conduction. Here, we follow the derivation in Jackson

[44] that starts with a more general model for an insulating material. In this case the

optically active electrons are considered bound, but we will later free each electron from

its respective nucleus to model the conduction electrons in a metal.

We start by describing the classical motion of a single electron with charge −e and

mass m harmonically bound to some atomic nucleus and under in�uence of an external

electric �eld E.

m[Üx + γ Ûx] = −eEe−iωt , (1.3)

whereγ quanti�es the phenomenological damping which may be due to radiation, electron-

nuclear scattering, or electron-electron scattering ,ω is the frequency of external light �eld

and x is the electron position. In order to better describe the motion of noble metals, eg.

Au, Ag, Cu, an additional term ω2
0x is needed here to account for the interband transition:

m[Üx + γ Ûx + ω2
0x] = −eEe

−iωt , (1.4)

If the incident �eld varies harmonically with frequency in time ω as e−iωt , the dipole p

contributed by one electron can be written:

p = −ex =
e2

m

E
ω2
0 − ω

2 − iωγ
. (1.5)

If we then suppose that our material consists of N molecules/nuclei per unit volume each

with Z electrons, each with their own binding frequency ωj and damping γj , the dipole

per molecule is de�ned:

pmol =

Z∑
j

e2

m

E
ω2
j − ω

2 − iωγj
. (1.6)
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Then the polarization density becomes,

P =
pmol

Vmol
= N

Z∑
j

e2

m

E
ω2
j − ω

2 − iωγj
, (1.7)

which is often written in terms of an oscillator strength fj , characterizing the number of

electrons per molecule with the same resonance frequency and damping.

The polarization density P is related to the permittivity ϵ through the susceptibility

χ , which is the constant of proportionality between the electric �eld E and induced po-

larization P = χE. The permittivity is de�ned as the constant of proportionality between

the electric �eld and the displacement �eld, which arises in constructing the macroscopic

Maxwell’s equations, displacement �eld D = ϵE = E+ 4πP. Combining these expressions

allows us to de�ne the electric permittivity:

ϵ = 1 + 4π χ (1.8)

= 1 + 4πN
Z∑
j

e2

m

1
ω2
j − ω

2 − iωγj
. (1.9)

This dielectric function of frequency is simply a collection of Lorentz oscillators.

The Drude dielectric function is obtained by freeing the electrons from their respec-

tive nuclei, accomplished by taking their resonance frequencies ωj → 0 and all γj → γ

to represent the scattering rate of free electrons against the background nuclear lattice.

De�ning the plasma frequency ωp ≡
NZe2

mϵ0
to be the characteristic response of the free

electron gas, the Drude dielectric function can be written:

ϵ(ω) = ϵ∞ −
ω2
p

ω2 + iωγ
, (1.10)

where a phenomenological high frequency limit ϵ∞ helps account for the low-energy tails

of higher energy bound-electron excitations that are not explicitly modeled but do con-

tribute slightly to the optical response of gold which much of this thesis is focused.
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1.3.2 Localized surface plasmon resonances

The collective oscillations of free electrons in metals is called plasma oscillation [45].

This oscillation can propagate at the interface between metal and dielectric, evanescently

con�ned in the direction normal to propagation which is called a surface plasmon po-

laritons (SPP). External light cannot directly excite a SPP, instead phase-matching tech-

niques are needed [45, 46]. When the oscillation is con�ned to a metal particle with the

size smaller than the wavelength, a resonance called the localized surface plasmon reso-

nance (LSPR) arises (Fig. 1.5). Here the term plasmon refers to the quantum of this oscil-

Figure 1.5: Plasmon induced in a metal particle by light Adapted from [38].

lation. Unlike bulk SPPs, LSPRs can be excited directly by external light (Fig. 1.5) because

the sub-wavelength particle size means that the momentum matching conditions are re-

laxed. The associated �elds are also con�ned to a much smaller volume and hence, are

more intense. For gold and silver nanoparticles, the LSPR frequency is within the visible

range of the electromagnetic spectrum which makes them good candidates for optical

nanoantennas.

The interaction between nanoparticle and electromagnetic �eld can be analyzed using

a quasi-static approximation where the size of a particle is much smaller than the incident

wavelength, a � λ. Let’s start by de�ning the polarizability of a small nanosphere with

radius a. In this approximation, Maxwell’s equations, which govern electrodynamics, re-

duce to Poisson’s equation for the electrostatic potential Φ. In an isotropic linear medium
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de�ned by the relative electric permittivity ϵ ,

∇2Φ = 4π
ρ

ϵ
(1.11)

in Gaussian (or CGS) units, where ρ is the charge density. To de�ne the polarizability, we

ask for the �eld induced by polarization of the particle given a spatially constant �eld in a

non-absorbing medium with dielectric constant ϵb . Placing the particle at the coordinate

origin, we may de�ne the incident �eld E0 in spherical coordinates as:

lim
r→∞

Φ = −E0r cosθ = −E0z. (1.12)

In order to solve for the potential induced by this �eld, the free charge in Eq. 1.11 is ρ = 0

everywhere. The potential inside and outside the particle must obey the boundary condi-

tions:

Φin |S = Φout |S , ϵ
dΦin

dn

����
S

= ϵb
dΦout

dn

����
S

, (1.13)

at the surface of the particle, in terms of the coordinate normal to the surface de�ned by

unit vector n = nn̂.

The above di�erential equation and boundary conditions can be solved analytically

for the case of a perfectly spherical particle. Thus, for a nanosphere with radius a, the

potential inside and out can be shown to be:

Φin = −
3ϵb

ϵ + 2ϵb
E0r cosθ , (1.14)

Φout = −E0r cosθ + a3
ϵ − ϵb
ϵ + 2ϵb

cosθ
r 2

E0, (1.15)

by matching coe�cients of the spherical harmonic expansion. The potential outside the

sphere Φout is found to be that of the incident �eld plus the potential of an ideal point
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dipole:

Φp =
p cosθ
ϵbr 2

=
p · r
ϵbr 3

(1.16)

with dipole moment3,

p = a3ϵb
ϵ − ϵb
ϵ + 2ϵb

E0. (1.17)

De�ning the polarizability α to be the constant of proportionality between the incident

�eld and the induced dipole,

p = αϵbE0, (1.18)

α = a3
ϵ − ϵb
ϵ + 2ϵb

. (1.19)

Thus, for a small nanosphere under the quasi-static approximation, the polarizability has

a resonance when ϵ + 2ϵb researches minimum. Because the medium is non-absorbing,

Im(ϵ) = 0, this minimum is satis�ed when

Re(ϵ) = −2ϵb . (1.20)

This condition is also called the Fröhlich condition. Under the Fröhlich condition, besides

polarization, the absorption and scattering e�ciency are also consequently enhanced

which are easier to measure optically. For instance, the scattering spectrum of a nanopar-

ticle can be easily obtained using dark-�eld microscopy which is mentioned in Sec. 1.2.1.

According to Eq. 1.20 refractive index ϵb change of the environment directly shifts the res-

onance of the embedded plasmonic nanoparticles. Hence, sensing the changes of refractive

index is one of the most important applications of plasmonic nanoparticles [33,38,47–51].

For gold and silver nanoparticles, the resonance falls into the visible and IR region of the

spectrum which therefore have been widely studied in the context of �uorescence.
3We are using Gaussian Units here. If we were in SI units, we need to multiply by the term 4πϵ0 as seen

in many textbooks [45, 46].
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A similar procedure leads to the polarizability of a prolate spheroid which is obtained

from an ellipse rotating along its major axis. In this case, the polarizability is not isotropic,

and Eq. 1.18 must be written p = ααα ·E. The dyadic polarizability is diagonal in the Cartesian

basis with unit vectors aligned with the prolate spheroid’s principal axes. If the long semi-

radius is aligned along êx ,

αααQS =

©«
α
QS
a 0 0

0 α
QS
b

0

0 0 α
QS
b

ª®®®®®¬
(1.21)

where αa is the polarizability along the long axis of the spheroid with semi-radius a and

αb is polarizability of the degenerate short axis with semi-radius b. With total volume

V = 4π
3 ab

2, the principal components of the polarizability are:

α
QS
i =

V

4π
ϵ − ϵb

1 + Li(ϵ − ϵb)
. (1.22)

The geometric factors Li are de�ned by,

La =
1 − e2

e3
(−1 +

1
2e

ln
1 + e
1 − e

), (1.23)

Lb =
1 − La

2
, (1.24)

where e2 = 1 − a2

b2
is the eccentricity.

The quasi-static approximation provides a good model for the plasmonic response of

noble metal nanoparticles, but does not show quantitative agreement with experiment for

metal particles larger than ∼ 100 nm in size. For the highly symmetric particles like the

spheroid, the full electrodynamic optical response consistent with Maxwell’s equations

can be written in analytic form using a modi�ed Mie theory [47]. What results from this

procedure are the scattered �elds expressed as series expansions in vectorized spherical

harmonics, which obscure the dynamics of the plasmon resonance. A compromise be-

tween the transparent quasi-static approximation and rigorous scattering theory can be
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had by expanding the Mie coe�cient describing dipole scattering about small wavenum-

ber k and obtaining corrections to the quasistatic result. In terms of the components of

the quasi-static polarizability αQS(ω) de�ned in Eq. 1.22, the polarizability in the modi�ed

long-wavelength approximation is obtained by expanding each Bessel function inside the

Mie coe�cient to third order in k :

αML
i (ω)

α
QS
i (ω)

1 − k2

lE
Diα

QS
i (ω) − i

2k3
3 α

QS
i (ω)

, (1.25)

for incident light polarized along the ith principal axis of the spheroid. The newly intro-

duced geometric factors Di are:

Da =
3
4

(
1 + e2

1 − e2
La + 1

)
, (1.26)

Db =

(
3
e
arctanh e − Da

)
a

2b
. (1.27)

Here we only expand the Bessel function to a third order in k . Theoretically, the higher or-

der it goes, the better the modelling results is. However, for the purpose of the researching

in this thesis, we found that third order is su�cient.

1.4 Optical lithography and electron-beam lithography

Nanolithography is the science of etching, writing or printing to modify material with

features under 100 nm. Because of its precise control, it serves as a powerful tool for

material science research that requires control in nanometer scales such as nanophotonics,

biomedical engineering and nanocircuits. Electron-beam lithography (EBL) is one of the

nanolithography methods used in Chapter III.

Optical lithography refers to a printing process that uses visible or ultraviolet light to

form patterns on the photoresist which is used in Chapter II. The pattern is written onto

the wafer surface using a light source and a photo mask. There are three types of printing:
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contact, proximity, and projection printing. No matter which type of print method is used,

the writing resolution su�ers from near-�eld or far-�eld di�raction to some degree. The

resolution one can get from a typical optical lithography is around 0.25 microns. Fig. 1.6a

shows the schematic of a typical projection printing optical lithography process. A photo-

sensitive polymer also called photoresist is coated onto a substrate. By illuminating the

coated substrate through a mask, di�erent parts of the substrate will be exposed to the

light depending on the pattern of the mask. Upon exposure, the photoresist can became

either more soluble which is called positive resist or less soluble which is called negative

resist. With a positive tone resist like PMMA, the exposed parts will be washed away

in the developer solution, leaving the unexposed part on the substrate. At this point, the

major part of optical lithography is basically done. Di�erent sample designs would require

di�erent paths afterwards, such as etching and evaporation. Fig. 1.6a shows the metal

evaporation process following the lithography. Electron beam evaporation allows one to

evaporate uniform thin layer of metal on to a substrate with nanometer precision. Then

metal layer on top of the photoresist is peeled o� when the photoresist is washed away

during lift-o� step, however, the metal layer directly on the substrate remains. Fig. 1.6c

shows gold coordinates on a coverslip made by this process. The mask is reusable which

improves the sample fabrication time.

Electron-beam lithography (EBL) on the other hand uses electron beams to write on

the resist following a programmable pattern. As shown in Fig. 1.6b, the process of EBL

is similar to optical lithography except that there is no mask involved and the writing

source is the electron beam. EBL enables higher resolution writing than optical printing

as optical printing su�ers from the di�raction of light. Additionally, EBL requires the

sample to be conductive whereas it is not necessary in optical lithography, which limits

its application. One way to get around this limitation is by putting a conductive coating

onto the non-conductive sample such as a glass coverslip, then etching or washing it away

before developing. Once the e-beam sample is developed it can be treated the same way
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Figure 1.6:Optical and electron-beam lithography processes. (a) Optical lithography
process. (b) Electron-beam lithography process. (c) Dark �eld image of gold
grids on a coverslip made by optical lithography. (d) Dark �eld image of gold
nanodisks written on a coverslip by EBL. The scale bars here are 10 µm.
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as an optical lithography sample. Fig. 1.6d shows arrays of gold disks made by EBL which

enables precise control on the shape and size of the disks, so I can �ne tune the LSPR

frequency of these nanodisks. These gold disks will be used in the Chapter III as plasmonic

nanoantennas to study the emission coupling between antennas and single emitters.

1.5 Thesis outline

This thesis aims to understand how plasmonic nanoantennas a�ect �uorescent emis-

sion on the single-molecule level. In Chapter II, I investigate the polarization changes that

result from plasmon-coupled emission by measuring the emission polarization of single

dye molecules coupled to individual plasmonic Au nanorods. In Chapter II, by correlat-

ing the single-molecule emission polarization angle with the nanorod orientation and

�uorescence wavelength, Goldwyn4 and I discovered that the molecular emission polar-

ization is signi�cantly rotated towards the orientation of the nanoantenna’s dominant

plasmon mode, and we observed that this polarization rotation, or "mispolarization", can

be as large as 90°. I used single-molecule polarization-resolved microscopy to measure

the polarization angle distribution for two di�erent dyes, one red dye, Cy5.5 (λmax = 710

nm) and one bluer dye, Cy3 (λmax = 570 nm) and I found that mispolarization occurs

upon resonant plasmon-coupled �uorescence emission. Our electromagnetic simulations

of the plasmon-coupled single-molecule emission polarization were consistent with these

experimental observations. To elucidate these experimental and numerical trends, we de-

veloped a reduced-order analytical model that demonstrates explicitly how the change in

emission polarization depends on both the far-�eld interference of the coherent emission

from both molecular and plasmonic antennas as well as the near-�eld dynamics of the

coupled system.

In Chapter III, I describe how I extended our research from emission polarization to
4I performed the experimental part and simulation. Goldwyn designed and developed the analytical

model so as in Chapter III
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emission localization. Goldwyn and I carried the analytical model further to not only

elucidate the emission coupling but also to recover the true position and orientation of a

coupled single emitter. We simulated the emission coupling between the dipoles and Au

nanorod and we calculated the emission polarization and position based on our model

and Gaussian �tting which is the conventional way to calculate those two properties.

We then compared these calculated emission polarization and emission localization to

the results coming from �tting the simulated emission to the analytical model. We found

that the model was able to recover both the true polarization and position with far fewer

than the two conventional methods. In the experiment, I designed and made a device that

allowed us to obtain both the apparent emission position and the actual radio distance of

the single emitter to the nanoantenna. I used dsDNA which is rigid on the scale of tens of

nm, to precisely position the dyes. Knowing the ground truth of the dye location will allow

us to ultimately apply our analytical model to the experimental data in the near future.

Supported by simulations, I demonstrate that mislocalization is the result of �uorescence

emission coupling whereas �uorescence enhancement is the result of both absorption and

emission coupling.

In Chapter IV, I propose using QD and silver nanoparticles to achieve plasmon en-

hanced �uorescence without emission coupling. I use two-channel super-resolution imag-

ing to characterize the intensity and spectral change of quantum dots upon coupling to

plasmonic nanoparticles. I show that the average emission time of coupled QDs is similar

to the non-coupled QDs but has a smaller standard deviation. The characterization will

enable plasmon enhanced single quantum dot labeling to be used in bioimaging. Finally,

in Chapter V, I propose a future direction of doing single-QD imaging with aluminum

nanoparticles via DNA-PAINT technique. It provides a possible approach to achieve plas-

mon enhanced super-resolution imaging with reduced mislocalization.

Overall, this thesis focuses on emission coupling between plasmonic nanoantennas

and single molecules. Both experimental and theoretical study of emission polarization
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and localization are carried out in this thesis. The results will shine some light on the

light-matter interaction between plasmonic nanoantennas and single molecules and leads

to better plasmon-enhanced �uorescent application.
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CHAPTER II

Rotation of Single-Molecule Emission Polarization by

Plasmonic Nanorods

The work presented in the chapter has been published in

Tiancheng Zuo, Harrison J. Goldwyn, Benjamin P. Isaaco�, David J. Masiello, Julie S.

