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ABSTRACT

At the heart of higher education is the student experience. The student experience

represents the courses students take, the people they interact with, their extracurricu-

lar activities provided by the university and much more. Developing methods that are

able to measure the student experience is important to many stakeholders. Having

better measures of student experience will help university leaders such as presidents,

provosts, deans, department chairs, and faculty design better curricula and allocate

resources, it will give more context to students about the courses they select, and it

help employers better understand the graduates that they will employee.

Previous attempts to quantify the experience are not comprehensive. For ex-

ample, student surveys and evaluation forms only get a subset of the population.

Accreditation committees only get a snapshot impression.

In this study we demonstrate how high resolution student enrollment data can be

used to better quantify the student experience. The methods described in this thesis

are not unique to the institution studied and are scalable. Thus, they can be applied

at other institutions were student enrollment is recorded.

This thesis introduces a new dataset provided by the University of Michigan Infor-

mation and Technology Services staff. This dataset contains information on student

enrollment dating back to 2000. We demonstrate how this data is implicitly net-

worked. The connections between students and courses are explored and analyzed by

employing methods common to network science. Student enrollment is represented

as a bipartite network that is then flattened into two separate networks, a student

network and a course network. Common network measures are made on these in-
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dividual networks to gain insights on the structure of the university based on how

students enroll in courses. This analysis validates our intuition about the importance

large courses such as Introduction to Statistics (STATS-250), Principles of Economics

(ECON-101), and Introduction to Psychology (PSYCH-111) play in connecting stu-

dents from various disciplines across campus. Diving deeper this analysis revealed the

importance of some courses with significantly lower enrollments. Aliens (ASTRO-106)

has only one fifth the students that STATS-250 does, yet plays almost an equivalent

role in connection students from across campus.

Questions related to how to characterize connections lie at the core of social net-

work analysis. How are edges defined? Are they directed? Do they recieve different

weight and if so how? In this thesis, we introduce three measures for defining a con-

nection between students. The three types of connections are unique connections,

weighted connections, and intensity connections. The first, unique, answers the ques-

tion: who did you take courses with? The second, weighted, answers: how many

courses did you take with an individual? The third measure, intensity, combines the

previous question of how many, with the question of: what was the enrollment size

of the courses you took with an individual?

We demonstrate how these various definitions can have significant impact on the

measures we make on the network. We also show that the relationship between these

measures varies depending on the subset of students you’re looking at. For example,

there is zero correlation between the unique connections and intensity connections a

Mechanical Engineering BSE students makes, however, there is relatively high corre-

lation with these two connections for History BA students.

We can employ network analysis to capture the student experience, and we can

compare what we learn to more traditional categories and measures. For example,

How effective, or informative, are the typical categorizations (or labels) used to de-

scribe students? The typical categorizations, which we refer to as legacy labels,
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explored in this study are: split students into bachelors of science and bachelors of

arts (BS/BA), the next splits students into humanities, social sciences, biological sci-

ences, and natural sciences, and the final categorization splits students by majors.

We introduce concepts such as label coherence, strong and weak recoverability, and

robustness. We use these new concepts along with classic measures like Rand Index

and Normalized Mutual Information to compare the legacy labels to an optimal clus-

tering algorithm and random partitions. Through this analysis we find that BA and

BS is not a good representation of courses taken. We also show that majors as a

whole performs the best of the legacy labels, however, there is significant difference

in performance between the majors.

Finally we explore the link between how connections are defined in a network and

the recoverability of a labeling in a network. Here we see little correlation between

strong recoverability and unique connections and high correlation between strong

recoverability and intensity connections.
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CHAPTER I

Introduction

1.1 Social networks in education research

The courses that a student takes during their college studies arise from a combi-

nation of institutional requirements and the choices the student makes to fulfill them,

along with the student’s other personal interests. Each choice creates an opportu-

nity for connection to faculty members, other students, ideas, and experiences. The

courses chosen are subsequently recorded on a transcript that describes the activities

of this individual: major, courses and grades received, grade point average, and per-

haps honors. However, the experience of the student can be better understood when

placed in context and understood in relation to other students, which provides insights

into interactions with peers and connections to the broader intellectual environment.

The interactions that occur among college students on the same campus have

consequences for their experiences as learners in single courses [3] and reflect the

eventual academic outcomes at the conclusion of their studies [3, 16]. To varying

degrees these connections may be categorized as physical, behavioral, or associative

[5]. Physical connections occur when individuals occupy the same space, behavioral

connections include the active exchange of information, and associative connections

emerge from the shared intellectual experiences and activities of individuals in the

same course or major. Collectively these connections can be represened as a social

1



network [35]. Using network science and analysis to study this social network enhances

our understanding of the learning environment of modern higher education.

A network where the nodes represent people or groups of people and the edges

represent the interactions or connections among them is known as a social network.

Because of the various ways in which people and groups interact or connect, the edges

in a social network can take many forms. For example, edges can be formed from

communication [18, 26] or relationships [12, 31].

A collaboration between and among groups of scientists is another example of

a social network in higher education [10, 25]. In a network of that type the nodes

represent individual scientists, and two scientists are connected (i.e., there is an edge

between them) if they share co-authorship on a paper. [5] refined the network de-

scription to four levels of analysis. The first is the “ego” level, referring to an analysis

of one node, the ego, and all of its connections, which are the “alters”. The next two

levels grow to collections of nodes, either dyads (pairs) or triads (triplets). The fourth

level, which is the focus of this manuscript, is the analysis of the complete network,

which encompasses sets of actors and ties among them in a bounded sample.

The study we report in this article responds to the call of [3], who argued that

social network research in higher education “lacks a rich body of descriptive work por-

traying the student experience of college from a network perspective.” We first provide

useful definitions with a literature review. Next we describe the study. Discussion,

practical applications, suggestions for future research, and conclusions follow.

1.1.1 Network analysis primer

Within the domain of network science a network is generally understood as a

collection of two different types of objects called nodes and edges that depict a system.

The nodes in the network represent subcomponents of the system while the edges,

which connect the nodes and can also be called connections, represent interactions or

2



simply relations between and among these subcomponents. The resultant structure

of the network can describe the connectedness of the system, the stability of the

system, the information flow, and much more. This network structure then allows for

the identification of components and interactions of interest. Two examples of large

systems that have been represented as networks and that might be familiar to many

are power grids [37] and railway networks [29].

There is a set of commonly measured network attributes and statistics that help

in understanding network structure and composition. We now define three of these

common measurements. Both degree centrality and local clustering coefficient are

used in our study.

Degree Centrality. Reports the fraction of all the network nodes to which each

node is connected. This measure simply counts the total number of nodes to which

each node is connected within the network. This value is normalized by dividing

the number of connections (or edges) a particular node has by the total number of

possible connections the node could have (i.e., a network with n nodes is normalized

by n−1). Degree centrality is often considered in relation to information flow through

a network because it provides an estimate of the probability that this node will play

a role in transmitting ideas (or information) within the network.

Local Clustering Coefficient. The clustering coefficient relies heavily on the idea

of network transitivity. Transitivity is a term that reflects relationships: if node u is

connected to node v and v is connected to w, then u is also connected to w. This

leads us to an idea of partial transitivity, which is a concept in social networks where

the fact that u knows v and v knows w does not guarantee that u knows w, but

makes it more likely [24]. The clustering coefficient is an attempt to measure the

level of partial transitivity of the network, whereas the local clustering coefficient is

the clustering coefficient for a specific node. For each node, it probes how often this

node provides a unique connection between two other nodes. The value of clustering

3



coefficient indicates whether a node is embedded in a tightly clustered region of the

network. Conversely, it tells us something about how powerful a node is for connecting

otherwise unrelated nodes. The lower the value of the clustering coefficient, the more

powerful it is at providing unique connections [24].

Eigenvector Centrality This trait refines degree centrality’s initial estimate of a

node’s importance in a network. It does so by assigning relative scores to all nodes,

ascribing more importance to nodes which are highly connected to other nodes which

are themselves important. Eigenvector centrality gives each node a score proportional

to the sum of the scores of its neighbors [24]. This statistic is included here as an

example of the increasingly complex refinements that are available to basic statistics

like degree centrality, but it is not used in the results.

Community Detection “Loosely speaking, the goal of community detection is to

find the natural divisions of a network into groups of nodes such that there are many

edges within groups and few edges between them” [24].

1.1.2 Related Research

Due to the benefits of social network analysis, interest in applying it to education

research has arisen. There are multiple settings in which networks have been applied

in education research, including student relationships and faculty research collabo-

rations within and among departments that are reviewed by [3]. They identified

threads of research as “networks as dependent variables,” “networks as independent

variables,” and “descriptive.” As dependent variables, common themes have involved

the roles of race and ethnicity in the formation of friendships [7, 19] by using surveys

and later using Facebook data matched with institutional administrative data [21].

[20] also explored additional demographic traits as predictors of network behavior on

Facebook. As independent variables, networks have been notably tested as predictors

of GPA [2, 40], student integration and persistence [30], and health outcomes [11].
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Social networks as they exist in learning communities have been considered at the

classroom level [8, 15] and more extensively in massive open online courses (MOOCs)

and E-learning [6, 14, 33]. Additional examples can be found in education research.

For instance, Dawson (2008) [8] compared communication logs among students in an

online forum to draw connections between them. In that study the student network

measures of closeness, degree, and betweenness were used to assess each student’s

sense of community. Betweeness is defined as the extent to which a node lies on the

paths between other nodes [24]. [8] and [4] asked how a student’s centrality within

a school friendship network affects student performance. [36] looked at friendship

network size among faculty members and its relation to perception of work-family

culture. [9] used networks to look at faculty hiring patterns at top universities.

The earliest example of a descriptive study of student networks is found in [13],

who studied the friendships and communities formed among married veterans in hous-

ing at MIT. That work along with later descriptive studies [23, 28] initiated a field

that has since been lacking in activity [3].

These studies offer a few examples of ways to characterize and analyze networks

in higher education. They highlight how networks play a role in shaping higher

education. Much of this research took advantage of only a few network measures

to draw powerful conclusions: among them degree, closeness, and betweenness are

most common. These studies focused on small networks, that is, no more than a few

thousand connections and a small sample of individuals. The limited nature of the

available data may therefore reflect a biased subset of the whole.

One of the central challenges of social network studies is how to measure connec-

tion (i.e., how edges are defined in social networks). Many forms of connection which

we might like to study (e.g., friendships, collaborations, inspirations, conflicts, mutual

support, mentoring) are not comprehensively recorded. As a result, social network

studies need to rely on methods of estimating these based on context, survey data,
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or inference.

With our work we hope to rekindle this field by using large student enrollment

datasets, which all colleges have, as well as modern computational techniques that

reshape data into a network setting for further evaluation. For this study we took

advantage of one area of higher education for which data about substantive connec-

tion, that is extensive physical proximity, shared intellectual experience, and a suite

of activities, is carefully recorded. Every college and university has maintained care-

ful records of the courses taken by students. These records provide an opportunity

to study networks of substantive campus connection in ways which can be replicated

across the landscape of higher education.

1.2 Thesis Organization

This thesis is organized as follows: Chapter II introduces the Learning Analytics

Data Architecture, or LARC [1], provided by the University of Michigan Information

Technology Services. This dataset contains all of the enrollment data from the uni-

versity dating back the 1990s. Chapter II shows how this data can be represented

as a bipartite graph and demonstrates the application of network analysis to student

enrollment. In this demonstration we use standard measures made on networks to

explore how students and courses are connected across campus.

Chapter III takes a step back to explore the many ways a “connection” in a social

network can be defined, specially in the case of enrollment data. It sets out to answer

the question: If the number of students enrolled in a course matters, how does this

effect measures made in Chapter II? Chapter III demonstrates the subtlety of these

definitions in a toy model that is tractable and easy to interpret. It then applies it to

a large subset of the LARC data. Chapter III brings to our attention how majors are

not affected uniformly by these definitions. This implies that further investigation of

majors is necessary.
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Chapter IV explores the information content of legacy labels used in a university

setting such as a BA/BS, or grouping students by Humanities, Social Sciences, Bio-

logical Sciences, and Natural Sciences, or by just using the majors students received

as labels. It explores the information content as an abstraction of courses taken at

the university. Chapter IV takes a subset of students in the LARC dataset that have

certain majors. These majors were selected based on the number of students that

were enrolled in them. Chapter IV compares how legacy labels perform to an opti-

mal clustering and a random partitioning. Various comparison criteria are explored.

Chapter IV also introduces the concept of recoverability of legacy categories. We

define criteria for a legacy category to be strongly or weakly recoverable from data.
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CHAPTER II

Student and Course Networks

2.1 Introduction

Residential higher education brings thousands of students together for multiple

years and offers them an array of shared intellectual experiences and a network of

social interactions. Many of these intellectual and social connections are formed dur-

ing courses. Students are connected to students through courses they take together,

and courses are connected to one another by students who take both. These courses

and the students who take them form a bipartite network which encodes information

about campus structures and student experiences. Because all institutions of higher

education collect and maintain precise records of what courses students take, it is

possible to assemble a student-course network that quantitatively describes the inter-

actions among students and courses. We provide an example that demonstrates the

identification of courses effective at creating unique connections among students and

reveals how students and majors can be strongly connected or dispersed. We show

how social network analysis is used to improve our understanding of the learning

environment at the University of Michigan.

