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Abstract

Metallic glasses (MGs) show high strength and elastic limit, but they also exhibit little macroscopic 

plasticity, which limits their structural applications. The main reason is strain localization within 

dominant shear bands. Because of the amorphous structure of MGs, it is challenging to define 

defects that accommodate deformation. Observations in physical analogs have shown that 

macroscopic deformation of MGs is accommodated by cooperative shearing of atomic clusters, 

termed shear transformation zones (STZs). At small strains, STZs are isolated. They can be 

reversed by back stress in the elastic matrix upon removal of the applied stress, which results in 

anelastic behavior. 

 

The common observation of a main (α) relaxation, and high-frequency (β) relaxation in mechanical 

spectroscopy is readily explained in molecular glasses, but their microscopic mechanisms in MGs 

are still not clear. Recently, the intensity of the β relaxation has been correlated with macroscopic 

plasticity of MGs. One goal of the present project is to use anelasticity to characterize the STZ 

spectra of La-based MGs with and without a pronounced β relaxation, and to study the α vs. β 

relaxation and structural relaxation vs. cryogenic cycling from a microscopic view. La55Ni20Al25 

and La70(NixCu1-x)15Al15, x=0,1 MGs have been investigated. The results suggest that the chemical 

composition of STZs corresponding to α vs. β relaxation is different, indicated by two regimes of 

STZ activation volume. Room-temperature structural relaxation only affects the larger/slower 

STZs (corresponding to α relaxation) by decreasing the number of the corresponding potential 



xxi 
 

STZs (i.e., atomic clusters capable of shear transformation) while increasing the relaxation time 

constants. A detailed description of structural relaxation emerges: its dominant effect is on the 

largest, and therefore slowest, STZs observed in the present kinetics window. Cycling between 

liquid-nitrogen temperature and room temperature reverses the increasing time constants due to 

structural relaxation in La70(NixCu1-x)15Al15, x=0,1, pointing to a rejuvenation effect. However, 

cycling does not significantly affect the anelastic behavior. The pronounced β peak observed in 

normalized loss modulus of La70Ni15Al15 but not La70Cu15Al15 is a result of both larger volume 

fraction of fast and small potential STZs and smaller volume fraction of slow and larger potential 

STZs in La70Ni15Al15 vs. La70Cu15Al15. 

 

Another focus of the present project is the nonlinear anelastic relaxation in MGs under high stress, 

for which the viscosity is non-Newtonian, and therefore the rate of anelastic relaxation is not linear 

in the applied stress. In this regime, the details of the activation volume, not available in the linear 

regime, can be obtained. Despite the complicated stress state due to nonlinearity, bending allows 

for stable measurements for a long period. A method of controlled sample bending to a strain of 

up to ~ 0.0155 has been developed, and applied to Al86.8Ni3.7Y9.5 MG. Significant nonlinearity of 

the anelastic strain in the stress was observed, which is mainly associated with the largest and 

slowest active STZs not reaching mechanical equilibrium at the end of the constraining period. 

Combining nonlinear kinetics under constraint and zero bending moment after constraint removal, 

the volume of the largest active STZs and the transformation shear strain were obtained 

independently for the inherent state – their most likely values are 4.8×10-28 m3 and 0.18, 

respectively. 
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CHAPTER 1 

Introduction

 

1.1 Overview of Relaxation Behavior in Metallic Glasses 

Metallic glasses (MGs) are amorphous alloys cooled from the melt by bypassing crystallization. 

They exhibit attractive properties, such as low coercivity [1], good corrosion resistance [2], and 

high room-temperature strength and elastic limit [ 3 ], which have considerably potential 

applications [4]. Early MGs were obtained from the liquid at high cooling rates, ~ 105 to 107 K/s, 

and therefore only thin ribbons with thickness less than 0.05 mm were produced [5]. In the past, 

the main technique to produce them was melt-spinning, during which a molten alloy was injected 

onto a rapidly rotating substrate surface, resulting in a cooling rate on the order of 105 to 106 K/s 

[6]. 

 

Alloy systems with easy MG formability can give rise to large-dimension samples – bulk metallic 

glasses (BMGs) [7]. The maximum achievable sample thickness increases with increasing ratio of 

glass transition temperature (Tg) to melting temperature (Tm) [8]. Empirical rules for easy glass-

forming systems have been reported [9]: 1) three or more alloying elements, 2) significant atomic 

size mismatch that gives rise to higher packing density and smaller free volume, 3) negative heat 

of mixing among the main elements, and 4) alloy composition close to a deep eutectic. Following 

these rules, the required cooling rate was reduced to 10-1-102 K/s, and BMGs with experimental 
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diameter as large as 80 mm have been successfully produced [10]. The development of BMGs is 

significant for both fundamental studies and engineering applications. 

 

One promising application for MGs is as structural materials because of their high elastic limit and 

strength, as shown in Fig. 1.1 [11]. However, they show little macroscopic plasticity due to strain 

localization within dominant shear bands, which is a major limitation. Extensive studies have been 

conducted to investigate the deformation behavior of MGs [12,13,14]. Unlike crystalline materials, 

in which the deformation mechanism is well studied in terms of the lattice defects with the help of 

electron microscopy techniques, it is challenging to directly observe the atomic structure of MGs 

due to their amorphous nature, let alone correlating it to their mechanical properties. Based on 

physical analogs [15,16], the deformation of MGs is believed to be accommodated by cooperative 

shearing of atomic clusters termed shear transformation zones (STZs) (Fig. 1.2). At small strain,  

 

 

Figure 1.1. Elastic limit vs. Young’s modulus for various metals, alloys, metal matrix composites 

and metallic glasses [11]. Reprinted from Ashby and Greer, Metallic glasses as structural materials, 

Scr. Mater. 54, 321 (2005), Copyright 2005, with permission from Elsevier. 
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Figure 1.2. Schematic illustration of one shear transformation zone with a volume Ωf under an 

applied stress σ [15]. Reprinted from Argon, Plastic deformation in metallic glasses, Acta Metall. 

27, 47 (1979), Copyright 1979, with permission from Elsevier. 

 

STZs are isolated, and the overall strain can be reversed upon removal of the external applied 

stress, due to back stress in the elastic matrix, which leads to anelastic deformation. For a 

sufficiently small applied stress, the anelastic strain rate and equilibrium anelastic strain are linear 

in it. With increasing stress, nonlinear anelastic deformation, i.e., non-Newtonian behavior, occurs, 

which offers a chance to independently obtain the STZ volume and transformation shear strain 

[17]. Above a stress threshold, STZs begin to interact with each other as a result of their decreasing 

separation, and back stress in the elastic matrix is lost, resulting in plastic deformation. 

 

Although the STZ theory is commonly employed when describing plastic deformation for MGs, 

the properties for STZs are still under debate. Various STZ sizes, ranging from a few to several 

hundred of atoms, have been reported from both experiments and simulations. Choi et al. [18] 

performed nanoindentation measurements with a fixed loading rate at room temperature (RT) on 

a Zr-based BMG, and obtained an STZ size of ~ 25 atoms using a cooperative shear model 

proposed by Johnson and Samwer [19]. Ju et al. [20] conducted RT quasi-static anelastic relaxation 
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measurements on an Al-based MG by employing nanoindenter cantilever bending and bend 

relaxation techniques. Relaxation-time spectra were computed from the anelastic strain vs. time 

data, which yielded a quantized hierarchy of STZs ranging from 14 to 21 atoms in size, based on 

a standard linear solid model. On the other hand, also using nanoindentation measurements, Pan 

et al. [21] reported STZ sizes of hundreds of atoms for various MG systems by using the 

cooperative shear model [19]. However, their result was an overestimate due to strain localization 

and shear band formation in their measurements. In addition, we speculate that the universal 

macroscopic yield strain in the cooperative shear model is smaller than the theoretical limit, which 

results in a larger STZ size. For simulations, Fan et al. [22] employed an activation-relaxation 

technique, and showed an STZ size of typically less than ten atoms under thermally activated 

deformation. Therefore, the identification of STZ size is still elusive. 

 

When cooling through Tm sufficiently rapidly, the liquid becomes supercooled, and continuing 

cooling leads to freezing at Tg. Stillinger [23] pointed out that during the cooling process, a single 

peak in frequency of (e.g., mechanical, electrical, thermal, optical) relaxation in the equilibrium 

liquid (and moderately supercooled regime) splits into a pair of maxima when approaching Tg, 

corresponding to primary α and secondary faster β relaxations. He further interpreted these two 

relaxations in term of the potential energy landscape – suggesting that the β relaxation corresponds 

to the elementary relaxations between neighboring basins, whereas the α relaxation is the transition 

between two metabasins, as shown in Fig. 1.3. For molecular glasses, Johari and Goldstein [24] 

attributed α vs. β relaxations to intermolecular vs. intramolecular processes. However, such a 

distinction is inapplicable in MGs. As a result, the nature of the α and β relaxations in MGs is still 

poorly understood. 
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Figure 1.3. Schematic illustration of the potential energy topography for α and β relaxations [23]. 

Reprinted from Stillinger, A topographic view of supercooled liquids and glass formation, Science 

267, 1935 (1995), with permission from AAAS. 

 

In general, the α relaxation is described as the mechanism of viscous flow, which defines the glass 

transition, and is commonly believed to be kinetically frozen below Tg. However, recent work [20] 

shows that it can be observed below Tg when employing a sufficient long timescale. The β 

relaxation is essential to understand fundamental processes in the sub-Tg regime [25]. To study the 

β relaxation, dynamic mechanical analysis (DMA) [26] is the most commonly used technique, 

which determines the loss modulus, the imaginary part of complex modulus, at either a fixed 

temperature with varying frequency or vice versa. In DMA, the α relaxation manifests as a 

dominant peak in the loss modulus at high temperature and/or low frequency, while the β 

relaxation exhibits as either an excess wing/shoulder or a distinct peak at low temperature and/or 

high frequency. The β relaxation has been argued to originate from a different mechanism than 

that of the α relaxation [27], based on a discrepancy between experimental data and a stretched 

exponential relaxation–Kohlrausch-Williams-Watts (KWW) function [ 28 ]. However, the 

application of KWW to anelastic relaxation well below Tg is phenomenological, and often results 

in inconsistent fitting parameters [29]. For an Al-based MG, Ju and Atzmon showed that both the 
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α and β relaxations can be explained with a single, atomically quantized STZ hierarchy: the former 

results from large and slow STZs, while small and fast STZs lead to the latter [30]. A similar 

conclusion was obtained for the dynamic-mechanical response of a Zr-based alloy [31]. 

 

Since MGs are metallic solids with frozen-in melt structure, they undergo thermally activated 

structural relaxation toward an internal equilibrium state. Many physical properties change during 

structural relaxation, such as decreasing atomic diffusivity [32], increasing viscosity [33] and 

Young’s modulus [34]. Some of the changes are undesirable from the viewpoint of applications. 

For example, Kumar et al. [35] reported annealing-induced embrittlement for a Zr-based MG – 

the fracture strain decreased from 7.5% to 2% after sub-Tg annealing for 1 h. This makes structural 

applications of MGs more challenging, given that many as-quenched MGs do not possess much 

plasticity. On the other hand, the plasticity can be improved by rejuvenation through various 

methods, such as constrained loading [36], irradiation [37], and cryogenic cycling [38]. Therefore, 

understanding the mechanism of structural relaxation and rejuvenation is essential for both 

fundamental and practical reasons. 

 

This dissertation focuses on the microscopic mechanism of α vs. β relaxation in La-based MGs by 

using anelastic relaxation measurements combined with the standard linear solid model analysis 

[39]. Then, these are used to characterize room-temperature structural relaxation and its reversal – 

rejuvenation by cryogenic cycling. In addition, the nonlinear anelastic deformation for an Al-based 

MG is also studied. The two main experimental techniques employed are nanoindenter cantilever 

bending for short-time measurements and bend relaxation for longer-time measurements, to 



7 
 

observe RT quasi-static anelastic strain relaxation over ten orders of magnitude in time. 

Subsequently, time-constant spectra are computed from the strain data. Both the measurement 

techniques and computation methods are discussed in Chapter 3. 

 

As in the previous study for an-Al based MG by Ju et al. [20], for the present La-based MGs, 

distinct peaks emerge from the spectra, corresponding to a quantized hierarchy of STZs. While the 

STZ volume exhibits a smooth transition between the regimes corresponding to α and β relaxations, 

the properties of STZs associated with α vs. β are different: The latter exhibits a smaller volume 

increment than the former, indicating a possible chemical composition difference between the 

STZs corresponding to the two relaxation modes, as discussed in Chapter 4. After charactering the 

α and β relaxations by employing the time-constant spectrum, the effects of both RT ageing and 

cryogenic cycling have been studied using similar approaches. The results show that RT ageing 

does not significantly affect the properties of the STZs corresponding to β relaxation. However, it 

increases the relaxation time constants of the STZs corresponding to α relaxation, while decreasing 

the volume fractions of their corresponding potential STZs (PSTZs), i.e., atomic clusters that are 

capable of shear transformation. The increased time constants are reversed by cryogenic cycling, 

pointing to a rejuvenation effect, but the volume fractions are unaffected. The details of RT 

structural relaxation and cryogenic rejuvenation are discussed in terms of STZ properties in 

Chapter 5. By comparing two alloy systems with and without a pronounced β relaxation, it is 

proposed that the relative strong β relaxation peak is associated with both larger volume fraction 

of fast and small PSTZs and smaller volume fraction of slow and large PSTZs, as elaborated in 

Chapter 6. 
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All the anelastic relaxation measurements in Chapters 4-6 are in the linear regime, i.e., the shear 

strain rate is linear in the applied stress. At higher strain, the viscosity is non-Newtonian under 

constraint, and an independent determination of the STZ volume and transformation shear strain 

is obtained in Chapter 7. Chapter 8 includes conclusions and suggestions for future work. 
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CHAPTER 2 

Background

 

Plasticity improvement has been a long-standing focus for metallic glass (MG) studies, since 

macroscopic brittleness is the major limitation for their structural applications. MGs exhibit little 

plasticity in compression and almost zero in tension, as shown in Fig. 2.1 [1], and the main reason 

is shear localization within dominant shear bands due to shear softening [2]. Recently, Greer et al. 

[3] wrote a comprehensive review of shear-banding, including topics such as the shear band 

initiation and the structural evolution inside shear bands. 

 

While shear-banding has been studied in detail, microscopic details of MG deformation have not 

been fully explored. In crystalline metals, at low temperature, dislocation gliding is responsible for 

their plastic deformation. However, the nature of defects in MGs is difficult to determine because 

of their amorphous structure. Based on experiments with a two-dimensional bubble raft, Argon [4] 

proposed that the shear of MGs is accommodated by cooperative shearing of atomic clusters, 

termed shear transformation zones (STZs) [5]. In order to study STZ properties, small-strain 

anelastic deformation is an ideal regime, since STZs are in the dilute limit and do not interact with 

each other. Therefore, this section begins with a review of a previous study by Ju et al. [6] on 

linear anelastic relaxation of an Al-based MG, which revealed a quantized hierarchy of STZs and 

their properties. Then, nonlinear anelastic deformation under higher strain is introduced. 
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Figure 2.1. Stress-strain curves of Zr59Cu20Al10Ni8Ti3 metallic glass at different strain rates under 

(a) compressive loading and (b) tensile loading [1]. Reprinted from Zhang and Schultz, Difference 

in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass, Acta 

Mater. 51, 1167 (2003), Copyright 2002, with permission from Elsevier. 

 

Subsequently, the concepts of structural relaxation and cryogenic rejuvenation are reviewed, 

motivated by annealing-induced embrittlement [7] and improved plasticity due to cryogenic 

cycling [8], respectively. Lastly, the two relaxation modes in glasses, α and β, are discussed, 

motivated by the recent discovery of the correlation among β relaxation, STZ dynamics, and 

plasticity in MGs [9]. 

 

2.1 Anelastic Deformation 

2.1.1 Quasi-Static Anelastic Relaxation of an Al86.8Ni3.7Y9.5 MG 

In a previous study, Ju et al. [6] performed quasi-static anelastic relaxation measurements at RT 

on an Al86.8Ni3.7Y9.5 MG by employing both nanoindenter cantilever bending for short-time 

measurements (~ 1 s to 200 s) and bend relaxation (“mandrel”) for longer time (~ 103 s to 3·107 s). 

For the former, a fixed load (= 200 μN) was applied for 200 s, during which the vertical 

displacement was monitored as a function of time. The strain reversibility was confirmed by 
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following with a small load (= 2 μN). The maximum bending strain at time t is attained on the 

sample surface at the clamp, and expressed as [6], 

𝜀(𝑡) = 3𝑑 ⋅ ℎ(𝑡)/2𝐿2,                                                                                                                 (2.1) 

where d is the cantilever thickness, h(t) is the time-dependent vertical displacement, and L is the 

effective length. The equilibrium elastic strain, 𝜀𝑒𝑙
0 , is determined from the instantaneous 

displacement upon loading. 

 

In bend relaxation (“mandrel”) measurements, samples were constrained around mandrels of radii 

ranging from 0.35 to 0.49 cm for a standard time of 2∙106 s, then relaxed constraint-free for up to 

3∙107 s. The evolution in radius of curvature, r(t), during constraint-free relaxation was monitored 

using a digital camera and determined by a visual fitting. The nominal equilibrium elastic strain, 

reached at the end of the constraining period, and maximum anelastic strain at time t after 

constraint removal, both attained at the surface [6], are 

𝜀𝑒𝑙
0 = 𝑑 2⁄ ⋅ [1 𝑅⁄ − 1 𝑟(0)⁄ ],                                                                                                      (2.2) 

and, 

𝜀𝑎𝑛(𝑡) = 𝑑 2⁄ ⋅ [1 𝑟(𝑡)⁄ − 1 𝑟0⁄ ],                                                                                               (2.3) 

respectively. d is the sample thickness, R is the mandrel radius, and r0 is the initial radius of 

curvature of the sample before constraint. 
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In Ref. [6], the time-dependent anelastic strain data were used to compute relaxation-time spectra, 

f(τ), as a function of relaxation time, τi. Figure 2.2 shows the anelastic strain normalized by its 

corresponding equilibrium elastic strain vs. time from both experimental techniques, along with 

the corresponding spectra, which exhibited distinct peaks [6]. Each peak was associated with one 

STZ type, numbered as m = 1,…,8. To analyze the relaxation behavior, a standard linear solid 

model was employed, as illustrated in Fig. 2.3, which consists of several Voigt units, each 

corresponding to a spectrum peak and therefore to one STZ type, in series with each other and 

with a spring. The latter represents the elastic matrix. 

 

 

Figure 2.2. Normalized anelastic strain vs. time and their corresponding relaxation-time spectra. 

(a) Nanoindenter cantilever bending under a fixed load of 200 μN. (b) Mandrel measurement in a 

constraint-free condition after constraining for 2∙106 s. Both spectra show distinct peaks, and each 

peak corresponds to one STZ type, numbered as m = 1,…,8 [6]. Reprinted from Ju et al., An 

atomically quantized hierarchy of shear transformation zones in a metallic glass, J. Appl. Phys. 

109, 053522 (2011), with the permission of AIP Publishing. Copyright 2011 AIP Publishing LLC. 
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Figure 2.3. Schematic illustration of the standard linear solid model. The spring with elastic 

modulus E0 represents the elastic matrix, while each Voigt unit corresponds to one STZ type. 𝐸𝑚
′  

and 𝜂𝑚
′  are the effective modulus and shear viscosity of m-type STZs, respectively [6]. 

Reproduced from Ju et al., An atomically quantized hierarchy of shear transformation zones in a 

metallic glass, J. Appl. Phys. 109, 053522 (2011), with the permission of AIP Publishing. 

Copyright 2011 AIP Publishing LLC. 

 

Figure 2.4 shows the STZ properties, including the relaxation time constant, STZ volume, and 

volume fraction of potential STZs for each STZ type. The relaxation time constant for m-type 

STZs, τm, taken as the median of the corresponding spectrum peak, is shown in Fig. 2.4a. 

