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Abstract 

 
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer 

worldwide and as only approximately 50% of patients survive five years after diagnosis, new 

treatment options are urgently needed.  A complex array of molecular and microenvironmental 

alterations are believed to play a role in HNSCC pathogenesis, including suppression of 

antitumor immunity by expression of the immune checkpoint signal Programmed Death Ligand 

1 (PDL1). The advancement of predictive and prognostic biomarkers, as well as rationally 

designed and personalized treatment regimens, will be especially crucial to improving outcomes 

across the spectrum of HNSCC subtypes.  In an effort to comprehensively understand disease 

heterogeneity and mechanisms regulating immune escape, we have profiled various genetic, 

transcriptomic, and immunologic features of HNSCC.   

The focus of this work was on the regulation of PDL1, a target for immunotherapy that 

has garnered significant attention in recent years.  We aimed to provide a more complete portrait 

of the molecular pathways contributing to immunosuppression in HNSCC, and to identify 

signals that could be exploited as biomarkers and therapeutic targets.  We utilized multiple 

genome wide screening techniques to select HNSCC cells with altered PDL1 expression and 

validated several hits nominated by these screens, most notably FGFR and TLR2 signaling.  We 

expect these findings to contribute to a broader understanding of PDL1 checkpoint regulation in 

models and tumors with diverse genetic and phenotypic characteristics, and that this knowledge 

will ultimately lead to novel biomarkers and therapeutic combinations to improve patient 

outcomes.   
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Chapter 1 Introduction 

 

1.1 Surveilling the Potential for Precision Medicine- Driven PD1/PDL1 Targeted 

Therapy in HNSCC1 

Abstract 

Immunotherapy is becoming an accepted treatment modality for many patients with cancer and 

is now approved for use in platinum-refractory recurrent or metastatic head and neck squamous 

cell carcinoma (HNSCC). Despite these successes, a minority of patients with HNSCC receiving 

immunotherapy respond to treatment, and few undergo a complete response. Thus, there is a 

critical need to identify mechanisms regulating immune checkpoints in HNSCC in the hopes of 

predicting responders, and so that novel combination strategies can be developed for non-

responders. Here, we review the immunotherapy and molecular genetics literature to describe 

what is known about immune checkpoints in common genetic subsets of HNSCC. We highlight 

several highly recurrent genetic lesions that may serve as biomarkers or targets for combination 

immunotherapy in HNSCC. 

Introduction 

Over the last decade, research in head and neck squamous cell carcinoma (HNSCC) has 

shown that suppression of the host immune system plays a key role in the development and 

 
1 This section was published in the Journal of Cancer in collaboration with the following authors: Rebecca Hoesli, 
Nicole Michmerhuizen, Samantha Devenport, Megan Ludwig, Taylor Vandenberg, Chloe Matovina, Nadine Jawad, 
Michelle Mierzwa, Andrew Shuman, Matthew Spector, and Chad Brenner.  
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progression of HNSCC. Many critical components of both the innate and adaptive immune 

systems are dysfunctional in patients with HNSCC, including the activity of natural killer cells, 

the function of antigen presenting machinery, and the maturation of dendritic cells 1-4. 

Additionally, in the composition of functioning cells such as T lymphocytes, there is a shift 

towards immunosuppression, with higher numbers of the immunosuppressive regulatory T cells 

and immunosuppressive cytokines, while the overall number of lymphocytes is decreased 5-9. 

Many of these defects feedback amongst themselves, resulting in the release of cytokines and 

recruitment of immunosuppressive cells, further promoting the immunosuppressive environment. 

Importantly, this immunosuppression appears to play pivotal roles in both HNSCCs driven by 

high risk human papilloma virus (HPV) and HPV negative disease. 

In addition to these defects, HNSCCs, like other immunosuppressive cancers, have co-

opted beneficial physiologic signaling pathways to aid in immune evasion. In the intact immune 

system, there is a necessary equilibrium between activation and suppression of the immune 

system. This balance prevents excessive activation of the immune system resulting in 

autoimmune diseases, as well as pathologic suppression resulting in opportunistic infections. 

Various co-stimulatory and co-inhibitory signaling pathways are involved in maintaining this 

equilibrium, including the CTLA-4 and programmed death-1 (PD-1):programmed death ligand-1 

(PDL1) pathways, which serve as checkpoints to mitigate excessive inflammation. Both of these 

pathways are thought to have been exploited by HNSCC in order to enhance the 

immunosuppressive environment, preventing immune surveillance and tumor destruction 10, 11. 

Therapies targeting the co-inhibitory receptor CTLA-4 were among the earliest immunotherapies 

for cancer, and following their success in the clinic, additional targets, including the PD-1:PD-1 
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pathway, were quickly advanced 10. This review will focus on the various genetic alterations and 

molecular pathways that may contribute to dysregulation of the PD-1:PDL1 pathway. 

Immune Checkpoints and PD1/PDL1 Signaling 

The PD-1/PDL1 pathway is an important co-inhibitory pathway involved in the 

regulation of the human immune response. This pathway serves as an immune checkpoint, 

providing protection against excessive tissue damage induced by inflammation 10, and is 

especially important in regulating antigen-specific effector T-cell activity in peripheral tissues. 

The PD-1 receptor is a transmembrane protein expressed by T cells, B cells, and many types of 

tumor-infiltrating lymphocytes (TILs). PD-1 can bind either of two ligands: PDL1 or PDL2, both 

of which are cell surface proteins of the B7 family 12, 13. Upon ligand binding, generation and 

activation of effector T cells, particularly CD8+ T cells, is dramatically suppressed 14. 

Expression of PDL1 can be stimulated by interferon-γ (IFN-γ), a cytokine produced primarily by 

effector lymphocytes 15. In general, interferons function as lines of communication between the 

innate and adaptive immune responses by activating immature dendritic cells and CD8+ T cells. 

IFN-γ is largely responsible for inducing inflammation, a critical component of the immune 

response. Cancer cells are thought to induce an immune response, and inflammation is common 

within the tumor microenvironment. However, it is hypothesized that cancer cells can develop an 

“adaptive immune resistance” to increased levels of inflammation by upregulating PDL1 in 

response to IFN-γ, thereby protecting themselves against immune attack by promoting T cell 

anergy and apoptosis 16, 17. An interesting connection has also emerged between HPV infection, 

now recognized as a common initiator of oropharyngeal cancer, and immunosuppression. Major 

sites of HPV infection, such as the tonsillar crypts, may be prone to harboring high levels of 

foreign antigens 18. It is plausible that activation of immunosuppressive mechanisms to stifle 
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excessive inflammation also creates a permissive environment for both persistent HPV and 

associated tumors to flourish 18. It has also been postulated that immunosuppressive pathways 

initiated by HPV itself allow for malignant transformation at the site of infection 19. 

Although the PD-1/PDL1 pathway was discovered more than two decades ago, the 

therapeutic potential associated with targeting this pathway in cancer was not immediately 

recognized. As the immunosuppressive function of the PD-1/PDL1 interaction was revealed and 

PDL1 expression was observed in tumor cells, researchers hypothesized that blockade of this 

pathway could help facilitate eradication of tumors and impede tumor metastasis 20. This 

hypothesis was first tested in melanoma, in which treatment with monoclonal antibodies (mAbs) 

directed against PD-1 showed promising results. In a meta-analysis of 5 multi-center randomized 

control trials including 2,828 patients, patients treated with an anti- PD-1 mAb experienced 

superior progression free survival (PFS) ranging from 3.7 to 6.9 months as compared with 2.2 to 

4.2 months in the control group. Six-month PFS was significantly improved for patients treated 

with anti-PD-1 therapy, with a hazard ratio (HR) of 0.55 21. There was also a statistically 

significant improvement in overall response rate (ORR) with an odds ratio (OR) of 3.89 21. Two 

anti-PD-1 antibodies, pembrolizumab and nivolumab, have since been approved by the FDA for 

the treatment of advanced melanoma due to convincing data demonstrating increased ORR, as 

well as improved PFS and OS 11. 

Currently, five mAb therapies targeting the PD-1/PDL1 pathway are under investigation 

for use in HNSCC. Pembrolizumab and Nivolumab target PD-1, while MEDI4736, 

Atezolizumab, and Avelumab target PDL1. Pembrolizumab has shown considerable promise for 

use in patients with recurrent and/or metastatic HNSCC. An 18.2% ORR has been reported with 

a severe adverse reaction rate of 7.6%, leading to the August 2016 approval of Pembrolizumab 
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for platinum-refractory recurrent or metastatic HNSCC patients 22. Interestingly, ORR was 

independent of HPV status and PDL1 status 23. A phase 3 trial is also currently underway for 

Nivolumab versus either Cetuximab, Docetaxel, or Methotrexate for recurrent/metastatic 

HNSCC (Clinical Trial: NCT02105636). Preliminary results show a doubling in the one year 

overall survival rate to 36% in Nivolumab treated patients. Median overall survival was 7.5 

months in the Nivolumab group as compared to 5.1 months in the standard treatment group. 

Interestingly, both HPV positive and HPV negative patients benefit with the median survival for 

HPV positive patients increasing from 4.4 to 9.1 months, and that of HPV negative patients 

increasing from 5.8 to 7.5 months 24. Due to its early success, additional trials evaluating the 

efficacy of Nivolumab in combination with chemotherapy and/or radiation for definitive therapy 

in locoregionally advanced HNSCC are currently underway (NCT02764593). 

Of the mAbs against PDL1, MEDI4736 or Durvalumab, is currently being evaluated in a 

phase 3 trial of Durvalumab alone versus Durvalumab plus an anti-CTLA-4 inhibitor 

(tremelimumab) versus standard treatment (NCT02369874) 25. Atezolizumab and Avelumab are 

currently in several Phase 1b/2 trials evaluating the safety and efficacy of these inhibitors in 

advanced solid tumor malignancies, as listed in Table1.1. Several ongoing trials are investigating 

their use alone and in combination with other targeted therapies. 

Given the enthusiasm for drugs targeting the PD1/PDL1 pathways in the management of 

recurrent HNSCC, it is reasonable to expect that new protocols will be developed expanding the 

application of immunotherapy in this context. An enhanced understanding of PD-1 and PDL1 

expression and modulation, in addition to other factors predicting response to PD-1/PDL1 

blockade, will be essential to the rational design of future trials. Here, we review potential 



 
 
 

 19 

modulators of PDL1 expression, as well as important considerations associated with targeting 

PDL1 in HNSCC patients. 

PD-1 and PDL1 expression in HNSCC 

While several studies have evaluated expression of PDL1 in HNSCC by immunohistochemistry, 

results are highly variable. Thus, the clinical significance of PDL1 expression in tumor cells 

remains unclear. PDL1 staining may be membranous and/or diffuse, and often appears at the 

interface of tumor cells and T cells. PDL1 expression is reported in 51-87% of HNSCC tumors 

across several reports and criteria for PDL1 “positivity” are highly variable 18, 26-31. Small sample 

size, inconsistent representation of different disease sites, prior therapy, or the antibody used to 

detect PDL1 may contribute to discrepancies among these studies. Intratumoral heterogeneity 

and temporal changes in PDL1 expression may also lead to false negatives 32. HPV associated 

cancers are more likely to express PDL1, but PDL1 expression has not been directly correlated 

with survival despite the better prognosis observed among these cancers. However, tumor 

infiltration with high numbers of PD-1 expressing CD8+ T cells is associated with longer overall 

survival; the mechanism and implications thereof remain unclear 29, 33. 

Potential for intrinsic modulation of PDL1 by oncogenic pathways 

JAK2/STAT1 mediated induction of PDL1 expression on the surface of tumor cells has 

been demonstrated in response to IFN-γ, and, recently, epidermal growth factor (EGF) 34. The 

finding that EGF can promote PDL1 expression was especially interesting given that the EGF 

receptor (EGFR) is highly overexpressed in HNSCC. This observation highlights the possibility 

that other signals, including common oncogenic drivers, may contribute to immunosuppression 

by promoting PDL1 expression. Elucidating the molecular mechanisms governing PDL1 

expression in the context of HNSCC may provide a compelling rationale for combining 
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immunotherapy with other agents targeting upstream regulators of the PDL1/PD-1 pathway. 

While mechanisms regulating PDL1 have been examined in other cancers, few studies have 

addressed intrinsic modulation of PDL1 in HNSCC, especially in the context of emerging 

precision medicine paradigms that match targeted therapies with specific genetic lesions 35-39. 

Interestingly, several potentially targetable pathways including EGFR, phosphatidylinositol 3-

kinase (PI3K)/Akt, MAPK, p53, STAT and HIF-1α are commonly deregulated in HNSCC and 

could potentially influence the expression of PDL1 (Figure 1.1).  There is potential to exploit 

newly discovered relationships between PDL1 regulation and other well-described drug targets, 

and rapidly translate these findings, as many of these pathways are already being targeted in 

clinical trials (Table 1.2). 

 

EGFR 

EGFR is overexpressed in >90% of HNSCCs by a variety of genetic mechanisms including 

amplification (~10% of cases) 40-43. It is therefore not surprising that targeting EGFR has become 

an important strategy in the management of HNSCC. Several small molecule inhibitors of EGFR 

signaling are currently being investigated, and clinical success has been achieved with biologics 

such as Cetuximab, a chimeric IgG1 mAb against EGFR 44. As both EGFR- and PD-1/PDL1- 

targeted therapies have advanced, evidence has emerged for a potential confluence of these two 

pathways. In NSCLC, where immune checkpoint inhibitors have been more extensively studied 

and exploited, an interesting relationship between EGFR and PDL1 has been noted. Specifically, 

tumors with activating genetic aberrations to EGFR were more likely to have PDL1 

overexpression than those without 45, 46, and treatment of these tumors with the small molecule 

EGFR inhibitor gefitinib caused a substantial reduction in PDL1 expression suggesting a direct 
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mechanistic link between the two molecules 46. Surprisingly, refractory NSCLC tumors arising 

after gefitinib treatments also have elevated PDL1 expression 47, suggesting that immune escape 

is an important mechanism to overcoming EGFR inhibitor response. More recently, Concha-

Benavente et. al. noted a similar relationship in HNSCC models showing that Cetuximab-

mediated EGFR inhibition caused a reduction in adaptive PDL1 expression through modulation 

of the JAK2/STAT1 effectors 34. 

The postulate that EGFR activation can promote immune escape through regulation of 

PDL1 expression is especially interesting given the prevalence of Cetuximab-based therapies in 

HNSCC. The logical hypothesis addresses whether these two therapies can be combined, 

particularly given the poor observed response to Cetuximab as a single agent. It is unclear if 

combination Cetuximab + PD1/PDL1 checkpoint inhibitors would provide an incremental effect, 

as Cetuximab inhibits PDL1 expression thereby removing the immunotherapy target, perhaps 

suggesting the need for sequential use of the drugs. However, by activating T-cells to clear any 

tumor cells that are innately resistant to Cetuximab (or the EGFR-based modulation of PDL1), 

this combination may effectively clear heterogeneous tumor cell populations, although this 

remains to be proven in vivo. Clinical trials assessing these combinations in advanced HNSCC 

patients are currently being evaluated and sequential trials assessing PDL1 inhibition following 

Cetuximab failure are already ongoing (NCT02255097). An additional facet of mAb therapies is 

the potential for antibody-dependent cellular cytotoxicity (ADCC), a mechanism for the 

clearance of IgG1-coated target cells. ADCC is triggered by engagement of Fc receptors on 

immune effector cells with the Fc region of IgG1. Cetuximab induces ADCC in an EGFR-

dependent manner in cell culture and in murine models 48-51, and although the contribution of 

ADCC to the anti-tumor effects of Cetuximab in humans is not fully understood, evidence of 
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increased ADCC has been reported. In a study of 22 HNSCC and colorectal cancer patients, 

Bertino et al observed more pronounced increases in ADCC in patients who experienced clinical 

benefit from Cetuximab than in those who did not 52. ADCC may play a key role in the clinical 

efficacy of EGFR targeted mAbs, and could have important implications for combination 

immunotherapeutic strategies. For example, it is possible that the combined effects of relief from 

T-cell anergy, stimulation of natural killer cells, and inhibition of EGFR signaling in addicted 

cells may amplify the anti-tumor function of either strategy alone. EGFR-based therapies may 

therefore have important mechanistic consequences on PD1/PDL1-based therapies in HNSCC, 

and these molecules may serve as important companion diagnostics for adjunctive 

immunotherapy. 

 

PI3K/AKT 

The PI3K pathway, based on data from The Cancer Genome Atlas and other analyses, 

has been identified as the most frequently mutated of any oncogenic and targetable pathway in 

HNSCC 53-55. Activating mutations and/or amplification of PIK3CA, which encodes PI3K's 

catalytic subunit and alpha isoform, was the most frequent alteration observed in the PI3K 

pathway. Aberration of this gene was reported in 37% of the TCGA HNSCC cohort 53. As a 

whole, alterations in the PI3K pathway contribute to tumor progression and increased cell growth 

and viability; they are also more commonly observed in advanced stage disease 56, 57. 

Various interferons have been shown to activate the PI3K pathway as well as to induce 

the expression of PDL1. In response to interferon, PI3K signaling is required for phosphorylation 

of STAT1 at the serine 727 residue and for the associated increase in gene transcription 58, 59. 

PKC (δ and ε isoforms) and/or NF-κB may serve as downstream mediators of this response 15, 60-
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63. Chen et al. showed that PDK2 signaling, which can be initiated by the PI3K-PKC pathway, is 

responsible for interferon-induced PDL1 expression in oral squamous cell carcinoma 15, and 

Kondo et al. demonstrated the dependence of interferon-induced PDL1 expression on NF-κB in 

myodysplastic syndrome blast cells 64. Additionally, in dermal fibroblasts, interferon treatment 

led to translocation of NF-κB to the nucleus and transient phosphorylation of ERK and AKT. 

This effect was abrogated upon treatment with PI3K and MEK but not PKC inhibitors 60. BRAF-

inhibitor resistant melanoma cells also display inducible PDL1 expression that is dependent on 

NF-κB. In contrast to observations in dermal fibroblasts, however, the PI3K and MAPK 

pathways were not significant mediators of this response 65. Ferris and colleagues reported that 

PI3K inhibitors wortmannin and BYL719 blocked AKT phosphorylation but failed to reverse the 

extrinsic interferon- or intrinsic EGFR-mediated increases in PDL1 expression in HNSCC cell 

lines 34. These data indicate that the role of PI3K, NF-κB, and PKC may be cell-type specific and 

therefore motivate further studies of the signaling mechanisms in HNSCCs. 

The PI3K pathway is also commonly activated in HNSCC via loss of PTEN, which 

functions as a “brake” on PI3K signaling. The PTEN tumor suppressor has been associated with 

PDL1 expression in other cancer types. Transgenic mouse models of lung SCC with loss of both 

PTEN and Lkb1, for example, developed tumors with elevated levels of PDL1 66. Parsa et al. 

showed that loss of PTEN in glioblastoma patients correlated with increased PDL1 expression 

and that PDL1 translation was S6K1-mediated 67. Furthermore, a negative correlation between 

PTEN and PDL1 expression has been identified in pancreatic and colorectal cancer samples 68, 69. 

miRNAs may also be an important component of this response as the upregulation of miRNAs, 

including miR-21, -20b, and 130b, in colorectal and esophageal cancers has been shown to 

suppress PTEN gene transcription 69, 70. 
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MAPK 

In HNSCC, genetic alterations in MAPK family members are relatively rare. Only 5% of 

patients in the TCGA cohort displayed mutations or copy number changes in HRAS, with other 

alterations in this pathway (such as those affecting KRAS and MAPK1) occurring even less 

frequently 53. In spite of this, signaling of the Ras-MEK-ERK pathway is often aberrant in 

HNSCC due to overexpression of EGFR or activation of other RTKs 71. 

The signaling functions of the MAPK pathway, like those of the PI3K pathway, are 

important in interferon-induced changes in PDL1 expression. MAPK acts in coordination with 

the JAK/STAT pathway to regulate gene transcription, and inhibitors of MAPK pathway 

members (including MEK, ERK, and JNK) block these effects 72. Consistent with this, Liu et al. 

showed that PMA, a known MEK/ERK pathway activator, could increase PDL1 expression in 

multiple myeloma; similarly, blocking MEK/ERK via pharmacological methods or siRNA 

knockdown resulted in decreased interferon-induced PDL1 expression 73. Melanoma cells 

resistant to BRAF inhibition also displayed MAPK activation and increased PDL1 expression via 

c-Jun and STAT3, and this effect was reversed by MEK inhibitors 74. Similar evidence for the 

role of the MAPK pathway in inducing PDL1 expression was identified in bladder cancer, where 

inhibitors of ERK and JNK blocked the induction of PDL1 expression by LPS treatment 75. 

MAPK signaling also modulates PDL1 expression in anaplastic large cell lymphoma (via ALK) 

and in Hodgkin's lymphoma (via p38 MAPK and MEK1/2) 76. 

Recent studies of breast cancer cell lines and murine models, however, have indicated that MEK 

inhibitor trametinib might induce PDL1 expression and therefore be useful in priming patients 

for immunotherapy treatment 77. Further studies in BRAF-mutant and WT melanoma as well as 
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KRAS-mutant NSCLC cells showed varying PDL1 transcript levels following trametinib 

treatment 78. Combination MAPK and PDL1 inhibitor treatments have been proposed and tested 

in vitro and in vivo, and combination therapies are currently being evaluated in clinical trials 

(such as NCT02027961 and NCT01988896 for BRAF-mutant melanoma and NSCLC patients, 

respectively) 79. 

While these dual therapies might be effective in HNSCC, further work regarding both the 

specific mechanism of MAPK pathway activation in PDL1 expression and the modulation of 

PDL1 levels by MAPK inhibitors are necessary. Initial studies by Ferris and colleagues suggest 

that MEK inhibitors do not significantly alter PDL1 expression in HNSCC cell lines, but that 

JAK2 and STAT1 might be critical mediators of immunogenicity 34. Additional research will aid 

in selecting patients who are the most likely to respond to combination MAPK-immunotherapy 

treatments, and one trial is currently underway in advanced solid malignancies including 

HNSCC (NCT02586987). 

 

p53 

The TP53 gene, encoding the p53 tumor suppressor, is the most commonly mutated gene 

in HNSCC 80. Cortez et al recently reported that p53 can regulate PDL1 production via miR-34. 

p53 deficient or mutant tumors express significantly higher PDL1 levels than wild type p53 

tumors 81. In cell lines, p53 induced miR-34 repressed PDL1 expression. Interestingly, injection 

of miR-34 mimics, such as the drug MRX34, reduces PDL1 expression and increases immune 

response to tumorous growth. When MRX34 was paired with radiation therapy (XRT), a 

common anti-cancer treatment that induces the adaptive immune response to promote tumor 

regression, exponential increases in CD8+ tumor-infiltrating cell expression were found 81. 
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Understanding the relationship between the p53 pathway and its effects on PDL1 expression may 

allow physicians to better tailor treatment of tumors with p53 mutations. 

 

STAT3 

The STAT signaling pathway is known to play an important role in many cellular 

processes, including division, apoptosis, and motility. Involvement of the transcriptional 

activator STAT3 has been reported in the development and growth of tumors 82, and recent 

studies aim to elucidate the role of STAT3 in PDL1 expression on tumor cells 83. STAT3 

inhibition reduces PDL1 expression in NSCLC 84. Similarly, in multiple types of lymphoma, 

PDL1 expression is enhanced by STAT3 and is decreased upon STAT3 inhibition 85, 86. As 

activated STAT3 was elevated in HNSCC tumors compared to normal epithelium 87, elucidating 

a role for STAT3 in regulating PDL1 in HNSCC may shed light on potential therapeutic targets 

or factors influencing the ability of these tumors to respond to PD-1 blockade. However, a recent 

study found no correlation between STAT3 and PDL1 expression in HPV positive HNSCC, and 

only a weak correlation in HPV negative HNSCC 34. 

 

HIF-1α 

Hypoxia inducible factors (HIFs) are transcriptional regulators integral to the response to 

hypoxia in solid tumors, and are believed to be critical to metastasis 88. Under hypoxic 

conditions, tumors utilize HIF-1α to upregulate glycolysis and to increase blood flow to the 

tumor by promoting angiogenesis. Recently, HIF-1α was suggested to play a role in PDL-1 

expression 89. Specifically, in myeloid derived stem cells (MDSCs), HIF-1α binds directly to the 

HRE-4 site in the proximal promoter of PDL1 89. Another PDL1 proximal promoter site, HRE-2, 



 
 
 

 27 

has also been shown to bind with HIF-1 in mammary cells 90. Hypoxia-induced PDL1 expression 

has been demonstrated in MDSCs, macrophages, dendritic cells, and tumor cells including breast 

and prostate cancer cell lines 89, 90, and this effect was HIF-1α dependent. While no direct link has 

been established between HIF-1 and PDL1 in HNSCC, given the reported overexpression of 

HIF-1α in HNSCC tissue vs adjacent normal tissue 91 and the poor prognosis associated with low 

intratumoral oxygen levels in HNSCC 92, a more detailed understanding of the potential for 

interplay between immune evasion and hypoxia could reveal novel mechanisms of HNSCC 

pathogenesis. 

 

Additional Targets 

Finally, there are additional genomic mutations in head and neck squamous cell 

carcinomas noted in the data from The Cancer Genome Atlas HNSCC cohort that make 

attractive targets for investigation in the development of immunotherapies. In addition to those 

described above, defects of note include mutations affecting other components of the innate and 

adaptive immune response, including antigen processing machinery and HLA, as well as tumor 

necrosis factor (TNF) receptor-associated factor 3 (TRAF3). HLA molecules play a key role in 

tumor identification and antigen presentation in the functioning immune system. HLA associates 

with degraded tumor peptides and β2-microglobulins, and once properly folded, the HLA 

complex consisting of the HLA protein chains, β2-microglobulins, and tumor peptides is 

transported to the cell surface, where it is recognized by T cells 3. However, in one study of head 

and neck cancers, approximately 40% of primary tumors had at least selective loss of HLA class 

I antigens, and 15% had complete loss 93. Although no current therapies target this defect, it 



 
 
 

 28 

remains an attractive target for immunotherapies, as it could play an important role in activating 

T cells against tumor antigens. 

TRAF3 plays an important role in regulating the crossroads between the anti-viral, anti-

inflammatory, and cancer pathways by modulating toll-like receptors, TNF receptors, and 

producing interferons and anti-inflammatory cytokines 94. They have been implicated in multiple 

myeloma in humans, and in one study of transgenic mice, overexpression was associated with 

autoimmunity and a predisposition to developing squamous cell carcinoma 95. In the data from 

The Cancer Genome Atlas, TRAF3 mutation was a distinguishing mutation of HPV positive 

tumors 80. No current therapies have been developed, but like HLA mutations, it remains as 

attractive area for investigation. 

HPV and PDL1 

Human papillomavirus (HPV), a known risk factor for HNSCC, has been linked to PD-1 

pathway activation in several settings. In a 2013 study, Yang et. al described a correlation 

between PD-1 on T cells, persistent high risk (HR)-HPV infection, and the development of 

cervical intraepithelial neoplasia (CIN) 96. A positive correlation between PDL1 expression and 

CIN grade was also observed in HR-HPV positive patients, suggesting that the PD-1:PDL1 

pathway may play a role in permitting HR-HPV-related CIN progression 96. 

With rates of HPV associated oropharyngeal cancers rapidly rising, it has become clear 

that the distinct pathogenesis of these cancers may warrant the development of alternate 

treatment protocols 97. HPV associated HNSCCs generally have favorable clinical outcomes 

independently predicted by HPV status 98, 99. The oropharyngeal tumors that result from HPV 

infection grow in the tonsillar crypts and near the base of tongue, which are also the most 

common sites of HPV infection. PDL1 expression is also found in deep tonsillar crypts in both 



 
 
 

 29 

normal and HNSCC patients 18. It is therefore plausible that a dampened effector T cell response 

within these crypts may yield an environment especially permissive to both initial HPV infection 

and SCC tumorigenesis. 

HPV positive HNSCCs are able to grow and evade anti-tumor immunity despite high 

levels of inflammation. In order to evaluate the relevance of PD-1:PDL1 pathway in the 

development of HPV associated HNSCC, Lyford-Pike et. al analyzed PD-1 expression on TILs 

and peripheral blood mononuclear cells (PBMCs) isolated from patients with HPV positive 

HNSCC versus those from patients with a nonmalignant tonsillar pathology (such as hypertrophy 

or tonsillitis), and identified a population of PD-1 expressing CD8+ TILs in HPV positive 

HNSCC tumors. Such a population was not observed in T-cells infiltrating nonmalignant 

inflamed tonsils. Furthermore, the PD-1 expressing CD8+ TILs exhibited diminished ability to 

produce IFN-γ in response to stimulation with PMA/ionomycin compared to TILs not expressing 

PD-1, indicating the functional suppression of affected T-lymphocytes. Lyford-Pike also showed 

PDL1 expression localized to the interface of the tumor and CD8+ TILs 18. This study implies 

that the PD-1:PDL1 pathway is likely important in both persistence of the initial HPV infection 

and suppression of anti-tumor immunity during tumorigenesis. Because high levels of 

membranous PDL1 expression were observed within tumors, HPV positive HNSCC patients are 

logical candidates for PD-1:PDL1-targeted therapy. Furthermore, a recent study in mice 

demonstrated improved anti-tumor activity in large HPV-induced tumors when immunization 

against HPV16 genes E6 and E7 was combined with an anti-PD-1 antibody 100. 

Taken together, these data support the idea that blocking PD-1:PDL1 interactions may be a 

potential therapeutic option for HPV-infected patients. Indeed, early reports from the 

CheckMate-141 trial indicate enhanced benefit from Nivolumab in HPV positive patients. 
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Additionally, in the context of cervical lesions, HPV-induced malignant progression correlates 

with low or undetectable T cell response to HPV antigens 101. Anti-tumor vaccines currently in 

clinical trials aim to stimulate an immune response against HPV specific antigens, such as viral 

oncoproteins E6 and E7, which function in malignant transformation to inactivate p53 and pRb, 

respectively 

(NCT02865135, NCT02864147, NCT02002182, NCT02596243, NCT02163057) 102, 103.  It is 

possible that future immunotherapeutic protocols for the management of HPV positive HNSCC 

may achieve maximal benefit by combining vaccines to promote generation of tumor-specific 

effector T cells with anti-PD-1/PDL1 mAbs to relieve immunosuppression. 

Predicting response to PD-1 blockade 

PDL1 expression was initially considered a logical potential biomarker predicting 

response to anti-PD-1 therapy, but the many factors complicating its detection have limited its 

current utility, and no correlation between PDL1 expression and response to immunotherapy has 

been observed 29. Thus, new methods for predicting potential responders are needed. 

