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ABSTRACT

Modern engineering design is a complex, path dependent process in which knowl-

edge is generated for decision making through time. While this in and of itself poses

an immense challenge, designers must also coordinate their efforts across a number of

design disciplines to produce a converged design in the presence of exogenous factors

such as shifting requirements and changing information landscapes. The presence of

such factors all too often requires large portions of the design to be revised, leading to

excessive rework, design churn, and integration failures in the design process. This has

spurred an interest in the notion of conceptual robustness, however the approaches

to date remain focused on the product being developed rather than on the knowledge

generated to create the product. As such, little has been done to understand the

conceptual robustness of a design process, and focusing on knowledge structures pro-

vides a novel method for designers to effectively manage these complex design tasks.

This helps ensure design activities are robust against future changes in the design

landscape.

The framework presented in this thesis, the Knowledge-Information (K-I) Frame-

work, utilizes a multi-layer network approach to represent how information sources

are translated into knowledge structures and is analyzed using a number of novel en-

tropy metrics. The framework considers the information-knowledge interplay at two

scales: (1) at a local, intra-discipline level and (2) at a global, design integration level.

These multi-layer networks are analyzed to reveal conceptual robustness insights for

individual disciplines, and throughout the process of integrating disparate sources of

knowledge between disciplines. The framework provides a novel perspective of what

xi



it means for a knowledge structure to be robust, and enables emergent design failures

to be identified earlier on in the design process.

The utilization and analysis of the K-I Framework enable design knowledge to be

explored in the context of conceptual robustness. First, novel entropy-based temporal

metrics are developed which leverage concepts from both Network Theory and Infor-

mation Theory to provide new perspectives to analyze knowledge and information

structures over the course of a design activity. Second, the theoretical basis of the K-

I Framework is outlined, along with the processes by which local and global structures

are developed and the way in which they interact. Third, a case study is presented

which highlights how different calculation strategies yield different local knowledge

structures in relation to calculating the same desired knowledge entity. Finally, an

additional case study is presented which focuses on capturing global knowledge inte-

gration dynamics in performing an Analysis of Alternatives (AoA) study of a naval

distribution system. The results of the case studies are used to draw conclusions

about the conceptual robustness of design knowledge generation.
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CHAPTER I

Introduction

1.1 Motivation & Relevant Research

The advances of modern technologies and analysis methods have led to the creation

of new engineering marvels. Computational and simulation advances have improved

the accuracy and capabilities of engineering analyses, and have had a significant im-

pact on what can be achieved. While these advances have addressed many technical

challenges, they have also created new challenges in design development. The inte-

gration of large software suites and integrated tool-sets has reduced the transparency

of engineering analyses and blurred the line between what is information and what

is knowledge. Significant time, effort and investment has been put toward improving

design analysis capabilities, but little has been done to understand how best to utilize

these tools to generate useful information and novel design knowledge over the course

of a design activity. Modern engineering design is a complex, path dependent process

in which knowledge is generated for decision making through time, often leading to

emergent design failures if not managed or understood properly.

These recent advances have provided novel approaches to product-centric problem

solving, but unfortunately lack the ability to address the wicked problem that defines

the landscape of modern engineering design. Originally coined by Webber and Rittel

(1973), a wicked problem is a classification of problem that directly contradicts the
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ideas of traditional problem solving activities. Wicked problems were later generalized

by Conklin (2006) as adhering to six defining characteristics. In the context of design,

these characteristics are:

1. The product is not understood until after the formulation of a solution.

2. Design problems have no stopping rule.

3. Solutions to design problems are not right or wrong.

4. Every design problem is essentially novel and unique.

5. Every solution to a design problem is a “one shot operation.”

6. Design problems have no given alternative solutions.

These six characteristics defining wicked problems are unfortunately inherent as-

pects of conducting novel engineering design activities, and represent significant diffi-

culties to designers in determining appropriate requirements (Andrews 2012). Design

as a wicked problem means that design is understood through a-posteriori (derived

from experience), tacit (contained within the mind), and procedural (habitual pro-

cesses) sources of knowledge.

A-posteriori knowledge is gained by first having an experience, then using logic

and reflection to derive understanding from it. As traditional design knowledge is

based on experiences, this source of knowledge is often subjective and open to inter-

pretation. The subjectivity of reflecting on a design activity can make it difficult to

find root causes of emergent behaviors and design failures. Additionally, traditional

design knowledge is tacit, making the act of design comparable to playing an instru-

ment or speaking a foreign language, in that designers “know more than they can tell”

(Polanyi 2009). While designers can communicate certain aspects about a product

or process, this is only a small subset of the knowledge, and it is impossible to fully
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communicate the notion of conducting design effectively to others without them doing

it. This hinders the ability to communicate lessons learned to future design activities,

which will necessarily be novel and unique. To better account for conducting future

novel design activities, design is often framed using procedural knowledge, which de-

tails the steps or activities to perform a task or job. However, while the details of how

to conduct the process is useful for formulating different design approaches, it is not

the same as knowledge of how to actually do it. As procedural knowledge is unique

to different individuals (or organizations), this can lead to ineffective design man-

agement, and a disconnect between engineering tasks performed and the engineering

tasks needed for proper information generation. Operating within the confines of

these sources of knowledge leads to the complexity of conducting a successful design

activity, and can drastically impact the likelihood of a successful design outcome.

The issues associated with knowledge generation within the context of the wicked

problem have been framed as necessary evils to be worked around. For this reason,

engineering design has been focused on creating a successful product (product-centric

design), and often neglects the knowledge used to create that product (knowledge-

centric design). While a product-centric view of design is helpful in many scenarios,

it is insufficient to understand emergent design failures, such as design churn, rework,

and failure to integrate (Braha and Bar-Yam 2007). These concepts can be understood

as:

Design Churn: Yassine et al. (2003) states that design churn occurs when

“the total number of problems being solved (or progress being made) does not

reduce (increase) monotonically as the project evolves over time”. Design churn

arises when solving a problem leads to the creation of further problems, which

result in the design’s emergent path oscillating around the design path required

to yield a successful outcome. This reduces the ability to measure and manage

design progress and results in inefficiencies leading to increased development
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times, cost overruns, and decreased problem solving abilities of design teams.

Excessive Rework: Rework is “the repetition of tasks due to the availability

of new information generated by other tasks, such as changes in input, updates

of shared assumptions, components, boundaries, or the discovery of errors ... As

this missing or uncertain information becomes available, the tasks are repeated

to come closer to the design specifications or goals” (Braha and Bar-Yam 2007).

While this concept is a fundamental consequence of iterative design processes,

it becomes problematic when rework becomes excessive and results in design

churn.

Failure to Integrate: Conducting a successful complex engineering design

activity means integrating a large number of components or systems into a final

product. From a knowledge perspective, new requirements or new knowledge

associated with these components or systems must integrate with the existing

knowledge structure (Shields and Singer 2017). This can lead to integration

issues in relation to both the product and knowledge required to define that

product. In the best case, these integration issues result in design churn and or

rework, but often lead to an inability to continue with current design activities

or infeasibility of the final design.

Emergent design failures are fundamentally aspects associated with the act of de-

signing the product, rather than in the product itself (Shields 2017). Over the course

of a design activity, engineering analyses are conducted to learn about the design

problem, and provide additional data and information for further design refinement.

The resultant data and information is then used to inform future engineering analyses,

which inherently creates path dependencies (Page 2005) throughout a design activ-

ity. This cyclical process is repeated until a final product is created. The connected

and interdependent parts which comprise the product define the product structure.
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More importantly, the relationships between the ideas, concept elements and evidence

used to yield that product define the knowledge structure. This can be understood

as a macro-level mental model associated with a product, created using knowledge

generated within and integrated across design teams in the design activity. In order

to fully understand and prevent emergent design failures, a fundamental shift is re-

quired toward a knowledge-centric perspective of design as opposed to the common

product-centric perspective.

Figure 1.1 provides context for how each of the emergent design failures can affect

decision-making paths in a design activity over time. The x-axis represents time, and

the y-axis represents the potential knowledge which can be gained based on influential

information. The stars in the image denote potential knowledge structures, and

the shade of the stars represent the associated fidelity of the information associated

with the knowledge structure (darker shade means more fidelity). Initially, a large

number of potential knowledge structures exist, but are of relatively low fidelity.

Later on in the design activity, there are a much more limited number of knowledge

structures, and they are of much higher fidelity. A decision is a commitment to a

knowledge structure at a point in time, which both restricts the possibilities of future

knowledge structures, and limits the influence of information. The aforementioned

path dependent process of conducting engineering analyses creates an emergent path

(shown in red) which represents the current direction of the design activity. For

wicked problems which do indeed have a solution, there must exist some ‘required

path’ (shown in green) which represents an ideal sequence of engineering activities

required to reach the design goal. It should be noted that for wicked problems the

required path (green) is only known once the solution has been created, and the

current emergent path (red) is constantly evolving. Thus, effectively managing the

wicked problem should ensure the current path is best aligned with the required path

over the course of a design activity, and can best realign the two paths when they
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(a) Ideal Case (b) Design Churn (Development)

(c) Design Churn (Refinement)

(d) Rework (e) Failure to Integrate

Figure 1.1: The relation of path dependencies to Emergent Design Failures

divert as early as possible, with the minimal amount of effort.

In the ideal case (1.1a) the design decision results in an emergent path (red line)

which is aligned with the required path to reach the goal (green line). In this case, the

emergent path creates the “correct” knowledge structure by uncovering the appro-

priate relationships between engineering analyses and in the correct sequence, thus

avoiding emergent design failures. If a knowledge structure is not robust, design

churn can occur in the development of future knowledge structures (1.1b), in which

inefficiencies in the process make it difficult to understand the required decision path.

Additionally, design churn can occur in the refinement of a knowledge structure af-

ter lock-in has occurred (1.1c), which results in increased time in conducting design

analyses. A decision which leads to rework (1.1d) can occur if the trajectory of the

decision path diverges from the required path after the decision has been made. As
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the paths were congruent up to the decision point, rework can be understood as “re-

tracing steps” to re-align the decision path with the required path. This should be

realized as early as possible, so as to minimize the number of steps needing to be

retraced to realign the paths. This is not possible in the case of failure to integrate

(1.1e), in which there is no possibility to reach the required path from the current

one due to external factors, or incompatible knowledge structures.

While wicked design problems are essentially “unsolvable”, the probability of a

successful design outcome can be maximized by mitigating emergent design failures

through applying the idea of conceptual robustness to design knowledge, which is a

relatively unexplored research area. Conceptual robustness, first coined by (Chang,

Ward, et al. 1994), is a widely used term with no universally accepted definition.

Robustness in the context of an engineering system is the ability to resist or cope with

changes or perturbations without adapting its initial stable configuration. Robust

design has been defined as: “An approach to designing a product or process that

emphasizes reduction of performance variation through the use of design techniques

that reduce sensitivity to sources of variation” (Dehnad 1989). Some of the first

most notable contributions to the realm of product-centric views of robustness in

design were from Genichi Taguchi, whose work includes three primary statistical

contributions pertaining to robustness:

1. Designers should minimize the deviation of performance parameters from de-

sired target values, to ensure quality and satisfaction of design requirements.

2. Products should be robust against manufacturing and environmental variations

(physical noise), to ensure the product can meet design requirements over a

wide range of manufacturing and operational environments.

3. Partial-factorial, orthogonal arrays should be used to create experiments rather

than changing parameters individually in order to minimize the number of re-
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quired experiments, and to capture the average effects of design parameters in

the presence of noise.

This approach to incorporating robustness in designing products is based on sta-

tistical design of experiments (Cornell and Khuri 1987; Box, W. G. Hunter, and J. S.

Hunter 1978), and it has gained notoriety in the realm of quality engineering and

optimization schema (Chang and Ward 1995). These notions of robustness aim at

managing either the variability of design parameters or reducing their sensitivity to

the outcome of the product, and are limited to later design stages after conceptual

design has been completed. These notions do not account for the underlying body

of knowledge and information used to design the product, but focus on the product

itself. In this respect, they account for robustness of the product, but do not address

what it means for a design process to be conceptually robust.

Further work has been done to extend the Taguchi Parameter Design practices

into concurrent engineering processes (Chang, Ward, et al. 1994; Chang and Ward

1995) and in doing so spurred the definition of “conceptually robust decisions”, which

are decisions that are robust against variations in the part of the design done by other

team members, or “conceptual noise”. While this extension is more comprehensive,

it is still product-centric, and is limited to systems composed of well-defined com-

ponents, of relatively low complexity. A later definition of conceptual robustness by

Bernstein (1998): “refers to both the product’s ability to function in a wide range

of manufacturing and operating environments and to the design’s ability to adapt to

modifications which might be implemented later in its development.” While this def-

inition also remains product-centric, it extends previous definitions by taking a more

holistic approach by incorporating the concept of future design developments into the

definition. More recently, Singer, Doerry, and Buckley (2009) provided the definition:

“Conceptual robustness is achieved when engineering decisions concerning one aspect

of a design remain valid in the face of design decisions made in other aspects of the
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design.” This definition is closest to being knowledge-centric, although it is not stated

explicitly. What is required is a definition of conceptual robustness that is focused

on the proper definition of design as a whole.

If design is defined as the act of generating knowledge for decision making through

time, then a proper definition of conceptual robustness must include aspects of knowl-

edge structure development and analysis. Additionally, the definition must relate the

temporal knowledge structure evolution to the final creation of a successful product.

The above definitions describe some of the key attributes of conceptual robustness in

general terms, but must be applied in the context of knowledge structures if one hopes

to capture how the development of knowledge provides a conceptually robust land-

scape. This spurs the following, proposed, knowledge-centric definition of conceptual

robustness:

“A conceptually robust knowledge structure is a knowledge structure that,

through time, maximizes the likelihood that its current and future evolu-

tion is resilient to exogenous factors.”

In other words, a conceptually robust knowledge structure enables the greatest

potential to integrate future knowledge entities, and mitigates the impact of exoge-

nous factors of the current structure, through time. Herein lies the difficulty, as

the knowledge structure should support the integration of future knowledge while

mitigating the impacts on previously integrated knowledge. A conceptually robust

knowledge structure should provide a structure which maximizes the number of pos-

sibilities where new knowledge can be integrated into the existing structure, and yet

should minimize the impact of future knowledge by limiting the amount of knowl-

edge entities which need to be restructured in the presence of changes triggered by

exogenous factors.

Complex design requires the development of knowledge at a number of levels. At

a local level, design teams may create or utilize tools to develop individual knowledge
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structures specific to their design discipline. At a global level, the communication

between teams integrates local sources of knowledge into a global structure required

to yield a final product. The definition of conceptually robust knowledge structures

holds for both the local and global levels of knowledge structure development. At

the individual level (for example, within a design discipline), knowledge structures

should be resilient to exogenous factors arising from changes made in other areas

of the design. At the global level, the integrated knowledge structure should be

resilient to exogenous factors such as changes to requirements. These two changes

are tightly coupled - as exogenous factors applied to the global level will impact

local structures’ abilities to successfully accommodate the changes. Conversely, local

changes (such as utilizing higher-fidelity tools) will impact the ability to create robust

global structures. As the design progresses, both levels must be carefully monitored

to minimize the likelihood and impact of emergent design failures.

A primary issue in how conceptual robustness is understood arises from a fun-

damental misunderstanding of the differences between data, information, and knowl-

edge. For example, the US Navy conducts and manages design through product

models (NAVSEA 2012), which are used to integrate definition tools with physics-

based analysis tools to populate and explore a feasible design space. This design space

is created using thousands of point based designs semi-automatically at relatively low

fidelity, to characterize design tradeoffs and ensure that the ‘correct’ design is se-

lected (Chalfant 2015; Kassel, Cooper, and Mackenna 2010). This approach implies

that designers can gain new knowledge about design interdependencies by exploring

tradeoffs and that including more designs provides more accuracy about this knowl-

edge. In reality this approach cannot provide new knowledge; it extracts data and

information embedded in the tool, which is a product of the knowledge structure

used to create it. The interdependencies uncovered in analyzing the results of such

an analysis are a product of the knowledge structure of the software tools used to
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create them, and thus exploration of these tools simply uncovers the relationships in

the tools themselves (Sypniewski 2019). Each point design this tool generates is addi-

tional data, and exploration of how the data relates to each other yields information.

Thus, conceptual robustness in this lens is related to selecting an appropriate design,

rather than generating a conceptually robust design from the outset. The widespread

acceptance that these tools yield novel knowledge is fundamentally flawed, and proves

to be a large hurdle in exploring conceptual robustness from a knowledge perspective.

Significant work has been done to understand the role of knowledge generation

in design activities using knowledge structures (Laxton 1969; Goldschmidt and Weil

1998; Cross 2001). Most notably, the framework developed by Shields (2017) for-

malized a network method for mapping the growth of design knowledge structures

over time using actions and decisions. This work highlighted that emergent design

failures can be mitigated either by increasing the predictability of design outcomes,

or by limiting unexpected interdependencies by controlling the knowledge structure

around design drivers. While this research has provided a promising step toward un-

derstanding the knowledge-centric measures of a design activity, it does not formally

incorporate the process of utilizing data and information into knowledge structure

generation. Additionally, while this approach provides a new perspective on how

design outcomes are created from a knowledge structure, it does not present quanti-

tative methods of relating how actions and decisions change the probability of certain

design outcomes. This will be a crucial aspect in understanding and measuring the

conceptual robustness of knowledge structures.

Addressing the issues associated with the wicked problem necessitates a new per-

spective of conceptual robustness which focuses on the process of generating knowl-

edge over time to develop a product, rather than on the product itself. This requires

the ability to track and understand the use of data and information and how they

relate to the generation of design knowledge over time. Understanding the generation
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of knowledge over time re-frames the wicked problem into a more manageable prob-

lem. Ideally, the ‘wickedness’ of the wicked problem could be removed if designers

could derive design solutions without needing to develop them (a-priori knowledge), if

all aspects of design knowledge and a design activity could be totally communicated

between designers (explicit knowledge), and if designers had full knowledge of design

rather than just how to design (declarative knowledge). However, the wickedness of

the problem means these knowledge sources are by definition unattainable; the best

that can be done is to dynamically track the evolution of knowledge over time to

prevent emergent design failures early on, and to understand the mechanisms under

which they are likely to arise. This requires metrics to understand the dynamics of the

evolution of knowledge from information and data sources to provide warning signs

to designers and managers of potential emergent design failures. Current approaches

to understanding conceptual robustness are inadequate in capturing the dynamics

between how data and information relate to the generation of knowledge, and focus

on the robustness of the product rather than the robustness of the knowledge used

to create that product. The current knowledge-centric metrics are yet to be analyzed

in the context of conceptual robustness. Currently there are no tools to qualitatively

understand and guide the efforts to tackle the wicked problem, and fundamentally

understand the root cause of emergent design failures. A knowledge-centric approach

to conceptual robustness will lead to general strategies to approach wicked design

problems, quantify the impact of the design process on the probability of yielding

design outcomes, and minimize the probability of emergent design failures.
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1.2 Research Scope

Three primary research questions are addressed in this work:

1. How can data, information, and knowledge be represented to model and analyze

a design activity?

2. How can data, information, and knowledge be quantified in the context of a

design activity?

3. How can conceptual robustness be understood from a knowledge-centric per-

spective?

The scope of the presented thesis is focused on answering these fundamental ques-

tions through the creation of a novel framework in which to analyze knowledge-centric

conceptual robustness. The framework utilizes networks to represent the dynamics

between data, information, and knowledge over the course of a design activity and

leverages aspects of information theory to quantify their evolution. This is used to

understand aspects of a knowledge structure which are robust against the presence

of exogenous factors. The following section outlines how these issues are addressed

in this thesis.

1.3 Organization of the Thesis

This remainder of this dissertation is divided into five chapters, and are organized

as follows:

• Chapter II presents the required background information pertaining to Network

Theory and Information theory which are utilized throughout the thesis. In

addition to the existing metrics, this chapter also presents a number of hybrid

metrics which leverage aspects from both disciplines used throughout the work

to understand conceptual robustness.
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• Chapter III introduces the formal multi-layer network framework (the K-I Frame-

work) at the center of this work. This chapter outlines how data, information,

and knowledge are represented in each layer of the framework. Additionally,

the inter- and intra-layer dynamics are outlined to illustrate how information is

used to generate knowledge through time at local and global levels of design.

• Chapter IV provides a case study focused on local knowledge structure genera-

tion. This case study utilizes the processes outlined in Chapter III to elucidate

how different local knowledge structures can be developed based on different

strategies of determining the same unknown bit of knowledge. The results of this

case study are used to discuss the conceptual robustness of each approach, and

draw conclusions about characteristics defining robust local knowledge struc-

tures.

• Chapter V expands the discussion of conceptual robustness to the global lay-

ers of the K-I framework by providing a case study conducting an Analysis of

Alternatives (AoA) design activity. This case study considers how the interac-

tion of local knowledge structures can be used to create global information and

knowledge structures. Leveraging the metrics developed in this thesis, the re-

sults provide a means of understanding conceptual robustness at a more macro

scale.

• Chapter VI details the contributions of this thesis and topics for future work.
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CHAPTER II

Background

This research relies heavily on the areas of Network Theory and Information The-

ory. Network theory fundamentally studies the structures of systems of interest using

relations between entities of the system. This provides significant insight into under-

standing how the system is structured, the dynamics of the system at different scales,

and explaining system behavior. On the other hand, Information Theory studies as-

pects such as the quantification, storage, and communication of information between

entities. While these disciplines have developed (and continue to develop) indepen-

dently of one another, there are many areas of research which have integrated the

two. This thesis leverages the advantages of both theories to provide new and novel

insights to studying design. This section is included to familiarize the reader with the

key concepts of each area used throughout this work, and which are used to create

new metrics unique to this thesis (Section 2.3).

2.1 Network Theory

Much of this explanation comes from Goodrum, Shields, and Singer (2017) and

Goodrum, Taylordean, and Singer (2018). Most simply, networks (or graphs) are ab-

stract representations of systems using points (nodes) and lines (edges). In network

terminology, nodes represent entities and edges represent relationships between them.
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These edges can be directed or undirected, depending on the nature of the relation-

ship. The versatility of these abstractions enable networks to be widely applied to

many social and scientific disciplines. Their versatility and ability to represent a wide

array of entities of varying fidelity make networks powerful tools to study design.

Abstracting design to network space allows for new insights to be derived, otherwise

limited by more traditional approaches. Most notably, several insights can be gained

from the study of how nodes and edges relate to one another - the network’s structure

- which can be quantified in a number of ways. As such, this section briefly out-

lines key network terminology used throughout the remainder of this work to study

network structure. For a comprehensive review of networks, see Newman (2010).

2.1.1 PageRank

PageRank is a centrality metric used to quantify the importance of a node in

a network based on the network’s structure. This metric, originally developed by

Google, is a critical component to many search engines website ranking technology,

and has since been applied to the study of a wide variety of network types. The

PageRank algorithm assigns a numerical value in the range [0, 1] to each node in

the network, which represents the likelihood that a random walk will arrive at that

particular node. Thus, the sum of all nodes’ PageRank values equals 1. The algebraic

definition of PageRank is given by Equation (2.1):

PR = (I− αAD−1)−11 |PR| = 1 (2.1)

where PR is a column vector of node PageRank values, I is the identity matrix,

A is the network’s adjacency matrix, and D is a diagonal matrix with elements

Dii = max(kouti , 1) (for a more detailed derivation, see Newman (2010)). This metric

is useful in quantifying node importance, and also proves useful in its use as an
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equivalence group in studying the Topological Entropy (TE) metric presented in

Section 2.3.1.

2.2 Information Theory

Information theory studies the transmission, extraction, and utilization of infor-

mation. But what is information? At its most basic level, information is the reduction

of uncertainty about what an entity is. In information theory, information is under-

stood as a sequence of symbols, yielding the quantitative definition:

“[Information is] a mathematical quantity expressing the probability of oc-

currence of a particular sequence of symbols, impulses, etc. as contrasted

with that of alternative sequences” (Oxford 2019).

Information theory began with the seminal paper by Shannon (1948), in which

he illustrated that information could be quantified with absolute precision, and that

essentially all communication modes could be encoded in ‘bits’ (Aftab et al. 2001).

Information theory has since been studied extensively, and is widely used in the study

of complex, adaptive, and artificially intelligent systems. Although much work has

been done to further Shannon’s original work, information theory continues to be an

emerging field of study in finding novel applications and analysis methods.

A widespread metric used to study information is Entropy. Entropy is a measure

of disorder, or randomness in a system. In information theory, entropy describes the

rate of transfer of information in a particular message. High entropy corresponds to a

large amount of disorder, while zero entropy corresponds to a completely certain out-

come. Based on the above definition of information, entropy measures this amount of

randomness using the probability of occurrence of the symbols. A number of different

entropic measures have been developed to be suitable for various applications of quan-

tifying information. This research utilizes the common information-theoretic concept
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of entropy to quantify the transmission of information over knowledge networks, as a

means to understand the communication pathways, efficiency, and robustness of such

networks. The applicable measures of entropy used in this work are included in the

remainder of this section.

2.2.1 Shannon Entropy

The Entropy measure originally developed by Shannon (1948), now referred to as

Shannon Entropy (SE), quantifies the average information content in a message based

on the probability of occurrence of each of the characters. Mathematically, Shannon

Entropy is defined by Equation (2.2).

H(x) = −
N∑
i=1

pilog2(pi) (2.2)

where x is message with N characters, and pi is the probability of occurrence of

character i. Note that for a message with a completely certain outcome (i.e. pi = 1

for some value of i, and all other probabilities of 0), H(x) = 0, and conversely, H(x)

is maximized when the probability distribution is uniform (i.e. when pi = 1/N ∀i).

For a derivation of this metric, see Shannon (1948).

While SE provides a mathematical formulation to quantify the average information

content of a message, its interpretation relies heavily on how the probabilities are

computed. In many cases, the probabilities associated with characters are based on

the relative frequency of that character in the message, although this is not the only

method of calculating probabilities. In fact the probabilities used in Equation (2.2)

can be dependent on any equivalence class, in which elements belong to the same

equivalence class if those elements share some pre-specified trait. The fraction of

elements within this equivalence class can be used to determine probabilities. For

example, consider the message shown in Equation (2.3). This message contains three
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unique values (1, 2 and 3), and each is associated with two colors: red (R) and blue

(B). In this instance, values and colors are two equivalence classes based on the same

message. If the probabilities were based on the value equivalency class, the equation

would yield the result shown in Equation (2.4), and if based on the color equivalence

class , the result would be that shown in Equation (2.5).

x = {(1, R), (2, R), (1, B), (3, B)} (2.3)

Hval(x) = −0.5 log2(0.5)− 0.25 log2(0.25)− 0.25 log2(0.25) = 1.5 bits (2.4)

Hcol(x) = −0.5 log2(0.5)− 0.5 log2(0.5) = 1.0 bits (2.5)

Both representations of probabilities are correct mathematically; however, they

reveal different insights. The result of Equation (2.4) says that on average, a person

would need to ask 1.5 questions to correctly determine the value of any of the four

entities in the message. Conversely, to determine the color of any of the entities, the

person would only need to ask one question to be certain. Thus, equivalence classes

play a critical role in defining the amount of information computed by the entropy

metric, and must be selected carefully to be aligned with the question being asked.

