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Abstract

This work examines a special class of symplectic manifolds known as toric do-
mains. The main problem under consideration is embedding one toric domain
into another in a way that preserves the symplectic structure. The problem of
when a symplectic embedding exists is largely open, except for simple manifolds.
One important example manifold, which is also a toric domain, is the symplectic
polydisc, which is a product of 2-dimensional discs. We say that a polydisc is
stabilized when it is crossed with several copies of the complex plane (which can
be viewed as a disc of infinite radius). The main result of this work is a charac-
terization of when a large class of stabilized polydiscs embed into other stabilized
polydiscs. This result incorporates high-dimensional polydisc embeddings. In ex-
amining these stabilized polydisc embeddings we consider J-holomorphic curves,
which are solutions to a PDE. A crucial step in the proof of the embedding result
will be constructing J-holomorphic curves with specific boundary conditions. It
turns out that the curves constructed for this theorem persist under the process of
stabilizing. This makes such curves very useful for obstructing other stabilized
embedding problems, which gives an avenue for future research.
The 4-dimensional symplectic embedding problem can be studied quantitatively
using weight vectors. Heuristically, a weight vector represents the radii of an
optimal packing of symplectic balls into a toric domain, and this optimal ball
packing will be described algorithmically in this work. Conversely, if one is given
a weight vector, one can use this algorithm to generate a toric domain having
the given vector as its weight vector. We also discuss how to pass between two
classes of toric domains, called concave and convex, and examine the effect that
this transformation has on weight vectors.
Weight vectors are useful because they serve as a shorthand for an infinite se-
quence of symplectic capacities known as ECH capacities, but the computation
of ECH capacities from a weight vector is difficult. Another main result of this
work gives a method of simplifying weight vectors to make the computation of
the corresponding ECH capacity sequence easier.

vii



CHAPTER 1

Introduction

Let (X1, ω1) and (X2, ω2) be symplectic manifolds of the same dimension. A symplectic

embedding is a smooth embedding ϕ : X1 → X2 such that ϕ∗ω2 = ω1. Symplectic em-
beddings will be the principal object of study in this work. Despite the relatively simple
definition, symplectic embedding problems are really only understood for the simplest of
examples, and even then only in low dimensions.

Definition 1.0.1. The space Cn with coordinates zj = xj + iyj is a symplectic manifold
when equipped with the standard symplectic form. This form is

ωstd =
n∑
j=1

dxj ∧ dyj. (1.0.1)

Notice that this manifold has (real) dimension 2n. In this work, n will always denote
half the dimension of the symplectic manifold under consideration.

Definition 1.0.2. The symplectic ellipsoid of areas r1 through rn is the set

E(r1, ..., rn) =

{
(z1, ... , zn) ∈ Cn

∣∣∣∣∣
n∑
j=1

π · |zj|2

rj
≤ 1

}
,

with the symplectic form induced from (Cn, ωstd).

Definition 1.0.3. The symplectic polydisc of areas r1 through rn is the set

P (r1, ..., rn) =
{

(z1, ... zn) ∈ Cn
∣∣ π · |zj|2 ≤ rj , j = 1, 2, ..., n

}
,

with the symplectic form induced from (Cn, ωstd).

Let us now briefly motivate the study of symplectic embeddings. To simplify the discus-
sion, we begin by considering Liouville domains, which are compact symplectic manifolds
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with boundary such that the symplectic form has a positive primitive on the boundary. The
boundary of a Liouville domain carries dynamical information. Consider the tangent space
at any point of the boundary. For dimension reasons, there is a direction (generated by a
vector in the tangent space) for which the symplectic form vanishes. The integral curves
of this direction field will give a foliation of the boundary. These integral curves are called
Reeb orbits. One can define the action of a closed Reeb orbit by integrating the positive
primitive of the symplectic form over the orbit. More details about this construction will
be given in chapter 4 of this work.

Example 1.0.1. The 4-dimensional ellipsoid E(a, b), with a/b irrational will have only
two closed Reeb orbits. Considering the ellipsoid as a subset of C2, the intersection of the
boundary of the ellipsoid with the complex plane zj = 0, j = 1, 2 will give a closed Reeb
orbit. These closed Reeb orbits will have action πa and πb, respectively.

It turns out that a symplectic embedding detects and reflects the subtle Reeb dynamics
of the boundaries of the source and target manifolds. Suppose we have a symplectic em-
bedding of one Liouville domain into another, say ϕ : X1 → X2. The so-called symplectic
cobordism X2 \X1 = X2 \ ϕ(X1) has boundary

∂(X2 \X1) = ∂X1 t ∂X2,

which obviously carries information about the Reeb dynamics of both X1 and X2. We look
for J-holomorphic curves in the cobordism X2 \ X1. A J-holomorphic curve is a map
from a punctured Riemann surface into X2 \X1 which satisfies the Floer equation (a PDE).
The boundary conditions on the Floer equation ensure that the punctures in the domain of
the J-holomorphic curve map to Reeb orbits on the boundary of X2 \ X1. The upshot is
that a careful analysis of J-holomorphic curves in X2 \ X1 may obstruct an embedding
of X1 into X2. In dimension 4 there are useful tools for the analysis of J-holomorphic
curves, one of which will be described shortly. Indeed, these tools have led to a detailed
study of 4-dimensional embedding problems involving balls, ellipsoids, and polydiscs (see
[Sch05], [MS12b], [FM15], [CGFS17], and [Ush19]). Chapters 2 and 3 of this work will
focus on four-dimensional symplectic embedding problems. Chapter 4 does solve a high-
dimensional embedding problem for a large class of polydiscs. At this time the only other
high-dimensional polydisc embedding result is [Gut08].

Even though the dynamical information at the boundary of a symplectic manifold is
important, we often consider embeddings that are constructed using an exhaustion method.

Notation. The symbol U ↪→ V means that there exists a symplectic embeddingK → V for
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every compact set K ⊂ Interior(U). Take, for instance, K = (1− ε)U for any 0 < ε < 1,
and for U compact.

One analytical tool that is exclusive to dimension 4 is embedded contact homology
(abbreviated ECH), which we shall briefly motivate. ECH is, as the name implies, a ho-
mology theory. The ECH chain complex is generated by multiples of embedded Reeb
orbits which satisfy a non-degeneracy condition. The chain complex differential counts
certain J-holomorphic curves connecting (asymptotic to) two chain complex generators.
Since this homology theory is constructed to count the very curves that can be used to ob-
struct embeddings, it should come as no surprise that ECH carries information about the
embedding properties of a symplectic 4-manifold. Indeed, by filtering the ECH chain com-
plex generators by action, one can define a sequence of symplectic invariants called ECH
capacities. We will not focus here on the full homology theory. Instead, the capacities will
be our main computational tool for obstructing embeddings.

ECH capacities assign to a symplectic 4-manifold X an infinite sequence of invariants
c∗(X) with the following properties (cf. [Hut14] §1.2)

1. Each ci(X) ∈ R∪{∞}, and 0 = c0(X) ≤ c1(X) ≤ ... ≤ ∞.

2. (Monotonicity) If (X1, ω1) symplectically embeds into (X2, ω2) then

ck(X1) ≤ ck(X2),

for all k ≥ 0.

3. (Conformality) Let X2 be defined by rescaling the symplectic manifold X1 as
(X2, ω2) = (X1, rω1) for r > 0. Then

ck(X2) = |r|ck(X1).

The monotonicity property is the workhorse of this invariant. We often use the contra-
positive of the monotonicity property to obstruct a symplectic embedding of 4-manifolds.
Specifically, if just one ECH capacity of X1 is larger than the corresponding capacity for
X2, then no embedding X1 ↪→ X2 exists. Sometimes the monotonicity property can be
strengthened to an if and only if statement. In that situation, we say that the ECH capac-
ities give sharp obstructions to symplectic embeddings. (A large class of examples for
which ECH capacities are sharp will be described in proposition 1.0.1, below.)

There is another property of ECH capacities that we shall examine in detail.
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4. (Disjoint union)

ck

(
m⊔
i=1

Xi

)
= max

k1+...+km=k

m∑
i=1

cki(Xi).

Let’s focus on the case of a disjoint union of m = 2 symplectic manifolds. In this case

ck(X1 tX2) = max
k1+k2=k

{ck1(X1) + ck2(X2)}.

This is the inspiration for an operation on sequences.

Definition 1.0.4. Given two infinite sequences u and v, define the sequence sum operation

as follows
(u+ v)k = max

i+j=k
{ui + vj}.

This operation gives a new infinite sequence.

Notice that the right-hand side of ck(X1 tX2) is, by construction, the sequence sum of
the ECH capacities for X1 and X2. The moral of the story is the following.

Note. The operation of disjoint union on symplectic 4-manifolds effects the operation of
sequence sum on the level of ECH capacities.

The operation of sequence sum is associative and commutative. So one could extend
this observation to more than just a disjoint union of m = 2 manifolds.

It is natural to ask what operation “undoes” the above fact. On the level of symplectic
manifolds, can we find an inverse to disjoint union? On the level of sequences, can we find
an inverse to sequence addition? To that end, let us try.

Definition 1.0.5. Given two infinite sequences u and v, define the sequence subtraction

operation as follows
(u− v)k := inf

t≥0
{uk+t − vt}.

This operation gives a new infinite sequence. For the purpose of sequence subtraction, we
define∞−∞ =∞.

As is the case with real numbers, the operation of sequence subtraction is not associative
and is not commutative. We would like to understand this operation as it applies to ECH
capacities. Because of property (1) of the ECH capacity sequence (above), if we want
the result of sequence subtraction to be a sequence of ECH capacities, then the resulting
sequence had better be nondecreasing and nonnegative. Hence we should only perform
u− v if u ≥ v as sequences. This is explained below.
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Definition 1.0.6. Given two infinite sequences u and v, say that u ≥ v if uk ≥ vk for all
k ≥ 0. Furthermore, we write u > v if u ≥ v and

lim
k→∞

(uk − vk) =∞ or∞−∞.

When u ≥ v we will say that it is permissible to perform u − v. When u > v, sequence
subtraction is possible and the infimum in the definition can be replaced with a minimum.

Note. In this work, we shall apply the operations of sequence sum and sequence subtraction
only to sequences of ECH capacities.

Now that we have set out some properties of ECH capacities, let us give some useful
formulas for their computation.

Example 1.0.2. (cf. [Hut14]) The kth ECH capacity of the ellipsoid E(a, b) is given by the
(k + 1)st smallest number in the infinite array

ia+ jb, i, j ∈ Z≥0.

The zeroeth capacity c0(E(a, b)) is always zero. A special case of this computation gives
the ECH capacities for a ball, B4(a) = E(a, a). The above formula reduces to

ck(B
4(a)) = d · a,

where d is the unique non-negative integer satisfying

d2 + d

2
≤ k ≤ d2 + 3d

2
.

Example 1.0.3. (cf. [Hut14]) The kth ECH capacity of the symplectic polydisc P (a, b) is
given by

ck(P (a, b)) = min {ia+ jb |i, j ∈ Z≥0, (i+ 1)(j + 1) ≥ k + 1} .

Example 1.0.2 and example 1.0.3 give useful formulas for computing ECH capacities,
but these formulas are computationally expensive. Chapters 2 and 3 of this work find ways
to make the computation of these ECH capacities easier.
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1.0.1 Summary of Results

We now give a brief summary of the main results of this work. In chapter 2, a special
class of symplectic manifolds, known as toric domains, will be defined. Toric domains are
special, because the computation of their symplectic invariants (i.e. ECH capacities) often
reduce to combinatorial problems for regions in Euclidean space. Specifically, we associate
to a toric 4-manifold its moment image, which is a region in the first quadrant of the plane.
Then we associate to the moment image a weight vector. This weight vector will serve as
a convenient shorthand for the full sequence of ECH capacities: if two toric domains have
the same weight vector, then they have the same sequence of ECH capacities.

Two classes of toric domains will be considered, called concave and convex. In chapter
2, algorithms will be given for computing the weight vector of both a concave toric domain
and a convex toric domain. We use these techniques to compute the weight vector of an
important example, the Lagrangian bidisc, to more accuracy than was done in [Ram17].
The main result of chapter 2 will be a method for converting a concave toric domain into a
convex toric domain. Theorem 2.2.1 will describe how to compute the weight vector of the
resulting convex toric domain from the weight vector of the starting concave toric domain.

The following result of Cristofaro-Gardiner shows that concave and convex toric do-
mains are a good class of examples for computing ECH capacities.

Proposition 1.0.1. (Cristofaro-Gardiner, [CG19] §5) ECH capacities are sharp for embed-
dings of concave toric domains into convex toric domains. This means that an embedding
of a concave toric domain X1 into a convex toric domain X2 is obstructed if and only if

ck(X1) > ck(X2) for some k ≥ 0.

In chapter 3 of this work we consider the Cremona transform as an operation on the
weight vectors corresponding to convex toric domains. The main result of chapter 3 is
theorem 3.1.1, which shows that the Cremona transform does not change the ECH capacity
sequence that results from a given weight vector. A repeated application of the Cremona
transform (and re-ordering the vector entries) will simplify the weight vector. The purpose
of this simplification is to make the computation of ECH capacities easier.

In chapter 4 we turn to a concrete embedding problem. A symplectic manifold is said
to be stablized when it is crossed with several copies of C. For example, stabilizing a
4-dimensional polydisc, P (a, b) would result in

P (a, b)× CN = P (a, b,∞, ...,∞︸ ︷︷ ︸
N

).

6



The main result of chapter 4 is the following.

Theorem. Suppose that x ≥ 2 and N ≥ 1. There exists a symplectic embedding

P (1, x)× CN ↪→ P (a, b)× CN

if and only if either

• a ≥ 2, or

• 1 ≤ a < 2 and b ≥ x.

As mentioned above, symplectic embedding problems are largely open in dimensions
greater than four. The stabilization procedure provides a nice middle ground between the
known techniques of dimension four and the open problems in higher dimensions. Specifi-
cally, we can start by considering the un-stabilized symplectic cobordism P (a, b)\P (1, x),
look for J-holomorphic curves there, and stabilize everything under consideration (cross-
ing the curves with a point). The benefit of this approach is that we can use the techniques
of embedded contact homology to enumerate curves in the 4-dimensional cobordism, be-
fore arguing that these curves persist to the stabilized case. The positivity of area of the
stabilized curves will then give conditions on a, b in terms of x, the parameters in the above
theorem.

1.0.2 Important Past Results

Here we present four landmark past results that shaped the field. Dates will be given for
historical context. The first result shows the connection between symplectic geometry and
volume-preserving geometry. It was originally formulated in the language of classical me-
chanics.

Theorem. (Liouville, 1838, [Lio38]) The Hamiltonian flow on the phase space of a me-
chanical system preserves volume. Consequently, symplectic embeddings preserve vol-
ume.

Indeed, on a 2-dimensional symplectic manifold, a symplectic form is an area form, and
Liouville’s theorem is immediate. For a century and a half it was unknown to what extent
symplectic geometry differed from volume-preserving geometry in higher dimensions. The
problem was further complicated by a remarkable discovery of Darboux.

Theorem. (Darboux, 1882, [Dar82]) Let (M2n, ω) be a symplectic manifold. About any
point p ∈M there is a neighborhood U (called a “Darboux chart”) that is diffeomorphic to
an open set V of (Cn, ωstd), say ϕ : V → U , with the property that ϕ∗ω = ωstd.
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An important consequence of this theorem is the absence of local invariants in sym-
plectic geometry. Since any two symplectic structures on (M,ω) are locally symplectically
equivalent using Darboux charts, then the only possible symplectic invariants of M must
be global. Volume is a global invariant of a sympletic manifold, but (in dimensions greater
than two) this invariant obviously does not distinguish the symplectic geometry of M from
its volume-preserving geometry. At the time of Liouville and Darboux, no other global in-
variant of symplectic manifolds was known. It was not until Gromov’s breakthrough non-
squeezing theorem (described below) that mathematics learned of the difference between
these geometries and of the importance of embedding problems to studying symplectic
invariants.

The above examples of ellipsoids and polydiscs were the first examples studied to try
to understand the 4-dimensional symplectic embedding problem. A simple starting point
would be to ask the following.

Question. For what values of r1, r2, R, r
′
1, r
′
2 does there exist a symplectic embedding

from


E(r1, r2)

or

P (r1, r2)

into


B(R)

or

E(r′1, r
′
2) or P (r′1, r

′
2)

?

In order to parameterize this problem, we introduce an embedding function, which is
best explained by example. In this language, Gromov studied the function

fGromov(x) = inf{R |E(1, x) symplectically embeds into P (R,∞)}, for x ≥ 1,

and his celebrated non-squeezing theorem can be stated as follows.

Theorem. (Gromov, 1985, [Gro85]) The function fGromov(x) is identically one.

The target manifold of this embedding problem has infinite volume, whereas the source
has finite volume. One would be able to stretch an ellipsoid to fit into a cylinder in a
volume-preserving manner, but not in a way that preserves the symplectic structure. Hence
the name “non-squeezing”. This result is the first indication that symplectic geometry
differs from volume-preserving geometry.

For the four-dimensional problem of embedding E(1, x) into B4(R) we set

fEB(x) = inf{R |E(1, x) symplectically embeds into B4(R)}, for x ≥ 1.

McDuff and Schlenk computed the function fEB for all x ≥ 1. In particular, they discov-
ered the following.

8



Theorem. (McDuff-Schlenk, 2012, [MS12b]) For 1 ≤ x ≤ (1+
√

5
2

)4, the graph of fEB is
shown in figure 1.1.

This portion of the graph is informally called the “Fibonacci staircase,” because it the
graph resembles a staircase having infinitely many steps, with the corner of each stair step
occurring at a ratio of Fibonacci numbers.

� � � � �

���

���

���

Figure 1.1: A portion of the graph of fEB.

Notice also that the graph in figure 1.1 is bounded by two other curves (which are
dashed in the figure). The lower bound is the graph of y =

√
x, the minimal volume

of a ball into which E(1, x) could embed. Every time the graph of fEB rises above this
volume curve, there is some obstruction to the embedding problem that is more subtle than
the volume obstruction. The upper bound is the graph of y = 3x/(x + 1), which is the
embedding that one obtains using the technique of “symplectic folding” (cf. [Hin15] for
the folding construction). Every time the graph of fEB meets the folding curve, we have
that folding gives the optimal embedding of an ellipsoid into a ball. The beautiful graph of
fEB showed that the symplectic embedding problem is subtle and rich.

Similarly, for the four-dimensional problem of embedding the ellipsoid E(1, x) into the
cube C4(R) = P (R,R) we define

fEC(x) = inf{R |E(1, x) symplectically embeds into C4(R)}, for x ≥ 1.

In [FM15], Frenkel and Müller computed the function fEC(x) for all x ≥ 1. A portion
of the graph is reproduced in figure 1.2. This graph also exhibits interesting staircase-like
behavior. The corners of the stair steps in the graph occur at ratios of Pell numbers. This
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graph also has a lower bound, given by the graph of y =
√
x/2, which represents the

volume of the smallest cube into which E(1, x) can embed. The upper bound is the graph
of y = 2x/(x + 1), which represents the embedding that one obtains using the symplectic
folding construction.

� � � �

���

���

���

���

���

Figure 1.2: A portion of the graph of fEC .

The functions fEB and fEC illustrate the richness of the symplectic embedding prob-
lem. These graphs have interesting number theoretic properties (via the Fibonacci and Pell
numbers), which we will not examine in this work. The connections to planar geometry and
blowups of the complex projective plane will be examined in chapters 2 and 3, respectively.
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CHAPTER 2

Toric Domains

In this chapter, we discuss toric domains, which will be our main source of examples of
symplectic manifolds. We shall see that for certain 4-dimensional toric domains, the infi-
nite sequence of ECH capacities can be abbreviated by a vector of finite length, called the
weight vector. Conversely, given a weight vector, one can produce a toric domain having
the given vector as its weight vector. Note, however, that the translation between toric do-
mains and weight vectors is not bijective, because there can be two non-symplectomorphic
toric domains with the same weight vector. This is implied by the following exercise.

Exercise. Use example 1.0.2 and example 1.0.3 to show that the ellipsoid E(1, 2) and the
polydisc P (1, 1) have the same sequence of ECH capacities. After reading proposition
2.1.3 or proposition 2.1.4, one can show that the toric domains E(1, 2) and P (1, 1) have
the same weight vector, which will be (2; 1, 1).

Nevertheless, we use the weight vector as a convenient shorthand for the full sequence
of ECH capacities, which encode the embedding properties of a toric domain, as described
in chapter 1.

Definition 2.0.1. A toric domain is the preimage of some region in the first orthant of Rn

under the map µ : Cn → Rn given by

µ(z1, ..., zn) = (π|z1|2, ..., π|zn|2).

A toric domain inherits the standard symplectic form (1.0.1) from Cn. The map µ is the
moment map for the standard torus action on Cn. For this reason, the region in Rn that is
associated to a toric domain X is usually called the moment image of X .

In chapters 2 through 3, we focus on four-dimensional toric domains embedded in C2.
In this case, we fix n = 2 and consider the preimage of regions in the plane. Specifically, we
shall consider the toric domains that are associated to regions in the (closed) first quadrant.
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Such a planar region can be either concave or convex, as we define below. We consider the
toric domain that results to be invariant under translation of the planar region and the action
of SL(2,Z) on R2. For this reason, we may as well assume that all planar regions under
consideration have some edges coinciding with the x-axis or the y-axis.

Definition 2.0.2. A 4-dimensional toric domain is called concave or convex if its corre-
sponding planar region is bounded by three curves: the line segment from (0, 0) to (0, η);
the line segment from (0, 0) to (ζ, 0); and the graph of a continuous function connecting
(0, η) with (ζ, 0). Specifically, the two possibilities are as follows.

1. (See [CCGF+14].) A concave region lies beneath the graph of a convex function
f : [0, ζ] → [0, η] such that f(0) = η and f(ζ) = 0. Here we interpret the convexity
of f non-strictly, meaning f ′′ ≥ 0, whenever the second derivative exists. Further-
more f ′ < 0, whenever the first derivative exists.

2. (See [GH17].) A convex region lies beneath the graph of a non-increasing concave
function g : [0, ζ] → [0, η] such that g(0) = η. We do not require that g(ζ) = 0, but
if g(ζ) 6= 0, then the planar region includes the line segment from (ζ, 0) to (ζ, g(ζ)).

In both cases, we have ζ > 0 and η > 0. A more general notion of convexity is used
in [CG19], but we will not need that generality here. A special case of the above definition
occurs when the planar region is a polygon, as defined below.

Definition 2.0.3. A polygon is a closed region in the closed first quadrant of the plane that
is either concave or convex, according as to the two cases in definition 2.0.2. Furthermore,
the bounding function f or g in that definition must be piecewise-linear.

When speaking of a polygon ∆, we denote the number ζ by ζ(∆) and we denote the
number η by η(∆). A polygon which meets the criteria to be concave or convex will have
a vertex at the origin, and the interior angle at that vertex will be right. Some polygons
in the plane are obviously concave or obviously convex, but will need to be translated or
acted upon by SL(2,Z) in order to meet the criteria of definitions 2.0.2 and 2.0.3. Once
the criteria in this definition have been met, we say that the concave or the convex polygon
is in standard position.

Notation. For brevity, we will often write “the region below the graph of f” as a shorthand
for “the region in the (closed) first quadrant bounded by the graph of f , and the two line
segments connecting the origin to the intercepts of f”.

For the purpose of this chapter, we will set X∆ to be the toric domain that is obtained
by pulling back either a concave polygon, in which case we call X∆ concave; or a convex

12



polygon ∆, in which case we callX∆ convex. We sometimes also assume that ∆ is integral,
meaning all of its vertices are at points of Z2 ⊂ R2. More generally, we could require ∆ to
be rational, meaning all of its vertices are at points of Q2 ⊂ R2. If the moment image of a
toric domain is not a polygon, but is still concave or convex, we apply those adjectives to
the toric domain, too.

Example 2.0.1. Consider the triangle in the first quadrant with vertices at points (0, 0),
(a, 0), and (0, a). The preimage of this triangle under the moment map will be the 4-ball
with symplectic area a, namely B4(a). Such a ball is extremely important for symplectic
ball-packing examples, and more generally for symplectic embedding problems. For this
reason, we should give a name to the polygon that corresponds to B4(a). Notice that the
polygon is an isosceles right triangle with legs on the axes. We call this polygon a standard

triangle of size a.

Example 2.0.2. Given 0 < a ≤ b, the symplectic ellipsoid of radii
√
a,
√
b (sometimes

called the symplectic ellipsoid of areas a and b) is given in definition 1.0.2. The ellipsoid
E(a, b) is a toric domain with moment image being a triangle with vertices at (0, 0), (a, 0),
and (0, b). This triangle is both concave and convex. Hence E(a, b) is both concave toric
and convex toric. Notice also that E(a, a) = B4(a).

Example 2.0.3. Given 0 < a ≤ b, the symplectic polydisc of radii
√
a,
√
b (also called

the symplectic polydisc of areas a and b) is given in definition 1.0.3. The polydisc P (a, b)

is a convex toric domain with moment image being a rectangle of width a and height b.
This moment image is a convex polygon bounded by the graph of y = b together with the
vertical line x = a. When a = b, the resulting manifold C4(a) := P (a, a) is called the
symplectic cube of radius

√
a.

2.1 ECH Capacities of Toric Domains

Recall that ECH capacities are a strictly 4-dimensional symplectic capacity. When applied
to a toric domain, we can compute ECH capacities directly from the moment image. In fact,
we can abbreviate the infinite sequence of ECH capacities by a tuple of numbers. In the
case whenX∆ is a toric domain with moment image a standard triangle or a rational convex
or concave polygon, the tuple of numbers that determines the ECH capacities will be finite
in length. This finite vector is called the weight vector associated to X∆. If the moment
image is not a standard triangle or a rational polygon, the weights of the toric domain can
still be defined, but will be an infinite sequence. We will pursue this issue further following
proposition 2.1.2.

13



Notation. For sections 2.1.1 and 2.1.3, ∆ will always denote a rational polygon, and X∆

will denote the associated toric domain. In the case when ∆ is concave, a recursive, ge-
ometrical construction gives a vector that we shall call the positive weight vector. In the
case when ∆ is convex, we get a negative weight vector. These two constructions are de-
tailed below. When the notation Ω or XΩ is used, it denotes a more general toric domain,
not necessarily rational. Again, we view these constructions as associating a vector (or an
infinite sequence of real numbers) to a polygon.

