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4.2 Median RMSD and success rates for the augmented decoy sets (Figure 4.1D) of
the systems in the leave-one-out training database. Listed are the results obtained
when the best poses were selected using the docking score terms and classifiers that
were trained using the docking score terms, our pose fingerprint, and docking scores
plus our pose fingerprint as learning features. For the pose classifiers, we include
results for classifiers that we trained with the nativeness threshold set to 1.0, 1.5,
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ABSTRACT

Determining the structure of RNA in the presence of drug like molecules is a cru-

cial step in any drug development campaign. Standard experimental approaches are

expensive and time-consuming, and current state-of-the-art computational methods

are too inaccurate to be useful. In principle, computer docking can be used to pre-

dict the 3D structure of RNA-ligand complexes. However the scoring functions which

are accompanied by the available docking programs for pose ranking of RNA-ligand

complexes miss-classify native like poses among a set of decoy poses. As such, there

is a need for the development of fast, easy, and precise prediction methods for de-

termining the 3D structure of RNAs. In theory, nuclear magnetic resonance (NMR)

spectroscopy derived chemical shifts contain information about the local chemical

environment at each site in a molecule and so can be a source of rich structural in-

formation. In this work, the goal is to predict the structure of RNA-ligand complexes

using NMR chemical shifts. To that end, we explore the effect of different machine

learning algorithms and ring current models to accurately predict the chemical shifts

for standard RNA-ligand complexes. Extra-Randomized trees machine learning al-

gorithms and Pople ring current model were found to be the most accurate ones at

predicting the chemical shifts of RNA-ligand complexes.

Next we explored the use of chemical shifts to guide the 3D structure prediction

of RNA-ligand complexes starting from RNA sequence. We applied CS-Fold, an

in-house method which utilizes chemical shifts to guide the secondary structure pre-

ix



diction of RNAs. From the best predicted secondary structures using CS-Fold, we

generated de novo 3D models of RNAs using the Fragment Assembly of RNA with

Full Atom Refinement (FARFAR) approach. We used chemical shifts predicted by

LarmorD to refine those 3D structures. We found that CS-Fold (the CS-guided sec-

ondary structure prediction approach) combined with Rosetta de novo protocol for

3D motifs prediction significantly enhanced the recovery rates to 50% compared to

20% obtained by the RNAStructure and Rosetta combination. Next we used rDock

to dock the ligand from the 10 best predicted 3D structures of the RNA and filter

the poses based on the chemical shift errors. This study motivated us to build ma-

chine learning models based on a molecular fingerprinting approach that can recover

native-like RNA-ligand structures from non-native ones in a decoy set as described

below.

Next, we describe RNAPoser, a computational tool that estimate the relative

“nativeness” of a set of RNA-ligand poses using machine learning pose classifiers. We

trained our pose classifiers on molecular “fingerprints” that were a fusion of atomic

fingerprints. These fingerprints encode the local “RNA environment” around ligand

atoms. Using the classification scores from our RNAPoser classifiers and ranking

the poses based on those scores, we found that the recovery of native like poses is

significantly better than those obtained from just using the raw rdock docking scores.

We also performed a leave-one-out validation approach and found that RNAPoser

could recover ∼80% of the poses that were within 2.5 Å of the native poses, in 88

RNA-ligand complexes we explored. Likewise, on a validation set of 17 complexes,

we could recover poses in ∼70% of the complexes. RNAPosers could be used as a

tool to help in RNA-ligand pose prediction and hence we make it available to the

academic community via https://github.com/atfrank/RNAPosers.
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CHAPTER I

Introduction

1.1 Biological Context

1.1.1 Nucleic Acid Basics

Nucleic acids are the building blocks of life because of their role in the storage

and transmission of genetic information as well as expression of that genetic infor-

mation into proteins. There are two closely related types of nucleic acids, namely,

deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). While DNA is vital for

storing the genetic instructions and its transfer to new offspring(s) for all living or-

ganisms and for the development of cells, RNA molecules act as a substrate for the

ribosome mediated decoding of genetic instructions into proteins and regulation of

gene expression.

The building blocks of RNA molecules are knows as nucleotides which consist of

3 components: a sugar, a base and a phosphate group. The sugar is a five-membered

ring, where C1' connects to one of the bases and C5' connects to the phosphate group.

The bases are adenine (A), cytosine (C), guanine (G), and uracil (U). The nucleic

bases, purines (A and G) and pyrimidines (C and U) are aromatic heterocarbon rings

and their sequence in a polynucleotide chain is the primary structure of RNAs. A

nucleotide has six backbone torsion angles (α, β, γ, δ, ε, ζ) within the sugar-phosphate

backbone and one glycosidic torsion angle around the covalent bond connecting sugar

1
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and base moiety. All these structural features including the sugar and torsion angles

constitute the structural parameters of a RNA three-dimensional(3D) structure.

RNA structure is very diverse due to the presence of wide range of conformational

flexibility within the structural components. These structural components comprises

of Primary component which is the nucleic base sequence, Secondary component

which includes the base pairing information of the nucleic basis on top of their pri-

mary structure and Tertiary component which is the arrangement of the secondary

structure in the three dimension space. The spatial arrangements of these secondary

structural elements bring variations in the 3D structure of RNA molecules. Interest-

ingly, the diversity in RNA 3D structure comes from the fact that RNA 3D structure

is folded primarily from a single strand, rather than two complementary strands like

DNA. Since the single stranded sequence is typically not self complementary unlike

DNAs, only a few specific stretches of sequence can fold back on themselves to form

double helical regions with Watson-Crick (WC) base pairs (A:T and G:C base-pairs)

in the secondary structure. The possibility of formation of non-Watson-Crick G:U

base pairing may also promote double helical structures. The bases which cannot

form base pairing of any kind (unpaired bases) provide relatively unrestricted con-

formational contribution to the RNA 3D structure.

1.1.2 RNA Structure-Function Relationship

In the central dogma of molecular biology, depicted in Figure 1.1, ribonucleic acid

(RNA) is the carrier of information from deoxyribonucleic acid (DNA) to proteins.

From the structural point of view, RNA is very similar to DNA with three major

differences: (1) RNA has nucleobase uracil (U) whereas DNA has thymine (T), (2)

RNA has ribose sugar whereas DNA has deoxyribose sugar (which lacks 2’-hydroxyl

group) and, (3) RNAs are single stranded where DNAs are double stranded. Apart
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Figure 1.1: Central Dogma of Molecular Biology

from the primary process of translating information from DNA to proteins (a process

commonly known as translation), RNAs are also involved in other gene regulatory

processes such as transcription initiation and post-transcriptional modifications.1–5

In general, RNAs are of two types: coding RNAs and non-coding RNAs. Coding

RNA sequences (like mRNA) are transcribed from genes and translated into proteins.

RNA molecules in the form of ribosomal RNA (rRNA), messenger RNA (mRNA)

and transfer RNA (tRNA) work together within the ribosomal protein synthetic

machinery to produce proteins. Other forms of RNA molecules, namely micro RNAs

(miRNAs), small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), long

noncoding RNAs (lncRNAs), and chromosomal RNAs (known as non-coding RNAs,

ncRNAs), in general, have been discovered and identified to be associated with the

regulations of important cellular processes.6–8 Even now, there still remain plenty of

RNAs with functions and encoding genes that are not known.9,10
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Recent discoveries highlight the important roles that RNAs play in modern cel-

lular biology, and they have revealed important links between RNA structure and

dynamics, and RNA functionality.11–18 Initially it was though that RNAs are just

the carrier of information from DNAs to proteins. However, besides the well known

coding RNAs: messenger RNA (mRNA), ribosomal RNA (rRNA) and transfer RNA

(tRNA), discovery of various forms of non-coding RNAs and post-transcriptional

modifications in the past few decades have drastically changed our views towards the

structure-function relationship of RNAs.19–21 It has been shown that RNA molecules

are capable of controlling the post-transcriptional expression levels of many genes22

(RNA interference), regulate stem cell pluripotency and cell division23 (long-non-

coding RNAs) and up-regulate the transcription of the genes24 (enhancer-RNAs). It

is also evident from several experimental and theoretical studies that the structural

dynamics of RNAs determine their functionality.25,26 For example Wade and et. al

showed a reduction in the bacterial gene expression of mRNA-effector complex which

was attributed to the adoption of a distinct structure that sequesters the ribosome

binding site.27 On the structure-function relationship note, it would be interesting

to develop methods that will enable RNA structure to be predicted with improved

accuracy. Better accuracy in turn will ensure more reliably how the structural fea-

tures of a certain RNA system are associated with its function, and then apply this

knowledge to design drug agents that exploit these structural features to cure sev-

eral diseases like dystrophy type 1 (DM1), prostate cancer, spinal muscular atrophy

(SMA), Huntingtons disease-like 2 (HDL2) and autism.28–30

1.1.3 RNA as a drug target

There is increased awareness that RNA molecules influence every step of gene

expression and regulation through activities that are attributable to its secondary
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GCGCGGAUAGCUCAGUCGGUAGAGCAGGGGAUUGAAAAUCCCCGUGUCCUUGGUUCGAUUCCGAGUCCGCGCACCA
(((((((..((((.....[..)))).(((((.......))))).....(((((..]....)))))))))))).---

A

B C

Figure 1.2: A)Primary B) Secondary and C) Tertiary Structure of RNA

and tertiary structures (Figure 1.2).31–34 As such, targeting the RNA structure with

a small molecule ligand that chemically binds in a structure specific manner can

inhibit the functioning of mis-regulated RNAs. However, there is huge conforma-

tional flexibility associated with binding of a small molecule ligand to RNA, which

comes from the ability of RNA molecules to undertake a variety of tertiary conforma-

tions. Extensive experiments by spectroscopic methods35–40 have been undertaken

to explore the various RNA tertiary structures. For example Bardaro and colleagues

used (13)C NMR relaxation experiments to examine conformational changes in the

motional landscape of HIV-1 TAR in the presence of ligands.41 Those experiments

have significantly improved our understanding of the RNA-ligand interactions and

the structural changes in RNA after ligand binding.
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RNAs also play a significant role in infectious diseases, especially in the case of

RNA viruses that rely on a single stranded RNA genome, and hence have become

attractive as potential drug targets.42 The linking of single-stranded with double-

stranded regions within RNAs leads to a well defined 3D structure that can be

selectively targeted by small-molecule ligands. Small molecules can be very efficient

inhibitors of a particular RNA target as they can recognize specific three-dimensional

structures.43,44 Examples of viral RNAs as drug targets include aminoglycosides

which can act as inhibitors of the dimerization initiation site of Human immunodefi-

ciency virus(HIV)-1 RNA45 and Hepatitis C virus internal ribosome entry site (HCV

IRES).46

RNA activity generally depends on how it interacts with the other molecules in the

cell. For example, riboswitches regulate gene expression by interacting with small

molecule ligands such as ions, amino acids, vitamin B12, thiamine pyrophosphate

(TPP) or flavine mononucleotide (FMN).47 Riboswitches are attractive antibacterial

drug targets since they are very common in bacterial cells and rarely occur in eu-

karyotic cells.48,49 Bacterial rRNAs are another (antibiotic) drug target since they

constitute the active site of ribosomes. Antimicrobials that inhibit protein synthesis

in bacteria act by binding to a particular site of the ribosomal RNA with various

degrees of selectivity. Despite the lack of specificity, these antimicrobials have shown

the viability of the small-molecule approach for RNA targeting and remain an im-

portant source of inspiration for the design of new compounds. Not only coding

but also ncRNAs have been used for small-molecule targeting. An example of this

is nucleotide repeat expansions like in fragile X syndrome, myotonic dystrophy or

spinocerebellar ataxia and more recently oncogenic ncRNAs such as microRNAs.

Apart from antibacterial targets such as bacterial ribosome and antiviral targets
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such as trans-activating response RNA (TAR) in HIV, there is a third class of RNA

targets which is the human mRNA.50

RNA-ligand interactions are generally divided into 3 types: nonspecific electro-

static interactions (like between the +ve charged ligand and the -ve charged RNA

phosphate backbone), specific interactions (like direct hydrogen bonding or van der

Waals (VDW) interactions) and stacking interactions (between RNA bases and aro-

matic ligands).51 The interactions between the ligands and the WC edge of the RNAs

in combination with stacking interactions have been proposed to play a major role

in ligand selectivity and recognition. All these RNA-ligand interactions fold into a

particular 3D structure. Additionally, small synthetic compounds are structure spe-

cific, making the study of a given target RNA’s structure of paramount importance

to design ligands which are efficient and selective.52,53

1.2 Techniques and Methods

1.2.1 Structure Determination Techniques

The three most powerful experimental methods to determine RNA-ligand struc-

tures are X-ray crystallography,nuclear magnetic resonance (NMR) and cryogenic

electron microscopy (cryo-EM). X-ray diffraction can solve very big complexes with

high resolution, but requires a purifiable and crystallizable RNA, and provides lim-

ited information about the dynamics. NMR needs the purified sample to solve RNA

structure in solution and provides solution state dynamics, but is limited to molec-

ular weights below 50 kDa. With recent advances in direct electron detectors,54,55

Cryo-EM is increasingly used for structure determination of macromolecules with

molecular weights above 65 kDa. But the application to RNA-ligand and RNA-

protein (RNP) complexes is limited due to extremely high conformational flexibility

of large RNAs (e.g., viral RNA segments > 200 kDa) and the inaccurate orientation
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assignment for smaller, more rigid RNAs (< 30 kDa).36 In the past decade, much

of the emphasis has been given to determine protein structures as opposed to RNA

structures. The statistics from Protein Data Bank (PDB) (http://www.rcsb.org)

clearly show this trend which has 145,836 (as of Nov 3, 2019) protein structures de-

posited, whereas the Nucleic Acid Database (http://ndbserver.rutgers.edu) has less

than 3,300 RNA structures. About 20% of the RNA structures deposited in Nu-

cleic Acid Database were determined by NMR with an average molecular weight of

8 kDa.56 Despite the existence of numerous structural determination techniques, the

current understanding of the RNA structure-function relationships is limited due to

the lack of high-resolution structural information.

Each of the structural determination techniques mentioned above have some lim-

itations. Developing computational methods that can leverage the experimental

information provided by these techniques can lead to a better understanding of the

RNA-world. X-ray crystallography cannot be applied to most RNAs as they are

difficult to crystallize and even for the crystalline structure it only provides a par-

tial picture of the relevant single averaged structure. NMR on the other hand can

provide information about the solution state dynamics and there is abundant high-

resolution experimental information readily available even in the presence of large

scale flexibility, which makes for an excellent candidate in the development of struc-

ture determination methods using NMR observable. NMR spectroscopy provides

dynamic structural information on pico-second to millisecond timescales meaning it

is best suited to study RNA-bound structures that undergo structural changes on a

variety of timescales. NMR chemical shift, the most accurate and abundantly avail-

able parameter provides details on the local structure and can be used to fingerprint

the structure of RNA. We envisioned that combining computational modeling using
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NMR observable would create breakthroughs in determining RNA structures in the

presence of ligands and could help in expanding the RNA structure database.

