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ABSTRACT

Mobility and service sharing is undergoing a fast rise in popularity and industrial growth

in recent years. For example, in patient-centered medical home care, services are delivered

to patients at home, who share a group of medical staff riding together in a vehicle that also

carries shared medical devices; companies such as Amazon and Meijer have been investing

tremendous human effort and money in grocery delivery to customers who share the use

of delivery vehicles and staff. In such mobility and service sharing systems, decision-

makers need to make a wide range of system design and operational decisions, including

locating service facilities, matching supplies with demand for shared mobility services,

dispatching vehicles and staff, and scheduling appointments. The complexity of the linking

decisions and constraints, as well as the dimensionality of the problems in the real world,

pose challenges in finding optimal strategies efficiently. In this work, we apply techniques

from Operations Research to investigate the optimal and practical solution approaches to

improve the quality of service, cost-effectiveness, and operational efficiency of mobility

and service sharing in a variety of applications. We deploy stochastic programming, integer

programming, and approximation algorithms to address the issues in decision-making for

seeking fast and reliable solutions of planning and operations problems.

This dissertation contains four main chapters. In Chapter 2, we consider a class of ve-

hicle routing problems (VRPs) where the objective is to minimize the longest route taken

by any vehicle as opposed to the total distance of all routes. In such setting, the traditional

decomposition approach fails to solve the problem effectively. We investigate the hard-

ness result of the problem and develop an approximation algorithm that achieves the best

x



approximation ratio. In Chapter 3, we focus on developing an efficient computational algo-

rithm for the elementary shortest path problem with resource constraints, which is solved

as the pricing subproblem of the column generation-based approach for many VRP vari-

ants. Inspired by the color-coding approach, we develop a randomized algorithm that can

be easily implemented in parallel. We also extend the state-of-the-art pulse algorithm for

elementary shortest path problem with a new bounding scheme on the load of the route.

In Chapter 4, we consider a carsharing fleet location design problem with mixed vehi-

cle types and a restriction on CO2 emission. We use a minimum-cost flow model on a

spatial-temporal network and provide insights on fleet location, car-type design, and their

environmental impacts. In Chapter 5, we focus on the design and operations of an inte-

grated car-and-ride sharing system for heterogeneous users/travelers with an application of

satisfying transportation needs in underserved communities. The system aims to provide

self-sustained community-based shared transportation. We address the uncertain travel and

service time in operations via a stochastic integer programming model and propose decom-

position algorithms to solve it efficiently.

Overall, our contributions are threefold: (i) providing mathematical models of various

complex mobility and service sharing systems, (ii) deriving efficient solution algorithms to

solve the proposed models, (iii) evaluating the solution approaches via extensive numerical

experiments. The models and solution algorithms that we develop in this work can be used

by practitioners to solve a variety of mobility and service sharing problems in different

business contexts, and thus can generate significant societal and economic impacts.

xi



CHAPTER 1

Introduction

1.1 Background

Mobility and service sharing is undergoing a fast rise in popularity and industrial growth in

recent years (see, e.g., Musich et al., 2015; Shaheen et al., 2015). Such growth is not going

to end soon: for the global market of shared mobility, research shows that it is expected

to grow from $1.1 billion in 2015 to $6.5 billion by 2024 (Navigant Research, 2017). Via

efficient resource pooling, mobility and service sharing has infiltrated people’s everyday

life and provided practical solutions. For example, in patient-centered medical home care,

services are delivered to patients at home, who share medical staff and devices; more and

more companies are starting to offer same-day grocery delivery to customers, who share the

use of delivery vehicles and staff. In such mobility and service sharing systems, decision-

makers need to make a series of decisions, including system design, service planning, and

appointment scheduling, which all pose challenges in finding optimal strategies.

One application of mobility and service sharing is a patient-centered medical home. In

such a program, routing a fleet of shared vehicles to serve patients requires solving difficult

combinatorial problems, while making decisions to achieve a high quality of service needs

considerations in optimization under uncertainties. In addition, a large number of different

objectives from diverse stakeholders and constraints that ensure valid operations of such

systems need to be considered at the same time. Fikar and Hirsch (2017) summarize that

1



the possible objectives include minimizing traveling cost, operational cost, waiting time,

overtime, workload balance, and so on; possible constraints include time windows, skill

requirements, working time regulations, breaks, and so on. Up to the present time, a wide

variety of optimization models have been developed to address the complicated objectives

and constraints when building mobility and service sharing system (see, e.g., Allaoua

et al., 2013; Bachouch et al., 2011; Dohn et al., 2009; Fernandez et al., 1974; Lanzarone

and Matta, 2014; Zhan et al., 2015).

Carsharing and ride-hailing services are two primary forms in shared-mobility-related

business. In these problems, decisions include location design, vehicle routing, demand

forecasting, driver-passenger matching, service pricing, and so on (Shaheen et al., 2015).

Extensive research work has been conducted to derive optimization models to address

aforementioned problems (see, e.g., Boyacı et al., 2015; He et al., 2016; Lu et al., 2018;

Nourinejad and Roorda, 2014; Zhang et al., 2018).

In this dissertation, we aim to apply techniques in Operations Research and mathe-

matical optimization to investigate optimal and practical solution approaches for a vari-

ety of mobility and service sharing applications, to improve the quality of service, cost-

effectiveness, and operational efficiency. In the following, we review some basic models

and solution approaches for problems in mobility and service sharing.

1.1.1 Vehicle Routing Problem

A wide range of transportation problems and the related optimization models, especially

the ones in mobility and service sharing, are built upon vehicle routing model variants. The

vehicle routing problem (VRP) is one of the most classic and well-studied combinatorial

optimization problems. Given a set of transportation requests and a fleet of vehicles, VRP

aims to find a set of feasible routes (sequence of transportation requests), one for each vehi-

cle, to serve all transportation requests at minimum cost (Toth and Vigo, 2014). Motivated

by real-world applications, different variants of VRP have been studied, including Capac-

2



itated VRP, VRP with time windows, VRP with a heterogeneous fleet, VRP with multiple

depots, as well as hybrid versions of these variants, all of which are discussed in detail in

Golden et al. (2008) and Toth and Vigo (2014). Each variant introduces a set of constraints

that determine the feasibility of routes. For example, in Capacitated VRP, each transporta-

tion request is associated with a load, and capacity constraints are enforced so that the total

loads over the requests in a route cannot exceed the capacity of the vehicle.

Researchers have extensively studied VRP since it was first proposed by Dantzig and

Ramser (1959), who present the first network flow-based mathematical programming for-

mulation and algorithm for capacitated VRP. To optimize VRP exactly, in the early years,

the branch-and-cut approach was used to solve the network flow-based model. A class

of effective valid inequalities, including capacity, framed capacity, generalized capacity,

strengthened comb, multistar, partial multistar, extended hypotour inequalities, and classi-

cal Gomory mixed-integer cuts, have been applied to improve the computational efficiency

of the branch-and-cut algorithm (Achuthan et al., 2003; Letchford et al., 2002; Lysgaard

et al., 2004; Ralphs et al., 2003). Later, Branch-cut-and-price (BCP) became the best-

performing exact solution method for VRP after it was first introduced by Fukasawa et al.

(2006), in which they combine branch-and-cut with column generation to produce an effi-

cient algorithm for Capacitated VRP instances with up to 135 customers. BCP considers

a set partitioning formulation, where decision variables correspond to feasible routes. To

avoid explicitly enumerating all feasible routes, it relies on solving pricing problems to

find feasible routes that have the potential to be included in the optimal solution. Such

pricing problem can be modeled as elementary shortest path problem with resource con-

straints (ESPPRC), which is often solved using dynamic programming. The BCP approach

was later applied to different variants of VRP, and new cutting planes and pricing schemes

within BCP were proposed by Baldacci et al. (2010, 2011); Jepsen et al. (2008); Pecin et al.

(2017a,b).
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1.1.2 Approximation Algorithms

As discussed in Section 1.1, optimization problems in mobility and service sharing involve

scheduling, vehicle routing, assignment, and location problems, which have been proven

to be NP -hard. Unless P = NP , those problems can only be exactly solved for small-

sized instances within a reasonable amount of time. An approximation algorithm is an

alternative approach, which aims to closely approximate the optimal value of the problem

while keeping the runtime polynomial in the problem input size. Williamson and Shmoys

(2011) define an α-approximation algorithm as follows.

Definition 1.1. An α-approximation algorithm for an optimization problem is a polynomial-

time algorithm that for all instances of the problem produces a solution whose value is

within a factor of α of the value of an optimal solution.

The approximation guarantee α, also known as the approximation factor or approxima-

tion ratio, measures the solution quality of the algorithm. In Chapter 2, we use an approxi-

mation algorithm to provide an efficient solution approach to a class of VRPs applicable to

the patient-centered medical home problem.

1.1.3 Stochastic Programming

Stochastic programming is one approach to modeling optimization problems whose data

incorporated in the objective and constraints is uncertain. The parameters in real-world

problems are generally unknown when decisions are made. However, considering the un-

certainties is essential in mobility and service sharing systems as decision-makers want

to achieve a high quality of service, which is often measured by demand fulfillment rate,

customer waiting time, and system overtime. For example, when routing vehicles in a

grocery delivery system, the traveling time from one location to another may be affected

by weather, traffic, time of the day, and therefore is hard to estimate beforehand; without

considering the effect of uncertainties, the routing decision may lead to high overtime for
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drivers and long waiting time for customers.

Stochastic programming utilizes the known probability distribution of the data to make

an optimal decision (Shapiro and Philpott, 2007). One well-studied stochastic program-

ming model is the two-stage stochastic program, which we apply in Chapter 5 to address

the uncertain travel and service time in a routing problem. In the two-stage stochastic pro-

gramming model, decision-makers make the decision in the first stage before the random

events occur in the second stage, in which recourse decisions are made to respond. We

optimize the cost of the first-stage decision plus the expected cost of optimal second-stage

decisions. An optimal policy to a two-stage stochastic program is a single first-stage de-

cision plus a collection of second-stage decisions that optimally respond to each random

outcome.

Let x ∈ Rn be the first-stage decision,X be a deterministic feasible region of x, y ∈ Rm

be the second-stage decision, and ξ = (q, T,W, h) be the random data. Mathematically,

a general two-stage stochastic programming problem can be formulated as follows (Birge

and Louveaux, 2011):

min
x∈X
{g(x) := c>x+ E[Q(x, ξ)]}, (1.1)

where Q(x, ξ) is the optimal value of the second-stage problem

min
y
q>y subject to Tx+Wy ≤ h. (1.2)

In the above formulation, ξ is considered as a random vector with a known probability

distribution. When ξ has a finite number of realizations, say, ξ1, . . . , ξk, the expectation

term in (1.1) can be replaced by E[Q(x, ξ)] =
∑k

i=1 piQ(x, ξi), where pi is the probability

of realization ξi, ∀i = 1, . . . , k. Then, the two-stage stochastic program (1.1)–(1.2) can be
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reformulated as one linear program:

minimize: c>x+
k∑
i=1

piq
>
i yi (1.3)

subject to: x ∈ X,Tix+Wiyi ≤ hi, i = 1, . . . , k. (1.4)

Note that the tractability of (1.3) and (1.4) will be affected by the number of realizations

of ξ.

To solve (1.1) and (1.2) numerically, we can apply the sample average approximation

(SAA) approach (Kleywegt et al., 2002). In SAA, a set of independent and identically

distributed samples ξ1, ξ2, . . . , ξk is drawn from a given known distribution of ξ, and we

can therefore estimate E[Q(x, ξ)] by
∑k

i=1
1
k
Q(x, ξi), where we assume that each sample is

realized with equal probability 1/k. Let ĝ(x) = c>x+
∑k

i=1
1
k
Q(x, ξi) be the approximation

of g(x) in Equation (1.1). Kleywegt et al. (2002) show that

min
x∈X

ĝ(x)→ min
x∈X

g(x), with probability 1, as k →∞. (1.5)

Furthermore, Kleywegt et al. (2002) show that the probability of SAA approach recovering

an optimal solution increases at an exponential rate in the sample size k. In addition, they

provide a quantitative bound on the optimality gap, which depends on the sample size k.

The SAA reformulation of the two-stage stochastic programming problem is still com-

putationally expensive due to the size of the problem. Benders decomposition is a de-

composition approach that solves large scale linear programs by utilizing their block struc-

tures (Benders, 1962). Such an approach can be used to solve stochastic programming

problems when the second-stage problem is a linear program (see, e.g., Ahmed, 2013;

Birge and Louveaux, 2011; Shapiro et al., 2014). The idea of Benders decomposition is to

sequentially construct an approximation of the original problem with a set of cutting planes

or cuts. There are two types of cuts: feasibility cuts that determine the feasibility of first-
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stage decisions and optimality cuts that approximate the value function of the second-stage

recourse problem. Both cutting planes can be generated through solving subproblems. In

Chapter 5, we discuss the details of Benders decomposition and apply it as a solution ap-

proach to solve a complex stochastic programming problem which arises as a model for

VRP with uncertain travel time.

1.2 Dissertation Overview

The remainder of the dissertation contains four main chapters. In Chapter 2, we study

a VRP with a minimum makespan objective and compatibility constraints. We provide

an approximation algorithm and a nearly-matching hardness of approximation result. We

also provide computational results on benchmark instances with diverse sizes showing that

the proposed algorithm (i) has a good empirical approximation factor, (ii) runs in a short

amount of time, and (iii) produces solutions comparable to the best feasible solutions found

by a direct integer program formulation. The work in Chapter 2 has been published in Yu

et al. (2017) and Yu et al. (2018).

In Chapter 3, we consider a VRP where each customer has a unit demand representing,

e.g., a pick-up or delivery request, and the goal is to minimize the total cost of routing a

fleet of capacitated vehicles from depots to serve all customers. We propose two parallel

algorithms for the resource-constrained elementary shortest path problem, arising in the

pricing problem of the column generation method for solving VRP. The first is an extension

of the pulse algorithm by Lozano et al. (2015), for which we derive a new bounding scheme

on the load of the route. The second is a randomized algorithm based on the color-coding

approach of Alon et al. (1995). The algorithms are general and can be applied to column

generation for broader classes of VRPs. We conduct numerical experiments to evaluate the

proposed algorithms using modified instances from two different benchmarks, as well as

large-scale instances of a patient-centered medical home care delivery problem, based on
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census data in Wayne County, Michigan. Our methods are capable of solving the linear

programming (LP) relaxation of instances with up to 957 nodes. The numerical results

suggest that, in parallel implementations, the random coloring algorithm runs faster than

the pulse algorithm when the capacity of the vehicle is small. We also use the generated

columns from the LP relaxation to obtain integral solutions. The optimality gap is less

than 6% for most of the benchmark instances, and less than 2% for most of the census-data

based instances.

Carsharing companies have shown increasing interest in the adoption of fuel-efficient

cars to reduce CO2 emissions and to meet heterogeneous demand. In Chapter 4, we con-

sider location design and relocation problems for sharing a mixed fleet of cars and propose

integer linear programs that incorporate both one-way and round-trip demand and opera-

tions. To model car movements, we use a minimum-cost flow model on a spatial–temporal

network given time-based demand. We maximize the total profit of renting cars minus the

cost of relocation and maintenance, subject to limited budget for purchasing cars and given

a CO2 emission limit. In addition, we enforce the first-come, first-served principle to elim-

inate denied trips. We conduct computational studies based on 2014 Zipcar data in Boston

to provide insights for fleet location, car-type designs, and their environmental impacts.

Our results show high utilization of cars and low demand losses and denied trips. Although

the CO2 emission limit may lower car-sharing profit, high demand on new energy-efficient

cars can compensate the loss and is worth being satisfied. The work in Chapter 4 has been

published in Chang et al. (2017).

The fast-growing carsharing and ride-hailing businesses are generating economic ben-

efits and societal impacts in modern society, while both have limitations to satisfy diverse

users, e.g., travelers in low-income, underserved communities. In Chapter 5, we study

the design and operations of a new car-and-ride sharing system. We consider two types

of travelers: Type 1 who rent shared cars and Type 2 who need shared rides. We pro-

pose an integrated car-and-ride sharing (CRS) system to enable community-based shared

8



transportation. To compute solutions, we propose a two-phase approach where in Phase

I we determine initial car allocation and Type 1 drivers to accept; in Phase II we solve a

stochastic mixed-integer program to match the accepted Type 1 drivers with Type 2 users,

and optimize their pick-up routes under a random travel time. The goal is to minimize the

total travel cost plus the expected penalty cost of users’ waiting and system overtime. We

demonstrate the performance of a CRS system in Washtenaw County, Michigan, by testing

instances generated based on census data and different demand patterns. We also demon-

strate the computational efficacy of our decomposition algorithm benchmarked with the

traditional Benders decomposition for solving the stochastic model in Phase II. Our results

show high demand fulfillment rates and effective matching and scheduling with low risk of

waiting and overtime. The work in Chapter 5 has been published in Yu and Shen (2020).
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CHAPTER 2

An Approximation Algorithm for Vehicle

Routing with Compatibility Constraints

2.1 Introductory Remarks

VRPs are classic and extensively studied combinatorial optimization problems which aim

to find the optimal routing decisions for one or multiple vehicles traveling from the depot(s)

to serve demands at various locations. Depending on specific applications, various types of

VRPs are formulated and solved by exact or heuristic approaches. We refer the interested

readers to Toth and Vigo (2014) and Golden et al. (2008) for comprehensive surveys of

models and algorithms for different VRPs, and review the ones that are the most relevant

to this chapter below.

A significant amount of VRP literature focuses on single-vehicle VRPs, where only one

vehicle is allowed. Without any additional constraints, a basic single-vehicle VRP problem

is equivalent to the classic Traveling Salesmen Problem (TSP) (see Applegate et al., 2006).

There exist many heuristic approaches, approximations, and exact algorithms for the TSP,

and 3
2

is the best known approximation factor (Christofides, 1976). Some other single-

vehicle VRPs are the orienteering problem (Chekuri et al., 2012; Golden et al., 1987), TSP

with time windows (Bansal et al., 2004; Barrios and Godier, 2014), Prize-collecting TSP

(Balas, 1989), and k-TSP (Garg, 1996).

For multiple-vehicle VRPs, different variants are studied, including multiple TSP (Ma-
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lik et al., 2007), capacitated VRP (Chalasani and Motwani, 1999; Charikar et al., 2001),

VRP with time windows (Solomon, 1987), and the dial-a-ride problem (Cordeau and La-

porte, 2007). The objective in all these studies is to minimize the total traveling cost of all

vehicles.

However, with multiple vehicles, another natural objective is to minimize the makespan

of the system, i.e., the maximum travel distance among all vehicles. This objective has

received relatively less attention (see, e.g., Applegate et al., 2002; Arkin et al., 2006; Even

et al., 2004; Gørtz et al., 2016).

In this chapter, we study a multiple-vehicle VRP with a minimum makespan objec-

tive where each vehicle can only serve a subset of the locations. Such “compatibility

constraints” arise in applications such as medical home care delivery. Here one needs

to dispatch shared vehicles to visit patients at their homes. Each patient may require dif-

ferent skill sets from medical teams, who are conveyed by different vehicles, and we also

need to balance the workload of different medical staff teams dispatched with the vehicles

(Salmond and Ropis, 2005). We note that the work in this chapter has been published in

Yu et al. (2017) and Yu et al. (2018).

2.1.1 Problem Definition and Formulation

In this chapter, we study the minimum makespan VRP with compatibility constraints

(VRPCC). Given a graph G = (V,E) with node set V = {0, 1, . . . , n} and edge set

E = {(i, j) : i ∈ V, j ∈ V }, we assume that the depot is located at node 0 and cus-

tomers are located at the nodes in V + = V \ {0}. Each edge (i, j) ∈ E has a non-negative

length cij , which follows triangle inequality, i.e., cij ≤ cil + clj for all i, j, l ∈ V . We as-

sume that the minimum distance is at least 1 and edge lengths are symmetric, i.e., cij = cji

for all (i, j) ∈ E. A fleetK of vehicles withK = {0, 1, . . . ,m− 1} is located at the depot,

and each can visit a subset of customers in V +. (Our results also extend easily to the case

of multiple depots, but we focus on the single depot case for simplicity.) We assume that
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each vehicle k ∈ K can only visit a subset of nodes Vk ⊂ V +, based on matches of vehicles

and customers’ service types. Our goal is to find a routing decision to assign each vehicle a

route such that: (a) the nodes visited by vehicle k ∈ K are in the set Vk; (b) each node must

be visited exactly once; and (c) the maximum traveling cost over all vehicles is minimized.

Let (xkij, (i, j) ∈ E) be a binary vector of decision variables, such that xkij = 1 if we

assign vehicle k ∈ K to visit node j ∈ V right after node i ∈ V , and 0 otherwise. Let

(uki , i ∈ V ) be the indicator vector parameter, such that uki = 1 if i ∈ Vk, and uki = 0

otherwise. VRPCC can be formulated as the following integer program.

MIP: minimize
x, τ

τ (2.1)

subject to
∑

(i,j)∈E

cijx
k
ij ≤ τ ∀k ∈ K (2.2)

∑
(0,j)∈E

xk0j = 1 ∀k ∈ K (2.3)

∑
(i,v)∈E

xkiv −
∑

(v,j)∈E

xkvj = 0 ∀v ∈ V, ∀k ∈ K (2.4)

∑
k∈K

∑
(i,j)∈E

xkij = 1 ∀j ∈ V + (2.5)

xkij ≤ ukj ∀(i, j) ∈ E, j ∈ V +, ∀k ∈ K (2.6)∑
i,j∈S, i 6=j

xkij ≤ |S| − 1 ∀S ⊂ V +, ∀k ∈ K (2.7)

xkij ∈ {0, 1} ∀(i, j) ∈ E,∀k ∈ K. (2.8)

In the above formulation, constraints (2.2) set τ as the maximum traveling cost among

all vehicles; constraints (2.3) ensure that each vehicle leaves the depot; constraints (2.4)

ensure that the same number of vehicles arrive at and depart from each customer node;

constraints (2.5) ensure that each node in V + will be visited exactly once; constraints (2.6)

ensure that each vehicle can only visit the nodes in its compatibility set; constraints (2.7)

are sub-tour elimination constraints avoiding cycles that do not contain the depot; finally, x

is a binary decision vector according to constraints (2.8).
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Although there are exponentially many constraints in (2.7), this can be addressed by

constraint generation as follows. We initially start with no sub-tour elimination constraints

in the model. When the solver finds a feasible solution satisfying all the current constraints,

we detect cycles that do not pass through the depot. (This can be found very efficiently by

a simple graph search.) If we do not find such cycles then the MIP model (2.1)–(2.8) is

already solved. Otherwise, we add the corresponding sub-tour elimination constraints from

(2.7), and the solver continues solving this new modified model. We iterate this process

until a valid solution is found.

Despite the successful usage of column generation-based algorithms in VRP, our pre-

liminary study shows that solving MIP model by commercial solver outperforms the col-

umn generation-based algorithm for VRPCC problem (Yu et al., 2017).

In our computations, we solve this MIP model (2.1)–(2.8) using a state-of-the-art solver

(Gurobi), and compare its performance to our approximation algorithm. We also use MIP

to compute lower bounds for VRPCC.

Recall that an α-approximation algorithm for a minimization (resp., maximization)

problem always produces a solution of objective value at most (resp., at least) α times

the optimal.

2.1.2 Main Results

In this chapter, we focus on the approximability of the VRPCC.

Theorem 2.1. VRPCC cannot be approximated to within a factor of (1−o(1)) · lnn, unless

NP = P .

Theorem 2.2. There is a 2dlnne+1-approximation algorithm for VRPCC.

Both the hardness result and the algorithm are based on relations to the set cover prob-

lem, which is known to have a tight approximability threshold of lnn (see Chvatal, 1979;

Dinur and Steurer, 2014). Recall that the set cover problem involves selecting the smallest
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number of sets from a given collection so as to cover all elements of a ground set. The

main idea for Theorem 2.1 is to reduce the min-sum objective in set cover to the min-max

objective in VRPCC. This is done by making several copies of the set cover instance and

“rotating” the set-element relations in each of these instances so as to balance the load

across all sets used in an optimal solution. See Section 2.2 for details.

Theorem 2.2 is based on applying the set cover greedy algorithm on an implicit set sys-

tem; such an approach has been used in a number of approximation algorithms, e.g., Klein

and Ravi (1995); Svitkina and Tardos (2004). However, the “max coverage” subproblem

that we need to solve is different in order to handle the min-max objective. This corresponds

to the maximum coverage problem with group budgets (Chekuri and Kumar, 2004; Martin

and Salavatipour, 2017) (we will define it formally later), and we can apply their approach

using an approximation algorithm for the orienteering problem (Chekuri et al., 2012). We

observe that using an approximation algorithm for the related k-TSP problem (Garg, 2005)

leads to a slightly better constant (2 instead of 2 + ε) in the approximation ratio, but more

importantly this approach is far easier to implement. See Section 2.3 for details.

Our computational results show that the empirical approximation factor (solution value

from the approximation algorithm divided by the best lower bound found) is much smaller

than the theoretical one. Moreover, the running time of the approximation algorithm is

much smaller than MIP: the time taken is less than 2 minutes on almost all instances. Also,

the solution found by our approximation algorithm is very close (or better) than the best

solution found by MIP even after 2 hours. See Section 2.4 for details.

2.1.3 Related Work

For VRPs with a min-max objective, most current literature focuses on heuristic methods

(see, e.g., Carlsson et al., 2009; Golden et al., 1997) and approximation algorithms (see,

e.g., Arkin et al., 2006; Even et al., 2004; Gørtz et al., 2016). In particular, constant-

factor approximation algorithms are known for min-max (unrooted) path/tour cover (Arkin
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et al., 2006), min-max (rooted) path/tour cover (Even et al., 2004) and min-max TSP with

non-uniform speeds (Gørtz et al., 2016). To the best of our knowledge, approximation

algorithms for min-max VRPs with compatibility constraints have not been studied, and

this chapter aims to fill this gap. Compared to these previous results, we show that the

problem with compatibility constraints does not admit any constant-factor approximation.

In this chapter, we use a set cover-based technique to derive our algorithm. Set cover

and maximum coverage problems are classic problems in combinatorial optimization with

wide applications in various settings. A greedy algorithm that repeatedly picks the set

covering the maximum number of uncovered elements yields a (lnn)-approximation for

the set cover problem and an e
e−1

-approximation for the maximum coverage problem (see

Chvatal, 1979). This is also known to be best-possible unlessNP = P (Dinur and Steurer,

2014). Our algorithm relies on the framework of maximum coverage with group budgets,

introduced by Chekuri and Kumar (2004); the approximation ratio was recently improved

in Martin and Salavatipour (2017). A crucial subroutine in implementing this framework

for VRPCC is the k-TSP problem, which finds a rooted tour with minimum total cost

covering k nodes in a given graph. A constant-factor approximation algorithm for k-TSP

was given by Blum et al. (1996) and later improved by Garg (1996), Arora and Karakostas

(2006), and Garg (2005) to 3, 2 + ε, and 2, respectively.

2.2 Hardness of Approximation for VRPCC

We prove Theorem 2.1 by showing the set cover problem is polynomial-time reducible to

VRPCC, and therefore VRPCC is at least as hard as the set cover problem.

Proof of Theorem 2.1. In a set cover instance, we are given a ground set U and a family S

of subsets of U . A cover is a subfamily C ⊆ S of sets whose union is U . The objective is

to find a cover that uses the fewest sets in S. Let [t] denote the integer set {0, 1, . . . , t− 1}

for any t ≥ 1.
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Given an input (U ,S) of set cover, we index elements in U as 0, 1, . . . , n−1 and let the

collection of subsets be S = {Si : i ∈ [m]}. The reduction constructs a graph with mn+ 1

nodes that are partitioned into a depot node r and m disjoint groups Wi = {uij, j ∈ [n]}

for each i ∈ [m]. There are edges of cost 0 between each pair of nodes in the same group

{Wi}i∈[m] and an edge of cost 0.5 between r and all other nodes. There are no edges

between nodes of different groups. Let T denote this edge-weighted graph and ca,b the

shortest path distance between nodes a and b in T . Figure 2.1 shows an example of graph

T with n = 5 and m = 4.

r

W0 W1 W2 W3

0.5 0.5 0.5 0.5

Figure 2.1: An example of T with n = 5, m = 4. Each node in the graph is connected to r
with edge cost 0.5 and in each group {Wi : i ∈ [4]} the nodes comprise a complete graph
with edge costs 0.

The VRPCC instance has m vehicles, so K = [m]. The compatibility constraints

{Vk : k ∈ [m]} are based on “rotating” the sets in S and are defined as follows. For any

vehicle k ∈ [m], group i ∈ [m] and j ∈ [n], node uij ∈ Vk if and only if j ∈ Sk′ , where

k′ = (k+ i) mod m. Figure 2.2 shows an example for an instance with m = 4 and n = 5

where the relationship in W0 represents the original collection S. This reduction is clearly

polynomial time in m and n.

We argue that solving the set cover instance (U ,S) is equivalent to solving the above

VRPCC instance. Let SC∗ and CC∗ denote corresponding optimal solutions to set cover

and VRPCC, respectively. Let c(SC∗) and c(CC∗) denote corresponding optimal objec-
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Figure 2.2: An illustration of compatibility constraints on different groups.

tives.

We first show that c(CC∗) ≤ c(SC∗). Let C contain indices of all sets in SC∗. Then,

we construct the following solution to VRPCC. We define Ci := {(c− i) mod m | c ∈ C}

for each group i ∈ [m]. Note that by definition of the compatibility constraints in group i,

the vehicles in Ci can cover all nodes in Wi, and so the VRPCC solution involves routing

each vehicle k ∈ [m] to the groups {i ∈ [m] : k ∈ Ci}. The total cost for any vehicle

k ∈ [m] is then |{i ∈ [m] : k ∈ Ci}| = |C|, so the VRPCC objective is also |C| = c(SC∗).

This implies c(CC∗) ≤ c(SC∗).

Conversely, we show that c(SC∗) ≤ c(CC∗). Consider the optimal VRPCC solution

CC∗. As c(CC∗) is the maximum cost over all m vehicles, the total cost to cover all nodes

is at most m × c(CC∗). This implies that there exists a group, say, Wi, which is visited

by at most c(CC∗) vehicles. Let Di ⊆ [m] denote the set of vehicles that visit group Wi;

note that |Di| ≤ c(CC∗). Then it follows (due to the compatibility constraints for Wi) that

D = {(d+ i) mod m | d ∈ Di} forms a valid set cover, i.e. ∪`∈DS` = U . So, the optimal

set cover value c(SC∗) ≤ |D| = |Di| ≤ c(CC∗).

Combining both, we conclude that c(CC∗) = c(SC∗). The result in Theorem 2.1 now

follows from the hardness for set cover that there is no (1− o(1)) · lnn approximation

algorithm unless P = NP (Dinur and Steurer, 2014). This completes the proof.
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2.3 An O(log n)-Approximation Algorithm

In this section, we propose an approximation algorithm for VRPCC. Our algorithm starts

with a “guess”B on the optimal value, which can be verified within a binary search scheme

(see Algorithm 2.2). Then it iteratively picks a route for each vehicle that covers (approx-

imately) the maximum number of new nodes. We iterate this process until all nodes are

covered.

We start by introducing the maximum coverage problem with group budgets (MCG).

Here, we are given a ground set for MCG, X , and a collection of subsets of X , C =

{S1, S2, . . . , Sm}. We are also given a partition of C into k groups G1, G2, . . . , Gk. A

solution to MCG is a subset H ⊂ C such that |Gi ∩ H| ≤ 1 for all i = 1, . . . , k, i.e., at

most one set can be chosen from each group. The objective is to maximize the number of

elements in X covered by H .

Example: ConsiderX = {1, 2, 3, 4, 5}, S1 = {1, 2, 3}, S2 = {4, 5}, S3 = {1, 2, 5}, S4 =

{1, 5} and k = 2. Suppose that G1 = {S1, S3} and G2 = {S2, S4}. Then the optimal solu-

tion is H = {S1, S2} which covers all 5 elements.

Chekuri and Kumar (2004) gave a greedy algorithm to solve MCG by iteratively pick-

ing one set from each group that covers the maximum number of uncovered elements.

Crucially, the algorithm works with an oracle model O that takes as input a ground set X ′

and an index i and outputs a set Sj ∈ Gi such that |Sj∩X ′| is maximized. They showed that

this greedy algorithm is a 1
1+ρ

-approximation algorithm for MCG given a 1
ρ
-approximate

oracle. Later, Martin and Salavatipour (2017) proposed a better (1− e−1/ρ)-approximation

algorithm, given a 1
ρ
-approximate oracle, based on a linear program rounding algorithm.

However, this algorithm relies on using the ellipsoid method to solve LPs, which is not

practical for our purpose.

Specializing MCG to the VRPCC setting, we obtain the following.

Problem 2.1. MCG-VRP
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Input: a node subset X ⊂ V , a fleet K of vehicles and a budget B ≥ 0.

Output: routes {Ai ⊆ Vi : i ∈ K} for each vehicle with each route of cost at most B.

