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Abstract 

 

Almost all biological functions rely on the dynamics of proteins. Protein folding and protein-

protein interactions are the two most fundamental problems of protein dynamics. Molecular 

dynamics (MD) simulation is a powerful tool to elucidate the mechanism of protein folding and 

protein-protein interactions by providing atomic-level resolution. However, the timescales of 

protein folding and protein association-dissociation are often not accessible by all-atom MD 

simulations due to the high computational cost. Coarse-grained models effectively address this 

issue by reducing the degrees of freedom of the system to only a few that are essential for the 

properties to be studied. In this dissertation, I describe the developments and applications of 

coarse-grained modeling of protein folding and protein-protein interactions through several case 

studies.  

I first present a computational study of the folding mechanism of a triosephosphate isomerase 

(TIM) barrel protein using a coarse-grained model. This is the first time this model was used to 

study a large protein with more than 200 amino acid residues. From the simulations, we proposed 

a 3-channel folding mechanism with one major and two minor folding pathways. The simulations 

show overall good agreements with the experiments in capturing the regions that are first to fold 

and capturing a rate-limiting intermediate state found in the major folding channel. The 

simulations advance our understanding of the folding mechanism of this TIM barrel proteins by 

directly providing structural details of the protein folding intermediates as suggested by 

experiments. 



 x 

In the realm of protein-protein interactions, I developed a new sampling method based on 

Hamiltonian replica exchange (HREX) that allows efficient calibration of the coarse-grained 

model and fast calculation of the dissociation constant. This HREX method was used to study the 

protein-protein interaction in the context of the allosteric regulations in the KIX and TAZ1 domain 

of the CBP/P300 transcription coactivator. The simulations captured both the positive/cooperative 

allosteric effect in the KIX domain and the negative allosteric effect in the TAZ1 protein switch 

with two vastly different allosteric mechanisms. The simulations suggest the positive allosteric 

regulation in KIX, in which a prebound ligand favors the binding of the second ligand, is due to a 

favorable entropic change. Whereas the negative allosteric regulation in TAZ1, in which two 

ligands compete for binding the same target, is mainly driven by long-range electrostatic forces. 

The simulations also suggest the importance of electrostatics for the coarse-grained model to be 

generally successful in modeling the allosteric effect involving intrinsically disordered proteins. 

These studies advance our understanding of the allosteric effect by generating testable hypotheses 

that help quantify the problem. 
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Chapter 1 Introduction 

Proteins are the building blocks of life. Almost all biological functions rely on the dynamics of 

proteins. Understanding protein dynamics in the cell is a central pillar of biology. Protein folding 

and protein-protein interactions are the two most fundamental problems of protein dynamics. 

Molecular dynamics (MD) simulation has proven to be a robust method to help elucidate the 

mechanism of protein dynamics (1, 2). Nowadays, the capability of MD simulations is still largely 

limited by the high computational cost to reach timescales long enough for biologically relevant 

events such as protein folding and protein association-dissociation to occur. To address this issue, 

there are typically two approaches. First, by increasing the sampling speed using specially 

designed hardware such as Anton (3) or using a massively distributed computing framework such 

as Folding@home (4). However, these resources are only available to a few researchers. The 

second approach exploits speedup by reducing the degrees of freedom while keeping the essential 

features of the system (5, 6). The reduced complexity allows problems with larger system size and 

longer timescales to be studied. The application of coarse-grained models in studying protein 

dynamics problems dates back to 1975 when Levitt and Warshel carried out the first computer 

simulation of protein (7). They developed a coarse-grained model that uses two beads to represent 

each amino acid residue to study the folding of bovine pancreatic trypsin inhibitor (BPTI). In their 

paper, they pointed out the two fundamental assumptions of their model (7). First, that much of 

the protein’s fine structure can be eliminated by averaging. Second, that the overall chain folding 

can be obtained by considering only the most effective variables (those that vary most slowly yet 
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cause the greatest changes in conformation). These two assumptions are still generally true for 

most coarse-grained models used today.  

This thesis focuses on the development and application of the coarse-grained model developed by 

Karanicolas and Brooks (KB model) (8). This model was originally designed to study protein 

folding mechanisms (9), and was recently adopted to study protein-protein interactions with some 

modifications (10, 11). In this model, each amino acid residue is represented as a single bead with 

mass equal to the corresponding amino acid, centered at the Cα position, and connected to 

neighboring residues via virtual bonds. The KB model mainly considers two types of interactions, 

bonded and non-bonded interactions (equations 1.1-1.2). The bonded interactions include bond, 

angle, and dihedral terms. The bond and angle terms are harmonic potentials with equilibrium 

values set to those calculated from the native structure. The dihedral term is a statistical potential 

based on probability distributions obtained from the Ramachandran plot and provides additional 

sequence-specific information to avoid overfitting to the native structure (8). The non-bonded 

interactions consider native contacts, and the non-native excluded volume interactions. A variant 

of the original KB model with explicit electrostatics named electrostatic inclusive KB model 

(EIKB) model was developed in this dissertation and was used to study protein-protein interactions 

in transcription regulation. In the EIKB model, the electrostatic interactions were represented by a 

simple Debye-Hückel potential (equation 1.3) with two parameters: the dielectric constant D and 

the screening length κ. This simple representation of electrostatics has been shown to be 

compatible with the coarse-grained model (12). The model only considers the electrostatic 

interactions among charged residues: ASP (-1), GLU (-1), HIS (+0.5), LYS (+1), and ARG (+1). 

The native contacts formed between residue pairs are modeled using a modified 12-10-6 Lennard-

Jones potential with a desolvation penalty and the interaction strength is proportional to the 
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statistical potential (i, j) of the Miyazawa-Jernigan matrix (13). The KB model and its variant 

EIKB model were used throughout this dissertation. 

𝑈"#$%&% = ∑ 𝐾"(𝑟, − 𝑟.)0123
"#$%4 + ∑ 𝐾6(𝜃, − 𝜃.)0120

8$9:&4 + ∑ ∑ 𝐾;(1 + cos(𝑛𝜃 − 𝜃.))A
$

12B
%,C&%D8:4                           (1.1) 
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P
Q$8R,S&	

|,2V|WB
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Chapter 2 focuses on the application of the KB model in the folding mechanism of a TIM barrel 

protein. Triosephosphate isomerase (TIM) barrel proteins have not only a conserved architecture 

that supports a myriad of enzymatic functions, but also a conserved folding mechanism that 

involves on- and off-pathway intermediates. Although experiments have proven to be invaluable 

in defining the folding free energy surface, they only provide a limited understanding of the 

structures of the partially folded states that appear during folding. Coarse-grained simulations 

employing native centric models are capable of sampling the entire energy landscape of TIM 

barrels and offer the possibility of a molecular-level understanding of the readout from sequence 

to structure. In this chapter, sequence-sensitive native centric simulations with small angle X-ray 

scattering and time-resolved FRET were used to monitor the formation of structure in an 

intermediate in the sulfollobus solfataricus indole-3-glycerol phosphate synthase TIM barrel that 

appears within 50 μs and must at least partially unfold to achieve productive folding. Simulations 

reveal the presence of a major and two minor folding channels not detected in experiments. 

Frustration in folding, i.e., backtracking in native contacts, is observed in the major channel at the 

initial stage of folding, as well as late in folding in a minor channel prior to the appearance of the 

native conformation. Similarities in global and pairwise dimensions of the early intermediate, the 

formation of structure in the central region that spreads progressively towards each terminus, and 
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a similar rate-limiting step in the closing of the β-barrel underscore the value of combining 

simulation and experiment to unravel complex folding mechanisms at the molecular level. 

Chapter 3 focuses on the development of an enhanced sampling method to study protein-protein 

interactions in the context of transcription regulation. Allosteric regulation by intrinsically 

disordered proteins (IDPs) is an important class of cellular processes, including transcription. 

Molecular dynamics (MD) simulation is a promising approach to unravel the complex molecular 

interactions involved in the allosteric regulation by IDPs. While allosteric regulation is often 

characterized by the effect of a ligand on the binding affinity of a distal ligand, the binding affinity 

is often challenging to calculate by MD simulations due to insufficient sampling of the rare events 

in this binding/unbinding process. In this chapter, I present a new sampling approach based on 

Hamiltonian replica exchange (HREX) that allows accurate and efficient calculation of binding 

affinities using a native-centric coarse-grained model. I also demonstrate the utility of the new 

method by studying the positive allostery associated with the kinase-inducible domain interacting 

(KIX) domain of the CREB binding protein (CBP), in which a pre-bound ligand enhances the 

binding of the second ligand. The simulations reaffirm the reduced-entropy mechanism of the 

cooperative allosteric effect in KIX in which the prebound ligand reduces the entropic cost for the 

second ligand to bind. 

Chapter 4 focuses on the application of the HREX method developed in Chapter 3 to the negative 

allosteric regulation in a disordered protein switch. The transcriptional adaptor zinc-binding 1 

(TAZ1) domain of the transcriptional coactivator CBP/P300 and two disordered peptides HIF-1α 

and CITED2 form a delicate protein switch that regulates cellular hypoxic response. In hypoxia, 

HIF-1α binds TAZ1 to control the transcription of adaptive genes critical for the recovery from 

hypoxic stress. CITED2 acts as the negative feedback regulator to rapidly displace HIF-1α and 
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efficiently attenuate the hypoxic response. Though CITED2 and HIF-1α have the same 

dissociation constant (Kd = 10nM) in their binary complexes with TAZ1, CITED2 is much more 

competitive than HIF-1α upon binding the same target TAZ1 in ternary (14). In this chapter, I 

demonstrate that a simple coarse-grained model can recapitulate this negative allosteric effect and 

provides detailed physical insights into the displacement mechanism. The long-range electrostatic 

forces were found to be essential for the efficient displacement of HIF-1α by CITED2. The strong 

electrostatic interactions between CITED2 and TAZ1, along with the unique binding mode, make 

CITED2 more competitive than HIF-1α in binding TAZ1. 
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Chapter 2 Frustration and Folding of a TIM Barrel Protein 

This chapter has been published in the following paper: 

Kevin T. Halloran*; Yanming Wang*; Karunesh Arora; Srinivas Chakravarthy; Thomas C. Irving; 
Osman Bilsel; Charles L. Brooks III; C. Robert Matthews; Frustration and Folding of a TIM Barrel 
Protein. Proc. Natl. Acad. Sci. 2019, 116 (33), 16378–16383. (*these authors contributed equally 
to this work) 
 
This chapter was a collaborative effort with the lab of Prof. C. Robert Matthews. The experiments 

were performed by Dr. Kevin T. Halloran, Dr. Srinivas Chakravarthy, and Prof. Osman Bilsel. The 

simulations were performed by myself and Dr. Karunesh Arora. All authors took part in the 

analysis of the data. Dr. Kevin T. Halloran, Prof. Osman Bilsel, Prof. Charles L. Brooks III, Prof. 

C. Robert Matthews and myself wrote the paper. 

2.1 Introduction 

The folding of globular proteins involves the formation of numerous noncovalent interactions as 

the polypeptide chain samples the folding free energy surface on its journey to the global free 

energy minimum. Given the complexity of the conformational transition, it is surprising that 

proteins execute their folding reactions within a few 10’s of seconds on a relatively smooth energy 

surface (15). The folding reactions of small proteins and domains, <100 amino acids, usually 

follow a 2-state process with a single barrier between unfolded and native states that controls a 

simple exponential response. Larger proteins, however, often have more complex responses 

involving multiple exponential phases whose rate constants progressively decrease as they 

approach the native state (16). These phases have been attributed to the appearance of partially-
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folded states whose role in folding may be to avoid aggregation, accelerate folding or simply be a 

consequence of the interplay between the sequence and topology of the protein (17). A 

complementary view of such intermediates posits that their presence reflects frustration in folding 

that precludes the direct formation of the native state by the topological incompatibility of 

preformed elements of structure (18, 19). Experiments and simulations have revealed that these 

intermediates may be native-like in secondary structure but contain non-native interactions (20) or 

contain structural elements not found in the native structure (21). 

 

 
 

Figure 2.1 (A) A ribbon representation of the structure of SsIGPS (PDB code 2C3Z). The FRET 
pairs employed to study the central α3-α4 segment, W112-C140, (containing the strongly protected 
(βα)3-4 module) and the N- and C-termini, W63-C238, are highlighted with W112 and W63 
residues in blue and the C140 and C238 residues in red. (B) The reaction diagram of SsIGPS (22). 
The barrier heights were estimated using the Kramer’s formalism with a prefactor of 1 μs. The 
blue arrows indicate aspects of the free energy landscape probed in this study by simulations and 
the red arrow indicates the focus of the present experiments. 

 

The triosephosphate isomerase (TIM) barrel family (Figure 2.1A) provides a rich example of 

complex folding reactions whose kinetic responses are largely conserved while the underlying 

sequences vary widely (23). Previous folding studies on several family members have consistently 
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found that folding comprised a sub-millisecond, burst phase followed by a phase whose relaxation 

time decreases with increasing final urea concentrations, a characteristic of an unfolding reaction 

but under refolding conditions. The escape from a misfolded, off-pathway intermediate is followed 

by the further acquisition of secondary structure and stability in an on-pathway intermediate(s) and 

the rate-limiting formation of the native state (23, 24). The kinetically trapped species could be 

frustration in folding whereby the burst phase species must unfold to enable productive folding to 

the native state. Mutational analysis and hydrogen exchange (HDX) experiments on several TIM 

barrel proteins have revealed a relationship between sequence and topology in the structures of the 

kinetically-trapped and on-pathway intermediates (23, 25, 26). Clusters of branched aliphatic side 

chains, isoleucine, leucine and valine, local in sequence and local in space, form water-resistant 

cores that stabilize these partially-folded forms (27). Although the kinetic species are conserved, 

the evolution of the sequences over time has resulted in alternative locations for the cores of 

stability in the TIM barrel architecture.  

