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ABSTRACT

While there is abundant access to data management technology today, working with data

is still challenging for the average user. One common means of manipulating data is with

SQL on relational databases, but this requires knowledge of SQL as well as the database’s

schema and contents. Consequently, previous work has proposed oblique query speci�ca-

tion (OQS) methods such as natural language or programming-by-example to allow users

to imprecisely specify their query intent. These methods, however, su�er from either low

precision or low expressivity and, in addition, produce a list of candidate SQL queries that

make it di�cult for users to select their �nal target query.

My thesis is that OQS systems should maximize user domain expertise to triangulate the

user’s desired query. First, I demonstrate how to leverage previously-issued SQL queries

to improve the accuracy of natural language interfaces. Second, I propose a system allow-

ing users to specify a query with both natural language and programming-by-example.

Finally, I develop a system where users provide feedback on system-suggested tuples to

select a SQL query from a set of candidate queries generated by an OQS system.
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CHAPTER 1

Introduction

More than ever before, people today have abundant access to data. Questions that could

be only be answered in the past by seeking out an expert can now be handled with a

quick command to an AI assistant or a query to a web search engine. Breaking news

that could only be heard through word-of-mouth or the next day’s newspaper can now

be received within seconds through a smartphone noti�cation. New music releases are

distributed instantly to customers through streaming outlets rather than through physical

media such as CDs or vinyl.

Despite such advances in various consumer-facing technologies, accessing and man-

aging data in database systems, which are commonplace in business and scienti�c con-

texts, have remained elusive challenges for non-technical users. In many organizations, it

is typical to hire a large band of database administrators and consultants to act as “medi-

ators” between the database system and user. Users specify their data needs to the medi-

ators, who in turn translate the user’s speci�cation into a system-friendly representation.

The mediator’s task of bridging the gap between the user and the database system

is complex. For one, the user’s mental model often does not naturally align with the

database’s logical or physical model of the data. While users think in terms of real-world

entities, databases store their contents in various formats to optimize for computation

and storage rather than for user comprehension. In addition, when the user lacks un-

derstanding of the native representation of the database system, it is possible and even

1



likely that the user’s expressed data need fails to map to a single query in the database’s

query language. To use an analogy, the English word “love” can be translated to at least

four di�erent words in Greek, and a translator must be able to discern the correct word

depending on the context. Similarly, it is the mediator’s job to convert an ambiguous user

expression to a precise query given the context.

Maintaining a large support sta� of such mediators can be costly for organizations,

as well as cumbersome for users who require a middleman to complete seemingly simple

tasks. The goal of my research is to alleviate these costs by building tools to enable non-

technical users to unambiguously specify their data needs to a database system.

While there are many types of databases such as key-value stores, graph databases,

and document-oriented databases, I consider this challenge speci�cally in the context

of relational databases, as they are far and away the most popular type of database to

date [64].

1.1 Query Speci�cation Methods

1.1.1 Structured Query Language (SQL)

The most common means of accessing data in a relational database is via Structured Query

Language (SQL). SQL is a declarative language, meaning that users need only describe

what data they want but not how to retrieve it programmatically. SQL execution engines

are highly optimized to process the queries to retrieve the correct results as fast as possible.

SQL queries are comprised of a series of clauses, summarized in Table 1.1. SQL also

permits the nesting of queries, allowing the user to issue complex queries to perform a

wide variety of operations on tables in a relational database.

While SQL enables the unambiguous speci�cation of complex queries, writing queries

is di�cult and limits the ability to access data in the hands of a few specialized technical

experts. There are several reasons for this.

2



Clause Description

FROM Choose tables to perform operations on

WHERE Filter data from tables

GROUP BY Aggregate data

HAVING Filter aggregated data

SELECT Select columns to retrieve

ORDER BY Sort returned data

LIMIT Display top n rows

Table 1.1: Main clause types in SQL.

First, relational schemas are organized for e�ciency rather than user comprehension.

Schemas are generally normalized to avoid redundant data storage, splitting real-world

entities into multiple relations. Users must manually stitch these relations back together

by a series of join operations in the FROM clause of a SQL query, but this is a burdensome

demand for an untrained user.

Second, relational operations are challenging for non-experts to master. While projec-

tions in the SELECT clause and selections in the WHERE clause can be easily understood by

most, more complex operations such as aggregates, grouping, and joins are challenging

concepts for novices to digest.

Finally, users often lack knowledge of the database’s schema and contents. Even with

prior knowledge of SQL, a user must be able to understand the data within the particular

schema they hope to query. In many large enterprises, however, database schemas can

become a complex tangled web which the uninitiated user needs to explore for some time

before being able to issue queries.

1.1.2 Oblique Query Speci�cation (OQS)

Numerous e�orts have been launched to develop more user-friendly interfaces which pro-

mote indirect means of specifying structured queries. I dub these systems oblique query

speci�cation (OQS) systems because they o�er an alternative to SQL with oblique (i.e. in-

3



direct) means of specifying structured queries. The following paragraphs describe some

examples of such OQS systems.

1.1.2.1 Keyword Search

Keyword search interfaces emulate web search engines by allowing users to type in key-

words to retrieve information. The typical procedure in early work [2, 9, 33] was to dis-

cover candidate rows in the database containing each keyword and then to �nd join paths

connecting each combination of candidate rows to construct a result set of joined tuples.

These initial systems [2,9,33] were limited to conjunctive select-project-join queries, while

later work extended the approach to simple aggregate queries [67], settings where the sys-

tem does not have a priori access to the database [7], and more complex aggregate queries

by augmenting databases with metadata models [10].

1.1.2.2 Natural Language Interfaces

Natural language interfaces enable the user to directly specify their query in human lan-

guage. Early approaches depended on grammars that were manually-speci�ed [3] or

learned from database-speci�c training examples [27,66], making it di�cult to scale them

across di�erent database schemas. More recent systems [43,57,61,76,77,79,81] have made

great strides in producing database-agnostic interfaces using natural language processing,

arti�cial intelligence, and database techniques.

The typical problem formulation for natural language interfaces is to translate natu-

ral language queries into SQL, as a SQL query constitutes an unambiguous speci�cation

from a system perspective. This particular problem remains an open challenge as it is dif-

�cult, even for human annotators, to translate a potentially ambiguous natural language

expression into a single structured query.
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1.1.2.3 Programming-By-Example

Programming-by-example (PBE) enables users to describe a query by providing exam-

ples with actual or contrived data. The earliest version, Query-by-Example (QBE), asks

the user to �ll in a skeleton schema [82] with constraints and example output values.

Some recent approaches circumvent the need for schema knowledge by considering only

project-join queries [36, 58, 59], or by using “abductive” reasoning to select the best se-

lection predicates [25]. Another spin on PBE [73] asks users to provide a sample input

database and output rows.

1.1.2.4 Visual Interfaces

Visual interfaces allow the user to specify queries with a visual description involving

forms, diagrams, or icons. Catarci et al. [17] provide a survey of such systems, and describe

how icon- and form-based systems can support simpler queries and are appropriate for

users without domain knowledge, while diagram-based systems generally allow for more

complex queries but also require greater expertise from the user.

1.1.3 Overview

The various speci�cation methods described in the previous sections can be categorized

along two dimensions: expressiveness and user expertise. Our goal is to move in the direc-

tion of the ideal speci�cation method, which maximizes expressiveness while minimizing

user expertise.

1.1.3.1 Expressiveness

Expressiveness describes the complexity of queries supported by a speci�cation method.

The expressiveness of a method is generally de�ned explicitly by the system designer and

communicated to the user so they have a clear expectation of what types of queries are
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Technical Domain

Speci�cation Method System(s) Relational Model Schema Factual

SQL - 3 3 3

Keyword Search [2, 9, 10, 33, 67]

Natural Language [43, 57, 81]

Query-by-Example (QBE) [82] 3 3 3

Exact Project-Join PBE [59] 3

Relaxed Project-Join PBE [36, 58]

Abductive PBE [25] 3

Input-Output PBE [73] 3 3

Table 1.2: User expertise requirements for various speci�cation methods.

permitted before engaging the system. In practice, the expressiveness of a system is con-

strained by the level of precision expected of the system. All systems must maintain a

relatively high level of precision, as an unreliable system undermines the user’s trust and

will lead to the system being abandoned. As a result, it is generally the case that speci�-

cation methods limit the expressiveness to reduce the search space of possible queries to

improve overall precision.

1.1.3.2 User Expertise

User expertise can be divided into two major categories: technical and domain expertise.

Technical expertise indicates a user’s pro�ciency at leveraging technology. In the context

of a relational database, this can be further divided into two facets:

1. Understanding of the relational model. Does the method require the user to under-

stand complex relational operations such as joins, aggregates, or groupings?

2. Database schema expertise. Does the method require the user to know the tables in

the database and the relationships between them?

Domain expertise, on the other hand, “de�nes one’s familiarity with a given subject

matter; a professional photographer, for instance, has substantial domain expertise in the

�eld of photography” [60]. The query speci�cation process intrinsically requires some
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level of domain expertise for the user to understand the terminology within the domain

and to e�ectively evaluate when a task has been completed. Domain expertise, in the

context of OQS methods such as PBE, also includes relevant factual knowledge, meaning

that users possess knowledge of example facts pertaining to their desired query.

We summarize the user expertise requirements for representative systems of various

speci�cation methods in Table 1.2.

1.1.4 Challenges

Despite the promise of OQS methods for non-technical users, few, if any, have been widely

adopted. According to the Technology Acceptance Model (TAM) [42] for information

systems, two factors ultimately decide whether an information system will be accepted

by a user: Perceived Usefulness (PU) and Perceived Ease of Use (PEOU). The following

challenges facing existing OQS methods are critical to improving each of these factors to

enable OQS systems to be adopted by the general public.

Low precision Many existing systems still su�er from low precision, severely crippling

Perceived Usefulness. This challenge is perhaps most evident in the case of natural lan-

guage interfaces. On a benchmark containing SQL queries with joins, aggregates, and

nesting, one state-of-the-art natural language interface [79] achieves less than 30% top-1

accuracy. From a user’s perspective, it is preferable to seek out an expert to work with

than to rely on a system that will only produce the user’s expected query 30% of the time.

Low expressivity Other methods, such as PBE, choose to optimize for precision while

sacri�cing expressivity in the process. Typical formulations of PBE systems requiring

low technical expertise constrain the space of queries that can be produced to project-

join (PJ) or select-project-join (SPJ) queries, often failing to support queries involving

aggregates, or in some cases, even queries with projected numeric columns [25]. Limiting
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the permitted expressivity of the system severely limits the Perceived Usefulness of the

system.

Target query selection Many existing OQS systems [10,73] produce a set of candidate

SQL queries as output. Even if one of these candidate queries is the user’s desired query,

sifting through the candidate queries requires the user to comprehend SQL to distinguish

them, which defeats the very purpose of using the OQS system in the �rst place and

diminishing Perceived Ease of Use. While some systems [21,43,61] support alternate rep-

resentations of candidate queries, these representations can lack the precision necessary

to distinguish two similar candidate queries.

1.2 Dissertation Overview

When a user works with a technical expert (i.e. the database support sta�) to pose a query,

they can use any and every means possible to supply domain expertise and specify their

desired query, whether in natural language, providing a list of hard constraints for the

query, o�ering an expected output tuple, or by drawing the structure of their result table

on paper. Synthesizing information from various methods allows the technical expert to

clarify the user’s speci�cation as needed and to ultimately nail down the user’s desired

query in the vast search space of candidate queries. Consequently, the ultimate goal is

to develop an all-purpose multi-speci�cation system paralleling the ability of the human

technical expert.

On the other hand, existing query speci�cation systems largely depend on a single

speci�cation method and permanently bind the user to the limitations of the interaction

mode at hand. As a result, they require additional clari�cation to be robust and practically

usable.

My thesis is that OQS systems should maximize user domain expertise to trian-

gulate the user’s desired query. To this end, I present three approaches to clarify OQS
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Chapter 2
Augmenting Natural Language 

Interfaces with SQL Query Logs

Chapter 3
Combining Natural Language

and Programming-by-Example

Chapter 4
Final Query Selection with 

Distinguishing Tuples

Natural Language

Natural Language

Programming-by-Example

Candidate
Queries Relational

Database

SQL
Query

Previous SQL Queries

User

← Distinguishing TuplesUser Feedback →

Figure 1.1: An example architecture integrating the approaches in this dissertation.

methods by leveraging user domain expertise to alleviate some of the query speci�cation

challenges described in Section 1.1.4. These approaches could be integrated in a single

architecture such as in the one shown in Figure 1.1.

The �rst approach is to use information from previously-issued SQL queries on a

database to guide existing OQS systems toward more likely user queries. This is demon-

strated in Chapter 2 using a system designed to augment existing natural language inter-

faces by leveraging insights from a SQL query log, which implicitly contains information

on what queries domain experts �nd interesting. This approach addresses the low preci-

sion challenge by �uidly combining information from the SQL query log to enable better

precision for natural language interfaces.

The second approach is to design system architectures optimized to process multiple

speci�cation methods simultaneously. Enabling multiple speci�cation methods essen-

tially provides more possible vectors for users to express their domain expertise, and more

information for systems to triangulate the user’s desired query. In particular, I present a

dual-speci�cation system in Chapter 3 combining natural language and programming-

by-example. The system utilizes an architecture designed to maximize the information

provided by each of the two modes to address the low precision challenge without suc-

cumbing to the low expressivity challenge.

The �nal approach is to use domain expertise to tackle the target query selection chal-

lenge. To that end, I describe a system in Chapter 4 that takes an initial list of candidate
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Chapter Main Research Question Contributions

Chapter 2: Augment-

ing Natural Language

Interfaces with SQL

Query Logs

Can leveraging a SQL

query log increase the pre-

cision of natural language

interfaces?

• the Query Fragment Graph to model

the SQL query log

• Templar, a prototype system to aug-

ment natural language interfaces

• evaluation demonstrates Templar

enables up to 138% increase in top-1

accuracy

Chapter 3: Combining

Natural Language

and Programming-by-

Example

Can a dual-speci�cation

OQS outperform a single-

speci�cation OQS?

• Duoqest, a prototype system im-

plementing a novel dual-speci�cation

interaction model

• guided partial query enumeration

algorithm

• studies demonstrating Duoqest has

better accuracy and expressivity than

single-speci�cation systems

Chapter 4: Final

Query Selection with

Distinguishing Tuples

Can we e�ciently use fac-

tual domain expertise to

help users select their tar-

get query?

• a proof that the problem of selecting

a target query using tuples is NP-hard

• an approximate algorithm to tackle

the problem

• evaluation demonstrating algorithms

can reduce number of tuples used by

up to 63%

Table 1.3: A summary of research questions and contributions in this dissertation.

queries generated by any OQS system and generates distinguishing tuples for the user to

provide positive or negative feedback on, where positive feedback indicates that a tuple

is expected to reside in the desired query’s result set. This system tackles the target query

selection problem by allowing the user to avoid direct interaction with SQL syntax when

selecting their desired query.

1.2.1 Outline

The remainder of the dissertation is organized as follows. A summary of research ques-

tions and contributions for each chapter is given in Table 1.3.

• In Chapter 2, we consider whether the domain expertise present in a SQL query

log can increase the precision of natural language interfaces. We introduce the
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Query Fragment Graph as a way to model the SQL query log. We present a sys-

tem Templar that augments existing natural language interfaces. We demonstrate

the e�ectiveness of our approach in an experimental evaluation, achieving an up

to 138% improvement in top-1 accuracy in existing natural language interfaces by

leveraging SQL query log information.

• In Chapter 3, we consider whether using a dual-speci�cation OQS approach can

outperform a single-speci�cation approach by eliciting more information from the

user’s domain expertise. We present a prototype system, Duoqest, which lever-

ages a novel dual-speci�cation interaction model and implements an algorithm called

guided partial query enumeration to explore the space of possible queries. We

present results from user studies and a simulation study that demonstrate signi�cant

improvements in accuracy and expressivity over single-speci�cation approaches.

• In Chapter 4, we consider how to tap into users’ factual domain expertise by using

tuples as a representation for distinguishing candidate queries. We provide a formal

de�nition of the problem of using tuples to select a target query, prove it is NP-

hard, develop an approximate algorithm to tackle it, and conducted an experimental

evaluation demonstrating that the algorithm can reduce the number of tuples used

by up to 63% over other approaches.

• Chapter 5 concludes and describes future work.
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CHAPTER 2

Augmenting Natural Language Interfaces

with SQL Query Logs1

The task of a natural language interface to databases (NLIDB) has been primarily modeled

as the problem of translating a natural language query (NLQ) into a SQL query. State-of-

the-art systems developed to solve this task take one of two architectural approaches:

(1) the pipeline approach of converting an NLQ into intermediate representations then

mapping these representations to SQL (e.g. [43, 57, 61, 77]), and (2) the deep learning ap-

proach of using an end-to-end neural network to perform the translation (e.g. [71,76,81]).

However, as pointed out by [45], one fundamental challenge in supporting NLIDBs

is bridging the semantic gap between a NLQ and the underlying data. When translating

NLQ to SQL, this challenge arises in two speci�c problems: (1) keyword mapping and

(2) join path inference. Keyword mapping is the task of mapping individual keywords in

the original NLQ to database elements (such as relations, attributes or values). It is a

challenging task because of the ambiguity in mapping the user’s mental model and diction

to the schema de�nition and contents of the database. Join path inference is the process

of selecting the relations and join conditions in the FROM clause of the �nal SQL query,

and is di�cult because NLIDB users do not have a knowledge of the database schema or

1
©2019 IEEE. Reprinted, with permission, from Christopher Baik, H. V. Jagadish, Yunyao Li, Bridging

the Semantic Gap with SQL Query Logs in Natural Language Interfaces to Databases, 35th IEEE International

Conference on Data Engineering, ICDE 2019, Macao, China, April 8-11, 2019, https://doi.org/10.1109/
ICDE.2019.00041
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System NLQ Preprocess Rel/Attr Mapping ValueMapping Join Path Inference SQL Post-process

Precise [57] Tokenizer +

Charniak [18] parser

WordNet [52] Same as rel/attr Max-�ow algorithm +

User interaction

N/A

NaLIR [43] Stanford Parser [20] WordNet [52] +

User interaction

Same as rel/attr Preset path weights +

User interaction

Query tree heuristics +

User interaction

SQLizer [77] Sempre [6] word2vec [51] Same as rel/attr Hand-written repair

rules

Hand-written repair

rules

ATHENA [61] Tokenizer Synonym lexicon +

Pre-de�ned ontology

Index with

semantic variants

Pre-de�ned ontology N/A

Seq2SQL [81] Tokenizer +

Stanford CoreNLP [48]

GloVe [56] +

character n-grams [32]

Unsupported N/A N/A

SQLNet [76] Tokenizer +

Stanford CoreNLP [48]

GloVe [56] Unsupported N/A N/A

DBPal [71] Replace literals with

placeholders

Unspeci�ed word2vec [51] Select min-length

path

SQL syntax repair +

Fill placeholders

Table 2.1: State-of-the-art NLIDBs. Upper half are pipeline-based, lower half are end-to-

end deep learning systems.

SQL and therefore cannot explicitly specify the intermediate tables and joins needed to

construct a �nal SQL query.

Table 2.1 summarizes several state-of-the-art systems and their strategy to handle each

step of NLQ to SQL translation. The upper half lists pipeline-based systems, where each

subproblem is explicitly handled, while the lower half are deep learning systems which

implicitly tackle these challenges by the choice of input representation and network archi-

tecture. The keyword mapping task is split into the Rel/Attr Mapping and Value Mapping

columns because some systems have independent procedures for handling each. Some

common patterns emerge:

• For keyword mapping, the vast majority of systems make use of a lexical database

such as WordNet [52] or a word embedding model [51, 56].

• Join path inference is primarily handled via user interaction [43] or heuristics such

as selecting the shortest join path [71] or hand-written repair rules [77].

While each of these approaches works reasonably well, there is still signi�cant room

for improvement. For example:
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Example 2.1. John issues an NLQ: “Find papers in the Databases domain” on an academic

database (Figure 2.1) using a pipeline NLIDB. John’s intended SQL query is:

SELECT p.title

FROM publication p, publication_keyword pk, keyword k,

domain_keyword dk, domain d

WHERE d.name = `Databases' AND p.pid = pk.pid

AND k.kid = pk.kid AND dk.kid = k.kid AND dk.did = d.did

The NLIDB attempts keyword mapping by matching “papers” in the NLQ to either the

relation publication or journal, and “Databases” to a value in the domain relation. It

maps “papers” to journal because they have a high similarity score in the NLIDB’s word

embedding model. After this, the NLIDB performs join path inference by examining the

schema graph and selects the shortest join path from journal to domain to form the (unin-

tended) SQL query:

SELECT j.name

FROM journal j, domain_journal o, domain d

WHERE d.name = `Databases' AND j.jid = o.jid

AND o.did = d.did

The example demonstrates how error in keyword mapping can propagate through the

pipeline to produce an incorrect SQL query. Even when the keyword mapping is correct,

however, the join path inference remains as a challenge:

Example 2.2. In the keyword mapping process for John’s NLQ, assume the NLIDB correctly

matched “papers” to publication. The NLIDB examines the schema graph and its algorithm

selects the shortest path from publication to domain. The returned SQL does not match

John’s intent:
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Figure 2.1: A simpli�ed version of the Microsoft Academic Search database’s schema

graph.

SELECT p.title

FROM publication p, conference c,

domain_conference dc, domain d

WHERE d.name = `Databases' AND p.pid = c.pid

AND c.cid = dc.cid AND dc.did = d.did

While there is always inherent ambiguity introduced in NLQs that even humans have

di�culty interpreting, our goal is to improve the accuracy of keyword mapping and join

path inference in NLIDBs to better match the user’s intent.

Recent end-to-end deep learning systems [11,30,71,76,79,81] show the great promise

of learning from large volumes of NLQ-SQL pairs. However, manually creating labeled

NLQ-SQL pairs is still costly and time-consuming. Despite recent e�orts to synthesize

NLQ-SQL pairs [34, 71, 80] or derive them from user descriptions of SQL queries [14],

obtaining realistic labeled data remains an open research challenge.

Our Approach While NLQ-SQL pairs are rarely available in large quantities for a given

schema, large SQL query logs are more readily available given that NLIDBs are often

built not for freshly instantiated databases, but for existing production databases [26,31].

Although the SQL query log is not a typical supervised learning training set of input-
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output pairs, an output set of rich data like the SQL query log can still provide value in

translation, akin to the way that one could infer much about what is being communicated

and what should be spoken next even by listening to only one end of a phone conversation.