The purpose of this study was to demonstrate the application of network analysis

to a large administrative dataset in order to gain insights into the connections formed

among students and courses in higher education.

8



2.2 LARC Dataset

We used data from a large, selective, public, state university with over 40,000

undergraduate students and several colleges. In an explicit effort to make student

information data more easily accessible to researchers, the University of Michigan

Information Technology Services staff created the Learning Analytics Data Architec-

ture, or LARC [1]. This dataset, which is curated and distributed by the Office of the

Registrar, has enabled a wide range of learning analytics research efforts, including

this project. It is available to researchers for a project if their IRB is approved by

Michigan, and if there is a signed MOU. It provides an authoritative and complete

view of the student data present in the data warehouse; and it is updated every

semester, similar to the public data releases of “big science” projects such as the

Sloan Digital Sky Survey [38] or the GAIA Satellite [27].

The LARC currently includes four main tables. They contain over 400 columns

describing more than 200,000 students who enrolled in roughly 15,000 courses since

the year 2000. The content of the tables is reviewed and updated every semester to

accommodate researchers’ needs and to allow for redefinition of fields as appropriate.

All of the characteristics of students and courses used in this study were either drawn

directly or derived from the LARC dataset. The data dictionary for LARC is publicly

available online. For clarity and ease of understanding, we used more familiar names

for data elements in this work rather than the official names used in LARC.

In addition to defining the connective structure of our bipartite network, data from

LARC provided insight into labeling both student and course nodes with a variety of

metadata. The labeling may include descriptive metadata such as the name and num-

ber of the course, offering department(s) and college, credit hours, time and location

of meetings, structure (lecture, lab, discussion, seminar), enrollment, history of offer-

ings, prerequisites, and categorization in terms of college requirements. For the meta-

data about students who take each course, LARC provides insights about students’
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backgrounds, including information from campus admission, prior courses taken, and

previous academic performance. Demographic information includes records of age,

gender, ethnicity, country and state of origin, first or continuing generation status,

and intended major at time of enrollment. Also, there is a complete record of subse-

quent courses taken and of honors and degrees ultimately earned by students.

For this study we used NetworkX [17] to model and analyze the connections among

students and courses. NetworkX is a Python package constructed specifically for

network analysis. We used it to extract from the networks a set of traits which

characterize the role of nodes (students or courses) in the overall networks.

2.3 Methods

In this section, we begin by documenting the construction of our student-student

and course-course networks, then describe the extraction of network parameters char-

acterizing the nodes in each of the networks.

Building and partitioning the network: The full student-course network is bipar-

tite, meaning it consists of two types of nodes (i.e., student nodes and course nodes)

[24]. A student is connected to another student through courses that they both take,

and courses are connected to courses through students who take both. Figure 2.1 is

an example of enrollment in one semester and the connections can be interpreted as

follows: student 1, S1, is connected to student 5 (S5) because they were both enrolled

in course 2 (C2), in that semester. Courses are connected when one student enrolls

in both courses during the same semester. Course 1 (C1) is connected to course 4

(C4) because student 2, S2 is enrolled in both courses. In practice, this network is

quite complex. Each student may be connected to another student through a variety

of courses they take together. The list of shared courses surely colors the nature of

that “connection”. Likewise, each course may be connected to another by a few or

many different students, and the quality of this course-course connection is flavored
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Figure 2.1: Example bipartite (two-mode) network. The top set of nodes are courses
labeled C1, C2, . . . , C6 and the bottom set nodes represent the students
enrolled in those courses S1, S2, . . . , S6.

by the composition of these students. The network is rich in information and can

be used to address many questions about the student experience. The co-enrollment

(bipartite) network is then flattened into two separate networks, a student-student

network (Figure 3) and a course-course network. In flattening the network into two

separate networks there can be some information loss; however, there are still useful

insights to gain from the individual networks. Once constructed, we treated these

student-student and course-course networks separately for the study

The construction of this network required consideration of boundaries. In any

given term, students enrolled in courses may have academic careers which began long

before a particular course enrollment and the term being examined. As a student’s

career progresses, they may be connected to students whose academic careers will

continue after they graduate. Likewise, a course offered only once, before or after

the term of interest, may be connected to a current course by a student who spends

multiple years on campus. In this sense, there were no essential boundaries in time
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for our student-student or course-course networks. Every student on campus was

connected backward in time through a “friends-of-friends” network which extends

back to the founding of the institution and forward in time to students not yet born.

In our construction of the network, we simplified the interpretation and eased the

computational burden created by these boundary effects by restricting the study to

a well-defined set of students who entered and approximately exited the university

contemporaneously. We focused on the ego networks of a cohort of 6,738 students.

The ego network refers to the analysis of the individual student and their connections.

These students entered University of Michigan as undergraduate students for the first

time in the fall of 2011 (including transfer students), and have graduated or were still

enrolled by winter 2016. By the end of this five year period, 90.9% of those who

entered in fall 2011 had completed a degree. This five-year graduation rate is typical

for Michigan undergraduates. Most cohort students (90%) were in their first term of

college attendance, and these students typically completed 6-10 terms of coursework

during this five year period (the statistical mode is 8). The remainder of the cohort

was almost entirely transfer students, who typically took between 2 and 6 terms of

courses. The most frequent number of courses completed by the cohort of students

was 33, with an average of about 4.1 courses per term.

The complete student-course network of these students included the full comple-

ment of their classmates from fall 2011 to fall 2016, a total of 68,946 students who

enrolled in a total of 6,152 courses. The student network itself was an aggregation of

6,738 ego networks, one for each individual student within the cohort. This aggrega-

tion resulted in a network containing 68,946 nodes: 6,738 egos and their 62,208 alters

or classmates. Thus, the thrust of the analysis of the student network concerned this

cohort: we observed only some parts of the network for students (alters) who entered

before fall 2011 or who graduated after winter 2016. This made information about

network structure “fuzzy” at the boundaries. We did not know whether, for exam-
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Course CC DC N Format
STATS-250 0.078 0.523 20231 LEC
ASTRO-106 0.104 0.422 4065 LEC

UC-280 0.099 0.400 12632 REC
ECON-101 0.102 0.411 14065 LEC
PSYCH-111 0.104 0.403 12516 DIS
DANCE-100 0.110 0.392 2761 LAB

ANTHRCUL-101 0.117 0.379 8190 LEC
ENGLISH-223 0.122 0.361 3184 REC
SPANISH-232 0.124 0.342 7206 REC
PSYCH-240 0.134 0.337 6621 LEC

Table 2.1: Top 10 courses by degree centrality

ple, two “older” students might be connected by a course taken prior to fall 2011, or

two “younger” students who entered in fall 2016 might later become connected by

a course. Only connections observed within the cohort of students who entered in

fall 2011 and were still enrolled or graduated by winter 2016 are complete. For this

reason, we studied and now report only the networks produced by cohort students in

what follows.

2.4 Results

We now describe characteristics of the course network and the student network,

exploring along the way how these measurements might be used by various stake-

holders in the higher education system.

2.4.1 The Course Network

We begin by examining the courses with highest degree centrality, which is a

measure counting the number of connections a node has. Network statistics for the

top 10 courses by degree centrality are shown in Table 2.1. For each node we report

course name and number, clustering coefficient (CC), degree centrality (DC) total

number of students enrolled from fall 2011 to winter 2016 (N), and course format.
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Several of these classes (e.g., STATS 250 – Introduction to Statistics and Data

Analysis, ECON 101 – Principles of Economics, PSYCH 111 – Introduction to Psy-

chology) have especially large enrollments, which naturally increases their degree

centrality and gives them a prominent role in the course network. STATS 250 in

particular is the largest course on campus, taken by well over half of all Michigan

undergraduates at some point in their careers: 75% of the students in the course have

sophomore or junior standing. STATS 250 continues to provide a basic foundation in

statistical thinking to students from many disciplines: social scientists in Psychology,

Sociology, and Economics; natural scientists in Biology, Chemistry, and Astronomy;

and humanities majors in History, English, and Linguistics. The low local cluster-

ing coefficient (0.078) reflects the fact that it is especially likely to form the only

connection between students whose academic experiences are otherwise remote.

ASTRO 106 – Aliens, provides an interesting and non-intuitive counterexample

to the obvious large enrollment trend. While it enrolls only a fifth as many students

as STATS 250, it has nearly the same level of degree centrality. ASTRO 106 is a

one credit course on extraterrestrial life that is often taken by individuals in the

College of Literature, Science, and Arts, either out of interest or as part of fulfilling

a quantitative reasoning requirement. As such, it is often taken by students in the

latter half of their studies (60% have junior or senior standing) and draws from a

very wide variety of majors. ASTRO 106 has a higher local clustering coefficient,

indicating that it forms fewer unique connections between students than does STATS

250. However, the quality of those connections is likely different because ASTRO 106

is not taught in a large lecture hall.

Smaller enrollment is also characteristic of DANCE 100 – Introduction to Dance,

which is housed in a separate, and smaller college: the School of Music, Theater, and

Dance. The enrollments in DANCE 100 are smaller than any of the other courses in

Table 2.1. Designed specifically to introduce non-dance majors to the subject, it is
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offered in many small “lab” sections, in which students drawn from all over campus

are brought into extended, close contact. Such a course plays an outsize social and

intellectual role on campus, a role which might be invisible to both students and

campus leadership without this network analysis.

UC 280 – Undergraduate Research, provides another dramatically different ex-

ample. This course, which meets once a week in groups of 40, delivers support for

students engaging in undergraduate research in faculty labs during their first and

second years on campus. As such, it engages a wide variety of students in the shared

experience of working closely with a faculty-led research group. The high degree cen-

trality of UC 280 shows that it connects a large number of students, and the very low

clustering coefficient shows that the connections it forms among students are often

unique.

The role of these courses as especially powerful connectors should be more widely

known, both to students and campus leaders because they are adept at leveraging

existing diversity on campus by exposing students to peers with whom they might not

otherwise interact. The variety of enrollments and formats also serve as important

reminders that the course structure and format of STATS 250 includes several hours a

week in large lectures, while ASTRO 106 is offered in smaller, more intimate discussion

sections, which classify the connections differently. While they share the same space

and engage with the same content, STATS 250 students are likely to engage with only

a small fraction of their classmates, while those in ASTRO 106 likely enjoy a setting

that may allow for more meaningful interaction.

Other large enrollment introductory courses like ECON 101 – Principles of Eco-

nomics, PSYCH 111 – Intro to Psychology, and ANTHRCUL 101 – Introduction to

Anthropology connect to many other classes; but they provide unique connections

among these courses less often than does STATS 250. They are less likely to connect

to courses across more substantial disciplinary divides on campus. This distinction

15



●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●●

●
●

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4 0.5
Degree_Centrality

C
lu

st
er

_C
oe

ff TOTAL_N

●

●

●
●

5000

10000

15000

20000

Course Network

Figure 2.2: The Degree Centrality vs. Clustering Coefficient for 1,878 University of
Michigan courses with enrollments N > 100.

becomes stronger for more advanced courses on the list, like PSYCH 240 – Introduc-

tion to Cognitive Psychology. This course is taken primarily by students who will

major in psychology or one of the several forms of neuroscience, so it is less likely to

connect to more distant subject areas. A course does not necessarily facilitate unique

connections among other courses by virtue of its size.

Figure 2.2 examines the structure of the course network more generally, we see

that the relationships among total enrollment, degree centrality, and the clustering

coefficient are strong, with the largest, most highly connected courses also more likely

to provide unique connections. However, there is complexity here too. In Figure

2.2 each point represents a course and total course enrollment over the time period

considered; the 10 courses in Table 2.1 occupy the high degree centrality low cluster

coefficient. Point sizes indicate the relative course size. Marginal histograms show

the one-dimensional distributions of degree centrality (top) and clustering coefficient

(right).

Some large enrollment courses, for example PHYSICS 240 – General Physics II
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remain relatively isolated and do not connect to many other courses; and they rarely

connect otherwise unconnected pairs of students. Conversely, some relatively small

enrollment courses have strikingly high degree centrality and low clustering coeffi-

cients, which shows that they are especially effective at providing connections among

otherwise remote courses. A handful of courses live in very tightly clustered environ-

ments so that almost every pair of courses they are connected to is also connected

to one another. Examples of such courses include studio music courses, along with

advanced undergraduate courses in Pharmacy, Classics, and Naval Architecture.

These examples help to illustrate some of the ways in which course network in-

formation might inform various audiences on campus. Students could use this infor-

mation to seek out courses which will connect them to a more diverse array of other

students. Faculty members might use these networks of connection to better under-

stand where their students are coming from and where they might go. Administrators

might use these networks to better understand the student experience and perhaps to

draw together the community of instructional teams working on the most connected

courses, supporting them more openly in their efforts to create especially inclusive

and equitable experiences for the diverse students whom they serve.