We will also use the following continuity property of ECH capacities of a toric domain.

Lemma 2.1.1. (cf. Lemma 2.3 of [CCGF+14]) For a fixed value of k, ck(XΩ) is a contin-
uous function of Ω with respect to the Hausforff metric.

2.1.1 ECH Capacities of Concave Toric Domains

We begin with the concave case, explaining how to obtain a positive weight vector, denoted
(a1, ..., aN). The algorithm will terminate if we assume that the concave polygon ∆ is ratio-
nal or is a standard triangle. The following procedure has been adapted from [CCGF+14],
and the procedure is originally inspired by [MS12b].

Proposition 2.1.1. (The positive weight vector of a concave polygon) Let ∆ be a rational
concave polygon in standard position with ζ, η > 0 or let ∆ be a standard triangle.

1. If ∆ is a standard triangle of size a, then the positive weight vector is (a), and this
algorithm terminates.

2. Otherwise, find the largest standard triangle inscribed within ∆. It is acceptable for
some edges of ∆ to coincide with some edges of the standard triangle. The size of
this triangle is the first entry of the positive weight vector, a1.

3. The line x + y = a1 meets the graph of f (the function that bounds ∆) in a line
segment from a point we call (x2, a1− x2) to a point (x3, a1− x3) with x2 ≤ x3. Let
∆′2 denote the (closed) portion of ∆ that is above the line x + y = a1 and left of the
line x = x2. Let ∆′3 denote the (closed) portion of ∆ that is above the line x+y = a1

and right of the line x = x3.

4. Apply two transformations to the subset ∆′2. First apply the translation (x, y) 7→

(x, y−a1), which places one vertex of ∆′2 at the origin. Then act on ∆′2 by

[
1 0

1 1

]
∈

SL(2,Z). The result of these two transformations will be a new rational concave
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polygon in standard position, which we call ∆2. If x2 = 0, then we interpret ∆2 as
the empty set.

5. On a separate set of coordinate axes, apply two transformations to the subset ∆′3. First
apply the translation (x, y) 7→ (x−a1, y), which places one vertex of ∆′3 at the origin.

Then act on ∆′3 by

[
1 1

0 1

]
∈ SL(2,Z). The result of these two transformations will

be a new rational concave polygon in standard position, which we call ∆3. If x3 = a1,
then we interpret ∆3 as the empty set.

6. The positive weight vector already has first entry a1. Adjoin to this vector the weight
vectors for ∆2 and ∆3, which are defined recursively by re-starting this algorithm
at step (1). The union of vector entries in this definition is an unordered union with
repetitions.

See figure 1 in [CCGF+14] for an illustrative example of this procedure.

Example 2.1.1. Let q ≥ 1 be rational. As explained in example 2.0.2 above, the ellipsoid
E(1, q) is a rational concave toric domain whose moment image is a triangle. It was shown
(in [MS12b] appendix A) that the positive weight vector of E(1, q) is given by the Farey
expansion of the rational number q. Consequently, the elements of the positive weight
vector for E(1, q) are at most 1.

As a concrete example, the reader can compute using the algorithm above that the
ellipsoid E(1, 25/9) has positive weight vector(

1, 1,
7

9
,
2

9
,
2

9
,
2

9
,
1

9
,
1

9

)
.

Remark. There is another sequence associated to E(1, q) in [MS12b], which is the con-
tinued fraction expansion of the rational number q. Let us write this continued fraction
expansion as q = [`0; `1, ..., `m]. This sequence is closely related to the weight expansion
described above; the `j are given by the multiplicities of the weights. More precisely, the
integer `0 is the number of times that 1 is repeated in the weight expansion of E(1, q),
and so on. We will not use the continued fraction expansion, but we include it here to
distinguish it from the weight sequence. In example 2.1.1 above, we easily see that

25

9
= [2; 1, 3, 2].

Once the positive weight vector has been computed for a concave toric domain X∆,
say that it is (a1, ..., aN). One can then compute the kth ECH capacity for X∆ using the
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formula

ck(X∆) = ck

(
N⊔
j=1

B(aj)

)
. (2.1.1)

Based on the observation in section 1, we can view the ECH capacities of a disjoint union
as a sequence sum, as in definition 1.0.4. Let c∗ denote the sequence of ECH capacities.
Then

c∗(X∆) = c∗(B(a1)) + ...+ c∗(B(aN)). (2.1.2)

Here we are using the associativity of the sequence sum operation. More precisely, this
formula is equivalent to

ck(X∆) = max

{
N∑
j=1

ajdj

∣∣∣∣∣
N∑
j=1

d2
j + dj ≤ 2k

}
, (2.1.3)

where the maximum is taken over all N -tuples of non-negative integers d1, ..., dN .
The above procedure deconstructs a concave toric domain into smaller triangles of sizes

given by the resulting positive weight vector. Let us, instead, re-formulate this algorithm
to be more constructive. In so doing, we will exhibit a ball-packing of the given concave
toric domain. First we set up an algebraic framework.

2.1.2 Realizing the positive weight vector as a ball packing

Consider the two matrices

A =

[
1 0

−1 1

]
=

[
1 0

1 1

]−1

and

B =

[
1 −1

0 1

]
=

[
1 1

0 1

]−1

.

The monoid of words in the alphabet {A,B} includes the identity element I (which we
consider to be a word of length zero) together words of positive length. Some elements of
this monoid are

{I, A,B,AA,AB,BA,BB,AAA,AAB,ABA,ABB,BAA,BAB,BBA,BBB, ...}.

This monoid is totally ordered by the lexicographic ordering, which is illustrated in the list
above. Each of these matrices acts on the standard triangle of size a to get a list of so-called
deformed triangles. The total ordering gives a convenient way to organize these deformed
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triangles. Denote a deformed triangle by ∆
(j)
m . The subscript m denotes the length of the

word in the above monoid that acts on the standard triangle. The superscript j denotes
the position in the total ordering restricted to words of length m. Since the size a of the
standard triangle is arbitrary, we also decorate a with the same subscript and superscript
when referring to the size of the deformed triangle. Recapitulating, ∆

(j)
m is some product

of m matrices applied to the standard triangle of size a(j)
m . We abuse notation slightly and

say that this a(j)
m is the size of the deformed triangle. The list of the first fifteen deformed

triangles follows in figures 2.1 through 2.4.
We won’t need to draw triangles with m ≥ 4 in the examples that follow, but it should

be evident from the description how to generate such triangles. Each comes from a product
of matrices A and B applied to a standard triangle.

Now we can re-formulate the positive weight algorithm of Proposition 2.1.1 as a triangle-
packing construction, as opposed to a deconstructive algorithm.

Proposition 2.1.2. (The positive weight vector as a ball-packing) Let ∆ be a concave poly-
gon in standard position with ζ, η > 0 (from the definition of concave polygon), or let ∆

be a standard triangle. This will be an iterative algorithm, broken into several parts.
m=0 iteration:

1. If ∆ is a standard triangle of size a, then the positive weight vector is (a), and this
algorithm terminates.

2. Otherwise, record the largest value of a(1)
0 such that ∆

(1)
0 is inscribed within ∆.

m=1 iteration:

3. Translate all points of the deformed triangle ∆
(1)
1 by the vector (0, a

(1)
0 ). Record the

largest value of a(1)
1 such that this translated triangle lies within the polygon ∆.

4. Translate the deformed triangle ∆
(2)
1 by the vector (a

(1)
0 , 0). Record the largest value

of a(2)
1 such that this translated triangle lies within the polygon ∆.

m=2 iteration:

5. Translate the deformed triangle ∆
(1)
2 by the vector (0, a

(1)
0 + a

(1)
1 ). Record the largest

value of a(1)
2 such that this translated triangle lies within the polygon ∆.

6. Translate the deformed triangle ∆
(2)
2 by the vector (a

(1)
1 , a

(1)
0 − a

(1)
1 ). Record the

largest value of a(2)
2 such that this translated triangle lies within the polygon ∆.

7. Translate the deformed triangle ∆
(3)
2 by the vector (a

(1)
0 − a

(2)
1 , a

(2)
1 ). Record the

largest value of a(3)
2 such that this translated triangle lies within the polygon ∆.
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∆
(1)
0 =

(0, 0) (a(1)
0 ,0)

(0, a
(1)
0 )

Figure 2.1: The m = 0 triangle with vertices labeled.

∆
(1)
1 =

(0, 0)

(a(1)
1 ,−a(1)

1 )

(0, a
(1)
1 )

∆
(2)
1 =

(0, 0) (a(2)
1 , 0)

(−a(2)
1 , a

(2)
1 )

Figure 2.2: m = 1 triangles.

∆
(1)
2 =

(0, 0)

(a(1)
2 ,−2a

(1)
2 )

(0, a
(1)
2 )

∆
(2)
2 =

(0, 0)

(a(2)
2 ,−a(2)

2 )

(−a(2)
2 , 2a

(2)
2 )

∆
(3)
2 =

(0, 0)

(2a(3)
2 ,−a(3)

2 )

(−a(3)
2 , a

(3)
2 )

∆
(4)
2 =

(0, 0) (a(4)
2 , 0)

(−2a
(4)
2 , a

(4)
2 )

Figure 2.3: m = 2 triangles.
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∆
(1)
3 =

(0, 0)

(a(1)
3 ,−3a

(1)
3 )

(0, a
(1)
3 )

∆
(2)
3 =

(0, 0)

(a(2)
3 ,−2a

(2)
3 )

(−a(2)
3 , 3a

(2)
3 )

∆
(3)
3 =

(0, 0)

(2a(3)
3 ,−3a

(3)
3 )

(−a(3)
3 , 2a

(3)
3 )

∆
(4)
3 =

(0, 0) (a(4)
3 ,−a(4)

3 )

(−2a
(4)
3 , 3a

(4)
3 )

∆
(5)
3 =

(0, 0)

(3a(5)
3 ,−2a

(5)
3 )

(−a(5)
3 , a

(5)
3 )

∆
(6)
3 =

(0, 0)

(2a(6)
3 ,−a(6)

3 )

(−3a
(6)
3 , 2a

(6)
3 )

∆
(7)
3 =

(0, 0)

(3a(7)
3 ,−a(7)

3 )

(−2a
(7)
3 , a

(7)
3 )

∆
(8)
3 =

(0, 0)
(a(8)

3 , 0)

(−3a
(8)
3 , a

(8)
3 )

Figure 2.4: m = 3 triangles.
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8. Translate the deformed triangle ∆
(4)
2 by the vector (a

(1)
0 + a

(2)
1 , 0). Record the largest

value of a(4)
2 such that this translated triangle lies within the polygon ∆.

m=3 iteration:

9. Translate the deformed triangle ∆
(1)
3 by the vector[

0

a
(1)
0 + a

(1)
1 + a

(1)
2

]
.

Record the largest value of a(1)
3 such that this translated triangle lies within the poly-

gon ∆.

10. Translate the deformed triangle ∆
(2)
3 by the vector[

a
(1)
2

a
(1)
0 + a

(1)
1 − 2a

(1)
2

]
.

Record the largest value of a(2)
3 such that this translated triangle lies within the poly-

gon ∆.

11. Translate the deformed triangle ∆
(3)
3 by the vector[
a

(1)
1 − a

(2)
2

a
(1)
0 − a

(1)
1 + 2a

(2)
2

]
.

Record the largest value of a(3)
3 such that this translated triangle lies within the poly-

gon ∆.

12. Translate the deformed triangle ∆
(4)
3 by the vector[
a

(1)
1 + a

(2)
2

a
(1)
0 − a

(1)
1 − a

(2)
2

]
.

Record the largest value of a(4)
3 such that this translated triangle lies within the poly-

gon ∆.

13. Translate the deformed triangle ∆
(5)
3 by the vector[
a

(1)
0 − a

(2)
1 − a

(3)
2

a
(2)
1 + a

(3)
2

]
.
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Record the largest value of a(5)
3 such that this translated triangle lies within the poly-

gon ∆.

14. Translate the deformed triangle ∆
(6)
3 by the vector[

a
(1)
0 − a

(2)
1 + 2a

(3)
2

a
(2)
1 − a

(3)
2

]
.

Record the largest value of a(6)
3 such that this translated triangle lies within the poly-

gon ∆.

15. Translate the deformed triangle ∆
(7)
3 by the vector[

a
(1)
0 + a

(2)
1 − 2a

(4)
2

a
(4)
2

]
.

Record the largest value of a(7)
3 such that this translated triangle lies within the poly-

gon ∆.

16. Translate the deformed triangle ∆
(8)
3 by the vector[
a

(1)
0 + a

(2)
1 + a

(4)
2

0

]
.

Record the largest value of a(8)
3 such that this translated triangle lies within the poly-

gon ∆.

mth iteration

17. Continue this procedure for as long as necessary to compute a(j)
m for m ≥ 4. The mth

iteration involves packing at most 2m triangles in ∆. The translation vector for the
triangle ∆

(j)
m is a vertex of a triangle that was constructed in the m− 1 iteration.

The result

18. The (possibly finite) list given by (a
(1)
0 , a

(1)
1 , a

(2)
1 , ..., a

(1)
m , ...) is the positive weight

expansion for ∆.

This constructive algorithm has its advantages. First, using the definition of X∆, it is
immediate that

vol(X∆) = area(∆) =
∑
m,j

area(∆(j)
m ) =

1

2

∑
(a(j)
m )2, (2.1.4)
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where the rightmost sum is taken over the terms a(j)
m in the positive weight expansion of

∆. Again, this sum will have finitely many terms when ∆ is a rational concave polygon
or a standard triangle. When the sum has infinitely many terms, it must still converge if
vol(X∆) is finite.

In example 2.1.1, we explain that the positive weight vector of the ellipsoid E(1, q) is
given by the Farey expansion of q. The above volume formula reproduces formula (1.2.2)
from [MS12b]. Here we have given another proof to the formula, using triangle packings
of a triangle instead of square packings of a rectangle.

The second advantage of the constructive algorithm is that it can be repeated ad infini-

tum. As mentioned above, the positive weight vector for XΩ can be defined even when Ω

is not a rational polygon. For more general concave Ω, the algorithms in Proposition 2.1.1
and Proposition 2.1.2 should not be expected to terminate. In this case, the positive weights
give an infinite sequence of numbers, say (ai). One can then compute the ECH capacities
to any desired degree of accuracy by truncating this infinite sequence to length N , and then
using the formula (2.1.3) and lemma 2.1.1. The constructive algorithm makes it clear that
such a general Ω can be packed with infinitely many triangles, as long as the sequence of
areas of these triangles vanishes to second order.

Third, one could run this constructive algorithm in reverse: given a (valid) positive
weight vector, proposition 2.1.2 explains how to position and size triangles in the first
quadrant, the outer boundary of which will define a concave region of the plane. Hence we
can construct a concave toric domain with a given vector as its positive weight vector. Note
that there can be multiple toric domains with the same weight vector, however.

Example 2.1.2. We present an example computation of the ball-packing algorithm in
Proposition 2.1.2. Consider the concave polygon that is bounded by the piecewise-linear
function

f : [0, 27]→ [0, 27]
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given by

f(x) =



27− 4x if 0 ≤ x ≤ 1

51
2
− 5x

2
if 1 ≤ x ≤ 3

23− 5x
3

if 3 ≤ x ≤ 6

21− 4x
3

if 6 ≤ x ≤ 9

63
4
− 3x

4
if 9 ≤ x ≤ 13

69
5
− 3x

5
if 13 ≤ x ≤ 18

51
5
− 2x

5
if 18 ≤ x ≤ 23

27
4
− x

4
if 23 ≤ x ≤ 27

The polygon bounded by the graph of f and the x- and y-axes is shown in figure 2.5.
That figure also shows the deformed triangles that fill the polygon to give positive weight
vector (18, 6, 6, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1). This example polygon is designed to be sym-
metrical about the line y = x and to include one of each of the deformed triangles shown
in figures 2.1 through 2.4.

Figure 2.5: An example of a concave toric domain.
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2.1.3 ECH Capacities of Convex Toric Domains

In this section we explain how to obtain the negative weight vector from a convex toric
domain, and vice versa. The negative weight vector is a vector with k + 1 entries, denoted
(b; a1, ..., ak). The semicolon in this notation should distinguish a negative weight vector
from a positive weight vector. The algorithm below will be recursive and will rely on
Proposition 2.1.1. For this reason we continue to assume that ∆ is rational or is a standard
triangle. The following procedure has been adapted from [CG19].

Proposition 2.1.3. (The negative weight vector of a convex polygon) Let ∆ be a rational
convex polygon in standard position, or let ∆ be a standard triangle.

1. If ∆ is a standard triangle of size b, then the negative weight vector is (b; 0), and this
algorithm terminates.

2. Otherwise, find the smallest standard triangle that circumscribes ∆. It is acceptable
for some edges of ∆ to coincide with some edges of the standard triangle. The size
of this triangle is the first entry of the negative weight vector, b. Let ∆1 denote the
standard triangle of size b superimposed over the polygon ∆ in standard position.

3. The line x + y = b meets the curve that bounds ∆ in a line segment from a point
we call (x2, b− x2) to a point (x3, b− x3) with x2 ≤ x3. Let ∆′2 denote the (closed)
portion of ∆1 \ ∆ that is below the line x + y = b and left of the line x = x2. Let
∆′3 denote the (closed) portion of ∆1 \∆ that is below the line x + y = b and right
of the line x = x3.

4. Apply two transformations to the subset ∆′2. First apply the translation (x, y) 7→

(x, y−b), which places one vertex of ∆′2 at the origin. Then act on ∆′2 by

[
−1 −1

1 0

]
∈

SL(2,Z). The result of these two transformations will be a new rational concave
polygon in standard position, which we call ∆2. If x2 = 0, then we interpret ∆2 as
the empty set.

5. On a separate set of coordinate axes, apply two transformations to the subset ∆′3.
First apply the translation (x, y) 7→ (x − b, y), which places one vertex of ∆′3 at

the origin. Then act on ∆′3 by

[
0 1

−1 −1

]
∈ SL(2,Z). The result of these two

transformations will be a new rational concave polygon in standard position, which
we call ∆3. If x3 = b, then we interpret ∆3 as the empty set.
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6. The negative weight vector already has first entry (b; ). Append after the semicolon
the positive weight vectors for ∆2 and ∆3, which are defined using the algorithm in
Proposition 2.1.1. The union of vector entries in this definition is an unordered union
with repetitions.

Once the negative weight vector has been computed for a convex toric domain X∆, say
that it is (b; a1, ..., ak). Then we can algorithmically compute the ECH capacities using the
sequence subtraction operation given in definition 1.0.5.

c∗(X∆) = c∗(B(b))− c∗

(
k⊔
j=1

B(aj)

)
.

Futhermore, recall that we can view the ECH capacities of a disjoint union as a sequence
sum, as in definition 1.0.4. Combining this with the above formula gives

c∗(X∆) = c∗(B(b))− (c∗(B(a1)) + ...+ c∗(B(ak))) .

2.1.4 Realizing the negative weight vector as a ball packing

We wish to reformulate the algorithm of proposition 2.1.3 as a ball packing construction.
As in section 2.1.2, we start with a list of deformed triangles, which will be packed into the
moment image of a convex toric domain. Consider the two matrices

C =

[
0 1

−1 −1

]

and

D =

[
−1 −1

1 0

]
that were mentioned in proposition 2.1.3. We prepend the letters C and D to each of the
words in the alphabet of words from section 2.1.2. This gives two more alphabets

{CI,CA,CB,CAA,CAB,CBA,CBB,CAAA, ...}

and
{DI,DA,DB,DAA,DAB,DBA,DBB,DAAA, ...}.

Each of the words in the above two alphabets represents a product of matrices that can act
on the standard triangle ∆(a) to give a new deformed triangle, which is then translated.
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The convex region Ω can be packed with these deformed triangles to give a constructive (as
opposed to a deconstructive) algorithm for computing the negative weight vector.

Since we have already parameterized several of the deformed triangles in the concave
case, we shall save some time by performing both of the following two procedures sepa-
rately to each of the deformed triangles of proposition 2.1.2:

act by the matrix C, then translate by the vector

[
0

b

]
,

and

act by the matrix D, then translate by the vector

[
b

0

]
.

This produces a new deformed triangle, which we denote by ΛC or ΛD, in order to distin-
guish from the deformed triangles in section 2.1.2. Specifically, if we act on the translated,
deformed triangle ∆

(j)
m by the matrix C, and then translate up by b units, we call the result-

ing triangle Λ
C,(j)
m , we denote the size of this deformed triangle by aC,(j)m , and so on.

Proposition 2.1.4. (The negative weight vector as a ball-packing) Let ∆ be a convex poly-
gon in standard position with ζ, η > 0 (from the definition of convex polygon), or let ∆ be
a standard triangle. This will be an iterative algorithm, broken into several parts.

m=0 iteration:

1. If ∆ is a standard triangle of size b, then the negative weight vector is (b; 0), and this
algorithm terminates.

2. Otherwise, record the largest value of b such that ∆(b) circumscribes ∆.

3. Record the largest value of aC,(1)
0 such that the translated, deformed triangle

Λ
C,(1)
0 =

{[
0

b

]
,

[
0

−aC,(1)
0 + b

]
,

[
a
C,(1)
0

−aC,(1)
0 + b

]}

(given here as a list of its vertices) lies within the region ∆(b) \ Int(∆).

4. Record the largest value of aD,(1)
0 such that the translated, deformed triangle

Λ
D,(1)
0 =

{[
b

0

]
,

[
−aD,(1)

0 + b

0

]
,

[
−aD,(1)

0 + b

a
D,(1)
0

]}

lies within the region ∆(b) \ Int(∆).
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m=1 iteration:

5. Record the largest value of aC,(1)
1 such that the translated, deformed triangle

Λ
C,(1)
1 =

{[
a
C,(1)
0

−aC,(1)
0 + b

]
,

[
a
C,(1)
0 + a

C,(1)
1

−aC,(1)
0 − aC,(1)

1 + b

]
,

[
a
C,(1)
0 − aC,(1)

1

−aC,(1)
0 + b

]}

lies within the region ∆(b) \ Int(∆).

6. Record the largest value of aD,(2)
1 such that the translated, deformed triangle

Λ
D,(1)
1 =

{[
−aD,(1)

0 + b

a
D,(1)
0

]
,

[
−aD,(1)

0 − aD,(2)
1 + b

a
D,(1)
0 + a

D,(2)
1

]
,

[
−aD,(1)

0 + b

a
D,(1)
0 − aD,(2)

1

]}

lies within the region ∆(b) \ Int(∆).

m=2 iteration:

7. Record the largest value of aC,(1)
2 such that the translated, deformed triangle

Λ
C,(1)
2 =

{[
a
C,(1)
0 + a

C,(1)
1

−aC,(1)
0 − aC,(1)

1 + b

]
,

[
a
C,(1)
0 + a

C,(1)
1 + a

C,(1)
2

−aC,(1)
0 − aC,(1)

1 − aC,(1)
2 + b

]
,

[
a
C,(1)
0 + a

C,(1)
1 − 2a

C,(1)
2

−aC,(1)
0 − aC,(1)

1 + a
C,(1)
2 + b

]}
lies within the region ∆(b) \ Int(∆).

8. Record the largest value of aD,(2)
1 such that the translated, deformed triangle lies

within the region ∆(b) \ Int(∆).

mth iteration:

9. Continue this procedure as long as necessary to compute aC,(j)m and aD,(j)m for m ≥ 3.
As mentioned above, one generates the triangle Λ

C,(j)
m by acting on the deformed

triangle ∆
(j)
m with the matrix C, then translating by the vector (0, b). One similarly

generates the triangle Λ
D,(j)
m by acting on the deformed triangle ∆

(j)
m with the ma-

trix D, then translating by the vector (b, 0). The reader may have noticed that some
triangles were omitted from this recursive construction. This is because the con-
vex polygon ∆ is assumed to be bounded by the graph of a non-increasing function
(whose graph passes the vertical line test). Some of the triangles ΛC and ΛD would
violate this property of the graph, hence cannot be packed into the region ∆(b)\∆. If
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the reader uses a more general notion of convex toric domain (such as the definition
given in [CG19]) then all triangles ΛC , ΛD may be used.

Notice that this algorithm packs with triangles the region within the standard triangle
of size b, but outside the graph of the function g (which bounds ∆). Since we assumed
that g bounds some area (i.e. ζ > 0 in Definition 2.0.2), we must have that the area of
the standard triangle of size b is at least the area of ∆. Provided ∆ is not itself a standard
triangle, this inequality of areas must be strict. Recapitulating, when ∆ is not a standard
triangle, we have

b2

2
− area(∆) > 0.

Furthermore, this region ∆(b) \ ∆ is packed by triangles of positive area, which gives
the tail of the negative weight vector. Let us say that the entire negative weight vector is
(b; a1, ..., ak). Area considerations further imply that

b2 > a2
1 + ....+ a2

k, (2.1.5)

because the triangle of size b is packed with triangles of sizes a1, ..., ak. The inequality
is strict because ∆ has positive area. This result (2.1.5) is called the volume condition on
negative weight vectors.

Example 2.1.3. We present an example computation of the ball-packing algorithm in
proposition 2.1.4. Consider the concave polygon that is bounded by the piecewise-linear
function

g : [0, 27]→ [0, 27]

given by

g(x) =



27− x
4

if 0 ≤ x ≤ 4

138
5
− 2x

5
if 4 ≤ x ≤ 9

147
5
− 3x

5
if 9 ≤ x ≤ 14

63
2
− 3x

4
if 14 ≤ x ≤ 18

42− 4x
3

if 18 ≤ x ≤ 21

49− 5x
3

if 21 ≤ x ≤ 24

69− 5x
2

if 24 ≤ x ≤ 26

108− 4x if 26 ≤ x ≤ 27

The polygon bounded by the graph of g and the x- and y-axes is shown in figure 2.6.
That figure also shows the deformed triangles that fill the region exterior to the polygon
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and inside the standard triangle ∆(36). The negative weight vector is

(36; 9, 9, 6, 6, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1).

Figure 2.6: An example of a convex toric domain.

2.2 From Concave to Convex

In this section we give a procedure for converting a concave toric domain into a convex
toric domain. If one already knows the positive weight vector of the given concave domain,
one can easily find the negative weight vector of the convex domain that results from this
procedure. We have already noted that an ellipsoid is both concave and convex. The
procedure that follows will convert an ellipsoid into the same ellipsoid. We examine this
situation further in example 2.2.3, below. Let Ωc be a concave region in the first quadrant,
as described in definition 2.0.2.