Combining the expression for the macroscopic shear strain rate due to m-type STZs [4], 

 

   

Figure 2.4. STZ properties for Al86.8Ni3.7Y9.5 MG. (a) Time constants, τm, (b) STZ volume, Ωm, 

normalized by the atomic volume of Al, VAl, and (c) Volume fraction of potential STZs, cm, for 

each STZ type m [6]. Reprinted from Ju et al., An atomically quantized hierarchy of shear 

transformation zones in a metallic glass, J. Appl. Phys. 109, 053522 (2011), with the permission 

of AIP Publishing. Copyright 2011 AIP Publishing LLC. 
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𝛾̇𝑚  = 2𝑐𝑚𝛾𝑜
𝑐𝜈𝐺exp (−

∆𝐹𝑚

𝑘𝑇
) sinh (

𝜎𝛾𝑜
𝑇𝛺𝑚

2𝑘𝑇
),                                                                                (2.4) 

and the corresponding activation free energy of shear transformation [10], 

∆𝐹𝑚 = [(
(7−5𝜈)

30(1−𝜈)
+

2(1+𝜈)

9(1−𝜈)
𝛽̅2) 𝛾0

𝑇 +
1

2

𝜎𝑆𝑇𝑍̅̅ ̅̅ ̅̅ ̅

𝜇
] 𝜇𝛾0

𝑇𝛺𝑚,                                                                   (2.5) 

τm can be expressed as [11], 

𝜏𝑚 =
3𝜂𝑚

′

𝐸𝑚
′ =

1

𝛺𝑚𝛾0
𝑇 ⋅

3𝑘𝑇

2𝜇(1+𝜈)𝛾0
𝑐𝜈𝐺

⋅ exp (𝜇𝛺𝑚 {
𝛾0

𝑇

𝑘𝑇
[(

(7−5𝜈)

30(1−𝜈)
+

2(1+𝜈)

9(1−𝜈)
𝛽̅2) 𝛾0

𝑇 +
1

2

𝜎𝑆𝑇𝑍̅̅ ̅̅ ̅̅ ̅

𝜇
]}).             (2.6) 

𝜂𝑚
′  and 𝐸𝑚

′  are the effective shear viscosity and effective Young’s modulus, respectively, of m-

type STZs (Fig. 2.3). 𝛾0
𝑐 = [2(4 − 5𝜈)/15(1 − 𝜈)]𝛾0

𝑇  is the constrained transformation shear 

strain, with 𝛾0
𝑇 being the unconstrained value. 𝛺𝑚𝛾0

𝑇 is the activation volume. Based on physical 

analogs [4,12], 𝛾0
𝑇 = 0.2 was assumed for all STZs to obtain the m-type STZ volume, 𝛺𝑚 , as 

shown in Fig. 2.4b. 𝜈𝐺  is the attempt frequency, k is the Boltzmann constant, and T is the 

temperature. 𝜈 is Poisson’s ratio, and 𝛽̅2 ~ 1 is the dilatancy factor. 𝜎𝑆𝑇𝑍̅̅ ̅̅ ̅̅  is the shear resistance of 

STZs, µ is the shear modulus, and  𝜎𝑆𝑇𝑍̅̅ ̅̅ ̅̅ 𝜇⁄ = 0.025 [13]. 

 

The volume fraction of potential m-type STZs, cm, is equal to the area of the corresponding 

spectrum peak m [6], 

𝑐𝑚 = ∫
𝑚

𝑓(𝜏)dln𝜏 = 𝜀𝑎𝑛
𝑚 𝜀𝑒𝑙

0⁄ .                                                                                                    (2.7) 

𝜀𝑎𝑛
𝑚  and 𝜀𝑒𝑙

0  are the nominally equilibrated anelastic strain due to m-type STZs and the equilibrium 

elastic strain, respectively. For the Al-based MG, cm increases with m (Fig. 2.4c). 
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2.1.2 Nonlinearity 

In Ref. [6], the applied strain is less than 0.005 (< the yield point of MGs, ~ 0.02 [14]), and a linear 

dependence of the anelastic strain on the applied stress is observed, which implies Newtonian 

viscosity and therefore a linear anelastic strain profile across the sample thickness. Consequently, 

there is no residual stress upon constraint removal. In this linear regime, (𝛾0
𝑇)2𝛺𝑚  can be 

determined, but not 𝛾0
𝑇 and 𝛺𝑚 independently. In Ref. [6], an estimated value of 𝛾0

𝑇 = 0.2, based 

on physical analogs [4,12], was used to determine 𝛺𝑚  values for the Al-based MG, which 

correspond to 14 to 21 Al atoms for the measurement range. In order to determine 𝛾0
𝑇 and 𝛺𝑚 

independently, it is necessary to perform measurements at higher stress, in the non-Newtonian 

regime, where the strain rate in Eq. (2.4) is not linear in the applied stress, 𝜎. Such an approach 

has been reported for Pd80Si20 MG for the activated flow state [10]. The authors computed the 

product of 𝛾0
𝑇𝛺𝑓 from the stress exponent value, 𝑚, measured above 0.6Tg [15], 

𝑚 =
𝜎𝛾0

𝑇𝛺𝑓

𝑘𝑇
coth (

𝜎𝛾0
𝑇𝛺𝑓

𝑘𝑇
),                                                                                                            (2.8) 

and obtained 𝛾0
𝑇𝛺𝑓 = 1.05 × 10−28 m3. Substituting this value into Eq. (2.5) yielded 𝛾0

𝑇 = 0.135, 

and therefore 𝛺𝑓 = 7.77 × 10−28 m3. In Chapter 7, 𝛾0
𝑇 and 𝛺𝑚 are obtained independently from 

nonlinear anelasticity measurements, where the STZs are still isolated, unlike in Ref. [10]. 

 

2.2 Structural Relaxation and Cryogenic Rejuvenation 

Since MGs are metastable, they undergo structural relaxation upon annealing at temperatures 

below Tg, accompanied by changes in many properties. Due to the disordered atomic structure, it 

is challenging to characterize structural relaxation in microscopic terms. Recently, Atzmon and Ju  
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Figure 2.5. Relaxation-time spectra for as-quenched and structurally relaxed Al86.8Ni3.7Y9.5 MG, 

computed from normalized anelastic relaxation strain vs. time [16]. Reprinted with permission 

from Atzmon and Ju, Microscopic description of flow defects and relaxation in metallic glasses, 

Phys. Rev. E 90, 042313 (2014), Copyright 2014 by the American Physical Society. 

 

[16] reported that for an Al86.8Ni3.7Y9.5 MG, annealing treatment prior to anelastic relaxation 

measurements only reduced the peak areas of the time-constant spectrum, but left their peak 

positions unchanged, as shown in Fig. 2.5. They concluded that structural relaxation only 

decreased the number of potential STZs, without changing their properties. 

 

One undesirable effect of the structural relaxation is embrittlement due to annihilation of the 

“defects” responsible for plastic deformation [17]. On the other hand, plasticity can be enhanced 

by a rejuvenation process – a reversal of structural relaxation, during which MGs transform to a 

higher-energy state. Rejuvenation can be achieved by various methods, as reviewed below. 
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Constrained loading is one approach for plasticity improvement. Pan et al. [18] performed 

compressive tests at RT on notched cylindrical Zr-based BMG samples, and obtained a strain value 

of up to 0.4. Comparing the scanning electron micrographs of one notched sample and one 

unnotched sample, both compressed to 0.2 axial strain (Fig. 2.6), the surface of the unnotched 

sample exhibited shear bands, while the notched sample did not. Differential scanning calorimetry 

results showed that the maximum stored energy in the deformed notched samples was 66% greater 

than any previously achieved by plastic deformation. 

 

Plasticity rejuvenation can also be achieved by irradiation. For example, Pt-based MG nanowires 

exhibit tensile plasticity and quasi-homogeneous plastic deformation after ion irradiation, as 

compared to brittle-like fracture before irradiation [19]. The authors suggested that ion irradiation 

increases the fictive temperatures, at which the equilibrium liquid has the same atomic 

 

 

Figure 2.6. Two scanning electron micrographs of (a) a notched sample and (b) an unnotched 

sample, both compressed to 0.2 axial strain for a Zr-based BMG. The scale bars in (a) and (b) are 

200 μm and 500 μm, respectively [18]. Reprinted with permission from Pan et al., Extreme 

rejuvenation and softening in a bulk metallic glass, Nat. Commun. 9, 560 (2018), Copyright 2018 

by Springer Nature. 



19 
 

configuration as that of a glass [20], by tens of degrees – the equivalent of an increase by ten orders 

of magnitude in cooling rate. Heo et al. [21] reported a more than 0.3 uniaxial compressive plastic 

strain for a Zr-based MG nanopillar after proton irradiation, as compared to catastrophic failure 

without noticeable plasticity before irradiation. They speculated that the atomistic origin of this 

improved plasticity results from the change in icosahedral network by irradiation. 

 

Recently, Ketov et al. [8] performed thermal cycling treatment between liquid nitrogen 

temperature and RT on different MGs, and obtained improved compressive plasticity. The authors 

attributed this rejuvenation to internal stress, which results from nonuniform thermal expansion 

coefficients due to heterogeneous glass structure. However, an atomic-scale characterization of the 

rejuvenation has not been obtained. Chapter 5 discusses both the RT structural relaxation and 

cryogenic rejuvenation effects through STZ characterization. 

 

2.3 β Relaxation in Metallic Glasses 

DMA [22] is a widely employed and highly sensitive technique to study the β relaxation for MGs, 

during which a sinusoidal stress is applied as, 

𝜎 = 𝜎0sin (𝜔𝑡),                                                                                                                          (2.9) 

where 𝜎0 is the amplitude, 𝜔 is the angular frequency, 𝑡 is the time. The resulting strain is 

𝜀 = 𝜀0sin (𝜔𝑡 − 𝛿).                                                                                                                  (2.10) 

𝛿 is the phase lag between the stress and resulting strain. Then, the ratio of the stress to the strain 

results in a complex modulus [22], 
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𝐸∗ = 𝜎 𝜀⁄ = 𝐸′ + 𝑖𝐸′′, 

where 𝐸′ represents the storage modulus, and 𝐸′′ represents the loss modulus, and are expressed 

as, 

𝐸′ = (𝜎0 𝜀0⁄ ) ⋅ cos (𝛿),                                                                                                             (2.11) 

and, 

𝐸′′ = (𝜎0 𝜀0⁄ ) ⋅ sin (𝛿),                                                                                                            (2.12) 

respectively. 

 

In DMA, the loss modulus is measured at either a fixed temperature with varying frequency or 

vice versa. For many MGs, the β relaxation exhibits a broad hump/excess wing in the loss modulus 

at high frequency/low temperature, close to the broad α relaxation. A recently developed 

La68.5Ni16Al14Co1.5 MG exhibits a strong and separate β relaxation peak, as shown in Fig. 2.7 [23]. 

This La-based MG shows pronounced tensile plasticity at RT with a strain rate of 1.6·10-6 s-1, and 

at increasing temperature with increasing strain rates. The result suggests that the β relaxation may 

correlate with macroscopic plasticity. In addition, from the DMA testing frequency vs. 

corresponding peak temperature of the β relaxation data, Yu et al. [24] obtained that the activation 

energy of the β relaxation for La55Al15Ni10Cu10Co10 MG approximately equals 89±6 kJ/mol. This 

value is close to the estimated value of potential-energy barrier for an STZ based on the cooperative 

shear model [25]. Therefore, the authors proposed that STZs and the beta relaxations are directly 

related due to a common structural origin. However, the results of Ju et al. [11,26] and the present 

work show that both the α and β relaxations are consistent with the STZ model. 
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Figure 2.7. Comparison of normalized loss modulus vs. temperature between different MGs. The 

newly developed La-MG exhibits a pronounced β relaxation [23]. Reprinted with permission from 

Yu et al., Tensile plasticity in metallic glasses with pronounced β relaxations, Phys. Rev. Lett. 108, 

015504 (2012), Copyright 2012 by the American Physical Society. 

 

A long-standing question has been why some MGs show a strong β relaxation peak while others 

do not. The answer is still inconclusive, but one known factor is the chemical composition, as 

discussed below. Figure 2.8 shows normalized loss modulus as a function of normalized 

temperature for La-based and Pd-based MGs [27]. In the La-based MGs, by substituting Ni with 

Cu atoms, which have similar atomic size, the β relaxation transitions from a pronounced peak to 

an excess wing. Therefore, it seems that the Ni atoms promotes the β relaxation, while Cu atoms 

reduce it. However, for the Pd-based MGs shown in Fig. 2.8b, the opposite trend happens – 

substituting Ni with Cu atoms promotes the β relaxation. Figure 2.8(a)&(b) suggest that 1) the 

chemical composition has a strong effect on the β relaxation behavior, and 2) the effect of the same 

element on the β relaxation behavior varies for different alloy compositions. By estimating the 

enthalpy of mixing for these two alloy systems, Yu et al. [27] speculated that large similar negative 

enthalpy of mixing among all constituting atoms results in a pronounced β relaxation, while  
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Figure 2.8. Normalized loss modulus as a function of temperature scaled by Tg [27]. (a) 

La70(CuxNi1-x)15Al15, x=0, 0.5, 0.67, and 1, (b) Pd40(CuxNi1-x)30Ni10P20, x=0 or 1. Reprinted with 

permission from Yu et al., Chemical influence on β-relaxations and the formation of molecule-

like metallic glasses, Nat. Commun. 4, 2204 (2013), Copyright 2013 by Springer Nature. 

 

positive or significantly varying pairwise values of mixing enthalpy suppress the β relaxation, and 

usually associate with excess wings. This correlation is consistent with both examples and offers 

a semi-quantitative way to predict the β relaxation. However, the underlying mechanism of the 

chemical composition effect on β relaxation is still not clear. Chapter 4 offers a microscopic picture 

for the α vs. β relaxation in terms of STZ properties, and Chapter 6 further discusses the 

composition effect on both the α and β relaxations. 
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CHAPTER 3 

Experimental and Analysis Details

 

3.1 Materials 

The metallic glasses (MGs) investigated in the present study are La55Ni20Al25, La70Ni15Al15, 

La70Cu15Al15, and Al86.8Ni3.7Y9.5 (at.%), the glass transition temperatures of which are 475 K [1], 

431 K [2], 391 K [2], and ~ 520 K [3], respectively. The La-based MGs used for anelastic 

relaxation measurements were prepared by Dr. Ming Liu and Prof. Wei-Hua Wang of Chinese 

Academy of Sciences (CAS). The purity of each element, measured by inductively coupled plasma 

atomic absorption spectroscopy using IRIS Intrepid II mass spectrometer at Chinese Academy of 

Sciences, is higher than ~ 99 wt.%, and the composition of each alloy was verified by energy-

dispersive X-ray spectroscopy using Thermo Fisher Nova 200 Nanolab SEM/FIB at MC2 center 

at the University of Michigan. The Al-based MG was prepared by Dr. F. Pinkerton of General 

Motors R&D Center. Because the La-based MGs are easy to oxidize, they were stored in argon-

gas environment. All samples were in the form of thin ribbons about 20-40 μm thick and 1 mm 

wide, obtained through single-wheel melt-spinning using a Cr-coated Cu wheel, at a tangential 

velocity of 3 m/s (for the La-based MGs) or 40 m/s (for the Al-based MG) in vacuum. X-ray 

diffraction was employed to confirm the amorphous structure. Since the as-received La-based 

alloys aged at RT for a short time (~ 6·105 s) and underwent noticeable structural relaxation 

afterwards, samples with different RT ageing times were examined – a) for La55Ni20Al25, the RT 

ageing times range from 2.6·106 s to 6.3·107 s, b) for La70(CuxNi1-x)15Al15, x = 0 or 1, samples 
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were aged at RT from 1.9·106 s to 2.9·107 s. The RT ageing time for the examined Al-based MG 

is over two years. 

 

3.2 Quasi-Static Anelastic Relaxation 

3.2.1 Linear Regime at Room Temperature 

To study the RT quasi-static anelastic relaxation over a wide time range, two techniques – 

nanoindenter cantilever bending for short-time measurements and bend relaxation (“mandrel”) for 

long-time measurements were employed, as reviewed below. 

 

Nanoindenter cantilever bending was performed by using a Hysitron TI 950 TriboIndenter in Prof. 

Kenneth Kozloff’s lab of the Department of Orthopaedic Surgery at the University of Michigan. 

Figure 3.1(a) is a schematic illustration of the nanoindenter cantilever bending for measurements 

from ~ 0 s to 200 s. One sample was glued between two glass slides using epoxy, and different 

mounting compounds were tested to rule out their effect on the measurements in a previous study 

[4]. A fixed load, P, is applied, which results in a vertical displacement, h(t), at the indent spot. 

The horizontal distance between the indent spot and clamp is L. The maximum bending strain, 

attained at the clamp on the surface [4], is 

𝜀𝑎𝑛(𝑡) = 3𝑑 ⋅ ℎ(𝑡) 2𝐿2⁄ ,                                                                                                             (3.1) 

where d is the sample thickness. The equilibrium elastic strain at the sample surface, 𝜀𝑒𝑙
0 , is 

determined from the instant deflection upon loading [4]. Figure 3.1(b) shows the loading function 

of one measurement cycle. A fixed load, P=200 μN, was applied for 200 s, during which the  
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Figure 3.1. (a) Schematic illustration of nanoindenter cantilever bending measurements. A fixed 

load P is applied, and the time-dependent vertical displacement, h(t), is monitored. The horizontal 

distance between the indent spot and clamp is L. Redrawn from Ref. [4]. (b) Loading function for 

one measurement cycle – a high load of 200 μN for 200 s to obtain the strain vs. time data, and a 

low load of 2 μN for another 200 s to check reversibility. 

 

anelastic strain vs. time data were collected at a rate of 300 pts/s. A subsequent small load of 2 μN 

for 200 s was used to check the displacement reversibility. For each alloy composition, at least 

three samples with the same thermal history were examined with 20 cycles for each sample. 

 

Figure 3.2 is a schematic illustration of the mandrel technique in linear regime for longer 

measurement time over one year. Firstly, one sample with an initial radius of curvature, r0, was 

selected (see details of curvature determination below). Then, it was constrained around a mandrel 

with radius R ranging from 0.345 cm to 0.802 cm for 2.0∙106 s. Subsequently, the sample was 

relaxed constraint-free at RT for up to 3.2∙107 s, with a time-dependent radius of curvature, r(t), 

where t is the time after constraint removal. The evolution in r(t) was monitored using a digital 

camera. Care was taken to make sure that the optical axis is perpendicular to the sample plane, and 

a stage micrometer was used for calibration. Diffuse backlight was employed for optimal image  
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Figure 3.2. Schematic illustration of the bend-relaxation (“mandrel”) measurements. A sample 

with an initial radius of curvature, r0, is constrained around a mandrel with a radius R for 2.0∙106  s, 

then relaxed constraint-free. The evolution in radius of curvature of the sample, r(t), is monitored. 

Redrawn from Ref. [4]. 

 

quality. At each t value, four or five photographs were taken, and the final r(t) value was 

determined as the average of all the images. To obtain r(t) for each image, an automated image 

analysis method was developed in the present study with the help of an undergraduate student Luis 

Rangel DaCosta. The MATLAB® code commands of image digitization are explained in Appendix 

B. One example of the image analysis method is shown in Fig. 3.3. Figure 3.3(a) is a photograph 

of one sample at time t after constraint removal, along with a stage micrometer for length 

calibration. The photograph was digitized using MATLAB®, so that the coordinates of the data 

points corresponding to the sample were obtained. Then, a nonlinear curve fit with an equation, 

𝑦 = (𝐶2 + (𝑥 − 𝐴)2)0.5 + 𝐵,                                                                                                     (3.2) 

where C the radius, and A and B the coordinates of the center, was performed on these data points, 

as shown in Fig. 3.3(b). An Orthogonal Distance Regression Iteration Algorithm [5] in OriginPro 

program was employed. This automated image analysis method significantly reduces the error bars 

in the strain vs. time curves relative to the on-screen visual fitting in the previous study [4]. 
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Figure 3.3. (a) Photograph showing one sample during constraint-free relaxation along with a stage 

micrometer for length calibration. (b) Nonlinear curve fit for the data points corresponding to the 

sample, obtained through image digitization. 