The mutational and HDX experiments are valuable in pinpointing the regions where structure 

appears in intermediates detected after the first few milliseconds of folding but leave unanswered 

questions about the crucial initial folding reaction. Recent advances in microfluidic mixers now 

enable access to folding events in the microsecond time range and have allowed us to examine the 

earliest events in the folding of a candidate TIM barrel protein (28). In the present study, pair-wise 

distance measurements from time-resolved FRET (trFRET) and global size and shape 

measurements from small angle X-ray scattering (SAXS), combined with coarse-grained computer 

simulations, are employed to probe the earliest events in the folding of the S. solfataricus indole-

3-glycerol phosphate synthase (SsIGPS) TIM barrel. Surprisingly, the global collapse of the 

unfolded chain to a misfolded, off-pathway intermediate occurs within 50 µs. The simulations 
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reveal the potential complexities of this exceedingly rapid reaction and show that the rate-limiting 

step in the folding of SsIGPS is the frustration encountered by the competition between the N- and 

C-terminal β-strands to close the eight-stranded β-barrel.  

2.2 Results 

The SsIGPS TIM barrel is a representative member of the most common architecture for enzymes 

in biology. The 8 alternating β and α elements are arranged sequentially as a central parallel-

stranded β-barrel encompassed by an α-helical shell (Figure 2.1A). Its folding mechanism has 

previously been shown to begin with the sub-millisecond formation of an off-pathway 

intermediate, IBP, followed by two on pathway intermediates, IA and IB, before reaching the native 

state (Figure 2.1B). The IBP intermediate has an apparent stability of 3.5 kcal·mol-1, is rich in 

secondary structure and displays strong protection against exchange of amide hydrogens with 

solvent in the central (βα)4 module within 75 ms (22). As the folding reaction proceeds, the 

protection expands to encompass (βα)2-6 in IA and (βα)1-8 in IB. The fully folded TIM barrel appears 

in the final step of folding. 

Measuring Global Dimensions by Small Angle X-ray Scattering (SAXS) 

To obtain global insights into the structures of the intermediates, SAXS profiles were obtained 

under equilibrium and kinetic refolding conditions. At equilibrium, the native state of the protein 

has a radius of gyration (Rg) of approximately 18 Å, and the unfolded state has an estimated Rg 

of 46 Å, by linear extrapolation from high denaturant conditions (Figure 2.2A). The IA 

intermediate, highly populated at 4 M urea (22), self-associates at the 80 µM protein concentration 

required for reliable SAXS measurements, precluding an estimate of its Rg (Figure 2.3).  
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Figure 2.2 (A) Rg as a function of urea concentration for the unfolding of SsIGPS (black circles). 
The estimated Rg’s of the native and unfolded states in water are indicated by linear extrapolation 
of the native and unfolded baselines. The estimated Rg after 150 μs of refolding at several final 
urea concentrations in the native baseline region (red circles). (B) Rg as a function of folding time 
at 0.8 M urea. The Rg’s of the unfolded and native states in water are indicated. (C) Dimensionless 
Kratky plots of the unfolded (blue), IBP intermediate (red) and native state (black). The arrows 
indicate the maxima in the plots for the N and IBP species. (D) The P(r) of the unfolded (blue), IBP 
intermediate (red) and native states (black). The dashed lines represent the P(r)’s for these states 
calculated from the simulations. 

 



 11 

 
 

Figure 2.3 The zero-angle scattering intensity as a function of denaturant concentration. As the 
protein unfolds, the I0 is expected to decrease linearly, however, the deviation from 2 M through 
4.5 M indicates that the intermediate is dimerizing. 

 

The Rg of the sub-ms burst phase intermediate IBP was determined by a ten-fold dilution from 8 

M urea, using a custom, single piece microfluidic mixer. Within 150 µs, the dead time of the mixer, 

the Rg of SsIGPS is 26 ± 1.5 Å (Figure 2.2B). The absence of change in Rg out to 4 ms, where IBP 

can be detected by stop-flow CD, shows that the IBP intermediate appears within 150 µs. The 

conclusion that the SAXS detected burst-phase species is a discrete thermodynamic state, and not 

a collapsed form of the unfolded state, is supported by the observation of a Rg that is insensitive 

to the urea concentration up to 2 M urea (Figure 2.2A). A collapsed form of the unfolded state 

would have been expected to swell with increasing urea concentration (29).  

Transformation of the scattering curve from native state of SsIGPS in 0.8 M urea to a 

dimensionless Kratky plot (30) shows the parabolic shape typical of globular structure. The 

maximum in the plot occurs at (√3, 1.1) as expected for the Guinier approximation (Figure 2.2C) 
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(30). At 8 M urea, SsIGPS has an extended random coil-like structure with the expected hyperbolic 

plateau shape at high qRg. By contrast, the dimensionless Kratky plot from the continuous flow 

refolding jump from 8 to 0.8 M urea shows that the IBP state has a peak shift on the qRg-axis to a 

approximately (2 ,1.25). This behavior deviates from the Guinier approximation and shows that 

the protein has regions that are not yet fully globular. The pair distribution function, P(r), for IBP 

confirms a large collapse of the chain from U to IBP within 150 µs (Figure 2.2D). The maximum 

distance between any two atoms, Dmax, concomitantly decreases from 130 Å to 80 Å, and the 

significant shoulder at ~70 Å shows that IBP is not fully globular.  

Pair-wise Dimensional Analysis by Time Resolved FRET 

To complement the global dimensional data obtained by SAXS, 2 sets of pair-wise distances were 

measured by time-resolved tryptophan-AEDANS Förster resonance energy transfer (trFRET) 

experiments on SsIGPS. One FRET pair was positioned to monitor barrel closure by measuring 

the distances between α1 and α8, W63-C/AEDANS238. The second pair was positioned to monitor 

the formation of the strongly protected (βα)4 module (23), by measuring the distance between α3-

α4, W112 and C/AEDANS140.   

The average Trp lifetimes for donor-only (DO) and donor-acceptor (DA) samples for both the α1-

α8 and α3-α4 pairs at 8 M urea were identical, consistent with the absence of FRET in the unfolded 

state (Figures. 2.4 A, B). The continuous flow trFRET (CF-trFRET) data for the refolding of 

SsIGPS containing the α1-α8 pair shows a decrease to a non-native-like lifetime of 4.5 ns for the 

DO sample and 3.3 ns for the DA sample, within the dead time of the mixer (50 μs) (Figures 2.4 

A, B). As was the case for Rg, there are no significant changes in lifetimes for both the DO and 

DA samples from ~50 µs out to ~1 ms.  Similar behavior was observed for the α3-α4 FRET pair 
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during refolding jumps to 0.8 M urea, demonstrating a global collapse of unfolded SsIGPS within 

50 μs. 

 
 

Figure 2.4 (A) The average Trp lifetimes for donor-only (black) and donor-acceptor (red) samples 
of the α1-α8 FRET pair and (B) the α3-α4 FRET pair after refolding 8.0 to 0.8 M urea. The average 
lifetimes for both DO and DA samples in their unfolded states at 8.0 M urea and in water are 
indicated. (C) Maximum Entropy Modeling (MEM) results for the unfolded states, continuous-
flow kinetics (CF-Kinetics) at 150 µs, and the native states for both the α1-α8 and the α3-α4 FRET 
pairs. The grey lines represent 0.9%, 9%, 50%, and 91% FRET efficiency. The unfolded state for 
both pairs shows no significant FRET taking place. The CF-Kinetics for the α1-α8 pair shows both 
a low and high FRET state, while the α3-α4 pair has the major peak at ~50% FRET efficiency. The 
native state for the α1-α8 pair has a strong, >90%, FRET signal. For the α3-α4 pair, the native state 
has the peak at ~50% efficiency. 

 

Maximum Entropy Modeling (MEM) 

The trFRET data for both the α1-α8 and α3-α4 pairs were analyzed by two-dimensional maximum 

entropy modeling (2D-MEM) (31, 32) for the unfolded state (8 M urea), IBP (0.8 M urea, 100 µs), 
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and the native state (0 M urea) (Figures 2.5 A, B and Figure 2.4C).  The unfolded state for both 

FRET pairs show very small normalized amplitudes from 12 to 35 Å, the distances most sensitive 

to FRET for the Trp-AEDANS pair (R0 = 22 Å).  The maximum normalized amplitude in the 

native state for α1-α8 pair (Figure 2.5A) is ~13 Å, in good agreement with the calculated distance 

between residues 63 and 238 in the crystal structure, 9.3 Å. The maximum normalized amplitude 

in the native state for the α3-α4 FRET pair has a peak at ~19 Å, also in good agreement with the 

distance between Cα’s of residues 112 and 140 in the crystal structure, 15.9 Å. Surprisingly, the 

normalized amplitude after 100 μs for the α1-α8 FRET pair revealed the presence of two distinct 

distributions of distances. One distribution of distances is more compact than native, and the other 

is more extended than native but more compact than the unfolded state. By contrast, the α3-α4 pair 

after 100 μs shows a single peak around 20 Å (Figure 2.5B) that is similar to the native protein but 

has a broader distribution.  

 
 

Figure 2.5 (A) The 1D conversion of the MEM analysis of the trFRET data for the α1-α8 pair to 
generate distance distributions for the unfolded state (blue), the native state (black), and the 
apparent pair of states appearing after 50 μs (red). (B) The 1D conversion of the MEM analysis of 
the trFRET data for the α3-α4 pair to generate distance distributions for the unfolded state (blue), 
the native state (black), and the two states appearing after 50 μs (red).  
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Ensemble Averaged Folding Properties from Simulations 

To gain deeper insight into the development of structure during the folding of SsIGPS, we 

complemented the present and previous experimental studies (23, 33) with a native centric 

simulation to sample the entire folding landscape. 

Native-centric coarse-grained Gō model (8) refolding simulations were initiated from an unfolded 

ensemble of structures sampled from simulations at high temperature and 100 independent 2,000 

time-units (1 time-unit = 10,000 dynamic steps) folding trajectories were sampled in the analysis. 

Because the underlying model is coarse-grained, the landscape is smoother and the folding 

timescales are compressed, and thereby do not directly correspond to the times observed in 

experiments. However, we anticipate that the time ordering, as well as the relative lag times 

between folding phases should reflect what is observed in kinetic experiments (34). The progress 

of the folding reaction for each trajectory was monitored by the radius of gyration (Rg) and the 

fraction of total native contacts (Qt). Over the time courses of the 100 trajectories, persistent values 

were observed for Qt of 0.3, ~0.5, ~0.6, ~0.8, and 0.9 (Figure 2.6A). The initial (0.3) and final 

(0.9) values correspond to the unfolded and native forms of the protein, with the intermediate 

plateaus (~0.5, ~0.6, ~0.8) suggesting the presence of partially folded states. Examination of the 

entire set of trajectories revealed that only a small fraction of the simulations reached the native 

state within 2,000 time-units (Figure 2.7). The majority of the simulations reached a Qt of 0.8. 

Plateaus at similar time steps were observed for Rg (Figure 2.6B), beginning with the unfolded 

state at ~45 Å and progressively decreasing to 18 Å for the native state.  
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Figure 2.6 (A) Representative trajectories of the fraction of total native contacts Qt. (B) 
Representative trajectories of Rg. For clarity, kinetic traces are shown as moving averages of 30 
successive snapshots. The leveling off at various Rg and Qt values indicates multiple intermediates 
are formed during the simulations. (C) Fraction of native contacts Qi of the of the N- and C-
terminal halves of the protein and (D) Qi of the four βαβα modules as a function of Qt. Decreases 
in the fraction of native contacts in panels C and D represents the backtracking that occurs during 
the simulations. There are two main backtracking events that involve the N and C-termini (Qt = 
0.50 to 0.65 and Qt = 0.75 to 0.85).   
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Figure 2.7 Protein folding trajectories of the fraction of total native contacts (Qt) and radius of 
gyration (Rg). For clarity, only 50 out of the 100 trajectories were shown in the figure. 

 

Decomposition of Qt into contributions (Qi) from the N- and C-terminal halves, α0(βα)1-4 and (βα)5-

8, reveals frustration in folding (Figure 2.6C). The striking anti-correlated gain/loss in native 

contacts in N- and C-terminal halves was observed at Qt = 0.50 to 0.65 and Qt = 0.75 to 0.85, where 

the intermediate states persist, suggest the frustration in these two regions might be related to those 

intermediate states. Further decomposition of Qt into the four (βα)i-(i+1) modules of stability (35) 

pinpoint the major sources of frustration (Figure 2.6D). At Qt = 0.5 the source of frustration derives 

from (βα)1-2 competing with (βα)7-8 and to a lesser extent (βα)5-6. The frustration event at Qt = 0.6 

is (βα)1-2 driving folding while (βα)3-4 and (βα)5-6 lose native contacts. The final frustration event 
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at Qt = 0.8, is mainly the competition between the (βα)1-2 and (βα)7-8 modules; however, the 

competition also effects (βα)3-4 and (βα)5-6. 

An examination of the contact probability maps at different times gives further insight into the 

folding mechanism (Figure 2.8). The central region (residue ~90 to residue ~180) formed most of 

its contacts within 400 time-units compared to the total simulation time of 2,000 time-units. Then, 

more contacts were formed in the C-terminal region within 1000 time-units. At the end of the 

simulation, most of the low-probability contacts were those formed between α0β1 (residues ~1 to 

~40) and other regions, suggesting many trajectories ended up with a structure with unfolded α0β1. 
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Figure 2.8 Contact probability maps at different times with red colors indicating high probabilities 
of forming contacts while blue colors indicating low probabilities. The contacts are calculated from 
the native structure and are the same as those used in the Gō model. Each contact dot represents 
the probability of forming a contact averaged over 100 trajectories at the given time.   