Our approach is to use the information in the SQL query log of a database to select more

likely keyword mappings and join paths for SQL translations of NLQs.

We propose a system Templar, which augments existing pipeline-based NLIDBs such

as [43, 57, 61, 77] with SQL query log information. While it is also possible to augment

end-to-end deep learning NLIDBs, this would require additional pre- or post-processing,

and we leave it for future work. Consider the user of Templar with our running example:

Example 2.3. John issues the NLQ from Example 2.1 on a NLIDB augmented with Templar.

The NLIDB defers the keyword mapping to Templar, which uses information in the SQL

query log to determine publication as the most likely mapping. The NLIDB receives this

information, performs any necessary processing, and then defers join path inference to

Templar by passing the mapped relations and attributes to it. Templar takes the input and

again uses the SQL query log to conclude that the most likely join path involves connecting

publication to domain via the keyword relation. This join path is passed back to the NLIDB,

which constructs the �nal SQL query matching John’s intent.

Technical Challenges Unlike traditional learning tasks where full input-output pairs

(i.e. NLQ-SQL pairs) are used to train a model, we use only output logs (i.e. SQL queries).

Consequently, the information in the SQL query log does not directly map to the transla-

tion task. Furthermore, even with large query logs, it is likely that most queries are not

exact repeats of queries previously issued. Finally, our goal is to augment, rather than re-

place, NLIDBs, so we need Templar to be able to assist multiple NLIDBs through a simple

common interface. In short, the challenges are to (1) selectively activate information in the

SQL log for NLQ-SQL translation, (2) allow the generation of new SQL queries not in the

log, and (3) gracefully integrate log information with existing techniques in NLIDBs.
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Contributions Our main contributions are as follows:

• We propose the query fragment as an atomic building block for SQL, providing a

�ne-grained view of a SQL log to allow selective activation of information in the

log. Query fragments can be mixed and matched to allow the generation of new SQL

queries not yet observed in the query log.

• We propose the Query Fragment Graph as a novel abstraction to enhance the ac-

curacy of keyword mapping and join path inference in NLIDBs by modeling the

co-occurrence of query fragments from a SQL query log, and gracefully integrating

this with existing techniques to improve the accuracy of keyword mapping and join

path inference in NLIDBs.

• We introduce a prototype system Templar, which augments existing NLIDBs with-

out altering their internal architecture.

• We demonstrate by an extensive evaluation on how Templar can improve the top-1

accuracy of state-of-the-art NLIDBs by up to 138% on our benchmarks.

Organization We discuss related work (Section 2.1), then present the architecture of

Templar and formal problem de�nitions (Section 2.2), before introducing the query frag-

ment and Query Fragment Graph to model the SQL query log (Section 2.3). We then

explain our algorithms for improving the accuracy of keyword mapping and join path

inference by leveraging the Query Fragment Graph (Sections 2.4-2.5). We present our ex-

perimental evaluation of NLIDBs augmented with Templar (Section 2.6), and summarize

(Section 2.7).

2.1 Related Work

Our work builds upon multiple streams of prior work:
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Natural language interfaces to databases (NLIDB) Research on NLIDBs extends as

far back to the sixties and seventies [3], when interfaces were focused on solutions tai-

lored to a speci�c domain. Early approaches depended on grammars that were manually-

speci�ed [3] or learned from database-speci�c training examples [27, 66], making it di�-

cult to scale them across di�erent database schemas.

Since then, advances in deep learning have inspired e�orts to build an end-to-end deep

learning framework to handle natural language queries [23, 47, 78]. The limiting factor

for such systems is the need for a large set of NLQ to SQL pairs for each schema, and

consequently some work focuses on the challenge of synthesizing and collecting NLQ-

SQL pairs [14,34,71,80] to be able to train these systems. Some deep learning-based end-

to-end systems [71, 76, 81] make use of the sequence-to-sequence architecture, and these

systems can bene�t from the enhancements Templar provides to keyword mapping, but

not from join path inference because their application is con�ned to single-table schemas.

More recent syntax tree-based systems [30, 79] handle join path inference as a separate

step in the query inference process and can take advantage of our contributions for both

keyword mapping and join path inference.

An alternative approach has been to combine techniques from the natural language

processing and database communities to construct pipeline-based NLIDBs. Such systems

often utilize intermediate representations in the NLQ to SQL translation process, such as

a parse tree [43], query sketch [70,77], or an ontology [61]. They also ensure reliability by

doing at least one of the following: explicitly de�ning their semantic coverage [43,46,57],

allowing the user to correct ambiguities [43], asking the user to provide a mapping from

a database schema to an ontology [61], or by engaging in an automated query repair

process [77]. Templar can enhance the performance of these NLIDBs by leveraging query

logs as an additional data source to increase accuracy.
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Keyword search Keyword search interfaces [2,8–10,33,67] emulate web search engines

by allowing users to type in keywords to retrieve information. These keyword search

interfaces often face the keyword mapping and join path inference problems that were

described in our work, but Templar is the �rst to make use of the SQL query log to

address these issues.

Using query logs Previous work used SQL query logs to autocomplete SQL queries [38],

proposing a similar abstraction to query fragments for a di�erent purpose. QueRIE [24]

and qunits [53] organized the query log in a similar fashion to the Query Fragment Graph,

but for the purposes of query recommendations and keyword queries, respectively.

2.2 Overview

2.2.1 Preliminaries

We �rst introduce some preliminary de�nitions.

The schema graph depicts the relations and their connections in a relational database:

De�nition 2.1. A schema graph is a directed graph Gs = (V ,E,w) for a database D with

the following properties:

• V consists of two types of vertices:

– Relation vertices VR ⊆ V , each corresponding to a relation in D.

– Attribute vertices V� ⊂ V , each corresponding to an attribute in D.

• E consists of two types of edges:

– Projection edges E� ⊆ E, each extending from a given relation vertex to each of its

corresponding attribute vertices.
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– FK-PK join edges E⋈ ⊂ E, each extending from each foreign key attribute vertex

to its corresponding primary key attribute vertex.

• w ∶ V ×V → [0,1] is a function that assigns a weight to each pair of vertices which

have an edge in E.

A join path is a speci�c type of tree within the schema graph, which can be represented

by a combination of relations and join conditions in a SQL query:

De�nition 2.2. Given a schema graph Gs and a bag of relations BR , a join path (Vj ,Ej ,Vt )

is a tree of vertices Vj ⊂ Gs and edges Ej ⊂ Gs spanning all terminal vertices Vt ⊂ Gs , where

each relation instance in BR is represented by a terminal vertex vR ∈ Vt .

2.2.2 De�nitions

As we will discuss in detail in Section 2.3, a complete SQL query is too large and too

speci�c a unit of data to be able to use it e�ectively to represent a SQL log. Instead, we

use query fragments, which are pieces of SQL queries:

De�nition 2.3. A query fragment c = (� ,� ) is a pair of:

• � : a SQL expression or non-join condition predicate;

• � : the context clause in which � resides.

For example, in the SQL query:

SELECT t.a FROM table1 t, table2 u

WHERE t.b = 15 AND t.id = u.id

The query fragments are (t.a, SELECT), (table1, FROM), (table2, FROM), (t.b = 15,

WHERE).

Keyword phrases in a NLQ are mapped to query fragments by NLIDBs to form query

fragment mappings:

20



De�nition 2.4. A query fragmentmappingm = (s, c,� ) is a triple of a keyword s, a query

fragment c, and a similarity score � between the keyword and query fragment.

A selection of mappings for an NLQ form a con�guration:

De�nition 2.5. A con�guration �(S) of a set of keywords S is a selection of exactly one

query fragment mapping (sk , ck ,�k) for each keyword sk ∈ S, where ck is a query fragment,

and �k is the associated similarity score for the keyword and fragment.

2.2.3 Problem De�nitions

We now present a formal de�nition for the keyword mapping and join path inference prob-

lems.

2.2.3.1 Keyword Mapping

The keyword mapping problem is described by the function:

Φ = MapKeywords(D,S,M)

The input to the problem is a database D, a set of keywords representing an NLQ,

S = {s1, s2, ..., sn}, where each keyword sk ∈ S can be comprised of multiple words or to-

kens in natural language; and a set of metadata annotations, M , where each element

Mk = (�k ,!k ,k , gk) of M includes parser metadata about sk : the context �k of the query

fragment that should be mapped to sk , an optional predicate comparison operator !k , an

optional ordered list of aggregation functions k , and a boolean gk which if true, indicates

that the resulting mapping of sk should be grouped. The goal of the problem is to return

a list of con�gurations Φ ordered by likelihood.
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Figure 2.2: The overall architecture of an NLIDB augmented with Templar.

2.2.3.2 Join Path Inference

The join path inference problem is described by the function:

J = InferJoins(Gs ,BD)

The input is a schema graph Gs , a bag (i.e. a multiset) of attributes and relations BD

that are known to be part of the SQL query. The goal is to return a list of join paths J on

Gs ranked from most to least likely.

2.2.4 Architecture

Templar’s architecture is shown in Figure 2.2. It interfaces with the NLIDB it is augment-

ing on two fronts: one for keyword mapping, and the other for join path inference.

The Keyword Mapper carries out the execution of MapKeywords, and uses a word

similarity model such as word2vec [51] or GloVe [56], the query fragment graph (QFG)

which stores the SQL query log information, and the database itself to retrieve candidate

matches. The Join Path Generator executes InferJoins, and it utilizes the QFG and the
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schema graph of the database to infer join paths.

2.2.5 NLIDB Prerequisites

An NLIDB to which we can apply our approach is responsible for the following:

• It must be able to parse the NLQ into keywords, which may require recognition of

multi-word entities. Each keyword should have associated metadata (query frag-

ment type, predicate operator, aggregation functions, and presence of a group-by)

for the keyword mapping problem.

• It is responsible for constructing a SQL query given the keyword mappings and join

paths provided by Templar.

The categories of metadata we expect as input in MapKeywords are all obtainable

using existing parser technology [39, 54, 62] by existing NLIDBs [43, 77].

Since the two main interface calls of keyword mapping and join path inference are

independent of one another in our approach, we do not enforce any ordering of when and

how these calls should be made within the NLIDB. However, in every currently known

system in Table 2.1, the keyword mapping step precedes the join path inference step.

The interface to pipeline-based NLIDBs such as [43, 57, 61, 77] is transparent, as most

already support the above requirements or can be easily modi�ed to do so. Integrating

Templar into an end-to-end deep learning NLIDB is possible by integrating the informa-

tion from the SQL query log into the input representation or by performing some pre-

processing and/or post-processing, but we leave this for future work.

2.2.6 Example Execution

In this section, we describe an example execution of a generic pipeline-based NLIDB aug-

mented with Templar. Consider the architecture in Figure 2.2 and the following example

NLQ from the Microsoft Academic Search (MAS) dataset [43] with schema in Figure 2.1:
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Example 2.4. Return the papers after 2000.

First, the NLIDB parses the NLQ to return the keywords which map to elements in

the database and corresponding parser metadata. In Example 2.4, the keywords emitted

by the NLIDB would be papers and after 2000. NLIDBs have various techniques of pro-

ducing the metadata, whether through semantic parsing [77] or a designated lexicon of

keywords [43]. The NLIDB in [43] would return that papers is in the SELECT context be-

cause it is a direct child of the keyword Return in the parse tree, and after 2000 would be

in the WHERE context because after is a reserved keyword corresponding to the predicate

comparison operator > in the NLIDB’s lexicon.

The keywords are passed to the Keyword Mapper, which maps each keyword to

candidate query fragments using the keyword metadata and information about the

database schema and contents. These candidate query fragment mappings are individ-

ually scored using a similarity model (such as word2vec [51]) and information from the

Query Fragment Graph (QFG). For Example 2.4, the candidate mappings for papers includes

(journal.name, SELECT) and (publication.title, SELECT), and after 2000 is mapped to

(publication.year > 2000, WHERE).

A con�guration is generated by selecting one candidate mapping per keyword. The

top-� most likely candidate con�gurations are returned by the Keyword Mapper. Exam-

ple 2.4 produces at least two candidate con�gurations, whose mapped query fragments,

respectively, are:

• [(journal.name, SELECT);

(publication.year > 2000, WHERE)]

• [(publication.title, SELECT);

(publication.year > 2000, WHERE)]

These con�gurations are then sent back to the NLIDB, which can augment the ranked

con�gurations with other information such as domain-speci�c knowledge.
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After processing the con�gurations, the NLIDB sends known relations for each can-

didate SQL translation to the Join Path Generator, which identi�es the most likely join

path and returns it along with an associated score.

For the schema graph shown in Figure 2.1 and continuing with Example 2.4, this step

will produce the join path journal-publication for our �rst con�guration, and the single

relation publication for the second.

Finally, it is the NLIDB’s responsibility to construct the �nal SQL query and return it.

Any post-processing, such as the hand-written repair rules in [77] or soliciting additional

user interaction as in [43] may also be performed at this point. For our running example,

the �nal SQL queries returned by the NLIDB for each candidate con�guration would be:

• SELECT j.name FROM journal j, publication p

WHERE p.year > 2000 AND j.jid = p.jid

• SELECT title FROM publication WHERE year > 2000

2.3 Query Log Model

In this section, we explore how to model information in the SQL query log to aid in NLQ

to SQL translation. Consider the SQL query log in Figure 2.3a and the example task:

Example 2.5. The task is:

• NLQ: Select all papers from TKDE after 1995.

• SQL: SELECT p.title FROM journal j, publication p

WHERE j.name = ‘TKDE’

AND p.year > 1995 AND j.jid = p.jid

First, we want to generate queries not yet observed in the SQL log—i.e. not be constrained

to only translate to queries already in the log. In Example 2.5, the NLQ has the keyword
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25x: SELECT j.name FROM journal j
5x: SELECT p.title FROM publication p WHERE p.year > 2003
3x: SELECT p.title FROM journal j, publication p WHERE j.name = ‘TMC’
      AND p.pid = j.pid

(a) Example query log.

25x: j.name 28x: journal 5x: p.year ?op ?val
3x: j.name ?op ?val8x: publication8x: p.title

(b) Query fragment occurrences.

2525x: j.name 28x: journal

5x: p.year ?op ?val

8x: p.title

8x: publication

3x: j.name ?op ?val

3

3

3

3

85

5

3

(c) Query fragment graph.

Figure 2.3: Storing query log information in the QFG.

papers which might map to publication.title or journal.name. If we are limited to

selecting existing SQL queries in the log to translate to, the NLQ could erroneously be

translated to SELECT j.name FROM journal j.

To avoid this, we break down SQL queries into query fragments which can be mixed

and matched to form new SQL queries, and count occurrences of each query fragment in

the log as in Figure 2.3b.

Now, consider that we boost the scores of commonly-occurring query fragments in

the SQL log. Unfortunately, there is still a high chance that “papers” will be mapped to

journal because of its high frequency in the log.

Consequently, we want to selectively activate information in the log only when helpful

for the NLQ at hand. The intuition is that the full NLQ provides context for each indi-

vidual keyword, and this should be leveraged to illuminate what queries in the SQL log

are relevant to the NLQ. In Example 2.5, the keywords are papers, TKDE, and after 1995.

A human expert would that TKDE is referring to a journal and after 1995 refers to a year,
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and can conclude that papers isn’t referring to journal.name because the NLQ would be

redundantly asking for “all journals from a journal”.

Finally, we want to maximize the semantic information in the SQL query log. We ob-

serve a distinction between the more abstract semantic information and the speci�c value

instances in a query. For Example 2.5, we can replace speci�c values in the NLQ with

placeholders: Select all papers from (journal) after (year), preserving the semantic struc-

ture while obscuring exact values. Similarly, we can put placeholders in the SQL:

SELECT p.title

FROM journal j, publication p

WHERE j.name ?op ?val AND p.year ?op ?val

AND j.jid = p.jid

Using such placeholders allows us to focus on the recurrence of semantic contexts

without being distracted by speci�c values. Consequently, it allows us to make more

extensive use of the data in the SQL query log as more query fragments in the log are

likely to match any given keyword in a NLQ.

We implement three levels of obscurity for query fragments. The �rst level, Full, retains

all values in the original query. The second, NoConst, replaces literal constants with a

placeholder to convert a fragment p.year > 2000 into p.year > ?val. Finally, we

further obscure comparison operators in NoConstOp to make the fragment p.year ?op

?val.

2.3.1 Query Fragment Graph

While automated NLIDBs don’t have the bene�t of human logic, the SQL query log can

play a similar role by using the full context of a NLQ to revise individual keyword map-

pings. Previous user queries in the log in Figure 2.3a show that years are often queried

in the context of publication.title, and similarly, when a speci�c journal name such
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as TMC is a predicate in a query, the user is often querying publication.title. This

observation leads us to desire not only the occurrences of individual query fragments in

the SQL log, but also the co-occurrences of query fragments—in other words, given the

information in the SQL log, when one query fragment appears in a query, how likely is it

that another query fragment is present in the query?

Given the intuition above, we introduce the Query Fragment Graph (QFG) as a data

structure to store the information in a SQL query log.

De�nition 2.6. A query fragment graph for database D and SQL query log L is a graph

Gf = (Vf ,Ef , nv , ne) where:

1. each vertex v ∈ Vf represents a query fragment in L;

2. each edge e ∈ Ef exists if and only if two query fragments co-occur in L;

3. nv ∶ Vf → ℤ≥0 is a function which maps Vf to the number of occurrences in L of the

query fragment represented by each v ∈ Vf ;

4. ne ∶ Vf ×Vf →ℤ≥0 is a function which maps each pair of vertices to the co-occurrence

frequency in L of the two query fragments represented by the vertices.

In short, the QFG stores information on query fragment occurrences (nv) in the log, as

well as co-occurrence relationships (ne) between each pair of query fragments.

2.4 Keyword Mapping

In this section, we explain the keyword mapping procedure. While many techniques de-

scribed here are already applied in existing work, we explain each step in detail to keep

this work self-contained, and to clearly show how our novel approach of using SQL query

log information comes into play.

Mapping keywords involves three steps: (1) retrieving candidate keyword to query

fragment mappings, (2) scoring and retaining the top-� candidates, and (3) generating
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Algorithm 1 Mapping Keywords

1: function MapKeywords(D,S,M )

2: ← {}

3: for k← 1,… , |S| do
4: (�k ,!k ,k , gk)←Mk

5: Ck ← KeywordCands(D,sk , �k ,!k ,k , gk)
6: Rk ← ScoreAndPrune(sk ,Ck , �)

7: .add(Rk)
8: Φ = genAndScoreCon�gs()
9: return Φ

and scoring con�gurations. Information from the query fragment graph is used in the

�nal step to score con�gurations according to the evidence in the SQL query log.

We now describe our algorithm for the MapKeywords function, shown in Algo-

rithm 1. We loop through all the keywords sk ∈ S with their corresponding metadata,

then combine and rank them to form our output con�gurations.

2.4.1 Retrieving Candidate Mappings

The function KeywordCands in Algorithm 2 maps a keyword s, along with its associated

metadata (� ,!, , g), to its candidate mappings C by querying the database D.

First, we evaluate whether s contains a number (Line 3), such as in the keyword after

2000. If so, we return all numeric attributes in the database that match a predicate formed

by the number extracted from s with the operator ! for s (Line 5). For the keyword after

2000, we return all attributes containing at least one value that satis�es the predicate ?attr

> 2000. Predicates are constructed from matching attributes and added to the candidate

set C .

If s does not contain a number, we have three di�erent cases. In the �rst two cases,

where the context � of the query fragment is FROM or SELECT, we simply add either all the

relations or all the attributes (along with relevant metadata) of D to the candidate set C .

For the �nal case covering all other structures, we �rst run a full-text search with

every Porter-stemmed [72] whitespace-separated token in s to retrieve all matching text
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Algorithm 2 Retrieve Candidate Keyword Mappings

1: function KeywordCands(D,s,� ,!, ,g)

2: C ← {}

3: if containsNumber(s) then
4: snum ← extractNumber(s)

5: � ← �ndNumericAttrs(snum,!)

6: for b ∈ � do
7: C.add((Pred(b,!, snum),WHERE))
8: else
9: if � = FROM then

10: for r ∈ getRelations(D) do
11: C.add((r , � ))

12: else if � = SELECT then
13: for � ∈ getAttributes(D) do
14: C.add((A�r(�, , g), � ))
15: else
16: for t ∈ �ndTextAttrs(s) do
17: C.add((Pred(t,=, s),WHERE))
18: return C

attributes T in D (�ndTextAttrs in Line 16). For example, for the keyword restaurant busi-

nesses, the stemming procedure would result in the tokens restaur busi, and we run the

following SQL query, replacing ?attr with each text attribute in D:

SELECT DISTINCT(?attr) FROM ?rel

WHERE MATCH(?attr)

AGAINST (`+restaur* +busi*' IN BOOLEAN MODE)

If any of the stemmed tokens from s exactly match the stemmed attribute or rela-

tion names of a candidate query fragment, we remove them so as not to unnecessarily

constrain our search. For example, if the keyword is movie Saving Private Ryan and a can-

didate query fragment mapping is an attribute from the movie relation, we remove the

token movie from our full-text search query when searching on that attribute. For each

matching text attribute, we then construct a predicate for the WHERE context.
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Algorithm 3 Score and Prune Keyword Mappings

1: function ScoreAndPrune(s,C ,�)

2: R← {}

3: for c ∈ C do
4: if containsNumber(s) then
5: snum ← extractNumber(s)

6: stext ← s − snum

7: � ← simnum(stext, c)

8: else
9: � ← simtext(s, c)

10: R.add((s, c,� ))

11: sort R by descending �

12: return Prune(R,�)

2.4.2 Scoring and Pruning

Our next step is to retain only the top-� most likely mappings from C with the function

ScoreAndPrune.

We calculate a score � for each keyword mapping in the range [0,1]. For comparing

keywords with purely text tokens against relation and attribute names and text predicates,

we can use a similarity function simtext (Line 9) through a word embedding model such

as word2vec [51] or GloVe [56]. For keywords including numeric tokens, we execute (i.e.

exec(c)) the candidate predicate on the database, then evaluate the similarity of only the

text tokens if the predicate returns a non-empty set, and return a small � value otherwise:

simnum(stext, c) =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

simtext(stext, c), if exec(c)↛ ∅

�, otherwise

� is then combined into a tuple with the original keyword s and candidate mapping

c and added to the result set R, which is �nally sorted by descending � score. We then

prune R to prevent a combinatorial explosion when generating con�gurations, using the

following Prune procedure (Line 12):

• If there are any candidates in R that are exact matches (� ≥ 1− � for a small �), we
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prune away all remaining non-exact candidates.