 

In the mandrel measurements, the total constraining strain at sample surface is [4], 

𝜀𝑐𝑜𝑛𝑠𝑡𝑟 = 𝑑 2⁄ ⋅ [1 𝑅⁄ − 1 𝑟0⁄ ],                                                                                                   (3.3) 

where d is the sample thickness. It consists of two components – equilibrium elastic strain and 

anelastic strain, which at the end of the constraining period are [4], 

𝜀𝑒𝑙
0 = 𝑑 2⁄ ⋅ [1 𝑅⁄ − 1 𝑟(0)⁄ ],                                                                                                      (3.4) 

and, 

𝜀𝑎𝑛(𝑡) = 𝑑 2⁄ ⋅ [1 𝑟(𝑡)⁄ − 1 𝑟0⁄ ],                                                                                               (3.5) 

respectively. 
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3.2.2 Linear Regime with Thermomechanical Treatment 

To microscopically characterize the effect of structural relaxation and cryogenic rejuvenation, a 

thermomechanical treatment (Fig. 3.4) was applied to La70(CuxNi1-x)15Al15, x=0 or 1, as detailed 

below. Firstly, samples were aged at RT for different durations from 1.9·106 s to 2.9·107 s, and 

three to eight sample were used for each condition. Subsequently, for samples with a RT ageing 

time of 1.0·107 s, they were cycled between liquid nitrogen temperature and RT for ten times, with 

1 min and 3-min holding time, respectively. Then, bend-relaxation measurements were performed 

by constraining samples around mandrels with radii R for a standard time of 2.0·106 s. At last, the 

evolution in radius of curvature at time t after constraint removal, r(t), was monitored using a 

digital camera. 

 

 

Figure 3.4. Schematic illustration of the thermomechanical treatment and measurement sequence 

[6]. Reprinted from Lei et al., Microscopic characterization of structural relaxation and cryogenic 

rejuvenation in metallic glasses, Acta Mater. 164, 165 (2019), Copyright 2018, with permission 

from Elsevier. 
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3.2.3 Nonlinear Regime at Room Temperature 

In order to conduct mandrel measurements in the nonlinear regime, higher applied stresses are 

needed. To achieve the goal, a new constraining method by using mandrels with smaller radius of 

curvature, 0.09 cm or 0.11 cm, was developed and is shown in Fig. 3.5. A vise was used to apply 

load on the constraining components, which include a machined device, a mandrel, a neoprene 

block, and a sample. The sample was placed between the mandrel and neoprene block. The 

machined device was used to press the mandrel until two free ends of the sample just touching 

each other, so that a well-characterized geometry was obtained, as discussed below. A peephole 

on the side surface of the machined device was to observe the two touching ends during 

constraining. Figure 3.5 includes one photograph showing the two touching ends of a sample under 

 

 

Figure 3.5. Constraining setup for the nonlinear-regime mandrel measurement. A vise is used to 

apply load on the constraining component – a sample placed between a mandrel and neoprene 

block, and a machined device to press the mandrel until two constraint-free ends of the sample just 

touching each other. A peephole on the side surface is used to observe the two touching ends during 

constraining, and a photograph showing the two touching ends of one sample under constraint is 

in the upper-right corner. 
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constraint. Because of the low modulus of the neoprene, the pressure on the sample was negligible 

compared to the bending stress. A lubricant was applied between the sample and neoprene to 

confirm that friction played a negligible role. It should be noted that, contrary to the linear-regime 

constraining method in Section 3.2.1, where the whole sample was under constraint, in the 

nonlinear case, only a small section of the sample was under constraint, with the two ends being 

constraint-free. 

 

The expression of the total constraining strain at the sample surface for the nonlinear regime is 

same as Eq. (3.3). Because the strain rate is not linear in the stress, there is residual stress in the 

sample, and the strain distribution is no longer linear. Therefore, Eqs. (3.4)&(3.5) now represent 

the apparent elastic strain and apparent anelastic strain on the surface, respectively, and not their 

actual values as in the linear regime. The details of the apparent vs. actual strain in the nonlinear 

regime is discussed in Chapter 7. Since only a small section of the sample was under constraint, it 

is challenging to directly measure the time-dependent radius of curvature of the constrained section, 

r(t), during constraint-free relaxation. However, as mentioned before, the constraining method 

leads to a well characterized geometry, which allows for a reliable determination of r(t). Figure 

3.6(a)&(b) show the sample geometry under constraint and after constraint removal, respectively. 

The red curve corresponds to the constrained section, while the blue lines represent the constraint-

free ends. The yellow dashed lines are fit lines to the free ends. The time-dependent radius of 

curvature of the previously constrained section at time t after constraint removal is, 

𝑟(𝑡) = [(𝜋 + 𝜑) × (𝑅 + 𝑑 2⁄ )] × 

× [4 arcsin (
𝐿′

2𝑟0
) + 2 arccos (

𝐿′

2𝑟0
) +

(𝜋+𝜑)×(𝑅+𝑑 2⁄ )

𝑟0
−

𝐿𝑡𝑜𝑡𝑎𝑙

𝑟0
− 𝛼(𝑡)]−1,                                    (3.6) 
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Figure 3.6. Sample geometry (a) under constraint (the small curvature of the free ends is neglected), 

(b) during unconstrained relaxation (not to scale). α(t) is used to determine the evolution of the 

curvature of the previously bent section during unconstrained relaxation. The length of constrained 

section (red) equals (π+φ)×(R+d/2), where R is the mandrel radius and d is the sample thickness. 

Dashed lines are fits to the unconstrained ends. 

 

where 𝜑 is the angle between two constraint-free ends under constraint, 𝐿′ is the length of the fit 

line, and 𝛼(𝑡)  is the time-dependent angle between the two fit lines during constraint-free 

relaxation. A detailed derivation of Eq. (3.6) is given in Appendix A. 

 

3.3 Tensile Tests and Dynamic Mechanical Relaxation 

To examine the effect of RT ageing and cryogenic cycling on mechanical properties, e.g., Young’s 

modulus, RT tensile tests at a strain rate of 10-3 s-1 were performed on La70Cu15Al15 and 

La70Ni15Al15 aged at RT for 1) different durations, and 2) the same amount of time with and without 

ten subsequent cryogenic cycles. The tensile tests were performed using a TA Instruments RSA 

III Dynamic Mechanical Analyzer at the University of Michigan. At least four adjacent pieces 

from the same ribbon were used for each alloy composition and thermal history so that variations 

among samples were minimized. 
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To compare the plasticity of La-based MGs with Cu vs. Ni, RT tensile tests at strain rates of 10-4 

s-1, 10-5 s-1, and 1.6·10-6 s-1 were performed on La70(NixCu1-x)15Al15 and La68.5(NixCu1-x)16Co1.5Al14, 

x=0 or 1. In addition, dynamic mechanical relaxation measurements with temperature-sweeping 

mode were performed on La70Cu15Al15 and La68.5Cu16Co1.5Al14 to examine their β relaxation 

behavior. The samples were prepared by Jie Shen and Prof. Yonghao Sun from Chinese Academy 

of Sciences, who also performed the tensile tests at different strain rates and the dynamic 

mechanical relaxation measurements. 

 

3.4 Relaxation-Time Spectrum Computation 

Relaxation-time spectra were computed from the anelastic strain vs. time using a software package, 

CONTIN [7,8], which yields stable and consistent fitting of 𝜀𝑎𝑛(𝑡) 𝜀𝑒𝑙
0⁄ . Based on the standard 

linear solid model (Section 2.1.1), two fitting equations were obtained [4], 

𝜀𝑎𝑛(𝑡) 𝜀𝑒𝑙
0⁄ = 𝑐∞ + 𝐴 ⋅ 𝑡 + ∑ 𝜀𝑖 ⋅ [1 − exp(− 𝑡 𝜏𝑖⁄ )]𝑁1

𝑖=1 ,                                                            (3.7) 

and, 

𝜀𝑎𝑛(𝑡) 𝜀𝑒𝑙
0⁄ = 𝑐∞ + ∑ 𝜀𝑖exp(− 𝑡 𝜏𝑖⁄ )𝑁2

𝑖=1 ,                                                                                    (3.8) 

for cantilever bending and mandrel measurements, respectively. N1 and N2 are less than the number 

of data points. For cantilever bending data, N1 = 100 for all alloy compositions, while for mandrel 

measurements, N2 = 50 for La70(CuxNi1-x)15Al15, x = 0 or 1, and N2 = 65 for La55Ni20Al25. 𝑐∞, 𝐴, 

and 𝜀𝑖 are fitting parameters. 𝜏𝑖 are fixed, logarithmically spaced relaxation time values. The linear 

term in Eq. (3.7) and the constant term in Eq. (3.8) account for the anelastic processes with time 

constants longer than the measurement duration. 
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The continuous spectra were approximated as: 

𝑓(𝜏𝑖) = 𝜀𝑖 ∆ ln 𝜏⁄ ,                                                                                                                        (3.9) 

and, 

∆ ln 𝜏 = ln[𝜏𝑚𝑎𝑥 𝜏𝑚𝑖𝑛⁄ ] (𝑁 − 1)⁄ ,                                                                                           (3.10) 

where 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 are minimum and maximum relaxation time values, respectively, and equal 

10 s vs. 6.4∙107 s and 10 s vs. 5.2∙107 s for La70(CuxNi1-x)15Al15, x = 0 or 1 and La55Ni20Al25, 

respectively. A regularization term [7,8], which penalizes a solution due to deviations from 

behavior expected on the basis of statistical a prior knowledge or the principle of parsimony, was 

added in the nonlinear least-squares fit. The advantage of the regularization term is to eliminate 

sharp, unphysical, variations due to numerical artifacts [7,8]. Similar regularization parameters 

were used for all tests/samples for consistency. Within a range of regularization parameter values, 

the spectrum does not change significantly. Ref. [4] includes more detailed fitting and consistency 

checks, i.e., a) Different values of N1 and N2 in Eqs. (3.7)&(3.8) yielded consistent spectrum. b) 

Different ranges of 𝜏𝑖 led to consistent results if the range of 𝜏𝑖 values is larger than that of the 

measurement time. Peak properties were determined from an average over all samples with the 

same condition. The error bars are the standard deviations of the mean. Code commands to perform 

spectrum computation using CONTIN are detailed in Appendix C. 
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CHAPTER 4 

Shear Transformation Zone Analysis of Anelastic Relaxation of La55Ni20Al25 

Metallic Glass Reveals Distinct Properties of α and β Relaxations

 

Reprinted with permission from T. J. Lei, L. Rangel DaCosta, M. Liu, W. H. Wang, Y. H. Sun, A. 

L. Greer, and M. Atzmon, “Shear transformation zone analysis of anelastic relaxation on a metallic 

glass reveals distinct properties of α and β relaxations,” Phys. Rev. E 100, 033001 (2019). 

Copyright © 2019 by the American Physical Society. DOI: https://doi.org/ 

10.1103/PhysRevE.100.033001. 

 

4.1 Introduction 

Metallic glasses (MGs) are known to exhibit high strength and elastic limit, making them attractive 

for structural applications. However, a main limitation on their applications is their very limited 

macroscopic plasticity due to catastrophic failure resulting from strain localization within 

dominant shear bands [1,2]. Much work has been conducted to improve MG plasticity, but the 

deformation mechanism has yet to be fully understood [1,3,4]. The deformation of MGs is believed 

to be accommodated by shear transformation of atomic clusters, termed shear transformation zones 

(STZs) [5,6]. At small strain, STZs are few and isolated, and can be reversed to their original 

configuration due to back stress in the elastic matrix, which gives rise to anelastic behavior. At 

high strain, the larger number of STZs leads to loss of back stress, resulting in plastic deformation. 
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Johari and Goldstein identified two relaxation processes in supercooled liquids and glasses: a main 

α relaxation and a secondary β relaxation at higher frequency/lower temperature [7]. In molecular 

glasses, these two modes can be attributed to intermolecular vs. intramolecular motion. However, 

they have also been observed in metallic glasses, where such a distinction is not possible [8]. Even 

when it is less distinguishable as a tail in the loss modulus vs. temperature/frequency, the β 

relaxation has been argued to originate from a different mechanism than that of the α relaxation 

[9], based on a discrepancy between experimental data and a stretched exponential relaxation – 

Kohlrausch-Williams-Watts (KWW) function [10]. However, the application of KWW to anelastic 

relaxation well below the glass transition temperature (Tg) is phenomenological, and often results 

in inconsistent fitting parameters [11]. For an Al-based MG, Ju and Atzmon showed that both the 

main peak (α) in the loss modulus and the tail (β) can be explained with a single, atomically 

quantized, STZ hierarchy: the former (latter) results from large and slow (small and fast) STZs 

[12]. A similar conclusion applies to our analysis of the dynamic-mechanical response of a Zr-

based alloy [13]. While conventional wisdom holds that the α relaxation is irreversible and occurs 

only above Tg, Refs. 12,14,15 show that it is reversible at small strain and can be observed well 

below Tg if a sufficiently long timescale is employed. This is a reminder that Tg is defined 

kinetically. Recently, Yu et al. reported that MGs with a distinct and pronounced β relaxation 

exhibit relatively high tensile plasticity [16]. They also suggested that the STZ mechanism 

underlies the β relaxation [17]. 

 

In the present study, the microscopic origin of the α and β relaxations and the microscopic effect 

of structural relaxation (ageing) on them have been investigated in amorphous La55Ni20Al25, which 

exhibits a distinct and pronounced β relaxation [ 18 ]. RT quasi-static anelastic relaxation 
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measurements were performed after RT ageing for varying amounts of time. The range of time 

constants has been extended by orders of magnitude compared to Ref. 15 to include the  

relaxation. Similar to Refs. 14,15, the time-constant spectra consist of distinct peaks, 

corresponding to an atomically quantized STZ hierarchy. By employing a standard linear solid 

model and STZ-based constitutive law, size-resolved STZ properties are obtained. Two different 

regimes are identified, corresponding to α and β relaxations. While the STZ hierarchy exhibits a 

smooth transition between the regimes, the main new result is the striking difference between the 

properties of STZs associated with the  vs.  relaxation: The latter exhibits a smaller atomic-

volume increment in the STZ hierarchy than the former, and is independent of prior ageing. 

 

4.2 Background 

Purely anelastic deformation is an ideal regime in which to study STZ properties, since STZs 

occupy a small volume fraction and do not interact with each other. Ju et al. [14,19] performed 

quasi-static anelastic relaxation measurements on an Al-based MG at RT, using a combination of 

nanoindenter cantilever bending and bend relaxation, over time ranging from 1.0 s to 200 s and 

from ~ 103 s to 1.1·108 s, respectively. The evolution of anelastic strain was used to compute the 

corresponding relaxation-time spectra, f(τ), as a function of relaxation time, τ. A series of distinct 

peaks were observed in the spectra. The data were analyzed using a standard linear solid model 

consisting of Voigt units, each corresponding to a peak, in series with each other and with a spring 

representing the elastic component. The peaks were shown to correspond to a quantized hierarchy 

of STZs, with their volume values spaced by the atomic volume of Al, the majority element. STZs 

with time constants within the measured range comprised 14 to 22 atoms. The spectra also yielded 
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the size-density distribution of potential STZs, i.e., atomic clusters capable of undergoing shear 

transformations, as reviewed below. 

 

The relaxation time constant for each m-type STZ, τm, was taken as the median of the 

corresponding spectrum peak. Combining the expression for the macroscopic shear strain rate [5], 

and the activation free energy of shear transformation for m-type STZs [20], 

∆𝐹𝑚 = [(
(7−5𝜈)

30(1−𝜈)
+

2(1+𝜈)

9(1−𝜈)
𝛽̅2) 𝛾0

𝑇 +
1

2

𝜎𝑆𝑇𝑍̅̅ ̅̅ ̅̅ ̅

𝜇
] 𝜇𝛾0

𝑇𝛺𝑚,                                                                   (4.1) 

τm can be expressed as [12], 

𝜏𝑚 =
3𝜂𝑚

′
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1

𝛺𝑚𝛾0
𝑇 ∙

3𝑘𝑇

2𝜇(1+𝜈)𝛾0
𝑐𝑣𝐺

∙ exp (𝜇𝛺𝑚 {
𝛾0

𝑇

𝑘𝑇
[(

(7−5𝜈)

30(1−𝜈)
+

2(1+𝜈)

9(1−𝜈)
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𝜇
]}).            (4.2) 

𝜂𝑚
′  and 𝐸𝑚

′  are the effective viscosity and effective Young’s modulus, respectively, of the m-type 

STZs. Ωm is the m-type STZ volume. 𝛾0
𝑐 = [2(4 − 5𝜈)/15(1 − 𝜈)]𝛾0

𝑇  is the constrained 

transformation shear strain, with 𝛾0
𝑇 being the unconstrained value. 𝛺𝑚𝛾0

𝑇 is the activation volume. 

Following Ref. 14, a 𝛾0
𝑇 = 0.2 is assumed. νG is the attempt frequency, k is the Boltzmann constant, 

and T is the temperature. 𝜈 is Poisson’s ratio, 𝛽̅2  ~ 1 is the dilatancy factor. 𝜎𝑆𝑇𝑍̅̅ ̅̅ ̅̅  is the shear 

resistance of STZs, µ is the shear modulus, and  𝜎𝑆𝑇𝑍̅̅ ̅̅ ̅̅ 𝜇⁄  = 0.025 [21]. 

 

The size-density distribution, i.e. the volume fraction occupied by m-type potential STZs [14], cm, 

is equal to the area of the corresponding spectrum peak m, 

𝑐𝑚 = ∫
𝑚

𝑓(𝜏)dln𝜏 = 𝜀𝑎𝑛
𝑚 𝜀𝑒𝑙

0⁄ .                                                                                                          (4.3) 
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𝜀𝑎𝑛
𝑚  and 𝜀𝑒𝑙

0  are the nominally equilibrated anelastic strain due to m-type STZs and the 

corresponding equilibrium elastic strain, respectively (see experimental details below). Deviations 

from mechanical equilibrium for the largest and slowest active STZ type at the end of the 

constraining period are accounted for in the discussion below. 

 

4.3 Experimental and Analysis Procedure 

Amorphous La55Ni20Al25 (at. %) ribbons ~ 22 μm thick and 1 mm wide were obtained by single-

wheel melt-spinning, using a Cr-coated Cu wheel at a tangential velocity of 3 m/s in vacuum. The 

glass transition temperature of the alloy is 475 K [3]. X-ray diffraction was employed to confirm 

the amorphous structure. To study the RT structural relaxation effect, samples were first aged at 

RT for durations of 2.6∙106 s to 2.9∙107 s. Following the ageing treatment, two techniques, 

nanoindenter cantilever bending for short measurement time and bend relaxation (“mandrel”) for 

longer time [14], as shown in Fig. 4.1 and described below, were performed to monitor RT quasi-

static anelastic relaxation. All results shown originate from a single batch. Samples were kept 

under inert atmosphere during ageing and relaxation. 

 

For nanoindenter cantilever bending, each measurement cycle consisted of a fixed load of 200 μN 

for a duration of 200 s, during which the vertical displacement was monitored as a function of time, 

and a small load of 2 μN for 200 s to verify reversibility. Three samples were examined for each 

ageing time, with 20 measurement cycles for each sample. The elastic and anelastic strain, 𝜀𝑒𝑙
0  and 

εan(t), were determined from the instant and time-dependent deflection following load application, 

respectively [14]. 
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Figure 4.1. Schematic illustration of (a) nanoindenter cantilever bending and (b) bend relaxation 

(“mandrel”). For the former, a fixed load P is applied on the sample for 200 s. The vertical 

displacement, h, is monitored as a function of time. For the latter, the sample is constrained around 

a mandrel with a radius R for 2.0∙106 s, then relaxed stress-free for up to 3.2∙107 s, while monitoring 

the evolution of radius of curvature, r(t). 

 

For mandrel measurements, samples were constrained around mandrels of radii R ranging from 

0.348 cm to 0.802 cm for 2.0∙106 s, then relaxed stress-free for up to 3.2∙107 s. 1-7 samples were 

used for each value of RT ageing time. The evolution of radius of curvature, r(t), during stress-

free relaxation, was monitored using a digital camera. The camera’s optical axis was aligned 

perpendicular to the sample plane, and a stage micrometer was used for calibration. Diffuse 

backlight was employed for optimal image quality. An automated image analysis and curvature 

fitting method was developed, which significantly limits the error in the strain. The equilibrium 

elastic strain at the end of the constraining period, and the maximum bending strain at time t after 

constraint removal, both attained at the surface, were determined from the curvature evolution [14]. 