 
Multiple Folding Pathways Revealed from Simulations 

To obtain further insights into the molecular events that occur during the folding of SsIGPS, we 

examined each trajectory in detail. Three significant folding pathways were found, based on the 

assembly order of secondary structural units (Figure 2.9). The classification of different states 
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found in all trajectories was based upon both their distinct Qt and Rg values (Table 2.1) and their 

visual differences in structure (Figure 2.9 and Figure 2.10). 

 

Figure 2.9 Multiple folding pathways discovered by simulations, the upper right legend shows the 
transition probabilities from Ic to I1A, I2, and I3. Additional structural details for I1A, I1B, I2, and I3 
are shown in Figure 2.10. The gray contours show the overlay of approximately 50 protein 
conformations, sampled from the corresponding states. 
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Table 2.1 Fraction of total native contacts Qt, radius of gyration Rg and their associated standard 
deviations of all states in simulations. All states are listed sequentially form left to right with 
increasing Qt. 

 
State U Ic I2 I1 I1A I1B N 

Qt 0.313 0.536 0.698 0.714 0.788 0.847 0.996 

Std (Qt) 0.084 0.039 0.046 0.040 0.011 0.026 0.007 

Rg (Å) 43.22 31.84 22.07 24.21 22.18 16.96 15.87 

Std (Rg) 9.55 4.72 1.96 3.58 2.07 0.33 0.12 

 

 

Figure 2.10 Intermediate states I1A, I1B, I2 and I3 found in the three folding pathways. 

 

The unfolded state (U) initially collapses to a single intermediate, Ic, with a well-folded central 

region (residues 75-175, (βα)2-5). The Ic state then partitions into the I1A state, the I2 state or the I3 
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state with transition probabilities of 81%, 9%, and 10% respectively, entering three separate 

folding channels.  

The I1 pathway is characterized by the formation of an extremely stable I1A state after Ic. The Ic 

state transited to I1A by spreading its folded structure from (βα)2-5 to (βα)2-8, leaving an unfolded 

α0 tethered by β1. The I1A state has a 7-stranded barrel, with native-like contacts between helices 

α1 and α8 that prevent the incorporation of α0 and β1 into the barrel architecture. I1A persists in the 

great majority of the trajectories, with only a small fraction escaping to dock α0 across the bottom 

of the barrel to form the I1B state. The I1B state has an unfolded β1 with two of its ends fixed on the 

folded β-barrel. I1B then rapidly folds to the native state by the insertion of β1 into the β-barrel 

through the channel between α1 and α8. To test the stability of the I1A state, we further sampled 

another set of 100 trajectories beginning from the I1A state for 8000 time-units. Even with a 

quadrupled simulation time, only 17% of the trajectories reached the native state, confirming the 

extremely long lifetime of the I1A state.  

In comparison to the I1 pathway, in which α0β1 is the last to fold, both the I2 and I3 pathways require 

the α0β1 element to fold before the closure of the β-barrel. In the I2 pathway, Ic incorporates the 

α0β1 element but excludes the C-terminal (αβ)7-8 elements to form the I2 state. I2 then readily folds 

to the native state by incorporating the C-terminal (αβ)7-8. In the I3 pathway, Ic first forms two 

partially folded α2(αβ)3-5 and α6(αβ)7-8 before the docking of α0β1 on α6(αβ)7-8 to form the I3 state. 

The I3 state has two partially folded halves of the β-barrel, the α2(αβ)3-5 subdomain and the 

(αβ)0+α6(αβ)7-8 subdomain, linked by unfolded β1α1β2 and β6 strands. Interestingly, the I3 state, 

fully connected by contacts from head to tail, then folds to native by the cooperatively merging 

the two partially folded halves. More structural details of the I1A, I1B, I2, and I3 intermediates are 

shown in Figure 2.10.  
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To examine the relationship between the two regions of frustration (Qt = 0.50 to 0.65 and Qt = 0.75 

to 0.85) found in the ensemble averaged analysis (Figure 2.6) and the three folding pathways, the 

Qi vs. Qt data for the N- and C-terminal halves of SsIGPS of the three folding pathways were 

compared with the data of all trajectories, as shown in Figure 2.11. The Qt = 0.50 to 0.65 and Qt = 

0.75 to 0.85 regions, representing the early and final folding stages respectively, differ in their 

sources of frustration. The great similarity of the Qi vs. Qt plots at Qt = 0.50 to 0.65 between all 

trajectories and the I1 pathway (Figures 2.11 A and B) indicates the global frustration at Qt = 0.50 

to 0.65 is primarily contributed by the frustration in the major I1 channel.  

 
Figure 2.11 Fraction of native contacts Qi of N- and C-terminal halves as a function of Qt of all 
trajectories (A), trajectories of the I1 pathway (B), trajectories of the I2 pathway (C), and 
trajectories of the I3 pathway (D). The average Qt of all states U, Ic, I3, I2, I1A, I1B, and N are shown 
sequentially from left to right as vertical lines with shaded area indicating plus/minus one standard 
deviation. 
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However, the global frustration at Qt = 0.75 to 0.85 is different, since no significant backtracking 

events were observed in the same region of all three folding channels (Figures 2.11 B, C, and D). 

The three folding channels, differing in their assembly order of the protein, have very different 

values of QC-ter and QN-ter at different times. In the I1 and I2 channels, the C-terminal (αβ)7-8 and the 

N-terminal α0β1 are the last to fold, respectively. Before reaching the final stage of folding at Qt = 

0.75 to 0.85, the QC-ter of the I1 channel reaches ~0.9, which is significantly larger than that of the 

I2 channel (~0.7). During most of the 2000 time-units the I1 pathway trajectories (74 out of 81) 

were trapped in the extremely stable I1 state (Qt ≈ 0.788), which precludes sufficient sampling at 

Qt > 0.788 in the I1 channel and makes the I2 and I3 channels dominant in this region. Therefore, 

the backtracking of QC-ter at Qt = 0.75 to 0.85 is a result of the significantly smaller QC-ter of the I2 

pathway and the sparse sampling of the I1 pathway in this region. 

2.3 Discussion 

A combined experimental and computational study of the folding reaction of the SsIGPS TIM 

barrel has revealed insights into the structures of partially folded states and the potential role of 

frustration that occurs in simulations of the folding reaction.  

Mechanistic Analysis 

Previous experimental studies of the folding kinetics generated a 5 species model, IBP ⇌ U ⇌ IA 

⇌ IB ⇌ N (Figure 12) (26). Current native-centric simulations predict a more complex model 

involving partitioning between 3 different pathways to reach the native conformation (Figure 9). 

The data from both models can be used to generate “kinetic species” plots to compare the flow of 

material from the U state to the N state during a folding reaction (Figure 12).  
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Figure 2.12 Experimental (A) and simulated (B) populations of states vs. time. 

 

The two kinetic species plots are remarkably similar in several respects, but obviously differ with 

respect to the number of folding channels. The CF-FL and CF-SAXS measurements report the 

collapse of the unfolded chains within 50 μs, however, the distance distribution of the α1-α8 FRET 

pair (Figure 2.5A) indicates the presence of two states. One state is more compact than the native 

state, implying a non-native structure, and the other more expanded than native but more compact 

than the unfolded state. Because the experimental kinetic species plot (Figure 2.12A) predicts the 

simultaneous presence of the IBP and IA states after a few ms, with the IBP state predominant, we 

presume that the overly compact state corresponds to IA and the expanded state to IBP. Examination 

of the predictions of the simulations after ~200 time-units (Figure 2.12B) supports this 

interpretation when comparing the populations of the Ic and I1A states. The subsequent increase in 

the population of the IA state in experiments is also mimicked by the I1A state in the simulations. 

Particularly striking is the correspondence of the very long lifetimes of both the IA and I1A states, 

consistent with their rate-limiting roles in folding by both experiment and simulations. Both 

experiments and the major refolding channel in the simulations then reveal a final intermediate, IB 

and I1B, respectively, before proceeding to the native state. The partitioning of Ic into 3 channels 
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in the simulations is not evident in the experimental data. However, Channels 2 and 3 each carry 

only ~10% of the population and would be difficult to detect experimentally. Both experiments 

and the major refolding channel in the simulations then reveal a final intermediate, IB and I1B, 

respectively, before proceeding to the N state.  

Structural Analysis 

The pairwise and global dimensional analysis provided by CF-trFRET and CF-SAXS enables a 

direct comparison with the results of the simulations on the structures of the unfolded state, U, and 

the IBP/Ic intermediates that appear in microseconds.  

U State 

SAXS measurements of the unfolded state in high concentrations of urea (Figure 2.2A), when 

extrapolated to the absence of denaturant, yield an estimated Rg in water, 46 ± 5 Å, that is 

consistent with a random-coil ensemble for a chain of 226 amino acids (36). Remarkably, native-

centric simulations of the U state (Figure 2.6B) obtained the same estimate of Rg, ~45 Å, and both 

approaches revealed the breadth of the unfolded manifold of conformers (Figures 2.2D and 2.6B).  

IBP/Ic State 

The trFRET data for the α1-α8 pair show that the microsecond folding reaction partitions into two 

distinct distributions, with different degrees of contraction (Figure 2.5A). One ensemble is more 

compact than that for the N state and the other much more expanded. Unfortunately, the limitations 

of FRET measurements of distance outside efficiencies of 0.2 to 0.8 preclude estimates of the 

relative populations of these distributions. As described above, these results are consistent with 

the previous global analysis of the folding of SsIGPS that found U partitioning into the IBP and IA 

states (Figure 2.12A). Although the α1-α8 pair distances of the Ic state from simulations do not 

capture the overly compact conformation that appear after 50 μs (Figure 2.5A), native centric 
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simulations are incapable of detecting non-native structures. As the time steps increase, more 

compact states appear at ~20 and ~10 Å, reflecting the progression of the folding reaction towards 

the I1A, I1B and N states. The α3-α4 FRET pair show a single distribution centered near that for the 

N state (Figure 2.5B), but whose greater breadth indicates a larger, dynamic ensemble. The SAXS 

data reveal a denaturant-independent Rg of 26 Å below 2 M urea after 150 μs (Figure 2.2A), 

demonstrating that this specie(s) is not a collapsed form of the unfolded state (29). The Kratky plot 

after 150 μs (Figure 2.2C) is not consistent with a globular structure, and the associated P(r) (Figure 

2.2D) shows a peak at ~30 Å and a tail at longer distances.  

The simulations show a remarkable degree of correspondence with experimental results for the 

structures that appear at the initial stage of folding for SsIGPS. The Ic intermediate has native-like 

structure in the (βα)2-5 segment, consistent with the formation of secondary structure detected by 

previous HDX-MS experiments (23, 26) and the distance measured for the α3-α4 FRET pair. The 

N- and C-terminal segments are unstructured and give rise to the tail at high values of the P(r) 

(Figure 2.2D), very similar to that seen in the SAXS data.   

IA/(I1A and I2) 

Although the present experimental study does not address the IA intermediate, a previous HDX-

MS study (23) found strong protection against exchange in the (βα)2-6β7 region and a lack of 

protection in β1 and β8. As described above, the simulations show partitioning after the formation 

of Ic (Figure 2.9).  The dominant I1 pathway involves the formation of a 7-stranded β-barrel, 

α1(βα)2-8, by locking out β1 and α0. The minor I2 pathway formed a 6-stranded β-barrel by 

excluding (ba)7-8. In both cases, the nascent barrels appear to be stabilized by native-like 

interactions between α1 and α8. The exclusion of the N- and C-terminal β-strands would expose 

them to solvent and explain in the lack of protection against HDX exchange.  
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IB 

The final intermediate in the experimental folding mechanism, IB, has a fully-formed β-barrel, 

providing protection against HDX in all 8 β-strands (23). This species appears after the rate-

limiting step in folding and is only transiently populated as a minor species before the appearance 

of the N state (Figure 2.12A). The simulations differ in that the I1B state in Channel 3 excludes b1. 

Frustration in folding 

Two major regions of topological frustration were found in the ensemble averaged analysis of the 

simulation, shown in the Qi vs. Qt plots (Figure 2.6). Multiple asynchronous folding pathways 

complicate the descriptions of the frustration in folding. 

Frustration at Qt = 0.50 to 0.65 

The frustration at Qt = 0.50 to 0.65, where the IBP/Ic state persists, is mainly contributed by the 

backtracking events in the dominate I1 channel. The backtracking event of the QN-ter at Qt = 0.50 

(Figure 2.6C), corresponds primarily to the unfolding of the (βα)1-2 element (Figure 2.6D). This 

conclusion is consistent with experimental results in which some premature structures in the IBP/Ic 

state are required to unfold before reaching the productive folding pathway. The two minor 

pathways I2 and I3 show different outcomes of the IBP/Ic state in this region. The I2 pathway shows 

backtracking in the C-terminus while the I3 pathway shows no obvious frustration. Interestingly, 

the different sources of frustration in the I1 and I2 pathways reflect alternative forms of an 

incomplete TIM barrel. The major I1 pathway excludes the N-terminus while the minor I2 pathway 

excludes the C-terminus. Both contain the central (βα)2-6 region that is protected against HDX (26) 

and, evidently, is capable of propagating structure in either direction.  

Frustration at Qt = 0.75 to 0.85 
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The frustration at Qt = 0.75 to 0.85 is a combined result of the three folding pathways that differ 

in their assembly order of the protein, and therefore does not represent actual loss of structures. 

The global backtracking of QC-ter at Qt = 0.75 to 0.85 is mainly caused by the I2 channel, in which 

the C-terminal (αβ)7-8 elements are the last to fold that lowers the global QC-ter value. Although no 

evidence of backtracking of the I1A state (Qt ≈ 0.79) was found, it remains possible that I1A may 

first partly unfolds, so that α0β1 folds before the barrel closure to reduce the tremendous entropic 

cost required to make the transition from I1A to I1B.  