• Otherwise, we prune R to the top-� results, including any results that have a non-

zero � value that is equal to the � of the candidate at the �-th place.

2.4.3 Ranking Con�gurations

At this point, we have a set of candidate mappings for each keyword sk ∈ S. We combine

and score them (Line 8 of Algorithm 1) to form candidate con�gurations for S. We �rst

describe a standard way of scoring con�gurations, then show how we can apply the SQL

query log to improve scoring.

2.4.3.1 Word Similarity-Based Score

A naïve scoring function for con�gurations selects the best mapping for each keyword in-

dependently. We can take the geometric mean of the scores of all mappings to accomplish

this:

Score� (�) = [ ∏

(s
k
,c
k
,�
k
)∈�

�k]

1

|�|

We prefer the geometric mean over the arithmetic mean, as in [77], to mitigate the

impact of the variation in ranges of values for each keyword’s candidate mapping scores.

2.4.3.2 Query Log-Driven Score

Since we have the query log information available to us via the Query Fragment Graph,

we leverage this information to derive an improved scoring function contextualized for

our speci�c database schema.

While word similarity-based scoring considers each mapping independently, we now

consider the collective score of each con�guration of mappings. Previous work such as [43]

attempts a collective scoring approach based on mutual relevance which considers the

proximity of keywords in the natural language dependency tree in relation to the edge
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weights connecting the candidate query fragments within the schema graph. Unfortu-

nately, these schema graph edge weights are assigned manually without justi�cation.

In contrast, the intuition behind our collective scoring mechanism is to give a higher

score to con�gurations containing query fragments that frequently co-occur in queries

in the SQL query log. Instead of relying on the system administrator’s ability to preset

the schema graph edge weights to match an anticipated workload, we derive our scoring

directly from previous users’ queries in the SQL query log.

To accomplish this, we calculate a metric for the co-occurrence of pairs of query frag-

ments in the QFG, then aggregate this metric, along with the previously-computed simi-

larity scores, over all query fragments in the con�guration to derive a �nal score. We use

the Dice similarity coe�cient [29] to re�ect the co-occurrence of two query fragments c1

and c2 in the QFG, de�ned as follows:

Dice(c1, c2) =

2×ne(c1, c2)

nv(c1) +nv(c2)

We accumulate Dice for every pair of non-relation (i.e. not in the FROM context) frag-

ments (c1, c2) ∈ ��≠FROM ×��≠FROM:

ScoreQFG(�) = [ ∏

(c1,c2)∈�
2

�≠FROM

Dice(c1, c2)]

1

|�|

The query fragments in the FROM context are excluded because involving relations

can add information skewing the aggregate score—e.g. if journal.name is in a SQL query,

then the relation journal is required to be by the rules of SQL, adding unnecessary redun-

dancy to the aggregated Dice score. In addition, relations in the FROM clause are explicitly

handled by our join path inference procedure, so we defer the evaluation of these query

fragments for later.

Finally, we perform a linear combination (governed by a parameter � ∈ [0,1]) of Score�
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and the query log-driven score ScoreQFG to produce a �nal con�guration score:

Score(�) = �Score� (�) + (1−�)ScoreQFG(�)

We can also replace this means of combining evidence from multiple sources with

other approaches, such as the Dempster Shafer Theory in [8]. We opt for a linear combi-

nation due to its simplicity and because it works su�ciently well in practice.

All con�gurations are now scored using Score(�), ranked by descending score, and

returned by MapKeywords.

2.5 Join Path Inference

In this section, we describe how we generate join paths for a set of attributes and relations

selected to be part of the �nal SQL query by the keyword mapping procedure, and show

how we use the SQL query log to improve this process.

Example 2.6. Consider that the NLIDB selected the following query fragments to be part of

a SQL query of the schema given in Figure 2.1:

• (publication.title, SELECT)

• (domain.name = ‘Databases’, WHERE)

InferJoins should output the desired join path:

publication - publication_keyword - keyword

- domain_keyword - domain

2.5.1 Generating Join Paths

The process of generating the set of optimal join paths from a set of known relations BR

and a schema graph Gs has previously been modeled as the Steiner tree problem [41],
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where the goal is to �nd a tree on a graph that spans a given set of vertices with minimal

total weight on its edges.

The expected input to the Join Path Generator is a bag of the attributes and relations

BD already known to be in the desired SQL translation. BD can be converted to the bag of

known relations BR simply by replacing each attribute with its parent relation in Gs .

We use a known algorithm [41] for solving Steiner trees to �nd the set of optimal join

paths for any given con�guration. These optimal join paths, however, change depending

on how weights are assigned to edges in the schema graph. We outline two ways to do this,

�rst without information from the query log, and then adding in query log information.

2.5.1.1 Default Edge Weights

The default weight function w for edges in the schema graph is to assign every edge

a weight of 1. If we solve the Steiner tree problem with this weight function, we are

essentially �nding join paths with the minimal number of join edges that span all the

known relations.

For Example 2.6, this approach will produce the shortest join path between

publication and domain, which is either:

• publication–conference–domain_conference–domain

• publication–journal–domain_journal–domain

Neither of these join paths are the one desired by the user.

2.5.1.2 Query Log-Driven Edge Weights

We look to the query log to provide some grounding for generating join paths. In contrast

to previous work which depends on the system administrator to set schema graph edge

weights [43], on hand-written repair rules [77], or a prede�ned ontology [61], query log
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information is driven by actual user queries executed on the system. Query log informa-

tion allows us to prefer commonly queried join paths, even if they are longer, and also

mitigates the number of situations where there are identical scores given to equal-length

join paths.

We leverage the co-occurrence values of relations in the QFG to adjust the weights on

the schema graph. Given any two vertices (v1,v2) ∈ Gs , and the function q ∶ V → VQF

which maps a vertex in the schema graph Gs to its corresponding vertex in the QFG, the

new weight function is:

wL(v1,v2) =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

1−Dice(q(v1), q(v2)) if v1 ∈ VR ∧v2 ∈ VR

1, otherwise

This query log-based weight function wL returns a lower value for join edges that

frequently occur in the query log.

2.5.2 Scoring Join Paths

The �nal score for any join path j we return is derived from the weights of the edges

within the join path:

Scorej(j) =

1

|Ej |
2

∑

(v1,v2)∈Ej

w(v1,v2)

We divide by |Ej |
2

to normalize the score in a [0,1] range and also to prefer simpler

join paths over more complex ones. This is based on the observations regarding semantic

relevance [8, 43] that the closer two relations are in the schema, the likelier it is that they

are semantically related.
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2x: author.name

author

writes

publication

publication.title

(a) Before fork.

author.name

author

writes

publication

publication.title

author.name

author

writes

(b) After fork.

Figure 2.4: A simpli�ed overview of a schema graph fork for self-joins.

2.5.3 Self-Joins

A challenge arises during join path inference when an attribute is included multiple times

in the bag BD . We present a novel approach to handling such situations to still produce

valid results from the Steiner tree algorithm.

Due to the peculiarities of SQL, these situations require that our resulting join path

include multiple instances of the same relation, resulting in a self-join. For example:

Example 2.7. In an NLQ for the academic database, “Find papers written by both John and

Jane”, “John” and “Jane” both refer to attribute author.name. The correct SQL output for

this NLQ is:

SELECT p.title

FROM author a1, author a2, publication p,

writes w1, writes w2

WHERE a1.name = 'John' AND a2.name = 'Jane'

AND a1.aid = w1.aid AND a2.aid = w2.aid
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Algorithm 4 Forking Schema Graph for Self-Joins

1: function Fork(Gs ,v)

2: stack
old

← new Stack()
3: stacknew ← new Stack()
4: stack

old
.push(v)

5: stacknew.push(Gs .clone(v))

6: visited← {}

7: while stack
old

≠ ∅ do
8: v

old
← stack

old
.pop()

9: vnew ← stacknew.pop()

10: visited← visited∪v
old

11: for all vconn connected to v
old

do
12: if vconn ∈ visited then continue
13: if (v

old
,vconn) ∈ E⋈ of Gs then

14: add edge (vnew,vconn) to Gs

15: else
16: v

cloned
← Gs .clone(vconn)

17: dir← direction of (v
old
,vconn) ⊳← or →

18: add edge (vnew,vcloned,dir) to Gs

19: stack
old
.push(vconn)

20: stacknew.push(vcloned)

AND p.pid = w1.pid AND p.pid = w2.pid

For these situations, we “fork” the schema graph, as shown (with some attribute ver-

tices and edges removed for simplicity) in Figure 2.4, in order to account for the necessary

vertices for a join path containing a self-join.

Algorithm 4 describes the process of forking the schema graphGs in more detail, given

an attribute vertex v that has been referenced multiple times. Two mirrored stacks v
old

and vnew are used to track progress for the original graph and the new fork of the graph,

respectively. We �rst clone the attribute vertex v and add it to Gs (Line 5). We repeatedly

pop the top of each stack, and �nd all vertices vconn that are connected to the current

existing vertex v
old

. We clone each vconn and the edge connecting it to v
old

, then add

both to the schema graph and continue traversal (Lines 16-20). We terminate the forking

process when we reach a FK-PK join edge in the direction from v
old

to vconn (Line 13). For

d duplicate references to an attribute vertex v, Fork is executed (d −1) times to create a

38



fork for each duplicate reference.

2.6 Evaluation

We performed an experimental evaluation of our system, Templar, to test whether we

can use the SQL log to improve the accuracy of NLQ to SQL translation.

2.6.1 Experimental Setting

2.6.1.1 Machine Speci�cations

All our evaluations were performed on a computer with an 3.1 GHz Intel Core i7 processor

and 16 GB RAM, running Mac OS Sierra.

2.6.1.2 Compared Systems

We enhanced two di�erent NLIDB systems, NaLIR [43] and Pipeline, with Templar, and

executed them on our benchmarks. The augmented versions are denoted NaLIR+ and

Pipeline+ respectively.

The �rst system we augmented is NaLIR [43], a state-of-the-art pipeline-based NLIDB.

We evaluated the system in its non-interactive setting because its application of user in-

teraction is orthogonal to our approach.

We contacted authors of a few other existing NLIDBs but were not granted access to

their systems. As a result, we built an NLIDB named Pipeline, which is an implementa-

tion of the keyword mapping and join path inference steps from the state-of-the-art ap-

proach in [77], excluding the hand-written repair rules. Pipeline was implemented using

word2vec [51] for keyword mapping, with the default Google News corpus for calculating

word similarity. While the default similarity value produced from word2vec is a cosine

similarity value in the range [-1, 1], Pipeline normalizes these values to fall in the range

[0, 1]. Pipeline also always selects the minimum-length join paths for join path inference.
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Dataset Size Rels Attrs FK-PK Queries

MAS 3.2 GB 17 53 19 194

Yelp 2.0 GB 7 38 7 127

IMDB 1.3 GB 16 65 20 128

Table 2.2: Statistics of each benchmark dataset.

Our implementation of Pipeline was written in Java. We used MySQL Server 5.7.18 as our

relational database.

2.6.1.3 Assumptions

We assume Templar is applied in a setting where queries in the SQL query log are repre-

sentative of the SQL queries issued by users via natural language. While this assumption

does not hold true for all databases, we believe Templar is applicable for databases which

already implement user-friendly interfaces such as forms or keyword search where the

pattern of users’ information need is likely to be similar to that of natural language inter-

faces.

2.6.1.4 Dataset

We tested each system by evaluating its ability to translate NLQs accurately to SQL on

three benchmarks: the Microsoft Academic Search (MAS) database used in [43], and two

additional databases from [77] regarding business reviews from Yelp and movie informa-

tion from IMDB. Table 2.2 provides some statistics on each of these benchmark datasets.

We manually wrote the correct SQL translation for each NLQ because the original

benchmarks did not include the translated SQL queries. We removed 2 queries from MAS,

1 query from Yelp, and 3 queries from IMDB because they were overly complex (i.e. con-

tained correlated nested subqueries) or ambiguous, even for a SQL expert.

We used a cross-validation method to ensure that the test queries were not part of the

SQL query log used to perform the NLQ to SQL translation. Speci�cally, we randomly
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Dataset System KW (%) FQ (%)

MAS

NaLIR 43.3 33.0

NaLIR+ 45.4 40.2

Pipeline 39.7 32.0

Pipeline+ 77.8 76.3

Yelp

NaLIR 52.8 47.2

NaLIR+ 59.8 52.8

Pipeline 56.7 54.3

Pipeline+ 85.0 85.0

IMDB

NaLIR 40.6 38.3

NaLIR+ 57.8 50.0

Pipeline 32.0 27.3

Pipeline+ 67.2 64.8

Table 2.3: Keyword mapping (KW) and full query (FQ) results.

Dataset LogJoin FQ (%)

MAS

N 68.6

Y 76.3

Yelp

N 68.5

Y 85.0

IMDB

N 60.9

Y 64.8

Table 2.4: Improvement from activating log-based joins in Pipeline+.

split the full dataset into 4 equally-sized folds, and performed 4 trials (one for each fold),

where in each trial, the training set is comprised of 3 of the folds and the test set was the

remaining fold held out of the training process. Our displayed results for all experiments

are aggregated from the 4 trials.

For Pipeline and Pipeline+, we hand-parsed each NLQ into keywords and metadata

to avoid any parser-related performance issues outside the scope of our work, while we

passed the whole NLQ as input to NaLIR and NaLIR+ to make use of the authors’ original

system. For fairer comparison, we rewrote some NLQs with wh-words such as who, what,

etc. to enable NaLIR/NaLIR+’s parser to process them correctly.
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2.6.1.5 Evaluation Metrics

We measured accuracy by checking the top-ranked SQL query returned by each system

by hand. For Pipeline and Pipeline+, since it was possible to return multiple queries tied

for the top spot, we considered the resulting queries incorrect if there were any tie for

�rst place.

2.6.2 E�ectiveness of Templar Augmentation

In Table 2.3, we present the overall performance of each system. Pipeline+ and NaLIR+

were both executed with obscurity NoConstOp, � = 5, and � = 0.8. While all obscurity

levels, including Full and NoConst, consistently improved on the baseline systems, we

only show results for the best-performing obscurity level NoConstOp for space reasons.

2.6.2.1 Full Query

The full query (FQ) was considered correct if the NLIDB ultimately produced the correct

SQL query. Pipeline+ achieves 76.3% accuracy on MAS, 85.0% accuracy on Yelp, and 64.8%

accuracy on IMDB. Compared to the vanilla Pipeline system, this was a 138%, 57%, and

137% increase in accuracy, respectively. NaLIR+ improved on NaLIR by more modest

margins, with a 22% increase for MAS, 12% for Yelp, and 31% for IMDB.

2.6.2.2 Keyword Mapping

For keyword mapping (KW), we considered the mapping correct if and only if all non-

relation keywords were mapped correctly by the system. Pipeline’s performance im-

proved with Templar most notably for KW, with a 96%, 50%, and 110% increase for MAS,

Yelp, and IMDB respectively. The improvement on NaLIR was 5% for MAS, 13% for Yelp,

and 42% for IMDB.
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2.6.2.3 Join Path Inference

In Table 2.4, we investigate the e�ect of the Join Path Generator. We focus on Pipeline+

for space reasons, and because improvement was not as drastically evident in NaLIR for

reasons described in Section 2.6.3.

Activating the Join Path Generator (LogJoin “Y”) increased accuracy by 11% for MAS,

24% for Yelp, and 6% for IMDB. The combined e�ect of this with the Keyword Mapper

enabled the overall improvement through Templar.

2.6.3 Error Analysis

Augmenting Pipeline with Templar had a more dramatic e�ect than with NaLIR because

it was given perfectly parsed keywords and metadata as input. Pipeline consequently

had a much higher ceiling for improvement compared to NaLIR. While NaLIR is designed

to be able to return the relevant metadata, in practice, the system’s parser had trouble

digesting the correct metadata from NLQs with explicit relation references, such as the

token papers in Return the authors who have papers in Conference X for MAS, or other

NLQs which resulted in nested subqueries. Our takeaway from this is that NLIDBs with

better parsers will reap greater bene�ts from Templar, and are hopeful as o�-the-shelf

parsers have drastically improved since NaLIR’s original release.

2.6.4 Impact of Parameters

In addition to the system options, there are two parameters that are required to be set

in Templar: � and �. � is the number of top candidate keyword mappings to return

before generating con�gurations, and � is the weight given to the word similarity score as

opposed to the log-driven score. We observed the e�ects of these parameters on Pipeline+.

Figure 2.5 shows that any � ≥ 5 yields more or less consistent performance. Conse-

quently, we chose � = 5 as a cuto� for all our benchmarks because it re�ected optimal
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Figure 2.5: Accuracy of Pipeline+ on each benchmark given a value of �, with � �xed at

0.8.
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Figure 2.6: Accuracy of Pipeline+ on each benchmark given a value of �, with � �xed at

5.

performance and queries were also evaluated in a timely manner.

In addition, we evaluated the end-to-end performance of Pipeline+ with varying val-

ues of � and �nd similar performance across all benchmarks for 0.1 ≤ � ≤ 0.8. For the Yelp

benchmark, accuracy falls when � is 0 because the word similarity scores are necessary

when ranking con�gurations, while for the other benchmarks, the pruning procedure for

candidate mappings is su�cient to retain and distinguish the correct mappings. Accu-

racy gradually drops on the MAS and IMDB benchmarks for � > 0.8, and sharply on all

benchmarks as � approaches 1, suggesting that the log information is crucial for most

queries.
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2.7 Summary

In this chapter, we have described Templar, a system that enhances the performance of

existing NLIDBs using SQL query logs. We model the information in the SQL query log

in a data structure called the Query Fragment Graph, and use this information to improve

the ability of existing NLIDBs to perform keyword mapping and join path inference. We

demonstrated a signi�cant improvement in accuracy when augmenting existing pipeline

NLIDBs using log information with Templar. Possible future work includes exploring

the in�uence of user sessions in the SQL query log, as well as �nding ways to improve

existing deep learning-based end-to-end NLIDBs with information from the SQL log.
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CHAPTER 3

Combining Natural Language and

Programming-by-Example1

3.1 Introduction

As mentioned in Chapter 1, querying a relational database is di�cult because it requires

users to know both the SQL language and be familiar with the schema. On the other

hand, many users possess enough domain expertise to describe their desired queries by

alternative means. Consequently, an ongoing research challenge is enabling users with

domain-speci�c knowledge but little to no programming background to specify queries.

One popular approach is the natural language interface (NLI), where users can state

queries in their native language. Unfortunately, existing NLIs require signi�cant over-

head in adapting to new domains and databases [57,61,77] or are overly reliant on speci�c

sentence structures [43]. More recent advances leverage deep learning in an attempt to

circumvent these challenges, but the state-of-the-art accuracy [79] on established bench-

marks falls well short of the desired outcome, which is that NLIs should either interpret

the user’s query correctly or clearly detect any errors [57].

Another alternative to writing SQL is programming-by-example (PBE), where users

1
©2020 ACM. This is the author’s version of the work. The de�nitive Version of Record was published

in: Christopher Baik, Zhongjun Jin, Michael Cafarella, and H. V. Jagadish, Duoquest: A Dual-Speci�cation

System for Expressive SQL Queries, Proceedings of the 2020 ACM International Conference on Management

of Data, (SIGMOD ’20), June 14–19, 2020, Portland, OR, USA, http://dx.doi.org/10.1145/3318464.
3389776.
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Query Expr.2 Knowledge3

System Soundness ⋈ �  NS PT OW

NLIs [43, 77, 79] 3 3 3 3 N/A N/A

PBE Systems

QBE [82] 3 3 3 3 3 3

MWeaver [59] 3 3 3 3

S4 [58] 3 3 3 3 3

SQuID [25] 3 3 3 34 3 3

TALOS [69] 3 3 3 3 3

QFE [44] 3 3 3

PALEO [55] 3 3 3

Scythe [73] 3 3 3 3

REGAL+ [65] 3 3 3 3 3

Duoqest 3 3 3 3 3 3 3

Table 3.1: Duoqest vs. NLI/PBE, considering soundness, query expressiveness, and re-

quired user knowledge. A 3 is desirable in each column.

must either provide query output examples or example pairs of an input database and

the output of the desired query. PBE systems have the advantage of a concrete notion of

soundness in that returned candidate queries are guaranteed to satisfy the user’s speci�-

cation, while NLIs, on the other hand, provide no such guarantees.

However, PBE systems must precariously juggle various factors: how much query

expressiveness is permitted, whether schema knowledge is required of the user, whether

users may provide partial tuples rather than full tuples, and whether an open- or closed-

world setting is assumed, where in a closed-world setting, the user is expected to provide

a complete result set, while the user may provide a subset of possible returned tuples in

an open-world setting.

Table 3.1 summarizes the capabilities of previous NLI and PBE systems, with respect

to three major categories:

1. soundness, which guarantees that results satisfy the user speci�cation;

2
⋈: join, � : selection,  : grouping/aggregation

3
NS: no schema knowledge, PT: partial tuples, OW: open-world assumption

4
SQuID does not support projected aggregates (i.e. in the SELECT clause).
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2. permitted query expressiveness;

3. and required user knowledge.

With respect to these factors, an ideal system would: (1) provide soundness guar-

antees; (2) enable expressive queries with selections, aggregates, and joins; and (3) allow

users to provide partial tuples in an open-world setting without schema knowledge. How-

ever, previous approaches could not handle the massive search space produced by this

scenario and each constrained at least one of the above factors.

Our Approach While existing approaches only permit users to specify a single type

of speci�cation, we observe that PBE speci�cations and natural language queries (NLQs)

are complementary, as PBE speci�cations contain hard constraints that can substantially

prune the search space, while NLQs provide hints on the structure of the desired SQL

query, such as selection predicates and the presence of clauses. Therefore, we argue for

dual-speci�cation query synthesis, which consumes both a NLQ and an optional PBE-like

speci�cation as input. The dual-speci�cation approach does not inhibit users who are only

able to provide a single speci�cation, but can help the system more easily triangulate the

desired query when users are able to provide both types of speci�cations.

System Desiderata There are several goals in developing a dual-speci�cation system.

First, it is crucial that the dual-speci�cation system helps users without schema knowl-

edge, and potentially even without any SQL experience, correctly construct their desired

query. Our aim is to develop a system that can help non-technical users with domain

knowledge to construct expressive SQL queries without the need to consult technical ex-

perts. In addition, for technical users, such a system can be a useful alternative to manually

writing SQL, which often requires the need to manually inspect the database schema.