Objective: maximize | ∪i∈K Ai ∩X|, the number of nodes covered.

In this case, the oracleO corresponds to the orienteering problem. Formally,O(Y,B, i)

involves computing a route for vehicle i ∈ K (originating from r) with cost at most B that

covers the maximum number of nodes in Y . The compatibility constraints are enforced in

the definition of this oracle instance. The complete algorithm is described in Algorithm 2.1.

Algorithm 2.1: Greedy Algorithm for MCG-VRP
input : A fleet K of vehicles, a subset X ⊂ V and a budget B
output: A set H of routes with cost at most B, one route for each vehicle

1 X ′ ← X
2 for i ∈ K do
3 Ai = O(X ′ ∩ Vi, B, i)
4 X ′ ← X ′\Ai
5 end
6 return H = {Ai : i ∈ K}

Theorem 2.3 (Corollary 1 in (Chekuri and Kumar, 2004)). Algorithm 2.1 is a 1
1+ρ

-approximation

algorithm for the MCG-VRP, assuming a 1
ρ
-approximate oracle O.

The current best approximation ratio for the orienteering problem is (2 + ε) with run-

ning time nO(1/ε2) (Chekuri et al., 2012); so this is polynomial time only for constant ε > 0.

However, this algorithm as well other constant-factor approximation algorithms for orien-

teering are rather complex to implement. To simplify the implementation, we instead use

a (1, β)-bicriteria approximation algorithm for orienteering, which violates the cost by a

factor β ≥ 1 but covers the optimal number of nodes (for a cost B route). This corre-

sponds to the k-TSP problem: given a graph with root r and target k, find a min-cost route

(originating from r) that covers at least k nodes. Given a β-approximation algorithm for

k-TSP, we can obtain a (1, β)-bicriteria approximation for orienteering by just running a

binary search on k to output the route having highest k and cost at most βB. The best
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approximation ratio for k-TSP is β = 2 from Garg (2005). This algorithm is also much

more efficient than those for orienteering; in fact, it is used as a subroutine in all algorithms

for orienteering. Using Theorem 2.3, we obtain:

Corollary 1. If we use a (1, β)-bicriteria approximation algorithm for oracle O, then Al-

gorithm 2.1 is a (1
2
, β)-bicriteria approximation algorithm for MCG-VRP.

Finally, we use Algorithm 2.1 iteratively until all nodes are covered, and perform a

binary search on the “guess” B. The details are displayed in Algorithm 2.2.

Algorithm 2.2: Approximation Algorithm for VRPCC
input : A network G = (V,E), a fleet K of vehicles
output: Routing assignment for each vehicle in i ∈ K

1 Initialize routes τi = ∅ for all i ∈ K, X ← V +.
2 Initialize upper bound u = 2

∑
(i,j)∈E cij , lower bound l = 0, and a tolerance

threshold ε for the binary search.
3 while u− l ≥ ε do
4 B ← u+l

2
, Solve← true

5 while X 6= ∅ do
6 {Ai : i ∈ K} = solution from Algorithm 2.1 for MCG-VRP with input

K,X,B
7 if | ∪i∈K Ai ∩X| < |X|/2 then Solve← false, break
8 Update X ← X \ (∪i∈KAi) and τk ← τk ◦ Ak for all k ∈ K
9 end

10 if Solve then u← B
11 else l← B

12 end
13 return routes in τi for i ∈ K

The following lemma shows VRPCC can be solved by iterating Algorithm 2.1 at most

dlog2 ne times for the correct guess of B.

Lemma 2.1. If we use a (1, β)-bicriteria approximation algorithm for oracle O then Algo-

rithm 2.2 achieves a (1 + ε)βdlog2 ne approximation ratio for VRPCC.

Proof. By the definition of upper/lower bounds (u and l) and the binary search on B, it is

clear that the parameter Solve is true (resp., false) at the end of the inner while-loop (line 9)
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when B is set to u (resp., l). Note also that for any B where Solve is true at the end of the

inner while-loop, Algorithm 2.1 must have produced (in each iteration of the inner while-

loop) a solution that covers at least half of the current set X: as each iteration increases

makespan by at most βB (by Corollary 1), the resulting VRPCC solution has makespan at

most (βdlog2 ne) · B. In particular, for the choice B = u at the end of the algorithm, we

obtain that the makespan of Algorithm 2.2 is ALG ≤ βdlog2 ne · u.

Suppose the optimal value for VRPCC is B∗ and consider any B ≥ B∗. Note that the

optimal value of the MCG-VRP instance (X,B,K) is |X| for any X ⊆ V +; hence, using

Corollary 1, Algorithm 2.1 covers at least half the nodes in X . So, Solve is true at the end

of the inner while-loop for any B ≥ B∗. As Solve is false at the end when B = l, we

obtain B∗ ≥ l. So we have:

ALG ≤ βdlog2 ne · u ≤ βdlog2 ne(l + ε) ≤ βdlog2 ne(B∗ + ε) ≤ (βdlog2 ne)(1 + ε)B∗.

The last inequality uses the fact that B∗ ≥ 1 as all distances are assumed to be at least one.

Therefore, Algorithm 2.2 is a (1 + ε)βdlog2 ne-approximation algorithm.

Using β = 2 and ε ≤ 1
n

, we obtain a 2dlog2 ne+1-approximation algorithm for VR-

PCC. If, instead of the greedy approach from Chekuri and Kumar (2004), we use the LP-

based approach in Martin and Salavatipour (2017) to solve MCG-VRP, we will obtain a

(2 lnn+1)-approximation algorithm. This completes the proof of Theorem 2.2.

For the computational results, we only tested the greedy approach which has a slightly

worse approximation ratio, but is a lot simpler to implement.

The time complexity of Algorithm 2.2 depends on the complexity of the oracle O.

Suppose the complexity ofO is T (n); then the complexity of Algorithm 2.1 is O(mT (n)).

For Algorithm 2.2, the inner while-loop executes at most dlog ne as we halve the size of

X in each loop. The outer loop is used to conduct a binary search for the optimal budget,

which takes log2
C
ε

steps, where C = 2
∑

(i,j)∈E cij is a trivial upper bound. Therefore, the
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overall complexity of Algorithm 2.2 is O
(
log2(C

ε
) · log2(n) ·m · T (n)

)
.

2.4 Computational Results

To evaluate the performance of the proposed approximation algorithm, we conduct numeri-

cal studies on tailored instances generated from Solomon’s benchmark for VRPs (Solomon,

1987). First, we compare the proposed approximation algorithm against the MIP on small

instances with up to 25 customers. Then, we extend our experiments to instances with up

to 100 customers.

There are three categories of the Solomon’s instances based on the nodes distribution:

the R type where nodes are uniformly randomly generated on the grid, the C type where

nodes are distributed in clusters, and the RC type that is a mixed of R type and C type.

We only use the node location from Solomon’s benchmark and customize our instances

as follows. We sample the desired number of nodes from the benchmark instances and

compute the distance matrix. We consider two types of VRPCC instances: one with tight

compatibility constraints where each node can be visited by a small number of vehicles,

and the other with relaxed compatibility constraints where each node can be visited by a

larger number of vehicles. In our tailored instances, we randomly generate compatibility

constraints such that we allow one vehicle to visit a node with 30% probability for tight

instances and 70% probability for relaxed instances. Each instance is labeled by its type

R/C/RC, number n of nodes, and number k of vehicles.

To implement the approximation algorithm, we use the 5-approximation algorithm for

k-TSP problem from Garg (1996) to serve as our oracleO. Although the best known result

is a 2-approximation from Garg (2005), the one that we use has an easier implementation

while achieving satisfactory empirical results in our tests. We use ε = 10−3 in Algorithm

2.1. After solving the problem, we perform local search, including 2-opt and relocation

(Toth and Vigo, 2014), to improve the solutions. The relocation procedure used in the local
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search works as follows. After we finish the 2-opt, we attempt to reassign the nodes in the

most lengthy tour to another compatible vehicle and insert them to the best position of the

tour. We repeat this process until no improvements can be made.

We code our algorithm in Java and execute the tests on a computer with an Intel Core i7-

3770 CPU running at 3.4 GHz and 8 GB of RAM. We use Gurobi 7.5.1 as the mixed integer

programming solver. We report the results with 10 minutes and 2 hours (120 minutes) time

limits for MIP solver.

We evaluate the proposed algorithm against the MIP on small instances with up to 26

nodes and large instances with up to 101 nodes. For each test instance, we report the lower

bounds, LB1 (LB2), and upper bounds, UB1 (UB2), found by MIP within the 10 minutes (2

hours) time limit, the CPU time for MIP in seconds (Time) if the problem is solved within

the time limit, the objective value of the solution found by approximation algorithm (Obj),

the CPU time for the approximation algorithm in seconds (Time), the empirical approxi-

mation ratio computed as Obj
LB2

, and the ratio between the objective from the approximation

algorithm and the best upper bound from MIP, Obj
UB2

. In the second MIP run (2 hours limit),

we highlight (with bold font) those lower/upper bounds that were improved from the first

MIP run (10 minutes limit).

Tables 2.1 and 2.2 summarize the results for instances with up to 26 nodes and dif-

ferent compatibility constraints. The instances with relaxed compatibility constraints are

more difficult to solve. Solving VRPCC through MIP is challenging for the state-of-art

solver. Out of twelve instances each, two and six instances cannot be solved to optimality

within the time limit for tight instances and relaxed instances, respectively. Our proposed

algorithm works well for these small instances as most of them can be solved within one

second. Comparing the best lower bound found by MIP, our proposed algorithm yields

good empirical approximation ratios: the ratios are within 1.16 for all instances with tight

compatibility constraints and within 2 for ten out of twelve instances with relaxed compat-

ibility constraints.
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Table 2.1: Numerical results for instances with up to 26 nodes and tight compatibility
constraints

Instance MIP (10 minutes) MIP (2 hours) Approximation
LB1 UB1 Time (s) LB2 UB2 Time (s) Obj Time (s) Obj

LB2

Obj
UB2

C-n11-k4 49.30 49.30 0.01 49.30 49.30 0.01 49.30 0.07 1.00 1.00
C-n16-k4 81.40 81.40 1.22 81.40 81.40 1.27 83.30 0.19 1.02 1.02
C-n21-k6 81.60 81.60 62.56 81.60 81.60 58.62 87.70 0.18 1.07 1.07
C-n26-k6 77.10 86.10 600.01* 78.30 86.10 7200.08* 86.20 0.36 1.10 1.00
R-n11-k4 97.00 97.00 0.09 97.00 97.00 0.09 98.10 0.04 1.01 1.01
R-n16-k4 108.90 108.90 0.10 108.90 108.90 0.11 108.90 0.05 1.00 1.00
R-n21-k6 96.80 96.80 1.56 96.80 96.80 1.36 96.80 0.11 1.00 1.00
R-n26-k6 108.90 108.90 2.14 108.90 108.90 2.02 126.60 0.20 1.16 1.16
RC-n11-k4 89.40 89.40 0.06 89.40 89.40 0.06 95.80 0.02 1.07 1.07
RC-n16-k4 131.00 131.00 0.42 131.00 131.00 0.36 131.30 0.05 1.00 1.00
RC-n21-k6 156.60 156.60 0.13 156.60 156.60 0.12 156.60 0.07 1.00 1.00
RC-n26-k6 130.50 131.10 600.01* 130.80 131.10 7200.02* 138.80 0.27 1.06 1.06
*: computation reaches time limit

Table 2.2: Numerical results for instances with up to 26 nodes and relaxed compatibility
constraints

Instance MIP (10 minutes) MIP (2 hours) Approximation
LB1 UB1 Time (s) LB2 UB2 Time (s) Obj Time (s) Obj

LB2

Obj
UB2

C-n11-k4 41.20 41.20 1.39 41.20 41.20 1.33 41.70 0.12 1.01 1.01
C-n16-k4 47.18 79.00 600.10* 50.60 78.60 7200.21* 80.30 0.25 1.59 1.02
C-n21-k6 25.89 83.60 600.12* 39.65 81.20 7200.47* 81.30 1.13 2.05 1.00
C-n26-k6 21.54 83.30 600.05* 27.18 81.60 7200.35* 81.30 1.57 2.99 1.00
R-n11-k4 76.80 76.80 1.21 76.80 76.80 1.65 87.40 0.04 1.14 1.14
R-n16-k4 89.90 89.90 33.32 89.90 89.90 33.29 98.20 0.32 1.09 1.09
R-n21-k6 61.50 83.10 600.01* 70.00 80.00 7200.07* 99.50 0.29 1.42 1.24
R-n26-k6 72.57 107.10 600.02* 79.03 93.30 7200.14* 115.60 0.30 1.46 1.24
RC-n11-k4 81.30 81.30 3.86 81.30 81.30 4.52 88.30 0.02 1.09 1.09
RC-n16-k4 80.64 89.10 600.02* 89.10 89.10 1632.83 116.40 0.10 1.31 1.31
RC-n21-k6 90.20 90.20 152.56 90.20 90.20 155.92 90.40 0.35 1.00 1.00
RC-n26-k6 33.60 96.30 600.03* 49.48 96.10 7200.22* 95.20 0.51 1.92 0.99
*: computation reaches time limit

Tables 2.3 and 2.4 summarize the results for instances with up to 101 nodes and dif-

ferent compatibility constraints. It becomes very difficult to obtain a good lower bound

by using the state-of-art solver for MIP, even given a two-hour time limit. Regarding the

runtime, our proposed algorithm is capable of solving two types of instances with 101

nodes in 15 seconds and 270 seconds, respectively. The empirical approximation ratios are
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Table 2.3: Numerical results for instances with up to 101 nodes and tight compatibility
constraints

Instance MIP (10 minutes) MIP (2 hours) Approximation
LB1 UB1 Time (s) LB2 UB2 Time (s) Obj Time (s) Obj

LB2

Obj
UB2

C-n21-k6 87.30 87.30 5.79 87.30 87.30 6.47 87.30 0.01 1.00 1.00
C-n41-k10 109.70 114.30 600.03* 114.30 114.30 1772.48 114.50 0.09 1.00 1.00
C-n61-k14 55.07 – 600.15* 55.35 102.70 7200.15* 102.90 1.50 1.86 1.00
C-n81-k18 72.69 – 600.02* 72.79 125.50 7200.25* 117.40 2.82 1.61 0.94
C-n101-k22 32.13 – 600.02* 32.39 – 7200.22* 122.70 15.44 3.79 –
R-n21-k6 120.70 120.70 3.23 120.70 120.70 4.10 124.90 0.02 1.03 1.03
R-n41-k10 100.70 103.20 600.05* 101.90 103.00 7200.05* 149.70 0.28 1.47 1.45
R-n61-k14 77.80 121.10 600.04* 81.20 120.10 7200.08* 126.80 1.03 1.56 1.06
R-n81-k18 54.02 – 600.04* 54.88 – 7200.52* 117.60 3.73 2.14 –
R-n101-k22 51.80 – 600.05* 56.40 – 7200.26* 121.30 11.27 2.15 –
RC-n21-k6 138.80 138.80 0.80 138.80 138.80 1.01 138.80 0.03 1.00 1.00
RC-n41-k10 194.90 194.90 277.41 194.90 194.90 295.56 194.90 0.33 1.00 1.00
RC-n61-k14 108.40 257.30 600.03* 114.00 146.30 7200.11* 170.50 2.09 1.50 1.17
RC-n81-k18 49.81 – 600.03* 50.34 – 7200.17* 170.60 4.67 3.39 –
RC-n101-k22 47.08 – 600.04* 47.61 – 7200.97* 178.50 9.32 3.75 –
*: computation reaches time limit; –: no upper bounds found by MIP within time limit

Table 2.4: Numerical results for instances with up to 101 nodes and relaxed compatibility
constraints

Instance MIP (10 minutes) MIP (2 hours) Approximation
LB1 UB1 Time (s) LB2 UB2 Time (s) Obj Time (s) Obj

LB2

Obj
UB2

C-n21-k6 29.85 82.80 600.10* 41.85 81.60 7200.38* 80.60 0.06 1.93 0.99
C-n41-k10 18.25 129.20 600.08* 18.44 86.50 7200.18* 89.00 3.70 4.83 1.03
C-n61-k14 15.06 – 600.30* 15.43 – 7200.09* 90.40 32.31 5.86 –
C-n81-k18 13.36 – 600.07* 15.48 – 7200.39* 117.00 100.65 7.56 –
C-n101-k22 14.00 – 600.47* 14.00 – 7200.25* 117.00 262.38 8.35 –
R-n21-k6 56.58 79.90 600.03* 65.09 79.90 7200.05* 82.60 0.29 1.27 1.03
R-n41-k10 42.22 181.60 600.07* 43.14 107.80 7200.16* 97.80 3.08 2.27 0.91
R-n61-k14 35.83 – 600.24* 36.48 – 7200.09* 94.30 24.85 2.58 –
R-n81-k18 29.09 – 600.10* 32.53 – 7200.11* 103.90 89.01 3.19 –
R-n101-k22 26.18 – 600.19* 26.18 – 7200.05* 99.80 231.50 3.81 –
RC-n21-k6 90.20 90.20 141.53 90.20 90.20 142.03 90.40 0.27 1.00 1.00
RC-n41-k10 17.77 228.50 600.11* 19.89 125.20 7200.18* 160.50 4.41 8.07 1.28
RC-n61-k14 26.44 – 600.09* 26.82 – 7200.19* 117.50 31.39 4.38 –
RC-n81-k18 24.93 – 600.07* 29.23 – 7200.22* 121.00 114.88 4.14 –
RC-n101-k22 23.91 – 600.15* 23.91 – 7200.40* 124.20 268.86 5.19 –
*: computation reaches time limit; –: no upper bounds found by MIP within time limit

maintained within 8; we think that this is a pessimistic bound as the lower bounds from

MIP seem poor. In addition, our results are comparable to the best MIP solutions found

within the time limit as ratios Obj
UB2

are close to 1; in fact, in many cases the approximation
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algorithm finds a better solution.

2.5 Concluding Remarks

We studied a VRP with minimum makespan objective and compatibility constraints. This

problem has a variety of potential applications, including shared mobility. We obtained a

(2 lnn+1)-approximation algorithm using a set covering framework, and proved a nearly

matching (lnn)-hardness of approximation. Our numerical experiments showed that the

VRPCC is challenging to solve directly using integer programming and the proposed al-

gorithm is efficient and yields an empirical approximation ratio that is much better than its

theoretical bound.
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CHAPTER 3

Improving Column Generation for Vehicle

Routing Problems via Random Coloring and

Parallelization

3.1 Introductory Remarks

We consider the VRP with unit demand (VRPUD) that can be used to model a variety of

service operations management problems in practice, where we route a fleet of vehicles

to visit a set of customers, and each vehicle has a capacity, i.e., an upper bound on the

maximum number of customers to visit. We describe the problem setup mathematically

as follows. Let G = (V ∪ {s}, E) be an undirected graph, where V = {1, 2, . . . , n} is

the set of nodes representing customer locations and s is the depot node. The set E =

{(i, j)| i, j ∈ V ∪ {s}} contains all the edges representing best travel routes between

each pair of customers. Each edge (i, j) ∈ E is associated with a deterministic travel

cost cij > 0, which satisfies the triangle inequality, that is cij + cjp ≥ cip for all edges

(i, j), (j, p), (i, p) ∈ E. A fleet of identical vehicles located at the depot node, denoted by

set K, is used to serve all the customer nodes in V , and each vehicle has capacity Q. We

assume that a unit demand is attached to each node i ∈ V . Our goal is to find a set of

vehicle routes with the minimum total travel cost such that: (i) each node in V is visited

by exactly one route, (ii) all vehicles start and end their routes at the depot node s, and (iii)
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each route contains at most Q customer nodes.

VRPUD finds natural applications in service systems in transportation, logistics, and

healthcare. One example application is routing in a patient-centered medical home sys-

tem, where we need to route caregivers to provide medical care services at patients’ homes

(American Academy of Family Physicians, 2008). The patient-centered medical home

system benefits patients with reduced mobility and decreases the number of hospital ad-

missions (Adaji et al., 2018; The National Association for Home Care & Hospice, 2010).

However, the routing and scheduling tasks are highly complex and often done manually

and therefore result in high operational costs (Eveborn et al., 2006). According to The Na-

tional Association for Home Care & Hospice (2010), nationwide, the number of patients

visited by one caregiver ranges from 4 to 6 during a workday, depending on the types of

caregivers. Using this information, we can formulate the problem as a VRPUD to find the

optimal routing strategy of the caregivers by specifying the capacity Q of each vehicle.

Fikar and Hirsch (2017) review different routing approaches under the context of patient-

centered medical home, e.g., modeling the routing and scheduling problem as VRP with

time windows (VRPTW) or VRP with pickup and delivery. However, the approach of

solving the problem as VRPUD, considering the workload of each caregiver, has not been

studied.

Note that when we eliminate the capacity requirement, VRPUD extends the classic

traveling salesman problem, which finds a least-cost route that visits all nodes in a given

network (Kruskal, 1956). VRPUD is also a special case of the capacitated VRP (CVRP)

where a fleet of vehicles, each having a limited capacity, is routed to visit a set of customers

with different demand requirements (see, e.g., Baldacci et al., 2011; Fukasawa et al., 2006;

Pecin et al., 2017b; Toth and Vigo, 2014).
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3.1.1 Column Generation Overview

Column generation is a prominent approach to solving VPRs (see, e.g., Baldacci et al.,

2010, 2008, 2011; Desaulniers et al., 2006; Fukasawa et al., 2006; Pecin et al., 2017a,b).

In column generation, we apply a set-partitioning formulation for the VRP where we as-

sociate a binary decision variable to each feasible route. A key first step is to solve the

linear program (LP) relaxation of this integer program. Because the number of decision

variables in the “master” LP can be huge, a restricted LP containing only a subset of all

possible columns (i.e., decision variables) is repeatedly solved. An optimal solution to this

LP provides a dual solution, based on which we can either improve the solution to the

master LP or verify optimality of the current solution. This requires solving the so-called

“pricing problem” which finds a new column with the minimum reduced cost. If the min-

imum reduced cost is non-negative, then the current solution is optimal for the master LP.

Otherwise, the column with the least reduced cost enters the basis and we re-optimize the

restricted LP with an expanded set of columns. We note that in each iteration, any column

with negative reduced cost could improve the solution. Therefore, we are not restricted

to only add columns with the least reduced cost, and can add any columns with negative

reduced cost (Desaulniers et al., 2006).

The combinatorial algorithms to solve the pricing problem in column generation play

an essential role in improving computational efficiency. Finding a column with negative

reduced cost is equivalent to solving an elementary shortest path problem with resource

constraints (ESPPRC), which finds the minimum cost path starting and ending at the depot,

traversing customer nodes under required resource constraints. When the underlying net-

work contains negative cost arcs, the problem becomes NP-hard (Dror, 1994). Desrosiers

et al. (1995) proposed a dynamic programming method to solve a relaxed version of ESP-

PRC that allows cycles. Based on their work, Feillet et al. (2004) proposed a label correct-

ing algorithm that is the first exact solution method for ESPPRC, and it was later improved

by Feillet et al. (2007). This algorithm could solve the pricing problem of the VRPTW very
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efficiently when time windows are tight, but it failed to handle problem instances with wide

time windows. Later, Righini and Salani (2006) proposed a bi-directional label correcting

algorithm that relies on state-space relaxation for ESPPRC and significantly improved the

computational efficiency. Recently, Lozano et al. (2015) proposed an algorithm (called

pulse) that efficiently solved ESPPRC arising in VRPTW using implicit enumeration and

a bounding procedure. The algorithm worked with a depth-first-search-based enumeration

to construct the partial paths starting from the depot node to the end node. With several

pruning strategies to discard the search on the partial paths early, the algorithm prunes large

regions of the solution space and efficiently solves the problem. The algorithm was later

extended and generalized by Duque et al. (2015) as a general-purpose framework for hard

shortest path problems and for the orienteering problem with time windows.

The pricing problem in column generation for VRPUD has a parameter Q which is the

maximum number of nodes in any solution route. Although the ESPPRC is NP-hard, it is

possible to find a polynomial-time algorithm with respect to the size of the input when the

parameter Q is fixed. Fixed parameter tractability is a branch in computational complexity

theory that focuses on classifying computational problems with respect to the parameters of

the input (Downey and Fellows, 2012). It separates the complexity of an NP-hard problem

into two parts: one depends on the size of the input, and the other depends on some fixed

parameter. If the parameter of the instance is small, then we might find a polynomial-time

solution to that instance. In our context, there are polynomial-time algorithms for finding

a simple path/cycle of a fixed length based on a technique called color-coding introduced

by Alon et al. (1995). In the color-coding method, each node is randomly assigned a color

from a set with a fixed number of colors. Finding a simple path of a fixed length then

reduces to finding a path containing nodes with distinct colors. The complexity of the latter

problem is exponential with respect to the number of colors but polynomial with respect to

the number of nodes; this is because we only need to track the subset of previously-visited

colors rather than nodes. However, as one color-coding could color two distinct nodes with
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the same color and forbid the exploration of the path containing the two nodes, we need

to investigate multiple independent trials of color-coding. In this chapter, we utilize this

approach to obtain an efficient algorithm for ESPPRC instances in VRPUD with a fixed

capacity of Q.

In the column generation method, at the end, the solution to the master LP may not be

integral. One common approach is to use all the generated columns to solve the restricted

problem as an integer program in order to obtain a heuristic integral solution, along with an

optimization gap between the LP and integer program solutions. To solve the VRP exactly,

additional techniques are needed: branch-and-price (Barnhart et al., 1998) is used to close

the optimization gap by applying a branch-and-bound framework atop the column gen-

eration, and branch-cut-and-price (Fukasawa et al., 2006) improves the branch-and-price

method by introducing cutting planes to strengthen the lower bound on each branching

node.

In this chapter, we focus on solving the LP relaxation exactly using new algorithms for

the pricing problem. We also use the generated columns to find a heuristic integer solution.

3.1.2 Contributions

The main contributions of this chapter are threefold.

First, we demonstrate the use of the “random coloring” idea as a pricing algorithm (to

solve ESPPRC) in the column generation method for VRPs. In particular, we consider the

VRPUD problem, and obtain an efficient algorithm to solve its column-generation-based

LP relaxation. We believe that this approach is applicable more broadly to other VRPs with

some (possibly implicit) limit on the number of nodes visited in each route. As different

coloring schemes are completely independent, it is natural to implement this algorithm in

parallel, and we observe a high speed-up ratio in our parallel implementation. We note

that techniques to accelerate classical label-correcting algorithms for ESPPRC, such as bi-

directional search and bounding functions, are also applicable to our algorithm, and may
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yield further speed-up.

Second, we evaluate the random coloring approach against a state-of-the-art algorithm

for ESPPRC, the pulse algorithm (discussed earlier). The pulse algorithm has previously

been tested in the column generation approach for VRPTW instances, but it relies on a

bounding scheme that only considers time consumption. In this chapter, we extend the

pulse algorithm to VRPUD by (1) extending the bounding scheme to consider the capacity

consumption of the vehicle, and (2) allowing the algorithm to stop early and return multi-

ple negative-cost paths instead of just one optimal path. The comparison between the pulse

algorithm and the random coloring algorithm has been tested on modified Solomon’s in-

stances (Solomon, 1987) and unitary demand CVRP X-instances (Uchoa et al., 2017) with

the size of the instances ranging from 50 nodes to 957 nodes. Each route is set to contain at

most 6 nodes. Computational results show that the parallel implementations of both algo-

rithms can solve the LP relaxations of these instances efficiently, and the heuristic integer

solutions found have small optimality gaps. The optimality gap is in general within 5% for

both pricing algorithms. The random coloring algorithm is more efficient than the pulse

algorithm for instances with smaller vehicle capacity.

Third, we extend our work to the multi-depot VRPUD and benchmark the proposed

algorithms on patient-centered medical home instances based on census data in Wayne

County, Michigan. Both the pulse and random coloring algorithms can solve the LP re-

laxation of VRPUD instances with up to 500 nodes (and Q = 4) in a reasonable time in

parallel: about 8 minutes for random coloring and 15 minutes for pulse. Moreover, using

the generated columns in the integer program, we can obtain high-quality integer solu-

tion. For census data instances, the optimality gap is even better comparing to the VRPUD

benchmark instances: it is generally within 2% via both algorithms.
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3.1.3 Other Related Work

As discussed before, the column generation method only applies to the LP relaxation, and

to obtain an exact solution one needs to embed this method within the branch-and-bound

or branch-and-cut framework. In recent years, the branch-cut-and-price approach, which

combines column generation with branch-and-cut framework, has been considered the most

efficient exact solution approach for VRPs and has been widely applied to solve various

variants of VRPs (Pecin et al., 2017a,b). Nevertheless, solving the LP relaxation efficiently

via column generation is an important aspect of the overall exact approach for VRPs.

The branch-and-price method performs very well for VRPTW. Desrosiers et al. (1995)

consider a column generation method for VRPTW that models the pricing problem as a

shortest path problem with resource constraints that allows cycles, which is later improved

by Kohl et al. (1999) and Irnich and Villeneuve (2006) forbidding cycles with a fixed size.

Feillet et al. (2004) first solve VRPTW using column generation with ESPPRC as the pric-

ing problem, which is harder to solve as the path is not allowed to repeat nodes. They

propose the first exact method for the ESPPRC to improve the lower bounds obtained at

each branching node. Jepsen et al. (2008) extend the branch-cut-and-price framework by

introducing so-called “subset-row” cuts which effectively enhances the bound from root

node relaxation. Baldacci et al. (2010) propose a column-and-cut generation method and

use non-elementary route relaxation approach to bound the pricing problem. Pecin et al.

(2017a) propose a branch-cut-and-price approach that combines several recently developed

algorithms with limited-memory subset-row cuts and improved elementary inequalities.

CVRP can also be viewed as a special case of VRPTW with arbitrary large time win-

dows. However, with resource (time) being less constrained, the pricing problem formu-

lated as ESPPRC becomes more challenging to solve. To solve CVRP instances through

column-generation-based approaches, the main stream of the research focuses on consid-

ering non-elementary relaxations of the pricing problem and strengthening the formulation

through various cutting planes. Christofides et al. (1981) first introduce q-route relaxation,
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which is a walk with at most q units of load that starts at the depot, traverses a sequence

of nodes and then returns to the depot. In a q-route, we allow a vehicle to visit the same

node multiple times, which may create loops. It is easy to avoid 2-node loops but it is hard

to avoid k-node loops with k ≥ 3. Fukasawa et al. (2006) initiate a branch-cut-and-price

method to solve CVRP by combining branch-and-cut and column generation. They con-

sider the pricing problem as a minimum cost q-route problem without 2-node loops, which

significantly reduces the solution time of the pricing problem. Fukasawa et al. (2015) ex-

tend the algorithm to solve a variant of CVRP where the cost of an arc is defined as the

product of the arc length and the load of a vehicle traveling on this arc.

A variety of column-generation studies for CVRP have focused on finding columns

associated with elementary routes, whose efficiency relies on bounding functions to reduce

the search space of a dynamic program. The bounds are computed through different state-

space relaxations. Baldacci et al. (2008) proposed a column-and-cut generation approach

using a bounding procedure combining three dual ascent heuristics. Baldacci et al. (2011)

introduced the concept of ng-route that is more effective than the q-route. The ng-route

is a non-elementary route limiting the visit to a node that was previously visited if such

a node belongs to a dynamically computed no-good (ng) set associated with the route.

Adding another dual ascent heuristic with ng-route relaxation and non-robust subset-row

cuts, they improved the speed and stability of the branch-cut-and-price algorithm.Recently,

Pecin et al. (2017b) improved the branch-cut-and-price algorithm by incorporating and

enhancing various techniques from the past 10 years.

Table 3.1 summarizes the reviewed literature applying column generation-based meth-

ods for VRPs. We classify them based on solution approaches used for solving the pricing

problem. We refer the interested readers to a survey paper by Braekers et al. (2016) for

state-of-the-art classification and theory development for vehicle routing-related problems.

We also note that the color-coding approach has been used computationally in a dif-

ferent setting, namely in bioinformatics to explore complex structures in protein-protein
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Table 3.1: Summary of the reviewed papers based on solution methods for the pricing
problem

Class of VRP ESPPRC Non-elementary Route Relax-
ation

VRPTW Feillet et al. (2004), Feillet
et al. (2007), Jepsen et al.
(2008), Righini and Salani
(2006), Lozano et al. (2015),
Pecin et al. (2017a), etc.

Desrosiers et al. (1995), Kohl
et al. (1999), Irnich and Vil-
leneuve (2006), Baldacci et al.
(2010), etc.

CVRP Baldacci et al. (2008), Bal-
dacci et al. (2011), Pecin et al.
(2017b), etc.

Fukasawa et al. (2006), Fuka-
sawa et al. (2015), Baldacci
et al. (2008), Baldacci et al.
(2011), Pecin et al. (2017b),
etc.

Other VRPs Bettinelli et al. (2011), Dabia
et al. (2013), Duque et al.
(2015), etc.

Dabia et al. (2013), etc.

interaction networks (Alon et al., 2008).

3.1.4 Outline

The remainder of the chapter is organized as follows. In Section 3.2, we define the VRPUD

and provide a set-partitioning-based formulation that can be solved via column generation.