2.4.2 The Student Network

In Figure 2.3 a sample of the student network is shown for a selection of highly

populated majors, both egos and alters. Shaded circles represent individual students

(nodes), connected by edges whose length is inversely proportional to the strength

of the connection between students. Students co-enrolled in many courses (as those

in same major often are) cluster tightly within a major, and the majors themselves

cluster according to the co-enrollment of students in the two majors. As expected,

students cluster by major through the courses in which they co-enroll; and some

majors are more tightly clustered in the network than others, reflecting both the rel-

17



Figure 2.3: Flattened student-student network for large majors

ative flexibility of curricular requirements and the choices made by each individual

in course selection. Neuroscience majors, which include many pre-medical students,

are tightly clustered, due in part to a large set of prerequisite biology and chemistry

courses, while Political Science majors show reduced clustering that reflects the rela-

tively greater freedom they have in fulfilling their degree requirements. The clustering

also does not obey hard boundaries. The English majors found among the Economics

cluster (and vice versa) are individuals who used freedom in the curriculum to enroll

in several courses commonly taken by students in the other major, and perhaps even

to double major.

In Figure 2.4 we display the relationship between the full student network degree

centrality and clustering coefficient for all of the students in the fall 2011 cohort.

Each point represents a student in the cohort. Marginal histograms show the relative

distributions of cluster coefficient (right) and degree centrality (top) among students.

The correlation between the two is similar to that seen in the course network, though
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Figure 2.4: Degree Centrality vs. Clustering Coefficient for University of Michigan
students

less pronounced, largely because the highest degree centrality seen in the student

network is only about half that of the course network. Some basic features of the

student network merit further mention.

The students with the highest degree centrality in the fall 2011 cohort are con-

nected through course co-enrollment to almost 25% of all the 6,738 Michigan un-

dergraduates who entered in that term; they each took courses with about 1500

unique individuals. Those with the top five degree centralities all had different ma-

jors, though all appeared to be pursuing a track toward medical school. Four had

completed their undergraduate degrees: a Biopsychology, Cognitive Science and Neu-

roscience B.A.; an Asian Studies B.S.; a Biomolecular Science B.S.; and a Biology,

Health, and Society B.S. One of the five students had not yet graduated in winter

2016. All of these students were enrolled for the full five years, completing ten terms

and taking anywhere from 41-47 courses. Degree centrality can only rise as one adds

additional classes, and it does so especially rapidly with large STEM courses, like

these which premedical students regularly take.
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There are also students with very low degree centrality; they are connected to

almost no other students in the fall 2011 cohort. Many are transfer students, who

entered in fall 2011 as juniors or seniors; took courses primarily with older, non-cohort

students; and graduated without forming extensive connections in this cohort. The

most extreme cases, occupying the upper left of Figure 4, are students who returned

to school to receive, for example, a second-career B.S. in Nursing. By embedding

enrollment in the network setting and without explicitly labeling transfer students,

the resultant network statistics easily identify them as outliers. These measures reflect

an important reality of their university experience, that is, they interacted with a

much smaller and less diverse group of peers.

At each level of degree centrality, we find students whose clustering coefficients

cover a broad range. Some are embedded in relatively dense parts of the network, like

large majors in the College of Engineering. Such students rarely create unique con-

nections between pairs of other students: they are almost always already connected.

Others are vital connectors, regularly providing the only connections between stu-

dents in deeply connected but otherwise separate neighborhoods. These students are

unusual, often majoring in two or more fields, sometimes studying in two separate

colleges

2.5 Discussion

2.5.1 Practical Applications of Network Analysis

A complete student-course bipartite network can provide answers to questions

raised at many levels within higher education. For example, presidents, provosts,

deans, department chairs, and faculty members may seek to better understand how

to design their curricula or to allocate resources to courses that might provide op-

portunities for a greater number of students to experience the benefits of diversity.
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Which courses are especially important for creating interdisciplinary, cross-campus

connections? Which courses provide especially rich opportunities for connections

among students with differing backgrounds, interests, and goals? Where do first year

and senior students or traditional and non-traditional, students interact? Campus

leaders may also use these same analyses to gain a deeper understanding of the stu-

dent experience, identifying groups of students who are especially well-connected or

especially isolated, exploring the relationships between curricular requirements and

student connections, and designing new courses which enhance desirable connections

where they are lacking.

There are also practical applications for students, who may now probe the breadth

and depth of their academic experience with greater clarity. They will have the op-

portunity to see what kinds of courses are likely to build their network of connections

and to examine and evaluate the extent to which they have contributed to the net-

work of connections across the campus. They can query how similar or diverse they

are to other students in the network and then make informed decisions. Students can

see how they are connecting otherwise disparate parts of campus (e.g., they could be

connecting two departments that do not normally have students interacting). They

can also see the reverse and see how isolated they are relative to the possibility of

connections on campus. While answers to some of these may seem intuitive, network

analysis helps us quantify these ideas.

Once constructed, student-student and course-course networks can be analyzed

to identify community structures using any of the variety of community finding algo-

rithms developed by the network science community over the last few decades [24].

Communities finding algorithms partition networks into groups of nodes having high

within group connectivity and low between connectivity. Community finding pro-

vides insights into the hierarchical structure of networks. If used on communities of

students or courses, community finding algorithms will likely identify obvious com-
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munities, that is, majors and colleges, while also quantifying similarity and difference

in new ways, showing, for example, that the courses taken by economics students

more closely resemble that of natural scientists than social scientists. These types of

algorithms also probe which elements of the curriculum are important primarily for a

discipline and which elements are cross-disciplinary. Community finding will identify

the communities that emerge due to the network structure of connections and will

allow for a direct comparison to department requirements.

As these results are presented to groups of students, faculty, administrators, and

our peers in higher education, future work will be undertaken to understand how

they are actually used in practice. Moreover, measures such as these will be of

broad interest to members of the research community who may use them to address

larger research questions that use network statistics as either independent variables

predictive of certain outcomes or in the mode of dependent variables, where the

network statistics are the outcomes themselves [3].

2.5.2 Refinements and Extentions

As others have pointed out, networks may not measure precisely what was in-

tended. The process of validation for a measure or instrument is an integral part of

social science; for example, [14] and [22] recently treated the matter in detail in the

context of social ties formed in MOOC forums. In the framework of [5], co-enrollment

in a course certainly creates a physical and associative connection, but what behav-

ioral connections are formed among students is not known. Is it necessary that both

students take the course at the same time, or can a meaningful “shared” experience

emerge when they both complete the same course in different terms? Should the

strength of connection be weighted by credit-hours, time in class, course structure,

or measures of difficulty? Is the connection created by a small seminar stronger than

that created by a large lecture course? Are two courses equally “connected” when a
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student takes them both in the same term or takes one in the first year and one in the

fourth year? Sensible answers to these questions depend upon the specific outcomes

or phenomena of interest. This work does not directly address all of these questions,

but we suggest that it does lay the groundwork for future studies.

Important refinements and extensions of this work remain to be explored. Each

choice made in the construction of our bipartite student-course network is open for

reconsideration. For example, an immediate task is the exploration of weighting of

the connections produced by co-enrollment. This may be especially important if we

want our student-student networks to model social connections reasonably well.

Another significant extension will allow for course connections to form when the

same students take a course in different terms. This will change the course network in

substantial ways, emphasizing course sequences associated with major requirements

which are currently absent. In an analogous way we might create a student network

meant to reflect only shared intellectual experiences and to connect students who take

the same course in different terms. Such a network would describe shared intellectual

experiences, social ones less so.

Other opportunities exist to gather richer, more precise measures of campus con-

nections. Perhaps the most important involve the input from the students them-

selves. A number of learning analytics studies [41] have been done relying on student

self-reports of networks of connection, ranging from networks on social media like

Facebook to self-reports of who studies with whom.

2.6 Conclusion

In this chapter we have demonstrated the power of the network framework in the

context of large institutional datasets. Networks are a direct means to quantify ele-

ments of the course-course and student-student interactions for all students and all

courses. The features of the network presented thus far only scratch the surface of the
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rich description this framework affords. Recent literature [3] has called for reinvigo-

rating social network analysis in higher education as a means of description of higher

education. We believe that our analysis responds to this challenge by assembling a

bipartite student-course network, which consists of over 68,000 students connected by

6,152 courses. The flattened student and course networks are then turned to describe

the relationships of courses to one another through the students that take them and

relationships of students to one another through the courses in which they co-enroll.

We reached the following conclusions.

• The intuited belief that high enrollment courses uniquely connect students from

different academic backgrounds is confirmed for some courses, but is not the

rule.

• Specific low enrollment courses can also as serve as equally powerful unique

connectors of students.

• Students cluster by major, as expected; and unusual students, such as transfer

students, appear with low degree centrality due to the smaller number of courses

they have taken on campus.

• Some majors, particularly pre-medical, exhibit higher degree centrality due in

part to enrollment in more large courses.

• High degree centrality in students is also not a guarantee that they form unique

connections (low local clustering coefficients) among different communities.

These results both confirm that network measures accurately recover intuitive

connections and uncover those that are less than apparent. At this point it impor-

tant to recall that, despite the ability of a course to facilitate unique connections

among students, simply occupying a space in a large lecture at the same time is no

guarantee of a meaningful exchange. Proper interpretation of these results requires
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an acknowledgement that course formats can be more or less conducive to this kind

of engagement, and lack of course format should be borne in mind by those using

these tools to draw conclusions about particular courses and their students.

Sometimes a lack of connection may be especially troubling, as it might be if

students working on algorithmic data science have little chance to encounter ethicists.

Other examples of troubling forms of isolation may take place along lines of social

class, ethnicity, gender, or nationality. We suggest that institutions could have the

opportunity to minimize the systems that perpetuate inequality in higher education

by systematically examining networks of campus connections.

While limited in scope, this work provides a first look at the ways in which network

measures of student connection through course co-enrollment can provide new insights

into how students connect with students and courses connect with courses on the

campus of a large public research university. Because the data used to build these

networks is available at essentially every university and college, this kind of analysis

could be replicated. Doing so would help everyone concerned with higher education

better understand how campus connections form and where they do not form.
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CHAPTER III

Connections in the Student-Course Network

3.1 Introduction

In this chapter we seek to answer the following question: In social network anal-

ysis of student enrollment data, how do you define a connection? We explore three

different ways of thinking about student connections. It is important to note that

we are only looking at the enrollment data and that we are aware of the numerous

other ways students connect on campus from dorms, sporting events, social/academic

clubs, and other various extracurricular activities. That being said, restricting our

analysis to connections only within the classroom poses some interesting questions

about what defines a connection in the class room.

One way that we evaluate a student’s connections is count the number of unique

students which they take a course with. In our analysis, we will refer to this as the

network of unique connections. When we think about connection between nodes, we

need to think about the edge weights. The unique connections gives every edge a

binary weight of zero or one and does not account for how many courses a student

takes with another. A reasonable next step would be to say that the edge weight

between two nodes (students) is equal to the number of courses they have in common.

In our analysis we refer to this as a network of weighted connections. In this mode if

two students took five courses together their edge weight would equal 5. This method
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of defining a connection considers each course to have the same value of weight.

However, one can imagine that the connection of two students depends, for instance,

on the size of the enrollment in the course they take together. In our final method of

defining connections we use this interpretation, with smaller courses getting a higher

weight value than larger courses. We call this a network of intensity connections.

Intensity works similar to weighted connections, but instead of a +1 for every course

a pair of students take, a student gets a value that decreases as a function of the

course size. All of these methods are described in more detail in section 3.3.

3.2 Data

In this chapter we, use the same LARC dataset introduced in Chapter II. Here

we focus on the same cohort of students that enrolled to the University of Michigan

in Fall 2011. There are 6738 students in this cohort, they took 17960 unique courses,

and had 174 unique majors.

Figure 3.1 shows the distribution of course sizes. This is of particular interest to

our calculations because they highlight the potential for unique classmates, frequency

of interaction, and size of courses for the three ways in which we define edge weights.

A few observation from these distributions: first, just over 75% of the courses taken

by this cohort have less than 11 students enrolled. A majority of the courses that

have one student enrolled seem to be independent study courses. These independent

study courses make up a majority of this distribution. On the opposite end of the

spectrum we also see that there are 27 courses with enrollments greater than 500 stu-

dents. English 125 (College Writing), Math 115 (Calculus 1), and Chem 130 (General

Chemistry) all have more than 1000 students enrolled. The remaining courses with

greater than 500 students are other large freshmen courses.
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Figure 3.1: Course Enrollment Distributions
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3.3 Methods

We represent the enrollment data with a bipartite network. A bipartite network

is a special type of network whose nodes divide into two separate courses. In our

analysis the two sets of nodes represent the courses and students in the data-set.

There exists an edge between a student node and a course node if the student takes

that course in a specific semester. An example of a bipartite student network is shown

in Figure 3.2.

Figure 3.2 is a toy-model used to help demonstrate the methods and results that

are calculated on the real student enrollment data. The toy-model network is com-

posed of 10 students and 10 courses and edges. This representation allows questions

about what courses a student took to be answered simply by looking at the edges.

For example, in Figure 3.2 student {S1} is enrolled in courses {C1, C6, C9, C10}.

Course-centric questions about courses can also be visualized, for instance, {C2} was

taken by students {S3, S6}.

In this methods section, we introduce three ways of building the student network.

These three methods differ in how they define a connection between two students

in the network. Section 3.3.2.1 describes the process of defining unique connections

between students. Section 3.3.2.2 describes how weighted connections are defined and

finally section 3.3.2.3 describes how intensity between students is defined.