1.2.2 NMR Chemical shift

In NMR spectroscopy, the energy levels of a spin active nuclei when placed in an

external magnetic field are split in to half which gives rise to resonance frequency

between those levels. The external applied magnetic field interacts with the internal

local magnetic field around the nucleus and produces an effective resultant magnetic

field which is responsible for the resonance frequency. The difference in energy levels

corresponds to this resonance frequency, are directly proportional to the chemical

shift, for the nuclei in the presence of the magnetic field.

(1.1) Beff = (1− σ)B0

Where Beff and B0 are the effective and external magnetic field respectively, and σ

is the chemical shielding.

This effective resonance frequency is also referred to as the larmor precession,

which varies because the actual magnetic field, B, at the nucleus is always less than

the external field B0 (Figure 1.3). Since the extent of shielding is proportional to the

external magnetic field B0, field independent units for the chemical shifts, values,

which has units of parts per million (ppm).

(1.2) δ =
ν − νref
νref

× 106

here:

(1.3) ν =
γB0

2π
(1− σ)
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Figure 1.3: Nucleic level splitting of a spin active nuclei in the presence of external magnetic field

The magnetic field experienced by a nucleus in a molecular system is influenced

by various factors, including the local electron distribution induced by the rotation of

electrons around each of the nucleus. Further, the electron distribution depends on

molecular geometry, such as bond lengths, bond angles, torsion angles, presence and

absence of other molecules, etc. Differences in these molecular geometries account

for the variation in the spin energy levels and resonance frequencies, which lead to

the variations in observed NMR frequencies for the same kind of nucleus. It is for

this reason that not all resonances occur at the same position for the same kind of

nucleus. As such, the nucleus is shielded from the external magnetic field and the

chemical shift is a measure of the extent by which this shielding is influenced by

many structural features within the molecule.

Much effort has been spent working to understand the relationship between struc-

ture, dynamics and chemical shifts. Chemical shifts have been used as restraints
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in some computational structure determination workflows.57 For example chemical

shift guided Molecular Dynamic (MD) simulations were used to extract structural

insights despite the affect which various conformational degrees of freedom pose on

shielding.58,59 To completely understand chemical shift-structure relationship, reli-

able means of calculating chemical shifts needs to be developed. In theory, chemical

shift can be determined using this expression

(1.4) σ − 1 =

(
∂2E

∂µ∂B0

)
given that the magnetic interaction hamiltonian (or the wavefunction) is known.

Where E is the interaction energy between a probe nucleus with magnetic dipole

moment µ in the presence of effective magnetic field Beff given by:

(1.5) E = −µBeff

Various methods within the quantum domain using ab-initio calculations and density

functional theory (DFT) have been developed to calculate shielding,60–62 but they

require large basis sets, are computationally expensive, and are inaccurate at predict-

ing shielding for large systems. Hybrid QM/MM approaches have been developed to

reduce the computational expense. These hybrid methods operate by treating the

nucleus and it’s neighbors quantum mechanically and the rest of the system classi-

cally.63,64 Alternatives to quantum approaches are the empirical methods which re-

places the electronic Hamiltonian and electronic interactions by parametric formulas.

Most of the empirical methods assume the additive and local nature of chemical shift

and are thus divided into short range, electrostatic and magnetic components.65,66 A

lot of models have been developed to use the atom coordinates parametrized against

a database of chemical shifts and solved structures.67–69

Chemical shifts have been extensively used to study proteins, but the use of
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chemical shifts to study RNA structure is rather limited. Some studies have tried to

establish a connection between chemical shifts and torsion angles, ring currents in

the aromatic rings, stacking interactions, electrostatic and magnetic interactions but

only few studies have been carried out that infer structures from predicted chemical

shifts.70–73 These studies have shown that 1H and 13C chemical shifts are useful for

structure validation and refinement. Hence accurately predicting the chemical shifts

is vital for the structure determination of RNA and RNA containing complexes.

In this dissertation, I will describe my modest approach to study the effects of ring

currents on accurately predicting the chemical shifts of RNAs using machine learning

approaches (Chapter 2). Following the successful prediction of RNA chemical shifts,

I will explore the use of chemical shifts in predicting the structure of RNA, starting

from sequence (primary structure), to secondary and tertiary structure in the absence

and presence of ligands (Chapter 3). To aid the prediction of chemical shifts, I

use machine learning techniques (described below) which are increasingly becoming

popular and were found to be robust at predicting the chemical shifts.

1.2.3 Machine Learning (ML) Basics

According to Mitchell (1997), “A computer program is said to learn from expe-

rience E with respect to some class of tasks T and performance measure P, if its

performance at tasks in T , as measured by P, improves with experience E.” In other

words, machine learning is a field in which algorithms have an ability to learn by

itself and make a prediction for unseen data.

More precisely, machine learning (ML) is a sub-field of computer science in which a

computer (machine) can learn by itself (learning) given some initial knowledge. This

initial knowledge is provided in terms of ‘training’ data and tested on a ‘testing’ data.

An algorithm is a method or a function which are used on the training dataset to
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generate an ML model e.g. linear regression, decision trees, and ensemble methods. A

model is a data structure which stores a representation of a dataset, which are known

as its weights and biases. Models are taught by training an algorithm on a dataset.

The attributes and values in those datasets are referred to as the features. If one is

predicting a categorical output (discrete set of values) then its called Classification

whereas if one is predicting a continuous output (range of possible values on number

scale) then its called regression. Loss is the difference between the true value and

the predicted value. Each model tries to minimize the loss on the training data

which gives an indication of how the model is doing (the lower the loss the better the

model). Any ML model is then assessed on a testing set by a performance metrics

e.g. accuracy, sensitivity or confusion matrix.

An important property of ML predictive models is the bias- variance tradeoff.

Bias comes from erroneous assumptions in the learning algorithm whereas variance

stems from sensitivity to small fluctuations in the training set. High bias can cause

the model to miss relevant information between the target and features (underfitting)

whereas high variance can lead the model to incorporate random noise in the training

data (overfitting). If the model is too simple and has very few parameters then it

is characteristic of high bias and low variance. Conversely, a characteristic of a low

bias model is if it has a large number of parameters. Finding the right balance is

crucial to prevent overfitting and underfitting the data. This tradeoff exists because

the algorithm cannot be more complex and less complex at the same time, and ana-

lyzing the bias-variance decomposition can help in inferring the learning algorithm’s

expected generalization error.

There are several algorithms within the ML field, like linear methods, decision

trees, ensemble of trees, support vector machines, neural networks, etc. We will focus
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on two of these algorithmic domains: linear and ensemble methods. Linear methods

are pretty straightforward to understand, explain, and implement. They can also

be regularized to avoid under- or overfitting, and can also be updated when new

data comes in. But linear models are harder at dissecting non-linear and complex

relationships within the data. e.g. linear regression, ridge regression, lasso lars

regression. Ensemble methods are several decision trees combined together with the

final prediction being an average of the trees. Decision trees learn in hierarchical

fashion by splitting the dataset into separate branches, which allows them to learn

non-linear relationships. Ensemble methods are robust to outliers and perform very

well in practice. Some exmaples of ensemble methods are Random Forest and Extra

Randomized trees.

Linear Methods

The following are a set of linear methods used in this thesis and can be used for

regression or classification. The target value is expected (assumed) to be a linear

combination of the features given by

(1.6) y = w0 + w1x1 + .......+ wnxn

and w′s are the weights of the models to be computed by the algorithm.

Linear Regression

Linear Regression fits a model by minimizing the residual sum of squares between

the observed values and the predicted values. Mathematically:

(1.7) min
w
‖Xw − y‖22

The linear methods works best if the features are uncorrelated. If the features

vectors are correlated, the design matrix becomes close to singular and the estimate
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becomes highly sensitive to random errors in the observed target.

Ridge Regression

Ridge regression tries to address some of the shortcomings of the Ordinary Least

Squares by imposing a penalty of second order (residual sum of squares a.k.a. L2

prior) on the coefficients.

(1.8) min
w
‖Xw − y‖22 + α ‖w‖22

where alpha controls the amount of shrinkage: The larger the value, the greater the

shrinkage and which maintains the robustness to collinearity.

Lasso Regression

Lasso is a linear model that imposes a penalty (regularization) of first order (L1

prior)

(1.9) min
w
‖Xw − y‖22 + α ‖w‖1

Lasso is very useful in estimating sparse coefficients due to its tendency to prefer

solutions with lesser non-zero coefficients (and thereby reducing the number of fea-

tures upon which the given solution is dependent). There are two implementations

of Lasso one that uses coordinate descent to fit the coefficients and the other uses

Least Angle Regression (LARS algorithm).

LassoLars

LassoLars is a lasso ML model that uses the LARS algorithm implementation and

yields the exact solution, which is piece-wise linear as a function of the norm of

its coefficients. Least-angle regression (LARS) in itself is a regression algorithm for

high-dimensional data, is very similar to forward step-wise regression, and can be

incorporated with the Lasso method. It works by finding the features that are most

correlated with the target at each step.
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Bayesian Ridge

In the Bayesian ridge, regression is formulated using probability distributions rather

than point estimates, as in linear regression (above). The response, y, is drawn from

a probability distribution, sampled from a normal distribution:

(1.10) y ∼ N(BTX, σ2I)

The model parameters are estimated by maximizing the log marginal likelihood.

Ensemble Methods

Ensemble methods combines the predictions of several base estimators built with

any given algorithm (decision trees) to improve generalizability and robustness over

a single base estimator. The combined estimator is better than any single base es-

timator (on average). All the base estimators are build independently (in averaging

methods) and then the predictions are averaged over them resulting in reduction of

variance. There are mainly two types of ensemble methods: Bagging and Boost-

ing. Bagging considers homogeneous weak learners, learns them independently from

each other at the same time and combines those weak learners using a deterministic

averaging strategy. Boosting considers homogeneous weak learners, learns them se-

quentially in a adjustable way and combines those weak learners using a deterministic

process. Bagging reduces variance of the combined ensemble models compared to its

component parts whereas boosting reduces bias of the combined ensemble models

compared to its component parts (reducing variance at the same time if possible).

Random forest and Extra Randomized trees are examples of bagging and gradient

boosting is an example of boosting ensemble methods.

Bagging

In ensemble methods, bagging belongs to a class of algorithms that build several in-

stances of a black-box estimator on random subsets of the train data, and average the
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individual predictions to form a final prediction. This helps to reduce the variance

of a base estimator (a decision tree in our case), by introducing randomization into

the procedure. Then these base estimators are combined to make an ensemble out

of it which reduce over-fitting. Bagging work best with strong and complex models

and in scikit-learn, bagging methods are offered as a unified Bagging Classifier or

Regressor, which take a base estimator as an input along with parameters specifying

the strategy to draw random subsets. We used decision trees as our base estimators

for the Bagging method.

Random Forest

Each tree in the random forests (Classifier or Regressor) ensemble is built from a

sample drawn with replacement (bootstrap) from the training dataset and the best

split is computed from all the input features (or a random subset of them) dur-

ing splitting each node while tree construction. Independent decision trees typically

exhibit high variance (over-fitting) but these two sources of randomness in forests

helps in decoupling the prediction errors (by averaging those predictions) thereby

decreases the variance of the random forest estimator. Random forests tends to have

a reduced variance by combining a lot of trees, but at the cost of a slight increase in

bias.

Extra Randomized Trees

In Extra Randomized Trees, thresholds are drawn at random for each feature (in-

stead of looking for the most distinctive thresholds for splitting as in RF). The best

of these randomly generated thresholds is chosen as the splitting. This reduces the

variance of the model even more, at the expense of a slight increase in bias.

Gradient Boosting

Gradient Boosting trains an estimator in a gradual, additive, and sequential manner.
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It improves the shortcoming of the estimators by using gradients in the loss function

(y=ax+b+e, where e is the error term). The loss function is a measure of how good

the ensemble model’s coefficients are at fitting the training data. By using gradient

descent algorithm and updating our predictions based on a learning rate, we can find

the values of the parameters where the error is minimized. In other words, we are

updating the predictions at every step such that the sum of our residuals is close to

0 (or minimum) and predicted values are more or less close to actual values.

ML has become a popular and powerful tool for analyzing data and capturing in-

sights from features embedded in the data. A number of studies have shown that ML

can achieve state-of-the-art prediction performance in various learning tasks, from

image and speech recognition to natural language processing. ML has also been

successfully applied to solve many prediction problems in computational biophysics,

such as protein structure prediction, RNA splicing prediction, RNA-protein binding

prediction, and protein and RNA structure prediction.74–78 There are several stud-

ies which use high and low resolution experimental information combined with ML

approaches to accurately predict the structure of biomolecules.79,80 These methods

have been prevalent in protein structure prediction and are becoming increasingly

popular in RNA structure prediction. The reason ML is becoming increasingly popu-

lar as opposed to the quantum approaches to calculate chemical shifts is because it is

easier and faster to implement and does not require a lot of computational resources,

yet still provides reasonably accurate results.

1.3 Aims and Objectives

In this thesis, I use linear and ensemble methods to study the effects of different

ring currents models on the prediction of chemical shifts. Next I use those chemical
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shifts to refine the structure of RNA complexes from sequence up to 3D structure.

I explore the possibility of chemical shifts to refine the RNA-ligand structure. Then

I use a molecular fingerprinting approach and random forest ML classifier to build

RNAPoser, which was able to recover native-like pose from a set of decoy pools.

In theory, NMR spectroscopy derived chemical shifts contain information about

the local chemical environment at each site in a molecule, and so can be a source of

rich structural information. Significant efforts has been been expended to better un-

derstand the relationship between structure and chemical shifts. As alluded earlier,

standard experimental approaches are expensive and time-consuming, and current

state-of-the-art computational methods are too inaccurate to be useful. As such, to

enhance our understanding of chemical shifts and their relationship to the structure,

precise methods needs to be developed to predict chemical shifts. Chemical shifts

are local phenomena, and depend on their local chemical environment for a partic-

ular nuclei. Chemical shifts can be influenced by phenomena including hydrogen

bonding, stacking interactions, electrostatic interactions, ring current, and magnetic

anisotropy. There are three different ring current models known in current literature,

namely, Pople, Johnson-Bovey and Haigh-Mallion, yet a side-by-side comparison of

these ring current models in predicting chemical shifts is yet to be performed.