Biteen. "Rotation of Single-Molecule Emission Polarization by Plasmonic Nanorods". The

Journal of Physical Chemistry Letters,10,5047-5054 (2019). DOI:

10.1021/acs.jpclett.9b02270

Author contributions

TZ designed and carried out the experiments, analyzed data, and performed time-
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the analytical model and performed frequency-domain electromagnetic simulations with
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wrote the paper. All authors discussed the results and analysis, developed conclusions,

and edited the paper.
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2.1 Abstract

The strong light-matter interactions between dyes and plasmonic nanoantennas en-

able the study of fundamental molecular-optical processes. Here, we overcome conven-

tional limitations with high-throughput single-molecule polarization-resolved microscopy

to measure dye emission polarization modi�cations upon near-�eld coupling to a gold

nanorod. We determine that the emission polarization distribution is not only rotated to-

ward the nanorod's dominant localized surface plasmon mode as expected, but is also

unintuitively broadened. With a reduced-order analytical model, we elucidate how this

distribution broadening depends upon both far-�eld interference and o�-resonant cou-

pling between the molecular dipole and the nanorod transverse plasmon mode. Exper-

iments and modeling reveal that a nearby plasmonic nanoantenna a�ects dye emission

polarization through a multicolor process, even when the orthogonal plasmon modes are

separated by approximately three times the dye emission linewidth. Beyond advancing

our understanding of plasmon-coupled emission modi�cations, this work promises to

improve high-sensitivity single-molecule �uorescence imaging, biosensing, and spectral

engineering.

2.2 Introduction

Nanoantennas couple the far �eld to the near �eld by converting propagating waves

to localized �elds [34]. Understanding and measuring how optical nanoantennas cou-

ple to their local environment is a critical step toward controlling and enhancing near-

�eld properties for applications as diverse as biosensors [33, 52], light-emitting devices

[53,54], surface-enhanced Raman spectroscopy [55,56], and super-resolution microscopy

[41–43,57]. Noble metal nanoparticles respond strongly to light and are e�cient nanoan-

tennas. Upon optical excitation, localized surface plasmons–collective oscillations of the

metal conduction-band electrons-are created at the nanoparticle surface and concentrate
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radiation into intense near �elds through which optical processes in the surrounding local

environment can be enhanced.

One intriguing near-�eld e�ect of plasmonic nanoparticles is their ability to interact

with nearby �uorescent dye molecules. Reported experimental and theoretical studies of

the coupling of single dye molecules with metal nanoparticles have described how these

nanoantennas modify the rate [42, 58–63], spatial distribution [43, 64, 65], spectrum [60],

and polarization [41,66–71] of �uorescence emission. Single-molecule experiments, which

avoid ensemble averaging [43], have further shown that single-molecule �uorescence

emission is re-directed by a plasmonic nanoantenna [72], and recent theory has proposed

that this so-called mislocalization can be attributed to the superposition and interference

of the molecule and nanoantenna far-�eld emission as well as to the near-�eld coupling

between the two emitters [65, 73]. In general, the excitation and decay of coupled �u-

orescent molecules and nanoantennas can be treated as separate processes as there is

no coherence between plasmon-coupled molecular absorption and emission [60, 74] and

experiments have shown that emission mislocalization is independent from enhanced ab-

sorption [72, 75].

Despite these research activities, the interaction between nanoantennas and nearby

molecules is still not fully understood. Previous studies have demonstrated that emission

polarization of a single emitter can be modi�ed by the orientation of a nearby asym-

metric nanoantenna such as a nanorod or Yagi-Uda antenna [67, 69, 71]. Here, we extend

these previous studies by using points accumulation for imaging in nanoscale topogra-

phy (PAINT) experiments [25,41,76,77], a microscopy technique mentioned in Sec. 1.2.1, to

sample thousands of molecules that transiently adsorb on the coverslip near each antenna.

We also explicitly subtract the contribution of plasmonic particle photoluminescence [78],

and develop novel understanding of how this dye-nanoantenna coupling in�uences the

polarization of emitted light by combining single-molecule experiments with a reduced-

order analytical model. The model results not only agree with simulation and provide a
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faster route to polarization prediction, but elucidate the mechanisms underlying emission

polarization modi�cation from a coupled dye-antenna system by isolating e�ects from the

nanoantenna’s two orthogonal dipole plasmon modes. The model also reveals the contri-

butions to emission polarization from near-�eld coupling and far-�eld interference, both

of which vary di�erently with dye-nanoantenna position and orientation.

More speci�cally, we investigate the polarization changes that result from plasmon-

coupled emission by measuring the emission polarization of single dye molecules coupled

to individual plasmonic nanorods. By correlating the single-molecule emission polariza-

tion angle with the nanorod orientation and �uorescence wavelength, we observe that the

molecular emission polarization is signi�cantly rotated toward the angle of the nanoan-

tenna dominant plasmon mode as previously reported [66–71], and can be as large as 90°.

We use single-molecule polarization-resolved microscopy to measure the angle distribu-

tion of this "mispolarization" for two di�erent dyes-one red, Cy5.5 (λmax = 710nm) and

one bluer, Cy3 (λmax = 570nm), and we �nd that measurable mispolarization occurs even

when o� resonance from the plasmon. This emission e�ect is therefore di�erent from the

�uorescence intensity and �uorescence emission spectrum, which are a�ected by both

plasmon-coupled absorption and plasmon-coupled �uorescence emission [72].

2.3 Experimental results and discussions

2.3.1 Single-molecule polarization-resolved microscopy

To measure the emission polarization of single dye molecules coupled to gold nanorods,

we achieve a sparse distribution of �uorescent molecule detections by placing a drop of

nanomolar dye solution over a nanorod-coated coverslip (Fig. 2.1a). In this PAINT experi-

ment [25,41,76,77], most molecules di�use rapidly in solution and are not detected by the

camera (at 10 frames/s); only those molecules that transiently adsorb on the coverslip are

captured by the camera. The high magni�cation of the microscope (160 nm/imaging pixel)
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Figure 2.1:Experimental setup and spectral design. Experimental setup and spec-
tral design. (a) Single-molecule polarization-resolved microscopy experiment
setup. A low-concentration dye solution is excited by circularly polarized laser
illumination (yellow). A polarizing beam displacer PBD separates the emission
(red) into two orthogonally polarized output channels (white boxes; the white
arrows indicate the polarization direction). The cyan circles indicate the same
molecule detected in both channels. (b) Dark-�eld scattering spectrum of an
isolated nanorod immobilized on a coverslip (blue); Cy3.5 �uorescence excita-
tion and emission spectra (yellow dashed and solid lines, respectively); Cy5.5
�uorescence excitation and emission spectra (red dashed and solid lines, re-
spectively). Yellow and red arrows indicate the excitation wavelengths for Cy3
and Cy5.5 respectively.

and low concentration of dye molecules enable us to characterize one molecule at a time. A

PBD in the emission pathway of our single-molecule microscope (Fig. 2.1a) separates the

emission into two orthogonally polarized output beams, which are then o�set from one

another and projected onto the camera (white "Center channel" and "O�-center channel"

boxes in Fig. 2.1a). In this two-channel, one-camera setup, the emission from each sin-

gle dye molecule appears in two channels (e.g. cyan circles in Fig. 2.1a), but the intensity

is di�erent in each channel. The apparent emission polarization angle, ϕapparent , of each

�uorescent molecule and photoluminescent nanorod is thus related to the intensity ratio

recorded in these two channels according to:

ϕapparent = tan−1

√
Io f f −center

Icenter
, (2.1)
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where Icenter and Io f f −center are the detected intensities in the center and o�-center images,

respectively, integrated over a di�raction-limited area. This expression maps all angles

into the �rst quadrant (between 0 and 90°) because phase information is lost from both

�eld components.

Single-molecule polarization-resolved microscopy measures the average emission po-

larization in the image plane, which corresponds to the physical dipole orientation for iso-

lated single emitters (dye molecules or nanorods) lying �at on the microscope coverslip.

The dark-�eld scattering of the nanorod is strongly polarized along the nanorod longitu-

dinal axis and is consistent with the nanorod having a larger polarizability along its long

axis [60,79,80]. This angle is measured with respect to the PBD axis. In these microscopy

experiments, the large numerical aperture (NA) objective produces some intensity cross-

talk between the channels. This cross-talk is demonstrated in full-�eld electromagnetic

simulations in Fig. 2.2. Though the molecules in this experiment can be approximately

Figure 2.2: Far �eld projection of simulated dipole and cross-talk. (a) Far-�eld in-
tensity map detected in the x polarization channel of dipole radiation which is
polarized along x axis direction. (b) Far-�eld intensity map detected in the y
polarization channel of a dipole radiation which polarizes along x axis direc-
tion. (c) Mapping of apparent emission polarization angle, which is calculated
from simulation results by using Eq. 2.3.1, to the actual emission polarization
angle, which is the simulation input angle.

considered perfect dipoles, they are detected in the far �eld after radiation through a high

numerical aperture microscope objective. This geometric consideration leads to signal in
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the perpendicular channel even for a molecule oriented perfectly along one axis. For ex-

ample, we simulated a single dipole emitter in water on a glass coverslip with polarization

along the x axis, most of the intensity is detected in the x channel (Fig. 2.2a), but the in-

tensity in the perpendicular channel is not zero; rather the y-channel intensity (Fig. 2.2b)

is 13% of the intensity in the x channel. This mismatch between the calculated emission

polarization angle and actual emission polarization angle is seen in Fig. 2.2c. This map is

used to recover the actual angles in the �nite di�erence time domain (FDTD) simulations

(Fig. 3.2a). The experimental results shown in Fig. 2.3 were not corrected by using this ta-

ble as the error introduced in the background subtraction makes the apparent angle and

actual angle not a one-to-one relationship any more.

We use the two-channel experiment to investigate how detuning the dye emission

spectrum from the nanorod localized surface plasmon (LSP) spectrum a�ects the emission

polarization from the coupled dye-nanorod system. For gold nanorods, the single-nanorod

PL polarization has been found to closely resemble the dominant, longitudinal LSP mode,

observed in dark-�eld scattering [81, 82]. The �uorescence emission spectrum of the red

dye Cy5.5 (Fig. 2.1b; solid red line) overlaps with the nanorod longitudinal LSP scattering

resonance (Fig. 2.1b; blue line). The intensity of the longitudinal LSP mode, which peaks

at 700 nm, is much stronger than transverse mode, which peaks at 560 nm (Fig. 2.1b; blue

line). Therefore, by exciting the dye with a 635-nm laser, whose wavelength is far detuned

from the nanorod LSP resonance (Fig. 2.1b; red arrow), we avoid �uorescence absorption

enhancement to isolate the e�ects of coupling in the �uorescence emission. As a control

experiment, similar measurements were performed with the red dye Cy3 whose emission

and excitation peaks are both far detuned from the longitudinal LSP resonance (Fig. 2.1b;

yellow lines).
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2.3.2 Detection of plasmon-induced emission polarization rotation from reso-

nantly coupled dye molecules

Detection of plasmon-induced emission polarization rotation from resonantly coupled

dye molecules. We selected a group of seven nanorods with di�erent orientations deter-

mined by 2.3.1 and measured the �uorescence polarization of single Cy5.5 molecules near

each nanorod. The dark-�eld scattering spectra and relative angles of those nanorods are

displayed in Fig. 2.5. Each system was rotated three times to sample 21 di�erent nanorod

orientations relative to the PBD axis. Simulation and model results show that molecules

located more than 150 nm from the center of the nearest nanorod experience negligible

mispolarization or mislocalization, and therefore these molecules experience no signi�-

cant plasmonic interaction [77]. We refer to molecules located more than 400 nm from the

nanorod centers as "O�-nanorod" and molecules located within 120 nm of the nanorod

centers "On-nanorod" molecules. Intermediate molecules were not considered to allow

di�erentiation between the two populations.

For the O�-nanorod molecules, the distribution of emission polarizations measured

for the O�-nanorod Cy5.5 dyes (Fig. 2.3.2a) peaks at 45°. Since the molecules adsorb non-

speci�cally to the surface with no known favored orientation, purely z-oriented emitters

would contribute equally in the x and y channels, leading to an arti�cially enhanced 45°

population. Moreover, this symmetrically peaked distribution is also attributed to artifacts

introduced in background-subtraction that systematically invalidate data points at low or

high angles due to signal-to-noise constraints. Additionally, even in the absence of noise,

the polarization cross-talk generated by the high NA objective bounds the angle domain

to ∼17°− 73°. A quantitative analysis of these artifacts is presented with simulated single-

molecule data in Fig. 2.4.
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Figure 2.3:Characterization of Cy5.5 and Cy3 molecule apparent polarization an-
gles, ϕapparent . (a, d) Emission polarization angle distributions of O�-nanorod
Cy5.5 and O�-nanorod Cy3 single molecules, respectively, and Gaussian curve
�ts. (b, c) Emission polarization angle of On-nanorod Cy5.5 single molecules.
(e, f) Emission polarization angle of On-nanorod Cy3 single molecules. Each
histogram in (a-f) collects the apparent emission polarization angles of 2,000
- 6,000 single molecules. The black arrows in b, c, e, and f indicate the mea-
sured orientation angle of the nanorod. The vertical dashed lines in e and f
indicate 45°. The histograms in b, c, e, and f are �t to the sum of two Gaussian
curves: the blue one has center and width corresponding to the blue curve in a
or d, and the red one is not constrained. (g) Measured Cy5.5 average polariza-
tion angles vs. nanorod orientation angle. Each point comes from the peak of
a red curve as in b and c. (h) Skewness of the measured Cy3 molecule emission
polarization angle distribution vs. nanorod orientation angle.
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Figure 2.4:Correspondence between the calculated and actual emission polariza-
tion angle. Correspondence between the emission polarization calculated
from Eq. 2.3.1 and the actual emission polarization angle input into simula-
tions for (a) simulated no background noise movies and (b) simulated movies
with background noise. On each histogram box, the central mark indicates the
median, and the bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively. The whiskers extend to the most extreme data points
not considered outliers. Distribution of calculated emission polarization angle
for (c) simulated no background noise movies and (d) simulated movies with
background noise.
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In the simulations here, the �uorescence intensity of each molecule was drawn from

a Gaussian distribution of molecule brightnesses, and the emission polarization of each

molecule was drawn from a �at distribution. In movies with background noise, we in-

corporated shot noise (Poissonian probability distribution) into these simulations to at-

tain a signal-to-noise ratio that matches the experiments. In the absence of noise, the an-

gles calculated by Eq. 2.3.1 correspond well to the actual input angle (Fig. 2.4a). Hence, in

the absence of noise, the distribution of calculated molecule emission polarization angles

matches the �at distribution input into the simulation (Fig. 2.4c). However, when back-

ground shot noise is added, Fig. 2.4b shows that the error in determination of the angle

increases appreciably. In particular, the estimated angle of dipoles oriented far from 45° is

biased toward 45°. This error results from the background noise subtraction necessary to

process single-molecule experiments. This bias toward 45° at the center of the estimated

emission polarization distribution (Fig. 2.4d). We also investigated whether this peak is

due to a physical rotation of the molecules on the coverslip surface, but we found no

signi�cant time-dependent broadening of the distribution within the imaging frame in-

tegration time of the experiment, 100 ms/frame (Fig. 2.6), which supports the assumption

of each molecule having a well-de�ned dipole moment orientation.

For the On-nanorod molecules, Fig. 2.3b-c shows the distributions of measured po-

larizations for On-nanorod Cy5.5 molecules, in which the nanorod longitudinal axis is

oriented at 67° and 28°, respectively (black arrows). Though the physical orientation of

the Cy5.5 molecules here is random as in the O�-nanorod case (Fig. 2.3a), the polarization

distributions in Fig. 2.3b and c are shifted away from the 45° peak in Fig. 2.3a, and toward

the nanorod orientation. The distributions of the On-nanorod Cy5.5 molecules of all 21

nanorod orientations are given in Fig. 2.7.

The On-nanorod distributions (Fig. 2.3b-c, Fig. 2.7) still include some molecules very

weakly coupled to the nanorod due to the dependence of coupling both on separation

and orientation [73]. To quantify the On-nanorod distribution shifts, we �t the emission
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polarization distribution to the sum of two Gaussian distributions: the blue curves in Fig.

2.3b-c, and Fig. 2.7 have center and width corresponding to the blue �t in Fig. 2.3a, and the

red curves are the ϕapparent distribution of the truly coupled On-nanorod Cy5.5 molecules.