We are assuming that Ωc is bounded by a function f : [0, ζ]→ [0, η] such that f(0) = η

and f(ζ) = 0. We also assume that f ′ < 0 and f ′′ ≥ 0, whenever these derivatives exist.
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Since we need to operate on this graph by linear transformations, it will be convenient to
parameterize the graph as a pair (t, f(t)) with domain 0 ≤ t ≤ ζ .

It is immediate from the definition of f that

min
[0,ζ′]

t = 0, for any 0 ≤ ζ ′ ≤ ζ, (2.2.1)

and this minimum obviously occurs at t = 0. Furthermore, since f is decreasing,

min
[ζ′,ζ]

f(t) = 0, for any 0 ≤ ζ ′ ≤ ζ, (2.2.2)

and this minimum obviously occurs at t = ζ .

Proposition 2.2.1. Let Ωc be a concave region in the first quadrant that is bounded by the
graph of f : [0, ζ] → [0, η], as described in definition 2.0.2. Let Ωv be the region in the
first quadrant that is bounded by the axes and by the parametric curve (ζ − t, η − f(t)) for
0 ≤ t ≤ ζ . Then Ωv will be a convex region, as defined in definition 2.0.2. If Ωc was a
polygon, then Ωv will be a polygon.

Proof. As mentioned above, we could view the concave region Ωc as bounded by a para-
metric curve (t, f(t)) for 0 ≤ t ≤ ζ . This parametric curve begins at the point (0, η) when
t = 0, and it ends at the point (ζ, 0) when t = ζ . We compare this to the parametric curve
(ζ − t, η − f(t)) for 0 ≤ t ≤ ζ . This parametric curve starts at (ζ, 0) when t = 0, and it
ends at (0, η) when t = ζ . This computation shows that the curve (ζ − t, η − f(t)) moves
from right to left in the first quadrant.

In addition, the graph that defines Ωv is just the graph of f rotated 180◦ (or π radians)
about the point (ζ/2, η/2), which is the midpoint of the line through (0, η) and (ζ, 0). This
rotation reverses the concavity of the graph, making Ωv a convex region.

The final claim in the proposition is clear, because if f is piecewise-linear, then the
parametric curve (ζ − t, η − f(t)) will be piecewise-linear.

We defined our concave region using a function of a single variable, whose graph we
then parameterized. A similar procedure as above will work on a concave region that is
bounded by a more general parametric curve. This is made explicit in the following.

Proposition 2.2.2. Suppose that Ωc is a concave region in the first quadrant that is bounded
by the axes and a parametric curve segment (p(t), q(t)) with domain 0 ≤ t ≤ T . We
assume that parametric curve starts at the point (0, η) when t = 0 and ends at the point
(ζ, 0) when t = T . There is a corresponding convex region Ωv in the first quadrant that is
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bounded by the axes and parametric curve (ζ − p(t), η − q(t)). If Ωc was a polygon, then
Ωv will be a polygon.

The proof is entirely the same as for proposition 2.2.1.
Returning to proposition 2.2.1, we can re-parameterize the curve (ζ − t, η − f(t)) by

making the substitution t 7→ ζ − s for 0 ≤ s ≤ ζ . This gives a new parameterization

(s, η − f(ζ − s)), 0 ≤ s ≤ ζ,

which travels from left to right and has the benefit of resembling the graph of a function of
a single variable. We summarize this in the following.

Corollary 2.2.1. Let Ωc be a concave region in the first quadrant that is bounded by the
graph of f : [0, ζ]→ [0, η], as described in definition 2.0.2. Let Ωv be the region in the first
quadrant that is bounded by the axes and by the graph of g : [0, ζ]→ [0, η] given by

g(x) = η − f(ζ − x).

Then Ωv will be a convex region, as defined in definition 2.0.2. Furthermore g(ζ) = 0. If
Ωc was a polygon, then Ωv will be a polygon.

The reason for converting a concave region Ωc into a convex region Ωv is that it gives
us a useful computational tool.

Theorem 2.2.1. Let Ωc and Ωv be as described in proposition 2.2.1 or proposition 2.2.2.
Say that the positive weight expansion of Ωc is given by the (possibly finite) list

(a1, a2, a3, ..., aN , ...),

where, in this expansion, we have included terms which are zero. Then the negative weight
expansion of Ωv is given by the (possibly finite) list

(b; b2, b3, ...) := (ζ + η − a1; η − a1, ζ − a1, a2, a3, ..., aN , ...).

Note that some entries of this negative weight expansion may be omitted for reasons of
symmetry, and this situation will be discussed in the proof.

Proof. We use the parameterization (t, f(t)) for the boundary of Ωc and the parameteriza-
tion (ζ − t, η − f(t)) for the boundary of Ωv, both of which are described in proposition
2.2.1. We describe the computation of both relevant weight expansions in several steps.
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Step 1: The first step in computing the positive weight expansion for Ωc is to find the
size of the largest standard triangle inscribed within Ωc. This amounts to computing

a1 := min
[0,ζ]
{t+ f(t)}. (2.2.3)

By our description of the algorithm in proposition 2.1.1, this minimum occurs at the input
t = x2.

On the other hand, the first step in computing the negative weight expansion for Ωv is
to find the size of the smallest standard triangle that circumscribes Ωv. This amounts to
computing

b := max
[0,ζ]
{ζ − t+ η − f(t)} = ζ + η + max

[0,ζ]
{−t− f(t)} = ζ + η − a1. (2.2.4)

(In the last step of (2.2.4), we converted the maximum to a minimum using the fact that
x 7→ −x is a homeomorphism R→ R.) By construction, this minimum occurs at t = x2.

Step 2: Next, we need to find the second entry, a2, of the positive weight expansion of
Ωc. Look back to the algorithm presented in proposition 2.1.1. We shall assume that x2 6= 0

in that algorithm, so that a2 6= 0. (If it is the case that x2 = 0, then steps 2 and 4 in this proof
can be omitted. The negative weight vector will not have the term ζ−a1 and the fourth term
will be a2 = 0.) The term a2 is computed by first shifting the graph of (t, f(t)), 0 ≤ t ≤ x2,
downward by a1 units, then acting on this shifted graph by a linear transformation that
results in a new parameterized curve, (t, t+ f(t)− a1), 0 ≤ t ≤ x2. Finding the size of the
largest standard triangle inscribed in this curve amounts to computing

a2 := min
[0,x2]
{2t+ f(t)− a1} = min

[0,x2]
{2t+ f(t)} − a1. (2.2.5)

We shall use this result in a future step, but for now, let us say that the minimum in equation
(2.2.5) occurs at time t = t2.

On the other hand, the second step in computing the negative weight expansion for Ωv

is to shift the graph of (ζ − t, η − f(t)) left by b units and act by a linear transformation,
which results in the graph of the parametric curve

(η − f(t),−ζ + t+ b− η + f(t)) = (η − f(t), t+ f(t)− a1).

We have already noted that the graph that defines Ωv is traced out from right to left. The
linear transformation that we apply in this step again reverses the orientation of the graph.
Luckily, this will cause a minimum to occur on the domain [0, x2], which is exactly what
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we need for the computation of

b2 := min
[0,x2]
{η − f(t) + t+ f(t)− a1} = min

[0,x2]
{t+ η − a1} = η − a1, (2.2.6)

using equations (2.2.1) and (2.2.4). By the results of (2.2.1), this minimum occurs at t = 0.
The reverse in graph orientation is also why we perform these computations in a slightly
different order than is described in proposition 2.1.3.

Step 3: Next, we need to find the third entry, a3, of the positive weight expansion of Ωc.
Look back to the algorithm presented in proposition 2.1.1. We shall assume that x3 6= a1

in that algorithm, so that a3 6= 0. (If it is the case that x3 = a1, then steps 3 and 5 in this
proof can be omitted.) The term a3 is computed by first shifting the graph of (t, f(t)) left
by a1 units, and acting on this shifted graph by a linear transformation that results in a new
parameterized curve (t− a1 + f(t), f(t)). Finding the size of the largest standard triangle
inscribed in this curve amounts to computing

a3 := min
[x3,ζ]
{2f(t) + t− a1} = min

[x3,ζ]
{2f(t) + t} − a1. (2.2.7)

We will use this computation in a later step, but for now let us say that the minimum in
equation (2.2.7) occurs at time t = t3.

On the other hand, the third step in computing the negative weight expansion for Ωv

involves shifting the graph of (ζ − t, η − f(t)) downward by b units and acting by a linear
transformation which results in the graph of the parametric curve

(−ζ + t− η + f(t) + b, ζ − t), x3 ≤ t ≤ ζ.

Again by the reverse in orientation, this graph is traced out from left to right on the domain
[x3, ζ]. Finding the size of the largest standard triangle inscribed in this curve amounts to
computing

b3 := min
[x3,ζ]
{−ζ + t− η + f(t) + b+ ζ − t} = min

[x3,ζ]
{−η + f(t) + b} = ζ − a1, (2.2.8)

using equations (2.2.2) and (2.2.4). Also by (2.2.2), this minimum occurs at t = ζ .
Step 4: For the remaining steps in this proof, we focus only on computing the negative

weight expansion of Ωv, since that is the purpose of this theorem. At this point in the
negative weight algorithm, all domains under consideration are actually concave. So the
remainder of this proof will explain why certain terms in the negative weight expansion of
Ωv reduce to terms in the positive weight expansion of Ωc. It is important to note that the
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minimum of (2.2.6) occurs at t = 0. This will imply that the region considered in step 2 will
not be split into two pieces by the intersection of the graph of (η−f(t),−ζ+t+b−η+f(t))

with the standard triangle ∆(b2). Instead, there is only one region (under this graph) that
must be transformed in this step of the iterative procedure. We must shift the graph leftward
by b2 = η−a1 units and act by a linear transformation that results in the graph of the curve

(a1 + t+ b− ζ − η, t+ b− ζ − η + f(t)), 0 ≤ t ≤ x2.

Finding the size of the largest standard triangle inscribed within the region beneath this
graph amounts to computing

b4 := min
[0,x2]
{t+ t− a1 + f(t)} = min

[0,x2]
{2t+ f(t)} − a1 =: a2.

As in equation (2.2.5), this minimum occurs at t = t2.
Step 5: Here we note that the minimum of (2.2.8) occurs at t = ζ . This will imply that

the region considered in step 3 will not be split into two pieces by the intersection of the
graph of (−a1 + t+ f(t), ζ− t) with the standard triangle ∆(b3). Instead, there is only one
region (under this graph) that must be transformed in this step of the iterative procedure.
We must shift the graph downward by b3 = ζ − a1 units and act by a linear transformation
that results in the graph of the curve

(−a1 + t+ f(t), f(t)), x3 ≤ t ≤ ζ.

Finding the size of the largest standard triangle inscribed within the region beneath this
graph amounts to computing

b5 := min
[x3,ζ]
{−a1 + t+ 2f(t)} = min

[x3,ζ]
{t+ 2f(t)} − a1 =: a3.

As in equation (2.2.7), this minimum occurs at t = t3.
Conclusion: In steps 4 and 5 of this proof, the computation of b4 and b5 for the convex

toric domain Ωv reduced exactly to the computation of a2 and a3 for the concave toric
domain Ωc. Furthermore, the minima occurred at exactly the same arguments. For this
reason, the computation of further bi in the negative weight vector must reduce exactly to
the computation of some aj in the positive weight vector. This is what we intended to
show.

Remark. The reader should pay close attention to when certain entries in the positive weight
vector of Ωc vanish, because this will cause entries in the negative weight vector of Ωv to
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change or be omitted from the computation. This situation can be avoided by slightly
perturbing the function that defines the outer boundary of Ωc, if necessary.

Example 2.2.1. Let Ωc be the concave region that is described in example 2.1.2. The
moment image is a polygon that is pictured in figure 2.5. In that example, we computed the
positive weight vector of Ωc to be

(18, 6, 6, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1),

and this polygon was designed so that none of the first fifteen entries of the weight vector
vanish. (In other words, none of the triangles in the triangle packing of figure 2.5 have area
zero.) Furthermore, the function f : [0, 27]→ [0, 27] that defines the outer boundary of Ωc

has intercepts ζ = 27 = η.
By applying proposition 2.2.1 (or, equivalently, corollary 2.2.1) we obtain a convex

toric domain Ωv, which has moment image given by the polygon in figure 2.6. We can now
apply theorem 2.2.1 to quickly and easily compute the negative weight vector of Ωv to be

(27 + 27− 18; 27− 18, 27− 18, 6, 6, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1).

This exactly coincides with our earlier computation in example 2.1.3.

Example 2.2.2. The Lagrangian bidisc is the subset of R4 given by

LB =
{

(x1, y1, x2, y2) ∈ R4
∣∣x2

1 + x2
2 ≤ 1, y2

1 + y2
2 ≤ 1

}
.

Notice that the Lagrangian bidisc is not the same as the symplectic polydisc of definition
1.0.3. It was proved in [Ram17] that the Lagrangian bidisc LB is symplectomorphic to
the toric domain with moment image bounded by the axes and the graph of the parametric
curve

(2 sin(t/2)− t cos(t/2), 2 sin(t/2) + (2π − t) cos(t/2)) , 0 ≤ t ≤ 2π.

This curve starts at the point (0, 2π) when t = 0 and ends at the point (2π, 0) when t = 2π.
For this reason we set ζ = η = 2π. Let us call the concave region bounded by this curve Ωc.
Here we compute the first fifteen entries of the weight sequence of Ωc, using the notation
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of proposition 2.1.2. (Alternatively, these entries could be named a1 through a15.)

a
(1)
0 = 4

a
(1)
1 = 3

√
3− 4 a

(2)
1 = 3

√
3− 4

a
(1)
2 = 4

√
2− 3

√
3 a

(2)
2 = −4− 3

√
3 + 10

√
5

8
+

√
5

8

a
(3)
2 = −4− 3

√
3 + 10

√
5

8
+

√
5

8
a

(4)
2 = 4

√
2− 3

√
3

a
(1)
3 = −4

√
2 + 10

√
5

8
−
√

5

8
a

(2)
3 = −4

√
2− 3

√
3 + 14 cos

(
3π

14

)
a

(3)
3 = −3

√
3− 5

√
1

2

(
5 +
√

5
)

+ 16 cos
(π

8

)
a

(4)
3 = −4− 5

√
1

2

(
5 +
√

5
)

+ 14 cos
( π

14

)
a

(5)
3 = −4− 5

√
1

2

(
5 +
√

5
)

+ 14 cos
( π

14

)
a

(6)
3 = −3

√
3− 5

√
1

2

(
5 +
√

5
)

+ 16 cos
(π

8

)
a

(7)
3 = −4

√
2− 3

√
3 + 14 cos

(
3π

14

)
a

(8)
3 = −4

√
2 + 10

√
5

8
−
√

5

8

With these computations, we can use proposition 2.1.2 to visualize the positive weight
vector as a triangle packing of the moment image. This triangle packing is pictured in
figure 2.7. Notice that the triangles do not fully fill the area of the moment image. That
is because the moment image is not a rational concave polygon, which implies that the
sequence of weights should be infinite. The figure shows the triangle packing given by
only the first fifteen weights, computed above. Next, we can apply proposition 2.2.2 to the
concave region Ωc to generate a convex region Ωv, which is bounded by the coordinate axes
and the graph of the parametric curve

(2π − 2 sin(t/2) + t cos(t/2), 2π − 2 sin(t/2)− (2π − t) cos(t/2)) , 0 ≤ t ≤ 2π.

Some entries of the negative weight vector of the convex region Ωv can be easily computed
using theorem 2.2.1.

(4π − 4; 2π − 4, 2π − 4, ...),

and after the entry 2π − 4, the negative weight vector coincides with entries a(1)
1 onwards
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of the positive weight vector above.

1 2 3 4 5 6

1

2

3

4

5

6

Figure 2.7: The triangle packing that gives the positive weight vector for the La-
grangian bidisc, as described in example 2.2.2. The outermost curve is the graph of
(2 sin(t/2)− t cos(t/2), 2 sin(t/2) + (2π − t) cos(t/2)).

Remark. Let q ≥ 1 be rational. The ellipsoidE(1, q) can be treated as either a concave toric
domain or a convex toric domain, and we examine this further in the following example.
First we consider what this concave-convex duality says about ball packing problems. The
moment image of E(1, q) is depicted in figure 2.8 as the region below the linear function
f : [0, 1] → [0, q], given by f(x) = q − qx. This line segment connects the point (0, q)

with the point (1, 0). The other line in figure 2.8 is the graph of g : [0, q] → [0, q], g(x) =
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q − x. This line segment connects (0, q) to (q, 0). The region below g represents the
moment image of E(q, q) = B(q), which is obviously the smallest standard triangle that
circumscribes the graph of f . The fact that E(1, q) is both a concave and a convex toric
domain implies the following about packing triangles: one can pack the region below the
graph of f with triangles if and only if one can pack the region below the graph of g
with triangles that avoid the (pink) shaded region. This is geometrically very obvious, but
it gives a non-obvious result about symplectic ball packings of the ellipsoid. The (pink)
shaded region in figure 2.8 is affine equivalent to E(q − 1, q), which obviously includes
into E(q, q) = B(q). In terms of ball packings, we have the following.

Proposition 2.2.3. Let B be any disjoint union of symplectic balls.

B ↪→ E(1, q) ⇐⇒ B ↪→ (B(q) \ E(q − 1, q)).

Figure 2.8: The ellipsoid E(1, q) can be viewed as either a concave toric domain or a
convex toric domain.

Example 2.2.3. Let Ωc be the ellipsoid E(1, q), with q ≥ 1 rational and in lowest terms.
The moment image of E(1, q) is a triangle with intercepts ζ = 1 and η = q. The positive
weight vector of E(1, q) is computed in many sources, including [MS12b]. It begins with
entries

(1, ..., 1︸ ︷︷ ︸
bqc copies

, q − bqc, ..., q − bqc︸ ︷︷ ︸
b1/(q−bqc)c copies

, ...).
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As described in example 2.1.1, the entries are given by the Farey expansion of q, and this
vector has finite length. If q − 〈q〉 = 0, these entries are omitted.

Applying proposition 2.2.1 to this toric domain gives the exact same ellipsoid, E(1, q),
which we now treat as a convex toric domain.

(q; q − 1, 1, ..., 1︸ ︷︷ ︸
bqc−1 copies

, q − bqc, ..., q − bqc︸ ︷︷ ︸
b1/(q−bqc)c copies

, ...).

Since these two weight vectors correspond to the same toric domain, they must give the
exact same sequence of ECH capacities. This proves the following.

Corollary 2.2.2. Let q ≥ 1 be rational and written in lowest terms. The (finite length)
positive weight vector

(1, ..., 1︸ ︷︷ ︸
bqc copies

, q − bqc, ..., q − bqc︸ ︷︷ ︸
b1/(q−bqc)c copies

, ...) (2.2.9)

generates the same sequence of ECH capacities as the (finite length) negative weight vector

(q; q − 1, 1, ..., 1︸ ︷︷ ︸
bqc−1 copies

, q − bqc, ..., q − bqc︸ ︷︷ ︸
b1/(q−bqc)c copies

, ...). (2.2.10)

The vector (2.2.10) comes from the vector (2.2.9) by applying theorem 2.2.1.
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CHAPTER 3

Blowup Forms on CP2

In this chapter we continue to consider symplectic 4-manifolds. As suggested by propo-
sition 1.0.1, convex toric domains are a convenient class of examples to consider as the
target of a symplectic embedding. In this chapter, we will probe the embedding properties
encoded by negative weight vectors by considering embeddings of balls into convex toric
domains. To do this, we define the notion of a blowup form on CP2, and we compare and
contrast with the constructions of the previous chapter.

Definition 3.0.1. Let CP2(µ) denote the complex projective plane, equipped with the
Fubini-Study symplectic form, normalized so that the area of a line is 2πµ. We can blow
up CP2(µ) to obtain a new symplectic manifold, and we say that this blowup is of size ν if
the area of the exceptional divisor is 2πν

The main dictionary between the ball-packing problems of chapter 2 and blowups of
CP2 is given by the following result of McDuff and Polterovich.

Proposition 3.0.1. (McDuff and Polterovich, [MP94]) There exists a symplectic embed-
ding of balls B4(w) ↪→ B4(µ) if and only if there exists a symplectic form on CP2#CP2

in the class dual to µL−wE (where L denotes the line class and E denotes the class of the
exceptional divisor). More generally, let B denote a finite disjoint union of k symplectic
4-balls. There exists a symplectic embedding B ↪→ B4(µ) if and only if there exists a
symplectic form on the k-fold blowup of CP2 in the class dual to µL−

∑
aiEi (where Ei

denote the exceptional divisors and the ai are given by the radii of the balls in the collection
B).

Because of this result, we should examine symplectic forms on blowups of CP2. Let us
write ω(b;a1,...,ak) for the symplectic form that is obtained from CP2(b) by blowups of size
a1 through ak. Now, we shall momentarily suppress mention of the symplectic form, and
consider the underlying manifold.
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Let Mk = CP2#kCP2 denote an k-fold blowup of CP2. The homology H2(Mk,Z) is
easily computed. Let us name the canonical basis {L,E1, ..., Ek}, where L = [CP1] is the
image of the homology class of a line in CP2 under the inclusion H2(CP2) → H2(Mk)

and where E1, ..., Ek are the homology classes of the exceptional divisors. We assume that
each Ej has self-intersection number −1, so that these blowups are generic (no iterated
blowups). We also note that L has self-intersection number 1.

Definition 3.0.2. A vector of the form (b; a1, ..., ak) is said to encode a cohomology class
c ∈ H2(Mk) if the following conditions hold.

1

2π
〈c, L〉 = b,

and
1

2π
〈c, Ej〉 = aj for 1 ≤ j ≤ k.

We emphasize that this interpretation of a vector only specifies how a certain cohomol-
ogy class pairs with a basis for H2(Mk). It would be nice to have a specific symplectic
form in this class. Specifically, we seek a so-called blowup form within the cohomology
class encoded by a vector.

Definition 3.0.3. A blowup form onMk is a symplectic form for which there exist pairwise
disjoint embedded symplectic spheres in classes L,E1, ..., Ek.

There are three necessary conditions for a vector (b; a1, ..., ak) to encode the cohomol-
ogy class of a blowup form. First, the entries b, ..., ak of this vector should be positive, since
they represent symplectic areas. Note that any instance of aj = 0 could be ignored, but we
sometimes want to pad out the tail of such a vector with zeroes. This non-negativity condi-
tion will make the symplectic form ample, in the description below. Second, one obviously
cannot blow up CP2 by balls whose collective volume exceeds that of the manifold being
blown up. This observation imposes the following volume condition on vectors vectors
representing a blowup form:

a2
1 + ...+ a2

k < b2. (3.0.1)

Third is the so-called “Gromov inequality,” which is that ai +aj < b for all 1 ≤ i 6= j ≤ k.
The reason we seek such a blowup form is because of proposition 3.0.1, which calls for

a form within a certain class. Recall that in proposition 2.2.3 we argued why a symplectic
embedding of balls into an ellipsoid is equivalent to a symplectic embedding of balls into
a ball, which avoids a certain ellipsoid. An analogous result holds for embedding any
concave toric domain into a convex toric domain.
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Proposition 3.0.2. (Cristofaro-Gardiner, [CG19]) Let X be a concave toric domain with
positive weight vector (a1, ..., aN). Let Y be a convex toric domain with negative weight
vector (b; b1, ..., bk). There exists a symplectic embedding

X ↪→ Y

if and only if there exists a symplectic embedding(
N⊔
i=1

B4(ai)

)
t

(
k⊔
j=1

B4(bj)

)
↪→ B4(b).

Now let us combine the results of proposition 3.0.1 with proposition 3.0.2.

Proposition 3.0.3. LetX be a concave toric domain with positive weight vector (a1, ..., aN).
Let Y be a convex toric domain with negative weight vector (b; b1, ..., bk). There exists a
symplectic embedding

X ↪→ Y

if and only if there exists a blowup form on the N + k-fold blowup of CP2 in the class
represented by the vector (b; b1, ..., bk, a1, ..., aN).

We shall use this result to translate between symplectic embeddings and cohomology
classes on blowups of CP2. The purpose of this translation is to prove a result about ECH
capacities of convex toric domains. First we must explain a procedure known as the Cre-
mona transform.

3.1 The Cremona Transform

We begin by defining the Cremona transform to be an operation on vectors. Since the
vectors appearing in this chapter have a concrete geometrical meaning, we shall shortly
explain how to interpret the Cremona transform geometrically.

Definition 3.1.1. Given a vector of the form (b; a1, ..., ak), first pad out the tail of the vector
with zeroes, if necessary, so that k ≥ 3. We define the defect to be r = b − a1 − a2 − a3.
The Cremona transform of the vector (b; a1, ..., ak) is the new vector

(b+ r; a1 + r, a2 + r, a3 + r, a4, a5, ..., ak).

Example 3.1.1. The vector (4; 2, 2, 1) has defect r = 4− 2− 2− 1 = −1. The Cremona
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transform of this vector is

(4− 1; 2− 1, 2− 1, 1− 1) = (3; 1, 1, 0).

On the other hand, suppose we begin with the vector (3; 1, 1, 0). Then we have defect
r = 3− 1− 1− 0 = 1. The Cremona transform of this vector is

(3 + 1; 1 + 1, 1 + 1, 0 + 1) = (4; 2, 2, 1).

We have computed that (4; 2, 2, 1) 7→ (3; 1, 1, 0) 7→ (4; 2, 2, 1) under the operation of
Cremona transform. This computation shows that the vectors (4; 2, 2, 1) and (3; 1, 1, 0) are
in involution, with respect to the procedure of Cremona transform.

Remark. We now describe a geometrical interpretation of the Cremona transform, in accor-
dance with the interpretation of a vector as encoding a cohomology class, as in definition
3.0.2, above. Note the basis for H2(Mk,Z) given in that definition. This discussion is
adapted from [CGFS17]. Recall that, given a vector u in an inner-produce space, the map

ru(x) = x− 2
〈x, u〉
〈u, u〉

u,

is a geometrical reflection, hence an involution. In a similar way, we choose a class A ∈
H2(Mk,R) having A · A 6= 0 and we define

rA(B) = B − 2
A ·B
A · A

A.