 

Relaxation-time spectra were computed from the anelastic strain data using CONTIN, a portable 

package for inverse problems that yields stable and consistent fitting of 𝜀𝑎𝑛(𝑡)/𝜀𝑒𝑙
0  [22,23]. Based 

on the standard linear solid model used, two fitting equations are obtained, 

(a) (b) 
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𝜀𝑎𝑛(𝑡) 𝜀𝑒𝑙
0⁄ = 𝑐∞ + 𝐴 ∙ 𝑡 + ∑ 𝜀𝑖[1 − exp(− 𝑡 𝜏𝑖⁄ )]𝑁1

𝑖=1 ,                                                               (4.4) 

and, 

𝜀𝑎𝑛(𝑡) 𝜀𝑒𝑙
0⁄ = 𝑐∞ + ∑ 𝜀𝑖exp(− 𝑡 𝜏𝑖⁄ )𝑁2

𝑖=1 ,                                                                                    (4.5) 

corresponding to nanoindenter cantilever bending and mandrel measurements, respectively, where 

c∞, A, and the εi are fitting parameters. Fixed, logarithmically spaced relaxation-time values, τi, 

were used, N1 = 100 ranging from 0.0015 s to 400 s for the cantilever bending data, and N2 = 65 

ranging from 10 s to 6.4∙107 s for the mandrel data. A regularization term is included in the 

CONTIN fitting – it eliminates sharp, unphysical, variations in the spectra that may arise due to 

numerical artifacts [7,8]. For consistency, similar regularization parameter values were used for 

all samples. Within a range of values, the computed spectrum does not change significantly. 

Further details, e.g., on consistency checks, are provided in Ref. 14. Peak properties were 

determined from an average over all samples for each ageing condition. The standard deviation of 

the mean was used as an estimate of the random error. 

 

4.4 Results and Discussion 

Figure 4.2 shows the normalized anelastic bending strain, 𝜀𝑎𝑛(𝑡)/𝜀𝑒𝑙
0 , as a function of time. The 

data are obtained from both cantilever bending and mandrel measurements for La55Ni20Al25 

ribbons with different RT ageing times. For cantilever bending with time ranging from ~ 0.003 s 

to 200 s, each curve is an average of all samples with the same ageing time. Due to the large 

number of experimental data points (~ 60000) for each measurement cycle, the curves displayed 

consist of an average of every 500 data points. All data points were used in the analysis. For 
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Figure 4.2. Anelastic bending strain at the surface normalized by equilibrium elastic strain vs. 

measurement time, of La55Ni20Al25 ribbons with different RT ageing times: a) nanoindenter 

cantilever bending. Each curve corresponds to an average of all samples with the same ageing 

condition, and each point is an average of every 500 experimental data points, b) mandrel 

measurements. Data for all samples are shown, and dashed lines have the same slope. 

 

mandrel measurements, from ~ 20 s to 3.2∙107 s, data corresponding to all samples for each ageing 

condition are displayed, and show sample-to-sample reproducibility. The time ranges for the two 

measurement techniques overlap. The final strain for cantilever bending is much lower than the 

initial strain in mandrel measurement, since samples do not mechanically equilibrate in the former 

case. It is noted that samples from different batches, for which the strain data are not as extensive, 

exhibit different anelastic behavior, indicating variations among nominally identical samples, 

likely due to cooling-rate differences or minor composition differences. 

 

For cantilever bending with short measurement time, RT ageing does not significantly affect the 

anelastic strain magnitude and evolution (Fig. 4.2a). However, a dramatic effect of prior RT ageing 

is observed at longer time (Fig. 4.2b). The overall strain magnitude decreases with increasing 

ageing time, and two regimes of strain evolution are observed. For measurement time up to ~ 104-
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105 s, the absolute strain relaxation rate is the same for all ageing times (see dashed lines in Fig. 

4.2b); for t > 104-105 s, the strain evolution varies with prior ageing time: “younger” samples have 

higher strain that decreases at a higher absolute rate. It is apparent that the difference in the strain 

magnitude among different ageing times is mainly due to processes with large time constants. The 

time at which the transition between the two regimes occurs, ~ 104-105 s, is much shorter than the 

shortest ageing time (2.6∙106 s). This indicates that the processes of structural relaxation and 

anelastic relaxation have different mechanisms. Two additional observations are made: a) The 

strain of the “oldest” sample approaches zero at long measurement time; b) While the “youngest” 

sample still exhibits high normalized anelastic strain after being relaxed stress-free for one year at 

RT, its strain drops to zero after annealing at 353 K for 3600 s. Both observations indicate that the 

strain measured is fully reversible, i.e., anelastic. Cryogenic cycling between liquid-nitrogen 

temperature and RT, applied after ageing, does not obviously affect the magnitude of the 

subsequently induced anelastic strain. The effect of RT ageing and cryogenic cycling on the time-

constant spectra is discussed below. 

 

In order to examine the evolution of both fast and slow processes more directly, strain values 

obtained from mandrel measurements at four measurement times, t = 0 s, 104 s, 106 s and 2∙107 s, 

are shown in Fig. 4.3 as a function of prior RT ageing time (ta). From t = 0 s to 104 s, the strain 

values decrease by a similar absolute amount (0.065±0.001) for all ta values, indicating that fast 

processes are not significantly affected by RT ageing, as also seen in Fig. 4.2. However, the 

decrease at long measurement time varies with ta, e.g. the strain decreased by 0.07 from t = 106 s 

to 2∙107 s for ta = 2.6∙106 s, but only by 0.027 in the same measurement time range for ta = 2.9∙107  s. 

As further discussed below, this indicates that the volume fraction occupied by large and slow  
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Figure 4.3. Normalized anelastic strain from mandrel measurements at four measurement times, ti, 

as a function of prior RT ageing time, ta. 

 

potential STZs is affected by RT ageing. We note that practical constraints prevented us from 

accessing shorter ageing times to determine whether the small and fast STZs are affect by ageing 

in the early stages. 

 

The relaxation-time spectra computed from Fig. 4.2 are shown in Fig. 4.4. An average spectrum 

of all samples for each ageing condition is shown for cantilever bending, while two representative 

spectra for each ageing condition are included for mandrel measurements. The two techniques 

allow a time-constant range from 0.0015 s to 6.4∙107 s to be studied. All spectra consist of distinct 

peaks, which we associate with different STZ types, labeled with m = 1, …, 8. For each ageing 

condition, the set of peak areas exhibits two maxima as a function of m, as becomes clearer below 

(Fig. 4.8). These maxima correspond to α and β relaxation, at long and short time, respectively. 

Each α and β involves several STZ sizes. At room temperature, the maximum α peak likely 

corresponds to a τ value longer than the duration of the experiment. If the present spectra are used  
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Figure 4.4. Relaxation-time spectra of La55Ni20Al25 with different RT ageing times. Distinct peaks 

are observed and labeled m=1,…8. (a) Nanoindenter cantilever bending. Each curve corresponds 

to an average of all samples at the same ageing condition; (b) Mandrel measurements – two 

representative curves are shown for each RT ageing time. The spectra are shifted upwards for 

clarity. m ≤ 5 peaks correspond to the  relaxation, and m ≥ 6 to the α relaxation (see discussion). 

 

to compute the loss modulus, as measured by dynamic mechanical analysis, the α and β peaks in 

the spectrum envelope correspond directly to those in dynamic-mechanical analysis (DMA): 

large/small τ corresponds to low/high frequency, respectively, as fixed temperature (or high/low 

temperature at fixed frequency). Because even a single time constant in the spectrum results in a 

Cauchy-shaped loss modulus as a function of frequency, the atomically-quantized hierarchy 

cannot be discerned in the loss-modulus. However, for data sufficiently small scatter, the spectrum 

can be obtained using a computational approach similar to that employed in the present work [13]. 

 

It is noticed that, for the same ageing condition, the intensity of the last peak from cantilever 

bending is different from that of the first peak from mandrel measurement, even though they are 

expected to correspond to the same process. A possible explanation is that the standard linear solid 
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model employed does not adequately describe the difference between fixed-load and stress-free 

relaxation. Differences in the peak medians obtained by the two measurement techniques are 

within sample-to-sample variability. With increasing ageing time, peak positions for small time 

constants do not vary significantly, while the position of the last peak obviously shifts to longer 

time. A similar observation was reported in Ref. 24 for a far narrower range of time constants. The 

peak intensities for small time constants are not visibly affected by RT ageing either. However, 

the m = 8 peak area, c8, decreases dramatically with increasing ageing time. This is a manifestation 

of the observations in Figs. 4.2 & 4.3 that the difference in the strain magnitude among different 

ageing conditions is mainly due to processes with larger time constants. Ten cryogenic cycles 

between liquid-nitrogen temperature and RT, performed after ageing for 5.2∙106 s and prior to 

anelastic relaxation measurements, did not change the peak positions and intensities. It slightly 

broadened the last two peaks. 

 

To further study the microscopic effect of structural relaxation, STZ properties are now examined 

as a function of ageing time. Figure 4.5 shows the evolution with RT ageing time of relaxation 

time constants, τm, taken as the corresponding peak medians: Fig. 4.5(a) shows τm as a function of 

STZ type, m, for varying RT ageing times. One observes two different regimes for each ageing 

time: the slope for large time constants is larger than for smaller time constants. Furthermore, RT 

ageing does not affect the small time constants significantly as the slopes are very similar for small 

τm values. However, large time constants are influenced by ageing by up to a factor of 10, as seen 

by the increasing slope with increasing ageing time. This behavior corresponds to the shift in the 

peak position with increasing ageing time for large time constants in Fig. 4.4. Fig. 4.5(b) shows 

each τm as a function of ageing time, dashed lines are power-law fits. It is clear that the slope is 
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Figure 4.5. (a) Relaxation time constant (τm) of each STZ type (m) for different RT ageing times. 

(b) Relaxation time constants as a function of RT ageing time of different STZ types. Dashed lines 

are power-law fits. 

 

very small for m = 1-4, and higher and similar for m = 5-8. As detailed below, we attribute the 

evolution of τm to an increasing shear modulus during structural relaxation. 

 

In the following analysis, we first assume that the same constitutive law, and therefore Eq. (4.2), 

applies to all STZ types. Using Eq. (4.2) with a shear modulus value μ = 16.6 GPa [3], 𝛾0
𝑇 = 0.2 

[14,15], and Poisson’s ratio = 0.326 [25], we obtained the STZ volume values, Ωm, as a function 

of peak index, m (Fig. 4.6), for samples aged 2.9∙107 s, assumed to have stabilized. The random 

error in these values is less than 0.7% because Ωm appears in the exponent in the strain-rate 

expression [20]. Note that the activation volume is 𝛾0
𝑇Ω𝑚. The present experiments do not offer an 

independent determination of μ, 𝛾0
𝑇, and Ωm, but the latter two are determined independently in a 

separate study [26]. As in Fig. 4.5(a), two different linear regimes are observed, indicated by two 

fit lines. The fit quality is good, with R2 values of 0.999 for each. The slope in Fig. 4.6 corresponds 
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Figure 4.6. STZ volume (Ωm) as a function STZ type (m) for samples aged 2.9∙107 s. The error 

bars, < 0.7%, are smaller than the symbols. The slopes correspond to the volume increment 

between two adjacent Ωm values. The random error in these slopes is 2-3%. 

 

to the volume increment between two adjacent Ωm values. The slope for the first regime, which 

corresponds to the β relaxation, is 0.161∙10-28 m3, close to the atomic volume of elemental Al, 

0.166∙10-28 m3. For comparison, the atomic volumes of elemental Ni and La are 0.110∙10-28 m3 and 

0.372∙10-28 m3, respectively. For the second regime, the slope, corresponding to the α relaxation, 

is 0.236∙10-28 m3, close to the average atomic volume of the alloy, 0.267∙10-28 m3. The random 

error in these slopes is 2-3%. These results suggest that Al atoms are more likely involved in the 

β relaxation, while the α relaxation involves all constituent elements. One could argue that the 

transformation shear strain, 𝛾0
𝑇, may be smaller for small STZs. However, the opposite trend is 

expected if a shear transformation involves atomic displacements to the nearest potential well. For 

comparison, Ju et al. [14] observed the same volume increment for all STZs corresponding to 

either α or β relaxations in an alloy with 86.8% Al. The two regimes we observe suggest a possible 

chemical composition dependence between the STZs corresponding to the two relaxation modes. 
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To explore the reason for the increase in relaxation time constants with ageing time, we employ 

Eq. (4.2) for the relaxation time constant of m-type STZs [12]. In it, the only parameter expected 

to evolve significantly with ageing time is the shear modulus, μ. The contribution of the last term 

(𝜎𝑆𝑇𝑍̅̅ ̅̅ ̅̅ 𝜇⁄ ) is insignificant [20]. Since the effect of structural relaxation on STZ volume is expected 

to be negligible, the same STZ volume values as in Fig. 4.6 are now assumed for all ageing times 

in the computation of μ. Its evolution with ageing time, obtained from mandrel measurements, is 

shown in Fig. 4.7. It exhibits a ~ 5% increase during RT structural relaxation, which is consistent 

with other reports [15,27]. It is important to note that the trend in μ is not observed for small and 

fast STZs from cantilever bending, for which the time constants are unaffected by ageing. This 

suggests that the STZ continuum elastic model may not apply for smaller and faster STZs [5]. In 

such a case, an alternative interpretation of the smaller slope in Fig. 4.6 becomes necessary. In this 

context, we note that Lerner and Bouchbinder [28], using molecular dynamics, observed that 

relaxation dynamics of local strain dipoles are a function of the local modulus instead of its bulk-

averaged value. 

 

Figure 4.8 shows the volume fraction occupied by m-type potential STZs, cm (Eq. 4.3),as a function 

of activation free energy ΔFm (Eq. 4.1), for different RT ageing times. Recall that ΔFm ∝ Ωm, and 

note that ΔFm evolves with ageing, as it is a function of the shear modulus. The trend for each STZ 

type is indicated by a dashed line with arrows. The random error is small, indicating high 

reproducibility. With increasing ageing time, cm does not vary significantly up to m = 7, but c8 

decreases dramatically. One possible artifact needs to be addressed here: For RT ageing time up 

to 5.2·106 s, the time constants of all active STZs are smaller than the constraining time, so 

mechanical equilibrium at the end of the constraining period can be assumed, and c8 values are 



51 
 

 

Figure 4.7. Calculated evolution of shear modulus (μ) during RT structural relaxation. The abscissa 

is a sum of RT ageing time and half of measurement time, a rough estimate necessary since samples 

undergo structural relaxation during the measurement, and both the ageing time and measurement 

time are of similar orders of magnitude. 

 

 

Figure 4.8. Volume fraction occupied by m-type potential STZs, Eq. (4.3), as a function of 

activation free energy ΔFm, Eq. (4.1), divided by kT, for different RT ageing times. Each symbol 

corresponds to one ageing-time value. The error bars for ∆F/kT are smaller than the symbols. 

Arrows show the direction of evolution with RT ageing for each m. m = 6-8 and beyond (not active 

at RT within the time range used) correspond to the  relaxation, and m ≤ 5 correspond to the  

relaxation. The last two data points for m = 8 STZs represent an underestimate due to lack of 

mechanical equilibration at the end of the constraining period for samples with long ageing time 

and associated long τ8 values (see discussion). 
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reliable. However, since τ8 increases with ageing time, it becomes larger than the constraining time 

for RT ageing times equal to and greater than 1.0·107 s, which makes it important to consider the 

absence of mechanical equilibration for m = 8 at the end of the constraining period. 

 

Table 4.1 lists τ8 values for different ageing times in the present study and Ref. [14]. It is seen that 

τ8 is greater than the constraining time for La55Ni20Al25 aged for ta = 1.0∙107 s and 2.9∙107 s, causing 

an underestimation in the corresponding c8 values. Ju et al. calculated the correction to c8 for 

Al86.8Ni3.7Y9.5 MG, but later measurement with longer constraining time showed that the 

magnitude of this correction was overestimated [14,19]. In Ref. [15], Lei et al. concluded for  

 

Table 4.1. Apparent and actual volume fraction of the largest potential STZ type, c8, for 

Al86.8Ni3.7Y9.5 [14,19] and La55Ni20Al25 MGs with different RT ageing times. τ8 and c8 (apparent) 

are the time constant of m = 8 STZs and volume fraction of m = 8 potential STZs, respectively, 

obtained from stress-free relaxation spectra following constraining for 2.0·106 s. c8 (apparent) 

values are underestimated for ageing times 1.0·107 s and 2.9·107 s. c8 (actual) is the volume 

fraction of m = 8 potential STZs that would be obtained from stress-free relaxation after reaching 

mechanical equilibrium under constraint. 

MGs RT Ageing 

Time [s] 

τ8 [s] τ8 > Constraining 

Time = 2.0∙106 s 

c8 (apparent), obtained after 

constraining for 2.0∙106 s 

c8 (actual) 

Al86.8Ni3.7Y9.5 * 1.25∙107 Yes 0.06 0.12** 

 

 

La55Ni20Al25 

2.6∙106  1.46∙106 No 0.1 0.1 

5.2∙106  2.0∙106 No 0.072 0.072 

1.0∙107  5.2∙106 Yes 0.051  

2.9∙107  9.6∙106 Yes 0.036 <0.072*** 

 

* RT ageing does not affect this MG. 

** Obtained after a constraining time of 4.4·107 s. 

*** Estimated – see discussion. 
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La70(NixCu1-x)15Al15, x = 0, 1, that the underestimation for the c values of un-equilibrated largest 

STZs was insignificant, based on additional information from cryogenically cycled samples. 

Presently, even though the c8 values for RT ageing times 1.0∙107 s and 2.9∙107 s in Fig. 4.8 are 

underestimated, we argue that the decreasing trend of c8 persists with increasing ageing time, as 

shown in the column “c8 (actual)” in Table 4.1. The following details the reasoning: In Ref. 19, 

for Al86.8Ni3.7Y9.5 MG with τ8 = 1.25∙107 s, the actual c8 value, obtained for longer constraining 

time, is twice that of the apparent value obtained from stress-free relaxation following constraining 

for 2.0∙106 s (Table 4.1) [14]. In the present study, for La55Ni20Al25 MG with RT ageing time 

2.9∙107 s, τ8 = 9.6∙106 s is smaller than that of the Al-based MG while the constraining time is the 

same. As a result, the apparent value of c8 is closer to its actual value for the La-based MG than 

for the Al-based MG [14]. Therefore, the actual c8 value for La55Ni20Al25 should be smaller than 

twice that of the apparent value, as shown in Table 4.1. We conclude that the decrease of c8 with 

increasing ageing time persists for RT ageing time 2.6∙106 s, 5.2∙106 s, and 2.9∙107 s. It is unlikely 

that c8 for the RT ageing time 1.0∙107 s deviates from this trend. In summary, we observe that 

among all m values, RT ageing increases τ8, and reduces c8, the most. 

 

Atzmon and Ju reported that for Al86.8Ni3.7Y9.5 MG, cm increased monotonically with m, and 

annealing decreased cm without affecting τm [19]. Structural relaxation only decreased the number 

of potential STZs while leaving their properties unchanged. Presently, for La55Ni20Al25, cm is not 

monotonic in m (Fig. 4.8), reflecting the fact that the β relaxation is more pronounced. The peak 

in Fig. 4.8 at ΔF/kT ~ 31-40, associated with small and fast STZs, corresponds to the high-

frequency/low-temperature β relaxation in the loss modulus [18]. The role of small and fast STZs 

in the β relaxation was also observed in atomistic simulations [29]. Some studies suggest that only 
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the β relaxation occurs by shear transformations [30], but our data and analysis show consistency 

with the STZ model for both α and β relaxations [12], albeit with likely different compositions. In 

contrast to Ref. 19, we observe ageing to not only decrease cm, but also increase τm, as we also 

observed in two other La-based alloys [15]. 

 

A main motivation for the present work has been to understand alloy plasticity. We propose the 

following as a preliminary conclusion: a large concentration of potential STZs favors simultaneous 

shear transformations in the entire sample and therefore homogeneous strain. In contrast, when the 

concentration of potential STZs is smaller, increasing local stress favors athermal, autocatalytic, 

strain evolution, shear bands and catastrophic failure. Such a scenario explains why structural 

relaxation leads to embrittlement [31]. Along the same lines, separate from a temperature effect 

on relaxation or rejuvenation, an increasing temperature under isoconfigurational conditions [32] 

allows activation of additional, larger, STZs, explaining the increase in plasticity with temperature 

[16]. In fact, extrapolation of Fig. 4.8 suggests a further increasing volume fraction with increasing 

STZ size. Similarly, with decreasing strain rate, larger and slower STZs contribute to the strain, 

also in agreement with Ref. 16. Finally, the origin of the correlation between the relative intensity 

of the  relaxation and plasticity is still open and the subject of further work. 