Knowledge of 3D structures of RNA-ligand complexes is necessary to explore

molecular details and gain insights into the structure-function relationships. Sec-

ondary structural elements of RNAs (which include the WC and non-WC base pairs)

contribute to the overall 3D structure of RNAs. Numerous studies have been reported

that focus on the prediction of RNA secondary structure from the sequence, such as

the RNAStructure software tool developed by David H. Mathews lab. Yet accurately

predicting the structure of RNAs is still a challenge. As such, there is a need for the
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development of fast, easy, and precise prediction methods for determining the 3D

structure of RNAs.

1.4 Thesis Plan

In chapter 2, I explore how different ML methods perform in terms of predicting

the chemical shifts. In this chapter, I explore the accuracy of linear and ensemble

methods in predicting chemical shifts. Then the effect of different ring current models

is explored on the accuracy of chemical shift prediction.

In chapter 3, I explore the use of chemical shifts to guide the 3D structure pre-

diction of RNA-ligand complexes. Here, I use chemical shifts to guide the secondary

structure prediction of RNAs.81 Then I use chemical shifts to refine those gener-

ated models. This entire approach set the groundwork for predicting RNA-ligand

structure starting from sequence all the way to 3D structure using experimental

information.

In chapter 4, I trained a set of ML classifiers to recover native-like poses of RNA-

ligand complexes from non-native poses. The classifiers utilized a atomic finger-

printing approach, designed by my colleague Jingru, and encodes the local atomic

environments as simple distance-based features. The classifier I trained using these

fingerprint could more accurately recover native-like poses than current state-of-the-

art methods.
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[12] José Almeida Cruz and Eric Westhof. The dynamic landscapes of RNA architecture. Cell,
136(4):604–609, 2009.

[13] M Bryan Warf and J Andrew Berglund. Role of RNA structure in regulating pre-mRNA
splicing. Trends in biochemical sciences, 35(3):169–178, 2010.

[14] David M Mauger, Nathan A Siegfried, and Kevin M Weeks. The genetic code as ex-
pressed through relationships between mRNA structure and protein function. FEBS letters,
587(8):1180–1188, 2013.

[15] Eric J Strobel, Kyle E Watters, David Loughrey, and Julius B Lucks. RNA systems biology:
uniting functional discoveries and structural tools to understand global roles of RNAs. Current
opinion in biotechnology, 39:182–191, 2016.

21



22

[16] C Joel McManus and Brenton R Graveley. RNA structure and the mechanisms of alternative
splicing. Current opinion in genetics & development, 21(4):373–379, 2011.

[17] Kelsey C Martin and Anne Ephrussi. mRNA localization: gene expression in the spatial
dimension. Cell, 136(4):719–730, 2009.

[18] Alina Selega and Guido Sanguinetti. Trends and challenges in computational RNA biology,
2016.

[19] Amelia E Aranega and Diego Franco. Post-transcriptional regulation by proteins and non-
coding RNAs. In Congenital Heart Diseases: The Broken Heart, pages 153–171. Springer,
2016.

[20] Rong-Zhang He, Di-Xian Luo, and Yin-Yuan Mo. Emerging roles of lncRNAs in the post-
transcriptional regulation in cancer. Genes & diseases, 2019.

[21] Iain M Dykes and Costanza Emanueli. Transcriptional and post-transcriptional gene regulation
by long non-coding RNA. Genomics, proteomics & bioinformatics, 15(3):177–186, 2017.

[22] Andrew Fire, SiQun Xu, Mary K Montgomery, Steven A Kostas, Samuel E Driver, and Craig C
Mello. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis
elegans. nature, 391(6669):806, 1998.

[23] John L Rinn and Howard Y Chang. Genome regulation by long noncoding RNAs. Annual
review of biochemistry, 81:145–166, 2012.

[24] Ryan J Taft, Craig D Kaplan, Cas Simons, and John S Mattick. Evolution, biogenesis and
function of promoter-associated RNAs. Cell Cycle, 8(15):2332–2338, 2009.

[25] Melanie A O’Neil and Jacqueline K Barton. 2-Aminopurine: a probe of structural dynamics
and charge transfer in DNA and DNA: RNA hybrids. Journal of the American Chemical
Society, 124(44):13053–13066, 2002.

[26] Jiri Sponer, Giovanni Bussi, Miroslav Krepl, Pavel Banas, Sandro Bottaro, Richard A Cunha,
Alejandro Gil-Ley, Giovanni Pinamonti, Simón Poblete, Petr Jurecka, et al. RNA structural
dynamics as captured by molecular simulations: A comprehensive overview. Chemical reviews,
118(8):4177–4338, 2018.

[27] Wade Winkler, Ali Nahvi, and Ronald R Breaker. Thiamine derivatives bind messenger RNAs
directly to regulate bacterial gene expression. Nature, 419(6910):952, 2002.

[28] Joseph D Puglisi, Ruoying Tan, Barbara J Calnan, Alan D Frankel, et al. Conformation of
the TAR RNA-arginine complex by NMR spectroscopy. Science, 257(5066):76–80, 1992.

[29] Thomas A Cooper, Lili Wan, and Gideon Dreyfuss. RNA and disease. Cell, 136(4):777–793,
2009.

[30] Manel Esteller. Non-coding RNAs in human disease. Nature reviews genetics, 12(12):861,
2011.

[31] Christine S Chow and Felicia M Bogdan. A structural basis for RNA- ligand interactions.
Chemical reviews, 97(5):1489–1514, 1997.

[32] Audrey Di Giorgio and Maria Duca. Synthetic small-molecule RNA ligands: future prospects
as therapeutic agents. MedChemComm, 2019.

[33] Masayuki Matsui and David R Corey. Non-coding RNAs as drug targets. Nature reviews Drug
discovery, 16(3):167, 2017.

[34] Kevin V Morris and John S Mattick. The rise of regulatory RNA. Nature Reviews Genetics,
15(6):423–437, 2014.



23

[35] VV Krishnan and B Rupp. Macromolecular structure determination: comparison of X-ray
crystallography and NMR spectroscopy. e LS, 2001.

[36] Kaiming Zhang, Sarah C Keane, Zhaoming Su, Rossitza N Irobalieva, Muyuan Chen, Verna
Van, Carly A Sciandra, Jan Marchant, Xiao Heng, Michael F Schmid, et al. Structure of the
30 kDa HIV-1 RNA dimerization signal by a hybrid cryo-EM, NMR, and molecular dynamics
approach. Structure, 26(3):490–498, 2018.

[37] Michael P Latham, Darin J Brown, Scott A McCallum, and Arthur Pardi. NMR methods for
studying the structure and dynamics of RNA. Chembiochem, 6(9):1492–1505, 2005.

[38] Seiki Baba, Ken-ichi Takahashi, Satoko Noguchi, Hiroshi Takaku, Yoshio Koyanagi, Naoki
Yamamoto, and Gota Kawai. Solution RNA structures of the HIV-1 dimerization initiation
site in the kissing-loop and extended-duplex dimers. Journal of biochemistry, 138(5):583–592,
2005.

[39] Nathan J Baird, Steven J Ludtke, Htet Khant, Wah Chiu, Tao Pan, and Tobin R Sosnick. Dis-
crete structure of an RNA folding intermediate revealed by cryo-electron microscopy. Journal
of the American Chemical Society, 132(46):16352–16353, 2010.

[40] Sarah C Keane and Michael F Summers. NMR studies of the structure and function of the
HIV-1 5-leader. Viruses, 8(12):338, 2016.

[41] Michael F Bardaro Jr, Zahra Shajani, Krystyna Patora-Komisarska, John A Robinson, and
Gabriele Varani. How binding of small molecule and peptide ligands to HIV-1 TAR alters the
RNA motional landscape. Nucleic acids research, 37(5):1529–1540, 2009.

[42] Mark EJ Woolhouse, Kyle Adair, and Liam Brierley. RNA viruses: A case study of the biology
of emerging infectious diseases. Microbiology spectrum, 1(1), 2013.

[43] Fareed Aboul-ela. Strategies for the design of RNA - binding small molecules. Future medicinal
chemistry, 2(1):93–119, 2010.

[44] Anton A Komar and Maria Hatzoglou. Exploring internal ribosome entry sites as therapeutic
targets. Frontiers in oncology, 5:233, 2015.

[45] Jean-Marc Jacque, Karine Triques, and Mario Stevenson. Modulation of HIV-1 replication by
RNA interference. Nature, 418(6896):435, 2002.

[46] Peter J Lukavsky. Structure and function of HCV IRES domains. Virus research, 139(2):166–
171, 2009.

[47] Jesse C Cochrane and Scott A Strobel. Riboswitch effectors as protein enzyme cofactors. Rna,
14(6):993–1002, 2008.

[48] Kenneth F Blount and Ronald R Breaker. Riboswitches as antibacterial drug targets. Nature
biotechnology, 24(12):1558, 2006.

[49] Ronald R Breaker. Prospects for riboswitch discovery and analysis. Molecular cell, 43(6):867–
879, 2011.

[50] Colleen M Connelly, Michelle H Moon, and John S Schneekloth Jr. The emerging role of RNA
as a therapeutic target for small molecules. Cell chemical biology, 23(9):1077–1090, 2016.

[51] Efrat Kligun and Yael Mandel-Gutfreund. Conformational readout of RNA by small ligands.
RNA biology, 10(6):981–989, 2013.
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CHAPTER II

Effect of Different Ring Current Models on NMR Chemical
Shift Prediction

2.1 Statement of Contribution

1. Aaron T. Frank, PhD: Conceived the project described in this chapter.

2. Sahil Chhabra, PhD Candidate (Chemistry and Scientific Comput-

ing): Generated the data to study the effect of ring current models on NMR

chemical shift prediction in this chapter; Independently wrote this chapter.

2.2 Introduction

Determining the structure of the RNA in the presence of drug like molecules is

a crucial step in any drug development campaign. NMR spectroscopy is an ideal

tool for studying the RNA-ligand interactions as it provide a range of structural

information about the RNA and RNA-binding properties of small molecule ligands.1

For instance, NMR-derived chemical shifts of an RNA, which are site-specific probes

of the local electronic environment within the RNA, change in the presence of ligands

such as small drug-like molecules. As such, NMR spectroscopy can be used to monitor

the binding of small molecules to RNA.

The data from various NMR techniques like ligand observed NMR techniques

have proven to be highly useful to study the nucleic acid-ligand interactions.1 The
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most significant usage of NMR derived chemical shifts in the presence of ligands is

in the validation of hits from high throughput screening campaigns. Restraints from

NMR spectroscopy combined with other experimental techniques like SAXS has been

shown to be used to predict the RNA 3D structure using a coarse grained model.2

In the “current affairs” Yu et.al.3 (April 2017) developed the 1H empirical chemical

shift perturbation (HECSP) method and a scoring function NMRScoreP to refine

the structure of the protein-ligand complex by comparing experimental and calcu-

lated chemical shift perturbation (CSP). NMR-CSP assisted docking has emerged as

a powerful tool for locating the binding site of ligands.4–17 However it is still difficult

to extract the CSPs that are induced by only ligand binding because of conforma-

tional changes in RNA-ligand complexes. Chemical shifts which adjust themselves

in presence and absence of ligands are ideal candidate to study the structure of

RNA-ligand complexes.

As mentioned, standard experimental approaches to calculate chemical shifts are

expensive and time consuming, and current state-of-the-art computational methods

are too inaccurate to be useful. As such, there is a need for the development of fast,

easy, and “precise prediction” methods for determining the 3D structure of RNAs.

Since NMR spectroscopy derived CS contain information about the local chemical

environment at each site in a molecule, so it can be a source of rich structural informa-

tion. Developing models using this “structural information” with better accuracy, in

turn, could elucidate how the key structural features of RNA systems are associated

with its function, and then apply this knowledge to understand how systems inter-

act, that is, what they bind to, and design drug agents that exploit these structural

features to solve medical problems.

As eluded earlier, chemical shifts a.k.a. ‘chemical fingerprints” of any molecule,
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which are readily accessible, precisely measured and sensitive to the structure can

resolve the structure of RNA-ligand complex. However accurately predicting these

chemical shifts is still a challenge. To address these challenge, I attempt to explore the

effect of different ring current models and machine learning algorithms at predicting

the chemical shifts of RNAs.

Ring current effects significantly influence the NMR chemical shifts in RNA and

RNA-ligand complexes. Understanding these effects is particularly important for the

development of accurate prediction methods of chemical shifts and the structures of

RNAs. In literature there are 3 different ring current models as follows in order of

their increasing complexity: Pople, Johnson-Bovey and Haigh-Mallion. In this work,

we first analyzed the the effect of different machine learning algorithms: ensemble

and linear, to accurately predict the chemical shifts for RNAs. Then we compare the

effect of different ring current models in terms of their ability to accurately predict

the chemical shifts.

The present study is aimed at elucidating the specific ring current effects of RNA

conjugated rings on the chemical shifts of RNAs. We elucidate this description using

the geometric factors and parameters that model the ring current effects of the con-

jugated rings on the chemical shifts of neighboring RNA atoms. Since most of the

results presented here are transferable to any 5 and 6 membered rings, this study will

find applicability in a lot of problems involving the analysis of ring current effects in

NMR shielding. Here we combine the results of the best machine learning algorithms

to predict the chemical shifts, with the results of exploring the major factors that

determine the chemical shifts in RNAs to build a high-quality structure-based pre-

dictor of RNA chemical shifts. We use these types of chemical shifts predictions in

chapter 3, to enable the refinement of RNA structures based on predicted chemical
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shift errors.

2.3 MATERIALS AND METHODS

In NMR spectroscopy, the nucleus is shielded from the external magnetic field,

and the CS is the measure of the extent to which this shielding is influenced by

the local electronic environment within the molecule. To predict the CS we encode

the local environment as features derived from the coordinates of RNA, and build a

machine learning model based on those features. In particular, for given spin-active

nuclei on a given residue in an RNA, their chemical shifts are predicted based on

hydrogen bonding status of the residue, the stacking interactions of the residue, the

torsions of the residues as well as the local magnetic anisotropy, ring-current effects,

and polarization effects. Below I give a brief description of each of the structural

features used in the prediction of chemical shifts.