Second, we want to minimize user time in using the system. Dual-speci�cation in-

teraction should help users more e�ciently synthesize queries, especially in contrast to
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existing single-speci�cation approaches such as NLIs or PBE systems.

Finally, we also want to have our system run e�ciently. This will both enable us to

maximize the likelihood of �nding the user’s desired query within a limited time budget,

and minimize the amount of time the user spends idly waiting for the system to search

for queries.

Contributions We o�er the following contributions:

1. We propose the dual-speci�cation query synthesis interaction model and introduce

the table sketch query (TSQ) to enable users with domain knowledge to construct

expressive SQL queries more accurately and e�ciently than with previous single-

speci�cation approaches.

2. We e�ciently explore the search space of candidate queries with guided partial

query enumeration (GPQE), which leverages a neural guidance model to enumer-

ate the query search space and ascending-cost cascading veri�cation in order to ef-

�ciently prune the search space. We describe our implementation of Duoqest,

a novel prototype dual-speci�cation system, which leverages GPQE and a front-end

web interface with autocomplete functionality for literal values.

3. We present user studies on Duoqest demonstrating that the dual-speci�cation

approach enables a 62.5% absolute increase in accuracy over a state-of-the-art NLI

and comparable accuracy to a PBE system on a more limited workload for the PBE

system. We also present a simulation study on the Spider benchmark demonstrating

a >2x increase in the top-1 accuracy of Duoqest over both NLI and PBE.

Organization — In Section 3.2, we provide an overview of our problem. We then

describe our solution approach (Section 3.3) and system implementation (Section 3.4). We

present our experimental evaluation, including user studies and simulated experiments
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(Section 3.5), explore related work (Section 3.6), discuss limitations of our approach and

opportunities for future work (Section 3.7), and summarize (Section 3.8).

3.2 Problem Overview

3.2.1 Motivating Example

Consider the following motivating example:

Example 3.1. Kevin wants to query a relational database containing movie information but

has little knowledge of SQL or the schema. He issues the following NLQ to a NLI.

NLQ: Show names of movies starring actors from before 1995, and those after 2000, with

corresponding actor names, and years, from earliest to most recent.

Sample Candidate SQL Queries:

CQ1: Meaning: The names and years of movies released before 1995 or after 2000 starring

male actors, with corresponding actor names, ordered from oldest to newest movie.

SELECT m.name, a.name, m.year

FROM actor a JOIN starring s ON a.aid = s.aid

JOIN movies m ON s.mid = m.mid

WHERE a.gender = `male' AND

(m.year < 1995 OR m.year > 2000)

ORDER BY m.year ASC

CQ2: Meaning: The names of movies starring actors/actresses born before 1995 or after 2000

and corresponding actor names and birth years, ordered from oldest to youngest ac-

tor/actress.

SELECT m.name, a.name, a.birth_yr

FROM actor a JOIN starring s ON a.aid = s.aid
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JOIN movies m ON s.mid = m.mid

WHERE a.birth_yr < 1995 OR a.birth_yr > 2000

ORDER BY a.birth_yr ASC

CQ3: Meaning: The names and years of movies either (a) released before 1995 and starring

male actors, or (b) released after 2000; with corresponding actor names, from oldest to

newest movie.

SELECT m.name, a.name, m.year

FROM actor a JOIN starring s ON a.aid = s.aid

JOIN movies m ON s.mid = m.mid

WHERE (a.gender = `male' AND m.year < 1995)

OR m.year > 2000

ORDER BY m.year ASC

The NLI returns over 30 candidate queries. CQ3 is his desired query, but it is the 15th

ranked query returned by the NLI and not immediately visible in the interface.

Even for a human SQL expert, the NLQ in Example 3.1 is challenging to decipher, as

each of the interpretations cannot be ruled out de�nitively without an explicit means of

clari�cation by the user. In many cases, NLIs may not return the desired query in the

top-k displayed results, and users have no recourse other than to attempt to rephrase the

NLQ without additional guidance from the system. In addition, leveraging a previous

PBE system for Example 3.1 would be di�cult unless Kevin already has a large number

of exact, complete example tuples on hand.

With access to Duoqest, our dual-speci�cation interface, Kevin can supply an op-

tional PBE-like speci�cation called a table sketch query (TSQ) to clarify his query, even

with limited example knowledge:
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Types text text number

Tuples
1. Forrest Gump Tom Hanks
2. Gravity Sandra Bullock [2010,2017]

Sorted? 7

Limit? None

Table 3.2: Example table sketch query (TSQ). Top: contains the data types for each column;

Middle: example tuples; Bottom: indicates that desired query output will neither be sorted

nor limited to top-k tuples.

Example 3.2. Kevin chooses to re�ne his natural language query with a table sketch query

(TSQ) on Duoqest.

He thinks of movies he knows well, and recalls that Tom Hanks starred in Forrest Gump

before 1995 and that Sandra Bullock starred in Gravity sometime between 2010 and 2017. He

encodes this information in the TSQ shown in Table 3.2.

Using the NLQ along with the TSQ, the system can eliminate CQ1 because it does not

produce the second tuple (with Sandra Bullock, a female, starring in the movie), as well as

CQ2, because Sandra Bullock was not born between 2010 and 2017. CQ3 is therefore correctly

returned to Kevin.

The TSQ requires no schema knowledge from the user, allows users to specify partial

tuples, and permits an open-world setting. When used alone, the TSQ is still likely to face

the problem of an intractably large search space. However, when used together with

an NLQ, the information from the natural language can guide the process to enable the

synthesis of more expressive queries such as those including grouping and aggregates.

While the TSQ is optional, a dual-speci�cation input is also preferred over the NLQ

alone because it enables pruning of the search space of partial queries and permits a sound-

ness guarantee that all returned results must satisfy the TSQ. In addition, the TSQ enables

users a reliable, alternative means to re�ne queries iteratively (by adding additional tuples

and other information to the TSQ) if their initial NLQ fails to return their desired query.
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3.2.2 Table Sketch Query

We formally de�ne the table sketch query (TSQ), which enables users to specify constraints

on their desired SQL query at varied levels of knowledge in a similar fashion to existing

PBE approaches [58, 59]. Unlike existing approaches, we also allow the user to include

some additional metadata about their desired SQL query:

De�nition 3.1 (R6:D3). A table sketch query  = (�,� , � ,k) has:

1. an optional list of type annotations � = (�1,… ,�n);

2. an optional list of example tuples � = (�1,… , �n);

3. a boolean sorting �ag � ∈ {⊤,⊥} indicating whether the query should have ordered

results; and

4. an limit integer k ≥ 0 indicating whether the query should be limited to the top-k

rows
5
.

A tuple in the result set of a query, �q ∈ R(q), satis�es an example tuple �i if each

cell �q[j] ∈ �q matches the corresponding cell of the same index �i[j] ∈ �i . As shown in

Example 3.2, each example tuple �i ∈ � may contain exact cells, which match cells in �q of

the same value; empty cells, which match cells in �q of any value, and range cells, which

match cells in �q that have values within the speci�ed range.

De�nition 3.2. A query q satis�es a TSQ  = (�,� , � ,k) if all of the following conditions

are met:

1. if � ≠ ∅, the projected columns of q must have data types matching the annotations;

2. if � ≠ ∅, for each example tuple in � , there exists a distinct tuple in the result set of q

that satis�es it;

5
k = 0 indicates no limit.
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User

Dual-Specification
System

1. NLQ + (TSQ)

2. Candidate Queries

3. Rephrase NLQ
or Refine TSQ 

Figure 3.1: Dual-speci�cation interaction model.

3. if � = ⊤, q must include a sorting operator and produce the satisfying tuples in (2) in

the same order as the example tuples in the TSQ;

4. if k > 0, q must return at most k tuples.

We denote a table sketch query  (q,D) as a function taking a query q and database D

as input. This function returns ⊤ if executing q on D satis�es  , and ⊥ otherwise.

3.2.3 Problem De�nition

We now formally de�ne our dual-speci�cation problem:

Problem 3.1. Find the desired query q̂ on database D, given:

1. a natural language query N describing q̂, which includes a set of text and numeric

literal values L used in q̂;

2. an optional table sketch query  such that  (q̂,D) = ⊤.

The literal values L are a subset of tokens in the natural language query N . These

can be obtained from the user by presenting an autocomplete-based tagging interface, as

described further in Section 3.4.

3.2.4 Interaction

Figure 3.1 depicts the interaction model. The user issues a NLQ to the system, along

with an optional TSQ. The system returns a ranked list of candidate queries. If none of

54



candidate queries is the user’s desired query, the user has two options: they may either

rephrase their NLQ or re�ne their query by adding more information to the TSQ. This

process continues iteratively until the user obtains their desired query.

3.2.5 Task Scope

We consider select-project-join-aggregate (SPJA) queries, including grouping, sorting,

and limit operators. In clauses with multiple selection predicates, we disallow nested

expressions with di�erent logical operators such as a > 1 OR (b < 1 AND c = 1) due to

the challenge of expressing such predicates in a NLQ. For simplicity, we restrict join op-

erations to inner joins on foreign key-primary key relationships, although alternate joins

such as left joins can also be considered with minimal engineering e�ort.

3.3 Solution Approach

3.3.1 Overview

The search space of possible SQL queries in our setting is enormous
6
, with a long chain of

inference decisions to be made about the presence of clauses, number of database elements

in each clause, constants in expressions, join paths, etc. Discovering whether a single

satisfying query exists for a set of examples, even in the context of select-project-join

queries, is NP-hard [75]. The set of queries we hope to support only further expands this

search space.

Previous work [74] attempts to tackle this challenge by implementing beam search,

which limits the set of possible generated candidate queries to the k highest-con�dence

branches at each inference step. However, this approach sacri�ces completeness and can

cause the correct query to be eliminated in cases where the model performs poorly.

6
O(c

n
), where c ≥ 2 is a constant determined by permitted expressivity and n is the number of columns

in the schema.

55



By including the TSQ as an additional speci�cation, we have an alternative means

to prune the search space without sacri�cing completeness. Consequently, we propose

guided partial query enumeration (GPQE), which has two major features. First, GPQE per-

forms guided enumeration by using the NLQ to guide the candidate SQL enumeration

process, where candidates more semantically relevant to the NLQ are enumerated �rst.

Second, GPQE leverages partial queries (PQs) as opposed to complete SQL queries to fa-

cilitate e�cient pruning, de�ned as follows:

De�nition 3.3. A partial query (PQ) is a SQL query in which a query element (i.e. SQL

query, clause, expression, column reference, aggregate function, column reference, or con-

stant) may be replaced by a placeholder.

Many NLI systems already generate PQs during query inference [77] or can be easily

adapted [74] to do so. These PQs are tested against the TSQ to prune large branches of

invalid queries early without needing to enumerate all complete queries in each branch,

which is costly both because of the volume of complete queries and the time needed to

verify each one. Ultimately, this enables the approach to cover more of the search space

in a given amount of time.

3.3.2 Algorithm

Algorithm 5 describes the GPQE process, which takes in the natural language queryN , an

enumeration guidance model M , the table sketch query  , and the database D. P stores

the collection of states to explore, where each state is a pair comprised of a partial query

and a con�dence score for that partial query (Line 2). On each iteration, p, the highest

con�dence state from P is removed (Line 4). EnumNextStep produces Q, the set of new

partial query/con�dence score states that can be generated by making an incremental

update to a single placeholder on the partial query in p (Line 5). Each state q ∈ Q is

then veri�ed against the table sketch query  (Line 7), and those that fail veri�cation are
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Algorithm 5 Guided Partial Query Enumeration

1: function Enumerate(N , M ,  , D)

2: P ← {(∅,1)}

3: while P ≠ ∅ do
4: p← pop highest priority element from P

5: Q← EnumNextStep(p,N ,M,D)

6: for q ∈ Q do
7: if Verify( , q[0],D) = ⊥ then
8: continue
9: else

10: if q[0] is complete then
11: emit q[0] as a candidate query

12: else
13: push q onto P

discarded. The remaining states are examined to see whether they are complete queries

(Line 10), in which case they are emitted as a valid candidate query (Line 11). Otherwise,

they are pushed back onto P for another iteration (Line 13). The candidate queries are

returned to the user as a ranked list ordered from highest to lowest con�dence score.

Figure 3.2 displays an example GPQE execution, where each box represents a state.

Each new layer is an iteration, where candidate states are generated by EnumNextStep

using the highest-con�dence state available at that iteration. Shaded boxes indicate that

the state failed Verify. The highest-ranked candidate query is bolded.

3.3.3 Guided Enumeration

In this section, we describe the enumeration process in EnumNextStep. We adopt the

SyntaxSQLNet [79] system and make several modi�cations to enable our approach to:

(1) perform a complete enumeration over the possible search space, (2) perform a best–

�rst search and robustly compare any two search states during enumeration, (3) perform

veri�cation of partial queries by �eshing out their join paths.

We begin by providing some necessary background knowledge of the SyntaxSQLNet

system.
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∅
Conf: 1

SELECT ? FROM ?
Conf: 0.2

SELECT ? FROM ?
WHERE ?

Conf: 0.7

SELECT title
FROM movie
WHERE ?

Conf: 0.35

SELECT title
FROM movie
WHERE year < 1995

Conf: 0.16

NLQ: Find all movies before 1995.
TSQ: α = (text), χ = (Forrest Gump), τ = ⊥, k = 0

…

…

…

SELECT name
FROM actor
WHERE ?

Conf: 0.21

SELECT title
FROM movie
WHERE year <= 1995

Conf: 0.14

SELECT title
FROM movie
WHERE year = 1995

Conf: 0.04

Figure 3.2: Simpli�ed GPQE example. Each box is a state. Shaded boxes fail veri�cation

against the TSQ. The bolded state is the highest-ranked candidate query.

3.3.3.1 Background

SyntaxSQLNet uses a collection of recursive neural network modules, each responsible for

making an enumeration decision for a speci�c SQL syntax element. We list the modules

used in our system in Table 3.3. Each module takes the natural language query N , the

partial query synthesized so far p, and optionally, the database schema D (for modules

such as the COL module which infer a column from the database schema). Given the

input, each module returns the highest-con�dence output class. For modules returning a

set as output, a three-step decision is made: (1) a classi�er predicts the number of values k

to return, (2) another classi�er ranks the relevant output classes, and (3) the top-k ranked

classes are returned by the module.

The order of module execution is pre-assigned based on SQL syntax rules and the

current output state p. For example, if a WHERE clause is being predicted, the COL, OP, and
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Module Responsibility Output

KW Clauses present in query (WHERE, GROUP BY, ORDER BY) Set

COL Schema columns Set

OP Predicate operators (e.g. =, LIKE) Set

AGG Aggregate functions (MAX, MIN, SUM, COUNT, AVG, None) Set

AND/OR Logical operators for predicates Single

DESC/ASC ORDER BY direction and LIMIT Single

HAVING Presence of HAVING clause Single

Table 3.3: Selected modules from SyntaxSQLNet [79], their respective responsibility and

output cardinality.

ROOT/TERM modules will be executed in order.

3.3.3.2 Candidate Enumeration

SyntaxSQLNet, by design, produces a single output query as output. To enable the search

space enumeration in EnumNextStep to be complete, we modify the modules in Syn-

taxSQLNet to produce all possible candidate states. We accomplish this by generating a

new state for each candidate during each inference decision. For example, when execut-

ing the AND/OR module, we generate two candidate states, one each for AND and OR. For

modules returning a set as output, the set of returned candidate states is the power set of

the output classes.

3.3.3.3 Con�dence Scores

SyntaxSQLNet produces rankings for each state with respect to its siblings in the search

space by using the softmax function to produce a score in (0,1) for each output class.

However, to facilitate the best-�rst search in Line 4 of Algorithm 5, we need a overall

con�dence score that enables us to compare two states even if they are not siblings. As a

result, we explicitly de�ne the con�dence score C for a partial query state p as follows:

C(p) =

|p|

∏

i=1

M(N ,pi ,D)
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Algorithm 6 Progressive Join Path Construction

1: function ConstructJoinPaths(q, D)

2: C ← get all column references in q

3: T ← get all tables encompassing C

4: R← ∅

5: if |T | = 0 then
6: R← tables in D

7: else
8: J ← Steiner(T ,D)

9: add J to R
10: for t ∈ FKs to PKs in T do
11: J

′
← AddJoin(J , t)

12: add J ′ to R
13: return R

where each pi is the output class of the i-th inference decision made to generate the par-

tial query in state p, and M(N ,pi ,D) is the softmax value returned by the appropriate

SyntaxSQLNet module for NLQ N , output class pi , on the schema of database D. In other

words, the con�dence score is the cumulative product of the softmax values of each output

class comprising the partial query. De�ning the con�dence score in this way guarantees

the following property:

Property 3.1. The sum of the con�dence scores of all child branches of state p is equal to

the con�dence score of p.

In theory, this con�dence score de�nition also causes the system to prefer shorter

queries over longer ones. Such concerns motivate previous systems [77] to adopt a con�-

dence score de�nition motivated by the geometric mean. In practice, however, we found

that this property of our con�dence score did not negatively a�ect our system’s ability to

accurately synthesize user queries.

3.3.3.4 Progressive Join Path Construction

SyntaxSQLNet includes a rudimentary join path inference module to determine the tables

and join conditions used in the FROM clause of a query. In SyntaxSQLNet, this join path
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module is (1) only applied to completed queries as the �nal step in the query inference

process, and (2) only produces a single join path.

For our GPQE algorithm, however, we need join paths to be produced for each partial

query, because the Verify procedure needs to be able to execute partial queries to compare

them against the example tuples in the TSQ. In addition, user-provided NLQs often lack

explicit information to guide the system to select one particular join path over another [5].

For this reason, and also to enable completeness in our search procedure, we produce all

candidate join paths for each partial query rather than just a single join path.

To accomplish these goals, we adopt a technique called progressive join path construc-

tion. Algorithm 6 describes the join path construction process, which takes q, a partial

query, and D, the database as input. First, the set of distinct tables encompassing all col-

umn references in q are collected into T (Line 3). If there are no tables present in the

query (e.g. SELECT COUNT(*)), then each table in D is returned as a candidate join path

(Line 6). Otherwise, following the approach in [5], a Steiner tree is computed on the graph

where nodes are tables and edges are foreign key to primary key relationships between

the tables (Line 8). By default, all edge weights are set to 1, though weights could also be

derived from sources such as a query log [5]. Finally, in Lines 10-12, we add joins to cover

cases where the desired query contains additional tables in the FROM clause beyond the

columns already present in q, such as in the following example.

Example 3.3. A query utilizing more tables than those referenced outside the FROM clause:

SELECT a.name FROM actor a

JOIN starring s ON a.aid = s.aid

The process in Lines 10-12 can be recursively called to add joins of arbitrary depth.

For simplicity, we only depict the process for one level of depth in Algorithm 6.

Whenever a new partial query is generated, progressive join path construction is ex-

ecuted to produce a new state for each candidate join path of the partial query. While all
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states produced by this process have the same con�dence score, the enumeration process

prioritizes states with higher con�dence scores �rst, and then uses the join path length as

a secondary tiebreaker, where shorter join paths are preferred.

3.3.3.5 Extensibility

As NLI models are undergoing rapid active development in the programming languages [77],

natural language processing [11,30, 79], and database research communities [43], our ap-

proach is modular, enabling SyntaxSQLNet to be replaced by any NLI model that:

1. is able to generate and incrementally apply updates to executable partial queries,

2. emits a con�dence score for each partial query in the range [0,1] and ful�lling Prop-

erty 3.1.

3.3.3.6 Scope

While SyntaxSQLNet supports set operations (INTERSECT, UNION, EXCEPT) and nested

subqueries in predicates, we disabled this functionality to restrict output to the tasks de-

scribed in Section 3.2.5.

3.3.4 Veri�cation

During the enumeration process, verifying queries against the TSQ can be expensive for

two reasons: (1) waiting until candidate queries are completely synthesized before veri�-

cation causes redundant work to be performed on similar candidate queries, and (2) exe-

cuting a single, complete candidate query on the database can be costly depending on the

nature of the query and the database contents.

To mitigate these ine�ciencies, we leverage ascending-cost cascading veri�cation for

the Verify function in Algorithm 5. Low-cost veri�cations, which do not require any

access to the database D, are performed �rst to avoid performing high-cost veri�cations,
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Algorithm 7 Veri�cation

1: function Verify( , L, q, D)

2: �,� , � ,k = 
3: if ¬VerifyClauses(� ,k,q) then return ⊥

4: if ¬VerifySemantics(q) then return ⊥

5: if ¬VerifyColumnTypes(�,q,D) then return ⊥

6: if ¬VerifyByColumn(� ,q,D) then return ⊥

7: if CanCheckRows(q) then
8: if ¬VerifyByRow(� ,q,D) then return ⊥

9: if q is complete then
10: if ¬VerifyLiterals(q,L) then return ⊥

11: if � ∧ |� | >= 2 then
12: if ¬VerifyByOrder(� ,q,D) then return ⊥

13: return ⊤

which involve issuing queries on D, until absolutely necessary. In addition, these veri�-

cations are performed as early as possible on partial queries in order to avoid performing

redundant work on similar candidate queries. Algorithm 7 describes this process, which

takes the TSQ  , a partial query q, the literal values L within the natural language query,

and the database D as input.

First, the presence of clauses is veri�ed in VerifyClauses. If the TSQ speci�es that re-

sults should be sorted or limited and the partial query does not match the TSQ, veri�cation

will fail. For example:

Example 3.4. Given a TSQ with sorting �ag � = ⊥ and the following partial queries, where

? indicates a placeholder:

CQ1: SELECT name, birth_yr FROM actor WHERE ?

CQ2: SELECT name, birthplace FROM actor WHERE ?

CQ3: SELECT a.name, COUNT(*) FROM actor a JOIN

starring s ON a.aid = s.aid GROUP BY a.name

CQ4: SELECT a.name, MAX(m.revenue) FROM actor a

JOIN starring s ON a.aid = s.aid JOIN
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Error Description Example Possible Alternative

Inconsistent

predicates

Do not permit selection

predicates on the same

column that contradict

each other.

SELECT name FROM actor
WHERE name = ’Tom Hanks’
AND name = ’Brad Pitt’

SELECT name FROM actor
WHERE name = ’Tom Hanks’
OR name = ’Brad Pitt’

Constant

output

column

Do not permit columns

with equality predicates

to be projected.

SELECT name, birth_yr
FROM actor
WHERE birth_yr = 1950

SELECT name FROM actor
WHERE birth_yr = 1950

Ungrouped

aggregation

An unaggregated pro-

jection and aggregation

cannot be used together

without GROUP BY.