Immunotherapy trials for other cancers may yield insight into potential biomarkers for response 

to PD-1 blockade in HNSCC. As in HNSCC, a main risk factor for non-small cell lung cancer 

(NSCLC) is smoking, which is associated with higher nonsynonymous mutation burden 104. 

Recently, Rizvi et al reported improved objective response, durable clinical benefit, and 

progression free survival in Pembrolizumab-treated NSCLC patients with more non-synonymous 

mutations and a molecular smoking signature 105. Not surprisingly, mutational load positively 

correlated with higher neoantigen levels, which were also associated with improved treatment 

efficacy. A similar trend of high mutational load was observed in bladder cancer patients 

responsive to PD-1 blockade 106. It therefore seems likely that the neoantigens produced by 
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highly mutated tumors could potentially improve the ability of T-cells to recognize tumor cells 

following release from PDL1-mediated immunosuppression. Smoking status has not yet been 

reported for HNSCC patients treated with anti- PD-1 mAbs, and further investigation will be 

necessary to determine whether the correlations observed in NSCLC are recapitulated in the 

HNSCC setting. 

In advanced melanoma patients who responded to pembrolizumab, tumors had less 

diverse T cell populations at baseline, but the number of expanded clones after treatment was 10 

fold higher than in patients with disease progression 107. These data suggest that a pre-existing T-

cell repertoire poised to target tumor cells but negatively regulated by PD-1: PDL1 may predict 

response to PD-1 blockade. Again, this mechanism has yet to be investigated in HNSCC 

patients. 

Limitations 

Given the recent approval of anti-PD-1 therapy in the treatment of recurrent HNSCC, 

immunotherapy represents an exciting new avenue in the management of a disease with a limited 

armamentarium of systemic treatment options. It is also important, however, to consider the 

current limitations of immune checkpoint blockade. Improvements to OS, ORR, and PFS have 

been reported in patients treated with nivolumab and pembrolizumab, but many patients do not 

respond to immunotherapy, and no criteria currently exist to aid in selection of patients likely 

benefit from PD-1 blockade. Additionally, many patients, such as those with preexisting 

autoimmune disease, are not considered candidates for immunotherapy due to concern for 

unacceptable toxicity. 

If and when immunotherapy is extended beyond the metastatic/recurrent setting, 

important new considerations will arise. Anti-PD-1 is currently administered in the context of 
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HNSCC recurrence to patients who have already received XRT, which may sensitize tumors to 

immune attack. In murine models, XRT increases type I IFN levels in tumors, thereby promoting 

T-cell effector function. XRT also induced IFN- dependent up-regulation of the CXCR3 

chemokine, which enhanced the recruitment of T cells to tumors 108. It is also speculated that the 

high mutational load in XRT treated tumors leads to higher neoantigen levels, and therefore 

improved detection by T cells. If these mechanisms are found to be at play, the utility of PD-1 

blockade as a frontline monotherapy may be limited. However, further investigation of a role for 

RT in sensitizing cancers to anti-tumor immunity may provide rationale for protocols combining 

XRT with immune checkpoint blockade. Several studies in mice, as well as anecdotal evidence 

in humans, support the hypothesis that XRT and immunotherapy may synergize to promote 

tumor clearance by the immune system. Concurrent immune checkpoint therapy and XRT 

induced anti-tumor T-cell responses in mice, even outside the radiation field 109. Instances of 

abscopal effects of XRT have been observed in melanoma patients also treated with immune 

checkpoint inhibitors 110, 111. 

Conclusions 

The exploitation of anti-tumor immunity in the treatment of cancer is a promising and 

rapidly expanding field, but more research is needed to understand mechanisms mediating 

response to immunotherapy and expand the population of patients who will benefit from this 

strategy. While anti-PD-1/PDL1 therapy has improved outcomes in comparison to the standard 

of care for a subset of patients with HNSCC, the proportion of responding patients, as well as the 

degree of benefit, remains modest. The future of anti-PD-1/PDL1 therapy in the treatment of 

HNSCC relies upon a better understanding of the dysregulated pathways in HNSCC that may 

alter its efficacy. With a vast and growing array of targeted therapies in development for the 
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treatment of cancer, countless opportunities for modulation of PDL1 can be envisioned. Trials 

capitalizing on mechanistic discoveries by combining anti-PD-1 therapy with other precision-

medicine approaches may maximize the results seen with immunotherapy. 
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Figures 

 

Figure 1-1 Potential for PDL1 modulation in HNSCC. 

Members of the EGFR, STAT, PI3K, p53, and HIF-1α signaling pathways, all of which may be 
de-regulated in HNSCC, are shown. EGFR is aberrantly activated in HNSCC and may promote 
PDL1 transcription via JAK/STAT or MEK/ERK signaling. IFN-γ induces PDL1 transcription in 
HSCC via JAK/STAT signaling, and may also activate the PI3K signaling pathway, which 
regulates PDL1 transcription in other cancers. HIF-1α binds directly to the PDL1 promoter and 
correlates with high PDL1 expression. p53 loss of function is common in HNSCC, and wild type 
p53 blocks PDL1 translation via transcription of miR-34. Also shown are targeted small 
molecule inhibitors and biologics currently being evaluated in active clinical trials open to 
HNSCC patients. Red text indicates inhibitors for which efficacy in combination with PD-
1/PDL1 blockade is being evaluated. Table (lower right) is based upon data generated by the 
TCGA Research Network (http://cancergenome.nih.gov). The middle column denotes the 
percentage of 504 cases with alternations (mutations or copy number variations) in the indicated 
gene. Within this dataset, 35 of 106 cases in which p16 was assessed were designated HPV 
positive. The rightmost column denotes the percentage of HPV positive cases with alterations in 
the indicated gene. 
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Tables 

Table 1-1. Clinical trials, immunotherapy combinations. 

 List of current trials evaluating the use of targeted therapies towards the PD-1/PDL1 pathway in 
combination with other immunotherapy treatments in HNSCC. 

 

 

 

Trial  Phase Therapy Description Target Condition 

NCT02655822  Phase 
I/Ib 

CPI-444 + 
Atezolizumab 

Evaluate the safety and 
preliminary efficacy of CPI-
444 (small molecule 
immune checkpoint 
inhibitor of adenosine A2A 
receptor) in combination 
with Atezolizumab 

PDL1 
Adenosine 
A2A 
receptor 

Advanced 
malignancies 
(including 
HNSCC) 

NCT02543645  Phase 
I/II 

Atezolizumab + 
Varlilumab 

Evaluate safety and 
preliminary efficacy of 
Atezolizumab + Varlilumab 
(anti-CD27 mAb) 

PDL1 
CD27 

Advanced 
malignancies 
(including 
HNSCC) 

NCT02554812  Phase 
1b/2 

Avelumab + 
PF-05082566 or 
PF-04518600 

Evaluate safety, 
pharmacokinetics, and 
pharmacodynamics of 
Avelumab + PF-05082566 
(stimulatory mAb towards 
CD137) versus Avelumab + 
PF-04518600 (stimulatory 
mAb towards CD134) 

PDL1 
CD-137 
CD-134 

Advanced 
solid 
malignancies 
(including 
HNSCC) 

NCT02301130  Phase 
I 

MEDI4736 + 
Mogamulizuma
b versus 
Mogamulizuma
b + 
Tremelimumab 

Evaluate the safety and 
preliminary efficacy of 
MEDI4736 + 
Mogamulizumab (C-C 
chemokine receptor 4 
(CCR4) inhibitor) versus 
Mogamulizumab + 

PDL1 
C-C 
chemokine 
receptor 4 
(CCR4) 

Advanced 
solid tumors 
(including 
HNSCC) 
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Tremelimumab (CTLA-4 
inhibitor) 

CTLA-4 
receptor 

NCT02658214  Phase 
I 

MEDI4736 + 
Tremelimumab 
+ Paclitaxel + 
Carboplatin 

Evaluate the safety, 
tolerability, and preliminary 
efficacy of MEDI4736 + 
Tremelimumab (CTLA-4 
inhibitor) + Paclitaxel + 
Carboplatin 

PDL1 
CTLA-4 
receptor 

Chemotherapy 
naïve locally 
advanced 
unresectable or 
metastatic 
HNSCC and 
other solid 
tumors 

NCT02262741  Phase 
I 

MEDI4736 + 
Tremelimumab 

Evaluate the safety, 
tolerability, and efficacy of 
MEDI4736 + 
Tremelimumab (CTLA-4 
inhibitor) 

PDL1 
CTLA-4 
receptor 

Recurrent or 
metastatic 
HNSCC 

NCT02291055  Phase 
I/II 

MEDI4736 +/- 
ADXS11-001 

Evaluate safety and 
tolerability of MEDI4736 
+/- ADXS11-001 (Listeria 
monocytogenes cancer 
vaccine) 

PDL1 
Cancer 
vaccine 
against 
HPV-16 E7 

Recurrent or 
metastatic 
HNSCC 

NCT02643303  Phase 
I/II 

MEDI4736 + 
Tremelimumab 
+ PolyICLC 

Evaluate the safety and 
efficacy of MEDI4736 + 
Tremelimumab (CTLA-4 
inhibitor) + PolyICLC 
(Toll-like receptor agonist) 

PDL1 
CTLA-4 
receptor 
Toll-like 
receptor 

Advanced 
biopsy 
accessible 
tumors 
(including 
HNSCC) 

NCT02319044  Phase 
II 

MEDI4736 
versus 
Tremelimumab 
versus 
MEDI4736 + 
Tremelimumab 

Evaluate safety and 
preliminary efficacy of 
MEDI4736 versus 
Tremelimumab (CTLA-4 
inhibitor) versus MEDI4736 
+ Tremelimumab 

PDL1 
CTLA-4 
receptor 

Recurrent or 
metastatic 
HNSCC 

NCT02551159  Phase 
III 

MEDI4736 + 
Tremelimumab 

Evaluate safety and efficacy 
of MEDI4736 with and 
without Tremelimumab 
(CTLA-4 inhibitor) versus 
standard of care 

PDL1 
CTLA-4 
receptor 

Recurrent or 
metastatic 
HNSCC 
without prior 
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systemic 
chemotherapy 

NCT02369874  Phase 
III 

MEDI4736 + 
Tremelimumab 

Evaluate safety and efficacy 
of MEDI4736 + 
Tremelimumab (CTLA-4 
inhibitor) versus MEDI4736 
alone versus standard of 
care 

PDL1 
CTLA-4 
receptor 

Previously 
treated 
recurrent or 
metastatic 
HNSCC 

NCT02124850  Phase 
Ib 

Nivolumab + 
Cetuximab + 
Motolimod 

Evaluate change in immune 
biomarkers and tumor 
markers after treatment with 
Cetuximab + Motolimod 
(small molecule agonist of 
toll-like receptor 8) versus 
Nivolumab + Cetuximab + 
Motolimod 

PD-1 
EGF 
receptor 
Toll-like 
receptor 8 

Stage II, III, or 
IVa HNSCC 

NCT02488759  Phase 
I/II 

Nivolumab +/- 
Ipilimumab 

Evaluate safety and 
preliminary efficacy of 
Nivolumab +/- Ipilimumab 

PD-1 
CTLA-4 
receptor 

Virus 
associated 
malignancy 
(including 
HPV+ 
HNSCC) 

NCT02335918  Phase 
I/II 

Nivolumab + 
Varlilumab 

Evaluate safety, tolerability, 
and preliminary efficacy of 
Nivolumab + Varlilumab 
(anti-CD27 mAb) 

PD-1 
CD27 

Refractory 
solid tumors 
(including 
HNSCC) 

NCT02741570  Phase 
III 

Nivolumab + 
Ipilimumab 

Evaluate safety and efficacy 
of Nivolumab + Ipilimumab 
versus Cetuximab + 
Cisplatin/Carboplatin + 
Fluorouracil 

PD-1 
CTLA-4 
receptor 
EGF 
receptor 

Recurrent or 
metastatic 
HNSCC, 
without prior 
treatment with 
systemic 
cancer therapy 

NCT02636036  Phase 
I 

Pembrolizumab 
+ 
Enadenotucirev 

Evaluate safety of 
Pembrolizumab + 
Enadenotucirev (oncolytic 
virus) 

PD-1 
Targeted 
viral therapy 

Metastatic or 
advanced solid 
tumors 
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(including 
HNSCC) 

NCT02475213  Phase 
I 

Pembrolizumab 
+ 
Enoblituzumab 

Evaluate safety of 
Pembrolizumab + 
Enoblituzumab (mAB 
towards B7-H3) 

PD-1 
B7-H3 

Refractory 
malignancies 
including 
recurrent or 
metastatic 
HNSCC that 
expresses B7-
H3 

NCT02626000  Phase 
I 

Pembrolizumab 
+ Talimogene 
laherparepvec 

Evaluate the safety and 
preliminary efficacy of 
pembrolizumab + 
Talimogene laherparepvec 
(oncolytic virus) 

PD-1 
Targeted 
viral therapy 

Recurrent or 
metastatic 
HNSCC 

 
 

Table 1-2. Clinical trials, PD1/PDL1 inhibitors plus small molecule inhibitors.   

List of current trials evaluating the use of targeted therapies towards the PD-1/PDL1 pathway in 
combination with small molecule inhibitor treatments in HNSCC. 

Trial Phase Therapy Description Target Condition 

NCT02471846 Phase 
Ib 

Atezolizumab 
+ GDC-0919 

Evaluate safety, tolerability, 
pharmokinetics, and preliminary 
efficacy of Atezolizumab + GDC-
0919 (indoleamine 2,3-
dioxygenase (IDO) pathway 
inhibitor) 

PDL1 
Indoleamine 2,3-
dioxygenase 
pathway 

Locally 
advanced 
or 
metastatic 
solid 
tumors 
(including 
HNSCC) 

NCT02264678 Phase 
I 

MEDI4736 + 
AZD6738 vs. 
AZD6738 + 
Carboplatin vs. 

Evaluate the safety, tolerability, 
pharmacokinetics, and preliminary 
anti-tumor activity of MEDI4736 
+ AZD6738 (ATR kinase 
inhibitor) vs. AZD6738 + 
Carboplatin vs. AZD6738 + 

PDL1 
ATR kinase 
Nuclear enzyme 
poly(ADP-
ribose) 

Advanced 
solid 
malignanc
ies 
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AZD6738 + 
Olaparib 

Olaparib (nuclear enzyme 
poly(ADP-ribose) polymerase 
(PARP) inhibitor) 

polymerase 
(PARP) 

(including 
HNSCC) 

NCT02586987 Phase 
I 

MEDI4736 + 
Selumetinib 

Evaluate the safety, tolerability, 
pharmacokinetics, and preliminary 
efficacy of MEDI4736 + 
Selumetinib (mitogen-activated 
protein kinase (MEK or 
MAPK/ERK kinase) 1 and 2 
inhibitor) 

PDL1 
MAP/ERK 
kinase 

Advanced 
solid 
tumors 
(including 
HNSCC) 

NCT02499328 Phase 
1b/2 

MEDI4736 + 
AZD5069 or 
AZD9150 

Evaluate safety, tolerability, and 
preliminary efficacy of AZD5069 
(CXC2 inhibitor) versus 
AZD9150 (STAT3 inhibitor) 
alone and in combination with 
MEDI4736 (PD-L1 inhibitor) 

PDL1 
CXC2 
STAT3 

Recurrent 
or 
metastatic 
HNSCC 

NCT02318277 Phase 
I/II 

MEDI4736 + 
Epacadostat 

Evaluate the safety, tolerability, 
pharmacokinetics, and preliminary 
efficacy of MEDI4736 + 
Epacadostat (indoleamine 2,3-
dioxygenase (IDO1) inhibitor) 

PDL1 
Indoleamine 2,3-
dioxygenase 

Advanced 
solid 
tumors 
(including 
HNSCC) 

NCT02526017 Phase 
I 

Nivolumab + 
FPA-008 

Evaluate safety and preliminary 
efficacy of Nivolumab + FPA-008 
(colony stimulating factor-1 
receptor (CSF1R) inhibitor) 

PD-1 
Colony 
stimulating 
factor-1 receptor 

Advanced 
solid 
tumors 
(including 
HNSCC) 

NCT02124850 Phase 
Ib 

Nivolumab + 
Cetuximab + 
Motolimod 

Evaluate change in immune 
biomarkers and tumor markers 
after treatment with Cetuximab + 
Motolimod (small molecule 
agonist of toll-like receptor 8) 
versus Nivolumab + Cetuximab + 
Motolimod 

PD-1 
EGF receptor 
Toll-like 
receptor 8 

Stage II, 
III, or IVa 
HNSCC 

NCT02834247 Phase 
Ib 

Nivolumab + 
TAK-659 

Evaluate maximum tolerated dose, 
safety, and preliminary efficacy of 
Nivolumab + TAK-659 (Spleen 
tyrosine kinase (SYK) inhibitor) 

PD-1 
Spleen tyrosine 
kinase 

Advanced 
solid 
tumors 
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(including 
HNSCC) 

NCT02327078 Phase 
I/II 

Nivolumab + 
Epacadostat 

Evaluate safety tolerability, and 
preliminary efficacy of 
Nivolumab + Epacadostat 
(indoleamine 2,3-dioxygenase 
(IDO1) inhibitor) 

PD-1 
Indoleamine 2,3 
dioxygenase 

Advanced 
malignanc
ies 
(including 
HNSCC) 

NCT02646748 Phase 
I 

Pembrolizumab 
+ INCB039110 
versus 
Pembrolizumab 
+ INCB050465 

Evaluate the safety, tolerability, 
and preliminary efficacy of 
pembrolizumab + INCB039110 
(Jak inhibitor specific for Jak1) 
versus INCB050465 (PI3K-delta 
inhibitor) 

PD-1 
JAK1 
PI3K-delta 

Advanced 
solid 
tumors 
(including 
HNSCC) 

NCT02452424 Phase 
1/2a 

Pembrolizumab 
+ PLX3397 

Evaluate safety and preliminary 
efficacy of combined therapy of 
Pembrolizumab and PLX3397 
(colony-stimulating factor-1 
receptor (CSF1R) inhibitor) 

PD-1 Melanoma 
Solid 
tumors 
(including 
HNSCC) 

NCT02501096 Phase 
1b/2 

Pembrolizumab 
+ Lenvatinib 

Evaluate safety and preliminary 
efficacy of Pembrolizumab + 
Lenvatinib (tyrosine kinase 
inhibitor) 

PD-1 
Tyrosine kinase 

Solid 
malignanc
ies 
(including 
HNSCC) 

NCT02178722 Phase 
I/II 

Pembrolizumab 
+ INCB024360 

Evaluate safety, toxicity, and 
preliminary efficacy of 
Pembrolizumab + Epacadostat 
(indoleamine 2,3-dioxygenase 
(IDO1) inhibitor) 

PD-1 
Indoleamine 2,3-
dioxygenase 

Selected 
cancers 
including 
HNSCC 

NCT02538510 Phase 
I/II 

Pembrolizumab 
+ Vorinostat 

Evaluate safety and preliminary 
efficacy of Pembrolizumab + 
Vorinostat (Histone Deacetylase 
Inhibitor) 

PD-1 
Histone 
deacetylase 

Recurrent 
or 
Metastatic 
HNSCC 
or salivary 
gland 
carcinoma 
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NCT02454179 Phase 
II 

Pembrolizumab 
+ ACP-196 

Evaluate efficacy of 
Pembrolizumab + ACP-196 
(Acalabrutinib, Bruton's tyrosine 
kinase inhibitor) 

PD-1 
Tyrosine kinase 

Recurrent, 
metastatic, 
or 
unresectab
le HNSCC 
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Chapter 2 Features of larynx squamous cell carcinomas  

 

Chapter Summary In this chapter we present a retrospective analysis of CD103+, 

CD4+, and CD8+ tumor infiltrating lymphocytes (TILs) in recurrent laryngeal squamous 

cell carcinoma tumor specimens by tissue microarray.  We demonstrate an association 

between specific TIL populations and improved outcomes in this cohort.  To improve 

future modeling of this disease subtype, we also profiled a panel of LSCC cell lines 

derived at the University of Michigan (UM-SCC-) that will serve as a resource for 

contextualizing preclinical studies in terms of the heterogeneous characteristics of 

LSCCs.    

2.1 Analysis of tumor-infiltrating CD103 resident memory T-cell content in 

recurrent laryngeal squamous cell carcinoma.2 

Abstract 

Background: Recurrent laryngeal squamous cell carcinomas (LSCCs) are associated with poor 

outcomes, without reliable biomarkers to identify patients who may benefit from adjuvant 

therapies. Given the emergence of tumor-infiltrating lymphocytes (TIL) as a biomarker in head 

 
2 This section was published in Cancer Immunology, Immunotherapy in collaboration with the following authors: 
Joshua Smith, Andrew Birkeland, Emily Bellile, Paul Swicicki, Michelle Mierzwa, Steven Chinn, Andrew Shuman, 
Kelly Malloy, Keith Casper, Scott McLean, Jeffrey Moyer, Gregory Wolf, Carol Bradford, Mark Prince, Thomas 
Carey, Jonathan McHugh, Matthew Spector, and Chad Brenner.   
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and neck squamous cell carcinoma, we generated predictive models to understand the utility of 

CD4+, CD8+ and/or CD103+ TIL status in patients with advanced LSCC. 

Methods: Tissue microarrays were constructed from salvage laryngectomy specimens of 183 

patients with recurrent/persistent LSCC and independently stained for CD4+, CD8+, and 

CD103+ TIL content. Cox proportional hazards regression analysis was employed to assess 

combinations of CD4+, CD8+, and CD103+ TIL levels for prediction of overall survival (OS), 

disease-specific survival (DSS), and disease-free survival (DFS) in patients with 

recurrent/persistent LSCC. 

Results: High tumor CD103+ TIL content was associated with significantly improved OS, DSS, 

and DFS and was a stronger predictor of survival in recurrent/persistent LSCC than either high 

CD8+ or CD4+ TIL content. On multivariate analysis, an “immune-rich” phenotype, in which 

tumors were enriched for both CD103+ and CD4+ TILs, conferred a survival benefit (OS hazard 

ratio: 0.28, p = 0.0014; DSS hazard ratio: 0.09, p = 0.0015; DFS hazard ratio: 0.18, p = 0.0018) in 

recurrent/persistent LSCC. 

Conclusions: An immune profile driven by CD103+ TIL content, alone and in combination with 

CD4+ TIL content, is a prognostic biomarker of survival in patients with recurrent/persistent 

LSCC. Predictive models described herein may thus prove valuable in prognostic stratification 

and lead to personalized treatment paradigms for this patient population. 

Introduction 

Advanced stage laryngeal squamous cell carcinoma (LSCC) remains a clinical challenge, 

with recurrence rates of up to 50% after primary radiation (RT) or chemoradiation (CRT) [1]. 

For patients with recurrent disease after RT/CRT, salvage surgery is often the only established 

curative option [2, 3]. However, operative morbidity is significant and survival rates after 
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salvage laryngectomy are poor [4, 5]. The significant proportion of patients who develop 

recurrence after RT/CRT and the poor prognosis for patients with recurrent LSCC provide the 

rationale for new biomarker studies to improve prognostication and treatment selection in this 

vulnerable cohort. Although a variety of biomarkers ranging from genetic alterations [6], to 

protein expression [7], to tumor-infiltrating cells [8, 9, 10, 11, 12, 13] have been evaluated in this 

population, no prognostic model has demonstrated sufficient sensitivity and specificity to 

warrant further evaluation in prospective cohorts or to dictate clinical decisions. 

Despite the dearth of prognostic data within this population, the role of the adaptive 

immune system in tumor surveillance has emerged as an area of increasing interest for 

development of predictive assays of oncologic outcomes in patients with LSCC [14]. Certain 

immunologic signatures, including number of CD4+ and CD8+ tumor-infiltrating lymphocytes 

(TILs), portend improved survival and response to therapy in head and neck cancer [8, 9]. For 

example, we have recently shown that a higher proportion of CD4+ and CD8+ TILs correlates 

with improved disease-specific and disease-free survival (DFS) in patients with 

recurrent/persistent LSCC [9]. Subsequently, in order to further enhance the sensitivity and 

specificity of our model, we questioned whether prognostication in this cohort could be 

improved by considering immunologic biomarkers of cytotoxic TIL activity and tumor-cell kill, 

in addition to TIL number itself. 

CD103, or αEβ7 integrin, localizes antigen-specific cytotoxic T lymphocytes to epithelial 

tissues and is an indicator of enhanced cytotoxicity and proliferative ability of these cells [14]. In 

recent studies of non-small cell lung cancer [15] and serous ovarian cancer [16, 17], the survival 

benefit conferred by CD8+ TILs was shown to be dependent upon co-expression of CD103. 

Thus, we sought to address whether CD103 expression may better define the most beneficial 
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subsets of TILs with important prognostic and immunotherapeutic implications in patients with 

recurrent/persistent LSCC. 

Herein, we evaluated the potential of CD103+ TIL density to act as a robust predictor of 

improved survival in patients with recurrent/persistent LSCC. Further, we hypothesize that there 

are patients with distinct immunologic phenotypes of “immune-rich” and “immune-poor” tumors 

that predict survival in recurrent/persistent LSCC. 

Materials and methods 

Patient population 

We performed a single-institution, retrospective analysis of patients with 

recurrent/persistent LSCC using a clinical epidemiology and tissue database. Inclusion criteria 

stipulated: (1) adults with biopsy-proven LSCC; (2) recurrent/persistent disease at the primary 

site after RT or CRT; (3) laryngectomy for surgical salvage; between 1997 and 2014 and (4) 

tumor tissue available for creation of tissue microarray, as previously described [9]. In total, 183 

patients met inclusion criteria, and demographics and clinical characteristics are shown in 

Table 2.1. Patients were staged in accordance with the 7th edition American Joint Committee on 

Cancer (AJCC) Staging System [18]. 

Immunohistology 

Formalin-fixed paraffin-embedded (FFPE) tissue blocks from salvage surgery and 

representative hematoxylin and eosin-stained slides were assessed for ≥ 70% tumor cellularity by 

a head and neck pathologist (Jonathan B. McHugh). A tissue microarray (TMA) was 

subsequently constructed with triplicate 0.7-mm-diameter cores from each patient [19]. 

TMAs were stained for CD4+, CD8+, and CD103+ TILs on arrays constructed as previously 

described [9]. Briefly, 5-micron tissue sections were incubated overnight in a 65 °C oven, then 
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deparaffinized and rehydrated with stepwise xylene, graded alcohols, and buffer immersion. 

Heat-induced epitope retrieval was then performed, followed by incubation of the slides in a 

preheated pressure cooker with citrate buffer (pH 6) or Tris–EDTA buffer (Ph 9) and horse 

serum. Immunohistochemical staining was done with a DAKO autostainer using liquid 

streptavidin-biotinylated horseradish peroxidase complex and DBA (DAKO labeled avidin-

biotin-peroxidase kits, Thermo Fisher Scientific) as chromogens, as previously described [9]. 

Deparaffinized sections were stained with monoclonal antibodies at the following titrations: 

CD103-1:500 (Abcam Ab129202); CD4-1:250 (Abcam Ab846); CD8-1:40 (Novocastra VP-

C320). TMA slides were digitally imaged, scanned, and retrieved with Aperio ImageScope v.12 

software (Leica Biosystems). 

TIL scoring and statistical analysis 

Cores consisting of < 50% tumor parenchyma, partial cores, and those with significant 

tumor necrosis were excluded from the analysis. The positively stained cells in each included 

core were manually counted at 200× magnification (20× objective lens) by two independent 

blinded reviewers (Jacqueline E. Mann and Joshua D. Smith). Inter-rater reliability was 

determined by calculation of the intraclass correlation coefficient (ICC) using R. Only 

intratumoral TILs were quantified, consistent with the biological function of the CD103 antigen 

and previous studies demonstrating reliability and reproducibility of this measurement parameter 

[14, 16, 17]. Mean TIL counts per core of triplicate samples for each patient were calculated, 

averaged between the two reviewers, and used in subsequent statistical analysis. 

CD4+, CD8+, and CD103+ TIL counts were first input as continuous variables into 

univariate and multivariate models to document that each marker was a significant predictor of 

OS, DSS, and DFS. Next, optimal cutpoints for each TIL marker were determined from the data 
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to maximize survival differences based on Cox proportional hazards regression of DSS using the 

survMisc v0.5.4 package in R [20]. Subsequently, combinations of the markers CD4, CD8 and 

CD103 were explored with multivariable Cox model and ROC analysis. 

Deaths were confirmed through the electronic medical record and the Social Security 

Death Index. Primary outcome measures were overall survival (OS; time from salvage 

laryngectomy to death from any cause), disease-specific survival (DSS; time from salvage 

laryngectomy to death from any disease recurrence/persistence), and disease-free survival (DFS; 

time from salvage laryngectomy to any disease recurrence/persistence). 

Results 

CD103 staining patterns and TIL cutpoints 

For our entire cohort, the mean (range) CD103+ TIL count per tumor was 32.1 (0–298) 

and the median count was 16 (Figure 2.1). Inter-rater reliability for TIL counts between the two 

blinded reviewers was excellent (ICC: 0.919, 95% CI 0.906–0.930). As continuous variables, 

CD4+, CD8+, and CD103+ TIL counts were each predictive of OS, DSS, and DFS (data not 

shown). 

We then determined the optimal cutpoint for CD103+ TIL counts to allow for 

stratification of recurrent/persistent LSCC into CD103+ low (< 11 TILs) and CD103+ high 

groups (≥ 11 TILs) optimized for DSS [20]. Of our entire cohort (n = 183), ten (5.5%) tumors 

were excluded due to partial or absent tumor cores, yielding 69 (40%) CD103+ low tumors and 

104 (60%) CD103+ high tumors. In a similar fashion, we determined optimal cutpoints for 

CD4+ and CD8+ TIL counts to stratify low and high groups with respect to these T-cell markers. 

CD4+ high tumors were defined as having greater than or equal to 3 TILs, yielding 36 (26%) 

CD4+ high and 101 (74%) CD4+ low tumors in our cohort after excluding 46 due to partial or 
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absent tumor cores. Finally, the CD8+ cutpoint was determined to be greater than or equal to 12 

TILs, yielding 63 (41%) CD8+ high and 92 (59%) CD8+ low tumors in our cohort after 

excluding 28 due to partial or absent tumor cores. Each of the three dichotomized T-cell markers 

alone was correlated strongly with DSS (Figure 2.2). We had previously noted this for CD4+ 

and CD8+ TILs [9], but identified a new stronger association with CD103 status and DSS 

(p < 0.0001). Importantly, we noted significant correlation between CD8+ and CD103+ TIL 

content, confirming a unique population of cytotoxic T-cells that co-express these markers in 

recurrent/persistent LSCC (Pearson rho = 0.62, p < 0.0001). There was no similar overlap 

between CD4 and CD103 expression (Figure 2.3). 