2.4 Conclusions 

A combined experimental and computational study of the folding reaction for a TIM barrel protein 

has yielded remarkable agreement between their complementary views of a complex process. The 

mechanism defined by the major refolding pathway in simulations agrees closely with the 

mechanism determined by a variety of experiments. Striking similarities include the formation of 

stable structure in the central region of the sequence early in folding and a rate-limiting step prior 

to the formation of an 8-stranded β-barrel. Global and pairwise distance measurements of the early 

intermediate find a very similar degree of compactness, likely with disordered tails at both termini. 

In contrast to the experiments, the simulations reveal the presence of two minor channels that 

delineate alternative pathways to the native conformation. The frustration in folding detected by 

the simulations result in the formation of a pair of nascent TIM barrels that differ in the exclusion 

of either the N- or C-terminal segments of the protein, consistent with the presence of intermediates 

observed in experiments. Although it is likely that these incomplete barrels contain non-native 

structures inaccessible to native centric simulations, the remarkable similarities in the minima on 

the experimental and computational folding free energy surfaces argue that they are dominated by 

native-like structures. 
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2.5 Methods 

Molecular Dynamics Protocol and Data Analysis  

The Cα-based native centric coarse-grained model (see chapter 1 for more details) of SsIGPS was 

generated by an in-house script using Protein Data Bank (PDB) structure 2C3Z. Molecular 

dynamics simulations were performed using the CHARMM package (37). Langevin dynamics was 

used to propagate the equation of motion with a friction coefficient of 1.36 ps-1 and a time-step of 

22 fs. Each snapshot was recorded every 100,000 time-steps (1 time-unit). The refolding 

simulations sampled one hundred 2,000 time-units trajectories at 230 K initiated from unfolded 

conformations generated from 2 time-units short simulations at 510 K. Two order parameters, the 

fraction of native contacts (Q) and the radius of gyration (Rg) were used as order parameters for 

the ensemble averaged analysis. Each native contact was considered formed if the residue pair was 

within a cutoff distance chosen such that the given contact was satisfied 85% of the time in native-

state simulations at 300 K. The three folding pathways and intermediates were discovered through 

a combined analysis of the Q/Rg vs. time plots and the visualization of the trajectory using VMD 

(38). The trajectories were first projected onto the Q and Rg order parameters to help identify 

transitions between different states (e.x. some transitions are clearly visible in Figures 2.6 A and 

B). The timestamps when transitions occur on the Q/Rg vs. time plots were recorded and then 

visually examined in each trajectory. The states that each frame corresponds to were labeled based 

on those transitions. 

Protein Production 

Protein was expressed in DE3 cells and purified using metal affinity, ion exchange, and sizing 

chromatography before labeling with IAEDANS. See SI Appendix for full details. 

Fluorescence  
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Details of the TCSPC apparatus equipped with a microsecond continuous-flow mixer (Translume) 

have been described previously (32) and are discussed more completely in the SI Appendix. 

MEM 

The 2D-MEM is used to obtain a distance distribution without any assumptions as to the number 

of lifetime components in the donor-only excited state decay, the shape of the distance distribution 

or the number of sub-populations. Details of the mathematical framework used in this analysis is 

given in the SI Appendix.  

Small angle X-ray scattering 

Small-angle X-ray scattering measurements were performed at the BioCAT beamline at the 

Advanced Photon Source, Argonne, IL. Equilibrium SAXS measurements were performed by 

interfacing an autosampler running custom software to the standard quartz sample capillary (39). 

Kinetic experiments were performed as previously described (39) with the exception that flow to 

the quartz mixer for the kinetic experiments was controlled by syringe pumps (Harvard Apparatus) 

at a total flow rate of 4 to 5 ml·min-1.  Scattering images were reduced using scripts provided by 

BioCAT and analyzed as previously described (32, 39). 
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Chapter 3 Enhanced Sampling Applied to Modeling Allosteric 

Regulation in Transcription 

This chapter has been published in the following paper:  

Yanming Wang; Charles L. Brooks III; Enhanced Sampling Applied to Modeling Allosteric 
Regulation in Transcription. J. Phys. Chem. Lett. 2019, 10 (19), 5963–5968. 
 

3.1 Introduction 

Allosteric regulation is an important cellular process, in which the binding of the first ligand on 

the target protein affects the second ligand at a distal site (40). Allosteric regulation by intrinsically 

disordered proteins (IDPs) is fundamental for cellular signaling and regulation, such as gene 

transcription, and is often involved in many human diseases (41). IDPs lack tertiary structure in 

the unbound state and fold upon binding a protein (42). The coupled folding and binding property 

of IDPs facilitates high binding specificity with low binding affinity, enabling IDPs to bind 

multiple targets (43). Understanding the allosteric mechanism by IDPs is essential for the rational 

design of drugs targeting these processes (44, 45). However, the allosteric mechanism, including 

the thermodynamics, remains poorly understood.  

Molecular dynamics (MD) simulation is a powerful tool to help elucidate molecular-level insights 

into the mechanism of allosteric regulation by IDPs. Recently, MD simulation using a coarse-

grained model successfully recapitulated the coupled folding and binding (10) and the cooperative 

allosteric effect (11) of IDPs. In this study, we focus on the cooperative allosteric effect of two 

IDP peptides binding to the same target protein, in which the binding of the first ligand enhances 
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the binding affinity of the second ligand. Therefore, it is essential to accurately calculate the 

dissociation constant (Kd) to characterize the allosteric effect quantitatively. One challenge is that 

the calculation of Kd is computationally expensive for MD simulations even using coarse-grained 

models, due to the extensive sampling needed to observe multiple long-timescale 

binding/unbinding events. In this work, we first present a new enhanced sampling method based 

on Hamiltonian replica exchange (HREX) that effectively addresses this issue. The new method 

allows accurate and efficient calculation of Kd using an electrostatics inclusive (EI) coarse-grained 

model (10) related to that originally developed by Karanicolas and Brooks (8) (EIKB model). We 

then demonstrate the utility of the new method by a case study of the cooperative allostery in the 

kinase-inducible domain interacting (KIX) domain. 

KIX is a globular domain of the transcriptional coactivator CREB binding protein (CBP) and its 

paralogue P300 (46). Previous studies have shown KIX is vital for transcriptional activity in cells 

and is a potential target for drug design (47). KIX has a three-helix bundle structure that 

simultaneously binds two peptides on its two opposite binding surfaces, of which one can bind c-

Myb/pKID and the other binds MLL (Figure 3.1). The binding of c-Myb/pKID on KIX increases 

the binding affinity of MLL and vice versa, which is a cooperative allosteric effect (48). The 

allosteric effect in KIX has been extensively studied both experimentally and theoretically (11, 

49–51), and therefore is ideal for testing and validating the new method. 
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Figure 3.1 Ribbon diagram of the c-Myb:KIX:MLL ternary complex (panel A, PDB code: 2AGH) 
and the pKID:KIX:MLL ternary complex (panel B, PDB code: 2LXT). 

 

3.2 Methods 

Model Setup 

Two systems c-Myb:KIXc:MLLc and pKID:KIXp:MLLp were first built using the EIKB model. 

This coarse-grained model uses a single bead to represent an amino acid residue. In this model, 

intermolecular interactions mainly consider short-range native contacts, and long-range 

electrostatic interactions are represented by a simple Debye-Hückel potential, similar to earlier 

work (12). The default dielectric constant (D) that controls the strength of electrostatic interactions 

is chosen to be 40 unless otherwise specified, and our data suggest that by setting D = 40 the EIKB 

model gives the closest agreement with experiment when electrostatics plays a role in binding, 

e.g., in pKID binding to KIX:MLL in the present study (see below). For the c-Myb:KIXc:MLLc 

and pKID:KIXp:MLLp systems, we use subscripts ‘c’ and ‘p’ on “KIX” and “MLL” to distinguish 
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models built from the Protein Data Bank (PDB) structures c-Myb:KIX:MLL (2AGH) or 

pKID:KIX:MLL (2LXT), respectively. Though ideally the models of KIXc:MLLc and KIXp:MLLp 

should be the same, they were treated as different systems due to the native-centric nature of the 

EIKB model, although this difference does not affect the validity of our conclusions (see below).  

A total of four binary systems: KIXc:c-Myb, KIXc:MLLc, KIXp:pKID, and KIXp:MLLp; and two 

ternary systems: c-Myb:KIXc:MLLc and pKID:KIXp:MLLp were simulated and examined in this 

study. First, the force fields of ternary complexes were built from the PDB structures. Then, the 

force fields of binary complexes were directly extracted from their ternary models. One 

assumption of building the binary model based on the ternary model is that the structure of the 

binary complex is identical to that in the corresponding ternary complex. This assumption is 

supported by NMR studies (51) in which the pairwise RMSD between backbone atoms of the well-

structured parts of the KIX domain in the KIXp:MLLp binary complex and pKID:KIXp:MLLp 

ternary complex is only 1.07 Å and the KIX protein backbone is not significantly affected by 

binding pKID. Ideally, the EIKB models of KIXc:MLLc (built from c-Myb:KIX:MLL) and 

KIXp:MLLp (built from pKID:KIX:MLL) should be the same. However, they are treated 

differently due to the native-centric nature of the EIKB model. The native contacts used by the 

EIKB models of KIXc:MLLc and KIXp:MLLp are listed in Appendix Tables 3.3 and 3.4, 

respectively. A total of 10 native contacts are found in common (marked as red) out of the 28 

intermolecular native contacts of KIXc:MLLc and the 27 intermolecular native contacts of 

KIXp:MLLp. The RMSD between the EIKB models of KIXc:MLLc and KIXp:MLLp is 3.72 Å. 

Given the facts that KIXc:MLLc and KIXp:MLLp are structurally similar, their EIKB models show 

reasonable number of identical native contacts (>30%), and the sums of force constants of the 

intermolecular native contacts for both KIXc:MLLc (sum = -25.50 kcal/mol/Å2) and KIXp:MLLp 
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(sum = -27.24 kcal/mol/Å2) are very close, it is reasonable to assume the EIKB models of 

KIXc:MLLc and KIXp:MLLp are approximately the same. In fact, our simulations reproduced the 

positive allosteric effects in both c-Myb:KIX:MLL and pKID:KIX:MLL. Therefore, it is 

reasonable to assume that this approximation does not affect the validity of our conclusions. 

Model Calibration 

After setting up the system, two scaling factors α and β are introduced to calibrate the model so 

that the model reproduces some essential experimental findings. The scaling factor α is used to 

scale the intramolecular contact strengths to compensate the often-overestimated helicities of IDPs 

by the EIKB model (11, 52). The values of the scaling factor α were adopted from previous studies 

with αc-Myb = 0.45 (11), αMLL = 0.05 (11), αpKID-α1 = 0.75 (10), and αpKID-α2 = 0.15 (10). Those values 

were obtained by fitting the model with helicities from either experiment or bioinformatics 

predictions. For pKID, the phosphoserine SER133 was modeled as glutamic acid and the salt-

bridge native contact interactions were scaled down by 40% to avoid double-counting similar to 

previous work (10). The scaling factor β is used to scale the strength of the intermolecular contacts 

between IDP ligands and KIX so that the modeled IDPs recapitulate the binary experimental Kds 

upon binding free KIX. For each peptide, the optimal value of β was determined by interpolation 

on the Kd vs. β plot of binary systems: KIXc:c-Myb, KIXc:MLLc, KIXp:pKID, and KIXp:MLLp 

(see Figure 3.2) by matching experimental Kds. Importantly, our model does not directly encode 

the allosteric effect by tuning the peptides to match the ternary Kds when binding to KIX that is 

prebound by a ligand. 

The HREX Method 

The Kd vs. β data are essential for model calibration. In previous studies, the Kd vs. β calibration 

curve was obtained by running a series of brute-force unbiased simulations (11) or by running 
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temperature replica exchange simulations (10) at different values of β. However, the high 

computational cost of calculating Kd allows only a few (Kd, β) data points to be evaluated, leading 

to large errors due to discretization. The disadvantage of these methods is significant, especially 

for tightly bound ligands for which the bound/unbound transitions are rare during the simulation. 

The HREX method addresses this issue by allowing systems with high binding affinities to 

exchange coordinates with systems with low binding affinities and therefore facilitates the 

sampling of the unbound states for tightly bound ligands. The HREX method uses two exchange 

coordinates: the temperature (T) and the scaling factor β. The nearest two windows of trajectories 

in either dimension, (βi, Ti) and (βi+1, Ti) or (βi, Ti) and (βi, Ti+1) exchange their coordinates 

periodically using the Metropolis algorithm in the simulation (53). Trajectories running at high 

temperatures or small βs facilitate the sampling of the unbound states for trajectories at low 

temperatures or large βs. Notably, the HREX method only requires a single simulation with 

multiple trajectories running in parallel on the (β, T) grid to obtain the Kd vs. β data.  

The MD Simulation Protocol 

All simulations were performed using the OpenMM library (54), which allows simulations with 

highly customizable force fields and GPU acceleration. The HREX method shows some 

resemblance with the Replica Exchange with Solute Tempering (REST) method (55) in which 

scaling factors are used to control interactions between different groups of atoms. The HREX 

method was implemented using in-house C++ codes based on the OpenMM C++ API and Message 

Passing Interface (MPI). Each MPI process runs a single simulation. Two Hamiltonian variables, 

temperature T and the scaling factor β, were chosen as exchange coordinates. The HREX method 

allows replicas to exchange coordinates with each other and therefore enhances the sampling. The 

system cartesian coordinates of the two nearest windows (Ti, Ti+1) or (βi, βi+1) were exchanged 



 38 

every 10,000 steps using the Metropolis algorithm (53). The average exchange rate (number of 

successful exchanges / total number of exchange trials) is 24.86% for all HREX simulations in 

Figure 3.2.  