In Section 3.3, we discuss two parallel algorithms that efficiently solve the ESPPRC as the

pricing problem in the column generation for VRPUD. The first algorithm is an extension

based on the pulse framework proposed by Lozano et al. (2015) and the second algorithm is

a randomized parallel algorithm applying color-coding (Alon et al., 1995). In Section 3.4,

we present the performance results of the proposed approaches on (i) modified classic VRP

benchmark instances and (ii) large-size patient-centered medical home delivery instances.
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3.2 VRPUD and Column Generation

Consider the VRP with unit demand (VRPUD) as defined in Section 3.1. A set-partitioning-

based formulation of our problem is given as follows. Let P be the set of feasible routes,

each containing at most Q nodes, which can be assigned to each vehicle in K. For each

feasible route p ∈ P and node i ∈ V , let cp be the cost of the route and aip be the binary

coefficient such that aip = 1 if route p contains i and aip = 0 otherwise. We define binary

decision variable xp for each p ∈ P such that xp = 1 if we pick the route p in our solution

and xp = 0 otherwise. Then, the VRPUD is given by

(MP) minimize:
∑
p∈P

cpxp (3.1)

subject to:
∑
p∈P

aipxp = 1 ∀ i ∈ V, (3.2)

xp ∈ {0, 1} ∀ p ∈ P, (3.3)

where the objective function (3.1) minimizes the overall cost of the routing; constraints

(3.2) ensure that each node in V is covered by exactly one vehicle; and lastly, constraints

(3.3) enforce that all the decision variables are binary.

Model MP is hard to solve because P contains a number of feasible routes that grows

exponentially with the size of the input instance. One way to address this challenge is to

apply the column generation method. Instead of solving the problem with all variables

explicitly, we solve a restricted master problem (RMP), where a relatively small subset of

36



P , P̃ ⊂ P , is used to replace P . Equivalently, the RMP is given by:

(RMP) minimize:
∑
p∈P̃

cpxp (3.4)

subject to:
∑
p∈P̃

aipxp = 1 ∀ i ∈ V, (3.5)

xp ∈ {0, 1} ∀ p ∈ P̃ . (3.6)

Column generation is an iterative method. In each iteration, we solve the linear relax-

ation of the RMP and obtain a dual solution to the problem. Using the dual solution, we

can then search for new routes with negative reduced cost, which can potentially improve

the objective value of the LP relaxation of RMP. In column generation for VRPUD, let

πi, i ∈ V be the dual variables corresponding to each constraint (3.5). Then, the reduced

cost of a route p (a column in the RMP) is computed as c̄p =
∑

(i,j)∈p c̄ij , where for each

arc (i, j), c̄ij is then calculated as c̄ij = cij − πj . When we find such routes, we add them

into P̃ and continue to the next iteration. We obtain the optimal value of the LP relaxation

of MP when no more negative reduced cost routes exist. An overview of the algorithm is

provided in Figure 3.1.

The main difficulty of implementing the column generation approach is at the step of

finding the routes with negative reduced cost, i.e., solving the pricing problem to generate

columns. In this chapter, we focus on implementing efficient algorithms to solve the pricing

problem, which is formulated as an ESPPRC, described as follows. We are given a directed

graph G′ = (V ∪ {s, t}, A) where V ∪ {s, t} is the set of nodes with a source node s and

a terminal node t, which both represent the depot node, and A = {(i, j)|i ∈ V ∪ {s}, j ∈

V ∪ {t}} is the set of arcs. For each arc (i, j) ∈ A, we associate it with a cost c̄ij , which

can be negative. Under the setting of VRPUD, we are also given a resource bound Q; a

consumption of 1 is associated with each node i ∈ V . Our goal is to find an elementary path

from source node s to terminal node t with minimum cost such that the resource constraint
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Original Master Problem

Restricted Mas-
ter Problem (RMP)

Solve Relaxtion of RMP

Solve Pricing Problem
to Find Columns with
Negative Reduced Cost

Add Such Column to RMP

Column
Found?

Solve RMP as Integer Program

yes

no

Figure 3.1: Overview of the column generation approach

is satisfied.

We define y = (yij, (i, j) ∈ A)> as a binary decision variable where yij = 1 if we visit

node j after node i in the solution path and yij = 0 otherwise. Let (πi : i ∈ V ) denote the

dual solution from the current iteration of RMP and let πs = πt = 0. The pricing problem

38



(ESPPRC) is equivalent to the following flow-based integer program.

(PP) zPP(π) = minimize
y

∑
(i,j)∈A

(cij − πj)yij (3.7)

subject to
∑

j:(s,j)∈A

ysj = 1 (3.8)

∑
j:(j,t)∈A

yjt = 1 (3.9)

∑
j:(i,j)∈A

yij −
∑

j:(j,i)∈A

yji = 0 ∀i ∈ V (3.10)

∑
(i,j)∈A

yij ≤ Q+ 1 (3.11)

∑
(i,j)∈A, i,j∈S

yij ≤ |S| − 1 ∀S ⊂ V (3.12)

yij ∈ {0, 1} ∀(i, j) ∈ A, (3.13)

where the objective function (3.7) minimizes the cost of the path; constraints (3.8)–(3.9)

specify the starting and ending node of the path; constraints (3.10) are flow balance con-

straints; constraint (3.11) ensures the path contains no more than Q nodes in V ; constraints

(3.12) are subtour elimination constraints that forbid any cycles in the network. After solv-

ing PP, if zPP(π) < 0, then we find a path with negative reduced cost. Otherwise, our

solution is optimal to the linear relaxation of RMP. Solving PP through mixed-integer pro-

gramming is challenging when we need to address an exponential number of constraints

(3.12).

As indicated in our literature review in Section 3.1, the usage of non-elementary route

relaxation has significantly improved the computational efficiency for each branch-and-

bound node but yields a worse lower bound that results in a larger branch-and-bound tree

(Desaulniers et al., 2006). In this chapter, we focus on the exact pricing approach in column

generation for VRPs, which is equivalent to finding the minimum cost route on a network

where arcs are associated with negative costs while satisfying some side constraints such
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as capacity. Contrary to tightly constrained instances where this ESPPRC can be solved

efficiently (as in the pricing problem embedded in solving VRPTW), it becomes very chal-

lenging to solve for the less-constrained instances, for example, for the pricing problem

embedded in solving CVRP (Lysgaard et al., 2004).

3.3 Solution Methods for the ESPPRC

Efficiently solving the pricing problem (PP) for ESPPRC is crucial to improving the per-

formance of the column generation approach. In this section, we propose two exact algo-

rithms for solving ESPPRC. The first algorithm (called pulse) utilizes bounding and prun-

ing strategies to accelerate the solution speed of a dynamic program. The second algorithm

(called random coloring) is a randomized algorithm that solves a dynamic program with

significantly reduced state space.

3.3.1 Pulse Algorithm for ESPPRC

This algorithm is based on an idea from Lozano and Medaglia (2013) to solve the con-

strained shortest path problem and its extension to solve ESPPRC instances arising from

VRPTW in Lozano et al. (2015). In our setting (for VRPUD), the resource consumption is

the vehicle capacity used rather than time (for VRPTW).

The overall approach is to compute values b(v, q) representing the minimum cost of a

path from v to t that already starts with resource consumption q. These values are computed

in a backward manner, starting with q = Q (which is trivial) and iteratively decreasing q by

a step-size ∆. In order to compute b(v, q) for some q, the algorithm performs a depth-first

exploration from v and uses the b(·, q+∆) values as lower bounds to prune the search (after

∆ nodes have been explored). There are some other pruning strategies as well, which are

described below.

In more detail, the algorithm computing b(v, q) constructs paths from the starting node
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v to the terminal node t by propagating from each current node to its successors. The

propagation recursively explores the graph to construct partial paths while recording some

information. At each node, the algorithm tries to explore all outgoing arcs unless certain

pruning strategies are triggered to stop the propagation. Each time, when the propagation

reaches the terminal node t, we find a feasible solution (which updates the current best

solution) and the algorithm will then backtrack to explore other options. In the end, the

algorithm would be able to enumerate all possible paths from s to t following a depth-first

search scheme. Crucially, by implementing pruning strategies to stop exploration early, the

algorithm cleverly avoids full enumeration.

The implementation of this approach uses two procedures: pulse (see Algorithm 3.1)

and bound (see Algorithm 3.2). The pulse procedure takes as input a current path P , its cost

r(P ), its load q(P ) and a node w to which the path is being extended. It also maintains

a pair of global variables: the best path P ∗ found so far and its cost r(P ∗). The global

variables are updated whenever the propagation reaches the end node t and the resulting

path is better than P ∗. To find more columns with negative costs per iteration in the pricing

problem that is formulated as ESPPRC, we introduce a global list L containing paths with

negative costs. We add a path to L whenever the propagation reaches the end node t and

the resulting path has a negative cost. We terminate the algorithm early when the size of

L reaches a preset limit, nSol. Note that finding the optimal path P ∗ is critical for the

bounding procedure that will be discussed later and maintained list L is only used when

calling pulse procedure to solve the entire problem. To efficiently explore the graph,

the pulse procedure utilizes a set of pruning strategies: infeasibility, rollback, and bounds,

which will be detailed in Section 3.3.1.1. The most important strategy is bounds pruning,

which relies on the already-computed b(·, q+ ∆) values. The bound procedure implements

a backward dynamic program to compute the values b(v, q) for q = Q −∆, Q − 2∆, · · · ,

each time invoking the pulse procedure. In particular, we start by obtaining (using pulse)

the elementary shortest path from every node v ∈ V to t given a resource consumption
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Q−∆. Then, we continue to solve for the elementary shortest path from every node v ∈ V

to t given a resource consumption Q− 2∆. We can continue to repeat the same procedure

backwards until we reach a desired lower bound on the bounding resource consumption

Q. Therefore, this procedure collects all b(v, q) values for all v ∈ V and q ∈ Q, where

Q = {Q,Q+ ∆, . . . , Q− 2∆, Q−∆}.

Algorithm 3.1: Pulse procedure
input : Current node w; cost r(P ); path load q(P ); current path P
output: Void

1 Let u and v be the second last and the last node visited in P , respectively
2 if w == t then
3 if r(P ) + c′vw < r(P ∗) then
4 P ∗ ← P ∪ {t}
5 r(P ∗)← r(P ) + c′vw
6 end
7 . update optimal path if r(P ) + c′vw < 0 . skip when executed inside bounding

procedure then
8 L ← L ∪ {P ∪ {t}}
9 end

10 stop
11 end
12 if |L| ≥ nSol then stop . skip when executed inside bounding procedure
13

14 if q(P ) == Q or w ∈ P then stop . pruned by infeasibility
15

16 if |P | ≥ 2 and c′uv + c′vw > c′uw then stop . pruned by rollback
17

18 let q(P ) be the greatest q such that q ≤ q(P ) and q ∈ Q if
r(P ) + b(w, q(P )) ≥ r(P ∗) then stop . pruned by bounds

19

20 P ′ ← P ∪ {w}
21 q(P ′)← q(P ) + 1
22 r(P ′)← r(P ) + c′vw . r(P ′)← 0 if P = ∅
23 for (w,w′) ∈ A do
24 pulse(w′, r(P ′), q(P ′), P ′)
25 end

The overall algorithm works as follows. We start by executing the bounding procedure

to compute the lower bound matrix B. Note that we do not maintain the list of negative
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Algorithm 3.2: Bounding procedure
input : Graph G′ = (V ∪ {s, t}, A); step size ∆; bounding cap [Q,Q]
output: Lower bound matrix B = [b(v, q) : v ∈ V, q ∈ Q]

1 q ← Q while q > Q+ ∆ do
2 q ← q −∆ for v ∈ V do
3 P ∗ ← {} . initialize global variables
4 r(P ∗)←∞
5 P ← {}
6 r(P )← 0
7 q(P )← q
8 pulse(v, r(P ), q(P ), P ) . find the optimal partial path from v to t given q

consumed
9 b(v, q)← r(P ∗)

10 end
11 end
12 return B

cost paths L when executing pulse within the bounding procedure. Next, we run the pulse

procedure with P = {s}, r(P ) = 0, and q(P ) = 0. When the program terminates, the

global list L contains at most nSol many s–t paths with negative costs.

3.3.1.1 Pruning Strategy

The efficiency of the pulse algorithm depends on the pruning strategies to stop the explo-

ration of partial paths as soon as possible. Lozano et al. (2015) propose three pruning

strategies: infeasibility, bound and rollback. Based on our problem setting, we detail how

to modify each pruning strategy as follows.

Infeasibility pruning. Infeasibility pruning terminates an exploration when a partial

path violates any feasibility constraints: the partial path visits more than Q nodes, or the

partial path forms a cycle when it reaches a new node. For each partial path, we maintain

an indicator vector of length |V | to indicate if such a path has visited each node v ∈ V . We

can then identify if any cycle is created in constant time, i.e., if the path extended to a node

that has been previously visited.

Bounds pruning. Bounds pruning is the key component of the pruning process that
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significantly improves the performance of the algorithm. The idea is to fathom suboptimal

partial paths using the continuously updated primal bound r(P ∗) (the cost from the current

best feasible solution) and pre-calculated conditional lower bounds b(v, q(P )), which store

the minimum reduced cost that can be achieved for every node v ∈ V and for a given

resource consumption q(P ). We terminate the exploration for a partial path P when it

reaches a node v ∈ V where its cost, r(P ), plus the conditional lower bound at v with q(P )

resource consumption is at least the current primal bound, i.e., r(P ) + b(v, q(P )) ≥ r(P ∗).

Note that we may not have a valid s–t path of cost r(P ) + b(v, q(P )), but it is still a lower

bound.

Rollback pruning As the pulse algorithm implicitly enumerates the search space in a

depth-first search fashion, a poor decision made at early stages may lead to an unpromising

region of the search space. To avoid this behavior, we impose the rollback pruning strategy

that examines the last choice made. Let Pij be a partial path with end node j that visited

node i right before j. When we extend Pij to next node v, we check if c̄ij + c̄jv > c̄iv.

If yes, we terminate the current exploration as a better propagation is to roll back to the

partial path with end node i and extending it to v (“Rollback” is automatically done when

we propagate the path from node i); otherwise, we continue the exploration. This helps to

avoid bad early explorations.

3.3.1.2 Parallelization

In the pulse framework, Algorithm 3.1 explores partial paths in a depth-first search fashion.

Along the search, it runs the pulse procedure on one node at a time until the search reaches

the end node. Starting at the node s, the extensions starting on the different out-going arc

are independent, and therefore we can implement Algorithm 3.1 in parallel on different

computer threads to accelerate the search while maintaining the global information prop-

erly. Lozano and Medaglia (2013) propose to trigger a fixed number of threads at node s

and explore the extensions on different out-going arcs from s independently, and we only
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need to maintain the record of the visited nodes for each thread and the bound information

globally. Multiple threads can run Algorithm 3.1 on the same node at the same time except

for the end node t, where the global lower bound can only be updated by one thread at a

time.

3.3.2 Random Coloring Algorithm for ESPPRC

A traditional way to solve ESPPRC is through the label correcting algorithm (e.g., Feillet

et al., 2004; Lysgaard et al., 2004). However, to make sure the path is elementary, the

algorithm needs to record the full path for each state variable. Therefore, it requires expo-

nentially many state variables. To be specific, the size of the state space for label correcting

algorithm is in the order of O(2|V ||V |). In this section, we discuss how to utilize the idea of

color-coding from Alon et al. (1995) to extend the label correcting algorithm and efficiently

cut the size of the state space to O(2Q|V |).

In VRPUD, each route can visit at most Q nodes. Suppose that we are given a color-

coding, which is a function φ : V → {1, 2, . . . , Q} that maps each node in V to a color

attribute labeled from 1, 2, . . . , Q. We say that a path in G′ is colorful if the nodes in the

path are colored by distinct colors. Clearly, every colorful path is elementary, and each

colorful path contains no more than Q nodes in V . Then if we can find a colorful s–t path

with negative cost, we find an elementary path connecting nodes s and t with a negative

cost. To find a colorful path in G′, we can modify the label correcting algorithm from

Feillet et al. (2004).

Let Psi be a partial path from source node s to node i ∈ V . Different from the original

algorithm, we record the information of color history instead of node history of the path.

A state Ri = (ni, V
1
i , . . . , V

Q
i ) corresponds to the number of visited nodes and a binary

indication vector that is used to record color usage, where V k
i = 1 if Psi visits a node

colored k ∈ {1, 2, . . . , Q} and V k
i = 0 otherwise. Let Ci = c(Psi) be the cost of such

path. A dominance rule is enforced to eliminate additional paths Psi in the label correcting
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algorithm. Let P ′si and P ∗si be two distinct paths from s to i with associated labels (R′i, C
′
i)

and (R∗i , C
∗
i ). We say that P ′si dominates P ∗si if and only if C ′i ≤ C∗i , n′i ≤ n∗i , V

′k
i ≤ V ∗ki

for all k ∈ {1, 2, . . . , Q}, and (R′i, C
′
i) 6= (R∗i , C

∗
i ). Note that the number of possible states

Ri is at most |V | · 2Q.

The label correcting algorithm works as follow. For each node i ∈ V , we maintain a list

Λi of paths from source node s to node i. We start with a set of active nodes containing s

only. In each iteration, we poll an active node i from the active node set and extend the paths

in Λi. Let Psj be the extended path that is feasible. Suppose Psj is not dominated by other

paths in Λj; then we put j into the active node set and iterate the previous procedure. We

stop the algorithm when no active nodes exist. The details of the label correcting algorithm

are displayed in Algorithm 3.3. For any partial path Psi, we record the history of colors

instead of nodes: during the extension process, we can extend a path to a new node only if

we have not visited a node with the same color before.

Theorem 3.1 (Theorem 3.4 from Alon et al. (1995)). LetG′ = (V ∪{s, t}, A) be a directed

graph. Any pairs of vertices connected by a path with Q vertices in G can be found in

O(2Q|V ||A|) worst-case time.

Recall that our pricing problem is defined on a network G′ = (V ∪ {s, t}, A) and it

suffices to output any route with negative cost. Hence, we can terminate the algorithm

early to output such a solution.

Note that any negative-cost colorful path found by Algorithm 3.3 is indeed an elemen-

tary path with negative reduced cost. On the other hand, Algorithm 3.3 may fail to find

a negative-cost colorful path even if there is some elementary path with negative reduced

cost. We now bound this “failure” probability. For a randomly chosen coloring φ, any

elementary path in G′ with at most Q nodes (in particular, any feasible path with negative

reduced cost) has a probability Q!
QQ

> e−Q to be colorful. So the probability that the al-

gorithm fails to identify a negative cost elementary path with at most Q nodes is less than

1 − e−Q. Then, if we repeat k independent runs of the color-coding algorithm, the prob-
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Algorithm 3.3: Algorithm for ESPPRC with Colors
input : Graph G′ = (V ∪ {s, t}, A), color-coding φ
output: A set of routes with negative costs T

1 Initialization Λs ← {(0, . . . , 0)}
2 for i ∈ V ∪ {t} do
3 Λi ← ∅
4 end
5 S = {s}
6 while S 6= ∅ do
7 Pick i ∈ S
8 if i == t then
9 add corresponding routes from Λt with negative cost to T

10 end
11 else
12 forall j : (i, j) ∈ E do
13 forall λi = (Ri, Ci) ∈ Λi do
14 if V φ(j)

i = 0 then
15 extend λi to get λj
16 if λj is not dominated by any path in Λj then
17 add λj to Λj and S = S ∪ {j}
18 remove any path in Λj that is dominated by λj
19 end
20 end
21 end
22 end
23 end
24 remove i from S

25 end
26 return T
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ability of failing to identify a negative cost path in all repetitions is at most (1 − e−Q)k,

which is decreasing exponentially in k. Therefore, we repeat this algorithm multiple times

to increase the probability of finding a colorful path with negative cost. For example, with

Q = 4 and k = 40, the probability of failure is at most 0.02.

Our overall algorithm works as follows. We pre-define a stopping criterion in terms of

the maximum number of iterations and a threshold count for the number of output routes. In

each iteration, we randomly generate a color-coding φ that assigns color labels to each node

in G′. Then, based on the color-coding φ, we solve the ESPPRC through Algorithm 3.3

and store all solution routes found with negative cost. If we reach the maximum number of

iterations or the set of solutions contains more than the threshold number of output routes,

we stop the algorithm; otherwise, we move to the next iteration. The detail of our random

coloring algorithm for ESPPRC is presented in Algorithm 3.4.

Algorithm 3.4: Random Coloring Algorithm for ESPPRC
input : Graph G = (V ∪ {s, t}, A), maximum iteration to execute random

coloring algorithm maxIter, number of the solutions triggered early stop
nSol

output: A set of routes with negative costs T
1 Initialization T = ∅ as solution set and k = 0
2 while k == maxIter or |T | > nSol do
3 Generate a random coloring scheme φk : V → {1, . . . , Q}
4 Use Algorithm 3.3 to solve ESPPRC based on current color-coding φi
5 Add routes with negative cost to T
6 k = k + 1

7 end
8 return T

Irrespective of the number of repetitions maxIter, the random coloring algorithm has

a non-zero probability of failure (i.e., it does not find any negative cost route even if one

exists). To address this issue, we can either implement the de-randomized algorithm (which

has the same asymptotic time complexity) as described in Section 4 of Alon et al. (1995)

or any other exact algorithm (e.g., the pulse algorithm), as a “safe vault”, to ensure that no

more negative cost routes can be found in such cases. In our computational experiments,
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we used the pulse algorithm as the safe vault as it was already implemented.

It is worth highlighting that the random coloring idea could be extended to other label-

correcting algorithms for ESPPRC, as the label requires maintaining a binary vector record-

ing the nodes of corresponding partial path visited. By randomly assigning nodes with a

fixed set of colors, we can reduce the length of such vector and decrease the total number

of labels to explore in the algorithm. One can also apply bidirectional search techniques to

further improve the random coloring algorithm.

3.3.2.1 Non-robust Cuts

Valid inequalities can strengthen LP relaxations of integer programs and help to obtain in-

teger solutions at the extreme points of LP relaxations. Poggi de Aragao and Uchoa (2003)

propose to classify valid inequalities into “robust cuts” and “non-robust cuts”. They apply

“robust cuts” on the flow-based formulation of VRP (which can be transformed into RMP)

and the cuts do not affect the complexity of the pricing problem as their associated dual

variables only change the arc costs used in the pricing problem. Lysgaard et al. (2004) dis-

cuss various robust cuts for CVRP. On the other hand, non-robust cuts are applied directly

on the LP relaxation of RMP and thus increase the complexity of the pricing problem as

their associated dual variables cannot be incorporated into the arc costs. In this section, we

will discuss how to incorporate non-robust cuts for our proposed algorithm.

Jepsen et al. (2008) introduced a family of valid inequalities named subset-row cuts for

VRPTW and discussed how to handle the modified pricing problem via the label correcting

algorithm for ESPPRC. The effective use of subset-row cuts yields better root-node bounds

in the BCP approach and shortens the overall solution time. Therefore, subset-row cuts

have been widely used column-generation-based approaches for VRPs (see, e.g., Baldacci

et al., 2010, 2011; Pecin et al., 2017a).

The subset-row cuts are defined over route variables and are applied directly on the LP

relaxation of RMP. Recall that aip is a binary coefficient indicating whether a route p ∈ P̃
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visits a node i ∈ V . For any set S ⊂ V and a multiplier 0 < k < 1, a subset-row cut is

given by ∑
p∈P̃

⌊
k
∑
i∈S

aip

⌋
xp ≤ bk|S|c . (3.14)

Inequalities (3.14) are valid as they can be obtained by a Chvátal-Gomory rounding of

constraints (3.5). Various combinations of |S| and p yield effective subset-row cuts to

improve the lower bounds given by the LP relaxation of RMP. For example, when |S| = 3

and k = 1
2
, cuts (3.14) are 3-subset-row cuts and when |S| = 4 and k = 2

3
, cuts (3.14) are

4-subset-row cuts. Subset-row cuts change the pricing problems. Let σS ≤ 0 be the dual

solutions associated with inequalities (3.14) when solving the LP relaxation of RMP. Then

the reduced cost of a new column is given by c̄p =
∑

(i,j)∈p(cij − πj)− σS
⌊
k
∑

i∈S aip
⌋
.

To incorporate the subset-row cuts into the random coloring algorithm, we follow the

idea in Jepsen et al. (2008). In each iteration of column generation, we maintain a vector

corresponding to the subset-row cuts with non-zero dual variables in the current solution to

the LP relaxation of RMP, denoted as S. This vector maintains counters for each subset-

row cut: when a label extends to a node in a subset-row cut S, we add k to the value

corresponding to that subset-row cut in the vector S. When the value of any subset-row cut

S (in vector S) exceeds one, we update the cost by subtracting σS and subtract 1 from the

coordinate S in vector S.

The modification of the algorithm also changes the dominance rule. Let P ′si and P ∗si

be two distinct paths from s to i with associated labels (R′i, C
′
i) and (R∗i , C

∗
i ). Recall for

the pricing problem without non-robust cuts, we say that P ′si dominates P ∗si if and only if

C ′i ≤ C∗i , n′i ≤ n∗i , V
′j
i ≤ V ∗ji for all j ∈ {1, 2, . . . , Q}. With this modification, P ′si and P ∗si

are associated with labels (R′i,S ′i, C ′i) and (R∗i ,S∗i , C∗i ), respectively and we state that P ′si

dominates P ∗si if and only if C ′i ≤ C∗i +
∑

1≤s≤|S|:S′i[s]>S∗i [s] σS , n′i ≤ n∗i , V
′j
i ≤ V ∗ji for all

j ∈ {1, 2, . . . , Q} (Proposition 6 in Jepsen et al., 2008).

To keep the pricing problem tractable, only a small number of subset-row cuts are
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included in the pricing problem. Pecin et al. (2017b) introduce a weak version of subsets

row cuts called limited-memory subset-row cuts where each subset-row cut has a memory

set, and the state counter of subset-row cut resets when a label extends to a node outside

such a memory set. Our proposed algorithm can also be easily modified to incorporate

limited-memory subset-row cuts following a similar idea.

3.3.2.2 Parallelization

The random coloring algorithm requires to explore different color-codings to increase the

success probability of recovering all potential routes. In each iteration, a label correcting

algorithm is executed based on the current color-coding, which is completely independent

of all other iterations. For this reason, it is natural to perform a parallel implementation

of the random coloring algorithm. We can invoke each iteration using parallel computer

threads to accelerate the algorithm while maintaining the solution set T as global informa-

tion. The number of threads, therefore, determines the number of color-coding iterations

that can be implemented simultaneously.

3.4 Computational Experiments

We conduct numerical studies and demonstrate the performance of the proposed algorithms

on tailored instances for VRPUD. We embed our proposed algorithms inside the column

generation method for VRPUD. In experiments, we solve the root node linear relaxation

of the set partitioning integer program (MP) and then use the generated columns to obtain

integer solution of RMP. We conduct three sets of experiments: (i) a set of tailored instances

from the Solomon’s and Gehring & Homberger benchmark1, (ii) selected unitary demand

CVRP instances from CVRPLIB2, and (iii) a multi-depot VRPUD which has potential

applications in the patient-centered medical home.

1https://www.sintef.no/projectweb/top/vrptw/
2http://vrp.galgos.inf.puc-rio.br/index.php/en/
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We implement our column generation method based on the conventional set partition-

ing formulation MP. We start the column generation with a series of heuristics that initialize

the columns pool following a common practice (see, e.g., Feillet et al., 2004; Lozano et al.,

2015). The heuristic is based on tabu search: we start with a set of feasible solutions

(columns visiting only one node per vehicle) and then execute insertion and deletion oper-

ations until no further improvements can be made. After the initialization, we only solve

subproblems as ESPPRC to generate columns.

After tuning in few preliminary tests, we choose our parameters in the algorithms as

follows. For the pulse algorithm (Algorithm 3.2), we choose ∆ = 1, Q = 2 and nSol =

30; For the random coloring algorithm (Algorithm 3.4), we choose maxIter = 39 and

nSol = 30. For the random coloring algorithm, when the algorithm fails to find any routes

with negative cost, we trigger a run of the pulse algorithm as a safe vault to ensure that no

more routes of negative cost exist. As we discussed in the previous section, both algorithms

can be implemented in parallel. In our tests, we implement the multi-thread versions of the

proposed algorithms unless otherwise noted.

We code our algorithms in Java on a computer with two Intel Xeon E5-2630v4 pro-

cessors with 20 cores each (40 total), and 128GB DDR4-2400 registered RAM. We used

Gurobi 7.5.2 as the LP solver and mixed-integer linear programming solver.

3.4.1 Numerical Results on Single Depot VRPUD

3.4.1.1 Solomon and Gehring & Homberger Instances

The first set of test instances are modified from the Solomon benchmark with 100 cus-

tomers3 and Gehring & Homberger benchmark with up to 400 customers4. Both benchmark

instances contain three types of node distributions: Type R instances where customers are

randomly distributed, Type C instances where customers form several clusters, and Type

3https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/
4https://www.sintef.no/projectweb/top/vrptw/homberger-benchmark/
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RC where some customers are randomly distributed while others are clustered. For each

customer node in the test instances, we ignore its time windows and assign a unit demand.

The travel distances between any two nodes are calculated as the Euclidean distance based

on the coordinates given by the original data.

We solve the linear relaxation of MP using column generation on the test instances.

We compare our proposed algorithms with the label correcting algorithm to ESPPRC from

Feillet et al. (2004). As the original label correcting algorithm is implemented in serial,

we compare it with the serial implementation of proposed algorithms. We test the per-

formance of the algorithms on instances with number of customers ranging from 50 to

150. For instances with number of customers |V | ≤ 100, we use the first |V | + 1 nodes

from Solomon’s instance and for |V | > 100, we use the first |V | + 1 nodes from Gehring

& Homberger’s instances: the first node represents the depot node in all benchmark in-

stances. We consider Q = 4 for test instances. For the label correcting algorithm, the pulse

algorithm, and the random coloring algorithm, we report the number of columns generated

(nColumns), lower bound for MP (LB), and runtime in seconds for computing lower bound

(Time). We set the time limit for column generation as 15 minutes for each test instance.

Table 3.2 summarizes the computational results.

In Table 3.2, we observe the efficiency of the pulse algorithm on the test instances

as its runtime to solve the linear relaxation of MP is significantly lower than the other

two algorithms. Compared to the original label-correcting algorithm, the implementation

with random coloring has significantly improved solution time. We observe that when the

number of nodes increases, the label correcting algorithm encounters the curse of dimen-

sionality as it fails to solve instances with more than 140 customer nodes. On the contrary,

we can see the advantages of using the random coloring algorithm for the cases of larger

instances as the problem can be consistently solved. The speed-up factor of the random

coloring algorithm compared to the original label-correcting algorithm is between 2 and

10, and this factor increases for larger instances.
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Table 3.2: Numerical results for proposed algorithms in serial implementation (Q=4)

Type nNodes
Label Correcting Pulse Random Coloring

nColumns LB Time (s) nColumns LB Time (s) nColumns LB Time (s)

C

51 685 694.31 4.96 863 694.31 1.44 764 694.31 5.67
61 764 902.46 20.13 1077 902.46 1.64 842 902.46 3.93
71 920 1088.31 34.98 1171 1088.31 1.94 957 1088.31 6.13
81 1027 1266.57 47.04 1394 1266.57 2.71 1047 1266.57 8.58
91 1128 1437.82 37.77 1632 1437.82 3.73 1307 1437.82 13.42

101 1193 1643.44 49.37 1710 1643.44 4.42 1376 1643.44 18.93
111 1449 3211.32 367.57 2233 3211.32 8.06 1517 3211.32 61.02
121 1868 3501.8 420.60 2673 3501.80 8.76 1777 3501.80 70.50
131 2049 3798.77 557.21 2825 3798.77 10.30 1964 3798.77 106.54
141 2053 4136.82 – 3089 4096.78 15.95 2063 4096.78 119.24
151 2263 4442.25 – 3191 4398.63 13.61 2188 4398.63 137.89

R

51 569 916.81 4.08 707 916.81 1.42 754 916.81 3.67
61 749 1029.79 14.00 843 1029.79 1.51 898 1029.79 7.10
71 940 1235.64 28.42 987 1235.64 1.89 984 1235.64 10.50
81 1038 1375.34 45.58 1234 1375.34 2.98 1132 1375.34 15.99
91 1103 1510.59 52.83 1356 1510.59 3.51 1291 1510.59 26.61

101 1267 1612.58 124.91 1456 1612.58 4.66 1481 1612.58 34.60
111 1533 3508 283.43 1771 3508.00 5.26 1661 3508.00 61.99
121 1829 3775.6 725.47 1847 3775.60 5.15 1834 3775.60 75.67
131 1943 4123.27 – 2171 4107.18 6.58 1981 4107.18 93.00
141 1946 4393.12 – 2538 4364.25 8.87 2082 4364.25 112.32
151 2104 4669.05 – 2563 4624.60 10.40 2322 4624.60 150.79

RC

51 596 1124.15 4.01 596 1124.15 1.13 688 1124.15 2.85
61 758 1349.72 8.78 836 1349.72 1.46 872 1349.72 7.07
71 819 1488.27 25.76 1245 1488.27 2.28 920 1488.27 8.10
81 991 1717.44 52.22 1247 1717.44 2.69 1130 1717.44 14.74
91 1033 1871.52 71.30 1524 1871.53 4.09 1176 1871.53 21.53

101 1244 1994.13 107.79 1684 1994.13 4.70 1394 1994.13 30.36
111 1582 3459.84 117.58 2010 3459.84 7.45 1726 3459.84 54.83
121 1688 3832.77 366.14 2224 3832.77 8.25 1892 3832.77 79.02
131 1893 4190.07 – 2428 4174.07 9.74 2043 4174.07 87.58
141 2039 4428.03 – 2646 4396.25 10.85 2145 4396.25 95.44
151 2104 4731.66 – 2763 4685.09 13.53 2162 4685.09 121.90

– : runtime exceeds time limit of 15 minutes

As both pulse and the random coloring algorithms can be implemented in parallel, we

also test both algorithms in their parallel implementation. Besides, we also investigate

the optimality gap between the linear relaxation to the MP and the integral solution to the

MP using the generated columns as well as their solution time. Both algorithms have

been tested on instances with up to 600 customers for Q = 3 and 350 customers for

Q = 4. For instances with a number of customers |V | ≤ 100, we use the first |V | + 1

nodes from Solomon’s instance and for |V | > 100, we use the first |V | + 1 nodes from

Gehring & Homberger’s instances. For both algorithms, we report the number of iterations

to solve the column generation (nIter), number of columns generated in the column gen-
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eration (nColumns), lower bound from the linear relaxation of MP (LB), upper bound of

MP from the integral solution using the columns generated (UB), the optimality gap (Gap)

computed as UB−LB
LB

× 100%, and the runtime in seconds to solve for lower bound and

upper bound (tLB and tUB, respectively). When solving MP as an integer program, we set

the time limit as 2 hours.