 

Univariate analysis of CD103+ TILs on survival 

We next performed univariate analysis to assess the prognostic value of CD103+ TILs 

with respect to all three survival outcomes in patients with recurrent/persistent LSCC. Cox 

proportional hazards models found that patients with CD103+ high TILs had a better OS 

(p = 0.003), DSS (p < 0.0001), and DFS (p = 0.001) in comparison to patients with CD103+ low 

TILs (Figure 2.4). In comparing CD103 with CD8 on prognostication of survival, CD103 

status more strongly predicted survival. Thus, we continued forward with CD103 in 

multivariate analysis. 

 

Multivariate analysis of CD103 and other predictors of survival 

Next, we performed multivariate analysis in order to account for additional variables that 

have a prognostic survival value. We included variables previously validated in our cohort to be 

predictive of survival, namely CD4+ TILs, ACE-27 comorbidity status and node positivity [5, 9]. 
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We found an interrelated effect between CD103+ and CD4+ TIL content, such that these 

variables combined were more predictive of survival parameters than either CD103+ or CD4+ 

TILs alone. Using the TIL cutpoint modeling described above, tumors were stratified into three 

groups: CD103+/4+ low (neither CD103+ or CD4+ high), CD103+/4+ mixed (either CD103+ or 

CD4+ high), and CD103+/4+ high staining (both CD103+ and CD4+ high). In univariate and 

multivariate modeling, high and mixed CD103+/4+ status were strong predictors of improved 

OS, DSS, and DFS in a dose-dependent fashion (Figure 2.5; Table 2.2). These models with 

combined CD103+/4+ status had good predictive value with c-indices of 0.75, 0.71, and 0.76, 

respectively, for DSS, OS, and DFS. 

Discussion 

An immunologic statistical profile informed by CD103+ TIL content appears to be a 

valuable predictive marker for survival in recurrent LSCC after RT/CRT. This adds to our 

previous findings that an immune-rich tumor-infiltrating phenotype carries a better prognosis in 

head and neck cancers [8, 9]. Greater TIL content in tumor specimens, whether CD103+, CD4+ 

or CD8+, portends a better prognosis. CD103+ TILs, in particular, were highly correlated with a 

favorable prognosis in our cohort. Moreover, combined high CD103+ and CD4+ TIL status had 

the best prognosis, suggesting an interrelated role of unique adaptive immune cells in controlling 

tumor progression and metastasis. Conversely, patients with “immune depleted” tumors 

relatively devoid of CD103+ and CD4+ TILs had significantly worse observed outcomes. These 

findings support previous studies in suggesting that “immune depleted” tumor status may be a 

key prognostic factor in many malignancies [21, 22, 23]. 

In our cohort, CD103+ and CD8+ TIL content overlapped significantly, supporting the 

presence of a distinct subtype of activated, epithelial-localized, cytotoxic T-cells capable of 
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malignant cell kill and tumor control. While a similar, albeit moderate, overlap of CD103 and 

CD8 expression was recently reported in TILs of non-small cell lung cancers [15], ours is the 

first study to confirm specialized TIL expression patterns in squamous cell carcinomas of the 

head and neck with translational implications. Further investigations into TIL expression patterns 

of CD4, CD8 and CD103 across a variety of head and neck cancers, both primary and recurrent, 

may lead to the discovery and functional characterization of further T-cell subpopulations vital to 

the adaptive immune response to malignancy. 

Given our findings, it is quite likely that CD103+ TIL content may also prove to be a 

clinically useful biomarker for predicting response to induction chemotherapy, successful larynx 

preservation, and survival in primary laryngeal cancers treated with organ preservation protocols. 

To this aim, we are currently analyzing CD103+, CD8+ and CD4+ TIL content in our extensive 

repository of primary LSCC specimens treated with organ preservation protocols and hope to 

publish these data soon. 

Of note, the pathogenesis of LSCC is not associated with human papillomavirus (HPV), 

and this is reflected in our LSCC cohort [5, 24]. Other HNSCC subsites, specifically 

oropharyngeal tumors, are more commonly associated with HPV, and these cancers are marked 

by a distinct immune phenotype with high levels of CD8+ T-cell infiltration and activation [25, 

26]. HPV infection represents a favorable prognostic factor in HNSCC and it has been postulated 

that the associated immune response may play a role in this relationship. Thus, it is of great 

interest that an immune-rich tumor microenvironment was still associated with an improved 

prognosis in this cancer traditionally not associated with HPV and immune activation. Further 

studies investigating HPV + oropharyngeal cancers in the primary and salvage setting will be 
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important in determining the importance of CD103 status and other immune markers in disease 

prognosis for these head and neck cancer subsites. 

While “immune depleted” tumors carry a worse prognosis, it remains to be seen whether 

they may respond differently to immunotherapeutics. Given that the anti-PD-1 antibodies 

pembrolizumab and nivolumab are dependent on T-cell activity, there is theoretical concern that 

these “immune depleted” tumors may also be more resistant to immunotherapies, given their 

relative depletion of TILs [27, 28]. Nevertheless, there remains significant room for further 

characterization of TIL status and “immune depletion” status in head and neck cancers, both in 

vitro and in the clinic. This will be crucial to validate our initial findings and to generate 

algorithms with which to prognosticate patients and potentially stratify treatments. 

The importance of immune signatures in cancer prognosis and the related response of 

immunotherapy in cancer treatment is becoming increasingly apparent. Thus, further elucidation 

of prognostic biomarkers will be a watershed in predicting patient outcomes, and potentially 

selecting patients who may benefit from adjuvant immunotherapy. Accordingly, as future genetic 

studies are completed, it is possible that molecular variables ranging from the status of genomic 

alterations to gene expression may further improve these immune signature-driven predictive 

models. The present study describes for the first time the value of the TIL marker CD103 in 

survival prognostication in head and neck cancer (specifically recurrent LSCC). Our findings 

suggest that CD103 status may be the most significant immune biomarker for disease 

prognostication and thus warrants further investigation in prospective studies and in 

consideration of treatment stratification paradigms. 
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Figures 

 

 

 

 
Figure 2-1. CD103 staining patterns and TIL counts. 

Representative stains from CD103+ high (a) and low (b) TIL tumor specimens from our TMA 
(magnification ×20). A box and whisker plot of TIL counts was constructed (c) with mean 
CD103+ TIL count of 32.1 and median count of 16 
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Figure 2-2. Disease specific survival correlation with TIL count.   

We analyzed DSS stratified by CD103+, CD4+, and CD8+ TIL status.  On univariate analysis, 
high expression of CD103+ (a), CD4+ (b), and CD8+ (c) TILs correlated with improved DSS. 
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Figure 2-3. Analysis of co-expression of TIL markers in tumors.  

Comparing CD103+, CD4+, and CD8+ TIL counts for each tumor specimen, we identified a 
strong overlap between CD103+ and CD8+ TIL expression status (Pearson 
rho = 0.62, p < 0.0001). There was no correlation between CD4+ expression status and 
CD103+/CD8+ TIL expression status. 
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Figure 2-4. Association of CD103 status with survival.  

On univariate analysis, CD103+ high TIL status was strongly predictive of improved OS 
(p = 0.003), DSS (p < 0.0001), and DFS (p = 0.001) 

 

Figure 2-5. CD103/4 status association with survival.  

CD103 and CD4 status stratified into high (both CD103+ and CD4+ high TIL status), mixed 
(either CD103+ or CD4+ high TIL status), or low (both CD103+ and CD4+ low TIL status) 
demonstrated significant association with OS, DSS, and DFS, with high the best prognosis, 
mixed with moderate prognosis, and low with poor prognosis 
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Tables 

(N = 183) 

GENDER  

 MALE 153 (83.6) 

 FEMALE 30 (16.4) 

ETHNICITY  

 WHITE 161 (88.0) 

 BLACK/OTHER/UNKNOWN 22 (12.0) 

MEAN AGE AT INITIAL TUMOR 
(YEARS) 

58.63 

INITIAL CLINICAL STAGE  

 I 46 (25.1) 

 II 54 (29.5) 

 III 44 (24.0) 

 IV 25 (13.7) 

 UNKNOWN 14 (7.7) 

INITIAL TREATMENT  

 RT 112 (61.2) 

 CRT 71 (38.8) 

MEAN AGE AT RECURRENCE 
(YEARS) 

60.87 

TIME TO RECURRENCE 
(MONTHS) 

23.48 

RECURRENT PATHOLOGIC 
STAGE 

 

 I 6 (3.3) 

 II 53 (29.0) 

 III 48 (26.2) 

 IV 76 (41.5) 

Table 2-1. Characteristics of recurrent/persistent LSCC patient cohort. 
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Table 2-2. Multivariate analysis of CD103/4 status and survival. 

Multivariable modeling with established variables for survival along with CD103/4 status 
demonstrates a significant survival benefit for CD103/4 mixed status and further greater survival 
for CD103/4 high status. 

Variable OS DSS DFS 

Hazard 

ratio  

(95% 

CI) 

p value 

Hazard 

ratio  

(95% 

CI) 

p value 
Hazard 

ratio 

(95% CI) 

p value 

pN0 status 0.31 
(0.20–0.49) < 0.0001 0.24 

(0.14–0.43) < 0.0001 0.22 
(0.13–0.38) < 0.0001 

pN+ Ref. 
 

Ref. 
 

Ref. 
 

ACE27 
Grade 0 

0.20 
(0.09–0.49) ##### 0.30 

(0.08–1.10) 0.07 0.44 
(0.14–1.37) 0.16 

ACE27 
Grade 1 

0.23 
(0.10–0.50) ##### 0.27 

(0.08–0.95) 0.04 0.29 
(0.10–0.84) 0.02 

ACE27 
Grade 2 

0.24 
(0.10–0.58) 0.0014 0.26 

(0.07–1.01) 0.05 0.24 
(0.07–0.79) 0.02 

ACE27 
Grade 3 Ref. 

 

Ref. 

 

Ref. 

 

CD103/4 
mixed 

0.51 
(0.33–0.80) 0.0036 0.32 

(0.18–0.59) 0.0002 0.39 
(0.23–0.69) 0.0009 

CD103/4 
high 

0.28 
(0.13–0.61) 0.0014 0.09 

(0.02–0.41) 0.0015 0.18 
(0.06–0.53) 0.0018 

CD103/4 low Ref. 
 

Ref. 
 

Ref. 
 

c-index 0.71 
 

0.75 
 

0.76 
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2.2 The molecular landscape of the University of Michigan laryngeal squamous cell 

carcinoma cell line panel.3 

Abstract 

Background: Laryngeal squamous cell carcinomas (LSCCs) have a high risk of recurrence and 

poor prognosis. Patient‐derived cancer cell lines remain important preclinical models for 

advancement of new therapeutic strategies, and comprehensive characterization of these models 

is vital in the precision medicine era. 

Methods: We performed exome and transcriptome sequencing as well as copy number analysis 

of a panel of LSCC‐derived cell lines that were established at the University of Michigan and are 

used in laboratories worldwide. 

Results: We observed a complex array of alterations consistent with those reported in The 

Cancer Genome Atlas head and neck squamous cell carcinoma project, including aberrations in 

PIK3CA, EGFR, CDKN2A, TP53, and NOTCH family and FAT1 genes. A detailed analysis of 

FAT family genes and associated pathways showed disruptions to these genes in most cell lines. 

Conclusions: The molecular profiles we have generated indicate that as a whole, this panel 

recapitulates the molecular diversity observed in patients and will serve as useful guides in 

selecting cell lines for preclinical modeling. 

 
3 This section was published in Head & Neck in collaboration with the following authors: Aditi 
Kulkarni, Andrew Birkeland, Judy Kafelghazal, Julia Eisenberg, Brittany Jewell, Megan 
Ludwig, Matthew Spector, Hui Jiang, Thomas Carey, and Chad Brenner.    
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INTRODUCTION 

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer 

worldwide and can arise in the oral cavity, oropharynx, hypopharynx, or larynx (1). The 5‐year 

survival rates for patients with HNSCC range from 40% to 80%, varying by anatomic site, tumor 

stage, and human papillomavirus (HPV) status (2).  Laryngeal squamous cell carcinomas 

(LSCCs), which comprise 20% of all HNSCCs, are typically HPV negative and have a 5‐year 

survival rate of 80% to 90% for stage I/II disease (3), but up to 50% of advanced patients with 

LSCC experience recurrence following frontline therapy, at which point disease progression 

often occurs rapidly with significant regression in quality of life metrics (4). Thus, robust models 

of LSCC are important for identification of biomarkers distinguishing patients most likely to fail 

therapy, as well as to develop novel treatments for aggressive disease. We believe LSCC cell line 

models representing the range of cancer stages and genetic composition in both primary and 

recurrent/metastatic settings will aid in better understanding individual disease processes and 

responses to treatment and in developing therapies that improve outcomes for LSCC. 

From The Cancer Genome Atlas (TCGA) project, a molecular landscape of primary 

untreated LSCC is beginning to emerge (5). Alterations to TP53, NOTCH1, CDKN2A, 

and PIK3CA are common, whereas the presence of HPV is relatively rare. Meanwhile, studies of 

recurrent and/or metastatic LSCC suggest that with progression, the molecular landscape shifts 

to contain more oncogenic lesions (6), although this relationship has not been confirmed in large 

cohorts of matched primary and metastatic tumors. Regardless, it is clear that distribution of 

genetic lesions varies among tumors, and as new questions emerge, it will be important to 

interrogate them using appropriate models within the context of genetic status. Tissue type and 
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genetic background will likely impact the efficacy of targeted therapies, emphasizing the need 

for improved understanding of the unique complexity of individual cancers (7,8). 

Cell lines serve as valuable tools for assessing the impact of genetic alterations (9-

12). The University of Michigan previously created a repository of HNSCC cell lines (UM‐SCC) 

that were characterized by short tandem repeat typing (13), and although many of these have 

been utilized extensively throughout the world, thorough genetic characterization has not yet 

been performed for cell lines derived specifically from laryngeal carcinomas (8). This limitation 

prevents researchers from interpreting phenotypic and therapeutic results in the context of tumor 

genetics. Thus, we aimed to profile the genetic and transcriptomic landscape of laryngeal UM‐

SCC cell lines in order to provide a molecular basis for future studies that leverage this panel. 

MATERIALS AND METHODS 

UM‐SCC models 

LSCC cell lines were established and characterized in the Head and Neck Oncology laboratory at 

the University of Michigan with written informed consent from patient donors with LSCC, who 

were treated for LSCC between 1980 and 2011. Cell lines were maintained in exponential 

growth phase in Dulbecco's modified eagle medium with 10% fetal bovine serum, 5% 

penicillin/streptomycin, and 5 mM nonessential amino acids in a 5% CO2 incubator. 

In all cases except UM‐SCC‐105, due to the age of the cell lines, donor tissue from either tumor 

or normal tissue was unavailable for further testing. 

 

Exome sequencing 

Exome capture library construction was performed using the NimbleGen V2 (44.1 Mbp) Exome 

Enrichment kit (Roche, Basel, Switzerland) for UM‐SCC‐10A, 10B, 11A, 13, 17B, 23, 25, 28, 
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41, 46, 76, and 81B, and paired‐end sequencing (2 × 100 bp) was performed on an Illumina 

Genome Analyzer IIx Platform, with an average coverage of ×50. Library construction for UM‐

SCC‐12 and 105 was performed using the Roche NimbleGen V3 and paired‐end sequencing (2 × 

150 bp) was performed on an Illumina HiSeq 4000 platform with average coverage of ×100. All 

sequencing was carried out at the University of Michigan DNA sequencing core according to 

standard protocol. Whole exomes are available through the Sequence Read Archive 

(https://www-ncbi-nlm-nih-gov.proxy.lib.umich.edu/sra) accession # PRJNA525437. 

 

Variant Calling 

Quality control checks were performed on the raw sequencing data using FastQC v.0.11.5 

(14). Reads were aligned to hg19 reference genome using BWA v0.7.8 (15). Duplicates were 

marked using PicardTools v1.79 (Broad Institute, Cambridge, Massachusetts). BAM files were 

created by following the GATK best practices workflow (16). Variants were called on each cell 

line using the HaplotypeCaller producing a VCF file for each sample. These VCFs were then 

combined using the GenotypeGVCFs tool and a single VCF file was obtained for all the samples. 

Variant Quality Score Recalibration was applied to this joint VCF file to filter out low quality 

variants. To annotate and filter the variants of interest, the commercially available tool Goldex 

Helix Varseq v1.4.0 (Golden Helix, Inc., Bozeman, Montana) was used. Filters were set as 

previously described (17). 

 

Variant pathogenicity analysis 

The cancer‐related analysis of variants toolkit (CRAVAT; http://www.cravat.us) was used to 

evaluate missense and indel mutations to predict pathogenicity via the variant effect scoring tool 
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(VEST) and driver/passenger status via the cancer‐specific high‐throughput annotation of 

somatic mutations (CHASM) tool. Missense mutations were scored with both VEST and 

CHASM; indels were scored with VEST only. The scores are used to generate P values, and a 

cutoff of P < .05 was used to designate highly pathogenic (VEST) or probable driver (CHASM) 

mutations. 

 

Sanger sequencing validation 

Genomic DNA isolation was performed using the Gentra PureGene kit (Qiagen, Hilden, 

Germany). DNA was then polymerase chain reaction (PCR) amplified with Platinum Taq DNA 

Polymerase High Fidelity (Invitrogen, Carlsbad, California) following manufacturer's 

instructions. PCR products were cloned into the pCR8 TOPO vector (Invitrogen) and subjected 

to Sanger sequencing on a 3730XL DNA Sequencer (Applied Biosystems, Foster City, 

California) at the University of Michigan DNA Sequencing Core. Sequence alignment was 

performed using the DNASTAR Lasergene software suite. 

 

 Copy number analysis 

The Affymetrix OncoScan Assay kit was used to analyze copy number alterations in the cell 

lines. The CEL files produced by the kit were merged to produce OSCHP files using the 

OncoScan Console v1.3 software. These OSCHP files were then analyzed by applying the 

TuScan algorithm, which is a part of the Nexus Express for OncoScan software package. From 

our analysis, we found a disparity between the B‐Allele Frequency plot and the copy number 

estimate made by the TuScan algorithm in case of some homozygous deletion calls (copy 

number = 0). To improve the accuracy of copy number calls in these cases, we used the presence 
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or absence of exome sequencing reads to confirm complete loss of the gene locus. Thus, we 

corrected copy number calls that were assigned a copy number call of zero by the TuScan 

software, but had exome sequencing reads, in Table 2-3 to indicate a single copy of the gene. 

Each of these corrections was annotated with an asterisk to denote the change. Copy number data 

have been deposited in the National Center for Biotechnology Information Gene Expression 

Omnibus (NCBI GEO; http://www-ncbi-nlm-nih-gov.proxy.lib.umich.edu/geo/) and are 

available through GEO Series accession #GSE127231. 

 

Transcriptome analysis 

RNA sequencing was performed for UM‐SCC‐10A, 10B, 12, 17B, 23, 25, 28, 46, 81A, 81B, and 

105 using Illumina stranded transcriptome library preparation kits with 75 nucleotide paired end 

sequencing to >×100 depth on an Illumina HiSEQ4000. Fragments per kilobase of transcript per 

million mapped read were calculated as previously described (16), and values for specific genes 

are listed in Table 2-4. Gene expression data from RNA‐seq experiments have been deposited in 

the NCBI GEO and are available through GEO Series accession # GSE126975. 

RESULTS 

We performed exome sequencing and high‐density arrays on a panel of UM‐SCC cell 

lines generated from patients with LSCC. We analyzed 16 cell lines total, generated from 14 

patients. Our panel represented a range of disease states (stage I through stage IV LSCC) and 

included cell lines from eight primary untreated, three recurrent, and four metastatic LSCCs 

(Table 2-5). Smoking/alcohol use was reported in all except the patient from whom UM‐SCC‐

105 was derived, who was HPV‐18 positive (18). Two matched pairs of cell lines were included 

in certain analyses: UM‐SCC‐10A and 10B, derived from primary tumor and lymph node 
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metastasis, respectively, and UM‐SCC‐81A and 81B, derived from two masses resected in 

separate procedures. 

 Comprehensive capture‐based exome sequencing was performed on 14 cell lines. Our 

analysis showed a large mutational load, with approximately 30‐50 nonsynonymous mutations 

identified per Mb (Figure 2-6). To annotate the cell line panel, we assessed common genetic 

aberrations previously reported by the HNSCC TCGA consortium (5). We identified 

nonsynonymous mutations affecting several of these genes, including TP53 in 11 of 14 (79%) 

and FAT atypical cadherin 1 (FAT1) in 6 of 14 (43%) of cell lines (Figure 2-7A). Table 2-6 lists 

the specific mutations observed. Mutation rates for each gene are provided as compared to 

TCGA HNSCC data (5,19). Importantly, our study lacks matched normal samples and therefore 

cannot account for germline variants, although most genes were mutated with similar frequencies 

in the LSCC cell line panel as in the TCGA tumors. Notable exceptions 

included FAT and NOTCH family genes and BRCA1/2, which are mutated at higher rates in our 

models than in TCGA specimens. 

 The FAT family mutations identified in our LSCC cell line panel are depicted in Figure 

2-7B and were validated by Sanger sequencing (Figure 2-8). For each FAT mutation identified in 

our panel, we used the VEST420-22 to predict pathogenic impact. Variant score P values are 

reported for each mutation in Figure 2-7B and support a pathogenic impact on FAT1 function of 

5 of 7 of the identified alterations (P < .05). Interestingly, FAT4 mutations were also especially 

prevalent, and VEST4 scores predicted a pathogenic impact in 5 of 8 cases. For missense 

mutations, the CHASM‐3.1 tool was used to predict driver mutations (Table 2-7). Similar 

analysis was completed for the NOTCH family genes, and BRCA1/2 alterations identified in our 

panel as these genes were altered at slightly higher than expected rates. Although VEST 
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pathogenicity scores for BRCA1/2 were not significant, the CHASM predictor of tumorigenic 

impact classified the mutations reported in both genes as likely driver mutations (Table 2-7). 

 

After annotating molecular alterations found in the panel, we assessed copy number 

alterations in 12 LSCC cell lines via high‐density single nucleotide polymorphism (SNP) arrays 

to provide additional molecular detail. We first performed a combined analysis of all 12 lines by 

summing copy number alterations at each probe site (Figure 2-9A). Our analysis revealed 

common copy number alterations in the cell line panel consistent with those reported in previous 

HNSCC studies, including broad amplifications of chromosome 3q, 5p, 7p, 8q, and 20q arms and 

deep deletions in the chromosome 3p, 8p, 9p, 11q, and 18q arms.5, 23-25 Importantly, the 3q 

amplicon includes transcription factors TP63 and SOX2, as well as the oncogene PIK3CA. As 

35% of HNSCCs in the TCGA study harbor an alteration in PIK3CA, it is widely considered a 

potential therapeutic target, with several clinical trials investigating PI3K inhibitors in patients 

with HNSCC (26). Additionally, both broad and focal deletions were observed in the 4q35 

region containing the FAT1 gene. Thus, our analysis suggests that this panel as a whole 

recapitulates the landscape of major chromosomal aberrations found in HNSCC tissues. 

Next, we further interrogated our panel to characterize key genes and pathways. Genes 

chosen for analysis were previously identified as commonly altered in the TCGA HNSCC 

cohort,5 are otherwise implicated in HNSCC pathogenesis (SRC, BCL6, and JAK2), or are 

reportedly linked to FAT1 signaling (SCRIB, STK3, WWTR1, WWC1, MTNR1A, and FAT3). 

Copy number calls are reported in Table 2-3. Median copy numbers are depicted in a heat map 

(Figure 2-9B, upper panel). We refer to median values ≥0.5 as amplifications and values ≤−0.5 

as copy losses. Consistent with TCGA findings, we observed amplifications of EGFR in 8 of 12 
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cell lines and amplifications of PIK3CA in 5 of 12. Copy losses at the CDKN2A‐CDKN2B locus 

were especially prevalent (10 of 12 cell lines). We observed broad 9p deletions in 6 of 12 cell 

lines, with an additional 4 cell lines exhibiting focal deletions at the CDKN2A‐CDKN2B locus 

(Figure 2-9C). We also performed RNAseq for a subset of UM‐SCC larynx cell lines (Figure 2-

9B, lower panel). As expected, EGFR was highly expressed in all cell lines. In many cases, copy 

number alterations corresponded with variations in gene expression (Figure 2-10). For example, 

we report deletion and low expression of CDKN2A/B in UM‐SCC‐12 and 81A, as well as 

amplification and high expression of YAP1 in UM‐SCC‐81B. We also asked whether cell lines 

harboring nonsense mutations likely to confer loss of function might exhibit altered gene 

expression, but in this small sample size, we observed no trends with regard to RNA expression 

and mutation status (Figure 2-10). 

FAT1 copy loss was observed in 4 of 12 cell lines in this analysis, with focal deletions in 

UM‐SCC‐10B and 12 (Figure 2-9D). Notably, FAT1 was also a commonly mutated gene in our 

panel (Figure 2-7A). Interestingly, of those cell lines that lacked a point mutation, some (UM‐

SCC 10A, 10B, and 46) did exhibit FAT1 deletions, for a total of nine cell lines with potential 

loss of FAT1 function. Some cell lines exhibited loss of multiple FAT family genes: FAT1 and 

FAT2 losses were both observed in the UM‐SCC‐10A/B pair and losses of all four FAT genes 

were observed in UM‐SCC‐46 (Figure 2-9B). However, RNA‐seq indicated high expression of 

FAT1 in most cell lines, with the exception of UM‐SCC‐10A/B. 

Given the high rate of FAT1 alterations with predicted functional impact in our panel, we 

sought to summarize alterations in FAT family genes. FAT1 alterations occurred in 35% of the 

110 LSCCs in the TCGA cohort and 29% of the overall cohort (Figure 2-11A) (19), and of the 9 

UM‐SCC cell lines with both copy number and single nucleotide variant data available, 7 
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exhibited loss of function alterations in FAT1, consistent with its purported role as a tumor 

suppressor. About 55% of LSCCs and 44% of all HNSCCs in the TCGA study harbored at least 

one FAT family gene alteration. Among these samples, the majority of 110 of 143 (77%) of 

FAT1 mutations are reported as truncating mutations (Figure 2-11A), which was consistent with 

our observation of missense mutations, a frameshift, and a stopgain among UM‐SCC lines 

(Figure 2-7). Figure 2-11B summarizes FAT family alterations observed in the cell line panel. 

Although most FAT1 mutations were truncating or deep deletions, mutations in other FAT 

family members were predominantly missense mutations in TCGA samples and UM‐SCC cell 

lines. 

Our data support a model in which functionally recurrent alterations to multiple genes 

within a pathway contribute to overall pathway disruption. To further understand functional 

recurrence of alterations to FAT signaling, we next examined alterations to genes linked to FAT1 

signaling in both the TCGA dataset and our cell line panel. FAT1 has been shown to inhibit 

Hippo/YAP1 pathway‐induced proliferation and survival through its interactions with Scribble 

(SCRIB) and serine/threonine kinase 3 (STK3) (28-30).  Figure 2-11C summarizes the 

prevalence of genetic alterations in these genes identified in TCGA primary larynx tumors27 and 

all TCGA HNSCC tumors (black). From this summary, it appears that alterations to FAT 

signaling are more common in LSCC than other HNSCC disease sites; in particular, we noted 

that alterations affecting WWTR1, a YAP1 paralog, were especially prevalent in larynx tumors, 

with 31 of 110 (28%) larynx tumors harboring a WWTR1 amplification, compared with 39 of 

394 (10%) at other subsites. Unfortunately, the relatively low number of tumors from each 

subsite limits the ability to test this association statistically. 
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In the UM‐SCC panel, we observed broad copy gains to 11q22, which contains the YAP1 

gene, in 2 of 12 cell lines, further implicating Hippo/YAP1 activation in promoting growth and 

survival in these models (Figure 2B). WWTR1 is also frequently amplified, with copy gains 

occurring in 6 of 12 cell lines. This is consistent with frequent WWTR1 amplifications observed 

in the TCGA HNSCC dataset. Figure 2-11D summarizes alterations to Hippo/YAP1 pathway 

genes in UM‐SCC cell lines. Interestingly, contrary to their documented tumor suppressive 

functions, amplifications of both STK3 and SCRIB were observed in 2 of 14 and 6 of 14 cell 

lines, respectively (Figure 2B), with modest copy gains observed in several additional cell lines. 

This is consistent with the broad 8q copy gains observed in the UM‐SCC panel and TCGA data.5 

Also linked to this pathway is the KIBRA protein, encoded by WWC1, which is thought 

to promote the phosphorylation and inhibition of YAP1 and WWTR1 (31). We observed WWC1 

loss in 3 of 12 cell lines, consistent with a role in dampening Hippo/YAP1 signaling, although 

UM‐SCC‐81A exhibits a modest copy gain. Furthermore, NOTCH3, mutated in 5 of 14 cell lines 

in our mutation analysis, was recently shown to act as a tumor suppressor in breast cancer cells 

by inducing KIBRA upregulation (32). Overall, the prevalence of alterations in FAT1‐related 

genes supports a role for Hippo/YAP1 and FAT family signaling in these models, warranting 

further investigation of this network in LSCC. 

DISCUSSION 

As precision medicine protocols are developed, comprehensive genetic stratification of 

tumors becomes increasingly crucial to correlate with disease prognosis and to target known 

driver mutations (33). Large‐scale, integrated analyses have recently provided unparalleled 

molecular detail toward stratification of tumors, paving the way for precision medicine protocols 

based upon comprehensive molecular profiles (5,25).  To advance novel targets and 
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combinations, an array of well‐characterized models representative of the diversity of disease 

observed in the clinic must also develop in tandem, as preliminary studies using these tools are 

critical to predict therapeutic response. The UM‐SCC cell line panel is widely used to model 

HNSCC, but genetic characterization of these cell lines has been limited. Furthermore, LSCC is 

a challenging clinical entity, with limited response to current treatment modalities and poor 

survival rates, especially in recurrent disease (34). We therefore sought to create a profile of 

UM‐SCC cell lines derived from patients with LSCC to better understand these models and 

determine how accurately they reflect genetic characteristics of patients. 

Overall, our analysis indicates that many aberrations recurrently identified in the HNSCC 

TCGA study are well represented in the UM‐SCC larynx cell line panel. EGFR, PIK3CA, 

and CCND1 copy gain, CDKN2A copy loss, and TP53 and FAT1 mutation are among the most 

common aberrations observed in our panel, consistent with reports of clinical specimens. Thus, 

this panel appears to adequately represent many well‐studied, targetable alterations in HNSCC 

and should serve as an important tool in advancing combination therapies targeting these 

pathways. Importantly, there were some genes (FBXW7, BRCA1, NOTCH2, and NOTCH3) for 

which our analysis indicated considerably higher mutation rates than those observed in the 

TCGA dataset. Such discrepancies may be attributed to our small sample size, differences in 

variant calling pipelines, or to the fact that the TCGA report includes only somatic mutations, 

whereas our analysis cannot distinguish somatic mutations from germline. It is also possible that 

certain alterations have been selected for during cell line derivation and culture. 