Equivalence classes have been applied to networks based on a number of network-

metric based equivalence classes. For example, the degree distribution has been used

to quantify information content in a network, based on the frequency of node de-

gree (Rashevsky 1955). There are additional metrics that have been applied, and

the Topological Entropy metric developed in this work (Section 2.3.1) utilizes node

PageRank (Section 2.1.1) as an equivalence class.

2.2.2 Cumulative Residual Entropy

An extension of Shannon Entropy (SE) was developed by Rao et al. (2004), called

Generalized Cumulative Residual Entropy (CRE) which has a number of advantages
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in the application to this research, and is noted as having applications in the realm

of Reliability Engineering. The main difference between CRE and SE is that CRE

utilizes the cumulative distribution of a random variable, rather than the traditional

probability distribution used in Equation (2.2). Additionally, CRE extends the prop-

erties of SE to consider random values with continuous distributions, and allows the

values to be both positive and negative. This is advantageous when considering the

Value Entropy metric developed in Section 2.3.5. For a random vector X in RN

equation for CRE is presented in Equation (2.6):

CRE(X) = −
∫ ∞
−∞

P (|X| > λ) log2 P (|X| > λ)dλ (2.6)

where X = (X1, X2, ..., XN), λ = (λ1, ...λN), |X| > λ means |Xi| > λi.

To demonstrate the value of CRE, consider the following example adapted from

Rao et al. (2004). Consider two fair six sided dice, A and B, which take possible

values of {1, 2, 3, 4, 5, 6} and {1, 2, 3, 4, 5, 100}, respectively. Each dice is fair, so the

probability of rolling any of the possible values is 1/6 for both dice. Imagine that the

dice values represent payoff schemes. Applying SE to dice A and B (using Equation

(2.2) and value as the equivalence class) leads to the same value of 2.58 bits of infor-

mation for both dice. In applying Equation (2.6) to dice A and B, the values are 2.07

and 22.67, respectively. Thus, CRE provides a metric to meaningfully quantify dif-

ferences between numerically different random variables, suggesting the information

content in the payoff schemes across the two dice are drastically different - something

that SE fails to capture. The CRE metric highlights that the payoff associated with

die B is more uncertain than that of die A.
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2.3 Developed Entropy Metrics

The concepts introduced in Sections 2.1 and 2.2 are leveraged to create three

entropy metrics used to provide insight into the robustness of knowledge structures in

the K-I framework (introduced in Chapter III). Each metric was developed to measure

different dynamics within the resultant networks. A Topological Entropy metric was

developed to measure the information content of network structure, a Target Value

Entropy metric was developed to measure the information content associated with

the calculated values of a target node, and a Data Status Entropy was developed to

consider the growth of uncertainty in a calculation approach over time. These three

developed metrics are explained in more detail in this section.

2.3.1 Topological Entropy

A Topological Entropy (TE) metric has been developed to quantify the informa-

tion contained by a network structure. While centrality metrics such as PageRank

(Section 2.1.1) have been used to analyze the structure of networks, and entropic

measures of information theory such as Shannon Entropy (Section 2.2.1) have been

used to quantify information content, a novel metric is required to quantify the struc-

tural complexity and information of a network. This metric must thus integrate the

centrality metrics of network theory with entropic metrics of information theory to

be useful in this research.

As outlined in Section 2.1.1, the PageRank centrality metric ranks nodes in order

of importance based on the structure of the network. Additionally, this metric has

the convenient feature that they are bounded between 0 and 1, and the sum of all

PageRank node values across the network sums to one Equation (2.1). Hence, the

PageRank vector can be utilized in the same way as a probability distribution in

Equation (2.2) to uniquely quantify the information content in a network. Combining
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these concepts yields the mathematical expression for Topological Entropy (TE):

TE(G) = −
∑
n∈G

(PRn)log2(PRn) (2.7)

where n is a node in network G, and PRn is the PageRank value of node n. As this

metric is general, it can be applied to any network, and tracked over time.

2.3.2 Unknown Fraction

Although TE quantifies the information content contained in the structure of a

network, it does not address the calculability of nodes in the network. To account for

this, a binary data status indicator is assigned to each node in the network, which is

one if and only if that node has data, and is zero otherwise. Tracking the portion of

nodes with no data over time provides an intuitive method of understanding how the

design is progressing in terms of unknown parameters becoming known, and extends

the analysis beyond just the structural growth. To understand the unknown portion

of the network, the Unknown Fraction (p0) metric is proposed. This metric is defined

as:

p0,t(Gt) =
n0,t

Nt

(2.8)

where Gt is network with Nt nodes, and n0,t are the number of nodes with data

status 0, all at time t. UF takes a maximum value of 1 when all nodes in the

network are unknown (all nodes have data status 0), and takes a value of 0 when all

nodes contain data (data status of 1). Tracking this metric over time reveals if the

number of unknowns in the network is monotonically decreasing, which can be used

to identify design churn. The compliment of UF, referred to as the Known Fraction

(p1), represents the proportion of the network which contains data, by considering

the number of nodes with data status values equal to 1. Note that n0,t + n1,t = Nt,
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and p0,t + p1,t = 1 ∀t. The Known Fraction metric is defined as:

p1,t(Gt) = 1− p0,t =
n1,t

Nt

(2.9)

For simplicity, subsequent sections refer to p0,t(Gt) and p1,t(Gt) as p0,t and p1,t,

respectively.

2.3.3 Data Status Entropy

A mathematical solution to an equation can only be calculated if all of the de-

pendent variables are defined by values. Understanding the process of gathering data

from information sources to populate these dependent variables (used to calculate so-

lutions) requires a novel metric. This metric, called the Data Status Entropy (DSE),

is used to quantify growth of a network’s calculability over time when intermediate

calculations are required. To account for this, the known and unknown fraction met-

rics from Section 2.3.2 are leveraged. One proposed entropy metric is presented in

Equation (2.10):

Ht(Gt) = −(p0,t) log2 (p0,t)− (p1,t) log2 (p1,t) (2.10)

where Gt is the network, and p0,t and p1,t are defined in Equations 2.8 and 2.9, re-

spectively. Note that the equation is not defined for cases where N = 0, meaning at

least one node must exist in the network in order for the metric to be applied.

This formulation considers both known and unknown fractions, and is bounded be-

tween 0 and 1. While this formulation has a number of useful qualities, it also presents

a number of issues. First, note that the function is maximized when (p0,t, p1,t) =

(0.5, 0.5). This indicates entropy is maximized when the fraction of knowns is equal

to the number of unknowns. Since there is equal likelihood of a randomly selected

node being known or unknown in this case, it is intuitive that this should maximize
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the metric.

Also note that the function is symmetric about this maximum. The function takes

a minimum value of 0 at (p0,t, p1,t) = (0, 1) and (1, 0), which occurs when either all

nodes are calculable, or incalculable. Both cases represent complete certainty of the

data status of a randomly selected node, yet have significantly different contexts in

understanding the calculability of a network. What is required is a metric which

differentiates the two scenarios, and enables further understanding of the network

dynamics. In order to address these issues, a reformulation is proposed:

DSEt(Gt) =

 1 if p1,t = 0

−(p1,t)log2(p1,t) if p1,t > 0
(2.11)

where the parameters of the equation have been previously described.

The function in Equation (2.11) addresses the issues created by Equation (2.10)

by focusing on the entropic contribution of only the calculable portion of the network.

This avoids the issues presented with the symmetry of the previous metric. If the

network is entirely incalculable (i.e. (p0,t, p1,t) = (1, 0)) then the entropy is assigned

its maxmimum value. Conversely, if the network is entirely calculable ((p0,t, p1,t) =

(0, 1)), the entropy is minimized. This is the metric utilized throughout the remainder

of this thesis.

By viewing the DSE time series, the growth in uncertainty of a calculation ap-

proach can be determined by tracking how calculation steps progress over time, and

how that leads to the growth of uncertainty in terms of a network’s calculability. This

can be used to ensure all calculation steps progress toward calculating the target node

value appropriately. The metric also aids in identifying design churn and rework ac-

tivities based on the data status of revisions made to knowledge and information

structures.
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2.3.4 Normalized Data Status Entropy

Additional insight can be gained from determining how the number of known

or unknown variables change over the course of a design activity by comparing the

change in DSE to that at the initial state. This metric, called Normalized Data Status

Entropy (NDSE), is given by Equation 2.12, and expresses the DSE at a given point

in time in reference to the initial DSE of the network:

NDSEt = 1− DSEt

DSEi

(2.12)

This metric takes a value of 0 at the initialization of the network, and approaches

1 as more parameters become known relative to the starting point. An increase in

NDSE means more variables are becoming known, while a decrease means the ratio

between known and unknown variables is approaching 50/50. Note that unlike the

previous entropy metrics, NDSE can take negative values if initial timesteps lead to

more unknown variables than that at the outset of the design activity. Similar to the

insights gained by the metrics proposed in Equations (2.8) and (2.11), this metric

helps identify design churn and rework activities, but provides a relative comparison

to the starting condition of the design.

2.3.5 Target Value Entropy

The previous entropy metrics have focused on quantifying the information con-

tent associated with the structure and calculability of networks. However, they do not

address the information content associated node values. Consider a static network

structure which is fully calculable. The previous metrics could identify the uncertain-

ties of these scenarios, but do not consider the way in which node values change as the

result of calculations being performed on the structure. As was presented in Section

2.2.2, CRE is an appropriate metric to use to quantify information content within
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continuous distributions, and is sensitive to different sampled values. This makes it

an appropriate entropic measure of calculated values, to quantify both information

content and uncertainty. This spurred the development of a Target Value Entropy

(TVE) metric. This metric can also be tracked over time (as more target values are

calculated), and can be used to quantify and compare the uncertainty of calculated

values of different analysis methods. The equation for the TVE is:

TVEt(V ) = −
∫ ∞
−∞

P (V > v) log2 P (V > v)dv (2.13)

where V = {V0, ..., Vt} is the message of calculated target node values up to time t.

TVE considers the history of node values, and applies an entropy metric which

accounts for changes in uncertainty over time. Static node values over time represent

certain time histories, thus resulting in zero TVE. Similarly, node values which change

will lead to a growth in TVE, as the distribution of observed values will flatten. There

is no upper bound on TVE, and the magnitude of the growth is dependent on both

the magnitude of the value and the sequence of previous values. Hence TVE is unit-

dependent.

TVE provides a useful means to identify the sources of rework and design changes.

Observing how node values change over time will highlight potentially problematic

variables, and when considered in conjunction with the aforementioned metrics will

enable designers to better understand potential sources of non-robust design activities.

2.3.6 Differential Target Value Entropy

A subtle reformulation of the TVE metric developed in Section 2.3.5 provides an

additional perspective as to the associated uncertainty of a string of values within

a node. This metric, called Differential Target Value Entropy (DTVE) focuses on

the amount a value changes, rather than on the value itself. While TVE provide
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insight into the uncertainty in a string of values, DTVE provides a relative measure

of entropy growth based on the differences of sequential values. DTVE is given by

the following equation:

DTVEt(V ) = −
∫ ∞
−∞

P (∆V > v) log2 P (∆V > v)dv (2.14)

where V = {V0, ..., Vt} is the message of calculated target node values up to time t

and ∆VT = {(V1 − V0), ..., (Vt − Vt−1)} is the message of the sequential differences in

calculated target node values up to time t.

DTVE obeys the same trends as those described for TVE while allowing designers

to gain an alternative understanding of uncertainty. By focusing on the magnitude

of value changes rather than the values themselves, the metric captures uncertainty

growth relative to how much a variable has changed previously. This provides design-

ers with an additional lens through which to view potentially problematic variables.

Similar to TVE, values which do not change will have zero DTVE, and those which

change will exhibit a growth. Additionally, the metric is more sensitive to immedi-

ate identification of variable value changes, which will become more clear in the case

studies presented in this thesis.
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CHAPTER III

The K-I Framework

This chapter introduces the formal multi-layer network framework (the K-I Frame-

work) to capture the dynamics of how bodies of information lead to the generation

of knowledge structures through time. A preliminary overview of the K-I frame-

work is presented in Figure 3.1, and will be explained in more detail throughout

this chapter. The framework considers the knowledge-information (K-I) interplay at

two scales: at a local level (Section 3.1), representing design agents or disciplines

(shown in the top two layers in Figure 3.1), and at a global level (Section 3.2) -

Figure 3.1: Overview of the multi-layer K-I Framework.
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developing and integrating information and knowledge across agents (shown as the

bottom two layers in Figure 3.1). This chapter also outlines the nomenclature and

definition of framework-related terms used throughout the research. The networks

describing knowledge structures form the basis for the information theory metrics to

be applied, which provide insight to information flows and the robustness of various

design approaches.

3.1 Local K-I Layers

This section outlines the discipline-level knowledge-information interplay to create

local knowledge structures. Section 3.1.1 outlines how local information structures are

represented in the local information layer, and Section 3.1.2 outlines the dynamics of

how these local information structures are used to create local knowledge structures.

3.1.1 Local Information Layer

The local information network layer contains the information resources required

to populate the local knowledge layer. The network represents a number of data

elements, and their relation to one another. Given this definition, data entities are

represented as nodes, and functional dependencies between data elements are repre-

sented by directed edges. An edge in the local information network is drawn from a

variable X to a variable Y if and only if X is used to calculate Y . That is to say

directed edges point to dependent variables from the variables used to calculate them.

In this way, mathematical formulas can be represented as networks.

Consider as an example the equation A = BCD. This equation represents that

there are functional dependencies between the variables A, B, C, and D. From a

data perspective, this equation simply relates how the data entities are related, by

describing the dependencies between variables. If solving for the variable A, directed

edges would be drawn from variables B, C, and D, pointing to A. However, rear-
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ranging this equation to solve for any of the other variables would result in similar

structures.

The variables A, B, C, and D are only symbolic representations of data entities

- that is to say the equation holds true regardless of what the values of each variable

are. Under the same reasoning, nodes are simply symbolic representations of data - a

node can be populated in the information network as a data entity without containing

any values. This separation between data structure and values is an important aspect,

as they are related in how the data is utilized. The variable being solved for dictates

the resulting structure, and conversely the variables that have values (contain data),

dictate which variable can be calculated. To account for the first issue, the equation

is rearranged to solve for each variable, and a directed network is created for each.

The information network is created by merging each of these individual networks. By

rearranging the equation to solve for each variable, the resulting information network

captures all possible data dependencies, and thus defines how data within the network

is organized (information). To solve the second issue, each node in the information

network contains a value place-holder and a data status binary indicator, which is

one if and only if the data entity contains one or more values, and is zero otherwise.

This elucidates which variables contain data, and which don’t, and also translate to

what can be calculated very rapidly. Figure 3.2 shows the resulting network for this

example case.

The representative network shown in Figure 3.2 describes the relations between

data sources, and thus represents the information structure within the single equa-

tion. This network exists in a single local information layer. Each mathematical

equation, or relation of data entities, represents a different information source. Even

though equations may contain the same variables, they may be structured differently,

and thus should be represented by different information networks. Each individual

information network is located in the local information layer, and thus, the local in-
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Figure 3.2: Resulting information network from data relations in A = BCD

formation layer is composed of a large number of small components, corresponding

to different information structures. There are a very large, but finite, number of

equations. While it is not feasible to create singular information networks for all ex-

isting equations, this may not be necessary. It is sufficient to populate a specific local

information layer with all known, applicable equations to a given design discipline.

The importance lies on the strategies of selecting these information structures which

dictates how the resulting knowledge structures are developed.

3.1.2 Creating the Local Knowledge Layer

The local knowledge layer tracks the relation and evolution of knowledge elements

over time in relation to a single design discipline, or design agent. While the local

information layer represents the dependencies of data entities given a mathematical

approach, the knowledge layer represents how that information is utilized. Once infor-

mation is used to perform an analysis, it becomes a part of the knowledge structure.

This is beneficial as it reduces the extremely large body of available information in

the information layer to only that information which is used to build a knowledge

structure of a given approach, effectively building a unique knowledge structure from

the large body of available information.
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The basic flow chart of knowledge structure evolution is presented in Figure 3.3. A

knowledge structure is comprised of two fundamental types of nodes: target nodes and

supporting nodes. Target nodes represent what knowledge you need, and supporting

nodes represent what knowledge you have. From a network perspective, target nodes

are those nodes which initially contain no values and need to be determined, and

supporting nodes are nodes used to determine target nodes. Supporting nodes need

not contain data initially (they can also be unknown), in which case they must be

determined through intermediate calculations. As knowledge structures are developed

in relation to seeking knowledge about some entity, a knowledge structure is initialized

with a target node, with no supporting nodes (Figure 3.4a). Connecting supporting

nodes to the target node is the basic dynamic of creating a knowledge structure, and is

completed by seeking information from the information layer by way of a hypothesis

and integrating that information structure into the knowledge structure by way of

an action. At any point, the knowledge structure can be committed by a decision

(Figure 3.4).

Figure 3.3: Basic algorithm describing knowledge structure growth.
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(a) Initial (b) Hypothesis

(c) Action (d) Decision

Figure 3.4: Illustration of the four basic steps in generating a local knowledge struc-
ture

A hypothesis links what knowledge is required in the knowledge layer (the target

node) to the information able to provide that knowledge in the information layer

(Figure 3.4b). In this sense, it is the act of finding a suitable information network

in the information layer which contains the same symbol as the target node - as

this represents an information network which is structured to provide the required

knowledge. In practice, this is represented as an inter-layer edge, from the target

node in the knowledge layer to a similar node in an information network in the

information layer. The end result of a hypothesis is a link between the target node

in the knowledge layer to a network component in the information layer - effectively

connecting the required knowledge to a body of information which is hypothesized to

yield that knowledge. As there are likely a wide range of information structures which

contain the ability to calculate the target node, posing a hypothesis is an abductive

process which does not guarantee a successful outcome, and hence captures designer
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strategies of approaching the design problem.

An action is the act of utilizing the body of information to perform an analy-

sis. Within the context of the K-I framework, it is the process which imports the

directed relations of the supporting nodes into the knowledge layer, thus building the

knowledge network (Figure 3.4c). For a given hypothesis (selecting a body of infor-

mation), performing an action is as follows: for the target node in the information

layer, follow all edges pointing to it, and find the nodes at the beginning of that edge.

Then, import all the traversed directed edges and the nodes into the knowledge layer.

This effectively represents a directional relationship for the information structure,

representing an instantiation of the equation in which the target node is being solved

for.

A decision commits the knowledge network structure at a point in time, by trans-

lating the data from the analysis in the knowledge structure (Figure 3.4d). A com-

mitment to a result by proxy also commits the knowledge structure used to create

that result. Multiple decisions can be made on a single knowledge structure.

3.2 Global K-I Layers

The framework presented in Section 3.1 describes how information structures are

used to develop knowledge structures relating to some target entity. This target en-

tity, the ‘target node’, represents what we want to know and provides the required

context for finding supporting information sources and utilizing them as supporting

knowledge. While this holds for a single design analysis - the reality is that complex

engineering design activities involve many design agents (teams, individuals, depart-

ments, etc) conducting design analyses which need to be integrated into a larger

context to yield a solution. Each discipline will have different required knowledge

entities, and thus will undergo each of their own processes of building their own

knowledge structures. While this process has been shown to have a large impact on
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the conceptual robustness of a calculation approach - the integration of the individ-

ual knowledge structures will be a critical activity in building a macro-knowledge

structure relating to the final integrated design solution.

In addition to the local knowledge and information layers described in Section 3.1,

there exist two additional global layers in the K-I framework: the global information

and global knowledge layers. The purposes of these layers are to the capture the

integration dynamics of design knowledge across design agents (disciplines), and how

that relates to a macro-perspective of design knowledge required for a greater design

goal. The aforementioned local knowledge and information layers now represent intra-

discipline knowledge generation activities, while the global layers now capture the

inter-discipline knowledge integration dynamics.

Sections 3.2.1 and 3.2.2 describe how the Global Information and Knowledge layers

are represented in the K-I Framework, respectively.

3.2.1 The Global Information Layer

The global information layer encapsulates the information entities required to inte-

grate the local knowledge structures toward the greater design goal. As was described

in Section 3.1.2, a decision commits the current state of a local knowledge structure

at a point in time, as well as the target node value. Local knowledge structures are

not shared between teams - rather design agents communicate data and information

between one another in the form of results from engineering activities. While teams

may provide context for why certain data are needed, their local knowledge structure

are tacit, meaning they are unable to be communicated fully. As such, the global

information layer captures the interdependencies between each design team’s local

knowledge structures as a result of communicating required or calculated entities be-

tween decisions made by teams. As such, the global information layer represents

functional dependencies between design groups, by capturing the dynamics of com-
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municated or negotiated information entities. It is through the organic development

of the global information layer that local knowledge structures are related to the

global knowledge structure.

The global information layer represents significantly different types of informa-

tion than that of the local information layers. As was discussed in Section 3.1.1,

the local information layers represent all potential information resources required to

build a local knowledge structure. These information sources represent undirected

relations between data entities in the forms of equations, tools, or specific analysis

types. These information structures are selected by the design agent through hy-

potheses and implemented through actions, in an attempt to relate a target node to

supporting knowledge entities. However, in the case of a design integration activity

there are no existing information structures which can be simply ‘selected’ to inte-

grate information from design agents. Global design information is far more specific

to the design activity being conducted, and information is generated as the design

activity progresses. Design processes address sequences in which information should

be generated, but do not necessarily predicate ‘structures’ of information. As such,

the global information layer captures the generation and refinement of macro-design

information as a result of the sequence in which design teams conduct their analyses

and make design decisions, rather than from the selection of pre-existing information

structures.

As design agents develop and utilize their own discipline-specific knowledge struc-

tures, they may require the results of other disciplines’ knowledge structures to con-

duct their own analyses. These results are often communicated between teams using

engineering deliverables such as reports or documents, or through the transfer of files

within a design integration software. Herein lies a subtle yet important aspect of

inter-agent communication - agents do not communicate their entire local knowledge

structures, but rather communicate their data requirements or results, perhaps with
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context as to why they require that data. This does not communicate the underlying

local knowledge structure, but is more focused on the inputs and outputs of their local

knowledge structures. As the functional dependencies between data entities define

information structures, the relation of inter-discipline communicated data entities de-

fines the global information structure. The global information structure is then used

to create a global knowledge structure. The ability to capture the interdependencies

between data elements in the global information layer will thus play a critical role

in the conceptual robustness of a design activity, and will be a product of not only

what parameters are communicated between agents, but also the sequence in which

they are communicated. It is the task of a design integration activity to develop (and

understand the development of) design information through the analyses of design

agents, which are used to develop a global knowledge structure.

The global information layer is defined by nodes which represent data entities,

and directed edges which represent functional dependencies between data elements

as a function of inter-discipline communication. Similar to the local information

structures, nodes are placeholders for data entities, and contain both a value place-

holder and a data status binary indicator. An important difference between the edges

in the global and local information layers is that edges in the local layers are pre-

defined undirected relations between data entities, whereas in the global layer they are

projected directed edges based on dependency pathways using the inter-layer edges

between local knowledge structures.

To understand the process of creating global information edges, consider Figure

3.5. Note that this figure has omitted the local information layers and the global

knowledge layer, and focuses on the dynamics between local knowledge layers and

the global information layer. This assumes the agents have already completed the

process of building their local knowledge structures in relation to some target node

(Section 3.1). The local knowledge structures may have some entities which are
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.5: Global information structure development from local knowledge layers.
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known (shown in blue) and some which are unknown (shown in white). The global

information layer is initialized with the nodes in the global knowledge layer (Figure

3.5a), defining what entities are known and which are being sought out, shown in

blue and white, respectively. The transmission of these nodes from global knowledge

to global information provides context for what analyses the agents need to conduct

to build the global information structure. Note that in this example the target nodes

in the in local knowledge structures coincide with initialized nodes in the global

information layer.

In this hypothetical example, the agents begin building the global information

structure by first solving for T1 (Figure 3.5b). An edge (edge 1 ) is drawn from the

selected node (T1) to a knowledge structure containing the same symbol, hypothe-

sized to yield the desired result. In this case, the T1 symbol is contained by Agent

1 - but note that a number of agents may contain the same symbol, and thus the

selection of an agent may not be the only feasible decision path. Agent 1 determines

the required inputs to their knowledge structure, and determines that T2 is required

to yield the appropriate result. Thus, the agent has two ways forward: The agent

may begin the process of growing their local knowledge structure by (1) seeking an

appropriate information structure (hypothesis) from their local information layer and

implementing an action, or (2) communicating the required knowledge entity from

their local knowledge layer to the global information layer to be determined by another

agent. In this case, Agent 1 performs option (2), and communicates the unknown T2

knowledge entity to the global information layer, by drawing edge 2 .

The process continues by now seeking an agent to populate the newly created sup-

porting global information node T2 with a value (Figure 3.5c). The same procedure

is conducted as that of Agent 1, only now Agent 2’s local knowledge structure is now

selected. Agent 2 requires TK as an input to their knowledge structure, so rather

than populate a new node in the global information layer for another agent to decide,
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edge 4 is drawn to the known node to be incorporated into their local knowledge

structure. The known global information node TK is integrated into the local knowl-

edge structure by the procedure shown in Figure 3.5d. After edge 5 transmits the

value from the global information layer to Agent 2’s local knowledge structure, the

T2 target node becomes calculable, and is communicated to the global information

layer through edge 6 . Upon updating the data status of T2 in the global infor-

mation layer, all other global information nodes are queried to determine if a path

exists through any local knowledge structures to global node T2. In this case, the

only existing path is from TK to TN through Agent 2’s local knowledge structure as

a result of inter-layer edges 5 and 6 . Hence, edge projection 6* is drawn in the

global information layer - effectively illustrating the functional dependence of T2 on

TK.

After T2 has been determined in the global information layer, the same process is

conducted for Agent 1 to conduct their analysis (Figure 3.5e). Similarly, the projected

edge 8* is drawn as a result of the path from T2 to T1 through Agent 1’s local

knowledge structure, and inter-layer edges 7 and 8 .

The final unknown node in the global information layer is TN, and is populated

using the process shown in Figure 3.5f. Agent N is selected to populate this node

(edge 9 ). Agent N’s local knowledge structure is independent of inputs from any

other agents, and as such the calculated knowledge entity is communicated to the

global information layer in a single step by drawing edge 10 . Note that drawing this

edge does not result in any additional paths to other global information nodes, and

as such, no additional projected nodes are drawn.

The resultant global information structure illustrates the functional dependencies

between the initially included nodes that were previously unknown. The presence

of the projected path {TK,T2,T1} indicates that the unknown parameter T1 is

dependent on TK through the intermediate variable T2. The absence of a projected
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path to TN highlights its independence from the other data. These dependencies

have been uncovered through the inter-agent communication dynamics.

While the example depicted in Figure 3.5 illustrates the process of creating global

information structures, it is important to note that the presented sequence of con-

ducting the operations is not unique. For example, the procedure for calculating TN

could have been conducted first. Furthermore, instead of initially solving for the un-

known data of T1 in the global information layer, the known entity TK could have

been initially utilized by Agent 2 to conduct their analysis. While the same resultant

information structure would have been calculated independent of sequence in this

trivial example, for more complicated examples, the time-dependent dynamics of un-

covering global information interdependencies will almost certainly be influenced by

the sequence of operations. This presents a significant opportunity to uncover robust

inter-agent communication strategies.

A similar process to that described in Section 3.1 will be utilized to create a

global knowledge layer using the created global information structure. This global

knowledge layer will provide a more high-level knowledge structure of the integrated

design activity, and will provide insights toward the final design outcomes as a result

of the interdisciplinary knowledge integration.