The peak angles of these 21 red curves are compared to the nanorod longitudinal axis ori-

entation in Fig. 2.3g. In Fig. 2.3g, it is evident that the molecular ϕapparent has a bias toward

the nanorod longitudinal axis, in agreement with the simulation (Fig. 2.8). Furthermore,

resonant coupling to the nanorod leads to an average 2-fold enhancement in PL intensity;

this enhancement is greatest when ϕapparent is aligned with the nanorod angle (Fig. 2.9).
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Figure 2.5:Dark-�eld spectra of nanorods used in Cy5.5 experiment. (a-g) Dark-
�eld scattering spectra of the seven nanorods used for Cy5.5 single-
molecule polarization-resolved microscopy. (h) Dark-�eld image of those seven
nanorods (red dots). The bright feature at the right side is part of the labeled
grid, which allows individual nanoparticles to easily be located. The initial ori-
entations of the seven nanorods are: 69°, 51°, 44°, 71°, 50°, 30°, and 17°, respec-
tively.
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Figure 2.6:Cy5.5 molecule emission polarization distribution with di�erent in-
tegration time. Emission polarization distribution for PAINT experiment of
Cy5.5 molecules adsorbing transiently on a coverslip without nanorods. The
integration time, t, was varied from 20 - 340 ms as indicated. The distributions
were then each �t to a normal distribution (blue lines); the full width at half
max (FWHM) for each curve is listed in each panel. As the frame integration
time increases, the FWHM decreases, which indicates that some rotation of
the molecules on the surface occurs, but that this rotation is limited in our
experiments.
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Figure 2.7:On-gold Cy5.5 measured emission polarization angle distributions.
Measured emission polarization angle distributions of all Cy5.5 molecules de-
tected near nanorods. The 21 panels show all 21 experimental con�gurations
(7 nanorods x 3 rotations). The black arrow in each panel indicates the mea-
sured orientation of the nanorod in that experiment. Each distribution is �t to
the sum of two Gaussian curves: the blue curves have center and width cor-
responding to the measured emission polarization angles of the O�-nanorod
molecules (Fig. 2.3a), and the red curves therefore show the apparent emission
polarization angle distribution of the On-nanorod molecules. The 1st and 7th
panels correspond to Fig. 2.3b and c, respectively. Each histogram collects the
apparent emission polarization angles of 2,000 - 6,000 single molecules.
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Figure 2.8:Apparent emission polarization distributions of simulated 700-nm
wavelength dipoles. Apparent emission polarization distributions of simu-
lated 700-nm wavelength dipoles around a nanorod oriented at 90° generated
according to the "Modeling the Apparent Emission Polarization" section in the
main text Methods. (a) - (s) show the histograms for dipole orientations from 0°
to 90° spaced by 5°. For an example, panel (a) is the apparent emission polariza-
tion distribution of dipoles oriented at 0° and (b) is the distribution of dipoles
oriented at 5°. Panel (t) provides the sum of panels (a) - (s).
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Figure 2.9:Relation between emission enhancement and emission polarization. (a,
b) Normalized frequency distribution of single-molecule �uorescence intensi-
ties (counts detected per 100 ms imaging frame) of Cy5.5 and Cy3 molecules, re-
spectively. (a) Red: On-nanorod Cy5.5,blue: O�-nanorod Cy5.5. (b) Yellow: On-
nanorod Cy3,blue: O�-nanorod Cy3. (c) Average �uorescence enhancement vs.
On-nanorod emission polarization angles (relative to nanorod scattering an-
gle). The enhancement factor is de�ned as the ratio of the mean intensities
of On-nanorod molecules and the mean intensities of O�-nanorod molecules,
which are located between 400 nm and 700 nm away from the nanorod (red:
Cy5.5; yellow: Cy3). On average, a 2-fold enhancement is observed for cou-
pled Cy5.5 molecules with both excitation and emission spectra overlapping
the nanoantenna scattering spectrum (panel a), whereas no obvious enhance-
ment is shown for weakly coupled Cy3 molecules (panel b) as neither the ex-
citation nor the emission is co-resonant with the plasmonic nanoantenna. For
strongly coupled Cy5.5, the greatest enhancement is observed when ϕapparent
is aligned to the nanoantenna LSPR, and the enhancement decreases as the
ϕapparent rotates away from the nanorod longitudinal axis (panel c red). On
the other hand, this emission polarization-dependent enhancement is not ob-
served in the weakly coupled Cy3 case, in which the average enhancement is
near unity for all polarization angles (panel c, yellow).
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2.3.3 Polarization-sensitive detection of o�-resonance molecular emission

As a control experiment, we investigated the single-molecule polarization of Cy3 molecules.

O�-nanorod Cy3 molecules also appear to adsorb on the coverslip surface without pre-

ferred orientation, based on their ϕapparent distribution that peaks at 45° (Fig. 2.3d). Even in

this o�-resonance case, the On-nanorod polarization angle distributions are shifted away

from the 45° peak (dashed lines in Fig. 2.3e-f) and toward the nanorod orientation (black

arrows in Fig. 2.3e-f). For instance, the nanorod aligned at 25° in Fig. 2.3e shifts the dis-

tribution to the left relative to 45° and the nanorod aligned at 74° in Fig. 2.3f shifts the

distribution to the right of 45°. The dark-�eld scattering spectra and relative angles of the

nanorods are given in Fig. 2.10 and the full set of polarization distributions is given in

Fig. 2.11. Interestingly, though the Cy3 spectrum is signi�cantly detuned from the longi-

tudinal LSP mode of the nanorod (Fig. 2.3b), the emission polarization rotates in the di-

rection of the much stronger longitudinal mode. Still, this coupling is much weaker than

that observed for the resonantly coupled Cy5.5 molecules. Thus, we characterize the shift

by calculating the skewness of the polarization distributions: Fig. 2.3e shows a positively

skewed distribution and the Fig. 2.3f distribution has a negative skewness. In Fig. 2.3h,

the skewness from Cy3 emission polarization distributions for all 21 nanorod orienta-

tions is compared to the nanorod longitudinal axis orientation. There is a strong negative

linear correlation between skewness and nanorod orientation (Pearson’s correlation co-

e�cient = -0.74, p-value = 0.0001). Even in this o�-resonant coupling, the longitudinal

nanorod LSP mode modi�es the Cy3 emission polarization. This observation is consistent

with simulation (Fig. 2.12). Accordingly, no obvious �uorescence enhancement is found

for On-nanorod Cy3 (Fig. 2.9).
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Figure 2.10:Dark-�eld spectra of nanorods used in Cy3 experiment. (a-g) Dark-
�eld scattering spectra of the seven nanorods used for Cy3 single-molecule
polarization-resolved microscopy. (h) Dark-�eld image of those seven
nanorods (red dots). The initial orientations of the seven nanorods are: 73°,
26°, 67°, 40°, 32°, 30°, and 24°, respectively.
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Figure 2.11:Relation between emission enhancement and emission polarization.
Emission polarization angle of On-nanorod Cy3 single molecules from all 21
experiments. Black arrow in each sub plot indicates the apparent emission
polarization angle of a nanorod. The vertical dashed lines are at 45 degrees.
Each histogram collects the apparent emission polarization angles of 2,000 -
6,000 single molecules.
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Figure 2.12:Apparent emission polarization distributions of simulated 560-nm
wavelength dipoles. Apparent emission polarization distributions of sim-
ulated 560-nm wavelength dipoles around a nanorod oriented at 90° gener-
ated according to the "Modeling the Apparent Emission Polarization" section
in the main text Methods. (a)-(s) show the histograms for dipole orientations
from 0° to 90° spaced by 5°. For an example, panel (a) is the apparent emission
polarization distribution of dipoles oriented at 0° and (b) is the distribution of
dipoles oriented at 5°. Panel (t) provides the sum of panels (a)-(s).
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2.4 Analytical model

2.4.1 Coupled dipole interaction model

Because the true location and orientation of individual molecules are obscured by plas-

mon coupling and the interference of emitted or scattered �elds, current experiments are

unable to relate these e�ects to the con�guration-dependent interaction between molecule

and plasmonic nanorod. We therefore turn to a simple analytical model of both the near-

�eld interaction and far-�eld radiative emission to elucidate the essential details [61, 73].

The �uorescence emission from the coupled molecule and nanorod is attributed to two

electric dipoles interacting and radiating into the far �eld. For justi�cation, it is well

known that plasmonic nanoparticles behave as polarizable point dipoles in the long-

wavelength limit. This condition holds even under excitation from a nearby molecule at

separations outside the region of �uorescence quenching [63]. At a particular oscillator

frequency, electric dipoles can be described as linearly proportional to the total �eld at

their location excluding their own �eld. For the molecule’s emissive transition dipole mo-

ment (labeled p0) and dipole plasmon induced in the nanoparticle (labeled p1), the dipole

magnitudes, phases and orientations must satisfy the following coupled equations for the

complex vectors:

p0 = ααα0 [E1(x0) + EF ] (2.2)

p1 = ααα1E0(x1) (2.3)

where the dipoles, linear polarizabilities αi , and �elds are all evaluated at the frequency

ω and the inner product is implied by neighboring tensors in boldface. The �elds Ei(xj) =

G(xi , xj) · pi are the classical oscillating dipole �elds generated by the ith dipole at the
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p0

p1

d

Figure 2.13:Two coupled dipoles.Diagram of two coupled dipoles and separation vector
d = dd̂ = x1 − x0.

location of the jth dipole de�ned in terms of the tensor [83]:

G(d) =
[(
3d̂d̂ − 1

) (
1
d3
−
ik

d2

)
−

(
d̂d̂ − 1

) k2
d

]
eikd , (2.4)

which relays the dipole �eld from the dipole location xi to another point xj . The separation

vector d = dd̂ = x1 − x0 de�nes the separation between the molecule and centroid of

the plasmonic nanorod (Fig. 2.4.1). The �ctitious harmonic �eld EF = E0êxe
−iωt driving

only the molecule dipole forces the dipoles to oscillate harmonically and represents the

continuous population of the emissive state by absorption of the real excitation �eld and

subsequent vibrational relaxation characteristic of �uorescence.

Since the coupled dipole equations are linear, both dipoles will oscillate at the fre-

quency ω, which can be thought of as a single Fourier component of the coupled �u-

orescence emission spectrum. To simplify analysis, we will take ω to be the resonance

maximum in the uncoupled molecule’s emission spectrum and will demonstrate that this

single-color model approximates the character of the multicolor images collected experi-

mentally. The governing dynamical equations for the dipole moments can then be solved
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to yield the dipole moments:


p0 = [1 −ααα1G(x1, x0)ααα0G(x0, x1)]−1ααα0EF

p1 = ααα1G(x1, x0)p0
(2.5)

and the indirectly driven plasmon dipole becomes,

p1 = ααα1G(x1, x0)p0 (2.6a)

= ααα1G(x1, x0)ααα0[EF (x0) + E1(x0)] (2.6b)

= ααα1G(x1, x0)ααα0[EF (x0) + G(x0, x1)p1] (2.6c)

= ααα1ααα1G(x1, x0)ααα0EF (x0) +ααα1G(x1, x0)ααα0G(x0, x1)p1 (2.6d)

= (1 −ααα1G(x1, x0)ααα0G(x0, x1))−1ααα1G(x1, x0)ααα0EF (x0). (2.6e)

where the dipole �eld is relayed from the dipole location xi to the point xj by the

tensor

G(d) =
[(
3d̂d̂ − 1

) (
1
d3
−
ik

d2

)
−

(
d̂d̂ − 1

) k2
d

]
eikd . (2.7)

With the model, the e�ects of the nanorod longitudinal and transverse dipolar localized

surface plasmon (LSP) modes are independently studied for molecules at speci�ed loca-

tions and orientations. The individual in�uence of each mode on the observed mispolar-

ization can then be explicitly isolated, along with its dependence on interference e�ects.

With an analytical relationship between the two dipole moments, the dyadic polar-

izabilities can be parameterized from spectra of the uncoupled molecules and nanorod.

For this purpose, the molecule emissive dipole transition is modeled by a Lorentz os-

cillator polarizable only in one direction �xed by the molecular orientation; i.e., α0 =

êxαmol êx in the reference frame of the molecule. The nanorod is approximated as a pro-

late spheroid in the modi�ed long-wavelength approximation [84], with polarizability

α1 = êx′αshort êx′ + êy′αlonдêy′ + êz′αshort êz′ in the basis aligned with the nanorod principal
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axes. The prolate spheroid geometry idealizes the true nanorod geometry to allow for a

closed form solution to Maxwell’s equations including radiation damping for the dipo-

lar LSPs. Both components of α1 are parameterized by the two unique semi-radii of the

cylindrical nanorod (here 44 nm and 20 nm) and three material parameters built into the

Drude model dielectric function describing the electronic responses of bulk gold (See Sec.

2.6 for details of nanorod paramaterization).

To compute the two-channel di�raction-limited images generated by the polarizing

beam displacer (PBD), the �elds emitted by the coupled dipoles in Eq. 2.4.1 and Eq. 2.4.1

are propagated through an idealized microscope. The resulting image contains the super-

position of the focused and di�raction-limited �elds, Eim0 and Eim1 , which are proportional

to each dipole moment respectively (see Sec. 2.6 for more detail). In accordance with our

experiment, orthogonal polarization components of the total �eld are split to form sepa-

rate images, each with the form:

Iq =
cn

8π
|
(
Eim0 · êq |

2 + Eim1 · êq |
2 + 2Re

[
Eim0 · êqE

im
1 · êq

] )
(2.8)

where q ∈ {x ,y} are analogous to the center and o�-center experimental image chan-

nels, c is the speed of light in vacuum, and n is the refractive index of the background

medium (here water). Combining this polarized image intensity with Eq. 2.3.1 makes ex-

plicit how the average emission polarization measured in experiment is determined by

the orientation-dependent relay tensor G that in�uences the dipole moment magnitudes

and phases according to Eq. 2.4.1 and Eq. 2.4.1. The polarizabilities in the latter equations

are parametrized from the independent dye emission and nanorod scattering spectra. By

assuming the nanorod location and orientation are determined, Eq. 3.2 provides an analyt-

ical measure of the imaged intensities and observed polarization as a function of molecule

position and orientation.
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2.4.2 Analysis of the isolated contributions from the transverse and longitudi-

nal LSP modes and interference

By manually setting the short- or long-axis components of the nanorod polarizability

to zero in the model, the independent contributions of the transverse and longitudinal LSP

modes on ϕapparent can be studied. As in the experiments, ϕapparent (Eq. 2.3.1) maps onto an

angle range slightly smaller than 0-90° due to the inherent cross-talk. In both the analyt-

ical model and the simulations, the calculated polarization is mapped back onto a 0 - 90°

range by inverting the one-to-one mapping between the true dipole orientation in plane

and ϕapparent (Fig. 2.2). To determine how interference a�ects the PBD-resolved emission

polarization [62], we also compare the full emission polarization with that produced by

the isolated plasmon modes in the absence of the interference term in Eq. 3.2. Four ge-

ometries are studied: 0°-oriented molecular dipoles analogous to Cy5.5 (i.e., parallel to

and resonant with the longitudinal LSP mode), 0°-oriented molecular dipoles analogous

to Cy3 (i.e., parallel to and o� resonance with the longitudinal LSP mode), 90°-oriented

dipoles analogous to Cy5.5 (i.e., perpendicular to and resonant with the longitudinal LSP

mode), and 90°-oriented dipoles analogous to Cy3 (i.e., perpendicular to and o� resonance

with the longitudinal LSP mode); Fig. 2.15-Fig. 2.18.

The most signi�cant mispolarization is shown in the con�guration of the 0°-oriented

molecular dipoles resonant with the longitudinal LSP (Fig. 2.4.2a).
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Figure 2.14:Mispolarization map calculated from the coupled-dipole model. (a)-
(c) ϕapparent maps corresponding to 0°-oriented molecular dipoles resonant
with the longitudinal LSP. (d)-(i) ϕapparent maps corresponding to 90°-oriented
molecular dipoles that are also resonant with the longitudinal LSP. The black
and green arrows indicate the longitudinal and transverse LSP modes, respec-
tively, of the nanorod. The tan shapes in (a)-(i) show a quarter of the simulated
nanorod. The black dashed outline shows the prolate spheroid model of the
nanorod (best �t geometric and material parameters are given in Sec. 2.6).
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Fig. 2.4.2b-c shows the decomposition of the ϕapparent of these molecules by projecting

onto either the transverse or longitudinal LSP modes in isolation. Comparing among the

panels in Fig. 2.4.2, it is clear that the experimentally measured skew of molecule emission

polarization toward the nanorod long axis displayed in Fig. 2.3 is mostly due to superposi-

tion of the longitudinal plasmon mode scattering with the molecular emission. Molecules

not aligned with the main nanorod axis still couple to and drive the long-axis dipole

plasmon, which emits mostly light polarized along its axis and biases the average polar-

ization across an image in its favor. However, similar polarization maps for 90°-oriented

dipoles resonant with the longitudinal LSP (Fig. 2.4.2d-i) show that the in�uence of the

longitudinal LSP upon ϕapparent is more complicated: as in the case for 0° orientation, the

longitudinal LSP strongly mispolarizes the molecular emission toward the longitudinal

LSP mode (aligned along the y-axis) by superposition with �uorescence emission redi-

rected through the plasmon (Fig. 2.4.2d-f); additionally, for the 90° case, the longitudinal

LSP mode mispolarizes dipoles that are parallel to y-axis toward the transverse mode

axis (aligned along the x-axis) orientation because of destructive interference e�ects in

the y-oriented �elds (Fig. 2.4.2g-i). This interference e�ect results from the far-�elds of

the molecule and nanorod that are parallel to their dipole moments being out of phase,

thereby turning the last term in Eq. 3.2 negative for both components, which reduces the

argument of the arctangent in Eq. 2.3.1 and therefore reduces the observed polarization

angle below 90°. The transverse plasmon mode produces mispolarization of 90° molecules

close in proximity to its dipole moment by superposition similar to how the longitudinal

mode mispolarizes x-oriented molecules. However, as the electric �eld of the transverse

mode is much weaker than that of the longitudinal mode, the transverse mode does not

change the polarization as much as the longitudinal mode even for resonant molecules

(Fig. 2.17).

