
New Directions in Online Learning: Boosting, Partial
Information, and Non-Stationarity

by

Young Hun Jung

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Statistics)

in the University of Michigan
2020

Doctoral Committee:

Associate Professor Ambuj Tewari, Chair
Associate Professor Long Nguyen
Professor Clayton Scott
Professor Ji Zhu

Young Hun Jung
yhjung@umich.edu

ORCID iD: 0000-0003-1625-4526

©Young Hun Jung 2020

TABLE OF CONTENTS

LIST OF FIGURES . iv

LIST OF TABLES . v

LIST OF APPENDICES . vi

ABSTRACT . vii

CHAPTER

1 Introduction . 1

1.1 List of Completed Projects . 2

2 Online Multiclass Boosting . 4

2.1 Preliminaries . 5
2.1.1 Online weak learning condition . 6

2.2 Optimal algorithm . 7
2.2.1 A general online multiclass boost-by-majority (OnlineMBBM) algorithm 8
2.2.2 Mistake bound under 0-1 loss and its optimality 10

2.3 Adaptive algorithm . 11
2.3.1 Choice of loss function . 11
2.3.2 Adaboost.OLM . 13
2.3.3 Mistake bound and comparison to the optimal algorithm 15

2.4 Experiments . 15

3 Online Boosting Algorithms for Multi-label Ranking 17

3.1 Preliminaries . 18
3.1.1 Online weak learners and cost vector 19
3.1.2 General online boosting schema . 19

3.2 Algorithms with theoretical loss bounds . 20
3.2.1 Optimal algorithm . 20
3.2.2 Adaptive algorithm . 26

3.3 Experiments . 32

4 Online Boosting with Partial Information . 34

4.1 Multi-class Classification with Bandit Feedback 35

ii

4.1.1 Unbiased Estimate of the Zero-One Loss 35
4.1.2 Algorithms . 37
4.1.3 Mistake Bounds . 37

4.2 Multi-label Ranking with Top-k Feedback . 38
4.2.1 Estimating a Loss Function . 39
4.2.2 Algorithms . 41
4.2.3 Loss Bounds . 41

5 Thompson Sampling in Episodic Restless Bandit Problems 43

5.1 Problem setting . 44
5.1.1 Bayesian regret and competitor policy 45

5.2 Algorithm . 46
5.3 Regret bound . 48
5.4 Experiments . 52

5.4.1 Competitors . 52
5.4.2 Results . 53

6 Thompson Sampling in Non-Episodic Restless Bandits 55

6.1 Main result . 57
6.2 Preliminaries . 57

6.2.1 Problem setting . 57
6.2.2 From POMDP to MDP . 58
6.2.3 Policy mapping . 59

6.3 Algorithm . 59
6.4 Planning problem . 61
6.5 Regret bound . 63

6.5.1 Regret decomposition . 63
6.5.2 Bounding the number of episodes . 65
6.5.3 Confidence set . 67
6.5.4 Putting everything together . 69

6.6 Experiments . 69

7 Conclusion . 72

APPENDIX

BIBLIOGRAPHY . 119

iii

LIST OF FIGURES

FIGURE

4.1 An example of the exploration step when m = 6, k = 3, and rt = (2, 3, 5, 1, 6, 4) . . . 40

5.1 The Gilbert-Elliott channel model . 52
5.2 Bayesian regret of Thompson sampling versus episode (left) and its log-log plot (right) 53
5.3 Average per-episode value versus episode and the benchmark values (left); the poste-

rior weights of the correct parameters versus episode in the case of the Whittle index
policy (right) . 54

6.1 Bayesian regrets of TSDE (left) and their log-log plots (right) 70
6.2 Average rewards of TSDE converge to their benchmarks (left); Posterior weights of

the true parameters monotonically increase to one (right) 71

A.1 Plot of φ1
N(0) computed with distribution u1

γ versus the number of labels k. N is
fixed to be 20, and the edge γ is set to be 0.01 (left) and 0.1 (right). The graph is not
monotonic for larger edge. This hinders the approximation of potential functions with
respect to k. 87

iv

LIST OF TABLES

TABLE

2.1 Comparison of algorithm accuracy on final 20% of data set and run time in seconds.
Best accuracy on a data set reported in bold. 16

3.1 Upper bounds for φNt (0) and wi∗ . 24
3.2 Summary of data sets . 32
3.3 Average loss and runtime in seconds . 33

A.1 Data set details . 96
A.2 Comparison of algorithms on final 20% of data set 98
A.3 Comparison of algorithms on full data set . 98
A.4 Comparison of algorithms total run time in seconds 98

v

LIST OF APPENDICES

APPENDIX

A Details for Online Multiclass Boosting . 74

B Details for Online Boosting Algorithms for Multi-label Ranking 100

C Details for Thompson Sampling in Episodic Restless Bandit Problems 106

D Details for Thompson Sampling in Non-Episodic Restless Bandits 110

vi

ABSTRACT

Online learning, where a learning algorithm fits a model on-the-fly with streaming data, has be-

come an important research area in machine learning. Batch learning, where the entire data set has

to be available to the learning algorithm, is not always a suitable paradigm for the big data era. It

is increasingly common in many practical situations, such as online ads prediction or control of

self-driving cars, that data instances naturally arrive in a sequential manner. In these situations, re-

searchers want to update their model in an online fashion. This dissertation pursues several topics

at the frontier of online learning research.

In Chapter 2 and Chapter 3, the journey starts with online boosting. Online boosting studies

how to combine multiple online weak learners to get a stronger learner. Chapter 2 considers online

multi-class classification problems. Chapter 3 focuses on the more challenging multi-label ranking

problem where there are multiple correct labels and the learner outputs a ranking of labels based on

their relevance. In both chapters, an optimal algorithm and an adaptive algorithm are proposed. The

optimal algorithms require a minimal number of weak learners to attain the desired accuracy. The

adaptive algorithms are practically more useful since they do not require a priori knowledge about

the strength of weak learners and are more computationally efficient. The adaptive algorithms are

not statistically optimal but they still come with reasonable performance guarantees. The empirical

results on real data sets support the theoretical findings and the proposed boosting algorithms

outperformed existing competitors on benchmark data sets.

Chapter 4 considers the partial information setting, where the learner does not receive the true

labels. Partial feedback is common in practice as obtaining complete feedback can be costly.

vii

The chapter revisits the boosting algorithms that are presented in Chapter 2 and Chapter 3 and

extends them to work with partial information feedback. Despite the learner receiving much less

information, comparable performance guarantees can be made.

Later in Chapter 5 and Chapter 6, we move on to another interesting area in online learning

called restless bandit problems. Unlike the classical (stochastic) multi-armed bandit problems

where the reward distributions are unknown but stationary, in restless bandit problems the distri-

butions can change over time. This extra layer of complexity allows us to study more complicated

models, but the analysis becomes even more difficult. In restless bandit problems, it is assumed

that each arm has a state that evolves according to an unknown Markov process, and the reward

distribution depends on the arm’s current state. This setting can be thought of as a sub-class of re-

inforcement learning and the partial observability inherent in this problem makes the analysis very

challenging. The well known Thompson Sampling algorithm is analyzed and a Bayesian regret

bound for it is derived. Chapter 5 considers the episodic case where the system periodically resets.

Chapter 6 extends the analysis to the more challenging non-episodic (i.e., infinite time horizon)

case. In both settings, Thompson Sampling algorithms (with slight modifications) enjoy sub-linear

regret bounds, and the empirical results on simulated data support this fact. The experiments also

suggest the possibility that the algorithm can be used in the frequentist setting even though the

theoretical bounds are only shown for the Bayesian regret.

viii

CHAPTER 1

Introduction

Online Learning is a well-developed branch of machine learning that studies how to dynamically
update models as new data instances arrive. This field is distinguished from classical batch

learning where there is a training set upon which the model is fully optimized. As the model keeps
changing along with the data, theoretically providing a performance guarantee in this setting can be
challenging. There are two main reasons why online learning gets so much of researchers’ attention
nowadays. First, the enormous size of the data that we have makes it almost impossible to load
them on a memory. Since a single computer cannot process the entire training set simultaneously,
the batch learning becomes no longer an option, and the scientists must split the training set and
update the model dynamically. Second, in many applications, data naturally arrive in a sequential
manner. For example, in ads click prediction [Cheng et al., 2012], a new user comes to the platform
and gives feedback by either clicking or ignoring the ads that are selected by an online model.
In this scenario, even the i.i.d. assumption can easily break, and the researchers are looking for
performance guarantees without such an assumption. Throughout this thesis, I will discuss several
topics in online learning and propose new directions.

Chapter 2 and Chapter 3 discuss online boosting. Boosting studies how to combine weak learners
to obtain a stronger learner, and online boosting aggregates multiple online learners. Recall that the
classical boosting adds an additional weak learner in each round of iteration while the training set is
fixed. In contrast, as data arrive sequentially in online learning, this paradigm is no longer feasible.
Instead, online boosting algorithms start with a fixed number of online weak learners and update
the weights in an online fashion (with each weak learner keeps updating its internal parameters as
well). In this manuscript, multiple prediction problems are considered. Chapter 2 studies multi-class
classification problems, and Chapter 3 considers multi-label ranking (MLR) problems. In MLR
problems, there are multiple correct answers, and the learner predicts a ranking of labels based on
their predicted relevance. In both settings, one optimal algorithm and one adaptive algorithm are
proposed with theoretical guarantees. The optimal algorithm requires the minimal number of weak

1

learners to attain the desired accuracy (with a proven lower bound), while the adaptive algorithm is
computationally more feasible. The experimental results show that the proposed algorithms beat
the state-of-art results, and adaptive algorithms demonstrate competitive performance despite their
loose theoretical bounds.

Chapter 4 extends the boosting algorithms in the preceding chapters to the partial information
setting. In many scenarios, such as too many candidate labels or complex combinatorial structures,
obtaining true labels can cost too much time or money. For example, in online recommendation
problems, users only show their preferences by clicking relevant items among the list presented by a
learner. In this case, if a user does not click any items, there is no way that the learner can infer what
would be the relevant items for the user. Designing a boosting algorithm with partial feedback is
very difficult because there are multiple weak learners. Since the correct label is not available to the
boosting algorithm, some weak learners can only get very limited feedback (even weaker than the
feedback that the boosting algorithm receives). The multi-class classification with bandit feedback
and the MLR with top-k feedback are considered in this chapter. Quite surprisingly, the asymptotic
accuracy remains the same as the full information algorithms, and the partial information only
increases the sample complexity.

In Chapter 5 and Chapter 6, we move on to the non-stationary world with partial feedback.
The stochastic multi-armed bandits assume the reward distributions are stationary. That is to say,
the distribution remains the same over time. This stationary assumption often fails in practices.
For example, Meshram et al. [2017] consider a recommendation system where a user’s preference
depends on his current state. To tackle this problem, researchers have studied restless bandits, where
each arm has a state which evolves according to some Markov process and the reward distribution
is a function of the current state. This extra layer of flexibility allows restless bandits to solve more
complicated modeling problems but at the same time makes the analysis of learning algorithms
much more challenging. The famous Thompson Sampling algorithms with slight modifications
are analyzed in this setting. Chapter 5 assumes the episodic case where the system periodically
resets, which makes the setting simpler, and Chapter 6 extends this to the non-episodic case. In
both settings, Bayesian regret bounds are proven, and the experimental results even suggest that the
proposed algorithms can be used to optimize the frequentist regret as well.

1.1 List of Completed Projects

The following list consists of completed projects during my Ph.D. (sorted chronologically):

1. Online Multiclass Boosting, NIPS 2017 (joint work with Jack Goetz), [Jung et al., 2017]

2

2. Online Boosting Algorithms for Multi-label Ranking, AISTATS 2018 , [Jung and Tewari,
2018]

3. Online Multiclass Boosting with Bandit Feedback, AISTATS 2019 (joint work with Daniel
Zhang), [Zhang et al., 2019]

4. Regret Bounds for Thompson Sampling in Episodic Restless Bandit Problems, NeurIPS 2019,
[Jung and Tewari, 2019]

5. Online Learning via the Differential Privacy Lens, NeurIPS 2019 (joint work with Jacob
Abernethy, Chansoo Lee, and Audra McMillan), [Abernethy et al., 2019]

6. Thompson Sampling in Non-Episodic Restless Bandits, arXiv preprint 2019 (joint work with
Marc Abeille), [Jung et al., 2019]

7. Online Boosting for Multilabel Ranking with Top-k Feedback, arXiv preprint 2019 (joint
work with Daniel Zhang), [Zhang et al., 2019]

This manuscript consists of a subset of these projects to which I solely (or primarily) contributed.
The only exceptions are project 3 and 7 that are briefly summarized in Chapter 4. I was a second
author of these two papers but contributed to complete the theoretical aspects (which are the
summarized portion here). Chapter 2 corresponds to paper 1; Chapter 3 to paper 2; Chapter 5 to
paper 4; and Chapter 6 to paper 6.

The only paper that is missed in this manuscript is paper 5. This work is also very interesting
in that it bridges two fairly different fields: online learning and differential privacy. We propose
a condition, called differential stability, inspired by differential privacy, and if an online learning
algorithm satisfies this condition, then we provide a methodology to prove its regret bound. This
framework turns out to be very general in that we could provide unifying proofs for existing online
learning algorithms in different settings. Additionally, it can be used to design new online algorithms
as well. This work is omitted in this manuscript because the topic is not fully aligned with the main
theme of the dissertation. Interested readers can refer to the complete paper.

3

CHAPTER 2

Online Multiclass Boosting

Boosting methods are ensemble learning methods that aggregate several (not necessarily) weak
learners to build a stronger learner 1. When used to aggregate reasonably strong learners, boosting
has been shown to produce results competitive with other state-of-the-art methods (e.g., Korytkowski
et al. [2016], Zhang and Wang [2014]). Until recently theoretical development in this area has
been focused on batch binary settings where the learner can observe the entire training set at once,
and the labels are restricted to be binary (cf. Schapire and Freund [2012]). In the past few years,
progress has been made to extend the theory and algorithms to more general settings.

Dealing with multiclass classification turned out to be more subtle than initially expected.
Mukherjee and Schapire [2013] unify several different proposals made earlier in the literature and
provide a general framework for multiclass boosting. They state their weak learning conditions in
terms of cost matrices that have to satisfy certain restrictions: for example, labeling with the ground
truth should have less cost than labeling with some other labels. A weak learning condition, just like
the binary condition, states that the performance of a learner, now judged using a cost matrix, should
be better than a random guessing baseline. One particular condition they call the edge-over-random

condition, proves to be sufficient for boostability. The edge-over-random condition will also figure
prominently in this chapter. They also consider a necessary and sufficient condition for boostability
but it turns out to be computationally intractable to be used in practice.

A recent trend in modern machine learning is to train learners in an online setting where the
instances come sequentially and the learner has to make predictions instantly. Oza [2005] initially
proposed an online boosting algorithm that has accuracy comparable with the batch version, but
it took several years to design an algorithm with theoretical justification (Chen et al. [2012]).
Beygelzimer et al. [2015] achieved a breakthrough by proposing an optimal algorithm in online
binary settings and an adaptive algorithm that works quite well in practice. These theories in online

1This chapter is based on the paper with the same title that appeared in NeurIPS 2017. My great colleague, Jack
Goetz, performed a significant portion of the experiments.

4

binary boosting have led to several extensions. For example, Chen et al. [2014] combine one vs all
method with binary boosting algorithms to tackle online multiclass problems with bandit feedback,
and Hu et al. [2017] build a theory of boosting in regression setting.

In this work, we combine the insights and techniques of Mukherjee and Schapire [2013] and
Beygelzimer et al. [2015] to provide a framework for online multiclass boosting. The cost matrix
framework from the former work is adopted to propose an online weak learning condition that
defines how well a learner can perform over a random guess (Definition 2.1). We show this condition
is naturally derived from its batch setting counterpart. From this weak learning condition, a boosting
algorithm (Algorithm 2.1) is proposed which is theoretically optimal in that it requires the minimal
number of learners and sample complexity to attain a specified level of accuracy. We also develop
an adaptive algorithm (Algorithm 2.2) which allows learners to have variable strengths. This
algorithm is theoretically less efficient than the optimal one, but the experimental results show that
it is quite comparable and sometimes even better due to its adaptive property. Both algorithms not
only possess theoretical proofs of mistake bounds, but also demonstrate superior performance over
preexisting methods.

2.1 Preliminaries

We first describe the basic setup for online boosting. While in the batch setting, an additional weak
learner is trained at every iteration, in the online setting, the algorithm starts with a fixed count
of N weak learners and a booster which manages the weak learners. There are k possible labels
[k] := {1, · · · , k} and k is known to the learners. At each iteration t = 1, · · · , T , an adversary

picks a labeled example (xt, yt) ∈ X × [k], where X is some domain, and reveals xt to the booster.
Once the booster observes the unlabeled data xt, it gathers the weak learners’ predictions and makes
a final prediction. Throughout this paper, index i takes values from 1 to N ; t from 1 to T ; and l
from 1 to k.

We utilize the cost matrix framework, first proposed by Mukherjee and Schapire [2013], to
develop multiclass boosting algorithms. This is a key ingredient in the multiclass extension as
it enables different penalization for each pair of correct label and prediction, and we further
develop this framework to suit the online setting. The booster sequentially computes cost matrices

{Ci
t ∈ Rk×k | i = 1, · · · , N}, sends (xt,Ci

t) to the ith weak learner WLi, and gets its prediction
lit ∈ [k]. Here the cost matrix Ci

t plays a role of loss function in that WLi tries to minimize the
cumulative cost

∑
t Ci

t[yt, l
i
t]. As the booster wants each learner to predict the correct label, it wants

to set the diagonal entries of Ci
t to be minimal among its row. At this stage, the true label yt is not

5

revealed yet, but the previous weak learners’ predictions can affect the computation of the cost
matrix for the next learner. Given a matrix C, the (i, j)th entry will be denoted by C[i, j], and ith

row vector by C[i].
Once all the learners make predictions, the booster makes the final prediction ŷt by majority

votes. The booster can either take simple majority votes or weighted ones. In fact for the adaptive
algorithm, we will allow weighted votes so that the booster can assign more weights on well-
performing learners. The weight for WLi at iteration t will be denoted by αit. After observing
the booster’s final decision, the adversary reveals the true label yt, and the booster suffers 0-1 loss
1(ŷt 6= yt). The booster also shares the true label to the weak learners so that they can train on this
data point.

Two main issues have to be resolved to design a good boosting algorithm. First, we need
to design the booster’s strategy for producing cost matrices. Second, we need to quantify weak
learner’s ability to reduce the cumulative cost

∑T
t=1 Ci

t[yt, l
i
t]. The first issue will be resolved by

introducing potential functions, which will be thoroughly discussed in Section 2.2.1. For the second
issue, we introduce our online weak learning condition, a generalization of the weak learning
assumption in Beygelzimer et al. [2015], stating that for any adaptively given sequence of cost
matrices, weak learners can produce predictions whose cumulative cost is less than that incurred by
random guessing. The online weak learning condition will be discussed in the following section. For
the analysis of the adaptive algorithm, we use empirical edges instead of the online weak learning
condition.

2.1.1 Online weak learning condition

We propose an online weak learning condition that states the weak learners are better than a random
guess. We first define a baseline condition that is better than a random guess. Let ∆[k] denote a
family of distributions over [k] and ulγ ∈ ∆[k] be a uniform distribution that puts γ more weight
on the label l. For example, u1

γ = (1−γ
k

+ γ, 1−γ
k
, · · · , 1−γ

k
). For a given sequence of examples

{(xt, yt) | t = 1, · · · , T}, Uγ ∈ RT×k consists of rows uytγ . Then we restrict the booster’s choice of
cost matrices to

Ceor1 := {C ∈ Rk×k | ∀l, r ∈ [k], C[l, l] = 0,C[l, r] ≥ 0, and ||C[l]||1 = 1}.

Note that diagonal entries are minimal among the row, and Ceor1 also has a normalization constraint.
A broader choice of cost matrices is allowed if one can assign importance weights on observations,
which is possible for various learners. Even if the learner does not take the importance weight as an

6

input, we can achieve a similar effect by sending to the learner an instance with probability that is
proportional to its weight. Interested readers can refer Beygelzimer et al. [2015, Lemma 1]. From
now on, we will assume that our weak learners can take weight wt as an input.

We are ready to present our online weak learning condition. This condition is in fact naturally
derived from the batch setting counterpart that is well studied by Mukherjee and Schapire [2013].
The link is thoroughly discussed in Appendix A.1. For the scaling issue, we assume the weights wt
lie in [0, 1].

Definition 2.1. (Online multiclass weak learning condition) For parameters γ, δ ∈ (0, 1), and

S > 0, a pair of online learner and an adversary is said to satisfy online weak learning condition

with parameters δ, γ, and S if for any sample length T , any adaptive sequence of labeled examples,

and for any adaptively chosen series of pairs of weight and cost matrix {(wt,Ct) ∈ [0, 1]×Ceor1 | t =

1, · · · , T}, the learner can generate predictions ŷt such that with probability at least 1− δ,

T∑
t=1

wtCt[yt, ŷt] ≤ C • U′γ + S =
1− γ
k
||w||1 + S, (2.1)

where C ∈ RT×k consists of rows of wtCt[yt] and A • B′ denotes the Frobenius inner product

Tr(AB′). w = (w1, · · · , wT) and the last equality holds due to the normalized condition on Ceor1 . γ

is called an edge, and S an excess loss.

Remark. Notice that this condition is imposed on a pair of learner and adversary instead of solely

on a learner. This is because no learner can satisfy this condition if the adversary draws samples

in a completely adaptive manner. The probabilistic statement is necessary because many online

algorithms’ predictions are not deterministic. The excess loss requirement is needed since an online

learner cannot produce meaningful predictions before observing a sufficient number of examples.

2.2 Optimal algorithm

We describe the booster’s optimal strategy for designing cost matrices. We first introduce a general
theory without specifying the loss, and later investigate the asymptotic behavior of cumulative loss
suffered by our algorithm under the specific 0-1 loss. We adopt the potential function framework
from Mukherjee and Schapire [2013] and extend it to the online setting. Potential functions help
both in designing cost matrices and in proving the mistake bound of the algorithm.

7

2.2.1 A general online multiclass boost-by-majority (OnlineMBBM) algo-
rithm

We will keep track of the weighted cumulative votes of the first i weak learners for the sample xt
by sit :=

∑i
j=1 α

j
teljt , where αit is the weight of WLi, lit is its prediction and ej is the jth standard

basis vector. For the optimal algorithm, we assume that αit = 1, ∀i, t. In other words, the booster
makes the final decision by simple majority votes. Given a cumulative vote s ∈ Rk, suppose we
have a loss function Lr(s) where r denotes the correct label. We call a loss function proper, if it is a
decreasing function of s[r] and an increasing function of other coordinates (we alert the reader that
“proper loss” has at least one other meaning in the literature). From now on, we will assume that our
loss function is proper. A good example of proper loss is multiclass 0-1 loss:

Lr(s) := 1(max
l 6=r

s[l] ≥ s[r]). (2.2)

The purpose of the potential function φri (s) is to estimate the booster’s loss when there remain
i learners until the final decision and the current cumulative vote is s. More precisely, we want
potential functions to satisfy the following conditions:

φr0(s) = Lr(s),

φri+1(s) = El∼urγφ
r
i (s + el).

(2.3)

Readers should note that φri (s) also inherits the proper property of the loss function, which can be
shown by induction. The condition (2.3) can be loosened by replacing both equalities by inequalities
“≥”, but in practice we usually use equalities.

Now we describe the booster’s strategy for designing cost matrices. After observing xt, the
booster sequentially sets a cost matrix Ci

t for WLi, gets the weak learner’s prediction lit and uses
this in the computation of the next cost matrix Ci+1

t . Ultimately, booster wants to set

Ci
t[r, l] = φrN−i(si−1

t + el). (2.4)

However, this cost matrix does not satisfy the condition of Ceor1 , and thus should be modified in
order to utilize the weak learning condition. First to make the cost for the true label equal to 0, we
subtract Ci

t[r, r] from every element of Ci
t[r]. Since the potential function is proper, our new cost

matrix still has non-negative elements after the subtraction. We then normalize the row so that each

8

Algorithm 2.1 Online Multiclass Boost-by-Majority (OnlineMBBM)
1: for t = 1, · · · , T do
2: Receive example xt
3: Set s0

t = 0 ∈ Rk

4: for i = 1, · · · , N do
5: Set the normalized cost matrix Di

t according to (2.5) and pass it to WLi

6: Get weak predictions lit = WLi(xt) and update sit = si−1
t + elit

7: end for
8: Predict ŷt := argmaxl sNt [l] and receive true label yt
9: for i = 1, · · · , N do

10: Set wi[t] =
∑k

l=1[φytN−i(si−1
t + el)− φytN−i(si−1

t + eyt)]
11: Pass training example with weight (xt, yt,wi[t]) to WLi

12: end for
13: end for

row has `1 norm equal to 1. In other words, we get new normalized cost matrix

Di
t[r, l] =

φrN−i(si−1
t + el)− φrN−i(si−1

t + er)
wi[t]

, (2.5)

where wi[t] :=
∑k

l=1 φ
r
N−i(si−1

t + el)− φrN−i(si−1
t + er) plays the role of weight. It is still possible

that a row vector Ci
t[r] is a zero vector so that normalization is impossible. In this case, we just

leave it as a zero vector. Our weak learning condition (2.1) still works with cost matrices some of
whose row vectors are zeros because however the learner predicts, it incurs no cost.

After defining cost matrices, the rest of the algorithm is straightforward except we have to
estimate ||wi||∞ to normalize the weight. This is necessary because the weak learning condition
assumes the weights lying in [0, 1]. We cannot compute the exact value of ||wi||∞ until the last
instance is revealed, which is fine as we need this value only in proving the mistake bound. The
estimate wi∗ for ||wi||∞ requires to specify the loss, and we postpone the technical parts to Appendix
A.2.2. Interested readers may directly refer Lemma A.5 before proceeding. Once the learners
generate predictions after observing cost matrices, the final decision is made by simple majority
votes. After the true label is revealed, the booster updates the weight and sends the labeled
instance with weight to the weak learners. The pseudocode for the entire algorithm is depicted in
Algorithm 2.1. The algorithm is named after Beygelzimer et al. [2015, OnlineBBM], which is in
fact OnlineMBBM with binary labels.

We are ready to present the mistake bound of general OnlineMBBM. The proof appears in
Appendix A.2.1 where the main idea is adopted from Beygelzimer et al. [2015, Lemma 3].

9

Theorem 2.2. (Cumulative loss bound for OnlineMBBM) Suppose weak learners and an adver-

sary satisfy the online weak learning condition (2.1) with parameters δ, γ, and S. For any T and N

satisfying δ � 1
N

, and any adaptive sequence of labeled examples generated by the adversary, the

final loss suffered by OnlineMBBM satisfies the following inequality with probability 1−Nδ:

T∑
t=1

Lyt(sNt) ≤ φ1
N(0)T + S

N∑
i=1

wi∗. (2.6)

Here φ1
N(0) plays a role of asymptotic error rate and the second term determines the sample

complexity. We will investigate the behavior of those terms under the 0-1 loss in the following
section.

2.2.2 Mistake bound under 0-1 loss and its optimality

From now on, we will specify the loss to be multiclass 0-1 loss defined in (2.2), which might be
the most relevant measure in multiclass problems. To present a specific mistake bound, two terms
in the RHS of (2.6) should be bounded. This requires an approximation of potentials, which is
technical and postponed to Appendix A.2.2. Lemma A.4 and A.5 provide the bounds for those
terms. We also mention another bound for the weight in the remark after Lemma A.5 so that one
can use whichever tighter. Combining the above lemmas with Theorem 2.2 gives the following
corollary. The additional constraint on γ comes from Lemma A.5.

Corollary 2.3. (0-1 loss bound of OnlineMBBM) Suppose weak learners and an adversary satisfy

the online weak learning condition (2.1) with parameters δ, γ, and S, where γ < 1
2
. For any T and

N satisfying δ � 1
N

and any adaptive sequence of labeled examples generated by the adversary,

OnlineMBBM can generate predictions ŷt that satisfy the following inequality with probability

1−Nδ:
T∑
t=1

1(yt 6= ŷt) ≤ (k − 1)e−
γ2N
2 T + Õ(k5/2

√
NS). (2.7)

Therefore in order to achieve error rate ε, it suffices to use N = Θ(1
γ2

ln k
ε
) weak learners, which

gives an excess loss bound of Θ̃(k
5/2

γ
S).

Remark. Note that the above excess loss bound gives a sample complexity bound of Θ̃(k
5/2

εγ
S). If

we use alternative weight bound to get kNS as an upper bound for the second term in (2.6), we end

up having Õ(kNS). This will give an excess loss bound of Θ̃(k
γ2
S).

10

We now provide lower bounds on the number of learners and sample complexity for arbitrary
online boosting algorithms to evaluate the optimality of OnlineMBBM under 0-1 loss. In particular,
we construct weak learners that satisfy the online weak learning condition (2.1) and have almost
matching asymptotic error rate and excess loss compared to those of OnlineMBBM as in (2.7).
Indeed we can prove that the number of learners and sample complexity of OnlineMBBM is optimal
up to logarithmic factors, ignoring the influence of the number of classes k. Our bounds are possibly
suboptimal up to polynomial factors in k, and the problem to fill the gap remains open. The detailed
proof and a discussion of the gap can be found in Appendix A.2.3. Our lower bound is a multiclass
version of Beygelzimer et al. [2015, Theorem 3].

Theorem 2.4. (Lower bounds for N and T) For any γ ∈ (0, 1
4
), δ, ε ∈ (0, 1), and S ≥ k ln(1

δ
)

γ
,

there exists an adversary with a family of learners satisfying the online weak learning condition

(2.1) with parameters δ, γ, and S, such that to achieve asymptotic error rate ε, an online boosting

algorithm requires at least Ω(1
k2γ2

ln 1
ε
) learners and a sample complexity of Ω(k

εγ
S).

2.3 Adaptive algorithm

The online weak learning condition imposes minimal assumptions on the asymptotic accuracy of
learners, and obviously it leads to a solid theory of online boosting. However, it has two main
practical limitations. The first is the difficulty of estimating the edge γ. Given a learner and an
adversary, it is by no means a simple task to find the maximum edge that satisfies (2.1). The
second issue is that different learners may have different edges. Some learners may in fact be quite
strong with significant edges, while others are just slightly better than a random guess. In this case,
OnlineMBBM has to pick the minimum edge as it assumes common γ for all weak learners. It is
obviously inefficient in that the booster underestimates the strong learners’ accuracy.

Our adaptive algorithm will discard the online weak learning condition to provide a more
practical method. Empirical edges γ1, · · · , γN (see Section 2.3.2 for the definition) are measured for
the weak learners and are used to bound the number of mistakes made by the boosting algorithm.