SELECT birth_yr, COUNT(*)
FROM actor

SELECT birth_yr,
COUNT(*) FROM actor

GROUP BY birth_yr

GROUP BY
w/singleton

groups

If each group consists of

a single row (e.g. group

contains primary key),

aggregation is unneeded.

SELECT aid, MAX(birth_yr)
FROM actor
GROUP BY aid

SELECT aid, birth_yr
FROM actor

Unnecessary

GROUP BY
If there are no aggregates

in the SELECT, ORDER BY
or HAVING clauses, GROUP
BY is unnecessary.

SELECT name FROM actor
GROUP BY name

SELECT name FROM actor

Aggregate

type usage

MIN/MAX/AVG/SUM may

not be applied to text

columns.

SELECT AVG(name)
FROM actor

N/A

Faulty type

comparison

>,<,>=,<=, BETWEEN may

not be applied to text

columns.

SELECT name FROM actor
WHERE name >= ’Tom Hanks’

N/A

LIKE may not be applied

to numeric columns.

SELECT birth_yr
FROM actor WHERE birth_yr
LIKE ’%1956%’

N/A

Table 3.4: List of semantic pruning rules. Rules may be modi�ed depending on the domain

and use case.

movies m ON m.mid = s.mid GROUP BY a.name

CQ5: SELECT name, debut_yr FROM actor ORDER BY ?

CQ5 would fail VerifyClauses because the TSQ speci�es that results are not to be ordered in

the desired query, yet it contains an ORDER BY clause.

Second, semantic checks are performed on the query in VerifySemantics. This step

constrains the search space by eliminating nonsensical or redundant yet syntactically-

correct SQL queries. Over 40 such errors are cataloged in [15]. We check for a subset of

these errors and some additional ones, listed in Table 3.4. While expert users may opt
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to intentionally write SQL queries that break some of these rules, we enforce these rules

to constrain the set of produced queries to those even non-technical users can readily

understand.

Third, the column types in the SELECT clause are veri�ed against the types in the TSQ

in VerifyColumnTypes, which requires a check on the schema of D, but still without any

need to query D:

Example 3.5. Of the remaining queries CQ1-CQ4 in Example 3.4, given a TSQ with type

annotations � = [text,number], CQ2 would fail VerifyColumnTypes because the types of

its projected columns in the SELECT clause are [text,text].

Fourth, in VerifyByColumn, tuples in the TSQ are compared column-wise against

the SELECT clause of each partial query. This requires running relatively inexpensive

column-wise veri�cation queries on the database D:

Example 3.6. Given an example tuple in the TSQ �1 = [Tom Hanks, [1950,1960]] and the

queries CQ1, CQ3, and CQ4 from Example 3.4, VerifyByColumn executes the following

column-wise veri�cation queries on the database:

CV1: SELECT 1 FROM actor

WHERE name = 'Tom Hanks' LIMIT 1

(for 1st projected column of CQ1, CQ3, and CQ4)

CV2: SELECT 1 FROM actor WHERE birth_yr >= 1950

AND birth_yr <= 1960 LIMIT 1

(for 2nd projected column of CQ1)

CV3: SELECT 1 FROM movies WHERE revenue >= 1950

AND revenue <= 1960 LIMIT 1

(for 2nd projected column of CQ4)
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CV3 is the only one producing an empty result set on D, thus causing CQ4 to fail VerifyBy-

Column.

For column-wise veri�cation queries, SELECT 1 and LIMIT 1 are used to minimize

the execution time on typical SQL engines. Each unaggregated projected column in the

SELECT clause of the partial query is matched against the corresponding cell in the exam-

ple tuple, whether via an equality operator for single-valued cells in the tuple or >=/<=

operators for range cells, and placed in the WHERE clause, while the FROM clause is assigned

as the table of the projected column. Aggregated projections with MIN or MAX are treated

the same as unaggregated projections, as both these functions will produce an exact value

from the projected column. For AVG, the range (i.e. minimum value to maximum value)

of the projected column is compared with the range cell, and veri�cation fails if the two

ranges do not intersect. Projections with COUNT and SUM aggregations are ignored because

no conclusion can easily be drawn for partial queries.

Fifth, row-wise veri�cation is performed. CanCheckRows enforces the precondition

for row-wise veri�cation: any partial query with aggregated projections needs completed

WHERE/GROUP BY clauses with no holes, because completing those holes could change the

output of the aggregated projections in the �nal query. Row-wise veri�cation queries are

similar to column-wise veri�cation queries, except that they require output values of each

partial query to reside in the same tuple when matched with example tuples in the TSQ:

Example 3.7. Given the example tuple �1 from Example 3.6 and the queries CQ1 and CQ3

from Example 3.4, VerifyByRow executes the following row-wise veri�cation queries on the

database for CQ1 and CQ3 respectively:

RV1: SELECT 1 FROM actor WHERE name = 'Tom Hanks'

AND (birth_yr >= 1950 AND birth_yr <= 1960)

LIMIT 1

RV2: SELECT 1 FROM actor a JOIN starring s ON
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a.aid = s.aid WHERE name = 'Tom Hanks'

GROUP BY a.name HAVING (COUNT(*) >= 1950 AND

COUNT(*) <= 1960) LIMIT 1

RV1 produces a valid result on D, while RV2 does not. As a result, CQ1 is the only CQ that

passes all veri�cation tests.

Each projected column in the SELECT clause of the candidate query is matched against

the corresponding cell in the example tuple and appended to either the WHERE (for unag-

gregated projections) or HAVING (for aggregated projections) of the column-wise veri�ca-

tion query. All other elements from the original candidate query (such as FROM, GROUP BY

clauses, or other selection predicates) are retained in the row-wise veri�cation query.

Finally, when the query q is complete, the algorithm veri�es that all literals L are used

in q via VerifyLiterals. Then, if multiple example tuples exist in the TSQ and the sorting

�ag � = ⊤, VerifyByOrder executes q on D and ensures that each of the example tuples

in � is ful�lled in the same order as they were speci�ed in the TSQ.

3.3.5 Alternative Approaches

Two naïve approaches to designing a dual-speci�cation system are (1) intersecting the out-

put of an NLI and PBE system and (2) chaining two systems so the output of one becomes

the input of the next. The intersection approach is ine�cient because each system will

have to redundantly examine the search space without communicating with the other

system. The chaining approach is more promising, where candidate queries generated

by a NLI can be passed to a PBE system for veri�cation, eliminating the redundancy in

the intersection approach. However, it is still ine�cient in comparison to GPQE, which

enables us to eliminate large branches of complete queries by pruning partial queries.
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Figure 3.3: Architecture of Duoqest.

3.4 Implementation

We implemented our approach in a prototype system, Duoqest. The system architecture

(Figure 3.3) is comprised of 4 micro-services: the Enumerator, Veri�er, Front-end Interface,

and Autocomplete Server.

The Enumerator performs the EnumNextStep procedure, and uses a SyntaxSQL-

Net [79] model pre-trained using the training and development sets of the cross-domain

Spider dataset [80], while the Veri�er service executes Verify.

The Front-End Interface (Figure 3.4) enables the user to specify queries. The interface

contains a search bar for the user to specify the NLQ. Users can specify domain-speci�c

literal text values in the NLQ search bar by typing the double-quote (") character, which

activates an autocomplete search over a master inverted column index [63] containing all

text columns in the database. The TSQ interface is below the search bar, where each cell

in the interface activates the same autocomplete search as literal text values are typed.

After issuing the query, candidate SQL queries are displayed one at a time from high-

est to lowest con�dence as the system enumerates and veri�es them. Candidate queries
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Figure 3.4: Screenshot of front-end interface. The “SIGMOD” tag was produced via auto-

complete.

continue to load until a pre-speci�ed timeout is exceeded or the user clicks the “Stop Task”

button. To enable users without knowledge of SQL to distinguish candidate queries and

select from among them, each candidate query has a “Query Preview” button which exe-

cutes the query on the database with LIMIT 20 appended to the query to retrieve a 20-row

preview of the query results, and a “Full Query View” which executes the full query on

the database.

3.4.1 Domain-Speci�c Customization

Adapting Duoqest to a new domain requires minimal e�ort, as the NLI model is trained

on a cross-domain corpus. Additional domain-speci�c tasks can be used to retrain the

model, and domain-speci�c semantic rules may also be appended to the default semantic

rules provided by Duoqest. New databases should have foreign key-primary key con-

69



straints explicitly de�ned on the schema for the system to ingest (or these can be manually

speci�ed on our administrator’s interface), and table and column names should use com-

plete words rather than abbreviations (e.g. author_id instead of aid) as the NLI model

relies on o�-the-shelf word embedding models to interpret NLQs.

3.5 Evaluation

We explored several research questions in our evaluation:

RQ1: Does the dual-speci�cation approach help users to correctly synthesize their desired

SQL query compared to single-speci�cation approaches?

RQ2: Does the dual-speci�cation approach conserve user time over single-speci�cation

approaches?

RQ3: How does each component of our algorithm contribute to system performance?

RQ4: How does the amount of detail provided in the TSQ a�ect system performance?

3.5.1 Setup for User Studies

3.5.1.1 Compared Systems

For RQ1/RQ2, we conducted two within-subject user studies: one between Duoqest

and SyntaxSQLNet [79], a state-of-the-art NLI; and the other with Duoqest and SQuID [25],

a state-of-the-art PBE system.

We selected SyntaxSQLNet as a representative end-to-end neural network NLI. While

some recent NLIs [11, 30] are known to outperform SyntaxSQLNet, their code was not

available at the time of our study. In addition, their contributions are orthogonal to ours

and can provide corresponding improvements to the guided enumeration process in Duo-

qest.
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Tasks Avg. Schema Stats

Experiment Dataset # DBs E M H Total Tbls Cols FK-PK

User Study vs. NLI MAS [43] 1 0 3 5 8 15 44 19

User Study vs. PBE MAS [43] 1 0 4 2 6 15 44 19

Simulation

Spider Dev [80] 20 239 252 98 589 4.1 22.1 3.2

Spider Test [80] 40 524 481 242 1247 4.5 19.6 3.6

Table 3.5: Datasets used in our experiments, with the number of distinct databases and

tasks per dataset, and the average number of tables, columns, and foreign key-primary

key (FK-PK) relationships in all schemas. Easy (E) tasks were project-join queries includ-

ing aggregates, sorting, and limit operators, Medium (M) tasks also included selection

predicates, and Hard (H) tasks included grouping operators.

We selected SQuID as the representative PBE system because, to the best of our knowl-

edge (Table 3.1), it is the only prominent PBE system that makes an open-world assump-

tion, does not require schema knowledge of the user, and permits query expressivity be-

yond projections and joins.

For convenience, we denote SyntaxSQLNet asNLI and SQuID as PBE for the remainder

of this section.

3.5.1.2 Users

To re�ect our motivation of supporting users with no speci�c knowledge of the schema

and potentially without SQL experience, we recruited 16 users with no prior knowledge

of the schema for our studies. Six of the users had little to no experience with SQL, while

the remaining 10 had at least some experience with SQL.

3.5.1.3 Tasks

We tested Duoqest against NLI on a variety of tasks within the scope described in

Section 3.2.5. Since PBE did not support projected numeric columns or aggregates, we

generated a second task set with a more limited scope of tasks for our study comparing

Duoqest and PBE.
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We tested each user on the Microsoft Academic Search (MAS) database
7

(Table 3.5) to

see if they could synthesize the desired SQL query matching the provided task description.

Each task description was provided in Chinese
8

following the study procedure in [43] to

force the user to articulate the NLQ in English using their own words. This resulted in a

total of 128 task trials for the NLI study (64 on each system), and 96 task trials (48 on each

system) for the PBE study. Users were given a time limit of 5 minutes for each task trial,

which, in practice, was ample time for virtually all users to either complete the trial or

give up after losing patience. Each user was given the same 2 tutorial tasks related to the

actual task workload to try on each system prior to performing the study to teach them

how to use each system.

The tasks were split into two sets per user study: A/B for the NLI study (Table 3.7)

and C/D for PBE (Table 3.8). Half of the users were each given the �rst set to perform on

Duoqest �rst, then the second set to perform on the baseline system, while the other

half of the users �rst attempted the �rst set on the baseline system, then the second set on

Duoqest. The tasks in each set were given in the same order for each system, along with

the 2 initial tutorial tasks, so that if there were any learning e�ects, they would happen

equally on both systems. This means that results are comparable across systems for a

given task, but not necessarily between two tasks.

3.5.1.4 Query Selection

NLI and Duoqest produced a list of candidate SQL queries ranked from highest to lowest

con�dence, where each candidate query appeared as soon as the system enumerated it.

Users with at least some SQL experience attempted to directly read the SQL queries before

selecting one, as they could often understand the semantics of candidate queries even with

no prior knowledge of the schema. On the other hand, users with little to no knowledge of

7
We removed some rows and columns unused in our tasks from the original database to reduce the user

study time.

8
All recruited subjects were bilingual in Chinese and English.
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SQL selected queries using a combination of eyeballing the selection predicates in the SQL

queries and observing the “Query Preview” (described in Section 3.4) to view a sample of

the result set of each candidate query as a sanity check.

In contrast to the other systems, PBE o�ered an “explanation” interface where users

could check/uncheck suggested “�lters” (i.e. selection predicates) to modify the produced

query, with no need to consider the underlying SQL.

As a result, in the NLI study, both systems equally su�ered from the same risk of users

failing to properly understand the candidate SQL queries displayed to them. In the PBE

study, the explanation interface arguably o�ered a slight advantage to PBE over Duo-

qest for users with little knowledge of SQL. However, the study results demonstrated

that the current interface was su�cient even for users without SQL knowledge to select

the correct query on Duoqest.

3.5.1.5 Fact Bank

We designed our studies to explore the usability of each system given a �xed level of

pre-existing domain knowledge in an open-world setting—i.e. where users only know a

proper subset of tuples that will be produced by their desired query. To control for such

domain knowledge, we provided each user with a fact bank of 10 facts per task which

was presented in randomly shu�ed order during each trial. We allowed them to use any

subset of these facts, but we did not allow them to use any knowledge external to the fact

bank. These facts could be used in two ways: �rst, as example tuple input for Duoqest

or PBE; and second, as a means to verify the results of candidate queries by observing

whether the facts reside in the produced output preview.

Each fact was provided as a sentence rather than as a tuple to require the user to dis-

cern how to input the fact into each system. For example, “List authors and their number

of publications,” a fact would be written in the form “Author X wrote 50 to 100 publica-

tions,” and the user would �gure out how to input this as (X, [50, 100]) into Duoqest.
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Figure 3.5: % of trials for NLI study in which the user successfully completed each task

within 5 minutes.

A caveat of the fact bank design is that it does not test what happens when users

provide incorrect examples. This may present a risk of bias particularly in our study with

NLI, while in the study with PBE, both systems equally bene�t from the fact bank. In

a real world setting, the challenge of incomplete user knowledge is somewhat mitigated

in Duoqest by the autocomplete interface and the ability to provide partial or range

examples. However, we acknowledge that further study is required to better investigate

the e�ects of noisy examples on our system.

3.5.1.6 Environment

For Duoqest and NLI, a server was set up on a Ubuntu 16.04 machine with 16 2.10 GHz

Intel Xeon Gold 6130 CPUs and 4 NVIDIA GeForce GTX 1080 Ti GPUs (only a single GPU

was used for inference), running PyTorch 0.4.0 on CUDA 7.5. The front end was accessed

with a MacBook Pro using Google Chrome. PBE was executed on a Java graphical user

interface on a MacBook Pro.

3.5.2 User Study vs. NLI

Figure 3.5 displays the proportion of the time users successfully completed each task. With

regard to RQ1, it is clear that Duoqest enables users to discover the correct query far

more frequently than the baseline NLI system, as only 15 out of 64 (23.4%) trials were suc-
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Figure 3.6: Mean time per task for correctly completed trials in NLI study, with error bars

indicating standard error. A3, A4, B4 for NLI are omitted because there were no successful

trials.

cessful with NLI while that number shot up to 55 (85.9%) for Duoqest, a 62.5% absolute

increase in the percentage of task trials completed correctly. As evident from the �g-

ure, Duoqest outperformed NLI on each individual task, with users failing to complete

even a single trial on NLI for tasks A3, A4, B4. This is largely due to the additional PBE

speci�cation, which drastically shrinks the list of displayed candidate queries for Duo-

qest, while users grow fatigued manually verifying candidate queries in the large list

for NLI.

For RQ2, we observe in Figure 3.6 that Duoqest either reduces or requires com-

parable user time to the baseline NLI system for every successful trial. This is also

due to the reduction in the number of candidate queries displayed to the user.

Finally, the mean number of examples provided to Duoqest fell between 1 and 1.5

for each task, suggesting that Duoqest can be an e�ective tool for users even with

just one or two examples regarding their desired query.

3.5.3 User Study vs. PBE

For RQ1, Figure 3.7 shows that Duoqest and PBE have comparable accuracy on the

PBE-supported workload, with Duoqest performing marginally better on the more

di�cult Hard tasks (C3, D3).
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Figure 3.7: % of trials for PBE study in which the user successfully completed each task

within 5 minutes.
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Figure 3.8: Mean time per task for correctly completed trials in PBE study; error bars for

standard error.

For RQ2, Figure 3.8 shows that user time is comparable for PBE and Duoqest on

harder tasks but PBE is faster for simple tasks. PBE was faster for users on the easier

Medium-level tasks (C1, C2, D1, D2) because of the time required for users to type out

the NLQ on Duoqest. This additional cost was amortized for the more di�cult Hard

tasks (C3, D3) which contained aggregate operations due to the bene�ts gained by the

additional NLQ speci�cation.

Figure 3.9 displays how users issue more examples on average for PBE, suggesting

that Duoqest may be preferred in cases when users know fewer examples if they are

able to articulate an NLQ instead.
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Figure 3.9: Mean # examples used per task for successful trials in PBE study; error bars

for standard error.

3.5.4 Simulation Study

3.5.4.1 Setup

We evaluated Duoqest on the Spider benchmark [80], which is comprised of 10,181

NLQ-SQL pairs on 200 databases split into training (7,000 tasks), development (1,034

tasks), and test (2,147 tasks) sets. We removed tasks for which the SQL produced an empty

result set or was outside our task scope (Section 3.2.5), or if the database had annotation

errors (e.g. incorrect data types or integrity constraints in the schema). The �nal devel-

opment and test sets we tested on (Table 3.5) had 589 tasks and 1,247 tasks, respectively.

For each task, the SQL label from the Spider benchmark was designated as the user’s

desired query, and literal values used within the SQL label were set to be the input literals

L. We synthesized TSQs for each task, where each of the TSQs contained type annotations,

two example tuples randomly selected from the result set of the desired SQL query, and

� and k values corresponding to the desired query.

We compared the 3 systems from the user studies: Duoqest; SyntaxSQLNet (NLI);

and SQuID (PBE). For each task, Duoqest was given the NLQ, literals, and synthesized

TSQ; NLI was given the NLQ and literals; and PBE was given the example tuples of the

synthesized TSQ. The systems were run on the same machines as the user study.

Duoqest and NLI produced a ranked list of candidate queries one at a time from
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Top-1 Top-10 Correct Unsupported

System # % # % # % # %

Duoqest 374 63.5 493 83.7 - - 0 0

NLI 178 30.2 334 56.7 - - 0 0

PBE - - - - 78 13.2 475 80.6

(a) Spider Dev (589 total tasks)

Top-1 Top-10 Correct Unsupported

System # % # % # % # %

Duoqest 792 63.5 1065 85.4 - - 0 0

NLI 389 31.2 698 56.0 - - 0 0

PBE - - - - 203 16.3 972 77.9

(b) Spider Test (1247 total tasks)

Figure 3.10: Top-1 and Top-10 accuracy for Duoqest and NLI, task correctness for PBE,

and amount of unsupported tasks.

highest to lowest con�dence. The task was terminated when the desired query was pro-

duced by the system or a timeout of 60 seconds was reached. On the other hand, PBE

returned a single set of projected columns with multiple candidate selection predicates at

a single point in time, with a mean runtime of 1.7 seconds for the development set and 0.7

seconds for the test set.

3.5.4.2 Accuracy

Figure 3.10 displays the results of Duoqest and NLI’s top-k accuracy, which is the num-

ber of tasks for which the desired query appeared in the top-k of returned candidate

queries. In particular, the Top-10 accuracy is a good proxy for the user’s ability to dis-

cover their desired query, as we consider that examining a list of 10 candidate queries is

a reasonable burden for the user to carry.

The PBE system was unable to handle a large proportion of our benchmark tasks be-

cause it did not support projections of numeric columns or aggregate values and selection
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Easy Medium Hard

System 3# 3% U# 3# 3% U# 3# 3% U#

Duoqest 218 91.2 0 214 84.9 0 61 62.2 0

NLI 158 66.1 0 143 56.8 0 33 33.8 0

PBE 29 12.1 210 49 19.4 167 0 0 98

(a) Spider Dev (239 easy, 252 medium, 98 hard tasks)

Easy Medium Hard

System 3# 3% U# 3# 3% U# 3# 3% U#

Duoqest 495 94.5 0 407 84.6 0 163 67.4 0

NLI 379 72.3 0 246 51.1 0 73 30.2 0

PBE 107 20.4 417 96 20.0 313 0 0 242

(b) Spider Test (524 easy, 481 medium, 242 hard tasks)

Figure 3.11: Number (3#) and proportion (3%) of correct tasks (top-10 accuracy for Duo-

qest and NLI) and number of unsupported tasks (U#) by task di�culty level.

predicates with negation or LIKE operators. For tasks the PBE system could support, we

did not measure top-k accuracy because the expected interaction model di�ered from the

other systems. Instead, we labeled the result Correct if the selection predicates in the de-

sired query were a subset of PBE’s produced candidate selection predicates, ignoring any

di�erences in speci�c literal values.

Reinforcing our conclusions on RQ1 from the user study, Duoqest handily beats

single-speci�cation approaches NLI and PBE, with a >2x increase in Top-1 accuracy

and 47.6% increase in Top-10 accuracy over NLI, and an even larger improvement over

PBE on the development set. Results are similar on the test set.

Figure 3.11 presents a breakdown of task success by di�culty level, measured by top-

10 accuracy for Duoqest and NLI and correctness for PBE. As expected, systems perform

generally worse on more di�cult tasks as the resulting SQL for harder tasks contained

more complex query constructs. PBE was unable to support any hard tasks because they

all included projected aggregate values.
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Figure 3.12: Distributions of the time taken for each algorithm to synthesize the correct

query. A higher curve indicates superior performance.