Each HREX simulation uses 11 β windows covering a range of systems from low binding affinity 

to high binding affinity. The β windows are shown in Figures 3.2 and 3.3. Three temperature 

windows at 300 K, 320 K, and 340 K were used for each HREX simulation. Therefore, a total of 

33 replicas were used for a single HREX simulation. Only the replicas at 300 K were used for data 

analysis. The force field of the EIKB model was implemented using different force objects of the 

OpenMM library and is already described in the Model section. The Langevin integrator was used 

to propagate the equations of motion with a friction coefficient of 0.1 ps-1. For each HREX 

simulation, 400 million steps were simulated for each replica with a time step of 22 fs. The first 

50 million steps were discarded in the data analysis. For the unbiased simulation, 3 billion steps 

were simulated for each system with the βopt obtained from the HREX simulation while other 

parameters were the same as HREX.  For all trajectories, snapshots were collected every 10,000 

steps for data analysis. Periodic boundary condition with a cubic box of 150 Å was used for all 

simulations. All HREX simulations were repeated 3 times, and the unbiased simulations were 

repeated 10 times for each system of interest. 

3.3 Results 

The HREX Simulation Results 

This HREX method was used to obtain the Kd vs. β data (Figure 3.2) for the four IDPs binding to 

both free-KIX (solid blue curves) and KIX prebound by a ligand (solid orange lines). Both the 

binary (binding to free KIX) and ternary (binding to KIX prebound by a ligand) Kd vs. β curves 

monotonically decrease with β, since β scales the interactions between KIX and the peptides. The 
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HREX method also resembles the isothermal titration calorimetry (ITC) experiment (56), in which 

the binding enthalpy (ΔH) and entropy (ΔS) can be calculated by curve fitting. The Kd vs. β plot 

can be used to calculate ΔH and ΔS by fitting Equation 3.4, which is derived based on Equations 

3.1-3.3. Equation 3.3 expresses Kd as a function of the fraction of unbound ligands (Pu) in 

simulation while Equation 3.2 converts Pu to the binding free energy ΔG, which is also a function 

of ΔH and ΔS as shown in Equation 3.1. Therefore, the HREX method can not only be used as a 

model calibration protocol, but it can also be used to study the binding thermodynamics. 

Δ𝐺 = ΔH − TΔS                                                             (3.1) 

Δ𝐺 = −𝑅𝑇𝑙𝑛 l32mn
mn
o                                                         (3.2) 

𝐾% =
3PP.
p
× mn[

32mn
                                                           (3.3) 

ln(𝐾%) = ln l3PP.
p
o − tuv

wt
+ ux

wt
𝛽 − ln z𝑒𝑥𝑝 ltuv

wt
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wt
𝛽o + 1}               (3.4) 

We first calculated the optimal values of β (Figure 3.2, blue dashed vertical lines) for the four 

ligands from the binary Kd vs. β calibration curves (Figure 3.2, blue solid curves) using equation 

3.4 by locating the β that matches the experimental Kd (Figure 3.2, black dashed horizontal lines). 

The optimal values of β (βopt, Figure 3.2, blue dashed vertical lines) were then used to obtain the 

ternary Kd vs. β data (Figure 3.2, orange solid curves) when KIX is prebound by a ligand. The β 

of the first bound ligand is set to be βopt in simulations for the calculation of the ternary Kd for the 

second ligand. The allosteric effect can be examined by comparing the binary Kd with ternary Kd 

at βopt. We observe that all ternary Kd vs. β curves (Figure 3.2, orange solid curves) are 

systematically lower than their corresponding binary curves (Figure 3.2, blue solid curves), 
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suggesting all the four peptides bind more favorably with KIX that is prebound by a ligand, 

compared to free KIX. The ternary Kds predicted by our simulations (Figure 3.2, red dashed 

horizontal lines) are calculated by interpolating the ternary Kd vs. β data at βopt and are listed in 

Table 3.1. Overall, the predicted ternary Kds (Table 3.1) of the four peptides show excellent 

agreement with the experimental results. Therefore, we conclude that our simulations captured the 

cooperative allosteric effect in KIX for both the c-Myb:KIXc:MLLc and pKID:KIXp:MLLp 

systems.  

 
 

Figure 3.2 Binary (blue) and ternary (orange) Kd vs. β calibration curves of c-Myb (A), MLLc (B), 
pKID (C), and MLLp (D) with a dielectric constant D = 40. Each data point is the average of three 
independent HREX simulations. The blue dashed vertical lines denote βopt for each peptide. The 
black dashed horizontal lines denote the corresponding experimental values of Kd while the red 
dashed horizontal lines denote the simulated Kd in ternary when β = βopt for each peptide.  
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Figure 3.3 Calibration curves of the binary and ternary systems at D = 80. Each panel represents 
IDP calibration curves in the binary or ternary complexes. 
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Table 3.1 Thermodynamic data of IDPs binding to free and bound KIX. All simulation data were 
calculated at 300 K and D = 40. The units for -TΔSOP, TΔStot, and ΔHtot are kcal/mol. 

 
Ligand Binding to Exp. Kd, 

μMa 
Sim. Kd, 

μMb -TΔSOP
c -TΔStot

d ΔHtot
d 

c-Myb KIXc 10 ± 2 10 1.06 20.24 -21.35 

c-Myb KIXc:MLLc 4 ± 1 2.19 0.49 20.02 -21.62 

MLLc KIXc 2.8 ± 0.4 2.8 1.30 24.50 -26.02 

MLLc KIXc:MLLc 1.7 ± 0.1 0.56 0.73 23.46 -25.48 

pKID KIXp 1.30 ± 0.02 1.30 0.27 17.73 -19.48 

pKID KIXp:MLLp 0.65 ± 0.05 0.63 0.12 16.79 -18.76 

MLLp KIXp 2.8 ± 0.4 2.8 0.64 23.48 -24.99 

MLLp KIXp:pKID 1.5 ± 0.2 1.08 0.49 23.11 -24.92 

a. Experimental data from (48). 
b. Simulation results from HREX. 
c. Conformational entropy contributions calculated from order parameters using method described elsewhere 
from (11). 
d. Total conformational entropic and enthalpic contributions calculated from HREX. 
 

The Unbiased Simulation Results 

With the optimized force fields from HREX, we further carried out a set of long unbiased 

simulations for all binary and ternary systems. The unbiased simulations give very close ternary 

Kds (Table 3.2) compared to ternary Kds calculated by the HREX method, suggesting the βopt 

calculated by HREX simulations are accurate. Therefore, the HREX method is also an effective 

and efficient way to optimize the force fields of models similar to the EIKB model for unbiased 

MD simulations, as the unbiased MD simulations often contain richer information such as binding 

kinetics.  
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Table 3.2 Kds of different systems calculated by HREX and unbiased simulations at D = 40. 

Ligand Binding to Exp. Kd, μMa HREX Kd, μMb Unbiased Kd, μMc 

c-Myb KIXc 10 ± 2 10 27.7 ± 26.1 

c-Myb KIXc:MLLc 4 ± 1 2.19 7.28 ± 12.7 

MLLc KIXc 2.8 ± 0.4 2.8 3.69 ± 1.22 

MLLc KIXc:MLLc 1.7 ± 0.1 0.56 0.76 ± 0.36 

pKID KIXp 1.30 ± 0.02 1.30 1.73 ± 0.98 

pKID KIXp:MLLp 0.65 ± 0.05 0.63 0.66 ± 0.52 

MLLp KIXp 2.8 ± 0.4 2.8 4.08 ± 1.46 

MLLp KIXp:pKID 1.5 ± 0.2 1.08 1.15 ± 0.69 

a. Experimental data from (48). 
b. Kd calculated by HREX. 
c. Kd calculated by long unbiased simulations. 
 

Thermodynamics 

To examine the thermodynamics of the allosteric mechanism in KIX, the binding enthalpy (ΔH) 

and entropy (ΔS) of binary (binding to free KIX) and ternary (binding to KIX prebound by a 

ligand) complexes were calculated for both c-Myb:KIXc:MLLc and pKID:KIXp:MLLp by fitting 

the Kd vs. β data with equation 3.4 and are listed in Table 3.1. A previous study using the EIKB 

model found the cooperative allostery in c-Myb:KIXc:MLLc is due to a favorable conformational 

entropic change of KIX, in which the first bound ligand pays the entropic costs for the second 

ligand to bind (11). Our data from the HREX simulations also support this reduced entropy 

mechanism, as the entropic cost (-TΔStot) for a ligand to bind KIX prebound by a ligand is always 

lower than the cost to bind free KIX (Table 3.1). Notably, the ΔH/ΔS from the HREX method is 

considered to be the total binding enthalpy/entropy change while the ΔS from the previous study 
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(11) is calculated as the Gibbs entropy from the state probability distributions of three order 

parameters that reflect the major conformational fluctuations of KIX. 

The entropic cost based on order parameters (-TΔSOP) was re-calculated here using our unbiased 

trajectories and is shown to be in line with the total entropic cost (-TΔStot) and the total enthalpic 

change (ΔHtot) from HREX in Table 3.1. For the four IDPs, both -TΔStot and -TΔSOP are 

qualitatively consistent in values where the cost for the second ligand to bind KIX prebound by 

the first ligand is always lower than the cost to bind free KIX. Therefore, our data support the 

reduced entropy mechanism for both c-Myb:KIXc:MLLc and pKID:KIXp:MLLp and is consistent 

with the previous study on c-Myb:KIXc:MLLc. The fact that these quantities agree, i.e., the entropy 

from the temperature derivative and the configurational entropy arising from specific fluctuation 

changes, is not surprising given the fact that the EIKB model really only has peptide and protein 

conformational degrees of freedom. The configurational entropy change in the disorder to order 

transition of the peptide upon binding to the protein represents the ~20 kcal/mol offset observed 

in the differences between the -TΔSOP and TΔStot values and is assumed to remain constant for 

both free KIX and KIX prebound by a ligand. 

3.4 Discussion 

The idea of the reduced entropy mechanism is that the first bound ligand reduces the entropic cost 

for the second ligand to bind. The first ligand binds and reduces the dynamical fluctuations of KIX, 

indicated by the more narrowly distributed states on the three order parameters for the bound KIX 

(Figure 3.4 and 3.5). We also examined how the binding affinity of the first ligand changes the 

binding affinity of the second ligand in Figure 3.6, which shows the Kd of the second ligand as a 

function the first bound ligand’s scaling factor β. The Kd (ligand 2) vs. β (ligand 1) data were 

obtained at two different dielectric constants, D = 40 and 80. For the pKID:KIXp:MLLp system, 
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the Kd of neither pKID nor MLLp show significant responses with the increase of the first ligand’s 

β values (or Kd). However, for the c-Myb:KIXc:MLLc system, the Kds of both c-Myb and MLLc 

are gradually decreasing when increasing the first ligands’ β values (or Kd). Therefore, there are 

no simple relationships between the Kd (ligand 2) and Kd (ligand 1) for the two different KIX 

systems. 

 
Figure 3.4 Free energy plots of the hydrophobic core compression and L12-G2 loop RMSD of KIXc 
in the free state (A), bound with c-Myb (B), bound with MLLc (C), and bound with both c-Myb 
and MLLc (D). Definitions of these order parameters are described in a previous paper (11).  
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Figure 3.5 Free energy plots of the hydrophobic core compression and L12-G2 loop RMSD of KIXp 
in the free state (A), bound with pKID (B), bound with MLLc (C), and bound with both c-Myb and 
MLLc (D). Definitions of these order parameters are described in a previous paper (11).  
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Figure 3.6 The Kd (ligand 2) vs. β (ligand 1) plots of MLLc (A), c-Myb (B), MLLp (C), and pKID 
(D), respectively. The green and red dashed horizontal lines correspond to the binary and ternary 
experimental Kds of their corresponding IDPs in each panel. 

 

The original KB model in the previous study on c-Myb:KIXc:MLLc does not encode explicit 

electrostatic interactions, although it successfully recapitulated the cooperative allostery (11). In 

this study, we found that explicit electrostatic forces with a dielectric constant D = 40 is essential 

for the pKID:KIXp:MLLp system to recapitulate the cooperative allostery, whereas electrostatics 

is unimportant for c-Myb:KIXc:MLLc. We compared the Kd vs. β data at D = 40 (Figure 3.2) with 

the data at D = 80 (Figure 3.3) and we found no significant decreases of Kds from binary to ternary 

at D = 80 for both pKID and MLLp.  Similar results were also found in the Kd (ligand 2) vs. β 

(ligand 1) plots (Figures 3.6 C and D), in which the ternary Kds (Figure 3.6, orange dots) for the 
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two peptides at D = 80 are almost unchanged from their binary Kds (Figure 3.6 green lines). 

However, the electrostatic interactions are not essential for c-Myb:KIXc:MLLc to reproduce the 

positive allosteric effect, consistent with the previous study. We further calculated the residue-

residue pairwise electrostatic interaction energy (Eelec) between c-Myb and MLL (Appendix Table 

3.5) as well as the Eelec between pKID and MLL (Appendix Table 3.6) at D = 40 based on the 

topology of the native PDB conformation. The total Eelec between c-Myb and MLL is 0.0178 

kcal/mol while the total Eelec between pKID and MLL is -0.236 kcal/mol, which suggests the 

interactions between pKID and MLL are electrostatically more favorable. Therefore, explicit 

electrostatics with D = 40 is more compatible with the EIKB model and should be used for future 

studies. 