In the Results (Sec. 4.4) we explore how these three different constructions vary

in how they are distributed among students and majors. We then explore how these

three different ways of drawing connections in a network effect various centrality

measures. The centrality measures we consider are degree centrality, eigenvector cen-

trality, and triangle centrality. Degree centrality is a normalized count of the number

of edges a node has. Eigenvector centrality gives each node a score proportional to

the sum of the scores of its neighbors [24]. Triangle centrality finds the number of

triangles that include a node as one vertex.
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Figure 3.2: A toy model of the bipartite student-course network. Students (upper
row) are connected to one another through the courses (lower row) in
which they co-enroll. When considering the flattened student-student
social network, we imagine scenarios where the edge weights can be binary,
up-weighted by the number of courses taken together, or down-weighted
by the course enrollment.

3.3.1 Flattening the network

Once the bipartite network is constructed, single mode networks can be extracted.

This process is referred to here as “flattening”, which in effect produces two single-

mode networks. In this case we have a network comprised solely of student nodes

which we refer to as the “student network” and a network consisting of only courses

which we refer to as the “course network”.

To build the student-network from the bipartite enrollment network, edges are

formed between students when they are enrolled in the same courses. In Figure 3.2

student S10 only took one course, C9. However, they will be connected to two other

students, S1 and S4, who also took course C9. In a similar fashion, to build the

course-network, courses will be connected to each other if a student enrolled in both

courses. Again we can refer to Figure 3.2 and look at course C2. C2 is connected to
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C6 via student S3 and it is also connected to C6, C8, and C10 via student S6.

Our focus is ultimately the flattened student network, where now the influence of

particular courses is confused, and so is the nature of the of the connections student

form because of the information loss. For instance, student S10 took a single course

C9, that has an enrollment of three students. The higher enrollment of C9 (than, say,

C2) could mean lower quality connections formed among the students than a lower

enrollment course. Large lectures are a limiting case of this scenario.

The connection between students also needs clarification in the one mode projec-

tion. Student S1 took courses C1, C6, C9, and C10 and is now connected in some

way to peers in all those courses (except C1). The course sizes notwithstanding, S1

took more courses with S9 (two total) than with S8 (one total), so the mere presence

or absence of and edge does not suffice to capture a key feature of the two-mode

network.

In both cases, weighting schemes that acknowledge these practical realities are

worth exploring. Consequently, the student-centric statistics we derive from the one-

node network are sensitive to these schemes.

3.3.2 Weight Considerations

Weighting schemes were considered in some detail by [39], and [32] pointed out

their effect on network statistics. Weight signals how “strong” the edges between

two nodes are. In studying social networks the weight can signify the strength of the

connection between two nodes. For example, two students that took multiple courses

together should have a higher weight than two students that only took one course

together.

Different forms of connection that might be represented in a social network in

an educational setting [5]. Some of these may include more intentional and personal

interactions while others indicate shared experiences.
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In this study we create three different student-networks: unique connections,

weighted connections, and intensity connections. Each weighting scheme places dif-

ferent emphasis on the character of connections formed between students.

3.3.2.1 Unique Connection Edge Network

In the unique student-network two students get a weight of 1 if they ever enroll in

the same course. This value does not increase with the number of courses they have

in common like weighted. It is defined by the following equation

ui,j =


1, if student i and student j ver take a course together,

0, otherwise

3.3.2.2 Weighted Connection Edge Network

The weighted student-network is similar to the intensity student graph except each

course is not weighted by the number of students in each course (i.e., each course has

an weighted connection of 1). The weight given between two students in the weighted

network is given by

wi,j =
∑
k,k′

δk,k′

where δij is known as the kronecker delta function and is defined as the following

δk,k′ =


1, if k = k′,

0, if k 6= k′.

In the weighted student-network two students get +1 for every course they take

together. This situation is useful for when the focus on physical/social interaction

is lowered, but still exist. One particular example stands out, when you are trying

to quantify similarity of experience between two students. Two students that had 7
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courses together (co-enrolled) are more similar than two students who only have 2

co-enrolled courses. Similarity is a relative concept, which why the network setting

is useful it allows for computation between nodes and groups of nodes.

3.3.2.3 Intensity Connection Edge Network

The intensity connected edge network is built on the premise that the edge be-

tween two students should depend on the size of the course. This is important if we

are thinking about students physically/socially interacting. In this case students in

smaller courses have a higher chance of interacting and thus have a higher weight

than two students in a highly enrolled course. This is demonstrated in in Figure 3.3

below. Figure 3.3 is an example weight function that is only used in the toy model.

Using the toy model as an example we know the distribution of course sizes. The

largest course size is 5 and the smallest course size is 1. Figure 3.2 shows there are

two students students enrolled in course C2. Thus each receives a weight score of 0.75

for that course.

Figure 3.3: Course weight function for the toy model.
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The weight of a given course is defined by the function:

f(θC) =


1 θC ≤ 1

−1
4

(θC + 5) 1 < θC < 5

0 5 ≤ θC

Where θC is the number of students enrolled in a course (e.g., using C2 from

above we see that θC2 = 2). We can use f(θC) to calculate the weight of a connection

between students. The edge weight between two students is the sum of the weight

courses that the took together. It is defined by the following equation

Ii,j =
∑
Ck∈X

f(θCk)

where X = Ci ∩ Cj and Ci and Cj is defined as the set of courses for student Si and

Sj respectively.

3.3.2.4 The interactions of weights

Weights are important when evaluating the connection between two students.

Changing the weighting scheme can significantly effect results of network statistics.

For example, looking at Table 3.1 we can see how when calculating the eigenvector

centrality using the intensity student-network resulted in S6 being ranked 4th whereas

using the weighted network S6 is ranked 9th and 8th for the unique network. Using

Figure 3.2 we can easily investigate why this is true. S6 has a low intensity score

because two of the four courses (C6 and C8) they are enrolled in have 5 students,

which in this toy example is a large amount for enrollment. When we apply the

intensity function to these two course it returns a value of 0, thus S6 gets no “points”

for connections made in these courses.
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Intensity EC Weighted EC Unique EC
S3 – 0.069 S10 – 0.048 S10 – 0.116
S10 – 0.153 S2 – 0.124 S2 – 0.224
S5 – 0.171 S5 – 0.151 S3 – 0.234
S6 – 0.191 S3 – 0.180 S5 – 0.271
S4 – 0.290 S4 – 0.273 S9 – 0.337
S9 – 0.316 S7 – 0.321 S1 – 0.348
S7 – 0.331 S1 – 0.331 S7 – 0.363
S1 – 0.426 S9 – 0.345 S6 – 0.369
S8 – 0.453 S6 – 0.434 S4 – 0.383
S2 – 0.476 S8 – 0.576 S8 – 0.399

Table 3.1: Eigenvector centrality of students in the toy model (Fig 3.2).

Weighted Unique Intensity
Weight 1 0.804 0.026
Unique 0.804 1 0.146

Intensity 0.026 0.146 1

Table 3.2: Weighted, Unique, and Intensity Correlation Matrix

3.4 Results

We now examine how the three different ways of calculating connections lead to

dissimilar inferences from the data. For the real data we use a sigmoid weight function

to calculate the intensity score for each course.

f(θC) =
1

1 + exp{slope ∗ (coursesize− cutoff)}

3.4.1 Student Distributions by Network Type

To examine how the students are distributed among our three measures of con-

nection (unique, weighted, and intensity) we sum each row of the student x student

matrix. Summing each row gives a total value for a measure for a specific student.

We then check to see how these totals are distributed.

Figure 3.4 shows the results for all three. In Figure 3.4 the unique connection

distribution shows that majority of the students have more than 2000 unique connec-
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Figure 3.4: Distribution of student unique, weighted, and intensity values
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Weighted Unique Intensity
Weight 1 0.915 0.673
Unique 0.915 1 0.585

Intensity 0.673 0.585 1

Table 3.3: History - Weighted, Unique, and Intensity Correlation Matrix

Weighted Unique Intensity
Weight 1 0.790 -0.202
Unique 0.790 1 0.069

Intensity -0.202 0.069 1

Table 3.4: Mechanical Engineering - Weighted, Unique, and Intensity Correlation Ma-
trix

tions.

Table 3.2 shows the correlation between the measures, we see that unique and

weighted have a correlation of 0.80. Intensity has near zero correlation with weighted

and a low correlation of .15 with unique.

To investigate this phenomenon further we explore how these different definitions

of connection alter the distribution for specific majors.

Figure 3.5 and Figure 3.6 show how majors vary significantly in the three results.

The differences in the three distributions tell different narratives about how students

take courses within each of the majors. In Figure 3.5 we see that the distribution of

unique connections for History students is spread between 50 and 80. The distribution

of weighted connections, this value is between 60 and 160. This says that History

students tend to take one to two courses with the students they meet. The distribution

for intensity connections tells us that one of those two courses is a large lecture because

the intensity score is close the unique score.

Figure 3.6 tells a different story. Almost all Mechanical Engineering students make

225 unique connections. The distribution of weighted connections says that they take

10 courses with the unique connections. Form the intensity connections we see that

a majority of these 10 courses are large courses.
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Figure 3.5: History Major Distribution - Unique, Weighted, Intensity
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Figure 3.6: Mechanical Engineering Major Distribution - Unique, Weighted, Intensity
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Recall how unique connections and intensity connections have almost zero corre-

lation overall. This is true in aggregate but not at the level of individual majors.

Table 3.3 shows History BA major has a positive correlation of 0.67 between the

unique and intensity and Table 3.4 shows that the Mechanical Engineering BSE has

a negative correlation of -0.20. We also notice a max intensity in History of 120 while

Mechanical Engineering has a max intensity of 375.

Another noticeable difference in two figures is in the number of unique connec-

tions the student makes which is shown in the top right of both figures. Mechanical

Engineering students have a very tight distribution around 225 while the History stu-

dents are not only lower in magnitude, but also display higher variance. The lower

left corner of the figure displays the student weighted distributions. Majority of the

Mechanical Engineering students have greater than 1000 weighted connection values.

This indicates that not only do the these students make a lot of unique connections,

they also take multiple courses with these students. We notice about an order of

magnitude difference in the unique and weighted graphs.

This is not the story with History majors. A majority of the history majors have

between 60 and 160 for their weighted connection values. When we compare this

to their number of unique connections, we notice they are about the same order of

magnitude. This implies that not only do History majors have a low number of unique

connections, they only encounter most individuals in at most 2 courses on average.

The distributions for all of the other majors can be found in [A.1]. The mean of

unique, weighted, and intensity formulations for each major are displayed in figures

3.7, 3.8, and 3.9. The actual values are in Table 3.5. This summary highlights a the

following: First, looking at the range of values. For unique connections, the lowest

value of 60.58 for History. While Psychology has about 3.5 times larger value of

222.62. Yet, they have almost equal Intensity scores.
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Table 3.5: Major unique, weighted, and intensity means and variances
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Figure 3.7: Average mean of student unique connections for each major
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Figure 3.8: Average mean of student weighted connections for each major
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Figure 3.9: Average mean of student intensity connections for each major
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3.4.2 Network Measures

We now examine how these three definitions effect common network statistics.

In this context, degree centrality is a measure of the connectedness of a student to

other students. In practice, the connectedness can indicate the integrated influence

of peers, or the converse. Strictly speaking, degree centrality is a measure of the

number of connections, regardless of their weights. Figure 3.10 shows degree centrality

measured by the unique connection student graph on the x-axis and the intensity

student graph on the y-axis. Each point represents a student with degree centrality

measured as represented by either graph. A feature of this plot is the rightward

scattering from the line of equality. The weighting scheme, removes the effect of large

courses, so that degree centralities in Ww can only be equal or less.

This line forms because of how degree centrality is calculated in NetworkX. Net-

workX does not consider edge weight when calculating degree centrality, this means

the number of times a pair of students take the same course doesn’t matter (i.e.,

every edge is weighs the same). Since every edge weighs the same, the only attribute

that will change the structure of the graph is the existence of an edge. Because the

unique connection graph has an edge between two students independent of course

size, it’s an upper bound on the degree centrality measure. The intensity graph has

a chance to have less edges because there is a chance two students are co-enrolled

into a large course setting a weight value close to or equal to zero thus resulting in

no edge connecting the two students.

Figure 3.10 is broken into four quadrants. Students whose unique and intensity

degree centrality measures are closely related to one another are located near the line

of equality. They took primarily courses with smaller enrollments, or at least small

enough for an edge to be added. The farther a student scatters to the right, the

greater number of large enrolled courses contributed to their unique degree central-

ity. Generally, those found further to the left took courses that had relatively lower
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Figure 3.10: Student intensity degree centrality vs Student unique degree centrality

enrollments than students to the right.

Most notably, the upper right quadrant contains majors with high centrality for

either measure. Pre-medical majors (Biopsych, Cognit & Neuroscience BS degrees

and Neuroscience BS degrees) comprise more than a quarter of these. Their curricula

include many prerequisite chemistry, biology, physics, and psychology courses that

have large enrollement, however, not large enough where they lose their weight.

Students existing in the lower right corners of quadrants B, C, and D all are exam-

ples of students who had larger enrolled courses contribute to their degree centrality.

Examining A of Figure 3.10 (Intensity DC > .06 and unique DC < 0.1): Because

of where the line that bounds degree centrality is located, the students that exist in A

don’t have that much mobility due to weighting. As with all the quadrants students

in the bottom right exhibit the most mobility, but relative to the other quadrants

this quantity is small.