With other geometries, we can compare the model with simulations and evaluate the

contributions from each mode using the same approach mentioned above. Here we listed
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the four di�erent geometries we studied for your reference. In these �gures, panel a are

apparent emission polarizations from electrodynamics simulation. In the simulations, the

simulated dipoles were placed directly on the glass substrate (Fig. 2.10), whereas in the

analytical model they were placed in the plane bisecting the nanorod, which may account

for small di�erences between simulated and model emission polarizations. To avoid the

regime of �uorescence quenching, no dipoles were placed within 10 nm from the edge of

the nanorod in both the analytical calculation and simulation. The colored arrows show

the position and apparent polarization of each dipole. The color bar shows the change of

the polarization angle from the original ones, which in this case is 0°. b - g are the apparent

emission polarization map of the dipoles calculated from analytical model under the same

con�guration as the simulation. The large black and green arrows in b - g indicate the

longitudinal and transverse mode of nanorod in the analytical model, respectively. The

gold shapes in a - g shows a quarter of a nanorod. The black dashed line in b - g shows the

prolate spheroid used in the analytical model. e - g are produced by the isolated plasmon

modes with the polarizations calculated in absence of the interference term in Eq. 3.2, such

that |E0 · êq +E1 · êq |2 → |E0 · êq |2 + |E1 · êq |2, leaving only the superposition of polarized

images from each dipole. By comparing plane a and b of each �gures, we can see that

the simulation agrees well with the model results containing the physical e�ects of both

dipolar plasmon modes and far-�eld interference.
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Figure 2.15:Model evaluation geometry 1. Dipoles resonant with the simulated
nanorod longitudinal mode (700 nm) but aligned with the transverse mode
of the nanorod (0°).
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Figure 2.16:Model evaluation geometry 2. Dipoles resonant with the simulated
nanorod transverse mode (560 nm) but aligned with the transverse mode of
the nanorod (0°).
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Figure 2.17:Model evaluation geometry 3. Dipoles resonant with the simulated
nanorod longitudinal mode (700 nm) but aligned with the longitudinal mode
of the nanorod (90°).
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Figure 2.18:Model evaluation geometry 4. Dipoles resonant with the simulated
nanorod transverse mode (560 nm) but aligned with the longitudinal mode
of the nanorod (90°).
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2.5 Conclusion

In conclusion, using high-throughput single-molecule polarization-resolved microscopy,

we have discovered that emission polarization is a measure of the coupling strength be-

tween molecular emitters and plasmonic nanoantennas. The stronger the coupling of the

molecule to a plasmonic nanoantenna, the more the molecule emission polarization will

rotate toward the polarization of the nanoantenna LSP mode. While this e�ect is apparent

for an ensemble of single molecule measurements, simulations and analytical modeling

demonstrate that the mispolarization of single molecules with known location and ori-

entation is much more complicated. ϕapparent is rotated both toward and away from the

nanorod long-axis by two distinct physical phenomena, even for molecules that are res-

onant with the nanorod longitudinal LSP mode. Either constructive or destructive inter-

ference can dominate depending on the molecule orientation and location relative to the

nanorod. Signi�cantly, the emission polarization is a more sensitive measure of coupling

than �uorescent intensity enhancement because, even for weakly coupled Cy3 where no

apparent �uorescent enhancement is observed, the emission polarization change is ap-

preciable. Future work will use this model �t to extract the true molecule location and

orientation from experimental images.

2.6 Methods

2.6.1 Gold nanorod samples

Nanorods (40 nm diameter, 92 nm length, A12-40-700 NRs) were purchased from Nanopartz

Inc. (Loveland, CO) and used as received. To prepare the nanorod substrate, 5 µL 50-fold

diluted nanorods (5 µL nanorod stock solution + 245 µL DDI water) were drop-cast on a

microscope coverslip for 5 min. The sample was then washed under DDI water for 3 mins

to wash away those nanorods that did not stick on the coverslip.

56



2.6.2 Single-nanorod dark-�eld scattering spectroscopy

Nanorods were immobilized on glass coverslips as described above. These nanorod

substrates were immersed in water. A broadband halogen white light source excited the

sample through a dark-�eld water-immersion condenser, and scattered light was collected

in an Olympus IX71 inverted microscope equipped with a dark-�eld oil-immersion ob-

jective (NA = 0.6). The di�raction-limited image of a single nanorod was aligned to the

entrance slit of an imaging spectrograph (Acton 2300, Princeton Instruments), and spec-

tral data were collected on an electron multiplying charge-coupled device (EMCCD) (5 s

integration time; Andor iXon). Background spectra collected from nearby positions with

no nanorod on the spectrograph entrance slit were subtracted from measured spectra,

and all data were divided by the broadband spectrum of the halogen light source and any

additional neutral density �lters to correct for the system spectral e�ciency.

2.6.3 Polarization-resolved single-molecule epi�uorescence microscopy

Wide-�eld epi�uorescence microscopy was performed on nanorod substrates with a

100x 1.30 NA oil-immersion objective in an Olympus IX71 inverted microscope. A vol-

ume of 75-100 µL of 22 nM Cy5.5 NHS ester or Cy3 NHS ester dye (Lumiprobe Corpora-

tion) in water was placed on top of the nanorod substrates in a rubber O-ring that had

been cleaned by sonication in acetone. Single Cy5.5 or Cy3 molecules were excited with

circularly polarized 635 nm laser light (Coherent CUBE 640-40C) and 532 nm laser light

(CrystaLaser CL-532-025-O) respectively. Excitation intensities were∼4 µW /µm2. Fluores-

cence emission was �ltered by passing through appropriate dichroic mirror (Di01-R640

and Di01-R532 respectively) and long-pass �lter (BLP01-640R and BLP01-532R respec-

tively) to maximize signal and minimize scattered laser light.

The emission beam then passed through a Polarizing Beam Displacer (Thorlab BD40)

which separates the input beam into two orthogonally polarized output beams-Center

channel and O�-center channel). These output beams were then collected on a 512 pixel
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x 512 pixel Andor iXon EMCCD with beam size 450 µm2 ea. (1 camera pixel = 160 nm in

the imaging plane).

The images were recorded at 100 ms/frame to acquire emission from only those dye

molecules adsorbed to the sample surface. An adsorbed molecule is su�ciently constrained

by the sample surface to be observed on the imaging time scale. The adsorption rate, which

is proportional to the dye concentration in solution (∼10 nM in our experiments), can be

controlled, ensuring that only one molecule is adsorbed at a time per di�raction-limited

area. The immobilization times of adsorbed molecules is typically 100 ms - 1 s and are

completely random.

2.6.4 Single-molecule intensity and emission polarization angle analysis

The SMALL-LABS algorithm was used to localize single molecules from the movies

and to subtract accurate backgrounds [78]. The O�-nanorod molecules were the ones

that located at least 400 nm away from any nanorods. The On-nanorod molecules were

identi�ed as those located within 120 nm to the nanorods. The local true background a

certain molecule was the average intensity of the ±100 frames of that molecule frame, in

which no molecules were localized in the vicinity of that molecule. This local background

was then subtracted from the raw molecule image and the molecule �uorescent intensity

was calculated by summing the pixel intensities over 12 x 12 image pixels (480 x 480 nm).

The intensity of the intrinsic photoluminescence of nanorod is calculated in the same

way as it can also be treated as a single point emitter. The Center and O�-center channels

were overlaid before using SMALL-LABS to maximize the signal-to-noise ratio for single

molecule detection. The intensities of molecules and nanorods were calculated in the two

channels separately.
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2.6.5 Electromagnetic simulations

Time-domain electromagnetic simulations were performed for supplementary anal-

ysis by using the Lumerical �nite di�erence time domain (FDTD) Solutions software

package. Nanorods were modeled as a cylinder with length = 44 nm and 40-nm diam-

eter hemispherical caps. All simulations were performed with the nanorods immersed

in water and placed on a glass slab. The total simulation volume is 3.375 µm3; near the

nanorods, a �ne-mesh grid with 3.375 nm2 cell volume was used. The nanorod geometry

parameters were determined by varying the simulated size parameters (cylinder length

and hemisphere radius) and matching the simulated far-�eld scattering spectra to the ex-

perimentally measured dark-�eld scattering spectra (Fig. 2.5, Fig. 2.10). Water and glass

were modeled with a constant refractive index of (n = 1.333, k = 0) and (n = 1.5, k = 0),

respectively. The frequency-dependent complex permittivity of Au was obtained by an

analytical �t to experimental data [85].

The simulated scattering spectrum of nanorod (Fig. 2.19) was calculated by exciting

the nanorod from above the water at normal angle with a broadband plane wave, which

is consistent with dark-�eld spectroscopy experiments. Two orthogonal excitation polar-

izations were averaged to simulate the incoherent lamp light. The apparent polarization

analysis in Fig. 2.2 and Fig. 2.4, as well as the coupled emission polarization results in

Fig. 2.8 and Fig. 2.12, were obtained using a broadband point dipole source (constant cur-

rent) to represent a dye molecule. To reproduce the coupled emission with dye molecules

with random distances and orientations near nanorod, we simulated dipoles at di�erent

distances from the nanorod center (from 16 to 131 nm, logarithmically spaced). At each

dipole position considered, simulations were run for 19 di�erent orientations (from 0° to

90°, spaced by 5°) and a reference simulation under the same conditions but without the

nanorod was run. We only considered in-plane dipoles due to the fact that out-of-plane-

dipoles can be treated as the projections of in-plane dipoles. All dipoles are sampled over

one quadrant corresponding to the minimum symmetry unit of the NR (Fig. 2.20). The
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dipoles were placed right on top of glass slab rather than the same z plane as the center of

the nanorod so some dipoles could get underneath the nanorod, which is consistent with

our experimental con�guration. To mimic the e�ect of our objective lens, the �elds were

monitored and recorded in a plane in the glass substrate below the dipole source.

Figure 2.19: Simulated nanorod dark-�eld scattering spectrum.Nanorods were mod-
eled as a cylinder with length = 44 nm and 40-nm diameter hemispherical
caps.
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Figure 2.20: Simulated dipole positions around a nanorod. Simulated dipole positions
around a nanorod (red asterisks), corresponding to the minimum symmetry
unit of the nanorod. At each position, 19 dipole orientations were simulated.
Inset: side view of the simulation geometry; the coverslip is indicated in gray.
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2.6.6 Simulating the apparent emission polarization

The simulated near-�eld electromagnetic �eld distribution was propagated to the far

�eld by employing near-to-far �eld transformations [78]. Only the components radiating

at angles within the 1.4 numerical aperture of our objective lens were collected. The re-

sulting distribution was focused to a plane, and at each emission wavelength considered

(560 and 700 nm), the integral this di�raction-limited image was calculated to determine

the �uorescence intensity at both polarization direction (x and y). The ϕapparent were then

calculated by using Eq. 2.3.1 which is the same as the experimental data.

To predict the ϕapparent distributions that come from random dye adsorption positions

in the experiment, Fig. 2.8 and Fig. 2.12 were generated by randomly sampling interpolated

results on to an area of 0.6 µm2 with nanorod in the center. The result of each location is

the average from 3 closest simulation points shown in Fig. 2.20.

2.6.7 Parameterization of the nanoparticle-molecule interaction model

Frequency-domain electromagnetic simulations were performed to parameterize the

analytic model. The MATLAB MNPBEM17 Toolbox was used [86]. Each nanorod was

modeled as a cylinder with length = 48 nm and 40-nm diameter hemispherical caps with

surface discretized to convergence of the scattering spectra in Fig. 2.6.7. Nanorods were

assigned tabulated dielectric data from Johnson and Christy [85] and immersed in water

with a constant refractive index of (n = 1.333, k = 0). The nanorod scattering spectra �t for

model parameterization in Fig. 2.6.7 were generated by an incident plane wave polarized

parallel to either the short or long axis of the nanorod.

The scattering cross section can be used to parameterize the coupled dipole model by

�tting a model expression to experimental or simulated spectra for the nanorod. The scat-

tering cross section σs is de�ned as the power scattered Ps per incident �eld intensity Iinc,

and can be derived using the expressions for the �elds radiated by a dipole. The scattering

cross section of an ideal dipole with polarizability α(ω) in an isotropic and non-dissipative
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background is:

σs(ω) ≡
Ps
Iinc
=

8π
3

k4

nb/2
|ϵ̂ · ααα(ω)|2, (2.9)

where k = ωnb
c and nb =

√
ϵb is the background refractive index and ϵ̂ is the polarization

vector of the incident �eld.1

For the purpose of modeling a nanorod, the frequency-dependent polarizability α(ω)

is set to be the modi�ed long-wavelength tensor in Eq. 1.21 with components given by

Eq. 1.25. The dielectric permittivity is assigned the Drude model in Eq. 1.5. This procedure

yields σs(ω) determined by �ve free parameters, {a,b, ϵ∞,ωp,γ }. First, the polarizability is

fundamentally geometric and likewise, the two semi-radii of the prolate spheroid appear;

(1) a along the long axis and (2) the short semi-radius b. Next, the three material prop-

erties determining the Drude model; (3) the high frequency limit of the permittivity ϵ∞,

(4) the plasma frequencyωp containing the characteristic response time of the conduction

electrons, and (5) electron scattering rate γ that serves as a damping on electronic motion.

The simulated nanorod is assigned dielectric data for gold from Johnson and Christy [85].

Its geometry is a cylinder with radius of 20 nm and length of 24 nm with hemispherical

end-caps of matching radius. The parameters resulting from the best �t of the two spectra

in Fig. 2.6.7 are: a = 51.77770nm, b = 15.9601nm, ϵ∞ = 28.9857, ~ωp = 13.5885eV , ~γ =

0.0977eV

1The factor of nb/2 in denominator of the scattering cross section corrects for the background dielectric
properties and follows the implementation in the MNPBEM17 MATLAB toolbox [86].
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Figure 2.21:Parameterization by �tting to long and short mode. Parameterization
of the nanorod polarizability along the long (a) and short (b) principal-axes
of the nanorod from scattering spectra calculated by the Maxwell equations
solver MNPBEM17 Toolbox for MATLAB [86]. Simulated cross sections were
calculated by aligning the polarization of the incident light along either rod
axis, and �t simultaneously to the corresponding model expression in Eq. 2.9
with appropriate component of the polarizability in terms of the �ve free pa-
rameters, {a,b, ϵ∞,ωp,γ }. The relative inaccuracy of transverse mode �t can
be attributed to the low-energy tail of gold interband transitions that over-
lap this portion of the spectrum and are not well accounted for by the Drude
model dielectric function.
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2.6.8 Far-�eld transformation of the di�raction-limited image �elds for a point

dipole

Following the methods section of Ref. 73, the focused and di�racted �elds of a point

dipole emitter can be calculated using the Debye-Wolf integral [87], which provides an ac-

curate model of the �elds produced by di�raction-limited optical systems with the large

numerical apertures common in single-molecule �uorescence imaging [88]. For an ideal-

ized in�nity-corrected microscope, the �eld composing the image can be constructed by

�rst considering geometric refraction at the objective and tube lenses focusing the �elds

into image space and then considering di�raction e�ects at the tube lens aperture. As

outlined in Ref. 89, both the objective and tube lens are considered spherical refracting

surfaces with focal lengths fobj and f respectively. The objective is de�ned by spheri-

cal coordinates (ξobj, ζobj, fobj) relative to the dipole location. The tube lens is de�ned by

(ξ , ζ , f ) relative to the focal point in image space. The image �eld is related to the scattered

�eld at the objective by the integral:

E(ρ,φ, z) = −
ik f eik f

2π

ξm∫
0

dξ sin ξ
2π∫
0

dζ

√
cos ξ
cos ξobj

Escat(ξ , ζ )eik[ρ sin ξ cos(φ−ζ )+(z−h) cos ξ ].

(2.10)

The scattered �eld is evaluated at points on the objective by the relationship sin ξ =

(fobj/f ) sin ξobj and ζ = 2π − ζobj. The ratio of cosines appearing in the square root ac-

counts for the two refractions. The term eik(z−h) cos ξ describes defocussing and de�nes the

focal plane at z = h.

To obtain a simple closed form for the image �elds, the numerical aperture is �xed

at NA = 1 as well as the magni�cation, f /fobj = 1. The e�ect of magni�cation can be

restored theoretically by choosing a small, high-resolution image detection plane [90].

Under these conditions, both integrals in Eq. 2.10 can be solved analytically. The image

�eld in the focal plane produced by a single dipole source with moment magnitude px
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located along the optical axis (êz) and oriented in the êx direction is:

Eimpx (ρ,φ, z = h) = −ik
3e2ik f px

©«
[
cos2(φ) + cos(2φ)

] j1(kρ)
kρ + sin(φ)

2j0(kρ)

sin(φ) cos(φ)j2(kρ)

− cos(φ) J2(kρ)kρ

ª®®®®®¬
, (2.11)

where the dipole moment points at an angleψ relative to êx .

To express the �eld of an arbitrarily oriented dipole, this expression must be rotated.