A recent review by Wright et al. (57) pointed out a seeming discrepancy of the allostery mechanism 

between the previous study (11) and their ITC experiment (48). Their data suggested that the 

overall thermodynamic driving force in c-Myb:KIXc:MLLc is due to a favorable enthalpic change 

whereas this process in pKID:KIXp:MLLp is governed by an overall favorable change in the total 

entropy. Though their results seem to disagree with the reduced entropy mechanism proposed by 

the previous study (11), which is also supported our current simulations, we wish to emphasize 

two points. First, the entropy calculated by coarse-grained MD simulations, either from order 

parameters or HREX, corresponds to the protein conformational entropy. The total thermodynamic 

function changes (entropy and enthalpy) calculated from the ITC experiments include significant, 

and non-deconvolvable, contributions from solvation and desolvation of the interacting proteins 

as well as the configurational entropy change of the solvent degrees of freedom. Our model 

explicitly looks at only the protein conformational entropy. Thus, while we cannot directly suggest 

what the overall driving force for the association is, our conclusion that “pre-paying” the 
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configurational entropic cost of binding provides a mechanism for allostery, is not necessarily 

inconsistent with the ITC measurements. Moreover, by focusing on the changes in conformational 

flexibility, we can form direct and testable hypotheses regarding protein flexibility and allosteric 

regulation, which cannot emerge from calculations of overall thermodynamic function changes 

from ITC. For example, the conformational entropy has an established mapping to protein 

structural dynamics and can be measured by NMR relaxation experiments (58) through a dynamic 

proxy as well as by molecular dynamics simulations (11, 59). Therefore, the reduced 

conformational entropy model may be useful to guide such experiments in the future. 

3.5 Conclusions 

In conclusion, we developed a new sampling method that can accurately and efficiently calculate 

Kd and optimize force fields for coarse-grained models similar to the EIKB model. The new 

method can be readily used to study allosteric regulation in systems similar to KIX. Our 

simulations recapitulate the cooperative allosteric effects in both c-Myb:KIXc:MLLc and 

pKID:KIXp:MLLp and our data support the reduced entropy mechanism in which the first bound 

ligand reduces the entropic cost for the second ligand to bind. As a whole, our work provides new 

tools to study the allosteric regulation by IDPs and also provides new insights into the allosteric 

mechanism. 

3.6 Appendix 
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Table 3.3 Native contacts interactions between KIXc and MLLc in PDB structure 2AGH. Contacts 
that are the same as those found in KIXp:MLLp are marked as red. 

Residues of KIX Residues of MLL Force constant (kcal/mol/Å2) Distance (Å) 
PHE612 PHE852 -1.444 9.15 
PHE612 VAL853 -1.251 6.39 
PHE612 ASN856 -0.746 8.82 
PHE612 THR857 -0.851 8.20 
PRO615 ASN856 -0.304 6.95 
ARG624 ASP848 -0.456 10.14 
ARG624 ASP851 -0.456 10.89 
ARG624 PHE852 -0.792 7.74 
MET625 PHE852 -1.305 8.48 
ASN627 ASP848 -0.334 8.11 
ASN627 ILE849 -0.644 6.39 
LEU628 ILE849 -1.400 5.89 
LEU628 PHE852 -1.448 8.23 
LEU628 VAL853 -1.289 8.57 
TYR631 ILE844 -1.044 10.08 
TYR631 LEU845 -1.128 8.53 
TYR631 PRO846 -0.635 8.43 
TYR631 ILE849 -1.044 7.47 
MET639 ILE844 -1.197 11.51 
LYS656 ILE844 -0.599 7.53 
LYS659 ILE844 -0.599 8.76 
ILE660 ILE844 -1.301 8.06 
LEU664 LEU845 -1.466 11.32 
LEU664 VAL853 -1.289 8.70 
LEU664 THR857 -0.863 7.66 
ARG668 LEU854 -0.802 7.83 
ARG668 THR857 -0.378 6.43 
ARG668 PRO858 -0.338 5.10 

Total  -25.40  
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Table 3.4 Native contacts interactions between KIXp and MLLp in PDB structure 2LXT. Contacts 
that are the same as those found in KIXc:MLLc are marked as red. 

Residues of KIXp Residues of MLLp Force constant (kcal/mol/Å2) Distance (Å) 
ILE611 LEU845 -1.610 10.45 
ILE611 MET850 -1.376 8.59 
ILE611 VAL853 -1.383 7.25 
PHE612 PHE852 -1.660 10.05 
PHE612 VAL853 -1.438 6.78 
PHE612 ASN856 -0.857 8.95 
THR614 PRO858 -0.434 7.49 
ARG624 PHE852 -0.910 8.27 
ASN627 ILE849 -0.741 8.46 
LEU628 ILE849 -1.610 7.16 
TYR631 LEU845 -1.296 8.62 
ASP638 ALA841 -0.389 7.94 
MET639 ASN843 -0.675 10.49 
GLU655 ASN843 -0.345 8.15 
LYS656 ASN843 -0.277 5.15 
LYS659 ILE844 -0.688 6.53 
ILE660 LEU845 -1.610 7.31 
ILE660 MET850 -1.376 8.69 
GLU663 MET850 -0.661 7.98 
LEU664 MET850 -1.466 6.84 
LEU664 VAL853 -1.482 8.27 
LEU664 LEU854 -1.685 6.80 
LYS667 LEU854 -0.771 6.92 
ARG668 LEU854 -0.921 6.55 
ARG671 ASP851 -0.524 10.36 
ARG671 LEU854 -0.921 7.42 
ARG671 LYS855 -0.135 7.56 

Total  -27.24  
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Table 3.5 Electrostatic interactions between c-Myb and MLL in PDB structure 2AGH at D = 40. 

Residues of c-Myb Residues of MLL Distance (Å) Energy (kcal/mol)a 

LYS291 ASP841 22.83 -0.0371 
LYS296 ASP841 23.82 -0.0322 
ARG294 ASP841 24.27 -0.0302 
ARG294 ASP851 24.87 -0.0277 
LYS291 ASP840 24.89 -0.0277 
LYS296 ASP840 25.10 -0.0269 
GLU297 LYS855 25.51 -0.0254 
GLU299 LYS855 25.75 -0.0246 
LYS291 ASP851 26.07 -0.0235 
ARG294 ASP840 26.32 -0.0227 
LYS293 ASP841 26.46 -0.0223 
GLU292 LYS855 26.74 -0.0214 
ARG294 ASP848 27.68 -0.0188 
LYS296 ASP851 27.82 -0.0185 
LYS293 ASP840 28.20 -0.0175 
LYS293 ASP851 28.56 -0.0167 
LYS291 ASP848 29.46 -0.0148 
LYS296 ASP848 29.76 -0.0142 
LYS293 ASP848 31.41 -0.0114 
GLU306 LYS855 33.49 -0.0087 
GLU308 LYS855 33.77 -0.0084 
LYS310 ASP848 36.33 -0.0060 
LYS310 ASP841 36.47 -0.0059 
LYS310 ASP840 36.75 -0.0057 
LYS310 ASP851 37.27 -0.0054 
LYS310 LYS855 38.09 0.0048 
GLU308 ASP840 35.13 0.0070 
GLU308 ASP841 34.31 0.0078 
GLU308 ASP851 33.73 0.0084 
GLU308 ASP848 33.63 0.0086 
GLU306 ASP851 32.52 0.0099 
GLU306 ASP848 31.80 0.0109 
GLU306 ASP840 31.25 0.0117 
GLU292 ASP848 30.98 0.0121 
GLU306 ASP841 30.86 0.0123 
GLU297 ASP848 28.52 0.0168 
GLU292 ASP851 28.09 0.0178 
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LYS296 LYS855 27.19 0.0201 
GLU297 ASP840 26.92 0.0209 
LYS293 LYS855 26.82 0.0212 
GLU299 ASP848 26.58 0.0219 
GLU297 ASP851 26.53 0.0220 
GLU292 ASP840 25.55 0.0252 
GLU299 ASP851 25.47 0.0255 
GLU297 ASP841 25.31 0.0261 
LYS291 LYS855 24.38 0.0297 
GLU292 ASP841 23.91 0.0318 
ARG294 LYS855 23.24 0.0350 
GLU299 ASP840 22.56 0.0386 
GLU299 ASP841 21.43 0.0454 

Total   0.0178 
a. Electrostatic energy at the pair distance calculated from the native structure. Attractive interactions are negative. 
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Table 3.6 Electrostatic interactions between pKID and MLL in PDB structure 2LXT at D = 40. 

Residues of c-Myb Residues of MLL Distance (Å) Energy (kcal/mol)a 

ASP840 ARG124 10.26 -0.290 
ASP840 ARG125 11.27 -0.239 
ASP840 LYS123 12.35 -0.195 
ASP840 ARG131 18.09 -0.075 
ASP840 ARG135 19.22 -0.063 
ASP840 ARG130 19.31 -0.062 
ASP840 LYS136 21.87 -0.043 
LYS855 GLU133 24.50 -0.029 
ASP848 ARG124 25.57 -0.025 
ASP851 ARG124 25.78 -0.024 
ASP851 ARG131 26.22 -0.023 
ASP851 LYS136 27.27 -0.020 
ASP851 ARG135 27.62 -0.019 
ASP848 ARG131 27.71 -0.019 
ASP848 ARG125 28.03 -0.018 
ASP851 ARG125 28.27 -0.017 
ASP848 LYS123 28.43 -0.017 
ASP851 LYS123 28.79 -0.016 
ASP848 ARG135 28.97 -0.016 
LYS855 ASP140 28.99 -0.016 
ASP848 LYS136 29.08 -0.016 
ASP851 ARG130 29.60 -0.015 
ASP848 ARG130 30.90 -0.012 
LYS855 ASP120 31.19 -0.012 
LYS855 ASP144 31.91 -0.011 
LYS855 GLU126 33.37 -0.009 
LYS855 ASP116 33.81 -0.008 
LYS855 LYS123 32.82 0.010 
ASP848 ASP144 32.53 0.010 
LYS855 ARG125 31.82 0.011 
ASP851 ASP144 31.80 0.011 
LYS855 ARG130 31.48 0.011 
ASP848 ASP140 30.43 0.013 
ASP848 GLU126 30.37 0.013 
ASP851 GLU126 30.16 0.013 
LYS855 ARG124 29.61 0.015 
ASP851 ASP116 29.07 0.016 
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ASP851 ASP140 28.97 0.016 
LYS855 ARG135 28.78 0.016 
ASP848 ASP116 28.23 0.017 
LYS855 ARG131 27.87 0.018 
LYS855 LYS136 27.61 0.019 
ASP851 ASP120 26.43 0.022 
ASP848 GLU133 25.99 0.024 
ASP840 ASP144 25.78 0.024 
ASP848 ASP120 25.34 0.026 
ASP851 GLU133 23.92 0.032 
ASP840 ASP140 23.63 0.033 
ASP840 GLU133 20.17 0.055 
ASP840 GLU126 14.78 0.128 
ASP840 ASP116 14.27 0.140 
ASP840 ASP120 8.93 0.380 

Total   -0.236 
a. Electrostatic energy with the distance calculated from the native structure. Attractive interactions are negative. 
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Chapter 4 The Negative Allosteric Regulation in a Disordered 

Protein Switch 

This chapter is adapted from the following manuscript:  

Yanming Wang; Charles L. Brooks III; Electrostatic Forces Control the Negative Allosteric 
Regulation in a Disordered Protein Switch. (submitted) 
 

4.1 Introduction 

The allosteric effect, by which a ligand affects another ligand at a distal binding site of the same 

target (40, 60), is essential for many fundamental biological processes and is manifest in many 

human diseases (41, 42). One important type of allosteric regulation utilizes intrinsically 

disordered proteins (IDPs) (61). The intrinsic structural flexibility of IDPs allows rapid but highly 

specific interactions with multiple cellular targets, which is essential for their versatile roles in 

cellular signaling and regulation (62). Understanding the mechanism of allosteric regulation by 

IDPs forms the basis for other related higher-level regulatory processes in the cell cycle. However, 

the underlying physical principles of allosteric regulation involving IDPs are still largely elusive 

due to the complicated protein-protein interactions involved in these processes. 

One such example is the negative allosteric regulation in the TAZ1 protein switch (Figure 4.1). 

The TAZ1 domain of transcriptional coactivators CBP/P300 is critical for cellular hypoxic 

response (46, 57). In hypoxia, TAZ1 binds the disordered α-subunit of the transcription factor HIF-

1 (HIF-1α) to trigger the transcription of adaptive genes to respond to the hypoxic stress (63). At 

the same time, the disordered CITED2 peptide acts as the negative feedback regulator to rapidly 
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displace HIF-1α and efficiently attenuates the hypoxic response (64). Though both HIF-1α and 

CITED2 have the same dissociation constants (10 nM) in their binary complexes with TAZ1, 

recent experiments by Wright et al. discovered that CITED2 is extremely efficient in displacing 

HIF-1α under equimolar conditions upon binding the same target TAZ1 (14). This discovery is 

surprising and it overturns the originally proposed naive mass-action displacement mechanism 

(65). The experiments suggest the formation of a ternary intermediate complex (also captured by 

our simulations and is shown in Figure 4.1C) that facilitates the dissociation of the partially bound 

HIF-1α is essential for the displacement mechanism (14, 66).  

 
Figure 4.1 Structures of free TAZ1 (panel A, PDB code 1U2N), TAZ1:HIF-1α binary complex 
(panel B, PDB code 1L8C), CITED2:TAZ1:HIF-1α ternary intermediate complex (panel C, 
structure captured by simulations), and TAZ1:CITED2 binary complex (panel D, PDB code 
1R8U). 

 

Even though significant insights were provided into the allosteric mechanism by recent 

experimental (14, 66) and computational (67) studies, the underlying physical principles are still 
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not fully elucidated. To understand the essential physics governing the negative allosteric effect in 

the TAZ1 protein switch, we carried out molecular dynamics (MD) simulations using a coarse-

grained model (8, 11) that has shown success in modeling the positive/cooperative allosteric effect 

in the KIX domain of the same parent CBP/P300 transcription coactivator. Our simulations show 

excellent agreement with experiment in reproducing the overall allosteric effect and capturing the 

ternary intermediate complex critical for the displacement mechanism. Notably, our simulation 

data also pinpoint the decisive role of electrostatics in the TAZ1 protein switch for the first time 

to our knowledge. 