3.2.2 The Global Knowledge Layer

The global knowledge layer of the K-I framework encapsulates the integrated

knowledge structure of a design activity, by relating a global target node (or set

of global target nodes) to other supporting knowledge entities. The global knowl-

edge layer obeys many of the same properties as the local knowledge layers (Section

3.1.2), but interacts with the global information layer rather than the local infor-

mation layers. The global knowledge layer is comprised of a number of knowledge

entities which are known (for example parameters which arise from requirements),
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and knowledge entities which are unknown (what parameters about the design need

to be determined). Thus, it is the purpose of the design activity to not only make

these unknown knowledge entities known, but also (and perhaps more importantly)

to understand the interdependencies between global knowledge elements - relating

how the known elements impact the unknown elements. Uncovering these relations

not only elucidates how the known elements impact those that are unknown, but also

how the unknown parameters are related to one another. Understanding both types

of interdependencies will fully define the global knowledge structure - and will be a

result of both local design agent knowledge generation and the inter-agent commu-

nication pathways. Thus, the global knowledge layer accounts for various levels of

design activities, and will be impacted by not only the robustness of local knowledge

structures, but also the development of the global information structure as a result

of communication pathways between agents.

The process of creating the global knowledge layer is depicted in Figure 3.6. At

the beginning of the design activity, the global knowledge layer is initialized with

(a) Initialization of Global Knowledge nodes (b) Translation to Global Information

(c) Development of Global Information (d) Creation of Global Knowledge Structure

Figure 3.6: Creation of Global Knowledge Structure from Global Information Struc-
ture. Known nodes (data status = 1) are shown in blue, and unknown
nodes are shown in white. Dark blue indicates a target node, light blue
indicates supporting information entities.
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some number of known and unknown knowledge entities (Figure 3.6a). As is the case

with the other layers in the framework, nodes contain value and data status place-

holders, which differentiate the known and unknown nodes. The known knowledge

entities describe design parameters which are known a-priori (usually as a result of re-

quirements, or design targets). The unknown knowledge entities define aspects of the

integrated design that are being investigated. These unknown entities are required

as they define the knowledge-seeking activities of the design agents by prescribing

the goals (defining the target nodes) of the analyses conducted at the local levels.

Without the presence of the unknown nodes, there is no ability to allocate tasks to

the design agents.

After initialization of the nodes in the global knowledge layer, the second step

in the process is to initialize these knowledge nodes in the global information layer

(Figure 3.6b). This procedure translates the known and unknown knowledge to nodes

in the global information and provides context for the local agents to guide their

engineering activities.

Over the course of the design activity, the global information layer grows based on

the communication between design agents, as well as the projected dependence path-

ways between the target information nodes and generated supporting information

(Figure 3.6c). Note that at this point, the previously unknown knowledge node be-

comes known in the global information layer through the analysis and communication

between agents.

Upon communicating this target node in the global information layer back to

the global knowledge layer, an edge is drawn between two nodes in the knowledge

layer if there exists a path through the global information structure between the two

knowledge nodes (Figure 3.6d). The directed edge points to dependent knowledge

from the knowledge used to create it. This projected, directed edge thus captures the

functional dependencies between global knowledge nodes, based on how the global
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information structure was developed by the inter-agent design effort. This process is

repeated for each node in the knowledge layer by examining if a path exists between

any two knowledge nodes. In this way, the edges in the global knowledge layer uncover

the relations between the known and unknown knowledge entities at a macro-scale

based on the framework’s inter-agent dynamics captured in the global information

layer.
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CHAPTER IV

Local Knowledge Structure Case Study

A representative case study was developed to demonstrate the creation, dynamics,

and analysis of the K-I framework. The case study is based upon four approaches

to calculating an average volume from a database of previously built oceanographic

vessels from Marine Structures Design Laboratory (2019). This data contains the

principal dimensions of the constructed vessels: Length (L), Beam (B), Draft (T ), and

Block Coefficient (CB), and is displayed in Table 4.1. Using the principal dimensions,

the underwater volume can be calculated as the product of these principal dimensions.

The case study shows that the simple task of calculating an average value can have

significant impacts on the way information is utilized, as well as the predictability,

robustness, and structure of the resulting knowledge structures. Although a simple

Table 4.1: Oceanographic ship data used for case study

Oceanograpic Ship L B T CB

AGOR 16 69.75 12.92 4.45 0.538
Atlantis II 59.52 13.53 4.92 0.537
Chas. Darwin 62.50 14.40 5.11 0.539
Endeavor 50.30 10.31 5.34 0.500
Littlehales(T-AGS51) 58.96 12.82 4.02 0.551
Maury (T-AGS39) 141.73 20.54 8.49 0.564
Melville (AGOR14) 69.19 14.42 4.65 0.518
Pathfinder (T-AGS60) 93.09 16.33 5.35 0.460
Protea 73.75 15.36 4.70 0.551
Researcher (OSS-03) 78.86 15.77 4.93 0.457
Robert Conrad (AGOR3) 58.96 11.12 4.28 0.427
Silas Bent (AGS26) 80.82 14.69 4.59 0.472
Stalwart (T-AGOS1) 63.24 12.16 4.21 0.560
Thomas Thompson 77.66 14.93 5.41 0.462
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multiplication may seem like a trivial calculation, the results across the different

methods yield vastly different knowledge structures, and highlight the different ways

in which information is used to build these knowledge structures.

The four cases considered (representing different approaches to building knowl-

edge structures) are summarized below. Sections 4.1.1 - 4.1.4 provide more detail of

each case, and describe the process of generating each knowledge structure from the

information sources. Section 4.1.5 presents a comparison of the resultant knowledge

structures from each case. Section 4.2 presents the results associated with the growth

dynamics of each network, and Section 4.3 provides the results as they pertain to

conceptual robustness and preventing emergent design failures.

Case 1 The aggregated average case. An average value is determined for each variable

(L, B, T , and CB). The average variable values are multiplied together to

determine an average volume. In this case, the average variable values are

determined for all ships in a single calculation. This approach is shown in Table

4.2. To illustrate the importance of understanding the relations between data

entities, Case 1 contains two methods of tracking data: labeled and unlabeled.

The labeled case assumes the indexes of each ship are known and tracked in the

knowledge structure (i.e. all variables corresponding to the same ship have the

same indexes), and the unlabeled case assumes the relations between data and

ships are unknown (the data entities and ship indexes are uncorrelated). This

distinction does not affect the dynamics of the knowledge structure growth, but

has significant impacts on the likelihood of emergent design failures. These

effects are outlined in more detail in Section 4.3.

Case 2 The baseline case. A volume is calculated for each ship, and the resultant

volumes are utilized to determine an average volume. This approach is presented

in Table 4.3.
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Case 3 The limited information case. This case uses the same approach as Case 2

(the baseline case) in that each ship has an associated volume value. However,

this case omits the principal dimension values, and only includes the volume

data. This represents a fundamentally different data source; it is included to

show that although the volume values (and calculated average) are identical to

those of Case 2, this data set contains less information, and leads to a different

fundamentally different knowledge structure. This approach is presented in

Table 4.4.

Case 4 The moving average case. This case uses the same approach as Case 1, with

the only difference being that a moving average is calculated for each row in the

data set (using all values above and including that row). In this case, the final

result of the moving average is identical to the resulting average calculation in

Case 1 and Case 3, although the dynamics of building the knowledge structure

are significantly different. This approach is presented in Table 4.5.

This case study is an exercise to demonstrate that although the same set of data

is utilized across a number of calculation approaches, the predictability and robust-

ness of the developed knowledge structures differ significantly. These differences are

a product of the ability for each approach to account for hidden relations in the data,

through the use of proper sources of information and structuring of the knowledge

entities. The values in Table 4.1 are just data, however these data correspond to

products created by careful engineering analyses and the knowledge structures used

to create them. The knowledge structures used to create these data are not apparent

in analyzing the data alone, but nonetheless have created hidden interdependencies

between variables for each ship. Statistically, if the data were independent, the co-

variance between them would be zero, and the final result of calculating an average

volume would be identical if averages were aggregated across the rows or along the

columns in the table. However, as the data correspond to physical vessels and their
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associated knowledge structures, they not independent, and the robustness of deter-

mining a final average value is heavily related to the ability to account for the hidden

data interdependencies.

4.1 Local Information and Knowledge Structures

4.1.1 Case 1 - Aggregated Averages

The aggregated average case conducts operations as shown in Table 4.2, in which

averages are determined for each variable (L, B, T , and CB) and multiplied together to

determine an average volume value. This section outlines the information structures

utilized in this operation and the resultant knowledge structure for this approach.

The first step in representing this approach in the K-I Framework is representing

the information structures in the information layer utilized in this approach. This is

shown in Figure 4.1. In Case 1, five distinct information sources define the information

sources used to build this approach: four define the relation between the individual

variable data points relate to the average variable value (for L, B, T and CB), and one

defines how the average values are combined to yield a resultant average volume value.

Note, however, that the information layer is also comprised of all possible information

Table 4.2: The calculation procedure for Case 1.

Oceanograpic Ship L B T CB Volume
AGOR 16 69.75 12.92 4.45 0.538
Atlantis II 59.52 13.53 4.92 0.537
Chas. Darwin 62.50 14.40 5.11 0.539
Endeavor 50.30 10.31 5.34 0.500
Littlehales(T-AGS51) 58.96 12.82 4.02 0.551
Maury (T-AGS39) 141.73 20.54 8.49 0.564
Melville (AGOR14) 69.19 14.42 4.65 0.518
Pathfinder (T-AGS60) 93.09 16.33 5.35 0.460
Protea 73.75 15.36 4.70 0.551
Researcher (OSS-03) 78.86 15.77 4.93 0.457
Robert Conrad (AGOR3) 58.96 11.12 4.28 0.427
Silas Bent (AGS26) 80.82 14.69 4.59 0.472
Stalwart (T-AGOS1) 63.24 12.16 4.21 0.560
Thomas Thompson 77.66 14.93 5.41 0.462
Average 74.17 14.24 5.03 0.510 2708.1
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Figure 4.1: Information Layer associated with Case 1

structures (N) - the structures displayed are only those which are utilized in this case,

and thus are only a small subset of N. Mathematically, these information relations

used in Case 1 are described in equations (4.1) - (4.5):

C̄B =
1

14

14∑
i=1

CBi (4.1)

L̄ =
1

14

14∑
i=1

Li (4.2)

B̄ =
1

14

14∑
i=1

Bi (4.3)

T̄ =
1

14

14∑
i=1

Ti (4.4)

V̄ = C̄BL̄B̄T̄ (4.5)

In Figure 4.1, the colors of the nodes represent the data statuses of each node

(data point) in the information structure. Uncolored nodes represent variables which

do not have any data supporting them, the light shaded nodes represent variables

which contain data from the database, and dark colored nodes are those variables

for which there is sufficient data for their values to be calculated. These information

structures are used to create a unique knowledge structure for this case. The process

of creating this knowledge structure is shown in Figure 4.2.
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(a) t=0 (b) t=1

(c) t=2 (d) t=3

(e) t=4 (f) t=5

(g) Final Structure

Figure 4.2: Generation of Knowledge layer from information structures in Information
layer over time for Case 1 (aggregated averages) to calculate an average
volume value. The resultant knowledge structure is developed through
a sequence of hypotheses (directed edges from knowledge layer to in-
formation layer) and actions (directed edges from information layer to
knowledge layer).
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4.1.2 Case 2 - Baseline

The baseline case utilizes the reverse order of operations to Case 1 to determine

the value of average volume. In this approach a volume is calculated for each oceano-

graphic ship, and the resultant volumes are combined to determine an average volume.

The calculation and resultant data are presented in Table 4.3.

Similar to Case 1, the first step in applying the K-I Framework to this approach is

representing the relations between data entities in the information layer. The mathe-

matical equations representing the information structures and associated information

network layer are displayed in equations (4.6) - (4.7) and Figure 4.3, respectively.

Vi = CBiLiBiTi i = 1, ..., 14 (4.6)

V̄ =
1

14

14∑
i=1

Vi (4.7)

Table 4.3: The calculation procedure for Case 2.

Oceanograpic Ship L B T CB Volume
AGOR 16 69.75 12.92 4.45 0.538 2157.5
Atlantis II 59.52 13.53 4.92 0.537 2127.6
Chas. Darwin 62.50 14.40 5.11 0.539 2478.9
Endeavor 50.30 10.31 5.34 0.500 1384.6
Littlehales(T-AGS51) 58.96 12.82 4.02 0.551 1674.3
Maury (T-AGS39) 141.73 20.54 8.49 0.564 13939.6
Melville (AGOR14) 69.19 14.42 4.65 0.518 2403.2
Pathfinder (T-AGS60) 93.09 16.33 5.35 0.460 3741.1
Protea 73.75 15.36 4.70 0.551 2933.6
Researcher (OSS-03) 78.86 15.77 4.93 0.457 2801.9
Robert Conrad (AGOR3) 58.96 11.12 4.28 0.427 1198.2
Silas Bent (AGS26) 80.82 14.69 4.59 0.472 2572.1
Stalwart (T-AGOS1) 63.24 12.16 4.21 0.560 1813.0
Thomas Thompson 77.66 14.93 5.41 0.462 2898.0
Average 3151.7

Figure 4.3: Information Layer associated with Case 2
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(a) t=0 (b) t=1

(c) t=2 (d) t=3

(e) t=4 (f) t=5

(g) t=N (h) Final Structure

Figure 4.4: Generation of Knowledge layer from information structures in Information
layer over time for Case 2 (baseline) to calculate an average volume value.
The resultant knowledge structure is developed through a sequence of
hypotheses (directed edges from knowledge layer to information layer)
and actions (directed edges from information layer to knowledge layer).
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4.1.3 Case 3 - Limited Information

The ‘limited information’ case is similar to Case 2 (the baseline case) in that

each ship has an associated volume value; however, this case omits the supporting

variable values. In this sense, the volume values are now data points rather than

results of intermediate calculations. As the volume values are now data points, the

ways in which they are calculated are unknown in this example. This is akin to

communication between design teams: only the values are communicated, without

the supporting information. In this case, the volume values associated with each

vessel are identical to those of Case 2, yet lead to not only a more limited knowledge

structure, but also more limited dynamics. This approach is presented in Table 4.4.

Table 4.4: The calculation procedure for Case 3.

Oceanograpic Ship Volume
AGOR 16 2157.5
Atlantis II 2127.6
Chas. Darwin 2478.9
Endeavor 1384.6
Littlehales(T-AGS51) 1674.3
Maury (T-AGS39) 13939.6
Melville (AGOR14) 2403.2
Pathfinder (T-AGS60) 3741.1
Protea 2933.6
Researcher (OSS-03) 2801.9
Robert Conrad (AGOR3) 1198.2
Silas Bent (AGS26) 2572.1
Stalwart (T-AGOS1) 1813.0
Thomas Thompson 2898.0
Average 3151.7

The relations of data in the limited information case (the information structure)

are only comprised of equation (4.7), and omits the intermediate calculation repre-

sented by (4.6). The resultant information layer is displayed in Figure 4.5.
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Figure 4.5: Information Layer associated with Case 3

(a) t=0

(b) t=1

(c) t=2

Figure 4.6: Generation of Knowledge layer from information structures in Information
layer over time for Case 3 (limited information) to calculate an average
volume value. The resultant knowledge structure is developed through
a sequence of hypotheses (directed edges from knowledge layer to in-
formation layer) and actions (directed edges from information layer to
knowledge layer).
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4.1.4 Case 4 - Moving Average

The moving average case uses the same approach as Case 1, the ‘aggregated

average’ case, with the only difference being the way the network grows. Case 1

sequentially calculates the intermediate variable averages considering all data points.

This process requires five timesteps to fully develop the knowledge structure (step 1

importing equation (4.5), and steps 2 - 5 importing equations (4.1) - (4.4)). Case 4

considers more steps to build the knowledge structure by sequentially adding each

row of ship data to the network, and calculating the intermediate averages at each

timestep, for a total of 15 steps (first importing (4.5), then calculating 14 averages

as each ship data is added). In this case, the final result of the moving average is

identical to the result of Case 1, though the dynamics of this case’s approach uncovers

path dependencies in the calculation. The results are presented in Table 4.5.

The equations represented in the information layer for this approach are shown in

equations (4.8) - (4.12). The resulting information layer from this approach is identical

to that of Case 1, shown in Figure 4.1. The information layer is the same between Case

1 and Case 4 because the same fundamental data relations are preserved, although

the number of data points considered changes. Both information layers contain 5

information structures used for the calculation (in addition to N), and although the

Table 4.5: The calculation procedure for Case 4.

Oceanograpic Ship L B T CB Volume
AGOR 16 69.75 12.92 4.45 0.538 2157.5
Atlantis II 59.52 13.53 4.92 0.537 2152.5
Chas. Darwin 62.50 14.40 5.11 0.539 2260.3
Endeavor 50.30 10.31 5.34 0.500 2026.9
Littlehales(T-AGS51) 58.96 12.82 4.02 0.551 1957.8
Maury (T-AGS39) 141.73 20.54 8.49 0.564 3014.4
Melville (AGOR14) 69.19 14.42 4.65 0.518 2923.2
Pathfinder (T-AGS60) 93.09 16.33 5.35 0.460 3032.2
Protea 73.75 15.36 4.70 0.551 3024.2
Researcher (OSS-03) 78.86 15.77 4.93 0.457 3005.6
Robert Conrad (AGOR3) 58.96 11.12 4.28 0.427 2787.8
Silas Bent (AGS26) 80.82 14.69 4.59 0.472 2771.9
Stalwart (T-AGOS1) 63.24 12.16 4.21 0.560 2691.9
Thomas Thompson 77.66 14.93 5.41 0.462 2708.1
Final Average 2708.1
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number of nodes in the information structures change, in both cases each information

structure is a fully connected graph. Though the information structures are identical,

the dynamics used to grow the knowledge network is different, and is shown in Figure

4.7.

V̄j = C̄BjL̄jB̄jT̄j j = 1, ..., 14 (4.8)

C̄Bj =
1

j

j∑
i=1

CBi j = 1, ..., 14 (4.9)

L̄j =
1

j

j∑
i=1

Li j = 1, ..., 14 (4.10)

B̄j =
1

j

j∑
i=1

Bi j = 1, ..., 14 (4.11)

T̄j =
1

j

j∑
i=1

Ti j = 1, ..., 14 (4.12)
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(a) t=0 (b) t=1

(c) t=2 (d) t=3

(e) t=4 (f) t=5

(g) t=N (h) Final Structure

Figure 4.7: Generation of Knowledge layer from information structures in Informa-
tion layer over time for Case 4 to calculate an average volume value.
The resultant knowledge structure is developed through a sequence of hy-
potheses (directed edges from knowledge layer to information layer) and
actions (directed edges from information layer to knowledge layer).
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4.1.5 Resultant Case Knowledge Structures

Figure 4.8 illustrates the resultant knowledge structures for Cases 1-4. In each

network, the node at the center of the image is the target node (average volume),

and the nodes in the outer-most ring represent the data entities in the associated

data set. For Figures 4.8a, 4.8b, and 4.8d, the nodes between the target node and

data entities represent the intermediate variables in each calculation approach. Note

that the final knowledge structures of Case 1 and Case 4 are identical - although the

dynamics used to create each are different.

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 4.8: Resultant knowledge structures for Cases 1-4.
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4.2 Local Knowledge Structure Growth Results

4.2.1 Topological Entropy

The topological entropy time series for Cases 1-4 are presented in Figure 4.9.

These curves represent the topological entropy of the knowledge networks’ structures

as they grow over time. In this figure, the x-axis represents the timestep, which

corresponds to the growth step in the process defined in Figure 3.3 and the dynamics

described in Section 4.1, and the y-axis is Topological Entropy (Section 2.3.1).

The curves shown in Figure 4.9 reveal a number of insights into the dynamics of

each case. Each curve begins at the origin, and ends at the final topological entropy

value of the resultant network. At time t = 0 the only node in the knowledge layer

is the target node, and thus topological entropy is zero. The final value is dependent

on the final structure of the knowledge network. Note that the different cases require

a different number of timesteps to yield the final network structure with Case 3

requiring only one timestep, Case 1 requiring 5 timesteps, and Cases 2 and 4 each

requiring 15 timesteps.

Figure 4.9: Topological Entropy Time Series Comparison, Cases 1-4
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Additionally, each curve increases drastically in the first timestep (time t = 0),

and is concave down in following steps. These two phases of knowledge structure

growth define the knowledge development and knowledge refinement. The large initial

entropy growth in the knowledge development phase arises as a result of the initial

hypothesis and action utilized in selecting and integrating an information source into

the knowledge structure (Section 3.1.2). The initial structuring of the knowledge

layer is a critical factor in the growth of topological entropy, by defining not only

the initial size of the network (structuring what subsequent knowledge is required),

but also creating path dependencies in future knowledge-seeking activities. Note that

the knowledge development phases are identical for Cases 1 and 4, and for Cases 2

and 3, as they both utilize the same initial information structure to implement their

approach. The initial growth in entropy of Cases 2 and 3 is larger than that of Cases

1 and 4 due to the different sizes of the initial structures (the initial network of Cases

2 and 3 is comprised of 15 nodes, while that of Cases 1 and 4 is only comprised

of 5 nodes). Given the different approaches, the knowledge refinement stages differ

between cases, which are a result of the different network growth dynamics.

The knowledge refinement stage integrates additional knowledge into the initial

knowledge structure (time t > 1). The concavity of the knowledge refinement stage

suggests that early refinement of knowledge leads to higher entropy growth than at

later stages, which illustrates that the marginal increase of knowledge contained does

not increase linearly over time, and that the entropy of the knowledge structure is

not directly correlated to the number of data points. Case 1 has the largest increase

in topological entropy during knowledge refinement, with 14 additional nodes added

to the network at each timestep. This means the network grows most rapidly during

knowledge refinement, which differs from that of Case 4, in which each timestep in-

tegrates just 4 additional nodes into the network. While this takes a longer time to

yield the final network (and the final topological entropy values are the same given
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that the resultant structures are the same), Case 4 better illustrates the decreasing

marginal increase in knowledge over time. Case 2 has the most gradual increase in

knowledge refinement over time, and yields the highest knowledge in the resulting

structure. Note that Case 3 does not contain a knowledge refinement stage as the

information source contains all data points when integrated into the knowledge net-

work, meaning no subsequent knowledge needs to be determined to yield these values.

While this may seem advantageous, note that the entropy of the resulting network

is the smallest, meaning the structure of the network contains the least amount of

encapsulated knowledge.

The topological entropy curves in Figure 4.9 provide a macro-perspective of topo-

logical entropy growth over time of the local knowledge layers. More detailed insights

can be gained for each case by viewing the entropic contribution of each node (knowl-

edge entity) in the network to the total topological entropy. These results are shown

in Figures 4.10 - 4.13. By observing how each node contributes to the total topologi-

cal entropy over time, more insight can be gained as to how the growth of individual

knowledge entities lead to the growth of the entire network. The way in which the

information relating to the target node, intermediate variables, and data points con-

tribute to the total entropy over time is of particular interest.

For all cases, the growth in entropy of the target node is characterized by the initial

structure of the network (t = 1), and remains relatively constant during the knowledge

refinement stage. For Cases 1, 2, and 4 (Figures 4.10, 4.11, and 4.13, respectively)

the final contribution of the intermediate variables to the total topological entropy is

less than in the initial structure, while the contribution of the data points increases

over time. This highlights a defining characteristic of the refinement stage, where

the supporting knowledge from the data points is used to define the intermediate

variables. This characterizes the increasing importance of the data points as more

nodes are integrated into the structure.
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Figure 4.10: Case 1 Topological Entropy Time Series Composition

Figure 4.11: Case 2 Topological Entropy Time Series Composition
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Figure 4.12: Case 3 Topological Entropy Time Series Composition

Figure 4.13: Case 4 Topological Entropy Time Series Composition
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4.2.2 Data Status Entropy

The data status entropy results for Cases 1-4 are displayed in Figure 4.14. These

curves represent the entropy of the known portion of the nodes in the network based on

their respective data statuses. This provides insight to the growth of the ‘calculability’

of the network over time. The x-axis represents timesteps, while the y-axis represents

the data status entropy (Section 5.4.2).

Each curve represents the transition from all data values being uncalculated to

being fully defined. For all curves, the network begins with a maximal entropy value

of 1, where all nodes are unknown, and ends with an entropy value of 0, when all

nodes are known. This is due to the target node initially being undetermined. Note

that the length of each curve corresponds to the number of timesteps to create the

final network.

Cases 3 and 4 illustrate an immediate transition from maximum to minimum DSE,

indicating that the network transitions from being completely incalculable to being

completely calculable. In Case 3, this is because all nodes in the network have a data

Figure 4.14: Data Status Entropy Time Series Comparison, Cases 1-4
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status of 0 at time t = 0 (just the target node) and all nodes have a data status of 1

at time t = 1, when all data is imported. Similarly, all nodes have a data status of 0

at timesteps t = 0 and t = 1 in Case 4. At time t > 1 the addition of each data point

node to each of the intermediate variables means that all subsequent data statuses

are at 1 - meaning the network remains fully calculable throughout its growth.

Cases 1 and 2 exhibit more gradual reductions in DSE. For Case 1, at time t ≤ 1,

all of the nodes in the network have data statuses of 0. At time t > 1 the sequential

introduction of supporting nodes to each of the intermediate variables means a portion

of the approach is calculable, while a portion still contains data statuses equal to zero,

up until all nodes have data statuses of 1 at time t = 5. Case 2 follows the same

reasoning as Case 1 for t ≤ 1 (all data statuses are at 0); however, the sequential

addition of nodes supporting the intermediate volume variables results in a more

gradual change in the network’s calculability over time until all nodes have data

statuses of 1. Note that the initial reduction in DSE is larger for both cases. This is

due to the small initial size of the network - when a single node being calculable is

more impactful than later in the process.

The shapes of the DSE curves reveal a number of insights into the dynamics of

rework. In the presented cases, all DSE curves are monotonically decreasing which

indicates that the structures are steadily becoming more calculable over time. Any

observed increase in DSE would flag the beginning of design churn, as it would indicate

the addition of incalculable nodes to the structure. This suggests that the process

of calculating an answer has yielded additional unknowns. Design churn and other

emergent design failures are further explored in Section 4.3.

4.3 Analyzing Local Knowledge Structure Robustness

While Section 4.2 outlined the insights gained by studying the dynamics of knowl-

edge structure growth, this section presents insights gained from studying dynamics
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on the knowledge structures as they grow. The latter considers the robustness of

knowledge structures when exposed to changes in the data landscape. Changes in

the data landscape could be a consequence of future information, changes to require-

ments, or as a result of rework necessitated by creating a converged design. To frame

this, consider the following scenario:

There is a ‘volume’ design team, responsible for determining a hull vol-

ume estimate for a novel oceanographic vessel design. Initially, the team

decided to use a database of previous vessels with similar characteristics

to that of their design (Table 4.1) to determine a preliminary volume es-

timate. Given this goal, the team has conducted volume estimates using

the approaches outlined in cases 1-4 (Section IV). Later in the design pro-

cess, the results of another design team requires the volume design team

to revise their estimate by removing the largest ship from their calculation

to determine a new average volume.

The scenario presented above leads to a number of questions pertaining the to

robustness of knowledge structures:

1. How easily can the outlier be identified while the knowledge structure is grow-

ing?