Table 3.3: Numerical results for proposed algorithms for Type C instance in parallel imple-
mentation for Q=3

nNode
Pulse Random Coloring

nIter nCol LB UB Gap tLB (s) tUB (s) nIter nCol LB UB Gap tLB (s) tUB (s)

51 26 410 890.15 930.40 4.52% 0.46 0.96 20 365 890.15 932.80 4.79% 5.47 0.39
61 32 569 1157.03 1200.00 3.71% 0.28 2.12 19 422 1157.03 1203.90 4.05% 1.52 0.28
71 32 569 1369.50 1427.60 4.24% 0.65 1.69 21 483 1369.50 1429.50 4.38% 0.47 0.64
81 38 741 1624.08 1698.30 4.57% 1.00 1.72 26 565 1624.08 1697.70 4.53% 0.65 0.86
91 44 844 1839.15 1889.10 2.72% 0.84 2.50 27 620 1839.15 1894.40 3.00% 1.02 0.50

101 48 926 2104.92 2168.50 3.02% 0.96 5.31 29 739 2104.92 2188.10 3.95% 1.29 0.85
111 55 1253 4159.28 4333.50 4.19% 2.03 3.95 33 805 4159.28 4364.70 4.94% 10.81 6.85
121 70 1534 4540.81 4691.90 3.33% 5.43 19.88 42 948 4540.81 4710.60 3.74% 2.77 4.57
131 73 1620 4940.82 5075.80 2.73% 6.30 32.04 39 956 4940.82 5127.00 3.77% 2.85 0.94
141 77 1759 5336.18 5559.70 4.19% 85.41 16.84 45 1024 5336.18 5574.00 4.46% 2.51 5.04
151 75 1703 5735.61 5868.80 2.32% 8.56 1046.38 51 1177 5735.61 5897.40 2.82% 3.07 1.49
201 110 2534 14449.37 14973.70 3.63% 18.51 29.37 64 1508 14449.37 15004.00 3.84% 33.48 7.73
251 137 3254 17804.37 18502.20 3.92% 551.56 78.44 81 1938 17804.37 18496.50 3.89% 17.97 21.35
301 160 3993 21503.83 22139.50 2.96% 937.15 88.32 101 2407 21503.83 22231.00 3.38% 22.38 89.89
351 200 5099 24712.22 25418.30 2.86% 200.49 1361.62 121 2749 24712.22 25521.70 3.28% 37.95 64.29
401 233 6165 28365.05 29071.2 2.49% 118.71 93.49 129 3162 28365.05 29202.60 2.95% 64.92 214.02
451 267 7214 32325.08 33289.00 2.98% 163.18 – 152 3691 32325.08 33286.40 2.97% 67.62 483.10
501 313 8538 36256.18 36972.2 1.97% 236.90 – 170 4112 36256.18 36949.00 1.91% 93.18 103.67
551 357 9995 40037.55 40788.1 1.87% 325.94 – 185 4453 40037.55 40791.20 1.88% 113.07 79.38
601 403 11240 43394.23 44325.2 2.15% 441.61 – 213 4924 43394.23 44218.10 1.90% 151.88 1113.53

Tables 3.3–3.8 summarize the numerical results for the proposed algorithms on Type

C, Type R, and Type RC instances with Q = 3 and Q = 4, respectively. We observe

significant improvements in efficiency for both algorithms when they are implemented in

parallel. We notice that when running in parallel, the random coloring algorithm outper-

forms the pulse algorithm (in lower bound runtime) in most of the instances with Q = 3

while their performances are mixed for instances with Q = 4: we highlight (in bold) the

instances where the random coloring algorithm is faster than pulse in solving the LP re-

laxation. Notice that, although we allow both algorithms to stop early when the number

of generated columns reach a preset limit, we still have one algorithm generating more

columns than the other for some instances. It is because when the global number of gen-

erated columns reaches the preset bound, there are still some threads keeping a small set
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Table 3.4: Numerical results for proposed algorithms for Type R instance in parallel imple-
mentation (Q=3)

nNode
Pulse Random Coloring

nIter nCol LB UB Gap tLB (s) tUB (s) nIter nCol LB UB Gap tLB (s) tUB (s)

51 32 449 1123.86 1132.10 0.73% 0.82 0.41 19 416 1123.86 1132.00 0.72% 0.46 0.19
61 34 543 1267.60 1273.10 0.43% 0.90 0.26 21 490 1267.60 1279.20 0.92% 0.55 0.22
71 40 668 1528.22 1547.60 1.27% 1.02 0.60 25 563 1528.22 1544.20 1.05% 0.80 0.60
81 41 713 1702.30 1712.90 0.62% 1.27 0.49 28 612 1702.30 1713.90 0.68% 0.75 0.38
91 44 765 1870.56 1882.30 0.63% 1.55 0.54 32 719 1870.56 1881.20 0.57% 0.97 0.58

101 62 995 2003.33 2026.10 1.14% 2.56 2.29 35 751 2003.33 2022.60 0.96% 1.30 0.96
111 64 1135 4396.38 4438.00 0.95% 3.39 1.46 36 851 4396.38 4432.90 0.83% 1.36 0.66
121 65 1241 4741.20 4779.20 0.80% 3.45 1.25 41 938 4741.20 4794.10 1.12% 1.80 0.57
131 74 1385 5168.43 5247.40 1.53% 4.36 2.45 48 1073 5168.43 5237.10 1.33% 2.34 1.07
141 79 1478 5516.96 5595.50 1.42% 5.30 2.55 51 1136 5516.96 5599.30 1.49% 2.79 1.96
151 81 1655 5864.11 5942.40 1.34% 6.02 3.17 49 1171 5864.11 5936.00 1.23% 3.31 1.39
201 99 2200 15933.29 16134.90 1.27% 12.18 3.95 69 1671 15933.29 16180.60 1.55% 7.50 3.36
251 139 3180 19557.31 19697.40 0.72% 26.87 5.60 89 2130 19557.31 19735.40 0.91% 14.41 13.07
301 157 3772 23266.43 23527.70 1.12% 44.47 30.57 106 2575 23266.43 23493.00 0.97% 23.71 4.74
351 189 4606 27208.63 27405.00 0.72% 74.54 21.66 122 2948 27208.63 27492.90 1.04% 36.04 25.81
401 212 5346 31076.81 31297.2 0.71% 104.54 30.28 129 3152 31076.81 31464.20 1.25% 49.13 33.43
451 247 6374 34733.21 34940.5 0.60% 152.13 31.84 151 3564 34733.21 35034.60 0.87% 68.29 70.71
501 271 7107 38702.21 38935.1 0.60% 204.12 49.79 171 4058 38702.21 39003.00 0.78% 92.18 62.61
551 304 8107 42820.78 43048.4 0.53% 274.55 88.17 189 4637 42820.78 43112.20 0.68% 121.94 118.17
601 329 8866 46942.01 47237.8 0.63% 357.37 116.95 208 4933 46942.01 47271.60 0.70% 153.99 49.25

Table 3.5: Numerical results for proposed algorithms for Type RC instance in parallel
implementation (Q=3)

nNode
Pulse Random Coloring

nIter nCol LB UB Gap tLB (s) tUB (s) nIter nCol LB UB Gap tLB (s) tUB (s)

51 24 330 1457.28 1592.30 9.26% 0.59 0.28 17 386 1457.28 1569.70 7.71% 0.27 0.17
61 35 506 1725.75 1780.80 3.19% 0.79 0.89 21 467 1725.75 1790.80 3.77% 0.50 0.55
71 42 680 1886.43 1944.20 3.06% 1.07 1.51 23 530 1886.43 1949.90 3.36% 0.69 0.51
81 45 734 2161.80 2217.00 2.55% 1.31 1.18 25 588 2161.80 2223.00 2.83% 0.84 0.64
91 46 809 2363.60 2428.30 2.74% 1.53 0.92 28 630 2363.60 2409.50 1.94% 1.27 0.35

101 55 983 2517.67 2588.40 2.81% 2.09 1.62 32 756 2517.67 2576.80 2.35% 1.44 1.02
111 55 1122 4392.78 4453.10 1.37% 2.96 1.66 39 898 4392.78 4457.10 1.46% 1.59 1.49
121 70 1269 4850.89 4918.80 1.40% 3.58 2.46 43 956 4850.89 4930.90 1.65% 1.82 1.43
131 70 1476 5306.25 5347.70 0.78% 4.06 2.21 47 1040 5306.25 5373.30 1.26% 2.24 1.57
141 78 1579 5592.85 5646.20 0.95% 5.22 2.19 51 1179 5592.85 5641.00 0.86% 2.85 1.11
151 76 1639 5979.57 6055.80 1.27% 5.58 3.47 54 1253 5979.57 6054.20 1.25% 3.25 2.18
201 111 2378 15783.03 15951.60 1.07% 14.86 5.60 67 1625 15783.03 15968.20 1.17% 6.97 4.10
251 138 3067 19149.32 19518.70 1.93% 27.46 21.65 82 1989 19149.32 19470.60 1.68% 12.95 15.05
301 159 3719 22880.14 23109.60 1.00% 45.34 36.30 98 2287 22880.14 23202.90 1.41% 21.98 28.36
351 188 4504 26674.19 26990.40 1.19% 74.64 28.74 124 2877 26674.19 27043.60 1.38% 36.52 20.70
401 213 5276 30398.66 30724.5 1.07% 110.72 91.94 136 3253 30398.66 30826.10 1.41% 50.13 290.30
451 242 6125 33811.3 34190 1.12% 150.28 62.58 156 3713 33811.30 34247.50 1.29% 70.96 97.31
501 284 7423 37549.84 37858 0.82% 216.88 550.54 170 4068 37549.84 37931.20 1.02% 90.72 68.28
551 322 8268 41366.01 41757.2 0.95% 298.16 766.96 188 4486 41366.01 41806.10 1.06% 120.01 439.29
601 370 9913 44943.26 45307.6 0.81% 412.00 256.78 205 4895 44943.26 45409.90 1.04% 150.73 175.65

of paths pending to update to global column set. We decide to not waste those generated

columns. In any case, the number of generated columns is much smaller than the total

possible: for example, the maximum number of generated columns in instances with 301

nodes and Q = 4 was less than 7000 (whereas the total number possible is more than
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Table 3.6: Numerical results for proposed algorithms for Type C instance in parallel imple-
mentation (Q=4)

nNode
Pulse Random Coloring

nIter nCol LB UB Gap tLB (s) tUB (s) nIter nCol LB UB Gap tLB (s) tUB (s)

51 34 689 694.31 734.80 5.83% 0.92 0.96 19 1100 694.31 737.30 6.19% 4.43 1.61
61 45 974 902.46 954.00 5.71% 1.06 2.12 21 1321 902.46 954.80 5.80% 1.06 2.83
71 54 1096 1088.31 1139.60 4.71% 1.42 1.69 23 1398 1088.31 1153.40 5.98% 1.18 3.56
81 57 1312 1266.57 1310.00 3.43% 1.77 1.72 28 1732 1266.57 1318.40 4.09% 2.55 2.32
91 71 1646 1437.82 1523.10 5.93% 2.81 2.50 31 1925 1437.82 1535.30 6.78% 2.51 4.37

101 78 1769 1643.44 1753.10 6.67% 3.42 5.31 32 2057 1643.44 1759.50 7.06% 3.02 5.26
111 89 2232 3211.32 3391.90 5.62% 5.54 3.95 35 2346 3211.32 3384.50 5.39% 6.80 4.10
121 104 2537 3501.80 3742.70 6.88% 6.58 19.88 38 2552 3501.80 3781.40 7.98% 6.29 16.22
131 115 2772 3798.78 4061.90 6.93% 7.91 32.04 40 2693 3798.77 4047.80 6.56% 7.79 13.21
141 119 2992 4096.78 4313.20 5.28% 9.52 16.84 43 3037 4096.78 4385.10 7.04% 9.62 21.70
151 120 3111 4398.63 4674.10 6.26% 10.54 1046.38 47 3192 4398.63 4675.80 6.30% 12.71 29.04
201 168 4119 11201.63 11809.70 5.43% 25.45 29.37 60 4066 11201.63 11717.30 4.60% 44.11 24.99
251 228 5854 13706.13 14276.00 4.16% 52.73 78.44 79 5216 13706.12 14446.70 5.40% 47.64 300.66
301 263 6839 16431.13 16970.10 3.28% 86.15 88.32 94 6115 16431.13 17048.40 3.76% 76.08 44.35
351 313 8570 18858.48 19663.30 4.27% 137.27 1361.62 106 6919 18858.48 19600.90 3.94% 110.04 79.37

Table 3.7: Numerical results for proposed algorithms for Type R instance in parallel imple-
mentation (Q=4)

nNode
Pulse Random Coloring

nIter nCol LB UB Gap tLB (s) tUB (s) nIter nCol LB UB Gap tLB (s) tUB (s)

51 36 582 916.81 937.50 2.26% 0.92 0.64 20 1277 916.81 933.40 1.81% 0.72 0.80
61 47 820 1029.79 1039.40 0.93% 1.12 0.44 22 1446 1029.79 1051.50 2.11% 1.06 1.18
71 55 1048 1235.64 1253.90 1.48% 1.55 1.17 26 1643 1235.64 1246.20 0.85% 1.61 1.48
81 59 1123 1375.34 1382.60 0.53% 1.92 0.79 29 1906 1375.34 1389.60 1.04% 2.25 1.97
91 64 1239 1510.59 1528.80 1.21% 2.50 1.53 34 2163 1510.59 1541.20 2.03% 3.29 3.58

101 75 1426 1612.58 1630.90 1.14% 3.41 1.74 35 2261 1612.58 1633.00 1.27% 4.25 2.94
111 86 1736 3508.00 3563.30 1.58% 5.12 18.96 38 2426 3508.00 3555.90 1.37% 5.45 2.70
121 96 2088 3775.60 3850.20 1.98% 5.91 2.45 40 2665 3775.60 3847.10 1.89% 7.09 4.65
131 106 2306 4107.18 4199.40 2.25% 7.56 4.12 43 2864 4107.18 4232.00 3.04% 8.75 16.92
141 114 2613 4364.25 4438.80 1.71% 9.11 4.81 47 3134 4364.25 4473.90 2.51% 10.83 15.05
151 115 2657 4624.60 4702.80 1.69% 9.86 4.72 53 3431 4624.60 4701.90 1.67% 13.79 6.09
201 153 3661 12484.12 12743.90 2.08% 24.31 33.57 66 4186 12484.12 12719.80 1.89% 28.68 11.54
251 195 4710 15257.69 15458.90 1.32% 46.69 44.11 80 5364 15257.69 15548.40 1.91% 49.92 49.07
301 252 6412 18099.94 18393.50 1.62% 85.89 58.86 97 6221 18099.94 18383.30 1.57% 81.73 70.70
351 279 7341 21093.32 21449.20 1.69% 128.08 160.38 115 7498 21093.32 21413.80 1.52% 124.27 255.97

7.9 billion). Furthermore, despite the column generation yielding the same lower bound

(the optimal LP value) by using two different algorithms for solving the pricing problem,

they return different upper bounds when solving the RMP as an integer program using the

generated columns. Comparing among different types of instances with the same number

of nodes in the underlying network, the optimality gap for column generation method in

Type C instance (6% on average) is greater than the ones in the other two types (less than

3% on average). Overall, the optimality gap between the integral solution to RMP and the

solution to the linear relaxation of MP is small and shows a decreasing trend when the num-
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Table 3.8: Numerical results for proposed algorithms for Type RC instance in parallel
implementation (Q=4)

nNode
Pulse Random Coloring

nIter nCol LB UB Gap tLB (s) tUB (s) nIter nCol LB UB Gap tLB (s) tUB (s)

51 31 568 1124.15 1257.10 11.83% 0.81 0.53 18 989 1124.15 1259.50 12.04% 0.59 1.84
61 43 799 1349.72 1429.60 5.92% 0.96 2.25 22 1328 1349.72 1432.00 6.10% 1.05 2.82
71 58 1096 1488.27 1554.50 4.45% 1.55 1.56 24 1512 1488.27 1556.80 4.60% 1.47 2.51
81 60 1097 1717.44 1772.70 3.22% 1.99 2.40 27 1783 1717.44 1779.60 3.62% 2.00 3.28
91 71 1374 1871.52 1946.20 3.99% 2.78 2.55 32 1966 1871.53 1964.10 4.95% 3.02 5.21

101 79 1589 1994.13 2060.70 3.34% 4.12 2.58 32 1986 1994.13 2087.20 4.67% 3.75 4.70
111 90 1905 3459.84 3558.10 2.84% 4.91 7.63 38 2432 3459.84 3534.50 2.16% 5.24 4.38
121 97 2182 3832.77 3895.90 1.65% 5.75 2.52 40 2628 3832.77 3924.50 2.39% 6.44 5.98
131 105 2364 4174.07 4304.10 3.12% 7.24 19.31 43 2683 4174.07 4273.80 2.39% 8.10 9.04
141 110 2475 4396.25 4446.50 1.14% 8.63 3.34 49 3093 4396.25 4513.60 2.67% 10.91 40.73
151 114 2740 4685.09 4776.30 1.95% 9.96 39.34 50 3245 4685.09 4783.70 2.10% 12.38 17.39
201 164 3916 12374.48 12629.00 2.06% 26.26 34.20 64 4216 12374.48 12623.00 2.01% 26.55 31.33
251 207 5124 14890.03 15201.20 2.09% 49.69 134.37 82 5376 14890.02 15129.00 1.60% 49.78 52.16
301 235 6121 17703.31 17953.00 1.41% 81.26 76.01 92 5957 17703.31 18060.50 2.02% 78.04 442.43
351 304 7985 20648.60 20950.60 1.46% 142.38 429.40 109 7138 20648.60 21035.10 1.87% 113.24 836.24

ber of nodes in the network increases. Therefore, we conclude that the column generation

approach could provide solutions with good quality for the large instances.

We also study the effect of the parallelization. When running in parallel, the speedup

for the pulse algorithm is limited while the random coloring algorithm gets significantly

boosted because the runs for different color-codings are completely independent. Figure

3.2 shows the effect of the parallelization for the two algorithms by plotting the average

speedup factor across three different types of instances with Q = 4 on 50–150 nodes.

As shown in the figure, we can observe a significant improvement from using the random

coloring algorithm as the speedup factor ranges from 5 to 14 using two 20-core processors.

On the other hand, the speedup factor for pulse algorithm is limited.

We also conduct numerical experiments with different vehicle capacities. The results

for the proposed algorithms on the instances with Q = 5 and Q = 6 are attached in the

appendix. It shows that both algorithms perform similarly to the case of Q = 3 and Q = 4,

but we observe that the pulse algorithm becomes more efficient than the random coloring

algorithm as Q increases.
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Figure 3.2: Average speedup factor in parallel implementation for instances with Q = 4

3.4.1.2 Unitary Demand CVRP X-instances

As a special case of CVRP, there are some unitary demand CVRP instances that have been

proposed in the literature. In particular, Uchoa et al. (2017) propose a set of new benchmark

instances for the CVRP. The new set of instances are generated on a [0, 1000] × [0, 1000]

two-dimensional space with different settings on the number of customers, the capacity of

the vehicle, depot location, and demand distribution. Out of 100 instances, 16 are generated

as unitary demand instances. The original capacity of the vehicle ranges from 3 to 23 in

those instances. To demonstrate our proposed algorithms, we test both algorithms (pulse

and random coloring) on those instances with modified capacity Q = 3 and Q = 4. We

use the same node location of the original instances and compute the distance of two nodes

as its Euclidean distance rounding to the nearest integer. In our experiments, we report

the lower bound from the linear relaxation of MP (LB), the upper bound of MP (UB)

obtained using all columns generated through the column generation, the optimality gap

(Gap) computed as UB−LB
LB

× 100%, and the runtime in minutes to solve the lower bound

and upper bound (tLB, tUB), respectively. To avoid the excessive time needed to solve
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the restricted integer program for MP, we only use the columns that were active (with a

non-zero solution to the linear relaxation of RMP) during the final 50 iterations of column

generation as input. The time limit for solving the integer program is set as 1 hour.

Table 3.9: Numerical results for unitary X instances with Q=3

Instance n
Pulse Random Coloring

LB UB Gap tLB (min) tUB (min) LB UB Gap tLB (min) tUB (min)

X-n120-k6 120 60956.67 61748 1.28% 0.09 0.01 60956.67 62287 2.14% 0.25 0.01
X-n157-k13 157 56728.5 57281 0.96% 0.17 0.02 56728.5 57482 1.31% 0.08 0.01
X-n181-k23 181 59784.83 60329 0.90% 0.22 0.09 59784.83 60202 0.69% 0.11 0.02
X-n219-k73 219 117208 118539 1.12% 0.46 0.18 117208 118413 1.02% 0.17 0.02
X-n237-k14 237 124225.3 125293 0.85% 0.58 0.16 124225.3 125381 0.92% 0.21 0.21
X-n275-k28 275 56686.28 57525 1.46% 0.69 0.51 56686.28 57466 1.36% 0.29 0.04
X-n317-k53 317 150725.5 154535 2.47% 1.84 0.01 150725.5 153712 1.94% 0.53 0.04
X-n331-k15 331 180765.8 186265 2.95% 1.58 0.02 180765.7 184330 1.93% 0.58 0.03
X-n376-k94 376 193335.5 200333 3.49% 2.47 1.86 193335.5 197163 1.94% 0.81 0.03
X-n439-k37 439 116065.3 120058 3.33% 2.76 0.20 116065.3 120423 3.62% 1.12 0.41
X-n502-k39 502 277983 295325 5.87% 9.93 0.31 277983 287670 3.37% 2.01 2.53
X-n548-k50 548 287791.2 301644 4.59% 8.28 0.03 287791.2 301186 4.45% 2.38 0.04
X-n655-k131 655 172978.4 181083 4.48% 11.77 0.16 172978.4 181116 4.49% 3.86 0.13
X-n801-k40 801 415751.4 436178 4.68% 31.68 – 415751.4 443677 6.29% 6.46 0.02
X-n856-k95 856 240465.8 253476 5.13% 29.26 0.05 240465.8 259893 7.48% 7.03 0.02
X-n957-k87 957 275862 290521 5.05% 49.88 0.44 275861.9 297325 7.22% 9.70 0.03
–: solution time reaches 60-minute time limit.

Table 3.10: Numerical results for unitary X instances with Q=4

Instance n
Pulse Random Coloring

LB UB Gap tLB (min) tUB (min) LB UB Gap tLB (min) tUB (min)

X-n120-k6 120 47058.5 48428 2.83% 0.17 0.02 47058.5 47579 1.09% 0.16 0.04
X-n157-k13 157 43463.17 45774 5.05% 0.45 0.70 43463.17 44644 2.64% 0.32 0.14
X-n181-k23 181 45936.48 46853 1.96% 0.42 0.43 45936.47 46391 0.98% 0.47 0.25
X-n219-k73 219 89872.02 92230 2.56% 0.94 0.31 89872.02 91903 2.21% 0.72 1.86
X-n237-k14 237 95112.91 96156 1.08% 1.17 0.03 95112.91 95955 0.88% 0.91 0.39
X-n275-k28 275 43920.78 45535 3.55% 1.42 0.37 43920.78 45043 2.49% 1.13 2.03
X-n317-k53 317 114502 119402 4.10% 4.31 0.01 114502 117282 2.37% 1.94 6.51
X-n331-k15 331 137773.5 144045 4.35% 3.38 0.70 137773.5 140146 1.69% 2.08 3.67
X-n376-k94 376 147298.8 155445 5.24% 4.91 1.14 147298.8 150636 2.22% 2.98 3.75
X-n439-k37 439 89463.81 94625 5.45% 4.73 0.15 89463.81 93708 4.53% 3.96 8.98
X-n502-k39 502 209866.2 226300 7.26% 22.23 1.95 209866.2 217109 3.34% 7.62 1.68
X-n548-k50 548 218752.4 230237 4.99% 16.87 0.51 218752.4 228594 4.31% 8.38 6.46
X-n655-k131 655 131550.2 138081 4.73% 27.13 0.99 131550.2 136467 3.60% 14.86 8.34
X-n801-k40 801 315079.9 336845 6.46% 92.76 1.02 315079.9 334016 5.67% 43.76 14.54
X-n856-k95 856 183654.7 196487 6.53% 45.18 0.17 183654.7 196289 6.44% 28.17 40.78
X-n957-k87 957 210461.8 227655 7.55% 96.71 0.83 210461.8 225333 6.60% 58.50 7.45

Tables 3.9 and 3.10 summarize the numerical results for instances derived from unitary

demand CVRP X-instances in Uchoa et al. (2017). When the capacity of the vehicle is

small, both algorithms are capable of solving the root node relaxation of instances with
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up to 957 customer nodes within a reasonable amount of time. Comparing between two

algorithms, the random coloring algorithm, in general, outperforms the pulse algorithm in

the LP solution speed: it is approximately 3–5 times faster whenQ = 3 and two times faster

when Q = 4. In our preliminary test, when using all columns generated during column

generation approach to solve the RMP, the solution time to find optimal integer solution

would be very long (more than 2 hours) for instances with more than 300 customer nodes.

The solution speed for the integer program was significantly improved by using only the

columns generated during the final 50 iterations of column generation. The optimality gaps

obtained by two algorithms are similar and are ranging 0.69%–7.55%. We notice that the

optimality gap obtained at the root node increases as the size of instances increases.

We also test modified X-instances with Q = 5 and Q = 6. The results have been at-

tached in the appendix. We observe that the pulse algorithm is more efficient when solving

the problem with larger vehicle capacity.

3.4.2 Numerical Results on Multi-depot VRPUD

In this section, we discuss an application of VRPUD in a patient-centered medical home

system where caregivers route one or multiple fleets of vehicles to serve/treat patients in

their homes. Patient-centered medical home has been considered as an effective and eco-

nomical way to serve patients and is experiencing a fast-growing development (Musich

et al., 2015). In 2012, over 4.7 million patients received services from about 12,000 reg-

istered home health agencies (Harris-Kojetin et al., 2013) and nowadays patient-centered

medical home makes up more than 35% of post-acute care in the market.

According to Fikar and Hirsch (2017), different objectives and constraints of the patient-

centered medical home problem have been studied. They summarize that possible objec-

tives are total traveling time, operational cost, total wait time, total overtime, workload

balance, number of tasks, etc.; and possible constraints include time windows, skill re-

quirements, working time regulations, breaks, uncertainties, and so on (see, e.g., Allaoua
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et al., 2013; Bachouch et al., 2011; Dohn et al., 2009; Fernandez et al., 1974; Lanzarone

and Matta, 2014). In this section, we model the patient-centered medical home problem

as a VRPUD motivated by the observation that the average number of patients that can

be visited by a crew is small during one working period. We generalize the problem as a

multi-depot VRPUD allowing caregivers to operate the system with multiple bases to start

and end their service routes.

Our proposed solution approach can be easily extended to the multi-depot VRPUD.

Let D be the set of the depots, and P̃ d be the set of some routes starting and ending at

depot d ∈ D. Using the same parameters and decision variables defined in Section 3.2,

the restricted master problem of column generation for the multi-depot VRPUD has the

following formulation.

(MD-RMP) minimize:
∑
d∈D

∑
p∈P̃ d

cpxp (3.15)

subject to:
∑
d∈D

∑
p∈P̃ d

aipxp = 1 ∀ i ∈ V, (3.16)

xp ∈ {0, 1} ∀ p ∈ P̃ d, d ∈ D, (3.17)

After solving the linear relaxation of the MD-RMP, we need to solve the pricing prob-

lems using the dual solutions corresponding to each constraint (3.16). However, as we have

multiple depots, we need to generate routes for the vehicles based at the different depots,

i.e., solving multiple pricing problems based on different depots.

The test instances for multi-depot VRPUD are based on the most updated United States

Census data for Wayne County in Michigan (see United States Census Bureau 20105). The

census data divides Wayne County into 610 different census tracts, and each contains the

geographical information (longitude and latitude of the geographical center). The detailed

5https://www2.census.gov/
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reference map can be found at Michigan 2010 Census - Census Tract Reference Maps6. We

assume that its geographical center represents each census tract and construct a correspond-

ing network with 610 nodes. In addition, we use the geographical information of the top

five hospitals in Wayne County as the depot nodes. The five hospitals are (1) Harper Uni-

versity Hospital, (2) Henry Ford Hospital, (3) DMC Sinai-Grace Hospital, (4) Henry Ford

Wyandotte Hospital, and (5) Beaumont Hospital-Wayne. The distribution of the hospitals

is shown in Figure 3.3.

Figure 3.3: Distribution of hospitals in Wayne County

The travel time between any of two nodes is calculated through Haversine Equation7:

for any two points with longitude ϕ1, ϕ2 and latitude λ1, λ2, the distance is given by:

d((ϕ1, λ1), (ϕ2, λ2)) = 2r arcsin

(√
sin2

(
ϕ2 − ϕ1

2

)
+ cos(ϕ1) cos(ϕ2) sin2

(
λ2 − λ1

2

))
6https://www2.census.gov/geo/maps/dc10map/tract/st26_mi/c26163_wayne/
7https://en.wikipedia.org/wiki/Haversine_formula
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In this experiment, we assume that vehicles start and end the route at the same depot (hos-

pital) while covering all the patients. We test both proposed algorithms on the instances

with the number of patient nodes ranging from 100 to 500. We test against the instances

with 1, 3, or 5 depots and use the parallel implementation of the algorithms. We consider

Q = 4 in our test instances. For any instance with |V | patient nodes, we randomly pick

|V | data points from 610 census tracts as patient nodes. We report the number of iterations

for solving the pricing problem (nIter), number of columns generated (nColumns), lower

bound from the linear relaxation of MD-RMP (LB), upper bound of MD-RMP from the

integral solution using the columns generated (UB), the optimality gap (Gap) computed as

UB−LB
LB

× 100%, and the runtime of computing lower bound and upper bound in seconds

(tLB and tUB, respectively). When solving MD-RMP as an integer program, we set the

time limit as 2 hours.