The protein data bank (PDB) structures of free TAZ1 (1U2N), the TAZ1:CITED2 binary complex 

(1R8U), and the TAZ1:HIF-1α binary complex (1L8C) were used to build the coarse-grained 

models for MD simulations. The coarse-grained model only utilizes the experimental binding data 

from the binary systems (TAZ1:HIF-1α and TAZ1:CITED2) and does not explicitly encode the 

allosteric effect. This model mainly considers short-range native contacts and long-range 

electrostatic forces as intermolecular interactions (8). To balance the short-range native contacts 

and the long-range electrostatic interactions between TAZ1 and the two peptides, all TAZ1-peptide 

native contact interaction strengths were scaled by a factor β so that the modeled binary complex 

reproduces the experimental Kd at the optimal value of β (βopt). A dielectric constant (D) was used 

to modulate the strengths of electrostatic interactions and was examined at 80, 60, 50, and 40 to 

mimic increasing strengths of electrostatic interactions. The values of βopt for each peptide at 

different dielectric constants were obtained by the Hamiltonian replica exchange (HREX) method 

developed previously (68).  The scaling factor β plays the role of balancing the short-range and 

long-range forces of the model so that the Kds of the two simulated binary complexes are always 
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kept at the experimental target of 10 nM. Further details of the simulation setup can be found in 

the Method section below. 

4.2 Results and Discussion 

As shown in Figures 4.2 A and B, the Kds of the two ligands binding to free TAZ1 in the binary 

complex monotonically decrease as the scaling factor β increases. When the dielectric constant 

(D) decreases from 80 to 40, the βopt (Figure 4.2, vertical lines) of HIF-1α that matches the binary 

experimental Kd = 10 nM (-8 in the log scale, black dashed horizontal lines) decreases from 1.529 

to 1.441 (decreased by -5.8%) while the βopt of CITED2 decreases from 1.206 to 1.114 (decreased 

by -7.6%), respectively. As the dielectric constant is decreasing or the strengths of electrostatic 

interactions are increasing, the strengths of native contacts (controlled by β) needed to keep the 

same Kd are also decreasing for both peptides, suggesting significant electrostatic interactions are 

contributing to the binding of the two peptides. Notably, the percentage decrease of βopt for 

CITED2 (-7.6%) is larger than that for HIF-1α (-5.8%), indicating the percentage contribution by 

electrostatic forces to the Kd in the TAZ1:CITED2 complex is larger than that of the Kd for the 

TAZ1:HIF-1α complex, consistent with the apparent net charges of the two peptides in the model 

(-7 for CITED2 and -5 for HIF-1α). Recent mutational experiments also confirmed the hot-spots 

residues for HIF-1α binding energetics are all hydrophobic residues rather than charged residues 

(69). 
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Figure 4.2 Kd as a function of the scaling factor β for HIF-1α and CITED2 in binary complex (A, 
B) and ternary complex (C, D). All simulations were carried out at 4 different dielectric constants 
D = 40 (red), 50 (green), 60 (orange), and 80 (blue). The experimental Kd (10 nM, or -8 in log 
scale) of the binary complexes of the two peptides are denoted by black horizontal dashed lines. 
The βopt at different dielectric constants are denoted by vertical lines with different colors.  

 

To study the allosteric effect, the competing ligand was added into the binary system with the 

competitor ligand’s β kept at its predetermined value of βopt. The same HREX method was used 

again to compute the Kd of the given ligand in the ternary complex with its competing ligand 

(Figures 4.2 C and D). The predicted Kd of the given ligand in the ternary complex is calculated 

by interpolation on the Kd vs. β plot at β = βopt. As shown in Figures 4.2 C and D, the predicted Kd 

of CITED2 in the ternary complex decreases from ~100 μM to 3.8 μM whereas the Kd of HIF-1α 

in ternary increases from ~100 μM to 1.26 mM when the dielectric constant decreases from 80 to 

40. The striking asymmetrical changes of the Kds for the two peptides at different dielectric 

constants indicate HIF-1α can only be efficiently displaced when electrostatic interactions are 
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strong enough. Notably, a slight decrease of the dielectric constant from 80 to 60 has little effect 

on shifting the overall result of the competition between the two peptides. The displacement of 

HIF-1α by CITED2 is only significant when the strengths of electrostatic interactions are doubled 

or the dielectric constant changes from 80 to 40. Overall, our data suggest electrostatic forces are 

essential for the negative allosteric effect in the TAZ1 protein switch. 

 

Table 4.1 Experimental and simulated Kds (nM) of different systems studied in the TAZ1 protein 
switch. Only the Kds simulated at the dielectric constant of 40 are shown. 

Peptide Binding to Kd (Exp.)a Kd (HREX)b Kd (unbiased)c 
CITED2 TAZ1 10 ± 1 10 12.4 ± 4.3 
CITED2 TAZ1:HIF-1α 0.2 ± 0.1 3.8×103 8.20×103 ± 11.3×103 
HIF-1α TAZ1 10 ± 1 10 13.9 ± 12.4 
HIF-1α TAZ1:CITED2 900 ± 100 1.26×106 1.24×106 ± 0.44×106 

a Data from reference (14). 
b Data from HREX simulations. 
c Data from unbiased simulations. 
 

To further check and complement with the HREX simulations, we carried out long unbiased 

simulations modeling electrostatics with a dielectric constant of 40. We simulated each system for 

an aggregate time of 1.32 ms for the ternary complex and 0.66 ms for the two binary complexes. 

The unbiased simulations adopted the optimal values of β = βopt for the two peptides directly from 

the HREX simulations. The Kds of the two peptides in the binary and ternary complex calculated 

from unbiased simulations, along with Kds calculated from HREX simulations and Kds obtained 

from the experiments are shown in Table 4.1. Overall, the Kds from unbiased simulations show 

good agreement with Kds from the HREX simulations. Notably, our simulated Kds in the ternary 

complex deviate significantly from the experimental values for both CITED2 (3.8×103 nM by 

simulation vs. 0.2 nM from the experimental analysis) and HIF-1α (1.26×106 nM by simulations 

vs. 900 nM by experiment). However, we need to emphasize the Kds of the two peptides in the 
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ternary complex from experiment are apparent dissociations constants (14) and only qualitatively 

reflect the relative binding affinities of the two peptides in the ternary complex. They do not 

quantitatively mean CITED2 has a higher binding affinity in the ternary complex compared to that 

in the binary complex (Kd decreases from 10 nM to 0.2 nM). Considering the simplicity of our 

model, it is remarkable that our model captured the asymmetric responses of the two peptides’ Kds 

in the ternary complex with respect to the changes of the dielectric constant. Therefore, we 

conclude that our simulations captured the negative allosteric effect in the TAZ1 protein switch. 

 
Figure 4.3 Representative trajectories of fraction of native contacts (Q) of HIF-1α (A) and CITED2 
(B). HIF-1α shows two bound states: the bound state (0.3 < Q) and the partially bound state (0.1 
< Q < 0.3). CITED2 shows a single bound state (Q > 0.1). 

 
The experiments proposed a displacement mechanism with a CITED2:TAZ1:HIF-1α ternary state 

as an important intermediate (14, 66). Our simulations demonstrate this ternary intermediate 

complex (Figure 4.1 C) with a bound CITED2 and a partially bound HIF-1α, primarily due to the 

weak interactions between the highly flexible α1-α2 regions of HIF-1α and TAZ1, consistent with 

the NMR experiments (14, 66). The competition between the two peptides in the ternary complex 
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is evident in the trajectories of the fraction of native contacts (Q) formed between TAZ1 and the 

two peptides from the unbiased simulations (Figure 4.3), in which QHIF-1α = 0.1 to 0.3 for the 

partially bound HIF-1α, QHIF-1α > 0.3 for the fully bound HIF-1α, and QCITED2 > 0.1 for the bound 

CITED2. To better understand the displacement mechanism, especially the role of the ternary 

intermediate complex, we constructed a Markov state model (70, 71) with five states involved in 

the allosteric regulation of the TAZ1 protein switch: TAZ1 (free-TAZ1 state), TAZ1 with bound 

CITED2 (TAZ1:CITED2 state), TAZ1 with partially bound HIF-1α (TAZ1:p-HIF-1α state), TAZ1 

with bound HIF-1α (TAZ1:HIF-1α state), and TAZ1 with bound CITED2 and partially bound HIF-

1α (CITED2:TAZ1:p-HIF-1α state), from the unbiased simulations. The five different states are 

classified based on their characteristic values of QCITED2 and QHIF-1α. More details of the Markov 

state model setup can be found in the Method section. 

 
Figure 4.4 Schematic diagram of the five-state Markov state model of the allosteric mechanism of 
the TAZ1 protein switch. Only transition probabilities with a flux over 10-4 are shown. The circle 
size is proportional to the equilibrium population of the corresponding state. The transition 
probability matrix is shown in Table 4.2. 
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Table 4.2 Transition matrix of the 5-state Markov state model using the unbiased trajectories when 
D = 40.  

From            To free-TAZ1 TAZ1:CITED2 TAZ1:p-HIF-1α CITED2:TAZ1: 
p-HIF-1α TAZ1:HIF-1α 

free-TAZ1 5.54% 76.96% 8.38% 4.90% 4.23% 

TAZ1:CITED2 0.44% 93.78% 0.18% 5.53% 0.08% 

TAZ1:p-HIF-1α 3.03% 11.29% 24.00% 18.43% 43.25% 
CITED2:TAZ1: 

p-HIF-1α 0.14% 27.92% 1.48% 68.77% 1.69% 

TAZ1:HIF-1α 0.21% 0.66% 6.00% 2.93% 90.21% 
 

The kinetics network built from the Markov state model shows that the CITED2:TAZ1:p-HIF-1α 

ternary intermediate complex (Figure 4.4E) acts as the state connecting the two HIF-1α-bound 

states (Figures 4.4 B, C) and the CITED2-bound state (Figure 4.4 D). Notably, the 

CITED2:TAZ1:p-HIF-1α ternary intermediate has a significantly higher transition probability 

(27.9%) to the CITED2-bound state TAZ1:CITED2 than that to the HIF-1α-bound states: TAZ1:p-

HIF-1α (1.5%) or TAZ1:HIF-1α (1.7%), indicating the CITED2:TAZ1:p-HIF-1α ternary 

intermediate facilitates the dissociation of HIF-1α, which is also consistent with the experiments 

(14). The partially bound HIF-1α in the CITED2:TAZ1:p-HIF-1α ternary intermediate is more 

prone to dissociate than the fully bound CITED2 due to the partially lost contacts with TAZ1. The 

free-TAZ1 state has transition probabilities of 77% and 8.4% to TAZ1:CITED2 and TAZ1:p-HIF-

1α, respectively, which suggests CITED2 has much higher association rate on TAZ1 than HIF-1α, 

primarily due to the strong long-range electrostatic interactions. Our coarse-grained model encodes 

+9.5 net charges for TAZ1, -7 for CITED2, and -5 for HIF-1α. The columbic potential maps of 

free TAZ1, TAZ1:CITED2 binary complex, and TAZ1:HIF-1α binary complex are shown in 

Figure 4.5 and we observe TAZ1:CITED2 largely shifts the sign of the electrostatic potential on 

the surface, whereas no significant shifts are observed on the TAZ1:HIF-1α surface compared to 

free TAZ1. Therefore, both the existence of the CITED2:TAZ1:p-HIF-1α ternary intermediate  
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and the long-range electrostatic forces favor the formation of the CITED2-bound state 

TAZ1:CITED2.  

 
 

Figure 4.5 Columbic potential maps of free-TAZ1 (A), TAZ1:CITED2 binary complex (B), and 
TAZ1:HIF-1α binary complex (C). 

 

In the cell, the ionic strength influences the electrostatic interactions through salt screening effects 

(72). We performed a series of unbiased simulations of the ternary complex at different screening 

lengths to mimic the effect of different salt concentrations. As shown in Tables 4.3 and 4.4, at very 

short screening length (1Å and 5Å) or high salt concentration, HIF-1α shows higher binding 

affinity with TAZ1 than CITED2, which is not surprising since HIF-1α has a higher percentage of 

non-electrostatic interactions contributing to its binding to TAZ1. At larger screening length 

(>=10Å) that corresponds to low or moderate salt concentration, CITED2 begin to dominate the 
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binding of TAZ1. Further increase of the screening length to 15Å, 20Å, and infinity leads to higher 

population of the CITED2:TAZ1:p-HIF-1α ternary intermediate complex (Table 4.3). Therefore, 

our simulations suggest ionic strength strongly influences the allosteric effect of the TAZ1 protein 

switch and low salt concentration facilitates the formation of the CITED2:TAZ1:p-HIF-1α ternary 

intermediate complex.  

Table 4.3 Equilibrium population of the 5 states in the CITED2:TAZ1:HIF-1α ternary complex at 
different screening lengths when D = 40.  

Screening 
length free-TAZ1 TAZ1:CITED2 TAZ1:p-HIF-1α CITED2:TAZ1: 

p-HIF-1α TAZ1:HIF-1α 

1 Å 81.40% 0.88% 13.47% 0.06% 4.18% 

5 Å 34.80% 4.41% 28.69% 0.98% 31.12% 

10 Å 0.45% 74.93% 1.20% 14.81% 8.62% 

15 Å 0.11% 64.66% 0.40% 34.25% 0.58% 

20 Å 0.05% 48.83% 0.51% 50.29% 0.32% 

Inf Åa 0.03% 14.57% 0.69% 84.41% 0.29% 
a Infinite screening length. 

 

Table 4.4 Kds (M) of CITED2 and HIF-1α in the CITED2:TAZ1:HIF-1α ternary complex at 
different screening lengths when D = 40. 