While PBE should have been able to get all supported tasks correct, it failed several

tasks to due to its requirements for a star/snow�ake schema and user-de�ned metadata

annotations as to which schema attributes are “entities” or “concepts”. While we o�ered

our best e�ort in restructuring and labeling the schema so as to support all given tasks,

we found that for some schemas, all tasks for the schema could not be simultaneously

supported with any schema structure given the current system design.

3.5.4.3 Guided Partial Query Enumeration (GPQE)

To answer RQ3, we selectively disabled the two components of the GPQE algorithm used

in Duoqest: guided enumeration (Section 3.3.3) and pruning of partial queries (Sec-

tion 3.3.4). The version without guided enumeration (NoGuide) used only the literals

from the NLQ speci�cation and performed a naïve breadth-�rst search enumeration of

all possible queries (ignoring con�dence scores) while still pruning partial queries when

possible. Simpler queries (i.e. those with less operations) were enumerated �rst and col-

umn attributes were enumerated following the order of the schema metadata provided in
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Spider Dev Spider Test

Detail T1 T10 T100 T1 T10 T100

Full 63.5 83.7 91.7 63.5 85.4 92.4
Partial 59.6 77.1 90.3 58.6 81.5 90.5

Minimal 40.8 60.6 85.9 41.1 68.6 85.1

NLI 30.2 56.7 69.4 31.2 56.0 69.5

Table 3.6: Top-1, Top-10, and Top-100 exact matching accuracy (%) for TSQs with varying

amounts of speci�cation detail. NLI results shown for comparison.

the Spider benchmark. The algorithm disabling pruning of partial queries (NoPQ) lever-

aged enumeration guidance, but only veri�ed complete queries, not partial ones, making

it identical to the naïve chaining approach described in Section 3.3.5.

Figure 3.12 displays the results. In theory, all these systems explore the same search

space, and given enough time, the distributions will all converge. In practice, however,

the user cannot wait inde�nitely, and the �gure demonstrates how performance su�ers

immensely when we disable either guided enumeration or the pruning of partial

queries, highlighting their necessity in facilitating an e�cient, interactive-time system.

3.5.4.4 Speci�cation Detail

To answer RQ4, we varied the amount of detail in the synthesized TSQ provided to Duo-

qest. We considered three di�erent levels of detail:

(1) Full, using the full synthesized TSQ described in Section 3.5.4.1;

(2) Partial, for which all values for a randomly-selected single column in tasks with at

least 2 projected columns were erased from example tuples in the Full TSQ;

(3) Minimal, which removes all example tuples from the TSQ, leaving only column type

annotations.

Table 3.6 demonstrates how an increase in speci�cation detail helps contribute

to a corresponding increase in the performance of Duoqest. Performance for the
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Partial TSQ has a relatively small dropo� from the Full TSQ, showing the promise of

using partial or incomplete tuple knowledge to help users construct queries. There is

a larger gap between Partial and Minimal TSQs, suggesting that the presence of even

a single partial tuple is preferable to no example tuples at all. Finally, even providing

type annotations for each column allows a 30% improvement in top-1 accuracy over the

baseline NLI system which uses no TSQ.

3.6 Related Work

Natural language interfaces (NLIs) Most early NLIs for relational databases were

con�ned to a single domain [3]. Later work focused on the general-purpose case for easy

adoption on arbitrary schemas. The Precise system explicitly de�ned “semantic coverage”

to constrain the scope of natural language that could be expressed [57]. Other systems

utilized di�erent technologies such as dependency parse trees [43], semantic parsing [77],

or pre-de�ned ontologies [61] to expand the scope of expressible queries. More recently,

advances in deep learning have given rise to a new approach of building end-to-end deep

learning systems to translate natural language queries to SQL. The current state-of-the-

art utilizes techniques such as a modular syntax tree network [79], graph neural net-

works [11], or an intermediate representation [30] to generate SQL queries of arbitrary

complexity. Our dual-speci�cation approach alleviates ambiguity in natural language by

allowing the user to provide a table sketch query to constrain the query search space.

Programming-by-example (PBE) systems These interfaces permit users to provide

a set of example output tuples or the full output of the desired query to search for queries

on the database. A large body of work exists in this area [49], a representative sample

of which is displayed in Table 3.1. Such systems often have to sacri�ce query complexity

or enforce requirements on user knowledge (schema knowledge; full, exact tuples; or

a closed-world setting) to make the search problem tractable. More recent work [25]
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has made an attempt to discern query intent in PBE with complex queries using pre-

computed statistics and semantic properties. Our dual-speci�cation approach tackles the

same challenge in an orthogonal manner by leveraging the user’s natural language query

in addition to the user-provided examples.

3.7 Limitations and Future Work

In this section, we identify some potential limitations and improvements to the current

Duoqest prototype.

First, additional work needs to be done to produce a completely SQL-less interaction

model. Currently, users interact with produced candidate SQL queries to select their �nal

query. During our evaluation, users without knowledge of SQL or the schema used various

signals to assess whether a candidate query was the desired one (Section 3.5.1.4), and they

were for the most part successful. Users’ success may vary, however, when working with

schemas with confusing attribute names or with highly complex SQL queries. As a result,

there is a need for an interaction model that permits users to validate produced candidate

SQL queries against their domain knowledge without exposing the actual SQL syntax to

them.

Second, Duoqest is not yet able to deal with noisy (i.e. incorrect) examples. In the

real world, users are often prone to errors and misinformation, and while this is mitigated

somewhat by the autocomplete feature in Duoqest, techniques such as error detection

or probabilistic reasoning should be implemented to enable Duoqest to handle noisy

examples.

Finally, Duoqest can be improved by streamlining iterative interaction. For exam-

ple, the current interface could be improved by enabling users to add positive or negative

examples to the TSQ speci�cation by clicking a button directly on a candidate query pre-

view. In addition, enabling users to directly modify generated candidate queries, perhaps
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by presenting them in some intermediate representation, would allow greater �exibility in

synthesizing queries than merely having the user select from the system-generated list.

3.8 Summary

In this chapter, we proposed dual-speci�cation query synthesis, which consumes both a

NLQ and an optional PBE-like table sketch query enabling users to express varied levels

of knowledge. We introduced the guided partial query enumeration (GPQE) algorithm

to synthesize queries from a dual-mode speci�cation, and implemented GPQE in a novel

prototype system Duoqest. We presented results from a user study in which Duoqest

enabled a 62.5% absolute increase in query construction accuracy over a state-of-the-art

NLI and comparable accuracy to a PBE system on a more limited workload supported by

the PBE system. In a simulation study, Duoqest demonstrated a >2x increase in top-1

accuracy over both NLI and PBE.
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Task Level English Description SQL

A1 M List all publications in

conference C and their

year of publication.

SELECT t2.title, t2.year FROM
conference AS t1 JOIN publication AS
t2 ON t1.cid = t2.cid WHERE t1.name =
’C’

A2 H List keywords and the

number of publications

containing each, ordered

from most to least publi-

cations.

SELECT t1.keyword, COUNT(*)
FROM keyword AS t1 JOIN
publication_keyword AS t2 ON t1.kid
= t2.kid JOIN publication AS t3 ON
t2.pid = t3.pid GROUP BY t1.keyword
ORDER BY count(*) DESC

A3 H How many publications

has each author from or-

ganization R published?

SELECT t1.name, COUNT(*) FROM author
AS t1 JOIN writes AS t2 ON t2.aid =
t1.aid JOIN organization AS t3 ON
t3.oid = t1.oid JOIN publication t4
ON t4.pid = t2.pid WHERE t3.name =
’R’ GROUP BY t1.name

A4 H List journals with more

than 500 publications and

the publication count for

each.

SELECT DISTINCT t1."name", COUNT(*)
FROM journal AS t1 JOIN publication
AS t2 ON t1.jid = t2.jid GROUP BY
t1.name HAVING COUNT(*) > 500

B1 M List the titles and years of

publications by author A.

SELECT t1.title, t1.year FROM
publication AS t1 JOIN writes AS t2
ON t2.pid = t1.pid JOIN author AS t3
ON t3.aid = t2.aid WHERE t3.name =
’A’

B2 M List the conferences and

homepages in the D do-

main.

SELECT t1.name, t1.homepage
FROM conference AS t1 JOIN
domain_conference AS t2 ON t2.cid =
t1.cid JOIN domain AS t3 ON t3.did =
t2.did WHERE t3.name = ’D’

B3 H List organizations with

more than 100 authors

and the number of au-

thors for each.

SELECT t2.name, COUNT(*) FROM author
AS t1 JOIN organization AS t2 ON
t1.oid = t2.oid GROUP BY t2.name
HAVING COUNT(*) > 100

B4 H List authors from organi-

zation R with more than

50 publications and the

number of publications

for each author.

SELECT t1.name, COUNT(*) FROM author
AS t1 JOIN writes AS t2 ON t1.aid =
t2.aid JOIN organization AS t3 ON
t1.oid = t3.oid JOIN publication AS
t4 ON t2.pid = t4.pid WHERE t3.name =
’R’ GROUP BY t1.name HAVING COUNT(*)
> 50

Table 3.7: Tasks for the user study vs. NLI, with abbreviated foreign key names and literal

values.
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Task Level English Description SQL

C1 M List all publications in

conference C.

SELECT t2.title FROM conference AS
t1 JOIN publication AS t2 ON t1.cid =
t2.cid WHERE t1.name = ’C’

C2 M List authors in domain D. SELECT t1.name FROM author AS t1
JOIN domain_author AS t2 ON t1.aid
= t2.aid JOIN domain AS t3 ON t2.did
= t3.did WHERE t3.name = ’D’

C3 M List authors with more

than 5 papers in confer-

ence C.

SELECT t1.name FROM author AS t1 JOIN
writes AS t2 ON t1.aid = t2.aid JOIN
publication AS t3 ON t2.pid = t3.pid
JOIN conference AS t4 ON t3.cid =
t4.cid WHERE t4.name = ’C’ GROUP BY
t1.name HAVING count(t3.pid) > 5

D1 M List the titles of publica-

tions published by author

A.

SELECT t3.title FROM author AS t1
JOIN writes AS t2 ON t1.aid = t2.aid
JOIN publication AS t3 ON t2.pid =
t3.pid WHERE t1.name = ’A’

D2 M List the names of organi-

zations in continent C.

SELECT name FROM organization WHERE
continent = ’C’

D3 H List authors with more

than 8 papers in confer-

ence C.

SELECT t1.name FROM author AS t1 JOIN
writes AS t2 ON t1.aid = t2.aid JOIN
publication AS t3 ON t2.pid = t3.pid
JOIN conference AS t4 ON t3.cid =
t4.cid WHERE t4.name = ’C’ GROUP BY
t1.name HAVING COUNT(t3.pid) > 8

Table 3.8: Tasks for the user study vs. PBE, with abbreviated foreign key names and literal

values.
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CHAPTER 4

Final Query Selection with Distinguishing

Tuples

4.1 Introduction

Traditionally, querying databases has required knowledge of structured query languages

such as SQL as well as an understanding of the database schema at hand. Users without

knowledge of such structured query models can still specify a query by other means,

such as natural language [5, 77], or query-by-example/query reverse engineering [49].

We collectively call these oblique query speci�cation (OQS) systems, because they specify

structured queries in only an oblique/indirect manner.

Users of OQS systems provide an incomplete and imprecise query speci�cation. These

systems must then translate this into a precise query matching the speci�cation. Typically,

OQS systems �rst formulate a set of precise candidate queries (CQs), and then choose from

among these alternatives. While many OQS systems can quickly narrow down to a small

set of CQs, they often have to work hard to select the �nal target query from the set.

Some systems may attempt to do so in an automated manner, using information such as

the schema or logs, but eventually, OQS systems consult the user, whether proactively or

as a last resort. Consider this target query selection example:

Example 4.1. Sharon has been a car parts wholesaler in the USA for 15 years and has access
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to a relational database of part sales that a consulting �rm created for her. After hearing

recent news that tari�s would be enforced on goods �owing into and out of China, she wants

to know which of her largest customers would be a�ected to inform them.

Unfortunately, she has little knowledge of SQL or of the database schema. As such, she

uses a natural language interface (NLI) [5] on the database to issue the query: “What are the

names and addresses of those in China who bought something worth more than $10,000 from

us?”

Internally, the NLI tries its best to resolve the ambiguities in Sharon’s query. In particular,

“those in China” can refer to either customers or suppliers, and the amount “$10,000” can refer

to various price �elds. A few sample CQs are:

CQ1: SELECT s.name, s.address

FROM supplier s

JOIN partsupp ps ON ps.sid = s.sid

JOIN part p ON p.pid = ps.pid

WHERE p.price > 10000

AND s.address LIKE `%China%'

Meaning: Name and address of suppliers selling parts costing more than $10,000 with ad-

dress containing substring ‘China’.

CQ2: SELECT c.name, c.address

FROM customer c

JOIN nation n ON c.nid = n.nid

JOIN order o ON o.oid = c.cid

WHERE o.price > 10000 AND n.nation = `China'

Meaning: Name and address of customers in China who made orders (i.e. collections of

line items) of more than $10,000.

CQ3: SELECT c.name, c.address

FROM customer c
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JOIN nation n ON c.nid = n.nid

JOIN order o ON o.oid = c.cid

JOIN lineitem li ON o.oid = li.oid

WHERE li.price > 10000 AND n.nation = `China'

Meaning: Name and address of customers in China who made an order with a line item

costing more than $10,000.

A full list of the top 20 SQL CQs are directly displayed to Sharon, whose limited knowledge

of SQL causes her to be overwhelmed by the options. She thus �nds it di�cult to select her

target query from the list.

As demonstrated by this example, while users can issue query speci�cations on OQS

systems as a “coarse-grained” �lter to whittle down the universe of possible queries to a

smaller set of CQs, there is still a need for a “�ne-grained” selection mechanism for target

query selection from this set.

Existing OQS systems sometimes provide such mechanisms, which are usually orthog-

onal to the CQ generation procedure. These include asking the user to manually examine

the SQL syntax for each candidate query [10, 73], which is challenging for users unac-

quainted with SQL; examine query results when executed on synthetic data [44], which

requires users to have schema knowledge; or put the burden on users to provide example

output tuples [59] of their desired query.

InteractionModel We propose the distinguishing tuple interaction model to help users

to select a target query from a set of CQs produced by OQS systems. The system suggests

tuples from the result set of the CQs to the user and asks them whether their target query

should contain it. The model aims to conserve user e�ort by distinguishing multiple CQs

at once given user feedback on the suggested tuples.

The distinguishing tuple interaction model is complementary to most current models.

Consider query-by-example/query reverse engineering [49] methods, which solicit exam-
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Column 1 Column 2 CQs

7 Steeler Car Parts 555 China St, Pittsburgh, PA 1

3 Beijing Auto Parts Beijing, China 2, 3

Great China Auto Shanghai, China 2, 3

7 Guangdong Auto Guangzhou, China 2

Table 4.1: Example distinguishing tuple interaction.

ple tuples from the user: our interaction model leverages system-suggested tuples rather

than user-suggested ones, and when both interaction models are used in tandem, users

may opt at each iteration to either provide tuples or wait for the system to provide tuples.

For Example 4.1, the system would present the example tuples displayed in Table 4.1

and ask Sharon whether her desired query should produce each tuple. Sharon rejects

(7) the �rst tuple because the company is clearly not in China, eliminating CQ1. She

also rejects the fourth tuple, knowing that Guangdong Auto only ever purchases small

parts, and so eliminates CQ2. She accepts (3) the second tuple, remembering that she

sold an expensive part to Beijing Auto Parts earlier in the year. She ignores the third

tuple because she can’t precisely remember her interactions with that particular company.

Sharon’s feedback would then be evaluated by the system to eliminate all CQs except the

target query CQ3.

The distinguishing tuple interaction model has several advantages over previous ap-

proaches. First, tuples are a common representation already used in various interaction

models [13, 59] and requires no user expertise in SQL or the database schema. Second,

a tuple can precisely distinguish two queries (so long as such a tuple exists) given a

speci�c database instance. Finally, the interaction model reduces user e�ort by transfer-

ring the burden of suggesting examples in more traditional query-by-example or query

reverse engineering approaches from the user to the system.

Of course, the e�ectiveness of the interaction model requires that the user knows

both the structure (number and order of projected columns) of their desired output as
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well as su�cient domain knowledge to provide feedback on output tuples. The former

is reasonable to assume given that the user is the one who initiates the task on the OQS

system. Our target user in this chapter is a domain expert, and the latter condition is

trivially satis�ed for such a user.

Technical Challenges We want to save user e�ort by arriving at their target query

while displaying as few tuples as possible. This entails that we select the smallest set of

tuples to whittle down the CQ set to the target query.

In addition, since the suggested tuples can only be retrieved by executing CQs on

the database, this process may require the user to wait a long time for CQs to execute,

depending on the size and schema of the database and the CQ workload. We aim to

reduce the time to select a tuple by intelligently avoiding a full execution of all CQs.

In summary, our technical challenges are to: (1) minimize the number of tuples needed

to arrive at the target query, and (2) minimize the system time required to discover those

tuples.

Our Approach Minimizing the number of tuples presented to the user turns out to be

NP-hard. Therefore, we devise a data structure, called optimal split tree, that can sup-

port good heuristics. The optimal split tree is a �owchart of potential tuples the system

presents to the user depending on the user’s feedback. We �rst present a greedy algorithm

for constructing such a split tree. Then, we construct a novel data structure called the

Query Intersection Graph (QIG) using information such as the data types and intersecting

values of projected attributes in CQs. The QIG is used in branch-and-bound and heuristic-

based variants of the algorithm, which provide runtime improvements.

Contributions We o�er the following contributions:

• We introduce the distinguishing tuple interaction model to select a target query in

a CQ set from OQS systems.
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• We provide a formal de�nition of the MinDistTuples problem of minimizing the

number of tuples in the distinguishing tuple model and a proof of NP-hardness.

• We develop three di�erent variants of a greedy algorithm (GreedyAll, GreedyBB,

and GreedyFirst) to solve the problem of minimizing user e�ort.

• We demonstrate through an experimental evaluation that our algorithms reduce the

number of tuples displayed to the user by up to 63% over state-of-the-art baseline ap-

proaches.

In Section 4.2, we present an overview of the interaction model and formalize our

problem. We introduce our solution strategy and algorithms in Section 4.3. In Section 4.4,

we present our experimental evaluation. We describe related work in Section 4.5 and

conclude in Section 4.6.

4.2 Overview

In this section, we provide an overview of the distinguishing tuple interaction model and

a formal problem de�nition.

4.2.1 Interaction Model

Figure 4.1 displays an overview of the distinguishing tuple interaction model. The user

begins by providing a “coarse-grained” speci�cation of their target query to an OQS sys-

tem. This initial speci�cation can be made with any OQS system which will generate

a �nite CQ set, such as a natural language query, query-by-example, or query reverse

engineering.

The system selects a tuple from the result set of the CQs, and presents it to the user.

The user can either accept, reject or ignore the presented tuple. An accepted tuple is ex-

pected by the user in the output of their target query, while a rejected tuple is expected not
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Oblique Query 
Specification

System

2. Candidate Queries

1. “Coarse-Grained” 
Query Specification

Distinguishing Tuple
System

3a. System-suggested Tuples

3b. Feedback
(accept/reject)

4. Target Query

e.g.
NLQ: “Find celebrities born 
in 1980.”
— OR — 
Keyword: “celebrities 1980”
— OR — 
Output Example: (Kim 
Kardashian, 1980)
— OR — 
etc…

e.g.
CQ1: SELECT 
person.name, 
person.birth_year…
CQ2: SELECT…
etc.

e.g. (Chris Pine, 
1980)

User

Figure 4.1: Overview of the interaction model.

to be in the output of the target query. If the user ignores a tuple, then an alternate tuple is

displayed to the user. The system prunes the set of CQs according to the user’s feedback,

then again returns a tuple from the remaining CQs. This process iteratively continues

until the system can arrive at a unique query satisfying all of the user’s feedback
1
.

4.2.2 Problem De�nition

In this section, we introduce some necessary concepts, then formalize our problem de�-

nition. All concepts and de�nitions provided are in the context of a non-empty database

instance D with a �xed schema and �xed data contents.

First, we de�ne candidate queries:

De�nition 4.1. A candidate query (CQ) q is a relational query with:

1
If the user makes mistakes, there may be no �nal CQ or the �nal CQ may not match the user’s intent.

In such a case the user may either review their tuple feedback history to check for errors, or choose just to

reissue their query on the OQS system.
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• a weight w(q) > 0;

• projected attributes � (q) = (�1,… ,�!), where each attribute �i ∈ � (q) has a type � (�i)

(e.g. str).

The result set of tuples produced by a CQ q when executed on the �xed database D is

denoted as R(q).

The weight w(q) of a CQ models the con�dence that a certain CQ is the target query.

Many OQS systems [8, 77] generate scores to rank CQs, and these scores may be used

for w(q). If OQS scores are unavailable, alternate sources of information such as a query

log may also be used—e.g. to assign higher w(q) for more frequently executed queries. In

many cases, the w(q) values may re�ect probability values, but our de�nition does not

require them to be so. If there are no helpful sources of weight information, then the

system can assign an identical default weight to all CQs.

We denote a set of CQs by  = {q1,… , qn} and extend the notation of result sets and

weights to CQ sets such that R() is de�ned as the union of all result sets of CQs in  and

w() is the sum of the weights of all the CQs. t

⊤
is the subset of CQs in  that produce

the tuple t in their result sets, t

⊥
is the subset of CQs in  that do not produce t in their

result sets, and t

∅
is the same as  as ∅ constitutes a no-op. We also use t

as shorthand

for t

⊤
.

A set of CQs is considered to be equivalent if all member queries produce the exact

same result set with respect to the �xed database D. The order of projected columns in

CQs also matters, i.e. if two CQs are identical but have the same projected columns in

di�erent order, we consider them distinct. The domain of all possible tuples is denoted T.