For a dipole p = |p |(cosψpêx + sinψpêy) oriented in the focal plane at an angleψp from the

x-axis, the generalized image �eld can be written in terms of Eq. 2.11 as

Eim(ρ,φ, z = h;ψp) = R(ψp) · Eimpx (ρ,φ −ψp, z = h), (2.12)

where the rotation matrix is de�ned:

R(ψ ) =

©«
cosψ − sinψ 0

sinψ cosψ 0

0 0 1

ª®®®®®¬
. (2.13)
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CHAPTER III

Model-Based Localization and Polarization

Determination of Single-Molecule Emission

Sec 3.2 and 3.3 presented in the chapter has been published in

Tiancheng Zuo, Harrison J. Goldwyn, Benjamin P. Isaaco�, David J. Masiello, Julie S.

Biteen. "Rotation of Single-Molecule Emission Polarization by Plasmonic Nanorods". The

Journal of Physical Chemistry Letters,10,5047-5054 (2019). DOI:

10.1021/acs.jpclett.9b02270

Author contributions

TZ designed and carried out the experiments, analyzed data, and performed time-

domain FDTD with help from JSB. HJG developed and implemented the analytical model

and performed frequency-domain electromagnetic simulations with help from DJM. All

authors discussed the results and analysis, developed conclusions, and edited the paper.

3.1 Introduction

Super-resolution imaging techniques overcome the di�raction limit and enable optical

microscopes with resolution down to tens of nanometers. Plasmonic nanoparticles are

known to concentrate the electromagnetic �elds around them. Therefore, they have been
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used to enhance the �uorescent intensity [41, 42, 58, 83]. One promising application is to

use plasmonic nanoparticles to enhance the resolution for bioimaging [91] and hotspot

mapping [64, 65, 92, 93].

The raw images obtained from single-molecule microscopy are still di�raction-limited.

Each point spread function (PSF) is �t with a 2-dimensional Gaussian function to local-

ize the center with sub di�raction-limited resolution. The assumption behind this �tting

method is that the most intense emission point of the PSF in the image plane should

re�ect the single emitter location in the focal plane. The single-molecule PSF can be

well-described by a 2-dimensional Gaussian function. Hence, the single emitter location

can be calculated by �tting the PSF to the Gaussian function. The more photons ob-

tained from a single emitter, the better resolution the �tting can get [94]. However, it

has been discovered that the PSF is distorted by the plasmonic nanoparticles upon cou-

pling [1, 64, 65, 72, 73, 75, 90, 95–99]. In order to get the optimal enhancement, the single

emitter must be close (within tens of nanometers) to the plasmonic nanoparticle [77, 83].

In this coupling geometry, the assumption that the most intense emission point represents

the single emitter location is no longer true as the plasmonic nanoparticle scatters light ef-

�ciently, acting like a second emission center within a di�raction-limited region. Another

way to explain the modi�cation of the emission pattern is that the plasmonic nanoan-

tenna alters the local density of states of proximal single emitters [65]. Consequently, the

center of a Gaussian function that is used to �t the distorted PSF will not indicate the true

location of the single emitter. This mismatch between the true emission center and the lo-

calization from the Gaussian �t is also called mislocalization. The extent of mislocalization

in a nanoparticle-molecule coupling geometry can be as large as 30-50 nm either towards

or away from the plasmonic particle [65, 73, 95, 96]. It has been understood that the mis-

localization is indeed a result of emission coupling [65, 96]. Using a dye with an emission

spectrum largely blue-shifted relative to the localized surface plasmon resonance (LSPR)

of the plasmonic particle can avoid mislocalization to a great extent and still achieve en-
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hancement through absorption coupling [51,75]. However, the linewidth of both the LSPR

and single molecule emission spectrum are broad, which makes it harder to decouple the

emission coupling from absorption. Additionally, enhancement is largely weakened with-

out the emission coupling [42,58,100]. A more complex model is needed to understand the

emission coupling and to extract the true molecule position in the presence of emission

coupling. Models such as the dipole-dipole interference model [65,73,100] and the multi-

pole model [90] have been proposed in the past 5 years to account for the distortion in the

PSF due to plasmonic structures nearby. The multipole model was developed to describe a

much stronger coupling regime, such as super-resolution surface-enhanced Raman scat-

tering, in which the molecule distance is usually much closer to the plasmonic structure

(< 10 nm) [90, 101]. Within that distance, �uorescence is usually quenched [61, 77, 83].

Landes et al. also used a Hermite-Gaussian model to retrieve the orientation information

from a multilobed PSF that occurs when a dye couple to an Ag nanowire. One of the chal-

lenges that hinders the model development is the di�culty of designing a single-molecule

experiment that allows one to have the information of the ground truth position of the

molecule [96, 102–104].

Here, we extend the dipole-dipole interference model [73] from �tting a highly sym-

metric nanosphere system to a simulated anisotropic nanorod system and extract the

molecule orientation and location from the model �tting with the error signi�cantly less

than the standard Gaussian �tting. We also present a high throughput single-molecule

experiment in which the molecule-nanoparticle radial distance is controlled. The model

and experiment together will make it possible to ultimately apply the model to �t exper-

imental data and retrieve the true molecule positions.
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3.2 Model-based localization and polarization determination on

simulated data

As detailed in Sec. 3.1, since the image of a plasmon-coupled dye molecule will be

a�ected by the presence of the plasmonic nanoparticle, a simple centroid determination

fails to retrieve the position of the molecule. We therefore examined this mislocalization

e�ect with simulations. The model-generated image:

Iq =
cn

8π
|
(
Eim0 · êq |

2 + Eim1 · êq |
2 + 2Re

[
Eim0 · êqE

im
1 · êq

] )
(3.1)

can be used as a simultaneous localization and polarization �t function to recover the true

position and orientation of nanorod-coupled dye molecules. Model localization and polar-

ization determination is accomplished by least-squares �t of the model generated images

to the simulated images with no noise (See Sec. 2.6 in Chapter II). In the simulation, the

dipoles were evenly distributed in the 250 nm x 250 nm square around the nanorod. Fig. 3.1

shows the design of the simulation. At each dipole position (black dots), two orientations

were considered: parallel to the x-axis and parallel to the y-axis.
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Figure 3.1: Simulation geometry. The orange shape is a quarter of gold nanorod. At
each dipole position (black dots), two orientations were considered: parallel to
the x-axis and parallel to the y-axis. Nanorod were modeled as a cylinder with
length = 44 nm and 40-nm diameter hemispherical caps. All simulations were
performed with the nanorods immersed in water and placed on a glass slab.

The model �ts take only 3 free parameters, since molecules are assumed to lie in the

focal plane (center of the nanorod) with dipole moment located in the focal plane. The

initial guesses for molecule location are determined by the result of Gaussian localization

and �ts are insensitive to the guess of the molecule orientation. When the molecule is close

to the nanorod and the images become dominated by plasmon emission, each image does

not change much with molecule location. With this naive initial guess procedure, these �ts

often converge to molecule locations on top of the nanorod, which is unphysical because

such molecules should be quenched. To resolve this issue, a smarter initial guess algorithm

was implemented: if the initially guessed molecule location provided by the Gaussian

localization procedure is located on top of the nanoparticle, the guess location is pushed

outside the quenching zone [61, 77, 83] of the nanorod (de�ned as 10 nm added to the

prolate spheroid radius). This algorithm was found to yield numerically stable �t results,

showcasing the best �t possible with the current model and parameterization presented

71



in this work.

The results for the model �t were compared to standard Gaussian �ts. Gaussian lo-

calization �ts a two-dimensional Gaussian function to the normalized simulated images

with 5 free parameters: the two centroid coordinates (x ,y), two standard deviations, and

a rotation angle. Initial guesses for least-squares minimization of the residual for the cen-

troid coordinates are determined by the (numerical) detector pixel of maximum intensity.

Initial guesses for the widths are �xed near the di�raction limit, and the initial rotation

angle was not found to have consequence on the �t convergence.

3.3 Comparison betweenmodel-based�tting and typicalGaussian

�tting

Let’s now compare the �t results from the typical Gaussian �tting and model-based

�tting. Again, the four geometries mentioned in the last chapter Sec. 2.4.2 was studied

here. The molecules in Fig. 3.2 are aligned along the x-axis (0°). For the model �ts in Fig.

3.2b, the molecule and nanorod dipoles are parametrized, leaving only three �t parame-

ters for residual minimization: the x and y coordinates of the molecular transition dipole

relative to the center of the nanorod, and the dipole angle.
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Figure 3.2:Model evaluation geometry 1. Comparison of the best �t results for dipole
position (green) and polarization (colored arrows) determined in simulated
di�raction-limited images (at a single frequency matching the longitudinal
LSP peak in Fig. 2.6.7) of 23 simulated single-molecule dipoles (black dots)
oriented parallel to the x-axis and placed near a nanorod (shaded tan) up to
150 nm away from the center of the nanorod. (a) Gaussian localization of
the total intensity paired with molecule orientation as would be determined
by polarization-resolved microscopy reveals the familiar mislocalization of x-
oriented molecules mostly toward the nanorod (apparent locations marked by
green dots connected to the true molecule location in black) is accompanied by
mispolarization of the molecules due to superposition of �uorescence emission
redirected through the nanorod. (b) Least-squares �t of the model-generated
images to simulated images.
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The comparison to the other three geometries is listed below:

Figure 3.3:Model evaluation geometry 2. Comparison of best �t results for molecule
position (green) and polarization (colored arrows) determined for di�raction-
limited images of 23 simulated x-axis oriented single molecule dipoles (black
dots) near a nanorod (shaded tan) up to 300 nm away from the center of the
nanorod. (a) Gaussian localization of the total intensity paired with molecule
orientation as would be determined by polarization-resolved microscopy re-
veals the familiar mislocalization of x-oriented molecules mostly toward the
nanorod (apparent locations marked by green dots connected to the true
molecule location in black) is accompanied by mispolarization of the molecules
due to superposition of �uorescence emission redirected through the nanorod.
(b) Least-squares �t of the model-generated images to simulated images.
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Figure 3.4:Model evaluation geometry 3. Comparison of best �t results for molecule
position (green) and polarization (colored arrows) determined for di�raction-
limited images of 23 simulated y-axis oriented single molecule dipoles (black
dots) near a nanorod (shaded tan) up to 150 nm away from the center of the
nanorod. (a) Gaussian localization of the total intensity paired with molecule
orientation as would be determined by polarization-resolved microscopy re-
veals the familiar mislocalization of x-oriented molecules mostly toward the
nanorod (apparent locations marked by green dots connected to the true
molecule location in black) is accompanied by mispolarization of the molecules
due to superposition of �uorescence emission redirected through the nanorod.
(b) Least-squares �t of the model-generated images to simulated images.
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Figure 3.5:Model evaluation geometry 4. Comparison of best �t results for molecule
position (green) and polarization (colored arrows) determined for di�raction-
limited images of 23 simulated y-axis oriented single molecule dipoles (black
dots) near a nanorod (shaded tan) up to 300 nm away from the center of the
nanorod. (a) Gaussian localization of the total intensity paired with molecule
orientation as would be determined by polarization-resolved microscopy re-
veals the familiar mislocalization of x-oriented molecules mostly toward the
nanorod (apparent locations marked by green dots connected to the true
molecule location in black) is accompanied by mispolarization of the molecules
due to superposition of �uorescence emission redirected through the nanorod.
(b) Least-squares �t of the model-generated images to simulated images.

The model-based localization and polarization signi�cantly outperform Gaussian lo-

calization and e�ectively eliminate the mispolarization observed inϕapparent for all molecules

studied here except those closest to the nanorod corner. The mislocalization error is greatly

reduced because, unlike Gaussian �tting, the molecule location is estimated with full

knowledge of the interaction and con�guration-dependent far-�eld radiation pattern pro-

duced by coupled dipoles. Any error left in the determined molecule location is not due

to convolution of molecule and nanorod emission, but is likely a due to the slight de�-

ciency of the Drude model dielectric function for describing the optical response of gold

in the frequency range spanning the longitudinal and transverse mode resonances (Fig.

2.6.7). Although a model dielectric function with greater predictive power and more �t pa-
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rameters can easily be employed, the degree of success achieved here demonstrates that

the relevant physics underlying the di�raction-limited image of coupled molecule and

nanorod can be qualitatively captured with only the three Drude material parameters.

The in-plane molecule orientation is determined by the model �t in a qualitatively

di�erent manner from the way ϕapparent is calculated. While the latter is a measure of the

average polarization of a dye molecule in the focused image �eld, the model �t angle is

a direct estimation of the orientation of the molecule emissive transition dipole moment

during the time span of photon collection. At close molecule-nanorod separations, the

localization provided by the model �t seems to be no more reliable than Gaussian �tting.

This �tting error is due to the simplicity of the model rather than the �tting process. For

instance, greater accuracy could be achieved by including the nanorod quadrupolar LSP

response which becomes increasingly important at close proximity.

3.4 Distance-controlled single-molecule experiments

So far, we have shown that model-based �tting outperforms Gaussian �tting on single-

molecule images generated from simulation. If we want to actually apply the model-based

�tting to single-molecule images obtained from experiments, it requires us to know the

actual location of the molecules to do the ground truth validation. The points accumu-

lation for imaging in nanoscale topography (PAINT) experiment described in Chapter II

was not able to control the distance between dye and nanoparticle because it relied on

random positioning. Here, we designed a single-molecule experiment that allows us to

know the radial distance between molecules and nanoparticles by using double stranded

DNA (dsDNA) as spacers (Fig. 3.6a). Short dsDNA oligomers (< 50 nm) are rigid in aqueous

solutions [76]. A single stranded DNA with ATTO 590 at one end and a complementary

single stranded DNA with -SH group at the other end was hybridized to produce a dsDNA

molecule with dye at one end and thiol at the other. Nanodisks that consisted of a layer

of Cr, a layer of Au, a layer of Cr, then a �nal layer of SiO2 were made by electron-beam
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Figure 3.6: Sample design and dark-�eld imaging. (a) schematic of a nanodisk sample
design. The blue slab at the bottom is the glass coverslip, the orange square is
the gold nanodisk (30 nm thick, 70 nm diameter) and the dark grey layer on the
top is the coated SiO2 (20 nm thick). The two thin grey layers on the top and
bottom of the gold layer are the wetting Cr layers (2 nm thick). DNA linkers
are shown by the green double helices (30 base pairs, 10 nm) and the red stars
indicate single ATTO 590 dye molecules. (b) dark-�eld image of the three gold
nanodisk arrays with di�erent sizes of nanodisks and center-to-center spacing
of 2 µm. The scale bar is 15 µm .
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lithography (EBL) (Fig. 3.6a). The dye molecules with dsDNA spacers were then attached

to the nanodisks via a S-Au bond. Because of the SiO2 layer on the top, the dyes are only

able to attach to the gold disks from the sides. Therefore, the radial distance of each dye

molecule to the edge of the nanodisk is always the length of the dsDNA which is con-

trolled by the number of base pairs. In this study, DNA spacers of 30 base pairs, which

corresponds to a length of 10 nm, were used (Table 3.1). Experimental and simulation stud-

ies show that 10 nm distance is a optimal distance for plasmon enhancement and does not

induce quenching [63, 76, 77]. To study how the mislocalization is a�ected by the size of

nanodisk in a high throughput fashion, we made nanodisks into arrays by EBL with three

di�erent diameters, 70, 76, and 86 nm and chose the spacer dsDNA with 30 base pairs (10

nm). Fig. 3.6b shows the dark-�eld scattering image of those three nanodisk arrays. The

size of the array is designed to �t in the full size of the �eld of view (25x25 µm2) in the

epi�uorescence single-molecule setup used in the lab [72,76] and the 2 µm large pitch size

between each nanodisk prevents any lattice mode in LSPR [72, 91]. The three nanodisk

diameters were chosen such that the smallest one, 70 nm would have a bluer LSPR wave-

length than the ATTO 590 emission peak (Fig. 3.7a), the middle one, 76 nm, would overlay

well with ATTO 590 (Fig. 3.7b) and the biggest one, 86 nm would be redder (Fig. 3.7c).
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Figure 3.7:Dark-�eld spectra and apparent localization density. Blue curves in a-c
are the dark-�eld scattering spectra of 70, 76 and 86 nm diameter nanodisks,
respectively. The green and orange curves are the ATTO 590 absorption and
emission spectra respectively (data from IDEX Health & Science, LLC). The
insets: SEM images of a single nanodisk with 100 nm scale bars. d-f are the lo-
calization density maps centered at the nanodisks. Red circles indicate the size
of the nanodisk, 70, 76 and 86 nm, respectively. Black dashed circles indicate
the actual radial positions of the dye molecules. The colorbar in each �gure
shows the normalized apparent localization density. g-i are the radial localiza-
tion density histograms with the black dashed lines indicating the actual radial
positions of the dye molecules. For each diameter, we detected the �uorescence
from 2000-8000 single molecule �uorescence events from molecules around 12
particles.
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Single molecule emission images were then collected by our epi�uorescence single

molecule setup via direct stochastic optical reconstruction microscopy (dSTORM) method

[76,105]. Under the laser excitation, ATTO 590 molecules stochastically turned on and o�

in the oxidizing and reducing dSTORM imaging bu�er, which enables single-molecule

imaging [105]. Fig. 3.7d-f shows the molecule localization density maps around the three

di�erent size nanodisks. The localization was done by the conventional Gaussian �tting

method. The localization density for each point is de�ned as the number of neighboring

points within a 25-nm radius circle divided by the area of the circle. If there were no

mislocalizations, all the molecules would appear to be located along a ring 10 nm away

from the edge of the disks (black dashed circles). However, in Fig. 3.7d-f, at least 80% of

the localizations appear to be shifted to the inside of the black circles and at least 5% shift

outside the black circles. In other words, most of the molecules are mislocalized towards

the nanodisks and a few are mislocalized outwards. As the nanodisk size gets bigger, the

apparent localizations shift further away from the true locations, more towards the center

of nanodisk.