Notably, significant variation in molecular profiles exists within tumor sets and across the UM‐

SCC panel. For example, UM‐SCC‐17B is strikingly devoid of point mutations and copy number 

alterations, but harbors a PIK3CA hotspot mutation at the 3:178938934 position (Table 2-6) 
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(35). Likewise, UM‐SCC‐105, an HPV‐18 positive cell line, appears similarly genomically 

stable but harbors a pathogenic nonsense mutation in BRCA2. Identification and stratification of 

such molecular subsets will benefit research applications and could aid in selection of 

appropriate models based on patient characteristics. 

Our data show an unexpectedly high prevalence of FAT1 inactivating mutations or 

genetic deletions and support a deeper analysis of the pathway. Although FAT1 alterations are 

well documented in HNSCC, few reports address FAT2, FAT3, and FAT4, which have lower 

alteration rates than FAT1 in the TCGA dataset (Figure 2-11A). In our cell line panel, we found 

that FAT family alterations were prevalent and UM‐SCC‐10A, 10B, and 46 harbored alterations 

in multiple FAT genes. We observed FAT1 and FAT2 copy loss in the UM‐SCC‐10A/10B pair, 

along with both copy loss and mutation in FAT4 in UM‐SCC‐10A. Furthermore, 

a FAT2 mutation with high predicted pathogenic impact was identified in both cell lines, further 

supporting a prominent pathogenic role for FAT genes in these particular models. 

Although FAT3 is considered paralogous to FAT1 and exhibits similar functions 

(30), fewer FAT3 alterations were discovered in the TCGA cohort, and these appeared less likely 

to confer loss of function, consisting of a mix of amplifications, deletions, missense mutations, 

and truncating mutations (Figure 2-11A). Similarly, in the 12 cell lines subjected to copy number 

analysis, we observed one loss and one gain in FAT3 (in UM‐SCC‐46 and ‐25, respectively; 

Figures 2-9B and 2-11B). Only three FAT3 mutations were observed in our cell line panel and all 

were missense mutations (Figure 2-7). However, UM‐SCC‐11A and 17B both harbored 

mutations classified as pathogenic by the VEST tool, and the mutation in 11A is a predicted 

driver according to the CHASM score. Interestingly, expression of FAT3 was very low in most 

cell lines in our panel (Figure 2-9B). This suggests that further dissection of FAT3 genetic 
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alterations may be required to understand how each type of alteration affects FAT3 pathway 

activity. 

When we expanded our analysis to additional genes linked to FAT signaling, we noted 

frequent copy number alterations consistent with dysregulated Hippo/YAP1 signaling, both in 

our cell lines and in the TCGA dataset, particularly affecting WWTR1. Although amplifications 

of purported tumor suppressors STK3 and SCRIB were also observed, this may be due to the fact 

that both genes are located in a broadly amplified region of 8q. Although a mechanistic role 

for STK3 and SCRIB in promoting tumorigenesis has not been clearly defined, the seemingly 

paradoxical overexpression of these proteins is commonly reported in human cancers (36). 

FAT1 is in the cadherin class of membrane‐bound proteins, with functions that remain to be fully 

characterized. Notably, FAT1 mutations may have context‐dependent effects depending on the 

tissue source. In HNSCC and esophageal squamous cell carcinomas, it appears to act as a tumor 

suppressor gene, inhibiting epithelial‐mesenchymal transition and cell proliferation (37), whereas 

in other tumors, it may have oncogenic function (38,39). There is limited understanding of the 

role of FAT1 in HNSCC in general, apart from the high mutational rate reported in the recent 

TCGA study. Interestingly, FAT1 mutant HNSCCs may have better overall survival (40), 

suggesting that it may portend a better prognosis for which clinical treatment modification may 

be investigated. A prognostic role for FAT1 will need to be investigated in confirmatory cohorts, 

and further characterization of tumors harboring FAT1 alterations will be necessary. Recently, 

Martin et al showed that FAT1 participates in assembly of a Hippo signaling complex 

responsible for negatively regulating YAP1 in HNSCC cell lines, thus its loss may result in 

unrestrained YAP1 activity (27).  Reintroduction of FAT1 intracellular domain into FAT1 

deficient cell lines resulted in decreased YAP1 activity, reduced proliferation, and abrogated 
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tumorigenesis in vivo. These effects were rescued by YAP1 overexpression. A 2017 study by 

Pan et al assessed YAP1 protein by immunohistochemistry in 121 LSCC tumor samples and 

found positive YAP1 expression to be associated with clinical stage, TNM classification, lymph 

node metastasis, and poor overall survival (41). Taken together, these studies support YAP1 as a 

promising therapeutic target in the context of genetic alterations in FAT1 and the Hippo 

signaling pathway. 

Another recent study identified a potential interaction between FAT1 and CASP8 in oral 

cavity squamous cell carcinomas (42), showing increased growth and migration in cell lines with 

FAT1 loss of function, further corroborating the functional role of FAT1 as a tumor suppressor 

gene. FAT1 may function as a tumor suppressor by binding to β‐catenin and blocking its nuclear 

translocation, thereby inhibiting Wnt signaling pathways fundamental to growth and 

proliferation.38 As discussed above, FAT1 may inhibit the YAP1 pathway, which is critical for 

cell growth and survival. Thus, with FAT1 loss of function in LSCC, there may be unchecked 

tumor cell growth and proliferation through both Wnt/β‐catenin and YAP1 pathways. In 

selecting targeted therapies in LSCC, consideration of FAT1 status may be beneficial, as agents 

inhibiting the Wnt/β‐catenin pathway, many of which are in development, may be particularly 

efficacious. 

The UM‐SCC larynx cell line panel has been in use in laboratories throughout the world 

for the past several decades. We now provide a comprehensive genetic characterization of these 

models that can be used to contextualize past and future studies in terms of the genetic diversity 

seen in patients. However, in utilizing cell lines as model systems, it is important to note the 

likelihood of variations between stocks of the same cell line. In support of the concept that 

genetic diversity exists between models cultured separately, cytogenetic analysis was originally 
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performed for UM‐SCC‐17A/B at several different passages by Carey et al in 1989 (43). There 

were no karyotypic differences between UM‐SCC‐17A cells analyzed at passages 8, 23, 28, and 

37 nor between UM‐SCC‐17B cells at passages 13, 17, and 52. However, a UM‐SCC‐17A 

subline was also discovered, differing from the UM‐SCC‐17A stem line both at the cytogenetic 

level and by expression of various surface antigens, including the E7 and A9 antigens. This 

subline was believed to represent a distinct population present in the primary tumor, indicating 

that multiple heterogeneous populations existed initially. Furthermore, Ludwig et al performed 

comprehensive profiling of the UM‐SCC oral cavity cell line panel and provided evidence of 

multiple clones through copy number analysis and fluorescence in situ hybridization (17). 

The concept of cell line evolution in culture was highlighted more recently in a 

comprehensive characterization of 27 MCF7 strains in which the authors observed considerable 

variations in genetics, gene expression programs, morphology, and drug response (44). Many of 

the cell lines discussed here have been distributed to laboratories throughout the world, and 

genetic drift and divergence among lineages cultured in different laboratories is highly likely. As 

the purpose of the present study is to offer a baseline profile of the LSCC cell lines, a direct 

comparison between the genetics of our cell lines and lineages propagated in other laboratories is 

beyond the scope of this report. However, we do describe and reference many of the same 

genetic alterations reported by other laboratories. For example, a 2018 study by Cheng et al 

assessed mutations and copy number variations in a panel of 26 HNSCC cell lines, notably 

including UM‐SCC‐46 and UM‐SC‐105 (45). We recapitulate many of their findings in UM‐

SCC‐46, such as 3q copy gain, YAP1/BIRC2 deletion, a TP53 nonsense mutation, 

and KMT2D frameshift. Cheng et al also report a 3q gain in UM‐SCC‐105, as well 

as CASP8 deletion, and so forth, which our study did not detect further supporting the concept of 
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potential genetic drift between models cultured in different labs over time. Additionally, while 

Cheng et al report FAT1 copy gain in nearly all cell lines, including UM‐SCC‐46 and 105, our 

data show copy loss in UM‐SCC‐46 and no alteration in UM‐SCC‐105. 

Furthermore, Nisa et al analyzed alterations in several UM‐SCC cell line pairs in 2018, 

including the UM‐SCC‐10A/B, 17A/B, and 81A/B pairs (46). They report several differences 

between the 10A (primary tumor) and 10B (lymph node metastasis) lines, including as 

a FAT4 mutation only in 10A, an observation recapitulated in our study. We also reproduce their 

findings of TP53 and FAT2 mutations in both lines, but interestingly, Nisa et al also 

report FAT1, 2, and 4 mutations in UM‐SCC‐17B, as well as a PTEN mutation in UM‐SCC‐81B, 

which we did not observe. 

The present study emphasizes the utility of continuing to expand the available array of 

well‐characterized HNSCC cell lines. Importantly, this report also highlights an 

underappreciated but broad range of molecular alterations to multiple genes associated with FAT 

signaling and supports a need to deeply dissect the function of this pathway in HNSCC 

pathogenesis. As we refine our understanding of molecular complexity and heterogeneity in 

HNSCC, our study provides a foundation for modeling therapeutic responses and advancing 

personalized medicine protocols. 

Acknowledgements.   

The authors would like to thank Apurva Bhangale for bioinformatics support.  

 

 

 



 
 
 

 84 

Tables 

Cell line 
(UM-SCC-) 

10A 10B 12 17B 23 25 28 46 57 81A 81B 105 

TP63 5 3 7 2,2.5 8.67,

5.33 

4 2.33 2.67 6 2.33 6 2 

PIK3CA 5 3 5 2 4.67 4 2.33 2.67 6 2.33 6 2 

PTEN 1 1.67 2 2,1.5 3.33 4 1.67 1.67 2 2 3 3 

PIK3R1 0 1.33 2 2 2.33 3 2 2 2 2 4 3 

CDK6 2 1.67 7 2 4.33 4 2.67 3 3 1.67 4 2 

CDKN2A 0 1.33 1  0,2 0* 4 1 1 0 0* 1.5 3 

CDKN2B 0 1.33  0 2 2.33 4 1 1 0 0* 1.5 3 

TP53 1 1.67 5 2 3.33 3 2.33,

2 

1.67 2 1.67 1.5 2 

NF1 1 2 4 2 4 0 2.67 2 3 2.67 4 2 

CASP8 1 2.33 1.5 2 3.33 4 1.67 1 5 1.67 3 2 

NOTCH1 1.5 2 5 3 4.67 2 3.33,

3.67 

2.33 3 2.33 5 3 

MYC 3 3 15 2 3.33 4 2.67 2 5 3 4 3 

HRAS 1.5 1.67 3 3 2.33 4 1.33 1.67 2 2 3 2 

CCND1 1.5 2 2 3 3.67 6 2 7.33 2 2.33 4 1.5 

SRC 3 2.67 5 2 4 4 1.67 2 3 3 4 3 

BCL6 5 3 4 2 6.33 4 2.33 2.67 6 2.33 6 2 

EGFR 5 3.33 6 3 5, 

2.33 

8 3 2.33 5,2,4 2.67 4 4 

FGFR1 3 2.67 4 2 2 1.

5 

2.67 2 5,2.5 1.67 3,2.

5 

3 

FGFR3 1 2 2.5 1 2 2 1.33 1.67 2 2 2.5 2 

IGF1R 1 1.33 6 2 3.33 2 1.67 2 4 2 4,3 3 

ERBB2 1 2 4 2 3.67 3 2.33,

2.67 

2.33 4 2.67 4 2 

EPHA2 2.5 2.67 2 2 3 3 2 2 3 2 2.5 2 
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DDR2 2 2.33 3 2 4 4 2 1.67 3 2.67 2.5 2 

MET 2.5 2.33 14,

4 

1 6.67,

4 

5,

4 

2.33 2 3 1.67 4 2 

JAK2 0 1.33 7 2 2 4 1 1.67 2 1.67 1,1.

5 

3 

TRAF3 0 2 4 3 3 1 1 2 4 2.33 4 2 

KEAP1 0 2 3 2 1.67 1 1.33 1.67 2.5 1.67 2.5 1.5 

MYH9 1 2 0 1 3.67 2 1.67 2 2.5 1.67 4 2 

BIRC2 2 2 2 3 3.33 6 1.67 1 3 2.67 21 2 

YAP1 2 2 2 3 3.33 6 1.67 1 3 2.67 21 2 

SCRIB 2.5 2 3 2 3.33 4 2.67 2 4 2.33 4 3 

STK3 3 2.67 4 2 3.33 4 2.67 2 4 3 4 3 

WWTR1 4 3 5 3 6 5 2.33 2.67 2 2.33 6 2 

WWC1 1 1.67 5 2 2 4 2 1.67 2 2 4 2 

FAT4 1 2 2 2 4.33 2 1.67 1 3 1.67 2 2.5 

FAT3 2 2 2 3 2.33 6 1.67 1 3 2.67 1.5 2 

FAT2 1 1.67 4 2 2 4 2 2 2 2.33 4 2 

FAT1 0 1  0 2 2 2,

8 

0.67,

2 

1 2 1.67 1.5 2 

AJUBA 2.5 2 3 2 3.33 5 1 2 2 2.67 4 2 

Table 2-3. Estimated copy numbers for gene list as noted by the TuScan algorithm for the indicated UM-

SCC-cell lines. 

For entries containing multiple copy numbers separated by a comma, multiple values were reported over the length 
of the gene. Where a copy number of 1* is reported, the TuScan algorithm estimated a complete deletion (CN=0), 
however, we observed those genes had exome sequencing reads. Thus, we determined it more accurate to report a 
single copy loss rather than a complete deletion in those cases.  
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 10A 10B 12 17B 23 25 28 46 81A 81B 105 

TP63 7.6623 8.1646 6.7623 8.3993 6.1935 2.5379 6.4389 6.9031 0.3340 6.0780 5.9351 

PIK3CA 4.8020 3.6584 3.4539 2.9023 3.5593 3.1881 2.9400 3.6907 3.5514 4.4735 2.5713 

PTEN 3.4256 4.6801 4.4520 5.0443 4.2966 4.0593 4.0263 4.9740 4.3265 4.2996 4.8531 

PIK3R1 2.1450 2.5989 3.4658 3.4931 2.5063 2.5891 2.4788 2.2305 2.6461 3.2411 2.5006 

CDK6 6.2933 6.4345 5.1640 4.7098 5.3604 4.7772 6.5492 5.6388 5.1648 4.4781 4.9268 

CDKN2A 6.8201 6.3759 0.0393 3.8224 0.0603 5.9065 4.3914 3.9035 0.0000 5.2869 7.0785 

CDKN2B 3.2566 4.5155 0.0000 2.8831 3.3877 4.5271 4.9087 3.8782 0.0070 3.2560 4.8319 

TP53 5.4030 4.8597 2.1541 4.3951 5.6513 1.9003 4.9494 4.7691 4.1666 4.6973 4.9388 

NF1 4.5408 4.5404 5.3128 4.9547 5.1048 3.6482 5.4243 4.9164 4.9959 5.1343 4.1364 

CASP8 3.7236 2.9777 3.3700 3.9183 4.0217 3.7642 3.3313 2.6991 2.4962 2.8335 3.5611 

NOTCH1 3.3731 3.6975 4.2125 5.1377 3.3959 0.9943 2.6231 3.7287 3.6116 4.1226 5.1034 

MYC 4.3881 4.9783 5.4592 5.7721 6.2044 3.3831 4.1588 5.2268 4.7677 5.8586 7.1268 

HRAS 4.5701 3.5060 5.0894 5.2871 4.4427 3.0434 5.3468 4.5178 3.8444 4.0430 4.6768 

CCND1 7.8498 7.1665 5.0656 5.9039 7.2620 5.1855 7.3009 8.1828 6.7250 6.5615 5.6538 

SRC 4.3635 4.5835 4.8736 4.6138 4.0139 4.6236 3.8402 3.1397 4.2211 4.7096 4.8396 

BCL6 3.3161 4.6113 2.5132 2.9562 3.5186 3.0358 3.0722 4.0914 2.4507 4.8402 3.9008 

EGFR 7.8369 7.1857 6.4553 6.9589 5.6047 5.2484 6.4214 6.2852 6.2873 6.2430 6.9608 

FGFR1 1.6183 2.4480 2.3312 3.1269 0.0499 0.7250 2.1736 3.5468 3.9369 0.8622 1.7425 

FGFR3 4.3248 5.6194 2.6482 2.4520 4.5837 1.3600 4.2373 4.6962 2.2620 4.4536 5.3393 

IGF1R 6.3115 5.5859 4.8908 5.3333 5.1304 4.1813 5.3536 4.6125 5.0596 5.8664 5.5535 
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ERBB2 4.9432 4.6229 3.4282 4.7632 4.6750 4.6946 4.6523 4.4665 5.3251 4.1712 4.6199 

EPHA2 6.1029 6.0810 3.9771 4.0648 5.6189 4.6384 5.3724 5.1853 4.8663 5.0718 5.4191 

DDR2 0.0633 0.1773 0.1324 0.1555 2.1455 0.6135 0.3841 0.0989 3.7724 0.3785 0.4390 

MET 6.7031 6.2867 4.5971 3.6581 6.2914 5.8806 6.5183 4.2425 6.0979 6.3115 5.7766 

JAK2 1.2706 1.6025 1.6964 1.6806 1.0809 1.6428 1.1048 1.9090 1.3916 1.1277 2.2140 

TRAF3 2.5141 2.5284 3.6473 3.4388 3.3495 3.0201 2.3404 3.1884 3.2421 4.2148 3.4136 

KEAP1 3.9783 3.8006 5.7343 4.0167 4.0860 3.6292 4.1860 4.7475 4.2453 4.0303 4.4340 

MYH9 7.2056 6.9068 5.8622 5.5756 8.1863 7.3177 6.8321 6.5500 8.4220 7.7824 7.1305 

BIRC2 4.5467 5.2006 3.5243 4.0231 3.2013 4.1267 4.1765 3.3233 4.5288 7.4342 3.4313 

YAP1 6.1855 6.0123 5.3423 6.2335 5.3618 6.2527 5.7629 4.8658 6.0854 9.1912 5.4303 

SCRIB 5.2346 4.2303 3.7906 2.2627 4.3241 3.7329 5.2019 4.1153 5.0544 4.4928 5.4409 

STK3 3.8531 4.7517 3.1143 3.7440 4.5267 4.9563 4.4056 3.5592 6.0992 4.1279 4.2794 

WWTR1 4.0481 3.5084 5.0286 4.8644 5.9052 3.3997 2.9458 3.2259 3.5284 4.7621 2.6416 

WWC1 3.7137 4.5820 3.2929 3.0437 3.4207 5.6651 4.0195 4.5026 5.7884 4.6707 4.1991 

FAT4 2.3774 2.0248 1.3965 2.4367 2.1770 2.4085 0.5321 0.0548 3.2649 0.2501 1.1720 

FAT3 0.2546 2.0054 0.5291 0.2707 0.0082 2.7879 0.0620 0.7411 0.4098 0.8205 0.0000 

FAT2 4.9577 4.7640 5.9967 6.1288 1.1908 2.7020 6.2136 6.1634 0.6397 5.9187 5.5510 

FAT1 0.2184 0.8399 5.8568 7.0253 5.8733 3.7984 6.1790 6.2621 5.9881 6.0268 7.3524 

AJUBA 7.3530 7.1279 5.9213 5.8679 6.0761 6.0936 6.2687 6.2640 6.7508 6.2323 6.6578 

Table 2-4. Fragments Per Kilobase of transcript per Million mapped reads (FPKM) values for selected genes in UM‐SCC laryngeal cell lines. 
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Cell line Age Sex Clinical 
TNM 

Stage Specimen site Type of 
lesion 

Previous 
therapy 

HPV 
status 

Smoking 
(pack‐
years) 

Alcohol 

UMSCC‐10A 57 M T3N0M0 III True cord P None 
 

20 Heavy 

UMSCC‐10B 58 M rT3N1M0 III Lymph node Met S 
 

20 Heavy 

UMSCC‐11A 65 M T2N2aM0 IV Epiglottis P ICX 
 

35 Heavy 

UMSCC‐12 71 M T2N1M0 III Larynx R S, RT 
 

— — 

UMSCC‐13 60 M T3N0M0 III Stoma R RT,S 
 

90 Heavy 

UMSCC‐17B 47 W T1N1M0 III Soft tissue‐
neck 

Met RT 
 

40 None 

UMSCC‐23 36 W T2N0M0 II Supraglottis P None 
 

48 Heavy 

UMSCC‐25 50 M rT3N2bM0 III Lymph Node Met RT,S,S 
 

Heavy Heavy 

UMSCC‐28 61 W T1N0M0 I True cord P None 
 

40 — 

UMSCC‐41 78 M T2N1M0 III Arytenoid P None 
 

50 Moderate 

UMSCC‐46 58 W T2N2M0 IV Supraglottis R RT,S 
 

60 Heavy 

UMSCC‐57 69 M — — Supraglottis — — 
 

— — 

UMSCC‐76 66 M T3N2cM0 IV Lymph node Met ICX 
 

40 Heavy 

UMSCC‐81A 53 M T2N0M0 II Anterior 
commisure 

P None 
 

100 Heavy 

UMSCC‐81B 58 M T2N0M0 II True cord P None 
 

100 Heavy 

UMSCC‐105 51 M T4N0M0 IV True cord P None HPV‐
18 

0 None 

 
Table 2-5. Clinical characteristics of patients with LSCC from whom UM‐SCC cell lines were derived. 

Note: UM‐SCC‐10A and 10B were derived from samples taken from the same patient at different times and sites. UM‐SCC‐81A and 81B were derived from two 
vocal cord masses resected in separate procedures. HPV‐18 was detected in UM‐SCC‐105 by HPV‐PCR mass array. HPV was not detected in other cell lines. 
Categories for which no data were available are marked with a dash. 
Abbreviations: HPV, human papillomavirus; ICX, induction chemotherapy; LSCC, laryngeal squamous cell carcinomas; M, men; Met, metastasis; P, primary; R, 
recurrence; RT, radiation therapy; S, surgery; UM‐SCC, University of Michigan squamous cell carcinoma; W, women. 
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Gene 
UM-SCC- 

10A 10B 11A 12 13 17B 23 25 28 41 46 76 81B 105 

TP53 
17:7577548 17:7577548 17:7577556 17:7579377 17:7578442  17:7578403 17:7578291 17:7577046, 

17:7577120 

 17:7574012, 

17:7577106 

17:7579320* 17:7578271 

 

 

FAT1 
  4:187518878     4:187629411*, 

4:187630099 

4:187541379 4:187518255  4:187630240 4:187540040 

 

 

FAT2 5:150943061 5:150943061  5:150945830       5:150942985 5:150924968   

FAT3   11:92086828   11:92533622      11:92533495   

FAT4 
4:126337669     4:126369804, 

4:126412106 

4:126355547 4:126370896 4:126319964, 

4:126372555 

4:126241248    4:12641398** 

RB1     13:48934219          

CDKN2A        9:21971124*   9:21971096    

PIK3CA 
   3:178936094  3:178938934, 

3:178942545 

     3:178916924   

PIK3R1            5:67584513** 5:67584513**  

AJUBA             14:23450548  

NOTCH1 

  9:139396366, 

9:139401091, 

9:139410173, 

9:139405111 

    9:139411814*, 

9:139411816 

9:139411794*   9:139409082, 

9:139393448, 

9:139396541, 

9:139396544, 

9:139396546, 

9:139396548, 

9:139401091, 

9:139396366 

9:139407991, 

9:139407992, 

9:139409852, 

9:139417644 

9:139412391, 

9:139412392, 
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9:139417398, 

9:139399557^ 

NOTCH2 
       1:120572572, 

1:120491153 

1:120572572  1:120572572 1:120484306, 

1:120572572 

1:120572572  

NOTCH3 
       19:15302584 19:15295265  19:15273335  19:15289850, 

19:15299051 

19:15289850 

KMT2D 
  12:49433848, 

12:49426283 

 12:49435240    12:49447384  12:4943187*    

NSD1 
  5:176722417   5:176637471, 

5:176638506, 

5:176710840 

5:176709524        

TGFBR2 
          3:30691872* 3:30732942, 

3:30733052 

  

FBXW7 
 4:153268228 4:153249384, 

4:153253874, 

4:153253876 

        4:153268228   

TRAF3       14:103342015     14:103342060   

NFE2L2    2:178098810           

CUL3         2:225449767**      

BRCA1 
   17:41243509, 

17:41256877 

17:41243509  17:41246812  17:41244429 17:41244429     

BRCA2           13:32893369  13:32954265 13:32972626 

 

Table 2-6. Locations of all mutations identified in the indicated cell lines by capture based exome sequencing. 

All mutations were missense mutations unless otherwise indicated.  Those listed in italics represent splice donor or acceptor regions.  Red text indicates a stop 
gain (nonsense) mutation; *Frameshift; **UTR variant; ^In-frame indel.
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Gene Cell Line Locus CHASM p value VEST p value 

BRCA1 UMSCC13 17:41243509 0.0006 0.1821 

BRCA1 UMSCC28, 41 17:41244429 0 0.4463 

BRCA1 UMSCC23 17:41246812 0.0006 0.2527 

BRCA1 UMSCC12 17:41243509 0.0006 0.1821 

BRCA2 UMSCC46 13:32893369 0.0214 0.1092 

BRCA2 UMSCC81B 13:32954265 0.0206 0.1789 

BRCA2 UMSCC105 13:32972626 stopgain 0.1821 

NOTCH1 UMSCC28 9:139411794 frameshift 0.0217 

NOTCH1 UMSCC25 9:139411814 frameshift 0.0127 

NOTCH1 UMSCC25 9:139411816 0.1854 0.0534 

NOTCH1 UMSCC11A 9:139405111 0.3448 0.2049 

NOTCH1 UMSCC76 9:139417398 stopgain 0.1222 

NOTCH1 UMSCC76 9:139409082 0.061 0.0827 

NOTCH2 UMSCC76 1:120484306 0.5182 0.6263 

NOTCH2 UMSCC25 1:120491153 0.2608 0.2178 

NOTCH2 UMSCC25, 

28,76,23,46,81B 

1:120572572 0.0064 0.8694 

NOTCH3 UM46 19:15273335 0.3292 0.1253 

NOTCH3 UM81B 
 

0.2398 0.4617 

NOTCH3 UM11A 19:15299051 0.157 0.3026 

NOTCH3 UM81B 19:15299051 0.157 0.3026 

NOTCH3 UM25 19:15302584 stopgain 0.0245 

NOTCH3 UM105 19:15289850 0.2398 0.4617 

FAT4 UM10A 4:126337669 0.267 0.0908 

FAT4 UM23 4:126355547 0.088 0.0054 

FAT4 UM17B 4:126369804 0.1516 0.722 
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Table 2-7. Supplemental Table 4. CHASM and VEST p-values for BRCA, NOTCH, and FAT family 
mutations.  

The Cancer-Related Analysis of Variants Toolkit (CRAVAT; http://www.cravat.us) was used to predict 
pathogenicity via the VEST-4 and CHASM-3.1 tools.  Missense mutations were scored with both VEST and 
CHASM; Indels were scored with VEST only.  A p-value was generated for each score and a cutoff of p<0.05 was 
used to designate highly pathogenic (VEST) or probably driver (CHASM) mutations, highlighted in red. 
 
 

 

 

 

FAT4 UM25 4:126370896 0.094 0.0025 

FAT4 UM28 4:126372555 0.2948 0.6406 

FAT4 UM17B 4:126412106 0.1928 0.1877 

FAT4 UM28 4:126319964 0.0152 0.0035 

FAT4 UM41 4:126241248 0.2948 0.0229 

FAT3 UM11A 11:92086828 0.014 0.0091 

FAT3 UM17B 11:92533622 0.102 0.0136 

FAT3 UM76 11:92533495 0.291 0.1849 

FAT2 UM76 5:150924968 0.0884 0.0201 

FAT2 UM46 5:150942985 0.6368 0.1877 

FAT2 UM10A,B 5:150943061 0.1382 0.0147 

FAT2 UM12 5:150945830 0.6464 0.9886 

FAT1 UM25 187629411 frameshift 0.0954 

FAT1 UM41 187518255 0.0582 0.0025 

FAT1 UM28 187541379 stopgain 0.0225 

FAT1 UM25 187630099 0.2398 0.0417 

FAT1 UM76 187630240 0.1536 0.0298 

FAT1 UM81B 187540040 0.8576 0.2982 

FAT1 UM11A 187518878 0.0436 0.0109 
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Figures 

 

Figure 2-6. Mutation rates in laryngeal UM-SCC cell lines.   
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Figure 2-7Genetic characterization of laryngeal UM‐SCC cell lines by copy number 
analysis.  

 
Genomic DNA was harvested from low passage UM‐SCC cell lines and analyzed using high‐
density SNP arrays (Affymetrix OncoScan Assay) and compared to a commercially available 
pooled control. Affymetrix software was used to call copy number alterations. A, Copy number 
alterations were summed across UM‐SCC‐10A, 10B, 12, 17B, 23, 25, 28, 46, 57, 76, 81A, 81B, 
and 105. Alterations for individual cell lines are shown below with gains indicated in blue and 
losses indicated in red. B, Heat maps displaying median copy numbers (upper panel) and RNA 
expression (lower panel) for selected genes. Key functions and relevant chromosomal regions are 
noted below each column. C, Focal deletions (arrow) at the CDKN2A‐CDKN2B (9p21) locus 
occurring in UM‐SCC 12, 23, 57, and 17B. The CDKN2A gene is indicated by a bracket in the 
row labeled “Genes.” *, CDKN2A;**, CDKN2B. D, Focal deletions (arrow) at the FAT1 locus 
(4q35) occurring in UM‐SCC‐10B and 12. The FAT1 locus is indicated by a bracket and an 
asterisk in the row labeled “Genes.” UM‐SCC, University of Michigan squamous cell carcinoma. 
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Figure 2-8. Primer sequences and chromatograms for point mutations validated by sanger 
sequencing in the FAT1 gene.   