Table 3.11: Numerical result for the proposed algorithm on patient-centered medical home
instances

nNode nDepot
Pulse Random Coloring

nIter nColumns LB UB Gap tLB (s) tUB (s) nIter nColumns LB UB Gap tLB (s) tUB (s)

100
1 99 2409 971.62 991.92 2.09% 6.50 5.45 31 1728 971.62 990.96 1.99% 14.71 2.75
3 57 3085 759.23 778.90 2.59% 8.17 3.83 18 2859 759.23 778.34 2.52% 6.56 3.50
5 25 2036 486.91 503.24 3.35% 5.88 1.94 13 2323 486.91 498.84 2.45% 7.33 2.11

150
1 148 3826 1398.61 1423.14 1.75% 16.15 17.76 45 2528 1398.61 1416.59 1.29% 18.30 5.77
3 78 4893 1091.60 1101.16 0.88% 22.66 4.95 26 3796 1091.60 1104.57 1.19% 20.90 6.90
5 44 3370 669.27 681.97 1.90% 20.52 4.81 14 3138 669.27 675.65 0.95% 17.63 2.42

200
1 211 5671 1852.60 1875.21 1.22% 40.26 178.24 63 3603 1852.60 1872.53 1.08% 28.58 72.69
3 112 7365 1428.08 1441.64 0.95% 57.68 32.00 34 5325 1428.08 1442.83 1.03% 44.47 34.55
5 46 4279 852.30 867.48 1.78% 37.73 6.22 21 3888 852.30 866.44 1.66% 41.66 6.51

250
1 303 8408 2274.12 2293.87 0.87% 89.82 63.99 76 4339 2274.12 2298.09 1.05% 50.53 134.54
3 147 9746 1748.24 1764.20 0.91% 118.44 49.34 38 5838 1748.24 1767.79 1.12% 71.99 109.65
5 65 5494 1033.53 1055.22 2.10% 84.31 68.46 22 5044 1033.53 1057.90 2.36% 64.54 38.96

300
1 388 11226 2736.67 2751.82 0.55% 164.92 51.40 93 5319 2736.67 2762.36 0.94% 80.11 269.75
3 187 12002 2094.00 2104.35 0.49% 214.41 32.31 50 7077 2094.00 2103.98 0.48% 123.96 21.77
5 79 6902 1235.72 1255.16 1.57% 147.11 42.35 27 5747 1235.72 1251.39 1.27% 112.21 28.78

350
1 477 13727 3173.38 3188.32 0.47% 274.14 530.63 112 6257 3173.38 3192.02 0.59% 127.75 83.16
3 226 15152 2418.36 2429.37 0.46% 346.35 131.20 56 8242 2418.36 2435.92 0.73% 182.28 248.34
5 93 8255 1404.23 1418.66 1.03% 233.33 38.64 33 6763 1404.23 1417.92 0.98% 172.39 51.80

400
1 596 17313 3580.96 3599.36 0.51% 431.60 411.34 125 7165 3580.96 3609.41 0.79% 179.27 3863.39
3 260 17964 2719.65 2738.64 0.70% 505.62 213.47 66 9608 2719.65 2744.61 0.92% 272.19 1655.30
5 103 9253 1586.06 1603.77 1.12% 327.58 91.37 37 7804 1586.06 1605.40 1.22% 241.85 66.93

450
1 682 19942 3981.56 3997.29 0.40% 611.65 2502.78 142 7745 3981.56 4011.20 0.74% 253.12 895.71
3 298 20372 3011.01 3026.54 0.52% 713.83 727.64 79 10318 3011.01 3029.06 0.60% 402.46 386.21
5 126 11209 1799.96 1817.65 0.98% 499.46 120.01 38 8520 1799.96 1817.04 0.95% 310.38 100.41

500
1 836 24471 4439.35 4455.34 0.36% 913.61 2437.67 156 8876 4439.35 4459.56 0.46% 328.04 271.89
3 349 23711 3370.00 3384.41 0.43% 1022.49 169.83 80 11697 3370.00 3392.79 0.68% 496.09 1437.17
5 129 12494 2006.88 2023.09 0.81% 622.25 304.67 42 9355 2006.88 2029.61 1.13% 410.50 940.39

Table 3.11 summarizes the numerical results of the proposed algorithms on the multi-
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depot VRPUD embedded in the patient-centered medical home problem. As the multi-

depot VRPUD requires us to solve the pricing problem based on each depot, the solution

time increases when we have three depots instead of one. However, the increase factor

is less than 3. Surprisingly, when the number of depots increases to five, the solution

time for the instance is shorter than the cases where three depots allowed. We believe

that the involvement of more depots, especially new depots (Hospital 4 and 5) separated

away from the existing ones in our test instance, would reduce the empirical complexity of

the problem. Between using pulse algorithm and random coloring algorithm to solve the

column generation, the random coloring algorithm is more efficient in solving multi-depot

instances especially when the number of patient is large. The optimality gap yielded by

two algorithms are small (less than 2% in general). Throughout the experiments, our re-

sults show that both algorithms, within a reasonable amount of time, are capable of solving

large multi-depot VRPUD instances containing up to 500 patient nodes, which is a practi-

cal amount under the context of a patient-centered medical home system in Wayne County.

Furthermore, as shown in the numerical results, the optimality gap using the column gen-

eration approach is negligibly small considering the size of the instance.

We also study the solution routes computed from the column generation using two

different pricing algorithms. For each instance with the different number of patient nodes

(nNode) and hospitals (nDepot), we report the number of solution routes (nRoute) and their

average cost (AvgCost) based at each depot. Table 3.12 and 3.13 summarize the solution

results. Comparing the instances with the same number of customer nodes (patients) but a

different number of depots (hospitals), we notice the total number of routes used to cover

the patients are similar as most of the routes contain four patients. However, the average

cost of each route reduces 30%-40% (from approximately 40 to approximately 25) as the

number of depots increases from 1 to 3. Further reduction repeats, though diminishing,

is observed as we increase the number of depots to 5, reducing the average cost per route

from 25 to 20. An example solution for instances with 500 patients and five hospitals has
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Table 3.12: Solution summary of multi-depot VRPUD with pulse pricing algorithm

nNode nDepot
Depot 1 Depot 2 Depot 3 Depot 4 Depot 5

nRoute avgCost nRoute avgCost nRoute avgCost nRoute avgCost nRoute avgCost

100
1 25 39.88 – – – – – – – –
3 6 24.69 7 26.80 13 35.17 – – – –
5 5 23.39 5 14.63 6 18.26 2 15.51 9 20.06

150
1 38 38.01 – – – – – – – –
3 8 23.70 10 22.28 20 35.20 – – – –
5 8 21.07 7 13.79 8 16.76 3 17.93 14 16.92

200
1 51 37.08 – – – – – – – –
3 12 26.20 14 21.56 25 34.15 – – – –
5 9 20.41 10 14.94 11 16.25 5 15.60 16 18.22

250
1 63 36.67 – – – – – – – –
3 15 22.29 17 21.22 32 33.94 – – – –
5 14 20.09 10 12.76 13 14.92 7 17.28 20 17.31

300
1 76 36.58 – – – – – – – –
3 19 24.30 18 19.60 39 33.35 – – – –
5 14 20.20 13 12.72 16 15.85 10 14.03 25 16.96

350
1 88 36.56 – – – – – – – –
3 23 24.13 19 19.66 46 33.10 – – – –
5 16 18.86 15 13.72 20 15.42 9 14.64 29 16.84

400
1 100 36.21 – – – – – – – –
3 23 22.10 25 21.56 53 32.29 – – – –
5 19 18.39 17 12.11 24 15.18 11 14.52 33 16.20

450
1 113 35.56 – – – – – – – –
3 27 22.31 26 20.54 60 31.67 – – – –
5 22 18.88 19 13.07 25 14.89 12 15.80 36 16.86

500
1 126 35.55 – – – – – – – –
3 32 22.05 27 18.99 67 32.74 – – – –
5 25 18.39 21 13.22 28 15.47 13 15.16 40 16.71

been displayed in Figure 3.4.
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Table 3.13: Solution summary of multi-depot VRPUD with random coloring pricing algo-
rithm

nNode nDepot
Depot 1 Depot 2 Depot 3 Depot 4 Depot 5

nRoute avgCost nRoute avgCost nRoute avgCost nRoute avgCost nRoute avgCost

100
1 25 39.3 – – – – – – – –
3 6 26.5 6 25.44 13 35.66 – – – –
5 5 23.18 4 15.93 6 18.07 2 14.45 9 20.06

150
1 38 37.07 – – – – – – – –
3 9 22.89 9 22.18 20 34.88 – – – –
5 7 20.7 8 16.82 8 17.59 3 15.22 12 17.64

200
1 50 37.31 – – – – – – – –
3 11 25.16 13 20.44 26 34.5 – – – –
5 10 20.62 9 13.54 11 16.79 5 15.51 16 17.11

250
1 63 36.3 – – – – – – – –
3 16 22.91 15 21.18 32 33.6 – – – –
5 13 19.62 11 13.34 13 15.46 6 15.32 20 17.81

300
1 75 36.62 – – – – – – – –
3 19 23.59 18 19.73 39 33.33 – – – –
5 14 19.5 13 12.81 17 16.81 9 15.26 23 16.64

350
1 88 36.16 – – – – – – – –
3 20 23.55 22 20.32 46 32.86 – – – –
5 16 18.64 15 13.45 19 15.21 9 14.64 29 16.95

400
1 100 35.94 – – – – – – – –
3 24 23.44 23 20.04 53 32.2 – – – –
5 18 19.18 17 13.02 22 14.65 10 15.22 33 16.81

450
1 113 35.33 – – – – – – – –
3 26 21.99 28 20.58 59 31.72 – – – –
5 21 18.72 20 12.93 25 15.16 11 15.48 36 16.95

500
1 125 35.6 – – – – – – – –
3 31 22.37 29 20.1 65 32.38 – – – –
5 24 18.95 21 12.93 27 14.47 12 15.24 42 17.07

Figure 3.4: Example solution of assignments to the instance with 500 patients and 5 hospi-
tals
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3.5 Concluding Remarks

In this chapter, we studied VRPUD, a special case of CVRP where each customer has a

unit demand, and applied the column generation method to solve the problem. To effi-

ciently solve the exact pricing problem (ESPPRC) in the column generation approach, we

proposed two parallel pricing algorithms: an extension of the pulse algorithm from Lozano

and Medaglia (2013) with a new bounding scheme on the load of the vehicle and the ran-

dom coloring algorithm based on the color-coding approach from Alon et al. (1995). Both

algorithms could be implemented in parallel to achieve better efficiency.

We conducted numerical tests to evaluate these pricing approaches. In terms of run-

time, the random coloring algorithm was typically faster for small capacities, but the pulse

algorithm was faster as the capacity increased. Using the generated columns to compute

the integer solution, we observed that both algorithms found high-quality integer solutions.

We also investigated the multi-depot VRPUD inspired by the application of the patient-

centered medical home delivery. The numerical study showed that both pricing algorithms

could be applied to solve instances with up to 500 nodes and 5 depots within a reasonable

time (1 hour). By allowing more depots, we observed a noticeable decrease in the overall

traveling cost.

68



CHAPTER 4

Location Design and Relocation of a Mixed

Car-Sharing Fleet with a CO2 Emission

Constraint

4.1 Introductory Remarks

Carsharing has become an increasingly popular means of transit over the last decade. As

of 2014, an estimated 1.3 million members participated in North American carsharing pro-

grams (Shaheen and Cohen, 2014). Meanwhile, municipal governments, non-profit or-

ganizations, and for-profit companies alike have been endeavoring to create and expand

carsharing programs. In 2015, the Seattle Department of Transportation reported that

since launching a carsharing program in 2012, nearly 40,000 members joined the program

and that 3% to 4% (1,200 to 1,600) members have given up their vehicles. A non-profit

organization, City Carshare, launched in 2001, reported that as a direct result of its pro-

gram, 17,000 vehicles were removed from Bay Area neighborhoods and that the drivers

there drove 140 million fewer miles combined. For-profit companies, such as Zipcar and

Car2Go, seek revenue as their first priority, but tout resourceful urban living as a part of

their respective missions and keep careful tabs on the environmental gains. For example,

Zipcar calculated that “after joining Zipcar, 90% of our members drove 5,500 miles of less

per year” and that “each and every Zipcar takes 15 personally-owned vehicles off the road”
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(Zipcar, 2015).

To achieve operational efficiency, sustainability, and cost effectiveness, companies and

non-profit organizations face significant planning and operational challenges as they ex-

pand carsharing programs in North America. The main issue is that, while customers favor

one-way rental option that provides convenience for trip planning, meeting one-way de-

mand can be costly, as they often cause imbalanced supply-demand in different sharing

stations, which could lead to additional expense for car relocation. Another important

problem is to decide where to locate carsharing stations, and how many cars should be

placed at each station. The Carsharing often works the best in neighborhoods with low ve-

hicle ownership rates outside North America, but does not necessarily reduce the total CO2

emissions from transportation (Martin and Shaheen, 2011). The location design problem

could be further complicated by having mixed types of cars for fulfilling diverse customer

demand, while each type has their individual purchase cost and emission performance.

4.1.1 Focus of the Chapter and Contributions

In this chapter, we consider carsharing fleet location design and relocation in a metropoli-

tan area, which we divide into multiple zones with one-way and round-trip demands in

between pairs of zones. We model the demands based on discrete time periods, and each

zone has a contracted base location to hold cars. We optimize the locations for a fleet of

mixed cars, and decide how many cars of each type should be placed at each location. Con-

structing a spatial-temporal network in which each node represents a location at a discrete

time period, we utilize the classic minimum-cost flow formulation (see Ahuja et al., 1993)

to model car movement for satisfying demands over finite time periods, which can be seen

as a finite horizon for repeatedly running our model and implementing its solutions. We de-

velop two integer linear programming (ILP) formulations for modeling the problem under

different assumptions. Both formulations are parameterized by demand and cost parame-

ters, with integer decision variables representing the number of cars at each location, and
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also car movements including rental operations and relocation.

An important contribution of the work resides in the utilization of a spatial-temporal

network to model car movements, allowing to construct and optimize the ILP models ef-

ficiently. Later, we test diverse instances generated based on the Zipcar demand and op-

erational data in the Great Boston area, which is particularly suited to the spatial-temporal

network, given that we can track the fleet’s usage at every ZIP Code and hour. This al-

lows for a clearer picture of the overall revenue, cost, and demand fulfilled at every period.

Zipcar, or any other carsharing organization, can modify our models according to their

own business standards and goals. For example, one can set a constraint to force both

one-way and round-trip demand to be met 90% or higher for every period in each zone, to

enhance the quality of service of a carsharing system. Also, limited parking spots can be

added to restrict the number of cars in each location at every period. We believe that the

spatial-temporal network will prove especially useful as more mathematical optimization

techniques are applied to carsharing.

Through optimizing car fleet location design and relocation, the goal of this work is to

investigate the impact of having different types of cars in a carsharing program, and whether

a mixed car fleet can (a) increase revenue and/or (b) limit the overall CO2 emissions from

car usage. Different carsharing programs have moved toward increasing the percentage

of electric vehicles (EVs) and alternative fuel vehicles in their fleet (see, e.g., Car2Go,

2015; City Carshare, 2014; Zipcar, 2015). We will validate our results by testing instances

generated based on real Zipcar data in the Greater Boston area to see whether demand

for EVs or other fuel-efficient cars can gain sufficient revenue, despite higher purchase

and maintenance costs of those vehicles. We will show that having a more diverse car fleet,

which meanwhile makes carsharing programs more appealing to non-traditional customers,

may actually have a greater environmental impact.

With increasing concerns on global climate change, it is expected that legislation will

be proposed to control greenhouse gas emissions by limiting companies CO2 emission

71



(Absi et al., 2013). Although carsharing companies’ impact on CO2 emission reduction

has been documented, there have been very few studies on the trade-offs between CO2

emission reduction and carsharing revenue using mathematical optimization approaches.

In this chapter, we consider a mixed fleet of EVs, plug-in hybrid electric vehicles (PHEVs),

hybrid cars, and regular cars, due to the fact that the EVs offered by Zipcar (or other

carsharing companies) often hold a 35-mile maximum travel range. In addition, EVs are

often offered in the form of the Honda Fit EV or similar vehicles, and for many families,

having only EVs as their car rental choice is a big deterrent. Using a mixed car fleet, we

can explore the potentials of accessing untapped, non-traditional customer markets, while

achieving the goal of lowering CO2 emissions.

We note that the work discussed in this chapter has been published in Chang et al.

(2017).

4.1.2 Organization

The remainder of the chapter is organized as follows. Section 4.2 reviews the most relevant

literature in carsharing, facility location, and network optimization. Section 4.3 formulates

two ILP models for optimizing locations of shared cars and their relocation, subject to

budget and CO2 emission constraint. Section 4.4 analyzes the 2014 Zipcar data in the

Greater Boston area, and describes the design of our experiments. Section 4.5 presents the

computational and sensitivity results to demonstrate the managerial insights for carsharing

under different assumptions and parameter settings. Section 4.6 concludes the chapter and

states future research directions.

4.2 Literature Review

We focus on the literature of using mathematical models and optimization for carsharing

system design and operations. We also review the traditional facility location models,
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and discuss the ones most relevant to our ILP models in Section 4.3. Different from the

traditional facility location problem, in this chapter we optimize a more complex, time-

based network flow model on spatial-temporal networks. In addition to the planning of

locations, we optimize car flows and relocation on the operational level.

Carsharing Service Design and Operations Given that carsharing is a fairly recent phe-

nomenon, mathematical optimization of carsharing service is a still growing field. In the

existing literature, different optimization or simulation models have been proposed to ad-

dress operational problems related to various aspects of carsharing business. For example,

Nourinejad and Roorda (2014) develop a dynamic optimization-simulation model to show

that increasing reservation time (i.e., the time between customer requesting and picking

up a car) can reduce fleet size for satisfying carsharing demand. Martinez et al. (2012),

de Almeida Correia and Antunes (2012) are among the first to use integer programming

models to optimize depot locations, however, for bike sharing rather than carsharing in the

City of Lisbon. Nair and Miller-Hooks (2014) optimize locations of carsharing stations,

their capacities, and car inventories via solving a bilevel integer programming model, to

establish supply-demand equilibrium in carsharing network design. Boyacı et al. (2015)

consider a pure EV fleet for carsharing, and decide its optimal fleet size and locations. Re-

cently, He et al. (2016) investigate a planning problem for EV carsharing service providers

to choose service regions and allocate EVs, given fixed locations of charging stations. They

combine both customer behavior analysis and optimization for managing imbalanced de-

mand patterns across different regions.

In this chapter, we design the location of a carsharing fleet with mixed types of cars and

optimize their operations under both one-way and round-trip demands. Indeed, although

allowing one-way rentals may improve demand coverage, it brings significant operational

challenges due to possible demand-supply imbalance. Therefore, the existing literature has

focused on how to mitigate this imbalance for systems with one-way carshares. Febbraro
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et al. (2012) utilize a rolling horizon framework to derive real-time relocation policy for

carsharing. Weikl and Bogenberger (2013) explore relocation strategies for free-floating

carsharing systems given static demand. They develop an integrated two-step model for op-

timal car positioning and then relocation. Both Nair and Miller-Hooks (2011) and Barrios

and Godier (2014) use optimization tools to investigate the trade-offs between changing

fleet sizes and hiring car redistributors to maximize demand coverage and minimize the

supply-demand imbalance in different car sharing stations.

To model car flows that satisfy one-way and/or round-trip demand, a direct method is to

use a spatial-temporal network constructed based on time-varying demand between origins

and destinations. We refer the interested readers to de Almeida Correia and Antunes (2012);

Fan (2014); Kek et al. (2009) as representative work that have developed various spatial-

temporal networks for determining parking locations and designing relocation strategies.

In Section 4.3, we will describe the details of our design of the spatial-temporal network.

Differently from the existing work, we develop constraints with auxiliary binary integer

variables for preventing denied trips that could appear if using a generic spatial-temporal

network. We also incorporate multiple car types and CO2 emission limit into our ILP

models.

Lastly, the carsharing services involve many sources of uncertainty. In the previously

reviewed paper by He et al. (2016), the authors optimize the composition of service regions

using a distributionally robust optimization approach, by assuming uncertain carsharing

demand and fuel price with ambiguously known distributions. Lu et al. (2018) consider a

carshare fleet allocation problem under random one-way and round-trip demands. They op-

timize a two-stage stochastic program to minimize the total costs of car allocation and park-

ing lots/permits purchased for reservation-based or fleet-float carsharing systems, while

penalizing the unfulfilled amount of random demand. They employ a branch-and-cut al-

gorithm for optimizing the large-scale scenario-based integer programming reformulation

modeled via the Sample Average Approximation approach.
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Facility Location and Relations The location design and relocation model we consider

in this chapter also has close relations with the facility location problem, but generalizes

the classic models to a large extent by incorporating time-based demand and the result-

ing spatial-temporal operations of shared cars for matching demand. We refer to Daskin

(2011); Kariv and Hakimi (1979); Malandraki and Daskin (1992) which discuss the classic

facility location problems based on covering, p-median, p-center models and their exten-

sions, which consider static, aggregated demand varying in location but not in time. In

the past decades, the facility location problem has been incorporated or extended for net-

work design, transportation planning, joint location-inventory control, and supply chain

management (see, e.g., Daskin et al., 2002, 2005; Maass et al., 2016; Magnanti and Wong,

1984; Melkote and Daskin, 2001; Melo et al., 2009; Owen and Daskin, 1998; Shen et al.,

2003, 2011; Snyder et al., 2007). Snyder (2006) provide a comprehensive review of facility

location studies under various uncertainties, e.g., supply, demand, and network topologies.

4.3 Problem Description and Modeling

In this section, we describe the notation, and illustrate the construction of a spatial-temporal

network according to one-way and round-trip demand. We can then formulate two ILP

models, in which we embed a minimum-cost flow model based on the spatial-temporal

network to model car movements and relocation.

4.3.1 Formulation of Spatial-Temporal Network

We divide a metropolitan area into zones, and denote the set of all zones by I . Each zone

has a contracted base location for parking mixed vehicle fleet to satisfy carsharing demands

over T periods. Given demand data, we characterize the travels between origin-destination

zones, and let O ⊆ {0, 1, . . . , T} and D ⊆ {0, 1, . . . , T} be the sets of starting and ending

periods, respectively. We consider J types of cars, varying in purchase cost, demand pro-
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portion, per mile revenue, maintenance cost, and CO2 emissions per mile driven. Let dii′jts

and rii′jts be the demand and unit revenue for renting a type j car starting from zone i at

period t and returning to zone i′ at period s, for all j ∈ J , i, i′ ∈ I, t ∈ O, and s ∈ D,

respectively, and if i′ = i (i.e., a round-trip rental), we omit the index i′ and use dijts and

rijts for simplicity. Let cj be the per period CO2 emissions of a type j car, for all j ∈ J . Let

bjt and pjt be the type j car’s maintenance cost and idle cost during period t, respectively.

Let mj be the cost of purchasing a type j car, for all j ∈ J . We have a budget limit F for

purchasing all the cars and a limitH for restricting the total CO2 emissions generated over

the T periods. Therefore, vmax
j = b F

mj
c is the maximum number of type j cars available

to be located in all the zones. We use lii′ to denote the minimum traveling time between

zone i ∈ I and zone i′ ∈ I and crel to denote relocation cost per period. (Without loss of

generality, the unit relocation cost crel does not depend on the car type, specific period, or

the origin-destination pair of the relocation trip.)

We construct a spatial-temporal networkG(N,A), with each node nit ∈ N representing

zone i ∈ I at period t ∈ {0, 1, 2, . . . , T}. The arcs in this network are directed and represent

a spatial-temporal movement of cars from one zone to another from an earlier period to a

later one. In particular, we create four types of arcs: idle arcs, one-way arcs, round-trip

arcs and relocate arcs. Idle arcs, a = (nit, ni,t+1) ∈ AI , carry the flow of cars that stay

in the same zone i from period t to period t + 1; one-way arcs, a = (nit, njs) ∈ AO, and

round-trip arcs, a = (nit, nis) ∈ AR, carry car flows for satisfying their respective rentals

traveling from zone i at period t and arriving at zone j at period s (where j = i for round-

trip demand); and relocate arcs, a = (nit, ni′,t+lii′ ) ∈ AREL, carry relocated car flows from

zone i at period t to a different zone i′ at period t+ lii′ .

Overall, we have the arc setA = AR∪AI∪AO∪AREL in the spatial-temporal network

G(N,A). We transform the various costs mentioned above into unit flow cost of each arc

a ∈ A for car type j ∈ J as follows. First, no matter whether a car sits idle or is in use,

there is a cost for maintenance and insurance. There are revenue gain and CO2 emissions
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for cars moving on one-way or on round-trip arcs. We also penalize cars moving on each

idle arc, to encourage more usage, and this can be also interpreted as, e.g., parking cost.

For each car of type j, we denote arc capacity, arc CO2 emission, and arc revenue as uaj ,

eaj , kaj , respectively, for all a ∈ A. The values of uaj and eaj are given in Table 4.1, and

Table 4.2 presents the detailed cost composition for calculating kaj for each arc a ∈ A and

car type j ∈ J .

Table 4.1: Arc capacity uaj and unit CO2 emission eaj for vehicle type j ∈ J

Type of Arc Capacity uaj CO2 emission eaj
Idle arcs a = (nit, ni,t+1) ∈ AI vmax

j 0
Round-trip arc a = (nit, nis) ∈ AR dijts cj(s− t)
One-way arc a = (nit, ni′s) ∈ AO dii′jts cj(s− t)

Relocation arc a = (nit, ni′,t+lii′ ) ∈ AREL vmax
j cjlii′

Table 4.2: Maintenance cost, idle cost, and revenue to compute arc revenue kaj

Type of Arc Maintenance Idle Relocation Profit Arc Revenue kaj
Idle arc a = (nit, ni,t+1) ∈ AI bjt pjt 0 0 −(bjt + pjt)

Round-trip arc a = (nit, nis) ∈ AR
∑s−1

`=t bj` 0 0 rijts rijts −
∑s−1

`=t bj`
One-way arc a = (nit, ni′s) ∈ AO

∑s−1
`=t bj` 0 0 rii′jts rii′jts −

∑s−1
`=t bj`

Relocation arc a = (nit, ni′,t+lii′ ) ∈ AREL
∑t+lii′−1

`=t bj` 0 crellii′ 0 −crellii′ −
∑t+lii′−1

`=t bj`

Figure 4.1: Example of a spatial-temporal network

Figure 4.1 shows an example of the spatial-temporal network, for which the problem

has two zones {1, 2}, and four periods {0, 1, 2, 3}. Each node nit represents zone i at

period t. We use different arrows to represent the four types of arcs as stated in legend of
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Figure 4.1. Specifically, one car travels on a round-trip arc (n21, n23), meaning that one car

departs from zone 2 at period 1 and returns to the same zone at period 3; two cars travel on

a round-trip arc (n22, n23), meaning that two cars depart from zone 2 at period 2 and return

to the same zone at period 3; three cars travel on a one-way arc (n20, n13), meaning that

three cars leave zone 2 at period 0 and return to zone 1 at period 3. The spatial-temporal

network flow model allows us to track the cars’ status (whether in use or being idle) in each

zone from period to period.

4.3.2 A Mathematical Optimization Model

We define integer variables xij ∈ Z+ as the initial number of cars of each type j ∈ J

located in zone i ∈ I at time t = 0. For each arc a ∈ A and vehicle type j ∈ J , we define

an integer variable yaj ∈ Z+ as the number of cars of type j flowing on arc a. Let δ+(nit)

and δ−(nit) denote the sets of arcs for which nit is the origin node and the destination

node in the network G(N,A), respectively. We formulate below an integer linear program

to optimize the car fleet location, size, and types, as well as their rental operations and

relocation.

(M1) max
∑
a∈A

∑
j∈J

kajyaj (4.1)

s.t.
∑

a∈δ+(nit)

yaj −
∑

a∈δ−(nit)

yaj =


xij if t = 0

0 if t ∈ {1, . . . , T − 1}
∀nit ∈ N, j ∈ J (4.2)

∑
a∈A

∑
j∈J

eajyaj ≤ H (4.3)

∑
i∈I

∑
j∈J

mjxij ≤ F (4.4)

yaj ≤ uaj ∀a ∈ A, j ∈ J (4.5)

xij ∈ Z+, yaj ∈ Z+ ∀a ∈ A, j ∈ J (4.6)

The objective function (4.1) maximizes the total revenue of operating cars purchased for

satisfying carshare demands over the T periods. The flow balance constraints (4.2) ensure
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that the number of cars leaving each node is equal to the number of cars entering the same

node for periods that are not 0 or T , for each car type. At period 0, xij cars of type j are

available in zone i. Constraint (4.3) limits the amount of CO2 emissions generated over

the T -period time span. Constraint (4.4) reflects the total budget limit of purchasing cars.

Constraints (4.5) ensure that flows on each arc do not exceed the corresponding arc capacity

(i.e., demand values for one-way and round-trip arcs).

4.3.3 Model Justification and Assumptions

We justify the validity of the above model as follows. Without loss of generality, we assume

positive revenue on arcs a ∈ AR∪AO (i.e., rijts −
∑s−1

`=t bj` > 0 for all a ∈ AR, and

rii′jts −
∑s−1

`=t bj` > 0 for all a ∈ AO in Table 4.2). The objective function (4.1) intends to

increase yaj on arcs a ∈ AR∪AO and decrease yaj on arcs a ∈ AI∪AREL (given positive

cost kaj on any arc a ∈ AI∪AREL in Table 4.2), while constraints (4.5) bound the values

of yaj on each arc a ∈ A and car type j ∈ J from above. In particular, yaj ≤ uaj for

any a ∈ AR∪AO, where uaj is the carsharing demand on arc a for type j cars. Thus, if

possible, the flow yaj on arc a ∈ AO ∪AR will be equal to the corresponding demand (i.e.,

arc capacity) driven by revenue; excesses of cars of each type (if exist) will flow on the arc

a ∈ AI ∪ AREL to either stay idle or be relocated.

We assume that demand losses in each zone i ∈ I for each car type j ∈ J at period

t ∈ {0, 1, . . . , T} will immediately disappear and will not be rolled over to future periods.

This is consistent with the real-world situation, in which customers will seek alternative

transportation forms if no cars are available at nearby locations. For simplicity, we also

assume no car substitutions between different types. Also, to maintain flow balance, we

assume that cars will be always returned on time. In reality, carsharing companies charge

hefty fines for not returning cars on time, and there would be legal ramifications if a car

were not returned at all.
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4.3.4 Model Extension and Modification

Our study can be extended in the following ways. First, we can modify the capacities of

idle arcs (nit, ni,t+1) in zone i for each period t by letting them be the number of parking

spots reserved in zone i. Such parking availability can be given as input parameter, or

we can define the number of parking spots reserved in each zone as integer variables, in

addition to the current variables x and y. We can then optimize the total revenue offset

by fees paid to reserve parking. Both modifications do not change the complexity of our

integer programing models.

Second, our model can handle first-come, first-served (FCFS) principle of a carsharing

system by adding constraints to (M1). FCFS is a service policy to serve carsharing requests

in the order they arrive, without other preferences. In our problem context, the FCFS

principle requires an idle arc (nit, ni,t+1) having positive flows only if all the demands,

both one-way and round-trip, have been fulfilled in zone i at period t. To model this rule,

we introduce new binary variables zjit ∈ {0, 1} for each zone i, car type j, and period t and

let

zjit =


1 if any cars of type j being idle in zone i at period t

0 otherwise.

We add the following constraints to (M1) to enforce FCFS and ensure zero denied trips:

∑
a∈δ+(nit)∩(AO∪AR)(uaj − yaj) ≤ vmax

j (1− zjit) ∀i ∈ I, t = 0, 1, . . . , T − 1, j ∈ J (4.7)

y(nit,ni,t+1),j
≤ vmax

j zjit ∀i ∈ I, t = 0, 1, . . . , T − 1, j ∈ J (4.8)

zjit ∈ {0, 1} ∀i ∈ I, t = 0, 1, . . . , T − 1, j ∈ J (4.9)

According to the above constraints, when some cars of type j stay idle at node nit, we have

zjit = 1 by constraints (4.8), which will enforce the right-hand side of the corresponding

constraint (4.7) being 0, indicating that all the demands for cars of type j have been fulfilled

in zone i at period t, i.e., yaj = uaj for all one-way and round-trip arcs emanating from
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node nit, such that a ∈ δ+(nit) ∩ (AO ∪ AR). On the other hand, if any demand in zone

i at period t for type j cars has not been fulfilled, i.e., there is a one-way or round-trip arc

emanating from node nit carrying flows that have not reached the arc capacity, constraints

(4.7) imply that zjit = 0. Then constraints (4.8) ensure no cars of type j being idle in zone

i at period t.

An Illustration: We illustrate how constraints (4.7)–(4.9) can successfully enforce the

FCFS principle by constructing an example based on Figure 4.1. Suppose that y(n21,n22),1 >

0, which indicates some cars of type 1 being idle in zone 2 from period 1 to period 2. Then

constraints (4.8) imply that z1
21 = 1 and thus we have y(n21,n23),1 = u(n21,n23),1, i.e., all

carsharing demands are fulfilled in zone 2 at period 1 for type 1 cars according to constraints

(4.7). On the other hand, suppose that y(n21,n23),1 < u(n21,n23),1, which indicates that some

demands for type 1 cars are not fulfilled on node n21; then, constraints (4.7) enforce z1
21 = 0

and thus y(n21,n22),1 = 0 due to constraints (4.8), i.e., no cars of type 1 remain idle in zone

2 from period 1 to period 2.

In this chapter, we also study a more restrictive integer linear program than (M1):

(M2) max
∑
a∈A

∑
j∈J

kajyaj (4.10)

s.t. (4.2)–(4.9)

4.4 Boston Zipcar Data and Experimental Design

The City of Boston’s carsharing program, partnered with Zipcar, has been in existence since

2000. We utilize their demand and operational data collected in 2014 to generate instances

for our numerical studies.

81



4.4.1 Data Descriptions

The dataset1 includes every Zipcar reservation made in the Greater Boston area between

October 1st and November 30th in 2014. The data records show the number of reservations

started at each hour of a 24-hour day, as well as the ZIP code for where the trip began.