2.3.1 Hydrogen Bonding

Hydrogen bonding exists between the base in both the RNA and DNA. In RNA

the canonical base pairs exist between adenine uracil pair (2 hydrogen bonds) and

between cytosine - guanine pair (3 hydrogen bonds). Since the chemical shift is in-

trinsically related to the local electronic environment, the changes due to hydrogen

bonding lead to a redistribution of the electron density thereby changing the CS of

the nuclei involved in the bonding. There is always a downfield shift (higher fre-

quency) for the electro-negative hydrogen bonded nucleus (O or N). The formation

of hydrogen bonds in base pairs results in downfield shift for the amino and imino

protons due to a decrease in the electron density around the hydrogen nucleus and

de-shielding effects from the acceptor atom.
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For the purpose of predicting chemical shifts, we calculate the number of hydrogen

bonding interactions present between the base-base, base-backbone, and backbone-

backbone inside each RNA residue. A distance cutoff of 3.5 Åand an angle cutoff of

135◦ between the hydrogen donor and acceptor was applied to determine the pres-

ence of a hydrogen bond. Both the conditions must be simultaneously fulfilled i.e.

donor and acceptor atom must be within the distance cutoff and the angle must be

grater the the angle cutoff to be accounted as a valid hydrogen bonding interaction.

2.3.2 Magnetic Anisotropy

In the presence of an external magnetic field the local circulation of electrons is

stronger in some orientations of the molecule than in others. This anisotropic elec-

tron circulation causes shielding (right shift in NMR) and de-shielding (left shift in

NMR) effects, which are called magnetic anisotropy effects. Aromatic rings like ben-

zene cause very large shielding for H placed above the ring, and smaller deshielding

for H to the side of the ring. This large up-field (above the ring) and down-filed (side

of the ring) shifts, is caused due to the stronger electron circulation in case when the

plane of the benzene ring is perpendicular to the magnetic field as opposed to when

it is parallel to it.

The shielding effects due to the magnetic anisotropy on a query atom k due to the

anisotropy of atom l were accounted for by Prado and Giessner-Prettre equation18

(2.1) δma,k =
1

3r5

∑
αβ

(3rαrβ − r2)(1.967Rαβ − 5.368Qαβ)

where r is the distance between the query atom k and atom l, α, β loop over all

x,y,z and Rαβ and Qαβ are the diamagnetic and paramagnetic components of the αβ
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magnetic susceptibility tensor of atom l.

2.3.3 Ring Current

Another feature incorporated in the predictive modeling of chemical shifts is the

ring current evaluated in the proximity of a simple conjugated system. The ring cur-

rent is simply the product of the ring current intensity and a geometrical parameter,

which captures the chemical environment around the ring and is calculated by the

distance of the query point from the ring and the angle it forms with the center of

the ring. The contribution to the CS by ring current (in ppm) is given by

(2.2) δR × 10−6 = iBG(ρ, z, φ)

Here i is the ring current intensity and G the geometric coefficient calculated by

different ring current models and B is a constant. There are theoretical models of

ring current effects, which emerged from both classical as well as quantum mechanical

approaches. Of the numerous theoretical models, three have received a considerable

attention owing to the ease of their implementation and the availability of the derived

empirical tables - PO (Pople), JB (Johnson- Bovey) and HM (Haigh-Mallion).

Pople

As per the Pople19 point dipole moment model, the expression for the change in

the isotropic nuclear shielding constant in ppm originated by the ring current effect

is given by

(2.3) ∆σPOring = 106 × ne2a2

4πmc2
× 3 cos2 Θ− 1

r3

where the angle θ is between the query point and the ring normal, r is the distance

from the center of the ring, n is the number of circulating electrons, a is the radius



32

of the ring (taken to be benzene ring radius 1.39 Å) and e,m, c have their usual

meaning.

Johnson-Bovey

In the Johnson-Bovey model,20 the complete classical description of the electric

current circulating in a loop of radius “a” is considered. The ring current model was

also extended to account the nature of the π orbitals by assigning two loops, above

and below the ring plane and both the loops possesses n/2 circulating electrons, and

the form of the equation for ∆σring in ppm is given by

(2.4) ∆σJBring = 106 × ne2

12πmc2a
×

2∑
p=1

 1√
(1 + ρ)2 + z2p

× C


where C is given by:

(2.5) C =

{
K(k)) +

1− ρ2 − z2p
(1− ρ)2 + z2p

E(k))

}

where ∆σring is expressed in a cylindrical coordinate system centered at the ring

center with z and rho given in the unit defined by the loop radius a. K and E are

the complete elliptic integrals given by following equations.

(2.6) K(m) =

∫ 1

0

[(
1− t2

) (
1−mt2

)]− 1
2 dt

(2.7) E(m) =

∫ 1

0

(
1− t2

)− 1
2
(
1−mt2

) 1
2 dt

(2.8) where, k =
(
4ρ/

[
(1 + ρ)2 + z2p

])1/2
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Figure 2.1: Geometric concepts used in the Ring Current Models

A separation of 1.28 Å(0.918 a, with radius a taken to be equal to the benzene

ring radius) between the loops was found to be optimal to represent the hydrogen

shielding in benzene.

Haigh-Mallion

(2.9) ∆σHMring = 106 ×KJring ×
∑
ij

Sij

{
1

r3i
+

1

r3j

}

In Haigh-Mallion21 Ring current expression, Jring is the algebraic (signed) triangle

area formed by the O projection of the query point O onto the ring plane and the ring

atoms i and j. ri and rj are the distances between O and atoms i and j, respectively.
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A B CPople Haigh-MallionJohnson-Bovey

Figure 2.2: Maps of the ring current geometric factors in the proximity of a benzene ring for A)Pople
B)Johnson-Bovey and C)Haigh-Mallion ring current models.

2.3.4 Stacking Interaction

The π stacking interactions are noncovalent interactions between aromatic rings

as they consist of π bonds. These interactions are important in nucleo-base stacking

within DNA and RNA molecules, which influence the electronic cloud around a

nucleus and subsequently the chemical shift. Stacking interaction numbers were

calculated similar to hydrogen bonding with a distance cutoff of 5 Å and angle cutoff

of 30◦. The distance between the two rings should be less than the distance cutoff

and the angle between two normals of the ring plane should also be within the angle

cutoff, with both conditions simultaneously true.

2.3.5 Torsion angles

Torsion angles in RNAs are dihedral angles, which are defined by 4 points in

space. The six main chain torsion angles (α, β, γ, δ, ε, ζ) around the covalent bonds,

χ around the glycosidic bond, and five around the sugar pucker (υ1, υ2, υ3, υ4) were

calculated.
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2.3.6 Polarization Effects

The electric field from a polar group or heavy atom can polarize an atom, thereby

changing the local electron density by increasing or decreasing the shielding around

that particular atom. The polarization effects were evaluated by the Buckingham

equation22 within the 10Å distance cutoff as the electric filed effects decays with

increasing distance:

(2.10) δpo = −2× 10−12EZ − 10−18E2

Here E is the electric field effect and Ez is the component of the filed in the

direction of the bond. For computing the electric field, the partial charges were

taken from the Amber topology files which were generated for all the RNAs.

2.3.7 Machine Learning

“A computer program is said to learn if its performance at a task T, as measured

by a performance P, improves with experience E”. ML is a sub-field of computer

science in which computer (machine) can learn by itself (learning) given some initial

knowledge. This initial knowledge is provided regarding training data and tested

on a testing data. In our case, all of the structural features are calculated (serve as

features for the various models), which are trained on a training set of 19 RNAs. The

RNA structures were taken from the Protein Data Bank (PDB) and chemical shifts

from the BMRB database.The RNAs were checked for referencing errors in 13C and

1H. chemical shifts assignments and were correctly referenced. The model is then

tested on a set of 36 testing RNAs. Various ML models are tested, including linear

and ensemble models, and the accuracy of each model is assessed.
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Out of various linear ML methods Lasso Lars CV (LLCV) and out of Ensemble

methods Extra-Randomized trees (ET) have been observed to have the best accu-

racy (Table 2.2). Lasso-Lars CV is a linear machine learning model trained with L1

prior as regularizer (Equation 2.11), which is numerically efficient when the number

of dimensions is significantly greater than the number of points and takes care of the

case in which two variables are correlated with the response.

(2.11) LLCVCF = minw
1

2nsamples
‖Xw − y‖22 + α ‖w‖1

Ensemble methods have emerged as the state-of-the-art ML methods which aver-

age the predictions of the independent decision trees generated by random subset

of training database. For example in random forest machine learning algorithm, a

random subset of the features are selected, and the best split is chosen at each node

based on the subset of data. In extra randomized trees, randomness goes one step

further in the way splits are computed (randomized) as opposed to the random for-

est. Extra randomized trees reduces the variance of the model a bit more, at the

expense of a slightly greater increase in the bias.

2.3.8 Assessing Model Accuracy

We investigate the accuracy of various ML algorithms and ring current models,

to predict the structure of RNAs in the presence of ligands. We use the predictors

trained here on apo-chemical shift data to predict the holo-chemical shifts of 4 RNA-

ligand complexes. We use the Normalized Sum of Logarithmic Ranks (NSLR), an

error estimate between measured and predicted holo chemical shifts which quantifies
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the ability to discriminate the native-like molecules among a set of decoy pool of

structures given by:

(2.12) NSLR =
SLR

SLRmax

Here SLR is defined as below and ri is the rank achieved by the ith structure by

ordering in ascending order based on error type, and n is the total number of native-

like structures and N is the total number of structure (native and non-native).

(2.13) SLR = −
n∑
i=1

log(
ri
N

)

Train Data Set: PDB (BMRB)
1NC0 (5655) 2GM0 (7098) 2JXQ (15571) 2K3Z (15780) 2K41 (15781)
2JXS (15572) 2KYD (16980) 1KKA (5256) 1LC6 (5371) 1LDZ (4226)
1OW9 (5852) 1PJY (5834) 1R7W (6076) 1R7Z (6077) 1UUU (1UUU)
1YSV (6485) 2FDT (10018) 2KOC (5705) 2LBJ (17563) 2LBL (17565)
2LDL (17671) 2LDT (17682) 2LHP (17860) 2LI4 (17877) 2LK3 (17972)
2LP9 (18239) 2LPA (18240) 2LU0 (18503) 2LUB (18515) 2LV0 (18549)
2RN1 (11014) 2Y95 (16714) 4A4S (18036) 4A4T (18034) 4A4U (18035)

Test Data Set: PDB (BMRB)
1SCL (1SCL) 1XHP (6320) 1Z2J (6543) 1ZC5 (6633) 2JWV (15538)
2K63 (15856) 2K64 (15857) 2K65 (15858) 2K66 (15859) 2LPS (5962)
2LQZ (18336) 2LUN (18532) 2LX1 (18656) 2M12 (18838) 2M21 (18891)
2M22 (18892) 2M23 (18893) 2M24 (18894) 2M8K (19260) 2MEQ (18975)
2MHI (19634) 2MI0 (19662) 2MIS (19692) 2QH2 (7403) 2QH3 (7404)
2QH4 (7405)

Table 2.1: List of PDB ids and BMRB ids for train and test data sets

2.4 Results and Discussion

A collection of a training and test database (Table 2.1) of RNA and their chemical

shifts are taken from the PDB and BMRB respectively. The extracted features from



38

a given RNA are used to build predictors using the sci-kit learn python module.23

These predictors were trained on a training database and tested on a testing set.

The training database is carefully designed to ensure that the RNAs in the database

provide sufficient coverage of known RNA chemical space.

2.4.1 Ensemble methods are more accurate than linear ones at predicting the chem-
ical shift of RNAs

We applied different ML algorithms ranging from linear to the ensemble are sum-

marized in (Table 2.2). From the results, we can observe that the Lasso Lars CV

(LLCV) method perform best out of all the linear methods (MAE of 0.819; Refer-

ence Table 2.2) and extra randomized trees (ET) method perform best out of all the

ensemble methods (MAE of 0.748; Reference Table 2.2). Both of the algorithms,

LLCV and ET, help in reducing the variance at the cost of increase in bias to curb

model over-fitting.

Linear MAE(
13

C) MAE(
1

H) Ensemble MAE(
13

C) MAE(
1

H)
Linear Regression 0.893 0.159 Random Forest 0.757 0.145

LassoLarsCV 0.819 0.153 Extra Randomized 0.748 0.140
Ridge Regression 0.863 0.167 Gradient Boosting 0.854 0.150
Bayseian Ridge 0.866 0.169 Bagging 0.756 0.144

Table 2.2:
Represents the Mean Absolute Errors (MAE) in ppm for different machine learning
algorithms for 13C and 1H.

2.4.2 Pople model shows similar performance in terms of predicting CS as the other
two ring current models

Next we examined the impact of various ring current models on chemical shift

prediction accuracy. In particular, we explored three popular models have been

developed: 1) JB, 2) PO, and 3) HM.24,25 Extensive studies have been carried out

on parameterizing these models, yet a side-by-side comparison of the performance of

these models has yet to be carried out. In the present work, we build a set of empirical

chemical shift predictors using these three ring-current models (Table 2.4) and then
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compared that based on their ability to (1) recapitulate experimental chemical shifts

and (2) discriminate native from decoy models of the same RNA. As shown by Table

2.4 Pople (PO) model shows similar performance in terms of predicting CS as the

other two models namely Johnson-Bovey (JB) and Haigh-Mallion (HM). The carbon

chemical shifts MAE errors of PO, JB and HM are 0.754, 0.751 and 0.753 respectively.

Chemical shift MAE error of 0.140 (Table 2.4) for hydrogen atom is exactly the same

for PO, JB and HM ring current models.

RC Model No RC Pople Johnson-Bovey Haigh-Mallion
ExtraRandomized 0.773/0.158 0.754/0.140 0.751/0.140 0.753/0.140

LassoLarsCV 0.824/0.166 0.815/0.152 0.819/0.153 0.818/0.152

Table 2.3: Represents the Mean Absolute Errors (MAE) for different RC models for 13C/1H.

RC Model Pople Johnson-Bovey Haigh-Mallion
Computation time 2.59 sec 4.01 sec 33.17 sec

Table 2.4:
Represents the computational time for each ring current model on a model benzene ring
system.

Based on similar accuracy (as shown by Table 2.3) of all the ring current models

in predicting chemical shifts, we next wanted to assess which model is the fastest

in terms of computational power. We did a benchmark study on the benzene ring

molecule and found that Pople model is the fastest in terms of computing power. It

took only 2.59 seconds for Pople model to compute the ring current on a benzene

ring model system with 1.8 GHz Dual-Core Intel Core i5 processor as opposed to

4.01 seconds for Johnson-Bovey and 33.17 seconds for Haigh-Mallion (Table 2.4).

Based on similar accuracy of all three different ring current models, we decided to

use Pople model for CS prediction based on it’s computational efficiency.
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Figure 2.3: Represents the sensitivity analysis (weighted MAE v/s RMSD) for RNA 1LC6 with
Pople ring current model and extra randomized tree machine learning algorithm for
A)all, B)carbon and C)proton atom types.