Cell line and mutation (identified via exome sequencing) are shown in left column. Forward (F) 
and Reverse (R) sequences are shown for each product.  Sections of the chromatogram are 
shown for each PCR product with the product sequence aligned with wild-type FAT1.  Altered 
bases are underlined. 
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Figure 2-9. Genetic characterization of laryngeal UM‐SCC cell lines by copy number analysis 

 Genomic DNA was harvested from low passage UM-SCC cell lines and analyzed using high-density SNP arrays (Affymetrix 
OncoScan Assay) and compared to a commercially available pooled control. Affymetrix software was used to call copy number 
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alterations. A, Copy number alterations were summed across UM-SCC-10A, 10B, 12, 17B, 23, 25, 28, 46, 57, 76, 81A, 81B, and 105. 
Alterations for individual cell lines are shown below with gains indicated in blue and losses indicated in red. B, Heat maps displaying 
median copy numbers (upper panel) and RNA expression (lower panel) for selected genes. Key functions and relevant chromosomal 
regions are noted below each column. C, Focal deletions (arrow) at the CDKN2A-CDKN2B (9p21) locus occurring in UM-SCC 12, 
23, 57, and 17B. The CDKN2A gene is indicated by a bracket in the row labeled “Genes.” *, CDKN2A;**, CDKN2B. D, Focal 
deletions (arrow) at the FAT1 locus (4q35) occurring in UM-SCC-10B and 12. The FAT1 locus is indicated by a bracket and an 
asterisk in the row labeled “Genes.” UM-SCC, University of Michigan squamous cell carcinoma.
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Figure 2-10.  Relationship between median copy number (x-axis) and RNA expression (y-
axis) of indicated genes in 11 UM-SCC laryngeal cell lines. 
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Figure 2-11 Summary of aberrations in FAT‐related genes in TCGA tumors and laryngeal 
UM‐SCC cell lines.  

Summary of aberrations in FAT‐related genes in TCGA tumors and laryngeal UM‐SCC cell 
lines. A, Alterations reported in TCGA provisional dataset 
(cbioportal.org; http://cancergenome.nih.gov) for FAT1‐4. Total numbers observed for each 
category of mutation or copy number variation are displayed. For each gene, the percentage of 
510 tumors in the total HNSCC dataset with an alteration is reported to the left in blue (T). The 
percentage of the 110 laryngeal primary tumors in this dataset harboring an alteration in each 
gene is reported in red (L). The percentage of all HNSCC (blue) and LSCC (red) tumors 
harboring one or more mutations in any FAT gene are reported to the far left.27 B, Alterations 
identified in the laryngeal UM‐SCC cell line panel for FAT1‐4. This analysis considers available 
data for all 16 cell lines in this study, although exome sequencing was not performed for UM‐
SCC‐57 or 81A, and copy number data are not available for UM‐SCC‐11A, 13, 41, or 76. C, 
Schematic diagram describing proposed signaling interactions involving the FAT1 protein. 
Percentages of HNSCC tumors bearing alterations (amplifications, deletions, and mutations) in 
each gene are displayed below the gene name for LSCC only27 and the overall cohort (black). D, 
Alterations identified in the laryngeal UM‐SCC cell line panel for Hippo/YAP1 pathway genes.  
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Chapter 3 Functional Profiling of 17,000 Open Reading Frames for Identification of 
Drivers of PDL1 

 

Abstract 

 
Head and Neck Squamous Cell Carcinoma (HNSCC) is the sixth most common cancer globally 

and is often rapidly lethal, especially in the recurrent and metastatic setting. Recently, inhibition 

of the PD1:PDL1 immune checkpoint has been modestly successful in advanced disease, but the 

proportion of patients that benefit from these strategies remains limited. We therefore sought a 

more comprehensive understanding of the signals modulating the PD1: PDL1 checkpoint in 

HNSCC in order to gain insight into factors that may impact response to therapy.  Here, we used 

a genome-wide open reading frame (ORF) library of 17,000 transcript constructs corresponding 

to 14,000 unique genes, to screen for ORFs capable of driving high cell surface PDL1 

expression. We identify 335 ORFs that were enriched following sorting for PDL1-high 

expressing cells and validated five of these ORFs, including FGF6, IL17A, CD300C, KLR1C and 

NFKBIA. Further, we show that FGF ligand is sufficient to induce PDL1 expression as well as 

glycosylation, even in the absence of induction by interferon gamma. Small molecule inhibition 

of FGFR signaling also blocked interferon-regulated PDL1 expression through a STAT1 

independent pathway.  
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Introduction 

HNSCC is an extremely aggressive disease with poor overall survival that has remained 

unchanged for several decades [1-4]. The disease is molecularly characterized by overexpression 

of several receptor tyrosine kinases, human papilloma virus (HPV) status, and a complex array of 

genomic alterations that comprise a high mutational burden relative to many other cancers [5, 6]. 

Importantly, in the recurrent and metastatic (R/M) setting, HNSCC patients have exceptionally 

poor quality of life and extremely short survival outcomes, and novel treatment strategies that 

improve outcomes are desperately needed. Recently, the PD1:PDL1 immune checkpoint 

inhibitors pembrolizumab and nivolumab have gained FDA approval for use in the R/M HNSCC 

setting with response rates of 13-18% [7-10].   

Despite this advance, and the broad popularity of PD1 blockade across many cancer 

types, the complex molecular mechanisms that regulate PDL1 expression on tumor cells are only 

beginning to be understood. While interferon gamma (IFNγ), which may be released by T-

lymphocytes, has long been known to induce cell surface expression of PDL1, other often cell-

intrinsic signals have more recently been shown to induce PDL1 expression independently of 

IFNγ. For example, treatment of HNSCC cell lines with EGF induced PDL1 expression in a 

JAK2/STAT1 dependent manner, indicating that activation of EGFR, often overexpressed in 

HNSCC, may serve as an IFNγ- independent mechanism for PDL1 upregulation[11]. 

Furthermore, the EGFR effector STAT3 has been shown to be a potent driver of PDL1 

expression in genetically engineered HNSCC mouse models [12]. However, the relationship 

between EGFR expression and PDL1 expression is unclear, as various reports have produced 

conflicting results with regard to this question [13].  Thus, it is likely that multiple different 

mechanisms drive PDL1 expression in different settings.  
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Recently, whole-genome screening techniques, such as pooled CRISPR-Cas9 screens, 

have been adapted for a variety of applications to identify mediators of particular phenotypes 

[14].  These strategies often entail lentiviral delivery of pooled shRNA or RNA guided Cas9 

libraries to induce genome-wide disruption of gene expression. The cell population is then 

monitored for dropout of particular constructs, indicating the essentiality of their targets for cell 

viability.  Here, we have modified this scheme to utilize a genome-scale open reading frame 

(ORF) library for overexpression of 17,000 genes in a pooled format, from which we can select 

individual cells in which PDL1 expression has been induced. Through this novel high throughput 

profiling approach, we sought to identify novel regulators of PDL1 expression such that we may 

begin to understand heretofore undiscovered mechanisms that regulate cell surface expression of 

PDL1 in HNSCC.  We hypothesize that inhibition of PDL1 drivers may serve as an effective 

strategy to enhance the effects of immune checkpoint therapy for a subset of HNSCC patients.  

  

Materials and Methods 

Cell Lines and Reagents. All UM-SCC cell lines were derived and characterized in the Head and 

Neck Oncology laboratory at the University of Michigan after consent of the patient donors [15].  

The oral cavity and larynx cell lines studied in this report were selected from models with 

comprehensive integrated SNP array, exome sequencing, and transcriptome sequencing data 

recently completed by our team [16].  All cell lines were grown in exponential growth g in 

DMEM containing 10% FBS, 7µg/mL penicillin/streptomycin and 1% Non-essential amino 

acids in a 5% CO2 incubator. All cell lines were genotyped throughout the study to ensure 

identity as previously described [15]. 
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 Small molecule inhibitors were purchased from Selleck Chemicals and maintained in 

DMSO at -80C for a period of no more than 1 year. Interferon gamma (IFN-γ) was purchased 

from R&D and stored in PBS at -20C for no more than 2 months. FGF ligands were purchased 

from Thermo Fisher Scientific and stored in PBS containing 0.5% bovine serum albumin and 

stored at -20C for no more than 2 months. 

ORF Library transduction. The genome-wide ORF library was purchased from Sigma Aldrich as 

transduction-ready pool. We first determined the appropriate multiplicity-of-infection [17] by 

transduction of UM-SCC-49 cells, puromycin selection and cell count assays. Using an MOI of 

0.3-0.5, we then transduced the cell line, selected puromycin resistant clones and expanded the 

population.  UM-SCC-49-ORF library cells were maintained and treated in groups of no less 

than 6 million. After selection, small subsets were cloned out from control and treated 

populations to ensure enrichment of PDL1 expression in individual clones 

Flow Cytometry. Cells were stained for analysis by flow cytometry using the anti-PDL1 antibody 

#14-5983-82 against PDL1 or isotype control #14-4714-82 purchased from Thermo Fisher 

Scientific.  Antibodies were diluted to 0.5ug/mL in PBS containing 1% FBS with 1 million cells 

per mL.  Analysis and sorting were performed at the University of Michigan Flow Cytometry 

Core.  For UM-SCC-49 ORF library selection, cells were sorted on a Moflo Astrios cell sorter to 

select the top 2.0% of PDL1 expressing cells, expanded in culture, and sorted again to collect the 

top 11%.  

Library preparation.  Genomic DNA was harvested from control and sorted populations using 

the Gentra Puregene kit according to manufacturer’s instructions.  PCR amplification was 

performed for each of four primer sets in each sample.  These were pooled and a second round of 

PCR amplification was performed.  Primer sequences are listed in Table 3-1.   
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ORF Barcode Quantification. Adapter contamination in the samples was removed using 

Trim_galore (v 0.4.4).  For mapping the reads to the ORF reference library, seqmap(v 1.0.13) 

was used. Since seqmap requires FASTA files as input, all the read FASTQ files were converted 

to FASTA by extracting only the sequence information from the FASTQ files. All the FASTA 

files were also mapped to the reverse complements of the barcodes in the ORF library. The 

barcode counts obtained by mapping the reads to the ORF library were normalized based on the 

total read counts for a sample and the log2 fold change was calculated between the conditions to 

be compared.  Using the log-rank list of genes, we then uploaded the gene set into GSEA (MIT, 

Broad) to identify significant overlap with Hallmark, KEGG and GO biological process 

pathways with false discovery rate (FDR) q-value < 0.05 considered significant. 

Expression of ORF constructs. We purchased cDNA clones for CD300C, KLRC1, FGF6, IL17A, 

and NFKBIA from Geneocopeia, which did not produce usable lentivirus. Therefore, we cloned 

the genes into the PCR8 vector, confirmed the correct orientation and sequence by Sanger 

sequencing, and transferred the expression cassettes to pLenti6.0 using Clonase according to 

manufacturer protocol. Sanger sequencing was again used to confirm the orientation and 

sequence of the inserts, all of which were cloned without a stop codon such that the ORF of each 

construct would contain a c-terminal V5 epitope tag.  Lentivirus made from each of these 

constructs was then used to transduce UM-SCC-49 cells and blasticidin selection was used to 

create stable populations. 

Western Blots. Western blot analysis was performed as described [18]. Briefly, UM-SCC cell 

lines in log-phase growth were treated as indicated, rinsed twice with PBS, and then lysed in 

mild detergent buffer containing protease and phosphatase inhibitors (150 mM NaCl, 10% 
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Glycerol, 1% NP40, 0.1% Triton X-100, 1 mM PIPES, 1 mM MgCl, 50 mM Tris; inhibitors: 

Thermo 186129, 1861277) as previously described [19].   

TCGA transcriptome analysis. Log2(RSEM+1) values from TCGA Head and Neck Cancer 

cohort (n=566) were retrieved from the UCSC cancer genomics browser (xenabrowser.net).  

Correlations were calculated using Pearson r test, and linear regressions and box and whisker 

plots were generated using GraphPad Prism 8 software. 

HNSCC cell line transcriptome analysis. RNA sequencing was performed for 43 HNSCC cell 

lines using Illumina stranded transcriptome library kits as described in (Mann et al.)  Heatmaps 

were generated using MeV software version 4.9 based on log2(FPKM+1) values. 

Quantitative PCR. For qPCR analysis, cells were lysed in QIAzol and RNA was isolated using 

the QIAgen RNeasy Mini Kit (Qiagen, Hilden, Germany) according to manufacturer’s protocol. 

cDNA synthesis was performend using the Superscript™  VILO kit (Thermo Fisher Scientific, 

Waltham, MA, USA).  RT-qPCR was then performed using the Quantitect SYBR Green RT-

qPCR kit (QIAgen) and run using a QuantStudio™ 5 System (Applied Biosystems, Foster, CA, 

US).  Primer sequences are listed in Table 3-2. 

Results.  

 To begin our study, we first analyzed a panel of 6 UM-SCC cell lines to determine the 

relative level of total PDL1 induction driven by interferon gamma (IFNγ) by western blot 

analysis (Figure 3-1A). ImageJ intensity analysis of the bands demonstrated an average PDL1 

induction of 6-fold across the 6 cell lines, with UM-92 exhibiting the smallest induction of PDL1 

expression (2-fold) and UM-SCC-49 and 59 exhibiting the greatest (approximately 14-fold). For 

our screen, we chose to use the UM-SCC-49 cell line due to its ability to upregulate PDL1. 

Previously, several groups have characterized a JAK2- and STAT1-dependent mechanism by 
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which IFNγ drives increased PDL1 transcription and expression [11]. Thus, we confirmed that 

IFNγ induces STAT1 phosphorylation on tyrosine 701, indicative of activation (Figure 3-1B). 

Similarly, inhibition of JAK2 activity with TG101348 blocked both IFNγ-mediated STAT1 

phosphorylation and PDL1 expression in the UM-SCC-49, 92, and 14a models, supporting that 

the canonical IFNγ-regulated pathway is active in these models.  

 We next confirmed IFNγ-inducible cell surface expression of PDL1 in UM-SCC-49 cells 

by flow cytometry (Figure 3-2A).  As depicted in Figure 3-2B, we then created stable pools of 

UM-SCC-49 cells transduced with the 17,000 different open reading frame (ORF) constructs, in 

which each ORF contained an in-frame C-terminal V5 epitope tag, by lentiviral transduction and 

puromycin selection. Sorting of the population for the 2% of cells with highest PDL1 expression 

by flow cytometry was followed by expansion in culture.  A subsequent sort for the highest 11% 

was used to further enrich the population for ORFs that drove increased cell surface expression 

of PDL1 (PDL1high) (Figure 3-2C). To confirm that the approach was successful, we expanded 2 

clones from the unsorted population and 7 clones from the serially sorted population. 

Comparison of total and cell surface PDL1 expression between the clones and unsorted pooled 

ORF cells demonstrated a substantial increase in total PDL1 expression in all serially sorted 

clones relative to unsorted pools and clones, confirming that the overall strategy of enriching for 

this phenotype was successful (Figure 3-2D,E). Sanger sequencing of these clones revealed the 

ORF constructs listed in Table 3-3.  We then isolated DNA and created Illumina MiSEQ 

compatible libraries from the unsorted ORF pool and PDL1high population and sequenced 

libraries to a depth of >1.5 million reads per library. Mapping barcodes to the reference 

identified a ≥2-fold enrichment in 335 genes (Table 3-4) including IL17A, which has previously 
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been shown to regulate PDL1 expression in a murine model of breast cancer [20], supporting that 

our overall strategy was successful.  

 Detailed analysis of the results using gene family annotation of the overrepresented genes 

demonstrated a large increase in cytokines, transcription factors, and kinases in the gene set 

(Table 3-5), suggesting that the enrichment process may have identified ORFs that regulate 

PDL1 expression on multiple levels from transcription to autocrine stimulation.  We next 

performed gene set enrichment analysis on the rank list to identify potential over-represented 

pathways. This demonstrated a strongly significant 34 gene overlap with genes in the GO 

pathway: regulation of immune response (FDR q = 1.55 x 10^-7) demonstrating that the ORFs 

driving increased PDL1 expression in our model were also strongly associated with immune 

response in previously defined gene sets. Similarly, we observed enrichments within gene sets 

associated with “response to external stimulus,” “regulation of response to stress,” and “TNF 

alpha signaling driven by NFκB” (Table 3-6). Collectively, the gene set enrichment analysis 

supported the role of ORFs identified in our screen in the regulation of immune response 

pathways and also suggested that the ORFs drive PDL1 expression through mechanistically 

diverse pathways, some of which may be NFκB-dependent.  

 

Validation of candidate PDL1 drivers. From the top overall hits, we selected a diverse set of 

ORFs for subsequent validation experiments.  We opted to validate IL17A because it had 

recently been shown to modulate PDL1 expression in murine breast and lung tumors, but has not 

been studied in the context of HNSCC [20, 21].  We also interrogated TCGA HNSCC RNAseq 

data to examine expression of genes of interest nominated by the screen in relation to PDL1 

(Figure 3-3A). We discovered a number of genes nominated by our screen for which expression 
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positively correlated with PDL1, including CD300C (Pearson r =0.41, p<0.0001) and KLRC1 

(Pearson r=0.44, p<0.0001).  CD300LB, an uncharacterized gene related to CD300C, also 

weakly correlated with PDL1 expression in TCGA (Pearson r = 0.22, p<0.0001), and was 

enriched in the PDL1-sorted pool to a similar degree to CD300C, but we chose to first focus our 

analysis on CD300C due to its stronger correlation in TCGA.  We also proceeded with validation 

of two additional genes of interest that did not correlate with PDL1 RNA expression in the 

TCGA dataset: NFKBIA and FGF6, although, notably, FGF6 was undetected in the majority of 

the TCGA specimens.  We were intrigued by the finding of FGF6 in our dataset due to the 

known tumorigenic role for FGFR signaling in HNSCC and other cancers [22], and because 

EGFR, which acts through similar downstream mechanisms to FGFRs, was previously shown to 

regulate PDL1 in HNSCC [11].  We were surprised that our screen identified NFKBIA as a 

potential driver of PDL1 expression, as this gene is known to inhibit NFκB activity by blocking 

translocation of p65 to the nucleus, and NFκB is a known transcriptional driver of PDL1. Thus, 

we hypothesized that this gene might represent a false positive result of our screen.  

 The ORFs of interest were each cloned into a lentiviral vector with a c-terminal V5 

epitope tag and expressed in wild type UM-SCC-49 cells following lentiviral transduction. 

Western blot confirmed overexpression of the V5-tagged construct in each case (Figure 3-3B) 

and flow cytometry confirmed that each gene drove an increase in median fluorescence intensity 

of PDL1 cell surface expression in each case, which validated these genes as PDL1 drivers 

(Figure 3-3C). To then determine the effect of these constructs on total PDL1 expression, we 

cultured cells with or without IFNγ and characterized the changes to total PDL1 expression by 

Western blot (Figure 3-3D).  All ORF constructs led to increases in IFNγ-regulated total PDL1 

expression while only some increased baseline PDL1, suggesting that differences exist in the 
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mechanisms through which each gene regulates PDL1 expression. For example, some of these 

genes may modulate cell surface presentation of PDL1, while others modulate total PDL1 

protein expression.  

 Given that JAK2/STAT1 signaling is implicated in mediating PDL1 induction in similar 

HNSCC models [11], we then assessed the expression and phosphorylation status of STAT1 in 

each of the UM-SCC-49-ORF-V5 cell lines.  As shown in Figure 3-3E, STAT1 phosphorylation 

on Y701 in UM-SCC-49-FGF6-V5 is comparable to that in UM-SCC-49-LacZ-V5 in both 

untreated and IFNγ treated conditions.  Further, JAK2 inhibition using TG101348, a selective 

ATP-competitive inhibitor [23], blocked IFNγ-induced PDL1 expression in both cell lines, and 

reduced baseline PDL1 levels of UM-SCC-49-FGF6-V5, indicating that the JAK2/STAT1 

pathway may modulate FGF6-V5-induced PDL1 expression as well.   

 

Analysis of FGF/FGFR signaling in UM-SCC cell lines.  Given the immediate potential to 

advance FGFR inhibitors clinically, especially with genetic role of FGFR1 and FGFR3 in 

HNSCC pathogenesis [24], we next focused our study on the relationship of FGF/FGFR activity 

with PDL1 expression in HNSCC models.  RNAseq analysis of 40 HNSCC cell lines revealed 

high expression of FGFR2, FGFR3, and FGF11 across nearly all cell lines, with many also 

exhibiting high levels of FGF2, FGFR1, and FGFR4 (Figure 3-4A). UM-SCC-17B showed 

remarkably high expression of nearly all FGF ligands and receptors, with two interesting 

exceptions: UM-SCC17B had the lowest FGF11 expression of all cell lines assessed, and also 

did not have detectable FGFR1 reads.  Notably, FGF6 was not highly expressed in any of the 40 

cell lines; and, to ensure that we studied clinically relevant secreted ligands of the FGF/FGFR 

pathway, we next characterized publicly available HNSCC tissue expression data.  Importantly, 
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the expression of FGF ligands and receptors in the RNAseq HNSCC cell line data set was similar 

to the expression pattern observed in the TCGA HNSCC RNAseq data (Figure 3-4B). This 

analysis demonstrated that FGF receptors FGFR1, FGFR2, and FGFR3 were highly expressed in 

HNSCC tumors, which is consistent with previous data [25], and that the FGF ligands FGF2 and 

FGF11 were the most highly expressed FGF family genes in both the HNSCC cell lines and the 

TCGA cohort.  However, while FGF11 is not known to be secreted or interact with any FGFRs 

[26], FGF2 has been reported to promote growth, angiogenesis, survival, motility, and cell 

proliferation in numerous in vitro and in vivo models of HNSCC and other cancers [27, 28].   We 

next asked whether expression of any FGF ligands or receptors correlated with PDL1 expression, 

but found no positive correlations and surprisingly, weak negative correlations for FGFR1 and 2 

(Figure 3-4C).  Thus, it was important to understand the role of activated FGF receptors in our 

models.  Due to its stability in cell culture media and frequent expression in HNSCC tumors and 

cell lines, we focused our subsequent analysis on FGF2.  We treated UM-SCC cells with 

recombinant FGF2 (rFGF2) to assess its effect on PDL1 expression, and to understand whether a 

role for FGFRs in regulating PDL1 could be recapitulated across multiple models.  In UM-SCC-

92 and UM-SCC-14A, rFGF2 induces total PDL1 expression, even in the absence of IFNγ 

stimulation, further supporting the ability of FGF/FGFR signaling to promote PDL1 expression 

in HNSCC (Figure 3-4D).  

 

Modulation of FGFR alters PDL1 expression.  To assess the role of FGFR signaling in UM-

SCC-49-FGF6-V5 cells, we pretreated UM-SCC-49-FGF6-V5 or UM-SCC-49-LacZ-V5 with 

either BGJ398, an inhibitor of FGFR1, 2, and 3 [29], or PD173074, a specific inhibitor of 

FGFR1 [30], then added IFNγ to the cell culture media as indicated and incubated for 72 hours 
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(Figure 3-5A).  BGJ398 reduced both baseline and IFNγ-induced expression in both UM-SCC-

49-FGF6-V5 or UM-SCC-49-LacZ-V5.  Likewise, PD173074, also reduced PDL1 expression, 

but had a greater impact on IFNγ-induced total PDL1 protein expression in UM-SCC-49-FGF6-

V5 than UM-SCC-49-LacZ-V5 cells (Figure 3-5B).  The ability of FGFR inhibitors to modulate 

IFNγ induced PDL1 expression was also recapitulated in certain other cell lines, including UM-

SCC-14a (Figure 3-5C).  These data suggested that baseline FGF/FGFR signaling through 

FGFR1 plays an important role in modulating IFNγ-induced total PDL1 protein expression, and 

that situations with accentuated FGF ligand in the microenvironment may further potentiate the 

effects of IFNγ on tumor cells.   

To then better understand the interplay between the FGFR and IFNγ signaling pathways, 

we tested RNA expression of various downstream targets of FGFR and IFNGR activation by 

qPCR in UM-SCC-49 and -14a. At this time point, both IFNγ and rFGF2 induce an increase in 

PDL1 RNA (2-fold and 1.3-fold, respectively). We observed that RNA expression of genes 

regulated by IFNγ in other model systems, such as STAT1, IRF9, SOCS1, and SOCS3 [31], were 

indeed induced 2-4-fold by IFNγ treatment, but not by rFGF2 (Figure 3-5D,E). Instead, rFGF2 

appears to induce a separate transcriptional program that included 1-3-fold upregulation of 

CXCL8 and SPRY.  Jak2 inhibition by TG101348 reduces RNA expression of both the IFNγ- and 

rFGF2-regulated gene sets, while BGJ398 reduced RNA expression of only the rFGF2-regulated 

gene set.  PDL1 RNA expression, however, is induced 2-fold by IFNγ and this induction is 

diminished in cells pre-treated with BGJ398, consistent with protein-level data above.  Also of 

interest, despite the known ability of FGF signaling to activate the Jak/Stat pathway, only IFNγ, 

not rFGF2, induces STAT1 RNA expression in this setting.     
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Finally, because glycosylation of PDL1 is known to prevent its degradation in other 

model systems [32], we asked whether the rFGF2-induced increase in PDL1 may be due to 

glycosylation, and therefore stabilization, of the protein.  When we treated UM-SCC-14a with 

tunicamycin, an inhibitor of N-linked glycosylation [33], we observed a dramatic decrease in the 

ability of rFGF2 to drive PDL1 expression, and an accumulation of 33kD PDL1, which 

represents the non-glycosylated form (Figure 3-5F) [32].  Two recent studies in breast cancer 

cells describe a dual role for EGFR in stabilizing PDL1 protein. EGFR activity and can induce 

upregulation of B3GNT3, an enzyme that catalyzes PDL1 glycosylation, and may promote 

inactivation of GSK3β, a kinase responsible for targeting PDL1 for E3 ligase mediated 

degradation [32, 34]. We therefore speculated that FGFR signaling may act through analogous 

mechanisms to stabilize PDL1.  To understand whether the EGFR-induced mechanisms 

described in breast cancer cells might also be at play in our system, we assessed expression of 

several glycosyltransferases reported to be upregulated by EGFR to determine whether FGFR 

signaling could regulate a similar program in HNSCC.  While we noted very modest increases in 

some of the N-acetylglucosaminyltransferase family genes that we tested, including B3GNT3, 

MGAT5, and GNPTAB following IFNγ or rFGF2 stimulation relative to a vehicle control, it was 

unclear from these data (n=2) whether FGFR inhibition could modulate this effect due to high 

error among technical and biological replicates (Figure 3-5G). 

 We next monitored PDL1 expression and inhibitory phosphorylation of GSK3β on 

serine 9 following either stimulation with EGF or pharmacological inhibition of EGFR with 

gefitinib.  Interestingly, we were able to recapitulate the effects reported by Li et al [32], 

demonstrating that EGF indeed increased PDL1 protein levels and that gefitinib treatment led to 

a reduction in phospho- GSK3β at 6h (Figure 3-5H).  However, neither pan-FGFR inhibition 
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nor stimulation with rFGF2 affected GSK3β phosphorylation, suggesting a different mechanism 

may mediate the effects of FGFR signaling on PDL1 expression.    

 

Discussion 

HNSCC is a strongly immunosuppressive disease for a majority of patients, and 

understanding the molecular mechanisms that guide immune escape are critical to developing 

therapeutic strategies that create a more favorable tumor niche. Here, we are the first to perform 

a genome-wide ORF screen as an approach to identify novel PDL1 regulatory mechanisms. 

Importantly, our data identified several genes previously known to regulate adaptive PDL1 

expression in other models, including IL17A, which supported the accuracy of the overall 

discovery approach. For example, inhibition of IL17A in ER-negative breast cancer models has 

been shown to inhibit PDL1 expression [20]. HNSCC has previously been associated with high 

TIL infiltrates [35-37], and specifically serval reports have documented significant increases in 

TH17-cells, which express high levels of IL17A, in both pre-malignant oral lesions [38] and 

HNSCC tumor microenvironment [39, 40], supporting a critical role for IL17A-mediated PDL1 

expression in these settings.  

Similar to the known regulators, our experiment also identified several novel genes 

closely linked to pathways known to regulate adaptive PDL1 expression in other cancer settings 

including the NFKB pathway (NFKBIA) and FGF/FGFR signaling pathways (FGF6). In fact, 

while NFKB signaling is one of the most well recognized regulators of adaptive PDL1 

expression discovered thus far [41-46], NFKBIA has not previously been linked with the 

regulation of PDL1. In the HNSCC TCGA project, NFKBIA is amplified in 8/517 (1.5%) cases, 

and a recent independent report also demonstrated a significant enrichment of NFKBIA 



 
 
 

 117 

alterations in HPV+ squamous cell carcinomas with 12/149 (8%) harboring either mutations or 

CNV alterations to the gene [47]. Hence, given our validation of NFKBIA as a driver of IFNγ-

induced PDL1 expression in HNSCC models, the overall data supports a pivotal role for this 

gene in modulation of immune reactivity in HPV+ HNSCC.  

Further, we and others have also previously identified FGFR signaling as a driver 

pathway of some HNSCCs [24, 48-51], and FGFR1 protein has been observed to be 

overexpressed in >80% of HPV+ HNSCCs and 75% of HPV- HNSCCs [51] suggesting an 

important role for the pathway in a large subset of the disease. Similarly, FGFR signaling has 

been shown to be upregulated in HNSCC cancer stem cell (CSC) populations in response to 

platinum-based therapy in vitro [52]. When considering our data showing the strong regulation 

of PDL1 expression by activated FGF/FGFR signaling, the data support the hypothesis that 

cisplatin-mediated adaptive FGFR1 expression may activate the PDL1 checkpoint in the CSC 

population in some tumors, thereby preventing immune-mediated killing of the CSC population. 

Indeed, while we show a strong dependence of PDL1 expression on FGF/FGFR signaling in 

some cell line models, and the CSC data suggest that other common HNSCC therapies such as 

platinum-based regimens, may also induce FGF/FGFR-dependent activation of the PDL1 

immune checkpoint. As such, our finding may have implications for a larger subset of HNSCC 

patients. To understand the link between FGFR and PDL1, a more comprehensive study of these 

pathways will be necessary.  Proteomic and transcriptomic analysis following FGF/FGFR 

modulation, and comparison of these data to IFNγ stimulation, will be valuable, especially in 

clarifying a potential node of crosstalk between IFNγ and FGFR signaling cascades.  Further, it 

will be of interest to examine the posttranslational modification status and stability of PDL1 

under these conditions in more detail.   
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Overall, the approach discovered 335 enriched genes that potentially drive PDL1 

expression in HNSCC, of which we validated a few genes as novel drivers including two which 

are genetically linked to subsets of HNSCC patients. The data support the use of ORF profiling 

as discovery technique to complement the previously published functional approach of CRISPR 

profiling that also successfully discovered novel PDL1 regulators. Indeed, we are in an exciting 

time when multiple complementary discovery approaches can be used to help understand to 

combat the immunosuppressive tumor microenvironment of HNSCC and other tumors and 

hopefully develop rational combination approaches to improve survival outcomes.  
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Figures 

 

Figure 3-1. Characterization of UM-SCC HNSCC cell line models.  