This map will be an involution of H2(Mk,R). In particular, when A · A ∈ {±1,±2}, the
map rA is an automorphism of H2(Mk,Z). Towards this end, we consider the classes

A0,0 = L− E1 − E2 − E3

and
Ai,j = Ei − Ej for 1 ≤ i < j ≤ n.

These classes were chosen to have self intersection number−2, meaning that the map rA∗,∗
will be an automorphism. In fact, the formula for rA∗,∗ simplifies to

rAi,j
(B) = B + (Ai,j ·B)Ai,j for (i, j) = (0, 0) or 1 ≤ i < j ≤ n.

In the basis {L,E1, ..., En} for H2(Mk,Z) we can now give a geometrical interpretation to
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the maps rA∗,∗ .

1. rAi,j
for i, j 6= 0 has the effect of transposing the classes of two exceptional di-

visors. Geometrically the class Ai,j can be represented by a smoothly embedded
J-holomorphic sphere. The smooth Dehn-Seidel twist along this sphere is a diffeo-
morphism inducing rAi,j

= B + (Ai,j · B)Ai,j with regards to the Picard-Lefschetz
formula.

2. rA0,0 is the Cremona transform on homology. Geometrically A0,0 can also be rep-
resented by a smoothly embedded sphere, and rA0,0 is again a smooth Dehn-Siedel
twist along this sphere.

Note that the k-fold blowup of CP2(b) with symplectic form ω(b;a1,...,ak) is a constructible
example of a blowup form in the cohomology class represented by the vector (b; a1, ..., ak),
provided the above necessary conditions are met. Recall that the volume of CP2(b) by
blowups of size a1, ..., ak is b2 − a2

1 − ...− a2
k. We have the following.

Exercise. Given a vector (b; a1, ..., ak) that represents a blowup form, it is an easy calcu-
lation to see that the Cremona transform does not change the volume of the underlying
symplectic manifold, because

2br − 2(a1 + a2 + a3)r − 2r2 = 0.

These are the extra terms in the volume computation, after applying the Cremona transform.

Definition 3.1.2. A vector (b; a1, ..., ak) is said to be reduced if the tail is ordered so that

a1 ≥ a2 ≥ ... ≥ ak, (3.1.1)

and if we also have
a1 + a2 + a3 ≤ b. (3.1.2)

In other words, the defect of a reduced vector is non-negative.

Definition 3.1.3. One applies the standard Cremona move to a vector v by composing the
following two maps

1. The map that permutes the tail of v so that it is ordered as in (3.1.1).

2. The map v 7→

Cremona(v) if defect(v) < 0

v if defect(v) ≥ 0

44



Specifically, the order of operations is the map (2) followed by the map (1). Let us say
that two weight vectors are Cremona equivalent if you can get from the first vector to the
second vector using a finite number of standard Cremona moves.

Note that the first map in this definition corresponds to the geometric Dehn-Seidel twist
rAi,j

described in part (1) of the preceding remark. Note that the second map in this def-
inition either does nothing to the vector v or it corresponds to the Dehn-Seidel twist rA0,0

described in part (2) of the preceding remark. This explains why the Cremona transform
is an involution. The standard Cremona move is not an involution, because it eventually
terminates in a reduced vector. That this process terminates is explained in the following
lemma.

Lemma 3.1.1. The following facts apply to the standard Cremona move.

1. The standard Cremona move is a piecewise-linear and continuous map on vectors,
Rn+1 → Rn+1.

2. The vectors which are fixed by the standard Cremona move are exactly the reduced
vectors.

3. Suppose that v = (b; a1, ..., ak) and v′ = (b′; a′1, ..., a
′
k) are such that v is ordered as

in (3.1.1) and v 6= v′. If v 7→ v′ under the standard Cremona move, then

• b′ < b, and

• a′j ≤ aj for 1 ≤ j ≤ k, with at least one inequality being strict.

Proof. The first fact is obvious. For the second fact, it is also obvious that the re-ordering
map in the standard Cremona move will fix a vector if and only if the vector is already
ordered as in (3.1.1). We examine which vectors are fixed by the other map in the standard
Cremona move. Note that a reduced vector is one whose defect is non-negative. This is
equivalent to saying that a vector is reduced if and only if it is fixed by the map

v 7→

Cremona(v) if defect(v) < 0

v if defect(v) ≥ 0
.

Finally, we prove the third fact in this lemma. Assume that v 7→ v′ under the standard
Cremona move, but v 6= v′. Then the fact (2) that we just proved implies that v was not
reduced, and since v is ordered, we must have that defect(v) < 0. So the standard Cremona
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move will involve a Cremona transform applied to v. By definition, the Cremona transform
takes v = (b; a1, ..., ak) to

Cremona(v) = (b+ r; a1 + r, a2 + r, a3 + r, a4, a5, ..., ak).

The result, after re-ordering the tail, is assumed to be v′. Since the first entry b′ of v′ equals
b plus a negative number, we get that b′ < b. This proves the first bullet point of the fact
(3). Since we started with

a1 ≥ a2 ≥ a3,

adding the same number r to each of these three terms gives

a1 + r ≥ a2 + r ≥ a3 + r.

We need to decide whether these elements of v′ are re-ordered by the standard Cremona
move. There are four possibilities.

i. If a3 + r ≥ a4, then no re-ordering is necessary. We set

a′1 = a1 + r, a′2 = a2 + r, a′3 = a3 + r, a′j = aj for 4 ≤ j ≤ k.

Then v′ satisfies the second bullet point of fact (3).

ii. Otherwise, we must have a3 + r < a4. Since a2 + r ≥ a3 + r it may be the case that

a1 + r ≥ a2 + r ≥ a4 > a3 + r,

whence we set

a′1 = a1 + r, a′2 = a2 + r, a′3 = a4, a′j = a3 + r for some 4 ≤ j ≤ k.

as a result of the re-ordering in the standard Cremona move. Then a′3 = a4 ≤ a3 and
a′1 < a1. The term a3 + r gets moved to the right in the re-ordered v′, but sinve v was
ordered, we still satisfy fact (3).

iii. Another possibility is

a1 + r ≥ a4 > a2 + r ≥ a3 + r.

The analysis is the same as (ii), except that two terms get moved to the right by
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re-ordering.

iv. The only remaining possibility is

a4 > a1 + r ≥ a2 + r ≥ a3 + r.

The analysis is the same as (ii), except that three terms get moved to the right by
re-ordering.

Example 3.1.2. The vector (4; 2, 2, 1) is not reduced. The vector (3; 1, 1, 0) is reduced.
As shown above, the Cremona transform maps (4; 2, 2, 1) 7→ (3; 1, 1, 0), and we stop at
this step, because we have arrived at a reduced vector. This operation was one standard
Cremona move.

We now have two uses for the vector notation (b; a1, ..., ak).

1. (b; a1, ..., ak) could represent the negative weight vector of a convex toric domain; or

2. (b; a1, ..., ak) could represent a cohomology class for the k-fold blowup of CP2.

We described above how the Cremona transform can be applied to vectors which represent
cohomology classes. We would like, instead, to apply the Cremona transform to the neg-
ative weight vector of a convex toric domain. We can identify these two vectors because
of Proposition 3.0.3. This identification will be explained further in the proof of the main
theorem of this chapter, which follows.

Theorem 3.1.1. Cremona equivalent negative weight vectors give rise to the same ECH
capacity sequence. For this reason, we may as well compute the ECH capacities of a
convex toric domain XΩ using the reduced negative weight vector that corresponds to Ω.

Proof. We first explain why it suffices to consider negative weight vectors with k = 3

nonzero terms in the tail. If there are more than k = 3 terms in the tail, the Cremona
transform only affects the first three terms of the tail of a vector. If a vector has fewer than
k = 3 nonzero terms in its tail, one can perturb the vector by an arbitrarily small amount,
ε, to ensure that it has precisely 3 nonzero terms in the tail. For instance, a vector that
originally has one term in its tail, say (b; a) can be perturbed to (b + 2ε, a, ε, ε), and this
perturbation does not change the defect of the vector. After completing the following proof
on a vector with k = 3 entries, we let ε → 0. This perturbation will not change the ECH
capacities of Ω, because of the continuity property of ECH capacities (lemma 2.1.1).
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With this simplifying assumption, we let v = (b; a1, a2, a3) denote the negative weight
vector that corresponds to the convex polygon Ω. Let v′ = (b′; a′1, a

′
2, a
′
3) be a vector that

is Cremona equivalent to v. (We may as well assume that v′ is the reduced vector that is
Cremona equivalent to v, which is guaranteed to exist because of lemma 3.1.1.) One can
use proposition 2.1.4 to generate a convex polygon that has v′ as its negative weight vector.
Let us call that polygon Ω′. We now must show that XΩ and XΩ′ have the same sequence
of ECH capacities.

To say that XΩ and XΩ′ have the same sequence of ECH capacities is equivalent to the
following ball packing problem:

B ↪→ XΩ ⇐⇒ B ↪→ XΩ′ ,

where B is any finite disjoint union of symplectic 4-balls. Recall that, in Chapter 2, we
explained how one can view the symplectic manifolds involved in these ball packings as
moment images. In this case, packing 4-balls into a convex toric domain reduces to packing
triangles into a convex region of the plane. From this point of view, it is easy to see that we
can sub-divide the balls in the collection B into smaller balls, if necessary, so that the radii
of balls in B, call them w1, ..., wN , satisfy

max{w1, ..., wN} ≤ min{a1, a2, a3, a
′
1, a
′
2, a
′
3}.

By proposition 3.0.2, there exists a symplectic embedding B ↪→ XΩ if and only if there
exists a symplectic embedding(

N⊔
i=1

B4(wi)

)
t

(
3⊔
j=1

B4(aj)

)
↪→ B4(b). (3.1.3)

Similarly, there exists B ↪→ XΩ′ if and only if there exists(
N⊔
i=1

B4(wi)

)
t

(
3⊔
j=1

B4(a′j)

)
↪→ B4(b′). (3.1.4)

Next, we apply proposition 3.0.1 to these putative embeddings. The embedding (3.1.3)
exists if and only if there exists a blowup form on the (N + 3)-fold blowup of CP2 in the
class represented by the vector (b; a1, a2, a3, w1, ..., wN). Similarly, the embedding (3.1.4)
exists if and only if there exists a blowup form on the (N + 3)-fold blowup of CP2 in the
class represented by the vector (b′; a′1, a

′
2, a
′
3, w1, ..., wN).

Recapitulating, we have reduced the theorem to proving that there exists a blowup form
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in the class represented by α = (b; a1, a2, a3, w1, ..., wN) if and only if there exists a blowup
form in the class represented by α′ = (b′; a′1, a

′
2, a
′
3, w1, ..., wN). Karshon and Kessler

[KK17] developed the following algorithm to decide when a cohomology class contains a
blowup form. They showed that a blowup form exists in class α if and only if α reduces
under standard Cremona moves to a vector with positive entries in its tail. Similarly, a
blowup form exists in class α′ if and only if α′ reduces under standard Cremona moves to
a vector with positive tail. But obviously α reduces under standard Cremona moves to a
vector with positive tail if and only if α′ does, because α 7→ α′ under a single Cremona
transformation. (Recall that we re-order vector entries after doing the Cremona transforma-
tion in the “standard” move.) This proves the equivalence of (3.1.3) and (3.1.4) and proves
the theorem.

Example 3.1.3. We can now push corollary 2.2.2 even further. Let q ≥ 1 be rational and
written in lowest terms. Recall that (2.2.10) gives the negative weight vector for E(1, q)

treated as a convex toric domain. Let ρ = b q−1
2
c. Let υ = bqc − 1− 2ρ, which will be 0 or

1. Applying the cremona transform ρ times to the vector (2.2.10) gives the negative weight
vector

(q − ρ; q − ρ− 1, 1︸︷︷︸
υ copies

, q − bqc, ..., q − bqc︸ ︷︷ ︸
b1/(q−bqc)c copies

, ...).

We have proved the following

Corollary 3.1.1. The (finite length) positive weight vector

(1, ..., 1︸ ︷︷ ︸
bqc copies

, q − bqc, ..., q − bqc︸ ︷︷ ︸
b1/(q−bqc)c copies

, ...)

generates the same sequence of ECH capacities as the (finite length) negative weight vector

(q − ρ; q − ρ− 1, 1︸︷︷︸
υ copies

, q − bqc, ..., q − bqc︸ ︷︷ ︸
b1/(q−bqc)c copies

, ...).

This corollary has the potential to greatly reduce the length of the resulting negative
weight vector, when compared to the starting positive weight vector.

Example 3.1.4. The ellipsoid E(1, 23/2) has positive weight vector

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1︸ ︷︷ ︸
b23/2c=11

, 1/2, 1/2).
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In the context of example 3.1.3, we compute ρ = 5 and υ = 0. Hence, by corollary 3.1.1,
this positive weight vector generates the same sequence of ECH capacities as the following,
much shorter, negative weight vector:(

13

2
;
11

2
,
1

2
,
1

2

)
.

Note that one may be given a positive weight vector that satisfies the hypothesis of
corollary 3.1.1 without knowing that it comes from an ellipsoid.

3.2 Operations on Polygons

In this section we examine some operations that can be done to planar polygons to produce
new planar polygons. For the remainder of this chapter, we consider only convex integral
polygons, meaning that each vertex of the polygon lies at an integer lattice point, Z2 ⊂ R2.
We then explain the effect that these operations have on the negative weight vector.

3.2.1 Blowing Up

Consider a convex integer polygon ∆. To blow up the polygon ∆ means to locate a 45 −
45 − 90 triangle having side lengths 1,1, and

√
2 inside of the polygon ∆ such that two

of the sides of this triangle are on the boundary of ∆. (In other words, the triangle is not
completely in the interior.) Excise this triangle, making the remaining side of the triangle
into a new edge of the resulting polytope ∆′.

It should be clear from this definition that a compact polygon can only be blown up a
finite number of times.

Example 3.2.1. The square in the first quadrant having vertices (0,0),(2,0),(0,2), and (2,2)
contains a triangle in its upper-right corner. This triangle is shaded in the left side of
figure 3.1. Blowing up will give a new polygon, which is the convex hull of the points
(0,0),(2,0),(2,1),(1,2), and (0,2). This polygon is also shown in figure 3.1.

Proposition 3.2.1. Suppose that ∆ is a convex polygon with negative weight vector
(b; a1, ..., an). A blow-up operation performed on ∆ results in a new polygon ∆′ with
negative weight vector (b; a1, ..., an, 1) up to Cremona equivalence.

Proof. Blowing up the convex integer polygon is obviously equivalent to packing a triangle
of size one into the polygon. This has the effect of adding a 1 to the tail of the negative
weight vector.
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Figure 3.1: An example of blowing up a convex polygon.
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Figure 3.2: Another example of blowing up a convex polygon.

Example 3.2.2. The square in figure 3.1 has negative weight expansion (4; 2, 2). Blowing
up the square results in the polygon on the right side of figure 3.1. This polygon must
have negative weight expansion (4; 2, 2, 1), which we showed in a previous example to
be Cremona equivalent to (3; 1, 1, 0). This is indeed the negative weight expansion of the
polygon on the right side of the figure, as the reader can check.

Example 3.2.3. Consider the polygon on the left side of figure 3.2. This polygon contains
an isosceles right triangle of leg length 1 in its lower left corner. This triangle is shaded
in the left side of figure 3.2. Blowing up by excising this shaded triangle will give a new
polygon, which is shown on the right side of figure 3.2. Before blowing up, the negative
weight vector of the left polygon was (3; 1, 1, 1, 1). After blowing up, the negative weight
vector of the right polygon is (3; 1, 1, 1, 1, 1), as the reader can check.

3.2.2 Dualizing

Again, we will focus on convex integer polygons containing only a single interior lattice
point. for the purpose of the following definition, we may as well assume that the only
interior lattice point is the origin (0,0).
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Definition 3.2.1. Given an integer polygon ∆ with the origin as the only interior lattice
point, say that ∆ has precisely t lattice points on its boundary. We form the dual polygon

∆∨ (using a process known as dualizing) as follows.

• List the integer lattice points that make up the boundary of ∆ in clockwise order.
These points should be written as vectors ~p1, ..., ~pt in Z2.

• Let ~qi = ~pi+1 − ~pi. All subscripts are taken modulo t, so that, e.g., ~pt+1 = ~p1.

• Let ∆∨ be the convex hull of ~q1, ..., ~qt.

By construction, ∆∨ will be a convex integer polygon with the origin as its only interior
lattice point.

The following classical result shows that the polygons we are considering are a good
class for dualizing.

Theorem. (Scott, [Sco76]) Up to the action of SL(2,Z) and translation by lattice points,
there are precisely 16 integer polygons in the plane having precisely one interior lattice
point.

For the sake of brevity, we refer to the sixteen convex integer polygons having only a
single interior lattice point as Fano polygons, because of their connection to Fano varieties
(which we will not examine here). The sixteen Fano polygons are drawn in figure 3.3. In
that figure, note that the two polygons with the same label are dual to each other, and the
polygons G through J are self-dual. For a computation of the negative weight vector of
polygons E and C, see example 3.2.2 and example 3.2.3. The next theorem is not necessary
to the analysis, but it helps to organize things.

Theorem. (Poonen, Rodriguez-Villegas, [PRV00]) Let `(∆) denote the number of lattice
points on the boundary of the convex integer polygon ∆. If ∆ contains only a single interior
lattice point, then so does ∆∨, and

`(∆) + `(∆∨) = 12.

This means that, of the sixteen Fano polygons, we may as well group them according
to the number of lattice points on the boundary. Such a polygon must have at least three
lattice points on its boundary (in which case it is a triangle); hence at most 9, because of
the symmetry in the formula `(∆) + `(∆∨) = 12. This shows that

`(∆) ∈ {3, ..., 9}.
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Note. We can group the sixteen Fano polygons into three groups:

1. If `(∆) is odd, then `(∆∨) is odd.

2. If `(∆) = 6, then `(∆∨) = 6. In this case ∆ will be self-dual.

3. If `(∆) ∈ {4, 8}, then `(∆∨) ∈ {8, 4}.

These facts can also be verified by inspecting all of the 16 possible polygons, drawn
below.

Finally, to state the main result of this section, we need to define an operation of addition
of weight sequences.

Notation. Let us denote the negative weight vector of a convex polygon ∆ as w(∆). If the
tail of a weight vector has repetitions, abbreviate those repetitions with a superscript, which
is not to be read as an exponent. For example (3; 1, 1, 1) is abbreviated (3; 13).

Definition 3.2.2. Given the negative weight vector of two convex polygons, say

w(∆) = (b; a1, ..., an) and w(∆′) = (b′; a′1, ..., a
′
n),

define the operation of weight vector addition by

w(∆) + w(∆′) = (max{b, b′}; a1, ..., an, a
′
1, ..., a

′
n︸ ︷︷ ︸

unordered list w. repetitions

).

The addition of weight sequences results in a list of numbers that resembles a weight
sequence, but we are not claiming that the resulting weight sequence has geometric signif-
icance.

Proposition 3.2.2. In cases (1) and (2) of the above note, we have w(∆)+w(∆∨) = (3; 16).
In case (3) of the above note, we may have w(∆) +w(∆∨) = (4; 22, 15), which is Cremona
equivalent to (3; 16).

Proof. Check all of the sixteen Fano polygons, which are drawn below.

Note. Recall the operation of sequence summation, from definition 1.0.4. Unfortunately, it
is not the case that c(X∆) + c(X∆∨) always corresponds to the ECH capacities for (3; 16).
An explicit counterexample follows. The second ECH capacity for the toric domain cor-
responding to (3; 16) is c2 = 3. The first three ECH capacities for the toric domain corre-
sponding to (3; 13) are c0 = 0, c1 = 2, and c2 = 3. As was noted in the fact above, the poly-
gon (and the toric domain) corresponding to (3; 13) is self-dual. So we sum c(X∆)+c(X∆∨)
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by adding the sequence {0, 2, 3} to itself. This summation gives {0, 2, 4}, and the c2 = 4

term differs from the calculation for (3; 16).
This counterexample shows that adding weight sequences does not have the geometric

interpretation of taking the disjoint union of the corresponding toric domains. So we need
to distinguish the operations of sequence addition from the operation of weight sequence
addition.
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A. (3; 16) B. (3; 15) C. (3; 15) D. (3; 15)

E. (3; 14) F. (3; 14) G. (3; 13) H. (3, 13)

I. (3; 13) J. (3; 13) F. (3; 12) E. (3; 12)

D. (3; 1) C. (3; 1) B. (4; 22) A. (3)

Figure 3.3: The sixteen Fano polygons with their negative weight vectors.
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CHAPTER 4

Embeddings of Stabilized Polydiscs

Recall that we defined the symplectic ellipsoid in definition 1.0.2 and the symplectic poly-
disc in definition 1.0.3. We repeat these definitions here using real coordinates. We work
in Cn ∼= R2n, with coordinates x1, y1, ..., xn, yn and with the standard symplectic form

ωstd =
n∑
i=1

dxi ∧ dyi.

Definition 4.0.1. The symplectic polydisc of areas r1 through rn is the set

P (r1, ..., rn) =
{

(x1, y1, ... , xn, yn) ∈ R2n
∣∣ π · (x2

j + y2
j

)
≤ rj , j = 1, 2, ..., n

}
,

with the induced symplectic form

Definition 4.0.2. The symplectic ellipsoid of areas r1 through rn is the set

E(r1, ..., rn) =

{
(x1, y1, ... , xn, yn) ∈ R2n

∣∣∣∣∣
n∑
j=1

π ·
(
x2
j + y2

j

)
rj

≤ 1

}
,

with the induced symplectic form.

In each of the above definitions, we make it a convention to order the areas as r1 ≤
r2 ≤ ... ≤ rn, because a permutation of the coordinates (xi, yi) would be a linear symplec-
tomorphism.

These are the two most fruitful examples of toric domains where symplectic embedding
problems have been studied in (real) dimension four. When examining higher-dimensional
embedding problems, we use the following construction.

Definition 4.0.3. A stabilized polydisc is the symplectic manifold P (r1, r2) × R2n−4 with
the symplectic form inherited from R2n viewed as a product symplectic manifold.
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Notice that in this definition we always use a 4-dimensional polydisc in order to make
the resulting stabilized polydisc a manifold of dimension 2n, n ≥ 3.

In this chapter shall prove the following main theorem about stabilized polydiscs.

Theorem 4.0.1. (Main theorem) Suppose that x ≥ 2 and n ≥ 3. There exists a symplectic
embedding

P (1, x)× R2n−4 ↪→ P (a, b)× R2n−4

if and only if either

• a ≥ 2, or

• 1 ≤ a < 2 and b ≥ x.

Proof. (outline) At first we will focus on the case n = 3. At the conclusion of this chapter
(section 4.7), we will discuss how all of the proofs generalize to higher dimensions. So for
now, we fix n = 3.

Let us immediately dispense with the easy cases of this theorem. The “if” (⇐=) portion
of this theorem follows from the work of Hind and Kerman ([HK14] §4). It was later shown
in [Hin15] that these embeddings are possible using symplectic folding in the case a > 2.
Next, for the “only if” claim (=⇒), we assume that a symplectic embedding, of the sort
mentioned in the theorem, exists. If the capacity a happens to satisfy a ≥ 2, then the first
bullet point of the conclusion is proved. Otherwise we must show if 1 ≤ a < 2 then b ≥ x

to prove the second bullet point of the conclusion. We prove this claim by contradiction,
and this will be the content of the rest of the chapter.

We can, however, relax the assumption x ≥ 2. We show that it suffices to consider,
instead, the case x > 2. When x = 2 and a ≥ 2, then there is no contradiction to the claim,
as above. If x = 2 and 1 ≤ a < 2, then we are assuming

P (1, 2)× R2 ↪→ P (a, b)× R2 .

For 0 < λ < 1, inclusion clearly gives

P (1− λ, 2)× R2 ↪→ P (a, b)× R2 .

Re-scaling the polydiscs by 1
1−λ gives

P (1, 2/(1− λ))× R2 ↪→ P (a/(1− λ), b/(1− λ))× R2 .

Because a < 2, we can choose λ so that a/(1− λ) < 2. Then we have reduced the case of
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x = 2 to the case of x > 2. This is just a specific example of why the above definition of
↪→ on page 2 is useful.

Recaptitulating, for the remainder of this chapter, we shall assume that x > 2, that

P (1, x)× R2 ↪→ P (a, b)× R2

and that 1 ≤ a < 2, but b < x.
We can also use the main theorem to obstruct embeddings of four-dimensional poly-

discs, as the following result illustrates.

Corollary 4.0.1. Suppose that P (1, x) symplectically embeds into P (a, b). Then, by taking
a product with the identity map, we find that P (1, x)×R2 ↪→ P (a, b)×R2. Assume further
that x ≥ 2. Then the main theorem implies that either a ≥ 2 or 1 ≤ a < 2 and b ≥ x.

We compare this corollary to a result of Hutchings, which has been modified to match
the notation of this paper.

Theorem 4.0.2. (Hutchings, [Hut16]) Suppose that P (1, x) symplectically embeds into
P (a, b) with 1 ≤ a ≤ b. Assume further that

1 ≤ x ≤ 2(b/a)

1 + (b/a)−1

4d b
ae−1

(≥ 2). (4.0.1)

Then b ≥ x.

The upper bound (4.0.1) is always at least 2. So we may as well assume 1 ≤ x ≤ 2, and
conclude b ≥ x. Together, Theorem 4.0.2 and Corollary 4.0.1 give a full picture of four-
dimensional embeddings P (1, x) into P (a, b) for all values of x. The two results reach
similar conclusions.

Specifically, let us define a four-dimensional embedding function f , in the spirit of
[MS12b], also known as an embedding capacity function. For x ≥ 1, a ≥ 1, we set

f(x, a) := inf
b
{there exists a symplectic embedding P (1, x) into P (a, b), with b ≥ a} .

The two preceding results show that for 1 ≤ a < 2, f(x, a) = x. The case of a ≥ 2

is only partially known because this is the regime of symplectic folding (see proposition
4.4.4 and Figure 7.2 in [Sch05]).