2. Once the outlier is identified, how easy is it to remove the outlier data from the

knowledge structure?

3. If the estimates needed to be repeated to remove the second largest ship rather

than just the largest ship, how easy would this be?

The questions presented in the above scenario are used to gain insights into the

benefits and limitations of each of the cases. Specifically, Target Value Entropy

(Section 2.3.5) is used to answer the first question by studying the path dependencies

66



in the calculated target node values in Section 4.3.1. The time required to remove

the outlier is used to address the second question and study excessive rework and

design churn in Section 4.3.2. Potential integration failures are presented in Section

4.3.3, and are used to answer the third question. These insights are used to draw

conclusions about which of the presented cases is most robust, and are summarized

in Section 4.4.

4.3.1 Predictability - Target Value Entropy

To answer the first question posed in Section 4.3, a simulation approach was uti-

lized to uncover the likelihood of identifying the moment when the largest ship was

introduced to the analysis. Ideally, a knowledge structure would be able to immedi-

ately identify the introduction of erroneous data into the calculation, and provide a

flag to the design team independent of the time at which it was added. Path depen-

dencies and the sequence of operations play a critical role in the ability to identify

these outliers, thus the dynamics of both the knowledge network’s structure and cal-

culability are crucial in being able to identify potential data issues. Identifying these

outliers can be determined by applying the Target Value Entropy metric (Section

2.3.5) to the evolution of the solution of the target node value over time.

Studying the evolution of the target node’s value over time presents issues with

the approaches of Cases 1 and 3. In Cases 1 and 3, the value in the target node

can only be calculated at the final timestep (t = 5 and t = 1, respectively), meaning

there is only ever one value associated with the target value. In Case 1, the final

value is only calculable once all intermediate average values have been determined,

leading to a singular final result. For Case 3, the volume data being imported all

at once means there is no transparency as to which individual values lead to the

calculated result. In both cases, there is no evolution of the target node value over

time. It is only possible to identify the final result, without understanding the impact
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that each set of data played leading to the result. Herein lies the importance of the

knowledge refinement phase of the network growth. The knowledge refinement phase

should highlight the effects of adding additional input data to the values determined

in the target node over time, to increase the transparency of the role of each data

element to the calculated value. This is only possible using Cases 2 and 4, which are

used to reveal the differences across the two approaches. It should be noted that the

respective structures of Case 3 and Case 2 are similar, with the difference being that

Case 2 contains the knowledge refinement phase. Also notable, Case 1 and Case 4

are similar in that their final structures are identical, though the growth dynamics of

Case 4 enable the target value to be determined at each timestep in the knowledge

refinement phase.

To examine the ability for Case 2 and 4’s respective knowledge structures to

identify the outlier data over time, 2200 trials were performed in which the order ship

data added to each tested knowledge structure was randomized. These randomized

trials were performed to account for different sequences of data being applied to

the knowledge structure, leading to different path dependencies in the calculated

values. The randomized trials were filtered to determine the instances when the

outlier was added at each timestep from t = 2 − 15. Note that t = 1 marks the end

of the knowledge development phase, and as such, the target node value is yet to be

calculable (hence it is omitted). The results of adding the outlier at the first and

last timesteps are displayed in Figure 4.15, and the intermediary timestep results are

presented in 4.16. The points on the plot at each timestep represent the resultant TVE

value for each of the filtered trials; the curves included display the average results

across filtered trial, with shaded error bounds corresponding to a 95% confidence

interval.

The results in Figure 4.15 illustrate a number of critical insights into the pre-

dictability of the results from Cases 2 and 4. In each of the plots, the spread of points
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(a) t=2 (b) t=15

Figure 4.15: Target Value Entropy Results with outlier data at first and last timestep
(t = 2 and t = 15).

at each timestep illustrates the range of TVE values observed using the samples of the

filtered randomized trials. For all curves, a spike in TVE corresponds to the identifi-

cation of the outlier’s data being added to the knowledge structure, by quantifying the

increased uncertainty of adding data which are significantly different from previously

added data. As more of the data is added after the outlier the TVE decreases, which

illustrates a decrease in uncertainty. Gradual increases in TVE before the outlier is

added suggest that data added to the structure are similar (in relative terms) to data

which have already been added. In all cases, the TVE values at time t = 2 are zero,

at which point there is only a single calculated value, hence there is no uncertainty

in the calculated value (the single outcome is certain).

The results in Figure 4.15 suggest there are significant difference in each case’s

ability to recognize the addition of the outlier over time. The plots in Figure 4.16

display the TVE results for the intermediary timesteps (t = 3− 14), and confirm this

hypothesis. When the outlier is added early (say, t ≤ 5) the increase in uncertainty

is apparent with a spike in TVE across both cases. In a special case, when the

outlier is the first set of data added to the structure (Figure 4.15a) the spike is only

apparent when the subsequent data is added. This is intuitive, as there is no way
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(a) t=3 (b) t=4 (c) t=5

(d) t=6 (e) t=7 (f) t=8

(g) t=9 (h) t=10 (i) t=11

(j) t=12 (k) t=13 (l) t=14

Figure 4.16: Target Value Entropy Results with outlier data added at each timestep
(t = 2− 15).

of knowing whether the first data added is the outlier without subsequent data to

compare it to. The additional data provided by the knowledge refinement process

provide a relative measure of its value, and provide context as to when the outlier

was added. The differences between Case 2 and 4’s respective knowledge structures

70



becomes apparent when the outlier is added in later timesteps (say, t > 5). For Case 2,

the spike in TVE remains independent of when the outlier is added, and it becomes

increasingly difficult for Case 4’s knowledge structure to distinguish the erroneous

point. This is a result of the erroneous data being ‘washed out’ by the intermediate

average calculations in Case 4, which yields target node values which are more similar

to previous calculations. This differs from Case 2, in which the sequence of values

used in determining the target node value are the volume values themselves. This

difference becomes more obvious in observing the resulting distributions of calculated

target values between the two cases, which is shown in Figure 4.17.

The propensity for the intermediate average calculations to ‘wash out’ the values

used to calculate the target node in Case 4 reveals an emergent path dependence

based on the sequence in which the values are added to the knowledge structure. The

same is not true for Case 2, which is only based on the values added, but not the

order in which they were added. The path dependencies of Case 4 also mean the final

TVE (t = 15) changes as a result of the sequence in which data is added. This is

different from Case 2, which has the same final TVE value independent of when the

Figure 4.17: Distribution of volume values used in target value calculation, Cases 2
and 4
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outlier is added. This suggests that Case 2 provides a knowledge structure which is

more conducive to determining the instant the erroneous value is added.

4.3.2 Excessive Rework

To answer the second question posed in the hypothetical scenario outlined in

Section 4.3, an analysis was conducted to determine the time required to remove

the outlier from the respective knowledge structures. The time required to remove

the outlier was determined by measuring the CPU time required for an algorithm

to remove all associated outlier data for each respective case. Using CPU time to

conduct rework provides a somewhat idealized view of the time required to conduct

rework, but provides a good relative comparison between cases. As was outlined in

the case descriptions in Section 4.3, two instances of Case 1 are presented to highlight

the importance of data traceability in preventing excessive rework activities: labeled

and unlabeled. The labeled case assumes that each principal dimension variable is

indexed by the ship it belongs to (i.e. Li, Bi, Ti, and CBi) all correspond to vessel

i. The unlabeled case assumes that the indexes of each principal dimension variable

do not necessarily correspond to the same ship (i.e. that the relations between the

principal dimension values and associated ship are not known). This is representative

of poor data traceability, which could be the result of incomplete communication of

an analysis or poor data management. The introduction of the labeled and unlabeled

cases both leave the network structure of Case 1 unchanged, and only affect the ability

to conduct successful rework operations.

The different knowledge structures represented by Cases 1, 2 and 3 require different

implementations in conducting rework. The algorithms associated with each rework

activity are summarized in the flow charts presented in Figure 4.18.

The most simple process of conducting rework is on Case 3’s knowledge structure.

This requires the volume nodes in the network to be sorted, and the largest to be
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(a) (b) (c) (d)

Figure 4.18: Flow charts for rework algorithms used for (a) Case 1 (unlabeled), (b)
Case 1 (labeled), (c) Case 2, and (d) Case 3.

removed before the result can be re-calculated. Case 2’s knowledge structure is a

similar process, although it requires the supporting principal dimension data to be

removed in addition to the removed volume node. Case 1 has the most difficult

structure to conduct rework of the cases considered. The critical differences between

the labeled and unlabeled versions of Case 1 are in the first step in the flow charts.

For the labeled case, the associations between the principal dimension values are

implied through their indexes, and only 14 calculations need to be conducted to

determine the volumes for each ship. In the unlabeled case, the lack of indexes means

that all possible combinations of principal dimension values must be enumerated to

calculate an associated volume value for each. This requires 144 = 38, 416 volumes

to be calculated. Thus, the presence of the indexes significantly simplifies the rework

process.

The resulting time to conduct rework for Cases 1 (labeled and unlabeled), Case

2, and Case 3 are displayed in Figure 4.19. Figure 4.19a presents the raw data of

the CPU times observed in conducting the rework activities, and 4.19b presents the

associated violin plots for the raw data. The width of the violin plot corresponds to

the probability of observing that value. Note that Case 4 has been omitted in the
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(a) Rework Time Raw Data (b) Rework Time Violin Plots

Figure 4.19: Rework Time Results

figure, since the rework operations are conducted on the final network structure, and

the final network structures of Case 1 and Case 4 are identical (hence, the rework

times displayed for Case 1 will hold for Case 4 as well).

As can be seen in Figure 4.19, both knowledge structures and the traceability of

data entities play a critical role in the ability to conduct successful rework activities.

Both the labeled and unlabeled instances of Case 1 contain significantly higher rework

times than for those of Case 2 and Case 3. In Cases 2 and 3, conducting rework is

simply a task of sorting the volume nodes in the knowledge structure, finding the

largest, and removing the associated data. Case 2 contains slightly higher rework

times than that of Case 3, although they are not significantly different. This suggests

that the increase in rework time associated with removing the principal dimension

variables from the network in addition to the volume node itself is negligible. However,

the knowledge structure of Case 1 has no explicit concept of individual ship volumes,

and thus the steps required to determine the largest ship are more complicated.

Conducting rework on Case 1 requires the principal dimension values to be combined

to calculate a volume for each ship and sorted to determine the largest, then each

associated data entity must be removed from the knowledge structure. This is an

example of the critical role that knowledge structures play in supporting efficient

74



rework activities.

The difference in observed rework times for the labeled and unlabeled versions

of Case 1 illustrate the importance of data traceability in conducting rework. While

the steps required to remove the outlier from the knowledge structure in the labeled

case takes an order of magnitude more time than for Case 2 or 3, the unlabeled case

increases the rework time to almost four orders of magnitude over Cases 2 and 3.

The lack of data traceability means that in order to determine the largest ship, all

combinations of principal dimension values must be calculated before the associated

data can be removed. This represents significant extra effort, and is a prime example

of excessive rework.

4.3.3 Failure to Integrate

In order to address the final question posed in the scenario outlined in Section 4.3,

Cases 1 (labeled and unlabeled), 2 and 3 are considered in the context of conducting

the rework process a second time. The rework algorithms and results from Section

4.3.2 were all able to identify the outlier as the largest ship across all presented meth-

ods. This section outlines the likelihood that each of the rework approaches would be

able to determine and remove the second largest ship from the dataset. As the algo-

rithms are unchanged from the case of determining the largest ship (only the selection

operator of selecting the correct ship changes), the rework results from the previous

section will remain the same for this discussion. However the probability of success

of conducting rework for each changes drastically. This is used to demonstrate the

increased potential of a failure to integrate information throughout a design activity.

A probabilistic approach was taken to demonstrate the potential failure to inte-

grate for each case, which is summarized in Table 4.6. Consider the algorithmic flow

charts presented in Figure 4.18. As previously stated, these algorithms are the neces-

sary approaches required to revise each case’s knowledge structure. These algorithms
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Table 4.6: Failure to integrate in process of removing second largest ship.

Case 1 Case 1
Case 2 Case 3

(labeled) (unlabeled)
Required Calculations 14 38,416 0 0

Volumes to Sort 14 38,416 14 14
Index of Second Largest Volume 2 5810 2 2

P(Selecting Correct Ship) 1.0 0.0 1.0 1.0

P(Picking Ship Randomly) 1
14
≈ 0.07 1

38416
≈ 3× 10−4 1

14
≈ 0.07 1

14
≈ 0.07

P(Recreating Full Dataset)
1

(14
14)

= 1.0 1

(38416
14 )
≈ 0.0 1

(14
14)

= 1.0 1

(14
14)

= 1.0

remain unchanged from Section 4.3.2, except for the selection of the appropriate ship

after the entries have been sorted. For Case 1 (labeled), Case 2 and Case 3, only

14 volumes need to be considered, corresponding to the 14 ships in the dataset. In

Case 2 and 3, these volumes are explicitly represented in the knowledge structure,

thus requiring no explicit calculations, while Case 1 (labeled) requires the 14 volumes

to be calculated during the rework process. When there is no data traceability, such

as in Case 1 (unlabeled), all combinations of variables must be enumerated, requir-

ing 144 = 38, 416 volumes to be considered. None of these values are represented in

the knowledge structure, thus each must be calculated explicitly. The volume values

(either explicit or calculated) are then sorted in descending order to determine the

second largest value of those considered. In Case 1 (labeled), Case 2, and Case 3,

the second largest ship appears as the second index when sorted. This is intuitive,

as only the 14 ships are considered during the sorting process. This means the sort-

ing algorithms presented for these cases will be functional in selecting the correct

ship and associated data. However, the same does not hold for the unlabeled case,

in which the correct data corresponding to the second largest ship appears at index

5810, rather than index 2. This is because there are 5808 combinations of principal

dimension values which yield higher values than those of the second largest ship -

although these combinations do not represent any of the actual ships in the dataset.
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This means that sorting the values and determining the second largest ship in the

unlabeled case (at index 2) will remove the incorrect data entities from the knowledge

structure and thus yield an incorrect result.

The expansion of both the number of volumes considered and number of calcu-

lations not only adds significant rework effort, but also decreases the probability of

conducting a successful rework activity. This is evidenced by the last two rows in

Table 4.6. With no data traceability, there is no ability to recover what specific com-

binations of variables were used to determine the yielded volumes, and so selection of

the appropriate volume value is left to random chance. If a ship were to be selected

randomly from each data set, the probability of that ship being the second largest

decreases by 99.96% with the addition of the additional considered volumes. The

probability of success diminishes even more when attempting to select all 14 correct

ships from the datasets. For Case 2, Case 3, and Case 1 (labeled) the probability of

recreating the entire correct dataset is 1 since the dataset contains only the 14 cor-

rect ships, whereas the additional erroneous volumes introduced in Case 1 (unlabeled)

yields a probability of 5.7× 10−54 of accurately recreating the correct dataset.

The inability to both conduct rework and to ‘retrace steps’ demonstrated by Case

1 (unlabeled) effectively illustrates an inability to progress with the design process

by conducting rework. This roadblock represents an failure to integrate this design

team’s calculation approach (their knowledge structure) with the rest of the design

effort. Solving this integration failure would require a full revision of the knowledge

structure, but presents issues as decisions were likely already made throughout the

design process based on the previous knowledge. Addressing this issue would represent

a significant rework activity, and the reliance on the previous knowledge structure

would likely lead to design churn later in the process.
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4.4 Local Knowledge Structure Case Robustness

The analysis of local knowledge structure growth in Section 4.2, and suitability

of the knowledge structure as a platform for conducting future work in Section 4.3,

provide unique insights into the benefits and limitations of each approach. This

section synthesizes the findings from previous sections to draw conclusions about

which of the approaches contains the most conceptually robust knowledge structure.

The primary findings of the analysis conducted in this case study reveal a number

of key factors that are critical to understanding the conceptual robustness of local

knowledge structures:

1. Knowledge structure growth has a large impact on the ability to recognize and

react to emergent design failures.

2. The initial selection of an information structure to begin the development of

a knowledge structure (the initial hypothesis) in the knowledge development

phase leads to the largest growth in topological entropy. This highlights the

importance of selecting proper information sources in early design stages.

3. The knowledge refinement stage integrates additional information into the knowl-

edge structure, by seeking supporting information sources for unknown knowl-

edge entities. This only occurs when additional data are required to support

the knowledge structure at a point in time. The presence of data alone does

not require any knowledge refinement.

4. The knowledge refinement stage should be marked by relatively small increases

in entropy. These gradual increases make it easier to identify ‘flags’ for potential

emergent design failures. Initial knowledge refinement activities contribute more

entropy than at later stages, illustrating decreased marginal gains as more data

is added to the knowledge structure.
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5. Impacts of adding data should be analyzed in the context of the effect on the

knowledge structure target node to accurately determine applicability of addi-

tional engineering activities to the knowledge being sought.

6. Minimizing the time required to successfully conduct rework activities can be

attained through a knowledge structure which best accounts for hidden data

interdependencies.

7. Data and information traceability is critical in the ability to successfully conduct

rework activities and prevent integration failures.

8. Approaches in which the minimum number of steps are required to yield a

calculable answer should be taken. Once the answer is calculable, its evolution

should be tracked over time to identify any increased potential for design churn

and other emergent design failures.

9. Path dependencies should be minimized within calculations as a way of increas-

ing predictability and monitoring the evolution of a design activity.

Considering the above conclusions in the context of the presented cases enables a

new perspective of the conceptual robustness of each approach. Case 1 and Case 4

contained the same knowledge development phase, with markedly different knowledge

refinement phases. Case 1 had a few knowledge refinement steps, with larger increases

in topological entropy at each step, while Case 4 required more steps, with fewer

marginal increases in topological entropy. This means more subtle changes to the

development of the knowledge structure would be observable in Case 4 than would

be in Case 1. Additionally, the knowledge refinement phase of Case 4 was marked

by an immediate reduction in data status entropy, while Case 1’s exhibited a more

gradual decrease. This means in Case 1 the target value was only calculable at

the final timestep in the knowledge refinement phase, as opposed to that of Case
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4 which yielded target value results at each step throughout knowledge refinement.

This means Case 4 yields more understanding of the evolution of the target value

over time than Case 1, thus increasing the transparency of the impacts of adding

data to the target value over time. This in turn leads to a better understanding

of the impact of adding data to the knowledge structure over time. The resultant

network structures of Case 1 and Case 4 yielded the same rework time results, and

both highlighted the same propensity for integration issues when multiple rounds of

rework were required. Thus, in comparing the two, the results suggest that Case 4 is

more conceptually robust than Case 1, though Case 4’s knowledge structure contains

a larger potential for failure in future activities than that of Case 2 or 3.

Case 2 and Case 3 contained the same knowledge development phase, though Case

3 did not demonstrate a knowledge refinement phase. The presence of volume data

with no context of the principal dimension data led to Case 3’s knowledge structure

being more limited in terms of both structure and growth dynamics than that of

Case 2. The knowledge refinement demonstrated in Case 2 resulted in higher total

topological entropy with a slowly decreasing data status entropy curve. Although this

means portions of the network were incalculable, the monotonically decreasing curve

indicates the team effectively worked toward increasing the certainty of known pa-

rameters. The target node remained calculable throughout the growth process which

resulted in more calculated values, and more of an understanding of the evolution of

the target node value over time as more data was added. Case 3 demonstrated an im-

mediate decrease in data status entropy, and only one result was able to be calculated.

In analyzing the resultant knowledge structures, both Case 2 and Case 3 required no

additional calculations to be performed to conduct rework, due to the volume entities

being explicitly represented in both knowledge structures. Both demonstrated low

probabilities of rework issues, and the presence of the additional supporting data in

Case 2 did not have a significant impact on rework time. This suggests Case 2 is a
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more conceptually robust approach than Case 3, as it integrates more information

into the knowledge structure while highlighting more dependencies in the data.

The knowledge structures of Case 2 and Case 4 are significantly different, and lead

to different growth and analysis dynamics. The knowledge development phase of Case

2 resulted in a higher topological entropy than that of Case 4 due to a larger network

which encapsulates more data entities in the knowledge structure. The result of the

larger initial network means a more gradual increase in topological entropy during the

knowledge refinement phase in Case 2 than in Case 4, with a larger overall topological

entropy at the final timestep. This means Case 2 incorporates more data into the

knowledge structure by explicitly representing the intermediate volume variables than

that of Case 4. Both Case 2 and Case 4 have gradual decreases in data status entropy

over their growth, meaning they both provide insight into the evolution of the target

node value over time. However, when looking at target value entropy, Case 2 was

able to clearly determine flags for data inconsistencies over the course of the network

growth, while the intermediate variable calculations of Case 4 caused these values

to be ‘washed out’, leading to a reduced understanding of the causal relationships

between adding data and resultant target values.

Another key differentiator between the conceptual robustness of Cases 2 and 4 is

through the ability to conduct rework. The time required to conduct rework for Case

2 was significantly lower than for Case 4. This is due to Case 2 explicitly representing

required data for rework in the knowledge structure, while Case 4 required these

values to be calculated. It was shown that data traceability is a critical aspect for

both rework times and probability of successful rework: Case 4 required indexes of

data added to the structure to be carefully tracked, while Case 2 represents the data

traceability explicitly through its structure (less dependency on tracking indexes).

Additionally, the probability of an integration failure was shown to be far less for

Case 2 than for Case 4.
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The comparison of the cases considered in this section suggest that Case 2 is

the most conceptually robust approach given its ability to accurately integrate the

most data and information into its knowledge structure, and to capture hidden data

dependencies. While this result will not come as a surprise to any Naval Architect -

this case study has presented a novel quantitative method of considering conceptual

robustness in the context of local knowledge structures.
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CHAPTER V

Global Knowledge Integration Case Study

As outlined in Section 1.1, to fully understand conceptual robustness, knowledge-

centric measures are required which extend beyond the traditional product-centric

approaches implemented to date. A framework was presented in Chapter III which

describes how knowledge structures evolve over time through the utilization of in-

formation sources. A case study was presented in Chapter IV which illustrates how

the framework is utilized with respect to local knowledge structures, and the types of

conceptual robustness insights it can yield. While these are critical first steps toward

the development of a framework to study a local design activity, this chapter presents

a case study on how the interaction of local agents leads to global information and

knowledge structures, in the context of integrating knowledge towards the goals of a

greater design activity. This case will demonstrate the successful utilization of the

previously defined entropy metrics to analyze the global layers of the K-I Framework.

Section 5.1 outlines the structure of this case study, and the remaining sections out-

line the resultant structures, dynamics, entropic results, and conceptual robustness

insights gained through an examination of the case.
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5.1 Case Study Overview

The case study presented in this chapter is a representative early stage design

activity of creating an aircraft fuel distribution system to be implemented on a naval

ship capable of launching and servicing a number of aircraft. This case study focuses

on the integration of global design knowledge across disciplines over the course of a

design activity, which is captured through the evolution of global information.

The aircraft fuel distribution system presented in this case study is a representa-

tive example of an early stage Analysis of Alternatives (AoA) design activity. This

example has been selected to illustrate the growth of global information and knowl-

edge in the information-sparse, multi-agent environment which plagues early design

stages. As such, the presented distributed system design tools have intentionally been

created to match the types of simplistic tools used to conduct an AoA. The case study

not only enables direct comparisons across combinations of aircraft load-outs, but also

highlights the differences of information flow within the different design activities as

well as the robustness of a design activity in the presence of little prior information.

The AoA design task which this case study considers is outlined as follows. Princi-

pal dimensions have been determined for a naval vessel capable of supporting the op-

erations of helicopters and aircraft capable of Vertical Takeoff and Landing (VTOL).

These characteristics are presented in Table 5.1. The alternative in question has a

flight-deck which spans its entire length, and as such, a wide range of potential air-

craft could be feasibly deployed from the vessel. The vessel is required to support the

launch and recovery of these aircraft, as well as refuel them between sorties. Four

potential aircraft have been identified as feasible alternatives for the vessel to sup-

port: F-35B’s, V-22 Osprey’s, Sikorsky SH-60 Seahawks, and AV-8B Harriers. It is

assumed that all considered aircraft utilize the same fuel (JP-5) for their operation.

It is up to the designers to determine a feasible JP-5 distribution system to support

a specific load-out of aircraft. The representative parameters of each vehicle type are
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Table 5.1: Representative Case Study Hull Parameters

Hull Parameter Value Units
Length (LWL) 237.0 m
Beam (B) 32.0 m
Draft (T) 8.5 m
Depth (D) 20.0 m
Block Coefficient (Cb) 0.64 -
BMT 6.0 m
BML 180.0 m
KB 4.3 m
LCB 118.5 m from AP

listed in Table 5.2.

A team of designers with different expertise have been tasked with the conducting

the design analysis for the presented vessel. The design team is comprised of three

groups: a Naval Architecture group (NAVARCH), a Flight Operations group (OPS),

and a Distribution group (DIST). Each of these groups is responsible for conducting

a subset of design analyses to produce the integrated system. In order to produce a

converged design, each of these groups will be required to conduct individual analyses

using their own design tools, and may also be required to communicate data to other

groups.

This case study represents an AoA design process with diverse, non-co-located

design teams, and presents an example of how these design teams would approach

such a distributed system design problem. Additionally, the presented case enables

Table 5.2: Representative Case Study Aircraft Parameters

Aircraft
Unit Combat Cruise Fuel

Weight Radius Speed Capacity
(tonnes) (nm) (kts) (m3)

F35-C 13.3 600.0 567.0 17.0
V22 Osprey 15.0 428.0 270.0 9.2

AV-8B Harrier 6.7 300.0 550.0 7.4
SH-60 Seahawk 8.1 200.0 120.0 2.0
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an examination of global information and knowledge structures based on how teams

interact with one another. It is important to note that this case study does not con-

sider the creation of each discipline’s design tool as a part of the presented design

process, and it is assumed that these tools have been created a-priori. The result

of this assumption is that local knowledge structures are fixed through time, and

represent the embedded knowledge contained within the tool. A more detailed expla-

nation of the local tools used by each design group, and the resultant local knowledge

structures are presented in Sections 5.2.1 - 5.2.3.

To study the evolution of global information and knowledge structures, two scenar-

ios are considered which highlight different inter-discipline communication dynamics.

These two scenarios, a Simple Case and a Hard Case, represent different combinations

of aircraft as requirements for the designers to meet. In the Simple Case, the required

load-out of aircraft is comprised of a single type. The Hard Case considers a suite of

four different aircraft types. In both cases, designers must design a JP-5 distribution

system to accommodate the full load-out of aircraft, while ensuring it remains feasible

within the vessel constraints. It will be shown that the inter-agent communication

dynamics differ significantly between the two cases, and reveal a number of concep-

tual robustness insights as it pertains to the integration of design information and

knowledge at a global level.

5.1.1 Requirements

As described in Chapter III, a design activity begins with a number of known and

unknown global knowledge entities, pertaining to the global design. It is the task of

the designers to uncover the relations and dependencies of the known entities on the

unknown entities, and also between the unknown entities at a global level. In this

case, the known knowledge entities are defined by the requirements, and the unknown

parameters are the global design parameters selected to be determined. These entities
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exist in the global knowledge layer of the K-I Framework.

The design requirements for the Simple and Hard cases set global design goals

for the designers to meet. These requirements define the feasibility constraints of the

final design, and as such, play a critical role in the ability for designers to produce a

converged product. The design requirements are used to differentiate the two cases

by varying the design space constraints and number of design variables required to

be considered. The Simple case reduces both the number of design constraints and

number of variables considered in the analysis, while the hard case increases both.