2.3.1 Choice of loss function

Adaboost, proposed by Freund et al. [1999], is arguably the most popular boosting algorithm in
practice. It aims to minimize the exponential loss, and has many variants which use some other
surrogate loss. The main reason of using a surrogate loss is ease of optimization; while 0-1 loss is
not even continuous, most surrogate losses are convex. We adopt the use of a surrogate loss for the

11

same reason, and throughout this section will discuss our choice of surrogate loss for the adaptive
algorithm.

Exponential loss is a very strong candidate in that it provides a closed form for computing
potential functions, which are used to design cost matrices (cf. Mukherjee and Schapire [2013,
Theorem 13]). One property of online setting, however, makes it unfavorable. Like OnlineMBBM,
each data point will have a different weight depending on weak learners’ performance, and if
the algorithm uses exponential loss, this weight will be an exponential function of difference in
weighted cumulative votes. With this exponentially varying weights among samples, the algorithm
might end up depending on very small portion of observed samples. This is undesirable because it
is easier for the adversary to manipulate the sample sequence to perturb the learner.

To overcome exponentially varying weights, Beygelzimer et al. [2015] use logistic loss in their
adaptive algorithm. Logistic loss is more desirable in that its derivative is bounded and thus weights
will be relatively smooth. For this reason, we will also use multiclass version of logistic loss:

Lr(s) =:
∑
l 6=r

log(1 + exp(s[r]− s[r])). (2.8)

We still need to compute potential functions from logistic loss in order to calculate cost matrices.
Unfortunately, Mukherjee and Schapire [2013] use a unique property of exponential loss to get a
closed form for potential functions, which cannot be adopted to logistic loss. However, the optimal
cost matrix induced from exponential loss has a very close connection with the gradient of the loss
(cf. Mukherjee and Schapire [2013, Lemma 22]). From this, we will design our cost matrices as
following:

Ci
t[r, l] :=


1

1+exp(si−1
t [r]−si−1

t [l])
, if l 6= r

−
∑

j 6=r
1

1+exp(si−1
t [r]−si−1

t [j])
, if l = r.

(2.9)

Readers should note that the row vector Ci
t[r] is simply the gradient of Lr(si−1

t). Also note that this
matrix does not belong to Ceor1 , but it does guarantee that the correct prediction gets the minimal
cost.

The choice of logistic loss over exponential loss is somewhat subjective. The undesirable
property of exponential loss does not necessarily mean that we cannot build an adaptive algorithm
using this loss. In fact, we can slightly modify Algorithm 2.2 to develop algorithms using different
surrogates (exponential loss and square hinge loss). However, their theoretical bounds are inferior to
the one with logistic loss. Interested readers can refer Appendix A.4, but it assumes understanding

12

of Algorithm 2.2.

2.3.2 Adaboost.OLM

Our work is a generalization of Adaboost.OL by Beygelzimer et al. [2015], from which the name
Adaboost.OLM comes with M standing for multiclass. We introduce a new concept of an expert.
From N weak learners, we can produce N experts where expert i makes its prediction by weighted
majority votes among the first i learners. Unlike OnlineMBBM, we allow varying weights αit over
the learners. As we are working with logistic loss, we want to minimize

∑
t L

yt(sit) for each i,
where the loss is given in (2.8). We want to alert the readers to note that even though the algorithm
tries to minimize the cumulative surrogate loss, its performance is still evaluated by 0-1 loss. The
surrogate loss only plays a role of a bridge that makes the algorithm adaptive.

We do not impose the online weak learning condition on weak learners, but instead just measure
the performance of WLi by γi :=

∑
t Cit[yt,lit]∑
t Cit[yt,yt]

. This empirical edge will be used to bound the number
of mistakes made by Adaboost.OLM. By definition of cost matrix, we can check

Ci
t[yt, yt] ≤ Ci

t[yt, l] ≤ −Ci
t[yt, yt], ∀l ∈ [k],

from which we can prove −1 ≤ γi ≤ 1, ∀i. If the online weak learning condition is met with edge
γ, then one can show that γi ≥ γ with high probability when the sample size is sufficiently large.

Unlike the optimal algorithm, we cannot show the last expert that utilizes all the learners has the
best accuracy. However, we can show at least one expert has a good predicting power. Therefore
we will use classical Hedge algorithm (Littlestone and Warmuth [1989] and Freund and Schapire
[1995]) to randomly choose an expert at each iteration with adaptive probability weight depending
on each expert’s prediction history.

Finally we need to address how to set the weight αit for each weak learner. As our algorithm
tries to minimize the cumulative logistic loss, we want to set αit to minimize

∑
t L

yt(si−1
t + αitelit).

This is again a classical topic in online learning, and we will use online gradient descent, proposed
by Zinkevich [2003]. By letting, f it (α) := Lyt(si−1

t + αelit), we need an online algorithm ensuring∑
t f

i
t (α

i
t) ≤ minα∈F

∑
t f

i
t (α) +Ri(T) where F is a feasible set to be specified later, and Ri(T)

is a regret that is sublinear in T . To apply Zinkevich [2003, Theorem 1], we need f it to be convex
and F to be compact. The first assumption is met by our choice of logistic loss, and for the second
assumption, we will set F = [−2, 2]. There is no harm to restrict the choice of αit by F because we
can always scale the weights without affecting the result of weighted majority votes.

13

Algorithm 2.2 Adaboost.OLM
1: Initialize: ∀i, vi1 = 1, αi1 = 0
2: for t = 1, · · · , T do
3: Receive example xt
4: Set s0

t = 0 ∈ Rk

5: for i = 1, · · · , N do
6: Compute Ci

t according to (2.9) and pass it to WLi

7: Set lit = WLi(xt) and sit = si−1
t + αitelit

8: Set ŷit = argmaxl sit[l], the prediction of expert i
9: end for

10: Randomly draw it with P(it = i) ∝ vit
11: Predict ŷt = ŷitt and receive the true label yt
12: for i = 1, · · · , N do
13: Set αit+1 = Π(αit − ηtf it

′
(αit)) using (2.10) and ηt = 2

√
2

(k−1)
√
t

14: Set wi[t] = −Cit[yt,yt]
k−1

and pass (xt, yt,wi[t]) to WLi

15: Set vit+1 = vit · exp(−1(yt 6= ŷit))
16: end for
17: end for

By taking derivatives, we get

f it
′
(α) =


1

1+exp(si−1
t [yt]−si−1

t [lit]−α)
, if lit 6= yt

−
∑

j 6=yt
1

1+exp(si−1
t [j]+α−si−1

t [yt])
, if lit = yt.

(2.10)

This provides |f it
′
(α)| ≤ k − 1. Now let Π(·) represent a projection onto F :

Π(·) := max{−2,min{2, ·}}.

By setting αit+1 = Π(αit−ηtf it
′
(αit)) where ηt = 2

√
2

(k−1)
√
t
, we get Ri(T) ≤ 4

√
2(k−1)

√
T . Readers

should note that any learning rate of the form ηt = c√
t

would work, but our choice is optimized to
ensure the minimal regret.

The pseudocode for Adaboost.OLM is presented in Algorithm 2.2. In fact, if we put k = 2,
Adaboost.OLM has the same structure with Adaboost.OL. As in OnlineMBBM, the booster also
needs to pass the weight along with labeled instance. According to (2.9), it can be inferred that the
weight is proportional to −Ci

t[yt, yt].

14

2.3.3 Mistake bound and comparison to the optimal algorithm

Now we present the second main result that provides a mistake bound of Adaboost.OLM. The main
structure of the proof is adopted from Beygelzimer et al. [2015, Theorem 4] but in a generalized
cost matrix framework. The proof appears in Appendix A.3.

Theorem 2.5. (Mistake bound of Adaboost.OLM) For any T and N , with probability 1− δ, the

number of mistakes made by Adaboost.OLM satisfies the following inequality:

T∑
t=1

1(yt 6= ŷt) ≤
8(k − 1)∑N

i=1 γ
2
i

T + Õ(
kN2∑N
i=1 γ

2
i

),

where Õ notation suppresses dependence on log 1
δ
.

Remark. Note that this theorem naturally implies Beygelzimer et al. [2015, Theorem 4]. The

difference in coefficients is due to different scaling of γi. In fact, their γi ranges from [−1
2
, 1

2
].

Now that we have established a mistake bound, it is worthwhile to compare the bound with the
optimal boosting algorithm. Suppose the weak learners satisfy the weak learning condition (2.1)
with edge γ. For simplicity, we will ignore the excess loss S. As we have γi =

∑
t Cit[yt,lit]∑
t Cit[yt,yt]

≥ γ

with high probability, the mistake bound becomes 8(k−1)
γ2N

T + Õ(kN
γ2

). In order to achieve error
rate ε, Adaboost.OLM requires N ≥ 8(k−1)

εγ2
learners and T = Ω̃(k2

ε2γ4
) sample size. Note that

OnlineMBBM requires N = Ω(1
γ2

ln k
ε
) and T = min{Ω̃(k

5/2

εγ
), Ω̃(k

εγ2
)}. Adaboost.OLM is

obviously suboptimal, but due to its adaptive feature, its performance on real data is quite comparable
to that by OnlineMBBM.

2.4 Experiments

We compare the new algorithms to existing ones for online boosting on several UCI data sets, each
with k classes2. Table 2.1 contains some highlights, with additional results and experimental details
in the Appendix A.5. Here we show both the average accuracy on the final 20% of each data set, as
well as the average run time for each algorithm. Best decision tree gives the performance of the
best of 100 online decision trees fit using the VFDT algorithm in Domingos and Hulten [2000],
which were used as the weak learners in all other algorithms, and Online Boosting is an algorithm
taken from Oza [2005]. Both provide a baseline for comparison with the new Adaboost.OLM and

2Codes are available at https://github.com/yhjung88/OnlineBoostingWithVFDT

15

https://github.com/yhjung88/OnlineBoostingWithVFDT

OnlineMBBM algorithms. Best MBBM takes the best result from running the OnlineMBBM with
five different values of the edge parameter γ.

Despite being theoretically weaker, Adaboost.OLM often demonstrates similar accuracy and
sometimes outperforms Best MBBM, which exemplifies the power of adaptivity in practice. This
power comes from the ability to use diverse learners efficiently, instead of being limited by the
strength of the weakest learner. OnlineMBBM suffers from high computational cost, as well as the
difficulty of choosing the correct value of γ, which in general is unknown, but when the correct
value of γ is used it peforms very well. Finally in all cases Adaboost.OLM and OnlineMBBM
algorithms outperform both the best tree and the preexisting Online Boosting algorithm, while also
enjoying theoretical accuracy bounds.

Table 2.1: Comparison of algorithm accuracy on final 20% of data set and run time in seconds. Best
accuracy on a data set reported in bold.

Data sets k Best decision tree Online Boosting Adaboost.OLM Best MBBM

Balance 3 0.768 8 0.772 19 0.754 20 0.821 42
Mice 8 0.608 105 0.399 263 0.561 416 0.695 2173
Cars 4 0.924 39 0.914 27 0.930 59 0.914 56
Mushroom 2 0.999 241 1.000 169 1.000 355 1.000 325
Nursery 4 0.953 526 0.941 302 0.966 735 0.969 1510
ISOLET 26 0.515 470 0.149 1497 0.521 2422 0.635 64707
Movement 5 0.915 1960 0.870 3437 0.962 5072 0.988 18676

16

CHAPTER 3

Online Boosting Algorithms for Multi-label Ranking

Multi-label learning has important practical applications (e.g., Schapire and Singer [2000]), and its
theoretical properties continue to be studied (e.g., Koyejo et al. [2015]) 1. In contrast to standard
multi-class classifications, multi-label learning problems allow multiple correct answers. In other
words, we have a fixed set of basic labels, and the actual label is a subset of the basic labels. Since
the number of subsets increases exponentially as the number of basic labels grows, thinking of each
subset as a different class leads to intractability.

It is quite common in applications for the multi-label learner to output a ranking of the labels
on a new test instance. For example, the popular MULAN library designed by Tsoumakas et al.
[2011] allows the output of multi-label learning to be a multi-label ranker. In this chapter, we focus
on the multi-label ranking (MLR) setting. That is to say, the learner produces a score vector such
that a label with a higher score will be ranked above a label with a lower score. We are particularly
interested in online MLR settings where the data arrive sequentially. The online framework is
designed to handle a large volume of data that accumulates rapidly. In contrast to classical batch

learners, which observe the entire training set, online learners do not require the storage of a large
amount of data in memory and can also adapt to non-stationarity in the data by updating the internal
state as new instances arrive.

Boosting, first proposed by Freund and Schapire [1997], aggregates mildly powerful learners
into a strong learner. It has been used to produce state-of-the-art results in a wide range of fields
(e.g., Korytkowski et al. [2016] and Zhang and Wang [2014]). Boosting algorithms take weighted
majority votes among weak learners’ predictions, and the cumulative votes can be interpreted as a
score vector. This feature makes boosting very well suited to MLR problems.

The theory of boosting has emerged in batch binary settings and became arguably complete
(cf. Schapire and Freund [2012]), but its extension to an online setting is relatively new. To
our knowledge, Chen et al. [2012] first introduced an online boosting algorithm with theoretical

1This chapter is based on the paper with the same title that appeared in AISTATS 2018.

17

justifications, and Beygelzimer et al. [2015] pushed the state-of-the-art in online binary settings
further by proposing two online algorithms and proving optimality of one. Recent work has extended
the theory to multi-class settings (cf. Chapter 2), but their scope remained limited to single-label
problems.

In this chapter, we present the first online MLR boosting algorithms along with their theoretical
justifications. The main contribution is to allow general forms of weak predictions whereas
the previous online boosting algorithms only considered homogeneous prediction formats. By
introducing a general way to encode weak predictions, our algorithms can combine binary, single-
label, and MLR predictions.

After introducing the problem setting, we define an edge of an online learner over a random
learner (Definition 3.1). Under the assumption that every weak learner has a known positive edge,
we design an optimal way to combine their predictions (Section 3.2.1). In order to deal with practical
settings where such an assumption is untenable, we present an adaptive algorithm that can aggregate
learners with arbitrary edges (Section 3.2.2). In Section 3.3, we test our two algorithms on real data
sets, and find that their performance is often comparable with, and sometimes better than, that of
existing batch boosting algorithms for MLR.

3.1 Preliminaries

The number of candidate labels is fixed to be k, which is known to the learner. Without loss of
generality, we may write the labels using integers in [k] := {1, · · · , k}. We are allowing multiple
correct answers, and the label Yt is a subset of [k]. The labels in Yt is called relevant, and those
in Y c

t , irrelevant. At time t = 1, · · · , T , an adversary sequentially chooses a labeled example
(xt, Yt) ∈ X × 2[k], where X is some domain. Only the instance xt is shown to the learner, and the
label Yt is revealed once the learner makes a prediction ŷt. As we are interested in MLR settings, ŷt
is a k dimensional score vector. The learner suffers a loss LYt(ŷt) where the loss function will be
specified later in Section 3.2.1.

In our boosting framework, we assume that the learner consists of a booster andN weak learners,
where N is fixed before the training starts. This resembles a manager-worker framework in that
booster distributes tasks by specifying losses, and each learner makes a prediction to minimize
the loss. Booster makes the final decision by aggregating weak predictions. Once the true label is
revealed, the booster shares this information so that weak learners can update their parameters for
the next example.

18

3.1.1 Online weak learners and cost vector

We keep the form of weak predictions ht general in that we only assume it is a distribution over
[k]. This can in fact represent various types of predictions. For example, a single-label prediction,
l ∈ [k], can be encoded as a standard basis vector el, or a multi-label prediction {l1, · · · , ln} by
1
n

∑n
i=1 eli . Due to this general format, our boosting algorithm can even combine weak predictions

of different formats. This implies that if a researcher has a strong family of binary learners, she
can simply boost them without transforming them into multi-class learners through well known
techniques such as one-vs-all or one-vs-one [Allwein et al., 2000].

We extend the cost matrix framework, first proposed by Mukherjee and Schapire [2013], as a
means of communication between booster and weak learners. At round t, booster computes a cost
vector cit for the ith weak learner WLi, whose prediction hit suffers the cost cit · hit. The cost vector
is unknown to WLi until it produces hit, which is usual in online settings. Otherwise, WLi can
trivially minimize the cost.

A binary weak learning condition states a learner can attain over 50% accuracy however the
sample weights are assigned. In our setting, cost vectors play the role of sample weights, and we
will define the edge of a learner in similar manner.

Finally, we assume that weak learners can take an importance weight as an input, which is
possible for many online algorithms.

3.1.2 General online boosting schema

We introduce a general algorithm schema shared by our algorithms. We denote the weight of WLi

at iteration t by αit. We keep track of weighted cumulative votes through sjt :=
∑j

i=1 α
i
th
i
t. That is

to say, we can give more credits to well performing learners by setting larger weights. Furthermore,
allowing negative weights, we can avoid poor learner’s predictions. We call sjt a prediction made by
expert j. In the end, the booster makes the final decision by following one of these experts.

The schema is summarized in Algorithm 3.1. We want to emphasize that the true label Yt is only
available once the final prediction ŷt is made. Computation of weights and cost vectors requires the
knowledge of Yt, and thus it happens after the final decision is made. To keep our theory general, the
schema does not specify which weak learners to use (line 4 and 12). The specific ways to calculate
other variables such as αit, cit, and it depend on algorithms, which will be introduced in the next
section.

19

Algorithm 3.1 Online boosting schema
1: Initialize: αi1 for i ∈ [N]
2: for t = 1, · · · , T do
3: Receive example xt
4: Gather weak predictions hit = WLi(xt), ∀i
5: Record expert predictions sjt :=

∑j
i=1 α

i
th
i
t

6: Choose an index it ∈ [N]
7: Make a final decision ŷt = sitt
8: Get the true label Yt
9: Compute weights αit+1, ∀i

10: Compute cost vectors cit, ∀i
11: Weak learners suffer the loss cit · hit
12: Weak learners update the internal parameters
13: Update booster’s parameters, if any
14: end for

3.2 Algorithms with theoretical loss bounds

An essential factor in the performance of boosting algorithms is the predictive power of the individual
weak learners. For example, if weak learners make completely random predictions, they cannot
produce meaningful outcomes according to the booster’s intention. We deal with this matter in two
different ways. One way is to define an edge of a learner over a completely random learner and
assume all weak learners have positive edges. Another way is to measure each learner’s empirical

edge and manipulate the weight αit to maximize the accuracy of the final prediction. Even a learner
that is worse than random guessing can contribute positively if we allow negative weights. The first
method leads to OnlineBMR (Section 3.2.1), and the second to Ada.OLMR (Section 3.2.2).

3.2.1 Optimal algorithm

We first define the edge of a learner. Recall that weak learners suffer losses determined by cost
vectors. Given the true label Y , the booster chooses a cost vector from

Ceor0 := {c ∈ [0, 1]k | max
l∈Y

c[l] ≤ min
r/∈Y

c[r],

min
l

c[l] = 0 and max
l

c[l] = 1},

where the name Ceor0 also appears in Chapter 2 and “eor” stands for edge-over-random. Since the
booster wants weak learners to put higher scores at the relevant labels, costs at the relevant labels

20

should be less than those at the irrelevant ones. Restriction to [0, 1]k makes sure that the learner’s
cost is bounded. Along with cost vectors, the booster passes the importance weights wt ∈ [0, 1] so
that the learner’s cost becomes wtct · ht.

We also construct a baseline learner that has edge γ. Its prediction uYγ is also a distribution over
[k] that puts γ more probability for the relevant labels. That is to say, we can write

uYγ [l] =

a+ γ if l ∈ Y

a if l /∈ Y,

where the value of a depends on the number of relevant labels, |Y |.
Now we state our online weak learning condition.

Definition 3.1. (OnlineWLC) For parameters γ, δ ∈ (0, 1), and S > 0, a pair of an online learner

and an adversary is said to satisfy OnlineWLC (δ, γ, S) if for any T , with probability at least 1− δ,

the learner can generate predictions that satisfy

T∑
t=1

wtct · ht ≤
T∑
t=1

wtct · uYtγ + S.

γ is called an edge, and S an excess loss.

This extends the condition in Definition 2.1. The probabilistic statement is needed as many
online learners produce randomized predictions. The excess loss can be interpreted as a warm-up

period. Throughout this section, we assume our learners satisfy OnlineWLC (δ, γ, S) with a fixed
adversary.

Cost vectors The optimal design of a cost vector depends on the choice of loss. We will use LY (s)
to denote the loss without specifying it where s is the predicted score vector. The only constraint that
we impose on our loss is that it is proper, which implies that it is decreasing in s[l] for l ∈ Y , and
increasing in s[r] for r /∈ Y (readers should note that “proper loss” has at least one other meaning
in the literature).

Then we introduce potential function, a well known concept in game theory which is first
introduced to boosting by Schapire [2001]:

φ0
t (s) := LYt(s)

φit(s) := E
l∼uYtγ

φi−1
t (s + el).

(3.1)

21

The potential φit(s) aims to estimate booster’s final loss when i more weak learners are left until the
final prediction and s is the current state. It can be easily shown by induction that many attributes of
L are inherited by potentials. Being proper or convex are good examples.

Essentially, we want to set
cit[l] := φN−it (si−1

t + el), (3.2)

where si−1
t is the prediction of expert i− 1. The proper property inherited by potentials ensures the

relevant labels have less costs than the irrelevant. To satisfy the boundedness condition of Ceor0 , we
normalize (3.2) to get

dit[l] :=
cit[l]−minr cit[r]

wi[t]
, (3.3)

where wi[t] := maxr cit[r]−minr cit[r]. Since Definition 3.1 assumes that wt ∈ [0, 1], we have to
further normalize wi[t]. This requires the knowledge of wi∗ := maxt wi[t]. This is unavailable until
we observe all the instances, which is fine because we only need this value in proving the loss
bound.

Algorithm details The algorithm is named by OnlineBMR (Online Boost-by-majority for Multi-
label Ranking) as its potential function based design has roots in the classical boost-by-majority

algorithm (Schapire [2001]). In OnlineBMR, we simply set αit = 1, or in other words, the booster
takes simple cumulative votes. Cost vectors are computed using (3.2), and the booster always
follows the last expert N , or it = N . These datails are summarized in Algorithm 3.2.

Algorithm 3.2 OnlineBMR details
1: Initialize: αi1 = 1 for i ∈ [N]
6: Set it = N
9: Set the weights αit+1 = 1, ∀i ∈ [N]

10: Set cit[l] = φN−it (si−1
t + el), ∀l ∈ [k], ∀i ∈ [N]

13: No extra parameters to be updated

The following theorem holds either if weak learners are single-label learners or if the loss L is
convex.

Theorem 3.2. (BMR, general loss bound) For any T and N � 1
δ
, the final loss suffered by

OnlineBMR satisfies the following inequality with probability 1−Nδ:

T∑
t=1

LYt(ŷt) ≤
T∑
t=1

φNt (0) + S

N∑
i=1

wi∗. (3.4)

22

Proof. From (3.1) and (3.2), we can write

φN−i+1
t (si−1

t) = E
l∼uYtγ

φN−it (si−1
t + el)

= cit · uYtγ
= cit · (uYtγ − hit) + cit · hit
≥ cit · (uYtγ − hit) + φN−it (sit),

where the last inequality is in fact equality if weak learners are single-label learners, or holds by
Jensen’s inequality if the loss is convex (which implies the convexity of potentials). Also note that
sit = si−1

t + hit. Since both uYtγ and hit have `1 norm 1, we can subtract common numbers from every
entry of cit without changing the value of cit · (uYtγ − hit). This implies we can plug in wi[t]dit at the
place of cit. Then we have

φN−i+1
t (si−1

t)− φN−it (sit)

≥ wi[t]dit · uYtγ − wi[t]dit · hit.

By summing this over t, we have

T∑
t=1

φN−i+1
t (si−1

t)−
T∑
t=1

φN−it (sit)

≥
T∑
t=1

wi[t]dit · uYtγ −
T∑
t=1

wi[t]dit · hit.

(3.5)

OnlineWLC (δ, γ, S) provides, with probability 1− δ,

T∑
t=1

wi[t]

wi∗
dt · ht ≤

1

wi∗

T∑
t=1

wi[t]dt · uYtγ + S.

Plugging this in (3.5), we get

T∑
t=1

φN−i+1
t (si−1

t)−
T∑
t=1

φN−it (sit) ≥ −Swi∗.

23

Now summing this over i, we get with probability 1−Nδ (due to union bound),

T∑
t=1

φNt (0) + S
N∑
i=1

wi∗ ≥
T∑
t=1

φ0
t (sNt) =

T∑
t=1

LYt(ŷt),

which completes the proof.

Now we evaluate the efficiency of OnlineBMR by fixing a loss. Unfortunately, there is no
canonical loss in MLR settings, but following rank loss is a strong candidate (cf. Cheng et al. [2010]
and Gao and Zhou [2011]):

LYrnk(s) := wY
∑
l∈Y

∑
r/∈Y

1(s[l] < s[r]) +
1

2
1(s[l] = s[r]),

where wY = 1
|Y |·|Y c| is a normalization constant that ensures the loss lies in [0, 1]. Note that this loss

is not convex. In case weak learners are in fact single-label learners, we can simply use rank loss
to compute potentials, but in more general case, we may use the following hinge loss to compute
potentials:

LYhinge(s) := wY
∑
l∈Y

∑
r/∈Y

(1 + s[r]− s[l])+,

where (·)+ := max(·, 0). It is convex and always greater than rank loss, and thus Theorem 3.2 can
be used to bound rank loss. In Appendix B.1, we bound two terms in the RHS of (3.4) when the
potentials are built upon rank and hinge losses. Here we record the results.

Table 3.1: Upper bounds for φNt (0) and wi∗

loss φNt (0) wi∗

rank loss e−
γ2N
2 O(1√

N−i)

hinge loss (N + 1)e−
γ2N
2 2

For the case that we use rank loss, we can check

N∑
i=1

wi∗ ≤
N∑
i=1

O(
1√
N − i

) ≤ O(
√
N).

Combining these results with Theorem 3.2, we get the following corollary.

24

Corollary 3.3. (BMR, rank loss bound) For any T and N � 1
δ
, OnlineBMR satisfies following

rank loss bounds with probability 1−Nδ.
With single-label learners, we have

T∑
t=1

LYtrnk(ŷt) ≤ e−
γ2N
2 T +O(

√
NS), (3.6)

and with general learners, we have

T∑
t=1

LYtrnk(ŷt) ≤ (N + 1)e−
γ2N
2 T + 2NS. (3.7)

Remark. When we divide both sides by T , we find the average loss is asymptotically bounded by

the first term. The second term determines the sample complexity. In both cases, the first term

decreases exponentially as N grows, which means the algorithm does not require too many learners

to achieve a desired loss bound.

Matching lower bounds From (3.6), we can deduce that to attain average loss less than ε,
OnlineBMR needs Ω(1

γ2
ln 1

ε
) learners and Ω̃(S

εγ
) samples. A natural question is whether these

numbers are optimal. In fact the following theorem constructs a circumstance that matches these
bounds up to logarithmic factors. Throughout the proof, we consider k as a fixed constant.

Theorem 3.4. For any γ ∈ (0, 1
2k

), δ, ε ∈ (0, 1), and S ≥ k ln(1
δ

)

γ
, there exists an adversary with a

family of learners satisfying OnlineWLC (δ, γ, S) such that to achieve error rate less than ε, any

boosting algorithm requires at least Ω(1
γ2

ln 1
ε
) learners and Ω(S

εγ
) samples.

Proof. We introduce a sketch here and postpone the complete discussion to Appendix B.2. We
assume that an adversary draws a label Yt uniformly at random from 2[k] − {∅, [k]}, and the weak
learners generate single-label prediction lt w.r.t. pt ∈ ∆[k]. We manipulate pt such that weak
learners satisfy OnlineWLC (δ, γ, S) but the best possible performance is close to (3.6).

Boundedness conditions in Ceor0 and the Azuma-Hoeffding inequality provide that with probabil-
ity 1− δ,

T∑
t=1

wtct[lt] ≤
T∑
t=1

wtct · pt +
γ||w||1
k

+
k ln(1

δ
)

2γ
.

For the optimality of the number of learners, we let pt = uYt2γ for all t. The above inequality
guarantees OnlineWLC is met. Then a similar argument of Schapire and Freund [2012, Section

25

13.2.6] can show that the optimal choice of weights over the learners is (1
N
, · · · , 1

N
). Finally,

adopting the argument in the proof of Theorem 2.4, we can show

ELYrnk(ŷt) ≥ Ω(e−4Nk2γ2).

Setting this value equal to ε, we have N ≥ Ω(1
γ2

ln 1
ε
), considering k as a fixed constant. This

proves the first part of the theorem.
For the second part, let T0 := S

4γ
and define pt = uYt0 for t ≤ T0 and pt = uYt2γ for t > T0. Then

OnlineWLC can be shown to be met in a similar fashion. Observing that weak learners do not
provide meaningful information for t ≤ T0, we can claim any online boosting algorithm suffers a
loss at least Ω(T0). Therefore to obtain the certain accuracy ε, the number of instances T should be
at least Ω(T0

ε
) = Ω(S

εγ
), which completes the second part of the proof.

3.2.2 Adaptive algorithm

Despite the optimal loss bound, OnlineBMR has a few drawbacks when it is applied in practice.
Firstly, potentials do not have a closed form, and their computation becomes a major bottleneck
(cf. Table 3.3). Furthermore, the edge γ becomes an extra tuning parameter, which increases the
runtime even more. Finally, it is possible that learners have different edges, and assuming a constant
edge can lead to inefficiency. To overcome these drawbacks, rather than assuming positive edges
for weak learners, our second algorithm chooses the weight αit adaptively to handle variable edges.

Surrogate loss Like other adaptive boosting algorithms (e.g., Beygelzimer et al. [2015] and
Freund et al. [1999]), our algorithm needs a surrogate loss. The choice of loss is broadly discussed
in Chapter 2, and logistic loss seems to be a valid choice in online settings as its gradient is uniformly
bounded. In this regard, we will use the following logistic loss:

LYlog(s) := wY
∑
l∈Y

∑
r/∈Y

log(1 + exp(s[r]− s[l])).

It is proper and convex. We emphasize that booster’s prediction suffers the rank loss, and this
surrogate only plays an intermediate role in optimizing parameters.

Algorithm details The algorithm is inspired by Adaboost.OLM (Algorithm 2.2), and we call it
by Ada.OLMR2. Since it internally aims to minimize the logistic loss, we set the cost vector to be

2Online, Logistic, Multi-label, and Ranking

26

the gradient of the surrogate:
cit := ∇LYtlog(si−1

t). (3.8)

Next we present how to set the weights αit. Essentially, Ada.OLMR wants to choose αit to minimize
the cumulative logistic loss: ∑

t

LYtlog(si−1
t + αith

i
t).