2.4.3 Chemical shift errors are positively correlated with structural dissimilarity

The plot in Figure 2.3 shows the weighted mean absolute error (which is calculated

on the predicted chemical shifts) v/s the Root Mean Square Deviation (RMSD)

relative to the solved structure. The plot represents the sensitivity analysis for a

structurally diverse conformational pool for the RNA PDB id of 1LC6. A structure

with an RMSD of less than 2Å is considered “native-like”, and greater than 2Å is

considered “non-native”. As the RMSD increases (non-native), the error between

predicted and measured chemical shifts (weighted MAE) should also increase for a

particular structure in a diverse conformational pool which is shown in Figure 2.3 as

the structure that have low error, have low RMSD, and which have high error, have

high RMSD for all, carbon and proton atom types.

RNAs ET LLCV Combine RNAs ET LLCV Combine
2L1V 0.96 0.85 0.59 2L94 0.48 0.66 0.51
2LWK 0.39 0.57 0.49 2M4Q 0.48 0.44 0.28

Table 2.5:
Given are the Normalized Sum of logarithmic ranks (NSLR) values for different Ma-
chine Learning methods with ET: Extra Randomized Trees, LLCV: Lasso-LARS linear
method, combine: combination of ET and LLCV methods.
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The NSLR ranges from 0 and 1, where a value of 1 corresponds to the perfect

resolving power. Table 2.4 represents the results of the 4 RNA-ligand complexes

studied and we found that predictors trained on just the apo-chemical shift data were

able to resolve RNA-ligand complexes for at least 3 out of the 4 structures. Building

on the use of chemical shift to predict the structure of RNA-ligand complexes, we

next explore (in Chapter 3) the use of predicted chemical shifts to resolve the RNA-

ligand structure starting from sequence of the RNAs.

2.4.4 Conclusion

In this study we have shown that, ET and LLCV ML algorithms were the most

accurate ones in the ensemble and linear methods tested respectively, at predicting

the chemical shifts of RNAs. We also observed the effect of different atom types

on chemical shift prediction and found that for carbon, LLCV method is the most

sensitive whereas for protons, ET is the most sensitive. The weighted MAE between

predicted and measured CS increases as the structure becomes more non-native in a

pool of decoy structures.
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CHAPTER III

De Novo Prediction of RNA-Ligand Structure Guided by
NMR Chemical Shifts

3.1 Statement of Contribution

1. Aaron T. Frank, PhD: Conceived of the project described in this chapter.

2. Sahil Chhabra, PhD Candidate (Chemistry and Scientific Comput-

ing): Generated the data and carried out the analysis described in this chapter;

Independently wrote this chapter.

3. Kexin Zhang, PhD Candidate (Chemistry and Scientific Computing):

Carried out the CS-Folding calculations; Prepared Figure 3.3.

3.2 Introduction

The recognition of small molecule compounds by RNA play important roles in

regulating cellular function.1 For instance, riboswitches which are a class of RNA

that recognize small molecule ligands, bind to the cognate ligand, and turn on or off

gene expression.2,3 Also, several other classes of RNA such as microRNAs, group-II

introns, and other structured mRNA elements can recognize small molecule ligands

which in turn modulate their activity.4–6 As such, structured RNAs have emerged

as drug targets.7–14

44
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Recent advances in understanding how these RNAs interact with ligands have

revealed a lot of biological information.15–18 However, approaches to correctly iden-

tify small molecule ligands in complexes with these biological regulatory elements

have been limited. Determining the structure of RNA in complex with such small

molecules is crucial to understanding the mechanism by which RNAs achieve speci-

ficity and selectivity for particular molecules.19,20

In principle, the structure of RNA in complex with small molecule ligand can be

characterized using X-ray crystallography or NMR spectroscopy.21–24 However, these

methods can be time consuming and costly. As an alternative, computer docking can

be used to predict the 3D structure of an RNA in complex with a small molecule.25–27

However, current state-of-the-art methods fail at distinguishing native-like structures

from incorrect, non-native structures.

The secondary structure prediction methods have been well developed by many

researchers, with the most prominent among them being from the Mathews lab.28–32

Most popular and widely used methods are the physics based free energy minimiza-

tion approaches, and their performances to predict the secondary structure have

been found to be 70%. The RNAstructure Fold program33 devised by the Mathews

lab predicts the most likely secondary structure that will occur at equilibrium on

the basis of free energy minimization. The correct secondary structure is crucial to

predict the 3D structure of the RNAs.

The 3D structure prediction of RNAs from secondary structure is mostly based on

the fact that RNA folding is a hierarchical process.34–36 Answers to the RNA folding

problem, compared to the protein folding problem, are at an early stage, as current

3D RNA folding algorithms require manual manipulation or are generally limited

to simple structures. Nonetheless many research groups have made strides in this
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direction and techniques like NAST,37 BARNACLE,38 iFoldRNA39 and FARFAR40

are available to the academic community for the prediction of RNA structure from

secondary structure with varied accuracies. FARFAR can produce the best predic-

tion model for small RNA sequences (20 nt). NAST and iFoldRNA have been shown

to do better if SHAPE chemistry data is available. MC-SYM41 has decent accu-

racy for medium sized RNAs but is limited by the difficulty of predicting long-range

contacts. We used the FARFAR method incorporated in the Rosetta suite in this

study to generate the de novo 3D RNA models. FARFAR was tested on a dataset

of 43 structures of various lengths and motifs, and most predictions were found to

have large RMSDs compared to the crystal structure (in the range of 6 or greater).

That study also showed that the prediction accuracy improved with additional dat-

apoints including the 2D structure and 3D contacts, but failure to detect long-range

interactions remain a clear challenge.

Below, I describe my first attempt to enhance our ability to predict the structure

of RNA-ligand complexes. Specifically, I describe the results of hybrid approach

in which NMR derived CS are used to model the 3D structure of an RNA-small

molecule complex, starting from sequence information, only. First, I will describe the

CS guided model framework that we employed. Then the results of its application on

the solution structure of a small molecule influenza RNA complex (2LWK), which

we use here as a model system, will be discussed. Using the influenza A virus

promoter RNA complex with a small-molecule (PDBID 2LWK, BMRBID 18633)42

that inhibits viral replication as a model system, we have discovered that not only

can computational methods sample native-like conformations of the RNA, but more

importantly, the modeled RNA structure that best agree with CS data are within 3

of the NMR structure. Moreover, when the ligands are docked onto this structure,
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we can sample models of the full complex that are within 4 of the correct structure.

Figure 3.1: Schematic of the hybrid approach which uses NMR derived CS to model the 3D structure
of an RNA-ligand complex starting from sequence information

3.3 MATERIALS AND METHODS

Secondary structures of RNAs and RNA-containing complexes are crucial for the

understanding of their 3D structures and functions. RNAStructure43 is one of the

most widely used tool to predict RNA secondary structure. RNAStructure uses a

free energy minimization algorithm that predicts the lowest free energy structure,

that is, the most probable secondary structure. It also predicts other low free en-

ergy structures, called “suboptimal” structures, as possible alternative structures.

The performance of physics-based free energy minimization approaches like RNAS-

tructure is found to be 70% when comparing the predicted and native base pairs in

an RNA. (Mathews et al. 2004; Xu et al. 2012). The accuracy of the predicted

secondary structure impacts the tertiary structure prediction of a RNA. Hence, the

accuracy of the former is critical to the performance of the latter. We used a CS

guided approach devised by Kexin Zhang44 (CS-Fold) in our lab to predict the sec-

ondary structure of RNA. From the best predicted secondary structure we used
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Rosetta to generate de-novo 3D models and used CS predicted by LarmorD to assess

the nativeness of the RNA structures.

3.3.1 Using RNAStructure to predict the secondary structure

We used the secondary structure prediction package named RNAStructure43 to

predict the secondary structure of the RNA. We used the fold algorithm in RNAS-

tructure which predicts the lowest free energy structure along with a set of low

free energy structures. The fold algorithm incorporate four different prediction al-

gorithms: partition function calculation, maximum free energy (MFE) structure

prediction, finding structures with maximum expected accuracy (MEA), and pseu-

doknot prediction. RNAStructure Fold uses dynamic programming which ensures

that the predicted lowest free energy structure is found. The entire secondary struc-

ture prediction problem is divided into smaller problems and then recursion is used

to build the complete structure. The partition function is also calculated using a

dynamic programming algorithm. Fold takes a sequence of RNA as the input and

creates a group of secondary structures annotated with their corresponding pre-

diction probabilities. It also includes other structures with varied probabilities of

correctness as the minimum free energy structure may not be the correct one. We

used the RNAStructure web server to predict the secondary structure of the RNA.

http://rna.urmc.rochester.edu/RNAstructureWeb/ Servers/Predict1/Predict1.html.

The input is a FASTA file/sequence, and for 2LWK the input looks like this:

We used the following parameters for secondary structure prediction in RNAStruc-

ture: T = 310.15 K, Max loop size =30, Maximum % Energy Difference (MFE,

MEA)= 10, Maximum Number of Structures (MFE, MEA) = 10, Window Size

(MFE, MEA) = 3, Gamma (MEA) =1, Iterations (Pseudoknot Prediction) = 1,
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Figure 3.2: Fasta file example for 2LWK

Minimum Helix Length (Pseudoknot Prediction) =3. No constraints were provided

for the secondary structure prediction process. We took the minimum free energy

structure from Fold and used that to predicted the 3D structure.

G A G
U

A
G
A
A
A

10C
A

A
G

GCUUCG
20

G
C

C
U

G
C
U
U
U

U

30

G
C U G A G

U
A

G
A
A
A

10
C

A
A

G
GCUUCG

20

G
C

C
U

G
C
U
U
U

U

30

G
C U

A B

Figure 3.3: Secondary Structures generated by A) CS-Fold and B)ProbKnot for 2LWK

3.3.2 Chemical shift guided secondary structure prediction

We used another approach called CS-Fold developed by Kexin Zhang in the

Frank lab to predict the secondary structure of RNA. CS-Folding framework uses

assigned CS data to guide RNA secondary structure prediction. CS-Fold built

an ML model that used CS to determine base-pairing status of individual RNAs.

Then the predicted base-pairing status were used as restraints to guide the sec-

ondary structure prediction in the folding algorithm. It takes in input a sequence
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and CS file. We got the CS assignments for 2LWK from the BMRB database:

http://www.bmrb.wisc.edu/. We also explored ProbKnot in RNAStructure which

predicts a secondary structure of probable base pairs, which might include pseudo-

knots. Both the predicted structures for PDB id 2LWK are represented in Figure

3.1 for comparison.

3.3.3 Using Rosetta to generate RNA 3D Structures

We used Rosetta’s Fragment Assembly of RNA with Full Atom Refinement (FAR-

FAR) approach to produce de novo models of small RNA motifs. The FARFAR mod-

eling algorithm for RNA structure in Rosetta is based on short fragments assembly

from the existing RNA crystal structures with matching subsequences to the target

RNA. The algorithm is comprised of 2 main steps. The first is Fragment Assembly of

RNA i.e. FARNA, which is a Monte Carlo process guided by a low-resolution knowl-

edge based energy function. The second step is refinement in an all-atom potential

to yield more realistic structures with fewer clashes between the atoms. The output

also provides an energy score, which is used to discriminate native-like conformations

from non-native conformations.

The input for Rosetta is the secondary structure file in dot-bracket notation.

Using secondary structure as the input, we create a set of low resolution models

using FARNA. We compared our generated models to the reference model by using

the RMSD values as the evaluation metric. We compared these RMSD values to

the Rosetta energy scores to compare the native and non-native conformations and

their energies. For FARNA step, we used the default mode that runs Monte Carlo

fragment assembly optimized in a knowledge-based low-resolution potential. Next

we did refinement (minimize rna) in the high-resolution Rosetta potential. The final

models resulted in few steric clashes and improved energy scores. Those refined
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models also contain few chainbreaks and unrealistic atomic-level geometries which

could be present due to the FARNA sampling method which uses rigid fragments

of crystallographic RNA structures. This strategy of Full-Atom Refinement with

FARNA (FARFAR) accounts for physical and chemical interactions like van der

Waals, hydrogen bonding, backbone torsion angles and desolvation penalties for polar

groups within RNA.

3.3.4 Generating RNA-ligand decoys

We generated the diverse decoy sets for each of the top 10 RNA-ligand systems

obtained after the CS-Fold and Rosetta filtering using the rDock computer docking

program. Blind docking was carried out in each of those structures using the 2 sphere

method with outer spehere radii set to 50 Å. RbtSphereSiteMapper site mapper

algorithm was used and the pocket detection was carried out using the rbcavity

utility program. Maximum cavities was set to 4 with a minimum volume of 100

units. We generated 1000 docks for every top ten RNA structure, totalling 10k

docks in total.

3.3.5 Assessing Structures

We used CS predicted by LarmorD to assess the quality of the structures generated

by Rosetta. However to predict the CS for the RNA-ligand complex, we used the

CS predictors described in chapter 2. LarmorD uses a interatomic distance based

approach to build models that can predict the CS of the atoms in the RNA. It is

trained on a set of 35 RNA structures taken from RCSB database and it is pretty fast

and simply way to compute the shifts. The accuracy of LarmorD as reported in the

paper is 0.19 and 1.09 ppm for protons and carbons, respectively. By comparison

the Pople Ring current model described in Chapter 2 has prediction accuracy of
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0.14 and 0.75 ppm for protons and carbons, respectively. We then compared the

predicted and actual CS. We used the weighted Mean Absolute Error (rMAE) as

our comparison metric as the weights scales the error such that nuclei with different

ranges contribute proportionally to the MAE (for example 1H and 13C).

3.4 Results and Discussion

In this study, we explored the use of CS to guide the 3D structure prediction of

RNA starting from it’s sequence. We use the small molecule-influenza RNA com-

plex (PDB id: 2LWK) as the test system to demonstrate this approach. We applied

CS-Fold, a method developed by Zhang, which deploys CS to guide the secondary

structure prediction of RNAs. From the best predicted secondary structure, we gen-

erated de novo 3D models of RNAs using the Fragment Assembly of RNA with

Full Atom Refinement (FARFAR) approach. FARFAR uses a low-resolution knowl-

edge based energy function and monte carlo sampling algorithm to produce motifs

through Fragment Assembly of RNAs. The bottleneck for this approach is to achieve

complete conformational sampling at the atomic level resolution. We use CS pre-

dicted by LarmorD to refine those generated structures in an attempt to address

these shortcomings. We also explored the use of CS to identify native RNA-ligand

structures from a set of decoy pools. We used rDock to dock the ligand in top 10

best predicted 3D structures of the RNA.