An outline of the sections of this chapter follows. In section 4.1 we examine the Reeb
dynamics of a symplectic ellipsoid, and write down a formula for the generalized Conley-
Zehnder index. In section 4.2 we compute the generalized Conley-Zehnder indices for
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Reeb orbits on a polydisc, and describe a special neighborhood of a Lagrangian torus,
along which we shall stretch the neck. In section 4.3, we assert the existence of a holomor-
phic curve in a compactification of P (a, b)× R2 with negative end asymptotic to a skinny
ellipsoid. We then stretch the neck, and in sections 4.4 and 4.5 we examine the geometry of
the aforementioned curve. The moral of this story is that the energy of a holomorphic curve
must be distributed in a precise way. In section 4.6 we prove the existence theorem of the
holomorphic curve from section 4.3. The proof in section 4.6 can be read before reading
all of section 4.3, if so desired. Finally, in section 4.7 we explain how all of the results of
this chapter extend to dimension 2n ≥ 6.

In proving the main theorem, we will introduce many parameters. For easy reference,
let us define these parameters upfront in a list that has some interdependence:

• n will always denote half the (real) dimension of the ambient symplectic manifold.

• x, a, and b are capacities of the polydiscs in the statement of the main theorem.

• d is an integer parameter satisfying 2d+ 1 >> b.

• S is a very large real number satisfying da + b << S. Because of the definition of
↪→, we can and shall replace P (1, x)× R2 with P (1, x, S).

• ε > 0 is small enough that (2d+1)ε
2

< x (This ε will be fixed throughout the proof, and
the ε in the definition of ↪→ on page 2 will not factor into the proof).

• δ1, δ2, δ3, ..., δn are very small real numbers satisfying δ2, δ3, ..., δn < δ1 << ε and
such that

ε− δi
ε− δj

for 1 ≤ i 6= j ≤ n, (4.0.2)

are all irrational.

4.1 The Symplectic Ellipsoid

In this section we consider the Reeb dynamics on the boundary of a six-dimensional sym-
plectic ellipsoid, which is an example of a toric domain. When the ratio of the ellipsoid
areas (e.g. semi-major axis to semi-minor axis) is irrational, then the Reeb dynamics on
the boundary are easy to understand. Moreover, when the ellipsoid is sufficiently eccentric
(a so-called “skinny” ellipsoid) then there will only be one Reeb orbit of any consequence.
This is precisely the setup we shall leverage when producing a holomorphic curve in the
sequel.
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Notice that the six-dimensional ellipsoid E(r1, r2, r3), as in definition 4.0.2, can also
be expressed as the toric domain for the tetrahedral region below the face R that is shown
in figure 4.1a. This ellipsoid inherits the standard symplectic form from C3 ∼= R6, setting
zj = xj + iyj , and this form restricts to a contact form α on ∂E(r1, r2, r3). Specifically

α =
1

2
(x1dy1 − y1dx1 + x2dy2 − y2dx2 + x3dy3 − y3dx3) .

This contact form generates a Reeb vector field

v =
2π

r1

(
x1

∂

∂y1

− y1
∂

∂x1

)
+

2π

r2

(
x2

∂

∂y2

− y2
∂

∂x2

)
+

2π

r3

(
x3

∂

∂y3

− y3
∂

∂x3

)
,

along with a contact structure ξ defined by ξ = ker(α).
For the remainder of section 4.1, assume that the triple (r1, r2, r3) satisfies the following

condition
ri
rj
∈ R \Q for all 1 ≤ i 6= j ≤ 3. (4.1.1)

Then the boundary ∂E(r1, r2, r3) corresponds to the constant energy level set of a Hamil-
tonian mechanical system (i.e. a sum of three independent oscillators) that is completely
integrable. The components of the moment map µ, above, obviously Poisson commute,
and fibers of this map are either T 3 or T 2 or T 1, as will be described shortly. It follows that
there exist linear (action angle) coordinates on each torus fiber such that the Hamiltonian
flow is straight-line motion. Choose a Hamiltonian (involving all coordinates of µ) that
generates the Reeb flow. Then we examine the three options for the fibers of the moment
map µ.

• A point (z1, z2, z3) within the open face ofR will have no coordinates vanishing, and
a fiber of the moment map over such a point will be T 3. A Reeb orbit in such a fiber
cannot be closed, because the assumption (4.1.1) implies that T ·(r1, r2, r3) ∈ R3 \Q3

for every real T > 0.

• A fiber over the three edges of R (but not over a vertex) will be T 2. A Reeb orbit in
such a fiber cannot be closed, because the assumption (4.1.1) implies that the slope
is irrational.

• Finally, a Reeb orbit in a fiber over any vertex of R must be closed, because such a
fiber is just T 1 = S1.

The conclusion is that the irrationality condition on the capacities precludes closed
Reeb orbits on ∂E, save for the three orbits γ1, γ2, γ3 that occur in the planes {|zi| = |zj| =
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(a) The region that generates
the ellipsoid E(r1, r2, r3).

x

z

y

r3
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r1

(b) The region that generates the polydisc
P (r1, r2, r3). The edges of the cuboid have been
exaggerated here.

Figure 4.1: The (solid) regions in the first octant that generate two important toric domains.

0, i 6= j}. Furthermore, the condition (4.1.1) applied to the capacities r1, r2 would be
sufficient to preclude closed Reeb orbits if the ellipsoid were four dimensional, E(r1, r2),
a case we shall revisit later. Henceforth, the phrase “Reeb orbit” will always mean closed

Reeb orbit.

Example 4.1.1. In the six-dimensional case, the convention r1 ≤ r2 ≤ r3 means that we
may name γ = γ1 the short orbit. In coordinates (x1, y1, x2, y2, x3, y3) as above, the Reeb
orbits are parameterized as

γ1(t) =

(
r1

π
cos

(
2πt

r1

)
,
r1

π
sin

(
2πt

r1

)
, 0, 0, 0, 0

)
with period r1,

γ2(t) =

(
0, 0,

r2

π
cos

(
2πt

r2

)
,
r2

π
sin

(
2πt

r2

)
, 0, 0

)
with period r2,

γ3(t) =

(
0, 0, 0, 0,

r3

π
cos

(
2πt

r3

)
,
r3

π
sin

(
2πt

r3

))
with period r3.

The time t Reeb flow Flowt : ∂E → ∂E is easily seen to be the linear map

Flowt(x1, ..., y3) =

Rot(2πt/r1) 0 0

0 Rot(2πt/r2) 0

0 0 Rot(2πt/r3)

 ·

x1

...
y3

 ,
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where Rot(ϕ) denotes the real 2× 2 matrix of rotation through angle ϕ,

Rot(ϕ) =

[
cos(ϕ) −sin(ϕ)

sin(ϕ) cos(ϕ)

]
.

Along any Reeb orbit (the short orbit γ = γ1, in particular) the Reeb flow gives a
linearized return map Pγ : Tγ(0) C3 → Tγ(T ) C3, which is defined to be the derivative of the
time T (the period) flow. The trivialization of these tangent spaces come from the inclusion
into C3 (with the linearization acting trivially on the normal vector to ∂E|γ).

Definition 4.1.1. The Reeb orbit γ is said to be nondegenerate whenever Pγ does not have
1 as an eigenvalue. Furthermore, γ is called elliptic if the eigenvalues of Pγ lie within S1,
or γ is called hyperbolic if the eigenvalues of Pγ are real.

4.1.1 Generalized Conley-Zehnder Indices

We define an index formula for a continuous path of symplectic matrices, which may have 1

as an eigenvalue. This is known as the generalized Conley-Zehnder Index, or the Robbin-
Salamon index of the path of matrices. This definition is taken from [Gut14], suitably
modified.

Definition 4.1.2. If γ is a closed (possibly degenerate) Reeb orbit with period T , we might
view γ as a map having domain R / T , a circle. Let τ denote a trivialization of the contact
structure of the image space along γ. With respect to the trivialization τ , the linearized
Reeb flow is a symplectic matrix, denoted Pγ(s) for s ∈ R / T . Specifically, we regard
Pγ(s) : (ξγ(0), ωstd) → (ξγ(s), ωstd) as a (2n − 2) × (2n − 2) matrix. To the path of such
matrices {Pγ(s) | 0 ≤ s ≤ T}, we associate a generalized Conley-Zehnder index, denoted
CZ(γ). The Conley-Zehnder index is computed by regarding the graph of Pγ(s) as a path
of Lagrangian subspaces of (R2n−2×R2n−2, (−ωstd) × ωstd) and then taking the Robbin-
Salamon index of this graph relative to the diagonal ∆ = {(x, x) ∈ R2n−2 × R2n−2}.

Note that the generalized Conley-Zehnder index is half-integer valued, but it coin-
cides with the traditional Conley-Zehnder index in the case when the Reeb orbit γ is non-
degenerate, a fact we use now. The following two claims are immediate consequences of
this definition. Recall that we are using the trivialization coming from the inclusion of an
ellipsoid into Cn. (See, for example, [Ust99] p.14.)

Claim. Suppose A : [0, T ] → R2n1 and B : [0, T ] → R2n2 are two continuous paths of
symplectic transformations. Identify Sp(2n1)×Sp(2n2) as the subgroup of block-diagonal
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matrices within Sp(2n1+2n2). Then the Conley-Zehnder index enjoys the following direct
sum identity.

CZ (t 7→ A⊕B) = CZ (A) + CZ (B) .

Claim. A rotation in the plane by angle 2πt is the transformation Rot(2πt) defined above.
The path t 7→ Rot(2πt) for 0 ≤ t ≤ T has Conley-Zehnder index

CZ(Rot(2πt)) = bT c+ dT e = 2bT c+ 1.

Definition 4.1.3. The total rotation angle, T , of such an elliptic Reeb orbit is called the
monodromy angle.

Putting these above two claims together, we get the following important result about
the short orbit γ = γ1.

Lemma 4.1.1. For the ellipsoid E(r1, r2, r3), the one parameter group of diffeomorphisms
given by the time t flow along γ induces a symplectic linear map φt : ξγ(0) → ξγ(t). Note
that r1 is the period of this short obit. For 0 ≤ t ≤ r1, the path t 7→ φt has Conley-Zehnder
index

CZ(γ) = 4 + 2

⌊
r1

r2

⌋
+ 2

⌊
r1

r3

⌋
.

More generally, consider E(r1, ..., rn) with all ri/rj ∈ R \Q. Let γ(r) denote the r-fold
cover of the short orbit, which is the path γ(t) for 0 ≤ t ≤ r · r1. The corresponding path
of symplectic transformations has Conley-Zehnder index

CZ(γ(r)) = 2r + 2

⌊
r · r1

r2

⌋
+ ...+ 2

⌊
r · r1

rn

⌋
+ n− 1.

Proof. The second claim from Ustilovsky [Ust99] above implies that re-scaling the rotation
Rot(2πt) as Rot(2πrt/r2) should re-scale the Conley-Zehnder index as 2brT/r2c+ 1, and
similarly for rotations in the other coordinate planes. Specifically, in the first coordinate
plane we get 2brr1/r1c = 2r, because the period of the orbit we consider is T = r1. In the
first coordinate plane there is no term +1, because the time one map is the identity. Using
the first claim of Ustilovsky and the above expression for Flowt, for 0 ≤ t ≤ r1, we have

CZ
(
γ(r)
)

= 2r +

[(
2

⌊
r · r1

r2

⌋
+ 1

)
+ ...+

(
2

⌊
r · r1

rn

⌋
+ 1

)]
.

The terms in square brackets comprise a sum of (n − 1) summands, which are identical
except for the denominator inside the floor function. The desired formula follows by gath-
ering terms.
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Finally, this short orbit will have action πr1. The monodromy angle scales as r1/r2 for
E(r1, r2).

4.2 A Lagrangian Torus

Recall that we are assuming that P (1, x) × R2 ↪→ P (a, b) × R2. In this section, we
regard the symplectic polydiscs under consideration as toric domains, and we compactify
the target polydisc. A neighborhood of a Lagrangian torus in the source polydisc will
exhibit interesting Reeb dynamics (as did the ellipsoid in the previous section). We shall
write down a Conley-Zehnder formula for these Reeb orbits in this section. Finally, we will
consider pseudoholomorphic curves in (a compactification of) P (a, b)× R2.

Now, let S >> da+b. As mentioned above, because of the definition of ↪→, we replace
P (1, x)×R2 with P (1, x, S). The symplectic polydisc P (1, x, S) is a toric domain for the
cuboid in the first octant having side lengths 1, x, and S. (See figure 4.1b.) We define U to
be the subset of P (1, x, S) defined by

U = µ−1( (1− ε, 1)× (x− (2d+ 1)ε, x)× (S/2, S) ).

In symplectic polar coordinates, one can view a six-dimensional toric domain as toric
fibers over a base given by a region in the first octant, as above. Let us view the symplectic
polydisc P (1, x, S) in symplectic polar coordinates:

Ri = π|zi|2 θi = arctan(yi/xi)

for zj = xj + iyj in the identification Cn ∼= R2n. Then there is a Lagrangian torus

L =

{
π|z1|2 = 1− ε

2
, π|z2|2 = x− (2d+ 1)ε

2
, π|z3|2 =

3S

4

}
inside the set U .

Using the moment description above, we can give a complete description of the Reeb
orbits on ∂U , similar to the characterization given at the beginning of section 4.1. Under
the moment map, U maps to a parallelepiped (cuboid) P away from the coordinate axes
of the first octant of R3. The Reeb flow on ∂U is always tangent to the Lagrangian torus
fibers of the moment map, and the direction is given by the normal vector to P . Hence, we
find periodic Reeb orbits (appearing in a 2-dimensional family which will foliate the fiber
torus) precisely when the normal vector to P is a multiple of a nonzero integer vector.
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Remark. Unfortunately, in this moment description, the unit tangent bundle will not be
smooth. This can be remedied by defining Σ to be a smoothing of ∂U obtained in a special
way, described in the next paragraph. Note that U admits a symplectic embedding into
T ∗T 3 which takes L to the zero section. We use this identification to regard U as a tubular
neighborhood of the zero section in the cotangent bundle of the Lagrangian torus L, defined
by a Finsler metric. Then the Reeb orbits on ∂U correspond to geodesics on the base.
More precisely, if c(t) is a geodesic, then (c, dc∗) will be a Reeb orbit in ∂U , and vice-
versa. Such closed geodesics are parameterized by H1(T 3,Z) \ (0, 0, 0). In this way we
see that closed Reeb orbits on ∂U are in bijective correspondence with some triples of
integers. Our distinguished torus has dimension 3, which means that geodesics on the torus
appear in 2-dimensional families (given by translating the geodesics). Using the described
correspondence in general, Reeb orbits in ∂U must appear in (n−1)-dimensional families.

Define a Hamiltonian on the cotangent bundle of the Lagrangian torus L, with fiber
coordinates y1, y2, y3 by the formula

H =

(
|y1|p

εp
+

|y2|p

((2d+ 1)ε)p
+

2|y3|p

Sp

)1/p

,

where p is some large integer. Then the set H−1(1) ⊂ T ∗T 3, centered at the Lagrangian
torus L, will be a smoothing of ∂U . We name this smoothing Σ and henceforth consider
only Reeb orbits on Σ. Note that for p large, Σ is close to ∂U in the Hausdorff topology,
and the Reeb orbits on Σ approximate the orbits on ∂U .

The Reeb orbits along Σ are pseudo-hyperbolic, and the formulas in the previous sec-
tion will not suffice to compute the Conley-Zehnder index.

Lemma 4.2.1. Let c : [0, 1]→ Σ be a closed Reeb orbit on Σ in homology class (k, `,m) ∈
H1(T 3) \ (0, 0, 0). With respect to the trivialization coming from the inclusion into C3, the
generalized Conley-Zehnder index of such an orbit is

CZ(c) = 2k + 2`+ 2m+ 1.

Proof. The so-called symplectic shear matrix A(t) =

[
1 −t/2
0 1

]
, for t ∈ [0, 1], has gen-

eralized Conley-Zehnder index CZ(A(t)) = 1
2
. With respect to the given trivialization, the
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orbit c(t) has linearized Reeb flow given as a block-diagonal

c(t) =

e
it

A(t)

A(t)

 , t ∈ [0, 1].

Now, using the product and shear properties of Lemma 26 of [Gut14], we find that

CZ(c) = 2(k +m+ `) +
1

2
+

1

2
,

as desired. Note that because the Reeb orbits along Σ come in Morse-Bott families, we
needed the added generality of the definition given in section 4.1.1.

Now, choose δ2, δ3 < δ1 << ε very small, and so that the condition (4.0.2) in the list at
the beginning of this chapter holds. Define

E = E(ε− δ1, (2d+ 1)(ε− δ2), (2d+ 1)(ε− δ3)).

Then E symplectically embeds into U , and this embedding clearly extends to the closure
of the ellipsoid. So we will not denote it by a hooked arrow. Furthermore

X = CP1(a)× CP1(b)× C

is a compactification of the first factor of P (a, b)× R2 endowed with symplectic form

ωX = a2ωFS + b2ωFS + ωstd. (4.2.1)

Here ωFS is the Fubini-Study form on CP1 and ωstd is the standard symplectic form on
C ∼= R2. We now have

E → U ↪→ P (a, b)× R2 ↪→ X.

The reader may wonder as to why the C factor remains in X . In future sections, we
will consider holomorphic curves in X , whose projection onto the C factor will always
be bounded. More precisely, we shall fix the homology class of such holomorphic curves,
which will fix the area and constrain the diameter. In short, there is no reason to worry
about compactifying the C factor.
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4.2.1 J-holomorphic curves

We conclude this section by describing the almost-complex geometry of the embedded
E → U ↪→ X .

Definition 4.2.1. A symplectic manifold (M,ω) is said to have (one or more) cylindrical

end(s) if there is a compact codimension 0 submanifold K together with a symplecto-
morphism M \ K ∼= ∂K × (0,∞). Further, we require that M be equipped with an
almost-complex structure J which is translation-invariant on M \K ∼= ∂K × (0,∞).

Definition 4.2.2. Let (M,ω, J) be any symplectic manifold with compatible almost-complex
structure. A J-holomorphic curve is a map u : (S2 \ Γ, j)→ (M,J) satisfying the follow-
ing PDE (called the Floer equation):

du ◦ j = J ◦ du.

Here Γ is a finite collection of punctures and j is a complex structure that makes S2 \ Γ

into a Riemann surface. Finally, in this paper any J-holomorphic curve u will have image
in a manifold M having a cylindrical end, M \ K ∼= ∂K × (0,∞), with submanifold K
being of contact type (described below). We then put boundary conditions on the above
Floer equation to ensure that u is asymptotic to closed Reeb orbits on ∂K at each of the
punctures. Concretely, we give each puncture in the domain of u a collar neighborhood
with coordinates (θ, r) ∈ S1 × (0,∞) such that

lim
r→∞

u(θ, r) = γ(θ)

is a Reeb orbit in ∂K × {∞}.

Definition 4.2.3. A J-holomorphic plane is a J-holomorphic curve whose domain is a
once-punctured sphere. To fix notation, we will henceforth consider the domain of a J-
holomorphic plane to be C with the standard complex structure.

In CP1, let p∞ denote the point at infinity. Abbreviate CP1×CP1×CP1 as (P1)3. Then
our ambient manifoldX can be realized as (P1)3 \ (CP1×CP1×p∞). Now, inside of (P1)3

there are two other important divisors, which are

D1 = p∞ × CP1 × CP1 and D2 = CP1 × p∞ × CP1.

Let [D1], [D2] ∈ H2((P1)3) denote the classes given by c1(L(D1)) and c1(L(D2)) (where
L(Dj) denotes the complex line bundle over the divisor Dj). Restrict each of [D1] and [D2]
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to (P1)3 \ (CP1 × CP1 × p∞) to obtain two non-degenerate, independent functionals on
H2(X).

Note. [D1] and [D2] are dual to the homology classes of the curves

C1 = CP1 × p∞ × {1} and C2 = p∞ × CP1 × {1},

and the classes [C1], [C2] are an integral basis for H2(X). Notice that [C2] is homologically
equivalent to [{1} × CP1 × {1}] which is disjoint from the divisor p∞ × CP1 × CP1. This
shows that [D1] as so defined will pair trivially with [C2]. In fact, after putting the basis
curves C1, C2 into general position, we find that the intersection matrix (aij) = ([Di] · [Cj])
will be the 2× 2 identity matrix.

Heuristically, we can regard the pairing of an element of H2(X) as counting the inter-
section number of the homology class with the Poincaré dual of

L∞ = p∞ × CP1(b)× C∪CP1(a)× p∞ × C

within X . It follows from [BEH+03] that we can find an almost-complex structure on
X \E with cylindrical end on ∂E and equal to the standard product structure near L∞. No-
tice that L∞ is a union of 4-dimensional submanifolds of the 6-manifold X . As described,
there will be a well-defined intersection number obtained by pairing L∞ with a closed,
oriented 2-dimensional submanifold. We will occasionally abuse notation and identify a
J-holomorphic curve u with its image in X . Notice that since we are in the J-holomorphic
category, provided u does not lie completely in L∞, then the intersection of u with L∞
will consist of a finite number of points. We may assume L∞ remains a J-complex sub-
manifold, under suitable deformations of J , so that each intersection with a (deformed)
J-holomorphic curve u will contribute a positive intersection number.

Definition 4.2.4. Let u : C → X \ E be a J-holomorphic plane. Let C denote the image
of u with the boundary orbit on ∂E. Express [C] as an element of H2(X,E) with respect
to the basis given by the restrictions of [C1], [C2] in the note above. We say that the ordered
pair of intersection numbers of [C] with [D1] and [D2] is the bidegree, (d1, d2), of u. These
intersection numbers are computed away from E. Alternatively, we can contract E to
a point and compute the intersection numbers in H2(X) of C with contracted boundary
orbits.

As above, let γ = γ1 denote the short Reeb orbit on ∂E. Recall that a finite energy
plane can have its end asymptotic to a cylindrical end of a symplectic manifold.
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Example 4.2.1. The unit disc in C is a compact symplectic manifold. It admits a com-
patible almost-complex structure with a cylindrical end which makes it biholomorphic to
all of C, a non-compact manifold. This is the reason why we can regard finite-energy J-
holomorphic planes as having domain C in the definition above. Recapitulating, we can
either view a cylindrical end as the attachment of a half cylinder to a symplectic manifold,
or a manifold with cylindrical end can be obtained by fixing the almost-complex structure
near the boundary of the symplectic manifold.

Another example of a manifold with cylindrical end is a completion of a compact sym-
plectic manifold with contact boundary. We view the manifold X \ E as a symplectic
cobordism, and we associate a tame almost-complex structure to endow the boundary with
a cylindrical end. (Some authors define a symplectic cobordism to automatically include
completions.) The cylindrical end should be compatible with the Liouville contact structure
on ∂E. This notion of completion will be explained further in sections 4.3 and 4.6.

Note. At several points during the course of this chapter, we will restrict the class of almost-
complex structures on X \ E, while keeping the symplectic form (4.2.1) fixed. The re-
striction of the almost-complex structures will be very involved, because we shall perform
two neck-stretching operations: one in section 4.3 and one in section 4.6. Nonetheless,
the results of symplectic field theory, [BEH+03], ensure that we have an ample supply of
almost-complex structures to draw upon. Here is the current list of restrictions on such J .

Definition 4.2.5. Let J ? denote the list of almost-complex structures on (X \E,ω) which
are

• compatible (and tame) with respect to the symplectic form ω on X defined in (4.2.1),

• cylindrical at ∂E and compatible with the Liouville contact structure on ∂E (c.f. def.
4.2 of [Hut09]),

• equal to a standard product structure outside of a compact set, making L∞ into a
complex submanifold.

Again, this list of conditions will be updated in future sections.

4.3 Stretching the Neck

In this section we describe an important existence theorem of a J-holomorphic curve. This
is the curve we shall consider when we stretch the neck along the smoothing Σ of ∂U .
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After stretching the neck, the curve limits to a holomorphic building, and we examine the
limiting curves that can occur in the building.

Recall that, by assumption, we have, a string of embeddings

E(ε− δ1, (2d+ 1)(ε− δ2), (2d+ 1)(ε− δ3)) = E → U ↪→ P (a, b)× R2 ↪→ X.

We can now state the main existence theorem of this chapter.

Theorem 4.3.1. In (a completion of) X \ E there exist J-holomoprhic planes of bidegree
(d, 1) asymptotic to γ(2d+1)

1 . Such curves persist under scaling of the ellipsoid and under a
special class of deformations of the almost-complex structure, to be explained in the proof.

The proof of this theorem is long, and will require a technical procedure known as
stretching the neck along ∂E. In order to not interrupt the flow of the main argument, we
have placed the proof of theorem 4.3.1 in section 4.6. The J-holomorphic curve that is
produced in theorem 4.3.1 will have area da+ b− (2d+ 1)(ε− δ1).

Actually, the main argument will require another neck-stretching procedure, this time
along a smoothing Σ of ∂U , which will be described in this section. Note that the special
class of deformations of the almost-complex structure that is mentioned in theorem 4.3.1
will allow for this second stretching along Σ. The author hopes that the exposition in this
section will make the stretching in section 4.6 easier to understand. It is possible, however,
to read section 4.6 before this section. The current state-of-the-art on neck stretching is
described in [CM05], but here we are in the simpler case of stretching along a submanifold
of contact type.

Definition 4.3.1. We say W is a contact-type hypersurface in some symplectic manifold
(M2n, ω) if there is a neighborhood ofW on which the symplectic form ω is exact, say ω =

dλ, and the corresponding Liouville vector field v defined by ω(v, ·) = λ(·) is transverse
(not tangent) to W .

Lemma 4.3.1. In this context, the primitive λ|W is a contact form on W . It induces a
contact structure ξ = {λ = 0}, which is a (2n− 2)-hyperplane distribution on W .

Proof. We must show that λ∧(dλ)n−1 = λ∧ωn−1 is a volume form onW . Now, ker(ω|W )

is non-trivial, because W is odd-dimensional. Further ker(ω|W ) ⊂ TW⊥ω, which is 1-
dimensional. We therefore have that dim(ker(ω|W )) = 1. Choose a non-zero vector field
Y1 ∈ ker(ω|W ), and complete this to a frame {Y1, Y2, ..., Y2n−1} for TW . We evaluate
λ ∧ ωn−1 on this frame to get a single non-zero term

λ|W (Y1)ω|W (Y2, ..., Y2n−1) = ω(v, Y1)ω(Y2, ..., Y2n−1) 6= 0.
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Now that we understand the setup, the contact-type hypersurface we consider is W =

Σ, a smoothing of ∂U . Σ separates X into two components, which by abuse of notation we
call U and X \U , (i.e. when abusing notation we ignore the smoothing that defines Σ). Let
v denote the Liouville vector field for Σ. An almost complex structure J on X is said to be
compatible with the stretching if the contact structure ξ = {λ = 0} on Σ coincides with

T (Σ) ∩ JT (Σ)

and if J(v) equals the Reeb vector field of λ. We update the definition of J ∗ by requiring
the almost-complex structures to be compatible with the stretching along Σ.