Given this information, we can reasonably assess the average number of trips made at each

hour of the day at any given ZIP code. We plot the average number of one-way and round-

trip weekday demands in Figure 4.2. Note that trip reservations significantly increase

from 7am to 9am. Demand slows down throughout the afternoon, but jumps back up at

5pm. Following Figure 4.2, we divide a day into two parts: peak hours, from 7am to 7pm,

and off-peak hours, from 7pm to 7am of the next day. We solve our models over a 12-

hour horizon by using the data of peak-hour demand (which accounts for the majority of

whole-day demand), with each period equal to one hour.
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Figure 4.2: Time-based one-way and round-trip demands in the Zipcar Boston data

We partition the Greater Boston area into 60 different zones, one ZIP code for each

zone, shown in Figure 4.3. The number of one-way and round-trip rentals with their origin

1https://data.cityofboston.gov/Transportation/Zipcar-Boston-Reservations/863f-ps42. We choose this
data because the carsharing demands in Boston have been relatively stabilized by this time, fourteen years
into the program. Moreover, this is the only dataset open to the public from Zipcar including both one-way
and round-trip reservations.
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Figure 4.3: Zip code map (zones) of the Greater Boston area

and destination zones, and also the start time of each rental are provided in the raw data.

4.4.2 Experimental Design

In all our instances, we consider four types of cars, all of which currently are or have

been a part of Zipcar fleets: the 2014 Honda Fit Electric Vehicle (EV), 2015 Honda Fit

LX (LX), the 2014 Honda Accord Plug-in Hybrid Electric Vehicle (PHEV), and the 2015

Honda Accord Hybrid (Hybrid). EVs rely solely on an electric motor, whereas PHEVs and

Hybrids stand in the middle between EVs and traditional gas-only vehicles like the LX.

PHEVs and Hybrids utilize both gasoline and electricity, but produce fewer CO2 emissions

than gas-only vehicles. Since PHEVs and Hybrids also utilize a gasoline engine, they does

not suffer the same distance limitations as EVs do. We foresee the PHEVs and Hybrids

being viable alternatives for customers who dislike the limitations of EVs.

In the original dataset, the one-way reservations are far fewer than the round-trip ones.

This is mainly because one-way carsharing was a relatively new service and has a rela-

tively higher rental price as compared to the traditional round-trip carsharing. In our tests,

we generate based on the original dataset more instances with four different one-way pro-
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portions, being 0%, 40%, 80% and 100% of the total carsharing demands, to study how

different one-way to round-trip demand ratios affect carsharing operations and results. To

do this, first, for each starting zone and time period from 7am to 6pm, we compute the

average number of round-trips in the original demand data. We split certain number of

round-trips, according to the desired percentage of one-way trips, into two one-way trips,

and randomly pick an inserted zone for each split (as the destination of the first trip and the

origin of the second trip) according to the probabilities of having one-way trips between

zone pairs observed in the original data.

We assume that, given that a Zipcar EV only has a 35-mile travel range, the durations of

all the one-way and round-trip rentals are 1, 2, 3, or 4 hours (periods), with equal probabil-

ity. We also assume 40%, 20%, 20%, 20% of the total carsharing demands for LXs, EVs,

PHEVs, and Hybrids, respectively, the same for both one-way and round-trip rentals. We

construct the spatial-temporal network based on the 60 zones and the 12-hour operational

horizon, which consists of 720 nodes and 1,097,040 arcs.

For the two ILP models (M1) and (M2), we use rj = $7.75 as the round-trip revenue per

hour and r′j = $12 as the one-way revenue per hour for all car types j ∈ J , which are the

rental rates used by Zipcar in Boston. We calculate rijts = rj(s− t) and rii′jts = r′j(s− t)

for round-trip and one-way arcs, respectively, for all i, i′ ∈ I , s ∈ D, and t ∈ O. We use

bjt = 0 since the maintain cost is negligible over a 12-hour horizon, and set p = pjt = $0.4

for all periods t and car types j (Chesto, 2015). Assuming that each customer drives 10

miles per hour on average, we set the CO2 emission cj for each car type j per period as the

numbers detailed in Table 4.3 below, based on the per mile CO2 emissions of the four types

of cars estimated by the U.S. Department of Energy2. We use the relocation cost crel = $8

per period. Table 4.3 summarizes the values of parameters mj, rj, bj, p, c
rel, cj for the

four types of cars used in our computation.

2http://www.fueleconomy.gov/
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Table 4.3: MSRP, revenue, maintenance cost, penalty cost, and emission per vehicle type

Vehicle type j MSRP (mj) Revenue (rj/r′j) Relocation (crel) Idle (p) CO2 (cj)

Fit EV 2014 $37,445 $7.75/$12.00 $8.00 $0.4 1200 g

Fit LX 2015 $17,270 $7.75/$12.00 $8.00 $0.4 2960 g

Accord PHEV 2014 $39,780 $7.75/$12.00 $8.00 $0.4 2000 g

Accord Hybrid 2015 $29,305 $7.75/$12.00 $8.00 $0.4 2270 g

All the instances are solved using Python 2.7 to call the solver Gurobi 6.0.3 for directly

optimizing ILP models. All programs are run on Microsoft Windows 8.1 64-bit operating

system on a Lenovo Laptop with Intel(R) Core(TM) i5-6200U CPU 2.30 GHz and 8.0 GB

RAM.

4.5 Computational Studies and Analysis

We test a diverse set of instances to determine the effects of CO2 emission and budget con-

straints on revenue and the quality of service, measured by the rates of demand fulfillment

and denied trips. We report the CPU time, optimal objective values, and service quality

results to compare (M1) and (M2). We also analyze the optimal design of shared car fleets,

and conduct sensitivity analysis by varying parameter values.

4.5.1 CPU Time and Objective Value

Tables 4.4 and 4.5 present the CPU time (in seconds) and the optimal objective values of

instances solved by models (M1) and (M2), respectively. For all the instances, we set the

budget F = $10 million for purchasing cars and the CO2 emission limit H = 5 × 106

grams.

We set the CPU time limit as 20 minutes for computing all the instances. According

to Tables 4.4 and 4.5, only the (M1) model with 0% one-way demand exceeds the time
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Table 4.4: CPU seconds and optimal objective value ($) of model (M1)

One-Way Proportion 0% 40% 80% 100%
CPU Time 61.44∗ 39.39 52.77 63.59
Optimal Objective Value $16,709.95 $17,382.00 $20,779.70 $21,732.05

*: the best optimality gap = 0.031% is achieved.

Table 4.5: CPU seconds and optimal objective value ($) of model (M2)

One-Way Proportion 0% 40% 80% 100%
CPU Time 169.33 233.55 998.31 91.54
Optimal Objective Value $16,701.15 $17,371.20 $20,732.25 $21,732.05

limit, but achieves 0.031% optimality gap very quickly, after 61.44 seconds. The average

CPU time for running (M1) is 54.30 seconds, as compared to the average CPU time being

723.43 seconds for running (M2) with the additional constraints (4.7)–(4.9) for imposing

the FCFS principle.

As the proportion of one-way trips increases, the optimal objective values of both mod-

els increase (approximately by 30% from 0% to 100% one-way proportions). We note that

the optimal objective values of (M1) and (M2) are very similar, but the CPU time increases

significantly from (M1) to (M2). This is because (M2) includes the additional “Big-M”

constraints (4.7)–(4.9), which are recognized as being very inefficient for solving integer

programs. Later, we will report the percentages of denied trips to measure the number

of trips that violate the FCFS principle when using (M1) without constraints (4.7)–(4.9).

(Note that feasible solutions to (M2) always yield zero denied trips.) The model (M1) au-

tomatically yields very low amount of denied trips (less than 1% of the total demand) even

without the FCFS constraints. Thus, we recommend using (M1) for carsharing practition-

ers to achieve better trade-offs between the computational efficiency and model complexity.

In the rest of the chapter, we only solve (M1) for all the remaining instances.
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4.5.2 Quality of Service

To evaluate the quality of service (QoS) for our carsharing model, we study several system

metrics, including the percentage of unfulfilled demands, the percentage of denied trips,

idle car hours, and car utilization rates. Here, denied trips refer to the number of unfulfilled

demands when there are idle cars to serve them. In other words, the amount of denied

trips reflects the magnitude of violation of the FCFS principle. Table 4.6 displays the QoS

metrics as one-way proportion varies. We continue usingF = $10 million andH = 5×106

grams.

Table 4.6: Quality of Service Metrics

One-Way Unfulfilled Unfulfilled Denied Idle Vehicle Vehicle
Proportion Rentals Rentals (%) Trip (%) Hours Utilization

0% 164 15.43% 1.03% 1412 61.22%
40% 53 5.74% 0.76% 1690 56.48%
80% 44 4.84% 1.65% 1667 56.82%

100% 10 1.14% 0.11% 1653 57.43%

The unfulfilled rental metric is largely dependent on budget and emission constraints,

but provides a useful view for whether our model is capable of fulfilling demand. The

number of unfulfilled rentals is high for the 0% one-way case, but the system also has

the highest car utilization. Under other one-way proportion settings, we have much fewer

unfulfilled demand rates, ranging from 1.14% to 5.74%.

The model (M1) is also capable of enforcing the FCFS principle without explicitly

creating constraints (4.7)–(4.9) as in model (M2). FCFS is a vital business principle for

carsharing companies, since a primary business objective is to provide a reliable service and

available cars to customers as they arrive in the system. If customers are turned away when

cars are available, or the system rejects reservations because it forecasts more profitable

trips in the future, carsharing companies may lose a competitive business edge. In Table

4.6, the percentages of denied trips are extremely low, ranging from 0.1% to 1%. In other

words, demands are fulfilled between 99% and 99.9% of the time if the corresponding type
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of cars are available.

We use the idle car hours to calculate the car utilization rates, which are on average over

55% for each car. Overly high utilization rates will cause lowered QoS metrics, while low

utilization rates mean that cars are unnecessarily purchased under too loose of a budget.

In general, the higher the utilization rate is, the higher the number of unfulfilled rentals

will be. In our tests, we use a relatively low penalty for cars being idle, which allows high

rental fulfillment. Setting higher penalty costs can ensure that idle car hours decrease and

car utilization rates increase.

Recall that under 40% one-way proportion, the demand fulfillment rate is on average

94%. We show in Figure 4.4 the number of fulfilled one-way and round-trip reservations

based on their starting periods. The dashed line represents carsharing demand (i.e., capacity

uaj), while the solid line is the number of trips satisfied starting from each period. Note

that trip fulfillment rate is low in the last period, since trips started in the last period must

return within one period to satisfy flow balance. Essentially, trips made in the last hour

are one-hour trips only and the system tends to fulfill other trips instead. Otherwise, trip

fulfillment rate is extremely high in each zone throughout the 12-hour horizon.
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Figure 4.4: Number of fulfilled one-way and round-trip reservations
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4.5.3 Effects of CO2 Emission Limit

We vary the CO2 emission limit to see its effect on the optimal car fleet composition. Figure

4.5 shows how the number of cars of each type in the fleet changes as the right-hand side

of the CO2 emission constraint varies. We use F = $10 million as the total budget for

purchasing cars.
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Figure 4.5: Number of cars purchased for each type given CO2 emission limit

In Figure 4.5, we note that between 3×106 and 6×106 grams of CO2 emissions allowed,

EVs, Hybrids, and PHEVs comprise a majority of the fleet. Few LXs are purchased when

the emission limit is low. Our model allows for a diverse fleet when restricted by the CO2

emission limit.

As the CO2 emission limit becomes less restrictive, the number of LXs purchased goes

up, as expected. We also note that the model still shows an obvious preference for Hybrid

cars, which are consistently purchased more than PHEVs. This can probably be attributed

to the high cost of a PHEV, although PHEVs and Hybrids are fairly similar in technology

and function. This model can be used by companies who seek to determine the compo-
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sition of a large fleet of cars to purchase and use for several years. A fleet composition

analysis using this model can sharply differentiate the more profitable car models while

still benefiting the environment.

Many adjustments can also be made to further determine a proper fleet. For example,

the current demands consist of 40% LXs, 20% EVs, 20% PHEVs, and 20% Hybrids. Given

the wide range of car preferences and needs throughout carsharing communities, we can

increase or decrease the demand for each vehicle type and re-solve the resulting instance of

(M1). We can also, if necessary, add further constraints to ensure that a certain percentage

of demand is fulfilled for some specific car type, e.g., 90% of the demand for EVs is met.

Figures 4.6a and 4.6b display the changes of the total cost and the total profit (i.e.,

revenue minus cost) as we increase the CO2 emission limit.
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Figure 4.6: Total cost and revenue given by different CO2 emission limitH

In Figures 4.6a and 4.6b, as the CO2 emission limit increases, the total revenue over the

12-hour horizon plateaus around $18,000. This is significant since imposing CO2 emission

limit on a carsharing fleet may not hurt the revenue, which will reach a threshold value

at some point and the cost to purchase additional cars will not justify attempting to meet

further demand. On the other hand, imposing emission limit can reduce tens of thousands

of grams of emissions. For example, as we observe, if we place the CO2 emission limit
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at H = 5 × 106 grams, we would only lose $415.25 (or 0.02%) revenue over the 12-hour

horizon, as compared to the case where CO2 emission limit is set as 6× 106 grams.

4.5.4 Sensitivity Analysis

The primary constraints in the (M1) model concern about capacity, emission limit, and

budget for purchasing cars. In this section, we vary the values of parameters in these

constraints to analyze the sensitivity of our results. We fix F = $10 million and H = 5 ×

106 grams, while varying the CO2 emission limits and car purchasing budgets, respectively.

We consider 40% one-way proportion setting, and assume that the demand profile is fixed

regardless of the increase or decrease of car availability or CO2 emission limit. Figures

4.7a and 4.7b show the sensitivity results of CO2 emission and budget constraints on the

optimal objective value of (M1), respectively.
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Figure 4.7: Optimal objective values under varying CO2 emission limit and budget

In Figure 4.7a, the optimal objective value begins leveling out fairly quickly at around

CO2 emission limit of 5 × 106 grams. The optimal objective value in Figure 4.7b for the

budget constraint is much less sensitive, and is only increased by $865 (as the 12-hour net

revenue of running the system) from F = $8 million to F = $11 million, under the same

demand profile.

91



We also test whether varying the percentages of each car type will affect the optimal

objective value. We use the percentage numbers in Table 4.7 to generate instances with

diverse demand composition for the sensitivity analysis. To generate fleet capacities, we

make the percentage of LXs the biggest, followed by the ones of Hybrids, EVs, and PHEVs.

Table 4.7: Tests of different percentages of EVs, LXs, PHEVs, and Hybrids

Test 1 Test 2 Test 3 Test 4
EV 10% 20% 20% 25%
LX 60% 50% 40% 30%

PHEV 10% 10% 20% 15%
Hybrid 20% 20% 20% 30%

In Figure 4.8, we evaluate how the optimal objective value changes as percentages of

the demand for four car types vary, with F = $10 million and H = 5 × 106 grams. We

note that the objective value increases as the demand percentage for LXs decreases and

the demand percentages for other types of cars even out. However, the difference between

the maximum and the minimum objective values ($17433.86 and $16297.35, respectively)

is not very large, being only $1136.25. The percentages of different car-type demands,

therefore, do not heavily impact the revenue.

4.5.5 Result Summary

Transportation accounts for 27% of greenhouse gas emission (or 6,673 million metric tons

of CO2) in the United Sates (see United States Environmental Protection Agency, 2013).

This number could be significantly reduced through wider investment in carsharing, which

has been proven to decrease car ownership rates and the related carbon footprint in the

past decade. Making carsharing more successful among diverse communities requires pur-

chasing and locating fleets that match the community’s exact needs and profile. To meet

this goal, we utilized the spatial-temporal network to model car rental and relocation op-

erations corresponding to time-varying demands and we optimize carsharing fleet location

and relocation with mixed car types.
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Figure 4.8: Optimal objective values of Tests 1, 2, 3, 4 in Table 4.7 with different demand
compositions

We considered instances to determine the types and numbers of cars that should be pur-

chased, as well as their locations for designing a self-sustained, efficient carsharing system.

Testing various demand compositions for four different types of cars, we noted that as long

as the CO2 emission limit is low, the numbers of PHEVs, Hybrids, and EVs purchased

are fairly similar. As we increase the CO2 emission limit, the majority of cars purchased

become LXs and Hybrids. Our results confirmed a clear preference for certain types of

cars under different parameter settings. We demonstrated which cars will be profitable in

the long run. We provided a powerful optimization tool for companies seeking to purchase

a long-term fleet, given certain budget limits, revenue goals, and CO2 emission reduction

goals.

We also imposed a CO2 emission constraint on the spatial-temporal network. Given

that many carsharing companies make it a part of their company mission to reduce CO2

emissions, we believe this will be a valuable component when deciding fleet allocation. By

changing the total limit on CO2 emissions, we found that imposing this constraint would

allow a fleet to significantly reduce CO2 emissions, while affecting only a small percentage

of the total revenue.
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Our approaches also worked well for fulfilling demands and preventing denied trips.

We tested two models, (M1) and (M2), of which the latter explicitly enforces trips being

served if cars are available in the same starting location. However, even though (M1) does

not explicitly include such constraints, our results showed that it automatically enforced

low denied-trip percentages (between 0.1% to 1%) in all the tested instances. Overall,

demand losses are low for all the instances under different budgets and emission limits.

Each car has a high utilization rate, at over 55% on average, which is much higher than the

average utilization rate of private cars.

We were also able to directly view the effectiveness of the car purchasing budget. The

sensitivity analysis of the budget against the revenue provided a simple but useful tool for

companies to study how much they wish to spend on purchasing new cars each year. For

example, in Section 4.5.2, we found that increasing the budget by $3 million only led to

a $865 revenue increase over the 12-hour horizon, under the same amount of demand.

Understanding the impact of the budget on revenue can lead to clearer analysis of how to

increase revenue through other methods, such as locating carsharing spaces closer to public

transport.

4.6 Concluding Remarks

In this chapter, we constructed a spatial-temporal network to model car movements and

formulated a carsharing location design and relocation problem as integer linear programs

with an embedded minimum-cost flow model. Each node in the network represents a base

location at a given time from a set of discrete periods. We investigated the impacts of having

different car types in a carsharing fleet and how diverse fleets could increase revenue, and

meanwhile limit CO2 emissions from car usage. We introduced two ILP models, (M1)

and (M2), to ensure high QoS reflected as low unfulfilled demand rates and low denied trip

rates. Using 2014 Zipcar data in the Great Boston area, we tested a diverse set of instances
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with both (M1) and (M2). Our numerical experiments showed that our approach works

well for fulfilling both one-way and round-trip carsharing demands while limiting the total

CO2 emissions. In addition, we maintained high car usage and low denied trip rates using

the (M1) model without explicit FCFS constraints.

We discussed modifications of (M1) via the introduction of additional constraints and

variables, and how they would create effective alternative models for determining the op-

timal location and composition of mixed car fleet, under other more complex problem set-

tings. Constraints for meeting required demand satisfaction rates, denied trip rates, revenue

gains, etc., can be easily incorporated into the ILP models, which can be solved quickly

by off-the-shelf optimization solvers. The related studies will be carried out in our future

research.

Another promising future research direction is to study fleet distribution of shared au-

tonomous vehicles (SAVs). Introducing autonomous vehicles into the American roadway

will come through many means, but including them in carsharing fleets will likely be one

of the vital first steps. Just as we study the integration of EVs into a carsharing fleet, con-

ducting research on the integration process and allocation of an SAV fleet is the next natural

step.
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CHAPTER 5

An Integrated Car-and-ride Sharing System for

Mobilizing Heterogeneous Travelers with

Application in Underserved Communities

5.1 Introductory Remarks

In recent years, shared mobility has shown its flexibility and strength in providing conve-

nience for personal travel and reducing traffic congestion on public roads by reducing car

ownership (Martin, 2016; Shaheen et al., 2015). With increasing concerns about climate

change, congestion, and fossil fuel dependency, shared mobility attracts more attention and

is undergoing a fast rise in popularity and industrial growth (Chan and Shaheen, 2012).

Two main mobility-sharing forms are carsharing and ride-hailing. The former provides

users with access to car rental service on an hourly basis (Millard-Ball, 2005). The latter,

a service initially aiming to group travelers with common itineraries (Chan and Shaheen,

2012), has evolved rapidly with the development of smartphone technologies. Although

both carsharing and ride-hailing provide useful alternatives to owning personal cars, they

focus on different user groups. Carsharing users usually rent cars for running errands with

multiple short stops. To use a carsharing service, users are required to meet driving eligi-

bility requirements. Ride-hailing service targets users with short, and often one-time ride

needs. It especially benefits people who are not able to drive, unfamiliar with the city transit
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system, and/or commuting with poor transit access.

Carsharing business started from a station-based model in the United States in the late

1990s and individuals join a membership program by paying fixed monthly or annual fee.

Service providers often ask users to reserve a vehicle in advance, pick up and return the

vehicle to the same station, which is often located in a population-dense region. In recent

years, carsharing evolved to allow users to pick up and drop off vehicles in different loca-

tions and some free-floating carsharing only requires their users to return vehicles to a zone

in service. However, the flexibility comes at the cost of vehicle stock imbalance and drives

up the price to use the service.

With the support of GPS technology and broad adoption of smartphones, ride-hailing

service emerged in recent years. It allows customers to request drivers through a smart-

phone app. As a result, its efficiency and service quality rely on hundreds of thousands

of drivers who participate in real time. Working as a driver in ride-hailing service plat-

forms became a new career choice for many people and contributes to society employment

growth. However, to become a driver, one needs to pass a series of qualifications including

having his/her own vehicle to meet the model year requirement. Recently, many people

have decided to rent or lease a car to drive for ride-hailing from platforms such as Hyre-

Car. However, they are still bearing the cost of operating vehicles and uncertain demand.

Clewlow and Mishra (2017) show that 30-50% of ride-hailing drivers are losing money.

Furthermore, those car rental services are only provided in large metropolitan areas. Nev-

ertheless, the ride-hailing services attract much more users than carsharing, both from the

passenger side and the driver side: there are more than 250 million users globally of ride-

hailing versus 5 million users of carsharing.

Both carsharing and ride-hailing services rely on several characteristics of existing

transportation systems to be successful, including limited parking, limited public trans-

portation, walkability, high population density, and mixed-use neighborhoods (see, e.g.,

Brook, 2004; Muheim and Reinhardt, 1999). In cities with high population density, the
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waiting time for both drivers and passengers could be easily reduced in ride-hailing and

thus attracts more users with high efficiency (Agatz et al., 2012; Alonso-Mora et al., 2017).

In fact, both carsharing and ride-hailing services are targeting users that are young, ed-

ucated, have moderate income, and live in urban areas (Smith, 2016). However, for the

neighborhoods that do not have populations with these characteristics, the services are less

likely to be successful, and the coverage for such neighborhoods is therefore limited.

Given the variety of limitations we listed above, in this chapter, we propose a car-and-

ride sharing (CRS) system, in which carsharing and ride-hailing services are integrated and

co-provided to boost the mobility of heterogeneous travelers based on their characteristics

and special needs. We aim to design a financially and operationally self-sustainable system,

such that users with ride-hailing demands are served by drivers with carsharing needs. We

aim to build an affordable, reliable, and incentive-based system to foster the connections

within and in between communities that do not have full access to the existing carsharing

and ride-hailing systems.

5.1.1 Application in Underserved Communities and Justification

Transportation is a scarce resource in metropolitan Detroit: 40% of residents do not own

cars, and 40% among them do not have access to vehicles (Firth, 2016). Despite the fact

that surrounding suburban areas have more than five times the number of employment

opportunities as the city of Detroit, only 9% of these jobs are taken by residents of Detroit.

In Detroit areas, more than 10,000 residents face tremendous pressure in commuting to

their jobs in suburban communities that do not offer public transit. Even worse, some

suburban municipalities decide to reduce and eliminate much of its public bus service due

to financial and safety concerns (McLaughlin, 2015).

Residents in underserved communities are experiencing financial, technical, skill-based,

informational, and social barriers to the use of shared mobility service. For both service

providers and users, the adoption of the existing shared mobility forms in underserved
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communities posts significant challenges. From service providers’ perspective, income and

crime rate have influence on the willingness of drivers to serve particular areas, and there-

fore residents there find fewer drivers and higher service price (Thebault-Spieker et al.,

2015). Meanwhile, due to the lack of personal vehicles, residents in low-income commu-

nities are disadvantaged in finding work as drivers for ride-hailing services (Gross et al.,

2012).

For validating the design of CRS, we consider a service region in underserved com-

munities that mainly involves, e.g., underserved populations such as jobless, elderly, and

disabled, to whom transportation is a scarce resource. We partition the service region into

zones and shared cars are located a priori in some designated parking spaces in each zone.

We classify two types of users: Type 1 who want shared cars for private use but also have

spare time outside their travel time windows to serve as drivers, and Type 2 who have ride-

hailing demand but cannot drive themselves. We aim to build a self-sustained CRS system

to encourage Type 1 drivers to “serve” Type 2 users by enabling them to receive income

for providing rides to compensate for their payment for car rental.

To implement CRS, we build a reservation system that collects Type 1 drivers’ rental

information along with their available time windows for serving others, as well as Type 2

users’ ride-hailing requests with origin-destination of their trips and time windows for pick-

up. Note that both carsharing and ride-hailing have two primary forms: reservation-based

and on-demand. From the users’ perspective, on-demand service is more appealing since

it provides an instant solution for their travel needs. However, in this chapter, we assume

that all the requests are collected prior to the optimization phase due to the following rea-

sons. First, on-demand ride-hailing service usually requires a large number of drivers and

passengers to achieve matching efficiency. We consider travel needs from underserved

communities, and thus the demand is sparsely distributed. Second, Type 1 drivers who

serve others to gain more vehicle access often know their available time sufficiently early

before committing to the service. Third, the purposes of the users’ trips can be generally
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categorized as job commute, hospital visit, job interview, and grocery shopping, which all

have fixed schedule and can be known in advance. Based on this, we propose a reservation-

based CRS system and assume that all supplies and demands are known in advance.

5.1.2 Contributions and Main Results

This chapter focuses on developing a new CRS system for serving heterogeneous travelers

whose demand cannot be solely met by either carsharing or ride-hailing business models.

The contributions of this chapter are two-fold.

• The classification of two types of travelers leads to self-sustained operations of the

system via supply-demand matching. However, combining two types of services

results in substantial operational challenges. We decompose the problem into two

phases, and successfully reduce operational complexity while obtaining good-quality

results shown by our computational studies. We also demonstrate the importance of

vehicle relocation, as we can achieve higher demand fulfillment rates even when we

only allow round trips of shared cars.

• We extend the basic model to a stochastic integer program to capture the randomness

of vehicle travel time and service time. We develop efficient decomposition algo-

rithms for optimizing the large-scale stochastic model with finite samples. When

applied to synthetic data, our proposed model achieves high operational efficiency

(measured by waiting and overtime of the system), compared with the deterministic

model using the expected values.

The proposed community-based CRS system can be applied beyond the scope of serv-

ing underserved populations as it provides a solution for communities where there is a

mixture of travelers with different driving abilities and time flexibility. We note that the

work in this chapter has been published in Yu and Shen (2020).
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5.1.3 Structure of the Chapter

The remainder of this chapter is organized as follows. In Section 5.2, we review the lit-

erature related to carsharing, ride-hailing, and their optimization models and algorithms.

In Section 5.3, we describe the problem and formulate a two-phase approach to optimize

the integrated CRS design and operations. We further present a stochastic programming

variant of the Phase II model by considering random vehicle travel time and service time.

In Section 5.4, we apply an efficient way to decompose the proposed models and derive

valid cuts based on the integer L-shaped method. In Section 5.5, we demonstrate the ef-

fectiveness of the CRS system and present computational results in various instances. We

conclude the chapter and present future research directions in Section 5.6.

5.2 Literature Review

For carsharing, Laporte et al. (2015) classify the literature of carsharing under five main

topics: station location, fleet dimensioning, station inventory, rebalancing incentives, and

vehicle repositioning. Nourinejad and Roorda (2014) propose a dynamic optimization-

simulation model to study the relationship between fleet size and reservation time (i.e.,

the time between reservation and picking up vehicles). Nair and Miller-Hooks (2014) use

a bilevel mixed-integer linear program to optimize station location and capacity, as well

as vehicle inventories. To handle vehicle imbalance in the one-way carsharing system,

Kek et al. (2009) introduce a spatial-temporal network to model the movement of vehicles

and determine the workforce needed for relocation. Similar approaches have been used by

de Almeida Correia and Antunes (2012) to optimize parking locations, and by Fan (2014) to

optimize the allocation and relocation in carsharing systems that allow one-way car rentals.

For ride-hailing, Agatz et al. (2012) conduct a comprehensive survey of optimization

approaches for fleet management and other related operational problems in dynamic ride-

hailing. Alonso-Mora et al. (2017) propose a general model for a dynamic real-time high-
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capacity ride-pooling system that solves an assignment problem on a graph of feasible

trips and compatible vehicles. To match ride-hailing requests to available cars, as well

as to route shared vehicles, most papers consider variants of the VRP for seeking static

ride-hailing solutions. Toth and Vigo (2014) summarize the formulations and solution

approaches of VRP variants, including multi-depot VRP, VRP with time windows, and

VRP with simultaneous pickup and delivery. Taş et al. (2013) develop heuristic approaches

for VRP with soft time windows and stochastic travel time. In addition to routing cost, they

also consider the cost of late and early arrivals, which are related to the waiting time and

idle time considered in our stochastic formulation discussed later.

For designing carsharing systems, He et al. (2016) optimize service zone selection for

sharing electric vehicles under uncertain carsharing demand and fuel price. Brandstatter

et al. (2016) further study facility location problems for locating charging stations in electric

vehicle sharing systems. Lu et al. (2018) study a carsharing fleet allocation problem with

stochastic one-way and round-trip demands. They propose a two-stage stochastic program

to minimize the total cost of parking lots/permits and car allocation, as well as penalty cost

from unfulfilled demand. Zhang et al. (2018) extend the models and solution approaches

in Lu et al. (2018) for optimizing fleet allocation and service operations of electric vehicle

sharing with vehicle-to-grid selling under random travel demand and electricity price. To

the best of our knowledge, this chapter is the first to combine carsharing system design

with ride-hailing service optimization, which has special application domains as we have

described above.

5.3 Problem Formulations

We consider a fleet of K shared vehicles available to be reserved that are distributed in

I zones. Let L = {1, 2, . . . , |L|} be a set of reservations received from Type 1 drivers.

Each l ∈ L is associated with a tuple, (ol, dl, [sl, tl], [gl, hl]), which includes the pick-up
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zone ol ∈ I , return zone dl ∈ I of a rental car, time window [sl, tl] during which a car

is needed, and the time window [gl, hl] during which Type 1 driver l is able to provide

ride-hailing service to Type 2 users. Let J be a set of ride-hailing demand from Type 2

(non-driver) users. Each j ∈ J is associated with a tuple, (o′j, d
′
j, ej, g

′
j, h

′
j), where o′j and

d′j represent the trip’s origin and destination, respectively, ej is the total service time needed

(including driving time from o′j to d′j and the time of loading passengers), and [g′j, h
′
j] is

the available time window for picking up the corresponding Type 2 user at origin o′j . In

this chapter, we consider finite and discrete time for decision making in our models. We

define a binary parameter vector w = (wjl, j ∈ J, l ∈ L)T , where wjl = 1 if ride-hailing

request j ∈ J can be served by carsharing trip l ∈ L and 0 otherwise. We set wjl = 1 if

|[g′j, h′j + ej] ∩ [gl, hl]| ≥ ej , meaning that Type 2 user j ∈ J can be served within the time

window specified by Type 1 driver l ∈ L.

For each Type 1 demand l ∈ L, we charge rcar
l per period of car use, dependent on pick-

up and drop-off locations. Each driver l also earns rdrive
l for every time period of serving a

Type 2 user. For each Type 2 demand j ∈ J , we charge rride
j per period dependent on the

origin, destination, and time window. A car in use will incur a service cost cser (including,

estimated gas, maintenance, insurance, and other types of cost) per period and will incur

an idle cost cidle
i (including cser and parking cost) per period if it sits idle at zone i ∈ I .

When a car needs to be relocated, it will incur a relocation cost crel per hour. Note that

service cost cser, idle cost cidle
i , and relocation cost crel are not paid by Type 1 driver, but are

system-based costs to minimize.

5.3.1 Solution Approach Overview

We consider a two-phase approach for the design and operations of the CRS system: in

Phase I, we maximize the fulfillment of Type 1 demand over a spatial-temporal network

that describes all users’ demand and availability, while maintaining the financial self-

sustainability of the system. We prioritize Type 1 drivers with a high possibility of pro-
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viding rail-hailing service with a preliminary match of Type 1 drivers and Type 2 users

when making the decision. In Phase II, we match Type 1 and Type 2 users and optimize

pick-up routes and schedules under stochastic vehicle travel time and passenger loading

(service) time, which may result in users’ waiting and overtime. By decomposing the prob-

lem into two phases, it reduces the size of the ride-hailing scheduling and routing problem

by only considering the accepted Type 1 drivers and hence improves the computational

time overall.