This trend in the magnitude of the localizations is more obvious in Fig. 3.7g-i, which

shows the radial density plots of those apparent localizations. The radial localization den-

sity is de�ned as the number of localizations within each radial distance interval (10nm)

divided by the area of that radial distance interval. The dashed vertical lines show the ac-

tual radial location of the dyes. It is evident that as the nanodisk size gets bigger, a higher

percentage of the apparent positions fall on the left side of the dashed vertical lines, i.e.,

is towards the center of the nanodisk. A shift in the most probable position as large as

50 nm is seen in Fig. 3.7i. Among the three di�erent size nanodisks, the LSPR of 86-nm

nanodisk overlaps least with the absorption of ATTO 590 Fig. 3.7c, however, it shifts lo-

calization the most. Therefore, mislocalization is less related to absorption coupling than

emission coupling. For each diameter, we detected the �uorescence from 2000-8000 sin-

gle molecule �uorescence events from molecules around 12 particles. Fig. 3.8 shows the
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localization density maps of the molecules about one particle of the 3 di�erent sizes. This

�gure shows the inhomogeneity that arises from undersampling, and comparing Fig. 3.7

and Fig. 3.8, it shows that summing the localization from 12 particles gets rid of this in-

homogeneity.

Figure 3.8:Representative localization density maps. a-c are the localization density
maps of one nanodisk from each of the 3 di�erent sizes, respectively. Red circles
indicate the sizes of the nanodisk: 70, 76 and 86 nm, respectively. Black dashed
circles indicate the actual radial positions of the dye molecules. The colorbar
in each �gure shows the normalized apparent localization density.

We performed simulations to investigate if the trend and extent of mislocalization in

this experiment agree with simulation. In the experiment, the attached ATTO 590 has

some degree of freedom in terms of rotational movement because it is bound to the DNA

through a single covalent bond. In the simulation, to qualitatively mimic the rotational

�exibility of the dye molecules, three di�erent orientations were considered: oriented in

the radial direction (x-axis), oriented in the tangential direction (y-axis) and oriented ver-

tically (z-axis) (Fig. 3.9a).
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Figure 3.9: Simulation setup and results. a is the top view of one quadrant of the 70-nm
nanodisk simulation setup. We simulated a dipole located 10 nm away from the
edge of the nanodisk for each of three di�erent nanodisk sizes. Three di�er-
ent dipole orientations were considered, parallel to the x-axis (blue arrows),
parallel to the y-axis (red arrows) and parallel to the z-axis (green dots). b-d
are the apparent localizations of those three dipoles coupled to three di�erent
sizes of nanodisk respectively: 70, 76 and 86 nm. The edge of each nanodisk is
indicated by the orange shape with a curve on the right. Black dashed circles
in a-d indicate the actual radial positions of the dipoles.
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A similar trend of mislocalization is seen in the simulation in Fig. 3.9b-d as in the ex-

periments in Fig. 3.7. As the size gets larger, the apparent localizations shift more towards

the nanodisk than outwards the nanodisk.

Single-molecule imaging also enables us to correlate each molecule’s emission inten-

sity with the apparent emission position. Fig. 3.10 shows the relationship between the

single-molecule intensity enhancement and the apparent radial position. The molecules

localized at their actual radial distance are molecules that have no coupling to the nan-

odisk. These molecules should therefore have no intensity enhancement. The average in-

tensity enhancement is therefore calculated by normalizing the intensity at each position

by the average intensity of the molecules localized in the radial distance interval of 50

nm, as this interval comprises the actual molecular distances (45, 48 and 53 nm). The lo-

calizations larger than the actual distances (45, 48 and 53 nm) correspond to the molecules

whose emission got mislocalized further away from the nanodisks. This outward mislocal-

ization is also con�rmed in the simulations (the green dots in Fig. 3.9). On the other hand,

the overall trend in Fig. 3.10 indicates that the molecules that appear mislocalized farther

inward have higher intensity. The di�erence between Fig. 3.10 and Fig. 3.7a-c indicates

that emission intensity enhancement (greatest for the 76-nm nanoparticles in Fig. 3.10) is

a�ected by the overlap of the nanoparticle LSPR with both the absorption and emission

spectra of the dyes, whereas the mislocalization (greatest for the largest nanoparticles in

Fig. 3.7) is the result of emission coupling. The LSPR frequency of the 76-nm nanodisks

overlaps with both absorption and emission of the dye the most (Fig. 3.7b). Therefore Fig.

3.10b shows the most enhancement. The LSPR frequency of the 86-nm nanodisks overlaps

less relative to the 70-nm nanodisks with the absorption so less enhancement is seen (Fig.

3.10a and c). However, the LSPR frequency of the 86-nm nanodisk overlaps with the dye

emission more than the 70-nm one, so it produces more mislocalization (Fig. 3.7g and i).
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Figure 3.10:Emission intensity vs. apparent emission localization. a-c are the single
molecule emission intensity vs. apparent emission localization plots for 70, 76,
86 nm nanodisks, respectively. The green circles show the average intensity
of the molecules at that position interval divided by the average intensity
of molecules at the 50-nm radial distance interval (i.e., at the actual position
of the molecules). The length of the error bars shows the standard deviation
of the normalized molecule intensity at each 20-nm radial distance interval.
Black dashed lines indicate the actual radial positions of the molecules.

3.5 Conclusion

In conclusion, we extracted the molecule orientation and location by �tting an analyt-

ical model of the coupled-dipole image to simulation data. The model developed exceeds

the accuracy of the best �ts achieved through standard Gaussian localization as well as the

polarizing beam displacer (PBD) based determination of the in-plane polarization angle

for simulated molecule-nanorod images. We also presented a single-molecule experiment

that enabled us to couple a single plasmonic particle to a single dye with precise distance

control in a high throughput way. By correlating the single-molecule emission intensity

with its apparent emission localization, we show that indeed mislocalization is a result

of �uorescence emission coupling whereas intensity enhancement is a�ected both by ab-

sorption coupling and emission coupling.

In the future, the model will be applied to the experimental data to recover the true
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molecule positions in experiments. The model will incorporate the presence of the sub-

strate and the dielectric constant of the environment. One of the challenges is how to

maintain the accuracy that model has achieved with the simulated image as the exper-

imental data will inevitably have noise. Having more readouts besides the emission im-

age will also improve the accuracy of the model, such as emission spectrum and emis-

sion decay rate [99]. Additionally, the dependence of absorption coupling on mislocal-

ization would be an interesting direction to investigate. This study would, however, re-

quire additional experimental progress. Such an investigation might be realized by look-

ing into the single-molecule absorbance and its corresponding mislocalization. Although

single-molecule absorbance enhancement by plasmonic nanoparticles was proved theo-

retically [58, 63] a decade ago, it is challenging to demonstrate this absorbance enhance-

ment in experiment at the single-molecule level. In bulk solutions, on the hand, the ab-

sorbance enhancement can been demonstrated [106]. For example, it can be achieved by

comparing the absorbance of the solution that contains nanoparticles linked with dye

molecules to the absorbance of the solution without nanoparticles [106]. Measuring ab-

sorbance in bulk solution is easier to realize as the di�erence of the light intensity when

passing through the bulk dye solution is signi�cant enough to be detected. However, mea-

suring single-molecule absorbance is challenging and must be realized by indirect meth-

ods like photothermal absorption spectroscopy [107–110]. It would therefore be di�cult

to measure mislocalization based on absorbance instead of emission.

3.6 Methods and characterization

3.6.1 Gold nanodisk arrays preparation

Gold nanodisk arrays were designed with 3 di�erent diameters and 9 repeating units

70, 80 and 90 nm, respectively. The actual sizes of 70, 76 and 86 nm were selected based

on the simulation described below. The nanodisks were prepared on coverslips by EBL.
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First of all, a 200 nm poly(methyl meth-acrylacte) (PMMA, Michrochem) layer was spin

coated on a glass coverslip. Then an 8 nm gold thin �lm was thermally deposited on top of

the PMMA to make a conductive layer for electron beam writing (Angstrom Engineering,

Evovac Evaporator). The sample was then exposed to an electron beam, 110 kV, 1000

pA (JEOL JBX 6300FS). The thin gold layer was removed with gold etch (KI and iodine

complex) followed by soaking in developing solvent, 1:3 methyl isobutyl ketone (MIBK):

isopropanol (IPA). The sample was cleaned with IPA. A 30 nm gold layer was coated on

to the coverslip by electron beam evaporation (Denton Enerjet Evaporator). A 20 nm SiO2

layer was then coated on top of the gold layer. Before and after the gold layer, a 2 nm Cr

was evaporated onto the sample as wetting layers. Finally the sample was soaked in 60°C

acetone overnight for the lift-o�.

3.6.2 Linking ATTO 590 to nanodisks

This protocol was adapted from methods mentioned in ref [76, 111, 112]. 5 µL 100 µM

thiolated single stranded DNA was mixed with equal amount of complementary ATTO

590 single stranded DNA (Table 3.1). 80 µL ethylenediaminetetraacetic acid-tromethamine

(Tris-EDTA) pH 8 was added. The solution was hybridized at 95°C for 2 mins followed by

incubation at room temperature for 1 hour. 10 µL 1M dithiothreitol (DTT) (15mg in 100 µL

Tris-EDTA bu�er) and 130 µL Tris-EDTA bu�er were added into the solution for an hour

to reduce the disul�de group. NAP-5 column (GE Healthcare Life Sciences) was then used

to separate the DTT from the thiol dsDNA. 1 mL of the DNA solution was immediately

added to the beaker that contained the nanodisks coverslip. 9 mL of Tris-EDTA was added

and the sample was incubated for 1 hour. 100 µL of 0.1 M phosphate bu�er, 1/10 by volume

and 1 µL 10% sodium dodecyl sulfate (sds), 1/1000 by volume, was added to reduce the

non-speci�c binding of dyes to the coverslip. The sodium chloride concentration in the

solution was gradually brought up to 0.5 M over the course of 3 hours to increase the

DNA loading. Finally, the coverslip was sonicated in deionized water 3 times to get rid of
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unbound dsDNA and blow dried with high pressure nitrogen gas.

DNA base
pair number Sequence

30 5- /5ThioMC6-D/CTT GCC ATC GCT AGT ACA TGG
CAC TGA CTG -3

30 5- /5ATTO590N/CAG TCA GTG CCA TGT ACT AGC
GAT GGC AAG -3

Table 3.1: Oligonucleotides used in this study.

3.6.3 dSTORM imaging

Single-molecule dSTORM imaging was performed in the epi�uorescence setup used

in the previously published work from our lab [1, 72, 76]. A 561-nm CW laser was used

as the excitation light source (Coherent CUBE). 100µL of dSTORM imaging bu�er was

drop on the sample coverslip. The sample was illuminated with high laser power at 40

µW /µm2 to make dyes enter dark state and was imaged at 12 µW /µm2 [105, 113, 114]. Im-

ages were recorded by an 512 pixel x 512 pixel Andor iXon EMCCD camera with electron-

multiplying gain set to 1000 at 100 ms integration time.

100 µL 500mM 2-Mercaptoethanol (MEA) at pH 9 was used as dSTORM imaging bu�er

to control the density of actively �uorescent molecules at any given time in order to enable

single-molecule detection [105, 113, 114].

3.6.4 Electromagnetic simulations for nanodisks

Time-domain electromagnetic simulations were performed by using the Lumerical

�nite di�erence time domain (FDTD) Solutions software package. All simulations were

performed with the nanodisk immersed in water and placed on a glass slab. The total

simulation volume is 3.375 µm3; near the nanodisk, a �ne-mesh grid with 3.375 nm2 cell

volume was used. Water and glass were modeled with a constant refractive index of (n
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= 1.333, k = 0) and (n = 1.5, k = 0), respectively. The frequency-dependent complex per-

mittivity of Au and Cr was obtained by an analytical �t to experimental data [85]. The

thickness of each layer in the nanodisks are 2 nm Cr, 30 nm Au, 2 nm Cr and 20 nm SiO2

(from the bottom to the top). The nanodisks diameters were determined by varying the

simulated cylinder radius and matching the simulated far-�eld scattering spectra to the

experimentally measured dark-�eld scattering spectra (Fig. 3.12).

The simulated scattering spectrum of nanodisk in Fig. 3.12 was calculated by excit-

ing the nanodisk from above the water at normal angle with a broadband plane wave,

which is consistent with dark-�eld spectroscopy experiments. Two orthogonal excitation

polarizations were averaged to simulate incoherent lamp light.

To reproduce the coupled emission with dye molecules 10 nm away from a nanodisk,

we simulated dipoles at 10 nm away, at the height of the center of the gold layer. Sim-

ulations were run for 3 di�erent orientations: oriented in the radial direction (x-axis),

oriented in the tangential direction (y-axis) and oriented vertically (z-axis) (Fig. 3.9a). To

mimic the e�ect of our objective lens, the �elds were monitored and recorded in a plane

in the glass substrate below the dipole source.

3.6.5 Gold nanodisk characterization

In each of the three sizes of nanodisks, dark-�eld scattering spectra were collected

from 3 randomly chosen nanodisks (Fig. 3.11). These arrays were immersed in water. A

broadband halogen white light source excited the sample through a dark-�eld water-

immersion condenser, and scattered light was collected in an Olympus IX71 inverted mi-

croscope equipped with a dark-�eld oil-immersion objective (NA = 0.6). The di�raction-

limited image of a nanodisk was aligned to the entrance slit of an imaging spectrograph

(Acton 2300, Princeton Instruments), and spectral data were collected on an electron mul-

tiplying charge-coupled device (EMCCD) (1 s integration time, Gain 100; Andor iXon).

Background spectra collected from nearby positions with no nanodisk on the spectro-
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graph entrance slit were subtracted from measured spectra, and all data were divided by

the broadband spectrum of the halogen light source and any additional neutral density

�lters to correct for the system spectral e�ciency.

Figure 3.11:Dark-�eld scattering spectra of 3 di�erent sizes nanodisks. a-c are for
70-nm nanodisks. d-f are for 76-nm nanodisks. g-i are for 86-nm nanodisks.

The EBL pattern was designed to create nanodisks with nominal sizes of 70, 80 and

90 nm. Then the actual size of nanodisk in each array was determined by matching the

average dark-�eld scattering spectrum of each size to the scattering spectrum from the

simulation (Fig. 3.12). The best matching results from the simulation are: 70 nm, 76 nm

and 86 nm respectively.
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Figure 3.12: Scattering spectra from simulation and the average dark-�eld scatter-
ing spectra of 3 di�erent sizes nanodisks. Blue curves dark-�eld scatter-
ing spectra. The yellow, green and red curves are the scattering spectra from
simulation for 70-nm, 76-nm and 86-nm nanodisks, respectively.

The thickness of the top SiO2 layer and the gold layer were characterized by ellipsom-

etry (Woollam M-2000 Ellipsometer). As the polarized light beam is re�ected by a sample,

the polarization will be altered depending on the thickness of each layer in the sample.

Delta and psi are the two variables measured for the change in polarization. Those two

variables were measured as a function of the wavelength of light re�ected o� of the control

sample. A large bare coverslip was coated with gold and SiO2 under the same condition

as the nanodisks fabrication. The thickness of the gold layer and SiO2 was extracted by

�tting the measurement to a gold-SiO2 two-layer model. The �t results: Mean Squared

Error=17.440, SiO2 layer thickness: 191.00 ± 0.586 Å and gold layer thickness 365.75 ±

2.006 Å.
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Figure 3.13: Delta and psi vs. wavelength.
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The size and shape of gold naondisks were characterized by scanning electron micro-

scope (SEM) with 5 kV accelerating voltage and 6600 nA (SU8000, Hitachi High Technolo-

gies America, Inc.).
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Figure 3.14: SEM image of a 70-nm gold nanodisk array. The nanodisks are circled
here as a big part of the nanodisks in this array did not show up after the EBL
which is normal during EBL process when making features with small sizes.

Figure 3.15: SEM image of a 70-nm gold nanodisk.
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Figure 3.16: SEM image of a 76-nm gold nanodisk array.

Figure 3.17: SEM image of a 76-nm gold nanodisk.
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Figure 3.18: SEM image of a 86-nm gold nanodisk array.