In both cases the requirements pertain to the load-out of aircraft considered for the

ship design to support. Specifically, the requirements define the number of each type

of aircraft to be accommodated by the design. The required values differ between

the two considered cases, while the desired knowledge entities are held constant for

comparison purposes. The desired global knowledge entities common to both cases

are presented in Table 5.3. The order in which the unknown entities are listed in the

table correspond to the sequence in which they are solved for in the design activity.

The requirements for aircraft load-outs are presented in Tables 5.4 and 5.5 for the

Simple and Hard cases, respectively.

Table 5.3: Desired knowledge entities common to both cases.

Knowledge Entity Status Description Units
No. F-35B Known Required number of F-35B Aircraft #

No. V-22 Osprey Known Required number of V-22 Aircraft #
No. SH-60 Seahawk Known Required number of SH-60 Aircraft #
No. AV-8B Harrier Known Required number of AV-8B Aircraft #

GMt Unknown Transverse Metacentric Height m

% Unknown
Difference between Total Weight
and Displacement

%

Trim Unknown
Difference between forward and aft
draft

m

Required Power Unknown Power required by pumping system kW

Pipe Diameter Unknown
Diameter of pipe used for JP-5 dis-
tribution

m
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Table 5.4: Aircraft load-out requirements (Simple Case)

Aircraft Number
F-35B 0

V-22 Osprey 0
SH-60 Seahawk 36
AV-8B Harrier 0

Table 5.5: Aircraft load-out requirements (Hard Case)

Aircraft Number
F-35B 1

V-22 Osprey 2
SH-60 Seahawk 3
AV-8B Harrier 8

5.2 Local Knowledge Structures

5.2.1 Operations (OPS) Group

The Operations (OPS) group is responsible for determining the parameters of

the distribution system pertaining to the selected aircraft. At a high level, they are

responsible for determining the aircraft locations and the required capabilities of the

distribution system for a given aircraft load-out. More specifically, the OPS team

determines estimates for the total weight of aircraft and the locations of the aircraft

on the flight deck. The locations of aircraft on the flight deck are determined assuming

aircraft of the same type are grouped together and must be sufficiently spaced between

other groups. The net center of gravity of each aircraft type is decided by the OPS

team. Additionally, the OPS team determines the refueling location, the required

volume of JP-5 required onboard, and the volume flow rate to support all aircraft

operations. As such, the OPS team essentially translates the required aircraft array

to distributed system parameters.

As was previously mentioned, the process of creating the design tool is assumed to

have occurred prior to this design activity, and as such, the local knowledge structure
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growth has already occurred. Hence, the OPS team’s local knowledge structure has

already been fully defined, and is a representation of the embedded knowledge within

their design tool. The OPS team’s local knowledge structure is presented in Figure

5.1.

The OPS local knowledge structure illustrated in Figure 5.1 illustrates the rela-

tions of local knowledge entities embedded within their design tool. Nodes are sized

according to their PageRank value. Input variables are depicted as nodes with zero

in-degree (shown in green), outputs of the tool are represented by nodes with zero

out-degree (shown in blue), and all other nodes represent intermediate variables as a

result of intermediate calculations (shown in grey). Table 5.6 presents each variable

ordered by PageRank value, with the associated in-degree and out degree. Note that

Figure 5.1: OPS Local Knowledge Structure
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the output variables contain the largest PageRank values, while the inputs have the

smallest. These values are predicated by the structure of the local network. Note

that while the PageRank values are predicated by the network structure, the data

values of the inputs to the tool is independent of structures and could be decided by

the team itself or the results of another team. The process of populating the inputs

to the tool will be a product of how the design approach is conducted. The equations

used by the OPS team are presented in Appendix A.3.

The visualization of the OPS team’s local knowledge structure reveals two com-

munities of variables. The smaller community in the top right portion of the figure

contains the parameters used to determine the weights and centers of the aircraft.

The larger community on the bottom left of the figure contains the parameters used to

calculate the volume of JP-5 required onboard, and the required distribution system

flow rates. Comparatively, the larger community is comprised of many more inter-

mediate variables and contains a more complex structure than that of the smaller

community. This indicates that there are more parameters contained in conducting

the calculation, and that the dependencies between variables are more complex for

determining fuel estimates than for calculating weights and centers. Note that the

two communities are connected through four input nodes which correspond to the

number of each vehicle type. As these four nodes are inputs (and hence have no

in-degree) there are no directed paths through the knowledge structure between the

communities. This indicates that the fuel-related parameters are not functionally

dependent on the weights and centers of the aircraft (and vice-versa) - both analyses

are predicated by the number of each aircraft type.
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Table 5.6: Variables contained in Operations Tool

Variable Name In-Degree Out-Degree PageRank
V fuel 4 0 0.1130

vol flow rate 4 0 0.0769
x veh 9 0 0.0581
z veh 9 0 0.0581

V fuel F35 6 1 0.0312
V fuel V22 6 1 0.0312

V fuel AV8B 6 1 0.0312
V fuel SH60 6 1 0.0312

W veh 4 2 0.0245
flow rate F35 2 1 0.0206
flow rate V22 2 1 0.0206

flow rate AV8B 2 1 0.0206
flow rate SH60 2 1 0.0206
flight time F35 2 3 0.0185
flight time V22 2 3 0.0185

flight time AV8B 2 3 0.0185
flight time SH60 2 3 0.0185

SFC F35 3 1 0.0157
SFC V22 3 1 0.0157

SFC AV8B 3 1 0.0157
SFC SH60 3 1 0.0157

W V22 2 3 0.0156
W AV8B 2 3 0.0156
W SH60 2 3 0.0156
W F35 2 3 0.0156

refuel time F35 2 1 0.0128
refuel time V22 2 1 0.0128

refuel time AV8B 2 1 0.0128
refuel time SH60 2 1 0.0128

n F35 0 2 0.0068
n V22 0 2 0.0068

n AV8B 0 2 0.0068
n SH60 0 2 0.0068
w F35 0 1 0.0068
w V22 0 1 0.0068

w AV8B 0 1 0.0068
w SH60 0 1 0.0068

sortie rate 0 8 0.0068
fuel capacity SH60 0 2 0.0068
fuel capacity F35 0 2 0.0068
endurance days 0 4 0.0068

density JP5 0 8 0.0068
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Table 5.6 (continued)

Variable Name In-Degree Out-Degree PageRank
fuel capacity AV8B 0 2 0.0068
fuel capacity V22 0 2 0.0068

radius F35 0 1 0.0068
radius V22 0 1 0.0068

radius AV8B 0 1 0.0068
radius SH60 0 1 0.0068
speed F35 0 1 0.0068
speed V22 0 1 0.0068

speed AV8B 0 1 0.0068
speed SH60 0 1 0.0068

x F35 0 1 0.0068
z F35 0 1 0.0068
x V22 0 1 0.0068
z V22 0 1 0.0068

x AV8B 0 1 0.0068
z AV8B 0 1 0.0068
x SH60 0 1 0.0068
z SH60 0 1 0.0068

5.2.2 Naval Architecture (NAVARCH) Group

The NAVARCH group is responsible for ensuring the stability, trim, and weights

and centers of the vessel remain feasible for a given arrangement of aircraft. At a high

level, the NAVARCH group is responsible for ensuring that the physical parameters of

the distribution system are integrated appropriately with the vessel’s hull parameters.

More specifically, the NAVARCH group ensures the weights and locations of the

aircraft and fuel tanks are located in such a way that the vessel’s GMT, Trim, and

difference between total weight and displacement remain feasible. In this respect,

the NAVARCH group act in many ways as the system integrators by ensuring the

calculations performed by other design teams translate to feasible ship parameters.

Similar to the OPS team, the NAVARCH group utilizes a previously developed

tool to conduct their design analysis. The resulting local knowledge structure of the
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knowledge embedded in the design tool is depicted in Figure 5.2, with inputs shown

in green, outputs shown in blue, and intermediate variables shown in grey. Nodes are

sized by their PageRank value, and are summarized in Table 5.7. More details about

the equations used in the design tool is presented in Appendix A.2.

The NAVARCH team’s knowledge structure reveals a larger ratio of inputs to

outputs compared to the OPS team. This is intuitive, due to the large number of

NAVARCH input variables related to the hullform parameters of the ship in question.

As the NAVARCH team acts in more of an integration role, many inputs relate to

outputs from other team’s tools (for example, the weights and centers of the aircraft

from the OPS team). Interestingly, unlike the OPS team’s knowledge structure, the

NAVARCH team’s knowledge structure does not reveal clearly separable communities

Figure 5.2: NAVARCH Local Knowledge Structure
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Table 5.7: Variables contained in Naval Architecture Tool

Variable Name In Degree Out Degree PageRank
Trim 4 0 0.1420
x tot 5 1 0.0801
z tot 5 2 0.0801

% 2 0 0.0633
GMT 3 0 0.0583
GML 3 1 0.0583

x DWT 7 1 0.0564
z DWT 7 1 0.0564

Disp 2 1 0.0559
V 4 1 0.0425

W fuel 2 3 0.0289
W DWT 3 5 0.0249

W tot 2 3 0.0179
LWL 0 2 0.0107

B 0 1 0.0107
T 0 1 0.0107
Cb 0 1 0.0107

BMT 0 1 0.0107
BML 0 1 0.0107
KB 0 2 0.0107

LCB 0 1 0.0107
density SW 0 1 0.0107

W LS 0 3 0.0107
W misc 0 3 0.0107
W veh 0 3 0.0107

density JP5 0 1 0.0107
x misc 0 1 0.0107
z misc 0 1 0.0107
x veh 0 1 0.0107
z veh 0 1 0.0107
x fuel 0 1 0.0107
z fuel 0 1 0.0107
x LS 0 1 0.0107
z LS 0 1 0.0107

V fuel 0 1 0.0107

by input variable. This suggests the variables are far more inter-related than that of

the OPS team, which implies that changes to a variable will have a larger number of

impacts on other nodes in the network.
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5.2.3 Distribution (DIST) Group

The DIST group is responsible for determining the preliminary estimates for the

parameters pertaining to the piping system used to move the fuel from the ship’s JP-

5 tanks to the location of the aircraft. Primarily, the DIST group is responsible for

determining the required pipe diameter for the distribution system and the required

power of a pump to move the fuel from the tanks to the flight deck. As such, the

DIST team is responsible for determining the feasibility of moving the fuel around

the vessel. The embedded knowledge in the tool (and hence their local knowledge

structure) is shown in Figure 5.3, with inputs shown in green, outputs shown in blue,

and intermediate variables shown in grey. Nodes are sized by their PageRank value.

Similar to the other groups, the nodes in the network are summarized in Table 5.8.

The equations used by the DIST team are presented in Appendix A.1.

Figure 5.3: DIST Local Knowledge Structure
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Table 5.8: Variables contained in Distribution Tool

Variable Name In Degree Out Degree PageRank
required power 3 0 0.2921

system head 7 1 0.2576
V2 3 1 0.0889

specific weight 2 2 0.0768
density JP5 0 1 0.0285

g 0 1 0.0285
pipe diameter 0 1 0.0285
vol flow rate 0 2 0.0285

pi 0 1 0.0285
P1 0 1 0.0285
P2 0 1 0.0285

z fuel 0 1 0.0285
z veh 0 1 0.0285
V1 0 1 0.0285

Compared to the other groups’ structures, the DIST team has the simplest net-

work. No clear communities exist, which suggests higher levels of knowledge depen-

dencies in the tool; however, the minimal size of the network limits the structure’s

complexity. Additionally, the few intermediate variables in the network means in-

puts are more directly related to calculate outputs which contributes to the tool’s

simplistic structure.

5.2.4 Summary of Group Roles

Sections 5.1.1 - 5.2.3 have presented a case study which involves the coordination

of multiple teams and their associated tools to meet a set of requirements pertaining

to a feasible final design. The responsibilities of each team have been outlined, in

addition to their local knowledge structures, which are results of their previously

developed design tools. The summary of each design group’s goals is presented in

Table 5.9.

An examination of the teams’ local knowledge structures reveals a number of

insights about the embedded knowledge within each of their design tools. The number
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Table 5.9: Summary of Case Study Design Group Roles

Design Group Responsibilites Parameters

Operations
(OPS)

Determine estimates of
distribution system
requirements based on the
proposed combination of
aircraft.

Aircraft Weights
Aircraft Locations
Refueling Location
Required Volume of Fuel
Required Flow Rate

Naval
Architecture
(NAVARCH)

Determine the weights and
centers of distribution
system, and ensure broad
feasibility of vessel related
to weight vs. displacement,
stability, and trim.

Weight of Fuel
Location of Fuel Tank
Transverse Metacentric Height
(GMt)
Trim
Difference between Total
Weight and Displacement

Distribution
(DIST)

Sizing of piping system and
pump sizing required to
transfer fuel from tanks to
aircraft refueling location.

Pipe Diameter
Required Pump Power

of nodes (knowledge entities) in each local knowledge network corresponds to the

number of variables contained in the tool. The number of edges represents the number

of functional dependencies between knowledge entities. The combination of these two

aspects defines each network, and provides insight into the complexity and scope of

each team’s knowledge structure. A summary of each local knowledge structure is

presented in Table 5.10.

The OPS network has the largest number of nodes and edges, which illustrates

that the tool utilized considers the most variables and most interdependencies. While

it is to be expected that a larger number of nodes leads to a larger number of edges,

Table 5.10: Summary of Local Knowledge Structure Parameters

Local KS Nodes Edges
Average Average
Degree Path Length

Operations (OPS) 60 98 1.633 1.734
Naval Architecture (NAVARCH) 35 49 1.400 2.043
Distribution (DIST) 14 15 1.071 1.567
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the OPS network also has the highest average degree, which indicates that on average,

each node in the network is connected to more nodes than the other groups. The clear

separation of two communities in the OPS knowledge structure illustrates distinct

groups of variables used to calculate different outputs. While this limits the functional

dependencies of the variables in the entire structure, the large number of nodes results

in a large number of dependencies being recognized within communities. This is

reflected in the average path length, which falls in between the two other groups. In

this case, average path length is indicative of the average depth of dependencies in

the network.

The NAVARCH group has the second most nodes (variables) and edges (interde-

pendencies), and contains a less clear community structure. The less defined separa-

bility of the network is illustrated by the highest average path length, and indicates

that on average a node in the network has a longer depth of impact than the other

teams. The average degree remains high for the NAVARCH team, and is in fact larger

than the OPS team relative to the number of nodes in the network. This indicates

that changes to a single input variable are more likely to impact a number of output

variables than in the OPS case. Additionally, it suggests output variables are more

closely related to one another through the interdependencies in the variables.

The DIST team has the least number of nodes and edges, which suggests their

tool is the most rudimentary of the three groups. Low average degree and path length

metrics highlight the simplistic network structure and demonstrates the least amount

of complexity.

This section has provided a qualitative discussion of each local knowledge struc-

ture. A more quantitative discussion of each network structure is presented in dis-

cussion of Topological Entropy (TE) presented in Section 5.4.1.
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5.3 Global Information and Knowledge Structures

5.3.1 Integration Sequence

In order to compare the results of conducting the design activity between the

simple and hard cases, the sequence in which target nodes are solved is held constant

(as stated in the discussion of Table 5.3). As such, prescribing the sequence a-priori

enables the same design process to be analyzed in the context of accommodating the

two sets of requirements in the AoA. The sequence of target nodes are listed in Table

5.11 along with the corresponding teams responsible for that node.

Each target node listed in Table 5.11 is selected by the team responsible for that

node. That team attempts to calculate a value for that node. If a team is unable to

calculate a value for that target node due to a lack of data in their local knowledge

structure, they communicate their unknowns to the global information layer. These

unknowns are listed on the right side of the table with the teams responsible for those

nodes. Note that the transition of some nodes to global information creates a number

of additional unknowns, while others do not. This occurs when the data required

for a local node already exists within the local knowledge structure, or as data in a

global information node. In the latter case, rather than creating a new unknown, the

team simply utilizes the existing value in global information. Note that the creation

Table 5.11: Prescribed Sequence of Global Information Integration

Order
Unknown Target Team Unknown Node Team

Node Responsible Created Responsible

1 GMt NAVARCH

W veh OPS
z veh OPS
V fuel OPS
z fuel NAVARCH

2 % NAVARCH - -
3 Trim NAVARCH x veh OPS
4 required power DIST vol flow rate OPS
5 pipe diameter DIST - -
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of nodes does not necessitate the initialization of values - nodes can remain unknown

until populated by a local layer at a later time.

As was explained in Section 3.2.1, the interaction of local layers with the global in-

formation layer are represented through inter-layer edges. The paths created between

local knowledge structures through their interactions with global information entities

creates projected values in the global information layer. Hence, the provided sequence

prescribes both the order in which nodes are created, and in which interdependencies

are realized, in global information. As the same global entities are provided for both

cases and solved for in the same order, the resulting global structures will be the

same.

While the target node sequence is fixed between simple and hard cases - the so-

lution process between teams differs. As the simple and hard cases contain different

values associated with many local and global nodes, the number of negotiations re-

quired between teams differ in order to yield suitable values for the respective teams.

Additionally, changes made during negotiations may necessitate revisions to other

previously negotiated nodes, and hence require different durations to conduct various

analyses. Hence, the global dynamics will differ between the simple and hard cases

in the form of updates to global information values, which provides the needed data

to test the methods created.

The resultant K-I Framework for the prescribed knowledge integration procedure

is displayed in Figure 5.4. In this image, the OPS, NAVARCH, and DIST teams’

knowledge structures are displayed as the top-most networks, and are shown in ma-

genta, green, and orange, respectively. The global information and knowledge layers

are shown in blue and dark green, respectively. Edge color indicates the layer of the

node being pointed from, and blended colors highlight the presence of bi-directional

edges.
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Figure 5.4: Resultant K-I Framework

5.3.2 Global Information Structure

The resultant global information structure for both the simple and hard cases

is depicted in Figure 5.5. The network contains the nodes initially translated from

the global knowledge layer (see Table 5.3) and the additional nodes transmitted as a

result of inter-team negotiations (see Table 5.11). The edges in the network are pro-

jections of dependencies between entities based on the interactions of local knowledge

structures. Nodes are sized according to their PageRank values, and a summary of

node characteristics is provided in Table 5.12. In the table, nodes initialized from the

global knowledge layer are highlighted in grey.

The developed global information structure reveals a number of aspects worth

noting. First, note that nodes pertaining to the number of aircraft which originated

as known global knowledge entities, all have zero in degree but non-zero out degree.

This indicates that these parameters are only used to determine other values, but are

themselves not dependent on other entities. As such, they act as inputs to the global
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Figure 5.5: Resultant Global Information Structure

information structure. This is intuitive, as these parameters dictate the integration

activity. Second, note that Trim, GMt, required power and % all have zero out

degree, and non-zero in degree. This illustrates that these parameters are solely

Table 5.12: Variables contained in Global Information

Variable Name In Degree Out Degree PageRank
Trim 5 0 0.1647

required power 4 0 0.1295
GMt 4 0 0.0985
z veh 5 3 0.0779
x veh 5 1 0.0779
W veh 4 5 0.0666
V fuel 4 3 0.0666

% 2 0 0.0662
n F35 0 4 0.0360
n V22 0 4 0.0360

n AV8B 0 4 0.0360
n SH60 0 4 0.0360

pipe diameter 0 1 0.0360
z fuel 0 3 0.0360
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dependent on other parameters, and are not used to determine any others. Hence,

these act as outputs of the information structure. Note however that pipe diameter,

a node translated from the global knowledge, has been determined as an input rather

than an output. This illustrates that the recognition of interdependencies in global

information is independent of where the node is initialized from. All other nodes in

the structure are intermediate nodes, and create dependency pathways between inputs

and outputs. The PageRank of intermediate nodes are indicative of how important

they are within the structure.

5.3.3 Global Knowledge Structure

The global knowledge structure created by the simple and hard cases is depicted

in Figure 5.6. This network is comprised of all nodes initialized into the framework

(Table 5.3). Upon initialization these nodes were unconnected; however, the resultant

structure includes projected edges uncovered through the development of the global

Figure 5.6: Resultant Global Knowledge Structure
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Table 5.13: Variables contained in Global Knowledge

Variable Name In Degree Out Degree PageRank
required power 5 0 0.2037

GMt 4 0 0.1396
% 4 0 0.1396

Trim 4 0 0.1396
n F35 0 4 0.0755
n V22 0 4 0.0755

n AV8B 0 4 0.0755
n SH60 0 4 0.0755

pipe diameter 0 1 0.0755

information structure (through the process outlined in Section 3.2.2). Nodes in the

figure have been sized according to their PageRank values, and a summary of node

parameters is presented in Table 5.13. In the table, previously known parameters are

highlighted in grey, while unknown parameters are unshaded.

The resulting global knowledge structure effectively relates the previously known

knowledge entities to those that are unknown. Note that the network is fully con-

nected, which illustrates that the teams were able to determine relations between

all entities. All previously known entities have zero in degree and non-zero out de-

gree, which indicate they are only used to determine other parameters, becoming

the inputs to the global knowledge structure. The previously unknown entities have

been uncovered as both inputs and outputs in the structure, through the pathways

uncovered in global information. This successfully demonstrates the ability for the

framework to recognize proper interdependencies between knowledge entities inde-

pendent through appropriate information building activities. An important aspect of

the global knowledge structure is that it does not contain intermediate nodes. The

intermediate nodes in global information are used to recognize dependency pathways

and project these dependencies into global knowledge. No new nodes are added to

the structure throughout the presented case; the process simply uncovers relations

between all initial nodes.
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While both the simple and hard cases yield identical global knowledge structures,

the dynamics and robustness of the approaches differ. This will be explored further

in the next section through the application of the developed entropy metrics.

5.4 Knowledge Integration Results

This section presents the temporal results of the simulated design process created

in this case study. The developed entropy metrics are applied to the K-I Framework

over the network developments, and are used to understand the evolution of both

local and global knowledge structures. First, the growth of each layer is analyzed

in Section 5.4.1 using the Topological Entropy (TE) metric. Second, the temporal

calculability results of local and global layers are presented in Section 5.4.2. Finally,

the evolution of node values across the layers are analyzed in Section 5.4.3 which

considers both input and output values, as well as intermediate values used over the

course of their calculation. Each section presents the conceptual robustness insights

that can be gained from utilizing each metric at the local and global levels.

5.4.1 Topological Entropy

An examination of the Topological Entropy (TE) provides insight into how the

amount of information contained within the structure of the network changes over

time. As such, TE time series are displayed for each local team and the global layers

in Figures 5.7 - 5.11 for both the simple and hard cases. These figures display the

TE as a function of the number of framework timesteps. These framework timesteps

do not correlate to physical time, but rather correspond to the steps of transmitting

information either within or across layers, providing a more intuitive means for dis-

cussing the results. Of note is that the total number of framework timesteps required

to complete the design activity differs between the two cases, with values of 28 and

36 steps, respectively. The additional steps in the hard case are a result of additional
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required communication between groups which are not present in the simple case.

The TE dynamics differ across the two cases, which will be discussed in more detail

in the remainder of this section.

There is no growth of the local knowledge structures (Figures 5.1 - 5.3) throughout

this representative design activity in the simple or hard cases. This is the result of

the same tools being used by each team in both cases, neither of which required to

integrate additional knowledge elements. As the tools used by each team are the

same, so too is the knowledge embedded in these tools. The TE plots of the local

knowledge structures are presented in Figures 5.7 - 5.9. The unchanging local layer

network structure leads to constant TE values, though the hard case TE spans a longer

duration. This illustrates that there is no change to the structure of the knowledge

embedded in their tools over time, although the data utilized across the tools may

indeed change (this will be explained further in Section 5.4.2).

The networks presented in Figures 5.1 - 5.3 demonstrate the constant structure

over the course of the design activity. While this provides a broad perspective of

the network’s evolution over time, the structure can be analyzed in more detail by

understanding the contribution of input, intermediate, and output variables from a

TE perspective. To better understand the composition of these structures by variable

type, consider Figure 5.10.

Figure 5.10 illustrates the contribution of inputs, intermediate, and output vari-

ables to the total observed TE in the time series for each of the local knowledge

structures (Figures 5.1 - 5.3). Table 5.14 summarizes these results, and includes the

percentage contribution to the total TE for each team. While the number of inputs

varies greatly between each local structure, the TE of the inputs remains relatively

constant for each. This indicates that from a structural standpoint, the TE contri-

bution of each individual input is diminished as the number of inputs increases. This

is due to the absence of incident edges to input nodes, meaning they do not aid in
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(a) Simple Case (b) Hard Case

Figure 5.7: Topological Entropy - OPS Team

(a) Simple Case (b) Hard Case

Figure 5.8: Topological Entropy - NAVARCH Team

(a) Simple Case (b) Hard Case

Figure 5.9: Topological Entropy - DIST Team
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Figure 5.10: Team Topological Entropy (TE) Comparison

the transmission of data through the network - they are only the starting point of

transmissions. This is confirmed by the diminishing percentage contributions for the

inputs toward total TE.

The observed differences in total TE are mainly a result of increases in inter-

mediate and output variables. The intermediate variables act as transitional nodes

between inputs and outputs. A larger number of intermediate nodes coupled with

more interdependencies between them lead to more structural complexity, and hence

more TE. Not only does the TE of the intermediate values increase, but so too does

the percentage contribution. This explains the larger observed contributions to the

OPS TE than for the DIST group, as the OPS tool contains the largest number of

intermediate variables. The TE of the outputs follows the same trend, which is due

not only to the number of outputs contained within each tool, but also due to the

Table 5.14: Decomposition of TE by variable type

Team Input Intermediate Output Total
DIST 1.46 (47.5%) 1.10 (35.7%) 0.52 (16.8%) 3.08 (100.0%)

NAVARCH 1.54 (34.0%) 2.10 (46.4%) 0.89 (19.7%) 4.53 (100.0%)
OPS 1.52 (28.5%) 2.71 (50.7%) 1.12 (20.9%) 5.36 (100.0%)
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number of connected intermediate variables. The growth in TE of the intermediate

variables therefore leads to a growth in TE of the outputs.

While the TE of local knowledge structures remain unchanged as the design ac-

tivity progresses, the global layers exhibit changes in TE over time. The dynamics of

global layer TE growth mimic those of the local knowledge structures in Section 4.2 -

marked by a rapid initial growth phase which levels off over time. These two phases

associated with TE growth were deemed development and refinement, respectively.

The development phase is responsible for the initial structuring of the network, while

the refinement phase integrates additional nodes and edges into the network. As

was previously argued, these two regions play critical roles in the development and

dynamics of local knowledge structures, and remains true for the development of the

global structures over the course of an integration activity.

The integration process of the framework begins with the initialization of the

global knowledge layer, which prescribes which knowledge entities are known and

which are desired. As was previously discussed, the initial body of known and un-

known knowledge is a product of the question being asked in the design activity, and

provides the basis on which the design teams conduct their analyses. As such, the

discussion of results in this section will first focus on the global knowledge layer. The

aim of the design process simulation is to determine the relationships between the

known and unknown entities - yielding a global knowledge structure. The final global

knowledge structure for the simple and hard cases is presented in Figure 5.6. The TE

results for the global knowledge layer are presented in Figure 5.11.