We also develop a two-stage stochastic mixed-integer programming formulation for

Phase II, which balances vehicles’ total travel cost and the expected penalty cost of users’

waiting and vehicle-use overtime. To solve the large-scale formulation with many samples

of uncertain travel time and service time, we propose a driver-based decomposition algo-

rithm, which first determines a sequence of Type 2 users assigned to each Type 1 driver, and

then, for each driver, decides an optimal schedule to arrive at each Type 2 user’s location,

which can be quickly solved via linear programming. We conduct computational studies by

testing instances based on serving underserved populations in Washtenaw County, Michi-

gan, and consider diverse demand patterns of Type 1 and Type 2 users. We show that our

decomposition algorithm outperforms the standard Benders decomposition approach, and

demonstrate the cost and service-quality performance of the CRS system.

5.3.2 Phase I: Carsharing Planning and Operations

Given service requests from Type 1 drivers and Type 2 users, we first implement Phase I

to decide which Type 1 requests to fulfill and pass the solutions to Phase II. We construct

a spatial-temporal network, G = (N,A), to capture carsharing reservations from Type 1

drivers over T periods, where each node nit ∈ N represents a zone i ∈ I at period t ∈

{0, 1, . . . , T}. We partition A into three types of arcs, A = Atravel ∪Aidle ∪Arel, as follows.

• Travel arcs (nit, ni′t′) ∈ Atravel are created for each Type 1 demand l ∈ L where

i = ol, i′ = dl, t = sl and t′ = tl. The amount of flow on arc al ∈ Atravel indicates
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Figure 5.1: An example spatial-temporal network with two zones and three periods

whether or not a vehicle is being rented by Type 1 driver l ∈ L. We set fal =

(tl − sl)(r
car
l − cser) − rdrive

l (hl − gl) as the unit flow revenue and ual = 1 as the

capacity of arc al ∈ Atravel, for all l ∈ L.

• Idle arcs (nit, ni,t+1) ∈ Aidle are created for i ∈ I and t ∈ {0, 1, . . . , T − 1}. The

amount of flow on arc (nit, ni,t+1) ∈ Aidle indicates the number of vehicles being

idle in zone i from t to t + 1. We set unit flow revenue and capacity of arc a ∈ Aidle

as fa = −cidle
i and ua = K, respectively.

• Relocation arcs (nit, ni′,t′) ∈ Arel are created for i 6= i′ ∈ I and t′ > t ∈ {0, 1, . . . , T−

1}. The amount of flow on (nit, ni′,t′) ∈ Arel indicates the number of vehicles being

relocated from zone i at t to zone i′ at t′. We set unit flow revenue and capacity of

arc a ∈ Arel as fa = −crel(t′ − t) and ua = K, respectively.

Figure 5.1 shows a spatial-temporal network example with I = {1, 2} and T = 3. In

the network, there are three Type 1 driver demands: a round trip reserving a car from t = 0

to t = 2 at zone 1, a round trip demand from t = 2 to t = 3 at zone 2, and a one-way

demand from t = 0 to t = 1 traveling from zone 2 to zone 1. Note that by allowing vehicle

relocation, we can use two vehicles to serve the three demand trips in the example network.

We define integer decision vector x = (xi, i ∈ I)T where xi is the number of cars

initially located in zone i ∈ I , integer decision vector y = (ya, a ∈ A)T where ya indicates
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the amount of flow on arc a ∈ A, and binary integer decision vector z = (zjl, j ∈ J, l ∈

L)T where zjl = 1 indicates that Type 2 user j ∈ J can be potentially served by Type 1

driver l ∈ L, and zjl = 0 otherwise. Let δ+(nit), δ−(nit) be the sets of arcs to which node

nit is their tail and head node, respectively, and formulate an integer program P1 as follows.

[P1] maximizex,y,z
∑
a∈A

faya +
∑
j∈J

rride
j

∑
l∈L

ejzjl (5.1a)

subject to
∑
i∈I

xi ≤ K (5.1b)

∑
a∈δ+(nit)

ya −
∑

a∈δ−(nit)

ya =


xi if t = 0

0 if t ∈ {1, . . . , T − 1}

−xi if t = T

, ∀i ∈ I (5.1c)

ya ≤ ua ∀a ∈ A (5.1d)∑
j∈J

zjlej ≤ yal (hl − gl) ∀l ∈ L (5.1e)

zjl ≤ wjl ∀j ∈ J, ∀l ∈ L (5.1f)∑
l∈L

zjl ≤ 1 ∀j ∈ J (5.1g)

x ∈ Z|I|≥0, y ∈ Z|A|≥0 , z ∈ {0, 1}
|J|×|L|. (5.1h)

The objective function (5.1a) maximizes the potential total profit from both carsharing and

ride-hailing operations, which is also equivalent to maximizing the total number of Type 1

and Type 2 requests served in the system. Constraint (5.1b) allows the total number of

vehicles used in the CRS system to be no more than K. Constraints (5.1c) are flow balance

constraints formulated for the spatial-temporal network. Constraints (5.1d) are arc capacity

constraints. Constraints (5.1e) ensure that the accepted carsharing requests from all Type 1

drivers can potentially provide sufficient time to serve accepted ride-hailing requests from

all Type 2 users. Constraints (5.1f) ensure that zjl = 1 only if a Type 1 driver l ∈ L can

serve a Type 2 user j ∈ J . Constraints (5.1g) ensure that each ride-hailing request will be

served at most once.
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5.3.3 Phase II: Ride-hailing Routing and Scheduling

After solving P1, we obtain a set of Type 1 drivers to accept (i.e., all the l ∈ L with

yal = 1 in the optimal solution). We also locate vehicles in zones following the values of x-

variables in the solution but discard the values of z-variables. We then construct a Phase II

model to find the routing and scheduling decisions for both Type 1 and Type 2 requests that

can be accepted. Note that our final service acceptance and driver-user matching decisions

will be made in Phase II, and could be different from the estimated solutions in Phase

I. In practice, both types of users will be notified whether we can provide carsharing or

ride-hailing service to them after we solve Phase II.

We define a network based on the CRS service region as G′ = (V,E) where V is the

node set and E = {(u, v) : u, v ∈ V, u 6= v} is the edge set. Let L′ be the set of accepted

Type 1 reservations (given by the subset of drivers in L with yal = 1 in the optimal solution

of Phase I), and V = V0∪V1∪V2 where V0 = {ol : l ∈ L′} and V1 = {dl : l ∈ L′} are the

sets of pick-up and return locations for approved Type 1 carsharing requests from solving

P1, respectively. Set V2 = {vj : j ∈ J} contains each Type 2 ride-hailing request. We

assume that all the arcs can be traveled along both directions but can have different travel

time, and therefore G′ is directed. We use cuv to denote the estimated travel time between

two nodes such that (u, v) ∈ E. For each vj ∈ V2, j ∈ J , we calculate the estimated travel

time in the following way: we set cu,vj = cu,o′j and cvj ,u = cd′j ,u for all u ∈ V , where o′j, d
′
j

represent origin and destination of Type 2 user j ∈ J .

We define binary decision vector α = (αluv, (u, v) ∈ E, l ∈ L′)T such that αluv = 1

indicates that Type 1 driver l ∈ L′ travels along arc (u, v), and 0 otherwise. We define

binary vector β = (βj, j ∈ J)T such that βj = 1 indicates that Type 2 user j ∈ J is

served, and 0 otherwise. We define continuous decision vector γ = (γv, v ∈ V )T such that

γv ≥ 0 is the planned time of a vehicle arrival at location v ∈ V . We formulate the Phase
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II problem as follows, using a variant of the VRP with time windows and multiple depots.

[P2] maximizeα,β,γ
∑
j∈J

rride
j ejβj (5.2a)

subject to
∑
l∈L′

∑
u∈V

αluvj = βj ∀vj ∈ V2, (5.2b)

∑
v:(ol,v)∈E

αlolv −
∑

v:(v,ol)∈E

αlvol = 1 ∀ol ∈ V0, l ∈ L′ (5.2c)

∑
u:(u,dl)∈E

αludl −
∑

u:(dl,u)∈E

αldlu = 1 ∀dl ∈ V1, l ∈ L′ (5.2d)

∑
u:(u,v)∈E

αluv −
∑

u:(v,u)∈E

αlvu = 0 ∀v ∈ V2, l ∈ L′ (5.2e)

αluv = 0 ∀u ∈ V0, v ∈ V, u 6= ol, l ∈ L′ (5.2f)

γol + colv − T
(
1− αlolv

)
≤ γv ∀ol ∈ V0, (ol, v) ∈ E, (5.2g)

γvj + ej + cvju − T
(
1−

∑
l∈L′

αlvju

)
≤ γu ∀vj ∈ V2, (vj , u) ∈ E,

(5.2h)

gl ≤ γol ≤ γdl ≤ hl ∀l ∈ L′, (5.2i)

g′j ≤ γvj ≤ h′j ∀vj ∈ V2, (5.2j)

α ∈ {0, 1}|E|×|L′|, β ∈ {0, 1}|J |, (5.2k)

where the objective function (5.2a) maximizes the total profit from providing ride-hailing

services. Constraints (5.2b) ensure that βj = 1 if the origin o′j for Type 2 user j ∈ J

has been visited. Constraints (5.2c)–(5.2e) balance vehicle flow for each approved Type 1

driver l ∈ L′. Constraints (5.2f) forbid flow for approved Type 1 driver l ∈ L′ to visit nodes

representing pickup/return location for Type 1 driver l′ ∈ L′, for all l′ 6= l. Constraints

(5.2g)–(5.2h) formulate the arrival time at each origin v of Type 2 user to be greater than

the arrival time at node u (which is either pickup location of a Type 1 driver or destination

location of another Type 2 user) plus travel and service time, if a trip travels from u to v

directly. Constraints (5.2i)–(5.2j) ensure that departure and return time for Type 1 driver,
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as well as departure time for each Type 2 user fall into the corresponding time windows.

5.3.4 Phase II Model Variant under Stochastic Travel Time and Ser-

vice Time

In practice, uncertainties exist and affect the operations of the proposed CRS system. For

example, travel time and service time can be random due to varying road conditions,

weather, and traffic. Therefore, the primary task in this section is to propose a two-stage

stochastic programming formulation that incorporates random travel and service time for

Phase II.

Let c̃uv be the random travel time along arc (u, v) ∈ E and ẽj be the random service

time for ride j ∈ J . Under uncertainty, one or both of the following scenarios could happen:

(i) Type 1 driver may arrive late to pick up the scheduled Type 2 user and (ii) Type 1 driver

may return the shared vehicle later than the scheduled returning time. Therefore, our goal is

to optimize the start time of each ride to maximize the revenue from ride-hailing operation

minus the expected penalty cost due to Type 2 users’ waiting and system overtime. (We

define the overtime as the sum of the late time of returning vehicles by all Type 1 drivers.)

We denote pw and po as the unit penalty cost of waiting and overtime, respectively.

Let ēj be an estimated service time for Type 2 user j ∈ J , which can be taken as the

mean value of ẽj . We revise P2 and present its stochastic variant as:

[SP2] maximize
α,β,γ

∑
j∈J

rride
j ējβj − E (Q(α, γ, c̃, ẽ)) (5.3)

subject to: (5.2b)–(5.2k)

where Q(α, γ, c̃, ẽ) is the total penalty cost of random waiting time and overtime given

solution (α, γ) and uncertainty (c̃, ẽ), and E(·) denotes the expectation of random variable

·. To approximate E(Q(α, γ, c̃, ẽ)), we apply the Sample Average Approximation (SAA)
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method (Kleywegt et al., 2002). The idea is to generate a finite set of samples following

the Monte Carlo sampling approach and approximate the expectation of its sample average

function.

Let Ω denote the set of all sampled scenarios, with the probability of realizing each

scenario is 1/|Ω| when applying the SAA approach, i.e.,

E (Q(α, γ, c̃, ẽ)) =
∑
ω∈Ω

1

|Ω|Q(α, γ, c̃(ω), ẽ(ω)),

where c̃(ω), ẽ(ω) are realizations of c̃, ẽ in scenario ω, respectively. We define auxiliary

decision variables Wj(ω) as waiting time for Type 2 ride request j ∈ J , and Ol(ω) as

overtime for Type 1 driver service l ∈ L′ for each scenario ω ∈ Ω. Given an (α, γ)-solution

and realized value (c̃(ω), ẽ(ω)) of (c̃, ẽ) in scenario ω ∈ Ω, we specify the sample-based

linear program for computing the value of Q(α, γ, c̃(ω), ẽ(ω)) as

minimize
∑
j∈J

pwWj(ω) +
∑
l∈L′

poOl(ω) (5.4a)

subject to γu + c̃(ω)uv − T
(

1− αluv
)
≤ γv +Wj(ω) ∀(u, v) = (ol, o

′
j) ∈ E, (5.4b)

γo′j
+Wj(ω) + ẽj(ω) + c̃d′jo

′
j′

(ω)− T

1−
∑
l∈L′

αld′jo
′
j′

 ≤ γo′
j′

+Wj′ (ω) ∀(d′j , o′j′ ) ∈ E, (5.4c)

γo′j
+Wj(ω) + ẽj(ω) + c̃d′jdl

(ω)− T
(

1− αld′jdl

)
≤ γdl +Ol(ω) ∀(d′j , dl) ∈ E, (5.4d)

Wj(ω) ≥ 0 ∀j ∈ J, (5.4e)

Ol(ω) ≥ 0 ∀l ∈ L′. (5.4f)

Here the objective function (5.4a) minimizes the total penalty cost of all Type 2 users’

waiting time and all Type 1 drivers’ overtime of returning vehicles. Let Sj(ω) be the actual

service starting time for Type 2 user j ∈ J and S ′l(ω) be the actual vehicle return time for

Type 1 driver l ∈ L′ for each sampled scenario ω ∈ Ω, respectively. We have

• Sj(ω) = γv + Wj(ω) for v ∈ V2 representing Type 2 user j ∈ J , and sampled

scenario ω ∈ Ω;
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• S ′l(ω) = γv + Ol(ω) for v ∈ V1 representing Type 1 driver l ∈ L′, and sampled

scenario ω ∈ Ω.

Note that Sj(ω) and S ′l(ω) are related to the right-hand sides of constraints (5.4b)–(5.4c)

and (5.4d), respectively. Therefore, for each Type 1 driver l ∈ L′, the corresponding

constraint (5.4b) calculates the actual service start time of its first served Type 2 user j and

ensures that it is no earlier than the planned time that driver l departs origin ol plus the travel

time from ol to o′j . Similarly, each constraint in (5.4c) propagates this time relationship for

all the subsequent Type 2 users who will be served by Type 1 driver l, and ensures that

their actual service start time will be no earlier than the actual service start time of their

predecessors plus the realized service time and travel time before driver l arrives. Lastly,

constraint (5.4d) calculates the actual time of returning the vehicle by Type 1 driver l ∈ L′

and ensures that it is no earlier than the time of completing service in the last Type 2 user’s

location plus the travel time to the return location.

5.4 Solution Approaches

5.4.1 An Integer L-shaped Approach

To solve SP2 efficiently, we propose an algorithm based on the integer L-shaped method

(Laporte and Louveaux, 1993). We decompose the problem into a relaxed master problem,

which contains variables of all the decisions made before realizing the values of (c̃, ẽ),

and a series of subproblems with recourse decisions. Unlike the standard decomposition

approach that creates a subproblem for each scenario, we will reformulate our problem

by first deciding routes for individual drivers and then creating driver-based subproblems.

Specifically, the master problem matches and assigns sequences of Type 2 users to each

Type 1 driver. Subproblems are then formulated for each Type 1 driver, to find an optimal

schedule to pick up assigned Type 2 users, and each subproblem aims to minimize the

expected penalty cost of the assigned Type 2 users’ total waiting time and the corresponding
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Type 1 driver’s overtime use of the vehicle. We initially set the lower bound of the expected

penalty cost for each Type 1 driver as zero. Then we iteratively generate cuts from each

subproblem and add them to the master problem to improve the lower bound.

We define decision variables θ = (θl, l ∈ L′)T , such that θl is the optimal objective

value (i.e., the optimal expected penalty cost of waiting time and overtime) of the subprob-

lem formulated for Type 1 driver l, for each l ∈ L′. We formulate a relaxed master problem

in the current iteration as:

[MP] maximize
α,β,θ

∑
j∈J

rride
j ējβj −

∑
l∈L′

θl (5.5a)

subject to: (5.2b)–(5.2k)

L(α, θl) ≥ 0 ∀l ∈ L′ (5.5b)

where in (5.5b), L(α, θl) ≥ 0 denotes the set of cuts for improving the lower bound of θl,

generated from solving subproblems (described later) in previous iterations. In the above

model, constraints (5.2b)–(5.2f) enforce sufficient vehicles to cover matched Type 2 users

as explained in the previous section.

After solving MP, we obtain a tentative optimal solution ᾱ that can be used to recover

the routing sequence for each driver l ∈ L′ as follows. We use the non-zero values of ᾱluv

for v ∈ V2 to obtain the set of Type 2 users assigned to driver l ∈ L′ and then perform a

depth-first search to recover the path to visit assigned Type 2 users for each Type 1 driver.

For each l ∈ L′, let (σl(1), σl(2), . . . , σl(nl)) be such a sequence with nl denoting the

total number of Type 2 users assigned to driver l. Let σl(0) and σl(nl + 1) be the depots

where Type 1 driver l ∈ L′ picked up and returned the vehicle. The only decisions left are

the planned arrival time at each Type 2 user’s pick-up location and the planned time for

returning each vehicle. Alternatively, for each Type 1 driver l ∈ L′, we can decide the time

to allocate in between σl(n) and σl(n+ 1) for n = 0, . . . , nl.

Recall that Si(ω) is the actual service start time at node i if i ∈ V2 or actual vehicle
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return time at node i if i ∈ V1. The subproblem for each Type 1 driver l ∈ L′ is equivalent

to the following linear program:

[SUBPl] minimize
W,O,S,γ

1

|Ω|

( nl∑
i=1

pwWσl(i)(ω) + poOl(ω)

)
(5.6a)

subject to: (5.2i), (5.2j)

Sσl(1)(ω) ≥ γσl(0) + cσl(0),σl(1)(ω) ω ∈ Ω, (5.6b)

Sσl(i+1)(ω) ≥ Sσl(i)(ω) + eσl(i)(ω) + cσl(i),σl(i+1)(ω) ω ∈ Ω, i = 1, . . . , nl, (5.6c)

Sσl(i)(ω) = γσl(i) +Wσl(i)(ω) i = 1, . . . , nl, ω ∈ Ω, (5.6d)

Sσl(nl+1)(ω) = γσl(nl+1) +Ol(ω) ω ∈ Ω, (5.6e)

Wσl(i)(ω) ≥ 0 ∀i = 1, . . . , nl, ω ∈ Ω (5.6f)

Ol(ω) ≥ 0 ∀ω ∈ Ω, (5.6g)

where constraints (5.6b) ensure that the actual service start time at the first assigned Type 2

user is not earlier than the actual time Type 1 driver leaves depot, plus the travel time from

depot to the Type 2 user’s pick-up location. Constraints (5.6c) ensure that the actual service

start time at the (i+1)th node (or actual vehicle return time if such a node represents a depot)

of Type 1 driver l is no earlier than the actual service start time at the ith Type 2 user plus

the time for completing the service at the ith Type 2 user and the travel time from the ith

user to the (i + 1)th node. For all scenarios ω ∈ Ω, constraints (5.6d) let the actual time of

serving each assigned Type 2 user be the planned arrival time plus the waiting time of the

user. Constraints (5.6e) let the actual time for returning the vehicle be the planned time plus

the overtime. Both waiting time and overtime variables are nonnegative according to (5.6f)

and (5.6g). These constraints are analogous to constraints (5.4b)–(5.4d). Each subproblem

SUBPl will output an optimal schedule for Type 1 driver l ∈ L to serve the assigned Type 2

users (given by MP), and also the minimum expected penalty cost given the current visiting

sequence. Moreover, SUBPl are linear programs without big-M coefficients, which can be

solved very efficiently to return cuts to MP.

After solving MP, we obtain an integer solution ᾱ as well as solutions θ̄l for all l ∈ L.
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Let θ̂l be the optimal objective obtained by solving SUBPl for each l ∈ L. If θ̄l < θ̂l,

following the integer L-shaped method (see, e.g., Laporte et al., 2002), we propose to add

the following cut to the MP and re-solve it:

θl ≥ θ̂l

 ∑
u,v:ᾱluv=1

αluv −
∑
u,v

αluv + 1

 . (5.7)

Theorem 5.1. Cut (5.7) is a valid inequality for MP and enforces that no same values of

ᾱ, θ̄l can be obtained in future iterations.

Proof. Inequality (5.7) only takes effect when
∑

u,v:ᾱuv=1 α
l
uv −

∑
u,v α

l
uv ≥ 0, which is

equivalent to αluv = 1 for all u, v with ᾱluv = 1. Each subproblem SUBPl outputs the

optimal scheduling for Type 1 driver l and calculates the minimum expected penalty cost,

θl. The variable representing recourse penalty cost for the current visiting sequence should

be bounded below by θ̂l. Therefore, (5.7) is valid for any optimal (α, θl), and the same

value of (ᾱ, θ̄l) will not repeat if it is not optimal.

We summarize the algorithmic steps of the decomposition-based cutting-plane algo-

rithm in Algorithm 5.1.

Theorem 5.2. Algorithm 5.1 converges in finitely-many steps.

Proof. In each iteration, we have θ̄l < θ̂l only if current visiting sequence for driver l ∈ L′

has not been explored; otherwise cut (5.7) enforces θ̄l ≥ θ̂l. Since we have a finite number

of visiting sequences for a given Type 2-to-Type 1 assignment, the algorithm converges in

finitely-many steps.

Remark 5.1. To solve SP2, alternatively, we can decompose the problem by scenario (in-

stead of decomposing the model by driver l, as proposed in Algorithm 5.1) and construct

a relaxed master problem that matches Type 1 drivers to Type 2 users and determine pick-

up routes and schedules, and then formulate subproblems to compute the penalty cost of

Type 2 users’ waiting time and Type 1 drivers’ overtime in each scenario. However, this
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Algorithm 5.1: An integer L-shaped method for solving SP2.
1 Initialize MP as (5.5a)–(5.5b)and set L(α, θl) ≥ 0 = ∅ for all l ∈ L′;
2 Solve MP by branch-and-bound to obtain a tentative solution (ᾱ, θ̄);
3 Recover route sequence (σl(1), σl(2), . . . , σl(nl)) for each l ∈ L′ from ᾱ;
4 Solve SUBPl for each route sequence of driver l ∈ L′, and let θ̂l be the optimal

objective for SUBPl;
5 if

∑
l∈L′ θ̄l <

∑
l∈L′ θ̂l then

6 for l ∈ L′ do
7 Add Cut (5.7) to the cut set L(α, θl) ≥ 0 in MP;
8 end
9 goto Step 2.;

10 end
11 else
12 Store the solution γ̄ from each SUBPl as planned service start time for each

assigned Type 2 user to driver l;
13 Return solution (ᾱ, γ̄, θ̄) as an optimal solution to the overall SP2 problem;
14 end

traditional way of decomposing the problem cannot produce sufficiently good routes and

schedules in the master problem under uncertain travel time and service time, which will

only be realized in the subproblems. Furthermore, compared to the constraints in SP2 that

determine feasible routes and schedules, the driver-based decomposition algorithm as Al-

gorithm 5.1 avoids “big-M” constraints in both MP and SUBPl, for all l ∈ L′. For these

two reasons, our decomposition approach significantly improves the solution time of SP2,

which we will demonstrate later in numerical studies.

We may further decompose SUBPl by scenario. Since SUBPl only contains continuous

decision variables and is a linear program that can be quickly solved to obtain cut (5.7), we

directly solve it without further decomposition in our numerical studies.

5.4.2 Benchmark Approaches

To benchmark our proposed algorithm for SP2, we compare its computational results

against two other approaches for solving SP2. The first approach is to solve the deter-

ministic mixed-integer linear programming equivalent of SP2 using a general commercial
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optimization solver. We allow the solver to detect possible decomposable structures it-

self and use any algorithmic routines embedded in it to handle the special structure of the

problem. However, we do not specify which algorithms to use when directly solving the

deterministic equivalent formulation.

The second approach to apply the Benders decomposition approach (see Birge and

Louveaux, 2011) for solving the sample-based reformulation of SP2, which starts with a

relaxed master problem containing only first-stage decision variables (made before realiz-

ing the values of uncertainties) and iteratively solves subproblems with recourse variables

to generate and add cuts to the relaxed master problem. The cuts are for approximating the

value function of the second-stage recourse problem in terms of first-stage decisions.

We detail the Benders decomposition procedures as follows. Let θ be a decision variable

approximating the value function of recourse cost. For SP2, we start with the relaxed master

problem:

[RMP-Benders] maximize
α,β,γ,θ

∑
j∈J

rride
j ējβj − θ (5.8a)

subject to (5.2b)–(5.2k)

B(α, β, γ, θ) ≥ 0, (5.8b)

where constraints (5.8b) contains a set of Benders cuts that will be generated in later itera-

tions. Initially, we only have θ ≥ 0. Note that the RMP-Benders is a mixed-integer linear

program.

Subproblems are linear programs computing the recourse cost for each sampled sce-

nario, i.e., the penalty cost of waiting time and overtime given the routing and scheduling

decisions from RMP-Benders. For each scenario ω ∈ Ω, the recourse cost can be com-

puted by (5.4a)–(5.4f). Here, we consider subproblems in the dual form of (5.4a)–(5.4f) by

defining dual variables π(ω), µ(ω), ν(ω) associated with constraints (5.4b)–(5.4d), respec-

tively. We formulate subproblems in their dual form for each scenaraio ω and iteration v
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as:

[SUBPvB(ω)] minimize
π,µ,ν

∑
(ol,o

′
j)∈E

(γol + c̃(ω)ol,o′j
− T

(
1− αlol,o′j

)
− γo′j )πol,o′j

(ω)

+
∑

(d′j ,o
′
j′ )∈E

(γo′j
+ ẽj(ω) + c̃d′jo

′
j′

(ω)− T

1−
∑
l∈L′

αld′jo
′
j′

− γo′
j′

)µd′j ,o
′
j′

(ω)

+
∑

(d′j ,dl)∈E

(γo′j
+ ẽj(ω) + c̃d′jdl

(ω)− T
(

1− αld′jdl

)
− γdl )νd′j ,dl (ω) (5.9a)

subject to
∑
l∈L′

πol,o′j
(ω) +

∑
j′∈J

(µd′
j′ ,o
′
j
(ω)− µd′j ,o′j′ (ω))−

∑
l∈L′

νd′j ,dl
(ω) ≤ pw ∀j ∈ J (5.9b)

∑
j∈J

νd′j ,dl
(ω) ≤ po ∀l ∈ L′ (5.9c)

π(ω), µ(ω), ν(ω) ≥ 0, (5.9d)

Our problem has complete recourse as every feasible solution from the RMP-Benders

leads to a finite objective value of each subproblem. Therefore, we only consider optimality

cuts when approximating the recourse costs. Following strong duality, the recourse cost

Q(α, γ, c̃(ω), ẽ(ω)) equals to the optimal objective value of SUBPvB(ω) in each iteration v

and for each scenario ω. Let (πv(ω), µv(ω), νv(ω))T be an optimal solution to SUBPB(ω)

in the vth iteration of the Benders approach. If we have not closed the optimality gap, we

add the following Benders cut into RMP-Benders:

θ ≥ 1

|Ω|
∑
ω∈Ω

(
∑

(ol,o
′
j)∈E

(γol + c̃(ω)ol,o′j − T
(

1− αlol,o′j
)
− γo′j)π

v
ol,o
′
j
(ω)

+
∑

(d′j ,o
′
j′ )∈E

(γo′j + ẽj(ω) + c̃d′jo′j′ (ω)− T
(

1−
∑
l∈L′

αld′jo′j′

)
− γo′

j′
(ω))µvd′j ,o′j′

(ω)

+
∑

(d′j ,dl)∈E

(γo′j + ẽj(ω) + c̃d′jdl(ω)− T
(

1− αld′jdl
)
− γdl)νvd′j ,dl(ω)). (5.10)

Algorithm 5.2 describes detailed algorithmic steps of the Benders approach.
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Algorithm 5.2: The Benders decomposition method for solving SP2.
1 Set v = 0;
2 Initialize RMP-Bender with constraints (5.8b) contains only θ ≥ 0;
3 while True do
4 v = v + 1;
5 Solve RMP-Bender to obtain optimal solution αv, γv, θv;
6 Solve SUBPvB(ω) for each ω ∈ Ω to obtain optimal solution

πv(ω), µv(ω), νv(ω);
7 if θ = θv does not satisfy equation (5.10) then
8 Add Cut (5.10) to (5.8b) and update RMP-Bender;
9 end

10 else
11 Terminate the procedure and output αv, γv, θv;
12 end
13 end

5.5 Numerical Results

We conduct numerical studies and demonstrate the performance of proposed models using

randomly generated instances based on statistical and census data of underserved popula-

tions in Washtenaw County, Michigan.

5.5.1 Experiment Design

We generate test instances based on the most updated United States Census data for Washte-

naw County in Michigan, collected in April 2010 (see United States Census Bureau, 2010).

In the dataset, Washtenaw County is divided into 100 different census tracts, and each

contains the information of population and location (i.e., longitude and latitude of the ge-

ographical center). We assume that each census tract is represented by its geographical

center and construct a corresponding network with 100 nodes. The travel time between any

of two nodes can be obtained by accessing Google Maps API1. In the original dataset, we

can get the population for each census tract grouped by different ages. Due to safety con-

cerns, we enforce being 21-65 years old as the age requirement for Type 1 drivers to match

1https://developers.google.com/maps/documentation/distance-matrix/
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the age requirement of most carsharing service providers (e.g., Zipcar requires drivers to be

at least 21 years old2). To simulate Type 2 users in underserved populations, we consider

the populations with age over 50 and with disability.

• Problem Size: To pick the carsharing service zones in set I , we sort the 100 nodes

based on the population of Type 1 drivers in each node and select the first |I| nodes.

We set |I| = 5, and assume that the operational hours of our system are from 7 am

to 7 pm, and thus T = 12 hours.

• Type 1 Driver Data: We simulate the set of Type 1 driver reservations, L, as follows.

Consider |L| = 40 or 60. For each Type 1 driver reservation l ∈ L, we simulate the

pick-up and return locations, ol and dl, from the node set I based on the density of

populations that are jobless or whose annual incomes are below a certain threshold.

For the car reservation time sl of each Type 1 driver l ∈ L, we sample sl uniformly

from 7 am to 4 pm with 1-hour time interval. The time of private use of a car is

then uniformly sampled from 0–2 hours with 1-hour time interval. We simulate Type

1 drivers’ different flexibility levels of serving Type 2 users and consider two types

of service-hour distributions: for Case (i), we generate the service hours for Type 1

drivers from {1, 2, 3, 4} with equal probability 0.25. For Case (ii), we sample the

service hours for Type 1 drivers from {1, 2, 3, 4} with probabilities 0.1, 0.2, 0.3, and

0.4, respectively. For the rest of the chapter, we refer to Case (i) as the case with

“regular drivers” and to Case (ii) as the case with “flexible drivers”. Except for the

tests in Section 5.5.2.2 and Section 5.5.2.4, we report the results for the case with

“flexible drivers”.

• Type 2 User Data: We consider instances with |J | = 40, 60, 80 for Type 2 ride-

hailing demand. For each Type 2 user j ∈ J , we sample the origin node, o′j , based on

the population density of target Type 2 users (age over 50 years old and disabled) and

2https://support.zipcar.com/
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sample the destination node, d′j , uniformly over the 100 census tracts. At the same

time, we avoid o′j = d′j in all our sampled instances by re-sampling the destination

node if it happens. We uniformly generate g′j for each Type 2 user over the entire

operational hours span (i.e., 7 am to 7 pm) and assign a 30-minute time window for

each pick-up, i.e., h′j = g′j + 30, ∀j ∈ J .

• Stochastic Travel Time: In all our test instances, for each Type 2 reservation j ∈ J ,

we set ej = co′j ,d′j plus a constant loading/unloading time that is the same for all j ∈ J

and thus can be omitted in the model. Following the standard VRP literature such as

Laporte et al. (1992); Polus (1979), we consider the Gamma distribution for sampling

the random travel time between pairs of locations. We assume that c̃ij = cij(0.8 + ξ)

where ξ follows a Gamma distribution with shape parameter α and scale parameter

λ, and cij is the deterministic travel time obtained from Google Maps API for arc

(i, j) ∈ E. Then, following the definition of Gamma distribution, we have

E(c̃ij) = (0.8 + αλ)cij,

V ar(c̃ij) = αλ2cij.

We choose parameters α = 0.2 and λ = 1 to generate all the scenarios.