After initializing αi1 equals to 0, we use online gradient descent method, proposed by Zinkevich
[2003], to compute the next weights. If we write f it (α) := LYtlog(si−1

t + αhit), we want αit to satisfy∑
t

f it (α
i
t) ≤ min

α∈F

∑
t

f it (α) +Ri(T),

where F is some feasible set, and Ri(T) is a sublinear regret. To apply the result by Zinkevich
[2003, Theorem 1], f it needs to be convex, and F should be compact. The former condition is met
by our choice of logistic loss, and we will use F = [−2, 2] for the feasible set. Since the booster’s
loss is invariant under the scaling of weights, we can shrink the weights to fit in F .

Taking derivative, we can check f it
′
(α) ≤ 1. Now let Π(·) denote a projection onto F : Π(·) :=

max{−2,min{2, ·}}. By setting

αit+1 = Π(αit − ηtf it
′
(αit)) where ηt =

1√
t
,

we get Ri(T) ≤ 9
√
T . Considering that sit = si−1

t + αith
i
t, we can also write f it

′
(αit) = ci+1

t · hit.
Finally, it remains to address how to choose it. In contrast to OnlineBMR, we cannot show

that the last expert is reliably sophisticated. Instead, what can be shown is that at least one of the
experts is good enough. Thus we use classical Hedge algorithm (cf. Freund and Schapire [1997]
and Littlestone and Warmuth [1989]) to randomly choose an expert at each iteration with adaptive
probability distribution depending on each expert’s prediction history. In particular, we introduce
new variables vit, which are initialized as vi1 = 1, ∀i. At each iteration, it is randomly drawn such
that

P(it = i) ∝ vit,

and then vit is updated based on the expert’s rank loss:

vit+1 := vite
−LYtrnk(sit).

The details are summarized in Algorithm 3.3.

27

Algorithm 3.3 Ada.OLMR details
1: Initialize: αi1 = 0 and vi1 = 1, ∀i ∈ [N]
6: Randomly draw it s.t. P(it = i) ∝ vit
9: Compute αit+1 = Π(αit − 1√

t
f it
′
(αit)), ∀i ∈ [N]

10: Compute cit = ∇LYtlog(si−1
t), ∀i ∈ [N]

13: Update vit+1 = vite
−LYtrnk(sit), ∀i ∈ [N]

Empirical edges As we are not imposing OnlineWLC, we need another measure of the learner’s
predictive power to prove the loss bound. From (3.8), it can be observed that the relevant labels have
negative costs and the irrelevant ones have positive cost. Furthermore, the summation of entries of
cit is exactly 0. This observation suggests a new definition of weight:

wi[t] := wYt
∑
l∈Yt

∑
r/∈Yt

1

1 + exp(si−1
t [l]− si−1

t [r])

= −
∑
l∈Yt

cit[l] =
∑
r/∈Yt

cit[r] =
||cit||1

2
.

(3.9)

This does not directly correspond to the weight used in (3.3), but plays a similar role. Then we
define the empirical edge:

γi := −
∑T

t=1 cit · hit
||wi||1

. (3.10)

The baseline learner uYtγ has this value exactly γ, which suggests that it is a good proxy for the edge
defined in Definition 3.1.

Now we present the loss bound of Ada.OLMR.

Theorem 3.5. (Ada.OLMR, rank loss bound) For any T and N , with probability 1− δ, the rank

loss suffered by Ada.OLMR is bounded as follows:

T∑
t=1

LYtrnk(ŷt) ≤
8∑
i |γi|

T + Õ(
N2∑
i |γi|

), (3.11)

where Õ notation suppresses dependence on log 1
δ
.

Proof. We start the proof by defining the rank loss suffered by expert i as below:

Mi :=
T∑
t=1

LYtrnk(sit).

28

According to the formula, there is no harm to define M0 = T
2

since s0
t = 0. As the booster chooses

an expert through the Hedge algorithm, a standard analysis (cf. [Cesa-Bianchi and Lugosi, 2006,
Corollary 2.3]) along with the Azuma-Hoeffding inequality provides with probability 1− δ,

T∑
t=1

LYtrnk(ŷt) ≤ 2 min
i
Mi + 2 logN + Õ(

√
T), (3.12)

where Õ notation suppresses dependence on log 1
δ
.

It is not hard to check that 1
1+exp(a−b) ≥

1
2
1(a ≤ b), from which we can infer

wi[t] ≥ 1

2
LYtrnk(si−1

t) and ||wi||1 ≥
Mi−1

2
, (3.13)

where wi is defined in (3.9). Note that this relation holds for the case i = 1 as well.
Now let ∆i denote the difference of the cumulative logistic loss between two consecutive

experts:

∆i :=
T∑
t=1

LYtlog(sit)− LYtlog(si−1
t)

=
T∑
t=1

LYtlog(si−1
t + αith

i
t)− LYtlog(si−1

t).

Then the online gradient descent algorithm provides

∆i ≤ min
α∈[−2,2]

T∑
t=1

[LYtlog(si−1
t + αhit)− LYtlog(si−1

t)]

+ 9
√
T .

(3.14)

Here we record an univariate inequality:

log(1 + es+α)− log(1 + es) = log(1 +
eα − 1

1 + e−s
)

≤ 1

1 + e−s
(eα − 1).

29

We expand the difference to get

T∑
t=1

[LYtlog(si−1
t + αhit)− LYtlog(si−1

t)]

=
T∑
t=1

∑
l∈Yt

∑
r/∈Yt

log
1 + esi−1

t [r]−si−1
t [l]+α(hit[r]−hit[l])

1 + esi−1
t [r]−si−1

t [l]

≤
T∑
t=1

∑
l∈Yt

∑
r/∈Yt

1

1 + esi−1
t [l]−si−1

t [r]
(eα(hit[r]−hit[l]) − 1)

=: f(α).

(3.15)

We claim that minα∈[−2,2] f(α) ≤ − |γi|
2
||wi||1. Let us rewrite ||wi||1 in (3.9) and γi in (3.10) as

following.

||wi||1 =
T∑
t=1

∑
l∈Yt

∑
r/∈Yt

1

1 + esi−1
t [l]−si−1

t [r]

γi =
T∑
t=1

∑
l∈Yt

∑
r/∈Yt

1

||wi||1
hit[l]− hit[r]

1 + esi−1
t [l]−si−1

t [r]
.

(3.16)

For the ease of notation, let j denote an index that moves through all tuples of (t, l, r) ∈ [T]×Yt×Y c
t ,

and aj and bj denote following terms.

aj =
1

||wi||1
1

1 + esi−1
t [l]−si−1

t [r]

bj = hit[l]− hit[r].

Then from (3.16), we have
∑

j aj = 1 and
∑

j ajbj = γi. Now we express f(α) in terms of aj and
bj as below.

f(α)

||wi||1
=
∑
j

aj(e
−αbj − 1) ≤ e−α

∑
j ajbj − 1 = e−αγi − 1,

where the inequality holds by Jensen’s inequality. From this, we can deduce that

min
α∈[−2,2]

f(α)

||wi||1
≤ e−2|γi| − 1 ≤ −|γi|

2
,

where the last inequality can be checked by investigating |γi| = 0, 1 and observing the convexity of

30

the exponential function. This proves our claim that

min
α∈[−2,2]

f(α) ≤ −|γi|
2
||wi||1. (3.17)

Combining (3.13), (3.14), (3.15) and (3.17), we have

∆i ≤ −
|γi|
4
Mi−1 + 9

√
T .

Summing over i, we get by telescoping rule

T∑
t=1

LYtlog(sNt)−
T∑
t=1

LYtlog(0)

≤ −1

4

N∑
i=1

|γi|Mi−1 + 9N
√
T

≤ −1

4

N∑
i=1

|γi|min
i
Mi + 9N

√
T .

Note that LYtlog(0) = log 2 and LYtlog(sNt) ≥ 0. Therefore we have

min
i
Mi ≤

4 log 2∑
i |γi|

T +
36N
√
T∑

i |γi|
.

Plugging this in (3.12), we get with probability 1− δ,

T∑
t=1

LYtrnk(ŷt) ≤
8 log 2∑
i |γi|

T + Õ(
N
√
T∑

i |γi|
+ logN)

≤ 8∑
i |γi|

T + Õ(
N2∑
i |γi|

),

where the last inequality holds from AM-GM inequality: cN
√
T ≤ c2N2+T

2
. This completes our

proof.

Comparison with OnlineBMR We finish this section by comparing our two algorithms. For a
fair comparison, assume that all learners have edge γ. Since the baseline learner uYγ has empirical
edge γ, for sufficiently large T , we can deduce that γi ≥ γ with high probability. Using this relation,

31

(3.11) can be written as
T∑
t=1

LYtrnk(ŷt) ≤
8

Nγ
T + Õ(

N

γ
).

Comparing this to either (3.6) or (3.7), we can see that OnlineBMR indeed has better asymptotic
loss bound and sample complexity. Despite this sub-optimality (in upper bounds), Ada.OLMR
shows comparable results in real data sets due to its adaptive nature.

3.3 Experiments

We performed an experiment on benchmark data sets taken from MULAN3. We chose these four
particular data sets because Dembczynski and Hüllermeier [2012] already provided performances of
batch setting boosting algorithms, giving us a benchmark to compare with. The authors in fact used
five data sets, but image data set is no longer available from the source. Table 3.2 summarizes the
basic statistics of data sets, including training and test set sizes, number of features and labels, and
three statistics of the sizes of relevant sets. The data set m-reduced is a reduced version of mediamill

obtained by random sampling without replacement. We keep the original split for training and test
sets to provide more relevant comparisons.

Table 3.2: Summary of data sets

data #train #test dim k min mean max

emotions 391 202 72 6 1 1.87 3
scene 1211 1196 294 6 1 1.07 3
yeast 1500 917 103 14 1 4.24 11
mediamill 30993 12914 120 101 0 4.38 18
m-reduced 1500 500 120 101 0 4.39 13

VFDT algorithms presented by Domingos and Hulten [2000] were used as weak learners.
Every algorithm used 100 trees whose parameters were randomly chosen. VFDT is trained using
single-label data, and we fed individual relevant labels along with importance weights that were
computed as maxl ct−ct[l]. Instead of using all covariates, the booster fed to trees randomly chosen
20 covariates to make weak predictions less correlated.

All computations were carried out on a Nehalem architecture 10-core 2.27 GHz Intel Xeon

3Tsoumakas et al. [2011], http://mulan.sourceforge.net/datasets.html

32

http://mulan.sourceforge.net/datasets.html

E7-4860 processors with 25 GB RAM per core. Each algorithm was trained at least ten times4 with
different random seeds, and the results were aggregated through mean. Predictions were evaluated
by rank loss. The algorithm’s loss was only recorded for test sets, but it kept updating its parameters
while exploring test sets as well.

Since VFDT outputs a conditional distribution, which is not of a single-label format, we used
hinge loss to compute potentials. Furthermore, OnlineBMR has an additional parameter of edge γ.
We tried four different values5, and the best result is recorded as best BMR. Table 3.3 summarizes
the results.

Table 3.3: Average loss and runtime in seconds

data batch6 Ada.OLMR best BMR

emotions .1699 .1600 253 .1654 611
scene .0720 .0881 341 .0743 1488
yeast .1820 .1874 2675 .1836 9170
mediamill .0665 .0508 69565 - -
m-reduced - .0632 4148 .0630 288204

Two algorithms’ average losses are comparable to each other and to batch setting results, but
OnlineBMR requires much longer runtimes. Based on the fact that best BMR’s performance is
reported on the best edge parameter out of four trials, Ada.OLMR is far more favorable in practice.
With large number of labels, runtime for OnlineBMR grows rapidly, and it was even impossible to
run mediamill data within a week, and this was why we produced the reduced version. The main
bottleneck is the computation of potentials as they do not have closed form.

4OnlineBMR for m-reduced was tested 10 times due to long runtimes, and others were tested 20 times
5{.2, .1, .01, .001} for small k and {.05, .01, .005, .001} for large k
6The best result from batch boosting algorithms in Dembczynski and Hüllermeier [2012]

33

CHAPTER 4

Online Boosting with Partial Information

Chapter 2 and 3 discuss online boosting algorithms in the full information setting, where the
environment reveals the true label once prediction is made. However, when the number of labels
becomes too large or the label itself involves a complex combinatorial structure, obtaining the true
answer can be costly. For example, when the labels are ads or product recommendations on the
web, the learner only receives feedback about whether its predicted label was correct (e.g., the
user clicked on the ad or recommendation) or not (e.g., user did not click). Intuitively, training
machine learning models under such partial feedback is challenging. A common approach is to
convert a full information algorithm into a partial information version without incurring too much
performance loss (see, for example, Kakade et al. [2008] and Beygelzimer et al. [2017] for work
using the perceptron algorithm). This chapter will briefly discuss online boosting algorithms in
the partial feedback settings 1. The first part deals with the multi-class classification with bandit
feedback and the second part discusses multi-label ranking with top-k feedback.

Designing a boosting algorithm with bandit feedback is particularly difficult as it is not clear
how to update the weak learners. For example, suppose that a weak learner WL1 predicts the label
1, another learner WL2 predicts the label 2, and the boosting algorithm predicts the label 1, which
turns out to be incorrect. We cannot even tell WL2 whether its prediction is correct. Furthermore,
top-k feedback is not even bandit feedback. Unlike the bandit multiclass setting, the learner does
not even get to compute its own loss! Thus, a key challenge in this setting is to use the structure
of the loss to design estimators that can produce unbiased estimates of the loss from only top-k
feedback. This intricate interplay between loss functions and partial feedback does not occur in
previous work on online boosting.

1This chapter is based on joint work with Daniel Zhang, who was an undergraduate student in the University of
Michigan and is currently a software engineer at Facebook. The multi-class classification work appeared in AISTATS
2019 under the title “Online Multiclass Boosting with Bandit Feedback,” and the multi-label ranking work is available
as an arXiv preprint https://arxiv.org/abs/1910.10937.

34

https://arxiv.org/abs/1910.10937

In both settings, the key idea is to let the learner randomize its prediction and then estimate the
loss using this randomness. In this way, one can compute an unbiased estimate of the loss, from
which the booster can compute cost vectors and update weak learners. Quite surprisingly, partial
information algorithms match their full information counterparts with respect to their asymptotic
performance guarantees. The cost of partial feedback is only reflected to the increased sample
complexities. That is to say, the partial information algorithms require more data instances to
achieve the same accuracy with the full information algorithms. This can also be verified in the
experiments.

4.1 Multi-class Classification with Bandit Feedback

The notation in this section adopts that in Chapter 2. The setting also resembles Chapter 2 except
that the environment only tells the learner whether its prediction is correct or not.

4.1.1 Unbiased Estimate of the Zero-One Loss

It is naturally expected that the booster needs to estimate the final zero-one loss vector:

l0−1
t = 1− eyt ∈ Rk. (4.1)

As we are in the bandit setting, the booster only has limited information about this vector. In
particular, unless its final prediction is correct, only a single entry of l0−1

t is available.
A popular approach for algorithm design in the partial information setting is to obtain an

unbiased estimate of the loss. To do so, many bandit algorithms randomize their prediction. In our
setting, instead of making a deterministic prediction ŷ, the algorithm designs a sampling distribution
pt ∈ ∆k as follows:

pt,i =

1− ρ if i = ŷt
ρ

k−1
if i 6= ŷt

, (4.2)

where ρ is a parameter that controls the exploration rate. This distribution puts a large weight
on the label ŷt and evenly distributes the remaining weight over the rest. The algorithm draws a
final prediction ỹt based on pt. In this way, the algorithm can build an estimator using the known

35

sampling distribution. A simplest unbiased estimate of the zero-one loss is

l̂0−1
t =

1(ỹt = yt)

pt,ỹt
(1− eỹt) ∈ Rk. (4.3)

It is easy to check that this is indeed unbiased. However, it is not necessarily the best because it
becomes a zero vector when the booster makes a mistake. As the zero loss vector does not provide
any useful information, the weak learners cannot update at this round. Therefore, it would be hard
for the booster to escape the early training stage using the simple estimate.

As an alternative, we propose a new estimator

l̂0−1
t,i =

1(ỹt = yt)

pt,ỹt
1(yt 6= i)1(ŷt 6= i) +

1(ỹt = ŷt)

pt,ỹt
1(ŷt 6= yt)1(ŷt = i). (4.4)

We first emphasize that this quantity can be computed only using the bandit feedback. The following
lemma shows that it is actually unbiased.

Lemma 4.1. The estimator l̂0−1
t in (4.4) is an unbiased estimator of the zero-one loss l0−1

t :

Eỹt∼pt l̂0−1
t = l0−1

t .

Proof. Since ỹ is drawn with respect to pt, we can write

Eỹt∼pt l̂0−1
t,i = 1(yt 6= i)1(ŷt 6= i) + 1(ŷt 6= yt)1(ŷt = i)

= 1(yt 6= i)1(ŷt 6= i) + 1(i 6= yt)1(ŷt = i)

= 1(yt 6= i)(1(ŷt 6= i) + 1(ŷt = i))

= 1(yt 6= i),

where the last term is l0−1
t,i , which completes the proof.

This estimator resolves the main issue with the estimator in (4.3), viz. that the learner cannot
update during a mistake round. In fact, it allows the weak learner to update on each instance with
probability at least 1− ρ. Furthermore, the algorithms using this estimator empirically performed
much better than ones using the estimator in (4.3). For these reasons, we will stick to the estimate
in (4.4) from now on.

To apply concentration inequalities, we need to control the variance of estimators. We say
a random vector Y is b-bounded if ||Y − EY ||∞ ≤ b almost surely. Note that this definition

36

also applies to random variables (i.e., scalars), in which case the norm above simply becomes the
absolute value. It is easy to check our estimator l̂0−1

t is k
ρ
-bounded.

Now suppose that a cost vector cit ∈ Rk (to be fed into weak learner i at time t) requires the
knowledge of the true label yt. Since the label is usually unavailable, we also need to estimate the
cost vector. We first compute a matrix Ci

t ∈ Rk×k, whose jth column is the cost vector cit assuming
j is the correct label. Then we will use the following random cost vector:

ĉit = Ci
t · (1− l̂0−1

t). (4.5)

Since Ci
t is a deterministic matrix, we can compute

Eỹt ĉit = Ci
t · (1− l0−1

t) = Ci
t · eyt ,

which is the ytht column of Ci
t . This shows that ĉit is an unbiased estimate of cit.

4.1.2 Algorithms

The proposed algorithms are essentially the same as the full information ones in Chapter 2. The
only difference is that the bandit algorithms generate a random prediction ỹ based on its original
prediction ŷ and the exploration rate ρ. The computation of cost vectors remains same except that
the bandit versions incorporate the unbiased estimate discussed in Section 4.1.1. As in the full
information setting, we propose one optimal algorithm, BanditBBM, which extends OnlineMBBM,
and one adaptive algorithm, AdaBandit, which extends Adaboost.OLM. The details of the algorithms
are omitted in this manuscript but can be found in the complete paper.

4.1.3 Mistake Bounds

We investigate the mistake bounds of the bandit boosting algorithms and compare them with the
full information algorithms. The proofs of the theorems can be found in the complete paper. We
begin from BanditBBM.

Theorem 4.2 (Mistake Bound of BanditBBM). For any T , N satisfying δ � 1
N

, the number of

mistakes made by BanditBBM satisfies the following inequality with probability at least 1−(N+1)δ:

T∑
t=1

1(ỹt 6= yt) ≤ (k − 1)e−
γ2N
2 T + 2ρT + Õ(

k7/2
√
N

ρ
),

37

where Õ suppresses dependence on log 1
δ
.

If we set the exploration rate ρ = k7/4N1/4
√
T

, then the bound becomes

(k − 1)e−
γ2N
2 T + Õ(k7/4N1/4

√
T).

Dividing by T , we can infer that (k − 1)e−
γ2N
2 is the asymptotic error bound of the algorithm. This

bound matches the bound of the full information counterpart, OnlineMBBM. Since it depends
exponentially on N , BanditBBM does not require too many weak learners to obtain a desired
accuracy. Theorem 2.4 also provide a lower bound in the full information setting, which shows that
the exponential decay is the fastest rate one can expect for the asymptotic error bound. This result
applies to the bandit setting as it is harder. It is worth noting that BanditBBM has larger sample
complexity than OnlineMBBM, which results from less information provided to the learner.

Now we move on to the adaptive algorithm. We emphasize that the empirical edges in the next
theorem are defined exactly in the same manner with those used in the full information bound.

Theorem 4.3 (Mistake Bound of AdaBandit). For any T , N satisfying δ � 1
N

, the number of

mistakes made by AdaBandit satisfies the following inequality with probability at least 1− (N +4)δ:

T∑
t=1

1(ỹt 6= yt) ≤
8k∑N
i=1 γ

2
i

T + 2ρT + Õ(
k3N2

ρ2
∑N

i=1 γ
2
i

),

where Õ suppresses dependence on log 1
δ
.

If we set the exploration rate ρ = kN2/3

(T
∑N
i=1 γ

2
i)1/3

, then the bound becomes

8k∑N
i=1 γ

2
i

T + Õ(
kN

2
3

(
∑N

i=1 γ
2
i)

1
3

T
2
3).

This implies that 8k∑N
i=1 γ

2
i

becomes the asymptotic error bound of AdaBandit, which matches the
bound of Adaboost.OLM. The difficulty of bandit feedback is again reflected to the increased
sample complexity.

4.2 Multi-label Ranking with Top-k Feedback

This section discusses online boosting algorithms in the multi-label ranking problems with top-k
feedback. The notation adopts that in Chapter 3. The setting also resembles Chapter 3 except that

38

the environment only tells the learner whether the top-k labels predicted by the learner are relevant
or not. The readers should note that the learner can no longer infer the exact value of the loss it
incurs with this feedback, which makes this setting much harder than the bandit setting.

4.2.1 Estimating a Loss Function

Because of top-k feedback, we require methods to estimate loss functions dependent on labels
outside of the top-k labels from our score vector yt. One common way of dealing with partial
feedback is to introduce randomized predictions and construct an unbiased estimator of the loss
using the known distribution of the prediction. This way, we can obtain a randomized loss function
for our learner to use. Thus, we propose a novel unbiased estimator to randomize arbitrary yt. This
estimator requires some structure within the loss function it is estimating.

We require that loss to be writable as a sum of functions which only require as input the scores
and relevance of two particular labels, each containing one relevant and irrelevant label. In particular,
our loss must have the form

L(s, R) =
∑
a∈R

∑
b/∈R

f(s[a], s[b]) =:
∑
a,b∈[m]

fa,b(s),

where fa,b(s) = 1(a ∈ R)1(b /∈ R)f(s[a], s[b]).

Here s is an arbitrary score vector in Rm, and f is a given function. We call this property pairwise

decomposability. This decomposability allows us to individually estimate each fa,b and thus L.
In fact, various valid MLR loss functions are pairwise decomposable. An example is the

unweighted rank loss

Lrnk(s, Rt) =
∑
a∈Rt

∑
b/∈Rt

1(s[a] ≤ s[b]),

which has various surrogates, including the following unweighted hinge rank loss

Lhinge(s, Rt) =
∑
a∈Rt

∑
b/∈Rt

max{0, s[b]− s[a] + 1}.

It should be noted that the weighted rank loss

Lwrnk(s, Rt) =
1

|Rt|(m− |Rt|)
Lrnk(s, Rt)

39

cannot be computed using this strategy because its normalization weight is non-linearly dependent
on |Rt|. In such cases, it is possible to upper bound the target loss function with a surrogate loss
that is pairwise decomposable. For example, the unweighted rank loss is an obvious upper bound of
the weighted one.

Returning to our estimator, we first elaborate on a method of randomized prediction given
rt = σ(yt) that will allow us to construct our unbiased estimator. This randomized prediction r̃t
is paramaterized by the exploration rate ρ ∈ (0, 1). After computing rt, with probability 1− ρ we
use rt as our final ranking. Otherwise, with probability ρ, we choose2 two elements, denoted by A,
from T k(rt) and two elements, denoted by B, from T k(rt)c, the set of labels which have rank lower
than k. Then, we take the higher ranked labels from A and B and swap them, and do the same for
the lower ranked labels, producing our final ranking. This process is more complicated than simply
using a random ranking with probability ρ, but with our method, r̃t stays closer to rt, which would
be favorable provided rt has a small loss. Figure 4.1 presents an example of this exploration step.
In case the loss is a function of score vector instead of ranking, we can get a random score s̃t out of
st in a similar manner.

Figure 4.1: An example of the exploration step when m = 6, k = 3, and rt = (2, 3, 5, 1, 6, 4)

We now present our unbiased estimator. Let r̃t be the random ranking from the previously
described process, and let s be an arbitrary score vector in Rm. We note that given any two distinct
labels a and b, P[a, b ∈ T k(r̃t)] > 0. Since being in the top-k provides the learner with full
information regarding the relevance and scores of the labels, we have this unbiased estimator using
importance sampling

L̂(s, Rt) =
∑
a,b∈[m]

1(a, b ∈ T k(r̃t))
P[a, b ∈ T k(r̃t)]

fa,b(s). (4.6)

It is not hard to check that this is an unbiased estimator. Our algorithms will use this unbiased

2It is this part of our construction that requires k ≥ 3 and m ≥ 5.

40

estimator to estimate certain surrogate functions which we construct to be pairwise decomposable.
Now suppose that the cost vector cit (to be fed to the ith weak learner at time t) requires full

knowledge of Rt to compute. If each of its entries is a function that is pairwise decomposable,
we can use the same unbiased estimation strategy to obtain random cost vectors ĉit that are in
expectation equal to cit.

4.2.2 Algorithms

The proposed algorithms are essentially the same as the full information ones in Chapter 3. The
only difference is that the top-k algorithms generate a random prediction r̃ based on its original
score vector and the exploration rate ρ. The computation of cost vectors remains same except
that the top-k versions incorporate the unbiased estimate discussed in Section 4.2.1. As in the full
information setting, we propose one optimal algorithm, TopkBBM, which extends OnlineBMR, and
one adaptive algorithm, TopkAdaptive, which extends Ada.OLMR. The details of the algorithms
are omitted in this manuscript but can be found in the complete preprint.

4.2.3 Loss Bounds

We can theoretically guarantee the performance of TopkBBM on any proper and pairwise decom-
posable loss function. However, this result only bounds the loss of the score vector, not the actual
randomized prediction. Fortunately, we can bound the loss of the randomized prediction in the case
of the rank loss. The omitted proofs in this section can be found in the complete preprint.

Theorem 4.4 (TopBBM, Rank Loss Bound). For any T and N � 1
δ
, TopkBBM’s randomized

predictions ỹt satisfy the following bound on the rank loss with probability at least 1−Nδ

T∑
t=1

Lrnk
t (ỹt) ≤

m2

4
(N + 1) exp(−γ

2N

2
)T + 2ρmT + Õ(

2m2 − k2

ρ
N2
√
T).

We can optimize ρ ∝ N
√

2m2−k2
m

T−
1
4 so that the first term in the bound becomes the asymptotic

average loss bound. We can compare it to the asymptotic error bounds of OnlineBMR by multiplying
the full information algorithm loss bounds by m2

4
, which is the maximum value of the rank loss

normalization constant. Let s′t be the score vectors produced by the full information algorithm.

41

Then we have that

T∑
t=1

Lrnk
t (s′t) ≤

m2

4
(N + 1) exp(−γ

2N

2
)T +

m2

2
NS.

We see that the asymptotic losses, after optimizing ρ, are identical, so that the cost of top-k feedback
appears only in the excess loss. Furthermore, since OnlineBMR is optimal in the number of weak
learners it requires to achieve some asymptotic loss, TopkBBM is also optimal in this regard since
the problem it faces is only harder because of partial information.

We now bound the cumulative rank loss of TopkAdaptive using the weak learner’s empirical
edges.

Theorem 4.5 (TopkAdaptive, Rank Loss Bound). For any T,N satisfying δ � 1
N

, the cumulative

rank loss of TopkAdaptive,
∑T

t=1 L
rnk(ỹt, Rt), satisfies the following bound with probability at least

1− (N + 4)δ:
2m2∑
i |γi|

T + 2ρmT + Õ(
(2m2 − k2)N

√
T

ρ
∑

i |γi|
),

where Õ suppresses dependence on log 1
δ
.

By optimizing ρ ∝
√

(2m2−k2)N
m

∑
i |γi|

T−
1
4 , we get the first term of the bound as the asymptotic

average loss bound. To compare it with Ada.OLMR, we again multiply the bound by m2

4
to account

for the normalization constant. Let s′t be the scores of the full information adaptive algorithm at
time t. Then we have ∑

t

Lrnk
t (s′t) ≤

2m2∑
i |γi|

T + Õ(
N2m2∑
i |γi|

).

Which matches the asymptotic loss in TopkAdaptive, after optimizing for ρ. Thus, the cost of top-k
feedback is again only present in the excess loss.

42

CHAPTER 5

Thompson Sampling in Episodic Restless Bandit
Problems

Restless bandits [Whittle, 1988] are variants of multi-armed bandit (MAB) problems [Robbins,
1952] 1. Unlike the classical MABs, the arms have non-stationary reward distributions. Specifically,
we will focus on the class of restless bandits whose arms change their states based on Markov
chains. Restless bandits are also distinguished from rested bandits where only the active arms
evolve and the passive arms remain frozen. We will assume that each arm changes according
to two different Markov chains depending on whether it is played or not. Because of their extra
flexibility in modeling non-stationarity, restless bandits have been applied to practical problems
such as dynamic channel access problems [Liu et al., 2011, 2013] and online recommendation
systems [Meshram et al., 2017].

Due to the arms’ non-stationary nature, playing the same set of arms for every round usually
does not produce the optimal performance. This makes the optimal policy highly non-trivial, and
Papadimitriou and Tsitsiklis [1999] show that it is generally PSPACE hard to identify the optimal
policy for restless bandits. As a consequence, many researchers have been devoted to find an
efficient way to approximate the optimal policy [Liu and Zhao, 2010, Meshram et al., 2018]. This
line of work primarily focuses on the optimization perspective in that the system parameters are
already known.

Since the true system parameters are unavailable in many cases, it becomes important to examine
restless bandits from a learning perspective. Due to the learner’s additional uncertainty, however,
analyzing a learning algorithm in restless bandits is significantly challenging. Liu et al. [2011, 2013]
and Tekin and Liu [2012] prove O(log T) bounds for confidence bound based algorithms, but their
competitor always selects a fixed set of actions, which is known to be weak (see Section 5.4 for
an empirical example of the weakness of the best fixed action competitor). Dai et al. [2011, 2014]

1This chapter is based on the paper that appeared in NeurIPS 2019 [Jung and Tewari, 2019].