Initially, the known and unknown knowledge entities are populated as a number of

unconnected nodes in the global knowledge layer. This defines the development phase

of global knowledge growth, observed at time 0 ≤ t ≤ 1. This illustrates that initial

TE growth in global knowledge is a function of the original number of knowledge

entities added to the layer. As these nodes are unconnected, the PageRank value of
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(a) Simple Case (b) Hard Case

Figure 5.11: Topological Entropy - Global Knowledge

each node will be equivalent, and will be equal to 1/n where n is the initial number

of nodes in the global knowledge layer. Applying this fact to Equation (2.7), it can

be shown that the initial increase in TE of the development phase is given by log2(n).

This illustrates that the more nodes are initialized in global knowledge, the more the

initial increase in TE (in fact, the initial TE increases by one each time the number of

initial nodes doubles). The further addition of unconnected nodes to the layer in later

timesteps will result in an increase in TE, the magnitude of which will be dependent

on both the number of nodes added, and the number of nodes already existing.

The refinement phase of the global knowledge layer (t > 1) characterizes the

addition of nodes (knowledge entities) and/or edges (relations between knowledge

entities) to the network. In general, the addition of nodes to the network will result

in an increase in TE, while the addition of edges will decrease TE. The magnitude of

the increase or decrease in TE will depend on the size and structure of the network

when the new nodes or edges are added. The behavior of the TE metric is intuitive

in relation to the dynamics of knowledge entities. The more knowledge entities are

added, the larger the metric. As relations are drawn between existing knowledge

entities through the addition of edges throughout the design activity, the overall TE

decreases (for a fixed number of nodes the addition of edges reduces the uncertainty
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about the relation of nodes in the network). While the overall TE will decrease,

the individual TE contribution of certain nodes will increase (dependent nodes) and

others will decrease (independent nodes), due to their changes in PageRank value.

These trends reveal some interesting insights into the global knowledge TE dynamics.

For both the simple and hard cases, the global knowledge layer consists of 9 nodes.

Initially (t = 0) the global knowledge layer is empty, and at time (t = 1) the global

knowledge layer is initialized with 9 unconnected nodes - 4 known knowledge entities

(the number of each vehicle) and 5 unknown nodes (the global knowledge entities

to be determined) (Table 5.3). The initial structure of the global knowledge layer

is identical across the hard and simple cases, although the values contained by the

known nodes differ between the two. As was previously outlined, the addition of

9 unconnected nodes corresponds to the global knowledge development phase, and

leads to a large initial increase in TE - an increase of log2(9) ≈ 3.17 bits. This value

remains constant throughout the majority of the knowledge refinement phase (t > 1)

for both the easy and hard cases. This constant value is a result of an unchanged

global knowledge structure after the initial knowledge development phase (all nodes

remain unconnected), the duration of which is a result of the time required to build

the global information layer from the individual disciplines. This explains the longer

knowledge refinement phase of the hard case compared to the simple case - the hard

case required more framework timesteps to develop the global information layer than

the simple case. The final timestep (t = 27 and t = 35 for the simple and hard

cases, respectively) is marked by a decrease in TE. This is a result of incorporating

the projected edges into the global knowledge structure after the development of the

global information structure. The final knowledge structures for the simple and hard

cases are identical (Figure 5.6), which explains why the final TE value are equivalent.

Although the initial increase and final value of TE are identical across the two

cases, the time required to uncover interdependencies between knowledge entities
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varies significantly. This is a product of additional timesteps required by the groups

to fully develop the global information layer in the hard case. Only after the global

information layer has been fully developed is it transmitted to global knowledge,

and the more difficult problem landscape leads to additional iteration steps being

required. Additional insights about the iterations can be gained through an analysis

of the global information layer TE, the results of which are presented in Figure 5.12.

Having considered the topologies of the local and global knowledge layers, it is

interesting to find that the fixed local knowledge structures can lead to a growing

global knowledge structure. This occurs as a result of the global information layer

(Figure 3.2.1) which is developed through inter-agent communication. The develop-

ment region of the global information structure comes from the initial translation of

the nodes in the global knowledge layer to nodes in the global information layer, mark-

ing the translation from knowledge entities to information entities for the disciplines

to populate (shown in Figure 3.6). The translation of the 9 unconnected nodes in the

global knowledge layer leads to an identical initial increase in TE for the global infor-

mation layer as was initially observed in the global knowledge layer (3.17 bits). This

increase happens one timestep after the global knowledge layer development phase

(t = 2), and is consistent across the simple and hard cases. At timestep t = 3, the

(a) Simple Case (b) Hard Case

Figure 5.12: Topological Entropy - Global Information
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GMt node is selected as the first target node to be determined, and is selected by the

NAVARCH team. In order for the NAVARCH team to determine a value for GMt,

their local knowledge structure requires values for the vehicle weights (Wveh), the

height of the vehicles (zveh), the volume of fuel (Vfuel) and height of the fuel (zfuel).

These variables are communicated to the global information layer to be determined

by other teams at time t = 4 (as unconnected nodes in the information structure).

The addition of these nodes corresponds to the further increase in TE observed in

the time series plots.

The global information refinement phase illustrates a number of increases and

decreases in TE as the teams’ interactions refine the global information structure.

Note that the refinement process for the simple and hard cases are identical for

t < 16, the dynamics of which differ after this point by the number of iterations

required to yield a result. The identical TE values illustrate that the initial process

of global information development and refinement are identical: both cases conduct

the same steps of developing the global information structure. Across both cases,

early refinement steps lead to larger changes in TE than those of later steps due to

changes being more influential to smaller structures than those of larger structures.

The reduction of TE observed from time t = 7 to t = 10 corresponds with the

initial process of the teams determining GMt. The maximum observed TE (t = 4

to t = 8) corresponds to the time in which all 13 information entities are unknown

and are unconnected to each other (the TE value at this point is log2(13) ≈ 3.70).

At time t = 8, projected edges are added between the global information entities

used by the OPS team to determine values for the aforementioned nodes added to

the structure by the NAVARCH team. These newly determined values are utilized by

the NAVARCH team at time t = 9 to yield a result for GMt, which is communicated

to global information at time t = 10 along with the associated projected edges,

further decreasing TE. The associated decrease in TE is the result of the initial
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projection of edges in relation to GMt from the previously completely independent

set of information entities. The relation of these previously independent information

entities to a single target node simplifies the structure significantly, which is captured

by the decrease in TE.

Starting at time t = 12 the TE of the global information structure is observed

to increase for both cases, based on the disciplines’ continued integration efforts. At

time t = 12 and t = 14 projected edges are added toward the next target nodes

of % and Trim, respectively. The additional integration efforts related to these two

target nodes leads to more captured interdependencies between nodes, leading to a

more complicated information structure relative to the prior timestep’s. The further

increase in TE observed at timesteps t = 15 and t = 16 correspond to the addition

of the xveh node with projected edges to the existing structure, and the connection

of xveh to Trim, respectively. This adds further complexity to the structure, and

increases the observed TE.

After time t = 16 the integration activities conducted by both teams remain the

same. However, the timesteps required to conduct these activities is longer for the 4

vehicle case than for that of the 1 vehicle case. The next target node being solved for

in the global information layer is the required pump power (required power), which

is determined by the DIST team. In order to conduct their analysis, the DIST team

requests values for zfuel, zveh and the required volumetric flow rate (vol flow rate),

and in so doing, must transmit the latter as a new node in global information. This

occurs at time t = 20 for the simple case, and time t = 24 for the hard case. After

negotiating these values between the OPS and DIST teams, edges are drawn to the

required power node from other global information nodes at time t = 24 and t = 32

for the simple and hard cases, respectively. Finally, at time t = 25 (simple) and

t = 33 (hard), the resulting global information structure is developed by drawing the

final edge from pipe diameter to required power.
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Analyzing the TE results of the global layers reveal a number of insights about

the global information integration effort:

1. Changes in TE are most drastic early in the process, and exhibit the law of

diminishing returns as more information entities are added to the structure.

This reduction of changes in TE are indicative measures of lock-in; the sequence

of operations performed on the information structure limits the ability and

influence of future entities to be integrated.

2. TE decreases during the first phase of developing the knowledge structure by

simplifying the previously unconnected nodes into a relatively simple structure

as related to a single target node. As more interdependencies are uncovered

and additional information entities are added through further interactions be-

tween disciplines, the structure becomes more complicated, and TE increases.

The initial decrease in TE is based on the order of selected target nodes, and

limits the future growth of the network topology. This suggests that conceptual

robustness is tightly coupled to the order in which information is sought and

integrated over the course of a design activity.

3. The periods of unchanging TE illustrate timesteps in which the global informa-

tion structure does not change. Periods of unchanging TE could be the result

of values in the existing structure becoming populated with data, or data be-

ing negotiated between disciplines. These extended periods of unchanging TE

are indicative measures of refinement design churn (see Figure 1.1c), whereby

additional time or calculation steps are required to conduct design analyses.

Long static periods of TE are indicative of potentially inefficient design anal-

ysis types, which could be improved to improve conceptual robustness. The

effort required to conduct these analyses could easily be confused by designers

as a growth in information or knowledge, when in actuality this increased effort
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is just processing data within an unchanging structure.

The TE metric results of this section have revealed a number of interesting insights

about the development of global information and knowledge structures in a design

integration activity. This metric focuses on the growth of global structures - yet this

metric alone is insufficient to fully differentiate the conceptual robustness of the two

cases considered. The TE metric only focuses on structural changes of information

or knowledge; it does not account for what entities are becoming known, or how the

values of parameters are changing over time. Considering this metric in conjunction

with Data Status Entropy (DSE) and Target Value Entropy (TVE) can yield a deeper

understanding of conceptual robustness.

5.4.2 Data Status Entropy

An examination of the Data Status Entropy (DSE) for this case study reveals

the efficacy of a design activity in relation to the proportion of the information or

knowledge entities which are known or unknown. In essence, it provides insight into

the growth of uncertainty of a design activity in relation to the data statuses of

the nodes in the information and knowledge structures. The Normalized Data Status

Entropy (NDSE) provides a similar information, but normalizes the metric in relation

to the initial DSE (the DSE at time t = 0). Both the DSE and NDSE are tracked

over time to reveal the efficacy of calculations of the hard and simple case studies, in

relation to the local and global layers. The plots of DSE and NDSE are displayed in

Figures 5.18 - 5.22, and Figures 5.23 - 5.27, respectively. Similar to the plots shown

for TE, the figures utilize framework timesteps as a representative “time” to ease the

discussion of the results. Note that the total number of framework timesteps differ

between the cases, and are identical to those of the TE metrics (the simple and hard

cases requiring 28 and 36 steps, respectively). The DSE and NDSE dynamics differ

across the two cases, which will be discussed in more detail in the remainder of this
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section.

Prior to discussing the DSE and NDSE, it is useful to provide additional context

about the local and global layers related to the computability of entities in the local

and global structures. Insight regarding the calculability of the approach can be

gained by tracking the fraction of nodes in each layer which are unknown over time.

Ideally, the number of unknown entities in an information or knowledge structure

should be monotonically decreasing over time, as this would suggest that calculations

are being performed to determine other nodes in the structure without the addition

of other unknown variables. A non-monotonically decreasing trend suggests that

additional unknown entities are being added to the structure, which requires further

calculations. Either an oscillating or consistently increasing trend may be indicative

of design churn, in which performing a calculation leads to the creation of additional

unknowns. The time series of the fraction of unknown nodes are shown for the simple

and hard cases in Figures 5.13 - 5.17.

The local layers (Figures 5.13 - 5.15) all illustrate monotonically decreasing trends

of the fraction of unknown nodes over time. This suggests that the questions being

posed to each design team do not require any additional knowledge entities to be

incorporated to be answered; the tools are sufficient to answer the question being

asked of them. Note that initially the NAVARCH and OPS teams have a low fraction

of unknown nodes in their knowledge structures, while the DIST group has a higher

fraction of unknown entities (half of their knowledge structure is initially unknown).

This indicates that the OPS and NAVARCH knowledge structures are initially more

defined than that of the DIST group. This may provide insight as to which groups

will be required to transmit data through global information, and which groups may

be required to receive it.

The final fraction of unknown nodes also reveals important insights into the utility

of the local knowledge structures in performing design calculations. As was previously
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(a) Simple Case (b) Hard Case

Figure 5.13: Fraction of Unknown Nodes - OPS Team

(a) Simple Case (b) Hard Case

Figure 5.14: Fraction of Unknown Nodes - NAVARCH Team

(a) Simple Case (b) Hard Case

Figure 5.15: Fraction of Unknown Nodes - DIST Team
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discussed, the ideal observed trend should be a monotonically decreasing fraction of

unknown nodes over time. In both the simple and hard cases this trend is observed;

however, not all of the final unknown fractions are zero (a zero value indicating all

nodes are known). For example, in the simple case, the OPS team contains a portion

of their knowledge structure which remains unknown (Figure 5.13a). This spurs the

question: how should a non-zero final unknown fraction in a local layer be interpreted?

The answer is that teams must conduct calculations according to the target node

selected in the global information layer. The translation of a global information

target node to the local layer directs the local groups’ calculations, and dictates

which unknown local entities must become known. If there are still unknown entities

in a local structure at the end of the design activity, it means those unknowns were

not required to yield results according to the target nodes selected. This explains the

final unknown fraction of local OPS nodes in the simple case: the tool was developed

to accommodate four vehicles, but the simple case only considers one. This means

the locations of the other vehicles are unknown, but are still accounted for in the local

knowledge structure.

A high proportion of unknown entities suggest the local knowledge structure is

robust to the question, as only a few entities were required to answer the question

being posed. Additionally, the presence of unused knowledge entities provides the

opportunity for additional information or exogenous factors to be contained in the

structure: if they were to arise later in the design process, there would be no need

to integrate additional knowledge entities into the local knowledge structure. In this

sense, the remaining unknown variables acts as a sort of “buffer” to exogenous factors.

If all nodes are known, and a result is determinable, the tool is appropriate for the

posed questions but leaves no possibility of accounting for exogenous factors (there

exists no “buffer”). To better understand this, consider a late stage design change

which requires an additional vehicle to be accommodated by the design for both the
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simple and hard cases. For the simple case, the addition of an additional vehicle

is easy, as the knowledge structure would not need to be changed to accommodate

2 vehicles. As a result of the additional vehicle, more of the local structure would

become known, but no revision would be required to integrate additional knowledge

entities. However, in the hard case the addition of another vehicle (such that the

design must accommodate 5 vehicles) would require the knowledge structure to be

revised to handle the change, as all of the structure is already utilized to yield a

result. While there certainly exist a number of exogenous factors which may lead to

required revisions to both knowledge structures (e.g. multiple refueling locations), the

presence of unused knowledge provides a greater likelihood of accounting for future

changes.

Unlike the local layers, the fraction of unknown nodes in the global information

layer is not monotonically decreasing (Figure 5.16). The observed increase in the

fraction of unknown nodes occurs when a discipline translates unknown entities into

global information to be determined by other teams. For example, after the initial

translation of global knowledge nodes to global information, the introduction of ad-

ditional unknown entities to global information by the NAVARCH team increases

the unknown fraction. The magnitude of the increase is a result of both the number

(a) Simple Case (b) Hard Case

Figure 5.16: Fraction of Unknown Nodes - Global Information
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of unknowns added to global information, and the number of nodes in the global

information layer. When values are determined by other teams, and the results are

translated to the global information layer, these nodes become known, and the frac-

tion of unknown nodes decreases. Both the simple and hard cases exhibit the same

general trend of a progression towards zero, although the total time required to reach

zero are different across the two. While the trends are the same for the two cases,

the differing times are a result of the longer plateau periods in the hard case as com-

pared to the simple case. This indicates that the hard case requires more time in

these regions to yield a change in the fraction of unknown nodes than does the sim-

ple case. Note that the final unknown fraction across both cases is zero. Since the

known and unknown entities from the global knowledge layer are used to populate

global information, all unknowns must be determined to successfully translate the

global information to global knowledge. Unlike the “buffer” provided by unknowns

in the local layers, any remaining unknown global information nodes means either an

answer is unable to be calculated by an individual discipline (even after revisions to

local knowledge structures), or the information generated is not used to yield global

knowledge (meaning the development of the global structure is not aligned with the

questions posed by global knowledge). Both cases are problematic, and are indicative

of emergent design failures.

The unknown variables in the global knowledge network (Figure 5.17) exhibit a

monotonically decreasing trend, with a single stepped decrease to zero from the initial

fraction of unknowns. Initially, the global knowledge layer is initialized 9 nodes, of

which 4 are known and 5 are unknown - representing the unknown fraction of 0.56. At

the final timestep, when the entities from global information are translated to global

knowledge, all entities become known and the fraction decreases to 0. This suggests

that all global knowledge entities have values which have been determined.

The discussion of the unknown fraction of nodes across the layers have revealed
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(a) Simple Case (b) Hard Case

Figure 5.17: Fraction of Unknown Nodes - Global Knowledge

a number of insights about how much of the structures become calculable over time.

From an entropy perspective, the trends observed in the DSE (Figures 5.18 - 5.22)

mimic those of the unknown fraction plots.

Across all disciplines the DSE decreases in a stepwise manner as the design ac-

tivity progresses. The stepwise decrease in DSE is a result of previously unknown

variables becoming known within their respective knowledge structures as calcula-

tions are performed at each local layer. The magnitude of the step is a function of

how many unknown variables become known as a result of the calculations being per-

formed. Note that the magnitude of decrease in DSE does not decrease in the same

manner as that of TE and illustrates that calculations which make many variables

calculable late in the process do not exhibit the same process of diminishing returns.

The decreases in DSE suggest that their knowledge structures are becoming more

certain over time, as the DSE trends toward zero. Note that zero DSE means the

knowledge structure is comprised of data statuses of all zero, or all one (in this case,

all knowledge entities are one).

Although the local knowledge structures exhibit similar trends over time, the

initial and final values of the DSE time series are significant. The initial DSE indicates

the entropy of the known portion of the network. An initial DSE value of one means

all nodes are unknown, while a value of zero means all nodes are known. Similar to
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the fraction unknown plots, non-zero DSE at the end of a successful design activity

means not all of the knowledge structure was required to answer the question posed.

However, if the residual DSE of a local layer leads to residuals observed in either

global information or knowledge, it is indicative that the structure was insufficient to

answer the question.

Similar to the local layer DSE plots, the evolution of the global information DSE

(Figure 5.21) displays a general trend toward zero. This suggests that the entropy

of the known portion of the network is generally decreasing over time (becoming

more certain). However, unlike the local layers, the function is not monotonically

decreasing. The initial translation of nodes to the global information layer defines

the intial DSE which reflects the entropy of the intial known portion translated from

global knowledge. Note that the initial portion of the plot remains flat. This is

due to the uncertainty associated with the known node remaining constant, while

new unknown nodes are added to the structure, as evidenced by Figure 5.16. The

observed later-stage increases in DSE correspond to new known parameters being

added to global information, which increases entropy. As unknown nodes become

known, the DSE decreases. The final DSE being equal to zero indicates that all

nodes in the network have become known - illustrating the successful completion of

the global information layer from a calculability perspective (no global information

nodes remain unknown).

The DSE time series is presented for the global knowledge layer in Figure 5.22.

Note the initial DSE, which remains constant throughout the majority of the pro-

cess for both the simple and hard cases, is identical to the starting value in global

information (Figure 5.21). This is because the same initial structure is translated

from global knowledge to global information. However, unlike the global information

DSE plot, the DSE of the global knowledge layer is marked by a rapid decrease to

zero at the end of the process and exhibits no intermediate fluctuations. The final
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(a) Simple Case (b) Hard Case

Figure 5.18: Data Status Entropy - OPS Team

(a) Simple Case (b) Hard Case

Figure 5.19: Data Status Entropy - NAVARCH Team

(a) Simple Case (b) Hard Case

Figure 5.20: Data Status Entropy - DIST Team
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(a) Simple Case (b) Hard Case

Figure 5.21: Data Status Entropy - Global Information

(a) Simple Case (b) Hard Case

Figure 5.22: Data Status Entropy - Global Knowledge

value of zero indicates that all global knowledge entities are known, and the rapid

late stage decrease means they only become known at the end of the process in a

single step. Thus, the effective development of the global information layer resulted

in a calculable knowledge structure for both cases, but not until late in the process.

Creating this calculabilty earlier in the process could be attained through a more

rapid development of global information.

The unknown fraction and DSE plots have revealed absolute measures of each

network’s calculability as the design progresses, but there is added value in under-

standing how the generation of information and knowledge evolves relative to the

initial state. To better understand this relationship, the NDSE metric is applied to
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both the local and global layers for the simple and hard cases.

(a) Simple Case (b) Hard Case

Figure 5.23: Normalized Data Status Entropy - OPS Team

(a) Simple Case (b) Hard Case

Figure 5.24: Normalized Data Status Entropy - NAVARCH Team

(a) Simple Case (b) Hard Case

Figure 5.25: Normalized Data Status Entropy - DIST Team

126



(a) Simple Case (b) Hard Case

Figure 5.26: Normalized Data Status Entropy - Global Information

(a) Simple Case (b) Hard Case

Figure 5.27: Normalized Data Status Entropy - Global Knowledge

Tracking the unknown node fraction, DSE, and NDSE over time provides a num-

ber of takeaways related to the calculability of the local and global information and

knowledge structures over the course of the global integration effort. These relate to

conceptual robustness in the following ways:

1. At local levels, oscillations in the unknown fraction, DSE, and NDSE are in-

dicators of design churn in knowledge development. If a decrease in any of the

metrics is subsequently followed by an increase, this suggests that a calculation

was performed that spurred additional unknown entities which themselves need

to be determined. These indicators provide evidence of a knowledge structure

which is not suited to answer the question being asked of the discipline, and
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hence is not conceptually robust by quantifying the increase in unknowns in the

structure.

2. Long periods in which the metrics are unchanging are indicators of design churn

in refinement. These regions highlight areas in which no more of the network is

becoming calculable, rather the values themselves are being calculated or nego-

tiated between teams. These regions illustrate areas in which there are changes

to data, but there are no changes to the development of calculable entities.

Extended periods in which these metrics remain static could provide means to

highlight inefficiencies in both calculations and communication pathways, and

could hence be used to reduce the time required between design iterations.

3. At the end of a design activity, residual unknown nodes in local knowledge struc-

tures suggest that not all of the structure is required to calculate values for the

development of the global information. This suggests that the question posed to

the disciplines are easily accounted for by the local knowledge structure. These

remaining unknown nodes increase the likelihood that exogenous factors will be

accounted for by the structure without the need for local knowledge structure

revisions. Not requiring revisions to the knowledge structure have been shown

to assist in faster rework times (see Chapter IV). While this may suggest that

larger and more complex tools should be leveraged to better account for these

exogenous factors, this may come at the expense of the utility and applicability

of the tool in early stage design. Thus, there exists a trade off between the con-

ceptual robustness and complexity of local knowledge structures, which requires

further exploration.

4. Residual unknown nodes in the global information or global knowledge layers

could be used as indicators to predict integration failures. Nodes remaining un-

known in the global information layer means that no team was able to calculate
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a result for that entity, and thus that entity will not be connected with pro-

jected edges to the rest of the information structure (see Section 3.2.1). This

represents an inability to integrate that information entity with the remain-

der of the information structure. This could be the result of the sequence in

which calculations are performed in the local layers, or a fundamental inability

for the teams to conduct calculations. This unknown global information node

could thus translate to an inability to integrate an unknown global knowledge

entity with the remainder of the global knowledge structure. If the residual un-

known global information node was one of the initial global knowledge nodes,

this would represent a global knowledge entity that would remain unknown.

Additionally, it could lead to an inability to create projections in the global

knowledge layer, leading to incorrect or non-robust interdependencies between

global knowledge entities.

Utilizing the case study, the entropy metrics presented in this chapter have re-

vealed a number of insights into the dynamics of how unknown entities in information

and knowledge structures become known over time. The metrics can be leveraged

to understand types of activities which lead to both developmental and refinement

design churn, and the impact of conducting rework in terms of the impact on un-

known entities within a structure. These metrics focus on the progression of the

calculability of structures over time from a binary perspective (either nodes contain

data or not), and does not reveal any information about the values associated with

the data themselves. Thus, an additional metric, Target Value Entropy, is required

to fully understand the change in uncertainties of the values associated with known

nodes over time. This additional metric can be used to reveal additional indicators

of conceptual robustness.
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5.4.3 Target Value Entropy

Unlike the aforementioned entropy metrics, Target Value Entropy (TVE) is fo-

cused on individual nodes rather than on the entire layer. This presents a different

perspective into conceptual robustness by highlighting changes within the network

rather than on the network. By focusing on individual nodes, TVE highlights changes

in uncertainties of the history of values within a node over the course of a design ac-

tivity. Additionally, TVE is used to track intermediate calculations conducted by the

optimizer to yield results as it progresses. This enables the ability to track both the

changes in calculated values and the process by which these values were calculated.

Both final and intermediate calculated values enable not just the changes in uncer-

tainty of input variables to be examined, but also how these changes translate to

intermediate and output variables over time in both local and global nodes. Analyz-

ing the changes to dependent nodes allows the unpredictable nature of value changes

to be understood, and applied to the context of a greater design goal. The first part

of this section focuses on the change in TVE of the calculated values, while the latter

part considers the intermediate calculations used to determine the final values.

Calculated Values

The TVE is tracked for each node in the K-I framework over time. For local

knowledge layers, node values either represent input values to a calculation or reflect

output values as the result of conducting the calculation. For the global information

layer, the time history of node values represent the data values communicated between

teams over time. The global knowledge structure node values represent the final

determined values of the known entities at the conclusion of the design activity. Hence,

analyzing the TVE and DTVE trends of input and output values provides a different

understanding of the design activity dependent upon the layer being analyzed. Since

nodes in the framework are created at different times as the design progresses, some
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nodes have long time series while others may only contain a single value. Many of

the nodes across layers do not exhibit value changes over time, and thus experience

no change in TVE. Note that no TVE time series exists for nodes which remain

unknown or uncalculated. Similar to the previous metrics, all figures displaying TVE

do so as a function of the number of framework timesteps. This section will present a

number of examples of what conclusions can be drawn about a design activity using

the previously defined simple and hard cases, and validate the developed network

evaluation metrics.

To understand the insights that are provided by the value-centric measures of

entropy (TVE and DTVE), consider the portion of the design activity related to

calculating GMt and Trim. In both the simple and hard cases, determining GMt

marks the first step in the sequence of solving for the unknowns, and solving for Trim

happens third. For context, both nodes exist in the NAVARCH team’s predetermined

local knowledge structure, and in the global knowledge layer from time t = 0. The

global knowledge nodes are communicated to global information at time t = 1, which

creates the associated GMt and Trim nodes in the global information layer. Both

nodes in the global information layer contain no data until calculations are performed

and communicated by the NAVARCH team’s local knowledge structure. In the global

knowledge layer, both nodes contain the final values determined in the design activity,

and become populated once the global information structure has been developed. This

discussion will consider how the values of GMt and Trim change over time in each

layer, and as a result, will provide conclusions that can be drawn about the simple

and hard cases.

Before discussing TVE and DTVE, this discussion first focuses on the time his-

tories of GMt and Trim values in local layers. This provides background into how

variables have changed over time as a result of the local calculations performed. Figure

5.28 displays the value time series and value differential time series for the NAVARCH,
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(a) GMt Values (b) Trim Values

(c) GMt Value Differentials (d) Trim Value Differentials

Figure 5.28: Value Time Series and Value Differential Time Series for NAVARCH
layer GMt and Trim nodes.