3.4.1 RNAStructure and Rosetta exhibits low recovery rates for RNA structure pre-
diction

We began our study by assessing the ability of RNAStructure predicted secondary

structures to generate the 3D models of RNAs. We used Rosetta and then CS errors

to discriminate native like structures. To achieve this, we generated 10k Rosetta 3D



53

Figure 3.4: Left: Distribution of RMSDs for the generated 3D structures of the RNA by Rosetta
after the minimization. Each bin in the plot comprises of 0.5 Å spacing. Right: weighted
MAE of Chemical Shifts v/s RMSD for the predicted 3D structures of 2LWK using
RNAStructure and Rosetta.

models for each of the 13 secondary structures predicted by RNAStructure. The

RMSD distribution of all the 130k structures is shown in Figure 3.2. Part A in figure

3.2 represents the distribution after the FARNA step and before the minimization.

Part B in figure 3.2 represents the distribution after the minimization step. Each bin

in the plot contains 0.5 Åof spacing. The range of RMSDs before the minimization

was 2.04 to 23.54 Å and after minimization was 2.22 to 41.79 Å. Refinement using

FARFAR improves low-resolution models by relaxing them into more realistic con-

formations. We then took these 130k structures and predicted the CS for all of the

structures using LarmorD. We then compared the ability of the Rosetta scores and

CS-errors to predict the correct 3D structure of RNA. We first rank them based on

Rosetta scores and top 10 structural RMSD, Rosetta scores and their corresponding

CS errors are shown in Table 3.1 (left). We do not observe even a single structure

within 3 Å(0% recovery rate) when ranked based on Rosetta scores. In fact, all the

structures have RMSDs greater than 10 Å. The average CS error of top 10 structures

was 2.30 ppm.
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S.N. RMSD(Å) Chemshift Errors(ppm) Rosetta Scores RMSD(Å) Chemshift Errors(ppm) Rosetta Scores
1 11.79 2.33 -197.31 14.2 2.04 -133.69
2 11.41 2.25 -195.44 2.90 2.05 -149.69
3 13.11 2.32 -190.88 16.10 2.07 -140.38
4 11.85 2.36 -190.08 5.90 2.07 -117.80
5 12.65 2.26 -188.56 14.40 2.08 -159.69
6 12.11 2.23 -188.25 16.10 2.082 -145.27
7 11.53 2.22 -188.01 2.22 2.084 -166.62
8 12.04 2.39 -187.69 12.40 2.086 -153.28
9 12.37 2.28 -187.48 13.00 2.092 -170.49
10 13.00 2.26 -187.44 16.40 2.094 -97.60

Table 3.1:
Left: Ability of the Rosetta scores and Right: CS errors to predict the correct 3D
structure of RNA.

Next we asked if the predicted CS could recover native like structures from the

decoy of 130k structures. Ranked are all the structures based on the CS error as

shown in Table 3.1 (Right). We observe two structures within 3 Ånative-ness cutoff

(20% recovery rate in top 10). The two lowest CS error structures with RMSD of

2.90 and 2.22 had Rosetta scores of -149.69 and -166.62 respectively. CS error based

filtering is successful in identifying native like structures from a set of decoy pool

as shown in Figure 3.3. This CS error based scoring provides improvement over the

Rosetta based scoring, but there still is a lot of scope for further improvement.

3.4.2 CS-Fold and Rosetta improves the recovery rates of RNA Structure Prediction

As eluded earlier the performance of secondary structure prediction is critical to

the prediction of RNA 3D structure. So next we try to better predict the secondary

structure using the CS-Folding approach. We took the best predicted secondary

structure from the CS-Fold and followed the same protocol of generating the 3D

structures using Rosetta. The RMSDs, CS errors, and Rosetta scores of top 10

predicted structures are given in Table 3.2 ( structures ranked based on Rosetta

scores). We observe 5 structures within 3 Ånativeness cutoff (50% recovery rate in

top 10). Also 9 out of 10 structures are observed within 4 Å, giving a 90 % recovery

rate under 4 Å. And all the structures are within 5 Å. Interestingly, the data frame
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is the same when ranked based on CS error. The 2 lowest CS error structures with

CS error of 2.05 and 2.08 made in the 6th and 1st position respectively. These

top 10 structures are represented in Figure 3.4 with native structure superimposed

in gray color on each of the predicted structures. This approach based on the CS

guided structure prediction, exhibited remarkable ability to predict the 3D structure

of RNAs, starting with a sequence all the way to a 3D structure.
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Figure 3.5: Top 10 RNA Structures for 2LWK predicted from sequence using CS-Fold and Rosetta.
Also mentioned are the RMSD, Chemical Shift errors (CSErrors) and the Rosetta Scores
(RScores). The Chemical Shifts were predicted using the LarmorD method. The struc-
tures are superimposed on native structure represented in gray on each image from
A-J.
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3.4.3 Chemical Shift Error v/s RMSD of the structure

Next we investigate the use of CS to recover native-like poses of RNA-ligand

complexes. To achieve this, we took the 10 best predicted structures (as shown in

Figure 3.4) from Rosetta and CS-Fold approach described above in this chapter. We

used rDock to dock the ligand in all of the top 10 structures. We predicted CS in

the presence of ligand using the chemical shift predictors described in Chapter 2,

and used them to recover native like RNA-ligand poses. The results are shown in

Figure 3.6 with the weighted MAE in predicting CS v/s the RMSD of the structures

with respect to the native structure. The lowest CS error structure is the one in

blue with RMSD >7 Å, and the second lowest is the one in orange with RMSD

<3 Å. The remaining 8 structures had RMSDs of 3-4 Åbut had higher CS errors.

There are many possible reasons for this low success rate in RNA-ligand complexes

compared to the prediction of RNAs. First, the error is compiled over from the

steps involved in predicting the RNA-ligand complex. Starting from the error in

predicting sequence to secondary structure by RNAStructure or CS-Fold. Then the

error in predicting the 3D structure from secondary structure using Rosetta, and

lastly and more importantly the error occurred during the docking process using

rDock. Apart with these 3 sources of error, it is also difficult to know the exact

structure of the RNA-ligand complex in solution as most biologically relevant RNAs

like the 2LWK are present as multiple conformations and isoforms thus rendering

structural studies by NMR very difficult.

3.4.4 Conclusion

With our present knowledge of the RNA structure, from RNA sequences to RNA

3D structures, computational prediction of RNA tertiary structure with the help of
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experimental data has been developed over the years. Here in our study we wanted

to improve on those approaches and test the use of CS to predict the RNA tertiary

structure. We saw that the use of RNAStructure for secondary structure prediction

combined with Rosetta de-novo approach for 3D motif prediction from secondary

structures was unable to recover the native-like RNAs from a of decoy pool of 130k

structures based on Rosetta scores. The success rate was sightly improved from 0% to

20 % when we used the predicted CS to score the structures based on the CS errors.

Next we showed that CS-Fold CS guided secondary structure prediction combined

with Rosetta de-novo for 3D motifs prediction protocol significantly enhance the

recovery rates to 50%. Finally using rDock and CS error based filtering, we were

able to recover native like RNA-ligand complexes starting from just the sequence of

RNAs.

This approach established the foundation for using experimental data like CS to

guide the prediction of RNA 3D structure. We have shown this approach work for

an influenza A virus (PDB id 2WLK). In future work we will test this approach on

other RNA-ligand systems. In this study we observed that both the rosetta scores

and CS errors work very similarly in predicting the correct 3D structure of RNAs

especially when using CS to guide the structure prediction. A follow-up to this study

could combine Rosetta Scores and CS error to make a combine metric to filter native

line RNA structure from the decoy pools. This approach can also be extended to

RNA-containing complexes especially RNA-protein complexes in future.
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Figure 3.6: (A) rMAE v/s RMSD for the predicted RNA-ligand structures. The ligand was docked
by rDock in top 10 structures shown in Figure 3.4. (B) Top 10 best predicted poses for
the structure in blue in A. (C) Top 10 best predicted poses for the structure in orange
in A.
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CHAPTER IV

RNAPoser: Tool to Recover Native Poses for RNA-Ligand
Complexes

4.1 Statement of Contribution

1. Aaron T. Frank, PhD: Conceived of the project described in this chapter;

wrote the manuscript on which this chapter is heavily based on; and generated

all figures presented herein.

2. Sahil Chhabra, PhD Candidate (Chemistry and Scientific Comput-

ing): Generated the data used to train and test the machine learning classifiers

developed in this chapter; assisted in the writing of the manuscript.

3. Jingru Xie, PhD Candidate (Physics): As part of her thesis work, designed

and implemented the featurization approach used in this chapter; implemented

the RNAPosers software that resulted from the work described in this chapter.

4.2 Introduction

Rational structure-based methods promise to be a viable approach for identifying

small molecules that can bind to and modulate the activity of therapeutically relevant

RNAs. Crucial to the success of rational structure-based approaches in RNA drug

discovery is the ability to accurately predict the 3-dimensional (3D) structure of the

62



63

complex formed between an RNA and a small molecule ligand. In principle, computer

docking algorithms can be used to predict the 3D orientation and conformation

(referred to as the pose) of a ligand bound to an RNA receptor. Unfortunately,

“redocking” tests reveal that state-of-the-art scoring functions typically fail to recover

the correct poses.1–5 In this respect, there is an urgent need for methods that can

accurately distinguish “native-like” RNA-ligand poses from non-native decoy poses.

Recently, machine learning has been used to address several challenges associated

with computer docking and virtual screening. For protein-ligand complexes in par-

ticular, machine learning has been used to develop more robust scoring functions

for both pose and binding affinity prediction.6–10 The success of RNA-ligand pose

prediction with the help of chemical shifts filtering in chapter 3 motivated us to ex-

plore the RNA-ligand pose prediction without the use of chemical shifts. Here, we

used machine learning to train a set of pose classifiers that quantify the “nativeness”

of RNA-ligand complexes. In what follows, we summarize our comparison between

the ability of docking scores and machine learning classifiers to rank and identify

atomically correct RNA-ligand poses. Compared with docking scores, we found that

machine learning pose-classifiers were better able to discriminate native-like RNA-

ligand poses from decoy poses.

4.3 MATERIALS AND METHODS

4.3.1 Decoy sets

We compiled an initial dataset comprised of 88 RNA-ligand systems. An addi-

tional set of 17 RNA-ligand system was compiled and used for final validation. For

both datasets, the crystal structures of the RNA-ligand complexes were downloaded

from the Protein Data Bank (PDB:http://www.pdb.org). To generate diverse decoy

sets for each RNA-ligand system, computer docking was performed using the docking
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Pocket Detection
(Reference ligand: 8 Å Radii)

Pocket Detection
(Two-Sphere: 20 Å Radii)

Pocket Detection
(Two-Sphere: 100 Å Radii)

Docked Poses
(Decoy Set: ~600 poses)

Generate
Poses

Native 
Pose

Predicted Pose

Select
Pose

A B C

D

RNA: Holo structure
(PDBID: 5UZA)

RNA: NOLB 1
(4.64 Å)

RNA: NOLB 2
(6.12 Å)

RNA: NOLB 3
(2.30 Å)

RNA: NOLB 4
(2.86 Å)

RNA: NOLB 5
(2.33 Å)

Figure 4.1: Illustrated are the steps involved in generating the decoy sets used in this study. (A)
First, the actual binding pocket is mapped using the reference ligand method, and
second, alternative pockets are mapped using the two-sphere methods, with increasingly
large radii. (B) Third, poses were generated by docking the ligands into each of the
mapped binding pockets and then combining all poses into a single decoy set. (C)
The focus of this study was to develop and assess methods for selecting atomically-
correct poses from these decoy poses. (D) Example of an augmented decoy set in which
both the RNA and ligand are flexible. For a given RNA-ligand complex, we generated
the augmented decoy sets by deforming the holo RNA structure along its non-linear
normal modes. In this study, we generated five such structures for each RNA and then
generated docked poses for each, and then all poses combined to form a final augmented
decoy set. Shown here is that augmented decoy set for PDBID: 5UZA. Indicated under
each of the deformed structures is the RMSD relative to the holo structure.

program rDock (citeruiz2014rdock). The following protocol was used to generate the

poses with rDock (Figure 4.1A and B). First, a set of poses were generated in the

actual binding pocket, using the reference ligand method, with the sphere radii from

the center of the known binding pocket set to 2, 3, 4, 5, 6, 7, and 8 Å, respectively.

At each sphere radius, 50 poses were generated, for a total of ∼350 poses. Next, 250

additional poses were generated by docking into the binding pockets that were iden-
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tified using the two-sphere method, with outer sphere radii set to 20, 40, 60, 80 and

100 Å, respectively. Hence, in total, ∼600 poses were generated for each RNA-ligand

complex. For some RNA-ligand complexes, the number of poses were less than 600

because the two-sphere method failed to identify binding pockets at one or more of

the outer sphere radii we utilized for binding pocket detection. All pocket detection

was carried out using the rDock utility program, rbcavity. The entire set of decoy

poses can be accessed at https://github.com/atfrank/RNAPosers.

4.3.2 Pose classifiers

Machine learning was used to train a set of pose classifiers that take a set of

“pose features” as input and output a measure of the “nativeness” of the pose.

First, we generated a set of classifiers for which the “pose features” correspond to

individual scoring terms in the rDock scoring function.11 Second, we generated a

set of classifiers for which the “pose features” correspond a pose novel fingerprint

the depends on the pairwise distance between heavy atoms in the an RNA receptor

and a the heavy atoms in a small molecule ligand (see below). To train the pose

classifiers, we employed the random forest method implemented in the sklearn Python

module.12 The classifiers comprised of an ensemble of 1000 decision trees with class

weight set to balanced subsample. All other parameters were set to their default

values. The classifiers were trained using a leave-one-out approach using the set of

poses generated using rDock (see above). We trained separate classifiers with the

nativeness RMSD thresholds set to ≤1.0, 1.5, 2.0, and 2.5Å. Machine learning models

can be susceptible to the so-called “twinning effect,” which occurs when samples in

the training set closely resemble samples in testing set. Here we have employed leave-

one-out cross-validation in an attempt to mitigate the potential impact of “twinning”

when assessing the performance of classifiers. In this leave-one-out approach, a single
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RNA-ligand system was removed from the training set and the classifiers were trained

on the remaining 87 RNA-ligand complex. The resulting classifier was then assessed

on the excluded RNA-ligand system. If the ligand in any of the other 87 RNA-ligand

systems was identical to the ligand in the left-out system, they were removed prior to

training the classifier used to assess the left-out system.

4.3.3 Pose fingerprint

We utilized a pose fingerprint that is a composite of a set of atomic fingerprints.

For a given ligand atom, the atomic fingerprint correspond to the vector, {Vi}, whose

elements Vi(η, v) are given by

(4.1) Vi(η, ν) =
∑
j 6=i
j∈ν

e−(rij/η)
2 · fd(rij)

where rij is the distance between the heavy atom i in a ligand and the heavy atom

j in the RNA receptor, η is the width of a Gaussian function (here we set η = 2), ν

is a set of unique RNA atom types, and fd(rij) is the damping function given by

(4.2) fd(rij) = 0.5

[
cos

(
πrij
Rc

)
+ 1

]
.