43

show O(log T) bounds against the optimal policy, but their assumptions on the underlying model
are very limited. Ortner et al. [2012] prove an Õ(

√
T) bound in general restless bandits, but their

algorithm is intractable in general.
In a different line of work, Osband et al. [2013] study Thompson sampling in the setting of a

fully observable Markov decision process (MDP) and show the Bayesian regret bound of Õ(
√
T)

(hiding dependence on system parameters like state and action space size). Unfortunately, this result
is not applicable in our setting as ours is partially observable due to bandit feedback. Following
Ortner et al. [2012], it is possible to transform our setting to the fully observable case, but then we
end up having exponentially many states, which restricts the practical utility of existing results.

In this work, we analyze Thompson sampling in restless bandits where the system resets at
the end of every fixed-length episode and the rewards are binary. We emphasize that this episodic
assumption simplifies our analysis as the problem boils down to a finite time horizon problem. This
assumption can be arguably limited, but there are applications such as dynamic channel access
problems where the channel provider might reset their system every night for a maintenance-related
reason and the episodic assumption becomes natural. We directly tackle the partial observability
and achieve a meaningful regret bound, which when restricted to the classical MABs matches the
Thompson sampling result in that setting. We are not the first to analyze Thompson sampling in
restless bandits, and Meshram et al. [2016] study this type of algorithm as well, but their regret
analysis remains in the one-armed-case with a fixed reward of not pulling the arm. They explicitly
mention that a regret analysis of Thompson sampling in the multi-armed case is an interesting open
question.

5.1 Problem setting

We begin by introducing our setting. There are K arms indexed by k = 1, · · · , K, and the algorithm
selectsN arms every round. We denote the learner’s action at time t by a binary vectorAt ∈ {0, 1}K

where ||At||1 = N . We call the selected arms as active and the rest as passive. We assume each arm
k has binary states, {0, 1}, which evolve as a Markov chain with transition matrix either P active

k or
P passive
k , depending on whether the learner pulled the arm or not.

At round t, pulling an arm k incurs a binary reward Xt,k, which is the arm’s current state. As
we are in the bandit setting, the learner only observes the rewards of active arms, which we denote
by Xt,At , and does not observe the passive arms’ rewards nor their states. This feature makes our
setting to be a partially observable Markov decision process, or POMDP. We denote the history of
the learner’s actions and rewards up to time t byHt = (A1, X1,A1 , · · · , At, Xt,At).

44

We assume the system resets every episode of length L, which is also known to the learner.
This means that at the beginning of each episode, the states of the arms are drawn from an initial
distribution. The entire time horizon is denoted by T , and for simplicity, we assume it is a multiple
of L, or T = mL.

5.1.1 Bayesian regret and competitor policy

Let θ ∈ Θ denote the entire parameters of the system. It includes transition matrices P active and
P passive, and an initial distribution of each arm’s state. The learner only knows the prior distribution
of this parameter at the beginning and does not have access to the exact value.

In order to define a regret, we need a competitor policy, or a benchmark. We first define a class
of deterministic policies and policy mappings.

Definition 5.1. A deterministic policy π takes time index and history (t,Ht−1) as an input and

outputs a fixed action At = π(t,Ht−1). A deterministic policy mapping µ takes a system parameter

θ as an input and outputs a deterministic policy π = µ(θ).

We fix a deterministic policy mapping µ and let our algorithm compete against a deterministic
policy π? = µ(θ?), where θ? represents the true system parameter, which is unknown to the learner.

We keep our competitor policy abstract mainly because we are in the non-stationary setting.
Unlike the classical (stationary) MABs, pulling the same set of arms with the largest expected
rewards is not necessarily optimal. Moreover, it is in general PSPACE hard to compute the optimal
policy when θ? is given. Regarding these statements, we refer the readers to the book by Gittins
et al. [1989]. As a consequence, researchers have identified conditions that the (efficient) myopic
policy is optimal [Ahmad et al., 2009] or proven that a tractable index-based policy has a reasonable
performance against the optimal policy [Liu and Zhao, 2010].

We observe that most of proposed policies including the optimal policy, the myopic policy, or
the index-based policy are deterministic. Therefore, researchers can plug in whatever competitor
policy of their choice, and our regret bound will apply as long as the chosen policy mapping is
deterministic.

Before defining the regret, we introduce a value function

V θ
π,i(H) = Eθ,π[

L∑
j=i

Aj ·Xj|H]. (5.1)

This is the expected reward of running a policy π from round i to L where the system parameter
is θ and the starting history isH. Note that the benchmark policy π? obtains V θ?

π?,1(∅) rewards per

45

Algorithm 5.1 Thompson sampling in restless bandits
1: Input prior Q, episode length L, policy mapping µ
2: Initialize posterior Q1 = Q, historyH = ∅
3: for episodes l = 1, · · · ,m do
4: Draw a parameter θl ∼ Ql and compute the policy πl = µ(θl)
5: SetH0 = ∅
6: for t = 1, · · · , L do
7: Select N active arms At = πl(t,Ht−1)
8: Observe rewards Xt,At and updateHt

9: end for
10: AppendHL toH and update posterior distribution Ql+1 usingH
11: end for

episode in expectation. Thus, we can define the regret as

R(T ; θ?) = mV θ?

π?,1(∅)− Eθ?
T∑
t=1

At ·Xt. (5.2)

If an algorithm chooses to fix a policy πl for the entire episode l, which is the case of our algorithm,
then the regret can be written as

R(T ; θ?) = mV θ?

π?,1(∅)− Eθ?
m∑
l=1

V θ?

πl,1
(∅) = Eθ?

m∑
l=1

V θ?

π?,1(∅)− V θ?

πl,1
(∅).

We particularly focus on the case where θ? is a random and bound the following Bayesian regret,

BR(T) = Eθ?∼QR(T ; θ?),

where Q is a prior distribution over the set of system parameters Θ. We assume that the prior is
known to the learner. We caution our readers that there is at least one other regret definition in the
literature, which is called either frequentist regret or worst-case regret. For this type of regret, one
views θ? as a fixed unknown object and directly bounds R(T ; θ?). Even though our primary interest
is to bound the Bayesian regret, we can establish a connection to the frequentist regret in the special
case where the prior Q has a finite support and the benchmark is the optimal policy (see Corollary
5.6).

5.2 Algorithm

46

Our algorithm is an instance of Thompson sampling or posterior sampling, first proposed by
Thompson [1933]. At the beginning of episode l, the algorithm draws a system parameter θl from
the posterior and plays πl = µ(θl) throughout the episode. Once an episode is over, it updates the
posterior based on additional observations. Algorithm 5.1 describes the steps.

We want to point out that the history H fulfills two different purposes. One is to update the
posterior Ql, and the other is as an input to a policy πl. For the latter, however, we do not need the
entire history as the arms reset every episode. That is why we setH0 = ∅ (step 5) and feedHt−1 to
πl (step 7). Furthermore, as we assume that the arms evolve based on Markov chains, the history
Ht−1 can be summarized as

(r1, n1, · · · , rK , nK), (5.3)

which means that an arm k is played nk rounds ago and rk is the observed reward in that round. If
an arm k is never played in the episode, then nk becomes t, and rk becomes the expected reward
from the initial distribution based on θl. As we assume the episode length is fixed to be L, there are
L possible values for nk. Due to the binary reward assumption, rk can take three values including
the case where the arm k is never played. From these, we can infer that there are (3L)K possible
tuples of (r1, n1, · · · , rK , nK). By considering these tuples as states and following the reasoning of
Ortner et al. [2012], one can view our POMDP as a fully observable MDP. Then one can use the
existing algorithms for fully observable MDPs (e.g., Osband et al. [2013]), but the regret bounds
easily become vacuous since the number of states depends exponentially on the number of arms K.
Additionally, as we assumed a policy mapping, one might argue to use existing expert learning or
classical MAB algorithms considering potential policies as experts or arms. This is possible, but the
number of potential policies corresponds to the size of Θ, which can be very large or even infinite.
For this reason, existing algorithms are not efficient and/or their regret bounds become too loose.

Due to its generality, it is hard to analyze the time and space complexity of Algorithm 5.1.
Two major steps are computing the policy (step 4) and updating posterior (step 10). Computing
the policy depends on our choice of competitor mapping µ. If the competitor policy has better
performance but is harder to compute, then our regret bound gets more meaningful as the benchmark
is stronger, but the running time gets longer. Regarding the posterior update, the computational
burden depends on the choice of the prior Q and its support. If there is a closed-form update, then
the step is computationally cheap, but otherwise the burden increases with respect to the size of the
support.

47

5.3 Regret bound

In this section, we bound the Bayesian regret of Algorithm 5.1 by Õ(
√
T). A key idea in our

analysis of Thompson sampling is that the distributions of θ? and θl are identical given the history
up to the end of episode l− 1 (e.g., see Lattimore and Szepesvári [2018, Chp. 36]). To state it more
formally, let σ(H) be the σ-algebra generated by the history H. Then we call a random variable
X is σ(H)-measurable, or simply H-measurable, if its value is deterministically known given
the information σ(H). Similarly, we call a random function f is H-measurable if its mapping is
deterministically known given σ(H). We record as a lemma an observation made by Russo and
Van Roy [2014].

Lemma 5.2. (Expectation identity) Suppose θ? and θl have the same distribution given H. For

anyH-measurable function f , we have

E[f(θ?)|H] = E[f(θl)|H].

Recall that we assume the competitor mapping µ is deterministic. Furthermore, the value
function V θ

π,i(∅) in (5.1) is deterministic given θ and π. This implies E[V θ?

π?,i(∅)|H] = E[V θl
πl,i

(∅)|H],

whereH is the history up to the end of episode l − 1. This observation leads to the following regret
decomposition.

Lemma 5.3. (Regret decomposition) The Bayesian regret of Algorithm 5.1 can be decomposed as

BR(T) = Eθ?∼Q
m∑
l=1

Eθl∼Ql [V
θ?

π?,1(∅)− V θ?

πl,1
(∅)] = Eθ?∼Q

m∑
l=1

Eθl∼Ql [V
θl
πl,1

(∅)− V θ?

πl,1
(∅)].

Proof. The first equality is a simple rewriting of (5.2) because Algorithm 5.1 fixes a policy πl for
the entire episode l. Then we apply Lemma 5.2 along with the tower rule to get

Eθ?∼Q
m∑
l=1

Eθl∼QlV
θ?

π?,1(∅) = Eθ?∼Q
m∑
l=1

Eθl∼QlV
θl
πl,1

(∅).

Note that we can compute V θl
πl,1

(∅) as we know θl and πl. We can also infer the value of V θ?

πl,1
(∅)

from the algorithm’s observations. The main point of Lemma 5.3 is to rewrite the Bayesian regret
using terms that are relatively easy to analyze.

Next, we define the Bellman operator

T θπ V (Ht−1) = Eθ,π[At ·Xt + V (Ht)|Ht−1].

48

It is not hard to check that V θ
π,i = T θπ V θ

π,i+1. The next lemma further decomposes the regret.

Lemma 5.4. (Per-episode regret decomposition) Fix θ? and θl, and letH0 = ∅. Then we have

V θl
πl,1

(H0)− V θ?

πl,1
(H0) = Eθ?,πl

L∑
t=1

(T θlπl − T
θ?

πl
)V θl

πl,t+1(Ht−1).

Proof. Using the relation V θ
π,i = T θπ V θ

π,i+1, we may write

V θl
πl,1

(H0)− V θ?

πl,1
(H0) = (T θlπl V

θl
πl,2
− T θ?πl V

θ?

πl,2
)(H0)

= (T θlπl − T
θ?

πl
)V θl

πl,2
(H0) + T θ?πl (V θl

πl,2
− V θ?

πl,2
)(H0).

The second term can be written as Eθ?,πl [(V
θl
πl,2
− V θ?

πl,2
)(H1)|H0], and we can repeat this L times to

obtain the desired equation.

Now we are ready to prove our main theorem. A complete proof can be found in Appendix C.1.

Theorem 5.5. (Bayesian regret bound of Thompson sampling) The Bayesian regret of Algorithm

5.1 satisfies the following bound

BR(T) = O(
√
KL3N3T log T) = O(

√
mKL4N3 log(mL)).

The constant hidden in O notation does not depend on the choice of policy mapping µ.

Remark. If the system is the classical stationary MAB, then it corresponds to the caseL = 1, N = 1,

and our result reproduces the result of O(
√
KT log T) [Lattimore and Szepesvári, 2018, Chp. 36].

This suggests our bound is optimal in K and T up to a logarithmic factor. Further, when N > K
2

,

we can think of the problem as choosing the passive arms, and the smaller bound with N replaced

by K −N would apply. When L = 1, the problem becomes combinatorial bandits of choosing N

active arms out of K. Cesa-Bianchi and Lugosi [2012] propose an algorithm with a regret bound

O(
√
KNT logK) with an assumption that the loss is always bounded by 1. Since our reward can

be as big as N , our bound has the same dependence on N with theirs, suggesting tight dependence

of our bound on N .

Proof Sketch. We fix an episode l and analyze the regret in this episode. Let tl = (l − 1)L so that
the episode starts at time tl + 1. Define Nl(k, r, n) =

∑tl
t=1 1{At,k = 1, rk = r, nk = n}, which

counts the number of rounds where the arm k was chosen by the learner with history rk = r and
nk = n (see (5.3) for definition). Note that k ∈ [K], r ∈ {0, 1, ρ(k)}, and n ∈ [L], where ρ(k) is
the initial success rate of the arm k. This implies there are 3KL tuples of (k, r, n).

49

Let ωθ(k, r, n) denote the conditional probability of Xk = 1 given a history (r, n) and a system
parameter θ. Also let ω̂(k, r, n) denote the empirical mean of this quantity (using Nl(k, r, n) past
observations and set the estimate to 0 if Nl(k, r, n) = 0). Then define

Θl =

{
θ | ∀(k, r, n), |(ω̂ − ωθ)(k, r, n)| <

√
2 log(1/δ)

1 ∨Nl(k, r, n)

}
.

Since ω̂(k, r, n) isHtl-measurable, so is the set Θl. Using the Hoeffding inequality, one can show
P(θ? /∈ Θl) = P(θl /∈ Θl) ≤ 3δKL. In other words, we can claim that with high probability,
|ωθl(k, r, n)− ωθ?(k, r, n)| is small for all (k, r, n).

We now turn our attention to the following Bellman operator

T θπlV
θl
πl,t

(Ht−1) = Eθ,πl [Atl+t ·Xtl+t + V θl
πl,t

(Ht)|Ht−1].

Since πl is a deterministic policy, Atl+t is also deterministic givenHt−1 and πl. Let (k1, . . . , kN) be
the active arms at time tl + t and write ωθ(ki, rki , nki) = ωθ,i. Then we can rewrite

T θπlV
θl
πl,t

(Ht−1) =
N∑
i=1

ωθ,i +
∑

x∈{0,1}N
P θ
xV

θl
πl,t

(Ht−1 ∪ (Atl+t, x)),

where P θ
x =

∏N
i=1 ω

xi
θ,i(1− ωθ,i)1−xi . Under the event that θ?, θl ∈ Θl, we have

|ωθl,i − ωθ?,i| < 1 ∧

√
8 log(1/δ)

1 ∨Nl(ki, rki , nki)
=: ∆i(tl + t),

where the dependence on tl + t comes from the mapping from i to ki. When ωθl,i and ωθ?,i are close
for all (k, r, n), we can actually bound the difference between the following Bellman operators as

|(T θ?πl − T
θl
πl

)V θl
πl,t

(Ht−1)| ≤ 3LN
N∑
i=1

∆i(tl + t).

Then by applying Lemma 5.4, we get |V θl
πl,1

(∅) − V θ?

πl,1
(∅)| ≤ 3LNEθ?,πl

∑L
t=1

∑N
i=1 ∆i(tl + t),

which holds whenever θ?, θl ∈ Θl. When θ? /∈ Θl or θl /∈ Θl, which happens with probability less

50

than 6δKL, we have a trivial bound |V θl
πl,1

(∅)− V θ?

πl,1
(∅)| ≤ LN . We can deduce

|V θl
πl,1

(∅)− V θ?

πl,1
(∅)| ≤ 3LN1(θ?, θl ∈ Θl)Eθ?,πl

L∑
t=1

N∑
i=1

∆i(tl + t) + 6δKL2N.

Combining this with Lemma 5.3, we can show

BR(T) ≤ 6δmKL2N + Eθ?∼Q3LN
m∑
l=1

1(θ?, θl ∈ Θl)Eθ?,πl
L∑
t=1

N∑
i=1

∆i(tl + t). (5.4)

After some algebra, bounding sums of finite differences by integrals, and applying the Cauchy-
Schwartz inequality, we can bound the second summation by

18KL3N + 24
√

3KL3N3T log(1/δ). (5.5)

Combining (5.4), (5.5), and our assumption that T = mL, we obtain

BR(T) = O(δKLNT +KL3N +
√
KL3N3T log(1/δ)).

Since NT is a trivial upper bound of BR(T), we may ignore the KL3N term. Setting δ = 1
T

completes the proof.

As discussed in Section 5.1, researchers sometimes pay more attention to the case where the
true parameter θ? is deterministically fixed in advance, in which the frequentist regret becomes
more relevant. It is not easy to directly extend our analysis to the frequentist regret in general, but
we can achieve a meaningful bound with extra assumptions. Suppose our prior Q is discrete and
the competitor is the optimal policy. Then we know R(T ; θ?) is always non-negative due to the
optimality of the benchmark and can deduce qR(T ; θ?) ≤ BR(T), where q is the probability mass
on θ?. This leads to the following corollary.

Corollary 5.6. (Frequentist regret bound of Thompson sampling) Suppose the prior Q is dis-

crete and puts a non-zero mass on the parameter θ?. Additionally, assume that the competitor policy

is the optimal policy. Then Algorithm 5.1 satisfies the following bound

R(T ; θ?) = O(
√
KL3N3T log T) = O(

√
mKL4N3 log(mL)).

51

5.4 Experiments

We empirically investigate the Gilbert-Elliott channel model, which is studied by Liu and Zhao
[2010] in a restless bandit perspective2. This model can be broadly used in communication
systems such as cognitive radio networks, downlink scheduling in cellular systems, opportunistic
transmission over fading channels, and resource-constrained jamming and anti-jamming.

Each arm k has two parameters pk01 and pk11, which determine the transition matrix. We assume
P active = P passive and each arm’s transition matrix is independent on the learner’s action. There
are only two states, good and bad, and the reward of playing an arm is 1 if its state is good and 0

otherwise. Figure 5.1 summarizes this model. We assume the initial distribution of an arm k follows
the stationary distribution. In other words, its initial state is good with probability ωk =

pk01
pk01+1−pk11

.

Figure 5.1: The Gilbert-Elliott channel model

We fix L = 50 and m = 30. We use Monte Carlo simulation with size 100 or greater to
approximate expectations. As each arm has two parameters, there are 2K parameters. For these, we
set the prior distribution to be uniform over a finite support {0.1, 0.2, · · · , 0.9}.

5.4.1 Competitors

As mentioned earlier, one important strength of our result is that various policy mappings can be
used as benchmarks. Here we test three different policies: the best fixed arm policy, the myopic
policy, and the Whittle index policy. We want to emphasize again that these competitor policies
know the system parameters while our algorithm does not.

The best fixed arm policy computes the stationary distribution ωk =
pk01

pk01+1−pk11
for all k and

pulls the arms with top N values. The myopic policy keeps updating the belief ωk(t) for the arm
k being in a good state and pulls the top N arms. Finally, the Whittle index policy computes the
Whittle index of each arm and uses it to rank the arms. The Whittle index is proposed by Whittle

2Our code is available at https://github.com/yhjung88/ThompsonSamplinginRestlessBandits

52

https://github.com/yhjung88/ThompsonSamplinginRestlessBandits

[1988], and Liu and Zhao [2010] find a closed-form formula to compute the Whittle index in this
particular setting. The Whittle index policy is very popular in optimization literature as it decouples
the optimization process into K independent problems for each arm, which significantly reduces the
computational complexity while maintaining a reasonable performance against the optimal policy.

One observation is that these three policies are reduced to the best fixed arm policy in the
stationary case. However, the first two policies are known to be sub-optimal in general [Gittins
et al., 1989]. Liu and Zhao [2010] justify both theoretically and empirically the performance of the
Whittle index policy for the Gilbert-Elliott channel model.

5.4.2 Results

We first analyze the Bayesian regret. For this, we useK = 8 andN = 3. The value functions V θ
π,1(∅)

of the best fixed arm policy, the myopic policy, and the Whittle index policy are 105.4, 110.3, and
111.4, respectively. If a competitor policy has a weak performance, then Thompson sampling also
uses this weak policy mapping to get a policy πl for the episode l. This implies that the regret does
not necessarily become negative when the benchmark policy is weak. Figure 5.2 shows the trend of
the Bayesian regret as a function of episode indices. Regardless of the choice of policy mapping,
the regret is sub-linear, and the slope of log-log plot is less than 1

2
, which agrees with Theorem 5.5.

Figure 5.2: Bayesian regret of Thompson sampling versus episode (left) and its log-log plot (right)

Next we fix true parameters and investigate the model’s behavior more closely. For this, we
choose K = 4, N = 2, and {(pk01, p

k
11)}k=1,2,3,4 = {(0.3, 0.7), (0.4, 0.6), (0.5, 0.5), (0.6, 0.4)}.

This choice results in ωk = 0.5 for all k, and the best fixed arm policy becomes indifferent.
Therefore achieving zero regret against the best fixed arm becomes trivial. We use the same uniform
prior as the previous experiment. Figure 5.3 presents the trend of value functions and how Thompson
sampling puts more posterior weights on the correct parameters as it proceeds. Three horizontal

53

lines in the left figure represent the values of the competitor policies. The values of the best fixed
arm policy, the myopic policy, and the Whittle index policy are 50.2, 54.6, and 55.6, respectively. It
is a good example why one should not pull the same arms all the time in restless bandits. The value
function of Thompson sampling successfully converges to the competitor value for every benchmark
while the one with the myopic policy needs more episodes to fully converge. This supports Corollary
5.6 in that our model can be used even in the non-Bayesian setting as far as the prior has a non-zero
weight on the true parameters. Also, the posterior weights on the correct parameters monotonically
increase (Figure 5.3, right), which again confirms our model’s performance. We measure these
weights when the competitor map is the Whittle index policy.

Figure 5.3: Average per-episode value versus episode and the benchmark values (left); the posterior
weights of the correct parameters versus episode in the case of the Whittle index policy (right)

54

CHAPTER 6

Thompson Sampling in Non-Episodic Restless
Bandits

In contrast to the classical multi-armed bandits (MABs), restless multi-armed bandits (RMABs),
introduced by Whittle [1988], assume reward distributions that change along with the time 1. Due
to their non-stationary nature, RMABs can model more complicated systems and thus get more
attention in practice and theoretical literature. In practice, they are used in a wide spectrum of
applications including sensor management (Chapter 7 in Hero et al. [2007] and Chapter 5 in Biglieri
et al. [2013]), dynamic channel access problems [Liu et al., 2011, 2013], and online recommendation

systems [Meshram et al., 2017]. Theoretically, a variety of research communities have contributed
to the literature on restless bandits, e.g., complexity theory [Blondel and Tsitsiklis, 2000], applied

probability [Weber and Weiss, 1990], and optimization [Bertsimas and Niño-Mora, 2000].
In this setting, there are K independent arms indexed by k ∈ [K].2 Each arm is characterized

by an internal state sk ∈ Sk which evolves in a Markovian fashion according to the (possibly
distinct) transition matrices P active

k and P passive
k depending on whether the arm is pulled (i.e., active)

or not (i.e., passive). The reward of pulling an arm k depends on its state stk, which brings the
non-stationarity.

We aggregate the transition matrices as θ ∈ Θ and consider this problem as a Reinforcement

Learning problem where θ is unknown to the learner. This problem has a complication in defining
the baseline competitor against which the learner competes. It is not guaranteed, without additional
assumptions, that the optimal policy exists, and even if it exists, Papadimitriou and Tsitsiklis [1999]
show that it is generally PSPACE hard to compute the optimal policy.

Researchers take different paths to tackle this challenge. Some define the regret using a simpler
policy, which can be easily computed (e.g., see Tekin and Liu [2012], Liu et al. [2013]). They

1This chapter is based on joint work (with the same title) with Marc Abeille currently available as an arXiv preprint
https://arxiv.org/abs/1910.05654.

2For an integer n, we denote the set {1, · · · , n} by [n].

55

https://arxiv.org/abs/1910.05654

compare the learner’s reward to a policy that pulls a fixed set of arms every round. Their algorithm
is efficient and has a strong regret guarantee, O(log T), but this baseline policy is known to be weak
in the RMAB setting, which makes the regret less meaningful. Our empirical results in Section 6.6
also show the weakness of this policy. Another breakthrough is made by Ortner et al. [2012] who
show a sub-linear regret bound against the optimal policy. However, they ignore the computational
burden of their algorithm.

In Chapter 5, we propose another interesting direction in that they introduce a deterministic
policy mapping µ. It takes the system parameter θ as an input and outputs a deterministic stationary
policy π = µ(θ). Then the learner competes against the policy π? = µ(θ?), where θ? denotes
the true system. This framework is general enough to include the best fixed arm policy and the
optimal policy that are mentioned earlier. That being said, one can achieve an efficient algorithm
by choosing an efficient mapping µ or make the regret more meaningful with a stronger policy. In
fact, there are different lines of work (e.g., Whittle [1988], Liu and Zhao [2010], Meshram et al.
[2017]) that study an efficient way, namely the Whittle index policy, to approximate the optimal
algorithm. Using this policy as a mapping, one can obtain an efficient algorithm with a meaningful
regret simultaneously.

In this chapter, we also adopt the policy mapping from Chapter 5 and answer an open question
raised by them. Specifically, they prove the regret bound of Thompson sampling in the episodic
restless bandits where the system periodically resets. From the episodic assumption, the problem
boils down to a finite horizon problem, which makes the analysis simpler. However, there are many
cases (e.g., online recommendations) where the periodic reset is not natural, and they mention the
analysis of a learning algorithm in the infinite time horizon as an open question.

We identify explicit conditions in Section 6.4 that ensure the Bellman equation of the entire
Markov decision process (MDP). It is hard to analyze the vanilla Thompson sampling in this setting,
and we adapt Thompson sampling with dynamic episodes (TSDE) of Ouyang et al. [2017] in the
fully observable MDP. TSDE (Algorithm 6.1) has one deterministic and one random termination
conditions and switches to a new episode if one of these is met. At the beginning of each episode,
TSDE draws a system parameter using the posterior distribution from which it computes a policy
and runs this policy throughout the episode. We theoretically prove a sub-linear regret bound of this
algorithm and empirically test it on a simulated dynamic channel access problem.

56

6.1 Main result

As mentioned earlier, our learner competes against the policy π? = µ(θ?) without the knowledge
of θ? ∈ Θ. We denote the average long term reward of π? on the system θ? by Jπ?(θ?), which is
a well-defined notion under certain assumptions that will be discussed later. Then we define the
frequentist regret by

R(T ; θ?) = Jπ?(θ
?) · T − Eθ?

T∑
t=1

rt, (6.1)

where rt is the learner’s reward at time t. We focus on bounding the following Bayesian regret

BR(T) = Eθ?∼QR(T ; θ?), (6.2)

where Q is a prior distribution over Θ and is known to the learner. Our main result is to bound the
Bayesian regret of TSDE.

Theorem 6.1. The Bayesian regret of TSDE satisfies the following bound

BR(T) = O(
√
T log T),

where the exact upper bound appears later in Section 6.5.

6.2 Preliminaries

We begin by formally defining our problem setting.

6.2.1 Problem setting

As stated earlier, we focus on a Bayesian framework where the true system, denoted as θ?, is a
random object that is drawn from a prior distribution Q before the interaction with the system
begins. In line with Ouyang et al. [2017], we assume that the prior is known to the learner, and we
denote its support by Θ.

At each time step t, the learner selects N arms from [K] which become active while the
others remain passive. Following Ortner et al. [2012], we impose the passive Markov chains to be
irreducible and aperiodic. As a result, we can associated with each arm k the mixing time of P passive

k .
Let ptk(s) be the distributions of the state sk of arm k starting from a state s and remaining passive

57

for t steps, and let pk be the stationary distribution. Then, we define

Tmix
k (ε) = inf

{
t ≥ 1 s.t. max

s∈Sk
‖ptk(s)− pk‖1 ≤ ε

}
, (6.3)

and work under the assumption of known mixing time3.

Assumption 6.2 (Mixing times). For all k ∈ [K] and θ ∈ Θ, P passive
k is irreducible and aperiodic,

and Tmix(1
4
) := maxk,θ T

mix
k (1

4
) is known to the learner.

The learner’s action at time t is written as At ∈ {0, 1}K , 1 indicating the active action. For all
the chosen arms, the learner observes the state stk and receives a reward rk(stk), where the rewards
are deterministic known functions of the state rk : Sk → [0, 1] for all k ∈ [K]. The objective of the
learner is to choose the best sequence of arms, given the history (state and actions) observed so far,
which maximizes the long term average reward

lim sup
t→T

1

T
E

 T∑
t=1

∑
k:At,k=1

rk(s
t
k)

 . (6.4)

6.2.2 From POMDP to MDP

By nature, the RMAB problem we consider is a partially observable Markov decision process

(POMDP) since the arms evolve in a Markovian fashion and we only observe the states of the active
arms. Nonetheless, one can turn this POMDP into a fully observable Markov decision process

(MDP) by introducing belief states, i.e., distributions over states given the history. Notice that the
number of belief states become therefore (countably) infinite even if the original problem is finite.
Following Ortner et al. [2012], we track the history introducing a meta-state ξt, fully observed at
time t, from which we can reconstruct the belief states. Formally, we define ξt = (ξst , ξ

n
t) where

ξst = (σt1, · · · , σtK) and ξnt = (nt1, · · · , ntK).

For each k ∈ [K], σtk is the last observation of the state process {stk}t≥1 before time t, ntk is time
elapsed from this last observation. Further, it is clear that {ξt}t≥1 is a Markov process on a countably
infinite state space S. As a result, the maximization of the partially observable problem in (6.4) is

3The knowledge of Tmix(14) maybe relaxed to the knowledge of an upper bound of it, without affecting our result.

58

equivalent to the maximization of the fully observable one

lim sup
t→T

1

T
E
(T∑
t=1

rθ?(ξt, At)
)
, (6.5)

where
rθ(ξt, At) =

∑
k:At,k=1

Eθ[rk(stk)|ξt, At]. (6.6)

We use the notation Eθ and rθ to emphasize that the random behavior of stk is governed by the
system θ. We also assume that the initial state ξ1 is known to the learner.

6.2.3 Policy mapping

To maximize the long term average reward in (6.5), Ortner et al. [2012] construct a finite approxima-
tion of the countable MDP which allows them, under a bounded diameter assumption, to compute
ε-optimal policy for a given θ. However, their computational complexity is prohibitive for practical
applications. As explained in the introduction, we follow a different approach, in line with Chapter 5,
which achieves both tractability and optimality through the use of a policy mapping µ : Θ→ Π. It
associates each parameter θ with a stationary deterministic policy πθ. To ensure the well-posedness
of the long-term average reward, we impose the following assumption on µ.