 

4.5 Conclusions 

The La55Ni20Al25 metallic glass studied has offered an opportunity to compare the properties of α 

and β relaxations in unprecedented detail. While an atomically quantized hierarchy of shear 

transformation zones is observed for the entire range of anelastic relaxation, there is a distinct 
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difference between α and β regime. For the former, the time constants increase, and the number of 

the largest and slowest potential STZs decreases, upon structural relaxation. No effect of structural 

relaxation is observed for the latter. The effect of structural relaxation on the α relaxation can be 

explained on the basis of an increase in shear modulus, leaving open question as to the absence of 

such an effect for the small and fast STZs corresponding to β relaxation. The activation-volume 

increment in the hierarchy is smaller for β relaxation than for α relaxation, suggesting that Al atoms 

dominate the STZs associated with β relaxation, whereas all constituent elements possibly 

participate in STZs associated with α relaxation. 
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CHAPTER 5 

Microscopic Characterization of Structural Relaxation and Cryogenic 

Rejuvenation in La70(CuxNi1-x)15Al15, x=0 or 1 Metallic Glasses

 

Reprinted with permission from T. J. Lei, L. Rangel DaCosta, M. Liu, W. H. Wang, Y. H. Sun, A. 

L. Greer, and M. Atzmon, “Microscopic characterization of structural relaxation and cryogenic 

rejuvenation in metallic glasses,” Acta Mater. 164, 165 (2019). 

 

5.1 Introduction 

Metallic glasses (MGs) have been considered as potential structural materials owing to their high 

strength and elastic limit [1]. However, they exhibit little macroscopic plasticity due to shear band 

formation, which limits their practical applications [2]. Rejuvenation is one approach to enhancing 

the plasticity of MGs, which involves structural excitation and an increase in stored energy [3]. 

Different methods are used for rejuvenation, such as cyclic elastic loading [4], constrained loading 

[5], and irradiation [6,7]. The recent discovery of improved mechanical properties of MGs 

resulting from cryogenic cycling between room temperature (RT) and liquid nitrogen temperature 

has attracted much attention, since this method is non-destructive, isotropic and controllable 

[8,9,10,11]. The authors attributed the effect to a non-uniform structure and associated thermal 

expansion coefficient. However, microscopic details are still missing. 
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Due to their disordered atomic structure, it is challenging to define flow defects in MGs. Based on 

observation of two-dimensional bubble rafts, Argon [12] proposed that atomic clusters, termed 

shear transformation zones (STZs) [13], accommodate inelastic deformation of MGs. At small 

strain, STZs are isolated and can be reversed upon removal of the stress due to the back stress in 

the elastic matrix, which results in anelasticity. With increasing strain, STZs begin to interact with 

each other, back stress in the elastic matrix is lost, and the strain is permanent. Numerous 

experiments and simulations [14,15,16] have been conducted to characterize STZs, with some 

ambiguous results. 

 

Recently, Ju et al. [17] analyzed relaxation-time spectra, f(τ), obtained from quasi-static anelastic 

relaxation measurements for an Al-based MG at RT. Since the strain was small, within the 

nominally elastic regime, STZs were in the dilute limit and did not interact with each other. Two 

techniques, nanoindenter cantilever bending for short-time measurements and bend relaxation for 

longer time, were employed to observe the anelastic strain evolution. For the latter, samples were 

constrained around a mandrel for 2·106 s, then relaxed stress-free. The evolution in radius of 

curvature was then monitored from ~ 103 s to 3.1·107 s. Nonlinear least-squares fits were employed 

to obtain relaxation-time spectra, which exhibited distinct peaks corresponding to different STZ 

types. The time constant of each type is an increasing function of its volume. Surprisingly, an 

atomically quantized hierarchy of STZs was observed: the STZ volume values computed for the 

peaks were spaced by the atomic volume of Al, the majority element. 
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In this chapter, we use a similar approach to study the effect of RT ageing and cryogenic cycling 

on two La-based MGs by characterizing their anelastic time-constant spectra at RT. The magnitude 

of the anelastic strain induced after ageing decreases with increasing ageing time, at a relative rate 

that varies with the corresponding time constant. Cryogenic cycling, after ageing and prior to 

anelastic deformation, does not change the magnitude of the strain. Ageing also increases the 

relaxation time constants and results in more-distinct spectrum peaks – trends that are reversed by 

cycling. These observations are discussed in terms of STZ properties. 

 

5.2 Experiment and Analysis Procedure 

Two alloy compositions, La70Cu15Al15 and La70Ni15Al15 (at.%), have been investigated. Their glass 

transition temperatures are 391 K and 431 K, respectively [18]. Ribbons ~ 40 µm thick and 1 mm 

wide, were obtained by single-wheel melt-spinning, using a Cr-coated Cu wheel, at a tangential 

velocity of ~ 3 m/s in an argon atmosphere with a pressure of 20 kPa. X-ray diffraction was 

employed to confirm the amorphous structure. Since these alloys undergo structural relaxation at 

RT, samples with RT (293.0±1 K) ageing time ranging from 1.9·106 s to 2.9·107 s were used, 3-8 

samples for each condition. Samples aged for 1.0·107 s were also subsequently cycled between RT 

and liquid nitrogen temperature ten times, with 3 minutes and 1-minute holding time, respectively. 

 

The following thermomechanical treatment and measurement sequence was applied to 1 cm long 

ribbon segments, as also illustrated in Fig. 5.1: After ageing with or without subsequent cryogenic 

cycling, bend-relaxation measurements were performed at RT. Samples were constrained around 

mandrels of radii R ranging from 0.348 cm to 0.802 cm for a standard time of 2.0·106 s. 
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Figure 5.1. Schematic illustration of the thermomechanical treatment and measurement sequence. 

 

Subsequently, the stress-free evolution of radius of curvature, r(t), was monitored for up to 

2.6·107  s using a digital camera, taking care to align its optical axis perpendicular to the sample 

plane. An automated image analysis method was developed for curvature determination, 

significantly reducing the error bars in the strain vs. time curves. The maximum equilibrium elastic 

strain at the end of the constraining period, and the anelastic strain at time t after constraint removal, 

both attained at the surface, are 𝜀𝑒𝑙
0

 =d/2∙[1/R-1/r(0)] and εan(t)=d/2∙[1/r(t)-1/r0], respectively, 

where d is the sample thickness and r0 is the radius of curvature before constraint [17]. 

 

In order to estimate the effect of cryogenic treatment on elastic properties, Young’s modulus was 

measured. RT tensile tests were performed at a strain rate of 10-3 s-1, using a TA Instruments RSA 

III Dynamic Mechanical Analyzer. Pairs of neighboring ribbon segments with identical ageing 

time were used. One segment of each pair was also subjected to 10 cryogenic cycles after ageing. 
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Uncertainty in sample dimensions was thus essentially canceled out in the relative difference in 

modulus. Four sample pairs were used for each alloy type and ageing time. 

 

To obtain relaxation-time spectra f(τ), CONTIN, a portable package for inverse problems, was 

employed to yield stable and consistent fitting of 𝜀𝑎𝑛(𝑡)/𝜀𝑒𝑙
0  [19,20]: based on a linear solid model 

[17], 𝜀𝑎𝑛(𝑡)/𝜀𝑒𝑙
0 = 𝑐∞ + ∑ 𝜀𝑖exp(− 𝑡 𝜏𝑖⁄ )𝑁

𝑖=1 , where 𝑐∞  and 𝜀𝑖  are fitting parameters. The 

relaxation-time values, τi, i=1, …, N=50, less than the number of data points, are logarithmically 

spaced. The continuous spectra were approximated as: 

𝑓(𝜏𝑖) = 𝜀𝑖 ∆ ln 𝜏⁄ ,                                                                                                                        (5.1) 

where ∆ ln 𝜏 = ln[𝜏𝑚𝑎𝑥 𝜏𝑚𝑖𝑛⁄ ] (𝑁 − 1)⁄  with 𝜏𝑚𝑖𝑛 = 10 s and 𝜏𝑚𝑎𝑥 = 5.2 · 107s. The additive 

term, c∞, was included in the fits to account for processes with time constants longer than 𝜏𝑚𝑎𝑥. A 

regularization term was used in the optimization procedure [19,20], which eliminates sharp, 

unphysical, variations in the spectrum due to numerical artifacts. For consistency, similar 

regularization parameters were used for all samples. Within a range of regularization parameter 

values, the spectrum does not change significantly. Ref. [17] contains further details on fitting and 

consistency checks. 

 

The normalization of f(τ) in Eq. (5.1) was chosen for convenient analysis on a logarithmic scale 

[17, 21 ] since the time constants spanned several orders of magnitude. 𝜀𝑎𝑛(𝑡 = 0) 𝜀𝑒𝑙
0⁄ =

∫ 𝑓(𝜏)𝑑ln𝜏
∞

0
. ∫ 𝑓(𝜏)dln𝜏

𝜏2

𝜏1
 is equal to the normalized anelastic strain with time constants in the 

range (τ1, τ2). According to Ref. [17], this latter integral is also equal to the volume fraction 
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occupied by potential STZs with time constants in the corresponding range. Potential STZs are 

clusters of atoms capable of undergoing a shear transformation. Finally, peak properties were 

determined from an average over all samples for a given temperature history. The error bars are 

the standard deviations of the mean. 

 

5.3 Results and Discussion 

Figure 5.2 shows representative normalized anelastic strain relaxation data, 𝜀𝑎𝑛(𝑡)/𝜀𝑒𝑙
0 , for 

La70Cu15Al15 and La70Ni15Al15 ribbons, aged for different lengths of time, with and without 

cryogenic cycling treatment prior to bending. One observes a remarkable decrease of 

𝜀𝑎𝑛(𝑡 = 0)/𝜀𝑒𝑙
0  with structural relaxation: The “youngest” sample, aged 1.9·106 s, exhibits the 

largest value of 𝜀𝑎𝑛(0)/𝜀𝑒𝑙
0 , 1.24 and 0.67 for La70Cu15Al15 and La70Ni15Al15, respectively, as 

 

    

Figure 5.2. Normalized anelastic strain of La70Cu15Al15 and La70Ni15Al15 as a function of time for 

different ageing times prior to bending, as indicated. Open circles and filled squares correspond, 

respectively, to measurements without and with cryogenic cycling after ageing, prior to bending. 

Curves are not shifted. The dashed lines are all drawn with the same slope. Note that the entire 

strain is anelastic, as verified by annealing at temperature above RT (bold arrow). 
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compared with 0.35 and 0.20 for ageing time of 2.9·107 s. This observation implies that structural 

relaxation leads to a significant decrease of the volume fraction occupied by potential STZs. It is 

noteworthy that the initial anelastic strain of the “youngest” La70Cu15Al15 sample is greater than 

the elastic strain, 𝜀𝑒𝑙
0 . Cryogenic cycling does not affect 𝜀𝑎𝑛(0)/𝜀𝑒𝑙

0 , as discussed further below. 

 

The following discussion addresses the details of the effect of ageing on potential STZs, as 

resolved by their size/time constant. At short measurement time, up to ~ 104 s, the absolute strain 

relaxation rate is the same for varying prior thermal history, as indicated by the dashed lines, all 

drawn with the same slope. However, the strain evolution at longer time depends on the prior 

ageing time, as “younger” samples have higher strain that decreases faster. Comparing the two 

alloys at the same ageing time, the overall strain magnitude of La70Cu15Al15 is higher than that of 

La70Ni15Al15. However, the slope at short measurement time is very similar for both alloys, as 

indicated by the dashed lines. This indicates that the difference in strain between the two alloys is 

mainly due to STZs with large time constants. The large amount of strain at the end of the 

measurement time could be either permanent or anelastic with time constants greater than those 

measured. However, annealing for 7200 s at 353 K restored the radius of curvature to its initial 

value, r0 (See Fig. 5.2), proving that the entire strain measured is anelastic. These observations are 

a manifestation of the fact that anelastic processes with large time constants can be induced during 

a much shorter time. In summary, we observe a significant effect of alloy composition and 

structural relaxation on the anelastic strain magnitude, and on its evolution rate for t ≥ 104 s. 
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The effect of cryogenic cycling on anelastic relaxation is not obvious in Fig. 5.2. Ideally, one 

would compare samples aged for the same duration with and without subsequent cryogenic cycling 

treatment. We have observed the same value, within error, of 𝜀𝑎𝑛(𝑡 = 0)/𝜀𝑒𝑙
0  for samples aged 

6.2·107 s with and without cryogenic cycling. Among samples for which we have full 𝜀𝑎𝑛(𝑡) data, 

the ageing time of samples with cryogenic cycling is 1.0·107 s, and the closest ageing time of 

samples without cycling is 7.8·106 s. The trends with ageing time will allow us to further examine 

the effect of cycling. In Ref. [8], the compressive plastic strain of MGs increases significantly by 

successive cryogenic cycles. This effect is strongest for partially relaxed samples, and insignificant 

for fully relaxed samples. In contrast, in the present study, in which all samples are partially relaxed, 

cycling does not cause any noticeable deviation from the trend in anelastic strain magnitude with 

ageing. Further details are now examined by computing the spectra corresponding to Fig. 5.2. 

 

Figure 5.3 shows the relaxation-time spectra computed from Fig. 5.2, shifted vertically for clarity. 

Two representative spectra are shown for each temperature history, demonstrating reproducibility. 

All spectra exhibit distinct peaks, which we associate with distinct STZ types, numbered m=1, 

2, …, 6 (see below), based on shape similarity between spectra. It should be noted that 3 out of 8 

samples with cryogenic cycling show subtle shoulders at large time constants for each alloy. 

Because of uncertainty in the spectra, we do not consider these shoulders significant. 

 

With increasing ageing time, for samples without cryogenic cycling, the peak positions shift to 

longer time, while their intensities decrease. The last two peaks also become more distinct. The  
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Figure 5.3. Relaxation-time spectra for La70Cu15Al15 and La70Ni15Al15 with different ageing times, 

as indicated. For each condition, representative data for two independent samples are shown. Open 

circles and crosses, vs. filled squares and pluses, correspond to samples without, vs. with, 

cryogenic cycling, respectively. The curves are shifted vertically for clarity. 

 

spectra for samples aged 1.0·107 s and cryogenically cycled resemble those for the “youngest” 

samples (aged 1.9·106 s) in peak position and shape: cycling has reversed the ageing-induced 

increase in time constants, and for La70Cu15Al15, it also re-blurred the peaks. It should be noted 

that this is not an artifact of data quality or spectrum computation: samples with cryogenic cycling 

yield fits of equal quality, and similar regularization parameters are used for all samples. 

 

In agreement with the strain curves, the peak intensities for large time constants for La70Cu15Al15 

in Fig. 5.3 are in general higher than for La70Ni15Al15. As an aside, this is the reason that the high 

frequency beta relaxation in the loss modulus appears more pronounced in La70Ni15Al15 than in 

La70Cu15Al15 [22], since it is common to normalize loss modulus data by the peak height of the 

slower alpha relaxation. The spectra in Fig. 5.3 correspond to the slow alpha relaxation, whereas 

the faster beta relaxation has τ values generally below those in Fig. 5.3. Spectra corresponding to 
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such τ values have been obtained from nanoindenter cantilever measurements, and will be 

presented elsewhere [23]. 

 

As in Ref. [17], we interpret the spectrum peaks as representing an atomically quantized hierarchy 

of STZs, and expect further peaks above 108 s, if measured. Ju et al. [17] showed that the area of 

peak m, 𝑐𝑚 = ∫
𝑚

𝑓(𝜏)𝑑 ln 𝜏, is equal to the volume fraction occupied by potential m-type STZs. 

As seen in Figs. 5.2 & 5.3, the main contributions to the anelastic strain are due to the high end of 

the spectrum, above ~104 s, plus the yet slower STZs represented by the constant term, 𝑐∞(=

∑ 𝑐𝑚)𝑚>6 , used in the spectrum fit for 𝜀𝑎𝑛(𝑡)/𝜀𝑒𝑙
0 . The latter STZs would only be visibly reversed 

over times longer than the measurement time used, or at elevated temperature (see above). 

 

In order to further examine the effect of ageing and cryogenic cycling, the following are shown in 

Fig. 5.4 as a function of RT ageing time: a) the volume fraction occupied by potential STZs of all 

types, m, given by 𝑐𝑡𝑜𝑡𝑎𝑙 = 𝜀𝑎𝑛(𝑡 = 0)/𝜀𝑒𝑙
0 , which is equal to c∞ plus the integrated area of the 

entire spectrum [17]; b) the volume fraction occupied by potential m=5 & m=6 STZs, c5,6, equal 

to the integrated area of the corresponding peaks; c) the volume fraction, c∞, occupied by potential 

STZs with τ>τmax. Note that ctotal > 1 for La70Cu15Al15 (Fig. 5.2) is physically meaningful, as 

discussed in Ref. [17], since the definition of c is based on multiple counting of volume elements 

contained in more than one potential STZ. The error bars in Fig. 5.4 are small, indicating 

reproducibility. All curves decrease with increasing ageing time, but c∞, the contribution due to 

time constants larger than those included in the spectrum, clearly decreases at a higher absolute or 

relative rate than c5,6 does. Samples with cryogenic cycling fit well the trend of each curve, 
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Figure 5.4. ctotal, the integrated area of the entire spectrum plus the constant in the spectrum fit, 

c5,6, the integrated area of the last two peaks and c∞ vs. aging time for La70Cu15Al15 and 

La70Ni15Al15 MGs. Lines are a guide to the eye. 

 

indicating that cryogenic cycling prior to bending has not noticeably affected the volume fraction 

occupied by potential STZs of any type/size. Also, as mentioned above, for samples aged 6.2·107  s, 

cryogenic cycling does not affect 𝑐𝑡𝑜𝑡𝑎𝑙 = 𝜀𝑎𝑛(𝑡 = 0)/𝜀𝑒𝑙
0 . 

 

It is likely that each cm evolves with ageing time, ta, as 𝑐𝑚,∞
0 + 𝑔𝑚(𝑡𝑎), where 𝑐𝑚,∞

0  is the limiting 

value for the glass at internal equilibrium, and 𝑔𝑚(𝑡𝑎) is a function that decays to zero at long time. 

The small number of data points in Fig. 5.4 is insufficient for determining detailed ageing kinetics 

for each STZ type or range of τ. However, it is clear that 𝑔𝑚(𝑡𝑎) consists of contributions with 

time constants much longer than the corresponding τm. For example, 𝑐∞ , the sum of the 

contributions with time constants τ > τmax decreases dramatically during ageing times shorter than 

107 s. In other words, one cannot directly associate the time constant for a particular anelastic 

process with its time constant for ageing. We note that while 𝑐∞ = (∑ 𝑐𝑚𝑚>6 ) > (𝑐5 + 𝑐6) for 

106 107 108
0.0

0.4

0.8

1.2

Cycled

La70Cu15Al15

c∞
c5,6

ctotal

c t
o
ta

l, 
c 5

,6
, 

c∞

Ageing time [s]

106 107 108
0.0

0.4

0.8

1.2

Cycled

La70Ni15Al15

c∞
c5,6

ctotal

c t
o
ta

l, 
c 5

,6
, 

c∞

Ageing time [s]



68 
 

short ageing times, the reverse is true for long ageing times, and it appears that ∑ 𝑐𝑚,∞
0

𝑚>6 ≪

(𝑐5,∞
0 + 𝑐6,∞

0 ). 

 

The analysis we present above assumes implicitly that all anelastic processes reach mechanical 

equilibrium during the constraining period. Since the constraining time is shorter than the largest 

time constants that affect measured evolution, it is important to consider the effect of deviations 

from mechanical equilibrium at the end of the constraining time on c values. We first note that the 

deviation should be smaller than expected from the time constants: Ju et. al. [17] calculated the 

correction to c8 for the linear solid model used, but later measurements [24] showed that this 

correction was a large overestimate. (This suggests that the behavior under constraint cannot be 

perfectly described by the linear solid model.) For RT ageing times less than 2.9∙107 s, the time 

constants are smaller than the constraining time, so equilibration can be assumed. For both alloy 

compositions with RT ageing time 2.9∙107 s, one expects m=6 STZs to not equilibrate with the 

elastic strain within the constraining time tc << τ6. As a result, the data corresponding to that ageing 

condition are underestimated in Fig. 5.4. However, the underestimation is insignificant, as we 

conclude from the cryogenically cycled sample: c values (ctotal, c5,6, and c∞) corresponding to 

samples with cryogenic cycling still follow the trend of the samples without cryogenic cycling 

even though their time constants decreased by cryogenic cycling. Based on this discussion, we can 

also safely assume that for τi with i≤5, their shift does not affect the measured ci. 

 

 



69 
 

Figure 5.5 shows the evolution with ageing of the time constants, τm, obtained as the median of 

each spectrum peak m. As mentioned above, m values were assigned based on the similar shape of 

spectra corresponding to different ageing times. The time constants increase with increasing ageing 

time for samples without cycling. The effect of cryogenic cycling is indicated with arrows, except 

when m assignment is too uncertain for small m for La70Cu15Al15. A clear trend of decreasing time 

constants with cryogenic cycling is seen, reversing the prior ageing effect, as also seen in the 

qualitative features of the spectra. 