Now, for every N ∈ N, the three stretched manifolds

AN := (U \ E, e−Nω), BN := (Σ× [−N,N ], d(etλ)), CN := (X \ U, eNω)

(4.3.1)
can be glued along their boundary components to obtain a symplectic manifold, which we
denote by (XN , ωN). Here t denotes the real coordinate on [−N,N ]. Choose J ∈ J ∗, and
let JN be the continuous almost-complex structure on XN that equals J on the pieces AN
and CN and is translation invariant on piece BN . Some perturbation may be necessary to
smooth this choice of almost-complex structure, but this will not affect the results below.
(See [BEH+03] for more details on this smoothing.) So we may as well assume that all JN

are smooth.
After all this setup, we have that the Reeb orbits on Σ are in 2-dimensional families

indexed by triples (k, `,m) ∈ Z3 \ ~0, as described in the remark on page 64. Specifically,
k counts the winding in the (x1, y1) factor, and so on. The Reeb orbits along Σ may appear
in a homology class with k, `,m < 0 (as opposed to ∂E where winding along the short
orbit is described by a non-negative integer). After stretching the neck, the limiting curve
(as N → ∞) is a holomorphic building, i.e. a collection of finite energy holomorphic
curves in completions of C∞ := X \U and A∞ := U \E with matching asymptotic limits
along Σ. We shall name these completions in the compactness theorem below, with less
cumbersome notation.

Theorem 4.3.2. (See 10.6 of [BEH+03]) Fix a J in J ∗. For each N ∈ N, let uN be a
JN -holomorphic curve negatively asymptotic to γ(2d+1)

1 . Fix a representative fN for each
uN . Then there exists a subsequence of the fN which converges to a holomorphic building
F. The domain of F is a nodal Riemann sphere (S, j) with punctures, and the building
can be described as a collection of finite energy holomorphic maps from the collection of

71



punctured spheres S \ {nodes} into one of the following three completions:

A∞ := (U \ E) ∪Σ (Σ× [0,∞)) with form d(etλ), t ∈ [0,∞),

B∞ := B∞ = Σ× R, with form d(etλ), t ∈ R,

or
C∞ := (X \ U) ∪Σ (Σ× (−∞, 0]) with form d(etλ), t ∈ (−∞, 0].

We now gather some facts about the completed manifold C∞. Notice that C∞ is diffeo-
morphic to X \U , but C∞ has a specific almost-complex structure near the boundary. This
is an example of a manifold with cylindrical end. Consequently J-holomorphic curves into
C∞ can have only negative asymptotic ends. Each curve of F having target in C∞ will
be asymptotically cylindrical near the punctures in its domain, hence will wind around the
Reeb orbits of Σ as t → −∞. We see that this neck-stretching construction sends all re-
movable singularities of a curve to the Reeb orbit “at −∞”. As mentioned above, we can
parameterize the Reeb orbits on Σ by three integers. The area of a curve u is defined using
the area form coming from the completion of X \ U , not the re-scaled form on CN above.

The holomorphic building F will have a level structure, which we now explain. To
encode a building F of height l, we label all of the punctured Riemann surfaces (S, j) by
integers 0, 1, ..., l + 1. These labels are called levels. The difference between the levels of
any two components of the building that share a node must be one. In this way we think
of the levels of the building as heights, and we view curves in the building as glued along
nodes to curves one level above or below. An illustration of such a building is given in figure
4.2. Let Sκ denote the union of components of level κ and denote by uκ the holomorphic
curve of F with domain Sκ. The domain Sκ could be disconnected if bubbling occurs
during the neck stretching, but we will not examine bubbling yet. In any case, we have that
u0 : S0 → A∞ and uκ : Sκ → B∞ for 1 ≤ κ ≤ l and ul+1 : Sl+1 → C∞. Each node that is
shared by Sκ and Sκ+1 is a positive puncture for uκ and a negative puncture for uκ+1, and
each are asymptotic to the same Reeb orbit. A very important property of the definition
from [BEH+03] is that we assume none of the curves uκ for 1 ≤ κ ≤ l consist entirely
of trivial cylinders over Reeb orbits, except in the following situation. If a collection of
J-holomorphic planes converges to a limiting plane v, then after stretching the neck, this
sequence of planes will converge (in the sense of SFT) to a building consisting of v in the
highest level together with a trivial cylinder in the symplectization over its limiting orbit.
Since we are stretching the J-holomorphic plane that was produced in theorem 4.3.1, we
are in this exceptional situation. Notationally, we will not emphasize the number l in the
discussion that follows.
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Note that part B∞ is a symplectization and parts A∞ and C∞ are symplectic cobor-
disms (with completions). To wit, a symplectic cobordism is a symplectic manifold M
with boundary ∂M = M− tM+ such that M+ has an outward-pointing Liouville vector
field and M− has an inward-pointing Liouville vector field. These Liouville fields define
contact forms on M− t M+, which give rise to Reeb orbits on ∂M . It is important to
note that the Reeb orbits on ∂M come in Morse-Bott families. For this reason, we use
the generalized Conley-Zehnder index, as defined in section 4.1.1. Furthermore, we will
need to keep track of the dimensions of the families of the Reeb orbits that appear on ∂M .
We need to investigate what limiting curves arise in the holomorphic building that we get
after stretching the neck along Σ. This investigation will require a virtual index formula
for a J-holomorphic curve u in a symplectic cobordism or a symplectization. There is
an important quantity that we associate to a curve u, known as the relative first Chern

class. In parts A∞ and B∞ the relative Chern class will turn out to be zero. We examine
C∞ here. Specifically, the symplectic cobordism under consideration is a null-cobordism
(∂(X \U) ∼= Σt∅) with completed end Σ× (−∞, 0]. For the full definition of the relative
first Chern class in a symplectic cobordism, see §4.2 of [Hut09] (noting that n = 2 there).
The definition depends on a choice of trivialization τ of the contact structure along the
Reeb orbits that are the ends of the J-holomorphic curve u. In our case, curves in C∞ can
have only negative ends that wind along Reeb orbits of Σ. Here we choose a symplectic
trivialization of u∗TC∞, which we deform near the punctures Γ of u so that it agrees with
the trivialization on ∂E or Σ that we used to define the Conley-Zehnder index in section
4.1.1 and lemma 4.2.1 (the trivialization coming from inclusion into C3). Then we define
c1(u) to be the algebraic count of of zeros of a generic section of Λn(u∗TC∞) which is
constant with respect to the trivialization on the boundary. The relative first Chern class of
a curve u in C∞ will be denoted cτ (u). If u has image C in C∞ and has bidegree (d1, d2),
then with this choice of trivialization,

cτ (u) := c1(T (C∞)|C , τ) = 2d1 + 2d2.

As with the bidegree, the computation of cτ is designed to ignore the winding of the curve
u along its negative ends, where Λn(u∗TC∞) is trivial. Note that the Conley-Zehnder index
and the relative first Chern class each depend on the choice of trivialization τ , but the index
formula that follows does not depend on the trivialization.

The general index formula for finite-energy genus zero curves asymptotic to Reeb orbits
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(taken from [Bou02] Corollary 5.4) is

Index(u) = (n− 3)(2− s+ − s−) + 2cτ (u)+

s+∑
i=1

CZ(γ+
i ) +

1

2

s+∑
i=1

dim(γ+
i )−

s−∑
j=1

CZ(γ−j ) +
1

2

s−∑
j=1

dim(γ−j ),

where

• n is half the dimension of the ambient space X (usually n = 3 in this chapter),

• s− is the number of negative ends,

• s+ is the number of positive ends (which will usually be zero in this chapter),

• CZ(γ−j ) is the generalized Conley-Zehnder index of the jth negative end, and

• dim(γ−i ) counts the dimension of the family of Reeb orbits at each negative end of
u.

This index formula predicts the dimension of the moduli space of J-holomorphic curves
asymptotic to prescribed Reeb orbits. Henceforth we shall call this Fredholm index the
virtual index. With the above assumptions (finite energy, genus zero, only negative ends),
this formula simplifies to

Index(u) = (n− 3)(2− s−) + 4d1 + 4d2 −
s−∑
j=1

[
CZ(γ−j )− 1

2
dim(γ−j )

]
. (4.3.2)

More specific instances of this index formula will appear in the arguments that follow.
The virtual index of a closed curve of genus 0 is given by the formula

Index(u) = (n− 3)(2) + 2cτ (u). (4.3.3)

The closed curve formula is a special case of the above, which can be found in §2.2 of
[Hut14], among other sources.

Genericity of J is what allows the dimension of a moduli space of J-holomorphic
curves to be predicted by the Fredholm index of a representative. To that end, we need the
following lemma.

Lemma 4.3.2. For generic J , any J-holomorphic curve with image in piece C∞ will have
non-negative virtual Fredholm index.
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Proof. A J-holomorphic curve u : S2\Γ→ C∞ mapping into C∞ must have only negative
ends winding about some Reeb orbit in Σ. If u is somewhere injective, then it will have
non-negative virtual Fredholm index, by genericity of J . Otherwise, u multiply covers a
somewhere injective underlying curve, which we call ũ : S2 \ Γ̃ → C∞. Let us say that u
is a p-fold covering of ũ. Then there is a ramified covering map ψ : S2 \ Γ→ S2 \ Γ̃ such
that u = ũ ◦ ψ. Since these singularities are removable, we can extend ψ to a holomorphic
map Ψ: S2 → S2 sending Γ → Γ̃. We write s− for the number of negative ends of u and
s̃− for the number of negative ends of ũ. Then ps̃− − s− will be the total ramification of ψ
over Γ. By the Riemann-Hurwitz formula,

ps̃− − s− =
∑
x∈Γ

(mx − 1) ≤
∑
x∈S2

(mx − 1) = 2p− 2. (4.3.4)

We compute the virtual Fredholm index of both u and ũ, using the general index for-
mula. As noted above, a negative end of either curve can be characterized by its homology
class, so we write (kj, `j,mj) for the homology class of the jth negative end of u and we
write (k̃j, ˜̀

j, m̃j) for the jth negative end of ũ. The family of such orbits along Σ has di-
mension 2. Both curves have a bidegree, and we write (d1, d2) for the bidegree of u, and
we write (d̃1, d̃2) for the bidegree of ũ. Now the index formula gives

Index(ũ) = (n− 3)(2− s̃−) + 4(d̃1 + d̃2)− 2
s̃−∑
j=1

k̃j + ˜̀
j + m̃j, (4.3.5)

which is non-negative by assumption. Similarly, we find

Index(u) = (n− 3)(2− s−) + 4(d1 + d2)− 2
s−∑
j=1

kj + `j +mj

= (3− n)(s− − 2) + 4p(d̃1 + d̃2)− 2p
s̃−∑
j=1

k̃j + ˜̀
j + m̃j

≥ (3− n)(ps̃− − 2p) + 4p(d̃1 + d̃2)− 2p
s̃−∑
j=1

k̃j + ˜̀
j + m̃j

= p · index(ũ) ≥ 0

using the inequality (4.3.4).

Lemma 4.3.3. For generic J , any trivial cylinder with image in piece B∞ will have index
(n− 1).
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Proof. Recall that, by our choice of trivialization, the relative first Chern class term of the
index formula vanishes in B∞. A trivial cylinder is a simple curve in the symplectization
layer B∞ which is topologically γ × R for some Reeb orbit γ on Σ. Hence γ is both
the positive asymptotic end and the negative asymptotic end of such a trivial cylinder.
Obviously, the Conley-Zehnder terms in the index formula will cancel out for these two
ends, being equal and opposite in sign. This implies that the index of such a trivial cylinder
reduces to

Index = (n− 3)(2− 1− 1) + (1/2 + 1/2)(n− 1) = n− 1

The following result tells us what limiting curves can appear in the holomorphic build-
ing F that results from stretching the neck. We make use of the notion of matching curves
into components in the pseudoholomorphic building. A matched component is given by
formally gluing together some collection of curve components lying in various levels of
the building, with identifications being made along paired ends. We treat the domain of
such a component as a smooth, connected, punctured Riemann surface. We define the pos-
itive ends of a matched component to be any positive ends of the constituent curves which
have not already been matched to other curves in the sub-building. Similarly, we define
the negative ends of a matched component to be any negative ends of constituent curves
that have not already been matched. We are going to need to compute the virtual Fredholm
index of these matched components, so we explain here how the Fredholm index behaves
under the matching procedure. If a sub-buildingB is obtained by matching curves u1, ..., up

along asymptotic orbits γ1, ..., γq belonging to families of Reeb orbits in spaces Sj , then

Index(B) =

p∑
i=1

Index(ui)−
q∑
j=1

dim(Sj). (4.3.6)

In a similar way, if we were to form a sub-building B by matching other sub-buildings Bi

along matching orbits γi that belong to families of Reeb orbits in spaces Si, then we have

Index(B) =
∑

Index(Bi)−
∑

dim(Si).

Finally, after all these identifications are made, we can compute the index of a single sub-
building B by only considering its un-matched positive and negative ends and using the
general index formula for a single curve.
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Theorem 4.3.3. After stretching the neck along Σ, limiting curves can be matched into
components consisting of

• some sub-buildings whose matching ends can be identified to form a plane with a
negative end asymptotic to a Reeb orbits on Σ; and

• one finite energy component with positive ends on Σ and with a single negative end
asymptotic to γ2d+1 on ∂E. Let us call this one limiting component the special curve.

Furthermore, the sub-buildings mentioned in this list all have non-negative building index.

Proof. As mentioned above, the curves described in the two bullet points of the theorem
are (potentially) several curves identified into connected components, according to the fol-
lowing identifications.

There must be a unique curve in the lowest level of the holomorphic building, because
there is only one negative end of the pre-stretched curve, asymptotic to γ1 by construction.
Let us say that the limiting curve in this lowest level is named u0. Next, we shall identify
with u0 some curves in the symplectization layer, based on matching conditions, and we
shall consider these identified curves to be a single component.

Beginning with u0, locate all curves that can be connected to u0 through a chain of
curves with matching ends in B∞. Identify these curves along their matchings ends, and
call the resulting component v0. Because the negative end of v0 is uniquely specified by u0,
we know that v0 can have only positive ends that remain un-matched. Moreover, since the
identification glues all matching ends in B∞, we see that the positive end(s) of v0 must be
asymptotic to Reeb orbits on Σ, the positive end of piece B∞. Consider the complement
of v0 in the holomorphic building. Let us say that, after identifying matching ends, this
complement has exactly M connected components. Name these components v1, ..., vM .
Furthermore, we assume that v0 is matched as far as possible with curves in B∞, so that the
components vj for j ∈ {1, ...,M} do not contain any curves that could be matched with v0.

The curves v1, ..., vM , described here, exist in the highest level(s) of the holomorphic
building F from theorem 4.3.2, and the negative ends of these curves must be asymptotic to
a Reeb orbit on Σ. Notice that in the gluing construction of the previous paragraph, we are
identifying curves in the manifold B∞ with curves in the manifold A∞ or C∞ even though
these manifolds are technically disjoint. We make this identification, nonetheless, because
the positive cylindrical end of A∞ (as t → ∞) is equal to the negative cylindrical end of
B∞ (as t → −∞). Moreover, if we glue the positive ends of v0 with the negative ends of
all the curves v1, ..., vM , then we recover the original curve that was constructed in theorem
4.3.1. This original curve had genus zero, which forces the identified curve v0 ∪ ... ∪ vM
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to have genus zero. Consequently, each of v0, ..., vM must be genus zero as a matched
component.

In proposition 4.6.5 of section 4.6, we explain why a curve in the symplectization layer
B∞ must be a trivial cylinder. Moreover, there can exist no J-holomorpic planes in part
A∞, because the boundary of any such plane would have positive end asymptotic to Σ, and
there are no contractible Reeb orbits on Σ. These two facts imply that, after the identifica-
tions above, the curves v1, ..., vM are not allowed to “turn around”, re-enter the symplecti-
zation layer, and terminate in A∞. This fact helps the reader to visualize the curves in C∞.
The key point is that no matter how many times a curve vj ∈ {v1, ..., vM} enters or exits
the symplectization layer, it won’t affect the Fredholm index. Specifically, we proved in
lemma 4.3.2 that the ends of the components v1, ..., vM that lie in C∞ all have non-negative
index. These ends may be identified with some trivial cylinders in part B∞ to form the
sub-buildings v1, ..., vM . We showed in lemma 4.3.3 that these trivial cylinders have in-
dex (n − 1), which is exactly the dimension of the family of Reeb orbits on Σ, where the
matching takes place. Hence, this added index is exactly canceled by the dimension of the
matching term in formula (4.3.6). In effect, we need only consider only the negative end
and the bidegree of each of v1, ..., vM when computing its Fredholm (building) index, and
we can ignore the contribution from trivial cylinders. From this analysis we conclude that
each of v1, ..., vM have non-negative building index.

The curves v1, ..., vM have disjoint domains, by construction. In addition, the vj have
finite energy. This discussion leaves, topologically, only one possibility for the curves
v1, ..., vM . Each must be a J-holomorphic plane whose negative end matches with one of
the positive ends of v0. This also leaves only one possibility for v0. Topologically, v0 is a
pair of pants with M pant legs. Figure 4.2 gives an illustration of these curves.

The curves v1, ..., vM within C∞ must collectively have negative ends that bound a
cycle in U (since they are the boundary of v0 plus a disc in E). If we denote the homology
class of the negative end of the curve vj ∈ {v1, ..., vM} by the ordered triple (kj, `j,mj), as
described in lemma 4.2.1, then we must have

M∑
j=1

kj = 0, (4.3.7)

and
M∑
j=1

`j = 0, (4.3.8)

and similarly for the mj . The negative ends of v1, ..., vM must match up with all of the
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positive ends of v0. The preceding calculation gives

M∑
j=1

kj + `j +mj = 0, (4.3.9)

where here the sum is taken over all positive ends of v0. The extra terms in the Conley-
Zehnder index formula for any positive end of v0, coming from the symplectic shears in
lemma 4.2.1 will be n−1

2
. The dimension of the family of Reeb orbits at any positive end

of v0 is (n − 1). Once again, the special curve has one negative end asymptotic to γ(2d+1)
1

and M positive ends on Σ. The first Chern class vanishes for all constituent curves of v0,
hence also for v0. For the same reason as above, we can ignore the index contribution of
any trivial cylinders that were identified to u0 to form v0. In all, the general index formula
gives

Index(v0) = Index(u0) = (n− 3)(2−M − 1) + 0

+
M∑
j=1

CZ(γ+
j ) +

1

2

M∑
j=1

(n− 1)− [2(2d+ 1) + n− 1] + 0

= (n− 3)(1−M)− 2(2d+ 1)− (n− 1)

+
M∑
j=1

(
kj + `j +mj +

n− 1

2

)
+
M

2
(n− 1)

= (n− 3)− (n− 1)−M(n− 3) +M(n− 1)− 2(2d+ 1)

= 2(M − 1)− 2(2d+ 1)

after incorporating formula (4.3.9). We see that v0 will have non-negative Fredholm index
precisely when M ≥ 2d+ 2, which is true by positivity of area of v0. In a future proof (of
theorem 4.4.1) we shall explicitly compute that v0 is of index zero.

Lemma 4.3.4. The identified curves mentioned in the bulleted list of theorem 4.3.3 must
be asymptotic to a Reeb orbit on Σ with m = 0.

Proof. Because Σ in X is of contact type, the symplectic form inherited from X will be
exact on a tubular neighborhood of ∂U . In fact, let us identify U with a subset of T ∗T 3, as
above, so that the exact form on ∂U has a primitive whose integral over a Reeb orbit of Σ

in homology class (k, `,m) is given by the following formula (in an arbitrarily large range,
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. . .

. . .

v0

v1 v2 v3 v4 vM

]in A∞ and B∞

in C∞ and B∞]
Figure 4.2: The curves v0, ..., vM .

and up to a small correction due to the smoothing Σ).

A =
ε

2
|k|+ (2d+ 1)ε

2
|`|+ S

4
|m|.

This action formula will factor into the formulas for the area of curves in C∞ and
A∞. Because our original holomorphic plane had area at most da + b << S, we see
that the special curve in A∞ cannot have any positive ends asymptotic to Reeb orbits with
m 6= 0. By the matching conditions, the negative ends of limiting curves in C∞ also must
be asymptotic to Reeb orbits in class (k, `, 0).

4.4 Analysis of Limiting Curves in C∞
Now that we understand the procedure of stretching the neck, along with the limiting curves
that can result, let us focus on a limiting curve in the part C∞. In this section, let u denote
any of the curves v1, ..., vM from the proof of theorem 4.3.3. We showed that such a curve
u will in fact be a J-holomorphic plane asymptotic to a single hyperbolic Reeb orbit on its
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negative end. Using lemma 4.3.4, the index formula (4.3.2) becomes

Index(u) = 0 + 2cτ (u)− CZ(k, `) +
1

2
(2) = 4d1 + 4d2 − 2(k + `), (4.4.1)

where cτ denotes the relative first Chern class of u and CZ denotes the Conley-Zehnder
index of the Reeb orbit on the negative end of u. In particular

Index(u) = 4d+ 4− 2k − 2` (4.4.2)

in the case when the curve u has bidegree (d, 1).

Lemma 4.4.1. All limiting planes u ∈ {v1, ..., vM} must have virtual index 0 or 2.

Proof. First, the formula (4.4.1) shows that the virtual index must be an even integer. Sec-
ond, theorem 4.3.3 gives that the curves v0, ..., vM must have non-negative index. We noted
in the previous section that the Reeb orbits on Σ come in 2-dimensional families, and the
limiting curves v1, ..., vM are asymptotic to these orbits at the negative end. If the virtual in-
dex of u were to exceed the dimension of the family of asymptotic orbits, then other curves
in the holomorphic building would necessarily have negative index, which is also precluded
by theorem 4.3.3. This leaves only the possibilities of 0 or 2 for the virtual index.

The following two corollaries (4.4.1 and 4.4.2) and lemma 4.4.2 apply to the identified
components v1, ..., vM in C∞.

Corollary 4.4.1. Any limiting component in homology class (k, 0, 0) for some negative
integer k, must actually have k = −1 and the virtual index must be 2 and the bidegree must
satisfy d1 = d2 = 0

Proof. Assume ` = 0 and k < 0. Then the index formula (4.4.1) simplifies to

4(d1 + d2) + 2|k| = 0 or 2,

using lemma 4.4.1. Now any positive bidegree (d1, d2) 6= (0, 0) would contribute a multiple
of 4 to the index and contradict the above equation. So we must have d1 = d2 = 0.
Consequently k must be −1 and the index must be 2.

Corollary 4.4.2. Any limiting curve in homology class (k, 0, 0) for some positive integer
k must have nonzero bidegree, meaning (d1, d2) 6= (0, 0)
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Proof. The argument is the same as for corollary 4.4.1

Lemma 4.4.2. Assume that x > 2, n = 3, and a < 2. If b < x, then ` ≤ 0 in Z.

Proof. It will only be necessary to prove this assertion in the cases when the bidegrees of
u satisfy (d1, d2) = (0, 0) or (d1, d2) = (d, 1) or (d1, d2) = (d, 0) for some d > 0 in Z. The
following analysis will apply to all cases.

We note that up to a correction of order ε, the area of a curve u of bidegree (d1, d2) is
given by the formula

Area(u) = d1a+ d2b− (1k + x`) ≥ 0, (4.4.3)

as all J-holomorphic curves have non-negative area. We subtract from this area inequality
one-half of the virtual index above to find

d1(a− 2) + d2(b− 2)− `(x− 1) ≥ −1 (4.4.4)

which will be the main inequality for this proof. Here we have used Lemma 4.4.1 to restrict
the virtual index.

Case 1: If (d1, d2) = (0, 0), then the main inequality reduces to

−`(x− 1) ≥ −1 =⇒ ` ≤ 1/(x− 1).

Since we have have that x− 1 > 1, the integrality of ` forces ` ≤ 0.
Case 2: If (d1, d2) = (d, 1), then the main inequality (4.4.4) reduces to

d(a− 2) + (b− 2)− `(x− 1) ≥ −1 =⇒ d(a− 2)︸ ︷︷ ︸
negative quantity

+ (b− 1)︸ ︷︷ ︸
small quantity

≥ ` · (x− 1)︸ ︷︷ ︸
positive

Since b < x we have b−1
x−1

< 1. Hence

` ≤
⌊
d(a− 2)

(x− 1)
+

(b− 1)

(x− 1)

⌋
≤ 0.

Repeat this proof, replacing d2 = 1 with d2 = 0, to see that the only remaining case is
easier than case 2.

Finally, we exhibit precisely which finite energy planes occur as limits in C∞.

Theorem 4.4.1. Assume a < 2 and b < x. The limiting curves in C∞ consist of
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• A single plane of bidegree (d, 1) which is negatively asymptotic to a Reeb orbit in Σ

that is in homology class (2d+ 1, 0, 0) and which has virtual index 2;

• A collection of (2d+ 1)-many finite energy planes of bidegree (0, 0), each of which
is negatively asymptotic to a Reeb orbit in Σ that is in homology class (−1, 0, 0).
Moreover, these planes have virtual index 2.

Proof. The proof of this theorem will use the notation of theorem 4.3.3, and will rely on the
lemmas and corollaries above. Consider the J-holomorphic planes v1, ..., vM of theorem
4.3.3. We label the homology class of the negative end of the plane vj by the ordered triple
(kj, `j,mj), for 1 ≤ j ≤M . Similarly, we label the bidegree of the plane vj by the ordered
pair (dj1, d

j
2), although some of these degrees may be zero. By definition, the bidegree is a

bilinear pairing, and we must have

M∑
j=1

(dj1, d
j
2) = (d, 1), (4.4.5)

which is the bidegree of the original curve, before stretching the neck. Since each dji ≥ 0,
we see that the only possibilities for these bidegrees are (0, 0) or (·, 0) or (∗, 1) for some
non-negative integers · and ∗. This shows that we are in the restricted cases that were
considered in the proof of lemma 4.4.2, and the conclusions of that lemma apply here.
Combining this result with the equation (4.3.8) implies that `j = 0 for 1 ≤ j ≤ M . We
also know that all mj = 0 by lemma 4.3.4. Hence we may label the homology classes of
the negative ends of the planes {vj} by the ordered triple (kj, 0, 0), for 1 ≤ j ≤M . Notice
that, by construction, no kj = 0, because we do not consider the homology class (0, 0, 0)

to describe a valid Reeb orbit. We do have a condition (4.3.7) on the kj , which will allow
us now re-index the curves {v1, ..., vM} so that

• the subset {v1, ..., vt} consists of curves vj with kj > 0, and

• the subset {vt+1, ..., vM} consists of curves vj with kj < 0.