Screening length Kd (CITED2) / M Kd (HIF-1α) / M 

1 Å 5.25×10-2 ± 1.40×10-2 1.94×10-3 ± 0.44×10-3 

5 Å 9.11×10-3 ± 3.73×10-3 1.28×10-4 ± 0.36×10-4 

10 Å 8.20×10-6 ± 11.3×10-6 1.24×10-3 ± 0.44×10-3 

15 Å 7.79×10-8 ± 13.8×10-8 5.93×10-4 ± 0.90×10-4 

20 Å 4.25×10-8 ± 6.36×10-8 2.31×10-4 ± 0.26×10-4 

Inf Åa 6.07×10-8 ± 10.2×10-8 1.23×10-5 ± 0.17×10-5 
a Infinite screening length. 
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4.3 Conclusions 

In conclusion, we calculated the Kd values of CITED2 and HIF-1α in the CITED2:TAZ1:HIF-1α 

ternary complex at different dielectric constants using MD simulations and we found that CITED2 

only displaces HIF-1α at low dielectric constant when the electrostatic interactions are sufficiently 

strong. Previous experimental studies mainly focus on the role of the CITED2:TAZ1:HIF-1α 

ternary complex (14) and backbone dynamics (66) in explaining the mechanism of the allosteric 

effect. Our simulations provide an alternative explanation of the negative allosteric regulation in 

the TAZ1 protein switch with more physical insights, in addition to the mechanism suggested by 

experiments. The kinetics network built from the Markov state model reveals that the 

CITED2:TAZ1:HIF-1α ternary intermediate complex is an important state connecting the 

CITED2-bound and HIF-1α-bound states. Two factors make CITED2 outcompete HIF-1α in the 

competition of binding to TAZ1. First, the long-range electrostatic interactions allow the fast 

association of CITED2 to form the TAZ1:CITED2 binary complex, which further discourages the 

binding of HIF-1α by neutralizing the positive charges on TAZ1. Second, the shared αA binding 

site of HIF-1α in the TAZ1:HIF-1α binary complex is prone to be attacked by CITED2, facilitating 

the formation of the CITED2:TAZ1:HIF-1α ternary intermediate complex, which then favors the 

dissociation of the partially bound HIF-1α due to the impaired interactions between HIF-1α and 

TAZ1. 

4.4 Methods 

Model Setup 

The protein data bank (PDB) structures of free TAZ1 (1U2N), TAZ1:CITED2 binary complex 

(1R8U), and TAZ1:HIF-1α binary complex (1L8C) were used to build the coarse-grained models 

for MD simulations. This model mainly considers short-range native contacts and long-range 
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electrostatic forces as intermolecular interactions as described in Chapter 1 of this dissertation. 

The PDB structures of binary complexes TAZ1:HIF-1α and TAZ1:CITED2 were used to construct 

the intra-molecular force-field terms of the two peptides HIF-1α and CITED2 and the inter-

molecular force-field terms between the two peptides and TAZ1. The PDB structure of the free 

TAZ1 (1U2N) was used to construct the intra-molecular terms of TAZ1 to avoid potential biases.  

Modeling the Zinc Finger 

Notably, TAZ1 has three zinc fingers with the zinc atom binding to three adjacent cysteine residues 

and a histidine residue (Zn-CCCH). Since no zinc finger force-field has ever been built for the 

EIKB coarse-grained model, we chose the Zinc AMBER Force Field (73) (ZAFF) as a reference 

and use a single bead to represent each zinc finger. Each coarse-grained zinc finger bead has a net 

charge of -1 as calculated from the ZAFF charge distributions. A harmonic bond potential with an 

empirical force constant of 50 kcal/mol is used for the four Zn-residue bonds of each zinc finger 

bead. A harmonic angle potential with an empirical force constant of 30 kcal/mol is used for the 

residue1-Zn-residue2 angle force field of each zinc finger bead.  

Calibration of the Model 

Previous studies have shown that the EIKB Gō model tends to overestimate the intrinsic helicities 

of intrinsically disordered proteins (IDPs) while underestimating the strengths of IDP-protein 

interactions. To address these two issues, we adopted an approach similar to previous studies (10, 

11). Two scaling factors α and β were used to scale the intra- and inter-molecular interactions so 

that the model recapitulates some fundamental experimental results. The scaling factor α tunes the 

intrinsic helicities of HIF-1α and CITED2 and was added to scale all intra-molecular native 

contacts of the two peptides. Since experiments show the unbound HIF-1α and unbound CITED2 

are highly disordered (63, 64), we empirically set the values of α to be 0.05 for both peptides. To 
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balance the short-range native contacts and the long-range electrostatic interactions between TAZ1 

and the two peptides, all TAZ1-peptide native contacts interactions were scaled by a factor β so 

that the modeled binary complex reproduces the experimental Kd = 10 nM at the optimal value of 

β (βopt). The dielectric constant (D) was used to modulate the strengths of electrostatic interactions 

and was examined at 80, 60, 50, and 40 to mimic decreasing strengths of electrostatic interactions. 

The values of βopt of the two peptides at different dielectric constants were obtained by the 

Hamiltonian replica exchange (HREX) method developed previously (68). The scaling factor β 

plays the role of balancing the short-range and long-range forces of the model so that the Kds of 

the two simulated binary complexes are always kept at the experimental value 10 nM.  

Molecular Dynamics Simulation Protocol  

We used an enhanced sampling method based on Hamiltonian replica exchange (HREX) that has 

shown success in modeling the positive allosteric effect in the KIX domain of CBP/P300 (68). 

This method uses two variables β and the temperature (T) in the Hamiltonian as the two exchange 

variables. The values of β for HIF-1α (β���3:x��23�) were chosen to be span the range from 1.40 

to 1.60 with an increment of 0.02. The values of β for CITED2 (β���3:�����0) were chosen to be 

span the range from 1.10 to 1.30 with an increment of 0.02. The values of T were set to be 300 K, 

320 K and 340 K. Therefore, each HREX simulation has 11 β windows and 3 temperature windows 

with a total of 33 combined simulation windows. Only the trajectories at 300 K were used for the 

data analysis. The cartesian coordinates of the two nearest windows (Ti, βi) and (Ti+1, βi+1) were 

exchanged every 10,000 steps using the Metropolis algorithm (53). All molecular dynamics (MD) 

simulations were carried out using the OpenMM library. The HREX method was implemented 

using the OpenMM C++ API and Message Passing Interface (MPI). All MD simulations used the 

Langevin integrator with a friction coefficient of 0.1 ps-1 and a timestep of 22 fs to propagate the 
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equation of motion. Periodic boundary conditions with a 150 Å cubic box was applied for all 

simulations. For the HREX simulations, 400 million steps were simulated for each replica. The 

HREX simulation yields the Kd vs. β data (Figure 4.2). For each HREX simulation, the first 50 

million steps were discarded prior to data analysis. The optimal values of β for the two peptides 

(β���3:x��23�
���  and β���3:�����0

��� ) that reproduce the experimental Kd of the binary complexes were 

calculated from the Kd vs. β plot through curve interpolation using equation 4.1, which describes 

the relationship between Kd and β with the entropy change ΔS, enthalpy change ΔH, and 

temperature T as three parameters. The derivation of this equation is shown in a previous paper 

(68). For each unbiased simulation, we simulated 30 billion steps (0.66 ms) for binary systems and 

60 billion steps (1.32 ms) for ternary systems with β set to βopt calculated from HREX. Snapshots 

were collected every 10,000 steps for data analysis. 

ln(𝐾%) = ln l3PP.
p
o − t∆�

wt
+ u�

wt
𝛽 − ln z𝑒𝑥𝑝 lt∆�

wt
− ��
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Data Analysis.  

The dissociation constant Kd is calculated based on the fraction of native contacts (Q) formed 

between TAZ1 and the ligand. Native contact was considered formed if the pair distance is within 

1 Å of the native distance. The ligand is considered to be bound if Q > 0.1 and the associated Kd 

is calculated from the fraction of unbound states Pu (number of unbound snapshots / total number 

of snapshots) using equation 4.2. 

𝐾% =
3PP.
p
× mn[

32mn
                                                                                (4.2) 

Markov State Model Analysis.  

The unbiased trajectories provide valuable kinetics information of the TAZ1 protein switch and 

can be better analyzed by a Markov state model (70, 71). As discussed in the main text, we consider 

CITED2 to be either bound (Q > 0.1) or unbound (Q < 0.1); and HIF-1α to be bound (Q > 0.3), 
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partially bound (0.1 < Q < 0.3), or unbound (Q < 0.1). We build a Markov state model using the 

unbiased trajectory of the CITED2:TAZ1:HIF-1α ternary complex with 5 states based on this 

classification: TAZ1 (free-TAZ1), TAZ1 with bound CITED2 (TAZ1:CITED2 complex), TAZ1 

with partially bound HIF-1α (TAZ1:p-HIF-1α complex), TAZ1 with bound HIF-1α (TAZ1:HIF-

1α complex), and TAZ1 with bound CITED2 and partially bound HIF-1α (CITED2:TAZ1:p-HIF-

1α complex), as shown in Figure 4.3. We chose 200 snapshots (2,000,000 dynamic steps) as the 

lag time for the model. The Markov state model was built based on the trajectories with discretized 

states using the MSMBuilder package (70). 
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Chapter 5 Conclusions 

This dissertation describes new advances of coarse-grained models in protein folding and protein-

protein interactions. By studying the folding mechanism of SsIGPS, a TIM barrel protein, the KB 

Gō coarse-grained model was used to study a large protein (>200 residues) for the first time. The 

simulations show good overall agreement with the experiments in capturing the regions that fold 

first and in capturing a rate-determining state. The simulations not only enhance our understanding 

of the folding mechanism of SsIGPS by providing atomic-level resolution but also consolidate the 

robustness of the KB Gō model in modeling large proteins. By studying the allosteric regulations 

in the KIX and the TAZ1 domain of the CPB/P300 transcription co-activator, the EIKB Gō coarse-

grained model shows success in modeling both positive/negative allosteric effects. The HREX 

enhanced sampling method developed in this dissertation provides a framework to rapidly calibrate 

this type of model and to efficiently calculate the dissociation constant, which is essential for 

studies of the allosteric effect. The EIKB model is a variant of the original KB model with explicit 

electrostatics. The MD simulations using the EIKB model found two vastly different allosteric 

mechanisms in KIX and TAZ1. The cooperative/positive allosteric effect in KIX is through a 

reduced entropy mechanism in which a prebound ligand reduces the entropy cost for the second 

ligand to bind, whereas the negative allosteric effect of the TAZ1 protein switch is due to 

electrostatic forces in which the strong electrostatic interactions between CITED2 and TAZ1 allow 

CITED2 to efficiently displace HIF-1α. From these case studies as described in this dissertation, 



 73 

we can conclude that the coarse-grained model is a powerful tool to investigate and quantify the 

mechanism of protein folding and protein-protein interactions. 

Though coarse-grained modeling provides significant insights into some problems of protein 

folding and protein-protein interactions that cannot be easily answered by experiments, it is still 

far from being perfect. Here I wish to share some possible future directions. One possible direction 

is in the field of trajectory analysis. MD simulations generate trajectory data which are high-

dimensional time series. In order to make sense of these data and get human-comprehensible 

knowledge, we typically need to perform proper dimension reductions. However, the choice of the 

right dimension reduction approach is still very subjective and heavily depends on the researcher’s 

experience and the knowledge of the simulated system. In chapter 2, two conventional physics-

based metrics, the radius of gyration and the fraction of native contacts, were chosen as the reaction 

coordinate to study the protein folding mechanism. However, these physics-based metrics are not 

perfect and some important states may not be distinguishable using these reaction coordinates. To 

develop more objective and automated dimension reduction methods, new techniques in the field 

of machine learning and signal processing may be helpful. For example, one recent methodological 

progress is called the time-structure based independent component analysis (tICA), which has been 

shown to be a good dimension reduction method for protein folding (74). The tICA method 

considers the time correlation of the snapshots and selects the reaction coordinates that correspond 

to slow timescales. A potential method that can systematically improve the data analysis for 

coarse-grained modeling is the Markov state model (MSM) (70, 71). MSM provides an automated 

framework for the MD trajectory analysis that provides a human-comprehensible picture of the 

underlying processes. Nowadays, most of the applications of MSM are in the trajectory analysis 

of full-atomic simulations. The major challenge of using MSM for coarse-grained modeling is the 
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feature engineering in which many commonly used features for full-atomic models (e.g. dihedral 

angles) may no longer exist nor remain suitable for coarse-grained models.   

Another possible future direction is the force field improvement for the coarse-grained model. The 

general framework of the KB Gō model has been proved to be robust in the past two decades. No 

obvious deficiency was found in modeling the protein folding processes as compared to the 

experimental results (75–77). However, some issues were found in the KB Gō model in modeling 

protein-protein interactions such as the overestimated intrinsic helicities of IDPs (10), the 

underestimated binding affinities of IDPs (10), and the lack of electrostatics (68). These issues 

were still not adequately addressed so far. Current method to compensate the overestimated 

intrinsic helicities of IDPs is to use a scaling factor to scale down the intra-molecular native 

contacts of the peptide. Though the scaling factor has huge impact on the binding entropy, the 

method to compute the scaling factor is still qualitative and empirical. Therefore, more rigorous 

method should be developed in the future. In chapter 3 and 4, electrostatics was found to be 

important for modeling IDPs in some systems. Therefore, the balance between the short-range 

native contact interactions and the long-range electrostatic interactions is very important for 

studying protein-protein interactions. However, the rigorous method to properly balance the native 

contacts forces and the electrostatic forces remains to be explored in the future. Another interesting 

problem that has not been fully addressed in this dissertation is to model ions in the KB model. In 

chapter 5, a zinc-finger force field for the KB model was empirically developed. It would be 

interesting to develop a general framework to parameterize ions such as zinc for the KB model in 

the future.  
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