 

Ref. [24] reports that for an Al-based MG, annealing at 383 K for 3600 s prior to anelastic 

relaxation measurement only decreased cm, but left the peak position unchanged. It followed that 

structural relaxation only decreased the number of potential STZs, without changing their 

properties. In the present study, too, we observe a decrease in number of potential STZs with 

ageing. This trend is not reversed by cryogenic cycling. Unlike in Ref. [24], the time constants  

 

    

Figure 5.5. The evolution of time constants of different STZ types, m, with ageing time for 

La70Cu15Al15 and La70Ni15Al15 MGs. Arrows indicate the effect of cryogenic cycling. 
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increase with increasing ageing time for the present La-based MGs. This increase is completely 

reversed after cryogenic cycling, pointing to a rejuvenation effect. 

 

The cause of the observed changes in time constant are discussed next. The time constant for 

anelastic relaxation due to STZs of volume 𝛺𝑚 is given by [25] as: 

𝜏𝑚 =
3𝜂𝑚

′

𝐸𝑚
′ =

1

𝜇𝛺𝑚
∙

3𝑘𝑇

2(1+𝜈)𝛾0
𝑐𝜈𝐺𝛾0

𝑇 ∙ exp (𝜇𝛺𝑚 ∙ {
𝛾0

𝑇

𝑘𝑇
∙ [(

(7−5𝜈)

30(1−𝜈)
+

2(1+𝜈)

9(1−𝜈)
𝛽̅2) 𝛾0

𝑇 +
1

2
∙

𝜎𝑆𝑇𝑍̅̅ ̅̅ ̅̅ ̅

𝜇
]}),       (5.2) 

where 𝜂𝑚
′  is the effective shear viscosity, 𝐸𝑚

′  is the effective Young’s modulus. 𝛾0
𝑐 =

[2(4 − 5𝜈)/15(1 − 𝜈)]𝛾0
𝑇 is the transformation shear strain of a constrained STZ with 𝛾0

𝑇 = 0.2 

being the unconstrained transformation shear strain. 𝜈𝐺  is the attempt frequency, k is the 

Boltzmann’s constant and T is the temperature. 𝜈 is Poisson’s ratio, 𝛽̅2 is the dilatancy factor, 𝜎𝑆𝑇𝑍̅̅ ̅̅ ̅̅  

is the shear resistance of the STZ and 𝜇 is the shear modulus. Since structural relaxation involves 

insignificant volume changes, the most likely cause of a shift in time constants is a change in the 

shear modulus. Based on Eq. (5.2), the present results are consistent with an increase of ~ 5% in 

shear modulus [23,26]. 

 

In order to confirm the role of the shear modulus, Young’s modulus was measured. In essentially 

identical samples, it was lower by 3-7% for samples subjected to cryogenic cycling. No clear trend 

in this change with composition was observed. Since relative changes in Young’s modulus and 

shear modulus upon structural relaxation have been shown to be very similar [27], this result 

supports an interpretation that the changes in time constants are due to changes in the shear 

modulus. In light of the report by Ketov et al. [8] that cryogenic cycling of La55Ni20Al25 MG did 
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not change its Young’s modulus, further support is given by our observation [23] that cycling led 

to slight broadening, but no shift, in spectrum peaks for the same alloy. This points to a significant 

dependence of the behavior on composition. 

 

While a quantitative evaluation of peak widths is not possible for the present data, we observe for 

La70Cu15Al15 evolution toward more-distinct peaks with ageing, which is reversed by cycling. This 

trend could be influenced by differential changes in position, height and shape of each peak. The 

latter would point to structural homogenization due to ageing, and the reverse upon cryogenic 

cycling. 

 

Atzmon and Ju [24] modeled the details of the spectrum of time constants and its change with 

structural relaxation on the basis of a single parameter – the free volume. The present complex 

observations are a strong reminder that structural relaxation and rejuvenation cannot be described 

with a single parameter [28]. We finally note that for a given shear modulus, the present data also 

yield an STZ volume value for each spectrum peak, as in Ref. [17]. When cantilever measurements 

of smaller time constants are included, two regimes of volume increment are observed in the STZ 

hierarchy, which is important for understanding the beta relaxation. This aspect of the study will 

be published elsewhere [23]. 

 

It would be highly desirable to model the observed behavior with atomistic simulations. Since 

STZs are thermally activated, the time scale accessible by conventional molecular dynamics is far 

too short for this purpose. Recent work [16,29] has demonstrated progress in atomistic simulations 
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of glass behavior on longer time scale, and the authors hope it would lead to future simulations of 

the phenomena they report. 

 

5.4 Conclusions 

An unprecedented, detailed, description of the effects of structural relaxation, and rejuvenation by 

cryogenic cycling, has been obtained. Some of the effects of RT ageing are reversed by cycling, 

but others are not. RT ageing increases the time constants for anelastic relaxation significantly. It 

also de-blurs the spectrum features for La70Cu15Al15 for long time constants, 105 to >107 s at room 

temperature. Both effects are reversed by cryogenic cycling, thus exhibiting a rejuvenation effect. 

The observed changes in time constants are likely due to changes in the shear modulus. Ageing 

also significantly reduces the volume fraction occupied by potential STZs, especially of those with 

time constants greater than the measurement duration of 2.6·107 s. This loss is not recovered by 

cryogenic cycling. These detailed results are expected to provide important insights into the effects 

of both ageing and cryogenic cycling on the ductility of metallic glasses. 
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CHAPTER 6 

Composition Effect on α and β Relaxations for La-based Metallic Glasses 

from a Viewpoint of Shear Transformation Zone Properties

 

6.1 Introduction 

The strength of metallic glasses (MGs) is significantly higher than that of polycrystals with 

comparable composition [1]. However, structural applications of MGs are often limited by their 

little macroscopic plasticity, resulting from strain localization within dominant shear bands due to 

shear softening [2]. MG plasticity has been correlated with the secondary (β) relaxation in loss 

modulus data at high frequency and/or low temperature [3]. For some MGs, the β relaxation 

manifests as a broad peak/excess wing, which overlaps the main (α) relaxation at low frequency 

and/or high temperature [4]. Recently, Yu et al. [5] reported a La-based MG with a distinct and 

pronounced β relaxation, which also exhibits relatively large tensile ductility. They argued that the 

β relaxation is a manifestation of the activation of shear transformation zones (STZs, atomic 

clusters that have been sheared), implying that the α relaxation corresponds to a different 

mechanism [6]. While α vs. β relaxation in molecular glasses have been attributed to inter- vs. 

intramolecular motion, such a distinction cannot be made in MGs, posing a challenge in the 

identification of the relaxation mechanism. 

 



75 
 

Chemical composition can significantly affect the intensity of the β relaxation. For example, La-

Cu-Al and La-Ni-Al are two alloy systems with similarly wide supercooled liquid region [7,8], but 

with dramatically different β relaxation behavior – by substituting Ni with Cu atoms, which have 

similar atomic size, the strong β peak transitions to a shoulder [9]. Yu et al. [10] speculated that 

large similar negative enthalpy of mixing among all constituting atoms results in a pronounced β 

relaxation, while positive or significantly varying pairwise values of mixing enthalpy suppress the 

β relaxation, and usually associate with excess wings. However, the microscopic mechanism of 

the composition effect on relaxation behavior is still not clear. 

 

In a previous work [11], an atomically quantized hierarchy of STZs for an Al-rich MG were 

resolved, with a volume increment corresponding to the atomic value of Al, the majority element. 

We later identified the effects of cryogenic cycling and room temperature (RT) ageing on 

properties of slow and large STZs, corresponding to α relaxation, for La70Cu15Al15 and 

La70Ni15Al15 MGs, resolved by STZ size [12]. The present work focuses on the composition effect 

on both α and β relaxations, by comparing the properties of both slow and large and fast and small 

STZs between these two alloys. Similar to a La-based MG studied before [13], two regimes of 

STZ activation volume are observed – fast and small STZs, corresponding to the β relaxation, more 

likely include the smaller atoms – Al plus Cu/Ni, while La plus Cu vs. all elements are respectively 

more likely involved in slow and large STZs associated with the α relaxation for La70Cu15Al15 vs. 

La70Ni15Al15 MGs. The pronounced β relaxation, observed in the loss modulus vs. 

temperature/frequency for La70Ni15Al15, but not La70Cu15Al15, is a result of two contributions – the 

former exhibits a larger volume fraction of fast and small potential STZs (i.e., atomic clusters 

capable of shear transformation) and a smaller volume fraction of slow and large potential STZs. 
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6.2 Experimental Details 

Amorphous La70Cu15Al15 and La70Ni15Al15 (at.%) thin ribbons ~ 40 µm thick and 1 mm wide were 

obtained by single-wheel melt-spinning under the same condition as Ref. 13. The glass transition 

temperature of which are 391 K and 431 K [9], respectively. The amorphous structure was 

confirmed by X-ray diffraction. All sample were aged at room temperature (RT) for 3.0·107 s 

before RT anelastic relaxation measurements. The anelastic strain vs. time were obtained from a 

combination of two measurement techniques – 1) nanoindenter cantilever bending, from ~ 0 s to 

200 s, by applying a fixed load of 200 μN and monitoring the corresponding displacement, and 2) 

stress-free bend relaxation (“mandrel”) measurements, from ~ 20 s to 4.2·107 s, by monitoring the 

evolution in radius of curvature of one sample after being constrained around a mandrel for 

tc=2·106 s. The two techniques are detailed in Refs. 11&13. For cantilever bending, three samples 

were tested, with 20 measurements for each. For mandrel measurements, three and two samples, 

corresponding to La70Cu15Al15 and La70Ni15Al15, respectively, were used. 

 

As in Refs. 11,12,13, relaxation-time spectra, f(τ), were computed from the strain vs. time data, by 

employing a standard linear solid model and a portable package for inverse problems, CONTIN 

[14,15], which gives stable and consistent fitting of 𝜀𝑎𝑛(𝑡)/𝜀𝑒𝑙
0 . Details on spectrum computation 

and consistency check are provided in Ref. 11. Spectrum peak properties were determined as the 

average over all samples of the same composition, and the random error was estimated from 

standard deviations of the mean. 

 



77 
 

6.3 Results and Discussion 

Figure 6.1 shows the anelastic strain normalized by the equilibrium elastic strain vs. time, obtained 

from both measurement techniques, for each alloy after prior RT ageing time of 3.0∙107 s. For 

cantilever bending, an average curve of all tests is shown for each alloy. Due to the large number 

of data points (~ 60000) for one measurement cycle, each point in Fig. 6.1a is an average of every 

500 data points. For the mandrel measurements (Fig. 6.1b), data corresponding to all samples are 

presented, showing high reproducibility. At short measurement time (Fig. 6.1a), i.e., from 0.1 to 

10 s, the slope for La70Ni15Al15 is much larger than for La70Cu15Al15. At longer time (Fig. 6.1b), 

the strain curves are discussed in detail in Ref. 12 for both alloys, also in terms of effects of RT 

ageing and cryogenic cycling, and briefly reviewed as follow: 1) the strain magnitude is much 

higher for La70Cu15Al15 than for La70Ni15Al15, 2) the absolute strain relaxation rate is similar for  

 

    

Figure 6.1. Anelastic strain normalized by the corresponding equilibrium elastic strain vs. time for 

(a) cantilever bending and (b) mandrel measurements of La70Cu15Al15 (crosses, circles and 

triangles) and La70Ni15Al15 (pluses and squares) with a RT ageing time of 3.0·107 s. For 

nanoindenter cantilever, each curve is an average of all tests for the same composition, and each 

point is an average of every 500 experimental data points. For mandrel measurements, curves 

corresponding to all samples are shown. 
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both alloys at measurement time up to 104 s ~ 105 s, while it differs at longer measurement time. 

This implies that the difference in the strain magnitude is mainly due to the large-time-constant 

processes, 3) all the measured strain is anelastic, as verified by reversal strain of samples after 

annealing treatment for 7200 s at 353 K. 

 

Figure 6.2 shows the relaxation-time spectra computed from the strain vs. time data in Fig. 6.1. 

Similar to Fig. 6.1, for cantilever bending, an average spectrum of all tests is shown for each alloy. 

It is noted that spectrum shape is the same for all samples and runs. For the mandrel measurements, 

all spectra are shown. Reference 12 focused on the effect of structural relaxation and cryogenic 

rejuvenation on large-time-constant spectra for La70Cu15Al15 and La70Ni15Al15. In the present 

chapter, we mainly investigate the chemical composition effect on both small- and large-time- 

constant spectra for these two alloys. Similar to previous studies [11,12,13], all spectra consist of 

 

    

Figure 6.2. Relaxation-time spectra computed from the normalized anelastic strain vs. time data in 

Fig. 6.1, of La70Cu15Al15 (crosses, circles, and triangles) and La70Ni15Al15 (pluses and squares) 

aged at RT for 3.0∙107 s, for (a) cantilever bending, and (b) mandrel measurements. For cantilever 

bending, an average of all spectra is shown for each alloy, while all spectra are shown for mandrel 

measurements. Peaks are number as m=1,…,8, corresponding to different STZ types. 
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distinct peaks, the number of which is the same. Based on a standard linear solid model [16], these 

peaks are associated with different STZ types, labeled m = 1,…,8. As mentioned in Ref. 13, the 

last peak from nanoindenter cantilever and the first peak from mandrel measurement should 

correspond to the same STZ type, m = 4. However, their different intensities are possibly because 

of the inability of the standard linear model to distinguish between fixed-load and stress-free 

relaxation. 

 

In Fig. 6.2, the peak positions are similar for both alloys, while the peak intensities are different. 

At small time constants, from ~ 0.1 s to 10 s, corresponding to the β relaxation, the peak intensity 

is much higher in La70Ni15Al15 than in La70Cu15Al15. This is consistent with the slope difference 

in Fig. 6.1a from t ~ 0.1 s to 10 s. At larger time constants, especially for t > 104 s - 105 s, which 

corresponds to the slower α relaxation, the peak intensity is much higher for La70Cu15Al15 than for 

La70Ni15Al15. It has been reported that the La-Ni-Al system shows a pronounced peak in loss 

modulus at high-frequency and/or low-temperature peak [17,18], while the La-Cu-Al system only 

exhibits a shoulder within the same range [18]. Therefore, emphasis has been placed on the 

magnitude of β relaxation in La70Ni15Al15 being larger than in La70Cu15Al15. The normalization of 

the loss modulus plots by the intensity of the α peak washed, however, a larger difference in the α 

intensity. Figure 6.2 clearly shows that a difference in magnitude of both α and β relaxations 

between the alloys. Consequently, the pronounced β peak in the loss modulus for La70Ni15Al15 

rather than for La70Cu15Al15 is a result of differences in both β and α relaxations. 
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By employing the standard linear solid model [16] and constitutive laws [19], STZ properties are 

obtained and compared between La70Cu15Al15 and La70Ni15Al15. Figure 6.3 shows the relaxation 

time constants, τm, and the corresponding STZ volume, Ωm. The τm value in Fig. 6.3a is determined 

as the median of each peak m in Fig. 6.2, and similar values are observed for both alloys, indicated 

by the similar peak position in Fig. 6.2. Then, the Ωm value is determined from the expression of 

the time constants [20], 

𝜏𝑚 =
3𝜂𝑚

′

𝐸𝑚
′ =

1

𝛺𝑚𝛾0
𝑇 ∙

3𝑘𝑇

2𝜇(1+𝜈)𝛾0
𝑐𝜈𝐺

∙ exp (𝜇𝛺𝑚 {
𝛾0

𝑇

𝑘𝑇
[(

(7−5𝜈)

30(1−𝜈)
+

2(1+𝜈)

9(1−𝜈)
𝛽̅2) 𝛾0

𝑇 +
1

2

𝜎𝑆𝑇𝑍̅̅ ̅̅ ̅̅ ̅

𝜇
]}).             (6.1) 

𝜂𝑚
′  and 𝐸𝑚

′  are the effective viscosity and effective Young’s modulus, respectively, of the m-type 

STZs. 𝛾0
𝑇 is the unconstrained transformation shear strain, and 𝛾0

𝑐 = [2(4 − 5𝜈)/15(1 − 𝜈)]𝛾0
𝑇 is 

its constrained value. Based on Ref. 11, 𝛾0
𝑇 = 0.2 is used. 𝜈 = 0.324 [21] is Poisson’s ratio. 𝛽̅2 ~ 

1 is the dilatancy factor. 𝜈𝐺  is the attempt frequency, k is the Boltzmann constant, and T is the 

temperature. 𝜎𝑆𝑇𝑍̅̅ ̅̅ ̅̅  is the shear resistance of STZs, 𝜇 is the shear modulus, and  𝜎𝑆𝑇𝑍̅̅ ̅̅ ̅̅ 𝜇⁄ = 0.025 

[22]. 

 

The shear modulus for each alloy composition is obtained from its Young’s modulus, 𝐸, by using 

𝜇 = 𝐸 [2 × (1 + 𝜈)]⁄ , and the Young’s modulus is assumed from a rule of mixture as [23], 

𝑀−1 = ∑ 𝑓𝑖𝑀𝑖
−1,                                                                                                                          (6.2) 

where 𝑀  is the Young’s modulus of the alloy, and 𝑓𝑖  and 𝑀𝑖  are the atomic percentage and 

Young’s modulus of each constituent element, respectively. The 𝐸 values for La, Al, Ni and Cu 

are 37 GPa, 70 GPa, 200 GPa, and 130 GPa, respectively [24], which yields the elastic moduli for 
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La70Cu15Al15 and La70Ni15Al15 of 45 GPa and 46 GPa, respectively. Young’s modulus for 

La70Ni15Al15 is consistent with the value reported in Ref. 21, which validates the use of Eq. (6.2). 

 

Figure 6.3b shows that both alloys exhibit two regimes of STZs, indicated by the two fit lines, 

similar to La55Ni20Al25 MG in Ref. 13. The table insert in Fig. 6.3b lists the slope and intercept of 

each fit line. The slope for the first regime is smaller than that for the second regime, indicating 

that smaller atoms are more likely involved in fast and small STZs, while slower and larger STZs 

more likely comprise larger atoms. It is noted that the slope difference cannot be attributed to the 

measurement method, as seen in Ref. 11 for an Al-based metallic glass. For La70Cu15Al15, the slope 

for the first regime, 0.151∙10-28 m3, is close to the average atomic volume of Cu (0.118∙10-28 m3) 

 

    

Figure 6.3. (a) Relaxation time constants (τm), obtained as median of the spectrum peak, for each 

STZ type (m) for La70Cu15Al15 (crosses and circles) and La70Ni15Al15 (pluses and squares) aged at 

RT for 3.0∙107 s. (b) STZ volume (Ωm) for each STZ type (m) for La70Cu15Al15 and La70Ni15Al15, 

aged at RT for 3.0∙107 s. m = 1,…,4 (crosses and pluses) correspond to cantilever measurements, 

while m = 4,…,8 (circles and squares) correspond to mandrel measurements. 
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and Al (0.166∙10-28 m3), which equals 0.142∙10-28 m3, while the slope of the second regime, 

0.243∙10-28 m3, approximately equals the average atomic volume of Cu and La (0.372∙10-28 m3), 

0.245∙10- 28 m3. For La70Ni15Al15, the slope of the first regime is 0.145∙10-28 m3 and close to the 

average atomic volume of Ni and Al, 0.138∙10-28 m3, while that of the second regime is 

0.211∙10- 28  m3 and close to the average atomic volume of the alloy, 0.216∙10-28 m3. Therefore, as 

in Ref. 13, a possible chemical composition dependence of STZ volume is observed for both alloys. 

 

Yu et al. [5] reported that the atomic structure of La68.5Ni15Al14Co1.5 MG is composed of two 

regions, light regions ranging from 50 to 200 nm enveloped by dark boundary regions of about 5 

to 20 nm, from scanning transmission electron microscopy images. The dark regions contain 

excess Ni at the expense of less La, while the distribution of Al atoms is relatively homogeneous. 

They speculated that this heterogeneous structure may play an important role in the β relaxation. 