The remainder of this proof will show that these two bullet points correspond to the
bullet points in the statement of the theorem. We immediately notice that corollary 4.4.1
applies to the set {vt+1, ..., vM}, implying that kj = −1 for these curves, and the bidegrees
vanish. Since we have organized the curves according to the sign of the integer kj , we may
decompose the summation (4.3.7) into a more subtle result. We have

0 =
t∑

j=1

kj −
M∑

j=t+1

|kj| =⇒
t∑

j=1

kj =
M∑

j=t+1

|kj| =
M∑

j=t+1

| − 1| = M − t. (4.4.6)
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This calculation also implies that

M∑
j=1

|kj| = 2
t∑

j=1

kj = 2(M − t). (4.4.7)

By definition, the bidegree is a bilinear pairing. The vanishing of certain bidegrees
further implies that

t∑
j=1

(dj1, d
j
2) = (d, 1), (4.4.8)

which is slightly sharper than (4.4.5). We re-index yet again so that v1 is the curve with
d1

2 = 1, and all other vj ∈ {v2, ..., vt, vt+1, ..., vM} have dj2 = 0. Corollary 4.4.2 shows that
vj ∈ {v2, .., vt} cannot also have dj1 = 0. In other words, all the curves in the set {v1, ..., vt}
have some nonzero (strictly positive) component of bidegree.

On the other hand, we have the curve v0 with M positive ends and a single negative
end asymptotic to the (2d+ 1)-times cover of the Reeb orbit γ1. The area of v0 is given by
Stokes’ Theorem.

Area(v0) =
ε

2

M∑
j=1

|kj| − (2d+ 1)(ε− δ1).

Using formula (4.4.7) and the positivity of area, we get

M − t =
1

2

M∑
j=1

|kj| > (2d+ 1)

(
ε− δ1

ε

)
.

Since δ1 may be chosen to be much smaller than ε, and since M − t is integral, we find
that M − t ≥ 2d + 1. The curves v1, ..., vt have virtual Fredholm index given by formula
(4.4.2). Suppose, towards a contradiction, that the sum of all the Fredholm indices of these
curves were zero. Then, by non-negativity, each curve must have Fredholm index zero.
Since curve vj has bidegree (dj1, d

j
2) and has negative end in class (kj, 0, 0), we apply the

index formula (4.4.1) to find

0 =
1

2
Index(vj) = 2dj1 + 2dj2 − kj =⇒ kj = 2dj1 + 2dj2.

In a similar way, we can sum the areas of these curves to find

t∑
j=1

Area(vj) = da+ b−
t∑

j=1

kj = da+ b− 2d− 2 = d(a− 2) + (b− 2).
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The assumption a < 2 makes the term d(a− 2) negative, and we are free to choose d large
enough to ensure that d(a − 2) + (b − 2) < 0, contradicting positivity of area. We must
conclude that not all the curves v1, ..., vt have Fredholm index zero. In other words,

0 <
t∑

j=1

Index(vj) = 4d+ 4− 2
t∑

j=1

kj = 4d+ 4− 2(M − t).

Consequently, M − t < 2d+ 2. We have now shown

2d+ 1 ≤M − t < 2d+ 2.

By integrality, we must have M − t = 2d + 1. Substituting this result into the Index
computation above gives

t∑
j=1

Index(vj) = 4d+ 4− 2(2d+ 1) = 2. (4.4.9)

By lemma 4.4.1, the indices of v1, ..., vt can be either 0 or 2. This leaves only one possibil-
ity: a single curve among the collection has index 2, and the rest have index zero.

We claim that v1 is the curve with virtual Fredholm index 2. The proof will be very
similar to the argument in the preceding paragraph. Assume, towards a contradiction, that
Index(v1) = 0. Then

0 =
1

2
Index(v1) = 2d1

1 + 2(1)− k1 =⇒ k1 = 2d1
1 + 2.

Substituting this into the area equation of this curve gives

Area(v1) = d1
1a+ 1b− k1 = d1

1(a− 2) + (b− 2) (4.4.10)

The area of the remaining curves must therefore be

t∑
j=2

Area(vj) = (d− d1
1)a−

t∑
j=2

kj = (d− d1
1)a− 2d− 1 + 2d1

1 + 2 = (d− d1
1)(a− 2) + 1

(4.4.11)
Now, we compare equations (4.4.10) and (4.4.11). We showed previously that we may
choose d large enough so that d(a − 2) + (b − 2) < 0. But since d1

1 is a summand of d,
increasing dmight increase d1

1, which would make equation (4.4.10) negative; or increasing
d might not increase d1

1 in which case equation (4.4.11) becomes negative. Either case will
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contradict the positivity of area. We must conclude that Index(v1) = 2.
Next we show that, in fact, t = 1. Assume, towards a contradiction, that t ≥ 2. Then all

of the curves {v2, ..., vt} must have index zero, because of equation (4.4.9). Consequently

0 =
1

2
Index(vj) = 2dj1 − kj =⇒ kj = 2dj1 for 2 ≤ j ≤ t.

But any such curve vj , 2 ≤ j ≤ t will have

Area(vj) = dj1a− kj < 2dj1 − 2dj1 = 0,

since a < 2. Again, this contradicts the positivity of area, and we must conclude that t = 1.
This plane v1 is the only J-curve to touch the divisor L∞, and it must have bidegree

(d, 1), by construction. It must also have k1 = M−t = 2d+1, by above work. This proves
the first bullet point of the theorem statement. Since there are a total of M = 2d+ 1 + t =

2d+2 planes in C∞, we know that the remaining 2d+1 curves {v2, ..., vM} do not meet the
divisor at infinity, and we already showed that these planes are in homology class (−1, 0, 0).
Equation (4.4.1) shows that each of {v2, ..., vM} has index 2. This proves the second bullet
point of the theorem.

4.5 Analysis of the Special Curve

Looking back at Theorem 4.3.3, we see that the negative ends of all curves in C∞ must
match with the positive ends of the so-called special curve, v0. These matching conditions
allow us to use Theorem 4.4.1 to completely characterize the Reeb orbit asymptotics of the
special curve. In this section, we will complete the proof of the main theorem.

Corollary 4.5.1. The special curve v0 must be positively asymptotic to a Reeb orbit in Σ

in homology class (2d + 1, 0, 0) and positively asymptotic to an additional (2d + 1)-many
Reeb orbits, counting multiplicity. The special curve must be negatively asymptotic to a
(2d+ 1)-times cover of the short orbit γ1 of E.
The area of this special curve is

ε

2
(2d+ 1)− (2d+ 1)(ε− δ1),

Finally, the virtual Fredholm index is zero.

Proof. The claim about Reeb orbits is just a restatement of theorem 4.4.1 and the construc-
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tion in theorem 4.3.1. The area calculation is Stokes’ theorem, and was explained in the
proof of theorem 4.4.1.

The curve that was constructed in theorem 4.3.1 has virtual Fredholm index zero. This
curve was stretched to give curves v0, ..., v2d+2. Our special curve is v0, and it can be
matched along its positive end to an additional 2d + 2 curves of index 2 whose ends are
negatively asymptotic to Reeb orbits in 2-dimensional families. This matching is explained
in theorem 4.3.3. The matching procedure imposes constraints on the Fredholm indices.
The sum of the indices of all the constituent curves v0, ..., v2d+2 must equal the sum of the
parent curve plus the sum of the dimensions of orbits at the sites of matching. This implies

2 · (2d+ 2)︸ ︷︷ ︸
dim. of matching

+ 0︸︷︷︸
Index(parent)

= Index(v0) + 2 · (2d+ 2)︸ ︷︷ ︸
Index(v1)+...+Index(vM )

.

Consequently Index(v0) = 0.

Finally, we are in a position to prove the main theorem of this chapter.

Theorem 4.5.1. (Main theorem, remaining case) Suppose that x ≥ 2, n ≥ 3, and a < 2. If
there exists a symplectic embedding

P (1, x)× R2n−4 ↪→ P (a, b)× R2n−4

then b ≥ x.

Proof. If such an embedding exists, we may assume, without a loss of generality, that
x > 2. Assume, towards a contradiction, that b < x. Then the results of lemma 4.4.2 and
theorem 4.4.1 and corollaries 4.4.1 and 4.5.1 all hold.

We showed in equation (4.4.6) that∑
ki<0

|ki| = 2d+ 1. (4.5.1)

As a result of matching imposed by theorem 4.4.1, our limiting building contains 2d + 1

planes asymptotic to Reeb orbits on Σ in homology class (−1, 0, 0) and having area 1 +

O(ε). The total area of this limit is at most the area of the plane before stretching, which
was computed in section 4.3. This, together with (4.5.1) gives

da+ b− (2d+ 1)(ε− δ1) ≥ (2d+ 1)(1 +O(ε)).
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Dividing by 2d+ 1 and using a < 2 gives

b

2d+ 1
+

2d

2d+ 1
− (ε− δ1) >

da

2d+ 1
+

b

2d+ 1
− (ε− δ1) ≥ 1 +O(ε).

This will give a contradiction when ε is sufficiently small, because we initially assumed
b << 2d+ 1.

4.6 The Proof of Theorem 4.3.1

Now that we have the machinery of neck-stretching, we can prove theorem 4.3.1. This
proof will not rely on any of the proofs of prior sections, just the definitions. We restate the
theorem here with slightly updated terminology.

Definition 4.6.1. Let us say that 2d+1 distinct points of a symplectic manifold are generic

relative to J if there’s no closed J-holomorphic curve of index less than 4k + 2 passing
through 2k + 1 of the points, for all 0 ≤ k ≤ d. Here the notion of curve includes finite
energy curves in the completion of the ellipsoid, described below.

Definition 4.6.2. Fix a set of points p1, ..., p2d+1 which are generic with respect to the
almost complex structure J0. A deformation t 7→ Jt, t ∈ [0, 1], of the almost-complex
structure is a generic deformation if for all t ∈ [0, 1] a curve of index 2k passes through
k + 1 of the constraint points, 0 ≤ k ≤ d. If a deformation of J0 is generic, then we call
any Jt in this deformation a generic almost-complex structure.

Theorem. In a completion ofX \E there exist J-holomoprhic planes of bidegree (d, 1), of
virtual Fredholm index zero, and which are asymptotic to γ(2d+1). Such curves persist under
scaling of the ellipsoid and under generic deformations of the almost-complex structure.

We begin with the completion of X \ E, and we observe that setting z3 = 0 gives an
almost-complex submanifold

Y := CP1(a)× CP1(b) \ E(ε− δ1, (2d+ 1)(ε− δ2)).

Actually, we will assume that the almost-complex structure is chosen so that Y is a complex
submanifold ofX \E. We abbreviate Ẽ := E(ε−δ1, (2d+1)(ε−δ2)) ⊂ CP1(a)×CP1(b).
Here is a brief outline of the argument that follows.

• We produce a curve C in CP1(a)× CP1(b) using classical techniques.
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• We stretch the neck along the boundary of Ẽ to analyze the asymptotics of the curve
C.

• We argue that the curve C persists under inclusion into the higher-dimensional space
X \ E, and under scaling of the ellipsoid.

Because of the persistence argument, it suffices to first produce curves in a completion
of Y (which will have a cylindrical end). This will be the focus of the fourth proposition
below. Recall the definition of bidegree in section 4.2. Notice that the ratio of capacities in
Ẽ, namely

θ :=
ε− δ1

(2d+ 1)(ε− δ2)

is irrational, because of the assumptions made in (4.0.2). The irrationality of θ ensures
that the Reeb orbits of ∂Ẽ are isolated, and there will be a short orbit. This number θ will
also be the monodromy angle of the short orbit γ1 on ∂Ẽ, as defined in section 4.1 (see
also Lemma 4.1.1). Further, note that the Reeb orbits on ∂Ẽ are elliptic and they exist in
0-dimensional families. Theorem 4.3.1 will be proved in the following five propositions.

Proposition 4.6.1. In CP1(a)×CP1(b) there exists a closed curve of bidegree (d, 1) passing
through 2d+ 1 generic points.

Proof. We first produce a closed embedded curve for the standard J , which is denoted J0.
Such a J0-curve can be viewed as a graph of a meromorphic function CP1(b) → CP1(a)

which projects to a curve of degree d in CP1(a) and which is biholomorphic to the sphere
when projected onto CP1(b). Let us say that the meromorphic function being graphed is of
the form f/g, where both f and g are polynomials of degree d. Such polynomials are each
specified by d+ 1 parameters, and we must factor out a common scale when dividing f by
g. Hence the quotient f/g has (d+ 1) + (d+ 1)− 1 = 2d+ 1 parameters. This shows that
we can produce a J0-curve through 2d+ 1 given points of CP1(a)×CP1(b). This curve is
non-singular, because it is of degree 1 in the second factor.

We present an alternative point of view, by showing that curves in CP1(a) × CP1(b)

passing through 2d + 1 constraint points are in bijective correspondence with curves in
the (2d + 1)-fold blow-up of CP1(a) × CP1(b). This bijection will be useful for future
computations. Fix a generic, ordered set of points {p1, ..., p2d+1} ⊂ CP1(a) × CP1(b),
and let X̂ denote the (2d + 1)-fold blow-up of CP1(a) × CP1(b) at those points. Let
π : X̂ → CP1(a) × CP1(b) denote the projection map. Denote the exceptional divisors by
E1, ..., E2d+1. Let A denote a divisor in CP1(a) × CP1(b) that passes through all 2d + 1

constraint points. The proper transform gives a unique lift to Â in X̂ , and Â determines
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an element of |π−1(A)−E1 − ...−E2d+1|, which is the projectivization of OX̂(π−1(A)−
E1 − ... − E2d+1). Conversely, given a section on X̂ of OX̂(π−1(A) − E1 − ... − E2d+1),
push it down via π to obtain a section of the complex line bundle L(A) that is defined away
from the 2d+ 1 constraint points. We know this complex line bundle exists everywhere by
assumption. Use the removable singularity theorem to define this section across the 2d+ 1

constraint points. This bijection shows that H0(X̂,O(π∗(L(A)))) ∼= H0(X,O(L(A))) =

H0(O(d1))⊗H0(O(d2)), for curves that have bidegree (d1, d2). The latter space has dimen-
sion (d1 + 1)(d2 + 1) by the Künneth formula. Based on the algebro-geometric definition
of genericity of points, we expect a collection of points to be generic if no curve of bide-
gree (0, 1) or (1, 0) passes through more than one of the points, along with higher-degree
restrictions. The more general requirement is that no curve of bidegree (d1, d2) may pass
through more than (d1 + 1)(d2 + 1) − 1 of the points. When we consider the special case
of bidegree (d1, d2) = (k, 1), we have that (k + 1)(1 + 1)− 1 = 2k + 1. Furthermore, the
index formula (4.3.3) implies that a closed genus zero curve of bidegree (k, 1) will have
virtual Fredholm index−2+4(k+1) = 4k+2. This shows the parallel between the above
definition of generic relative to J and the usual definition of genericity of points. The
constraints in the definition are the best possible, because one would expect curves passing
through exactly 2k+1 points to generate a complex of nullity zero. The bijection described
in this paragraph gives a formula of dim[H0(X,O(LA)] = (d + 1)(1 + 1) = 2d + 2 for
curves of bidegree (d, 1). Given 2d + 1 generic points, there is a unique section, up to
scale, that vanishes at the generic points, because (2d+ 2)− (2d+ 1) = 1. This shows that
there is a unique curve, up to scale, passing through the 2d + 1 given points. This curve
will be generically embedded if it avoids a proper discriminant locus, but we will prove it’s
embedded using the adjunction formula.

Now we view this newly-constructed curve for the standard J0 as a map

u : S2 → CP1(a)× CP1(b)

(not as a graph), and we apply the four-dimensional adjunction inequality (which is formula
2.7 in [Hut14]). Let [C] denote the class of the image of u. Then

χ(domain of u) + [C] · [C]− 〈c1(T (CP1(a)× CP1(b))), [C]〉 ≥ 0,
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with equality if and only if the curve u is embedded. In our case, this reduces to

2 + 〈(d, 1), (d, 1)〉 − 〈(2, 2), (d, 1)〉 =

2 + [d2(f 2
1 ) + 2d(f1 · f2) + 1(f 2

2 )]− [2d(f 2
1 ) + (2d+ 2)(f1 · f2) + 2(f 2

2 )] = 0,

where in this calculation f 2
i denotes the square of the fiber in the ith variable. Being an

embedded sphere, such a curve is automatically regular (using Lemma 3.3.3 of [MS12a]).

The last formula in the above proof is purely topological, and we shall explain in Propo-
sition 4.6.3 how the result will persist under generic deformations of the almost-complex
structure. This will show that curves for any J are embedded.

Specifically, for any J , let us define a moduli space

M(J, p1, ..., p2d+1) :=
{

(f, (y1, ..., y2d+1))
∣∣ ∂Jf = 0, f(yi) = pi, bidegree (d, 1)

}
/ ∼,

of closed, constrained J-holomorphic curves identified under ∼ by reparameterization of
the domain. In the standard case, Proposition 4.6.1 shows that M(J0, p1, ..., p2d+1) is
nonempty, and representative curves are embedded and automatically regular. To extend
this claim to non-standard J , we need to argue that the adjunction formula applies.

We vary the almost complex structure in time, to get a one parameter family Jt, t ∈
[0, 1], with J0 denoting the standard complex structure. We need to show that the set of
points which were chosen to be generic for J0 remain generic for Jt, t ∈ [0, 1]. Since the
constraint points remain fixed for all time, we may and shall choose these 2d+ 1 points to
be in the interior of Ẽ.

Proposition 4.6.2. There is a second category set of maps t 7→ Jt such that the points
{p1, ..., p2d+1} are generic relative to Jt for all t.

For a proof of this proposition, see lemmas 2.4 through 2.6 and corollary 2.7 of [HK14],
replacing CP2 with CP1 × CP1.

In other words, it is possible to choose a deformation Jt of the standard structure J0 that
is generic, as defined above. We assume such a deformation is given for the remainder of
this section. Now we may update the definition of J ?. In addition to the list of properties
at the end of section 4.2, we need Jt ∈ J ? to be such that Y is a complex submanifold of
X \ E, and compatible with the stretching along ∂Ẽ, and generic.

Recall that a holomorphic curve which is not multiply-covered is called simple.

91



Proposition 4.6.3. For any t ∈ [0, 1], the moduli space

Mt :=M(Jt, p1, ..., p2d+1) = {(f, (y1, ..., y2d+1))∣∣∂Jtf = 0, f(yi) = pi, f has bidegree (d, 1)
}
/ ∼,

of closed Jt-holomorphic curves passing through the generic points {p1, ..., p2d+1} is com-
pact. Curves in this moduli space are identified under reparameterizations of the domain.
Mt has virtual dimension zero. Furthermore, for any t ∈ [0, 1], a representative ofMt is
not nodal, is embedded, is simple, and has ECH index zero.

Proof. The proof of the first claim in this proposition is a standard Gromov compactness
argument. Here we are deforming a closed, embedded curve, and a limit of such curves will
either be embedded or will bubble. Any bubbling would be of codimension 2, which is pre-
cluded for generic deformations of the almost-complex structure, because some component
of the bubble tree would have index −2.

This compactness implies that we can apply the adjunction inequality (above) to Jt-
holomorphic curves. The conclusion is that for any t, the Jt-curve that is constrained to
pass though a set of (2d+ 1) Jt-generic points will be embedded, and not nodal.

We prove the claim of simple-ness by contradiction. Suppose that a curve

C ∈M(Jt, p1, ..., p2d+1)

of bidegree (d, 1) were multiply-covered. Then C must cover some underlying curve K
which has bidegree (i, j) for i < d and j < 1, since multiple-coverings will multiply
the intersections with L∞. This underlying curve will have Fredholm index 2c1 − 2 =

4(i+ j)− 2. This Fredholm index is strictly less than 2(2d+ 1). Hence, for generic J the
curve K cannot pass through the 2d + 1 constraint points (with each intersection having
codimension 2). This contradicts our construction of C and the genericity of points. We
must conclude that C is simple. (Moreover, it is a general fact that a limiting curve is
either multiply-covered or is embedded with possibly finitely many, denoted δ-many, point
singularities. We shall make use of this fact later.)

We showed in proposition 4.6.2 that the constraint points p1, ..., p2d+1 are generic rel-
ative to Jt. The virtual dimension of the moduli spaceMt is computed using the virtual
Fredholm index of a representative curve. We are claiming that both the virtual Fredholm
index and the ECH index of a representative curve equal zero. To compute the virtual in-
dex, we use the formula (4.3.3) for a closed curve of genus zero. Without any constraint
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points, a curve C is closed, embedded, and has virtual Fredholm index

Index(C) = (2− 3)(2− 0) + 2(2d+ 2) = 4d+ 2.

The moduli space of curves corresponding to this Fredholm index can only be counted
if 2d + 1 generic constraint points are specified. As noted above, each constraint point
has codimension 2. Hence the curve C, when constrained to pass through a generic set
of 2d + 1 points, will have virtual Fredholm index zero. Finally, we note that a closed,
embedded curve of virtual Fredholm index zero must also have ECH index zero. This fact
follows from equation (2.10) of [Hut14].

The reason for this computation is as follows. We are now going to stretch the neck
along ∂E, which will create, as an intermediate step, almost-complex structures JN on the
manifolds stretched to length N (see theorem 4.6.1 below). Initially (in Proposition 4.6.1)
we produced curves for the standard, integrable, almost-complex structure J0. The point
of Proposition 4.6.3 is to show that, after deforming to Jt := JN , the curves persist, and
similarly when we take a limit of Jt. For this neck stretching we can re-scale the compact
interval as −∞ ∪ (−∞, 0] ∼= [0, 1]. Recall that we assumed that the constraint points are
in the interior of Ẽ. Now, we can stretch the neck of CP1(a) × CP1(b) along ∂Ẽ, and use
the following SFT theorem to analyze the limiting building.

Theorem 4.6.1. (See 10.6 of [BEH+03]) Fix 2d + 1 constraint points in Ẽ and fix a J
in J ∗. For each N ∈ N, let uN be a JN -holomorphic curve passing through the 2d + 1

constraint points. Fix a representative fN for each uN . Then there exists a subsequence of
the fN which converges to a holomorphic building F. The domain of F is a nodal Riemann
sphere (S, j) with punctures, and the building can be described as a collection of finite
energy holomorphic maps from the collection of punctured spheres S \ {nodes} into one
of the following three completions:

AE∞ := Ẽ ∪∂Ẽ (∂Ẽ × [0,∞)) with form d(etλ), t ∈ [0,∞),

BE
∞ := ∂Ẽ × R, with form d(etλ), t ∈ R,

or
CE
∞ := Y ∪∂Ẽ (∂Ẽ × (−∞, 0]) with form d(etλ), t ∈ (−∞, 0].

It will be convenient to view the completion of Y from theorem 4.6.1 as a symplectic

93



null-cobordism. For notational brevity, we set

Y := CE
∞ =

(
(−∞, 0]× ∂Ẽ

)
∪∂Ẽ Y .

Then Y is a completion of Y with ∂Y = ∂Ẽ t ∅. In addition, this notation matches the
notation of section 4.1 of [Hut09].

As in the discussion following Theorem 4.3.2, curves in Y can have only negative
asymptotic ends. For this stretching, we will not focus much on curves in the ellipsoid or in
the symplectization, BE

∞, other than to note that we have some limiting curves inside and
outside the neck. All curves, inside or outside, must have matching asymptotic limits along
∂Ẽ. A limit of embedded curves must either consist of curves that are embedded or curves
that are multiply covered. The problem here is to show that stretching the parent curve C
of bidegree (d, 1) does not create limiting planes of strictly smaller bidegree. Let C̃ denote
any connected component in Y . We now argue the following.

Proposition 4.6.4. The holomorphic building that results from stretching the neck along
∂Ẽ consists of simple, embedded components with ECH index and virtual Fredholm index
zero. Each component in the highest level, Y , of the building is a holomorphic plane, C̃,
that must be negatively asymptotic to the short Reeb orbit on Ẽ, not the long Reeb orbit.

Proof. We showed in Proposition 4.6.3 that any limiting curves must be simple and not
nodal. As mentioned above, a limiting curve that is not multiply covered must be embedded
except at finitely many (here δ = 0 many) nodes. We conclude that such a simple curve is
embedded.

Next we compute the ECH index and the virtual Fredholm index of C̃. In Proposition
4.6.3, we showed that the parent curve, before stretching, had ECH index zero. This implies
that the sum of the ECH indices of the limiting curves, after stretching, must also be zero.
Since the ECH index is a non-negative quantity, the ECH index of each limiting curve must
be zero. Hence we can write IECH(C̃) = 0. Now we apply the ECH index inequality from
[Hut09]. In the case when δ = 0, this inequality says

Index(C̃) ≤ IECH(C̃). (4.6.1)

Both of these indices are non-negative, because C̃ is simple. Since we have proved that the
ECH index is zero, we can conclude that the virtual Fredholm index is zero. Furthermore,
this ECH index inequality is actually an equality, which will be helpful for the last part of
this proof.