GMt, and Trim nodes. Initially, a portion of the NAVARCH local knowledge struc-

ture is uncalculated (see the discussion in Section 5.4.2); however, values are still

calculable for both GMt and Trim. Although these values are present initially, they

are inaccurate, as not all input parameters have been adequately determined. The ini-

tial values are identical for both cases. As supporting node values are determined and

integrated into the local knowledge structure, the accuracy of these values increases.

In Figure 5.28a, the change in GMt value observed at time t = 9 across both

cases is the result of supporting values being communicated into the local knowledge

structure. Specifically, the supporting integrated values are related to the z-location
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of the vehicles (zveh), the weight of the vehicles (Wveh), and the volume of fuel required

(Vfuel). Given the NAVARCH team’s local knowledge structure (Figure 5.2), these are

the only unknowns required to accurately determine GMt, and thus the integration

of these values leads to a new calculated value for GMt in both cases. Note that the

calculated GMt is larger for the hard case than for the simple case, as a result of

the larger required volume of fuel being placed low in the vessel. Note that in both

cases, the integration of supporting entities related to GMt at time t = 9 also had

the adverse affect of changing the value of Trim (Figure 5.28b). This large negative

change arises from the integration of supporting GMt nodes, while the supporting

Trim nodes have not yet been determined. While the hard case exhibits the benefit

of a larger calculated GMt, its impact on Trim is more deleterious than that in the

simple case.

For the simple case, the initial calculations of GMt and Trim remain unchanged

throughout the rest of the design activity, while the hard case exhibits an additional

value change for both variables. For the simple case, the initial determination of both

node values leads to feasible solutions for other local knowledge layers, and do not

require changes to their values. Conversely, the initial values determined by the hard

case lead to infeasible options by other groups, and thus are revised through further

iteration steps. Note that the hard case’s late change in GMt occurs at timesteps after

the simple case has concluded the integration process. The inset figures in Figures

5.28b and 5.28d illustrate a small, late-stage value change in Trim as a result of

revised calculations of x-locations (xveh) from the OPS team. While this change is

small, it is important given its relation to the global information layer, which will be

described later.

The value time series reveal the history of values a variable took over the course

of the design. The differential value time series illustrates the magnitude and direc-

tionality of change of a variable’s values over time. While both time series provide
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useful information to designers, considering the associated trends of TVE and DTVE

provides insight into uncertainties associated with the variables. Applying TVE to

the value time series illustrates the growth of uncertainty given the entire history of

values a variable took. Applying DTVE to the differential value time series illustrates

the growth of uncertainty based on how a variable changed. The associated TVE and

DTVE plots for the NAVARCH GMt and Trim nodes are presented in Figure 5.29,

for both the simple and hard cases.

(a) GMt TVE (b) Trim TVE

(c) GMt DTVE (d) Trim DTVE

Figure 5.29: NAVARCH Trim Time Series

The TVE plots depicted in Figures 5.29a & 5.29b illustrate how the uncertainty
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related to the history of variable values changed over time. These plots are based

on the value time series shown in Figures 5.28a & 5.28b. In both cases the initial

TVE remains zero up to time t = 8, since the variables value remained constant.

Although this value was inaccurate, and based on a knowledge structure which was not

completely calculable (as was previously discussed), the uncertainty of the distribution

of values is zero. Upon adding the supporting information to calculate GMt at time

t = 9, the distribution of observed GMt values widens, which is accompanied by a

growth in entropy. The accompanying change in Trim as a result of the information

integration results in a growth in Trim TVE. The magnitude of entropic growth is a

function of the magnitude of the new value, which explains why the hard case exhibits

more TVE growth than that of the simple case across both nodes. As a value exists

for a longer time, it represents a higher number of observations in the time series.

As a result, the distribution of observed values becomes more certain, which leads to

a reduction in TVE. However, as the length of the time series increases, introducing

a new value decreases the impact on entropy growth. In order for TVE to decrease

significantly, the number of observations of the new value (how long it has existed in

the time series) must become significantly larger than those of any other value. Hence,

this metric provides a holistic view of the values’ uncertainty over the entire history,

but becomes less sensitive to small value changes as time increases. In accounting for

this issue, DTVE is a more useful metric.

The DTVE plots for the NAVARCH GMt and Trim nodes are presented in Figures

5.29c & 5.29d, and are based on the differential value plots shown in Figures 5.28c

& 5.28d, respectively. The trends in DTVE are useful measures of understanding

the uncertainty related to the change in a variable’s value, as the plots demonstrate

the added sensitivity to the addition of new values independent of the time they

are added. The timesteps which exhibit a value change are accompanied by a rapid

growth in DTVE, and the magnitude of the value change is reflected by the magnitude

135



of DTVE increase. Similar to the plots of TVE, the growth in DTVE is larger for

the hard case than for the simple case, as the spread of value changes is larger in

the former than in the latter. The periods of unchanging values are illustrated by

a rapid decrease in DTVE. Note that the small late stage changes in Trim (at time

t = 20 and t = 21) still lead to a decrease in both TVE and DTVE entropy. The

magnitude of this change is on the order of 10−2, which is very small in comparison

to the previously observed changes. This suggests that the small value change still

increases the certainty of the value relative to uncertainty created by the previous

values.

The behavior of the DTVE plots is a result of the way in which the differential

time series are composed. Periods of unchanging values are represented by zeros in

the differential time series. This centers the distribution of differential values around

zero, and any changes will lead to an increase in DTVE. It should be noted, however,

that this metric may become less sensitive to identifying increases in uncertainty

if changes of the same magnitude are observed at the same frequency as those of

unchanging periods. This would create a bimodal distribution of observed differential

values, which would lead to fewer increases in DTVE at later timesteps. While this

would decrease the efficacy of this metric, the phenomenon would be accounted for

in the TVE plot by illustrating a consistent growth. The phenomenon would also be

observable by viewing the value time series and differential value time series.

While the trends illustrated in the TVE and DTVE plots provide a means for

comparison across the simple and hard cases, the scaling of the entropy growth merits

further discussion. The magnitude of TVE and DTVE is dependent on the observed

variable value (or change in value), the number of times it is observed, and the

sequence in which it is observed. The resulting entropy scale will be dependent on

the scale of the variable being considered. Thus, the changes in TVE and DTVE will

be unit-dependent. For example, a much larger change in TVE and DTVE will be
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observed in a variable changing from 100 to 90 than in a variable changing from 1

to 0.9. Although both of these changes represent the same percentage change, the

resultant changes in entropy will reflect the scale of the units used. This information

is useful to designers by framing the uncertainty values in the context of the units of

the variable in question, but limits relative comparisons across variables of different

units.

While the magnitudes of entropic growth are indeed useful to designers, it would

be convenient to create a normalized version of the metrics to understand uncertainty

change across variables independent of the scales of their values. Many measures of

entropy are maximized by the uniform distribution - when all outcomes are equally

likely. This provides a convenient method to normalize these entropies, and enables

relative changes in entropy to be compared across variables. However this is not

the case for Cumulative Residual Entropy (CRE), on which TVE and DTVE are

based (see Section 2.2.2). Given that the variable values in consideration are often

unbounded, the uniform distribution is not finite and does not necessarily represent

maximum uncertainty. As a result, the TVE and DTVE are unbounded from above,

as both an increase or decrease in value will lead to the same change in uncertainty

(both metrics’ lower bounds are zero). To date, no generalized maximum entropy

metric has been developed for CRE, and thus there are currently no meaningful

ways of normalization in the same way as traditional metrics. The development

of this normalized metric would be advantageous to understand relative changes in

uncertainties across variables. For the time being, understanding entropy metrics in

the context of the variable value itself will have to suffice.

As was previously mentioned in the discussion about Figure 5.28, the Trim node

exhibits two late-stage value changes at times t = 20 and t = 21 in the hard case. The

small magnitude of these changes relative to the previously observed values leads to

a decrease in uncertainty in both the TVE and DTVE metrics at a local level. In this
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case, the late stage Trim changes occur as a result of added iteration steps relative to

the negotiation of x-location of the vehicles (xveh) between the OPS and NAVARCH

teams. When the NAVARCH team calculates a feasible value for Trim, they do so

by determining a combination of xveh and x-location of the fuel tanks (xfuel). The

xveh value is communicated to the OPS team through the global information layer for

them to determine a feasible arrangement of individual aircraft locations such that

the net center of gravity matches the communicated xveh value. In the simple case,

the OPS’ task is easy - they simply locate the single aircraft at the center requested by

the NAVARCH team. However, the added difficulties of arranging multiple aircraft

with spacing constraints to accommodate the requested xveh value emerges in the

hard case. If the OPS team is able to find a feasible arrangement of aircraft which

meets the requested value, then the xveh and Trim values remain unchanged in global

information and the NAVARCH team structures. However, if no such arrangement is

found, the OPS team determines an arrangement which is as close to the requested

value as possible, and communicates the new xveh value back to the NAVARCH team

through global information. Upon the integration of the revised xveh value into the

NAVARCH structure, the NAVARCH team is required to determine a new value of

xfuel to calculate a new feasible Trim value. This explains the observed late stage

NAVARCH Trim changes. The increase in Trim value observed at time t = 20 is the

result of integrating the new xveh value from the OPS team into their calculation,

and the decrease in value at time t = 21 is the result of determining a new value for

xfuel to correct it.

While the entropy plots of the local layer uncover the uncertainty of input and

output values within a local knowledge structure, applying TVE and DTVE to the

global information layer provides insight into the uncertainty of negotiated values be-

tween teams. The TVE and DTVE plots of the aforementioned scenario are presented

in Figure 5.30, along with the corresponding global information value and differen-
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(a) Calculated Values (b) Calculated Value Differentials

(c) TVE (d) DTVE

Figure 5.30: Global Information Trim Time Series

tial value time series. Similar to the previous plots, the values associated with the

nodes are presented for all timesteps since its creation. The initial time series val-

ues correspond to the initial communication of the Trim value with the NAVARCH

team’s requested values. The plots initially exhibit zero entropy, as the time series

are comprised of the singular value. The plots illustrate a growth in entropy at time

t = 22, at the conclusion of the process described above. This change is a result of the

NAVARCH team conducting their recalculations and communicating the new Trim

value to global information after integrating the OPS team’s new results. Note that

the estimate of Trim is only changed in global information when it is communicated

by the NAVARCH team, and not during the negotiations of the xveh variable.
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Analysis of these plots provides a higher-level perspective of the uncertainty

growth in global information values as a result of communication between teams.

A growth in TVE or DTVE highlights that a global information entity has changed

value, and that the distribution of all observed values has become less certain. Sim-

ilar to the other plots, as a value represents a longer portion of the time series, the

distribution of values increases in certainty, and entropy decreases. The extent of

entropy growth is a product of the magnitude of the change in value. A small change

in communicated value leads to small increases in entropy, while large changes means

communicated values are exhibiting large value changes. Thus, large changes in en-

tropy indicate significant value changes in global information values, and could be

the result of differing design objectives between teams or misaligned local knowledge

structures. In any case, this enables designers to identify potentially problematic de-

sign variables in the context of integrating disparate analyses between teams. Global

information structures which exhibit zero or small amounts of entropy growth are in-

dicative of a simpler design integration process, as it indicates more agreement about

calculated values between teams. This suggests a more conceptually robust process

of integrating disparate sources of knowledge toward building a global information

structure, with which to create a global knowledge structure.

Based on the results presented in this section, the value-oriented entropy metrics

reveal several factors about the robustness of a design approach in relation to the input

and output values within and between teams. This provides additional perspectives

into the conceptual robustness of integrating disparate sources of knowledge in an

integration activity:

1. The value time series of local knowledge entities provide designers with a rep-

resentation of how variable values evolve over time. The value time series of

input values provide designers with a history of decisions made as inputs to

a calculation. Tracking the time series of output values enables an increased
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understanding of how changes in inputs yield different results, and more impor-

tantly provides a means to identify changes in output parameters which would

not necessarily be expected. This leads to an increased transparency of inputs

and outputs of a given local knowledge structure.

2. The differential value time series provide designers more clarity on the magni-

tude of changes of local knowledge structure values over time. This provides

similar insights as those of the value time series, with the added benefit of

explicitly measuring the magnitude and directionality of variable changes over

time.

3. Application of TVE to nodes in the framework quantifies the amount of un-

certainty in a node’s value up to a point in time. Since the growth of TVE

is dependent on (1) the variable values, (2) how long they have existed, and

(3) the sequence in which they were observed, this metric enables designers to

better understand the growth of uncertainty of values as it relates to both the

sequence of calculations and the calculation results themselves. At local lev-

els, TVE highlights the uncertainty in the distribution of observed input values

or calculated output values. At global levels, TVE highlights the growth of

uncertainty of values communicated between teams. This provides the ability

to separate uncertainties in local calculation procedures from values communi-

cated between teams for integration purposes. Large growths in TVE at local

levels are the result of calculations yielding wildly different results, and thus the

metric can be used to identify potential issues in local calculation procedures.

Since the TVE metric is applied to all nodes in the local knowledge structure,

the integration of a new value (or series of new values) into the local knowledge

structure can be used to study the increase in uncertainty associated with all

other nodes. Thus, it can also be used to highlight the sensitivity of a local
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dependent node’s uncertainty based on a change in values of other nodes in the

local layer. This is useful in identifying incompatible local knowledge structures

or differing local objectives.

4. DTVE highlights the uncertainty related to the magnitude of change of values

up to a point in the design process. This metric contains many of the same

advantages as TVE related to understanding uncertainty propagation. Since

the metric considers the distribution of observed changes in node value, it pro-

vides a different context of quantifying uncertainty. Applying the metric at the

local and global levels provides different lenses with which to understand the

progression of a design activity. Variables with large DTVE growths suggest

they are exhibiting unusual value changes, which if unexpected, can be used to

immediately identify designers as to the impact of variable value changes else-

where in the knowledge structure. This mitigates the likelihood of conducting

rework and limits future integration failures.

5. Understanding uncertainty propagation through local network layers using TVE

or DTVE can be used to help designers understand the interdependencies of

inputs and outputs in their tools. From a conceptual robustness perspective,

these metrics could be used to flag designers when an unexpected growth in

uncertainty occurs in an unforeseen output variable - limiting the probability of

future integration failures. The metric can also be used to curtail local rework

activities by addressing potential value-centric issues the instant they arise,

rather than later in the design process. At global layers, TVE and DTVE can be

used to identify potentially highly variable and frequently changing nodes. The

identification of these nodes provides extra insight into potentially problematic

integration variables earlier on in the design process. Emergent design failures

can be mitigated by restructuring communicated variables between nodes (and
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hence local knowledge structures) to improve inter-team communication.

This section has thus far been focused on understanding the propagation of value

uncertainty and its contribution to understanding conceptual robustness, using TVE

and DTVE by considering the inputs and outputs of calculations. While the benefits

of this perspective have been outlined, an additional layer of understanding can be

gained from delving a layer deeper into the intermediate calculations used to relate the

inputs to the outputs. The next section will present the additional insights revealed

by analyzing the intermediate values generated in yielding a calculation result.

Intermediate Values

The previous section focused on analyzing how node values in both information

and global layers change over time. In local layers, node values reflect either inputs

to, or results from, a team’s calculation. Node values in the global information layer

reflect values of any local knowledge entity communicated between teams. While

considering the way these values change over time provides a number of insights

into conceptual robustness, it does not consider the process by which these value

were calculated. The process of calculating output values from input values is a

critical component of understanding conceptual robustness and the propagation of

uncertainty. This provides an additional level of insight which extends beyond the

previous considerations of inputs and outputs over time by focusing on the interme-

diate values a node takes over the course of its calculation. This additional fidelity

will be explored by applying the TVE and DTVE metrics to a node’s intermediate

values.

The results presented in this discussion of intermediate results focus on the OPS

team’s process of determining the longitudinal (x) locations of the aircraft along the

vessel for the simple and hard cases. Initially, the OPS team utilizes the known

quantities of vehicles from the global knowledge layer to determine a total weight
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estimate of the vehicles. The NAVARCH team utilizes this information to provide

a net required center of gravity for the vehicles to ensure that the Trim constraint

is satisfied. It is then up to the OPS team to determine the individual locations of

each vehicle such that the net center of gravity across all of the vehicles matches the

value provided by the NAVARCH team, such that the spacing between vehicles of

different types satisfies the longitudinal spacing constraint. If no feasible arrangement

of vehicles can be determined by the OPS team which exactly matches the NAVARCH

requested value, the OPS team must determine an arrangement of vehicles which

minimizes the difference between their determined value and the requested value. In

this case, the new determined value must be communicated to the NAVARCH team

for them to ensure their Trim constraint is still met, and if not, they must change

other parameters to ensure the Trim remains feasible.

The OPS team determines a set of x-locations for the vehicles using two simple

optimization procedures which is used to mimic designers searching for a feasible

solution. The optimization process associated with exactly matching the requested

and calculated values is presented in Equation 5.1. The decision variables correspond

to the individual x-locations (xi) for each vehicle in the set of all 4 vehicles (V ), and

a binary variable (ui) which takes a value of 1 if and only if the vehicle needs to be

accommodated. Hence, for the hard case ui = 1 ∀i ∈ V , and for the simple case there

is only one non-zero ui. The objective function represents the distance between the

x-location requested by the NAVARCH team (xvehN
) and the x-location calculated

by the OPS team (xvehO
). Note that the requested value from the NAVARCH team

(xvehN
) is included as a constant throughout this optimization process. Thus, the

objective function is fully defined by the x-value calculated by the OPS team. The

first constraint is the method by which the OPS team determines the net x-location

of the vehicles considered, where wi is the unit weight of vehicle i, and ni is the

number of vehicle i. Note that no binary variable is required in this constraint, as
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ni = 0 if the vehicle is not included. The second constraint is the spacing constraint,

such that the x-locations between vehicle i and vehicle j is at least as large as the

minimum spacing distance S. The next three constraints bound the x-location of

vehicle i to be along the length of the vessel, and limit the binary constraint to take

values of zero and one. The final constraint enforces the objective function value to

be zero, by enforcing that the only acceptable calculated x-value be exactly equal to

the requested value. Note that all parameters contained in the optimization scheme

are represented as nodes in the OPS local knowledge structure (Figure 5.1).

min |xvehN
− xvehO

|

subject to
∑

i∈V xiwini∑
i∈V wini

= xvehO

|xi − xj|uiuj ≥ Suiuj ∀i, j ∈ V, j 6= i

xi ≤ LBP ∀i ∈ V

xi ≥ 0 ∀i ∈ V

ui = {0, 1} ∀i ∈ V

xvehO
= xvehN

(5.1)

In the event that the OPS team is unable to exactly match the requested value,

the optimization problem changes slightly, and is shown in Equation 5.2. In this

formulation, the exact matching constraint is removed, and the optimization problem

is allowed to progress by finding a ‘closest possible’ x-location. This step is only em-

ployed if the exact matching constraint shown above is violated. These optimization

procedures have been separated to better differentiate the dynamics of the simple

and hard cases, and to separate the intents of the calculations, as the latter optimiza-

tion step requires subsequent communication steps between the OPS and NAVARCH

teams.
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min |xvehN
− xvehO

|

subject to
∑

i∈V xiwini∑
i∈V wini

= xvehO

|xi − xj|uiuj ≥ Suiuj ∀i, j ∈ V, j 6= i

xi ≤ LBP ∀i ∈ V

xi ≥ 0 ∀i ∈ V

ui = {0, 1} ∀i ∈ V

(5.2)

The consideration of the simulated intermediate calculation steps required by the

OPS team to determine a feasible vehicle arrangement presents significant differences

between the simple and hard cases. The simple case only requires the first opti-

mization problem to be solved. As the simple case only considers the placement of

a single vehicle type, the spacing constraint and exact matching constraint become

redundant. As such, determining the single vehicle location requires no intermediate

calculations as the optimizer simply selects the location requested by the NAVARCH

team. Since this value goes from being unknown to being determined in one step, it

exhibits zero TVE and DTVE entropy. This is because there is a one-to-one mapping

of the OPS team’s input (decision variable) to their output (objective value). As only

one value is contained in the time series, the distribution of observed values contains

no value-centric uncertainty associated with intermediate calculations. The same is

not true for the hard case, which will be the basis of the discussion in this section.

In the hard case, the likelihood that the exact matching constraint is satisfied is

small, and as such, there is a high probability that the second optimization scheme

will need to be solved. While the spacing constraint becomes redundant in the sim-

ple case, it presents significant difficulties for the OPS team in the hard case. The

dimensionality of the design space created by the hard case is larger than that of the

simple case, and contains a more complicated topography with a large number of local

minima. For a provided NAVARCH value, there may be a large number of vehicle
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arrangements which yield a locally optimal answer. This requires the hard case de-

sign space to be explored more thoroughly, to maximize the likelihood of attaining a

viable solution. To do so, the OPS team must consider multiple sequences of vehicles

along the vessel’s length (for 4 vehicles, there are 24 unique sequences), and ensure

the vehicles can be arranged in such a way that the spacing constraints are satisfied,

while minimizing the difference between the requested value and calculated value.

The above optimization problem was solved using a Nonlinear Generalized Re-

duced Gradient (NGRG) method. This method is sensitive to finding local minima,

so to combat this, the optimization was run using 15 randomly sampled points in

the design space. This is akin to the OPS team selecting a set of arrangements of

vehicles with which to perform their analysis. The intermediate values of the decision

variables (xi) and calculated net x-location (xveh,O) were tracked over each step of

the NGRG optimizer to create representative time series. While the NGRG does

not guarantee global optimality, the global optimum was determined in the case il-

lustrated in this section. The method is sufficient to generate the data needed to

demonstrate the insights which can be uncovered by applying TVE and DTVE to

intermediate calculation results.

The value time series and differential value time series are presented in Figures

5.31 and 5.33, respectively. In each figure, the individual vehicle location values are

highlighted in blue, while the calculated longitudinal center is shown in orange. The

time series are shown as a function of intermediate iteration steps, which correspond

to each step in the optimization procedure. The initial timesteps in both plots corre-

spond to the execution steps of the first optimization procedure (Equation 5.1). This

first region is characterized by few changes in value, evidenced by the relatively flat

value time series and differential time series. This is due to the optimizer failing to

return an exact match to the requested value, at which point the optimizer stalls out

after 10 iterations. Upon the failure of the first optimization procedure, the optimiza-
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tion problem switches to that shown in Equation 5.2. The value time series exhibit a

large number of peaks, which are a result of both the initial randomly sampled points

and the the optimizer changing the base variables to search for optimality. The search

process must repeat many times to explore the design space. In the differential time

series plots, peaks correspond to times where a value changes significantly, and values

near zero indicate a variable is being held constant across optimization steps.

An important aspect of the value and differential value time series is that the

variability of the inputs is larger than that of the outputs. This is evidenced through

an examination of the time series themselves, as well as the associated distributions of

the time series presented in Figures 5.32 and 5.34 for the value and differential values,

respectively. These histograms represent the distributions of all observed values (and

differential values) over the entire course of the optimization procedure. Note that the

distributions of the inputs are less peaked than the output, which suggests they are

more variable. This result is intuitive for a number of reasons. The optimizer explores

the design space through the manipulation of the decision variables, hence to explore

more of the design space the decision variables must be swept through a larger range

of values. This fact, in conjunction with the combinatorics of the problem, means the

extents of the design space must be explored by varying combinations of vehicle values.

The variance of the output is reduced, as varying each decision variable contributes

a smaller portion to the output value (proportional to the percentage contribution

of that vehicle to the total weight of the vehicles). Hence, an extreme value of an

individual vehicle will be ‘washed out’ in the determination of the final value.

Figures 5.31 - 5.34 present all observed values and differential values throughout

the optimization procedures. The application of the TVE and DTVE metrics to the

distribution of values at each optimization step enables the uncertainty of the interme-

diate values to be tracked over time. The entropy time series are presented in Figure

5.35 for the input decision variables (blue) and output objective variable (orange).
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Figure 5.31: Decision Variable (Blue) and Objective (Orange) Intermediate Value
Time Series - Hard Case
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Figure 5.32: Distribution of all Observed Intermediate Values

The plots clearly identify the two regions corresponding to the two optimization pro-

cedures. The first optimization procedure is characterized by low TVE and DTVE

given the optimizer’s failure to converge to a result due to the exact matching con-

straint. The stalling of the optimizer means the values of the decision variables remain

constant for a number of optimization steps, which leads to a decrease in TVE and

DTVE. The removal of the exact matching constraint leads to a large growth in TVE

and DTVE for both input and output values as the optimizer explores the widened

design space by varying the input values. The large initial growth in TVE corresponds

to the initial exploration of the design space, when there is a high likelihood that each

value observed will be different from those which have been previously considered.

This leads to an initial widening of the distribution of observed values. Over time,

as more values are determined by the optimizer, the likelihood that a newly observed

value is similar to one that has already been considered increases, which leads to the

distribution becoming more peaked and results in a decrease in TVE. As a value is
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Figure 5.33: Decision Variable (Blue) and Objective (Orange) Intermediate Value
Time Series - Hard Case
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Figure 5.34: Distribution of all observed Intermediate Differential Values

seen more often, the certainty of that parameter’s value increases. The final TVE and

DTVE values in the time series correspond to the final value and differential value

distributions shown in Figures 5.32 and 5.34.

The entropy plots illustrate a number of trends about the relative uncertainties

between the considered variables. In general, the increase in entropy of the input

values leads to a growth in entropy of the output values, but how does the growth of

each input entropy affect the observed output entropy? These results become more

intuitive by considering the case and vehicle parameters outlined in Tables 5.2 & 5.5.

The combination of the number of vehicles and vehicle unit weights means that the

AV-8Bs contribute the largest weight to the net center of gravity with a combined

weight of 54.0 tonnes, representing 44.4% of the total vehicle weight. The V-22s, the

SH-60s, and the F35-C contribute 30.1 tonnes (24.7%), 24.2 tonnes (19.9%), and 13.3

tonnes (10.9%) to the total weight, respectively. Thus, the locations of the vehicles

with a larger contribution to the total weight will have a larger impact on the the net
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(a) Target Value Entropy (TVE)

(b) Differential Target Value Entropy (DTVE)

Figure 5.35: Intermediate Calculation Entropy Results - Hard Case
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center of gravity. This sheds more light on the trends observed in the TVE and DTVE

plots. For the input variables, the lighter vehicles exhibit larger entropies related to

their location than do heavier ones. This is because the locations of vehicles with

smaller weights are less constrained as they impact the final result less, thus the

optimizer is free to consider a wider range of possible x-locations. Conversely, the

vehicles with the highest weights will impact the final answer the most, and thus the

optimizer considers a smaller range of values to yield the minimal objective value.

Hence, the TVE values are least for the x-locations of the AV-8Bs, and are highest

for the F-35C. The DTVE plots exhibit the same trends, and are explained by the

less drastic changes to the locations of heavier vehicles, and more drastic changes to

the locations of lighter vehicles.

A number of conclusions can be drawn about the intermediate calculation results

presented in this section. This provides an additional perspective into the conceptual

robustness of calculations performed within a local knowledge structure:

1. The application of TVE and DTVE to intermediate calculations extends the

idea of target-centric conceptual robustness beyond the input and output values

of calculations within a knowledge structure. The dynamics of entropy growth

observed in intermediate calculations highlights the growth in uncertainty of

the calculation itself, rather than focusing on value changes before or after the

calculation is performed.