Here, Rc is a cutoff distance and in this study, it was set to 20 Å. We note that

the atomic fingerprint based on Eq. 4.1, which is a multi-element extension of the

atomic fingerprint developed by Botu and et.al.,13 is invariant to the basic atomic

transformation operations of translation, rotation and permutation.

For a given ligand pose, i, a fingerprint vector, Fi, was generated from the atomic

fingerprint defined by Eq. 4.1 by summing over all instances of a given atom-pair

type, which is defined by the SYBYL atom types in the ligand and atom types in

the RNA. We denote each unique ligand-RNA pair as S. As such, an element in the
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fingerprint for pose i and atom pair type S, Fi,S, is given by

(4.3) Fi,S =
∑
s

Vs(η)

Here s runs over all instances of pair type S in pose i. If pair-type S is not present

in i, Fi,S = 0. The set of 21 SYBYL atom types we used were: {C.1, C.2, C.3,

C.ar, C.cat, N.1, N.2, N.3, N.4, N.ar, N.am, N.pl3, O.2, O.3, O.co2, S.2, S.3, S.o,

S.o2, P.3}. The set of 85 RNA atom types we used were: ADE:{C1′, C2, C2′, C3′ ,

C4, C4′, C5, C5′, C6, C8, N1, N3, N6, N7, N9, O2′, O3′, O4′, O5′, OP1, OP2, P};

CYT:{C1′, C2, C2′, C3′, C4, C4′, C5, C5′, C6, N1, N3, N4, O2, O2′, O3′, O4′, O5′,

OP1, OP2, P}; GUA:{C1′, C2, C2′, C3′, C4, C4′, C5, C5′, C6, C8, N1, N2, N3, N7,

N9, O2′, O3′, O4′, O5′, O6, OP1, OP2, P}; URA:{C1′, C2, C2′, C3′, C4, C4′, C5,

C5′, C6, N1, N3, O2, O2′, O3′, O4, O4′, O5′, OP1, OP2, P}. Thus, the final pose

fingerprint Fi = {Fi,S}, which was normalized for each RNA-ligand system, contained

1785 elements (21 SBYL types × 85 RNA atom types). Coincidentally, our pose

fingerprint closely resembles a recently described fingerprint that was successfully

used to train machine learning pose and binding affinity predictors.10

4.3.4 Assessing classifiers

In order to quantify our ability to recover atomically correct poses using either

docking scores from the rDock scoring function or the classification scores from our

pose classifiers, we first sorted the poses. When using docking scores, the pose with

lowest (most negative) score was then identified and the RMSD relative to crystal

pose was determined. When using classification scores, the pose with highest classi-

fication score was identified and the RMSD relative to crystal pose was determined.

We also calculated the success rates S(X) as the percentage of RNA-ligand com-

plexes for which the RMSD of the best pose (identified using either docking scores
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or classification scores) were within X Å of the corresponding crystal pose.

4.4 Results and Discussion

For protein-ligand complexes, modern scoring functions have a reported success

rate that exceeds ∼75 %.14 In contrast, for RNA-ligand complexes, state-of-the-art

scoring functions have a success rate near 50 %.5,11 This discrepancy between the

success rate of protein and RNA scoring functions motivated us to explore methods

capable of enhancing our ability to discriminate native-like poses from non-native

decoys.

TO
TA

L

IN
TE

R

IN
TE

R.
VD

W

IN
TE

R.
PO

LA
R

 0.0

 2.0

 4.0

 6.0

 8.0

10.0

12.0

14.0

RM
SD

 (Å
)

RM
SD

 (Å
)

1.
0 

Å

1.
5 

Å

2.
0 

Å

2.
5 

Å

 0.0

 2.0

 4.0

 6.0

 8.0

10.0

12.0

14.0
RM

SD
 (Å

)

1.
0 

Å

1.
5 

Å

2.
0 

Å

2.
5 

Å
 0.0

 2.0

 4.0

 6.0

 8.0

10.0

12.0

14.0

RM
SD

 (Å
)

1.
0 

Å

1.
5 

Å

2.
0 

Å

2.
5 

Å

 0.0

 2.0

 4.0

 6.0

 8.0

10.0

12.0

14.0

Raw Scores Score Classifer Fingerprint Classifer Score+Fingerprint Classifer

A B C D

TO
TA

L

IN
TE

R

IN
TE

R.
VD

W

IN
TE

R.
PO

LA
R

 0.0

 2.0

 4.0

 6.0

 8.0

10.0

12.0

14.0

RM
SD

 (Å
)

RM
SD

 (Å
)

1.
0 

Å

1.
5 

Å

2.
0 

Å

2.
5 

Å

 0.0

 2.0

 4.0

 6.0

 8.0

10.0

12.0

14.0

RM
SD

 (Å
)

1.
0 

Å

1.
5 

Å

2.
0 

Å

2.
5 

Å

 0.0

 2.0

 4.0

 6.0

 8.0

10.0

12.0

14.0

RM
SD

 (Å
)

1.
0 

Å

1.
5 

Å

2.
0 

Å

2.
5 

Å

 0.0

 2.0

 4.0

 6.0

 8.0

10.0

12.0

14.0

Raw Scores Score Classifer Fingerprint Classifer Score+Fingerprint Classifer

E F G H

Only Ligands Flexible

Both Receptor and Ligands Flexible

Figure 4.2: RMSD distributions of the best predicted poses over the systems in the leave-one-out
training database when the best poses were predicted using (A) docking score terms
and classifiers training using the (B) docking score terms, (C) our pose fingerprint, and
(D) raw docking scores and our pose fingerprint as features, respectively. For the pose
classifiers, results are shown for independent sets of classifiers that were trained with
the nativeness threshold set to 1.0, 1.5, 2.0, and 2.5 Å.
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4.4.1 Docking scores exhibit low success rates.

We began our study by assessing the ability of docking scores to recover the correct

pose from decoy poses located in the experimental binding pocket as well as decoy

poses located in alternate pockets on the surface of the RNA. To accomplish this, we

initially generated decoys sets comprised of ∼600 diverse poses for 88 RNA-ligand

complexes (see Methods). In these decoys sets, the RNA receptors corresponded to

the holo structures where only the ligand orientation and conformation varied.

Shown in Figure 4.2A are the distributions of the RMSD (relative to the crystal

pose) of the best poses selected from these decoy sets using individual score terms

in the rDock scoring function.11 When using the total docking score, the median

RMSD of the predicted pose was 3.41 Å (Figure 4.2A; Table 4.1). We obtained

similar results when using the total interaction, the van der Waals interaction, and

the polar interaction score terms. In these cases, the median RMSD were 5.72,

4.75, and 6.88 Å, respectively. To better quantify the ability of the score terms to

select atomically correct poses, we also computed the success rate, S(X), defined as

the percentage of cases in which the predicted pose was within X Å of the native

pose. Using the total docking score, the S(1.00), S(1.50), S(2.00), and S(2.5) were

22.7, 29.5, 37.5, 42.0, and 44.3 %, respectively (Table 4.1). Similarly, the S(1.00),

S(1.50), S(2.00), and S(2.5) were 17.0, 21.6, 27.3, and 33.0%, respectively, when

using total interaction, 18.2, 22.7, 28.4 and 36.4%, respectively, when using the van

der Waals interaction, and 8.0, 9.1, 12.5, and 21.6%, respectively, when using the

polar interaction score terms (Table 4.1). The docking score terms in the rDock

scoring function, therefore, exhibited marginal ability to recover correct poses from

diverse decoys poses.
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4.4.2 Pose classifiers improve success rates.

Next, we asked whether nonlinear classifiers could enhance our ability to recover

the correct poses from decoy poses. To test this, we cast the problem of recovering

correct ligand poses as a “classification” problem and then machine learning models

were trained to discriminate correct poses from decoy poses. Briefly, we built a set

of random forest classification models that take a set of features as input and output

“classification scores” that estimate the probability of a pose being native-like. To

accomplish this, we first trained a series of random forest pose classifiers using a leave-

one-out cross-validation approach in which we selected a single RNA-ligand from the

dataset of 88 RNA-ligand systems (the leave-one-out dataset), and trained a classifier

using the decoy sets for the remaining 87 RNA-ligand systems. After training, the

performance of the resulting classifier was assessed using the RNA-ligand system

set of the left-out system. For that system, the classification scores for all decoy

poses were determined and then the pose with the highest classification score was

selected as the “best” (or predicted) pose for the left-out system. This procedure

was repeated 88 times, i.e., one for each system in the leave-one-out dataset.

Shown in Figure 4.3 are the relationship between RMSD and the Classification

Scores (CLS) of the predicted poses for classifiers trained on the molecular finger-

prints using RMSD threshold of 2.5 Å. Reported are results for the 88 Leave One

Out (LOO) and 17 validation set RNAs. In general, for both LOO and validation

set the RNAs which have RMSD 2Åhave a CLS score of greater than 0.5.

Shown in Figure 4.2B are the distributions of the RMSD of the predicted poses

that were identified using the classifiers that used the individual terms in the rDock

scoring function as learning features. Reported are results for the classifiers trained

with nativeness RMSD threshold set to 1.0, 1.5, 2.0, and 2.5 Å, respectively. Listed
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Figure 4.3: Illustrated are the CLS vs RMSD for LOO and validation sets

in Table 4.1 are the corresponding success rates. In general, the RMSD of the best

poses that were identified using the score-based pose classifiers were lower than those

of the best poses selected using the terms in the rDock scoring function. For instance,

for the score-based pose classifiers trained with nativeness threshold set to 1.0, 1.5,

2.0, and 2.5 Å, the the median RMSD of the best poses were 2.50, 3.14, 2.08, and

2.14, respectively (Figure 4.2B; Table 4.1). The success rates, S(1.00), S(1.50),

S(2.00), and S(2.5) were also generally larger for the score-based classifiers, with the

best results obtained with the nativeness threshold set to 2.0 and 2.5 Å, respectively.

S(1.00), S(1.50), S(2.00), and S(2.5) were 21.6, 36.4, 50.0, and 54.5%, respectively,

for the classifiers trained with the threshold set to 2.0 Åand 25.0, 37.5, 48.9, and

54.5%, respectively, for the classifiers trained with the threshold set to 2.5 Å. In

comparison, the values obtained when using the total docking score to identify the

best pose were 37.5, 42.0, and 44.3 %, respectively (Table 4.1). These results suggest

that the pose classifiers that were trained using the scores terms as learning features

could boost our ability to recover correct poses. The success rates, however, still
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pales in comparison to the success rates of protein-ligand pose prediction methods,

several of which achieve success rates near 75%.

Selection Metric RMSDmedian(Å) S(1.00)(%) S(1.50)(%) S(2.00)(%) S(2.50)(%)
TOTAL 3.41 22.7 29.5 37.5 42.0
INTER 5.72 17.0 21.6 27.3 33.0
INTER.VDW 4.75 18.2 22.7 28.4 36.4
INTER.POLAR 6.88 8.0 9.1 12.5 21.6

Score Classifier (1.0 Å) 2.50 21.6 31.8 44.3 50.0
Score Classifier (1.5 Å) 3.14 18.2 28.4 40.9 47.7
Score Classifier (2.0 Å) 2.08 21.6 36.4 50.0 54.5
Score Classifier (2.5 Å) 2.14 25.0 37.5 48.9 54.5

Fingerpint Classifier (1.0 Å) 1.36 27.3 56.8 70.5 79.5
Fingerpint Classifier (1.5 Å) 1.27 37.5 63.6 77.3 86.4
Fingerpint Classifier (2.0 Å) 1.31 34.1 59.1 78.4 85.2
Fingerpint Classifier (2.5 Å) 1.42 33.0 58.0 77.3 86.4

Score+Fingerpint Classifier (1.0 Å) 1.05 43.2 70.5 79.5 85.2
Score+Fingerpint Classifier (1.5 Å) 1.17 40.9 67.0 80.7 88.6
Score+Fingerpint Classifier (2.0 Å) 1.15 42.0 65.9 78.4 88.6
Score+Fingerpint Classifier (2.5 Å) 1.20 36.4 64.8 80.7 86.4

Table 4.1:
Median RMSD and success rates for systems in the leave-one-out training database.
Listed are the results obtained when the best poses were selected using the docking
score terms and classifiers that were trained using the docking score terms, our pose
fingerprint, and docking scores plus our pose fingerprint as learning features. For the
pose classifiers, we include results for classifiers that we trained with the nativeness
threshold set to 1.0, 1.5, 2.0, and 2.5 Å.

As such, we next asked whether we could further enhance the success rate of

RNA-ligand pose prediction by training pose classifiers on features that more directly

depend on RNA-ligand interactions. Specifically, we were interested in examining the

utility of a simple distance-based atomic fingerprint that describes the local atomic

environment near a given site which has shown promise in predicting properties

like atomic forces15 and resembles a pose fingerprint recently used for protein-ligand

pose predictions.10 To create a composite fingerprint from atomic fingerprints, we

summed and normalized all atomic fingerprints associated with specific ligand-RNA

pair “types” (see Methods). Using this composite RNA-ligand interaction fingerprint,

we then trained another set of pose classifiers, again using the leave-out-one cross-

validation approach. For comparison, we also trained classifiers that used the rDock
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score terms plus our pose fingerprint as features. Here again, separate classifiers were

trained with the nativeness threshold set to 1.0, 1.5, 2.0, and 2.5 Å.

For the pose fingerprint classifiers trained with nativeness threshold set to 1.0, 1.5,

2.0, and 2.5 Å, the median RMSD of the best poses were 1.36, 1.27, 1.31, and 1.42 Å,

respectively (Figure 4.2C; Table 4.1). These fingerprint-based classifiers all exhibit

similar success rates. For instance, S(1.00), S(1.50), S(2.00), and S(2.5) were 37.5,

63.6, 77.3, and 86.4 %, respectively, for the classifiers trained with the nativeness

threshold set to 1.5 Å, and which had the lowest median RMSD of 1.27 Å(Table

4.1). In comparison, S(1.00), S(1.50), S(2.00), and S(2.5) were 33.0, 58.0, 77.3, and

86.4 %, respectively, for the classifiers trained with the nativeness threshold set to

2.5 Å, and which had the highest median RMSD of 1.42 Å(Table 4.1). We obtained

comparable results for the pose classifiers that were trained using the docking scores

plus the fingerprint as features. Notable among these was the classifier trained with

the nativeness threshold set to 1.0 Å; for this set of classifiers, the median RMSD of

the best poses was 1.05 Åand the S(1.00), S(1.50), S(2.00), and S(2.5) were 43.2,

70.5, 79.5, and 85.2, respectively. Based on this leave-one-out analysis, the pose

classifiers trained using the pose fingerprint as well as the classifiers trained using

docking score terms and pose fingerprint as features, both exhibited remarkable

ability to recover atomically correct poses from the leave-one-out decoy sets.