In this section there are 328 students. The following table shows how they are
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Major Number of Students
Psychology 38

Computer Science 22
Business Administration 21

Biopsych, Cognit & Neurosci 17
Economics 13

Movement Science 12
Mathematics 11

Cellular & Molec Biology 10
International Studies 9

Table 3.6: Caption

distributed among the top 10 majors in this sections:

Part B (the top right) (Intensity DC > .06 and unique DC > 0.1): This quad-

rant contains the most mobility and spread. There are 973 students in this section.

Majority of the students (4631) are located in part C of Figure 3.10. Bottom Right

(Intensity DC < .06 and unique DC > 0.1)

Now we want to look at students whose intensity degree centrality almost equals

the unique degree centrality. This is done by looking at students with weighted and

unique values are within 1% of each other. This is displayed in the Figure 3.11.

3.4.3 Eigenvector Centrality

Like degree centrality, eigenvector centrality attempts to measure node impor-

tance. Below Figure 3.12 is a plot of intensity versus unique eigenvector centrality

scores for students. Looking at the figure we see that the majority of the students

are concentrated near zero, thus, for the first part of the analysis we looked at the

outliers (students with intensity scores above 0.05), we then incrementally looked at

slices approaching zero where majority of the students are. As displayed in the data

below, moving through slices shows that students majoring in Dance, Performing

arts, Musical Theatre, etc. get a significantly higher intensity eigenvector centrality

score than other majors.
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Figure 3.11: Highlight of intensity = unique portion of degree centrality graph

Figure 3.12: Intensity Network Eigenvector Centrality vs Unique Network Eigenve-
cotr Centrality
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Intensity Eigen Range Number of Students Avg # Courses
0.5 < EC 14 59.64

0.005 < EC < .05 39 51.97
0.001 < EC < .005 66 43.94
0.0001 < EC < .001 264 41.01

EC < .0001 2365 32.36

Table 3.7: Slices of intensity network eigenvector centrality

This plot is broken up into two areas. Part A and Part B. Part A consists of all

students with a intensity eigenvector centrality above 0.05. There are 14 students

belonging to the following majors: Dance BFA (8), Psychology BA (2), no major

(1), Business Administration BBA (1), Cellular & Molec Biology BS (1), Nursing BS

Soph Transfer (1). The average number of courses taken by these students was 59.64.

When we dive into these students a few things stand out. For the Dance BFA students

majority of the Dance courses offered are less than 3 credits, so these students take

more courses per semester. The Cellular & Molec Biology BS student double majored

and also received a Dance BFA. The Nursing BS Soph Transfer student transferred

from Dance. Though the remaining students didn’t double major it would appear

that they all started off as Dance BFA students because there first two semester was

majority Dance courses. Changing their major probably didn’t require transferring

like the Nursing student had to

To analyze part B we’ll zoom in the plot. First looks is .005 < intensity Eigen

Score < .05. There are 39 students in this section. Continuing to zoom in .001

< intensity Eigen Score < .005 we add another 66 students. When we look at what

these students study we notice that they are almost all from the Arts and Humanities.

These students also have a higher number of courses than the remaining. Table 3.7

shows that students with the highest eigenvector centrality take 1.8x more courses on

average than the students with near zero intensity eigen centrality.
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3.4.4 Triangle Centrality

In NetworkX, Triangles is the number of triangles that include a particular node

as a vertex. When we look at intensity Triangle vs Unique Triangles, it seems to

follow the same pattern as degree centrality which makes sense. They both do not

consider weight. As explained above, the only thing affect the sigmoid function can

have in this result is the removal of edges in the adjacency matrix. Since the number

of triangles that include a node is also proportional to the degree of the node, it

makes sense that these two measures have similar patterns. However, it must be

noted, that we see more spread in the triangle calculation, this is due to the large

magnitude of the number, which allows for more variation. The removal of an edge in

the normalized calculation has less an effect than it does on the triangle calculation.

3.5 Conclusion

This chapter explored how to define a connection in student enrollment data. Not

only does this construction have a differential effect on majors, it significantly impacts

the outcomes of various node measures on the network. First, when looking at the two

example majors in Figure 3.5 and 3.6 is the extreme difference in correlation between

the unique connection measure and the intensity connection measure. Table 3.8 shows

the correlation for 16 majors. These majors were selected because they are the focus

of Chapter IV for reasons explained there. In this table we see that the correlation

varies by a large amount, from a positive 0.67 for English to a -0.66 for Chemical

Engineering, to almost no correlation (0.02) for Neuroscience. Of these majors have a

similar number of students enrolled in them. This highlights how majors with similar

size enrollments can still exhibit differences in the courses students take in the number

and intensity.

Figure 3.5 and 3.6 also highlight the drastic differences in student distributions

50



Major Unique-Intensity Correlation
Chemical Engineering -0.663

Computer Science -0.14
Neuroscience 0.019

Biopsych, Cognit & Neurosci 0.040
Mechanical Engineering 0.069

International Studies 0.071
Biomelecular Science 0.211

Communication 0.260
Industrial & Oper Eng 0.285

Economics 0.315
Psychology 0.364

Political Science 0.461
Mathematics 0.525

Movement Science 0.598
English 0.668
History 0.673

Table 3.8: Correlation of majors unique and intensity connections

along the three modes of connection. Some majors have well-defined number of unique

connections (e.g., Mechanical Engineer - Figure 3.3) while others (e.g., History -Figure

3.5) have a wider distribution. These figures also highlight the differences in typical

course sizes and average number of courses you take with classmates.

Finally in this chapter we explored how the using the unique, weighted, and

intensity graphs affect three different centrality measures. The measures examined

are the degree centrality, eigenvector centrality, and triangle centrality. The important

take away from this section was examining where students, and by proxy - majors,

exist on the Intensity vs Unique network measure plot. For degree centrality (Figure

3.10) it was useful to divide the plot into quadrants. Doing this allowed for the easy

identification of types of students, for example, pre-medical students are in the upper

right corner of Figure 3.10. This also allowed us to define high-level characteristics of

each quadrant. An example of this is that students located in section A of Figure 3.10

take courses with smaller enrollments. Exploring eigenvector centrality in Figure 3.12

highlights even more information about the students. Notice that students the average
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number of courses is correlated with intensity measured eigenvector centrality. The

students with the highest intensity measured eigenvector centrality have almost twice

as many courses on average than those with the lowest. Upon further investigation we

notice that students in the Arts tend to have a higher intesity measured eigenvector

centrality.
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CHAPTER IV

Clusters and Label Robustness

4.1 Introduction

Categorizing, lumping like with like, enables individuals to make sense of the

world, organizations and teams to coordinate actions and scientists to derive causal

and correlative relationship. Any given collection can often be categorized in a variety

of ways. We can categorize people by age, gender, race, ethnicity, income or by any

combination of those attributes. We can categorize cars by manufacturer or by body

type, and student by major or grade point average.

The usefulness, or information content, of a categorization hinges on the relevant

similarity of the objects within each category, the relevant dissimilarity of the objects

in different categories, and whether variation in variables of interest exhibit a correl-

ative or causal relationship with the categories constructed. For example, if we are

trying to explain voter turnout, categorizing by age (in decades) reveals that older

people are more likely to vote. If, instead, we categorized people by the color of their

cars, we might find no differences in turnout across categories.

As mentioned above, categorizations also facilitate communication. A stock port-

folio can be described by its allocation across growth and value stocks. The student

enrollment data analyzed in this chapter includes majors as a category. Setting aside

the possibility of double majors for the moment, we can interpret student majors as
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a set of categories. When a college graduate describes themself as a physics major,

they provide information about the types of courses they likely took and suggest that

they have analytic skills.

The communicative function of categorizations creates stickiness. We may rely on

a less than optimal legacy categorization because there exists a shared understanding

of what the categories mean.

In this chapter, we evaluate the information content of college majors as a cat-

egorization. We evaluate whether they have become less informative over time by

comparing them to categorizations derived using community detection (clustering)

algorithms. We measure the informativeness of a categorization by calculating stu-

dent similarity within categories and between categories.

Community detection algorithms decompose networks into communities such that

within each community the network shows a high edge density but across communities

there exists a low edge density.

There exist several types of algorithms to detect communities including cut meth-

ods, which divide the network into groups of specific sizes that minimize the number

of connections between groups and modularity algorithms, which maximize a modu-

larity function. Here, we use a spectral clustering algorithm and measure the distance

between students by the cosine similarity between them. Spectral clustering and co-

sine similarity are described in the methods section.

4.2 Data

In this study, we use the same LARC dataset described in Chapter 2. Again we

look at one cohort of students that enrolled in the University of Michigan in the fall

semester of 2011. This cohort contains 6,738 students. Because we are interested

in legacy labeling of students we examine the distribution of majors for this cohort.

Figure 4.1 shows the top 40 majors.
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Figure 4.1: Top 40 Majors for the Fall 2011 cohort of students

For our analysis we consider only those majors that have a substantial and similar

number of students. All the majors selected have at least 100 students and no more

than 300. This range of enrollment was selected because we need group sizes to be

comparable. The reason for this restriction will be come clear in Section 4.4.3, when

we explore how students in certain majors are distributed among clusters. In brief,

a major with a small enrollment could never be a majority of a cluster of significant

size.

Our restriction results in a total of 16 majors and they are displayed in Table

4.1 along with their abbreviations and the number of students within each major.

Restricting our focus to only students with these majors gives a total 2919 students

in this study.

Now that the set of students has been established, we ask the question of “how

do we go about categorizing them?” Here we compare three types of categorization:

legacy labels, algorithmic (clusters identified by community detection algorithms),

and random. Legacy labels refers to the traditional ways we group students in the
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Major Abbreviation Number of Students
Psychology BA PSY 300

Mechanical Engineering BSE ME 256
Economics BA ECN 237

Political Science BA PS 222
Computer Science BSE CS 216

Biopsych, Cognit & Neurosci BS BCN 215
Neuroscience BS NEU 209

Industrial & Oper Eng BSE IOE 183
Communication BA COM 178

International Studies BA IS 171
Mathematics BS MTH 140

English BA ENG 138
Chemical Engineering BSE CE 125

Movement Science BS MS 114
Biomolecular Science BS BMS 108

History BA HIS 107

Table 4.1: 16 majors with their abbreviation and enrolment numbers

university setting. Algorithmic categorizing refers to partitioning the students based

on a clustering algorithm that does not take into consideration legacy labeling. Ran-

dom categorization is a method of putting the students into groups at random with

the constraint of having the distribution match the legacy labeling.

The legacy categories can be captured at three levels. At the first level, which

is the most abstract, the legacy category of BA or BS splits the student population

into two groups. At second level, students are clustered into four groups based on

whether a student focused in the humanities, social sciences, biological sciences, or

natural sciences (H,S,B,N). This is done by assigning each major to the four categories

as follows:

• Humanities (H): History BA, English BA

• Social Sciences (S): Economics BA, Political Science BA, Communication BA,

International Studies BA, Psychology BA

• Biological Sciences (B): Biopsych Cognit & Neurosci BS, Neuroscience BS,
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Movement Sciences BS

• Natural Sciences (N): Mechanical Engineering BSE, Computer Science BSE,

Industrial & Oper Eng BSE, Mathematics BS, Chemical Engineering BSE

At the third, and finest categorization, students are identified by the sixteen ma-

jors.

4.3 Clustering Algorithms

In this section, we describe how we generated random and algorithmic categories of

different granularity. We introduce the following notation Algorithm(K) refers to the

categorization/clustering created by an algorithm constrained to create K clusters,

and Random(K) refers to a categorization broken into K clusters with the same

distribution as the historical categorization (e.g., Notice that in Table 4.2, Random

(2) has the same distribution as BA-BS). Thus, at this level where we are splitting

the students into two groups we use Algorithm(2) and Random(2).

Random(k) is implemented by taking the assignment of the legacy labels for stu-

dent and randomly permuting the sequence.1

Before discussing Algorithm(k) we have to introduce the concept of student simi-

larity. Our dataset contains a list of every course taken by the 2919 students. There

exist 3620 possible courses, so each undergraduate can be represented as a binary

string of length 3620, where each entry in the string corresponds to a course. If a

student enrolled in a course, they are assigned a one for the corresponding entry in

the string. Otherwise they are assigned a zero. Students take between 10 and 61

courses, so each student is represented a binary string of length 3620 with between 10

and 61 ones. Let A and B be two binary strings representing the courses taken by two

1We create random permutations using using the numpy library in python. The function
numpy.random.permutation(sequence) returns a permuted version of the sequence. This method
satisfies our requirement that Random(k) shuffles the assignments while keeping the same distribu-
tion.
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students. One common way to measure similarity between vectors is cosine similarity.

The cosine similarity between A and B is given by the following expression:

CosSim(A,B) =
A ·B

| A | · | B |

If students A and B took none of the same courses CosSim(A,B) = 0, and if they

took identical courses then CosSim(A,B) = 1. We use this to measure the similarity

between all of the students. The similarities are represented in a N×N affinity matrix,

where N = 2919. Each element in this matrix represents the similarity between those

two students.