Assumption 6.3 (Bounded span). For all θ ∈ Θ, the parameter/policy pair (θ, πθ) satisfies

Condition 6.5.

Condition 6.5 is formalized and discussed in detail in Section 6.4. Assumption 6.3 should be
understood as the counterpart of the bounded diameter assumption made by Ortner et al. [2012] or
the bounded span assumption by Ouyang et al. [2017] adapted to our policy mapping approach.

6.3 Algorithm

Algorithm 6.1 builds on Thompson Sampling with Dynamic Episodes (TSDE) of Ouyang et al.
[2017]. At the beginning of each episode i, we draw system parameters θi from the latest posterior
Qti , compute the policy πi = µ(θi), and run πi throughout the episode. We proceed to the next
episode if one of the termination conditions, which will appear shortly, occurs.

Before introducing the termination conditions, let us discuss Assumption 6.2. As pointed out
in Ortner et al. [2012, (1)], we have Tmix

k (ε) ≤ log2(1/ε)Tmix(1
4
) for all k ∈ [K] and ε > 0. As we

59

Algorithm 6.1 TSDE in restless bandits
1: Input prior Q, policy mapping µ, mixing time Tmix, initial state ξ1

2: Initialize Q1 = Q, t = 1, t0 = 1
3: for episodes i = 1, 2, · · · do
4: Set ti = t and Ti−1 = ti − ti−1

5: Draw θi ∼ Qt and compute πi = µ(θi)
6: while not termination condition (6.7) do
7: Select active arms At = πi(ξt)
8: Observe states stk for active arms k
9: Update ξt to ξt+1 and Qt to Qt+1

10: Increment t = t+ 1
11: end while
12: end for

want the accuracy of 1
T

, which will not affect the regret significantly, we define

Tmix := (log2 T)Tmix(
1

4
) ≥ Tmix(

1

T
).

Here we assume the time horizon T is known. When it is unknown, we can use the doubling trick

and get the same regret bound up to a constant factor. We remark that Tmix = O(log T).
For tuples (k, s, n), we define

Ñt(k, s, n) =
t−1∑
τ=1

1(Aτ,k = 1, σtk = s, ntk = n).

Then we introduce the truncated counter

Nt(k, s, n) =

Ñt(k, s, n) if n < Tmix∑
n′≥Tmix Ñt(k, s, n

′) if n ≥ Tmix
.

The intuition behind this aggregation is that the distribution of the states remains similar for
sufficiently large n, thanks to the mixing time. As a result, the possible number of tuples (k, s, n)

with n ≤ Tmix is at most
∑

k |Sk| · Tmix. When there is no ambiguity, we write (k, s, n) = ζ for
brevity and let Z be the set of all possible values of ζ .

60

We terminate the episode i if

t > ti + Ti−1 or Nt(ζ) > 2Ntk(ζ) for some ζ ∈ Z, (6.7)

where Ti represents the length of episode i. This quantity can differ for each episode. This is where
the name dynamic episodes comes from. In addition, the second condition makes the quantity Ti
random, and one recovers the well-known lazy update scheme from this condition [Jaksch et al.,
2010, Ouyang et al., 2017]. The underlying intuition is that one should update the policy only after
gathering enough additional information over the unknown Markov process.

6.4 Planning problem

The MDP reformulation in Section 6.2.2 reduces the objective to maximizing (6.5). However, we
inherit from the original POMDP problem severe difficulties in the planning task. For example,
given the parametrization θ?, how to efficiently compute a stationary and deterministic policy π
(i.e., π maps a state ξ to an action A in a deterministic manner) that maximizes the average long
term reward, and more importantly, does such policy exist? Unfortunately, the average reward
POMDP problem is not well understood in contrast with the finite state average reward MDP. In
particular, it is known [Bertsekas, 1995] that the long term average reward may not be constant w.r.t.
the initial state. Even when this holds, 1) The Bellman equation may not have a solution. 2) Value
Iteration may fail to converge to the optimal average reward. 3) There may not exist an optimal
policy, stationary or non-stationary. 4) Finally, even when the optimal policy exists, Papadimitriou
and Tsitsiklis [1999] show that it is generally PSPACE hard to compute it.

To overcome this difficulty, Ortner et al. [2012] perform a state aggregation to reduce the
countably infinite MDP into a finite one, which under the bounded diameter assumption can be
solved using standard techniques. Although this reduction allows them to compute an ε-optimal
policy, the computational complexity of their approach remains prohibitive for practical application.
On the other hand, a significant amount of work has been done to design good policies in the
RMAB framework, for instance the best fixed arm policy (that is optimal in the classical MAB
framework), the myopic policy [Javidi et al., 2008], or the Whittle index policy [Whittle, 1988, Liu
and Zhao, 2010]. We leverage this prior knowledge following an alternative approach that consists
in competing with the best policy within some known class of policies. Formally, let Π be the set of
stationary deterministic policies, and we assume a policy mapping µ : Θ→ Π is given and known
to the learner. This set of deterministic mappings is quite rich in that the optimal policy can be

61

also represented when it exists. If one cares more about the efficiency, one can use some efficient
mappings while there is a trade-off of weakening the competitor.

Finally, in contrast to Ortner et al. [2012], our approach does not turn the countable MDP
problem into a finite one. Hence, it requires a further condition on the parameter space Θ and the
policy mapping µ for the average reward criterion in (6.5) to be well-posed. More precisely, we
expect the average reward to be independent of the initial state and associated to a Bellman equation,
with a bias function of a bounded span. For a given θ ∈ Θ and associated policy πθ = µ(θ), we
introduce the following conditions.

Condition 6.4. Let V be the set of bounded span real-valued function. There exists v ∈ V and a

constant g which satisfy for all ξ ∈ S,

g + v(ξ) = rθ(ξ, πθ(ξ)) + Eθ[v(ξ′)|ξ, πθ(ξ)],

where the expectation is taken over ξ′ evolving from ξ given the action πθ(ξ) and the system θ.

Under Condition 6.4, it is known (see Proposition 6.6) that the long term average reward of
πθ is well-defined (the lim sup reduces to the standard lim), independent of the initial state ξ1, and
associated with the Bellman equation with a bounded span bias function. However, Condition 6.4
is implicit and uneasy to assert as it relies on the existence result4. This motivates the alternative
condition, known as the discounted approach in the literature.

Condition 6.5. For any β ∈ (0, 1), let vβπθ be the discounted infinite horizon value function defined

as

vβπθ(ξ) = Eθ

(
∞∑
t=1

βtrθ(ξt, πθ(ξt))|ξ1 = ξ

)
.

Then sup(ξ,ξ′)∈S2 vβπθ(ξ)− v
β
πθ

(ξ′) is uniformly bounded for all β ∈ (0, 1).

The introduction of the discount factor β ∈ (0, 1) guarantees that vβπθ is a well-defined function,
and hence Condition 6.5 is reduced to assert the uniform boundedness of a known family of
function. Further, it also guarantees that the long term average reward is well-defined as it implies
Condition 6.4.

Proposition 6.6. Let θ ∈ Θ be a system parameter and πθ = µ(θ) be a policy. Then the followings

hold.

• Condition 6.5 implies Condition 6.4.
4If a function v satisfies Condition 6.4, it is not unique since adding any constant to v still meet the requirement.

62

• Under Condition 6.4 (or Condition 6.5), the quantity

Jπθ(θ)= lim
T→∞

1

T
Eθ

(
T∑
t=1

rθ(ξt, πθ(ξt))|ξ1 = ξ

)
(6.8)

is constant and independent of the initial state. Further, there exists a non-negative function hθ,

with bounded span Cθ = sup(ξ,ξ′)∈S2 hθ(ξ)− hθ(ξ′) <∞, such that for any ξ ∈ S,

Jπθ(θ) + hθ(ξ) = rθ(ξ, πθ(ξ)) + Eθ[hθ(ξ′)|ξ, πθ]. (6.9)

We denote as H = supθ∈Θ Cθ the uniform upper bound on the span.

The proof of Proposition 6.6 can be adapted from Puterman [2014, Theorem8.10.7] for a given
(i.e., not necessarily optimal) policy. We postpone the proof to Appendix D.1.

6.5 Regret bound

In this section, we bound the Bayesian regret of TSDE (Algorithm 6.1). The analysis crucially
relies on four distinct properties: 1) the Bellman equation in (6.9) satisfied by the average cost at
each policy update, 2) the Thompson sampling algorithm which samples parameters θi according
to the posterior, hence ensuring that θ? and θi are conditionally identical in distribution, 3) the
concentration of the empirical estimates around the θ?, and 4) the update scheme in (6.7) which
controls the number of episodes while preserving sufficient measurability of the termination times.

We provide here a proof sketch to explain how we leverage those properties and how they
translate in key intermediate results that allow us to obtain the final bound. The formal proofs can
be found in Appendix D.2.

6.5.1 Regret decomposition

Under Assumption 6.3, Proposition 6.6 ensures that each sampled parameter policy pair (θi, πi)

satisfies the Bellman equation (6.9):

rθi(ξ, πi(ξ)) = Jπi(θi) + vθi(ξ)− Eθi [vθi(ξ′)|πi, ξ].

63

As a result, we can decompose on each episode i the frequentist regret and obtain over T ,

R(T ; θ?) = Jπ?(θ
?) · T − Eθ?

MT∑
i=1

ti+1−1∑
t=ti

rθ?(ξt, At)

=: R0 +R1 +R2 +R3,

where

R0 = Jπ?(θ
?) · T − Eθ?

MT∑
i=1

Jπi(θi) · Ti

R1 = Eθ?
MT∑
i=1

ti+1−1∑
t=ti

vθi(ξt+1)− vθi(ξt)

R2 = Eθ?
MT∑
i=1

ti+1−1∑
t=ti

Eθi [vθi(ξ′)|πi, ξt]− vθi(ξt+1)

R3 = Eθ?
MT∑
i=1

ti+1−1∑
t=ti

(rθi − rθ?)(ξt, πi(ξt)).

See Appendix D.2 for a more detailed derivation.
Bounding R0. The first regret term is addressed thanks to the well-known expectation identity
(see Russo and Van Roy [2014]), leveraging that conditionally, θ? d

= θi.

Lemma 6.7 (Expectation identity). Suppose θ? and θi have the same distribution given a history

H. For anyH-measurable function f , we have

E[f(θ?)|H] = E[f(θi)|H].

As pointed out in Ouyang et al. [2017], one cannot apply Lemma 6.7 directly to Jπi(θi) and
Jπ?(θ

?) because of the measurability issue arising from the lazy-update scheme in (6.7). In line
with Ouyang et al. [2017], we overcome this difficulty thanks to the first deterministic termination
rule in (6.7). Taking the expectation w.r.t. θ? leads to the following lemma.

Lemma 6.8 (Ouyang et al. [2017], Lemma 3 and 4).

Eθ?∼QR0 ≤ N · Eθ?∼QMT ,

where MT is the total number of episodes until time T .

64

Bounding R1. Clearly, R1 involves telescopic sums over each episode i. As a result, it solely
depends on the number of policy switches and on the uniform span bound H in Proposition 6.6.

Lemma 6.9.
R1 ≤ H · EMT .

As a result, both R0 and R1 reduce to a fine bound over the number of episodes, MT .
Bounding R2 and R3. Finally, the last regret terms are dealing with the model misspecification.
That is to say, they depend on the on-policy error between the empirical estimate and the true
transition model. Formally, Lemma 6.10 and 6.11 show that they scale with

∆T =

MT∑
i=1

ti+1−1∑
t=ti

∑
active arms k

||(p̂ti − pθ?)(k, σtk, ntk)||1,

where pθ(·; k, σ, n) is the probability distribution of arm k’s state under parametrization θ and p̂ti is
its empirical estimate at the beginning of episode i. The core of the proofs thus lies in deriving a
high-probability confidence set whose associated on-policy error ∆T is cumulatively bounded by√
T . We state the lemmas here and postpone the proofs to Appendix D.2.

Lemma 6.10. R2 satisfies the following bound

R2 ≤ 28H
K∑
k=1

|Sk|
√
NTmixT log(TmixT).

Lemma 6.11. R3 satisfies the following bound

R3 ≤ 28
K∑
k=1

|Sk|
√
NTmixT log(TmixT).

We detail the construction and probabilistic argument of the confidence set later in the section.

6.5.2 Bounding the number of episodes

As breifly discussed in Section 6.3, each episode has a random length Ti, and the number of episodes
MT also becomes random. In order to bound R0 and R1, we first bound this quantity. As discussed
in Osband and Van Roy [2014], the specific structure of our problem due to the MDP formulation of
the original POMDP problem allows us to guarantee a tighter bound w.r.t. the number of states than
straightforwardly applying the TSDE analysis on the meta-state ξ. In particular, we leverage this

65

structure to obtain a bound that depends on the number of states through the summation
∑K

k=1 |Sk|
instead of the product

∏K
k=1 |Sk|.

Lemma 6.12. The number of episodes MT satisfies the following inequality almost surely

MT ≤ 2

√√√√(
K∑
k=1

|Sk|)TmixT logNT.

Proof. Following Ouyang et al. [2017], we define macro episodes with start times tni for a sub-
sequence {ni} ⊂ [MT] such that n1 = 1 and

tni+1
= min{tk > tni|Ntk(ζ) > 2Ntk−1

(ζ) for some ζ}.

Note that the macro episode starts when the second termination criterion happens. Ouyang et al.
[2017] prove in their Lemma 1 that

MT ≤
√

2MT, (6.10)

where M is the number of macro episodes. We claim

M ≤ 2(
K∑
k=1

|Sk|)Tmix logNT, (6.11)

which prove our lemma when combined with (6.10).
For each ζ = (k, s, n) ∈ Z, we define

M(ζ) = |{i ≤MT |Nti(ζ) > 2Nti−1
(ζ)}|.

This means that Nt(ζ) gets doubled M(ζ) times out of MT episodes. It leads to the following
inequality

2M(ζ) ≤ NT+1(ζ), or M(ζ) ≤ 2 logNT+1(ζ).

66

Then we have

M ≤ 1 +
∑
ζ∈Z

M(ζ)

≤ 1 + 2
∑
ζ∈Z

logNT+1(ζ)

≤ 1 + 2(
K∑
k=1

|Sk|)Tmix log

∑
ζ NT+1(ζ)

(
∑

k |Sk|)Tmix

= 1 + 2(
K∑
k=1

|Sk|)Tmix log
NT

(
∑

k |Sk|)Tmix

≤ 2(
K∑
k=1

|Sk|)Tmix logNT,

where we added 1 to account for the initial case n1 = 1 and the third inequality holds due to Jensen’s
inequality along with the fact that |Z| ≤

∑
k |Sk| · Tmix. The equality holds because

∑
ζ NT+1(ζ)

is the total number of active arms until time T . This proves our claim (6.11) and therefore the
lemma.

6.5.3 Confidence set

To bound R2 and R3, we construct a confidence set for the system parameters θ. Recall that ζ
represents (k, s, n). Suppose at time t, the state of arm k was observed to be s in n rounds ago.
Let pθ(ζ) denote the probability distribution of the arm’s state if the true system were θ. For an
individual probability weight, we write pθ(s′; ζ) = pθ(s

′; k, s, n) for s′ ∈ Sk. Using the Nt(ζ)

samples collected so far, we can also compute an empirical distribution p̂t(ζ). We construct a
confidence set as a collection of θ such that pθ(ζ) is close to p̂t(ζ). Namely in episode i, we define

Θi = {θ ∈ Θ|∀ζ ∈ Z, ||(pθ − p̂ti)(ζ)||1 ≤ ci(ζ)},

where ci(ζ) = ci(k, s, n) =
√

8|Sk| log 1/δ
1∨Nti (ζ)

.

Since Θi isHti-measurable, Lemma 6.7 provides

P(θ? /∈ Θi|Hti) = P(θi /∈ Θi|Hti).

The following lemma bounds this probability.

67

Lemma 6.13. For every episode i, we can bound

P(θ? /∈ Θi|Hti) = P(θi /∈ Θi|Hti) ≤
K∑
k=1

|Sk| · δTmix.

Proof. For an episode i, pick (k, s, n) = ζ ∈ Z and letm = Nti(ζ). Ifm equals to 0, then ci(ζ) > 1

and the inequality ||(pθ − p̂)(ζ)||1 ≤ ci(ζ) becomes trivial. Suppose m > 0. We first analyze the
case n < Tmix. Weissman et al. [2003] show that

P(||(pθ − p̂)(ζ)||1 ≥ ε) ≤ 2|Sk| exp(−mε
2

2
). (6.12)

Setting ε = ci(ζ) =
√

8|Sk| log 1/δ
n

, we get

P(||(pθ − p̂)(ζ)||1 ≥ ci(ζ)) ≤ δ. (6.13)

For the case n = Tmix, we want to prove the same probability bound in (6.13) but cannot directly
use (6.12) due to aggregation. We can still show a similar bound by using the proof technique by
Weissman et al. [2003].

For simplicity, write pθ(ζ) = p, p̂(ζ) = p̂, and ci(ζ) = c. Then it can be easily checked that

||p− p̂||1 = 2 max
A⊂Sk

p(A)− p̂(A).

Using this and the union bound, we can write

P(||p− p̂||1 ≥ c) ≤
∑
A⊂Sk

P(p(A)− p̂(A) ≥ c

2
). (6.14)

By the definition of Tmix, we have

|p(A)− Ep̂(A)| < 1

T
<
c

4
.

Then Hoeffding’s inequality implies that

P(p(A)− p̂(A) ≥ c

2
) ≤ P(Ep̂(A)− p̂(A) ≥ c

4
)

≤ exp(−mc
2

8
).

68

Plugging this in (6.14), we get

P(||p− p̂||1 ≥ c) ≤ 2|Sk| exp(−mc
2

8
) ≤ δ,

which shows (6.13) for the case n = Tmix.
Since |Z| ≤

∑K
k=1 |Sk| · Tmix, applying the union bound finishes the proof.

Furthermore, the confidence set satisfies that the cumulative on-policy error ∆T (see Section
6.5.1) is bounded.

Lemma 6.14. On the high-probability event θ? ∈ ∩i≤MT
Θi, we can show

∆T ≤ 12
√
NTmixT log 1/δ

K∑
k=1

|Sk|.

The proof of Lemma 6.14 is postponed to Appendix D.2. We want to emphasize that the set
Θi only appears in the proof and it has nothing to do with running TSDE. For example, we can set
an arbitrary value for δ to make the proof works. The main idea of bounding R2 and R3 is that the
event θ?, θi ∈ Θi happens with high probability, and if so, then π? and πi behave similarly.

6.5.4 Putting everything together

Plugging Lemma 6.8, 6.9, 6.10, and 6.11 into the regret decomposition, we prove our main result.

Theorem 6.1 (Exact regret bound, restated). The Bayesian regret of TSDE is bounded by

2(H +N)

√√√√(
K∑
k=1

|Sk|)TmixT logNT + 28(H + 1)(
K∑
k=1

|Sk|)
√
NTmixT log(TmixT),

where Tmix = (log2 T)Tmix(1
4
) = O(log T).

6.6 Experiments

We empirically evaluated TSDE (Algorithm 6.1) on simulated data. Following Chapter 5, we chose
the Gilbert-Elliott channel model in Figure 5.1 to model each arm. This model assumes binary
states and is widely used in communication systems (e.g., see Liu and Zhao [2010]).

69

For simplicity, we assumed P active = P passive and rk(s) = s. This means that the learner’s action
does not affect the transition matrix and the binary reward equals one if and only if the state is good.
We also assumed the initial states of the arms are all good. Each arm has two parameters: pk01 and
pk11. We set the prior to be uniform over a finite set {.1, .2, · · · , .9}. Expectations are approximated
by the Monte Carlo simulation with size 100 or greater.

We investigated three index-based policies: the best fixed arm policy, the myopic policy, and
the Whittle index policy. Index-based policies compute an index for each arm only using the
samples from this arm and choose the top N arms. Due to their decoupling nature, these policies
are computationally efficient. The best fixed arm policy computes the expected reward according to
the stationary distribution. The myopic policy maximizes the expected regret of the current round.
The Whittle index policy is first introduced by Whittle [1988] and shown to be powerful in this
particular setting by Liu and Zhao [2010]. The Whittle index policy is very popular in RMABs as it
can efficiently approximate the optimal policy in many different settings. As a remark, all these
policies are reduced to the best fixed arm policy in the stationary bandits.

Figure 6.1: Bayesian regrets of TSDE (left) and their log-log plots (right)

We first analyzed the Bayesian regret. Here we used T = 2000, K = 8, and N = 3. The
true system θ? was actually drawn from the uniform prior. The average rewards smoothed by the
prior, Eθ?∼QJπ?(θ?), were 2.05 (fixed), 2.16 (myopic), and 2.17 (Whittle), showing the power of
the Whittle index policy. As described in Figure 6.1, the Bayesian regrets were sub-linear regardless
of the competitor policy. The log-log plot shows that they are indeed Õ(

√
T) as the dotted line has

70

a slope of 0.5.

Figure 6.2: Average rewards of TSDE converge to their benchmarks (left); Posterior weights of the
true parameters monotonically increase to one (right)

Then we tested the frequentist setting to empirically validate that TSDE still performs well in
this setting even though our theory only bounds the Bayesian regret. We chose T = 10000, K = 4,
N = 2, and

{(pk01, p
k
11)}k=1,2,3,4 = {(.3, .7), (.4, .6), (.5, .5), (.6, .4)}.

We again adopted the setting from the previous chapter. This θ? is particularly interesting because
each arm has the same stationary distribution of (.5, .5). This means that the best fixed arm
policy becomes indifferent among the arms. The average rewards, Jπ?(θ?), were 1.00 (fixed), 1.09

(myopic), and 1.12 (Whittle), again justifying the power of Whittle index policy. On the left plot
of Figure 6.2, three horizontal dotted lines represent Jπ?(θ?) for each of the competitors. The
solid lines show the time-averaged cumulative rewards, 1

t
Eθ?

∑t
τ=1 rθ?(ξτ , Aτ). Every solid line

converged to the dotted line. The right figure plots the posterior probability of the true parameters
using the Whittle index policy. For all arms, these probabilities monotonically increased to one,
illustrating that TSDE were learning θ? properly. From this, we can assert that TSDE still performs
reasonably well at least when the true parameters lie on the support of the prior.

71

CHAPTER 7

Conclusion

This manuscript discussed several interesting topics in online learning and explore new directions.
This chapter briefly summarizes the previous contents and presents future directions.

In the full information online boosting (Chapter 2 and Chapter 3), one optimal algorithm and
one adaptive algorithm are proposed. The optimal algorithm requires the minimal number of
weak learners for a desired accuracy, and the adaptive algorithm is computationally more feasible
and shows competitive results in experiments. The algorithms are quite flexible in their choice
of weak learners in that various types of learners can be combined to produce a strong learner.
MLR boosting algorithms (Chapter 3) even allow the weak learners to have different prediction
formats. Two prediction problems (multi-class classification and multi-label ranking) are considered,
and designing boosting algorithms in other settings will be valuable. Even in the MLR setting,
developing boosting algorithms for other ranking losses remain open (The rank loss is a strong
candidate, but it is hard to claim that it is the canonical ranking loss). Another interesting open
question is whether there is an optimal adaptive boosting algorithm.

Chapter 4 added one more flexibility, namely partial feedback, to online boosting framework.
With randomized prediction and unbiased estimate of the loss, the full information algorithms from
Chapter 2 and Chapter 3 are naturally extended to this setting. The unbiased estimate successfully
resolved the issue of updating weak learners under the constraint of limited information. Again, an
optimal and an adaptive algorithms are presented for two different prediction problems, and their
performance guarantees matched those of the full information counterparts. The cost of partial
feedback is reflected to increased sample complexities.

Chapter 5 and Chapter 6 tackled non-stationarity in MABs. Restless bandit problems are
instances of non-stationary MABs assuming the state of the arms evolves according to a Markov
process. The episodic case (Chapter 5) and the non-episodic case (Chapter 6) are discussed.
Thompson sampling algorithm and its slight modification are analyzed, and the Bayesian regret can
be theoretically bounded as Õ(

√
T), which naturally extends the results in the stationary MABs.

72

One primary strength of this analysis is that the bound applies to arbitrary deterministic competitor
policy mappings, which include the optimal policy and many other practical policies. This allows
the researchers to obtain computationally tractable algorithm with a reliable theoretical guarantee.
In the special case where the prior has a discrete support and the benchmark is the optimal policy, the
results extend to the frequentist regret, which is also supported by empirical results. One interesting
open question is to bound the frequentist regret of Thompson sampling in the general case. In
stationary MABs, it has been shown that Thompson sampling enjoys the frequentist regret bound of
Õ(
√
T) with additional assumptions [Lattimore and Szepesvári, 2018, Chp. 36]. Extending this to

the restless bandit setting will be an interesting and very challenging problem.

73

APPENDIX A

Details for Online Multiclass Boosting

A.1 Link between batch and online weak learning conditions

Let us begin the section by introducing the weak learning condition in the batch setting. Mukherjee
and Schapire [2013] have identified necessary and sufficient condition for boostability. We will
focus on a sufficient condition due to reasons of computational tractability. In the batch setting, the
entire training set is revealed. Let D := {(xt, yt) | t = 1, · · · , T} be the training set and define a
family of cost matrices:

Ceor := {C ∈ RT×k | ∀t, C[t, yt] = min
l∈[k]

C[t, l]}.

The superscript “eor” stands for “edge-over-random.” We warn the readers not to confuse Ceor

with Ceor1 . They both impose similar row constraints, but the matrices in these sets have different
dimensions: T × k and k × k respectively. Ceor1 also has additional an normalization constraint.
Note that Ceor provides one cost vector for an instance whereas Ceor1 provides a matrix. This is
necessary because if an adversary passes only a vector to an online learner, then the learner can
simply make the prediction which minimizes the cost. Furthermore, in the online boosting setting,
the booster does not know the true label when it computes a cost matrix.

The authors prove that if a weak learning spaceH satisfies the condition described in Definition
A.1, then it is boostable, which means there exists a convex linear combination of hypotheses inH
that perfectly classifies D.

Definition A.1. (Batch setting weak learning condition, Mukherjee and Schapire [2013]) Sup-

pose D is fixed and Ceor is defined as above. A weak learning space H is said to satisfy weak

74

learning condition (Ceor,Uγ) if ∀C ∈ Ceor, one can find a weak hypothesis h ∈ H such that

T∑
t=1

C[t, h(xt)] ≤ C • U′γ. (A.1)

Now we present how our online weak learning condition (Definition 2.1) is naturally derived
from the batch setting counterpart (Definition A.1). We extend the arguments of Beygelzimer et al.
[2015]. The batch setting condition (A.1) can be interpreted as making the following two implicit
assumptions:

1. (Richness condition) For any C ∈ Ceor, there is some hypothesis h ∈ H such that

T∑
t=1

C[t, h(xt)] ≤ C • U′γ.

2. (Agnostic learnability) For any C ∈ Ceor and ε ∈ (0, 1), there is an algorithm which can
compute a nearly optimal hypothesis h ∈ H, i.e.

T∑
t=1

C[t, h(xt)] ≤ inf
h′∈H

T∑
t=1

C[t, h′(xt)] + εT.

For the online setting, we will keep the richness assumption with C being the matrix consisting
of rows of wtCt[yt], and the data being drawn by a fixed adversary. That is to say, it is the online
richness condition that imposes a restriction on adversary because the condition cannot be met by
anyH with fully adaptive adversary. For example, suppose an adversary draws samples uniformly at
random from the set {(x, 1), · · · , (x, k)} for some fixed x ∈ X . There does not exist weak learning
spaceH that satisfies the online richness condition with this adversary. The agnostic learnability
assumption is also replaced by online agnostic learnability assumption. We present online versions
of the above two assumptions:

1′. (Online richness condition) For any sample length T , any sequence of labeled examples
{(xt, yt) | t = 1, · · · , T} generated by a fixed adversary, and any series of pairs of weight and
cost matrix {(wt,Ct) ∈ [0, 1]× Ceor1 | t = 1, · · · , T}, there is some hypothesis h ∈ H such
that

T∑
t=1

wtCt[yt, h(xt)] ≤ C • U′γ, (A.2)

where C ∈ RT×k consists of rows of wtCt[yt].

75

2′. (Online agnostic learnability) For any sample length T , δ ∈ (0, 1), and for any adaptively
chosen series of pairs of weight and cost matrix {(wt,Ct) ∈ [0, 1] × Ceor1 | t = 1, · · · , T},
there is an online algorithm which can generate predictions ŷt such that with probability 1− δ,

T∑
t=1

wtCt[yt, ŷt] ≤ inf
h∈H

T∑
t=1

wtCt[yt, h(xt)] +Rδ(T), (A.3)

where Rδ : N→ R is a sublinear regret.

Daniely et al. [2011] extensively investigates agnostic learnability in online multiclass problems
by introducing the following generalized Littlestone dimension (Littlestone [1988]) of a hypothesis
familyH. Consider a binary rooted tree RT whose internal nodes are labeled by elements from X
and whose edges are labeled by elements from [k] such that two edges from a same parent have
different labels. The tree RT is shattered byH if, for every path from root to leaf which traverses
the nodes x1, · · · , xk, there is a hypothesis h ∈ H such that h(xi) corresponds to the label of the
edge from xi to xi+1. The Littlestone dimension ofH is the maximal depth of complete binary tree
that is shattered byH (or∞ if one can build a arbitrarily deep shattered tree). The authors prove
that an optimal online algorithm has a sublinear regret under the expected (w.r.t. the randomness of
the algorithm) 0-1 loss if Littlestone dimension ofH is finite.

Similarly we prove in Lemma A.2 that the condition (A.3) is satisfied ifH has a finite Littlestone
dimension. We need to slightly modify their result in two ways. One is to replace expectation by
probabilistic argument, and the other is to replace 0-1 loss by our cost matrix framework. Both
questions can be resolved by replacing an auxiliary lemma used by Daniely et al. [2011] without
changing the main structure.

Lemma A.2. Suppose a weak learning space H has a finite Littlestone dimension d and an

adversary chooses examples in fully adaptive manner. For any sample length T and for any

adaptively chosen series of pairs of weight and cost matrix {(wt,Ct) ∈ [0, 1]×Ceor1 | t = 1, · · · , T},
with probability 1− δ, the online agnostic learnability condition (A.3) is satisfied with following

sublinear regret

Rδ(T) =
√

(Td lnTk)/2 +
√

(T ln 1/δ)/2.