Figure 3.19: SEM image of a 86-nm gold nanodisk.
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CHAPTER IV

Towards Plasmon Enhanced Quantum Dot

Super-Resolution Imaging

4.1 Introduction

1 Plasmon enhanced super-resolution is a great goal, however, the mislocalization

that occurs upon emission coupling makes it problematic to achieve this goal. Plasmon-

enhanced �uorescence can occur through a combination of plasmon-enhanced absorbance

and plasmon-enhanced emission. Previously we found that mislocalization is due to the

emission coupling, but that this mislocalization does not occur upon absorption coupling

(Chapter III and [72]). Therefore, one way to avoid mislocalization is to decouple the emis-

sion enhancement from absorption enhancement. In other words, we aim to select the dye

and plasmonic particle in such a way that the emission spectrum of the dye is strongly

red shifted with respect to the localized surface plasmon resonance (LSPR) frequency to

decouple the dye emission from the LSPR while the �uorescence can still be enhanced

through absorption coupling [51, 75]. However, the linewidth of the LSPR is broad and

the excitation and emission spectra of organic dye molecules are not very well separated

which makes it hard to avoid the emission coupling.

Quantum dots (QDs), semiconductor nanoparticles, on the other hand, are a promising
1TZ and Kaitlyn Lhiva both designed and carried out the experiments, analyzed data with the guidance

from JSB. All authors discussed the results and analysis, developed conclusions, and edited this chapter.
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candidate from this decoupling purpose. One distinct feature of QDs is that they have a

very sharp emission spectrum and a very broad absorption spectrum [115]. Fig. 4.1 shows

the absorption and emission spectrum of water soluble CdSe/ZnS QDs purchased from

NNCrystal USA. The narrow emission spectrum (red line) and broad absorption spectrum

(purple line) enable absorption coupling with plasmonic particles that have LSPR in the

bluer region such as 80-nm silver nanospheres (blue line). Another advantage of silver is

that the LSPR strength should be higher than that of gold.

Figure 4.1:Absorption and emission spectra of red QDs and silver particle dark-
�eld scattering spectra. The purple line and red line arethe absorption and
emission spectrum of water soluble red emission CdSe/ZnS QD respectively.
The blue line is the dark-�eld scattering spectrum of a 80-nm diameter silver
nanosphere.

This chapter is aimed at exploring the methods of doing single-QD imaging in the pres-

ence of plasmonic nanoparticles. The discussion in this chapter lays down some ground-

work for ultimately using QDs for mislocalization reduced plasmon enhanced super-

resolution imaging.
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4.2 Oxidation of silver nanoparticles

Silver nanoparticles can support plasmon resonances in the visible range. Compared

to gold nanoparticles, they go to bluer wavelength (down to 350 nm [46]). However, silver

nanoparticles get oxidized easily under light exposure which reduces their LSPR strength

[116–119]. Fig. 4.2 shows the dark-�eld scattering spectra of a silver nanoparticle taken at

di�erent time points. To mimic the single-molecule imaging condition, the 488-nm laser

was on with the same power as in a typical imaging experiment. It is clear in Fig. 4.2 that

the scattering spectrum gets broader and weaker especially after an hour of illumination

which agrees with the literature [119].
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Figure 4.2: Single silver particle dark-�eld scattering spectra. Single silver particle
dark-�eld scattering spectra taken at 0 hour, 0.3 hour, 1 hour and 5 hour of il-
lumination, respectively. 488-nm laser was used with the power of 14 µW /µm2.
The yellow lines are a Lorentzian function �t to each spectrum.
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To make silver nanoparticles robust candidates for �uorescence enhancement, silver

oxidation needs to be prevented. One easy way suggested by the literature is that remov-

ing the ultraviolet and blue light (< 495 nm) in the illumination will signi�cantly decrease

the photo-oxidation [119]. In order to fully excite the plasmon resonance of a silver particle

with redder illumination, we would need to select silver particles whose LSPR frequency

is redder than 495 nm. But the goal of this experiment is to use bluer plasmonic nanoparti-

cles. Therefore, the trade o� of using redder silver particle will make it possible to overlap

more with the QDs emission spectrum, which defeats the purpose. Some middle ground

could be possibly achieved here by using dark red emission QDs (680 nm).

Using appropriate surfacants that protect the silver nanoparticles against photo-oxidation

is another approach [119–121]. Polyvinylpyrrolidone (PVP) and citrate for example, can

e�ectively slow down the photo-oxidation. However, even in the presence of these sur-

facants, the LSPR strength of silver still drops signi�cantly within a couple hours [119].

Besides these two methods, another strategy is coating the silver surface with a protective

passivating layer is another strategy such as a thin layer of SiO2 [122] and a monolayer

of graphene [123]. While SiO2 coated silver nanoparticles are commercially available, the

thin layer of SiO2 o�ered in the market might still be too thick for optimal plasmon en-

hancement (>20 nm). A monolayer of graphene on the other hand, can be as thin as 1 nm.

However, it requires a furnace for graphene deposition [123].

4.3 Di�erent approach of single-QD imaging techniques

Compared to organic �uorescent probes, QDs are more photostable and have high

quantum yields and therefore QDs have also been used an imaging probe for super-

resolution over the past decade [124–126]. In this section, I introduce di�erent methods

that I have used to attempt to adapt our protocols for imaging QDs.
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4.3.1 Single-QD imaging via PAINT

As I explained in Chapter II, points accumulation for points accumulation for imaging

in nanoscale topography (PAINT) is a simple approach for doing single-molecule imag-

ing. It relies on the non-speci�c binding between the substrate and the molecules. Fluo-

rescence signal can be recorded when a molecule is adsorbed on the substrate (on time).

Then the signal is o� when the molecule photobleaches or desorbs from the substrate. The

on time in single-molecule imaging mentioned in Chapter III is around 1 second. The sur-

face chemistry alters the binding behaviors. The hypothesis is that a hydrophilic surface

attracts polar molecules and a hydrophobic surface attracts non-polar molecules.

Consequently, I evaluated whether I can perform single-QD imaging by using PAINT.

Nanomolar concentrations of QDs solution (100 µL) was dropped onto the coverslip with

di�erent surface chemistry for comparison. The O2 plasma etched coverslip is very hy-

drophilic. After dropping QDs on the surface, the water soluble QDs tended to stick on

the surface until they photobleached (around 10 seconds) because they can still be seen

after bleached under microscope via dark-�eld imaging. This long sticking time makes the

PAINT experiment less e�cient. In other words, it takes much longer to collect enough

data to appropriately sample. To make the surface less hydrophilic, instead of plasma etch-

ing, the coverslip was cleaned by sonicating in acetone and then water for 10 minutes. Fig.

4.3 shows one frame of the movie. At least 5 events can be seen in this 12 x 12 µm2 frame.

The on time for QDs adsorbing to this surface is much less than it was for QDs adsorbing

on the plasma etched surfaces (0.5 seconds). However, the background signal is relatively

high as cleaning with acetone is not as e�ective as plasma etching in terms of getting rid

of the �uorescent background that was on the coverslip.
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Figure 4.3:A frame of a PAINT movie on an acetone washed coverslip. The single-
QD adsorption events are circled with white circles. A 488-nm laser was used
with the power of 14 µW /µm2. The scale bar is 2 µm.

The next thing I tried is functionalizing the coverslip with hexamethyldisilazane (HMDS)

to make the slides more hydrophobic. Fig. 4.4a shows the water contact angle of a HMDS

coated coverslip (left) compared to a plasma etched coverslip (right). The high water con-

tact angle indicates that the HMDS was successfully coated onto the coverslip. Fig. 4.4b

shows one frame of the movie recorded for QDs adsorbing on the HMDS coated coverslip.

The PAINT experiment behavior is similar to the acetone washed case. One advantage of

using this method is that the background noise is less than the acetone washed ones due

to the fact that the HMDS coated coverslip was plasma etched before coating the HMDS

(see Methods section).
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Figure 4.4:A frame of a PAINTmovie on a HMDS coated coverslip. a shows a water
droplet on a HMDS coated coverslip (left) and on a o2 plasma etched coverslip
(right). In b, the single-QD adsorption events are circled with white circles.
488-nm laser was used with the power of 14 µW /µm2. The scale bar is 2 µm.

Overall, these surface treatments are able to yield the desired PAINT behavior to some

extent. However, they are not very reproducible. I found that the brightness and the stick-

ing behavior of the QDs was very di�erent even when following the same protocol. One

hypothesis is that the ion concentration in the solution plays a important role here. In-

creasing number of sticking events have been seen when 20 µL 2 M NaCl was added into

the imaging solution. Adjusting the ion concentration and pH of the imaging solution

might be a way to increase its reproduciblity in the future.

4.3.2 Single-QD imaging via blueing

Anther single-QD imaging methods is QD blueing method [127,128], which utilizes the

blueing nature of the CdSe/ZnS QDs [129–131]. Upon excitation, the CdSe core is oxidized

due to photooxidation [131–133]. The emission spectrum peak gradually shifts bluer as

the size of the core shrinks (Fig. 4.5a). The blueing will keep happening until the quantum
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dot gets photobleached. Assuming that 3 quantum dots locate within a di�raction-limited

area (Fig. 4.5b) and they initially emit red light of the same wavelength, without blueing,

the three QDs can not be resolved with optical microscope. However, as the blueing starts

to happen stochastically, the signal from the QD which blues �rst can be captured with a

yellow bandpass �lter, which blocks the red light from the other two particles. The signal

will not disappear until the �rst QD becomes too blue to pass the bandpass �lter. Then the

second QD to blue will be seen as it starts to blue. This blueing process is repeated until all

the particles blue past the bandpass �lter wavelength. The blueing speed can be controlled

by the excitation intensity. With the right laser power and correct bandpass �lter, single-

QD super-resolution imaging can be achieved. In our experiments, we used laser powers of

15 µW /µm2 and observed blueing rates of 0.6 nm/s. Additionally, the photoluminescence

(PL) intensity of QDs �uctuates naturally [134] which is also known as blinking. This

blinking results the signal in the intensity readout going up and down (Fig. 4.5b). While

lots of e�orts goes into making QDs less blinky, the blinking nature helps with single-QD

imaging here. For example, if multiple QDs under the same di�raction-limited spot blue

at the same time, it is possible to separate their emission temporarily as they turn on and

o� at di�erent times.
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Figure 4.5: Single-QD super-resolution imaging by blueing. A is a cartoon illustrat-
ing the blueing of a red-emitting QD. B explains how single QD imaging is
achieved. DLV stands for di�raction-limited volume. This �gure is reproduced
from Hell et al. [127].
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In order to perform single-QD imaging via QD blueing, a single layer of QDs was

functionalized onto silanized coverslip through 1-ethyl-3-(-3-dimethylaminopropyl) car-

bodiimide hydrochloride (EDC) and N-dicyclohexyl carbodiimide (NHS) coupling [135]

(see Methods for details). Then the sample was imaged under 488-nm laser excitation (6

µW /µm2) with a 560 nm longpass �lter to characterize the uniformity of the single-layer.

Fig. 4.6a shows the �rst frame of the single-QD imaging movie and Fig. 4.6b shows the

frame after 10 seconds. It clearly shows that the QDs signals disappear in the center of

the view. One possible explanation for this is that immobilized QDs desolved back into the

water. To silanize the coverslip, we used (3-aminopropyl triethoxysilane (APTES) aqueous

solution (see Method). However, it has been reported that the aminosilane desorps from

the substrate signi�cantly after 10 minutes in the water [136]. Consequently the second

step, linking QDs to the silanized surface was less e�ective. In order to slow down the des-

orption rate, one might consider using APTES in toluene instead of in aqueous solution.

It has been reported that the aminosilane layer can last up to 1 hour following toluene

based APTES functionalization [136].

Figure 4.6: Single-layer QD imaging. a. The �rst frame of single-QD imaging. b. The
frame of single-QD imaging after 10 seconds. The scale bar is 2 µm.

There are other approaches to coating a single layer of QDs onto the coverslip that

worth exploring in the future such as mixing QDs into a polymer and then spin coating

them it onto the coverslip [77].
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4.4 2-channel single-QD imaging for QD blueing

Although the single layer coating procedure I established was not ideal, it is neces-

sary to study how plasmonic particles can alter the QD blueing as a reference for people

in the future who want to �ne tune and design plasmon enhanced single QD imaging

via QD blueing. 2-channel epi�uorescence microscope was designed to study how the

plasmonic nanoparticles a�ect QDs blueing. This A 2-channel setup is adapted from that

described by a previous lab member Stephen Lee [137]. The excitation setup is an epi�u-

orescence microscope, as described in the previous two chapters. At the emission end, a

70/30 beam splitter splits the beam into 2 channels (Fig. 4.7a). One goes to the camera for

imaging and the other goes to the spectrometer so the single-QD spectrum and image can

be collected simultaneously. In the imaging channel, the 30% re�ected light was imaged on

an electron multiplying charge-coupled device (EMCCD) detector (Andor iXon 897) with

100-ms exposure time. The other 70% of the signal was focused in the horizontal direction

through a 350-nm slit and dispersed by a spectrometer (Princeton Instruments SP-2300i,

150/500 nm grating) onto a second EMCCD detector (Andor iXon 887). The camera in the

spectrum channel is triggered by the imaging channel. 40-nm diameter and 80-nm length

gold nanorod (nanopartz, Z12) was chosen as its LSPR peak is at 640 nm, matching well

with the CdSe/ZnS QD (NNCrystal CWZ 650) emission (Fig. 4.7b). Fig. 4.7c shows a single

frame of image and spectrum collected from the 2 channels simultaneously. The left is

from the imaging channel and the right is from the spectrum channel. In the spectrum

channel, the horizontal direction is the wavelength, centered at 630 nm and the vertical

direction is the y position. Under 561-nm laser excitation, the gold nanorod can been in

both channels due to its PL (Fig. 4.7c orange box).

Single-QD imaging is achieved by the PAINT method on plasma etched coverslips

(see Method section for details). As I showed in the section above, QDs adsorb and don’t

desorb on the plasma etched coverslip, therefore I could observe them after adsorbing until

photobleaching which is ideal for spectral characterization for blueing. Fig. 4.7d shows
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another frame captured in the same position when two single QDs were adsorbed onto

the coverslip surface. The blue box indicates a nanorod-coupled QD (localized within 100

nm of the gold); the green box indicates a QD that is too far from the nearest nanorod

for coupling to occur. Over time, the QD spectrum information and intensity information

can be collected and studied.

Figure 4.7: 2-channel single-QD imaging setup. a. Schematic of the 2-channel epi�uo-
rescence microscope. b. dark-�eld scattering spectrum of a 40-nm diameter and
80-nm length gold nanorod. c. a frame of the 2-channel imaging. Au PL image
and spectrum are showed in orange boxes. d. a frame of the 2-channel imag-
ing. The images and spectra of the QDs are showed in blue and green boxes
respectively. e is the background subtracted PL spectrum of the gold nanorod
in the orange box. f is the background subtracted PL spectrum of the QD in the
blue box. a is reproduced from Lee et al. [137].

As mentioned in the introduction, the core of a QD will get oxidized under laser exci-

tation. Since the PL wavelength of the QD is proportional to its core size, this oxidation
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process will cause the QD to become bluer. With the 2-channel setup, we characterized

the blueing of the chosen red CdSe/ZnS QDs. Fig. 4.8 shows the spectral shift of a QD as

a function of time. Speci�cally, Fig. 4.8a shows the colormap of the spectral change with

x direction being the spectrum wavelength and y direction being the time. The colorbar

indicates the emission intensity. The QD PL lasted ∼6 seconds before it photobleached

Fig. 4.8a. Fig. 4.8b plots the emission peak of this QD as a function of time in which we

can see that the QD emission spectrum shifted ∼17 nm before it photobleached. In the

�rst 3 seconds, the QD blued slowly, changing peak wavelength at a rate of 1 nm/sec. In

the last 3 seconds, this QD blued much faster, at a rate of 5 nm/sec. This two-step blueing

occurs pretty consistently for all the QDs. Fig. 4.8c shows some representative spectra of

the same QD at various times during the 6-second on time.
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Figure 4.8: Single-QD blueing spectra. a shows the single-QD spectral change as a func-
tion of time. x-axis is the spectrum wavelength. The colorbar indicates the
emission intensity. b plots the emission peak as a function of time. c shows
some representative single-QD spectra. y-axis indicates the time point at which
each spectrum was acquired.
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During the process of blueing, photobleaching and blinking a�ects the blueing time

and rate [129–131]. Fig. 4.9 - Fig. 4.11 shows the single-QD spectral blueing as a function

of time from 24 representative particles. There is some noise in the determination of the

peak wavelength because we are doing a Lorentzian �t to low signal-to-noise ratio data.

On the other hand, we still observe signi�cant shifts in the wavelength. In general, the QDs

observed here are getting bluer (see for example Fig. 4.9b), but sometimes they get redder

(see for example Fig. 4.11b), sometimes there is no signi�cant spectral change (see for

example Fig. 4.10f), and sometimes there is spectral drift back and forth (see for example

Fig. 4.10d). The average spectral shift in these 24 QDs is 11 nm which agrees with reported

data in the literature [138]. The average emission time before bleaching is 15.5 s with a

standard deviation of 14.3 s.