Our goal is to minimize the number of tuples presented to the user in the distinguishing

tuple interaction model. Given our setting where the target query is unknown a priori and

can only be discovered by soliciting user feedback on tuples, we de�ne a distinguishing

tuple set as a set of tuples which uniquely identi�es the target queries consistent with the

user’s feedback from a set of CQs:
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De�nition 4.2. Given a CQ set, a user function ∶T→ {⊤,⊥,∅}, and an equivalent set

of target queries ̂, a distinguishing tuple set for ̂ on  is a set of tuples S = {t1,… , tm}

such that each tuple ti ∈ R() and:

⋂

ti∈S

ti

 (ti)
= ̂ (4.1)

In De�nition 4.2, we model the user as a function that takes a tuple as input and

returns ⊤ (i.e. accept), ⊥ (reject), or ∅ (ignore) as output. We use an equivalent set of

target queries ̂ instead of a single target query because the distinguishing tuple model

is unable to distinguish two CQs that produce identical result sets, and in a �xed database

setting we can consider such queries to be identical. Our model also requires that the

result set of all queries in ̂ are non-empty.

We now formalize our main problem:

Problem 4.1 (MinDistTuples). Given a set of CQs and an equivalent set of target queries

̂ ⊆ on a non-empty database instance D and a user function ∶ T→ {⊤,⊥,∅}, �nd the

smallest distinguishing tuple set S for ̂ on .

Unfortunately, solving this problem, de�ned with respect to a variable set of CQs for a

database with �xed schema and contents, is non-trivial; in fact:

Theorem 4.1. MinDistTuples is NP-hard.

Proof. Consider k-DistTuples, the decision problem variant of MinDistTuples. The

problem is whether there exists a distinguishing tuple set S such that |S| ≤ k.

First, we show k-DistTuples is in NP. If we have  and a sequence of tuples S such

that |S| ≤ k, we run  (ti) for each ti ∈ S and store the results. We then iterate through and

execute each CQ qj ∈ , and add qj to a set ∗
if qj is consistent with  (ti) for all ti ∈ S.

Speci�cally, a CQ qj is consistent with  (ti) if qj ∈ti

 (ti)
. If ∗

is comprised of equivalent

CQs, S is a solution to the problem, and S is not a solution otherwise. This veri�cation

was performed in polynomial time, and therefore k-DistTuples is in NP.
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Now, we demonstrate k-DistTuples is NP-hard by reducing the SetCover prob-

lem [37] to it in polynomial time. The SetCover problem is: given universe X and a

family Y of subsets of X , a cover is a subfamily C ⊆ Y of sets whose union is X . Is there a

cover of size k or less?

Reduction: Let X , Y , C , k be an instance of SetCover. We create an instance of k-

DistTuples as follows:

• Generate a CQ in  for each element in X = {x1,… , xn}, such that qi ∈  “corre-

sponds” to xi . Add an additional CQ q̂ to , making  = {q1,… , qn, q̂}. The SQL for

each query in  is initially SELECT c FROM t where c is some column in table t in

D.

• The equivalent set of target queries is: ̂ = {q̂}.

• For each set Yj ∈ Y (where j is the index, starting at 1, of Yj in Y ), insert the data value

j into column c inD. Then, for each xi ∈ Yj , edit the SQL of query qi “corresponding”

to xi by appending a disjunctive predicate c = j to the WHERE clause, i.e. SELECT c

FROM t WHERE . . . OR c = j. Finally, let ĵ = |Y |+1 and insert data value ĵ into

column c in D, and append OR c = ĵ to each query in .

• De�ne  such that for all 1 ≤ j ≤ |Y |,  ((j)) = ⊥, where (j) is a tuple comprised of

the single value j. Also, de�ne  ((ĵ)) = ⊤.

• Create S by adding the tuple (j) to S for each Yj ∈ C .

Forward direction: if C is in SetCover, S is in k-Dist-Tuples. According to our re-

duction, when all (j) tuples corresponding to each Yj ∈ C are passed into  , the result

is ⊥. None of these tuples belong to R(q̂), and therefore all CQs will be eliminated when

checking the Equation 4.1 condition except q̂, and S is a solution to k-DistTuples.

Reverse direction: if S is in k-DistTuples, then C is in SetCover. Assume C is not

in SetCover, i.e. there is a xi ∈ X not covered by C . In this case, when we check the
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Equation 4.1 condition, more than 1 non-equivalent CQ remains: q̂, and qi . Therefore, S

is not in k-DistTuples and by contraposition, the statement is true.

Since k-DistTuples is in NP and NP-hard, it is NP-complete. Therefore, its optimiza-

tion variant, MinDistTuples, is NP-hard.

4.2.3 Task Scope

While our general problem is not restricted to a speci�c query workload, we focus our

optimization e�orts on conjunctive select-project-join queries without nesting or aggregation

due to their ubiquity. In addition, while one can conceive of an OQS system that generates

a large number of CQs as output, most existing OQS systems such as natural language

interfaces [5, 77] or sample-driven schema mapping systems [59] emit only a few �nal

CQs, on the order of tens to at most a hundred CQs. As such, in this work we focus

speci�cally on assisting users in selecting target queries from CQ sets generated for human

consumption and leave the application of the distinguishing tuple model to larger-scale

CQ sets and more complex query workloads for future work.

4.3 Algorithm

In this section, we introduce our overall solution strategies to tackle the NP-hard MinDist-

Tuples problem of minimizing the number of tuples we present to the user.

4.3.1 Initial Approach

We �rst introduce a naïve approach, TopWeight. Given weight values for each CQ, Top-

Weight selects tuples from the highest-weighted CQ because a higher weight implies the

CQ is more likely to be a target query, and thus the user is more likely to accept a tuple

produced by that CQ. This can lead in turn to the elimination of many lower-weighted

CQs.
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At each iteration, TopWeight executes the highest-weighted CQ. It randomly selects a

tuple from the results and runs a veri�cation query on the tuple with each of the other

CQs to check whether the tuple belongs to those CQs or not.

De�nition 4.3. A veri�cation query v(q, t) for a CQ q and a tuple t = (t1,… , t!) is the

query q with a predicate �i = ti conjunctively added for each projected attribute �i ∈ � (q).

Example 4.2. The veri�cation query for the CQ SELECT a, b FROM table WHERE c =

42 and the tuple (1,2) would be SELECT a, b FROM table WHERE d = 42 AND a = 1

AND b = 2.

The tuple is then presented to the user. If the tuple is accepted, then all CQs with an

empty veri�cation query result are removed from the CQ set. If it is rejected, then all CQs

with a non-empty veri�cation query result are removed. The process iterates until the

target queries are found.

TopWeight, however, can perform poorly in the worst-case scenario. For example,

consider a situation where the selected tuple from the top-weighted CQ is produced by

all other CQs in the CQ set. In this case, user feedback on the tuple will not eliminate any

CQs. Consequently, it is important to consider the expected number of CQs a tuple will

eliminate before presenting it to the user.

4.3.2 Split Trees

We turn our attention to improving the TopWeight approach by developing a method to

select tuples more intelligently.

First, we adopt the split tree [40] to represent the space of interactions in the distin-

guishing tuple interaction model. The split tree is a �owchart that models various possible

interaction paths composed of system-suggested tuples and user feedback (i.e. accepting

or rejecting the tuples; ignoring is omitted as it does not a�ect the CQ set). Formally:
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q2
0.3

q3
0.3

Figure 4.2: Example split tree. The bolded execution leads to q2 as the target query.

De�nition 4.4. A split tree for CQ set  is a rooted binary tree  in which each node v

has a label L(v) such that:

• Each set of equivalent CQs i ⊆  has exactly one corresponding leaf node v� ∈ 

labeled with i : L(v� ) = i and each internal node vi ∈  is labeled with a tuple:

L(vi) ∈ R().

• Any CQ q in the left subtree of an internal node vi produces the tuple L(vi) in its result

set R(q), while any CQ in the right subtree does not produce L(vi).

As shown in Figure 4.2, a single instance of the distinguishing tuple interaction model

can be mapped to a path from the root to the leaf node containing the target query. At

each internal node, the left edge is taken if the user accepts the tuple or the right edge if

the user rejects it. If we enumerated all root-to-leaf paths from all possible split trees, it

would be equivalent to enumerating the entire search space of candidate distinguishing

tuple sets for MinDistTuples.

4.3.2.1 Optimal Split Tree

One of the reasons why MinDistTuples is di�cult is that the system has no way of

knowing which CQs are target queries apart from a trial-and-error approach of feeding
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tuples to the user. We attempt to tackle this challenge by minimizing the root-to-leaf path

length for all CQs on a single split tree. The intuition is that the root-to-leaf path length

represents the number of tuples displayed to the user to distinguish the CQ residing in

that leaf node. Given that we do not know the target query a priori, the best we can do

is to minimize this length for all CQs. Since the weights of CQs provide information on

which CQs are most likely target queries, we include this and de�ne the cost of a split tree

as the total weighted cost:

c( ) =
n

∑

i=1

liw(qi) (4.2)

where li is the length of the path from the root to the leaf node labeled with qi . While

other cost functions such as the worst-case cost of any qi ∈ are possible alternatives, we

prefer the weighted cost because it takes into account any information provided by the

user and/or OQS system to prioritize examining CQs with higher weights.

Using this cost metric, our strategy is to approximate MinDistTuples by discovering

a single optimal split tree, consequently limiting the candidate distinguishing tuple sets

to be explored to the root-to-leaf paths of this split tree:

Problem 4.2 (OptSplitTree). Given a set of CQs , �nd the split tree  minimizing c( ).

While this problem is also demonstrated to be NP-hard [40], it allows us to move

toward a feasible solution strategy.

4.3.3 Greedy Algorithm

The space of possible split trees that can be generated given a set of CQs is prohibitively

large for most tasks, and so as a �rst step, we adopt the greedy approach described in [40]

to approximate the optimal split tree.

Construction of the split tree happens recursively by selecting a tuple which creates

the most balanced partition of the remaining CQs . Formally, we �nd a tuple minimizing

|w(t
) −w(−t

)|. We add the tuple as a node, then split  into subsets t
and −t
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on the left and right child node, respectively. The process is repeated on the subset CQs

on each of the two child nodes until singleton sets result. We formalize the secondary

problem of �nding the next tuple for OptSplitTree according to this greedy strategy:

Problem 4.3 (OptTuple). Given a set of CQs , �nd:

argmin

t∈R()
|w(t

) −w(−t
)|

We can execute all CQs in, then exhaustively scan all tuples in R() until we �nd one

ful�lling OptTuple. We call this exhaustive approach GreedyAll, because it requires that

the result set of all CQs be materialized before selecting even a single tuple. GreedyAll

�nds an exact, optimal solution to OptTuple, which is, accordingly, the next tuple to be

selected for the greedy approach to solving OptSplitTree.

While GreedyAll is �tting for minimizing the number of tuples presented to the user,

it requires an execution of all CQs which can potentially induce a long wait for the user,

especially in the context of a large database or a large set of CQs. Consequently, we turn

our attention to limiting the runtime of each iteration to reduce the user’s wait time.

4.3.4 Partial Execution

One way to conserve time relative to the GreedyAll approach is by avoiding a full exe-

cution of all the CQs. Since our interaction model involves a human in the loop, we can

accomplish this by only materializing the tuples in the split tree on paths corresponding

to the user’s feedback. In other words, instead of computing the full split tree, we leave

some subtrees unrelated to the target queries unmaterialized, which in certain cases al-

lows us to avoid executing CQs residing in those subtrees. For example, in the split tree

in Figure 4.2, if q1 is the target query, it is possible that we can present both t1 and t2 to

the user by selecting them from the result set of q1 without ever needing to execute q2 or

q3.
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To preserve the solution quality provided by the GreedyAll approach, we still want

to �nd a tuple ful�lling OptTuple, yet without executing all CQs. The challenge is �nding

t
, the subset of CQs in  containing a tuple t , but we can only con�dently do so after

executing all CQs in  that could possibly generate t . This entails that we know which

pairs of CQs could possibly intersect—if there is a non-zero possibility of intersection

between two CQs and we select a tuple t produced by one CQ, we must test whether t

belongs to the result set of the other CQ to ensure correctness. The question is: How can

we discern whether the result sets of two CQs might intersect without fully executing them?

4.3.4.1 Query Intersection Graph

We propose a data structure called the Query Intersection Graph (QIG) to model which

CQs might have intersecting result sets, in which each node is a CQ and an edge exists

between two nodes if there is any possibility that the two CQs’ result sets intersect.

De�nition 4.5. The query intersection graph (QIG) for a set of CQs  and information

sources  is a graph  = (V ,E) such that:

• Each query q ∈ has a corresponding node v ∈ V .

• An edge e ∈ E exists between two nodes if their corresponding CQs have any possibility

of intersection given information sources .

Example 4.3. Consider that an OQS system produces 5 CQs on a movie database, and q1 is

the target query:

q1: SELECT p.name, m.title FROM person p, cast c, movie m WHERE m.mid = c.mid

AND c.pid = p.pid

q2: SELECT p.name, m.genre FROM person p, cast c, movie m WHERE m.mid = c.mid

AND c.pid = p.pid

102



q1
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(a) Initial state.

q1

q4 q5

q3q2

(b) With additional info.

Figure 4.3: Example query intersection graphs (QIG).

q3: SELECT p.name, m.country FROM person p, directed d, movie m WHERE m.mid =

d.mid AND d.pid = p.pid

q4: SELECT p.name, m.year FROM person p, cast c, movie m WHERE m.mid = c.mid

AND c.pid = p.pid

q5: SELECT p.name, m.budget FROM person p, cast c, movie m WHERE m.mid = c.mid

AND c.pid = p.pid

Without executing any of the CQs and with no external information, the initial QIG

for Example 4.3 is a fully connected graph as in Figure 4.3a. In this state, the QIG conveys

that any tuple produced in one of the CQs could potentially be produced by any of the

other 4 CQs. In this situation, we would be required to execute all 5 CQs before being able

to discern t
for any tuple, and consequently, we would be unable to con�dently select

any tuple satisfying OptTuple.

Now let’s say that without executing the CQs, we gain some information (we elaborate

more on speci�c information sources in Section 4.3.4.3) that (q1, q2), (q1, q3), (q1, q4), and

(q2, q3) are the only pairs of CQs whose result sets could possibly intersect, generating the

QIG in Figure 4.3b.
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We now develop some intuition for how we might consume such a QIG to avoid exe-

cuting all the CQs. In particular, we consider themaximal cliques of a QIG. In our example,

if we execute the CQs in the maximal clique {q1, q2, q3} and �nd a tuple produced by all

of the 3 CQs, we do not need to execute any further CQs to see if the tuple belongs to their

result sets because the QIG tells us that at least one of the CQs is disjoint from each of q4

and q5. We posit, therefore, that executing in batches of maximal cliques seems a possible

way to limit the number of CQs executed while guaranteeing that we can �nd the value

of t
for tuples produced by all CQs in the maximal CQ. Consequently, we formally state:

Theorem 4.2. A tuple t belonging to the result set of all CQs in a maximal clique of the

QIG is guaranteed not to belong to the result set of any CQ outside.

Proof. Theorem 4.2 follows directly from the de�nition of a maximal clique, since there is

no CQ outside a maximal clique which intersects with all the CQs in the maximal clique.

Consequently, there can be no tuple that belongs to the result sets of all the CQs in the

maximal clique but also belongs to the result set of a CQ outside the clique.

If our goal is to minimize the number of CQs executed, one might ask why we can’t

just execute a batch of fewer queries than a full maximal clique. For our example, we

can consider the non-maximal clique {q1, q2}, which is a subset of the maximal clique

{q1, q2, q3}. The problem is that if we execute this non-maximal clique, we �nd that even

if we �nd a tuple which belongs to both q1 and q2, the QIG tells us we must still examine

q3 to see if the tuple is produced by q3. The same goes for any tuple which belongs to

only one of q1 or q2. This is captured in the following:

Theorem 4.3. A tuple t belonging to the result set of all CQs in a clique  of the QIG can

only occur in a CQ q ∉  if C ∪{q} comprises a clique in the QIG.

Proof. Assume there exists a tuple t belonging to all the result sets of CQs in a clique 

and also to the result set of q
∗
∉ . Also assume that C

∗
= C ∪ {q

∗
} does not comprise a

clique in the QIG. The fact that C
∗

does not comprise a clique in the QIG means that there
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exists at least one qi ∈ C such that qi has no edge with q
∗

in the QIG, which by de�nition

means that R(qi) ∩ R(q
∗
) = ∅, which contradicts our �rst assumption of the existence of

t .

Theorem 4.3 states that the only CQs we need to execute in addition to the CQs in a

clique to �nd t
are CQs which form a larger clique when added to the original clique.

In other words, given a tuple t belonging to all CQs in a clique , we can �nd all the CQs

t belongs to in  by simply checking any CQs which are part of any maximal cliques

subsuming .

4.3.4.2 Position-wise QIGs

When constructing the QIG, we �rst consider each projected attribute position indepen-

dently. This enables us to save e�ort by batch-processing CQs which have the same pro-

jected column at a given position. In Example 4.3, position 1 is comprised of the single

attribute {person.name}, and position 2 contains attributes {movie.title, movie.genre,

movie.country, movie.year, movie.budget}. Given this, we create position-wise QIGs

which only consider the attributes at a speci�c position. Like full QIGs, given no infor-

mation, a position-wise QIG is fully connected as in Figure 4.3a.

De�nition 4.6. A position-wise QIG for a set of CQs , information sources , and pro-

jected attribute position k ∈ℕ is a graph k = (Vk ,Ek) such that:

• Each query q ∈ has a corresponding node v ∈ Vk .

• An edge e ∈ Ek exists between two nodes if their corresponding CQs have any possibility

of intersection at projected attribute position k given .

Position-wise QIGs can be merged into a full QIG by examining each pair of CQs in

each position-wise QIG and adding an edge to the full QIG only if all of the position-

wise QIGs have an edge between that pair of CQs. The following theorem formalizes this

relationship:
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(a) After data types
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165 text
values

7 text
values

[2000, 2010]

(b) After intersecting values

Figure 4.4: Position 2 QIG for Example 4.3.

Theorem 4.4. If at least one position-wise QIG has no edge between two CQs, then the full

QIG has no edge between the two CQs.

Proof. Assume there is a position-wise QIG at projected attribute position i for which two

CQs q1 and q2 have no shared edge. This means that no tuple in R(q1) produces the same

value as a tuple in R(q2) at position i, and consequently it follows that R(q1) ∩R(q2) = ∅

and there is no edge between q1 and q2 in the full QIG.

Our formulation of the construction of QIGs is a subtractive rather than an additive

process, where we begin with a complete graph and remove edges based on information

sources rather than taking a set of nodes and adding edges to it. As an alternative, we

could construct the complement graph of a QIG in an additive process, where an edge

represents that two CQs are disjoint, and consider the independent sets in the resulting

complement graph instead of cliques.

4.3.4.3 Information Sources

The QIG has an edge between two CQs if there is any possibility of them producing the

same tuple given our knowledge about the CQs. Consequently, we can eliminate edges if

information is provided guaranteeing that the CQs are disjoint. We propose two speci�c
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information sources that can be used to construct the QIG.

Data Types One information source to consider is the data types at each position. For

position 2 in Example 4.3, movie.year and movie.budget are numeric attributes, while

the other three are text attributes. For the position-wise QIG for position 2, we can elim-

inate edges between the numeric and text attributes because they will never produce the

same value at that position in a tuple
2
, resulting in the position-wise QIG in Figure 4.4a.

We can then merge the position-wise QIGs for position 1 (a complete graph because all

CQs share the same projected attribute) and position 2 into a full QIG following Theo-

rem 4.4. For our example, the full QIG given data type information will be isomorphic to

Figure 4.4a.

Full QIGs generated using only data type information are guaranteed to be composed

of strongly connected components (one for each distinct list of projected data types),

and the problem of �nding all maximal cliques is trivially reduced to �nding each of the

strongly connected components and can be done in O(||) time.

Intersecting Values The other information source we consider is the intersecting val-

ues of the attributes at the position. We introduce a data structure called the Attribute

Intersection Graph (AIG) to store this information.

De�nition 4.7. The a�ribute intersection graph (AIG) for database D is a graph  =

(V,E) such that:

• Each attribute � in D has a corresponding node v ∈ V.

• An edge e ∈ E exists between two nodes if their corresponding attributes have any

intersecting values. Each edge also has metadata m(e) storing the intersecting values

of the attributes, as a closed interval range m(e) = [a,b] for numeric attributes and a

set of values m(e) = {c1,… , cm} for text attributes.

2
We assume that the database is strongly typed, where a numeric value in a text attribute is distinct from

the same value in a numeric attribute (e.g. “4” ≠ 4).
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We construct the AIG in an o�ine process by computing the intersecting values of

each pair of attributes and storing the resulting graph to disk.

For Example 4.3, let’s imagine we consult the AIG to �nd that for the text attributes

at position 2, movie.title intersects with both movie.genre and movie.country, but

genre is disjoint from country. For the numeric attributes, movie.year has values in

[1953, 2010] and movie.budget has values in [2000, 52,000,000]. These attributes intersect

in the range [2000, 2010]. The resulting position-wise QIG for position 2 is shown in

Figure 4.4b.

Again, we follow Theorem 4.4 to merge each of the position-wise QIGs to construct a

full QIG. In our running example, the full QIG will be isomorphic to the position 2 QIG

because the position 1 QIG is fully connected and adds no additional information. The

resulting maximal cliques in the full QIG are {q1, q2}, {q1, q3}, and {q4, q5}.

The o�ine AIG approach is only compatible with CQs that project the raw, untrans-

formed values of the database instance (e.g. select-project-join queries). We leave the

adaptation of these techniques to more complex queries such as aggregate or nested

queries for future work.

4.3.4.4 Branch and Bound Algorithm

We present a branch and bound algorithm, GreedyBB, which aims to �nd a tuple satis-

fying OptTuple while executing as few CQs as possible. GreedyBB uses the QIG and

Theorems 4.2 and 4.3 to execute batches of CQs one maximal clique at a time.

Branch and bound is a technique commonly used for NP-hard problems, where the

space of candidate solutions to an optimization problem is constructed as a rooted tree us-

ing two operations: branch, which recursively splits the search space into smaller spaces,

and bound, which returns the lower bound of any candidate solution and its descendants.

Then, a top-down recursive search is performed which prunes any branches whose lower

bound is higher than an already-explored candidate solution.