Proof. We first introduce an online algorithm with experts. Suppose we have a fixed pool of experts
of size N . We keep our cost matrix framework. Each expert f i would suffer cumulative cost
Ci
T :=

∑T
t=1wtCt[yt, f

i(xt)]. At each iteration, an online algorithm chooses to follow one expert
and incurs a cost wtCt[yt, ŷt], and its goal is to perform as well as the best expert. That is to say, the
algorithm wants to keep its cumulative cost

∑T
t=1wtCt[yt, ŷt] not too much larger than mini∈[N] C

i
T .

76

Algorithm A.1 Learning with Expert Advice (LEA)
1: Input T: time horizon, N: number of experts
2: Set η =

√
(8 lnN)/T

3: Set Ci
0 = 0 for all i

4: for t = 1, · · · , T do
5: Receive example xt
6: Receive expert advices (f 1

t , · · · , fNt) ∈ [k]N

7: Predict ŷt = f it with probability proportional to exp(−ηCi
t−1)

8: Receive true label yt
9: Update Ci

t = Ci
t−1 + wtCt[yt, f

i
t] for all i

10: end for

This learning framework is called weighted majority algorithm and is thoroughly investigated by
several researchers (e.g., Littlestone and Warmuth [1989] and Vovk [1990]). We will specifically use
Algorithm A.1 (LEA), which is shown to achieve a sublinear regret

√
(T lnN)/2 +

√
(T ln 1/δ)/2

with probability 1− δ (cf. Cesa-Bianchi and Lugosi [2006, Corollary 4.2]). The authors require
the loss to be bounded, which is also satisfied in our cost matrix framework. Readers might raise a
question that our loss function changes for each iteration, but the proof still works as long as it is
bounded. Interested readers might refer Hazan et al. [2016, Section 1.3.3].

To apply this result in our case, we need to construct a finite set of experts whose best perfor-
mance is as good as that of hypotheses inH. In fact, in the proof of Daniely et al. [2011, Theorem
25], the authors construct a set E of size N ≤ (Tk)d such that for every hypothesis h ∈ H, there is
an expert f ∈ E which coincides with h subject to the given examples x1, · · · , xT .

Applying the LEA result on E shows that with probability 1− δ, the regret is bounded above by√
(Td lnTk)/2 +

√
(T ln 1/δ)/2, which concludes the proof.

One remark is that the proof of Lemma A.2 only uses the boundedness condition of Ceor1 .
Now we are ready to demonstrate that our online weak learning condition is indeed naturally

derived from the batch setting counterpart. The following Theorem shows that two conditions (A.2)
and (A.3) directly imply the online weak learning condition (2.1). In other words, if the weak
learning spaceH accompanied by an adversary is rich enough to contain a hypothesis that slightly
outperforms a random guess and has a reasonably small dimension, then we can find an excess loss
S that satisfies (2.1). This is a generalization of Beygelzimer et al. [2015, Lemma 2]. Note that we
impose an additional assumption that wt ≥ m > 0 , ∀t. In case the learner encounters zero weight,
it can simply ignore the instance, and the above assumption is not too artificial.

Theorem A.3. (Link between batch and online weak learning conditions) Suppose a pair of

weak learning space H and an adversary satisfies online richness assumption (A.2) with edge

77

2γ and online agnostic learnability assumption (A.3) with mistake probability δ and sublinear

regret Rδ(·). Additionally we assume there exists a positive constant m that satisfies wt ≥ m , ∀t.
Then the online learning algorithm satisfies the online weak learning condition (2.1), with mistake

probability δ, edge γ, and excess loss S = maxT (Rδ(T)− γmT
k

).

Proof. Fix δ ∈ (0, 1) and a series of pairs of weight and cost matrix {(wt,Ct) ∈ [0, 1]× Ceor1 | t =

1, · · · , T}, and let C ∈ RT×k consist of rows of wtCt[yt]. First note that by sublinearity of Rδ(·), S
is finite. According to (A.3), the online learning algorithm can generate predictions ŷt such that,
with probability 1− δ,

T∑
t=1

wtCt[yt, ŷt] ≤ C • U′2γ +Rδ(T).

Thus it suffices to show that

C • U′2γ +Rδ(T) ≤ C • U′γ + S. (A.4)

Since the correct label gets zero cost and the row C[r] has `1 norm wt, we have

C • U′γ =
1− γ
k
||C||1 =

1− γ
k

T∑
t=1

wt.

By plugging this in (A.4), we get

C • U′2γ − C • U′γ +Rδ(T) = −γ
k

T∑
t=1

wt +Rδ(T) ≤ −γ
k
mT +Rδ(T) ≤ S.

The first inequality holds because wt ≥ m, and the second inequality holds by definition of S,
which completes the proof.

Lemma A.2 and Theorem A.3 suggest an implicit relation between δ and S in (2.1). If we want
probabilistically stronger weak learning condition, Rδ(T) in Lemma A.2 gets bigger, which results
in larger S = maxT (Rδ(T)− γT

k
).

78

A.2 Detailed discussion of OnlineMBBM

A.2.1 Proof of Theorem 2.2

Proof. For ease of notation, we will assume the edge is equal to γ and the true label is r unless
otherwise specified. That is to say, u stands for urγ and φi for φri . By rewriting (2.3),

φN−i+1(si−1
t) = El∼uφN−i(si−1

t + el)

= Ci
t[r] • u

= Ci
t[r] • (u− elit) + φN−i(sit),

where Ci
t is defined in (2.4). The last equation holds due to the relation sit = si−1

t + elit . Also note
that ||u||1 = ||er||1 = 1, and thus subtracting common numbers from each component of Ci

t[r] does
not affect the dot product term. Therefore, by introducing normalized cost matrix Di

t as in (2.5) and
wi[t] as in Algorithm 2.1, we may write

φytN−i+1(si−1
t) = wi[t]Di

t[yt] • (uytγ − elit) + φytN−i(sit)

= wi[t]Di
t[yt] • uytγ − wi[t]Di

t[yt, l
i
t] + φytN−i(sit)

= wi[t]
1− γ
k
− wi[t]Di

t[yt, l
i
t] + φytN−i(sit).

(A.5)

The last equality holds because Di
t is normalized and Di

t[yt, yt] = 0. If Di
t[yt] is a zero vector, then

by definition wi[t] = 0, and the equality still holds. Then by summing (A.5) over t, we get

T∑
t=1

φytN−i+1(si−1
t) =

1− γ
k
||wi||1 −

T∑
t=1

wi[t]Di
t[yt, l

i
t] +

T∑
t=1

φytN−i(sit).

By online weak learning condition, we have with probability 1−δ, (recall that wi∗ estimates ||wi||∞)

T∑
t=1

wi[t]

wi∗
Di
t[yt, l

i
t] ≤

1− γ
k

||wi||1
wi∗

+ S.

From this, we can argue that

T∑
t=1

φytN−i+1(si−1
t) + Swi∗ ≥

T∑
t=1

φytN−i(sit).

79

Since the above inequality holds for any i, summing over i gives

T∑
t=1

φytN(0) + S

N∑
i=1

wi∗ ≥
T∑
t=1

φyt0 (sNt),

which holds with probability 1−Nδ by union bound. By symmetry, φytN(0) = φ1
N(0) regardless of

the true label yt, and by definition of potential function (2.3), φyt0 (sNt) = Lyt(sNt), which completes
the proof.

A.2.2 Bounding the terms in general bound under 0-1 loss

Even though OnlineMBBM has a promising theoretical justification, it would be infeasible if the
computation of potential functions takes too long or if the behavior of asymptotic error rate φ1

N(0)

is too complicated to be approximated. Fortunately for the 0-1 loss, we can get a computationally
tractable algorithm with vanishing error rate. The use of potential functions in binary boosting setup
is thoroughly discussed by Schapire [2001]. In binary setting under 0-1 loss, potential function
has a closed form which dramatically reduces the computational complexity. Unfortunately, the
multiclass version does not have a closed form, but Mukherjee and Schapire [2013] introduce a
heuristic to compute it in reasonable time:

φri (s) = 1−
∑

(x1,··· ,xk)∈A

(
i

x1, · · · , xk

) k∏
l=1

uxll , (A.6)

where A := {(x1, · · ·xk) ∈ Zk | x1 + · · ·xk = i, ∀l : xl ≥ 0, xl + s[l] < xr + s[r]}, and
urγ = (u1, · · · , uk). By using dynamic programming, the RHS of (A.6) can be computed in
polynomial time in i, k, and ||s||1. In our setting where the number of learners is fixed to be N , the
computation can be done in polynomial time in k and N because ||s||1 is bounded by N . To the
best of our knowledge, there is no way to compute the potential function in polynomial time if we
start from necessary and sufficient weak learning condition (the algorithm given by Mukherjee and
Schapire [2013] takes exponential time in the number of learners), and this is the main reason that
we use the sufficient condition. Recall from (2.6) that φ1

N(0) plays a role of asymptotic error rate
and the second term determines the sample complexity. The following two lemmas provide bounds
for both terms.

By applying the Hoeffding’s inequality, we can prove in Lemma A.4 that φ1
N(0) vanishes

exponentially fast as N grows. That is to say, to get a satisfactory accuracy, we do not need too

80

many learners. We also note that we can decide N before the learning process begins, which is
logically plausible.

Lemma A.4. Under the same setting as in Theorem 2.2 but with the particular choice of 0-1 loss,

we may bound φ1
N(0) as follows:

φ1
N(0) ≤ (k − 1) exp(−γ

2N

2
). (A.7)

Proof. We reinterpret φ1
N(0) in (A.6). Imagine that we draw numbers N times from [k] where the

probability that a number i is drawn is u1
γ[i]. That is to say, 1 has highest probability of 1−γ

k
+ γ,

and other numbers have equal probability of 1−γ
k

. Then φ1
N(0) can be interpreted as a probability

that the number that is drawn for the most time out of N draws is not 1. Let Ai denote the event
that the number i gets more votes than the number 1. Then we have by union bound,

φ1
N(0) = P(A2 ∪ · · · ∪ Ak)

≤
k∑
l=2

P(Ai)

= (k − 1)P(A2)

(A.8)

The last equality holds by symmetry. To compute P(A2), imagine that we draw 1 with probability
1−γ
k

+ γ, −1 with probability 1−γ
k

, and 0 otherwise. P(A2) is equal to the probability that after
independent N draws, the summation of N i.i.d. random numbers is non-positive. Thus by the
Hoeffding’s inequality, we get

P(A2) ≤ exp(−γ
2N

2
) (A.9)

Combining (A.8) and (A.9) completes the proof.

Now we have fixed N based on the desired asymptotic accuracy. Since 0-1 loss is bounded
in [0, 1], so are potential functions. Then by definition of weights (cf. Algorithm 2.1), ||wi||∞ is
trivially bounded above by k, which means we can use wi∗ = k ∀i. Thus the second term of (2.6)
is bounded above by kNS, which is valid. However, Lemma A.5 allows a tighter bound.

Lemma A.5. Under the same setting as in Theorem 2.2 but with the particular choice of 0-1 loss

and an additional constraint of γ < 1
2
, we may bound ||wi||∞ by

||wi||∞ ≤
ck5/2

√
N − i

, (A.10)

81

where c is a universal constant that can be determined before the algorithm begins.

Proof. We will start by providing a bound on φrm(s + el) − φrm(s + er). First note that it is non-
negative as potential functions are proper. Again by using random draw framework as in the proof of
Lemma A.4 (now r has the largest probability to be drawn), this value corresponds to the probability
that after m draws, the number r wins the majority votes if the count starts from s + er but loses if
the count starts from s + el. Let X1, · · · , Xk denote the number of draws of each number out of m
draws and define the events Al := {(Xr + s[r])− (Xl + s[l]) ∈ {0, 1}}. Then it can be checked that

φrm(s + el)− φrm(s + er)

= P(∃l′ s.t. Xl′ + s[l′] + el[l′] ≥ Xr + s[r])− P(∃l′ s.t. Xl′ + s[l′] ≥ Xr + s[r] + 1)

≤ P(∃l′ s.t. Xl′ + s[l′] + el[l′] ≥ Xr + s[r] and ∀l′, Xr + s[r] ≥ Xl′ + s[l′])

≤ P(∃l′ s.t. Xl′ + s[l′] + el[l′] ≥ Xr + s[r] ≥ Xl′ + s[l′])

= P(
⋃
l 6=r

Al) ≤
∑
l 6=r

P(Al).

(A.11)

The first inequality holds by P(A)− P(B) ≤ P(A−B). Individual probabilities can be written as

P(Al) = P(Xr −Xl = s[l]− s[r]) + P(Xr −Xl = s[l]− s[r] + 1)

≤ 2 max
n

P(Xr −Xl = n).
(A.12)

We can prove by applying the Berry-Esseen theorem that the last probability is O(1√
m

). Let
Y1, · · · , Ym be a sequence of i.i.d. random variables such that Yj ∈ {−1, 0, 1} and

P(Yj = 1) =
1− γ
k

+ γ,

P(Yj = −1) =
1− γ
k

.

Note that EYj = γ and V ar(Yj) = 2(1−γ)
k

+ γ(1 − γ) =: σ2. It can be easily checked that
Y :=

∑m
j=1 Yj has same distribution with Xr −Xl. Now we approximate Y by a Gaussian random

variable W ∼ N(mγ,mσ2). Let FW and FY denote CDF of W and Y , respectively, and let f
denote the density of W . First note that

|P(Y = n)−
∫ n

n−1

f(w)dw| = |(FY (n)− FY (n− 1))− (FW (n)− FW (n− 1))|

≤ |FY (n)− FW (n)|+ |FY (n− 1)− FW (n− 1)|.

82

We can apply the Berry-Esseen theorem to the last CDF differences, which provides

|P(Y = n)−
∫ n

n−1

f(w)dw| ≤ 2Cρ

σ3
√
m
, (A.13)

where C is the universal constant that appears in Berry-Esseen and ρ := E|Yj − γ|3. As Yj is a
bounded random variable, we have

ρ = E|Yj − γ|3 ≤ (1 + γ)E|Yj − γ|2 = (1 + γ)σ2 ≤ 2σ2.

Plugging this in (A.13) gives

|P(Y = n)−
∫ n

n−1

f(w)dw| ≤ 4C

σ
√
m

By simple algebra, we can deduce

P(Y = n) ≤
∫ n

n−1

f(w)dw +
4C

σ
√
m

≤ sup
w∈R

f(w) +
4C

σ
√
m

=
1√

2πmσ
+

4C

σ
√
m
.

(A.14)

Using the fact that γ < 1
2
, we can show

σ2 =
2(1− γ)

k
+ γ(1− γ) ≥ 1

k

Plugging this in (A.14) gives

P(Y = n) ≤ 1

σ
√
m

(
1√
2π

+ 4C) ≤ C ′
√
k

m
, (A.15)

where C ′ = 1√
2π

+ 4C. By combining (A.11), (A.12), (A.15), and the fact that Y and Xr −Xl have
same distribution, we prove

φrm(s + el)− φrm(s + er) ≤ 2C ′k

√
k

m
. (A.16)

The proof is complete by observing that wi[t] =
∑k

l=1[φytN−i(si−1
t + el)− φytN−i(si−1

t + eyt)].

83

Remark. By summing (A.10) over i, we can bound the second term of (2.6) by O(k5/2
√
N)S.

Comparing this to the aforementioned bound kNS, Lemma A.5 reduces the dependency on N , but

as a tradeoff the dependency on k is increased. The optimal bound for this term remains open, but

in the case that the number of classes k is fixed to be moderate, Lemma A.5 provides a better bound.

Corollary 2.3 is a simple consequence of plugging Lemma A.4 and A.5 to Theorem 2.2.

A.2.3 Proof of lower bounds and discussion of gap

We begin by proving Theorem 2.4.

Proof. At time t, an adversary draws a label yt uniformly at random from [k], and the weak learners
independently make predictions with respect to the probability distribution pt ∈ ∆[k]. This can be
achieved if the adversary draws xt ∈ RN where xt[1], · · · , xt[N]|yt’s are conditionally independent
with conditional distribution of pt and WLi predicts xt[i]. The booster can only make a final
decision by weighted majority votes of N weak learners. We will manipulate pt in such a way that
weak learners satisfy (2.1), but the booster’s performance is close to that of Online MBBM.

First we note that since Ct[yt, ŷt] used in (2.1) is bounded in [0, 1], the Azuma-Hoeffding
inequality implies that if a weak learner makes prediction ŷt according to the probability distribution
pt at time t, then with probability 1− δ, we have

T∑
t=1

wtCt[yt, ŷt] ≤
T∑
t=1

wtCt[yt] • pt +

√
2||w||22 ln(

1

δ
)

≤
T∑
t=1

wtCt[yt] • pt +
γ||w||22
k

+
k ln(1

δ
)

2γ

≤
T∑
t=1

wtCt[yt] • pt +
γ||w||1
k

+
k ln(1

δ
)

2γ
,

(A.17)

where the second inequality holds by arithmetic mean and geometric mean relation and the last
inequality holds due to wt ∈ [0, 1].

We start from providing a lower bound on the number of weak learners. Let pt = uyt2γ for all t.
This can be done by the constraint γ < 1

4
. Then the last line of (A.17) becomes

T∑
t=1

wtCt[yt] • uyt2γ +
γ||w||1
k

+
k ln(1

δ
)

2γ
=

1− 2γ

k
||w||1 +

γ||w||1
k

+
k ln(1

δ
)

2γ
≤ 1− γ

k
||w||1 + S,

84

where the first equality follows by the fact that Ct[yt, yt] = 0 and ||Ct[yt]||1 = 1. Thus the weak
learners indeed satisfy the online weak learning condition with edge γ and excess loss S. Now
suppose a booster imposes weights on weak learners by αi. WLOG, we may assume the weights are
normalized such that

∑N
i=1 α

i = 1. Adopting the argument of Schapire and Freund [2012, Section
13.2.6], we prove that the optimal choice of weights is (1

N
, · · · , 1

N
). Fix t, and let li denote the

prediction made by WLi. By noting that P(yt = y) = 1
k
, which is constant, we can deduce

P(yt = y|l1, · · · , lN) =
P(l1, · · · , lN |yt = y)P(yt = y)

P(l1, · · · , lN)

∝ P(l1, · · · , lN |yt = y)

=
N∏
i=1

p1(li=y)q1(li 6=y),

where f ∝ g means f(y)/g(y) does not depend on y, p = uyt2γ[yt] = 1−2γ
k

+ 2γ, and q = uyt2γ[l] =
1−2γ
k

. By taking log, we get

logP(yt = y|l1, · · · , lN) = C + log p
N∑
i=1

1(li = y) + log q
N∑
i=1

1(li 6= y)

= C +N log q + log
p

q

N∑
i=1

1(li = y).

Therefore, the optimal decision after observing l1, · · · , lN is to choose y that maximizes
∑N

i=1 1(li =

y), or equivalently, to take simple majority votes.
To compute a lower bound for the error rate, we again introduce random draw framework as in

the proof of Lemma A.4. WLOG, we may assume that the true label is 1. Let Ai denote the event
that the number i beats 1 in the majority votes. Then we have

P(booster makes error) ≥ P(A2). (A.18)

Now we need a lower bound for P(A2). To do so, let {Yi} be the series of i.i.d. random variables
such that Yi ∈ {−1, 0, 1} and

P(Yj = 1) =
1− 2γ

k
+ 2γ =: p1,

P(Yj = −1) =
1− 2γ

k
=: p−1.

85

Then P(A2) = P(Y < 0) where Y :=
∑N

i=1 Yi.
Now let M be the number of j such that Yj 6= 0. By conditioning on M , we can write

P(Y < 0|M = m) = P(B ≤ m

2
),

where B ∼ binom(m, p1
p1+p−1

). By Slud’s inequality [Slud, 1977, Theorem 2.1], we have

P(B ≤ m

2
) ≥ P(Z ≥

√
m

p− 1
2√

p(1− p)
),

where Z follows a standard normal distribution and p = p1
p1+p−1

. Now using tail bound on normal
distribution, we get

P(B ≤ m

2
) ≥ Ω(exp(−m(p− 1/2)2

p(1− p)
))

= Ω(exp(−m(p1 − p−1)2

4p1p−1

))

= Ω(exp(− mγ2

p1p−1

))

≥ Ω(exp(−4mk2γ2))

≥ Ω(exp(−4Nk2γ2)).

(A.19)

We intentionally drop 1
2

from the power, which makes the bound smaller. The second inequality
holds because p1p−1 ≥ (1−2γ)2

k2
≥ 1

4k2
. Integrating w.r.t. m gives

P(booster makes error) ≥ P(Y < 0) ≥ Ω(exp(−4Nk2γ2)).

By setting this value equal to ε, we have N ≥ Ω(1
k2γ2

ln 1
ε
), which proves the first part of the

theorem.
Now we turn our attention to the optimality of sample complexity. Let T0 := kS

4γ
and define

pt = uyt0 for t ≤ T0 and pt = uyt2γ for t > T0. Then for T ≤ T0, (A.17) implies

T∑
t=1

wtCt[yt, ŷt] ≤
1 + γ

k
||w||1 +

k ln(1
δ
)

2γ
≤ 1− γ

k
||w||1 + S, (A.20)

86

Figure A.1: Plot of φ1
N(0) computed with distribution u1

γ versus the number of labels k. N is fixed
to be 20, and the edge γ is set to be 0.01 (left) and 0.1 (right). The graph is not monotonic for larger
edge. This hinders the approximation of potential functions with respect to k.

where the last inequality holds because ||w||1 ≤ T0 = kS
4γ

. For T > T0, again (A.17) implies

T∑
t=1

wtCt[yt, ŷt] ≤
1

k

T0∑
t=1

wt +
1− 2γ

k

T∑
t=T0+1

wt +
γ||w||1
k

+
k ln(1

δ
)

2γ

≤ 2γ

k
T0 +

1− γ
k
||w||1 +

k ln(1
δ
)

2γ

≤ 1− γ
k
||w||1 + S.

(A.21)

(A.20) and (A.21) prove that the weak learners indeed satisfy (2.1). Now note that combining
weak learners does not provide meaningful information for t ≤ T0, and thus any online boosting
algorithm has errors at least Ω(T0). Therefore to get the desired asymptotic error rate, the number of
observations T should be at least Ω(T0

ε
) = Ω(k

εγ
S), which proves the second part of the theorem.

Even though the gap for the number of weak learners between Corollary 2.3 and Theorem 2.4 is
merely polynomial in k, readers might think it is counter-intuitive that N is increasing in k in the
upper bound while decreasing in the lower bound. This phenomenon occurs due to the difficulty in
approximating potential functions. Recall that Lemma A.4 and Theorem 2.4 utilize upper and lower
bound of φ1

N(0).
At first glance, considering that φ1

N(0) implies the error rate of majority votes out of N indepen-
dent random draws with distribution u1

γ , the potential function seems to be increasing in k as the

87

task gets harder with bigger set of options. This is the case of left panel of Figure A.1. However, as
it is shown in the right panel, it can also start decreasing in k when γ is larger. This can happen
because the probability that a wrong label is drawn vanishes as k grows while the probability that
the correct label is drawn remains bigger than γ. In this regard, even though the number of wrong
labels gets larger, the error rate actually decreases as u1

γ[1] dominates other probabilities.
After acknowledging that φ1

N(0) might not be a monotonic function of k, the linear upper bound
(A.7) turns out to be quite naive, and this is the main reason for the conflicting dependence on k in
upper bound and lower bound for N . As the relation among k, N , and γ in φ1

N(0) is quite intricate,
the issue of deriving better approximation of potential functions remains open.

A.3 Proof of Theorem 2.5

We first introduce a lemma that will be used in the proof.

Lemma A.6. Suppose A,B ≥ 0, B − A = γ ∈ [−1, 1], and A+B ≤ 1. Then we have

min
α∈[−2,2]

A(eα − 1) +B(e−α − 1) ≤ −γ
2

2
.

Proof. We divide into three cases with respect to the range of B
A

.
First suppose e−4 ≤ B

A
≤ e4. In this case, the minimum is attained at α = 1

2
log B

A
, and the

minimum becomes

−(A+B) + 2
√
AB = −(

√
A−
√
B)2

= −(
A−B√
A+
√
B

)2

= − γ2

(
√
A+
√
B)2

≤ − γ2

2(A+B)
≤ −γ

2

2
.

Now suppose B
A
> e4 > 51. From B −A = γ, we have γ > 50A ≥ 0. Choosing α = log 6, we

88

get the minimum is bounded above by

5A− 5

6
B =

25

6
A− 5

6
γ

<
25

6

γ

50
− 5

6
γ

= −3

4
γ < −γ

2

2
.

The last inequality hold due to γ ≤ 1.
Finally suppose A

B
> e4 > 51. From B − A = γ, we have −γ > 50B ≥ 0. Choosing

α = − log 6, we get the minimum is bounded above by

−5

6
A+ 5B =

25

6
B +

5

6
γ

< −25

6

γ

50
+

5

6
γ

=
3

4
γ < −γ

2

2
.

The last inequality hold due to γ ≥ −1. This completes the proof.

Now we provide a proof of Theorem 2.5.

Proof. Let Mi denote the number of mistakes made by expert i: Mi =
∑

t 1(yt 6= ŷit). We also
let M0 = T for the ease of presentation. As Adaboost.OLM is using the Hedge algorithm among
N experts, the Azuma-Hoeffding inequality and a standard analysis (cf. Cesa-Bianchi and Lugosi
[2006, Corollary 2.3]) provide with probability 1− δ,∑

t

1(yt 6= ŷt) ≤ 2 min
i
Mi + 2 logN + Õ(

√
T), (A.22)

where Õ notation suppresses dependence on log 1
δ
.

Now suppose the expert i− 1 makes a mistake at iteration t. That is to say, in a conservative
way, si−1

t [yt] ≤ si−1
t [l] for some l 6= yt. This implies that among k − 1 terms in the summation of

−Ci
t[yt, yt] in (2.9), at least one term is not less than 1

2
. Thus we can say −Ci

t[yt, yt] ≥ 1
2

if the
expert i− 1 makes a mistake at xt. This leads to the inequality:

−
∑
t

Ci
t[yt, yt] ≥

Mi−1

2
. (A.23)

89

Note that by definition of M0 and C1
t , the above inequality holds for i = 1 as well. For ease of

notation, let us write wi := −
∑

t Ci
t[yt, yt].

Now let ∆i denote the difference of the cumulative logistic loss between two consecutive
experts:

∆i =
∑
t

Lyt(sit)− Lyt(si−1
t) =

∑
t

Lyt(si−1
t + αitelit)− L

yt(si−1
t).

Then Online Gradient Descent algorithm provides

∆i ≤ min
α∈[−2,2]

∑
t

[Lyt(si−1
t + αelit)− L

yt(si−1
t)] + 4

√
2(k − 1)

√
T . (A.24)

By simple algebra, we can check

log(1 + es+α)− log(1 + es) = log(1 +
eα − 1

1 + e−s
) ≤ 1

1 + e−s
(eα − 1).

From this, we can deduce that

Lyt(si−1
t + αelit)− L

yt(si−1
t) ≤

Ci
t[yt, l

i
t](e

α − 1) , if lit 6= yt

Ci
t[yt, l

i
t](−e−α + 1) , if lit = yt

.

Summing over t, we have∑
t

Lyt(si−1
t + αelit)− L

yt(si−1
t) ≤ wi(A(eα − 1) +B(e−α − 1)),

where
A =

∑
lt 6=yt

Ct[yt, lt]/w
i, B = −

∑
lt=yt

Ct[yt, lt]/w
i.

Note that A and B are non-negative and B − A = γi ∈ [−1, 1], A+B ≤ 1. Lemma A.6 provides

min
α∈[−2,2]

∑
t

[Lyt(si−1
t + αelit)− L

yt(si−1
t)] ≤ −γi

2

2
wi. (A.25)

Combining (A.23), (A.24), and (A.25), we have

∆i ≤ −
γi

2

4
Mi−1 + 4

√
2(k − 1)

√
T .

90

Summing over i, we get by telescoping rule

∑
t

Lyt(sNt)−
∑
t

Lyt(0) ≤ −1

4

∑
i

γ2
iMi−1 + 4

√
2(k − 1)N

√
T

≤ −1

4

∑
i

γ2
i min

i
Mi + 4

√
2(k − 1)N

√
T .

Note that Lyt(0) = (k − 1) log 2 and Lyt(sNt) ≥ 0. Therefore we have

min
i
Mi ≤

4(k − 1) log 2∑
i γ

2
i

T +
16
√

2(k − 1)N∑
i γ

2
i

√
T .

Plugging this in (A.22), we get with probability 1− δ,

∑
t

1(yt 6= ŷt) ≤
8(k − 1) log 2∑

i γ
2
i

T + Õ(
kN
√
T∑

i γ
2
i

+ logN)

≤ 8(k − 1)∑
i γ

2
i

T + Õ(
kN2∑
i γ

2
i

),

where the last inequality holds from AM-GM inequality: cN
√
T ≤ c2N2+T

2
.

A.4 Adaptive algorithms with different surrogate losses

In this section, we present similar adaptive boosting algorithms with Adaboost.OLM but with two
different surrogate losses: exponential loss and square hinge loss. We keep the main structure, but
the unique properties of each loss result in little difference in details.

A.4.1 Exponential loss

As discussed in Section 2.3.1, exponential loss is useful in batch setting because it provides a closed
form for the potential function. We will use following multiclass version of exponential loss:

Lr(s) :=
∑
l 6=r

exp(s[l]− s[r]). (A.26)

From this, we can compute the cost matrix and f it
′ for the online gradient descent as below:

91

Ci
t[r, l] =

exp(si−1
t [l]− si−1

t [r]) , if l 6= r

−
∑

j 6=r exp(si−1
t [j]− si−1

t [r]) , if l = r
(A.27)

f it
′
(α) =

exp(si−1
t [lit] + α− si−1

t [yt]) , if lit 6= yt

−
∑

j 6=yt exp(si−1
t [j]− α− si−1

t [yt]) , if lit = yt.
(A.28)

With this gradient, if we set the learning rate ηit = 2
√

2
(k−1)

√
t
e−i, a standard analysis provides

Ri(T) ≤ 4
√

2(k − 1)ei
√
T . Note that with exponential loss, we have different learning rate for

each weak learner. We keep the algorithm same as Algorithm 2.2, but with different cost matrix and
learning rate. Now we state the theorem for the mistake bound.

Theorem A.7. (Mistake bound with exponential loss) For any T and N , the number of mistakes

made by Algorithm 2.2 with above cost matrix and learning rate satisfies the following inequality

with high probability: ∑
t

1(yt 6= ŷt) ≤
4k∑
i γ

2
i

T + Õ(
ke2N∑
i γ

2
i

).

Proof. The proof is almost identical to that of Theorem 2.5, and we only state the different steps.
With cost matrix defined in (A.27), we can show

−
∑
t

Ci
t[yt, yt] ≥Mi−1.

Furthermore, we have following identity (which was inequality in the original proof):

Lyt(si−1
t + αelit)− L

yt(si−1
t) =

Ci
t[yt, l

i
t](e

α − 1) , if lit 6= yt

Ci
t[yt, l

i
t](−e−α + 1) , if lit = yt

.