Next, we prove that C̃ must have bidegree (d, 1) and must be negatively asymptotic
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to the short Reeb orbit on Ẽ, not the long Reeb orbit. Because of the summation over
negative ends in the virtual index formula (4.3.2), it suffices to consider the case where C̃
has two negative ends. The first is asymptotic to the short Reeb orbit γ1 and winds r1 times
around this orbit. The second is asymptotic to the long Reeb orbit, which we shall call
γ2, and it winds r2 times around this long orbit. The Conley-Zehnder indices of these two
(multiply-covered) Reeb orbits are equal to

CZ(γ
(r1)
1 ) = 2r1 + 2br1 · θc+ 1 ≈ 2r1 + 0 + 1,

and

CZ(γ
(r2)
2 ) = 2r2 + 2

⌊
r2(2d+ 1)(ε− δ2)

ε− δ1

⌋
+ 1 ≈ 2r2 + (4d+ 2)r2 + 1,

as d becomes large compared to ε. The index formula (4.3.2) in dimension n = 4 with
s− = 2 negative ends and with bidegree (d1, d2) simplifies to

Index(C̃) = (−1) · (0) + 4d1 + 4d2 − CZ(γ
(r1)
1 )− CZ(γ

(r2)
2 ) +

1

2
(0 + 0)

= 4d1 + 4d2 − 2− 2r1 − 2r2 − 4dr2 − 2r2

= 4(d1 + d2)− 2− 2(r1 + r2)− 2(2d+ 1)r2

= 4(d1 + d2)− 2− 2(2d+ 1)(r2 + 1)

where in the penultimate step we used the fact that r1 +r2 = 2d+1, by construction. Since
r1, r2 ≥ 0, in order to have Index(C̃) = 0 we must have d1 + d2 = d+ 1 and r2 = 0. The
maximum of each of these degree terms is given by the bidegree of the parent curve, (d, 1).
Hence for C̃ we must have d1 = d and d2 = 1 and its negative end(s) must wind along only
the short orbit γ1.

Finally, it remains to show that C̃ is a holomorphic plane (topologically a disc). We
show this by proving that C̃ has only a single negative end asymptotic to a (2d + 1)-
cover of γ1. It turns out that this is determined indirectly in the machinery of ECH, using
“partition conditions,” which we shall briefly motivate here. Let C̃ denote any component
inside of Y . Again, Y is a symplectic null-cobordism (∂Y = ∂Ẽ t ∅), which implies that
C̃ has no positive end, and we assume a priori that C̃ has a number of negative ends which
are all asymptotic to γ1 on ∂Ẽ with total multiplicity 2d + 1. It is conceivable for C̃ to be
topologically a U -tube with one end wrapping once around γ1 and the other end wrapping
2d times around γ1. A simple calculation shows that this this configuration is impossible;
C̃ must be a 2-handle. See figure 4.3 for an illustration of this non-example.
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u

Figure 4.3: A J-holomorphic curve u that is prohibited by the partition conditions.

The point of the ECH partition conditions is that for an embedded curve in a symplectic
cobordism, the multiplicity of its negative end(s) can be computed as a partition p−j (C̃) =

p−γj(mj), where the subscript j denotes the jth negative end of C̃, which is asymptotic to a
cover of the Reeb orbit γj with total covering multiplicity mj . The multiplicities of these
covers will give a partition of the positive integer mj , hence the name. There is a similar
partition condition for the positive end, but in our setup C̃ has no positive end. So we focus
on the first negative end of C̃, setting j = 1. The total covering multiplicity of γ1 is 2d+ 1

by construction. So we need to compute the partition

p−1 (C̃) = p−γ1(2d+ 1).

The full definition of these “incoming partition condtions” for a symplectic cobordism
is given in the paper [Hut09] with the slightly older notation pin = p−. Here we use
the updated notation from [Hut14]. In our case, we need only the fact that p−γ1(2d + 1)

is entirely defined by the monodromy angle θ. Since b(2d + 1)θc = 0, we have that
p−γ1(2d+ 1) = (2d+ 1) is the trivial partition. The relevant theorem from [Hut09] says that
when the ECH index inequality (4.6.1) is an equality, the partition p−γ1 exactly determines
the multiplicity of covering(s) of the negative end(s) of the J-curve. This equality was
proved at the beginning of this proof. The computation that p−γ1 is the trivial partition
shows that the curve C̃ can have only a single negative end asymptotic to a (2d+ 1)-cover
of γ1. Hence, in particular, C̃ is a holomorphic plane, and there is only a single limiting
curve in the top levels of the holomorphic building that results from stretching the neck.
Since we started with a single curve C (before stretching) and we ended with a single curve
C̃ (after stretching), we may as well identify C = C̃ within Y , to simplify the notation.
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This completes the first two bullet points in the proof outline above. We now need to
explain why such a curve C in Y can be included into a completion of X \ E. First,
for comparison purposes, we recall the definition of regularity. In dimension four, an
almost-complex structure is regular if the linearized normal Cauchy-Riemann deforma-
tion operator is surjective at all somewhere injective curves. In particular, there are no
somewhere injective curves of negative Fredholm index, and in dimension four spheres of
non-negative Fredholm index automatically have a surjective deformation operator. Above
we used the fact that there is a second category generic subset of regular almost complex
structures. This discussion leads us to, once again, update the conditions on J ?. Here we
need almost-complex structures on the six-dimensional manifoldX \E such that the inclu-
sion Y → X \ E (equivalently, their respective completions) is a holomorphic embedding
with respect to a compatible almost-complex structure on Y for which a curve exists, satis-
fying the above propositions. Let J ? denote the set of almost-complex structures on X \E
with this property, in addition to the properties on Y that follow Proposition 4.6.2. We
shall have more to say about genericity of the almost-complex structures in a moment, but
for now we emphasize that (after the neck stretching along ∂Ẽ) a generic almost complex
structure J ∈ J ∗ admits no J-holomorphic planes of index −2 in all possible bidegrees
and with all possible windings along the negative end.

Proposition 4.6.5. If such J-planes exist in a completion Y of Y , then they persist under
inclusion in the higher-dimensional space X \ E (suitably completed). Such a stabilized
curve will persist under deformations of the complex structure and scaling of the ellipsoid
E.

Proof. First, consider a completion ofX\E using the inclusion embedding of the ellipsoid.
We have already constructed in Proposition 4.6.4 a genus zero J-holomorphic curve C in a
completion of Y , for some J . We need to argue that the stabilized curve C ×{pt} includes
into (the completion of) X \E without changing the Fredholm index. We refer back to the
general index formula for a genus zero curve, found on page 73. The following is a standard
argument. Stabilizing the curveC obviously does not change the genus, but it does increase
n by 1 and increase each CZ term by 1 for each factor of R2 in the stabilization. A useful
observation of [HK14] is that we can take genus zero curves having s+ = 0 positive ends,
so that the index of the stabilized curve reduces to

Index(C × {pt}) = 2− 2(s−) + Index(C).

In particular, the index is unchanged under stabilizations when s− = 1, which is the case
of interest here. This implies that the curve from Proposition 4.6.4, before and after stabi-
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lization, will have virtual Fredholm index zero. We temporarily call such a stabilized curve
a J0-holomorphic curve, where J0 ∈ J ∗ is a generic almost-complex structure that results
from the neck stretching in proposition 4.6.4. We now have a moduli space

M0 = {J0-holomorphic curves in X\E having one negative end asymptotic to γ2d+1
1 }/ ∼

which has virtual dimension zero, and is nonempty. In this moduli space, curves are iden-
tified up to reparameterization of the domain.

After varying J in time, we now have a moduli space

Mt = {Jt-holo. curves in X \ E having one negative end asymptotic to γ2d+1
1 }/ ∼ .

The curves in this moduli space are identified up to reparameterization of the domain, and
when t = 0, we recover the above moduli space M0. For the remainder of this proof,
a generic deformation of the almost-complex structure will be a deformation t 7→ Jt ∈
J ?, t ∈ [0, 1] such that Jt is generic for all times t ∈ [0, 1]. We shall explain why a
J0-holomorphic curve curve persists under a generic deformation of the almost-complex
structure. We note that for a second-category subset of 1-parameter families of almost-
complex structures, the deformation operator for all moduli spacesMt is also surjective.
This is the analogue of proposition 4.6.2. Moreover, the Fredholm index of a representative
curve inMt must be even, which precludes curves of negative index even in 1-parameter
families.

The above computation shows that

M[0,1] = {(u, t)|u ∈Mt, t ∈ [0, 1]}.

is a one-dimensional manifold. Hence ∂M[0,1] consists of a discrete set of points, which
we call

∂M[0,1]
∼=M0 tM1. (4.6.2)

We noted above that for a second-category subset of Jt, the deformation operator for
M[0,1] will be surjective, and representative curves will have non-negative Fredholm in-
dex. Not every representative curve of Fredholm index zero will be cut out transversally,
however, for all time t ∈ [0, 1]. In this higher-dimensional context (dimension ≥ 6), the
projection map M[0,1] → [0, 1] may not be a covering map, but it will give a cobordism
fromM0 toM1. The moduli spaceM0 was examined in the preceding propositions, and it
was shown to be nonempty. Moreover, at time t = 0 we required Y to be holomorphically
embedded with respect to J0. Using (4.6.2), we regardM[0,1] as a cobordism betweenM0
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andM1.
We explain why M[0,1] is sequentially compact, which will imply that eachMt is com-

pact. To prove sequential compactness, consider a sequence (uk, tk) ∈ M[0,1] and, after
passing to a subsequence, assume that the tk converge to t∞ ∈ [0, 1]. Then, after possi-
bly taking another subsequence of (uk, tk), SFT compactness implies that the uk converge
to a Jt∞-holomorphic building. Note that, by construction, this building contains levels
in the completion of X \ E and levels in the symplectization layer ∂E × R. We must
show that this building is in fact a Jt∞-holomorphic plane. We do this by showing that any
symplectization components must be trivial cylinders. Start with a curve G in the lowest
symplectization level. The results of proposition 4.6.4 imply that G must have positive and
negative ends asymptotic to γ1 only. By construction, we also have that the negative end of
Gmust be γ(2d+1)

1 . Let us say thatG has s+ positive ends, with the pth positive end winding
ap times around γ1, and let us say that G has s− = 1 negative end winding 2d + 1 times
around γ1. The number of positive ends of G is at least the number of negative ends, both
counted with multiplicity, which implies that

s+∑
p=1

ap ≥ 2d+ 1.

Moreover ⌊
ap(ε− δ1)

(2d+ 1)(ε− δj)

⌋
= 0,

whenever 2 ≤ j ≤ n and whenever ap ≤ 2d + 1 because of our choice of ε, δ1, δ2, δ3, etc.
We will omit these terms from the upcoming Fredholm index formula, knowing that they
contribute positively or not at all to the index. The dimension of the elliptical families of
Reeb orbits is zero, and in the symplectization layer the first Chern class is zero. Using the
trivialization coming from the inclusion of the ellipsoid, we may use the Conley-Zehnder
formula from lemma 4.1.1. The virtual Fredholm index formula gives

Index(G) = (n− 3)(2− s+ − 1) + 2c1(u) +

(
s+∑
p=1

CZ(γ
(ap)
1 )

)
− CZ(γ

(2d+1)
1 )

= (n− 3)(1− s+) + 0 +

(
s+∑
p=1

(2ap + (n− 1))

)
− (2(2d+ 1) + (n− 1))

= 2(s+ − 1) + 2

(
s+∑
p=1

ap − (2d+ 1)

)
≥ 0
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with equality if and only if s+ = 1, and
∑s+

p=1 ap = a1 = 2d + 1. This happens if and
only if G is a trivial cylinder. By induction on levels, all curves in the symplectization layer
have nonnegative Fredholm index, and if a symplectization component were not a trivial
cylinder, then it must have strictly positive Fredholm index. This would force a component
in X \ E to be (possibly a multiple cover of) a curve with negative Fredholm index. This
configuration is precluded by genericity of J ∈ J ∗. Hence M[0,1] is compact

We claim that the cobordismM[0,1] is not a null-cobordism. ThenM0 being nonempty
implies M1 is nonempty. We prove this claim by showing that the cardinality of M0,
counted with orientation, is non-zero. Hence a null-cobordism cannot occur. This compu-
tation is done in propositions 10 and 11 of [CGH18], but is simpler here because the curves
we consider have only a single negative end. A summary of the argument follows. Note
that X \ E admits an S1 action that rotates the stabilized factor (R2 ∼= C with coordinate
z3). Let us write J ∗S1 for the set of S1 invariant and admissible almost-complex structures
on X \ E for which the moduli spaceM[0,1] is nonempty. It is proved (in [HK14] section
3.3.2) that such S1-invariant almost-complex structures exist, making J ∗S1 nonempty. For
generic J ∈ J ∗S1 all J-curves which meet an S1 orbit exactly once will be regular. One
then has automatic transversality for these curves. Once J ∗S1 is known to be nonempty, the
assertion is that for some J ∈ J ∗S1 , the curves in the corresponding moduli spaceM0 have
image in the 4-dimensional, holomorphic slice Y (i.e. z3 = 0). If not, some curve with
image not contained entirely in the slice would meet the S1 orbit more than once, hence
in an S1-family. Consider the projection of such a curve u onto the slice z3 = 0. The
projection of this curve is non-injective and the curve u multiply covers its projection. But
such a curve u can be excluded by index calculations.

Finally, representatives ofM1 persist under scaling the ellipsoid E. Note that the set
of ellipsoid embeddings into X is connected, and one gets from one embedding of E to
any other embedding of E through scaling and change of coordinate bases. Re-scaling the
ellipsoid does not change the manifold X \ E up to diffeomorphism. Furthermore, we can
pull all structures (symplectic, almost-complex, etc.) back from the re-scaled X \ E to the
un-scaled X \ E. Re-scaling the ellipsoid has no effect on the Fredholm index of curves
asymptotic to the ellipsoid, but it does affect the area of curves asymptotic to the ellipsoid.
In the proof of this proposition, we have used only Fredholm arguments, making the proof
agnostic of scale. This completes the proof of the proposition and the proof of Theorem
4.3.1.
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4.7 Higher Dimensions

We conclude this chapter by explaining how the above results extend to higher stabiliza-
tions, i.e. n > 3. In section 4.1, we should consider the 2n-dimensional ellipsoid

E = (ε− δ1, (2d+ 1)(ε− δ2), ..., (2d+ 1)(ε− δn)),

where δ2, ..., δn < δ1 < ε are small, and formula (4.0.2) holds for 1 ≤ i 6= j ≤ n. This
irrationality of the capacities of the ellipsoid implies that there are only n closed Reeb
orbits of E along the coordinate planes. The eccentricity of the ellipsoid E ensures that
curves with positive area can only be asymptotic to the short orbit γ1. (This is the first
computaion of Proposition 4.6.4.) The formula for the Conley-Zehnder index of a Reeb
orbit on a 2n-dimensional ellipsoid is given in lemma 4.1.1.

In section 4.2, the source polydisc P (1, x)× R2n−4 should be replaced by

P (1, x, S, ..., S︸ ︷︷ ︸
n−2

).

This polydisc contains a special subset U defined as a toric domain by

U = µ−1( (1− ε, 1)× (x− (2d+ 1)ε, x)× (S/2, S)n−2 ),

and the discussion of how to use a Hamiltonian to smooth U to obtain Σ generalizes in the
obvious way. The formula for the Conley-Zehnder index of a Reeb orbit on Σ in homology
class (k, `,m1, ...,mn−2) ∈ Zn \~0 generalizes to

CZ(c) = 2k + 2`+ 2m1 + ...+ 2mn−2 +
n− 1

2
. (4.7.1)

We compactify the target polydisc P (a, b)×R2n−4 as X = CP1(a)×CP1(b)×Cn−2. The
divisor at infinity becomes

L∞ = p∞ × CP1(b)× Cn−2 ∪CP1(a)× p∞ × Cn−2,

and we assume L∞ is a J-holomorphic submanifold of X . The bidegree of a curve in X is
defined by its intersection number with the Poincaré dual of L∞. We then assume that

E → U ↪→ P (a, b)× R2n−4 ↪→ X.

The existence theorem for curves, Theorem 4.3.1, does not depend on n. The proof of
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this theorem is the whole of section 4.6, and the Propositions 4.6.1 through 4.6.4 take place
in four dimensions. It is not until Proposition 4.6.5 that stabilization enters. The curve is
stabilized by simply including it in the stabilized target manifold. The index computation
in Proposition 4.6.5 explicitly mentions n, and still gives a non-negative index when n > 3.
The conditions for Index(G) = 0 are the same for n > 3 in Proposition 4.6.5. The conclu-
sion of the computation would be the same. In the penultimate paragraph of Proposition 5,
the S1 action is replaced with a Tn action, which rotates each stabilized factor. The proof
in the reference [CGH18] goes through just the same.

Once the existence of a stabilized curve is ensured, the proof by contradiction of the
main theorem can be done in any dimension. The formula (4.7.1) will simplify, because we
can show that all mj = 0 as we did in lemma 4.3.4. Notice, in particular, that the Conley-
Zehnder index (4.7.1) increases by 1/2 as n increases by 1. This contribution from the
dimension is exactly canceled by the term that involves the dimension of the Reeb orbits in
the virtual index formula, but only for a negatively asymptotic end. Specifically, we have
shown for a negative end winding about a hyperbolic orbit c on Σ that

CZ(c)− 1

2
dim(c) =

(
2k + 2`+ 2m1 + ...+ 2mn−2 +

n− 1

2

)
− 1

2
(n− 1) = 2(k + `),

in all dimensions n ≥ 3. Consequently, formula (4.4.2) and the formulas in lemma 4.3.2
still describe the virtual Fredholm index of a plane inX\U with negative end(s) asymptotic
to a Reeb orbit on Σ. For this reason, the results of lemma 4.3.2 still hold for n ≥ 3.
(A similar cancellation can be used to show that the so-called “special curve” has virtual
Fredholm index zero, but this fact is never used.) This computation essentially reduces the
remainder of the proof to the 4-dimensional case.
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CHAPTER 5

Conclusion

In this final chapter, the state of the field of symplectic embeddings is considered, and one
avenue for future work will be discussed.

Recall the properties of ECH capacities that were described in chapter 1. ECH ca-
pacities are one example of the more general notion of a symplectic capacity, which is a
function

g : {symp. manifolds with contact boundary}/symplectomorphism→ R≥0

satisfying the following axioms

1. (Normalization, optional) The symplectic capacity, when applied to the unit ball,
gives

g(B2n(1)) = 1.

2. (Monotonicity) If (X1, ω1) symplectically embeds into (X2, ω2) then

g(X1) ≤ g(X2).

If this property holds only for exact symplectic embeddings, the capacity g is called
exact.

3. (Conformality) LetX2 be defined by rescaling the symplectic manifoldX1 as (X2, ω2) =

(X1, rω1) for r > 0. Then
g(X2) = |r|g(X1).

4. (Stabilization, optional) g(X × CN) = g(X) for N ≥ 1.

Given a symplectic capacity, one often uses the contrapositive of the monotonicity prop-
erty to obstruct symplectic embeddings. The stabilization axiom is labeled as optional be-
cause not all symplectic capacities will have this property. The stabilization axiom would
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obviously be quite useful for exploring stabilized embedding problems, as defined in chap-
ter 4. One example of a symplectic capacity that enjoys the stabilization property is the
sequence of Ekeland-Hofer capacities, which we denote by gEHk . The Ekeland-Hofer ca-
pacity is defined in [EH90]. For Liouville domains, the kth Ekeland-Hofer capacity of
X is represented by the action of some closed Reeb orbit on ∂X . We give one example
computation here.

Example 5.0.1. The kth Ekeland-Hofer capacity of the ellipsoid E(a1, ..., an) is the kth

smallest element of the infinite array {iaj |i, j ≥ 1}, with repetitions allowed. For a stabi-
lized ellipsoid, we allow some aj =∞.

One can compare this to the computation of the kth ECH capacity of an ellipsoidE(a, b)

in example 1.0.2. The formula for the kth ECH capacity involves both areas (or radii) of
the ellipsoid, whereas the kth Ekeland-Hofer capacity sees one area at a time.

It was previously conjectured that the Ekeland-Hofer capacities are sharp (also called
complete invariants) for the 4-dimensional ellipsoid embedding problem. This would mean
that an embedding of E(a, b) into E(c, d) is obstructed if and only if it is precluded by
Ekeland-Hofer capacities or volume. (In other words, the Ekeland-Hofer capacities and
the volume capacity would generate the collection of generalized symplectic capacities on
the space of open 4-dimensional symplectic ellipsoids.) It was shown in [McD09] that
Ekeland-Hofer capacities are not sharp. This implies that in 4 dimensions, Ekeland-Hofer
capacities are less informative than ECH capacities, which are known to be sharp (for
ellipsoids embedding into ellipsoids) but are unique to dimension 4. When the Ekeland-
Hofer capacities are applied to a stabilized 4-manifold, they, by construction, give the same
information as for the 4-dimensional non-stabilized manifold. For this reason, we can’t
expect the Ekeland-Hofer capacities to be a supple invariant on stabilized ellipsoids.

The standard method for creating a symplectic capacity was described in chapter 1.
One supposes that a symplectic embedding of ϕ : X1 → X2 exists, and one looks for
J-holomorphic curves in the symplectic completion of the cobordism X2 \ ϕ(X1). The
existence of such a curve can be secured from neck stretching (as was done in proposition
4.6.4), or from some homology theory. ECH capacities, for example, use embedded con-
tact homology to count curves. Once a curve is produced, positivity of area can obstruct
the supposed embedding. In order to enumerate such curves, it is useful to construct a
(nonempty) moduli space of dimension zero. If one wishes to create a symplectic capacity
that enjoys the stabilization property, one could study J-holomorphic curves in symplec-
tic cobordisms whose Fredholm indices are unchanged under the process of stabilization
(wherein the J-holomorphic curve is crossed with a point). The class of curves that were
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studied in proposition 4.6.5 have Fredholm index unchanged under stabilization. Namely,
these curves have genus zero, no positive ends, and a single negative end. Hence, this
would need to be the class of curves constructed in the non-stabilized 4-dimensional sym-
plectic cobordism if one wishes to stabilize the curves and the cobordism. Currently, this
is the only known method of constructing curves which behave well under stabilization.
To build a capacity from this observation, one needs to construct a homology theory from
such curves.

Recently, a symplectic capacity was defined in [Sie19b] that enjoys the stabilization
property and that looks to be a very informative invariant when applied to stabilized el-
lipsoids. As mentioned above, the embedding obstructions come from curves which will
stabilize, and these curves are counted using linearized contact homology, CHlin. The re-
sulting capacity, denoted gb relies on the techniques of rational symplectic field theory
(RSFT). The reader should note that there is not currently a consensus on which con-
struction of RSFT gives an adequate framework for virtual perturbation of J-holomorphic
curves. The paper [Sie19b] describes how the capacities gb could be reformulated to rely
on Floer theory, instead of RSFT. The details of this reformulation have not been fully es-
tablished. Nonetheless, the initial computations of gb have lent credence to the following
useful property.

Conjecture. The capacities gb are sharp (i.e. a complete invariant) for the problem of em-
bedding a stabilized ellipsoid into a stabilized ellipsoid

E(a, b)× CN ↪→ E(c, d)× CN .

Currently, the capacities gb are very difficult to compute, with the current procedure
being recursive. The field should consider computing gb for other toric domains, and sim-
plifying the methods that currently exist for computation. This would be extremely helpful
for examining the stabilized embedding problem for other toric domains. The capacities gb
are not sharp for the problem of embedding stabilized polydiscs. In [Sie19b], a computa-
tion of the capacity gb predicts that if

P (1, 2)× C ↪→ P (c, c)× C,

then c ≥ 3/2. An application of theorem 4.0.1 from chapter 4 gives the improved bound of
c ≥ 2, and this bound is the best possible.

One such stabilized embedding problem, which we shall call the stabilized Fibonacci
staircase, has been studied by Cristofaro-Gardiner, Hind, and McDuff. Recall that a portion
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of the graph of the function

fEB(x) = inf{R |E(1, x) symplectically embeds into B4(R)}, for x ≥ 1

is shown in figure 1.1. Let us define a stabilized version of this function by

fNEB(x) := inf{R |E(1, x)× CN symplectically embeds into B4(R)× CN}, for x ≥ 1.

In three papers, [CGH18], [McD18], [CGHM18], Cristofaro-Gardiner, Hind, and Mc-
Duff computed the value of fNEB for certain x ≥ 1. In particular, two of those authors
proved the folliowing.

Theorem. ([CGH18]) The functions fEB and fNEB coincide for 1 ≤ x ≤
(

1+
√

5
2

)4

.

Because the graphs of fEB and fNEB coincide on the given interval, the stabilized embed-
ding function fNEB is still bounded below by a volume curve, y =

√
x. This is interesting,

because stabilized ellipsoids have infinite volume, and therefore an embedding of stabi-
lized ellipsoids should not be obstructed by volume. It is currently not understood why the
volume obstruction from the 4-dimensional ellipsoid embedding problem persists to the
stabilized embedding problem.

Some values of the function fNEB can be computed using Siegel’s capacities gb, and this
is done in [Sie19a].

As a future avenue of research, the field might consider the stabilized Pell staircase.
Recall that the Pell staircase is the graph of the function

fEC(x) = inf{R |E(1, x) symplectically embeds into C4(R)}, for x ≥ 1,

and the relevant portion of the graph, for 1 ≤ x ≤ (1 +
√

2)2, is shown in figure 1.2.
Analogously, one can stabilize the manifolds involved in this embedding problem to make
the function

fNEC(x) = inf{R |E(1, x)× CN symplectically embeds into C(R)× CN}, for x ≥ 1.

Based on the results cited above, we make the following.

Conjecture. The graph of fNEC(x) coincides with the graph of fEC(x) for
1 ≤ x ≤ (1 +

√
2)2.

The procedure for proving this conjecture would be similar to the technique described
for proving theorem 4.0.1 above. For certain ratios of Pell numbers, 1 ≤ p ≤ (1 +

√
2)2,
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we study J-holomorphic curves in the cobordism C(fEC(p)) \ E(1, p). If the curves have
genus zero and only a single end asymptotic to the ellipsoid, then their Fredholm indices
are unchanged under the process of stabilization. This would imply that such curves of
Fredholm index zero could be enumerated in the four-dimensional symplectic cobordism
and meaningfully included (crossed with a point) in the corresponding stabilized symplec-
tic cobordism. The symplectic capacities gb, if computable, could assist in counting such
curves.

In the context of the conjecture, notice also that the graph of y = fEC(x) on the interval
x ∈ [1, (1 +

√
2)2] must stay below the “folding curve” y = 2x/(x+ 1). Analogously, fEC

must stay above the volume curve, y =
√
x/2. Consequently, volume plays a non-obvious

role in the stabilized problem. For x >> (1 +
√

2)2, the “folding curve” of y = 2x/(x+ 1)

may coincide with fNEC . If so, folding would be the optimal embedding technique for very
skinny stabilized ellipsoids into stabilized cubes. Finally, it would be interesting to know
which obstructions present in the four-dimensional embedding function fEC do not persist
under stabilization to fNEC .
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