The present result of La70Ni15Al15 is consistent with Ref. 5 in terms of 1) the inhomogeneous 

distribution of La and Ni atoms as the volume increment for small and fast STZs is more likely 

due to Ni atoms not La atoms, while both Ni and La atoms are more likely involved in larger and 

slower STZs, and 2) the homogeneous distribution of Al atoms as Al atoms are likely involved in 

all STZ types. It should be noted that Young’s modulus plays an important role in computing STZ 

volumes (Eq. 6.1), and the value used in the present study is an estimate based on the rule of 

mixture (Eq. 6.2). It is also noted that MGs exhibit a wide distribution of local elastic properties, 

e.g., the local indentation modulus 𝑀 shows Δ𝑀 𝑀⁄ ≈ 30% on a scale below 10 nm [25]. The 

STZ volume calculated from the data will depend on the assumed modulus. However, the existence 

of two regimes of the STZ volumes is independent of this uncertainty. In Ref. 13, we observed for 

a different La-based MG that the time constants for the α relaxation increased with room-
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temperature ageing. This increase was attributed to observed increases in the elastic constants. 

However, the time constants for the faster relaxations did not change with ageing. This behavior 

may be due to spatial heterogeneity in the evolution of elastic constants with ageing. 

 

Figure 6.4 shows the volume fraction of potential STZs (𝑐𝑚) as a function of the activation free 

energy (∆𝐹) for shear transformation divided by kT, for La70Cu15Al15 and La70Ni15Al15. The 

activation energy [26], 

∆𝐹𝑚 = [(
(7−5𝜈)

30(1−𝜈)
+

2(1+𝜈)

9(1−𝜈)
𝛽̅2) 𝛾0

𝑇 +
1

2

𝜎𝑆𝑇𝑍̅̅ ̅̅ ̅̅ ̅

𝜇
] 𝜇𝛾0

𝑇𝛺𝑚,                                                                   (6.3) 

is a function of both STZ volume and shear modulus. As mentioned in Ref. 11,12,13, the 𝑐8 values  

 

 

Figure 6.4. Volume fraction of potential STZs for La70Cu15Al15 (crosses and circles) and 

La70Ni15Al15 (pluses and squares) with a RT ageing time of 3.0∙107 s as a function of activation 

free energy for shear transformation divided by kT. The error bars for ∆F/kT are smaller than the 

symbol. For m=4, the cantilever bending and mandrel measurements yield slightly different values 

of cm and ∆F/kT, which may be due to the limitation of the standard linear solid model used for 

the analysis. 
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for both La70Cu15Al15 and La70Ni15Al15 are underestimated due to the fact that m = 8 STZs did not 

reach mechanical equilibrium at the end of constraining period (𝜏8 > 𝑡𝑐). Since the present study 

focuses on the composition effect, and the underestimation should be similar for both alloys 

because of their similar τ8 values, the underestimation will not be further considered here. 

 

For La70Cu15Al15, 𝑐𝑚 increases with increasing m and corresponding activation energy. However, 

for La70Ni15Al15, an obvious peak occurs at small ∆𝐹 values, similar to that for La55Ni20Al25 in Ref. 

13. When comparing the two present alloys, noticeable differences in 𝑐𝑚  are observed for 

∆𝐹 k𝑇 < 35⁄  and ∆𝐹 k𝑇⁄ > 40, which correspond to the β and α relaxations, respectively. The cm 

values are larger for La70Ni15Al15 than for La70Cu15Al15 at lower activation energy, while the 

reverse holds at higher activation energy. This indicates that La70Ni15Al15 possesses larger volume 

fraction of fast and small potential STZs (PSTZs), while the volume fraction of slow and large 

PSTZs is larger in La70Cu15Al15. In Ref. 5, the authors proposed that MGs with pronounced β 

relaxation may possess abundant PSTZs. Since a quantized hierarchy of STZs is obtained for MGs 

with and without strong β relaxation in the present study, further details can be added to the 

previous proposition – MGs with pronounced β relaxation have more small and fast PSTZs and 

fewer large and slow PSTZs than MGs without a strong β peak. The time constants of the small 

vs. large PSTZs are < 100 s vs. > 104 s - 105 s, respectively. The volume increments corresponding 

to the small vs. large PSTZs are likely due to Cu and Al vs. Cu and La for La70Cu15Al15, and Ni 

and Al vs. all constituent atoms for La70Ni15Al15, respectively. Reference [5] reported, in addition, 

a correlation between pronounced β peak and large macroscopic plasticity, as La-based MGs 

exhibit a stronger β relaxation and greater ductility than other MGs. However, this correlation is 

not universal. In the present study, RT tensile tests at strain rate of 10-5 s-1 and 10-6 s-1 for both 
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alloys revealed an opposite trend, showing much larger plasticity for La70Cu15Al15 than for 

La70Ni15Al15. These observations suggest that dynamic mechanical analysis may not always be a 

useful screening tool in the development of MGs with large plasticity. 

 

6.4 Conclusions 

The present study provides a detailed description of the composition effect on both α and β 

relaxations by comparing STZ properties of La70Cu15Al15 and La70Ni15Al15 from anelastic 

relaxation from less than one second to more than one year. Similar to La55Ni20Al25 MG in our 

previous study, both alloys show two regimes of STZ volumes – the volume increment for STZs 

corresponding to β relaxation is smaller than that corresponding to α relaxation. The pronounced 

β relaxation in normalized dynamic-mechanical measurements, observed in La70Ni15Al15 but not 

in La70Cu15Al15, is due to both the larger volume fraction of fast and small potential STZs, 

corresponding to β relaxation, and the smaller volume fraction of slow and large potential STZs, 

corresponding to α relaxation in La70Ni15Al15 than in La70Cu15Al15. The tensile result that 

La70Cu15Al15 shows a much higher plasticity than La70Ni15Al15 implies there is no clear correlation 

between the intensity of the β relaxation and macroscopic plasticity. 
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CHAPTER 7 

Activation Volume Details from Nonlinear Anelastic Deformation of a 

Metallic Glass

 

Reprinted from T. J. Lei and M. Atzmon, “Activation volume details from nonlinear anelastic 

deformation of a metallic glass,” J. Appl. Phys. 126, 185104 (2019), with permission of AIP 

Publishing. Copyright © 2019 AIP Publishing. DOI: https://doi.org/ 10.1063/1.5122973. 

 

7.1 Introduction 

Metallic glasses (MGs) have drawn considerable attention due to their high strength and elastic 

limit [1]. However, they experience flow localization resulting in little macroscopic plasticity [2], 

which limits their structural application. Understanding the deformation mechanism of MGs is 

necessary to identify ways to improve their plasticity. Unlike for crystalline alloys, knowledge of 

the microscopic origin of plastic deformation of MGs is incomplete due to their disordered 

structure. Physical analogs [3,4] have shown that macroscopic deformation is accommodated by 

cooperative shearing of atomic clusters, termed shear transformation zones (STZs) [5,6,7,8]. 

 

Plastic deformation of metallic glasses involves a large volume fraction of STZs in an activated 

flow state, for which STZ interactions are complex. In contrast, at small strain, the STZ volume 

fraction is small, in the dilute limit, so they are isolated. They can be reversed upon removal of 
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external stress due to back stress in the elastic matrix, which leads to anelastic behavior [9]. In 

crystalline metals, several mechanisms of anelastic relaxation have been studied. We consider the 

STZ mechanism to dominate anelasticity in metallic glasses, based on the following points: a) The 

Snoek effect of small interstitial solutes [10] is unlikely in a metallic glass in the absence of, e.g., 

hydrogen or carbon atoms. b) Chemical order-disorder effects [11], if any, are weak in amorphous 

metals. c) Any local jumps of constituent atoms are likely to be STZ mediated. d) The present 

experiments involve a single phase and isothermal conditions [11]. 

 

Anelastic deformation in the small-strain regime offers an opportunity to understand plasticity. Ju 

et al. [12] performed quasi-static anelastic relaxation measurements of Al86.8Ni3.7Y9.5 (at.%) over 

a time range spanning seven orders of magnitude. The corresponding relaxation-time spectra were 

computed, which exhibited distinct peaks, representing an atomically quantized hierarchy of STZs, 

consisting of 14 to 21 atoms for the kinetic window observed. The measurements involved small 

anelastic strain and correspondingly small STZ volume fraction, 1-2% [12,13]. Linear dependence 

of the equilibrated anelastic strain under constraint on the applied stress was observed, which also 

implied a linear anelastic strain profile across the sample thickness. Consequently, there was no 

residual stress upon constraint removal. 

 

In the present work, anelastic relaxation is studied at higher strain than in our prior work, such that 

the viscosity under constraint is non-Newtonian, but STZ volume fractions are still small, ≤ 7.2%. 

Unlike in the linear regime, this approach allows for an independent determination of the STZ 

volume and transformation strain for the largest activated STZs. 
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7.2 Background 

Ju et al. [12] obtained time-constant spectra for anelastic relaxation for amorphous Al86.8Ni3.7Y9.5, 

which exhibited a set of distinct peaks. They modeled the behavior with a standard linear solid 

model (Fig. 7.1) – a spring in series with several Voigt units, each of which represents one peak 

and STZ size, and contributes additively to the total strain. Analysis of the data, assuming a 

transformation shear strain of 0.2 [3,4], revealed that each peak corresponded to an STZ size that 

comprises a discrete number of Al atoms. A size increment of one atom corresponds to about an 

order of magnitude larger time constants. Under constraint for 2×106 s at a fixed strain, all but the 

largest and slowest active STZs, those comprising n = 21 atoms, essentially reach mechanical 

equilibrium with each other and the elastic matrix, then track the slow evolution of the n = 21 

STZs. (For longer constraining time, n = 22 STZs were also activated [13].) After constraint 

removal, each STZ size evolves independently in this model. 

 

In Ref. [12], the shear strain rate due to STZs indexed with the integer m under an applied shear 

stress, σ, was expressed as [3] 

 

Figure 7.1. Schematic illustration of the standard linear solid model employed – a spring with 

Young’s modulus 𝐸0 in series with Voigt units, each of which represents one STZ size. 𝐸𝑚
′  and 

𝜂𝑚
′  are the effective Young’s modulus and effective viscosity, respectively, of m-type STZs, where 

m = 1-8 for the range of time values in the experiment [12]. Reproduced with permission from Ju 

et al., J. Appl. Phys. 109, 053522 (2011). Copyright 2011 AIP Publishing LLC. 
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𝛾̇𝑚  = 2𝑐𝑚𝛾𝑜
𝑐𝜈𝐺exp (−

∆𝐹𝑚

𝑘𝑇
) sinh (

𝜎𝛾𝑜
𝑇𝛺𝑚

2𝑘𝑇
),                                                                                           (7.1) 

m=1,…,8. 𝑐𝑚 is the volume fraction occupied by potential m-type STZs, where a potential STZ is 

an atomic cluster that is capable of shear transformation. 𝛾𝑜
𝑇 is the transformation shear strain, and 

𝛾𝑜
𝑐 = [2(4 − 5𝜈) (15(1 − 𝜈))⁄ ] × 𝛾𝑜

𝑇 is its value under constraint by the surrounding matrix with 

𝜈  being Poisson’s ratio. 𝜈𝐺  is the attempt frequency. 𝛺𝑚  is the volume of m-type STZs. The 

product 𝛾𝑜
𝑇 × 𝛺𝑚 is the activation volume for a shear transformation, i.e., the conjugate of the 

stress. k, T have the usual meaning. For small σ values, the hyperbolic sine term can be linearized, 

so that the strain rate is proportional to σ. ∆𝐹𝑚 is the activation free energy for shear transformation 

of m-type STZs [14]: 

∆𝐹𝑚 = [(
7−5𝜈

30(1−𝜈)
+

2(1+𝜈)

9(1−𝜈)
𝛽̅2) × 𝛾𝑜

𝑇 +
1

2
×

𝜎𝑆𝑇𝑍̅̅ ̅̅ ̅̅ ̅

𝜇
] 𝜇𝛾𝑜

𝑇𝛺𝑚.                                                                          (7.2) 

𝛽̅2 is the dilatancy factor and approximately equal to 1, 𝜇 is the shear modulus and expressed as 

𝐸0 [2(1 + 𝜈)]⁄ , and 𝐸0 is Young’s modulus. 𝜎𝑆𝑇𝑍̅̅ ̅̅ ̅̅  is the shear resistance of an STZ if it were not 

embedded in the matrix. The three terms in Eq. (7.2) correspond, respectively, to the a) shear strain 

energy; b) dilatation strain energy and c) shear energy of the STZ if it were not embedded in the 

matrix [15]. The parameters in Eqs. (7.1)&(7.2), their values and sources are summarized in Table 

7.1 and the appendix. 

 

In the linear, i.e., Newtonian regime, the product (𝛾0
𝑇)2 × 𝛺𝑚 can be determined, but not each 

factor independently. An estimated value of 𝛾0
𝑇 = 0.2, based on physical analogs [3,4], was used 

to obtain 𝛺𝑚, m = 1,…,8 in Refs. [12,13]. These values were spaced by a single atomic volume. 

Each 𝛺𝑚 value is associated with an integer multiple of the atomic value of Al: 𝛺𝑛 = 𝑛 × 𝛺𝐴𝑙, 
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Table 7.1. Parameter definitions in the expression of shear strain rate (Eq. 7.1) and activation free 

energy (Eq. 7.2) 

Symbol Physical meaning Value/Expression 

𝑐𝑚 Volume fraction occupied by 

potential m-type STZs 

Area of corresponding spectrum peak 

from experiments, Refs. [12,13] 

m Index of spectrum peaks 1,…,8 

* Note: n = 13 + m = number of 

atoms in STZ is used as a subscript in 

Eq. (7.9) and below it  

𝛾𝑜
𝑐 Transformation shear strain under 

constraint by surrounding matrix 
𝛾𝑜

𝑐 = [2(4 − 5𝜈) (15(1 − 𝜈))⁄ ] × 𝛾𝑜
𝑇 

𝜈𝐺  Attempt frequency 1013 s-1 (Ref. [16]) 

T Temperature 295.15 K 

Δ𝐹𝑚 Activation barrier associated with 

m-type STZs 

Eq. (7.2) 

𝜎 Applied shear stress Expressed in Eq. (7.8)&(7.16) 

𝛺𝑚 Volume of m-type STZs To be determined 

𝛽̅2 Dilatancy factor ~1 (Ref. [14]) 

𝜎𝑆𝑇𝑍̅̅ ̅̅ ̅̅  Peak interatomic shear stress 

between atoms in a regular lattice 
𝜎𝑆𝑇𝑍̅̅ ̅̅ ̅̅ 𝜇⁄  = 0.025 [17] 

𝜈 Poisson’s ratio 0.35 (Ref. [18]) 

𝐸0 Young’s modulus of the matrix 48.2 GPa [19] 

𝜇 Shear modulus of the matrix 𝐸0 [2(1 + 𝜈)]⁄  

𝛾𝑜
𝑇 Transformation shear strain in the 

absence of constraint by the 

surrounding matrix 

To be determined 
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where 𝑛 = 13 + 𝑚. The range of n values, 14 ≤ n ≤ 21, is determined by the range of experimental 

time scales. In order to determine 𝛾0
𝑇  and 𝛺𝑛=21  independently, it is necessary to perform 

measurements at higher stress, in the non-Newtonian regime, where Eq. (7.1) is not linear in σ. 

Such an approach was reported for large tensile strains, up to 0.08, using strain-rate jumps and 

assuming a single STZ size [14]. The present work involves anelasticity measurements in the non-

Newtonian regime, but in contrast to Ref. [14], we employ a maximum bending strain of 0.0155, 

with maximum anelastic shear strain of 0.0060, such that the volume fraction occupied by STZs 

is still small, ≤ 7.2 %. Therefore, STZ properties are obtained for an inherent state, i.e., a local 

minimum of the energy landscape. While uniaxial geometry offers zero residual stress and far 

simpler analysis, experiments in bending geometry, not being instrumented, allow for high 

precision in a wide dynamic range of time, ~ 102 s - 3.0×107 s for the present work. Using the 

constitutive law (Eq. 7.1) for n = 21 STZs and zero-bending-moment condition after constraint 

removal and complete reversal of STZs with n < 21, strain data for Al86.8Ni3.7Y9.5 are analyzed, 

accounting for residual stresses. The volume of the largest and slowest active STZ size, for a 

constraining period of 2×106 s, 𝛺𝑛=21 , and the transformation shear strain are obtained 

independently. 

 

7.3 Experimental Details 

Amorphous Al86.8Ni3.7Y9.5 (at.%) ribbons, 22 μm thick and 1 mm wide, were produced by single-

wheel melt-spinning using a Cr-coated Cu wheel at a tangential velocity of 40 m/s in vacuum. In 

previous bend relaxation measurements [12], samples were constrained by wrapping around 

mandrels with radii ranging from 0.35 to 0.49 cm, corresponding to equilibrium elastic bending 

strain values from 0.00158 to 0.00303 at the surface. To obtain higher bending strain, up to 0.0155, 
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a constraining method was developed for smaller radii, as illustrated in Fig. 7.2a: a sample is placed 

between a mandrel (radius 0.09 or 0.11 cm) and neoprene block. A machined device is used to 

press the mandrel until the two ends of the sample just touch each other, so that a well-

characterized geometry is obtained. A peephole on the side surface of the machined device is used 

to observe the two touching ends of the sample during constraining (Fig. 7.2b). Because of the low 

modulus of the neoprene, the pressure on the sample is negligible compared to the bending stress. 

A lubricant was applied between the sample and neoprene to minimize friction. In contrast to the 

constraining configuration in Ref. [12], in which the entire sample was under constraint, in the 

present work, only a small section is under constraint, with the two free ends allowing for a reliable 

determination of the radius of curvature. The detailed constraining geometry is shown in Fig. 7.3a. 

1 cm long samples were used, and all measurements were performed at room temperature. 

 

 

Figure 7.2. (a) Schematic illustration of the constraining method – the sample is placed between a 

mandrel and neoprene block, and a machined device is used to press the mandrel until two stress-

free ends of the sample just touching each other. (b) Photograph showing the two touching ends 

of a sample under constraint. 
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As in Ref. [12], samples were constrained for 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙 = 2∙106 s, then relaxed stress-free for up to 

3∙107 s. The evolution in the angle between the two ends during stress-free relaxation (Fig. 7.3b) 

was recorded with a digital camera, and used to determine the curvature of the previously bent 

section. A stage micrometer was used for calibration, and the optical axis of the camera was aligned 

perpendicular to the sample stage. 

 

The total constraining strain at a distance y from the sample midplane is 

𝜀𝑐𝑜𝑛𝑠𝑡𝑟(𝑦) = 𝑦 ⋅ (1 𝑅⁄ − 1 𝑟0⁄ ),                                                                                                          (7.3) 

where 𝑅  is mandrel radius, and 𝑟0  is the initial radius of curvature for the sample before 

constraining. At the end of the constraining period, lasting 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙 , 𝜀𝑐𝑜𝑛𝑠𝑡𝑟(𝑦) includes both an 

elastic and an anelastic component. We can determine apparent strain values, based on linear 

variation with y. The apparent elastic strain is 

𝜀𝑒𝑙,𝑐𝑜𝑛𝑠𝑡𝑟
𝑎𝑝𝑝 (𝑦, 𝑡𝑐

𝑡𝑜𝑡𝑎𝑙) = 𝑦 ⋅ [1 𝑅⁄ − 1 𝑟(0)⁄ ],                                                                                            (7.4) 

where 𝑟(𝑡) is the radius of curvature of the previously constrained section at time 𝑡 after constraint 

removal. The apparent anelastic strain is 

𝜀𝑎𝑛,𝑐𝑜𝑛𝑠𝑡𝑟
𝑎𝑝𝑝 (𝑦, 𝑡𝑐

𝑡𝑜𝑡𝑎𝑙) = 𝑦 ⋅ [1 𝑟(0)⁄ − 1 𝑟0⁄ ].                                                                                           (7.5) 

Note that unlike the elastic strain, the apparent anelastic strain at the end of the constraining period 

is equal to its value at t = 0 after constraint removal, 𝜀𝑎𝑛
𝑎𝑝𝑝(𝑦, 𝑡 = 0). 
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Substitution of 𝑟(𝑡) for 𝑟(0) in Eq. (7.5) provides the apparent anelastic strain at time t after 

constraint removal. In the case of Newtonian behavior, when the strain profile across the sample 

thickness is linear, the expressions for the apparent strains are equal to the actual values. However, 

in the nonlinear regime, the anelastic strain is superlinear close to the surface. As a result, there is 

residual stress near each surface in the unconstrained state, with signs opposite of those under 

constraint. 𝜀𝑎𝑛
𝑎𝑝𝑝(𝑑/2, 𝑡), 𝑑  being the sample thickness, is then lower than the actual anelastic 

strain at the surface. 