108



Algorithm 8 GreedyBB

1: function GreedyBB(,G)

2: Init  as priority queue

3:  ← FindMaxCliques(,G)
4: for i ∈  do
5: Add (bound(i),i ,i) to 
6: T̂ ← ∅

7: v̂←∞

8: while  ≠ ∅ do
9: Pop next (, ,) from 

10: if  ≥ v̂ then continue
11: ExecuteBatch()
12: T ← {t ∶ t ∈ R() ∧t

= }
13: if T ≠ ∅ then
14: T̂ ← T

15: v̂← |w() −w(−)|
16: U ← {t ∶ t ∈ R() ∧t

⊂ }
17: if U ≠ ∅ then
18: Add branch(,,U ) to 
19: return T̂

Algorithm 8 shows the GreedyBB approach. It takes a CQ set  and the QIG G of

the set, and returns a set of tuples ful�lling OptTuple. A priority queue  stores the

search space. We assume that  does not allow duplicate items. Each item in  is a triple

(, ,), where  = {1,… ,k} is a set of CQs forming a clique in the QIG and  is the

set of CQs that need to be executed before we are able to �nd t
for any tuple in  .  is

sorted in ascending  = bound(,) order, where bound is a function de�ning the lower

bound for the OptTuple objective:

bound(,) =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

w(−) −w() if w(−) ≥ w()

min{w() −w(−),

bound(, −{1}), ...,

bound(, −{k})}

otherwise

The �rst case in bound considers when the weight for (−), the CQs excluded from

 , exceeds that of  . In this case, the best (i.e. smallest) possible value we can achieve for
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our OptTuple objective is in the case when a tuple belongs to all CQs in  , as this will

maximize the w(t
) term in the OptTuple objective while shrinking the w(−t

) term.

Consequently, we return this minimal value for the �rst case.

In the second case, there is a higher weight for the  set than the (−) set, meaning

that there may be a tuple which belongs to a subset of  which minimizes the OptTuple

objective. This is because a tuple belonging to a subset of  could potentially reduce the

w(t
) term compared to a tuple that belongs to all CQs in  , leading to a smaller objective

value. However, doing this could potentially also cause w(t
) to be larger than w(−t

),

which is why a recursive call is required to evaluate both the �rst and second case in the

bound function for any subset of  .

All maximal cliques on the QIG are computed using an optimized version of the Bron-

Kerbosch algorithm [16,68] and added to (Line 3). In every iteration, the highest priority

item is popped from  , then its  value is checked against the current upper bound v̂

(Line 10), and the current branch is pruned if it does not pass. If it passes, we execute

the batch of CQs  (Line 11). ExecuteBatch executes all unexecuted CQs in the batch on

the database and retrieves cached result sets for already-executed CQs. Then, we �nd T ,

which is the set of all tuples which belong to exactly the CQs in  (Line 12). Because of

Theorem 4.3, we can �nd the exact value of t
only by checking queries in  . If T is

non-empty, we can update the current best solution T̂ and upper bound v̂. We then �nd

U , the set of all tuples which belong to a proper subset of the CQs in  (Line 16), and

we branch (Line 18), which produces all smaller cliques {(1,t1
,1),… , (k ,t

k ,k)} for

each ti ∈ U , where each i = bound(,t
k ), and, due to Theorem 4.3, each i is formed of

the union of all maximal cliques j ∈  such that t
k ⊂ j . We continue the loop until 

is empty. The returned T̂ is the solution to OptTuple.
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Algorithm 9 GreedyFirst

1: function GreedyFirst(,G)

2:  ← FindMaxCliques(,G)
3: Sort  by bound ascending

4: for i = 1,… ,m do
5: ExecuteBatch(i)
6:  ← 1 ∪…∪i
7: T ← {t ∶ t ∈ R() ∧ (∀j > i, t

⊄ j)}
8: if T ≠ ∅ then
9: return argmin

t∈T
|w(t

) −w(−t
)|

4.3.4.5 Heuristic Approach

While GreedyBB is expected to make a runtime improvement over the GreedyAll ap-

proach, it still adheres to producing an exact solution to OptTuple. In our interaction

model, it may be advantageous to produce a tuple as fast as possible to the user by sacri-

�cing exactness and o�ering an approximate solution to OptTuple.

We propose a heuristic to return a reasonable approximation to OptTuple in mini-

mal time. This approach is called GreedyFirst (Algorithm 9). In this algorithm, we still

calculate the maximal cliques of the QIG as in GreedyBB, but we execute the maximal

clique with lowest bound �rst and use Theorem 4.3 to �nd the set of tuples T for which

we can compute t
without checking any CQs outside already-executed cliques (Line 7),

and then return the tuple within T which minimizes the OptTuple objective (Line 9).

Depending on the characteristics of the CQ set, this heuristic approach could save

execution time for earlier iterations of OptSplitTree when most CQs have yet to be

executed.

4.4 Evaluation

We investigate the following research questions:

• RQ1: Do our algorithms minimize the number of tuples presented to the user?
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• RQ2: How are our algorithms a�ected by the reliability of provided CQ weights?

• RQ3: What are the runtimes of our algorithms?

4.4.1 Experimental Setup

We consider a setting in which a domain expert attempts to select a target query from a

set of candidate queries generated from an OQS system. We assume that the user knows

the format of output desired from the target query and is also able to correctly accept or

reject any tuples presented by the system. If these assumptions are met, the user is just

an "automaton" and does not need to exercise any judgment. Therefore, we lose nothing

by using a simulated user in our studies, which we do. Whether these assumptions are

satis�ed by real users is primarily determined by their domain knowledge. But that is a

factor completely controlled by study design in a lab user study. If we want to understand

user domain knowledge, we would have to do studies in the �eld. Since we did not have

the resources for a �eld study, we chose to perform a simulated user study, which would

be just as informative as a user study in the lab or on Amazon Turk.

4.4.1.1 Procedure

The input for each task was a set of CQs with a single target query. For each iteration

of the task, the system selected a tuple from the result sets of the CQs and presented it

to the simulated user, which accepted or rejected the tuple. The system eliminated CQs

given the user’s feedback, then continued another iteration. The task terminated when

the system narrowed down the CQ set to a single CQ, which was returned as the target

query.

We compared our algorithms, GreedyAll (All for short), GreedyBB (BB), and Greedy-

First (First) to TopWeight (TopW) and the L
1
S algorithm [12,13], which �rst materializes

all candidate tuples, then selects tuples which eliminate the greatest number of candidate

tuples. This di�ers from our algorithms, which select tuples that eliminate the greatest

112



Dataset Database Tasks CQs / Task

Engine Size Easy Hard Mean Max

Mondial MyISAM 1.8 MB 45 23 92.74 1711

IMDB MyISAM 2.4 GB 57 7 30.69 486

Yelp InnoDB 2.7 GB 36 0 6.92 33

Table 4.2: Datasets used in our evaluation.

number of candidate queries. For each task, we averaged the results of 5 trials with each

algorithm.

We did not compare against the bottom-up and top-down algorithms from [12, 13]

because they were designed only for join predicate workloads. We also did not evaluate

against L
2
S as it leveraged a similar approach to L

1
S yet was demonstrated to be an order

of magnitude slower than L
1
S. In addition, while a query-by-example and query reverse

engineering systems [49] enable users to provide examples, we do not compare against

them as their contributions are complementary to our approach. A user may leverage

such systems by providing any examples they can think of o� the top of their head, and

any candidate queries produced can then be passed into our approach to select the �nal

target query.

All evaluations were performed on a machine with a 2.8 GHz AMD Opteron 6320

processor, 503 GB RAM, and a 27.3 TB solid-state drive, running Ubuntu 16.04 and MySQL

5.7.23 with a disabled query cache, a 16 MB key cache for MyISAM databases, and a 1 GB

InnoDB bu�er pool which was reset before running each algorithm on each dataset. We

set a timeout of 20 seconds on every query issued to MySQL.

4.4.1.2 Datasets

We used a set of benchmarks re�ecting the scenario where an OQS system had already

been engaged to produce a set of CQs. Table 4.2 summarizes some statistics for each of

these datasets.
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The Mondial dataset [35] is comprised of target queries which were randomly gen-

erated from the schema of the Mondial database [50]. The output of the target queries

was then examined and reverse-engineered to generate constraints which were executed

on the Beaver [35] system to generate a set of CQs for each target query. Every CQ in

Mondial is a project-join query with a single join of two relations.

IMDB and Yelp are both introduced by [77]. Each dataset contains a SQL database and

a corresponding set of natural language query tasks. We executed the natural language

queries for each task using a natural language interface from [5] to produce a set of can-

didate queries which vary in terms of selected projections, predicates, and join paths. We

only retained tasks with conjunctive select-project-join queries, removed duplicate tasks,

and modi�ed tasks for which the target query produced an empty set. For each task, we

manually annotated the correct target query.

We limited each CQ set to have a maximum total query execution time of 15 min-

utes, where timed out CQs were assigned the timeout limit as their execution time. We

eliminated non-target query CQs from each task until the total query execution time was

below 15 minutes.

4.4.1.3 Task Di�culty

As a rough measure of the di�culty of a task, we introduce the target query confusion

(TQC) metric given a CQ set  and a target query q̂ ∈:

TQC(, q̂) = 1−
1

∑
q∈

|R(q)∩R(q̂)|

|R(q̂)|

(4.3)

The
|R(q)∩R(q̂)|

|R(q̂)|
value in the denominator measures how many of q̂’s output tuples are

included in a CQ q’s result set. If q produces all the tuples in q̂, this value will be 1,

and if q produces none of them, the value will be 0. This value is summed over all CQs to

produce a rough measure of how many CQs might be confused with the target query. The
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Figure 4.5: # tuples presented for easy tasks (TQC ≤ 0.75).

Dataset TopW L
1
S All BB First

Mondial 0.35 0.36 0.24 0.25 0.26

IMDB 0.26 0.28 0.25 0.25 0.24
Yelp 0.43 0.45 0.43 0.40 0.44

Table 4.3: Mean ratio of tuples to CQ count.

reciprocal of this number of CQs is the probability of selecting the target query correctly

from the set of confusing CQs. This probability is subtracted from 1 to re�ect the chances

of selecting the wrong query as the target query.

When we calculated the TQC values for tasks in our dataset, we enforced a 100 second

timeout when executing the query to calculate the fraction in the denominator for each

CQ. If this query timed out, we sampled 1000 tuples from the target query and ran a

veri�cation query for each of these tuples on the CQ to calculate the proportion of the

sampled tuples that would be produced by the CQ. This proportion was then used as an

estimate for the fraction.

We categorized tasks as easy if they had a TQC value ≤ 0.75, and hard otherwise. We

display the number of easy and hard tasks for each dataset in Table 4.2.
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Figure 4.6: # tuples presented for hard tasks (TQC > 0.75).

4.4.2 Bene�t of Distinguishing Tuple Model

To evaluate the bene�t of the distinguishing tuple interaction model, we compared it

against a typical classic interaction model. The classic model for many OQS systems [10,

73] presents a list of the SQL for each of the CQs to the user and asks them to examine it.

When the CQs have equal weights, the average case is for the user to examine half the CQs.

While it is di�cult to make a direct quantitative comparison between our interaction

model and the classic model, we measured the ratio of tuples presented to the user with the

number of CQs in each task. While in reality we believe that examining a tuple requires

less e�ort and expertise than examining SQL syntax, this ratio metric treats examining

tuples and SQL as requiring equal e�ort.

In Table 4.3, we present the ratio measured on our tasks in the equal weight setting.

The ratio never exceeded 0.5 for any algorithms, meaning that our interaction model only

needed to display less than half as many tuples as the number of CQs in the task on

average. Our algorithms performed well on Mondial in particular, driving down the value

to as little as 0.24. Given that a user would be expected to examine half (i.e. 0.5) of the CQs

in the classic model and assuming that a tuple is easier to examine than the full SQL of a

CQ, these results indicate that the distinguishing tuple model requires signi�cantly

less user e�ort than the classic model.
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Figure 4.7: Mean tuples displayed per task depending on the enforced target query rank-

ing.

4.4.3 User E�ort

To answer RQ1, we measured the number of tuples that needed to be displayed to the

user to �nd the target query.

4.4.3.1 Equal CQWeights

We �rst considered a scenario where all CQs have an equal weight w(q) = 1. This re�ects

a scenario where there is no reason for one CQ to be preferred over another. Figures 4.5

and 4.6 respectively display the number of tuples taken on easy and hard tasks for each

dataset. The box-and-whisker plots display the minimum, �rst quartile, median, third

quartile, and maximum values, along with any outliers (values greater than the upper

quartile by at least 1.5 times the interquartile range or lesser than the lower quartile by at

least that amount) as individual points.

On Mondial, our algorithms demonstrated a signi�cant improvement over TopW and

L
1
S. The mean number of tuples required for TopW and L

1
S on the entire Mondial dataset

were 19.57 and 21.10 tuples respectively, compared to 7.24 for All, 8.22 for BB, and 9.71
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Figure 4.8: Mean total runtime (s) on easy tasks (TQC ≤ 0.75).

for First, demonstrating aminimum of > 50% reduction in user e�ort from using our

algorithms over TopW, with up to a 63% reduction for All in particular.

For hard tasks in IMDB, we observed a similar improvement, where the median num-

ber of tuples was 8.8 for TopW and 14.0 for L
1
S while the maximum (excluding outliers)

for all our algorithms peaked at 7.0. The mean tuples were 9.49 for TopW and 15.0 for

L
1
S, while our algorithms produced 5.11 for All, 4.71 for BB, and 5.0 for First, again

demonstrating at least a 46% reduction in e�ort using our algorithms.

For the easy tasks in IMDB and Yelp, all algorithms performed comparably. This fol-

lows from the fact that the mean TQC value for easy tasks in Mondial was 0.33, while

the mean TQC for easy tasks in the other datasets were 0.16 for IMDB and 0.18 for Yelp.

Though the TQC metric is a rough metric for task di�culty, these numbers indicate that

the easy tasks in IMDB and Yelp were easy enough that there was not much room for

improvement.

In summary, our algorithms performed similarly to TopW and L1S for easy

tasks and performed signi�cantly better for harder tasks. This is because our algo-

rithms are optimized to tuples which eliminate the most CQs, while L
1
S is optimized to

return tuples which eliminate the greatest number of candidate tuples after materializing
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Figure 4.9: Mean total runtime (s) on hard tasks.

the result sets of all CQs—a �ne strategy for join query workloads, but a suboptimal one

for general CQ workloads. TopW is ine�ective as it constitutes a random strategy when

CQs have equal weights.

4.4.3.2 Unequal CQWeights

To answer RQ2, we considered the e�ect of an OQS system or user assigning unequal

weights to CQs. We implemented a weighting scheme where the k-ranked CQ was as-

signed w(q) = n − k + 1, making the top-ranked CQ w(q) = n and the last-ranked CQ

w(q) = 1. Then we tested scenarios where we assigned the target query rank 1, ⌊n/4⌋,

⌊n/2⌋, ⌊3n/4⌋ and n respectively for each task, while all other CQs were randomly ranked.

The scenario where the target query was ranked 1 re�ected the best case where the target

query was correctly assigned the highest weight, while a ranking of n re�ected the worst

case where the target query was assigned the lowest weight.

Figure 4.7 displays the e�ect of changing the target query ranking on the number of

tuples. L
1
S is a horizontal line because the algorithm does not take weights into consid-

eration. For all 3 datasets, the trend for TopW had a steeper slope than all of the other

algorithms. The di�erence was most evident in Mondial and IMDB, which had a high

119



proportion of hard tasks. For Mondial, regardless of the weights, our 3 algorithms re-

quired less than 13 tuples per task. On the other hand, in the worst-case scenario, the

naïve approach TopW required around 3 times the tuples of our algorithms, asking the

user to view upwards of 30 tuples on average.

These results indicate that when compared to the baseline approach, our algorithms

are resilient even when the assigned weights for CQs are unreliable.

4.4.4 Runtime

To answer RQ3, we measured the mean total runtime of each algorithm over all tasks

in the equal weight setting. Total runtime is comprised of two components: system time,

which includes database query time, algorithm time and other overhead; and user time

per iteration. We consider two user scenarios: a fast user with a 1 second response time

per iteration, and a slow user with a 5 second response time.

Figure 4.8 displays the results for easy tasks. TopW has the lowest system time because

it executes only a single CQ per iteration. For a fast user, TopW exhibits the lowest run-

time for all three datasets, though often requiring that users provide feedback on more

tuples. For a slow user, however, results are mixed, with our three algorithms perform-

ing better on Mondial and slightly worse than TopW on IMDB and Yelp. For hard tasks

(Figure 4.9), TopW has the lowest runtime for fast users while All is best on Mondial and

First on IMDB for slow users. From these results, we conclude that in order tominimize

the number of presented tuples, our algorithms incur some additional runtime

overhead. Consequently, our algorithms are most bene�cial for users who want to

minimize tuple feedback because they �nd it tedious or require much time to provide

feedback on each tuple.
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4.5 Related Work

Oblique query speci�cation (OQS) OQS systems enable users to specify structured

queries without requiring knowledge of the structured query language. Approaches in-

clude natural language interfaces [5,77] and query-by-example/query reverse engineering

(QBE/QRE) [49] systems. The common thread among OQS approaches is that users pro-

vide imprecise query speci�cations which the system uses to generate candidate queries

(CQs), and our goal is to help users select their target query from this set of candidate

queries. Although our interaction model and QBE/QRE systems both use tuples as the

main medium of interaction, they di�er in that our model has the system suggest the

tuples whereas users are the ones who provide tuples in QBE/QRE systems.

Target query selection Existing OQS systems enable users to whittle down the list of

CQs in a one-shot or iterative fashion. The one-shot approach presents a full list of CQs

to the user and asks them to select their target query, while the iterative approach allows

the user to provide input which incrementally narrows the set of CQs to a �nal target

query. While most existing systems opt for the one-shot approach [10, 61, 73], sample-

driven schema mapping [59] and query from examples [44] are prominent examples of

iterative interaction models. These existing approaches each su�er from at least one of

the following failure modes:

• Expecting user expertise. [10, 73] output a list of ranked SQL queries and expect the

user to select the correct one. This requires users to comprehend the database schema,

defeating the very purpose of opting for the OQS interface in the �rst place. Query from

examples [44] requires the user to examine query logic on synthetic data, which can be

more challenging than labeling tuples from real data.

• Failure to precisely distinguish CQs. Some systems present alternate representations of

CQs to aid users lacking SQL knowledge, such as natural language explanations [21,61].

However, these methods may provide identical summaries for two distinct CQs.
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• Wasted user e�ort. For the sample-driven schema mapping model [59], user-suggested

examples are not guaranteed to exist in the database instance, and even if they do,

they may belong to the result sets of multiple CQs. As a result, very few CQs may be

eliminated, and the user has wasted their time in coming up with and typing in such

examples.

The distinguishing tuple model addresses each of these issues by presenting tuples

as an easy-to-understand and precise means of distinguishing CQs, and by requiring the

system to suggest tuples instead of the user.

Learning frommembership queries The distinguishing tuple model is an application

of the concept of learning with membership queries [4]. Previous work o�ers solutions

that are tied to particular OQS workloads, such as learning join predicates [12, 13] and

quanti�ed queries [1]. In contrast, our method works with any OQS method, and also

applies to settings where CQs have heterogeneous weights.

Interactive data exploration [22, 28] suggest interesting data to explore by enabling

users to label system-suggested tuples. Their focus is on discovering interesting data

patterns in the database with a set of tuples already known to the system, which involves

a di�erent series of optimization strategies from our setting where (possibly complex)

candidate queries are provided and a target query must be selected from the CQ set while

minimizing the number of CQ executions.

Decision trees Previous work [19, 40] in the area of decision trees seeks to distinguish

a set of items using tests selected from a �nite set. We apply a solution in the context of

weighted items and uniform costs for tests [40] to our interaction model. We build on the

general solution by also tackling the challenge of minimizing the cost of generating the

set of tests (i.e. tuples).
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4.6 Summary

In this chapter, we introduced the distinguishing tuple interaction model to tackle the

target query selection problem. We formalized the problem of �nding a minimal distin-

guishing tuple set, and proposed three algorithms to tackle this problem while limiting

runtime. We demonstrated in evaluations that our algorithms could reduce user e�ort by

up to 63% compared to the state-of-the-art. For future work, we hope to investigate the

e�ects of user noise and integrate our approach seamlessly with existing OQS systems.
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CHAPTER 5

Conclusion

In this dissertation, I argued that user domain expertise should be maximized to clarify

OQS methods, so that users without technical expertise can reliably specify queries to

relational databases. Existing OQS methods are de�cient in that they are often unreli-

able when employed in isolation. Often a single speci�cation is insu�cient to triangulate

the user’s precise structured query, and consequently, it is ideal to solicit as much infor-

mation as possible from the user, as multiple vectors of domain expertise can work in a

complementary fashion to allow the system to converge at the user’s desired query.

To this end, I presented a series of approaches to clarify OQS methods and evaluated

them, answering the research questions in Table 1.3. I showed that we can e�ectively use

information from previously-issued SQL queries on a database to guide existing OQS sys-

tems toward more likely user queries (Chapter 2), that we can design systems which can

exploit the complementary e�ects of combining multiple speci�cation methods (Chap-

ter 3), and that we can assist the user in the process of target query selection by soliciting

feedback on system-suggested tuples (Chapter 4).

The ultimate goal is to democratize data access by freeing non-technical users from

needing to enlist the help of human technical sta� in order to issue queries on a relational

database. Accomplishing this goal could enable organizations to work more e�ciently

and removing technical overhead, and also could enable more of the general population

to have access to insights from speci�c databases in a similar way to how the Internet and
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search engines have opened access to knowledge previously buried in libraries and �le

cabinets.

Much future work remains with regard to this goal, and further work needs to be done

to make these systems and technologies conventionally available.

5.1 Future Work

Some potential directions to extend the work in this dissertation are:

Exploring the bounds of domain expertise We investigated domain expertise in the

context of “passive” knowledge embedded in SQL query logs and in the factual knowledge

that takes the form of example tuples. There are several opportunities to explore di�erent

kinds of domain expertise. For example, what is the impact of experts’ knowledge of

domain terminology on querying databases? Are domain experts able to express logical

constraints on what “realistic” data constitutes to help synthesize queries?

Building a monolithic multi-speci�cation system We took a �rst step in Chap-

ter 3 by combining two speci�cation methods, natural language and programming-by-

example. Further work needs to be done in extending this to a general purpose interface

which is able to accept any speci�cation the user desires, which truly maximizes the do-

main expertise of the user and re�ects the way a user might interact with human technical

support sta�.

Streamlining iterative interaction When a query speci�cation mode has failed to

generate the user’s desired query, the typical approach is to force the user to reformulate

the speci�cation. Interaction models which are explicitly designed for a human-in-the-

loop, however, may be better able to reach the target query by allowing iterative re�ne-

ment of the speci�cation by the user.
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Supporting semi-structured and unstructured data Much data in the world today

resides outside of neatly structured relational databases. While we focused on the context

of structured data in this dissertation, many of the ideas here can be extended to querying

more unstructured data storage formats.
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