A) Cell lines were treated with 10ng/mL IFNg for 72 hours and total PDL1 expression was 
assessed by immunoblot (upper).  Densitometry analysis was performed in ImageJ with PDL1 
bands normalized to corresponding beta actin bands.  Relative expression was then calculated by 
dividing IFNγ treatment by untreated (lower).  B) PDL1 and STAT1 were assessed by 
immunoblot after 72h treatment with 10ng/mL IFNg with 6h DMSO or TG101348 (2uM) 
pretreatment. 
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Figure 3-2. Discovery of ORFs that drive PDL1 cell surface presentation in HNSCC.  

A) Cell surface expression of PDL1 in UM-SCC-49.  UM-SCC-49 cells were treated -
/+10ng/mL IFNg for 72h, trypsinized, and stained for cell surface expression of PDL1.  B) 
Schematic of overall project workflow. UM-SCC-49 cells were transduced with the 17,000 gene 
ORF library at an MOI of 0.3 and selected with puromycin. Cells were then serially sorted for 
the top 2% of PDL1 expressing cells in the population. PCR amplified barcodes from the 
genomic DNA of PDL1 enriched or control populations was then sequenced on an Illumina 
MiSEQ for quantification. C) Sorting UM-SCC-49 ORF library for high PDL1 expressing cells.  
The UM-SCC-ORF library cells were stained for cell surface expression of PDL1 and the 2% of 
cells with highest PE positivity were selected and expanded in culture (top).  The select 
population was then subjected to staining and sorting again, this time with the top 11% collected 
for sequencing (bottom right). The initial ORF pool was also analyzed for PDL1 expression for 
comparison (bottom left).  D) Clones from the PDL1 enriched population were expanded and 
used to confirm high total PDL1 expression in each clone by Western blot.  E) A subset of the 
clones from (E) were immunostained for PDL1 and analyzed by flow cytometry.  Dashed line 
represents MFI for UM-SCC-49-LacZ-V5. 
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Figure 3-3. Validation of FGF6, IL17A, CD300C, KLR1C and NFKBIA as drivers of PDL1 
expression in HNSCC.  
 
A) Linear regression analysis reveals correlations with PDL1 expression in TCGA HNSCC 
RNAseq data.  B) Lentiviral ORF-V5 tagged expression vectors were cloned and used to 
overexpress each of five candidate genes and one control (LacZ) in UM-SCC-49 cells. 
Expression of V5 tag was confirmed in each cell line by anti-V5 immunoblot.  Expected 
molecular weights of protein products are as follows: LacZ. 121kD; KLRC1, 31kD; CD300C, 
29kD; IL17A, 22kD; NFKBIA, 40kD; FGF6, 28kD. C) Quantitative PCR was used to assess 
mRNA expression for target ORFs in each cell line as well as PDL1 transcript levels.  D) Flow 
cytometry was used to determine changes to cell surface presentation of PDL1. Median 
fluorescence intensity was quantified from each histogram. E) Changes to total PDL1 and 
phosphorylated STAT1 were analyzed by western blot in each 49-ORF cell line. E) 49-LacZ and 
49-FGF6 were pretreated with DMSO or JAK1/2 inhibitor TG101348 (2uM) for 6h, followed by 
addition of IFNγ (10ng/mL) as indicated.  Cells were harvested 72h after IFNγ treatment.  PDL1 
expression, p65 activation, and STAT1 activation were assessed by immunoblot. 
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Figure 3-4. The FGF/FGFR pathway in HNSCC.  

 A) Log2(FPKM+1) for FGF and FGFR family genes in 40 HNSCC cell lines.   B) 
Log2(RSEM+1) for FGF and FGFR family genes in the TCGA Head and Neck PanCancer Atlas 
dataset accessed via cbioportal.org.   C) Protein isolate from UM-SCC- cell lines in log-phase 
growth was immunoblotted using an antibody directed against FGF2.  D) UM-SCC-14a and 
UM-SCC-92 were treated -/+ 30ng/mL FGF2 or 10ng/mL IFNγ for 72h.  PDL1 expression was 
assessed by immunoblot. 
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Figure 3-5.  Effects of FGFR modulation.  

UM-SCC-49-LacZ-V5 and -FG6-V5 were pretreated with DMSO or 3uM BGJ398 (A) or 3uM 
PD173074 (B) for 6h, then 10ng/mL IFNg was added to the cell culture media.  Protein 
expression was assessed after 72h by immunoblot.  C) UM-SCC-14a-WT cells were pretreated 
with 3uM BGJ398 or PD173074 for 6h, then stimulated with IFNg for 72h prior to 
immunoblotting.  D,E) UM-SCC-14a cells were pretreated with DMSO, Fedratinib or BGJ398 
for 3h as indicated, then 10ng/mL IFNg or 30 ng/mL FGF2 was added for an additional 3h.  F) 
UM-SCC-14a cells were pretreated overnight with 50ng/mL tunicamycin or DMSO control for 
6h, then 10ng/mL, 30ng/mL IFNg or rFGF2 was added as indicated.  PDL1 expression was 
assessed by immunoblot.  Arrow points to 33kD band.  G) UM-SCC-14a cells were treated for 
3h with 3uM BGJ398, then IFNg or FGF2 was added.  RNA expression of candidate 
glycosyltransferases was assessed.  H) Cells were pretreated with inhibitors as indicated at 3uM 
(TG101348, FGFR1; BGJ398, pan). 
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Tables 

 

 

Table 3-1. PCR primer sequences for amplification of ORF library.   

 

 

 

 

 

 

 

  Sequence 

Fi
rs

t R
ou

nd
 

ORF_F1 actgGCTTTATATATCTTGTGGAAAGG 

ORF_F2 cagtGCTTTATATATCTTGTGGAAAGG 

ORF_F3 tgacGCTTTATATATCTTGTGGAAAGG 

ORF_F4 gtcaGCTTTATATATCTTGTGGAAAGG 

ORF_R1 actgGTAATCCAGAGGTTGATTGTC 

ORF_R2 cagtGTAATCCAGAGGTTGATTGTC 

ORF_R3 tgacGTAATCCAGAGGTTGATTGTC 

ORF_R4 gtcaGTAATCCAGAGGTTGATTGTC 

Se
co

nd
 

R
ou

nd
 AmpFW_  5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCTTTATATATC-3’ 

AmpRV_  5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTAATCCAGAGG-3’ 
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Gene Forward Reverse 

TLR2 AGCAGGATCCAAAGGAGACC ACCAAGGTGGTTTGCTGAGT 

GAPDH AATGGGCAGCCGTTAGGAAA GCCCAATACGACCAAATCAGA 
PDL1 AGTCAATGCCCCATACAACAA CGTCACTGCTTGTCCAGATGA 

MYD88 GACTGCTCGAGCTGCTTACC ACATTCCTTGCTCTGCAGGT 

IRF7 GCCTGGCCACCATAAAAGCG TGTTGAACCAGTGTCCAGGC 

STAT1 AAAATGCTGGCACCAGAACG AGAGGTCGTCTCGAGGTCAA 
B3GNT3 GCAACGCCTGTCCTCCTTTG AAGGTGTCGCCCCTTCCTAT 

GNPTAB CCAGTTCGGAGAGGTGGTTC ATCTGTGCCATTCACCCAGG 

MGAT5 CATGGTATCCTCAGTGGACGG TGGGATGTCAGCTCTCTCAG 

Table 3-2 qPCR primer sequences 3’ to 5’ 

 

 

 

 

 

 

 

 

Table 3-3. Open reading frames identified by Sanger sequencing in cell lines derived from 
sorted ORF pool. 

 

 

Clone # ORF 
A SLC10A7 
B CTH 
1 SENP8 
2 SENP8 
3 PPIAL4G 
4 CNR2 
5 DPF3 
6 TMEM25 
7 ZNF550 
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ENRICHED ORFS IN PDL1 SORTED POPULATION  
Barcode Gene Control 

# 
PDL1 # Total Read 

Count 
Normalized 
Ratio 

Log2 
(N. 
Ratio) 

1 ACTTCATCAGCAGTGAGAATTCCA ERO1L 7 10889 1208 10.2 
2 CACGACGACATGGGTTATATCGAA NUP85 3 4378 1134 10.1 
3 AGATCAACGCGCCCATACGCACAT OR2L2 15 19065 987 9.9 
4 GCAGGATATTGGTTACATCGACCT TDP2 120 111075 719 9.5 
5 CCGAACACCCTCTAACTCGGCCTC ATF7 352 290057 640 9.3 
6 AAGAATATGTGGTAGTGCTTGATG AMT 48 29441 476 8.9 
7 TGTACACTCGGTGTGATTTGTAGT GSTO1 245 146097 463 8.9 
8 GATCGTATTAACTAGGCTAATGGC SPACA3 5 2513 390 8.6 
9 AATTCCCATTGTGATTGGGCCTGC ZNF101 52 19317 289 8.2 
10 ACCACTAAGGGACAGCAAACCTTC HNF4G 158 53187 261 8.0 
11 TGGCTCATAGCACCATACCCTCCT PPP1R2 99 31497 247 7.9 
12 CTTAGTCTTCATCCTCGTCTTATT FAM209A 1 293 228 7.8 
13 ATGAGCCTTATTGGAGGCTGAAAT LINC00242 129 33748 203 7.7 
14 CCACCTTCCCACCCTCACGAACGA ENOSF1 9 2159 186 7.5 
15 AGAAGGCACGCTTCAGCCGCGCCG ZFHX2 216 48351 174 7.4 
16 ATTATGTTTAGAACTAATATCTAG ZNF581 132 28361 167 7.4 
17 AACCGATGCCTTAAAGGGTAGTCC TALDO1 29 5796 155 7.3 
18 TGTACCCGCGAGTCTCCACACCGT HTR2C 1 178 138 7.1 
19 TTTAAGATTTCTGGGCTTCCCCCT ABHD12B 5 850 132 7.0 
20 ACTAAATTCAGTGATGCCACATAC C8G 93 15030 126 7.0 
21 TAAGCGAATAGTACCAGGGGTTGA DNASE1L1 88 13212 117 6.9 
22 CAGTGACTTATCGTATTTGTCTGA DNM1 2 290 113 6.8 
23 CTGATTCAGACAACGAGCATCAAC CTSL1 125 16125 100 6.6 
24 TCTCTTGGGAGGTGCATTCGATCA PPIAL4G 122 15117 96 6.6 
25 GCCCATCCAGCATGGCGGATTCCC EFNA1 87 10319 92 6.5 
26 ACAGCACTAGCAGGAACCTGGACT TMED4 203 22053 84 6.4 
27 CAACACGAGGCCATACATTGCTTA PRKAA1 23 2471 83 6.4 
28 TCATTGCTGTACATCTAGAGTTCG S100A1 6 618 80 6.3 
29 CTGTATAGACTGGCCGTCGAACTT KRT23 12 1225 79 6.3 
30 ATCGCTCCCTTCACAGTAAGCATA C1ORF49 53 5353 78 6.3 
31 TAGACGGTTTTATACGCTCAGCCA EFHD1 100 9775 76 6.2 
32 TAGAGGAAAGAATACAGGATCTAC DLX6-AS1 397 38327 75 6.2 
33 TAACTTGACGAAAGGACCCTGTGC EIF4B 14 1328 74 6.2 
34 CAAATCGCCTGACCCCAATAAAGA BOD1P 12 1095 71 6.1 
35 AACCCGCAACATGCCCGGTGGTCA CPEB1 5 436 68 6.1 
36 TAGTACCAAAAGCTTAACAGCGTT ATCAY 26 2176 65 6.0 
37 CTAGACATACATGATGCGGCACCT ADORA2B 92 7575 64 6.0 
38 CTATAAGAGCTCAATCACTGCGGA TCN1 10 804 62 6.0 
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39 TTAGCTCCGTGCCGCGATATGAAA BDNF 36 2867 62 6.0 
40 AGAGTCCATTCTCCCACTATGCCC REP15 227 17349 59 5.9 
41 ACTTTTCCCGCTTGTCCTGCCCCC GRK6 1 74 57 5.8 
42 CCTGTTTCCCCCGACCCTGAGTCG RASA3 2 138 54 5.7 
43 AATTAACTGTTCATCCGAGTCTTT ZCCHC9 1 68 53 5.7 
44 GTGTTCCCCGCGGTCTGGCGAACG TP73-AS1 81 5274 51 5.7 
45 TTAACTTCAATTCTCTTTTTAATT DIMT1 21 1294 48 5.6 
46 CCTGGTTGCCCCTCTAGGGCTTGA DPY19L2P1 151 8998 46 5.5 
47 GCCACTTTGTAGGCGCCATTCGAC CAPN1 1 59 46 5.5 
48 CACTATATCAATGTTTCCATTCGT FAM78A 8 462 45 5.5 
49 TACCTGATAATGGCACCATGCAAA DEFB129 259 13571 41 5.3 
50 CCAATCAACCGGGCCCCGAAACTC CDK16 10 522 41 5.3 
51 CACCCTATCGTCGAGGTCGACTGC PRAMEF5 63 3288 41 5.3 
52 TCAGCCTACCATCAACTTCGTATT SET 1 51 40 5.3 
53 AAGCTGGGATTACTTCTGTACGGC EEF1G 133 6536 38 5.3 
54 AAGTGGGAGAGTAAGTGCCTGGTC PRB4 371 18019 38 5.2 
55 TTCGTACTCCGGTTCCTGTGCTTC RHOG 213 10224 37 5.2 
56 GGCATATGTCCTGACATCTGGCAG CHIA 111 5244 37 5.2 
57 CCGCATAAGGCCAGATCGGTGCTC CAMLG 43 1997 36 5.2 
58 GATACCATACGACATCCTGTTCAC CCNL1 13 598 36 5.2 
59 ACCTACCTCCTGACACATCAACTT CNBP 216 9539 34 5.1 
60 CCTCACAGTACTTGCCATCCTGAC RBX1 278 11605 32 5.0 
61 AGCAGAACCCTTAAAAGCTCGAGT CST8 227 9049 31 5.0 
62 TGTTGAATCGGTAACGATGACCTG CDX4 24 942 30 4.9 
63 TGCCCGTGTTCTCCATCAGGTTTA TRIM72 1 39 30 4.9 
64 AACTATTAGTGCCCGAGTCATCCC CD82 57 2195 30 4.9 
65 GTTTGTTCTAAACATTGCGACATC ZNF578 9 339 29 4.9 
66 TACACACCCTTCTTAGCCATTCAT NFKBIA 242 9003 29 4.9 
67 TCGGAAACCAGAACTATTAGTATA RHPN1 3 111 29 4.8 
68 CTACAATTTCTGTTCTGCACCTTA ASIC1 18 659 28 4.8 
69 TCCAACACAGCGAGCCTCTTGGCT TNFSF11 79 2841 28 4.8 
70 CACGCCCACCCGTGCCAGGACTAC OR7E91P 45 1617 28 4.8 
71 TCAAGATACCCTTGACCAAATGTT ZNF550 25 883 27 4.8 
72 ATTAACAACCATCCTGTCCTGGCC C1QTNF2 255 8720 27 4.7 
73 TTTAGACTGGTTTTGTAAGAGACC UFSP1 152 5090 26 4.7 
74 ACCGAGTCCGAATAGTTTATTCAG HOOK1 23 764 26 4.7 
75 GTCAACTGGGGCATCTGGCACCTC ARHGEF26 222 7316 26 4.7 
76 AGCTCAATCAACTCAACCTTACAA KLRC1 101 3228 25 4.6 
77 CCCTATGAAGGCCTGAAGCGGGCA METTL21A 464 14778 25 4.6 
78 GCACCGATACCGATCCCCCCAATC GALNT10 147 4385 23 4.5 
79 GTAGGTGCAAACGCGAGACAGACC MAS1 168 4858 22 4.5 
80 TTCAAAGAACAGGAACGGGCTCAT FMN1 33 943 22 4.5 
81 CTGGCATGCTAACCAAGTACACGC CDH26 306 8694 22 4.5 
82 CAAAGGCCTAAGAGGACAGAGAGT ORAI1 185 5160 22 4.4 
83 TCTTGCTACCGGTGACATTCTCCG KCNJ15 51 1420 22 4.4 
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84 TGAATTGTCGCCCCCAGATACACC ZCCHC10 208 5745 21 4.4 
85 GCCTAATTCGTGACGTCCCCAAAT DCLRE1B 10 276 21 4.4 
86 TTGCCGAACCGCGCACTCAGAATC PIAS4 15 385 20 4.3 
87 ACGCGCCCGATCCCCACTTCCAAT ANXA11 74 1865 20 4.3 
88 ATAGAACGTGACCAATCGTTGTTT PIPOX 20 491 19 4.3 
89 GCTGTAGTGTGCCCGCTGAGGCCT PRKCZ 9 218 19 4.2 
90 ACCAGAATGATACCTTGATCTCAC GPBAR1 8 191 19 4.2 
91 GTGATACCTCCTTCTCCCGACCCA ASPDH 65 1547 18 4.2 
92 CCATTCCACCTAGAGAATTTATAC P2RX2 1 23 18 4.2 
93 CGTCATTATATTCCTCTCCAGGAT KIAA0284 55 1233 17 4.1 
94 ACTTCCTGGAGAGGGGCTAACAGT WBP2NL 200 4481 17 4.1 
95 CTTAATAAGTCGAAATCCGAGGAC GPR139 13 290 17 4.1 
96 TGGCCCATCAAACGAGCCTTATTT AKR1B1 46 1011 17 4.1 
97 GAGGATGTCACACCACGATATCAT SLC22A11 27 581 17 4.1 
98 CTTGCCCCCATCACCCATATTTCT CMTM2 339 7270 17 4.1 
99 ACACCGGTCTGCTCCCGATCGGGC TNFAIP2 85 1805 16 4.0 
100 TCGACGGACATGGGAAAGATCAAC REEP5 142 2956 16 4.0 
101 AACCTTACTAATAGCTTGGTTGCC CCDC138 9 187 16 4.0 
102 AGCAATCTTACCGGAGCAGTTACA CEACAM8 18 373 16 4.0 
103 TCAGAGCAATATCCCATAATCAGT RUVBL1 109 2242 16 4.0 
104 TTGATTTCCAGTGCGAGAAGACCG HMX2 16 316 15 3.9 
105 ATTGTCAATGGTTTGATCTCAGCA FOS 99 1952 15 3.9 
106 TTCCGCCCTGTATTCCGGTACGTC ENTPD2 8 156 15 3.9 
107 TATATGTCTGAATACTCCGATCAG OR14J1 4 78 15 3.9 
108 AAGCACATCCGTTGTGCGCACAGA BAMBI 19 359 15 3.9 
109 ATCGAGGGTCCACGTACCTGTACT RABL2A 113 2132 15 3.9 
110 CATCACATATAAATGAGGACATGG STRN 10 184 14 3.8 
111 ACCTTAGACGCTCCTTTTCGCTGA TAC1 97 1764 14 3.8 
112 TCTCATCTGTCCCTGGCCCCGTAA TERF2IP 16 285 14 3.8 
113 ACGCCGAGATCCGCATAAGCCGTA GLO1 76 1350 14 3.8 
114 CCATCCTTACCAGAAACAACTCCC UBE2W 102 1800 14 3.8 
115 ATCACAACTATCGTTATTTACCGC KCNAB2 11 194 14 3.8 
116 GGTCGAATGGTCGCATTAGATTCC HIST2H2AA3 91 1592 14 3.8 
117 CATCATTCGCCTCTATCAACAATA ZNRD1 82 1424 13 3.8 
118 ACTTGCATCCTGCCCCAGAGGCTG OR56B1 8 132 13 3.7 
119 TCTGAAAAACTCCGAAATAGCAGA HINFP 47 768 13 3.7 
120 AACTACTATGGGGCCTTGCACCTT RHBDD2 160 2599 13 3.7 
121 TCGACAGCACTCACGGGTTAGCAG LINC00482 48 767 12 3.6 
122 TAATTAACCGTTTGAACTGCAACT SAMD10 44 690 12 3.6 
123 ACTGAGCAAGTCCCCCTTCCTATA C7ORF42 112 1755 12 3.6 
124 GTTCGGAGAGGCTCTATGGTTGGG DUSP10 61 953 12 3.6 
125 CAGCCTTAAACAGACTTCATAAGC HSPA8 56 865 12 3.6 
126 CCGCAGGTCTTCTGTTTTTAGGAT FAM71B 17 262 12 3.6 
127 TTCTAACCCCTTTGTAGACCAATG HIST2H2BA 443 6778 12 3.6 
128 CTGAGGCAGCGTCGGCTATTCGCA MST4 217 3280 12 3.6 
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129 AGCCAATTATCCTGTTGTGTCCCG ANAPC16 222 3188 11 3.5 
130 GTTCGCTAAATCCGTTCTCCCGGC LRRC52 74 1061 11 3.5 
131 ACGCTCAATGAGTGCACGCTCACC PCSK9 94 1324 11 3.5 
132 TTGTCTTCTATTATGAGTTGCGTA CXCL5 43 596 11 3.4 
133 GCTTCTCTAGTGAAAGTAATTTTG FMR1 14 189 10 3.4 
134 ATAACCAAGTTATGGAAACAGGCC CPSF4 97 1305 10 3.4 
135 GGGACCATAATGGCGATCCATTAG AREG 6 80 10 3.4 
136 TCCCGTGTGAATATTTTGGCCTTT DHPS 68 903 10 3.4 
137 AGTTGTGCCCCTCGGAGTGCGCCA GPAA1 2 26 10 3.3 
138 CCTAGACTGTACCTCCCATGGACC COQ4 219 2814 10 3.3 
139 TAGTGTTCCCTCCATCTATCGAAG TMPRSS12 6 77 10 3.3 
140 GTAGTACAATACCCCGAGTCGGAA GJA4 35 443 10 3.3 
141 CATGCGCTACTTAATTGAAGTGCC BCMO1 13 163 10 3.3 
142 TTATATTCCCAGTAGGGCTAGGAG CLDN7 12 148 10 3.3 
143 ACGATCAACCTGCGTTTTCCCGCA APOPT1 175 2091 9 3.2 
144 CGCAGGTTGCACAGAATGCTCGGT EPB41L1 27 319 9 3.2 
145 CGGCATTCCGTCAATTGCCGAACT PMCH 67 777 9 3.2 
146 CGCAAATACTTTCGGATGGCATCC C1ORF64 212 2424 9 3.2 
147 TCAGTACTAGGAAGGTCTCTACGA MAX 73 828 9 3.1 
148 GTCCGTTTAAGAACGTTTCGGCAC C11ORF31 158 1789 9 3.1 
149 TTATCATTCTGGGGATGGCAGGAG PLEKHB2 124 1401 9 3.1 
150 CCCTCCCAGTGTTGACTGTATTCC GCNT3 60 667 9 3.1 
151 GGGCGTGAGATAAAAGTGTAAAAT MTERFD2 85 929 8 3.1 
152 TAGGGTATAATAGATGATCCTGCC ST6GALNAC6 29 315 8 3.1 
153 CTTAGCCAATGGGTGCATCCGTGG OR51G2 18 195 8 3.1 
154 AGCAGACGTTGCATGCGCAATTCA RANBP10 67 718 8 3.1 
155 CCGCAGTCCCCTTCGCCGGAGATC GFOD2 42 446 8 3.0 
156 GCATGGGCCGAGCGCATTTCGCGG FAM27E2 275 2793 8 3.0 
157 ATTCGCGGCTATGCAGGGGCACTA RHBDL2 5 49 8 2.9 
158 CATAGTAGCGCACTACAGTTTAGC REEP6 26 251 7 2.9 
159 ACTTCGACGTCTGGAACCAGTCTC C1ORF158 90 857 7 2.9 
160 TTTGGCATCCCCCCTGTAGTGCGC ZNF689 71 675 7 2.9 
161 ACAGGATACATGATTACATGCCCC SHMT1 11 102 7 2.8 
162 TCTAAACGAACGCATCCCTGCCCT PF4V1 34 313 7 2.8 
163 TATAAGGCACCCAATAACCGAGAT RORB 70 638 7 2.8 
164 CTGCGACGCGGTACTGACGAATAT C11ORF63 74 659 7 2.8 
165 ACTGGGTCACAGTAGTGATTACCC TGIF2 317 2810 7 2.8 
166 CTTCGTGACAATACCTTTCGGAAT CDK2 11 97 7 2.8 
167 GCCCAGCTACACAACCAAGTTGCC PYY 488 4288 7 2.8 
168 GGGTCAGTAGTGGATGTACCAGTA LOC554223 53 457 7 2.7 
169 GCAAAGACACGTAGACGATAAGCC FAM83A 62 515 6 2.7 
170 ACACAAACGCTCATCAGCCCTGGC CD300LB 127 1048 6 2.7 
171 TGACGTCCGTCCCAGACCGTCTGC GRB7 39 314 6 2.6 
172 GAATTTGTCGACGTGCTTTGAGGA TRIM52 65 521 6 2.6 
173 CATATCACCAAATTTATTCCGAAC KIRREL3-AS3 107 851 6 2.6 
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174 TTGACTTTGATGTATCAGATCTAC CD300C 162 1253 6 2.6 
175 ACAAATTCCGAGATAGACGTCCAA DCTN3 127 981 6 2.6 
176 CCAGAATTACGCACTTGTCGATGT SLC39A7 45 345 6 2.6 
177 TCTCAGTCTCCACTCGTCTTGAGA SUOX 50 376 6 2.5 
178 ACAAGATATTAACGCTCGGCTGGA KIAA1467 19 139 6 2.5 
179 ATGACTGTGTTAGGCGGCTCACGG TIMM17A 128 915 6 2.5 
180 TAGTATGACGCGAGCAGTTCTAAA SH2D2A 123 871 6 2.5 
181 CACTTATCGGGGTCATTCGAGGTC ZCCHC2 44 310 5 2.5 
182 TATCCCCCCTGGAGTCGCAGTCCT LOC541471 399 2808 5 2.5 
183 AATGATGTAGTCCGTCATCCTCAA LINGO1 3 21 5 2.4 
184 TTCCCCGTTCCTAGAAGGGGCAAA CHRM5 2 14 5 2.4 
185 TCCCGAGATTACATTTCAGACAAT ADA 48 335 5 2.4 
186 CGTTCACGTCATAGCGTTCCCGAA AKR1C2 31 215 5 2.4 
187 CAAGAGCTACGATCTACTCCCCCA NR1D2 47 321 5 2.4 
188 GACGGCAACTTCGGGAATCACTAG PNMT 124 839 5 2.4 
189 CACGCCAAAGAAACCTCGAAGCTG CHCHD7 680 4594 5 2.4 
190 AGTAGGTTCAACCGCAAACAGATC NOA1 19 126 5 2.4 
191 GTCAACGACCTAAGGAACTCGTGC LAIR1 21 138 5 2.4 
192 AAAAATGGGCGCTCTGAGACACAC ZNF680 11 72 5 2.3 
193 TGTAGAAGTTTCTGGATAAGCCAC SLC50A1 130 849 5 2.3 
194 GTGCTGACATCTAACCCGTCTAGA HAND1 62 402 5 2.3 
195 TCGTTAGTTGTCAAATGCCAAACC STK32C 5 32 5 2.3 
196 TGTCCCCATCACCATGAGTGCCGT VMAC 146 933 5 2.3 
197 ATGCTGGGAAGCGATAATCGCGTA BCCIP 44 277 5 2.3 
198 CAATCGACGCTAAAGTGACCAGGA RPL14 158 982 5 2.3 
199 TGGCGCATCCTAAAGTGTAAGATT HSBP1 126 779 5 2.3 
200 ATACCCTGTCGGTTGGTCAATCAC ULK4 8 49 5 2.3 
201 CACCTCATGGGGCGTAAGCCCAGG CA6 168 1028 5 2.2 
202 AATGCGTTCGTGACACTTACGCCT PSMC4 5 30 5 2.2 
203 CTTTCAGGTTGCACAGCGGACTTC PRAMEF10 50 297 5 2.2 
204 GTGCCCACCTTTAGACGTAATGGC PPP1R1A 274 1610 5 2.2 
205 TTCATTACCATAACTCGGTGGCCA CCDC114 48 279 5 2.2 
206 TGCTTTCTGCCCCCGTATTAGTAG HSPB6 130 746 4 2.2 
207 CCGTATATTTCTATTTATTTATCG TGS1 25 141 4 2.1 
208 GATTATACTTTCACGTGGACACGA IGHD 60 337 4 2.1 
209 CTGACGTGCCCTAATTCCCTGTGC NDUFA10 75 421 4 2.1 
210 GGACACTACTCCGTAAAGGTACGT MPZL1 51 285 4 2.1 
211 TGACAGTGGCCAGGCGACCCGCCG LOC339535 17 95 4 2.1 
212 GTGCACCCAGGGCCGTGACTGGAG TMEM25 119 660 4 2.1 
213 GTTCCAGTTGCCGCGCCGGGGTGC NAALADL2 101 556 4 2.1 
214 CCTCTGTCACAGGTACTCTCTGTT CTC1 43 235 4 2.1 
215 ATGGGTTCTGTAGGGCCGCCGCAA ZDHHC15 158 859 4 2.1 
216 ATAACCATTGAGGGTAATTTTTAC C7ORF49 83 450 4 2.1 
217 ACCCGAATAACATGTAATCTCCCT EIF5A 68 364 4 2.1 
218 ATAATCAGGGTGTGCCGATCCTGC PPYR1 76 402 4 2.0 
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219 TCTTGAACCTCGAGATTATGACTC SLC25A44 57 299 4 2.0 
220 ACTATAGCACACTGAAGGTTTGAA LIMK2 21 110 4 2.0 
221 TATTTAGCACGCAAGAGCCGGAAC GABRA5 13 68 4 2.0 
222 CAAGTCCCGCTACGTGAGCGCCAA OR2T2 16 83 4 2.0 
223 ACACATTGTTACCGCCACGTTGAG RPL15 83 429 4 2.0 
224 GTGGCGCCAAGTCGCAATGGACTC DNAJC7 12 62 4 2.0 
225 CGCACATCAAGTCCCCAGTTCGTG SYNGR1 141 714 4 2.0 
226 GTCTCCTATTTACTACCTCCCTCC TNFSF18 96 484 4 2.0 
227 AGGTTTAAGGCTCCGCATCTAATC CHCHD2 3 15 4 2.0 
228 GGGGGATCTACGATATGACAGGCG SLC25A22 62 307 4 1.9 
229 CCCCCAATCGTGCTCCTTCACCTG HN1L 52 257 4 1.9 
230 TCTCAGCTTTCATATGACGGCCAC DAP3 34 167 4 1.9 
231 AAAAAAGTCGCCATGCCAGAACAA SEMA4C 29 142 4 1.9 
232 TTAAGGGTAACATGGCTACGCACT UTP23 185 893 4 1.9 
233 GCAGGCCTTACTGTACTCCTCAAG ALG2 137 659 4 1.9 
234 CATCTACGCACTTAACAACACTCT DDX19A 101 483 4 1.9 
235 ATCCGACAGTATGCGCCCTAGTGA ECD 18 86 4 1.9 
236 TTGTTCTAGCATATTTTATTACAA 42990 32 151 4 1.9 
237 GTCATGATTAGTTTTATACGATGT CHRM4 14 66 4 1.9 
238 GTACTCCTACCTTATTCTCGACCG DNAJB1 49 231 4 1.9 
239 GTGCGGCTGTAGGATGTCGGGCCA TSPAN15 9 42 4 1.9 
240 GGTTCACAGTTTTTGAACTCAACC CHI3L2 43 200 4 1.9 
241 AAACTGTACGAACGTCTATCCGGT SNAPC2 14 65 4 1.9 
242 GGCTCATATTGGCAGGAGAAGAAG CBFA2T2 130 603 4 1.8 
243 ATATGCAGTGAATTAAGGCGATCA SIVA1 218 998 4 1.8 
244 TTCCTAAATACAGTTACCTAACCA CATSPER4 35 160 4 1.8 
245 GGACACGGGCGTGCCCGATTCACG CCDC65 16 73 4 1.8 
246 TCCTCGGTTTCTGACTGATCCCCC GPR20 60 273 4 1.8 
247 CTTTCCGCGGCGGTGGCGCCGTTG GPER 5 22 3 1.8 
248 CTGAAATGTTCCCGTACGGGTACG CER1 199 875 3 1.8 
249 CGATACCATTACCGACTTTCAATC WISP2 58 254 3 1.8 
250 TTCCAATAACGCTAAGACGACGGG PARVG 55 240 3 1.8 
251 GACCTACGAGGTCAGACATACTCG RPS2 27 117 3 1.8 
252 AGGACAGAGCCAACGAAAACGGAT AIPL1 42 181 3 1.7 
253 AGTATCTCTCAGCGAAATAGTGAC ZCRB1 25 107 3 1.7 
254 TACACGATACCCCGTGCTGAGACC C1ORF87 44 187 3 1.7 
255 TGGCCGTGCGGCGTCAATTGTCCA RAB28 59 250 3 1.7 
256 CCAACCCCTACGACAGTCGAGTGC SUCNR1 225 946 3 1.7 
257 AGAGGTTTGCTATCCCGTCCTCCG EBAG9 114 475 3 1.7 
258 ACGTTGCATCCCAAGCTTTGAGAG CCDC146 72 298 3 1.7 
259 TCATGTTACCATGCAAAAGTGATG NUDT3 134 550 3 1.7 
260 GCTCGCCCGCTCGGCTTAGGCTCA WHAMMP3 29 119 3 1.7 
261 TGACTTCAAATGTACGGAAGGTAA C10ORF125 143 583 3 1.7 
262 TGGCCCACCCGCCCTTACGGCATA C7ORF34 500 2029 3 1.7 
263 TGGTCAGTCATACAACAGGCAGAC EXOC2 2 8 3 1.6 
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264 CCCATCTACTAGCATTGGGAGGTT C12ORF4 1 4 3 1.6 
265 CGTGCCTCGTCCCGATTTAGCTAT GPR82 1 4 3 1.6 
266 GCCCTCTAAAAATCTACTTCAGCC TSPYL1 13 51 3 1.6 
267 ATCACATGGAGAGCAATGTTGACC CYCS 574 2244 3 1.6 
268 ACCCCCATCCAACTTCCGGATCTA MFF 11 43 3 1.6 
269 CTAAGGACACAGGCTCCACGAAAT CPA3 111 432 3 1.6 
270 CTCTGAGACGCTGCAATCGACGAT TMEM35 224 869 3 1.6 
271 ACCTAGTCTGGCCTCACGTTAAGG TMOD3 156 605 3 1.6 
272 GCACGGCCCGTAGCCCTATCGCCC FAM27L 71 272 3 1.6 
273 TCTCAATACCCAATGCCCTTTTTG ATG10 181 684 3 1.6 
274 GCACAGTCTCAGAGTGCCACAACC TAS2R3 331 1247 3 1.5 
275 TGTGGTTCTCGGCCTTCACAGGTC RPL14 240 899 3 1.5 
276 CCAAGGACAAAGTCTAGAGAGCCT EIF4E2 69 256 3 1.5 
277 TATTACCGGGCCGTATTAGTTGAA TEX2 31 115 3 1.5 
278 CTTAAAACAACCCATCCTCCGGTG PRAF2 102 375 3 1.5 
279 GTGACGGTAGCCACATGTTCCTGC RPL19 151 554 3 1.5 
280 AGCTTAGCACTATAGGTAGCTATC OSTM1 3 11 3 1.5 
281 GCGGAGATACGACCCTACCACACC COX4I2 232 846 3 1.5 
282 CGCGGTAAGCACCTCATGCGCCGC CEPT1 70 254 3 1.5 
283 ACATCAGTACCCCCGCAGATCGTC DMWD 128 463 3 1.5 
284 TTCGCTAATCATTAAAAAAACGGA NAGS 29 104 3 1.5 
285 CGGACTTCGCGTGCGTAGGTCTTC FGR 7 25 3 1.5 
286 GCAATAACTGAACTTGTACAATAA TYRP1 42 149 3 1.5 
287 GCCGCTTTTGGATGTACCGAGTTG C17ORF53 58 205 3 1.5 
288 TGCCGCCATCCGATTAAGTCCCAT TRIM13 31 109 3 1.4 
289 TCGTAACGCCAGGTATCTCGGGTA PCK1 4 14 3 1.4 
290 CGAACTACTTACCTAATCGTGGGA MST1R 141 493 3 1.4 
291 CTTGTTCGTCGTGTTAGGATCGTT CCDC42 70 244 3 1.4 
292 TAAAGTCTGCATATGCCAAGCTGG SNAP47 188 645 3 1.4 
293 TTTTTAGACCATACGTGGGATTTT GSTA1 14 48 3 1.4 
294 CAACCTGAGAGTGTTGACCGAAGA C14ORF79 319 1074 3 1.4 
295 TGATAGCCGAGTGACCACCTTTTT NRIP3 196 656 3 1.4 
296 TAACCAACTCCCCTGTGCTCTGGG SEC61B 86 287 3 1.4 
297 GGCTTATTAGGACTCATCGCGCCC TXLNA 3 10 3 1.4 
298 TTTCTTGGCTTGCACTGTGACCGC NUDT14 99 330 3 1.4 
299 CCCAGTGGGGTCCGGGTCAACTCG TMEM206 16 53 3 1.4 
300 ATCATTCGCACAACCACGAACTCA CCL4 1293 4240 3 1.3 
301 AAAACGCGAACATGTACCTCGCAC DGUOK 31 101 3 1.3 
302 TGCCTTGCCGTAGTCAAACTCACC ZNF416 8 26 3 1.3 
303 AACGCCAAACCATATGCACCGTCC C3AR1 56 182 3 1.3 
304 AAGTCTATCAAAAGTCCCATCACT ACPP 30 97 3 1.3 
305 GCTGACCAGAAACTCTGACTATTT LACRT 220 708 2 1.3 
306 ATCACAGGCGGCGTAGCCGACCCG BMS1P5 253 813 2 1.3 
307 GATGCGGTGTGACGGATGTTCCCA GOLGA7 183 587 2 1.3 
308 GATTTGCACCTTAGACAGGGGGTC TOLLIP 118 376 2 1.3 
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309 ACAGGTGTTTTGGCCGACTACTAA C15ORF53 102 325 2 1.3 
310 ATCCAAATGCGCGCCAGTTGCCTA MRPS11 170 530 2 1.3 
311 TCAGGGACACTTACAAGCCGGCGT LINC00518 103 321 2 1.3 
312 ATCAGACACGCCTATCCTACGAGG SPATA8 161 501 2 1.3 
313 GCTGCTAGCTATCAAGTTAAAATT C22ORF31 53 162 2 1.2 
314 CCGGCGTACCTCCTACCTAACATT MRPL43 126 383 2 1.2 
315 AAATCCTAGTAACGCCCCAATATA RIMKLA 56 168 2 1.2 
316 TCTCAATATACGGCGGTAAGTGCG NANOG 1 3 2 1.2 
317 CTTGTACGTCAGTAGATCATTTTC WDR18 1 3 2 1.2 
318 TGTCTCGTCCCATTAAAGGTGTCG TREML2 1 3 2 1.2 
319 CCTGGACACAATCTCTGCAAATTA JPH1 25 74 2 1.2 
320 TGCAGCTTTACAACATGCACTCTG PDE6D 136 401 2 1.2 
321 TTCGACGTAGATCTATGGGCGTGC ANKRD49 70 206 2 1.2 
322 CGTGTTGAAGCGCTGCGCAGTTTG NPR3 82 240 2 1.2 
323 GAAAACAGTATACCGCTGCCGACG TRIB2 24 70 2 1.2 
324 GTGTCATGCCCCCCGTTTACCGTT PPIE 24 70 2 1.2 
325 AAATTACCTACGATATTCCTATGA GPR162 71 207 2 1.2 
326 CTTGACCCATCCGACATATTACTC MB21D1 101 294 2 1.2 
327 CAGAGTACTCCGAGACTACAGGTC C2ORF73 138 399 2 1.2 
328 GTTGGCCATCACCTACGCAATTAC CCDC28B 226 638 2 1.1 
329 TCGATGTTAACGCCTCGAGCACTT SLC25A10 106 299 2 1.1 
330 GGACCCGAACGTCACTGCTATACC DAD1 9 25 2 1.1 
331 GAGACGCCGTACGACATTTTTAAA PPIL1 28 76 2 1.1 
332 GGCGAACTGTGAGTTTGTTGCACC IL28A 258 684 2 1.0 
333 TAGCGCTCCGCATCATCGACTTGC TXNDC11 74 195 2 1.0 
334 AAATTTGTATGCCACCGTCGCCTA FGF6 352 921 2 1.0 
335 TACTAAATTCACTGAAACCATTAC IL17A 504 1309 2 1.0 