Algorithm(k) uses this affinity matrix to split the students into k clusters based

on their similarities. In this project we use spectral cluster for this task. Spectral

clustering works by performing eigen-decomposition on the affinity matrix and using

the eigenvectors with high eigenvalues to re-represent the affinity matrix. This new

representation is in a lower dimensional space, where the dimensionality is equal to the

number of large eigenvalues. The process of mapping the data to a lower dimensional

space is known as embedding. The embedded data is easily clustered using a standard

method, in our case k-means. The reason we use spectral cluster instead of k-means

in the beginning, is because spectral cluster does not make any assumptions about

the shape of the clusters and because the embedding process is not sensitive to initial

conditions like most iterative methods are.

4.3.1 Clustering Distributions

We first present benchmark results on the distributions of students across the

clusters. Table 4.2 shows that the algorithmic clustering creates clusters of much less

equal sizes that the legacy labeling of BA-BS. This finding suggests that the BA-BS

distinction may not be very informative, or at least not informative for some students.

Table 4.3 shows the categories when the students are broken into four groups. Here

58



BA/BS Number of students Algorithm(2) Number of students Random(2) Number of students
BA 1353 Cluster 1 2122 Random 1 1353
BS 1566 Cluster 2 797 Random 2 1566

Table 4.2: BA/BS, Algorithm(2), and Random(2) student counts

again, the distribution across the four categories in the algorithmic categorization

differ markedly from those in the legacy categories.

HSBN Number of students Algorithm(4) Number of students Random(4) Number of students
H 245 Cluster 1 1314 Random 1 245
S 1108 Cluster 2 450 Random 2 1108
B 646 Cluster 3 897 Random 3 646
N 920 Cluster 4 258 Random 3 920

Table 4.3: HSBN, Algorithm(4), and Random(4) student counts

The last level splits the students into 16 categories. The legacy labeling at this

level is the students major. The majors and the number of students in each major

is displayed in Table 4.1. This level uses Algorithm(16) and Random(16). The Ran-

dom(16) has the same student distribution as the majors. Algorithm(16) enrollment

numbers are in Table 4.4/ This distribution of students also differ from the legacy

category distribution. Notable, three categories have 30 or fewer students.

Algorithm(16) Number of students Algorithm(16) Number of students
Cluster 1 106 Cluster 9 258
Cluster 2 28 Cluster 10 137
Cluster 3 223 Cluster 11 114
Cluster 4 154 Cluster 12 164
Cluster 5 632 Cluster 13 30
Cluster 6 321 Cluster 14 126
Cluster 7 156 Cluster 15 102
Cluster 8 17 Cluster 16 351

Table 4.4: Number of students in each of the 16 clusters created by Algorithm(16)
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4.4 Results

In this section, we compare the legacy labels to Algorithm(k) which is “best” under

a specific optimization function and to Random(k) which establishes a baseline.

4.4.1 How well does a labeling predict course agreement?

One aspect of labels that are often applied to students is that they represent the

courses a student took throughout there time at the university. Using the example

from earlier, when a student mentions they majored in Physics, you can imagine

the courses they took while in school (e.g., Electricity and Magnetism, Quantum

Mechanics, Thermodynamics, etc...).

Taking this into consideration, we first explore the following questions. What is

the number of courses in common for two students belonging to the same label? What

is the number of courses in common between two students from different labels? We

will call the answer to the first question Agreement and the answer to the second

question Agreement Across.

Agreement for a labeling can be found by first separating the students into their

respective labels. Then for every pair of students belonging to a specific label we sum

the number of courses in common. Agreement equals the weighted average of the

number of courses in common for each label and is equal to

Agreementlabel =
k∑

i=1

nlabeli

N

∑
j,z

1

nlabeli

ncj,z

where ncj,z is the number of courses student j and student z had in common. nlabeli is

the number of students that are in label i and N is the total number of students. The

Agreement Across for a labeling is similar except students j and z belong to different

labels.

The following three tables show the Agreement and Agreement Across for the three
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levels of categories. Higher Agreement and lower Agreement Across imply a stronger

clustering. For a random clustering the two measures should be approximately equal,

which is true in each table.

Classification Agreement Agreement Across
BA-BS 4.395 1.800

Algorithm (2) 6.388 1.602
Random (2) 3.216 3.218

Table 4.5: Agreement and Agreement Across for BA-BS Classification

Classification Agreement Agreement Across
H,S,B,N 6.459 2.003

Algorithm (4) 10.430 2.548
Random (4) 3.182 3.195

Table 4.6: Agreement and Agreement Across for H, S, B, and N Classification

Classification Agreement Agreement Across
16 Majors 11.395 2.706

Algorithm (16) 10.411 1.706
Random (16) 3.202 3.223

Table 4.7: Agreement and Agreement Across for Majors as a Classification

The Tables 4.5, 4.6, and 4.7 shows how much agreement a labeling method has.

Agreement is our first order measure for how good a labeling method is compared

to another. This is because we expect students in the same group to have a higher

number of courses in common. Table 4.5 shows the results for the legacy labels of

BA and BS. If we were to pick two students from the same set, either BA or BS, they

would only have slightly more agreement than if two students were picked at random.

This indicates that using the legacy labels of BA and BS might not be appropriate

in the context having an approximation to what courses they have taken at the

university. However, we do see a jump in Agreement when we look at Algorithm(2).

If two students are picked from one of the two clusters created by Algorithm(2) they

will have on average 6.3 courses in common.
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An alternative way to interpret these results imagines the random clustering as a

worst case sorting and the algorithmic clustering as a best case. The Agreement of

any clustering should lie in the interval [3.21, 6.38]. The BA-BS legacy labels have an

Agreement of 4.395 are closer to random than optimal. This implies that the legacy

labels are not particularly informative.

Table 4.6 has the results for the H, S, B, N agreement. Here we see a jump in

agreement in the legacy labeling, going from BA/BS to H, S, B, N indicating there

is a little more signal in this labeling comparatively. It is interesting to see that

using Algorithm(2) has about the same Agreement is legacy labeling H, S, B, N.

Even though H, S, B, N is increasing the resolution (going from 2 groups to 4), we

do not see an improvement on agreement with Algorithm(2). However, H, S, B, N

is about twice better than Random(4). Algorithm(4) has the best Agreement among

the labelings at this level, it also improves on Algorithm(2).

Table 4.7 shows how well majors do at predicting commonality in courses. Here

we see that major labeling has the highest Agreement, however, it is just marginally

better than Algorithm(16). That being said, we do not see an improvement from

Algorithm(4) to Algorithm(16). Agreement Across gives us some more information

though. As mentioned earlier, a labeling should have high Agreement and low Agree-

ment Across. While the major labeling shows an improvement in Agreement from the

previous legacy labelings, we see an increase in Agreement Across. Keeping that in

mind notice that Algorithm(16) has the same Agreement as Algorithm(4), but has a

decrease in Agreement Across. This phenomenon is due to the averaging that is used

to calculate Agreement and Agreement Across. Some labels within a classification

scheme may be better than others (e.g., some majors may have be good predictors

of Agreement while others poor). Later in section 4.4.3 we will explore this in more

detail.
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4.4.2 How do legacy labels compare to algorithmic labels?

The previous section showed how well a label performs at predicting the number of

courses in common students will have. This section will explore how similar/different

are the legacy labels to Algorithm(k). To measure the differences, we use two standard

measures, Rand Index (RI) and Normalized Mutual Information (NMI) along with

their adjusted values.

We compare the historical classifications and random classifications to those found

by the spectral clustering algorithm. To define RI and NMI we use the following

construction. Given a set of N objects S = {o1, o2, . . . , oN} and a clustering of S

into R non-overlapping subsets U = {U1, U2, . . . , UR}. Given another clustering of S

into C non-overlapping subsets V = {V1, V2, . . . , VC} we compare the two partitions

U and V . Both U and V have the following properties. ∪Ri=1Ui = S = ∪Cj=1Vj and

Ui ∩ Ui′ = ∅ = Vj ∩ Vj′ for 1 ≤ i 6= i′ ≤ R and 1 ≤ j 6= j′ ≤ C. This results in the

following R× C contingency table:

U \ V V1 V2 . . . VC sums
U1 n11 n12 . . . n1C a1
U2 n21 n22 . . . n2C a2
...

...
...

. . .
...

...
UR nR1 nR2 . . . nRC aR

sums b1 b2 . . . bC
∑

ij nij = N

Table 4.8: Contingency Table, nij = |Ui ∩ Vj|

When we compare the
(
N
2

)
pairs of objects (students) in the S there are four

different results that can occur. These four different results are equivalent to the four

categories of a confusion matrix:

• type(i) or True Positive (TP): the pair are in the same subset of U and in the

same subset of V

• type(ii) or True Negative (TN): the pair are in different subsets of U and in
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different subsets of V

• type(iii) or False Negative (FN): the pair are in different subsets of U and the

same subset of V

• type (iv) or False Positive (FP): the pair is in the same subset of U and in

different subsets of V

Using the above set we are now ready to define RI and NMI. RI is defined as the

number of TP and TN divided by the total number of pairs. RI = TP+TN
TP+TN+FP+FN

=

TP+TN

(N
2 )

using the elements of the Table 4.8 we can define RI as:

RI =

((
N

2

)
+ 2

R∑
i=1

C∑
j=1

(
nij

2

)
−

[
R∑
i=1

(
ai
2

)
+

C∑
j=1

(
bj
2

)])/(
N

2

)

RI can be thought of in probabilistic terms, (TP + TN)/
(
N
2

)
is the probability

of the two partitions U and V agree on the classification of a pair of elements from

S. The Adjusted Rand Index (ARI) is an correction to the RI by taken into account

agreement that occurred by chance. This correction is done by using the expected

value of the RI. ARI = (RI − E(RI))/(max(RI)− E(RI)). Using terms from Table

4.8 we get the following equation:

ARI =

∑
ij

(
nij

2

)
−

[
R∑
i=1

(
ai
2

) C∑
j=1

(
bj
2

)]/(
N
2

)
1
2

[
C∑
i=1

(
ai
2

)
+

C∑
j=1

(
bj
2

)]
−

[
R∑
i=1

(
ai
2

) C∑
j=1

(
bj
2

)]/(
N
2

)
This construction of expected value is under the null hypothesis that the contin-

gency table is randomly generated from a permutation model of clustering. Specif-

ically, it is constructed from the generalized hyper geometric distribution which as-

sumes partitions of U and V are picked at random but have the original number of

classes and objects in each. RI has values with a range of [0, 1], but [34] point out

that empirically RI has a high baseline and values typically fall under the narrow
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range of [0.5, 1]. This is exactly what we experience in our studies. ARI however can

go negative if the expected value is greater than the given value.

Before characterizing NMI, we must introduce two additional concepts. The first

is entropy, H. Entropy is a measure of uncertainty in a random variable or the amount

of information required on average to describe the random variable. Using the parti-

tion U , from above, entropy is defined as H(U) = −
R∑
i=1

ai
N

log ai
N

. The second concept

needed is Mutual Information, I, between two variables describes the amount of in-

formation that one random variable contains about another random variable. Mutual

information is symmetric I(X, Y ) = I(Y,X). The mutual information between the

two partitions U and V is given by I(U, V ) =
R∑
i=1

C∑
j=1

nij

N
log

nij/N

aibj/N2 . As the name sug-

gest, NMI is the normalized version of I. The normalization sets the range of values

to lie within a fixed range [0, 1]. NMI can then be defined as:

NMI =
2 ∗ I(U, V )

H(U) +H(V )

Similar to the RI, NMI can be corrected for chance by incorporating the expected

value, this is called the Adjusted-for-Chance Mutual Information (AMI)

AMI =
I(U, V )− E(I(U, V ))

1
2
[H(U) +H(V )]− E(I(U, V ))

The expected mutual information E(I(U, V )) between two clusters U and V is

given by

E(I(U, V )) =
R∑
i=1

C∑
j=1

min(ai,bj)∑
nij=max(ai+bj−N,)

nij

N
log

Nnij

aibj

ai!bj !(N−ai)!(N−bj)!
N !nij !(ai−nij)!(bj−nij)!(N−ai−bj+nij)!

Table 4.9 shows the values of these three measures when we partition the students

into two groups. We see low values for the ARI, NMI, and AMI indicating that using
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the legacy labels of BA and BS differs from using a clustering algorithm to split the

students into two groups based on the courses they’ve taken.

This provides even stronger evidence that using BA and BS may not be the best

way to represent students if it is intended to be an abstraction of the courses taken.

This finding is in agreement with the data from Table 4.5 which shows relatively

low agreement among the students within BA/BS clusters especially when compared

to the Algorithm(2) and Random(2). BA/BS agreement is closer to the Random(2)

partitioning. When we look at the second row of Table 4.9 comparing the Random(2)

to the Algorithm(2) we see very little agreement, close to 0 and even negative for ARI,

as expected.

Classification RI ARI NMI AMI
BA-BS to Algorithm (2) 0.609 0.216 0.318 0.294

Random (2) to Algorithm (2) 0.500 -0.001 0.001 0.001

Table 4.9: Distance to Algorithmic Clustering BA-BS Classification

Another way to compare BA/BS to Algorithm(2) is to look at the intersection

of BA students with cluster 1 and cluster 2 and also BS students with cluster 1 and

cluster 2. This can be displayed in the following contingency table:

BA BS sum

cluster 1 1348 774 2122

cluster 2 5 792 797

sum 1353 1566

Looking at the contingency table we see that the two clusters do a great job at

splitting BAs. Majority of the BA students were assigned to cluster 1. However,

36% of the cluster 1 are BSs. We also see the the two clusters split BS evenly. It’s

important to note that this does not declare right or wrong, but lack of agreement

between the two.