The net spectral change for each QD was calculated as the median peak emission

wavelength of the last few frames minus the average peak emission wavelength of the

�rst few frames. This determination was very qualitative and could be improved in future

experiments, for instance by �tting the data.
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Figure 4.9: Single-QD blueing of the �rst 8 QDsmeasured. a-h shows single-QD emis-
sion peak wavelength as a function of time from 8 QDs.
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Figure 4.10: Single-QD blueing of the next 8 QDs measured. a-h shows single-QD
emission peak wavelength as a function of time from 8 QDs.
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Figure 4.11: Single-QD blueing of the last 8 QDs measured. a-h single-QD emission
peak wavelength as a function of time from 8 QDs.
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We then examined the blueing of QDs localized within 100 nm of a gold nanorod,

i.e., close enough for plasmon-enhanced PL to begin to be observed. We recorded the

spectra for those 8 proximal QDs. The average emission time before bleaching is 12.7

seconds (standard deviation: 7.5 seconds). Although the emission time does not change

signi�cantly upon coupling, the standard deviation is reduced to half (Fig. 4.12). We were

surprised that the nanparticle-coupled QDs didn’t photo-oxidize faster because one hy-

pothesis here is that upon coupling, the absorption and emission rate of the QD are both

enhanced. We expected this enhanced PL rate to reduce the chance of the QD entering a

triplet state in which the QDs get oxidized and photobleached [139]. To further examine

this hypothesis, more data needs to be taken to make sure the di�erence in the standard

deviation does not come from under-sampling. Additionally, it is possible that these QDs

were not a�ected because, though close, they weren’t close enough to truly couple to

the nanoparticles. Therefore, we would need to verify that the emission intensity of the

coupled QDs is enhanced.
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Figure 4.12:Coupled QD blueing. a-h shows 8 coupled QD emission peak shift as a func-
tion of time.
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4.5 Methods

4.5.1 Gold nanosphere coverslip samples

The coverslips were cleaned with O2 plasma (PE 50, PlasmaEtch Inc.) for 10 minutes.

80-nm length and 40-nm diameter nanorods (Nanopartz Inc.) were used as received. To

prepare the substrate with nanorods, 10 µL of the stock solution was directly drop-casted

on a microscope coverslip for 5 min. The sample was then sonicated in a beaker of deion-

ized (DI) water for 5 minutes to wash away the nanorods that did not stick on the coverslip.

The sample was then dried with nitrogen gas.

4.5.2 Dark-�eld scattering spectroscopy of nanoparticles

Nanorods were immobilized on glass coverslips as described. These nanorod sub-

strates were immersed in water. A broadband halogen white light source excited the sam-

ple through a dark-�eld water-immersion condenser, and scattered light was collected

in an Olympus IX71 inverted microscope equipped with a dark-�eld oil-immersion ob-

jective (NA = 0.6). The di�raction-limited image of a single nanorod was aligned to the

entrance slit of an imaging spectrometer (Acton 2300, Princeton Instruments), and spec-

tral data were collected on an electron multiplying charge-coupled device (EMCCD) (5 s

integration time; Andor iXon). Background spectra collected from nearby positions with

no nanorod on the spectrometer entrance slit were subtracted from measured spectra,

and all data were divided by the broadband spectrum of the halogen light source and any

additional neutral density �lters to correct for the system spectral e�ciency.

4.5.3 Single-QD 2-channel Microscopy

A 2-channel microscopy was performed with a 100x 1.30 NA oil-immersion objective

in an Olympus IX71 microscope. A 75-100 µL volume of 500 nM QDs (650 nm emission

wavelength, CdSe/ZnS water soluble, NNCrystal US) in water was placed on top of the
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nanoparticle coated coverslip sample. The QDs were excited with a 561-nm laser light

(Sapphire, Coherent) with a power of 15 µW /µm2. The emission was �ltered through a

dichroic mirror and long pass �lter set (Semrock Di01-R561 and BLP01-561). The expo-

sure time of the cameras for both channels was set to 100 ms and the frame transfer setting

were switched o� on both cameras. On the spectral channel, the light was focused in the

horizontal direction through a 350-nm slit and dispersed through a spectrometer (Prince-

ton Instruments SP-2300i, 150/500 nm grating) centered at 630 nm wavelength. Therefore,

in the spectrum channel, the vertical direction carries the vertical position information.

4.5.4 Single-QD spectrum and intensity analysis

The start frame and end frame of each single-QD blueing event were manually iden-

ti�ed by observing the movies frame by frame. The vertical location each QD was �rst

roughly guessed by eye. At that initial guess location, a window of ± 5 pixels in the verti-

cal direction and 512 pixels in the horizontal direction was selected. The 11-pixel window

size was selected such that it was big enough to include all the intensities of a QD in a

di�raction-limited spot but not too big to include the signal from QDs close by. The back-

ground signal was chosen as an area nearby with the same size (512x11 pixels) where there

was no QD events. The �nal vertical position of each QD in spectrum channel was deter-

mined by summing the pixel intensities in each window (512x11 pixels) along the hori-

zontal direction (512 pixels) and �tting the sum to a Lorentzian function. The single-QD

spectrum in each window was collected by summing the pixel intensities along the verti-

cal direction (11 pixels). The background subtracted spectrum was then �t to a Lorentzian

function to obtain the peak wavelength.

4.5.5 Single layer QDs preparation

To coat QDs on the coverslip, the coverslip was �rst silanized by

(3-Aminopropyl)triethoxysilane (APTES) solution-phase aminosilane deposition. This pro-
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cedure was adapted from refs [135, 140, 141]. The coverslip was cleaned in 100 mL Hell-

manex®III and washed with water thoroughly. It was then cleaned with O2 plasma (PE

50, PlasmaEtch Inc.). Then 2% by volume of APTES (Sigmaaldrich) in methanol was made

and the coverslip was incubated in this solution at room temperature for 10 minutes. The

coverslip was thoroughly rinsed with methanol several times, dried under a stream of

nitrogen and baked at 110°C for 30 min.

The QDs with -COOH functional group were linked to the surface through 1-ethyl-3-(-

3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-dicyclohexyl carbodi-

imide (NHS) coupling [135]. 6.38 mg EDC (ThermoFisher) in 1000 uL PBS was prepared

for use (33.4 mM). 15.24 mg NHS in 1000 uL phosphate-bu�ered saline was prepared as

stock solution (70.9 mM). 25 µL EDC stock, 15 µL NHS stock and 30 µL QD (CZW red

NNCrystal US) straight from the original container without dilution were dropped on the

coverslip in a beaker. The sample was incubated with gentle shaking for 1 hour in the

dark. The coverslip was then rinsed with water thoroughly.

4.5.6 Making HMDS coated slides

The protocol was adapted from ref [142]. The coverslip was cleaned with O2 plasma

(PE 50, PlasmaEtch Inc.) for 10 minutes. 2 mL of HMDS (Sigmaaldrich) was added into a

500 mL glass beaker. The coverslip was taped onto a piece of aluminium foil and placed

on top of the beaker with HMDS. The beaker was placed in an oven at 70°overnight. The

beaker was opened in a fume-hood and the slide were removed.
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CHAPTER V

Conclusions and Future Directions

5.1 Conclusions

Plasmon enhanced single-molecule imaging has a large potential to improve super-

resolution imaging. In order to better control and utilize the plasmon enhancement, the

light-matter interaction between plasmonic nanoparticles and single emitters needs to

be understood. In Chapter II, single-molecule polarization resolved microscopy was used

to understand the emission polarization change of single emitters upon coupling to gold

nanorods. I performed a single-molecule experiments that showed a change in the po-

larization direction from dye molecules coupled to anisotropic plasmonic nanoanten-

nas. I complemented these experiments with simulations that I showed that the cou-

pled emission polarization is indeed predicted to rotate toward the direction of the domi-

nant nanoantenna localized surface plasmon mode. My experimental data also informed

a reduced-order analytical model, based on which I attribute this emission polarization

distribution to both far-�eld interference and resonant coupling between the molecular

dipole and the nanorod plasmon modes.

In Chapter III, I used the single-molecule imaging method of direct stochastic optical

reconstruction microscopy (dSTORM) to evaluate the emission localization modi�cation

(mislocalization e�ect) of a single emitter coupled to a gold nanodisk made by electron-

beam lithography (EBL). I demonstrated that mislocalization is the result of emission cou-
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pling whereas �uorescence enhancement is the result of both absorption and emission

coupling. Additionally, I applied the analytical model to recover the orientation and the

localization of a single emitter in my simulations. The result from the model �tting sig-

ni�cantly outperforms the standard Gaussian �tting.

Last but not least, in Chapter IV, I explored the application of QDs in single-particle

imaging. 2-channel single-particle microscopy was performed to characterize the single

particle spectral shift (bluing) upon excitation and how a gold nanoparticle a�ects the

bluing. I indicated how it will be possible to couple QDs to silver nanoparticles to achieve

plasmon enhanced �uorescence without emission coupling.

5.2 Impact

The results from the experiments and model in this thesis will make signi�cant impact

in connecting the �elds between single-molecule imaging and plasmonic nanoantennas.

Single-molecule polarization-resolved microscopy enables us to understand the emis-

sion coupling between dye molecules and plasmonic nanoantennas at the single-molecule

level. Experiments in a bulk scale only allow people to measure the average emission po-

larization, whereas the single-molecule experiments make it possible to access the details

buried in the ensemble average. For instance, it allows us to study the �uorescence inten-

sity enhancement as a function of emission polarization. We found that the most enhanced

molecules are the ones that have emission polarizations aligned with the dominant mode

of the nanorods. This single-molecule level polarization microscopy inspires the study

the e�ect of nanoparticle on single-molecule emission in many ways. On one hand, it

inspires us to relate the emission polarization with other properties and allows us to an-

swer many questions such as what is the relationship between emission polarization and

mislocalization and can we use use �lter out those most mislocalized molecules by their

emission polarization. On the other hand, it also inspires people to design many other

single-molecule multi-readout experiments such as hyperspectral imaging [137].
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Additionally, this type of single-molecule multi-readout experiments can be extremely

useful to the development of an analytical model which aims to understand the physics

behind the plasmon and �uorescence coupling. The reduced-order analytical model that

my experimental data informed, provides physical insights into the emission coupling

mechanism. The model will make it possible to recover the true position and orientation of

the molecules in the dye/nanoparticle coupled system, making plasmon enhanced super-

resolution imaging more practical. Besides recovering the true position and orientation,

the model can also be used to predict the �uorescence enhancement, which will provide

guidance for how to achieve optimal plasmon-enhanced �uorescence in di�erent plasmon

enhanced super-resolution imaging designs. Additionally, compared to simulations, the

model is a much faster way to predict the electromagnetic properties of a coupled system,

largely improving the e�ciency of designing plasmonic nanoantenna related applications.

Last but not least, I also introduced a high throughput single-molecule experiment.

This single-molecule experiment that allows �ne tuning of the localized surface plasmon

resonance (LSPR) frequency of plasmonic particles via EBL, control of the coupling dis-

tance by double stranded DNA (ssDNA) spacers and e�cient single-molecule imaging

through dSTORM. This high e�ciency and versatile design promises to improve high-

sensitivity single-molecule �uorescence imaging and biosensing.

5.3 Future directions

In Chapter III, I introduced a single-molecule imaging method which allows the scien-

tists to control the distance between a plasmonic nanodisk and a single emitter. However,

the dye molecules still have some degree of freedom in terms of rotational movement due

to the single covalent bond between the dye and the dsDNA. This rotational movement can

be constrained by incorporating the dye molecule into the backbone of the dsDNA [143].

For example, Fig. 5.1a from ref [143] shows that a Cy3 molecule can be covalently bound

to the backbone of a single stranded DNA. The dsDNA can be formed by adding a comple-
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mentary single stranded DNA (Fig. 5.1b). The movement of the Cy3 molecules is largely

reduced because both ends of the Cy3 molecule are covalently linked to the phosphate

backbone of the DNA.

Figure 5.1:Dye in DNA. A shows the strutural formula of a part of single stranded DNA
with a Cy3 molecule in its backbone. B is a cartoon showing the structure of
a ssDNA internally labeled by Cy3. The green arrow indicates the orientation
of the electric dipole transition moment (EDTM). Adapted from ref [143].

In Chapter IV, I suggested the idea of reducing mislocalization by doing plasmon en-

hanced super-resolution imaging with quantum dots. Following up with this idea, here, I

propose a method to couple QDs to aluminum nanoparticles.

The challenge of decoupling the QD emission from the plasmon resonance is that the

LSPR frequency of the nanoparticle needs to be blue enough to decouple from the emis-

sion spectrum of the QDs. Because the minimum LSPR wavelength for a gold nanoparticle

is ∼550 nm [47, 144], gold is it not an ideal material for this purpose. The resonance fre-

quency of silver nanoparticles can be tuned to blue wavelengths, however, silver is easily

oxidized which makes these nanoparticles unstable over the course of a typical exper-

iment. Aluminum nanoparticles on the other hand, support plasmon resonance across
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the visible range and also into the ultraviolet region [144–146]. Although aluminum also

su�ers from oxidization, this oxidation is self-terminating [144]. Additionally, the LSPR

frequency of aluminum oxide still falls in the ultraviolet region [144]. Fig. 5.2a shows the

scattering intensity of Al nanodisks with di�erent diameters. Based on this �gure, Al nan-

odisks with diameters from 70 nm to 100 nm would be suitable to couple to the absorp-

tion spectrum of a 590-nm emission InP/ZnS QD without signi�cantly coupling to the QD

emission spectrum (Fig. 5.2b).

Figure 5.2:Aluminum nanodisks and QD spectra. a. Experimental dark-�eld scatter-
ing spectra of aluminum nanodisks. b. SEM images of the corresponding nan-
odisks. a and b are reproduced from Halas et al [144]. c. Absorption and emis-
sion spectra of InP/ZnS QD. Data is taken from NNCrystal USA.

Although the spectral design for this experiment is straightforward, single-QD imag-

ing can be challenging. The points accumulation for imaging in nanoscale topography

(PAINT) technique that we use in Chapter II does not work well with QDs due to the

fact that QDs are much larger and heavier compared to organic dye molecules which
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makes it di�cult achieve the required binding and unbinding kinetics. Other common

single-molecule techniques such as photoactivated localization microscopy (PALM) and

stochastic optical reconstruction microscopy (STORM) are also impossible to apply to

QDs as QDs are not photoswitchable. DNA-PAINT on the other hand, is a possible ap-

proach. DNA-PAINT is similar to PAINT technique except that it enables speci�c bind-

ing between the substrate and the target molecules by functionalizing the substrate with

a single stranded oligo DNA(ssDNA) and the target molecules with a complementary

strand [96]. Unlike the gold nanodisk experiment described in Chapter IV, the ssDNA

used in DNA-PAINT is much shorter (<5 base pairs), so the hybridized dsDNA can also

be unbound thermally. Therefore, this stochastic binding and unbinding behavior enables

single-molecule imaging.

To attach ssDNA to QDs and aluminum nanodisks, one possible way is through 1-

ethyl-3-(-3-dimethylaminopropyl) carbodiimide hydrochloride (EDC)-mediated crosslink-

ing [147]. The process is described in Fig. 5.3. Firstly, the -COOH functionalized aluminum

nanodisk is reacted with EDC to form an active O-acylisourea intermediate. This interme-

diate can then be easily displaced by an amino group modi�ed ssDNA. Thus, the ssDNA-Al

hybrid can be formed (Fig. 5.3a). The ssDNA-QD hybrid can be formed in the same fashion

with -COOH functionalized QDs and the complementary ssDNAs (Fig. 5.3b). The amine

modi�ed ssDNAs are commercially available. Aluminum nanoparticles with carboxylic

acid group functionalization has also been reported [148].

Just like in the PAINT experiment, under the epi�uorescence setup, only when a

ssDNA-QD links with the Al-ssDNA will its photoluminescence be captured by the detec-

tor. Other ssDNA-QDs di�using in the solution will simply appear as out-of-focus signals

(Fig. 5.3c).
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Figure 5.3:DNA linking via EDC crosslinking. a shows the process of linking a alu-
minum nanodisk with ssDNAs via EDC crosslinking. The grey slab is an alu-
minum nanodisk. The blue slab is a glass coverslip. The blue curly lines are
ssDNAs. b shows the process of linking a QD with ssDNAs via EDC crosslink-
ing. The red circle is a QD. The green curly lines are the complementary ssD-
NAs. c shows the situation when a QD binds to the aluminum nanodisk in the
solution.
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Challenges of this method include aligning the ultraviolet laser as it is not visible and

the long photoluminescence time of QDs which reduces the rate of single-QD events on

each nanodisk. Additionally, the relatively low transmittance of ultraviolet light when

passing through optics also needs to be considered. Using aluminum nanoparticles for

plasmonic applications also o�ers other advantages such as the facts that aluminum is

low cost and highly abundant. This proposed method will push forward the development

of plasmon enhanced super-resolution imaging.
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