This leads to
∆i ≤ −

γi
2

2
Mi−1 + 4

√
2(k − 1)ei

√
T .

92

Summing over i, we get∑
i γ

2
i

2
min
i
Mi ≤ (k − 1)T + 4

√
2(k − 1)e

eN − 1

e− 1

√
T

≤ (k − 1)T + 9keN
√
T .

Plugging this in (A.22), we get with high probability,

∑
t

1(yt 6= ŷt) ≤
4(k − 1)∑

i γ
2
i

T + Õ(
keN
√
T∑

i γ
2
i

+ logN)

≤ 4k∑
i γ

2
i

T + Õ(
ke2N∑
i γ

2
i

),

which completes the proof. We also used AM-GM inequality for the last step.

Comparing to Theorem 2.5, we get a better coefficient for the first term, which is asymptotic
error rate, but the exponential function in the second term makes the bound significantly loose. The
exponential term comes from the larger variability of f it associated with exponential loss. It should
also be noted that the empirical edge γi is measured with different cost matrices, and thus direct
comparison is not fair. In fact, as discussed in Section 2.3.1, γi is closer to 0 with exponential loss
than with logistic loss due to larger variation in weights, which is another huge advantage of logistic
loss.

A.4.2 Square hinge loss

Another popular surrogate loss is square hinge loss. We begin the section by introducing multiclass
version of it:

Lr(s) :=
1

2

∑
l 6=r

(s[l]− s[r] + 1)2
+, (A.29)

where f+ := max{0, f}. From this, we can compute the cost matrix and f it
′ for the online gradient

descent as below:

Ci
t[r, l] =

(si−1
t [l]− si−1

t [r] + 1)+ , if l 6= r

−
∑

j 6=r(si−1
t [j]− si−1

t [r] + 1)+ , if l = r
(A.30)

93

f it
′
(α) =

(si−1
t [lit] + α− si−1

t [yt] + 1)+ , if lit 6= yt

−
∑

j 6=yt(si−1
t [j]− α− si−1

t [yt] + 1)+ , if lit = yt.
(A.31)

With square hinge loss, we do not use Lemma A.6 in the proof of mistake bound, and thus
the feasible set F can be narrower. In fact, we will set F = [−c, c], where the parameter c will be
optimized later. With this F , we have |f it

′
(α)| ≤ (k − 1) + ci ≤ (k − 1) + cN , and the standard

analysis of online gradient descent algorithm with learning rate ηt =
√

2c
((k−1)+cN)

√
t

provides that

Ri(T) ≤ 2
√

2(k − 1 + cN)
√
T . Now we are ready to prove the mistake bound.

Theorem A.8. (Mistake bound with square hinge loss) For any T and N , with the choice of

c = 1√
N

, the number of mistakes made by Algorithm 2.2 with above cost matrix and learning rate

satisfies the following inequality with high probability:

∑
t

1(yt 6= ŷt) ≤
2k
√
N∑

i |γi|
T + Õ(

(k2 +N)N
√
N∑

i |γi|
).

Proof. With cost matrix defined in (A.30), we can show

−
∑
t

Ci
t[yt, yt] ≥Mi−1.

We can also check that
1

2
[(s+ α)2

+ − s2
+] ≤ s+α +

α2

2
,

by splitting the cases with the sign of each term. Using this, we can deduce that

Lyt(si−1
t + αelit)− L

yt(si−1
t) ≤ Ci

t[yt, l
i
t]α +

(k − 1)α2

2
.

Summing over t gives

∑
t

Lyt(si−1
t + αelit)− L

yt(si−1
t) ≤

∑
t

Ci
t[yt, yt]γiα +

(k − 1)α2

2
T.

The RHS is a quadratic in α, and the minimizer is α∗ = −
∑
t Cit[yt,yt]γi
(k−1)T

. Since the magnitude of
Ci
t[yt, yt] grows as a function of c, there is no guarantee that this minimizer lies in the feasible set

94

F = [−c, c]. Instead, we will bound the minimum by plugging in α = ±c:

min
α∈[−c,c]

∑
t

Lyt(si−1
t + αelit)− L

yt(si−1
t) ≤ (k − 1)c2

2
T + c|γi|

∑
t

Ci
t[yt, yt]

≤ (k − 1)c2

2
T − c|γi|Mi−1.

From this, we get

∆i ≤ −c|γi|Mi−1 +
(k − 1)c2

2
T + 2

√
2(k − 1 + cN)

√
T .

Summing over i, we get

c
∑
i

|γi|min
i
Mi ≤

k − 1

2
T +

(k − 1)c2N

2
T + 2

√
2(k − 1 + cN)N

√
T .

By rearranging terms, we conclude

min
i
Mi ≤

(k − 1)

2
∑

i |γi|
(
1

c
+ cN)T +

2
√

2(k − 1 + cN)N∑
i |γi|

√
T .

It is the first term from the RHS that provides an optimal choice of c = 1√
N

, and this value gives

min
i
Mi ≤

(k − 1)
√
N∑

i |γi|
T +

2
√

2(k − 1 +
√
N)N∑

i |γi|
√
T .

Plugging this in (A.22), we get with high probability,

∑
t

1(yt 6= ŷt) ≤
2(k − 1)

√
N∑

i |γi|
T + Õ(

(k +
√
N)N∑

i |γi|
√
T + logN)

≤ 2k
√
N∑

i |γi|
T + Õ(

(k2 +N)N
√
N∑

i |γi|
),

which completes the proof. We also used AM-GM inequality for the last step.

By Cauchy-Schwartz inequality, we have N
∑

i γ
2
i ≥ (

∑
i |γi|)2. From this, we can deduce

(
√
N∑
i |γi|

)2 ≥ 1∑
i γ

2
i
. If LHS is greater than 1, then the bound in Theorem A.8 is meaningless.

Otherwise, we have √
N∑
i |γi|

≥ (

√
N∑
i |γi|

)2 ≥ 1∑
i γ

2
i

,

95

which validates that the bound with logistic loss is tighter. Furthermore, square hinge loss also
produces more variable weights over instances, which results in worse empirical edges.

A.5 Detailed description of experiment

Testing was performed on a variety of data sets described in Table A.1. All are from the UCI data
repository (Blake and Merz [1998], Higuera C [2015], Ugulino et al. [2012]) with a few adjustments
made to deal with missing data and high dimensionality. These changes are noted in the table
below. Many of the data sets are the same as used in the Oza [2005], with the addition of a few
sets with larger numbers of data points and predictors. We report the average performance on
both the entire data set and on the final 20% of the data set. The two accuracy measures help
understand both the “burn in period”, or how quickly the algorithm improves as observations are
recorded, and the “accuracy plateau”, or how well the algorithm can perform given sufficient data.
Different applications may emphasize each of these two algorithmic characteristics, so we choose
to provide both to the reader. We also report average run times. All computations were carried out
on a Nehalem architecture 10-core 2.27 GHz Intel Xeon E7-4860 processors with 25 GB RAM per
core. For all but the last two data sets, results are averaged over 27 reordering of the data. Due to
computational constraints, Movement was run just nine times and ISOLET just once.

Table A.1: Data set details
Data sets Number of data points Number of predictors Number of classes

Balance 625 4 3
Mice 1080 82? 8
Cars 1728 6 4
Mushroom 8124 22 2
Nursery 12960 8 4
ISOLET 7797 50?? 26
Movement 165631??? 12??? 5

? Missing data was replaced with 0.
?? The original 617 predictors were projected onto their first 50 principal components,
which contained 80% of the variation.
??? User information was removed, leaving only sensor position predictors. Single data
point with missing value removed.

In all the experiments we used Very Fast Decision Trees (VFDT) from Domingos and Hulten
[2000] as weak learners. VFDT has several tuning parameters which relate to the frequency

96

with which the tree splits. In all methods we assigned these randomly for each tree. Specifically
for our implementation the tuning parameter grace_period was chosen randomly between 5
and 20 and the tuning parameters split_confidence and hoeffding_tie_threshold
randomly between 0.01 and 0.9. It is likely that this procedure would produce trees which do not
perform well on specific data sets. In practice for the Adaboost.OLM it is possible to restart poorly
performing trees using parameters similar to better performing trees in an automated and online
(although ad hoc) fashion using the αit, and this tends to produce superior performance (as well as
allow adaptivity to changes in the data distribution). However for these experiments, we did not
take advantage of this to better examine the benefits of just the cost matrix framework.

Several algorithms were tested using the above specifications, but with slightly different con-
ditions. The first three are directly comparable since they all use the same weak learners and do
not require knowledge of the edge of the weak learners. DT is the best result from running 100
VFDT independently. The best was chosen after seeing the performance on the entire data set and
final 20% respectively. However the time reported was the average time for running all 100 VFDT.
This was done to better see the additional cost of running the boosting framework on top of the
training of the raw weak learners. OLB is an implementation of the Online Boosting algorithm in
Oza [2005, Figure 2] with 100 VFDT. AdaOLM stands for Adaboost.OLM, again with 100 VFDT.

The next five algorithms (MB) tested were all variants of the OnlineMBBM but with different
edge γ values. In practice this value is never known ahead of time, but we want to explore how
different edges affect the performance of the algorithm. For the ease of computation, instead of
exactly finding the value of (A.6), we estimated the potential functions by Monte Carlo (MC)
simulations.

The final two algorithms are slightly different implementations of the One VS All (OvA)
ensemble method. In this framework multiple binary classifiers are used to solve a multiclass
problem by viewing different classes as the positive class, and all others as the negative class. They
then predict whether a data point is their positive class or not, and the results are used together to
make a final classification. Both use VFDT as their weak learners, but with 100× k binary trees.
The first method (OvA) uses k versions of Adaboost.OL, each viewing one of the classes as the
positive class. Recall that Adaboost.OLM in the binary setting is just Adaboost.OL by Beygelzimer
et al. [2015]. The second (AdaOVA) produces 100 weak multiclass classifiers by grouping a k
binary classifiers, one for each class, and then uses Adaboost.OLM to get the final learner, treating
the 100 single tree OvA’s as its weak learners. In the table below we have partitioned the methods
in terms of the number of weak learners since, while they all tackle the same problem, algorithms
within each partition are more directly comparable since they use the same weak learners.

97

Table A.2: Comparison of algorithms on final 20% of data set
100 multiclass trees 100k binary trees

Data sets DT OLB AdaOLM MB .3 MB .1 MB .05 MB .01 MB .001 OvA AdaOVA

Balance 0.768 0.772 0.754 0.788 0.821 0.819 0.805 0.752 0.786 0.795
Mice 0.608 0.399 0.561 0.572 0.695 0.663 0.502 0.467 0.742 0.667
Cars 0.924 0.914 0.930 0.914 0.885 0.870 0.836 0.830 0.946 0.919
Mushroom 0.999 1.000 1.000 0.997 1.000 1.000 0.999 0.998 1.000 1.000
Nursery 0.953 0.941 0.966 0.965 0.969 0.964 0.948 0.940 0.974 0.965

ISOLET 0.515 0.149 0.521 0.453 0.626 0.635 0.226 0.165 0.579 0.570
Movement 0.915 0.870 0.962 0.975 0.987 0.988 0.984 0.981 0.947 0.970

Table A.3: Comparison of algorithms on full data set
100 multiclass trees 100k binary trees

Data sets DT OLB AdaOLM MB .3 MB .1 MB .05 MB .01 MB .001 OvA AdaOVA

Balance 0.734 0.747 0.698 0.751 0.769 0.759 0.736 0.677 0.724 0.730
Mice 0.499 0.315 0.454 0.457 0.507 0.449 0.356 0.343 0.586 0.530
Cars 0.848 0.839 0.865 0.842 0.829 0.814 0.767 0.762 0.881 0.853
Mushroom 0.996 0.997 0.995 0.991 0.995 0.994 0.993 0.992 0.996 0.995
Nursery 0.921 0.909 0.928 0.932 0.936 0.932 0.918 0.912 0.939 0.932

ISOLET 0.395 0.104 0.456 0.333 0.486 0.461 0.152 0.111 0.507 0.472
Movement 0.898 0.864 0.942 0.954 0.972 0.973 0.959 0.957 0.927 0.952

Table A.4: Comparison of algorithms total run time in seconds
100 multiclass trees 100k binary trees

Data sets DT OLB AdaOLM MB .3 MB .1 MB .05 MB .01 MB .001 OvA AdaOVA

Balance 8 19 20 26 42 47 50 51 66 43
Mice 105 263 416 783 2173 3539 3579 3310 3092 3013
Cars 39 27 59 56 105 146 165 152 195 143
Mushroom 241 169 355 318 325 326 324 321 718 519
Nursery 526 302 735 840 1510 2028 2181 1984 2995 1732

ISOLET 470 1497 2422 18732 38907 64707 62492 50700 37300 33328
Movement 1960 3437 5072 13018 17608 18676 16739 16023 30080 21389

98

A.5.1 Analysis

It is worth beginning by noting the strength of the VFDT without any boosting framework. While
the results above are for the best performing tree in hindsight, which is not a valid strategy in
practice, in many applications it would be possible to collect some data beforehand activating the
system, and use that to pick tuning parameters. It is also worth noting that many of the weaknesses
of the above methods, such as their poor scaling with the number of predictors, are also inherited
from the VFDT. Nonetheless in almost all cases Adaboost.OLM algorithm outperforms both the best
tree and the preexisting Online Boosting algorithm (and is often comparable to the OnlineMBBM
algorithms), as well as provide theoretical guarantees. In particular these performance gains seem to
be greater on the final 20% of the data and in data sets with larger number of data points n, leading
us to believe that Adaboost.OLM has a longer burn in period, but higher accuracy plateau. This
performance does come at additional computational cost, but this cost is relatively mild, especially
compared to the costs of OnlineMBBM and the OvA methods.

The OnlineMBBM methods use additional assumptions about the power of their weak learners,
and are able to leverage that additional information to produce more accurate, with one of these al-
gorithms often achieving the highest accuracy on each data set. However they can be sensitive to the
choice of γ, with the worst choice of γ often underperforming both pure trees and Adaboost.OLM,
and with no single γ value always producing the best result. These methods are also much slower
than Adaboost.OLM, likely due to computational burden in estimating the potential functions.

Finally our two OvA algorithms tend to perform very well, often beating the other adaptive
methods. However this performance is likely due to the use of many times more weak learners than
the other adaptive methods used, which results in high computational cost. Again we see that as n
increases the implementation of OvA using our cost matrix framework performs better compared to
the vanilla implementation, reinforcing our belief that the cost matrix framework requires more data
to come online but has a higher accuracy plateau.

99

APPENDIX B

Details for Online Boosting Algorithms for
Multi-label Ranking

B.1 Specific bounds for OnlineBMR

We begin this section by introducing a random walk framework to compute potentials. Suppose
Xi := (X1, · · · , Xk) is a random vector that tracks the number of draws of each label among i i.i.d.
random draws w.r.t. uYtγ . Then according to (3.1), we may write

φit(s) = ELYt(s + X).

This framework will appear frequently throughout the proofs. We start from rank loss.

Lemma B.1. Under the same setting as in Theorem 3.2 but with potentials built upon rank loss, we

may bound φNt (0) as following:

φNt (0) ≤ e−
γ2N
2 .

Proof. For simplicity, we drop t in the proof. Let XN be the aforementioned random vector. Then
we may write the potential by

φN(0) = ELYrnk(XN)

≤ wY
∑
l∈Y

∑
r/∈Y

E1(Xr ≥ Xl)

= wY
∑
l∈Y

∑
r/∈Y

P(Xr −Xl ≥ 0).

100

Fix l ∈ Y and r /∈ Y . By definition of uYγ , we have

a := uYγ [l] = uYγ [r] + γ =: b.

Now suppose we draw 1 with probability a, −1 with probability b, and 0 otherwise. Then P(Xr −
Xl ≥ 0) equals the probability that the summation of N i.i.d. random numbers is non-negative.
Then we can apply the Hoeffding’s inequality to get

P(Xr −Xl ≥ 0) ≤ e−
γ2N
2 .

Since wY is the inverse of the number of pairs (l, r), this proves our assertion.

Lemma B.2. Under the same setting as in Theorem 3.2 but with potentials built upon rank loss, we

can show that ∀i, wi∗ ≤ O(1√
N−i).

Proof. First we fix t and i. We also fix l∗ ∈ Yt and r∗ ∈ Y c
t . Then write s1 := si−1

t + el∗ and
s2 := si−1

t + er∗ . Again we introduce XN−i. Then we may write

cit[r
∗]− cit[l

∗] = φN−it (s2)− φN−it (s1)

= E[LYtrnk(s2 + XN−i)− LYtrnk(s1 + XN−i)]

≤ wYt
∑
l∈Yt

∑
r/∈Yt

f(r, l),

where

f(r, l) := E[1(s2[r] +Xr ≥ s2[l] +Xl)

− 1(s1[r] +Xr > s1[l] +Xl)].

Here we intentionally include and exclude equality for the ease of computation. Changing the order
of terms, we can derive

f(r, l) ≤ P(s1[l]− s1[r] ≥ Xr −Xl ≥ s2[l]− s2[r])

≤ 3 max
n

P(Xr −Xl = n),

where the last inequality is deduced from the fact that

(s1[l]− s1[r])− (s2[l]− s2[r]) ∈ {0, 1, 2}.

101

Using Berry-Esseen theorem, it is shown in Lemma A.5 that maxn P(Xr −Xl = n) ≤ O(1√
N−i),

which implies that

cit[r
∗]− cit[l

∗] ≤ O(
1√
N − i

).

Since l∗ and r∗ are arbitrary, and the bound does not depend on t, the last inequality proves our
assertion.

Now we provide similar bounds when the potentials are computed from hinge loss.

Lemma B.3. Under the same setting as in Theorem 3.2 but with potentials built upon hinge loss,

we may bound φNt (0) as following:

φNt (0) ≤ (N + 1)e−
γ2N
2 .

Proof. Again we drop t in the proof and introduce XN . Then we may write the potential by

φN(0) = ELYhinge(XN)

= wY
∑
l∈Y

∑
r/∈Y

E(1 +Xr −Xl)+

= wY
∑
l∈Y

∑
r/∈Y

N∑
n=0

P(Xr −Xl ≥ n)

≤ wY
∑
l∈Y

∑
r/∈Y

(N + 1)P(Xr −Xl ≥ 0).

We already checked in Lemma B.1 that

P(Xr −Xl ≥ 0) ≤ e−
γ2N
2 ,

which concludes the proof.

Lemma B.4. Under the same setting as in Theorem 3.2 but with potentials built upon hinge loss,

we can show that ∀i, wi∗ ≤ 2.

Proof. First we fix t and i. We also fix l∗ ∈ Yt and r∗ ∈ Y c
t . Then write s1 := si−1

t + el∗ and

102

s2 := si−1
t + er∗. Again with XN−i, we may write

cit[r
∗]− cit[l

∗] = φN−it (s2)− φN−it (s1)

= E[LYthinge(s2 + XN−i)− LYthinge(s1 + XN−i)]

= wYt
∑
l∈Yt

∑
r/∈Yt

f(r, l),

where

f(r, l) := E[(1 + (s2 + XN−i)[r]− (s2 + XN−i)[l])+

− (1 + (s1 + XN−i)[r]− (s1 + XN−i)[l])+].

It is not hard to check that the term inside the expectation is always bounded above by 2. This fact
along with the definition of wYt provides that cit[r∗]− cit[l∗] ≤ 2. Since our choice of l∗ and r∗ are
arbitrary, this proves wi[t] ≤ 2, which completes the proof.

B.2 Complete proof of Theorem 3.4

Proof. We assume that an adversary draws a label Yt uniformly at random from 2[k] − {∅, [k]}, and
the weak learners generate single-label predictions w.r.t. pt ∈ ∆[k]. Any boosting algorithm can
only make a final decision by weighted cumulative votes of N weak learners. We manipulate pt
such that weak learners satisfy OnlineWLC (δ, γ, S) but the best possible performance is close to
(3.6).

As we are assuming single-label predictions, ht = elt for some lt ∈ [k] and ct · ht = ct[lt].
Furthermore, the bounded condition of Ceor0 ensures ct[lt] is contained in [0, 1]. The Azuma-
Hoeffding inequality provides that with probability 1− δ,

T∑
t=1

wtct[lt] ≤
T∑
t=1

wtct · pt +

√
2||w||22 ln(

1

δ
)

≤
T∑
t=1

wtct · pt +
γ||w||22
k

+
k ln(1

δ
)

2γ

≤
T∑
t=1

wtct · pt +
γ||w||1
k

+
k ln(1

δ
)

2γ
,

(B.1)

where the second inequality holds by arithmetic mean and geometric mean relation and the last

103

inequality holds due to wt ∈ [0, 1].
We start from providing a lower bound on the number of weak learners. Let pt = uYt2γ for all t.

This can be done by the constraint γ < 1
4k

. From the condition of Ceor0 that minl c[l] = 0,maxl c = 1

along with the fact that Y /∈ {∅, [k]}, we can show that c · (uYγ − uY2γ) ≥
γ
k
. Then the last line of

(B.1) becomes

T∑
t=1

wtct · uYt2γ +
γ||w||1
k

+
k ln(1

δ
)

2γ

≤
T∑
t=1

(wtct · uYtγ −
γwt
k

) +
γ||w||1
k

+
k ln(1

δ
)

2γ

≤
T∑
t=1

wtct · uYtγ + S,

which validates that weak learners indeed satisfy OnlineWLC (δ, γ, S). Following the argument of
Schapire and Freund [2012, Section 13.2.6], we can also prove that the optimal choice of weights
over the learners is (1

N
, · · · , 1

N
).

Now we compute a lower bound for the booster’s loss. Let X := (X1, · · · , Xk) be a random
vector that tracks the number of labels drawn from N i.i.d. random draws w.r.t. uY2γ . Then the
expected rank loss of the booster can be written as:

ELYrnk(X) ≥ wY
∑
l∈Y

∑
r/∈Y

P(Xl < Xr).

Adopting the arguments in the proof of Theorem 2.4, we can show that

P(Xl < Xr) ≥ Ω(e−4Nk2γ2).

This shows ELYrnk(X) ≥ Ω(e−4Nk2γ2). Setting this value equal to ε, we have N ≥ Ω(1
γ2

ln 1
ε
),

considering k as a fixed constant. This proves the first part of the theorem.
Now we move on to the optimality of sample complexity. We record another inequality that can

be checked from the conditions of Ceor0 : c · (uY0 − uYγ) ≤ γ. Let T0 := S
4γ

and define pt = uYt0 for

104

t ≤ T0 and pt = uYt2γ for t > T0. Then for T ≤ T0, (B.1) implies

T∑
t=1

wtct[lt]

≤
T∑
t=1

wtct · uYt0 +
γ||w||1
k

+
k ln(1

δ
)

2γ

≤
T∑
t=1

wtct · uYtγ + γ(1 +
1

k
)||w||1 +

k ln(1
δ
)

2γ

≤
T∑
t=1

wtct · uYtγ + S.

(B.2)

where the last inequality holds because ||w||1 ≤ T0 = S
4γ

. For T > T0, again (B.1) implies

T∑
t=1

wtct[lt] ≤
T0∑
t=1

wtct · uYt0 +
T∑

t=T0+1

wtct · uYt2γ

+
γ||w||1
k

+
k ln(1

δ
)

2γ

≤
T∑
t=1

wtct · uYtγ +
k + 1

k
γT0 +

k ln(1
δ
)

2γ

≤
T∑
t=1

wtct · uYtγ + S.

(B.3)

(B.2) and (B.3) prove that the weak learners indeed satisfy OnlineWLC (δ, γ, S). Observing that
weak learners do not provide meaningful information for t ≤ T0, we can claim any online boosting
algorithm suffers a loss at least Ω(T0). Therefore to get the certain accuracy, the number of instances
T should be at least Ω(T0

ε
) = Ω(S

εγ
), which completes the second part of the proof.

105

APPENDIX C

Details for Thompson Sampling in Episodic Restless
Bandit Problems

C.1 Proof of Theorem 5.5

We begin by introducing a technical lemma.

Lemma C.1. Let ai, bi ∈ [0, 1] and |ai − bi| ≤ ∆i for i ∈ [k]. Then we can show

∑
x∈{0,1}k

|
∏
i

axii (1− ai)1−xi −
∏
i

bxii (1− bi)1−xi | ≤ 2
k∑
j=1

∆j. (C.1)

Proof. Fix a binary vector x. For simplicity, let ci = axii (1−ai)1−xi and di = bxii (1− bi)1−xi . Since
xi is either 0 or 1, we have |ci − di| = |ai − bi| ≤ ∆i. Then we can deduce

|
k∏
i=1

ci −
k∏
i=1

di| ≤ (
k−1∏
i=1

ci)|ck − dk|+ |
k−1∏
i=1

ci −
k−1∏
i=1

di|dk

≤ (
k−1∏
i=1

ci)∆k + |
k−1∏
i=1

ci −
k−1∏
i=1

di|dk

≤ (
k−1∏
i=1

ci)∆k + (
k−2∏
i=1

ci)∆k−1dk + |
k−2∏
i=1

ci −
k−2∏
i=1

di|dk−1dk

≤ · · ·

≤
k∑
j=1

(

j−1∏
i=1

ci)∆j(
k∏

i=j+1

di).

106

When summing up for all binary vectors x, we can write the coefficient of ∆j as

∑
x∈{0,1}k

(

j−1∏
i=1

ci)(
k∏

i=j+1

di) = (

j−1∏
i=1

∑
xi∈{0,1}

ci)(
∑

xj∈{0,1}

1)(
k∏

i=j+1

∑
xi∈{0,1}

di)

= (

j−1∏
i=1

1)2(
k∏

i=j+1

1)

= 2,

where the second equality holds because
∑

x∈{0,1} a
x(1− a)1−x = a+ (1− a) = 1. This completes

the proof.

Now we prove the main theorem.

Theorem 5.5. (Bayesian regret bound of Thompson sampling) The Bayesian regret of Algorithm

5.1 satisfies the following bound

BR(T) = O(
√
KL3N3T log T) = O(

√
mKL4N3 log(mL)).

Proof. We fix an episode l and analyze the regret in this episode. Let tl = (l − 1)L so that the
episode starts at time tl + 1. Define

Nl(k, r, n) =

tl∑
t=1

1{At,k = 1, rk = r, nk = n}.

It counts the number of rounds where the arm k was chosen by the learner with history rk = r and
nk = n (see (5.3) for definition). Note that

k ∈ [K], r ∈ {0, 1, ρ(k)}, and n ∈ [L],

where ρ(k) is the initial success rate of the arm k. This implies there are 3KL tuples of (k, r, n).
Let ωθ(k, r, n) denote the conditional probability of Xk = 1 given a history (r, n) and a system

parameter θ. Also let ω̂(k, r, n) denote the empirical mean of this quantity (using Nl(k, r, n) past
observations and set the estimate to 0 if Nl(k, r, n) = 0). Then define

Θl = {θ | ∀(k, r, n), |(ω̂ − ωθ)(k, r, n)| <

√
2 log(1/δ)

1 ∨Nl(k, r, n)
}.

107

Since ω̂(k, r, n) isHtl-measurable, so is the set Θl. Using the Hoeffding inequality, one can show
P(θ? /∈ Θl) = P(θl /∈ Θl) ≤ 3δKL.

We now turn our attention to the following Bellman operator

T θπlV
θl
πl,t

(Ht−1) = Eθ,πl [Atl+t ·Xtl+t + V θl
πl,t

(Ht)|Ht−1].

Since πl is a deterministic policy, Atl+t is also deterministic givenHt−1 and πl. Let (k1, . . . , kN) be
the active arms at time tl + t and write ωθ(ki, rki , nki) = ωθ,i. Then we can rewrite

T θπlV
θl
πl,t

(Ht−1) =
N∑
i=1

ωθ,i +
∑

x∈{0,1}N
P θ
xV

θl
πl,t

(Ht−1 ∪ (Atl+t, x)), (C.2)

where P θ
x =

∏N
i=1 ω

xi
θ,i(1− ωθ,i)1−xi . Under the event that θ?, θl ∈ Θl, we have

|ωθl,i − ωθ?,i| < 1 ∧

√
8 log(1/δ)

1 ∨Nl(ki, rki , nki)
=: ∆i(tl + t), (C.3)

where the dependence on tl + t comes from the mapping from i to ki. Lemma C.1 provides

∑
x∈{0,1}N

|P θl
x − P θ?

x | ≤ 2
N∑
i=1

∆i(tl + t). (C.4)

From (C.2), (C.4), and the fact that |V θ
π,t| ≤ LN , we obtain givenHt−1 and the event θ?, θl ∈ Θl,

|(T θ?πl − T
θl
πl

)V θl
πl,t

(Ht−1)| ≤ (2LN + 1)
N∑
i=1

∆i(tl + t) ≤ 3LN
N∑
i=1

∆i(tl + t).

Then by applying Lemma 5.4, we get

|V θl
πl,1

(∅)− V θ?

πl,1
(∅)| ≤ 3LNEθ?,πl

L∑
t=1

N∑
i=1

∆i(tl + t).

The above inequality holds whenever θ?, θl ∈ Θl. When θ? /∈ Θl or θl /∈ Θl, which happens with
probability less than 6δKL, we have a trivial bound |V θl

πl,1
(∅)− V θ?

πl,1
(∅)| ≤ LN . We can deduce

|V θl
πl,1

(∅)− V θ?

πl,1
(∅)| ≤ 3LN1(θ?, θl ∈ Θl)Eθ?,πl

L∑
t=1

N∑
i=1

∆i(tl + t) + 6δKL2N.

108

Combining this with Lemma 5.3, we can show

BR(T) ≤ 6δmKL2N + Eθ?∼Q3LN
m∑
l=1

1(θ?, θl ∈ Θl)Eθ?,πl
L∑
t=1

N∑
i=1

∆i(tl + t). (C.5)

We further analyze the summation to finish the argument. Note that for this summation, we have
θ?, θl ∈ Θl. We shorten Nl(ki, rki , nki) to Nl for simplicity. By the definition of ∆i in (C.3), we get

m∑
l=1

L∑
t=1

N∑
i=1

∆i(tl + t) ≤
m∑
l=1

L∑
t=1

N∑
i=1

1{Nl ≤ L}+ ∆i1{Nl > L}

≤ 6KL2 +
m∑
l=1

L∑
t=1

N∑
i=1

1{Nl > L}

√
8 log(1/δ)

Nl

,

(C.6)

where the second inequality holds because there are 3KL possible tuples of (k, r, n) and a tuple
can contribute at most 2L to the first summation.