66



Table 4.10 examines the H,S,B,N labels we typically attribute to students and

compares it the Algorithm(4). This comparison shows an increase in the agreement.

The contingency table showing the intersection of the sets is in Table B.1 in the

Appendix.

Classification Rand Index Rand Adjusted NMI AMI
H,S,B,N to Algorithm (4) 0.789 0.511 0.542 0.531

Random (4) to Algorithm (4) 0.568 -0.002 0.0003 -0.001

Table 4.10: Distance to Algorithmic Clustering H, S, B, N Classification

Table 4.11 shows an significant increase in agreement. Using the more granular

major to label groups of students aligns closely with the clustering algorithm. All of

these results align with our intuition, however when we examine these results more

closely we notice that not every major makes for a good label. This is demonstrated

in Table B.2 in the Appendix

Classification Rand Index Rand Adjusted NMI AMI
16 Majors to Algorithm (16) 0.935 0.588 0.777 0.737

Random (16) to Algorithm (16) 0.842 0.001 0.014 -0.001

Table 4.11: Distance to Algorithmic Clustering Majors as a Classification

4.4.3 How robust are legacy labels to the number of clusters?

For the remainder of the study we will restrict our analysis of legacy labels to

majors only. This is due to the relative performance of the other two legacy labels.

BA/BS performed poorly (near random) in predicting agreement and have very low

values of ARI and AMI when comparing it’s partitions to optimal clustering par-

titions. While H,S,B,N performed better as a legacy label than BA/BS, on closer

examination they do not hold up. Looking back at Table 4.6, we notice an increase in

predicting agreement, however, this measure is still closer to random than the algo-

rithm. With this result and the fact that majors performed well on all of these task

they had the best chance of performing well with the more strict criteria.
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In this section we explore the “robustness” of a legacy label with respect to a

clustering algorithm. We restrict our analysis to majors since they performed the

best in the analyses from the earlier sections.

In this section we answer the question, what would a “good” cluster look like?

To do this we introduce some additional concepts from the ones mentioned above to

help us measure the relationship between a legacy label and clusters defined by an

algorithm. The first two concepts are conditional probabilities defined by a major

(e.g., MMajor) and a cluster (e.g., Ck
Major).

The following example explains how to read these terms, Ck=4
PSY states that of the

4 clusters generated by the Algorithm(4), CMajor contains more PSY majors than

any other cluster. Thus, the two probabilities are the following P (MMajor|Ck
Major) and

P (Ck
Major|MMajor). In words P (MMajor|Ck

Major) ask given the cluster that contains the

largest fraction of a specific major, what is the probability that major is selected from

the elements of that cluster? While P (Ck
Major|MMajor) is asking given that an element

belongs to a specific major, what is the probability it is in the cluster that contains

the largest number of those majors.

Another measure of interest is the coherence of a major MMajor which is given by

the following equation:

CoherenceMaj =
k∑

i=1

NMaj,Ci

NMaj

NMaj,Ci

NCi

Where NMaj,Ci
is the number of students with major Maj that are in cluster i.

NMaj is the number of students in with major Maj and NCi
is the number of students

in cluster i.

The first part of this analysis examines how CoherenceMaj and P (MMaj|Ck
Maj)

changes changes with k (number of clusters). This is shown in Figure 4.2. Note

that the % in largest (the green line) is referring to P (MMaj|Ck
Maj). Figure 4.2 only

shows the result of four majors the others can be found in Appendix B.2. After some
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Figure 4.2: CoherenceMaj and P (MMaj|Ck
Maj) change with k

minimum number of clusters both Chemical Engineering and Movement Science have

high values with little fluctuations.

When we look at English and Neuroscience we see very different behavior, not

only are the values lower, they vary significantly for each value of k. First, looking

only at P (MMaj|Ck
Maj), we see that not only are majority of the Movement Science

students in the same cluster, they constitute a majority of that cluster. We also

know that this is not affected by k. This is a different story when it comes to English

and Neuroscience. For English we notice a downward trend as k is increased. This

highlights a trend we have seen throughout this thesis, majors show a differential

repsonse to certain measures and forumulations. All of these come together in the

measures we introduce in the remainder of this thesis. For higher resolution images

of these plots and to see the CoherenceMaj and P (MMaj|Ck
Maj) for other majors please

see Appendix B.2 where all 16 majors indivual plots are located.

Another approach to understanding the robustness of a label when compared to
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a clustering algorithm is to ask how recoverable is a major. We call this measure

Recoverability R. We define two types of recoverability, weak recoverability WR and

strong recoverability SR. R is defined by the following equation:

Rk(X, Y ) =


1, if P (Ck

Major|MMajor) > X and P (MMajor|Ck
Major) > Y,

0, otherwise.

In the analysis below we use the following definitions WRk = Rk(0.6, 0.6) and

SRk = Rk(0.8, 0.8). Figure 4.3 shows how Economics two conditional probabilities

varies with k. The two red lines at probability 0.6 and probability 0.8 represent

where the cut offs for weak recoverability and strong recoverability are respectively.

To be weakly recoverable both the lines need to be above the dashed red line at 0.6.

The major is only strongly recoverable for values of k where both lines are above

the line at 0.8. Recoverability looks at the symmetry between P (Ck
Major|MMajor) and

P (MMajor|Ck
Major). For a major to be considered recoverable more than 60% (80%) of

the students with that major need to be in same cluster after the clustering algorithm

is applied to the enrollment data.In addition these students also need to be at least

60% (80%) of the constituents assigned to that cluster.

Figure 4.4 and Figure 4.5 displays the strong and weak recoverabilty respectively.

This analysis goes through each major and ask if it is weakly recoverable, strongly

recoverable, both, or neither, for k = 1 to k = 50 clusters. Figure 4.4 shows that

all of the engineering majors are strongly recoverable majority of the time, with the

highest given to IOE and ME which both are strongly recoverable 46 out of the 50

times. Figure 4.4 also shows that seven majors never meet the criteria of strong

recoverability.
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Figure 4.3: P (MECN|Ck
ECN) and P (Ck

ECN|MECN) with respect to k

Figure 4.4: Strong recoverability (SR) for k = 1 : 50 clusters

Given that weak recoverability is more easily satisfied than strong recoverability,

there are more occurrences of recoverability than strong recoverability. As shown in

Figure 4.5 only two majors, HIS and BCN are not weakly recoverable for at least

some values of k
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Figure 4.5: Weak recoverability (WR) for k = 1 : 50 clusters

Figure 4.6 shows the number of majors that are strongly recoverable and weakly

recoverable as a function of the number of clusters k. If you take Figures 4.4 and 4.5

and for each k placed a vertical line, this Figure 4.6 displays the number of points

the vertical line will intersect. This plot is useful because it highlights a range for

number of clusters where majors are recoverable. Keeping in mind that there are 16

majors, we see that we need at least 10 clusters for more than 50% of the majors to

be weakly recoverable. This makes sense because below a certain number of clusters

it is impossible for a major to be greater than 60% of the clusters members. This

is due to the fact that with a low number of clusters you are forcing students into a

lower dimensional space.
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Figure 4.6: Major counts for SR and WR for a given k

4.4.4 Recoverablity of Algorithm(16) Categories

In this section, we compare the recoverability of the clusters produced by Algo-

rithm(16) to the legacy labels. This process works by running spectral clustering on

the original enrollment data to generate 16 clusters. We use these cluster assignments

to replace the major as the ”true” label. We then run this relabeled data through

the recoverability process for k = 1 : 50. Both Figures 4.7 and 4.8 show a significant

increase in recoverability.

As shown in Figure 4.7 every label is strongly recoverable at least once! Figure 4.8

shows that in the relabeled paradigm, not only are all the majors weakly recoverable,

but they are weakly recoverable for a wide range of k.

The significant increase in both strong and weak recoverability due to the relabel-

ing suggest that reexamining legacy labels is an important task. It is important to

note that there exist a mapping between our legacy labels and our new Algorithm(16)

labels. Taking into consideration how the legacy labels are distributed among the clus-

ters and the recoverability of the new labels helps in identifying a balance between
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Figure 4.7: Algorithm(16) SRk

Figure 4.8: Algorithm(16) WRk
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Figure 4.9: Number of times a cluster is strongly recoverable. Robustness cutoff to
drop last two

complete algorithmic approach and sticking with what you know.

Due to Algorithm(16) great performance on recoverability, we can use it to find a

cutoff to define robustness. We Figure 4.9 and 4.10 to define a cutoff for recoverability.

We define the cutoff at the top 85% (i.e., top 14 of the 16). Thus for Figure 4.9 we

use cluster 1 as our cutoff. Cluster 1 is strongly recoverable 5 times. This will set

our robustness on the strong recoverability graph at 4. We can now use this value to

see what majors meet this criteria. This same process can be applied to the weakly

recoverable threshold. We see from Figure 4.10 that the cutoff is at cluster 14. Cluster

14 is weakly recoverable 23 times. We can use this our robustness cutoff to see what

majors meet this critera. The robustness of the majors are show in Figures 4.11 and

4.12. This results in eight strongly and weakly recoverable majors

75



Figure 4.10: Number of times a cluster is weakly recoverable. Robustness cutoff to
drop last two

Figure 4.11: Major strong recoverability with robustness cutoff
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Figure 4.12: Major weak recoverability with robustness cutoff
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4.5 Conclusion

In this chapter we set out to answer the following question: Do legacy categories

make sense? We analyzed three levels of legacy categories. The first level was looking

at if a student received a BA or BS. The next level was seeing if the student studied

in the Humanities, Social Sciences, Biological Sciences, or Natural Sciences. The last

level was to use a students major as a label. We compared how these labels per-

formed to optimal algorithmic cluster and random. The first criteria for evaluation

was to compare the distribution of students in the legacy label and compare it to the

algorithm. We didn’t compare the distribution of students to random because, Ran-

dom(k) was forced to have the same distribution. At this stage we noticed that all

three levels of legacy labels had a different distribution of students compared to the

algorithm. However, this assessment isn’t too informative in answering the question

of do they make sense, this was more of a baseline comparison. The first approach to

try and answer the question of do legacy labels makes sense was to see how well a cat-

egorization predicts course agreement. This criteria measured the number of courses

in common between students of the same category. It then measured the number of

courses in common between students from different categories. It was in this section

that we got the first clue that using the legacy label of BA/BS might not be a good

idea. Looking at student agreement, BA/BS was much closer to the performance of

the Random(k) than to the Algorithm(k). It was also in this section that we get the

idea that major labels may be a legacy categorization system that makes sense. In

the next step we compare how students are assigned labels in the legacy system to

the Algorithm(k) using Rand Index and Normalized Mutual Information. We again

see BA/BS and HSBN perform less than stellar when compared to Algorithm(k). It

is at this point a reader may draw the conclusion that BA/BS and HSBN are not

good labels, but majors are. However, it is important to note that these are aggregate

measures. Due to this we use measures of recoverability and robustness to evaluate
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each individual major. This analysis was not applied to BA/BS and HSBN because of

the poor performance in the earlier sections. It is in this section we notice that some

labels do make sense. The engineering majors, movement science, and economics are

all recoverable and robust by the strongest criteria. However, two majors,BCN and

history,never make the robustness or recoverability criteria.
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CHAPTER V

Conclusion

In this thesis we described the LARC dataset provided by the university and do

some exploratory data analysis. We then investigate how to define connections within

this dataset. We also study how students are grouped together, both by legacy labels

and by clustering algorithms. Below all of this summarized in more detail by chapter.

There is also a brief discussion on future direction.

5.1 Summary

Chapter II introduced the LARC dataset which was an essential component to this

thesis. This dataset contains information on more than 200,000 students who enrolled

in approximately 15,000 courses. We focused on a subset of this data, specifically, a

cohort of 6,738 students who enrolled in the university in the fall of 2011 and gradu-

ated by winter 2016. These students enrolled in a total 6,152 courses throughout this

period. The main purpose of this chapter was to demonstrate how this enrollment

data can be represented by a bipartite network and to show how this representation

makes it easy to draw various conclusions about students and courses at the univer-

sity. To reiterate some points from the chapters conclusion, we were able to show

and quantify that the intuited belief that high enrollment courses uniquely connect

students from different academic backgrounds. However, we also discovered that this
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is not a rule. We saw that some low enrollment courses also served as unique con-

nectors of students, with similar quantitative values as the larger courses. Looking

at the local clustering coefficient we found how certain students and courses were

extremely effective bridges for typically disconnected parts of campus. This chapter

mainly focused on how individual courses and students are embedded in the network.

However, the nature of this embeddedness depends significantly on how an edge is

defined in the bipartite network.

Chapter III looks at various definitions for calculating the connection between

students (the existence and weight of an edge between two nodes). We setup three

ways of calculating a students connectedness. The first was unique connections, in

this formulation students got a value of 1 for every student they took a course with.