 

Table 3-4. Enriched ORFs in PDL1 sorted population. 

 

 

Table 3-5. Gene family annotation for ORFs enriched>2fold. 

 

Gene Family Annotation
Cytokines 
and growth 

factors

Transcription 
factors

Homeodomain 
proteins

Cell 
differentiation 

markers

Protein 
kinases

Translocated 
cancer 
genes

Oncogenes Tumor 
suppressors

Tumor suppressors 0 0 0 0 0 0 0 0
Oncogenes 0 1 0 0 0 3 3  
Translocated cancer genes 0 1 0 0 0 3   
Protein kinases 0 0 0 1 12    
Cell differentiation markers 1 0 0 7     
Homeodomain proteins 0 5 5      
Transcription factors 0 20       
Cytokines and growth factors 18       
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Table 3-6. Gene set enrichment analysis for ORFs enriches >2 fold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enriched Gene Set Name # Genes in Gene 
Set (K)

# Genes in 
Overlap (k) p-value FDR          

q-value
GO_RESPONSE_TO_EXTERNAL_STIMULUS 1821 43 2.99E-12 6.63E-09
GO_CELL_CELL_SIGNALING 767 26 4.44E-11 4.93E-08
GO_REGULATION_OF_RESPONSE_TO_STRESS 1468 36 7.36E-11 5.44E-08
GO_REGULATION_OF_IMMUNE_SYSTEM_PROCESS 1403 34 3.50E-10 1.55E-07
HALLMARK_MYC_TARGETS_V1 200 7 5.31E-04 1.33E-02
HALLMARK_TNFA_SIGNALING_VIA_NFKB 200 7 5.31E-04 1.33E-02
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Chapter 4 Validation of a genome-scale CRISPR knockout screening protocol for 
identification of regulators of PDL1  

 

Abstract 

The immunosuppressive molecule PDL1 is expressed in HNSCC tumors and is a target for 

immunotherapy.  Recent reports show that activity of known oncogenes can influence PDL1.  

Thus, we aimed to better understand the molecular underpinnings of PDL1 expression in 

HNSCC.  We utilized a genome-scale CRISPR library and selected cells with diminished or 

enhance PDL1 expression to identify genetic knockouts conferring PDL1 up- or down-

regulation.  We successfully selected cells with altered PDL1 expression phenotypes, and 

validated that one of the candidate genes nominated by the screen, TLR2, can modulate PDL1.   

Introduction 

The ligation of PD-1 expressed on T-lymphocytes with PDL1, expressed on the surface 

of tumor cells, leads to repression of anti-tumor immunity and represents an essential target for 

immunotherapy.  Previous studies have shown that PDL1 expression on the surface of tumors is 

induced in response to interferon gamma (IFNγ) released by T-lymphocytes, and that this 

induction relies on Jak2/Stat1 mediated transcription in HNSCC[1, 2].  More recently, other 

signals modulating the expression of PDL1 have been identified.  Notably, in head and neck 

squamous cell carcinoma (HNSCC) cell lines, epidermal growth factor receptor (EGFR) 

activation was shown to positively regulate PDL1 expression on the cell surface [1].  

Furthermore, EGFR is a known driver of HNSCC and RNA expression of PDL1 correlated with 
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that of EGFR in 23 tumor specimens [1].  Such observations led us to question whether 

additional pathways, including other oncogenic and pro-inflammatory signals, may contribute to 

immune escape via PDL1 upregulation, and whether these signals could be targeted to enhance 

response rates to immunotherapy. 

Historically, large scale screening techniques such as those employing RNAi have 

yielded disappointing results due in part to technical challenges including lack of specificity [3].  

Upon the discovery and advancement of CRISPR technology, however, new methods and 

applications for genome-scale functional screening have rapidly arisen [4].  In 2014, Shalem et al 

and Wang et al simultaneously published two of the first genome-scale screens utilizing a library 

of CRISPR constructs to generate pools of genetic knockouts in cultured cells [5, 6].  Since then, 

the field has rapidly expanded with diverse applications of this technology, from identifying 

genes essential for cell proliferation to nominating pathways conferring for resistance to 

therapies.  Thus, CRISPR library screening represents a valuable tool to expand our 

understanding of various pathways.  In the present study, we sought a more detailed 

understanding of the mechanisms regulating the expression of PDL1 in an effort to improve 

responses to therapies and identify new biomarkers for response.   The Genome-scale CRISPR 

Knock-Out (GeCKO) v2 library consists of ~60,000 gRNAs designed to target Cas9 to over 

19,000 different genes [7].  Using this library to generate a pool of genetic knockouts in HNSCC 

cell lines, we have validated a protocol for selecting cells with altered cell-surface PDL1 

expression.  
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Materials and methods: 

Cell culture: Cell lines were maintained in logarithmic growth phase in Dulbecco’s Modified 

Eagle’s Medium (DMEM) (Gibco #11965) containing 10% fetal bovine serum (FBS, Sigma), 

1% NEAA (Gibco #15140122) and 7 μL/mL penicillin-streptomycin (Gibco #15140122) in a 

humidified atmosphere of 5% CO2 at 37°C. Cells were tested for mycoplasma contamination 

using the MycoAlert detection kit (Lonza). 

 

Transduction of UM-SCC cell lines with Genome-scale CRISPR knock-out library: UM-SCC 

lines were transduced with the Human GeCKO CRISPR knockout pooled library version 2 

(Addgene plasmid #52961). Conditions for transduction were established for a multiplicity of 

infection (MOI) of 0.3. Cells were subjected to 7 days of puromycin selection, then expanded 

and seeded for treatment and flow cytometry.  To preserve at least 300x coverage, 30 million 

cells were seeded per treatment.  Upon selection of the final populations of cells for sequencing, 

genomic DNA was extracted from the remaining cells using Gentra Puregene Cell Kit (Qiagen). 

Treatment and staining of GeCKO library cell line for cell sorting: UM-SCC-49 GeCKO cells 

were seeded at 30 million per condition.  18h after seeding, media was replaced with plain media 

(Control) or media containing 10ng/mL IFNg.  After 72h incubation, cells were trypsinized and 

counted, and 30 million cells were incubated with a monoclonal antibody directed against PDL1 

(ThermoFisher #14-5983-82) diluted to 1ug/mL in HBSS (Gibco) for 15 min in a suspension of 

1 million cells per mL.  500,000 cells were also incubated without primary antibody as a control.  

Control and PDL1 stained cells were pelleted and resuspended in PE-conjugated rat anti-mouse 

secondary antibody (ThermoFisher #12-4015-82) diluted to 0.2ug/mL in HBSS.  After 15 minute 
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incubation, cells were pelleted, resuspended at 2 million cells per mL in HBSS plus 0.5% FBS, 

and transported on ice for flow cytometry. 

Serial cell sorting: Flow cytometry analysis and sorting was performed using an iCyt Synergy 

cell sorter (Sony Biotechnology) at the University of Michigan Flow Cytometry Core facility. A 

secondary antibody- only control was first analyzed to delineate positive vs. negative PDL1 

immunostaining. For the first sort of the UM-SCC-49 GeCKO pool, gates were drawn to select 

the 10% of cells with lowest PE fluorescence (PDL1low) and 10% with highest (PDL1high).  These 

populations were expanded separately in culture to 30 million cells each, then immunostained as 

above and subjected to cell sorting again, selecting the lowest 10% of cells from PDL1low and 

highest 10% of cells from PDL1high.  Again, these cells were expanded to 30 million in culture, 

immunostained for PDL1, and analyzed by flow cytometry a third time to ensure divergent 

phenotypes.  “Positive” and “Negative” gates were drawn based on 0.1% and 99% of the control, 

respectively.  At this point, all PDL1-negative (PDL1low) and all PDL1-positive (PDL1high) cells 

were selected.  Following expansion in culture, genomic DNA was harvested from these final 

populations, as well as the initial unsorted UM-SCC-49 GeCKO pool.   

GeCKO library preparation: Genomic DNA was extracted from the UM-SCC-49 GeCKO pools 

cells using the Gentra Puregene Cell Kit (Qiagen).  130ug genomic DNA per sample was divided 

into 13 reactions with 10ug input each and used to PCR amplify gRNA sequences using 

Herculase II Fusion DNA Polymerase (Agilent #600675).  `The following primer sequences 

were used: Forward = AATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCG; 

Reverse = GGTCTTGAAAGGAGTGGGAATTGGCTCCGGTGCCCGTCAG. 
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The 13 reactions were combined, and 5 μL were used as input for the second round PCR 

reactions (4 reactions per sample) with the following primers to add sequencing adapters and 

barcodes to the PCR products:  Forward= 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATC 

T(1-9bp stagger)AAGTAGAGtcttgtggaaaggacgaaacaccg.  Reverse= 

CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTGACTGGAGTTCAGACGTGTGCT 

CTTCCGATCTataacggactagccttattttaac.  The underlined sequence in the Forward primer 

indicates a representative 8 base pair barcode, which was different for each sample (control, 

PDL1high, PDL1low).  Uppercase sequence indicates Illumina adapters.  The forward primer 

contains the TruSeq Universal adapter, and the reverse primer consists of Illumina P7, 8 base 

pair index, and multiplexing PCR primer 2.0.  Lowercase sequence indicates the priming sites 

for the lentiviral construct. 

The PCR products were extracted and purified using Gel Extraction PCR Purification Kit 

(Qiagen) before submission to the University of Michigan DNA Sequencing Core for sequencing 

with Illumina MiSeq V3 Kit.Analysis of CRISPR libraries: Reads were demultiplexed by 

barcode and then mapped to the corresponding reference library using an in-house python script.  

We did not consider gRNAs represented by fewer than ten reads for further analysis.  Read 

counts were normalized to the total number of reads for a given sample and the read count for 

each gRNA was then computed relative to the read count in the control to determine relative 

abundance in the sorted populations vs control. 

SiRNA transfection: ON-TARGETplus siRNA SMARTpools were purchased from Horizon 

Discovery (TLR2, L-005120-01-0005; RELA, L-003533-00-0005; GAPD, L-004253-00-0005).  
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Non-targeting siRNA was purchased from Horizon Discovery (D-001810-02-05).  Cells were 

seeded in six-well dishes at 100,000 cells per well. 18h post seeding, cells were serum starved 

for 3h, followed by transfection with 5uM siRNA per well with oligofectamine (Invitrogen 

#12252011) in a total of 1mL of OptiMEM (Gibco).  After 6h, an additional 1mL standard media 

was added.  For qPCR analysis, cells were harvested in 700uL QiaZOL (Qiagen) 24h after initial 

transfection.  For analysis of PDL1 protein, cells were treated as indicated for an additional 48h, 

then total protein lysate was collected. 

Cell line transcriptome analysis: RNA sequencing was performed for 43 HNSCC cell lines using 

Illumina stranded transcriptome library preparation kits as described in [8].  Heatmaps were 

generated using MeV software version 4.9 based on log2(FPKM+1) values. 

TCGA transcriptome analysis. Log2(RSEM+1) values from TCGA Head and Neck Cancer 

cohort (n=566) were retrieved from the UCSC cancer genomics browser (xenabrowser.net).  

Correlations were calculated using Pearson r test, and linear regressions and box and whisker 

plots were generated using GraphPad Prism 8 software. 

Western blotting: Cells were rinsed twice with ice cold PBS and lysed in a modified RIPA lysis 

buffer (150mM NaCl, 50mM Tris pH 8.0, 1mM PIPES, 1mM MgCl, 10% Glycerol, 1%NP40, 

0.1% Triton X100) with HALT protease and phosphatase inhibitor cocktails (Thermo 186129, 

1861277).  Cells were spun at 14,000 rpm for 15 min and protein was quantified by BCA assay 

(Pierce).  Separation by SDS-PAGE was performed and the antibodies were used for 

visualization of target proteins were purchased from Cell Signaling Technology as follows: 

PDL1 (#13684), b-actin (#4970), NFkB p65 (#8242), phospho(Ser-536)-NFkB p65 (#3033). 
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qPCR: RNA extraction from cell lysates preserved in QiaZOL was performed using RNeasy 

Spin Kit (Qiagen) according to manufacturer recommendations. cDNA templates were then 

synthesized using random primers and SuperScript III Reverse Transcriptase VILO kit 

(Invitrogen) according to manufacturer recommendations. Primers used for qPCR analysis are 

listed in Table 4-1. Amplification by qPCR was performed with Quantitect Sybr Green (Qiagen) 

on QuantStudio5 (Applied Biosystems) under the cycling conditions recommended by 

manufacturer. 

Results 

Selection of PDL1high and PDL1low cells 

We elected to use a positive selection screening model to enrich for deficient or enhanced 

PDL1 expression (Figure 4-1A).  UM-SCC-49 cells were transduced with the GeCKO v2A 

CRISPR library and subjected to puromycin selection.  To identify genetic knockouts conferring 

altered PDL1 expression on the cell surface, we stained an IFNg treated UM-SCC-49 GeCKO 

pool using a PE-tagged antibody directed against PDL1 and used flow cytometry to select cells 

with the highest (PDL1high) and lowest (PDL1low) PE fluorescence (Figure 4-1B).  The selected 

populations were then expanded separately in culture.  To enrich each population for the desired 

phenotype, we subjected each to further sorting by flow cytometry, selecting the 10% of cells 

with highest and lowest PE fluorescence for PDL1high and PDL1low populations, respectively.  

After expanding the final population in culture, sorting was repeated a second time for a total of 

three sorts.  We validated successful enrichment for PDL1high and PDL1low phenotypes by 

comparing PE fluorescence in each of the final populations to each other and to an unsorted 

control pool. The unsorted UM-SCC-49-GeCKO pool stained for PDL1 surface expression 
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exhibited a median fluorescence intensity (MFI) equal to 100, with 16% of cells expressing 

PDL1 based on comparison to a control stained with secondary antibody only.  PDL1low cells 

exhibited a similar phenotype, with 17% expressing PDL1 (MFI=90.8) in response to IFNg.  In 

contrast, 99% of PDL1high cells expressed PDL1 (MFI=813).  These data are summarized in 

Figure 4-2B.  Because it was not apparent from this analysis that PDL1low had diverged 

phenotypically from the control population, we generated clonal cell lines from single cells 

isolated from the PDL1low pool (Figure 4-2C).  We found that these cell lines had dramatically 

diminished ability to upregulate PDL1 expression in response to IFNγ, indicating that we had 

indeed selected individual cells with dysregulated PDL1. 

  Next, barcodes from the initial UM-SCC-49 GeCKO library pool (control), PDL1high 

pool, and PDL1low pool were analyzed to determine enrichment of specific knockouts in sorted 

populations over the control.  In the control pool, 44,892 gRNAs were identified (70% library 

coverage).  Sequencing of barcodes from PDL1high and PDL1low pools identified 9922 (16% 

library coverage) and 7162 gRNAs (11% library coverage), respectively (Figure 4-3A). 

Distributions of reads across the detected gRNAs for each pool is shown in Figure 4-3B-D, and 

indicate that in the sorted populations, the majority of reads represent only a small proportion of 

gRNAs.  

 We set an arbitrary cutoff and only included gRNAs for which normalized read counts 

were greater than or equal to 10, and found that of these, 34% overlapped between PDL1high and 

PDL1low. We were surprised to find a large number of hits overlapping between the PDL1high and 

PDL1low pools.  Because of this high degree of overlap, we next attempted to identify hits for 

which representation was enriched over the control pool in only one of the selected populations.  

gRNAs enriched >1.5x over the control in either sorted population are reported in Table 4-2 
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(PDL1Low) and Table 4-3 (PDL1high).  In our final gRNA lists, we observed an interesting 

reciprocal relationship between some of the top hits in the PDL1high and PDL1low pools.  A 

gRNA targeting Toll Like Receptor 2 (TLR2) was among the most abundant in the PDL1high 

pool, while gRNAs targeting mir-105-1 and mir-105-2, thought to negatively regulate toll like 

receptors [9], were enriched in PDL1low.  Thus, we hypothesized that TLR2 may positively 

regulate PDL1 expression.   

 We therefore asked whether PDL1 and TLR2 were co-expressed in HNSCC tumors.  We 

interrogated the TCGA HNSC dataset (n=566, https://www.cancer.gov/tcga) to assess RNA 

expression in human tumor samples.  As expected, we found that expression of JAK2, a known 

driver of PDL1 downstream of IFNg, correlates strongly with PDL1 expression in HNSCC 

(Pearson r = 0.58, p < 0.0001; Figure 4-4A).  We also discovered a positive, albeit weaker, 

correlation between TLR2 and PDL1 (Pearson r = 0.32, p < 0.0001; Figure 4-4B).  

Hypothesizing that TLR2 may represent one of multiple signals converging on a downstream 

regulator of PDL1, we also noted that expression of other TLRs, including TLR7 and TLR8 

(Figure 4-4C,D), correlated positively with that of PDL1. Because several TLRs, including those 

mentioned above, signal through Myd88, we also assessed whether PDL1 expression correlated 

with Myd88 expression and again identified a positive correlation (Pearson r = 0.42, p < 0.0001; 

Figure 4-4E).  A correlation between Myd88 and PDL1 RNA expression was also observed in 

HNSCC cell lines (n=43; Pearson r = 0.50, p = 0.0006; Figure 4-4F), although no correlation 

between TLRs and PDL1 expression was evident in this dataset (not shown).   

While these observations suggest a potential relationship between TLR activity and 

expression of PDL1, it is also possible that TLR upregulation and PDL1 expression are simply 

co-occurring features indicating elevated immune activity in the tumor microenvironment, as 
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PDL1 expression is often increased in inflamed tissues [10].  Thus, we sought to establish a 

causal link between TLR2 and PDL1 in cell lines.  To validate that modulation of TLR2 can 

influence PDL1 expression, we knocked down TLR2 expression via siRNA (Figure 4-5A) and 

assessed PDL1 expression by immunoblot following treatment with IFNg.  We noted a decrease 

in the ability of IFNg to induce PDL1 expression when TLR2 expression was diminished, 

indicating that our screening protocol successfully identified a gene capable of modulating PDL1 

expression in UM-SCC-49 (Figure 4-5B).  This decrease is quantified in Figure 4-5C. 

We next sought to understand whether TLR2 could be activated to induce PDL1 

expression.  Pam3CSK4 is a synthetic lipopeptide that acts as a specific TLR1/2 agonist [11].  

We treated wild-type UM-SCC-49 cells with Pam3CSK4, for 72h and observed no significant 

increase in total PDL1 expression evaluated by immunoblot (Figure 4-6A).  However, when 

Pam3CSK4 was given simultaneously with IFNg, the ability of IFNg to induce PDL1 expression 

was enhanced (Figure 4-6A, quantified in 4-6B).  Because activation of TLR2 is known to 

induce phosphorylation and activation of the p65 subunit of NFkB (also called RelA) [12], we 

also assessed phosphorylation of p65 on Serine 536 by immunoblot.  We observed small 

increases in phosphorylated p65 in response to Pam3CSK4 or IFNg alone, but a greater induction 

was observed with the combination.  A modest increase in total p65 protein was also observed 

only in response to the combination.   

Next, we considered the role of TLR2 in initiating an immune response.  TLRs recognize 

pathogen associated molecular patterns (PAMPs) and initiate signaling cascades to drive various 

aspects of immune response, including production of pro-inflammatory cytokines.  Previously, 

Wang et al showed that TLR2 is activated and PDL1 expression is increased following 

incubation of human monocytes with heat-killed Staphylococcus aureus (S. aureus) in culture 
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[13].  Given that HNSCC often arises in tissues with high exposure to pathogens, such as the oral 

cavity, we postulated that TLR2 may modulate PDL1 expression following activation by 

bacterial ligands.  We therefore assessed total PDL1 protein in UM-SCC-49 cells treated with S. 

aureus, and found that indeed, S. aureus can induce expression of PDL1 (Figure 4-6C). 

Furthermore, S. aureus induced phosphorylation of p65, which has previously been described as 

an effector of TLR2 and as a driver of PDL1 in other models [14].  We therefore analyzed a 

small panel of IFNγ regulated and p65-regulated effectors, and showed that cells treated with 

Pam3CSK4 and S. aureus showed induction of p65 target IL6, but interestingly, there was 

minimal induction of PDL1 transcript expression in the absence of IFNγ.  IFNγ appears to induce 

a distinct transcriptional profile at this time point, including HLAB and SOCS1 (Figure 4-6D, E).   