• Other Parameters: We set rcar = $8 per hour and rride = $20 per hour to match the

price of current carsharing and ride-hailing services, e.g., Zipcar and Uber, in Washt-

enaw County. Note that the pricing strategy for a ride-hailing company is composed

of two parts, mileage ($0.95/mile) and service time ($0.15/minute) in Washtenaw

County3. Here we combine them together to obtain reasonable price settings. We set

rdrive = $16 per hour to reasonably incentivize Type 1 drivers to provide ride-hailing

services. Also, cser = $1 per hour and cidle = $1 per hour. The penalty cost param-

eters are set as pw = $0.1 per minute per user and po = $0.1 per minute per car for

3https://www.uber.com/fare-estimate/
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model SP2.

Basic Settings
|I| 5 |L| {40,60}
T 12 |J | {40,60,80}
|Ω| 500

Stochastic Travel Time
cij average travel time obtained from Google Map API
ξ Follow Gamma Distribution with parameters α = 0.2, λ = 1
c̃ij cij(0.8 + ξ)

Other Parameters
rcar $8/hour cidle $1/hour
rride $20/hour pw $0.1/hour
rdrive $16/hour po $0.1/hour
cser $1/hour

Table 5.1: Summary of key parameters

Table 5.1 summarizes the important parameters used in the numerical studies. For each

test instance described above, we generate five replications and report the average statistics

unless otherwise noted.

All instances are programmed using Java 10. We call the solver Gurobi 8.0 to optimize

all mixed-integer linear programming models. All programs are run on a desktop com-

puter with Microsoft Windows 10 64-bit operating system, an Intel Core i7-6700K Central

Processing Unit (CPU) with 4.0 GHz, and 32.0 GB RAM.

5.5.2 Computational Results

For our numerical experiments, we analyze our proposed model from the perspectives of

computational time, quality of service, revenue and cost, and out-of-sample tests.
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5.5.2.1 Computational Time

We present the computational results of the proposed model for various test instances,

with five replications for each parameter combination (with the same number of users but

different input data, e.g., locations and pick-up time windows). For each instance, we report

the maximum, minimum, and average CPU time. The average CPU time is calculated

based on solved replications. We choose parameters as described in Section 5.5.1 and 500

scenarios for the stochastic programming model SP2, and set the CPU time limit as 30

minutes for computing each replication.

In Tables 5.2 and 5.3, we report the CPU time (in seconds) of models P1, P2, and SP2

for solving each test instance with different number of available vehicles (K), number of

Type 1 reservations (|L|), and number of Type 2 reservations (|J |). We report optimality

gap for SP2 when reaching the time limit. For SP2, we report results for (i) directly solving

the MILP model (see Columns “SP2 (Direct)”), (ii) applying the Benders decomposition

(see Columns “SP2 (Benders)”), and (iii) applying our integer L-shaped method using

driver-based decomposition (see Columns “SP2 (L-shaped)”).

Table 5.2: CPU time (in seconds) for models P1 and P2

K |L| |J |
P1 P2

max min avg max min avg
20 40 40 0.02 0.01 0.01 2.18 1.56 1.91
20 40 60 0.02 0.01 0.01 59.02 5.78 23.05
20 40 80 0.02 0.02 0.02 176.65 18.05 76.65
30 60 40 0.02 0.01 0.02 18.58 5.36 9.65
30 60 60 0.02 0.02 0.02 31.34 12.23 20.51
30 60 80 0.03 0.02 0.03 483.93 33.91 256.95

According to Tables 5.2 and 5.3, model P1 is easy to solve whereas P2 and SP2 are

relatively difficult to optimize for both deterministic and stochastic cases. Besides, SP2 is

more challenging to solve compared to P2, as 4 out of 6 test instance sizes cannot be solved

to optimality within the time limit when the travel time and service time are both random.

In Table 5.2, the CPU time for P2 increases as the number of Type 1 and Type 2 reser-
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Table 5.3: CPU time (in seconds) or optimality gap for models SP2 with different methods

K |L| |J |
SP2 (Direct) SP2 (Benders) SP2 (L-shaped)

max min avg max min avg max min avg
20 40 40 38.37%* 0.57%* 10.30%* 2.73%* 1.22%* 1.84%* 0.20%* 113.03 317.51
20 40 60 N/A N/A N/A 3.26%* 2.25%* 2.77%* 1.43%* 0.59%* 0.98%*
20 40 80 N/A N/A N/A 5.21%* 3.92%* 4.53%* 5.03%* 2.65%* 3.44%*
30 60 40 N/A 1.33%* 37.87%* 1.59%* 1.07%* 1.28%* 0.14%* 120.42 247.97
30 60 60 N/A N/A N/A 2.38%* 1.51%* 1.92%* 0.68%* 0.22%* 0.45%*
30 60 80 N/A N/A N/A – – – 6.81%* 1.53%* 4.00%*

*: optimality gap is reported; N/A: no feasible solutions found within the 30-minute time
limit;
–: model is not solvable due to machine memory limit.

vations increases. For example, given |L| = 40, the average CPU time increases from 1.91

seconds to 76.65 seconds as |J | grows; given |J | = 60, the average CPU time increases

from 9.65 seconds to 256.95 seconds as |L| grows from 40 to 80. We also demonstrate the

effectiveness of the proposed solution approach, as both CPU time and optimality gap have

been significantly improved from those given by general-purpose solvers.

Although some instances cannot be solved to optimality when testing SP2, the optimal-

ity gap can be small when reaching the CPU time limit, i.e., when we set the optimization

gap tolerance to 5%, most of the cases can be solved within the time limit. Comparing to the

other two solution approaches, our proposed algorithm works well and outputs solutions

with the minimum optimality gap. Furthermore, due to the driver-based decomposition, we

avoid the out-of-memory issue that appears in the scenario-based Benders decomposition

when solving large instances. In later sections, we will see that the number of served trips

output by SP2 is similar to that of P2 while achieving a much higher quality of service

for scheduling. The difficulty of closing the optimality gap for SP2 is due to the sched-

ule adjustment that minimizes the expected penalty cost. Therefore, although SP2 cannot

be solved to optimality, we can still use the output solutions of matched Type 1 drivers

and Type 2 users, and the sequence of serving Type 2 users to schedule the operations in

Phase II. Based on the reasonable instance size of the designed system, our tests show the

feasibility and practicability of the proposed models.
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5.5.2.2 Quality of Service

Here we show the quality of service (QoS) results of the proposed models based on the

percentage of approved demands. As mentioned in Section 5.5.1, we consider two cases of

Type 1 drivers: “regular drivers” with service hours generated from {1, 2, 3, 4} hours with

equal probability and “flexible drivers” with service hours picked from {1, 2, 3, 4} hours

with probabilities 0.1, 0.2, 0.3, 0.4, respectively, i.e., the latter case of drivers are more

time flexible and are likely to provide service with extended hours. Recall that P1 yields

the acceptance decisions for Type 1 driver and P2/SP2 yields the acceptance decisions for

Type 2 users. We will measure the demand service rate for the corresponding user type for

each model.

Figure 5.2a shows the average demand service rates across different models with “regu-

lar drivers” and Figure 5.2b shows the average demand service rates with “flexible drivers”.

For both cases, the demand service rate for Type 1 drivers is kept at high levels (over 90%).

At the same time, both P2 and SP2 yield similar demand service rate for Type 2 users.

However, for the case of “regular drivers”, the demand service rate for Type 2 users varies

from 70% to 90% due to the lack of available drivers/service hours: when the ratio between

Type 2 users and Type 1 driver rises, the demand service rate for Type 2 users drops signif-

icantly (see the instance with |L| = 40, |J | = 80). On the other hand, the demand service

rates for both Type 1 drivers and Type 2 users are very high (over 90%) across all instances

for the case with “flexible drivers”. Based on the results, the proposed model would be

particularly helpful for the underserved communities whose residents are more flexible in

terms of service hours.

5.5.2.3 Separated P1 and P2 versus Integrated Formulation

To demonstrate the benefits of using the two-phase approach that sequentially solves mod-

els in Phases I and II, we compare it with directly solving an integrated model that makes

all decisions simultaneously (including vehicle allocation, Type 1 and Type 2 users to ac-
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Figure 5.2: Average demand service rates by proposed models

cept, and the corresponding matching and routing decisions). In particular, we report the

average, maximum, and minimum CPU time comparison and acceptance rates of Type 1

users for each method in Table 5.4.

Table 5.4: CPU time (in seconds) and results comparison of the two-phase method and
integrated model

K |L| |J |
Time (Two-Phase) Time (Integrated) Type 1 Accept.

max min avg max min avg max min avg
20 40 40 2.20 1.57 1.92 3.06 1.70 2.50 98% 83% 92%
20 40 60 59.04 5.79 23.06 65.81 7.43 26.63 100% 83% 91%
20 40 80 176.67 18.06 76.67 190.89 15.91 98.87 100% 95% 99%
30 60 40 18.60 5.37 9.67 27.52 6.45 12.49 100% 88% 93%
30 60 60 31.36 12.24 20.53 82.17 14.82 31.73 97% 90% 94%
30 60 80 483.96 33.93 256.98 1606.20 29.36 505.05 97% 82% 90%

In Table 5.4, the CPU time increases 20%-200% on average when switching from the

two-phase method to directly solving the integrated model. For the instance with 60 Type 1

drivers and 80 Type 2 users, the computational time can almost reach 30 minutes. Also, we

note that the solution time increases as the average acceptance rate of Type 1 drivers de-

creases. Moreover, the solutions obtained from the two-phase approach and the integrated

model are not significantly different for most of the instances we tested.
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5.5.2.4 Revenue and Cost

We first show the revenue and cost composition for a given instance and then extend the

discussion across all instances. Figure 5.3 depicts the revenue and cost composition gen-

erated by the proposed models for the instance with |L| = 40, |J | = 40 for both “regular

drivers” (Figure 5.3a) and “flexible drivers” (Figure 5.3b). In each figure, the top row de-

picts the case where we only consider deterministic traveling time, and the bottom row

demonstrates the results when stochastic traveling time is taken into account. The amounts

of revenue generated from serving Type 2 users are similar under P2 and SP2. However, as

we consider the variability of traveling time, SP2 utilizes slightly more drivers to provide

reliable service (and correspondingly, the hiring cost proportion increases by 1% and 6%,

for the two cases, respectively). Comparing Figure 5.3a with Figure 5.3b, the total revenue

increases in the latter case from $1,338 to $1,642. At the same time, the hiring cost to serve

Type 2 users also increases considerably whereas the profit proportion drops.
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Idle Cost

8.94% ($120)

Hiring Cost

57.80% ($774)
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(a) Case with “regular drivers’
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Figure 5.3: Average revenue and cost compositions for instance with |L| = 40, |J | = 40
by proposed models.

Figure 5.4 depicts the changes in revenue and cost compositions across all test in-

stances. Both cases show similar effects: given fixed |L|, the proportion for the revenue

from serving Type 2 users and also the overall profit increase as |J | increases. However,

the proportion of hiring cost for Type 1 drivers decreases as more Type 2 requests appear.
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Figure 5.4: Average revenue and cost percentage for all instances by proposed models

Therefore, we infer that our system produces efficient matching and scheduling to accom-

modate more Type 2 users. Relatively speaking, the proportion of hiring cost is higher for

SP2 than P2 and the proportion of profit is lower for SP2 than P2. The finding suggests that

we need to sacrifice some profit to compensate for a higher quality of scheduling service

(which will be further shown in Section 5.5.2.5). Overall, the proposed system is in good

financial health.

5.5.2.5 Out-of-Sample Tests

We conduct out-of-sample tests to evaluate the proposed models by measuring Type 2

users’ waiting and Type 1 drivers’ overtime. We generate the set of out-of-sample test sce-

narios Ω′ following the same distribution of stochastic travel time discussed in Section 5.5.1

and use |Ω′| = 1000.

After performing out-of-sample testing, let s(l) be the scheduled time to return the car

by Type 1 driver l ∈ L and s′(j) be the scheduled starting service time for Type 2 user

j ∈ J . Values s(l), l ∈ L, and s′(j), j ∈ J, can be obtained from the optimal values of

α-variables in P2 and SP2. Let t(l, ω) be the actual time of returning the car by Type 1

driver l ∈ L in ω ∈ Ω′ and t′(j, ω) be the actual service starting time for Type 2 user j ∈ J

in ω ∈ Ω′, which will be computed based on the routing sequence and random travel and

service time in scenario ω ∈ Ω′. Then for each test scenario ω, we calculate and report:

127



• wait(j, ω) = max {0, t(j, ω)− s(j)} for j ∈ J .

• overtime(l, ω) = max {0, t′(l, ω)− s′(l)} for l ∈ L.
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Figure 5.5: Average waiting time and overtime per user in proposed system

Figures 5.5a and 5.5b demonstrate the out-of-sample test results on average waiting

time per Type 2 user and average overtime per Type 1 driver by proposed models. We report

the results for all test instances and replications. In Figure 5.5a, for P2, the average waiting

time ranges from 2.5 to 5 minutes per customer, and reduces to 1 to 4 minutes for SP2. For

most of the cases, the average waiting time decreases significantly as the dots appear far

below the 45-degree line. However, the performance of models for average overtime per

Type 1 driver is mixed. In Figure 5.5b, the average overtime per driver ranges from 1 to 4

minutes for both models and the dots are lying around the 45-degree line, which indicates

the slightly better performance of SP2. The reason that we do not see an obvious advantage

of SP2 in the overtime performance is that we set the same penalty coefficients for waiting

time and overtime. It leads the model to treat waiting time and overtime indifferently and

therefore focus on minimizing the overall penalties. If stakeholders put more weight on

overtime, one can adjust the unit penalty coefficients accordingly.

We also demonstrate the detailed out-of-sample performance for one specific instance.

Figure 5.6 shows partial distributions of the average waiting time and overtime per user
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Figure 5.6: 90%-Tail distributions of average waiting time and overtime per user for in-
stance with |L| = 40 and |J | = 60

in one test instance with 40 Type 1 drivers and 60 Type 2 users. Due to the significant

frequency of zero waiting time and overtime per user (in more than 90% of all the out-

of-sample scenarios), we report the tail distributions of the highest 10% waiting time and

overtime outcomes. Both Figure 5.6a and Figure 5.6b show long-tail effect of the waiting

time and overtime concentrated on small values for most cases. Comparing the perfor-

mance of the P2 and SP2, SP2 yields relatively shorter waiting time and overtime than P2.

Similar observations can be drawn in other instances as well.

5.6 Concluding Remarks

In this chapter, we designed a new shared mobility system to serve transportation needs of

underserved populations. We integrated both carsharing and ride-hailing, and developed a

two-phase approach to design and operate such a system. We evaluated the models on vari-

ous instances based on synthetic data in Washtenaw County, Michigan, focusing on serving

jobless, elderly, and disabled populations. Numerical results indicated the computational

efficiency of our proposed solution approaches. Furthermore, the quality of service of the

system was maintained at high levels.

We further extended the basic model to a two-stage stochastic programming model to
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capture the randomness of vehicle travel time and service time. Numerical comparisons

with a deterministic counterpart using expected values of the random parameters showed

the advantages of our models. Both in-sample and out-of-sample test results demonstrated

the effectiveness of matching and scheduling using our approach, where the risk of waiting

and overtime both decreased.

For future research, our models and results can be extended as follows. First, in this

chapter, we minimize the expected cost of overtime and waiting time. Instead, a robust

optimization model that focuses on the worst-case analysis can be used for ensuring reli-

able operations. Second, we will collaborate with policy makers and social workers for

real-world deployment of the CRS system. We aim to make more transportation data of

underserved communities available to the public through further investigation of this topic.
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CHAPTER 6

Conclusion

In this dissertation work, we focused on applying Operations Research techniques to ad-

dress operational challenges in some applications of mobility and service sharing. Al-

though the solution approaches and algorithms were developed for specific applications,

some of them can be generalized to solve other problems. For example, the random col-

oring algorithm introduced in Chapter 3 can be extended to solve any VRPs. Moreover,

through extensive computational experiments, we verified the reliability of the proposed

models and solution approaches and showed their capability of solving mobility and ser-

vice sharing problems with practical instance size. In Chapter 2, we observed that the

proposed approximation algorithm was much more efficient than the general integer pro-

gramming method to solve a hard VRP with compatibility constraints while providing a

solution very close to the optimal one, despite its theoretical bound being large. In Chapter

3, our results demonstrated that the random coloring idea could be applied atop existing

combinatorial algorithms to achieve better efficiency, and therefore, could be applied to

solve instances with practical size in real-world applications. In Chapter 4, we proposed a

model on a spatial-temporal network to model carsharing location design problems, and our

results demonstrated the impact of having a mixed fleet on the revenue and environment.

In Chapter 5, we designed a new shared mobility system combining both carsharing and

ride-hailing and applied stochastic programming to reduce passengers’ waiting and system

overtime. Our numerical results verified the design of the system and the effectiveness of
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stochastic programming.

For future research, we plan to investigate the potential improvements of techniques and

solution approaches developed in this dissertation and expand their usage to other applica-

tions in mobility and service sharing. We anticipate addressing more real-world challenges

in mobility and service sharing.
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APPENDIX A

Appendix for Chapter 3

A.1 Extended Numerical Results

This appendix summarizes the numerical results for column generation approach on VR-

PUD with different vehicle capacitiesQ. We consider both pulse algorithm and the random

coloring algorithm as the pricing algorithm for the column generation approach. Both al-

gorithms have been implemented in parallel using 40 computer threads. Tables A.1–A.6

summarize the results for modified Solomon and Gehring & Homerberger’s benchmark.

For instances with a number of customers |V | ≤ 100, we use the first |V | + 1 nodes from

Solomon’s instance and for |V | > 100, we use the first |V | + 1 nodes from Gehring &

Homberger’s instances. Tables A.7 and A.8 summarize the results for modified unitary

CVRP X-instances with Q = 5 and Q = 6. For both algorithms, we report the number

of iterations to solve the column generation (nIter), number of columns generated in the

column generation (nColumns), lower bound from the linear relaxation of MP (LB), upper

bound of MP from the integral solution using the columns generated (UB), the optimality

gap (Gap) computed as UB−LB
LB

× 100%, and the runtime of the algorithm to solve the LB

and UB. We set the time limit to solve the UB as 1 hour.
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Table A.1: Numerical results for proposed algorithms for Type C instance in parallel im-
plementation (Q = 5)

nNode
Pulse Random Coloring

nIter nCol LB UB Gap tLB (s) tUB (s) nIter nCol LB UB Gap tLB (s) tUB (s)

51 52 1178 578.32 620.50 7.29% 1.06 1.91 18 2384 578.32 634.40 9.70% 8.51 4.22
61 63 1550 753.49 795.20 5.54% 1.62 2.78 21 2793 753.49 790.90 4.97% 2.76 2.88
71 64 1514 921.21 982.10 6.61% 2.01 3.63 23 3413 921.21 981.30 6.52% 4.10 6.52
81 72 1826 1053.77 1133.00 7.52% 3.23 3.25 25 3684 1053.77 1171.00 11.13% 5.72 29.68
91 87 2121 1195.07 1277.50 6.90% 4.35 9.13 28 4180 1195.07 1265.70 5.91% 8.60 8.67

101 103 2590 1363.49 1436.00 5.32% 5.62 5.73 29 4193 1363.49 1436.70 5.37% 11.86 6.85
111 119 3041 2640.04 2783.50 5.43% 8.36 13.22 35 4983 2640.05 2814.60 6.61% 17.49 12.10
121 131 3350 2880.04 3187.10 10.66% 10.44 69.03 37 5171 2880.04 3143.10 9.13% 21.42 50.12
131 142 3741 3129.83 3391.00 8.34% 12.99 330.62 41 5655 3129.83 3311.90 5.82% 27.29 27.46
141 154 4133 3356.87 3608.20 7.49% 16.38 81.66 42 6115 3356.87 3577.80 6.58% 32.45 40.44
151 160 4270 3593.19 3826.20 6.48% 18.98 32.36 46 6664 3593.19 3840.90 6.89% 39.30 32.68

Table A.2: Numerical results for proposed algorithms for Type R instance in parallel im-
plementation (Q = 5)

nNode
Pulse Random Coloring

nIter nCol LB UB Gap tLB (s) tUB (s) nIter nCol LB UB Gap tLB (s) tUB (s)

51 46 762 793.62 807.60 1.76% 0.88 0.36 18 2623 793.62 822.40 3.63% 2.06 2.54
61 57 1055 892.59 925.90 3.73% 1.43 1.71 23 3102 892.59 910.00 1.95% 3.75 3.38
71 63 1242 1067.31 1081.90 1.37% 2.00 1.24 23 3251 1067.31 1095.30 2.62% 5.22 4.28
81 77 1455 1178.48 1197.90 1.65% 3.06 1.40 28 3996 1178.48 1193.80 1.30% 8.13 5.37
91 85 1752 1290.78 1330.00 3.04% 4.11 4.80 29 4126 1290.78 1302.00 0.87% 10.65 5.11

101 94 1907 1373.71 1415.10 3.01% 5.39 5.51 33 4864 1373.71 1402.00 2.06% 14.77 9.88
111 110 2467 2972.77 3059.90 2.93% 7.55 15.14 39 5192 2972.77 3039.90 2.26% 21.01 10.28
121 126 2892 3191.53 3258.10 2.09% 9.82 7.09 40 5795 3191.53 3280.00 2.77% 24.58 18.89
131 137 3156 3450.64 3548.00 2.82% 12.55 21.59 44 6142 3450.64 3562.20 3.23% 32.86 27.99
141 142 3305 3661.81 3734.30 1.98% 14.18 6.39 45 6237 3661.81 3761.40 2.72% 34.61 21.76
151 158 3610 3882.23 3952.10 1.80% 18.15 9.96 51 6810 3882.23 3972.90 2.34% 43.83 34.39

Table A.3: Numerical results for proposed algorithms for Type RC instance in parallel
implementation (Q = 5)

nNode
Pulse Random Coloring

nIter nCol LB UB Gap tLB (s) tUB (s) nIter nCol LB UB Gap tLB (s) tUB (s)

51 50 962 922.50 922.50 0.00% 0.99 0.48 17 2044 922.50 922.50 0.00% 1.87 1.41
61 56 985 1122.49 1224.90 9.12% 1.36 9.11 23 2752 1122.49 1223.50 9.00% 4.11 21.89
71 73 1415 1248.94 1290.40 3.32% 2.28 2.50 25 3314 1248.94 1282.30 2.67% 6.26 3.58
81 83 1645 1440.60 1440.60 0.00% 3.40 1.23 30 3718 1440.60 1440.60 0.00% 9.53 3.70
91 91 1892 1566.84 1601.50 2.21% 4.26 3.91 30 4083 1566.84 1594.30 1.75% 12.27 5.45

101 92 2016 1669.53 1701.80 1.93% 5.56 4.61 34 4571 1669.53 1720.90 3.08% 16.16 8.67
111 107 2427 2910.51 2966.40 1.92% 7.19 5.86 38 5183 2910.51 2947.60 1.27% 19.05 7.59
121 126 2763 3219.57 3259.90 1.25% 9.39 5.08 45 6046 3219.57 3271.00 1.60% 25.99 10.92
131 139 3138 3496.37 3652.00 4.45% 12.20 158.82 46 6383 3496.37 3612.30 3.32% 32.45 63.55
141 140 3438 3669.41 3790.00 3.29% 14.39 35.85 44 6296 3669.41 3845.10 4.79% 31.91 398.21
151 155 3881 3911.87 4060.50 3.80% 18.33 115.24 46 6802 3911.87 4097.20 4.74% 37.55 464.40
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Table A.4: Numerical results for proposed algorithms for Type C instance in parallel im-
plementation (Q = 6)

nNode
Pulse Random Coloring

nIter nCol LB UB Gap tLB (s) tUB (s) nIter nCol LB UB Gap tLB (s) tUB (s)

51 56 1312 503.49 567.50 12.71% 1.35 3.02 25 3750 503.49 558.9 11.00% 9.05 6.92
61 75 1853 652.96 744.50 14.02% 2.64 4.90 25 4133 652.95 750.5 14.94% 11.43 28.00
71 84 2100 807.58 890.30 10.24% 3.71 6.67 31 4705 807.57 892.6 10.53% 20.69 13.98
81 98 2432 909.55 1027.90 13.01% 5.58 7.32 27 5239 909.55 1046.4 15.05% 20.99 14.03
91 110 2866 1030.55 1168.00 13.34% 7.87 10.04 34 5922 1030.55 1194.8 15.94% 32.43 90.63

101 135 3414 1176.05 1323.60 12.55% 11.45 13.11 36 6300 1176.05 1343.2 14.21% 38.48 85.78
111 162 4193 2288.64 2430.70 6.21% 15.91 24.53 43 7762 2288.64 2501.1 9.28% 68.25 68.55
121 175 4478 2474.52 2713.00 9.64% 20.89 73.83 47 8087 2474.51 2590.5 4.69% 84.65 22.02
131 172 4588 2685.52 2936.10 9.33% 24.81 102.19 47 8885 2685.52 2964.1 10.37% 97.88 81.90
141 195 5200 2868.49 3140.20 9.47% 32.76 190.50 50 8850 2868.49 3120.2 8.77% 122.91 63.05
151 216 5786 3058.15 3395.90 11.04% 39.04 349.14 54 10118 3058.15 3422.3 11.91% 147.49 525.39

Table A.5: Numerical results for proposed algorithms for Type R instance in parallel im-
plementation (Q = 6)

nNode
Pulse Random Coloring

nIter nCol LB UB Gap tLB (s) tUB (s) nIter nCol LB UB Gap tLB (s) tUB (s)

51 50 888 710.13 760.00 7.02% 1.11 2.43 29 3697 710.13 741.10 4.36% 10.87 5.59
61 63 1190 798.46 823.50 3.14% 1.91 3.07 24 4506 798.46 835.20 4.60% 13.16 8.21
71 77 1449 954.20 978.10 2.50% 3.11 3.27 28 5022 954.20 973.90 2.06% 19.28 7.57
81 91 1787 1047.07 1091.10 4.21% 4.68 6.17 32 5924 1047.07 1084.10 3.54% 27.35 14.03
91 103 2245 1144.94 1201.70 4.96% 6.78 23.05 42 7108 1144.94 1178.00 2.89% 47.87 16.36

101 109 2293 1214.31 1242.80 2.35% 8.13 5.48 39 7528 1214.31 1251.50 3.06% 52.13 23.91
111 143 3235 2623.57 2691.10 2.57% 14.15 6.64 48 8241 2623.57 2685.60 2.36% 78.99 28.80
121 153 3748 2805.75 2830.70 0.89% 17.75 7.14 47 8251 2805.75 2838.10 1.15% 89.75 16.11
131 163 3958 3021.94 3135.40 3.75% 22.40 63.31 52 9576 3021.94 3112.40 2.99% 112.79 48.16
141 174 4219 3197.56 3282.00 2.64% 25.35 28.55 56 9931 3197.56 3291.40 2.93% 137.00 65.89
151 191 4664 3381.61 3492.50 3.28% 32.47 69.85 57 10668 3381.61 3489.10 3.18% 165.27 74.94

Table A.6: Numerical results for proposed algorithms for Type RC instance in parallel
implementation (Q = 6)

nNode
Pulse Random Coloring

nIter nCol LB UB Gap tLB (s) tUB (s) nIter nCol LB UB Gap tLB (s) tUB (s)

51 49 1000 792.20 916.90 15.74% 1.18 2.01 22 2869 792.20 912.30 15.16% 8.62 5.10
61 60 1293 968.22 1047.40 8.18% 2.02 3.82 28 3967 968.22 1037.10 7.11% 17.79 9.09
71 81 1735 1090.28 1136.20 4.21% 3.31 6.58 29 4788 1090.28 1149.50 5.43% 24.80 24.93
81 91 1944 1259.23 1298.00 3.08% 4.56 4.07 39 5847 1259.23 1301.80 3.38% 40.90 12.07
91 106 2345 1374.69 1421.10 3.38% 6.66 7.90 38 6547 1374.69 1398.90 1.76% 50.16 13.91

101 124 2744 1452.87 1498.20 3.12% 9.05 6.89 37 6749 1452.87 1533.90 5.58% 56.09 20.61
111 129 3070 2540.23 2629.60 3.52% 12.44 12.88 44 7891 2540.23 2696.10 6.14% 65.04 93.51
121 143 3435 2810.63 2870.80 2.14% 16.22 10.04 49 8392 2810.63 2896.40 3.05% 84.86 32.03
131 157 3686 3043.66 3156.20 3.70% 20.63 59.95 56 9402 3043.66 3133.20 2.94% 110.01 75.65
141 170 4147 3187.66 3329.90 4.46% 25.62 205.63 56 10568 3187.66 3335.60 4.64% 129.80 413.40
151 177 4401 3399.65 3513.20 3.34% 31.97 110.46 55 10549 3399.65 3520.30 3.55% 148.03 146.48
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Table A.7: Numerical results for unitary X instances with Q=5

Instance n
Pulse Random Coloring

LB UB Gap tLB (min) tUB (min) LB UB Gap tLB (min) tUB (min)

X-n120-k6 120 38683.88 39112 1.09% 0.27 0.02 38683.88 39096 1.05% 0.63 0.01
X-n157-k13 157 35447.29 36609 3.17% 1.02 0.04 35447.29 36508 2.91% 1.05 8.39
X-n181-k23 181 37673.14 40385 6.72% 0.74 4.81 37673.14 39064 3.56% 1.41 26.68
X-n219-k73 219 73307.44 76965 4.75% 1.73 0.17 73307.44 74278 1.31% 2.32 0.43
X-n237-k14 237 77629.8 81267 4.48% 1.97 0.35 77629.8 79338 2.15% 2.81 13.87
X-n275-k28 275 36336.56 38062 4.53% 2.74 0.70 36336.56 37583 3.32% 3.60 22.70
X-n317-k53 317 92699.78 99170 6.52% 7.01 0.07 92699.78 95654 3.09% 6.63 9.19
X-n331-k15 331 111908.6 120629 7.23% 5.69 0.38 111908.6 116081 3.59% 7.42 –
X-n376-k94 376 119578.9 128564 6.99% 8.73 1.83 119578.9 123865 3.46% 10.85 –
X-n439-k37 439 73360.37 79267 7.45% 9.23 0.34 73360.37 76305 3.86% 14.98 17.13
X-n502-k39 502 169070.4 181780 6.99% 75.85 0.89 169070.4 175107 3.45% 29.07 –
X-n548-k50 548 177270.1 187951 5.68% 32.60 5.63 177270.1 187453 5.43% 34.07 –
X-n655-k131 655 106556.7 115027 7.36% 59.26 0.25 106556.7 111769 4.66% 61.95 –
X-n801-k40 801 254711.4 278893 8.67% 105.84 3.02 254711.4 275793 7.64% 118.27 44.11
X-n856-k95 856 149414.7 166257 10.13% 98.08 0.31 149414.7 159191 6.14% 134.93 1.85
X-n957-k87 957 171141.4 186962 8.46% 154.73 0.30 171141.4 184950 7.47% 189.30 28.17
–: solution time reaches 60-minute time limit.

Table A.8: Numerical results for unitary X instances with Q=6

Instance n
Pulse Random Coloring

LB UB Gap tLB (min) tUB (min) LB UB Gap tLB (min) tUB (min)

X-n120-k6 120 33062.43 34916 5.31% 0.42 0.31 33062.43 34789 4.96% 1.51 0.66
X-n157-k13 157 30077.32 31723 5.19% 4.12 0.01 30077.32 31033 3.08% 4.12 0.51
X-n181-k23 181 32091.36 34806 7.80% 1.30 0.41 32091.36 33392 3.90% 5.36 31.06
X-n219-k73 219 62252.87 65262 4.61% 3.45 0.02 62252.87 64478 3.45% 9.89 2.40
X-n237-k14 237 65950.46 69863 5.60% 3.32 0.75 65950.46 68202 3.30% 11.92 24.14
X-n275-k28 275 31236.96 33132 5.72% 5.60 0.94 31236.96 32455 3.75% 16.36 11.10
X-n317-k53 317 78115.76 85531 8.67% 14.39 0.09 78115.76 82953 5.83% 33.15 20.80
X-n331-k15 331 94655.77 107309 11.79% 9.25 0.47 94655.77 99853 5.20% 36.13 –
X-n376-k94 376 101162.6 113409 10.80% 15.26 3.19 101162.6 106355 4.88% 51.50 39.39
X-n439-k37 439 62675.72 68469 8.46% 21.25 0.30 62675.72 66341 5.52% 83.82 –
X-n502-k39 502 141816.1 153529 7.63% 564.11 0.15 141816.1 148973 4.80% 142.96 –
X-n548-k50 548 149497.2 164883 9.33% 66.96 0.93 149497.2 158010 5.39% 177.83 38.07
X-n655-k131 655 89912.22 98703 8.91% 192.21 1.82 89912.22 94933 5.29% 331.71 –
X-n801-k40 801 214261 236558 9.43% 205.19 0.57 214261 231453 7.43% 688.48 –
X-n856-k95 856 126628.7 140397 9.81% 288.08 0.61 126628.7 137706 8.04% 726.95 –
X-n957-k87 957 144860.1 161364 10.23% 352.01 0.41 144860.1 156071 7.18% 1152.08 –
–: solution time reaches 60-minute time limit.
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