2. Calculations which require no intermediate computations exhibit no growth in

TVE or DTVE. This is due to the single input-output relation of the calculation.

Computations requiring iterations will contain intermediate values. Dynamics

by which the distribution of values is constructed will lead to a growth in entropy

(assuming the values are not all the same across all iterations). A flattening

of the distribution will lead to higher TVE, while observing values which are

similar to those already observed will reduce TVE.
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3. In the presented case, the relative amount of TVE and DTVE growth sheds

light on how constrained the variable is. For the lighter vehicles, the optimizer

is able to consider a wider range of potential x-locations than for those of heavy

vehicles. Comparing the relative entropy growths of a single input and the re-

sulting growth in output provides insight into how impactful that variable is on

the uncertainty of the outcome. From a conceptual robustness standpoint, this

can be used to determine more effective strategies for conducting intermedi-

ate calculations, prioritizing the criticality of variables, and understanding the

sources of uncertainties. These will lead to a reduced likelihood of design churn

and rework.

4. The length of the TVE and DTVE plots correspond to the number of intermedi-

ate iterations required to yield a result. As such, long time series are indicative

of more difficult computations. These intermediate processes could be indicative

of refinement design churn if they require significant time to compute. This pro-

vides designers a means of identifying and quantifying such cases, and enables

them to act proactively to improve the design process.

5.5 Managing an Integrated Design Activity

This chapter has presented a case study to demonstrate the utility of the K-I

Framework in the context of an integrated design activity. The case study has ex-

plored how the local knowledge structures of various design teams are used to develop

a global information structure, which is utilized in turn to build a global knowledge

structure. In addition to presenting the process, a number of entropy metrics have

been presented which can be used to highlight characteristics of the framework’s dy-

namics to inform conceptually robust decisions. To better illustrate how the K-I

Framework and entropy metrics can be utilized to increase the conceptual robust-
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ness of a design process, this section presents a hypothetical scenario to synthesize

the many facets of this chapter, and illustrate how the K-I Framework is useful in

managing a successful design activity.

The presented scenario is as follows: Suppose that you are a design manager

involved in supporting an Analysis of Alternatives (AoA) study about a new class

of ships. You have been provided a Mission Need Statement (MNS) which identifies

the need to create a naval platform capable of supporting the launch and recovery of

SH-60 Seahawk helicopters. The AoA you have been asked to support considers three

sizes of Landing Helicopter Dock (LHD) hullforms - large, medium, and small. It is

your task to determine the capability of these ships to support the proposed suite of

aircraft. You have been asked to provide a yes or no answer. The results of this AoA

will be used to identify the alternative which satisfies the provided requirements at

the lowest possible risk, and the selected alternative will progress to the preliminary

design stage.

To help you conduct the AoA, you have a team of three engineers who have

technical expertise in Naval Architecture, Flight Operations, and Distribution System

Design. They will utilize previously developed tools which have been designed to

determine the critical parameters about their technical areas. As a skilled design

manager, you know the AoA has long lasting implications on the successful design

of a product. However, your traditional metrics only focus on the proposed solution,

not the process of generating that solution. As such, you decide to implement the K-I

Framework as a way of understanding the knowledge generation process in designing

the three solutions, rather than just the solutions themselves.

You ask each of your team members to map their tools into network space using

the variables of their tools, and the data relations between them. You know that

the tools used between groups are implemented in different softwares, so converting

them to network space provides an equal means of comparison across the tools. The
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teams successfully produce their networks, and you add them to the K-I framework

to represent each discipline’s local knowledge structure.

You create an interface through which each team member can communicate with

other members, such that you can track the communications between teams. This

database encompasses what information has been requested by a team, and who

has provided a value. Additionally, it highlights whether the requested variable has

data (data status), and if so, the values of that variable (value). Any engineer can

update values of previously existing parameters, or can add new parameters for other

engineers to populate. This database represents the global information layer.

As the design manager, you identify a number of global parameters that will be

used to compare the alternatives, and determine their feasibility. It is your task to

determine how the requirement related to the SH-60 helicopters will affect the these

parameters for each of the different hullforms. Thus, you add the unknown global

parameters and the known requirements to the global knowledge layer as unconnected

nodes.

Having set up your framework, you decide you will track your engineers’ progress

in designing each of the three alternatives. This will give you a means of comparing

not only the final results, but also the risks, uncertainties, and difficulties associated

with the development of each solution, as quantified by various entropy metrics.

You let your engineering teams get to work, and provide them a reasonable dead-

line to complete all of the solutions. To your surprise, the teams converge on solutions

for each alternative far ahead of schedule. Great! You think to yourself.

You schedule a meeting to present your team’s results to the decision makers.

In the meeting with the higher-ups, you are told that the mission requirements have

changed. The Admiral has decided that mission flexibility should be a priority, and as

such, the platforms will now need to be able to accommodate a layout of 4 different

aircraft types, rather than just the single layout of helicopters. You are asked to
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conduct the new analysis, and evaluate each platform’s ability to handle the new

aircraft layout. They give you a tight deadline to reconduct your work.

You get back to your office, and realize that you first need to determine whether

the tools utilized by your engineers are capable of conducting the new analysis. You

know that the engineers in your team are able, and that if you ask them, they will

tell you anything is possible. However, you want better insight into how well-suited

your team’s tools are to solving the new problem.

To answer this question, you decide to analyze the K-I framework of the AoA be-

fore the requirements change. You start by analyzing the global knowledge structure.

You look at the fraction unknown and DSE time series, and find that the final values

have both reached zero. This tells you all of the previously unknown global param-

eters now have values. You expect this, as the engineers were able to yield results

pertaining to the integrated design. You look at the structure of the global knowledge

network and find that there are edges between all of the nodes, revealing the interde-

pendencies of the global parameters and requirements. This highlights not only the

difficulty of the design, but also that the teams have built a fully-connected global

information structure through their communication pathways. Hence, the teams ap-

pear to have worked together effectively. This gives you increased confidence that

your team will be able to tackle the new requirements.

To get more insight, you decide to look at the evolution of global information by

looking at the database history, which will tell you more about the communicated

values between teams. You find that similar to the global knowledge structure, the

DSE time series is zero at the end of the design activity. This tells you that all of the

global information entities have values. Additionally, the time series is monotonically

decreasing, indicating that your information structure is steadily being populated

with data. This makes sense to you, since all of the global knowledge values were

determined, but the global information layer provides you more insight about what
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intermediate entities were used to realize the structure in the global knowledge layer.

You are interested in the growth of the information network over time, to see if

there are any potentially problematic areas. By looking at the TE time series, you find

that the TE grows quite consistently over time, meaning the size of the information

structure is growing over time.

Your conclusions about the analysis of the global knowledge and information lay-

ers have confirmed that your teams are communicating well with one another. This

suggests that your engineers are working together effectively to not only grow the

global information, but grow it in a way that more nodes are becoming known. Al-

though you are confident in your inter-discipline process, you are still unsure about

the capabilities of each team as it pertains to solving the new problem.

To answer this, you shift your focus to the local knowledge structures. You view

the TE time series and see that they remain constant over time. This tells you the

teams have not altered their tools over the course of the design process. You evaluate

the DSE of each team’s local knowledge structure, and you find that the Distribution

and Naval Architecture teams have monotonically decreasing functions, with zero final

DSE. This tells you that over time, more and more of their static knowledge structures

became known, and at the end of the process, they utilized their entire knowledge

structures in the integration activity. This could be problematic, you think. If the

teams had to use all aspects of their knowledge structures, now that the requirements

have changed, are there new parameters they will need to consider that haven’t been

integrated into their tools?

You decide there are two potential issues that the requirements change could pose

to the teams’ local knowledge structures. The first is that the new problem does

not influence the parameters in the local knowledge structures, but will influence

their values. This could lead to more iterations between teams, or could pose a new

possibility of integration failures. The second case is that the requirements change
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presents new parameters to be considered that are not contained in the existing local

knowledge structure.

While the first issue could lead to refinement design churn and increase the time

required to design the vessel, the second case proves to be the bigger issue. The

second case requires the engineer to integrate new entities into their local knowledge

by revising their tool. Revising their tool could present a significant difficulty. In

the best case, only a small portion of the tool (knowledge structure) would need to

be restructured to accommodate the new requirements. The revision of the local

knowledge structure would not directly contribute to the evolution of global informa-

tion and knowledge, and would present significant delays to the rest of the process.

You would be able to see this through a change in local TE, however it will almost

certainly mean you can’t make the deadline posed by the higher-ups.

With these concerns in mind, you study the final local knowledge structure: the

Operations team. You find that unlike the other two teams, the operations team has

a non-zero final DSE. This tells you the team has not utilized their entire structure to

answer the question. There are nodes in the network that were not required to yield

a result before the requirements changed. You look in more detail at these nodes, and

find out they correspond to placeholder parameters for 3 additional vehicles. Perfect !

This tells you that the requirements change can be accommodated by the Operations

team. Their knowledge structure will not need to be revised, and only the values and

calculability of the structure will change.

Armed with this knowledge, you make a number of conclusions. First, your team

appears to be working well together – they are effectively building a global information

structure which properly leads to a global knowledge structure. In analyzing the

local knowledge layers, you find that two of your teams have fully utilized their

knowledge structures to yield a result. This tells you these tools are ‘maxed out’,

and any additional parameters required will lead to the tool being insufficient to
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answer the new question. Since the three considered hullforms have not been changed

by the requirements, you posit that additional parameters are unlikely to need to

be considered. While the requirements change does impact the Operations team’s

analysis, their tool is set up to accommodate the new considerations. You decide

that your engineering team is set up to handle the change in requirements.

Given your newfound insights from analyzing the previous case, you decide you

will take a more active role in managing this new case. To do so, you will monitor

the K-I Framework and entropy metrics in real time, to ensure that everything runs

smoothly. You decide to use the first case as a baseline as it was a similar problem,

and ended up with a successful outcome.

You tell your engineers to get to work on the largest hullform. Using the previous

case as a benchmark, you monitor the entropy metrics over time, and find they are

almost exactly the same as before the requirements change. You notice that the DSE

of the OPS team has now decreased to zero – which tells you their tool is now being

fully utilized. Over time, the teams are able to determine a solution for the large

hullform in the same amount of time as the previous case. Maybe all of my worries

were for nothing. Things look great!

The team starts on the medium hullform, and initially all of the entropy metrics

agree with the previous case. You are monitoring the global information layer, to

ensure the development of global information related to the integration activities are

progressing well. At first, you witness the growth in TE as the global knowledge

entities are translated to global information. As the teams add new entities to global

information, TE increases, and as interdependencies are recognized, the TE decreases.

At a certain point you observe that the global information TE has plateaued. The

global information network is not growing in size, but perhaps is becoming more

calculable! You analyze the DSE metric, and observe that DSE has also plateaued.

You think to yourself: The global information network is neither growing nor changing
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in calculability. This tells me no new information is being added to global information,

no interdependencies are being determined between the existing information, and no

previously unknown information entities are becoming calculable. The generation of

global information appears to have stalled.

While no more of the network is becoming calculable, perhaps the values of pre-

viously known nodes are changing. You look at the TVE of the nodes in the global

information layer, and compare them to the previous case. You observe that the

longitudinal position of the vehicles (xveh) has still not been determined in global

information, even though it had been determined much sooner before the require-

ments changed. Based on the inter-layer edges from this global information node,

you find that the Operations team had been requested to provide an estimate, but

has not yet done so. You look at the TVE of the xveh node in the Operations team’s

knowledge structure, and observe a longer period of unchanging TVE. This tells you

the time between the inputs and outputs of this calculation have increased in time

significantly.

You are concerned that the design is experiencing refinement design churn. After

all, the time taken to generate results between iterations has increased. You shift

focus to the intermediate calculations time series, and find that in the original case,

there was no increase in TVE. Now however, there is significant growth!

This growth in entropy highlights a significant change in the design process. Before

the requirements change, there was a 1:1 mapping of inputs to outputs, but now the

team is experiencing issues in determining a feasible arrangement of the four vehicles

due to the increase in dimensionality of the problem. However, this same issue had

not happened after the requirements change for the large hullform; in that case,

the intermediate TVE remained low as well. You recognize that the first hullform,

being much larger and heavier, was less sensitive to the locations of the vehicles.

The value requested by the Naval Architecture team enabled the Operations team
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to match the exact matching constraint, and as such, the Operations team had an

easier time allocating a feasible vehicle arrangement – the problem required far fewer

intermediate iterations. Now that the proposed hullform has become more sensitive

to vehicle locations, the Operations team needs to explore the design space more

thoroughly because there are fewer areas to locate the vehicles, and the results are

more critical. To combat the issue of a stagnant process, you allocate the Operations

team more resources, in the hopes that this speeds up the process.

Shifting your attention back to the global information layer, you observe that the

previously static TE and DSE metrics are now progressing smoothly. This indicates

to you that communication between teams is occurring once more. The changing TE

tells you the information structure is evolving, and the decreasing DSE tells you a

larger portion of the global information layer is becoming known. After some time,

you once again encounter an extended period where the TE and DSE metrics plateau.

Not again!

Given your previous approach, you shift to consider the TVE of the global infor-

mation nodes. You observe that the TVE and DTVE of the required pump power

and GMt are varying greatly. You follow the edges from this node and find they are

connected to the Naval Architecture and Distribution teams. Unlike the previous

case which in which TVE and DTVE were static, this case tells you that the global

information network is neither growing nor becoming more calculable; this is due

to values being negotiated between these teams in nodes that are already existing

and calculable. The significant growth in TVE and DTVE indicates to you that the

communicated values are not similar and are exhibiting growths in uncertainty. You

decide to investigate further.

You identify the local required power node in the Distribution team’s local knowl-

edge structure. You find that the required power is a function of the fuel tank height

(zfuel) and height of the vehicles (zveh). The TVE and DTVE of the vehicle heights
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is low, and is decreasing. This tells you this value is not changing. However, the

entropy of the fuel tank height is increasing! This tells you that this parameter is

changing values significantly and is leading to a growth in required power.

You follow the path from the local zfuel parameter through global information to

the Naval Architecture team, and find a similar case of entropy growth in the Naval

Architect local knowledge node. But based on their structure, this node is an input

to their estimate of GMt! You now see the root of the issue.

These teams have differing objectives in relation to these two variables. The

Distribution team aims to locate the fuel tanks high in the vessel to reduce the

required power of the pump, while the Naval Architects want to locate the fuel tanks

low in the vessel to maintain stability. Through this analysis, you have uncovered

that this is the root of the entropy growth. As the vessel has gotten smaller from

the previous case, the outputs have become more sensitive to changes in the inputs –

hence leading to growths in entropy. To mitigate this problem, you decide to co-locate

the disciplines in the same room, to assist the engineers in determining a value that

is satisfactory to both parties (concurrent engineering).

After implementing this change, negotiations improve, and you witness the design

progressing smoothly once more. After a short time, the global information layer is

translated to global knowledge, and a solution has been determined. You note that

the design of the medium size hullform took longer and experienced more issues than

the large hullform, but was still able to yield a result after the change in requirements.

The teams begin evaluating the final hullform, the smallest of the alternatives.

As you are monitoring the K-I Framework, you observe similar entropic trends to

that of the medium hullform. Given your managerial changes and having gained

an understanding of the issues presented in the medium-hullform case, you observe

that the design churn has improved the ability for the Operations team to perform.

However, even though you have co-located the Naval Architecture and Distribution
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teams, you once again witness large growths in TVE of GMt and required pump

power. You come to learn that the teams are unable to agree on a common value,

as their feasible regions for the negotiated variables do not overlap. The decrease in

vessel size has influenced the ability for the teams to reach a suitable parameter. For

the distribution team to make their solution work, the pipes would either have to be

far too large to route through the vessel, or the size of the pump would have to be

massive. You have witnessed an integration failure, and you decide that the smallest

hullform would be unable to accommodate the new requirements.

Having managed the evaluation of all three hullforms, you bring your results to

the decision makers. You indicate that both the large and medium hullforms can

meet the new requirements, while the smallest cannot. Given that both the large

and medium hullforms meet the new requirements, the decision makers decide to use

cost as a basis for their decision. They decide that because the medium hullform is

cheapest, it should be the recommended alternative (Table 5.15).

Given your insights from using the K-I Framework, you are able to communicate

to the decision makers that although both solutions satisfy the requirements, the evo-

lution of integrated design information and knowledge presents far more engineering

effort required to solve the problem for the medium hullform (Table 5.16). You are

able to quantify these difficulties using the entropy metrics, by focusing on each alter-

native’s ability to satisfy a requirement in a very early stage of design. Although the

medium hullform has a lower estimated cost, the likelihood of emergent design fail-

ures increases as compared to the larger hullform, due to information and knowledge

Table 5.15: Selected Alternative using Traditional Evaluation

Hullform 1 Hullform 2 Hullform 3
Size Large Medium Small
Cost High Low Low

New Requirements Met? Yes Yes No
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Table 5.16: Selected Alternative using K-I Framework Evaluation

Hullform 1 Hullform 2 Hullform 3
Size Large Medium Small
Cost High Low Low

New Requirements Met? Yes Yes No
Design Difficulty Low High N/A

generation issues associated with the increased spatial complexity. This presents a

higher possibility of schedule failures and cost overruns. So, although the preliminary

cost estimate suggests that the medium hullform may be of lower cost now, the added

likelihood of emergent design failures means it could in fact be far more expensive

over time.

The utilization of the K-I framework has enabled you to provide decision makers

with additional considerations in evaluating the alternatives. You have been able

to communicate and quantify differences in the alternatives related not only to the

products themselves, but also to the engineering effort which enables the creation of

those products. The entropy metrics have enabled you to identify potentially prob-

lematic areas of the design and design process in a very early design stage. This

mitigates the risk of selecting an inferior alternative which the traditional methods

alone would have suggested were dominant. Through the utilization of the K-I frame-

work, you have enabled decision makers to better select the alternative which will be

more conceptually robust to future exogenous factors.
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CHAPTER VI

Contributions

6.1 Contributions

This thesis has presented a novel perspective of conceptual robustness focused on

design knowledge generation. The novel contributions of this research include:

• Creation and implementation of a novel network framework (the K-I Frame-

work) to capture the interplay between information gathering and knowledge

generation. The primary contributions of the framework are:

– Developed a multi-layer network that encapsulates data, information, and

knowledge in relation to a design activity.

– Enabled the ability to track the development of knowledge structures at

local and global levels of design.

– Created a unique method of representing sources of information and knowl-

edge structures using networks.

– Created a platform to study the dynamics of knowledge generation and

knowledge refinement over the course of a design activity in a multi-agent

design environment.
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– The ability to utilize networks to gain a knowledge-centric perspective of

conceptual robustness.

• Creation of novel information-theoretic network entropy metrics to understand

information contained within K-I networks:

– A new implementation of the PageRank algorithm to study the information

content of a network structure (Topological Entropy (TE)).

– Leveraging Generalized Cumulative Residual Entropy as a novel metric to

understand the evolution of target node values over time (Target Value

Entropy (TVE)).

– Creation of a binary entropy measure to study the calculability of a knowl-

edge structure over time (Data Status Entropy (DSE)).

• Developed a new, knowledge-centric perspective of conceptual robustness which

focuses on the knowledge structure used to create products:

– Utilized Target Value Entropy (TVE) to understand path dependencies

and predictability of a design approach.

– Introduced the ability to study and quantify excessive rework using a novel

algorithm based on the developed K-I framework.

– Illustrated the ability to quantify the inability to integrate information

sources during rework activities as a result of knowledge structures.

• Demonstrated the utility of the K-I framework using two case studies focused

on local and global knowledge structures:

– The local case study highlights how different knowledge structures are

developed using different calculation approaches.
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– The global case study reveals the ability to understand conceptual robust-

ness as a result of inter-agent communication in a design activity.

6.2 Future Topics of Interest

While the research presented in this thesis has provided many new concepts toward

gaining new insights into conceptual robustness, there is still much to be explored.

The focus of this thesis was to develop a flexible platform which could be leveraged

to explore many additional aspects as it related to knowledge-centric design. There

are a number of additional aspects which could be explored to expand the results

presented by the case studies in Chapter IV and Chapter V. These future topics

include, but are not limited to, the following:

• The refinement of existing, and development of new, entropic measures. The

entropy metrics presented in this work consider the growth, calculability, and

values contained within knowledge and information structures. While these

metrics provide a base by which to study the evolution of layers within the

K-I Framework, there are likely other formulations of metrics which provide

different insights. For example, there are currently no entropy metrics related

to the accuracy or quality of values over time.

• Entropy normalization methods. While a number of the proposed metrics can

be represented by a distribution which maximizes entropy, no theoretical max-

imum entropy exists for TVE and DTVE. The development of an appropriate

normalization process would better enable comparisons across different variables

or design activities. This would be useful in establishing appropriate entropy

thresholds of concern for variable changes, such that a designer could be notified

of a potential issue across a wide range of activities.

• Predictive measures of entropy growth. The proposed framework is able to track
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entropy growth over time, and use this as a means to mitigate late stage failures

by recognizing them early on in the design activity. However, the utility of

the framework would be improved by also predicting entropies of future values

utilizing existing entropy values. For example, the entropies of a number of

inputs coupled with the structures of the networks, could be used to propagate

the entropies from inputs to outputs. Predictive measures of entropy growth

could be used to better infer strategies for convergence on a solution, and avoid

cases of lock-in. This would also improve the ability to recognize potential

emergent design failures.

• Predicting product-centric design outcomes. The knowledge-centered approach

would be improved by relating the various entropy growths to product-centric

outcomes. This could be achieved by considering ensembles of product out-

comes, and using entropy to understand the evolution of these outcomes through-

out the development of local and global knowledge structures. This would trans-

late the impact of knowledge-centric entropy changes to product space and thus

enhance the predictive power of knowledge-centric measures. It could also be

used to provide new conceptual robustness insights related to knowledge struc-

ture development.

• Exploring the trade off between knowledge structure complexity and robustness.

Further work is required to understand how conceptual robustness is impacted

by the complexity of a knowledge structure. The metrics proposed in this thesis

quantify a number of aspects relating to complexity, but the relation is not fully

understood. This would better inform the applicability of tools in early design

stages, and the resiliency of these tools to the presence of exogenous factors.

• Utilizing entropy metrics to inform knowledge structure development. This work

has validated the ability for the developed entropy metrics to quantify the devel-
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opment of local and global knowledge structures. The work could be extended

by utilizing these insights to direct the development of local and global struc-

tures, rather than monitoring them as they are developing.

• Prioritization of inputs for a given knowledge structure. Utilizing approaches

such as percolation theory toward node data statuses would quantify the ro-

bustness of knowledge structures to missing data. This would not only provide

another perspective of knowledge structure robustness, but could also be used

to inform the selection of information structures, and prioritize data sought for

calculations.

• Integration of additional information theoretic metrics into the framework. The

inclusion of additional metrics used in information theory would enable a suite

of new analyses to be performed. New, interesting insights would be gained

by considering measures such as mutual information, the marginal utility of

information, and conditional entropies.

• Strategies for reducing the computation time of the growing distributions over

time. In order for the K-I Framework to be effectively utilized in real time,

additional work is required to improve computation times. One possible im-

provement is through new strategies for binning growing distributions while

maintaining the predictive power of the metrics. The framework could also be

improved through the utilization of high performance computing resources.

• Converting the analysis to consider actual time rather than calculation step,

which enables the intermediate calculations and input/output values to be com-

bined into the same plot.

• Evaluating global knowledge structure development utilizing the framework in

the context of concurrent engineering and set-based design approaches.
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• Additional case studies to explore additional exogenous factors.

• Application of the framework to larger, more complex case studies.
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APPENDIX A

Integration Case Study - Design Tools

This appendix outlines the equations utilized by each of the teams in the Inte-

grated Framework Case Study (Chapter V). The equations listed for each team are

presented in the form in which they are implemented in each tool. The combination

of equations for each team fully defines each local knowledge structure. The equations

presented for each team were implemented as Excel spreadsheets, with each variable

being represented as an individual cell.

The constraints listed for each team define the feasibility bounds for the variables

listed. These bounds are used as inputs to guide the optimization procedures to yield

results deemed acceptable by each group. All unlisted variables are unbounded.

A.1 Distribution (DIST) Equations

γfuel = ρfuel ∗ g (A.1)

P1 = 0 (A.2)

P2 = 0 (A.3)

V1 = 0 (A.4)
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V2 =
vol flow rate

π(pipe diameter
2

)2
(A.5)

system head =
P2 − P1

γfuel + (zveh − zfuel) +
V 2
2 −V 2

1

2g

(A.6)

required power =
γfuel ∗ vol flow rate ∗ system head

1000
(A.7)

Feasibility Constraints

pipe diameter ≥ 0.1 (A.8)

pipe diameter ≤ 1.0 (A.9)

required power ≥ 0.0 (A.10)

required power ≤ 560.0 (A.11)

A.2 Naval Architecture (NAVARCH) Equations

V = LWL ∗B ∗ T ∗ CB (A.12)

Disp = ρSW ∗ V (A.13)

Wtot = WDWT +WLS (A.14)

WDWT = Wmisc +Wveh +Wfuel (A.15)

Wfuel =
ρfuel ∗ Vfuel

1000
(A.16)

% = 100 ∗ Wtot −Disp
Disp

(A.17)

xDWT =
Wmisc ∗ xmisc +Wveh ∗ xveh +Wfuel ∗ xfuel

WDWT

(A.18)
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zDWT =
Wmisc ∗ zmisc +Wveh ∗ zveh +Wfuel ∗ zfuel

WDWT

(A.19)

xtot =
WDWT ∗ xDWT +WLS ∗ xLS

Wtot

(A.20)

ztot =
WDWT ∗ zDWT +WLS ∗ zLS

Wtot

(A.21)

GMt = BMt +KB − ztot (A.22)

GML = BML +KB − ztot (A.23)

Trim =
LWL(xtot − LCB)

GML
(A.24)

Feasibility Constraints

GMt ≥ 0.0 (A.25)

|%| ≤ 0.5 (A.26)

|Trim| ≤ 0.01 (A.27)

xfuel ≥ 0.0 (A.28)

xfuel ≤ LWL (A.29)

zfuel ≥ 4.0 (A.30)

zfuel ≤ D + 3.0 (A.31)

A.3 Operations (OPS) Equations

Wi = ni ∗ wi (A.32)
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SFCi =
fuel capacityi ∗ ρfuel

flight timei
(A.33)

flight timei = 2 ∗ combat radiusi ∗ speedi (A.34)

Vfuel,i =
1

ρfuel
∗ endurance days ∗ ni ∗ sortie rate ∗ flight timei ∗ SFCi

(A.35)

refuel time = 60 ∗ (
24

sortie rate
− 3.36 ∗ (

flight timei
2

)− 4.0) (A.36)

flow ratei = 60 ∗ fuel capacityi
refuel timei

(A.37)

Wveh =
∑
i

Wi (A.38)

xveh =

∑
iWi ∗ xi
Wveh

(A.39)

zveh =

∑
iWi ∗ zi
Wveh

(A.40)

Vfuel =
∑
i

Vfuel,i (A.41)

vol flow rate = max(flow ratei) (A.42)

Feasibility Constraints

|xi − xj| ≥ 20.0 ∀i, j ∈ V (A.43)

xveh ≥ 0.0 (A.44)

xveh ≤ LWL (A.45)

zveh = D + 3.0 (A.46)
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