4.4.3 Pose classifiers improve success rates on augment decoys sets in which both the
RNA and the ligand are flexible.

As a more robust test of our classifiers, the original decoy set for each RNA-

ligand system in our dataset was augmented with poses that were generated by

docking against a set of five perturbed structures of the corresponding RNA receptor.

As might be expected, the individual docking score terms failed to recover poses
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Selection Metric RMSDmedian(Å) S(1.00)(%) S(1.50)(%) S(2.00)(%) S(2.50)(%)
TOTAL 6.81 6.2 11.2 18.8 23.8
INTER 8.59 2.5 6.2 11.2 16.2
INTER.VDW 8.58 6.2 10.0 15.0 21.2
INTER.POLAR 12.00 0.0 0.0 0.0 0.0

Score Classifier (1.0 Å) 6.10 15.0 21.2 30.0 33.8
Score Classifier (1.5 Å) 6.02 15.0 21.2 31.2 37.5
Score Classifier (2.0 Å) 5.00 15.0 25.0 37.5 41.2
Score Classifier (2.5 Å) 3.96 13.8 22.5 32.5 37.5

Fingerpint Classifier (1.0 Å) 2.98 20.0 30.0 38.8 46.2
Fingerpint Classifier (1.5 Å) 1.35 33.8 53.8 63.8 72.5
Fingerpint Classifier (2.0 Å) 1.42 31.2 53.8 72.5 80.0
Fingerpint Classifier (2.5 Å) 1.44 31.2 53.8 72.5 82.5

Score+Fingerpint Classifier (1.0 Å) 1.10 41.2 62.5 70.0 76.2
Score+Fingerpint Classifier (1.5 Å) 1.31 36.2 57.5 68.8 76.2
Score+Fingerpint Classifier (2.0 Å) 1.30 35.0 57.5 70.0 80.0
Score+Fingerpint Classifier (2.5 Å) 1.32 31.2 56.2 72.5 77.5

Table 4.2:
Median RMSD and success rates for the augmented decoy sets (Figure 4.1D) of the
systems in the leave-one-out training database. Listed are the results obtained when the
best poses were selected using the docking score terms and classifiers that were trained
using the docking score terms, our pose fingerprint, and docking scores plus our pose
fingerprint as learning features. For the pose classifiers, we include results for classifiers
that we trained with the nativeness threshold set to 1.0, 1.5, 2.0, and 2.5 Å.

in these augmented decoy sets, with the best results obtained when ranking and

selecting poses based on their total docking score. In this case, the median of RMSD

of the best pose was 6.81 Å (Figure 4.2E; Table 4.2). Marginally better results

were obtained using the score classifiers (Figure 4.2F; Table 4.2), with the classifiers

trained with a nativeness threshold of 2.5 Å exhibiting the lowest median value of

3.96 Å, and S(1.00), S(1.50), S(2.00), and S(2.5) values of 13.8, 22.5, 32.5, and

37.5 %, respectively (Table 4.2). By contrast, the pose classifiers trained using the

pose fingerprint as features and the composite score and pose fingerprint features

were typically able to recover correct poses (Figure 4.2G and H). Except for the

fingerprint classifier trained with the nativeness threshold set to 1.00 Å, the median

RMSD for the predicted poses, were<1.50 Å. A representative of these pose classifiers

was the fingerprint classifier trained with nativeness threshold set to 2.50 Å. For this

classifier, the median RMSD of the predicted poses was 1.44 Å and the success rates,
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S(1.00), S(1.50), S(2.00), and S(2.5), were 31.2, 53.8, 72.5, and 82.5 %, respectively

(Table 4.2).

Selection Metric RMSDmedian(Å) S(1.00)(%) S(1.50)(%) S(2.00)(%) S(2.50)(%)
TOTAL 4.96 5.9 5.9 17.6 17.6
INTER 7.16 5.9 11.8 11.8 11.8
INTER.VDW 3.29 5.9 17.6 17.6 23.5
INTER.POLAR 11.67 0.0 0.0 0.0 0.0

Score Classifier (1.0 Å) 4.19 11.8 17.6 17.6 17.6
Score Classifier (1.5 Å) 6.62 5.9 17.6 17.6 17.6
Score Classifier (2.0 Å) 5.89 5.9 17.6 17.6 17.6
Score Classifier (2.5 Å) 8.39 5.9 17.6 23.5 23.5

Fingerpint Classifier (1.0 Å) 1.89 35.3 47.1 52.9 58.8
Fingerpint Classifier (1.5 Å) 2.05 41.2 41.2 47.1 64.7
Fingerpint Classifier (2.0 Å) 2.69 29.4 41.2 41.2 47.1
Fingerpint Classifier (2.5 Å) 2.12 23.5 35.3 41.2 58.8

Score+Fingerpint Classifier (1.0 Å) 2.69 35.3 41.2 41.2 47.1
Score+Fingerpint Classifier (1.5 Å) 2.71 29.4 41.2 41.2 47.1
Score+Fingerpint Classifier (2.0 Å) 2.69 29.4 41.2 41.2 47.1
Score+Fingerpint Classifier (2.5 Å) 2.05 29.4 41.2 47.1 58.8

Table 4.3:
Median RMSD and success rates for the augmented decoy sets of the systems in the
independent validation set. Listed are the results obtained when the best poses were
selected using the docking score terms and classifiers that were trained using the docking
score terms, our pose fingerprint, and docking scores plus our pose fingerprint as learning
features. For the pose classifiers, we include results for classifiers that we trained with
the nativeness threshold set to 1.0, 1.5, 2.0, and 2.5 Å. For all pose classifiers, results
are shown for independent sets of classifiers that were trained with nativeness threshold
set to 1.0, 1.5, 2.0, and 2.5 Å.

Next, we repeated the analysis described above for an independent dataset com-

prised of 17 RNA-ligand systems that we did not include in the leave-one-out dataset

used to train the pose classifiers. These tests were carried out using the more chal-

lenging augmented decoys sets. When using the docking scores to rank and select

poses, the van der Waals interaction scores exhibited the lowest median RMSD poses

(3.29 Å) and when using the score-based pose classifiers, the classifier trained with

nativeness threshold of 1.0 Å exhibited the lowest median RMSD (4.19 Å). In con-

trast, the corresponding values for the fingerprint-based classifiers and scores plus

fingerprint-based classifiers were 1.89 Å (nativeness threshold of 1.00 Å) and 2.05 Å

(nativeness threshold of 2.50 Å), respectively (Table 4.3). In terms of the success
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rates, the best performing classifiers were the fingerprint-based pose classifiers that

were trained with nativeness threshold of 1.00 and 1.50 Å, respectively. The success

rates, S(1.00), S(1.50), S(2.00), and S(2.5) were 35.3, 47.1, 52.9, and 58.8 for the

fingerprint-based pose classifier that were trained with nativeness threshold of 1.00

Å and 41.2, 41.2, 47.1, and 64.7 for the corresponding classifier that were trained

with nativeness threshold of 1.50 ÅȦs such, though the success rates on the valida-

tion set were lower than rates estimated from our leave-one-out analysis, they are

significantly higher than the results obtained using either the raw docking scores or

the baseline score-based classifiers (Table 4.2).

When we challenged the classifiers with the augmented decoys sets, in which

both the RNA conformation and ligand poses were varied, one possible reason why

their overall performance degraded is that we trained the classifiers themselves on

decoys sets in which only the ligand poses were varied (i.e., for each RNA-ligand

complex, the RNA was fixed in the holo conformation). It seems reasonable that

the performance of the classifiers could enhanced the by training them using the

augmented decoy sets, in which both the RNA conformation and ligand poses were

varied. Unfortunately, such augmented decoy sets are severely imbalanced, which

hampers the training of robust random forest classifiers. In future work, we explore

methods to train robust classifiers on these highly imbalanced decoy sets as well as

developing similar classifiers to RNA-protein complexes.

Here, we focused on training classifiers that can be used to post-process docked

RNA-ligand poses. The enhanced ability to recover atomically accurate poses indi-

cate that the relationships between the pose fingerprint and the nativeness of individ-

ual poses captured by our classifiers might also be useful in guiding conformational

sampling during docking. In principle, we could convert these classification scores
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into a pseudo-energy term of the form −kT ln(1+p), and can add it as an additional

term to existing scoring functions. Alternatively, a new pair-wise scoring function

could be developed using the random forest refinement strategy recently described

by Merz and coworkers.9 In either case, we could then assess the classifier-informed

scoring functions by quantifying the extent to which the distribution of docked poses

shift towards or away from native-like poses. Future work will explore this further.

4.4.4 Conclusion

In this study, we showed that machine learning classifiers significantly enhance

RNA-ligand pose prediction accuracy, especially when applied to set of ligand poses

that were docked against the holo conformations of RNAs. Due to the promising

results we obtained using our pose classifiers, we have incorporated them into the

software tool, RNAPosers (https://github.com/atfrank/RNAPosers). To facilitate

the development and testing of other RNA-ligand pose prediction methods and scor-

ing functions, we also make accessible all of the decoy sets used in this study. In the

context of RNA-ligand pose prediction, RNAPosers should find utility as a tool to

assess the relative quality of a set of poses derived either from purely computational

methods or from hybrid modeling methods that incorporate experimental data such

as chemical shift perturbation. Also, within the context of virtual screening, we en-

vision that RNAPosers may find utility as a tool to identify high-confidence poses

that can be brought forward for binding affinity prediction using physics-based free

energy calculation methods like, MM-PBSA and FEP calculations.
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CHAPTER V

Overall Summary

5.1 Major Findings

In this work we developed methods to predict the structure of RNAs and RNA-

ligand complexes. Understanding of the structure is crucial to gain insights into

the structure-function relationship of biomolecules. CS obtained from NMR studies

encodes local chemical interactions between the atoms. We devised precise predic-

tion methods to predict the CS by featurizing the local chemical environment. We

studied the impact of different Ring Current Models, namely, Pople, Johnson-Boevy

and Haigh-Mallion, on the accuracy of predicting CS. We found that the complexity

of calculating ring current varies between these three models, with Pople being the

simplest and Haigh-Mallion being the most complex. We also explored the accuracy

of different ML algorithms on predicting the chemical shifts. Next we used pre-

dicted CS to filter and predict the RNA secondary and tertiary structures starting

from sequence. CS were also able to recover native-like RNA-ligand poses from a

decoy set. The ligand in that study was docked onto the top 10 RNA tertiary struc-

tures that were predicted using a CS-guided prediction approach, starting from the

RNA sequence. This RNA-ligand pose prediction approach motivated us to design

a molecular fingerprinting based classifier to rank different RNA-ligand poses. The

80
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molecular fingerprinting approach which combined the atomic fingerprints that were

based on SYBYL atom types was able to provide unique featurization for a single

RNA-ligand pose. We then fed these molecular fingerprints to the random forest ML

classifier which were successfully able to resolve the RNA-ligand poses.

5.2 Innovation

A side by side comparison of all the ring current models ability to predict chemical

shifts was lacking in the literature. In chapter 2, we compared all the ring current

models and found that they have relatively similar performance at predicting the

chemical shifts despite the difference in the time complexity of their implementations.

Based on these observations, we decided to use the Pople ring current model because

of it’s lowest time complexity compared to the other two models namely Johnson-

Bovey and Haigh-Mallion. Also in terms of machine learning algorithms, ensemble

methods outperformed the linear methods in terms of accuracy in predicting the CS.

Random forest and lasso lars cross validation algorithms were found to be the most

accurate machine learning algorithms in ensemble and linear categories respectively.

In chapter 3, we came up with novel de-novo approach to predict the RNA structure

for PDB id 2LWK with better accuracy compared to existing methods using chemical

shifts filtering. We were able to recover 50% of the RNA structures within 2.5Å

using CS guided secondary structure prediction combined with Rosetta de-novo 3D-

structure prediction protocol. Chemical shifts error based filtering was also able to

recover native like RNA-ligand complexes starting from just the sequence of RNAs.

In chapter 4, RNAPoser which was build on a novel fingerprinting approach was

able to significantly enhance RNA-ligand pose prediction accuracy to 83.3% when

compared with the accuracy of 46.7% for LigandRNA and 40.0% for DrugscoreRNA
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on the 21 common RNA-ligand systems in all the three studies. We also compared

RNAPoser’s accuracy with the SPA-LN scoring function. On the testing dataset of

56 common RNA-ligand decoys with 1000 structures for each complex, the SPA-LN

and rDock both had 54% accuracy. On our decoy sets of the same 56 RNA-ligand

complexes with around 600 structures for each complex, rDock had an accuracy

of 34% whereas RNAPoser had an accuracy of 58.9%. These results show that

RNAPoser is able to better predict the poses for RNA-ligand complexes.

5.3 Limitations

Most of the structure prediction protocols presented in this thesis have some limi-

tations, which are presented below. As in any machine learning study, the confidence

in accuracy of the model depends on the confidence in the data used to build those

models. For example, in predicting NMR chemical shifts, the accuracy of the predic-

tors which were build depends on the accuracy of the reported chemical shifts used

to train those predictors. The less the error is in those reported chemical shifts, the

better our predictors are at predicting the chemical shifts. Similarly, the strength

of the molecular fingerprints and the predictors used in RNAPoser depends on the

accuracy of featurizer, which in turn depends on the accuracy of the structures used

to calculate those features. The more accurate those structural coordinates are, the

better the accuracy of the features and hence the predictors as well. Another lim-

itation in using structure prediction/generation tools like RNAStructure, Rosetta

and rDock are the inherent errors in the accuracy of the scoring functions which are

mostly energy based or empirical based . Since most of the studies in this thesis uses

the above mentioned software tools, the accuracy of our methods in turn depends on

accuracy of those softwares.
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5.4 Future Work

Despite the limitations mentioned above, we believe that the accuracy of RNA

structure prediction can be further improved by integrating various methods pre-

sented in this thesis. For example, one could combine the predicted chemical shifts

and RNAPoser classification scores, to build a hybrid scoring function to recover

native like RNA-ligand poses. One could also explore combining the chemical shift

filtering approach with the Rosetta scores to predict the de-novo RNA-ligand struc-

ture and test it on different RNA-ligand complexes. One could also explore the

transferability of RNAPoser to other systems. For example the classifiers we trained

on RNA-small molecule data can be extended to be used for recovering RNA-protein

structures. We expect that RNAPoser can also be used to score the RNA residues

to access the quality of RNA structures.