We can bound the second term as follows

m∑
l=1

L∑
t=1

N∑
i=1

1{Nl > L}
√

1

Nl

=
m∑
l=1

∑
(k,r,n)

1{Nl > L}(Nl+1 −Nl)

√
1

Nl

≤
m∑
l=1

∑
(k,r,n)

(Nl+1 −Nl)

√
2

Nl+1

≤
√

8
∑

(k,r,n)

√
Nm+1(k, r, n)

≤
√

24KLNT.

(C.7)

For the first inequality, we use Nl+1 ≤ Nl + L ≤ 2Nl. The second inequality holds due to the
integral trick. Finally, the last inequality holds by the Cauchy-Schwartz inequality along with the
fact that

∑
(k,r,n) Nm+1(k, r, n) = NT .

Combining (C.5), (C.6), (C.7), and our assumption that T = mL, we obtain

BR(T) = O(δKLNT +KL3N +
√
KL3N3T log(1/δ)).

Since NT is a trivial upper bound of BR(T), we may ignore the KL3N term. Setting δ = 1
T

completes the proof.

109

APPENDIX D

Details for Thompson Sampling in Non-Episodic
Restless Bandits

D.1 Proof of Proposition 6.6

We first prove that Condition 6.4 guarantees the constant average cost and the associated Bellman
equation and then show that Condition 6.5 implies Condition 6.4.

1. Let θ ∈ Θ and πθ = µ(θ) satisfy Condition 6.4 for some bounded function v ∈ V and
constant g. Then, for all ξ ∈ S,

rθ(ξ, πθ(ξ)) = g + v(ξ)− Eθ[v(ξ′)|ξ],

where the next "meta"-state ξ′ ∼ Pθ(·|ξ, A = πθ(ξ)) is drawn according to the Markov
transition probability of {ξt}t≥1 knowing the current state ξ and the action A = πθ(ξ) under
parametrization θ. Thus,

T∑
t=1

rθ(ξt, πθ(ξt)) = Tg +
T∑
t=1

v(ξt)− Eθ[v(ξt+1)|ξt, At = πθ(ξt)]

= Tg +
T∑
t=1

v(ξt+1)− Eθ[v(ξt+1)|ξt, At = πθ(ξt)] + v(ξ1)− v(ξT+1).

Multiplying by 1
T

both sides of the equation and taking the expectation given ξ1 leads to

1

T
Eθ

(
T∑
t=1

rθ(ξt, πθ(ξt))|ξ1

)
= g +

1

T
Eθ
(
v(ξ1)− v(ξT+1)|ξ1

)
.

110

Finally, since v is bounded, letting T →∞ one has 1
T
Eθ
(
v(ξ1)− v(ξT+1)|ξ1

)
→ 0 and thus

Jπθ(θ) := lim
T→∞

1

T
Eθ

(
T∑
t=1

rθ(ξt, πθ(ξt))|ξ1

)
= g.

Futhermore, since g is constant, it ensures that Jπθ(θ) is independent of the initial state.
Replacing g by Jπθ(θ) in Condition 6.4, we directly obtain that J is associated with the
Bellman equation. Since the function v is arbitrary up to constant term (it still satisfies the
Bellman equation and does not affect the span), we can set it without loss of generality to be
non-negative defining hθ(ξ) = v(ξ)− infξ v(ξ) and the pair (Jπθ(θ), hθ) satisfies the Bellman
equation ((6.9)). Additionally, we have

Cθ = sup
(ξ,ξ′)∈S2

hθ(ξ)− hθ(ξ′) = sup
(ξ,ξ′)∈S2

v(ξ)− v(ξ′) <∞.

2. We now show that Condition 6.5 implies Condition 6.4. The proof is adapted from Puterman
[2014, Theorem8.10.7] which is derived for optimal policies. The core idea is to consider a
sequence of discount factor βn → 1 and to choose an appropriate subsequence (also indexed
by n for ease of notation) to assert the existence of g and v ∈ V thanks to the uniform
boundedness of |vβπθ |.
First, notice that for all ξ ∈ S, rθ(ξ, πθ(ξ)) ∈ [0, N] and thus that vβπθ(ξ) ∈ [0, N

1−β] for all
β ∈ (0, 1). Also, it is well known that vβπθ(ξ) satisfies the discounted Bellman equation:

vβπθ = Tβ(vβπθ), where Tβ(vβπθ)(ξ) = rθ(ξ, πθ(ξ)) + βEθ
(
vβπθ(ξ

′)|ξ
)
.

Let ξ̄ ∈ S be an arbitrary state and define v̄β(ξ) = vβπθ(ξ)− v
β
πθ

(ξ̄). Clearly, v̄β is uniformly
bounded and v̄β satisfies

v̄β + (1− β)vβπθ(ξ̄) = Tβ(v̄β). (D.1)

Since v̄β and rθ are uniformly bounded, so is (1− β)vβπθ(ξ̄). Further, the Bolzano-Weierstrass
theorem for bounded sequence together with a standard diagonal argument ensures that there
exists a subsequence βn → 1 such that

• (1− βn)vβnπθ (ξ̄)→ g

• v̄βn converges pointwise to some function v̄.

111

Finally, since sup(ξ,ξ′)∈S2 vβπθ(ξ)− v
β
πθ

(ξ′) = Cθ is uniformly bounded so is v̄:

sup
(ξ,ξ′)∈S2

v̄(ξ)− v̄(ξ′) ≤ sup
(ξ,ξ′)∈S2

sup
n≥1

v̄βn(ξ)− v̄βn(ξ′) ≤ sup
n≥1

sup
(ξ,ξ′)∈S2

v̄βn(ξ)− v̄βn(ξ′) ≤ 2Cθ.

We are now left to check that the pair (g, v̄) satisfies the Bellman equation in Condition 6.4.
It relies on the following lemma (Lemma 3 in Platzman [1980]).

Lemma D.1. If v̄βn converges to v̄ pointwise, then T1(v̄βn) converges to T1(v̄) pointwise.

Proof. We provide the proof for the sake of completeness. The objective is to prove that for
an arbitrary fixed ξ ∈ S, ε > 0, there exits a constant M such that |[T1(v̄βn)− T1(v̄)](ξ)| < ε

for all n ≥M .
Let ξ ∈ S be an arbitrary state, and define

Sξ = {ξ′ ∈ S s.t. Pθ(ξt+1 = ξ′|ξt = ξ, At = πθ(ξ)) > 0}.

Notice that since At is fully determined by ξ, so is ξnt+1 and Sξ is a finite non-empty set of
state. Thus, there exists M such that |v̄βn(ξ′)− v̄(ξ′)| < ε for all ξ′ ∈ Sξ, n ≥M . Finally, it
leads to

|[T1(v̄βn)− T1(v̄)](ξ)| ≤ Eθ
(
|v̄βn(ξ′)− v̄(ξ′)|

∣∣ ξ) ≤ max
ξ′∈Sξ
|v̄βn(ξ′)− v̄(ξ′)| < ε,

which proves the desired result.

Finally, the uniform boundedness of v̄βn implies

|Tβn(v̄βn)− T1(v̄βn)| → 0,

which in addition to Lemma D.1 ensures that

|Tβn(v̄βn)− T1(v̄)| ≤ |Tβn(v̄βn)− T1(v̄βn)|+ |T1(v̄βn)− T1(v̄)| → 0.

Taking the limit in (D.1) concludes the proof

v̄βn + (1− βn)vβnπθ (ξ̄)− Tβn(v̄βn) = 0 ⇒ v̄ + g − T1(v̄) = 0.

112

D.2 Regret bound proofs

In this section, we provide full proofs that are sketched in Section 6.5.

D.2.1 Regret decomposition

Let (θi, πi) be the sampled parameter-policy pair used in episode i. From (6.9), one has

ti+1−1∑
t=ti

rθ?(ξt, At) =

ti+1−1∑
t=ti

[rθi + (rθ? − rθi)](ξt, πi(ξt))

=

ti+1−1∑
t=ti

[Jπi(θi) + vθi(ξt)− Eθi [vθi(ξ′)|πi, ξt] + (rθ? − rθi)(ξt, πi(ξt))].

Using this, we can rewrite the frequentist regret by

R(T ; θ?) = Jπ?(θ
?) · T − Eθ?

MT∑
i=1

ti+1−1∑
t=ti

rθ?(ξt, At)

=: R0 +R1 +R2 +R3,

where

R0 = Jπ?(θ
?) · T − Eθ?

MT∑
i=1

Jπi(θi) · Ti

R1 = Eθ?
MT∑
i=1

ti+1−1∑
t=ti

vθi(ξt+1)− vθi(ξt)

R2 = Eθ?
MT∑
i=1

ti+1−1∑
t=ti

Eθi [vθi(ξ′)|πi, ξt]− vθi(ξt+1)

R3 = Eθ?
MT∑
i=1

ti+1−1∑
t=ti

(rθi − rθ?)(ξt, πi(ξt)).

D.2.2 Confidence set

We begin with a useful result that is induced by Assumption 6.2.

113

Proposition D.2. For any arm k ∈ [K] and θ ∈ Θ, let

pθ(s
′; k, s, n) = Pθ(stk = s′|st−nk = s)

and pθ(k, s, n) be the corresponding distribution over Sk. For any ε > 0 and n, n′ > log2(1/ε)Tmix(1
4
),

we have

‖pθ(k, s, n)− pθ(k, s, n′)‖1 ≤ 2|Sk|ε.

Proof. For any n ≥ 1, we can write

pθ(k, s, n) =
(
P passive
k

)n−1
P activees,

where es is a binary vector of size |Sk| with 1 on the s entry and 0 elsewhere. We can deduce

‖pθ(k, s, n)− pθ(k, s, n′)‖1 ≤ |Sk|max
s∈Sk
‖
((
P passive
k

)n−1 −
(
P passive
k

)n′−1
)
es‖1

≤ 2|Sk|max
s∈Sk
‖pTmixk (s)− pk‖1

≤ 2|Sk|ε,

where we used the fact Tmix
k (ε) ≤ log2(1/ε)Tmix(1

4
) , discussed by Ortner et al. [2012, (1)].

Now we prove Lemma 6.14.

Lemma 6.14. On the high-probability event θ? ∈ ∩i≤MT
Θi, we can show

∆T ≤ 12
√
NTmixT log 1/δ

K∑
k=1

|Sk|.

Proof. We work on the high-probability event where θ? ∈ Θi for all i ≤ MT . Thus, from
Lemma 6.13 we have ||(p̂ti − pθ?)(ζ)||1 ≤ ci(ζ) for all ζ . Hence, we obtain

∆T ≤
MT∑
i=1

ti+1−1∑
t=ti

∑
active arms k

ci(k, σ
t
k, n

t
k).

By the second stopping criterion of TSDE, we have Nt(ζ) ≤ 2Nti(ζ) for all t in episode i. Using

114

this, we can write

MT∑
i=1

ti+1−1∑
t=ti

∑
active arms k

ci(k, σ
t
k, n

t
k) ≤

MT∑
i=1

ti+1−1∑
t=ti

∑
active arms k

√
16|Sk| log 1/δ

1 ∨Nt(k, σtk, n
t
k)

=
K∑
k=1

T∑
t=1

1(At,k = 1)

√
16|Sk| log 1/δ

1 ∨Nt(k, σtk, n
t
k)
.

For each ζ = (k, s, n), it appears in the above summation exactly NT+1(ζ) times. That is to say, the
above equation can be written as

∑
ζ∈Z

√
16|Sk| log 1/δ ·

NT+1(ζ)∑
j=1

1√
1 ∨ (j − 1)

≤
∑
ζ∈Z

12
√
|Sk|NT+1(ζ) log 1/δ. (D.2)

The number of ζ = (k, s, n) for a fixed k is bounded by |Sk|Tmix. Also, we have
∑

ζ∈Z NT+1(ζ) =

NT . The Cauchy-Schwartz inequality provides

∑
s∈Sk

Tmix∑
n=1

√
NT+1(k, s, n) ≤

√
|Sk|TmixNT.

Finally, we obtain

∆T ≤ 12
√
NTmixT log 1/δ

K∑
k=1

|Sk|.

D.2.3 Bounding R0 and R1

Lemma 6.8 (Ouyang et al. [2017], Lemma 3 and 4).

Eθ?∼QR0 ≤ N · Eθ?∼QMT ,

where MT is the total number of episodes until time T .

Proof. By definition in (6.8), we have 0 ≤ Jπ(θ) ≤ N for all π and θ. For ease of analysis, let us
write

Jπ?(θ
?) = N − J? and Jπi(θi) = N − Ji.

115

Since MT ≤ T almost surely, we can rewrite

R0 = Jπ?(θ
?) · T − Eθ?

T∑
i=1

1(ti ≤ T)Jπi(θi) · Ti

= Eθ?
T∑
i=1

1(ti ≤ T)Ji · Ti − J? · T.

Due to the first stopping criterion of TSDE, we have Ti ≤ Ti−1 + 1 for all i. Using this, we can
deduce

R0 ≤ Eθ?
T∑
i=1

1(ti ≤ T)Ji · (Ti−1 + 1)− J? · T.

In the meantime, note that 1(ti ≤ T)Ji · (Ti−1 + 1) is aHti-measurable function of θi. Thus Lemma
6.7 implies

E1(ti ≤ T)Ji · (Ti−1 + 1) = E1(ti ≤ T)J? · (Ti−1 + 1).

Using this, we obtain

Eθ?∼QR0 ≤ E
T∑
i=1

1(ti ≤ T)J? · (Ti−1 + 1)− J? · T = EJ? ·MT .

Since J? ≤ N almost surely, this completes the proof.

Lemma 6.9.
R1 ≤ H · EMT .

Proof. For a fixed episode i, the telescope rule gives

ti+1−1∑
t=ti

vθi(ξt+1)− vθi(ξt) = vθi(ξti+1
)− vθi(ξti),

which is less than H by the assumption. Summing over the episodes concludes the argument.

D.2.4 Bounding R2 and R3.

Before delving into bounding R2 and R3, we record a technical lemma, which generalizes Lemma
C.1.

116

Lemma D.3. Suppose ak and bk are probability distributions over a set [nk] for k ∈ [K]. Then we

have ∑
x∈⊗Kk=1[nk]

|
K∏
k=1

ak,xk −
K∏
k=1

bk,xk | ≤
K∑
k=1

||ak − bk||1.

Proof. Fix a vector x. For simplicity, let αk = ak,xk , βk = bk,xk , and δk = |αk − βk|. We may write

|
K∏
k=1

αk −
K∏
k=1

βk| ≤ (
K−1∏
k=1

αk)|αK − βK |+ |
K−1∏
k=1

αk −
K−1∏
k=1

βk|βK

= (
K−1∏
k=1

αk)δK + |
K−1∏
k=1

αk −
K−1∏
k=1

βk|βK

≤ · · ·

≤
K∑
k=1

(
k−1∏
j=1

αj)δk(
K∏

j=k+1

βj)

=
K∑
k=1

(
k−1∏
j=1

aj,xj)|ak,xk − bk,xk |(
K∏

j=k+1

bj,xj).

When summing the last term for all possible vectors x, the coefficient of |ak,xk − bk,xk | becomes 1

because ak and bk are probability distributions. Then we get the desired inequality.

Lemma 6.10. R2 satisfies the following bound

R2 ≤ 28H
K∑
k=1

|Sk|
√
NTmixT log(TmixT).

Proof. In episode i, ξt+1 evolves from ξt on the system θ? with the action At = πi(ξt). From this,
we can rewrite

R2 = Eθ?
MT∑
i=1

ti+1−1∑
t=ti

(Eθi − Eθ?)[vθi(ξ′)|πi, ξt].

Since |vθi(ξ′)| ≤ H , the individual difference becomes∑
ξ′∈S

(Pπi(ξt)(ξt, ξ
′|θi)− Pπi(ξt)(ξt, ξ

′|θ?))vθi(ξ′) ≤ H
∑
ξ′∈S

|Pπi(ξt)(ξt, ξ′|θi)− Pπi(ξt)(ξt, ξ
′|θ?)|.

Once the action πi(ξt) is fixed, ξnt = (nt1, · · · , ntK) evolves in a deterministic manner. Only σtk for

117

the active arms k will be updated. Then we may write

Pπi(ξt)(ξt, ξ
′|θ) =

∏
active arms k

pθ(σ
′
k; k, σ

t
k, n

t
k),

where pθ(k, s, n) is defined earlier in the section. Using Lemma D.3, we obtain∑
ξ′∈S

|Pπi(ξt)(ξt, ξ′|θi)− Pπi(ξt)(ξt, ξ
′|θ?)| ≤

∑
active arms k

||(pθi − pθ?)(k, σtk, ntk)||1. (D.3)

If θ?, θi ∈ Θi, we can apply Lemma 6.14 to upper bound the cumulative sum. If not, the entire
summation is bounded by 2. From these and Lemma 6.13 and 6.14, we obtain

R2 ≤ H(R0
2 +R1

2), where

R0
2 = 24

√
NTmixT log 1/δ

K∑
k=1

|Sk|,

R1
2 = 4δTmixT

K∑
k=1

|Sk|.

(D.4)

We finish the proof by setting δ = 1
TmixT

in (D.4).

Lemma 6.11. R3 satisfies the following bound

R3 ≤ 28
K∑
k=1

|Sk|
√
NTmixT log(TmixT).

Proof. We begin by investigating the individual term

(rθi − rθ?)(ξt, πi(ξt)) =
∑

active arms k

(Eθi − Eθ?)[rk(stk)|ξt, πi(ξt)]

=
∑

active arms k

∑
s′∈Sk

rk(s
′)(pθi − pθ?)(s′; k, σtk, ntk)

≤
∑

active arms k

∑
s′∈Sk

||(pθi − pθ?)(k, σtk, ntk)||1,

where the last inequality holds by the assumption rk(sk) ≤ 1. The last term actually appears in
(D.3) from the proof of Lemma 6.10, and we can use the same argument to obtain the desired
bound.

118

BIBLIOGRAPHY

Jacob D Abernethy, Young Hun Jung, Chansoo Lee, Audra McMillan, and Ambuj Tewari. Online
learning via the differential privacy lens. In Advances in Neural Information Processing Systems,
pages 8892–8902, 2019.

Sahand Haji Ali Ahmad, Mingyan Liu, Tara Javidi, Qing Zhao, and Bhaskar Krishnamachari.
Optimality of myopic sensing in multichannel opportunistic access. IEEE Transactions on
Information Theory, 55(9):4040–4050, 2009.

Erin L Allwein, Robert E Schapire, and Yoram Singer. Reducing multiclass to binary: A unifying
approach for margin classifiers. Journal of Machine Learning Research, 1(Dec):113–141, 2000.

Dimitri P Bertsekas. Dynamic programming and optimal control, volume 2. Athena scientific
Belmont, MA, 1995.

Dimitris Bertsimas and José Niño-Mora. Restless bandits, linear programming relaxations, and a
primal-dual index heuristic. Operations Research, 48(1):80–90, 2000.

Alina Beygelzimer, Satyen Kale, and Haipeng Luo. Optimal and adaptive algorithms for online
boosting. In Proceedings of the International Conference on Machine Learning, 2015.

Alina Beygelzimer, Francesco Orabona, and Chicheng Zhang. Efficient online bandit multiclass
learning with Õ(

√
T) regret. In Proceedings of the International Conference on Machine

Learning, pages 488–497, 2017.

Ezio Biglieri, Andrea J Goldsmith, Larry J Greenstein, Narayan B Mandayam, and H Vincent Poor.
Principles of cognitive radio. Cambridge University Press, 2013.

C.L. Blake and C.J. Merz. UCI machine learning repository, 1998. URL http://archive.
ics.uci.edu/ml.

Vincent D Blondel and John N Tsitsiklis. A survey of computational complexity results in systems
and control. Automatica, 36(9):1249–1274, 2000.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

119

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Nicolo Cesa-Bianchi and Gábor Lugosi. Combinatorial bandits. Journal of Computer and System
Sciences, 78(5):1404–1422, 2012.

Shang-Tse Chen, Hsuan-Tien Lin, and Chi-Jen Lu. An online boosting algorithm with theoretical
justifications. In Proceedings of the International Conference on Machine Learning, 2012.

Shang-Tse Chen, Hsuan-Tien Lin, and Chi-Jen Lu. Boosting with online binary learners for the
multiclass bandit problem. In Proceedings of The International Conference on Machine Learning,
pages 342–350, 2014.

Haibin Cheng, Roelof van Zwol, Javad Azimi, Eren Manavoglu, Ruofei Zhang, Yang Zhou, and
Vidhya Navalpakkam. Multimedia features for click prediction of new ads in display advertising.
In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 777–785, 2012.

Weiwei Cheng, Eyke Hüllermeier, and Krzysztof J Dembczynski. Bayes optimal multilabel
classification via probabilistic classifier chains. In Proceedings of the International Conference
on Machine Learning, 2010.

Wenhan Dai, Yi Gai, Bhaskar Krishnamachari, and Qing Zhao. The non-bayesian restless multi-
armed bandit: A case of near-logarithmic regret. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 2940–2943. IEEE, 2011.

Wenhan Dai, Yi Gai, and Bhaskar Krishnamachari. Online learning for multi-channel opportunis-
tic access over unknown markovian channels. In IEEE International Conference on Sensing,
Communication, and Networking (SECON), pages 64–71. IEEE, 2014.

Amit Daniely, Sivan Sabato, Shai Ben-David, and Shai Shalev-Shwartz. Multiclass learnability and
the erm principle. In Conference on Learning Theory, pages 207–232, 2011.

Krzysztof Dembczynski and Eyke Hüllermeier. Consistent multilabel ranking through univariate
loss minimization. In Proceedings of the International Conference on Machine Learning, 2012.

Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In Proceedings of the
International Conference on Knowledge Discovery and Data mining, 2000.

Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line learning and an
application to boosting. In European conference on computational learning theory, pages 23–37.
Springer, 1995.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

Yoav Freund, Robert Schapire, and Naoki Abe. A short introduction to boosting. Journal-Japanese
Society For Artificial Intelligence, 14(771-780):1612, 1999.

120

Wei Gao and Zhi-Hua Zhou. On the consistency of multi-label learning. In Proceedings of the
annual Conference on Learning Theory, 2011.

John C Gittins, Kevin D Glazebrook, Richard Weber, and Richard Weber. Multi-armed bandit
allocation indices, volume 25. Wiley Online Library, 1989.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in
Optimization, 2(3-4):157–325, 2016.

Alfred Olivier Hero, David Castañón, Doug Cochran, and Keith Kastella. Foundations and
applications of sensor management. Springer Science & Business Media, 2007.

Cios KJ Higuera C, Gardiner KJ. Self-organizing feature maps identify proteins critical to learning
in a mouse model of down syndrome. PLoS ONE, 2015. URL https://doi.org/10.
1371/journal.pone.0129126.

Hanzhang Hu, Wen Sun, Arun Venkatraman, Martial Hebert, and Andrew Bagnell. Gradient
boosting on stochastic data streams. In Artificial Intelligence and Statistics, pages 595–603, 2017.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(Apr):1563–1600, 2010.

Tara Javidi, Bhaskar Krishnamachari, Qing Zhao, and Mingyan Liu. Optimality of myopic sensing in
multi-channel opportunistic access. In 2008 IEEE International Conference on Communications,
pages 2107–2112. IEEE, 2008.

Young Hun Jung and Ambuj Tewari. Online boosting algorithms for multi-label ranking. In
Artificial Intelligence and Statistics, 2018.

Young Hun Jung and Ambuj Tewari. Regret bounds for thompson sampling in episodic restless
bandit problems. In Advances in Neural Information Processing Systems, pages 9005–9014,
2019.

Young Hun Jung, Jack Goetz, and Ambuj Tewari. Online multiclass boosting. In Advances in
neural information processing systems, pages 919–928, 2017.

Young Hun Jung, Marc Abeille, and Ambuj Tewari. Thompson sampling in non-episodic restless
bandits. arXiv preprint arXiv:1910.05654, 2019.

Sham M Kakade, Shai Shalev-Shwartz, and Ambuj Tewari. Efficient bandit algorithms for online
multiclass prediction. In Proceedings of the International Conference on Machine Learning,
pages 440–447. ACM, 2008.

Marcin Korytkowski, Leszek Rutkowski, and Rafał Scherer. Fast image classification by boosting
fuzzy classifiers. Information Sciences, 327:175–182, 2016.

Oluwasanmi O Koyejo, Nagarajan Natarajan, Pradeep K Ravikumar, and Inderjit S Dhillon. Consis-
tent multilabel classification. In Advances in Neural Information Processing Systems, 2015.

121

https://doi.org/10.1371/journal.pone.0129126
https://doi.org/10.1371/journal.pone.0129126

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. preprint, 2018.

Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine learning, 2(4):285–318, 1988.

Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm. In Foundations of
Computer Science, 1989., 30th Annual Symposium on. IEEE, 1989.

Haoyang Liu, Keqin Liu, and Qing Zhao. Logarithmic weak regret of non-bayesian restless multi-
armed bandit. In IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1968–1971. IEEE, 2011.

Haoyang Liu, Keqin Liu, and Qing Zhao. Learning in a changing world: Restless multiarmed bandit
with unknown dynamics. IEEE Transactions on Information Theory, 59(3):1902–1916, 2013.

Keqin Liu and Qing Zhao. Indexability of restless bandit problems and optimality of whittle index
for dynamic multichannel access. IEEE Transactions on Information Theory, 56(11):5547–5567,
2010.

Rahul Meshram, Aditya Gopalan, and D Manjunath. Optimal recommendation to users that react:
Online learning for a class of pomdps. In IEEE 55th Conference on Decision and Control (CDC),
pages 7210–7215. IEEE, 2016.

Rahul Meshram, Aditya Gopalan, and D Manjunath. Restless bandits that hide their hand and
recommendation systems. In IEEE International Conference on Communication Systems and
Networks (COMSNETS), pages 206–213. IEEE, 2017.

Rahul Meshram, D Manjunath, and Aditya Gopalan. On the whittle index for restless multiarmed
hidden markov bandits. IEEE Transactions on Automatic Control, 63(9):3046–3053, 2018.

Indraneel Mukherjee and Robert E Schapire. A theory of multiclass boosting. Journal of Machine
Learning Research, 14(Feb):437–497, 2013.

Ronald Ortner, Daniil Ryabko, Peter Auer, and Rémi Munos. Regret bounds for restless markov
bandits. In International Conference on Algorithmic Learning Theory, pages 214–228. Springer,
2012.

Ian Osband and Benjamin Van Roy. Near-optimal reinforcement learning in factored mdps. In
Advances in Neural Information Processing Systems, pages 604–612, 2014.

Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via
posterior sampling. In Advances in Neural Information Processing Systems, pages 3003–3011,
2013.

Yi Ouyang, Mukul Gagrani, Ashutosh Nayyar, and Rahul Jain. Learning unknown markov decision
processes: A thompson sampling approach. In Advances in Neural Information Processing
Systems, pages 1333–1342, 2017.

122

Nikunj C Oza. Online bagging and boosting. In 2005 IEEE international conference on systems,
man and cybernetics, volume 3. IEEE, 2005.

Christos H Papadimitriou and John N Tsitsiklis. The complexity of optimal queuing network control.
Mathematics of Operations Research, 24(2):293–305, 1999.

Loren K Platzman. Optimal infinite-horizon undiscounted control of finite probabilistic systems.
SIAM Journal on Control and Optimization, 18(4):362–380, 1980.

Martin L Puterman. Markov Decision Processes.: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, 2014.

Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin of the American
Mathematical Society, 58(5):527–535, 1952.

Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling. Mathematics of
Operations Research, 39(4):1221–1243, 2014.

Robert E Schapire. Drifting games. Machine Learning, 43(3):265–291, 2001.

Robert E Schapire and Yoav Freund. Boosting: Foundations and algorithms. MIT press, 2012.

Robert E Schapire and Yoram Singer. Boostexter: A boosting-based system for text categorization.
Machine learning, 39(2-3):135–168, 2000.

Eric V Slud. Distribution inequalities for the binomial law. The Annals of Probability, pages
404–412, 1977.

Cem Tekin and Mingyan Liu. Online learning of rested and restless bandits. IEEE Transactions on
Information Theory, 58(8):5588–5611, 2012.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

Grigorios Tsoumakas, Eleftherios Spyromitros-Xioufis, Jozef Vilcek, and Ioannis Vlahavas. Mulan:
A java library for multi-label learning. Journal of Machine Learning Research, 12:2411–2414,
2011.

Wallace Ugulino, Débora Cardador, Katia Vega, Eduardo Velloso, Ruy Milidiú, and Hugo Fuks.
Wearable computing: Accelerometers’ data classification of body postures and movements. In
Advances in Artificial Intelligence-SBIA 2012, pages 52–61. Springer, 2012.

Volodimir G Vovk. Aggregating strategies. In Proc. Third Workshop on Computational Learning
Theory, pages 371–383. Morgan Kaufmann, 1990.

Richard R Weber and Gideon Weiss. On an index policy for restless bandits. Journal of Applied
Probability, 27(3):637–648, 1990.

123

Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J Weinberger.
Inequalities for the l1 deviation of the empirical distribution. Hewlett-Packard Labs, Tech. Rep,
2003.

Peter Whittle. Restless bandits: Activity allocation in a changing world. Journal of applied
probability, 25(A):287–298, 1988.

Daniel T Zhang, Young Hun Jung, and Ambuj Tewari. Online boosting for multilabel ranking with
top-k feedback. arXiv preprint arXiv:1910.10937, 2019.

Xiao-Lei Zhang and DeLiang Wang. Boosted deep neural networks and multi-resolution cochlea-
gram features for voice activity detection. In INTERSPEECH, pages 1534–1538, 2014.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the International Conference on Machine Learning, 2003.

124

	Table of Contents
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	ABSTRACT
	Introduction
	List of Completed Projects

	Online Multiclass Boosting
	Preliminaries
	Optimal algorithm
	Adaptive algorithm
	Experiments

	Online Boosting Algorithms for Multi-label Ranking
	Preliminaries
	Algorithms with theoretical loss bounds
	Experiments

	Online Boosting with Partial Information
	Multi-class Classification with Bandit Feedback
	Multi-label Ranking with Top-k Feedback

	Thompson Sampling in Episodic Restless Bandit Problems
	Problem setting
	Algorithm
	Regret bound
	Experiments

	Thompson Sampling in Non-Episodic Restless Bandits
	Main result
	Preliminaries
	Algorithm
	Planning problem
	Regret bound
	Experiments

	Conclusion
	Details for Online Multiclass Boosting
	Link between batch and online weak learning conditions
	Detailed discussion of OnlineMBBM
	Proof of Theorem 2.5
	Adaptive algorithms with different surrogate losses
	Detailed description of experiment

	Details for Online Boosting Algorithms for Multi-label Ranking
	Specific bounds for OnlineBMR
	Complete proof of Theorem 3.4

	Details for Thompson Sampling in Episodic Restless Bandit Problems
	Proof of Theorem 5.5

	Details for Thompson Sampling in Non-Episodic Restless Bandits
	Proof of Proposition 6.6
	Regret bound proofs

	BIBLIOGRAPHY