 We next examined the ability of TLR2 to regulate PDL1 in other HNSCC models. First, 

we assessed RNA expression of all TLRs in 43 HNSCC cell lines by RNAseq.  TLR1, 2, 3, 4, 

and 6 were the most highly expressed (Figure 4-7A).  We then tested several UM-SCC cell lines 

for PDL1 upregulation in response to either Pam3CSK4 or S. aureus, and discovered varying 

responses to these stimuli.  UM-SCC-58, 59, and 97 are shown to represent the spectrum of 

responses (Figure 4-7B-D).  UM-SCC-58, which exhibited lower expression of most TLRs, 

showed no increase in PDL1 expression in response to S. aureus or Pam3CSK4, although we 

observed similar results in UM-SCC-14a, which does express TLR2 mRNA.  UM-SCC-59 

appears to upregulate PDL1 in response to S. aureus but not the TLR2 specific agonist 

Pam3CSK4, suggesting that a different receptor might mediate this response.  UM-SCC-97 

modestly upregulates PDL1 in response to both S. aureus and Pam3CSK4. Both, UM-SCC-59 

and -97 express similar TLR2 levels to UM-SCC-49. 
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 Due to the ability of UM-SCC-97 to upregulate PDL1 in response to TLR2 agonists, we 

used this model to further interrogate the role of TLR activation in modulating PDL1.  As we 

showed that S. aureus can induce expression of PDL1 in HNSCC cell lines, we also asked 

whether other common infectious bacteria might induce a similar response.  PDL1 is generally 

thought to be upregulated in response to cytokine release by T-cells, but we found that even in 

the absence of T-cells, various bacterial strains known to activate TLR2 were able to induce 

PDL1 expression (Figure 4-7C).  Additionally, siRNA knockdown of TLR2 in UM-SCC-97 

blocked the upregulation of PDL1 in response to Pam3CSK4, indicating that the ligand indeed 

acts as a TLR2 agonist in this system (Figure 4-7D).  We saw similar results with knockdown of 

the p65 (RELA) subunit of NFkB, indicating that the NFkB pathway may be an essential 

mediator of PDL1 induction following TLR2 activation. 

 

Discussion 

Here, we present validation of a genome-scale CRISPR knockout-screen to identify genes 

regulating the expression of PDL1 on the surface of UM-SCC-49 cells.  Our study highlights 

both the promise and challenges of positive selection based screening of CRISPR libraries.  

While we were able to validate a PDL1 regulating signal from among the top hits of our screen, 

certain technical issues obscure our ability to interpret our screening results as a whole. Because 

the library was constructed with three gRNAs targeting each gene, we expected that for our 

strongest candidate PDL1 regulators, multiple gRNAs for the same gene would be identified.  

This was not the case, however, and limited our ability to statistically nominate candidate genes.  

We postulate that 1) highly variable initial representation of gRNAs in the initial library, and 2) 

limited ability of our selection method to detect small differences in PE fluorescence with 
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precision and accuracy may have contributed to the unexpected distribution of gRNAs in our 

sorted samples. Additionally, heterogeneity of the UM-SCC-49-WT cell line, including 

variability in the epigenome, could cause altered regulation of PDL1 in subpopulations 

regardless of genetic knockout status.  We also may have been selecting for a survival and/or 

proliferative advantage as our cells were propagated in culture between sorts.  For example, the 

PDL1high and PDL1low screens each nominated a unique gRNA targeting KLHL30, suggesting 

that knockout of this gene conferred an advantage under our growth conditions.  Further 

validation of targets from this screen, and repetition of our screening protocol in this and other 

models, will be necessary to truly define the robustness of our method. 

Another puzzling finding was that the GeCKO screen did not nominate the gene 

encoding PDL1 (CD274), despite the presence of CD274 targeted gRNAs in the unsorted control 

library.  Further investigation will be necessary to understand the cause of this observation.  It is 

possible, despite the purported optimization of the GeCKO library for efficient and specific 

knockout, that CD274 was not efficiently or specifically disrupted. Otherwise, this observation 

may necessitate further optimization of our sorting protocol.   

We also provide evidence that activation of innate immune response genes, not only in 

immune cells but also intrinsically to HNSCC cells, can induce PDL1 expression.  This finding 

suggests that tumor cells may be able to intrinsically upregulate PDL1 by overexpressing or 

activating TLRs.  It is also possible that tumors arising in the context of inflammation may be 

more likely to utilize TLRs as a mechanism for PDL1 upregulation.  Lyford-Pike et al showed 

that PDL1 is highly expressed in tonsillar crypts, a common site of infection, and postulate that 

this may represent and “immune privileged” environment hospitable to oncogenic virus infection 

and tumorigenesis [9].  The finding that TLR agonists and bacterial pathogens themselves may 
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directly promote upregulation of PDL1 in tumor cells brings an additional facet to this 

hypothesis.   

This observation is of particular interest due to recent clinical trials using TLR agonists to 

treat cancer.  Toll-like receptors reportedly exhibit both tumorigenic and anti-tumor effects, 

which are not fully understood and may be highly context-dependent.  Stimulation of TLRs to 

treat bladder cancer dates back to the 1880s, and the TLR2/4 agonist Monophosphoryl lipid A is 

used in as a prophylactic vaccine adjuvant for HPV associated cervical cancer [15].  However, 

studies in other cancer types have reported an association between TLR expression and invasion 

and metastasis.  Furthermore, knockdown or knockout of TLRs has led to tumor regression and 

reduced metastasis in in liver, breast and lung cancer models [15, 16].  Thus, elucidating the 

precise, likely multifactorial, impact of TLR modulation across the spectrum of HNSCC 

subtypes will be important in understanding the clinical implications of this work. 

The present study is limited in that it does not address functional effects of TLR2 

modulation of PDL1 expression in more complex systems.  T-cell co-cultures and in vivo models 

will be necessary to determine the functional significance of our observation.  Specifically, we 

will need to assess whether direct modulation of TLR2 on cancer cells impacts T-cell killing, and 

whether PDL1 mediates this effect.  Due to the many established roles of TLRs in controlling 

immune responses, it is very likely that modulation of TLRs will have broader effects in vivo 

beyond simply PDL1 protein regulation, and understanding these will be crucial if our findings 

are to eventually be translated to the clinic.   
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Figures 

 

Figure 4-1 Establishing phenotypically distinct populations from UM-SCC-49-GeCKO 
pool.  

 Workflow is shown for generation of UM-SCC-49-GeCKO pool, cell sorting, and sequencing of 
final populations 
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Figure 4-2 Sorting of UM-SCC-49-GeCKO pool for PDL1 enhanced or deficient cells.  

 
A) UM-SCC-49 cells infected with the GeCKO library were treated with 10ng/mL IFNg for 72h, 
trypsinized, and stained using a PE-conjugated antibody directed against PDL1.  Cells were then 
subjected to cell sorting by flow cytometry (upper panels) to select the 10% of cells with the 
lowest PDL1 expression (green gate) and 10% with the highest (blue gate). PDL1low cells were 
expanded in culture and sorted again for the 10% of cells with lowest PDL1 expression, while 
PDL1high cells were expanded and sorted for the 10% with highest PDL1 expression (middle).  
The two populations were expanded again in culture and PDL1 surface expression analyzed a 
third time (lower panels).  Green and red gates indicate populations of cells collected for 
PDL1low and PDL1high respectively. (B) Median fluorescence intensities (MFIs) are reported for 
indicated populations.  (C) Individual cells were isolated and propagated from PDL1-low final 
sort, arbitrarily designated Clone #1 and #2.  These and UM-SCC-49-wt were treated +/- IFNg 
for 72h and PDL1 was assessed by immunoblot.   
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Figure 4-3. Sequencing of UM-SCC-49-GeCKO populations.  

A) Mapping statistics from UM-SCC-49-GeCKO sequencing results.  B-C) Distribution of 
read counts across gRNAs (normalized to total reads for each sample and log 
transformed). 
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Figure 4-4. RNA expression in TCGA HNSC cohort. 

 A-E) TCGA Head and Neck Cancer samples were analyzed (n=566) for correlation between 
genes of interest (y-axis) and PDL1 (CD274; x-axis).  Linear regression analysis was performed 
using (log2(RSEM+1) and Pearson’s r values are reported. F) Log2(FPKM+1) values for PDL1 
(CD274) and MYD88 RNA from HNSCC cell lines were analyzed (n=43). 
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Figure 4-5. Knockdown of TLR2 in UM-SCC-49 reduces IFNg mediated upregulation of 
PDL1. 

 
  A) Knockdown of TLR2 and GAPDH was confirmed by qPCR.  B) Cells were transfected with 
non-targeting (NT), GAPDH, or TLR2 siRNA for 24h were then treated -/+ IFNγ for 48h.  PDL1 
expression was assessed by immunoblot. C) Bands in (B) for IFNγ treated samples were 
quantified by densitometry.  Densitometry units for PDL1 bands were normalized to respective 
β-actin bands.  Normalized values were then divided by Mock.   
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Figure 4-6. Effects of TLR2 activators in UM-SCC-49.   

 
A) UMSCC49 cells were treated -/+300ng/mL Pam3CSK4 -/+ 10ng/mL IFNg for 72h.  Protein 
lysates were analyzed by immunoblot and bands were quantified by densitometry in (B).  C) 
UM-SCC-49 cells were treated for indicated timepoints with 0.075% S. aureus (Millipore) and 
lysates were analyzed by immunoblot.  D) qPCR analysis of IFNg and TLR effectors and PDL1 
expression in UM-SCC-49 treated with for 72h. 
 
 
 
 
 
 
 
 



 
 
 

 159 

 
 

 

 



 
 
 

 160 

 
 
 
Figure 4-7. TLR2 signaling in HNSCC cell lines. 

A) RNA expression (log2(FPKM+1)) of indicated genes in HNSCC cell lines. Cell lines are 
arranged from left to right in order of increasing expression of PDL1 (CD274).  B-D) HNSCC 
cells were treated with vehicle control, 10ng/mL IFNγ, 0.075% S. aureus (Millipore), or 
300ng/mL Pam3CSK4 for 72h.  PDL1 expression was analyzed by immunoblot. E) UM-SCC-97 
was incubated with heat-killed commercially available bacterial strains as indicated for 72h.  F) 
Indicated siRNAs were transfected into UM-SCC-97 cells.  24h post transfection, cells were 
treated with Pam3CSK4 for an additional 48h.  PDL1 was analyzed by immunoblot (left) and 
relative band intensity was quantified by densitometry (right). 
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Tables 

Gene Forward Reverse 

TLR2 AGCAGGATCCAAAGGAGACC ACCAAGGTGGTTTGCTGAGT 

GAPDH AATGGGCAGCCGTTAGGAAA GCCCAATACGACCAAATCAGA 

PDL1 AGTCAATGCCCCATACAACAA CGTCACTGCTTGTCCAGATGA 

MYD88 GACTGCTCGAGCTGCTTACC ACATTCCTTGCTCTGCAGGT 

Table 4-1. Primer sequences for qPCR 3’-5’. 
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Rank gRNA target PDL1low/Control  PDL1high/Control 
1 RNF130 130.4702 0.61437 

2 UIMC1 97.62247 0.533461 

3 KLHL30 97.47681 0 

4 C1orf116 93.29673 0.604938 

5 SLC2A6 93.00492 0.467358 

6 TLR2 80.91354 0.363622 

7 KIDINS220 74.24762 0.376101 

8 COMP 73.34039 0.374752 

9 STAB1 48.71035 0.181629 

10 NFYB 45.65152 0.163268 

11 DISP2 38.79179 0.872197* 

12 SLC25A25 36.74726 0.14868 

13 C7orf55 36.6708 0.194452 

14 SSMEM1 34.35596 0.153269 

15 TSPAN31 30.65758 0.121086 

16 UNKL 27.33073 0.127668 

17 ITSN1 14.07346 0.076536 

18 HIRA 13.86975 0.066925 

19 ZDHHC24 11.48397 5.910346 

20 NODAL 11.19729 0.06114 

21 TTL 7.2976454 
 

0.027327 
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22 C1orf35 7.269804 0.038215 

23 ULBP2 6.721698 0.028772 

24 AXDND1 6.5365 0.040082 

25 ZFP64 6.110201 0.042713 

26 MAGEA6 5.625484 0.045438 

27 PCDHGB6 5.256831 0.039738 

28 FAM168B 4.806231 0.031167 

29 FABP6 4.648937 0.03478 

30 USP16 4.350071 0.028961 

31 VPS25 4.180224 0.033329 

32 SPATA31A2 4.175848 0.035267 

33 NPR1 3.975242 0.033517 

34 CKMT1A 3.801816 0.020674 

35 CCDC117 3.520316 0.02719 

36 KIF13B 3.131082 0.022894 

37 FZR1 2.847764 0.022893 

38 ZNRF3 2.696549 0.02445 

39 STRN3 2.642702 0.026301 

40 BLCAP 2.598926 0.020274 

41 GMNC 2.586674 0.020701 

42 KDM6A 2.56034 0.026508 

43 OR5T2 2.554679 0.028434 

44 CLNS1A 2.489466 0.021168 
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45 RAD50 2.088789 0.0218049 

46 NARR 2.070283 0.020284 

47 NARR 2.070283 0.020284* 

48 HINT1 2.068037 0.018824 

49 IRG1 2.043546 0.0089151 

50 SLC9A6 2.043088 0 

51 TTC34 1.554888 0.022822 

 

Table 4-2. gRNAs ranked by enrichment in PDL1low over control.  
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Table 4-3. gRNAs enriched in PDL1high over control.  

Rank gRNA target Chapter 1 PDL1high/Control  Chapter 2 PDL1low/Control  
1 IZUMO3 223.6348 1.0669 
2 hsa-mir-105-1 167.3409 1.178067 
3 GLS 111.713 0.854239 
4 FAT2 104.4253 0.590414 
5 SCGB3A1 50.81308 0.337907 
6 RAPGEF3 37.84282 0.242991 
7 AP2A1 31.35016 0.214096 
8 TRIM49 29.33133 0.181142 
9 hsa-mir-105-2 9.937754 0.060283 

10 FIGLA 6.562241 0.021861 
11 POGLUT1 6.558918 0.06121 
12 ZDHHC24 5.910346 11.48397 
13 KCNIP2 5.604062 0.0485690 
14 ZNF37A 4.446165 0.038013 
15 TTC5 3.348804 0 
16 SLC35F3 2.39854 0 
17 FAM71C 2.325857 0 
18 CXorf21 2.179963 0.014468 
19 RBBP8 2.111634 0.04188 
20 CCDC129 1.992549 0 
21 SLC5A8 1.902974 0 
22 CHST2 1.864696 0.068597 
23 P2RY2 1.836203 0 
24 SEMA6C 1.834026 0.015726 
25 SPHK1 1.797793 0 
26 KLHL30 1.794423 0.007607 
27 hsa-mir-212 1.77299 0 
28 CARNS1 1.744393 0 
29 BRF2 1.744393 0 
30 LMNB2 1.744393 0 
31 MCL1 1.744393 0 
32 GNA13 1.744393 0 
33 NF2 1.722029 0.714116 
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Chapter 5 Summary and Perspectives 
 
 
Summary 

 Here, we have profiled various genetic, transcriptomic, and immunologic features of 

HNSCC, provided evidence for CD103+ TIL content as a potential prognostic biomarker, and 

validated multiple drivers of PDL1 expression.  Because PDL1 expression is believed to play a 

role in HNSCC immune evasion but immunotherapies targeting this pathway are minimally 

effective, we sought to better understand the mechanisms contributing to this pathway in the 

hopes that we may eventually identify features of HNSCC that predict immunogenicity.  We 

utilized cutting-edge genome wide screening techniques to select HNSCC cells with altered 

PDL1 expression and validated multiple hits nominated by these screens.  Moving forward, we 

hope to further elucidate the precise mechanisms underpinning our observations and ultimately 

to advance the signals we discuss here as prognostic/predictive biomarkers or therapeutic targets 

to improve outcomes in HNSCC.  The detailed landscape of the UM-SCC cell line panel we 

describe here will serve as a useful tool for integrating our findings with the heterogeneous 

characteristics of HNSCCs.  In the future, we envision the development of a more 

comprehensive profile of tumor- intrinsic and extrinsic features influencing immunogenicity to 

inform precision immunotherapy strategies for diverse patient populations.  
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Section 1: Challenges and opportunities in immune modulation 

 It has been previously established that immune infiltration portends more favorable 

outcomes in HNSCC and other cancer types, suggesting that particular tumors may be better 

primed for immune-mediated clearance [1, 2].  This is especially true of HPV-associated tumors, 

which are known to carry a better prognosis than HPV negative tumors, bear a distinct 

immunologic phenotype marked by high levels of CD8+ T-lymphocytes, and respond better to 

anti-PD1 immunotherapy [3].  Here, we sought to better understand the prognostic value of 

specific subsets of tumor infiltrating lymphocytes (TILs) in recurrent laryngeal squamous cell 

carcinoma, which is typically HPV-negative [4].  While CD103 status was previously assessed in 

lung and ovarian cancers [5, 6], we were the first to investigate its significance in HNSCC.  Our 

findings build upon previous reports by specifically identifying a CD103+/CD4+ TIL phenotype 

as an especially strong predictor of survival in this setting, supporting further investigation into 

the role of the CD103+ TIL population in HNSCC.  Since the publication of our report, a large 

(464 participant) prospective evaluation of TILs in previously untreated HNSCC patients has 

been described [7], showing that TILs were independently associated with improved overall 

survival in each disease site, albeit to varying degrees.  Furthermore, high CD4+ TIL counts 

were associated with decreased risk of death after primary chemoradiation, but not after surgery, 

further bolstering the concept that specific TIL populations may serve as predictive biomarkers 

and guide patient stratification.  As the predictive/prognostic potential of TILs in HNSCC 

becomes clear, it will be useful to continue to more intricately characterize T-cell subsets to 

generate improved models for predicting outcomes.  It will be of particular interest to investigate 

a relationship between TIL status and PDL1 expression in this setting, and to explore TIL status 
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as a predictive marker in patients treated with immunotherapy, as it is possible that tumors rich 

in specific T-cell subsets will derive greater benefit. 

 Considering the potential prognostic significance of immune infiltration in HNSCC and 

the idea that certain tumors may be better primed for immune response, we chose to investigate 

mechanisms modulating tumor immune checkpoints, with the ultimate goal of predicting or 

improving response to immunotherapy.  Since the 2016 FDA approval of anti-PD1 therapies for 

R/M HNSCC, Pembrolizumab as a monotherapy has also been approved as first line treatment 

for HNSCC patients whose tumors express PDL1 [8].  However, while the approval of anti-PD1 

therapy represents a landmark development in the management of a disease that has been, for 

several decades, strikingly devoid of therapeutic advances, the overall proportion of HNSCC 

patients who benefit from immunotherapy is small, and clinicians’ capacity to prospectively 

select these patients is limited [9].  Some characteristics of HNSCC and other cancers have been 

shown to correlate with response to immunotherapy, including PDL1 expression, T-lymphocyte 

infiltration, HPV status, and tumor mutational burden [10-19].  Each is a rational approach to 

stratifying patients, but in practice falls short of reliably defining responsive populations.  While 

PDL1 expression levels are currently used to guide clinical decisions surrounding anti-PD1 

therapy, numerous studies on this topic have yet to reach a consensus as to how strongly this 

metric correlates with response [9, 20].  Interpretation of these results as a whole has likely been 

complicated by discordance in study design, as thresholds for PDL1 positivity vary widely, 

detection antibodies differ in specificity, and different methods of tissue sampling (tumor only vs 

tumor plus peritumoral sampling, for example) are used across studies.  Additionally, PDL1 

expression is intratumorally heterogeneous, further convoluting the results of these 

investigations. The as yet unmet challenges of defining a reliable threshold for PDL1 positivity 
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and establishing its role in predicting survival and therapeutic response highlight a need for 

improved biomarkers.  

 Our work suggests that common features of HNSCCs, such as FGFR activity, could 

potentially function in tumor cells to modulate immune checkpoints in addition to their 

documented roles in tumorigenesis.  As we have identified novel PDL1 drivers that are also 

known to be dysregulated in cancer, we would next ask whether aberrant activity of these genes 

could mark highly immunosuppressive tumors and potentially serve as more reliable biomarkers 

for response to anti-PD1 therapy.  TCGA reported FGFR1 and FGFR3 alterations among the 

most common genetic aberrations in HNSCC tumors [21].  Based on our findings, we next 

hypothesize that a subset of tumors with FGFR pathway dysregulation may also express more 

PDL1.  Thus, we would next investigate a correlation between PDL1 expression and FGF/FGFR 

family alterations, including fusions, amplifications, mutations, and overexpression.  It will be 

especially crucial to assess FGFR activity in this setting (e.g. phosphorylated FGF receptors) to 

bolster the claim that FGFRs induce high PDL1 levels.  It would therefore be pertinent to 

analyze phosphorylated (activated) FGFRs in relation to PDL1 levels in human tumors by 

immunohistochemistry. 

This work also aims to eventually inform rational combination immunotherapy 

approaches.  We specifically pursued candidate pathways (FGFR and TLR) that have already 

been established as drug targets and for which clinical trials are underway, which could allow for 

more efficient translation of our findings to the clinic.  The concept that immune checkpoints 

may be targeted indirectly via known drivers of cancer invites exciting new avenues for immune 

modulation and implies heretofore unexplored anti-tumor effects of current therapeutics. In 

recent months, multiple studies focused on other cancer types have also provided evidence for 
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the use of FGFR inhibitors in combination with anti-PD1 therapy.  Li et al showed in cell line 

and murine models of colorectal cancer that FGFR2 activity induces PDL1 expression [22].  In 

September 2019, Palakurthi et al demonstrated that FGFR inhibition reduces PDL1 expression in 

murine models of non-small cell lung cancer (NSCLC) and that FGFR inhibition in combination 

with anti-PD1 yielded a survival benefit over either treatment alone [23]. Thus, we speculate that 

targeting of FGFR activity may also serve to improve the efficacy of immunotherapy regimens 

for HNSCC.   Also yet to be investigated is the influence of genetic aberrations in the FGFR 

pathway in mediating the phenotypes described above.  FGFR mutations and fusions are not 

especially common in HNSCC (4.2% of tumors) and most affect FGFR3 [21], but it is possible 

that these features may denote a specific subset of patients more or less likely to respond to 

immunotherapy alone or to combination FGFR/anti-PD1 therapy.  Further exploration of the 

FGFR mutant population would therefore be of particular interest and could lead to development 

of a biomarker more perspicuous than those that are currently in use, which are challenging to 

reliably quantify.  

 Our observation that TLR2 may directly modulate PDL1 is also of interest given recent 

trials of TLR agonists in HNSCC.  Multiple trials currently underway are investigating TLR8 

and TLR9 agonists in combination with the biologic cetuximab, which targets EGFR [24, 25].  

Rationalizing this approach is the observation that cetuximab can induce antibody-dependent 

cellular cytotoxicity in addition to inhibiting EGFR activity, and that this effect could be 

enhanced by activation of TLRs [25].  The results of our study, however, suggest that the 

potential for PDL1 upregulation under these conditions could be an important consideration, and 

may support either more scrupulous patient selection for TLR agonist therapy or even the 

addition of PD1 inhibition to this regimen. 
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 Another point for future inquiry would be the role of the microbiome in modulating 

response to immunotherapy, and whether this could be influenced by tumor-intrinsic aberrant 

expression or activity of TLRs.  Myriad roles for specific bacterial taxa in modulating anti-tumor 

immune responses have been described in melanoma, and the abundance of certain bacteria has 

been associated with such metrics as survival, response to immunotherapy or chemotherapy, and 

risk of treatment toxicities in several human cancers and in murine models [26-28].  Generally, it 

appears that components of the normal gut microbiota confer therapeutic response and survival 

benefits, while imbalances may lead to detrimental immune inhibitory effects [26, 29].  These 

studies exclusively consider the gut microbiome, and center around the ability of microbes to 

modulate local and systemic immune responses.  The impact of the oral microbiome in HNSCC 

is unclear, and the concept that bacteria may act directly on tumor cells to modulate 

immunogenicity has not been thoroughly explored.  Recently, periodontal bacteria 

Porphyromonas gingivalis and Fusobacterium nucleatum have been implicated in carcinogenesis 

[30].  Both are also known to activate TLR2 [31, 32], leading us to speculate that these species 

might directly contribute to immune evasion in tumor cells expressing TLR2 during oral 

carcinogenesis.  Modeling this in vivo will be vital to understanding the complexity of 

interactions between oral bacteria, the local and systemic immune system, and the tumor itself.   

 

Section 2: Positive-selection based genome-wide screening  

 We describe here the application of two different genome-scale screening techniques 

toward the identification of genes and pathways regulating PDL1 expression in cell lines.  

Functional screening at this scale has historically relied on sh- or si-RNA libraries, which are 

wrought with complications such as off-target effects [33].  The efficiency and specificity 
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offered by CRISPR technology has revolutionized library screening and presents a plethora of 

opportunities to apply this concept towards improving our understanding of critical biological 

processes.  Our report adds to the array of studies demonstrating the utility of these libraries in 

elucidating drivers of particular phenotypes.  The open reading frame screen we present here is 

also among the first applications of whole-genome overexpression screening in mammalian cells.  

However, our results also highlight some important technical challenges that will need to be 

addressed as we expand our usage of these systems. 

 The overexpression screen discussed in Chapter 3 revealed multiple intriguing genes 

potentially driving PDL1 expression, five of which we were able to validate.  Future experiments 

will define the mechanisms through which these genes modulate PDL1 and expand our analysis 

of the enriched gene list to validate and advance other hits.  Shortly after we completed our 

screen, an interesting report was published involving the most enriched gene we identified: 

ERO1L.  Tanaka et al demonstrated that in breast cancer cell lines, ERO1L promotes PDL1 

expression both through a HIF1alpha dependent transcriptional mechanism and through 

facilitation of oxidative protein folding [34].  This finding lends support to the idea that our 

screening protocol was able to select positive PDL1 regulators.  It will be of interest to our group 

to explore a similar relationship between ERO1L and PDL1 in HNSCC, and to understand 

whether this could be assessed as a biomarker or could represent a novel therapeutic target. 

 Of particular relevance to our work was the 2017 discovery of CMTM6 as a critical 

regulator of PDL1 in pancreatic cancer cells using genome-wide CRISPR screening with FACS 

based selection [35, 36].  This finding was recapitulated in breast cancer, melanoma, and lung 

cancer models.  Burr et al and Mezzadra et al reported that CMTM6 specifically regulated cell 

surface expression of PDL1 and was required for endocytic recycling of PDL1 [35, 36].  Given 
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the similarity of our experimental design to that described by Burr et al, we expected 

concordance between our findings.  Surprisingly, CMTM6 was not represented in the list of 

enriched gRNAs nominated by our CRISPR screen.  While this finding could be the result of 

biological differences between these two systems, we postulate that it could be due to poor 

representation of CMTM6 gRNAs in the control pool.  Only one of three CMTM6 gRNAs was 

detected at all in the control pool (60 reads ; Appendix 1), and this gRNA was not detected in 

either PDL1 sorted population.  Similar issues were evident with regard to other genes we 

expected to be nominated by our screen, such as the interferon gamma receptor (IFNGR) and 

STAT1.  We found that IFNGR gRNAs were poorly represented in the unsorted control pool (0, 

3, and 6 reads), and only one STAT1 gRNA was detected (7 reads).  It is possible that these 

knockouts confer such an insurmountable survival disadvantage that cells harboring these 

gRNAs are rapidly lost from the population. 

Another point of interest is the lack of overlap among genes nominated by the two 

screening mechanisms, despite use of the same cell line model and selection conditions.  We 

expected, for example, to identify some of the same targets in the PDL1low pool as in the selected 

ORF pool. We will need to better understand the efficiency of functional ORF overexpression 

and of genetic knockout in our systems in order to interpret this finding.  It is possible that, with 

poor efficiency, many of the cells we selected were random false positives with either no 

alteration functionally expressed, or exhibiting an off target effect conferring a survival 

advantage.  These cells may have overgrown many of the true positive cells over the course of 

serial sorting and expansion.  We will need to repeat these screens multiple times in UM-SCC-49 

to clarify false discovery rates.  It will then be useful to screen additional cell lines to identify 

recurring pathways across diverse models. 
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Section 4: Future directions 

 Our immediate next step will be to elucidate the mechanisms of candidate PDL1 drivers 

nominated by our screens.  To understand how the FGFR pathway, for example, influences 

PDL1 expression, we will perform proteome and transcriptome analyses following stimulation of 

cells with FGF ligands and following FGFR inhibition.  It will be of particular interest to 

examine proteome and transcriptome changes in IFNg stimulated cells while FGFRs are 

inhibited, as this may reveal novel crosstalk mechanisms between these pathways.  It will also be 

important to replicate these experiments in multiple genetic backgrounds to determine whether 

these mechanisms are widely utilized and whether further advancement of this work could be 

broadly clinically applicable.  It is possible that by examining the mechanism(s) through which 

candidate drivers modulate PDL1, we will identify a novel signaling node for PDL1 regulation 

utilized by multiple signaling pathways.    

 To fully understand the functional significance of FGFR and TLR signaling in anti-tumor 

immunity, it will be crucial to study these pathways in more complex systems. The logical next 

step will be to knock out or knock down our candidate drivers of PDL1 expression and assess T 

cell activation and T cell mediated killing in a co-culture assay using Jurkat T cells, or 

potentially HLA-matched patient-derived T-cells.  Eventually, we can assess the impact of 

modulating these pathways in vivo.  Several questions could be addressed with an in vivo model 

deficient in, for example, TLR.  We would first ask whether modulation of TLR2 specifically in 

tumor cells impacts tumor growth and survival.  We would also investigate the impact of altered 

TLR2 activity in the contexts of traditional HNSCC therapy (radiation, cisplatin) and in the 

context of anti-PD1 immunotherapy to understand whether this signal could represent a 
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prognostic or predictive biomarker.  It would then follow to ask whether TLR inhibitors or 

agonists can impact outcomes.  To follow up on our TLR2 observation specifically, it would be 

interesting to examine the role of the microbiome.  It is possible that the presence of particular 

bacteria could influence tumor immunogenicity by activating TLRs.   

 An important limitation of our studies that must be addressed in vivo is the systemic 

impact of modulating candidate PDL1 drivers, as our current model exclusively examines these 

pathways in cancer cell lines.  For example, while it may be possible to combat 

immunosuppression using FGFR or TLR inhibitors, it is likely that these will also affect other 

cell types in the microenvironment, which could lead to unforeseen pro- or anti-tumorigenic 

effects.  FGFR inhibition, for example, also induces stromal fibroblast senescence and reduces 

MDSC recruitment [37].   It is also likely that our candidate PDL1 drivers support tumorigenesis 

in numerous ways beyond PDL1 mediated immune evasion, as is certainly the case for the FGFR 

signaling pathway.  Thus, it may be that our PDL1 regulation data indicate just one of many 

factors rationalizing the modulation of these genes in HNSCC, and could indicate a feasible 

alternative or ancillary method of immune checkpoint targeting to improve outcomes.   

 Taken together, we hope the work presented here will serve as a starting point for new 

inquiries into the pathways modulating immunogenicity in HNSCC and that we can eventually 

apply a more sophisticated understanding of these signals to improve patient outcomes. 
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