The next was weighted connections takes into consideration the number of courses

you take with students. The third measure was intensity connections. This is similar

to weighted, but instead of attributing the same value to every course, the courses

value is a function of the size with smaller courses getting a larger weight than smaller

ones. A toy model was introduced to help demonstrate the construction of the various

connection definitions.

The analysis in this chapter is in two parts. The first examines how the vari-

ous definitions (unique, weighted, and intensity) are distributed among the students.

Looking at the entire dataset we see that unique connections and weighted connections

had a correlation of 0.80 among the students. We also see that intensity connections

had a near zero correlation of 0.026 with unique connections and a correlation of .15

with weighted connections. However, upon further investigation we uncovered that

these distributions and correlations varies significantly among the majors. Looking

specifically at the correlation between unique and intensity connections we notice an

opposite measure between Chemical Engineering (-.663) and History (.673).

The next part of the analysis focused on how unique, weighted, and intensity
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connections affect network centrality measures. The centrality measures explored

were degree centrality, eigenvector centrality, and triangle centrality. As expected

from the previous work, this analysis showed that a students change in these measures

were dependent on their majors. For example, we noticed that students that had

a higher average number of courses taken throughout the period of investigation

received higher intensity connected eigenvector centrality scores. Examining these

students showed that they all belonged to the arts (e.g., Dance BFA).

Chapter IV explores the clusters that exist in the affinity matrix provided by the

student network and compares them to how students are classically grouped together.

We refer to the way students are classically grouped as legacy labels. The legacy

labels that we investigate are Bachelors of Science or Bachelors of Arts (BA/BS), the

grouping of humanities, social science, biological science, or natural science (H,S,B,N),

and finally majors. The study of majors was restricted to only 16 with similar number

of student enrollment. The 16 majors are listed in Table 4.1.

The first analysis completed looked at how students were distributed among the

legacy labels and compared them to how they are distributed to clusters with the

same number of possibilities (e.g., BA/BS was compared to partitioning the students

into two groups using a clustering algorithm).

In the results section we set out to answer the following questions. The first

question answered was: How well does a legacy labeling predict course agreement?

Course agreement is the number of courses in common between two students. The

finding here was that the clustering algorithm and majors proved the best predictors.

Next we looked at: How do legacy labels compare to algorithmic label using the Rand

Index and Normalized Mutual Information? Here we see that agreement was only

found between the majors and algorithms. For the last two analysis ran in this chapter

we focused on majors, because it was the only legacy label that was performing well.

The next question we answer is: How robust are majors to the number of clusters?

82



We first introduce the idea of major coherence, which measures how well do students

belonging to certain majors stay together when clustered by an algorithm. We also

introduced two conditional probabilities, P (MMajor|Ck
Major) and P (Ck

Major|MMajor). In

words P (MMajor|Ck
Major) ask given the cluster that contains the largest fraction of a

specific major, what is the probability that major is selected from the elements of

that cluster? While P (Ck
Major|MMajor) is asking given that an element belongs to a

specific major, what is the probability it is in the cluster that contains the largest

number of those majors.

Until now, we only focused on majors as a collective. It was at this point in the

analysis where we look at individual majors. Answering this question of robustness we

see the performance varies wildly. Some majors, for example, Chemical Engineering

and Movement Science show high coherence and P (MMajor|Ck
Major) with k having

little effect on the value of these measures. Other majors, for example, English and

Neuroscience, values vary wildly based on k.

In the next part of analysis we introduce the idea of recoverability with a weak

and strong constraint. We define weak recoverability to be a situation where both

P (MMajor|Ck
Major) and P (Ck

Major|MMajor) have values greater than 0.6 for a specific

value of k. We define strong recoverability to be where the same probabilities have

values greater than 0.8 for values of k. The goal of weak and strong recoverability is

to explore the following idea: in a hypothetical world where students were clustered

by an algorithm, what is the chance that I would end up defining a cluster with the

same name given by the legacy labeling? We find that the engineering majors exhibit

strong recoverability for almost any value of k, while some majors like History, are

never recoverable (weak or strong).

Next we come up with a definition of robustness that is a function of the recov-

erability of a cluster algorithm. Here we see that two majors, Biopsych, Cognit &

Neurosci BS and History BA are not robust. This means that students in this ma-
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jor cannot be seprated from students in others algorithmically based on similarity in

course co-enrollment.

5.2 Tying Category Recoverability to Intensity

In Chapter III a differential response to how connections were defined in the

network was observed among the majors. In Chapter IV some majors showed high

coherence, strong recoverability, and robustness, while some showed near zero for

these measures. In this section of the thesis we’ll explore some connections between

the majors behavior in these two chapters.

First we examine the how the mean value of unique connections for students within

a major and see if that major is strongly recoverable. This is shown in Figure 5.1.

Here and in Figures 5.2 and 5.3 a bar is colored green if the corresponding major is

strongly recoverable. So looking at how unique connections are distributed about the

majors, we don’t any pattern emerge.

Some majors with high values for unique connections are strongly recoverable and

some are not. The opposite is true too, some majors with low mean value for unique

connections are strongly recoverable while others are not. Moving to Figure 5.2 we

start to see the emergence of a pattern. That is, mostly majors with high values of

weighted connections are strongly recoverable. The strongest relationship emergence

when we look at Figure 3.3.2.3. There seems to be a strong relationship between

intensity connections and strong recoverability.

Indeed, this is what we find when we look at the correlation between the three

formulations of connections and strong recoverability. The results are shown in Table

5.1. Strong recoverability and intensity have a correlation of 0.772. This is really

quite amazing. Intensity, a way of defining connections between students, is highly

correlated with the robustness of a major. These two separate studies that look at

the relationship between students in two different lenses give to similar conclusions
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Figure 5.1: Average number of unique connections by major with the strongly recov-
erable majors highlighted

Correlation
SR-Unique 0.249

SR-Weighted 0.691
SR-Intensity 0.772

Table 5.1: Strong Recoverability - Unique/Weighted/Intensity Correlations

about certain majors. Using both frameworks, we can re-examine how we think about

majors at the university.

5.3 Future work

One area of particular interest is to extend this dataset to include location data

based on students connecting to the internet throughout campus. This is a completely

different way to define student connections that will give more information on the
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Figure 5.2: Average number of weighted connections by major with the strongly re-
coverable majors highlighted
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Figure 5.3: Average number of intensity connections by major with the strongly re-
coverable majors highlighted
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student experience. In the dataset explored in this thesis co-location was known by

students being enrolled in the same course at the same time, this will allow us to

understand co-location outside of the classroom.

Future work could also apply our measures of coherence, recoverability, and ro-

bustness introduced in Chapter IV and apply it to other datasets. Because labeling

or grouping items together is an integral part of what humans do and the inertia that

some labelings have, it is of upmost importance we discover how useful these labels

are.
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APPENDIX A

Chapter 3

A.1 Student Distributions for unique connections, weighted

connections, and intensity connections by Major
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Figure A.1: BMS unique, weighted, and intensity distributions

91



Figure A.2: BCN unique, weighted, and intensity distributions
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Figure A.3: CE unique, weighted, and intensity distributions
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Figure A.4: COM unique, weighted, and intensity distributions
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Figure A.5: CS unique, weighted, and intensity distributions
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Figure A.6: ECN unique, weighted, and intensity distributions
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Figure A.7: ENG unique, weighted, and intensity distributions
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Figure A.8: HIS unique, weighted, and intensity distributions
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Figure A.9: IOE unique, weighted, and intensity distributions
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Figure A.10: IS unique, weighted, and intensity distributions
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Figure A.11: MTH unique, weighted, and intensity distributions
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Figure A.12: ME unique, weighted, and intensity distributions
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Figure A.13: MS unique, weighted, and intensity distributions
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Figure A.14: NEU unique, weighted, and intensity distributions
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Figure A.15: PS unique, weighted, and intensity distributions
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Figure A.16: PSY unique, weighted, and intensity distributions
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APPENDIX B

Chapter 4

B.1 Contingency Tables

H S B N sum
cluster 1 201 1013 3 97 1314
cluster 2 4 2 0 444 450
cluster 3 40 93 643 121 897
cluster 4 0 0 0 258 258

sum 245 1108 646 920

Table B.1: Contingency Table for HSBN and Clusters

PSY ME ECN PS CS BCN NEU IOE COM IS MTH ENG CE MS BMS HIS sum
cluster 1 0 104 2 0 0 0 0 0 0 0 0 0 0 0 0 0 106
cluster 2 0 0 0 0 0 0 0 0 2 0 0 26 0 0 0 0 28
cluster 3 0 0 0 0 214 1 0 0 1 0 7 0 0 0 0 0 223
cluster 4 0 0 0 101 0 0 0 0 0 1 0 0 0 0 0 52 154
cluster 5 19 0 0 18 1 194 209 0 5 0 23 15 0 0 108 21 632
cluster 6 271 0 1 5 0 20 0 0 13 2 1 3 0 0 0 5 321
cluster 7 4 0 0 0 0 0 0 0 148 3 0 0 0 0 0 1 156
cluster 8 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 17
cluster 9 0 256 0 0 1 0 0 1 0 0 0 0 0 0 0 0 258
cluster 10 0 0 0 12 0 0 0 0 1 122 0 0 0 0 0 2 137
cluster 11 0 0 0 0 0 0 0 0 0 0 0 0 0 114 0 0 114
cluster 12 0 0 0 0 0 0 0 164 0 0 0 0 0 0 0 0 164
cluster 13 0 0 27 0 0 0 0 0 0 0 2 0 0 0 0 1 30
cluster 14 0 0 0 0 0 0 0 1 0 0 0 0 125 0 0 0 126
cluster 15 2 0 0 3 0 0 0 0 4 0 0 92 0 0 0 1 102
cluster 16 4 0 207 83 0 0 0 0 4 24 3 2 0 0 0 24 351

sum 300 256 237 222 216 215 209 183 178 171 140 138 125 114 108 107

Table B.2: Contingency for Majors and Clusters
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B.2 CoherenceMaj and P (MMaj|Ck
Maj) Results

Figure B.1: Communication - CoherenceMaj and P (MMaj|Ck
Maj) change with k
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Figure B.2: Biomolecular Science - CoherenceMaj and P (MMaj|Ck
Maj) change with k
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Figure B.3: Biopsych, Cognit & Neurosci - CoherenceMaj and P (MMaj|Ck
Maj) change

with k
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Figure B.4: Chemical Engineering - CoherenceMaj and P (MMaj|Ck
Maj) change with k
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Figure B.5: Computer Science - CoherenceMaj and P (MMaj|Ck
Maj) change with k
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Figure B.6: Economics - CoherenceMaj and P (MMaj|Ck
Maj) change with k
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Figure B.7: English - CoherenceMaj and P (MMaj|Ck
Maj) change with k
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Figure B.8: History - CoherenceMaj and P (MMaj|Ck
Maj) change with k
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Figure B.9: Industrial & Oper Eng - CoherenceMaj and P (MMaj|Ck
Maj) change with k
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Figure B.10: International Studies - CoherenceMaj and P (MMaj|Ck
Maj) change with k
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Figure B.11: Mathematics - CoherenceMaj and P (MMaj|Ck
Maj) change with k
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Figure B.12: Mechanical Engineering - CoherenceMaj and P (MMaj|Ck
Maj) change with

k
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Figure B.13: Movement Science - CoherenceMaj and P (MMaj|Ck
Maj) change with k
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Figure B.14: Neuroscience - CoherenceMaj and P (MMaj|Ck
Maj) change with k
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Figure B.15: Political Science - CoherenceMaj and P (MMaj|Ck
Maj) change with k
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Figure B.16: Psychology - CoherenceMaj and P (MMaj|Ck
Maj) change with k
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[6] Karina L Cela, Miguel Ángel Sicilia, and Salvador Sánchez. Social network anal-
ysis in e-learning environments: A preliminary systematic review. Educational
Psychology Review, 27(1):219–246, 2015.

[7] Anthony R D’Augelli and Scott L Hershberger. African american undergradu-
ates on a predominantly white campus: Academic factors, social networks, and
campus climate. The Journal of Negro Education, 62(1):67–81, 1993.

[8] Shane Dawson. A study of the relationship between student social networks and
sense of community. Journal of educational technology & society, 11(3):224–238,
2008.

[9] David DiRamio, Ryan Theroux, and Anthony J Guarino. Faculty hiring at top-
ranked higher education administration programs: An examination using social
network analysis. Innovative Higher Education, 34(3):149–159, 2009.

[10] Ian Dobson, Benjamin A Carreras, Vickie E Lynch, and David E Newman. Com-
plex systems analysis of series of blackouts: Cascading failure, critical points,
and self-organization. Chaos: An Interdisciplinary Journal of Nonlinear Sci-
ence, 17(2):026103, 2007.

125



[11] Greg J Duncan, Johanne Boisjoly, Michael Kremer, Dan M Levy, and Jacque
Eccles. Peer effects in drug use and sex among college students. Journal of
abnormal child psychology, 33(3):375–385, 2005.

[12] Nicole Ellison and Charles Steinfield. C., and c. lampe, 2007.“the benefits of
facebook ‘friends’: Social capital and college students use of online social network
sites,”. Journal of Computer–Mediated Communication, 12(4):1–143.

[13] Leon Festinger, Stanley Schachter, and Kurt Back. Social pressures in informal
groups; a study of human factors in housing. 1950.
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