 

While it would be challenging to directly measure the radius of curvature of the small constrained 

section during unconstrained relaxation, the well-characterized geometry (Fig. 7.3) allows for a 

reliable determination of 𝑟(𝑡) from the angle between two fit lines to the free ends (dashed lines in  

 

 

Figure 7.3. Sample geometry (a) under constraint, (b) during unconstrained relaxation (not to 

scale). α(t) is used to determine the evolution of the curvature of the previously bent section during 

unconstrained relaxation. The length of the constrained section (red) is equal to (𝜋 + 𝜑) × (𝑅 +
𝑑/2), where 𝑅 is the mandrel radius, and 𝑑 is the sample thickness. Dashed lines are fits to the 

unconstrained ends. The small curvature of the free ends is neglected in these plots. 
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Fig. 7.3b). For different mandrel radii used, the maximum constraining strain ranges from 0.0079 

to 0.0155, below the yield point (~ 0.02) [ 20 ]. This was verified by the observation that 

constraining for a short duration did not lead to permanent deformation. The estimated volume 

fraction occupied by STZs, based on the anelastic strain, is between 3% and 7%, still in the dilute 

limit. 

 

It was shown in Ref. [12] that the time constant for anelastic recovery of the largest active STZs 

(consisting of 21 Al atoms) is τ21 = 1.25×107 s, significantly longer than the total constraining time 

(𝑡𝑐
𝑡𝑜𝑡𝑎𝑙=2×106 s). All other τi, i ≤ 20, are smaller than 106 s [12]. It follows that all but the n = 21 

STZs nearly equilibrate by the end of the constraining period. Since nonlinearity affects the 

kinetics but not the mechanical equilibrium state, it therefore only affects the contribution of n=21 

STZs, as these do not equilibrate during the constraining time. In order to isolate this contribution, 

the apparent anelastic strain after t = 4×106 s unconstrained relaxation is shown in Fig. 7.4 as a 

function of the apparent elastic strain at the end of the constraining period, both computed for the 

sample surface. The contribution of STZs with n ≤ 20 atoms to the anelastic strain is negligible at 

this point (t = 4×106 s), since these have essentially been fully reversed. The five small-strain data 

points in Fig. 7.4, which lie on a straight line, are taken from Ref. [12]. Significant deviation from 

linearity is observed at high strain and stress. The decrease of the anelastic strain due to n = 21 

STZs from its value at the end of the constraining period, about 27% during unconstrained 

relaxation for 4∙106 s, is accounted for in the analysis. 
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Figure 7.4. Apparent anelastic strain after unconstrained relaxation for t = 4×106 s as a function of 

the apparent elastic strain at the end of the constraining period for varying constraining radii. Both 

are computed for the sample surface. Each symbol represents one sample. Deviation from linearity 

occurs at high strain. The dashed line is a fit to the linear portion. 

 

7.4 Overview of the Data Analysis 

“Apparent” strain values below are those determined from curvature by using linear variation 

across the sample. The term “actual” is used to distinguish strain and stress values from their 

apparent values. The appendix contains a summary of the notation used below. 

 

1. Applying the condition of zero total bending moment after constraint removal, a relationship 

between the apparent anelastic strain at the sample surface at 𝑡 = 4 × 106 s  after constraint 

removal, 𝜀𝑎𝑛
𝑎𝑝𝑝(𝑑/2, 𝑡 = 4 × 106 s), and the position-dependent anelastic strain due to 𝑛 = 21 

STZs at the end of the constraining period, 𝜀21,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙  ), is obtained. 
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2. 𝜀𝑎𝑛
𝑎𝑝𝑝(𝑑/2, 𝑡 = 4 × 106 s) is directly determined from curvature measurements (Eq. 7.5). An 

expression for 𝜀21,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙  ), in terms of the apparent elastic strain at the sample surface at 

the end of the constraining period, 𝜀𝑒𝑙,𝑐𝑜𝑛𝑠𝑡𝑟
𝑎𝑝𝑝 (𝑑/2, 𝑡𝑐

𝑡𝑜𝑡𝑎𝑙), is obtained from time integration of the 

position- and time-dependent macroscopic shear strain rate due to n = 21 STZs under constraint, 

𝛾̇21,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐). Approximations used in this step are detailed below. 

 

3. Substituting the expression for 𝜀21,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙  ) into the relationship between 𝜀𝑎𝑛

𝑎𝑝𝑝(𝑑/2, 𝑡 =

4 × 106 s)  and 𝜀21,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙  ) , obtained in step 1 above, yields a fitting equation for 

𝜀𝑎𝑛
𝑎𝑝𝑝(𝑑/2, 𝑡 = 4 × 106 s) vs. 𝜀𝑒𝑙,𝑐𝑜𝑛𝑠𝑡𝑟

𝑎𝑝𝑝 (𝑑/2, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙). This equation contains two fitting parameters: 

the transformation shear strain, 𝛾0
𝑇, and the volume of n = 21 STZs, 𝛺21. 

 

4. A simultaneous two-parameter fit is performed on all data. The linear portion, which has smaller 

error, is not fitted as well as with a separate linear fit. A revised two-step fit is performed as follows: 

first, the linear regime is fitted, which yields the value of (𝛾0
𝑇)2 × 𝛺21 with small random error. 

This value is then used as a constraint for the entire data set to obtain 𝛺21 and 𝛾0
𝑇. 

 

7.5 Analysis Details 

We first note that for the presently used bending-strain values ≤ 0.0155, nonlinear elastic behavior 

[21] is likely to be minimal, especially since the long-range elastic field of an STZ dominates DF 

in Eq. (7.2). Since nonlinearity is observed in Fig. 7.4, nonlinear kinetics (Eq. 7.1) now will be 

used. After constraint removal, the total bending moment is zero: 
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𝑀(𝑡 = 0) = ∫  [𝜎𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙)  − 𝜎𝑢(𝑦, 𝑡 = 0)] × 𝑦𝑑𝑦 = 0

𝑑

2

−
𝑑

2

,                                                                (7.6) 

where 𝜎𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙) is the applied stress at a distance 𝑦 from the sample midplane at the end 

of the constraining period. 𝜎𝑢(𝑦, 𝑡 = 0)  is the unloading stress immediately upon constraint 

removal, which varies linearly across the sample thickness: 

𝜎𝑢(𝑦, 𝑡 = 0) = 𝑦 × [
1

𝑅
−

1

𝑟(0)
] ⋅

𝐸0

2(1−𝜈2)
.                                                                                                 (7.7) 

The position-dependent applied stress at the end of the constraining period is: 

𝜎𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙) = [𝜀𝑐𝑜𝑛𝑠𝑡𝑟(𝑦) − 𝜀𝑎𝑛,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐

𝑡𝑜𝑡𝑎𝑙)] ×
𝐸0

2(1−𝜈2)
,                                                              (7.8) 

where 𝜀𝑐𝑜𝑛𝑠𝑡𝑟(𝑦)  is the position-dependent total constraining strain, 𝑦 × [1 𝑅⁄ − 1 𝑟0⁄ ] . 

𝜀𝑎𝑛,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙) is the sum of the position-dependent anelastic strain due to all active STZ sizes 

at the end of the constraining period. It consists of contributions: a) due to STZs comprising n 

atoms, 𝜀𝑛,𝑐𝑜𝑛𝑠𝑡𝑟
0 (𝑦, 𝑡𝑐

𝑡𝑜𝑡𝑎𝑙), n = 14-20, which reached mechanical equilibrium during constraining, 

and b) due to n = 21 STZs, 𝜀21,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙) – these did not reach mechanical equilibrium. 

Therefore, 𝜀𝑎𝑛,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙) is expressed as: 

𝜀𝑎𝑛,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙) = ∑  𝜀𝑛,𝑐𝑜𝑛𝑠𝑡𝑟

0 (𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙)

20

𝑛=14

+ 𝜀21,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙) = 

= ∑ 𝑐𝑛 × 𝜀𝑒𝑙,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙)20

𝑛=14 + 𝜀21,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙).                                                                          (7.9) 

𝜀𝑛,𝑐𝑜𝑛𝑠𝑡𝑟
0 (𝑦, 𝑡𝑐

𝑡𝑜𝑡𝑎𝑙) equals 𝑐𝑛 × 𝜀𝑒𝑙,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙) [12], where 𝑐𝑛 is the volume fraction occupied by 

potential STZs comprising n atoms, and 𝜀𝑒𝑙,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙) is the position-dependent elastic strain 

at the end of the constraining period. The values of 𝑐𝑛 were obtained in Refs. [12,13]. 
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Substituting Eqs. (7.7)-(7.9) into Eq. (7.6), and since 𝜎𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙)  and 𝜎𝑢(𝑦, 𝑡 = 0)  are 

antisymmetric, Eq. (7.6) immediately after constraint removal becomes: 

∫ 𝑦 × [
1

𝑟(0)
−

1

𝑟0
]

𝑑

2
0

× 𝑦𝑑𝑦 = ∫ ∑ 𝑐𝑛 × 𝜀𝑒𝑙,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙)20

𝑛=14

𝑑

2
0

× 𝑦𝑑𝑦 + ∫ 𝜀21,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙)

𝑑

2
0

× 𝑦𝑑𝑦.           (7.10) 

After t = 4·106 s of stress-free relaxation, the contribution of STZs with 14 ≤ n ≤ 20 vanishes, and 

with τ21 = 1.25×107 s [12], the anelastic strain due to n = 21 decreases by a factor of 0.73. 

Consequently, at t = 4×106 s, the zero-moment condition becomes: 

𝜀𝑎𝑛
𝑎𝑝𝑝(𝑑/2, 𝑡 = 4 × 106 s) = 0.73 ×

12

𝑑2 × ∫ 𝜀21,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙)

𝑑

2
0

× 𝑦𝑑𝑦.                                                   (7.11) 

The position-dependent anelastic bending strain due to n = 21 STZs at the end of the constraining 

period is: 

𝜀21,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙) = (1 − 𝜈) × ∫ 𝛾̇21,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐)

𝑡𝑐
𝑡𝑜𝑡𝑎𝑙

0
𝑑𝑡𝑐,                                                                  (7.12) 

where (1 − 𝜈)  is the ratio of bending to shear strain.  𝛾̇21,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐)  is the actual position-

dependent macroscopic shear strain rate due to n = 21 STZs after time tc under constraint. Similar 

to the total anelastic strain, 𝜀21,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙) is also equal to the anelastic strain due to n = 21 

STZs immediately following constraint removal, 𝜀21(𝑦, 𝑡 = 0) . Using Eq. (7.1) with n = 21 

corresponding to m = 8, the actual position-dependent macroscopic shear strain rate due to n = 21 

STZs as function of time under constraint is, 

𝛾̇21,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐) = 2𝑐21𝛾0
𝑐𝜈𝐺exp [−

∆𝐹21

𝑘𝑇
] sinh [

𝜎𝑐𝑜𝑛𝑠𝑡𝑟(𝑦,𝑡𝑐)𝛾0
𝑇𝛺21

2𝑘𝑇
].                                                            (7.13) 

The last term in Eq. (7.2), the shear resistance of an STZ isolated from the matrix, can be neglected 

[14], yielding  

∆𝐹21 = [
(7−5𝜈)

30(1−𝜈)
+

2(1+𝜈)

9(1−𝜈)
× 𝛽̅2] 𝜇(𝛾0

𝑇)2𝛺21.                                                                                         (7.14) 
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Substituting Eq. (7.14) into Eq. (7.13), the position-dependent strain rate due to n = 21 STZs under 

constraint lasting 𝑡𝑐, 0 ≤ 𝑡𝑐 ≤ 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙, becomes: 

𝛾̇21,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐) = 2𝑐21𝛾0
𝑐𝜈𝐺 × exp [− [

(7−5𝜈)

30(1−𝜈)
+

2(1+𝜈)

9(1−𝜈)
× 𝛽̅2] ×

𝜇(𝛾0
𝑇)

2
𝛺21

𝑘𝑇
] × sinh [

𝜎𝑐𝑜𝑛𝑠𝑡𝑟(𝑦,𝑡𝑐)𝛾0
𝑇𝛺21

2𝑘𝑇
].           (7.15) 

In Eq. (7.15), the only parameter expected to change significantly with time is the applied stress 

𝜎𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐), since the constraint imposes a fixed total strain. However, since the apparent elastic 

strain at the sample surface at the end of the constraining period remains within ~ 25% of its value 

at the beginning, 𝜎𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐)  will be approximated by the latter value, 𝜎𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐) ≈

𝜎𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙). Consequently, 𝛾̇21,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐) is approximated as time independent. This is one 

of the two approximations used to estimate Eq. (7.15). The second approximation is based on the 

apparent elastic strain, as detailed below. 

 

The position-dependent applied stress at the end of the constraining period, 𝜎𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙), is 

proportional to the actual position-dependent elastic strain at that point, 𝜀𝑒𝑙,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙) =

𝜀𝑐𝑜𝑛𝑠𝑡𝑟(𝑦) − 𝜀𝑎𝑛,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙). It will be approximated by its apparent value, Eq. (7.4), since 

𝜀𝑒𝑙,𝑐𝑜𝑛𝑠𝑡𝑟
𝑎𝑝𝑝 (𝑑/2, 𝑡𝑐

𝑡𝑜𝑡𝑎𝑙) is within ~ 25% of 𝜀𝑐𝑜𝑛𝑠𝑡𝑟(𝑑/2). Therefore, 

𝜎𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙) ≈ 𝜀𝑒𝑙,𝑐𝑜𝑛𝑠𝑡𝑟

𝑎𝑝𝑝 (𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙) ×

𝐸0

2(1−𝜈2)
.                                                                                 (7.16) 

Substituting the values of all known parameters, listed above, and Eq. (7.16) into Eq. (7.15) yields 

the approximate position-dependent macroscopic shear strain rate due to n = 21 STZs at the end 

of the constraining period, 
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𝛾̇21,𝑐𝑜𝑛𝑠𝑡𝑟
𝑎𝑝𝑝𝑟 (𝑦, 𝑡𝑐

𝑡𝑜𝑡𝑎𝑙) ≈ 1.2 × 1012 × 𝛾0
𝑇 × exp[−3.20 × 1030 × (𝛾0

𝑇)2 × 𝛺21] × 

× sinh[3.37 × 1030 × 𝜀𝑒𝑙,𝑐𝑜𝑛𝑠𝑡𝑟
𝑎𝑝𝑝 (𝑦, 𝑡𝑐

𝑡𝑜𝑡𝑎𝑙) × 𝛾0
𝑇 × 𝛺21],                                                                        (7.17) 

with 𝛺21 in m3 here and below. Substituting Eq. (7.17) into Eq. (7.12) yields, 

𝜀21,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙) = 2 × 106 × 0.65 × 1.2 ⋅ 1012 × 𝛾0

𝑇 × exp[−3.20 × 1030 × (𝛾0
𝑇)2 × 𝛺21] × 

× sinh[3.37 × 1030 × 𝜀𝑒𝑙,𝑐𝑜𝑛𝑠𝑡𝑟
𝑎𝑝𝑝 (𝑦, 𝑡𝑐

𝑡𝑜𝑡𝑎𝑙) × 𝛾0
𝑇 × 𝛺21].                                                                        (7.18) 

Substituting Eq. (7.18) into Eq. (7.11) results in: 

𝜀𝑎𝑛
𝑎𝑝𝑝(𝑑/2, 𝑡 = 4 × 106 s) = 3.42 × 1018 × 𝛾0

𝑇 × exp[−3.20 × 1030 × (𝛾0
𝑇)2 × 𝛺21] × 

× ∫ sinh[3.37 × 1030 × 𝜀𝑒𝑙,𝑐𝑜𝑛𝑠𝑡𝑟
𝑎𝑝𝑝

(𝑑/2, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙) × 𝑧 × 𝛾0

𝑇 × 𝛺21] 𝑧𝑑𝑧
1

0
,                                                     (7.19) 

where z = 2y/d. Equation (7.19) is the fitting equation for measured values of 𝜀𝑎𝑛
𝑎𝑝𝑝(𝑑/2, 𝑡 =

4 × 106 s) as a function of 𝜀𝑒𝑙,𝑐𝑜𝑛𝑠𝑡𝑟
𝑎𝑝𝑝 (𝑑/2, 𝑡𝑐

𝑡𝑜𝑡𝑎𝑙) (Fig. 7.4), with 𝛾0
𝑇  and 𝛺21  being the fitting 

parameters. A Taylor series up to the 11th order (six terms) is used as a good approximation of the 

hyperbolic sine function. 

 

A two-parameter fit is performed on the entire-range of data simultaneously, with equal weight to 

all points. It is shown in Fig. 7.5, which displays the data of Fig. 7.4 on logarithmic scales. The fit 

yields 𝛾0
𝑇 = 0.17 and 𝛺21 = 5.2 × 10−28 m3 with a R-squared value of 0.982. The fit sensitivity 

to each 𝛾0
𝑇 and 𝛺21 is determined by fixing one at different values and using the other as a single 

fitting parameter. This yields estimated random errors in 𝛾0
𝑇  and 𝛺21  of ± 3% and ± 6%, 

respectively. The main approximation has been to express the applied stress that drives anelastic  
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Figure 7.5. Data of Fig. 7.4 on a log-log scale. Comparison between the two-parameter fit (dotted 

line) and two-step fit (dashed line). The latter yields a better fit for the small-strain data than the 

former. 

 

deformation as linearly varying in y and constant in time. An attempt at fit improvement was made 

by using the resulting strain distribution to update the applied stress and iterate to obtain a revised 

fit. The iteration yields a very small change in 𝛾0
𝑇 and 𝛺21. Moreover, it leads to a slightly worse 

fit of the (low-scatter) linear portion, and is not considered useful. We conclude that the scatter of 

the data limits any further improvement in the two-parameter fit. 

 

In Fig. 7.5, it is apparent that the two-parameter fit deviates from the linear portion of the data. 

Since this portion is more reliable, a revised two-step fit is now employed. For the linear regime, 

the hyperbolic sine term in Eq. (7.19) can be linearized, 

𝜀𝑎𝑛
𝑎𝑝𝑝(𝑑 2⁄ , 𝑡 = 4 × 106 s) = 3.84 × 1048 × (𝛾0

𝑇)2 × 𝛺21 × 

× exp[−3.20 × 1030 × (𝛾0
𝑇)2 × 𝛺21] × 𝜀𝑒𝑙,𝑐𝑜𝑛𝑠𝑡𝑟

𝑎𝑝𝑝
(𝑑/2, 𝑡𝑐

𝑡𝑜𝑡𝑎𝑙).                                                               (7.20) 
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Fitting Eq. (7.20) to the small-strain data yields a slope of 0.0482, which, when substituted into 

Eq. (7.20) yields, 

(𝛾0
𝑇)2𝛺21 = 1.517 × 10−29 m3,                                                                                                         (7.21) 

with a random error of only a small fraction of a percent because this term appears in the exponent 

in Eq. (7.19). Substituting Eq. (7.21) into Eq. (7.19) and fitting the entire range of data yields 𝛾0
𝑇 =

0.18 and 𝛺21 = 4.8 · 10−28 m3 with random errors of 1.5% and 3%, respectively. Since the error 

in (𝛾0
𝑇)2𝛺21 is much smaller, these two errors are strongly correlated. The R-squared value of the 

fit is 0.982, which equals that for the two-parameter fit. 

 

The implication of these new results, 𝛾0
𝑇 = 0.18 and 𝛺21 = 4.8 × 10−28 m3 (~ 29 Al atoms), for Ref. 

[12] are now discussed. If one assumes 𝛾0
𝑇 = 0.18 to be independent of STZ size, it can be used 

to re-calculate the results of Ref. [12]. While the previous quantized hierarchy still stands, the 

present numerical values result in a volume increment of 2.08×10-29 m3, in contrast to Ref. [12], 

which was fortuitously close to the volume of an Al atom (VAl = 1.66×10-29 m3). This possibly 

highlights the limitation of the model of Fig. 7.1 and constitutive law of Refs. [12,14] (Eq. 7.1). 

The present results provide a confirmation of the magnitude of 𝛾0
𝑇, for which an approximate value 

of 0.2, obtained from physical analogs [3,4], was used in our prior work. 

 

Interestingly, despite the lower strain and corresponding STZ volume fraction in the present work, 

the activation volume we obtain, 𝛾0
𝑇 × 𝛺21 = 8.6 × 10−29 m3, is similar to values obtained from 

creep in Pd80Si20 [14], 10.5×10-29 m3, and from viscosity measurements in undercooled melts, 

8×10-29 to 1.9×10-28 m3 [22]. Because of the different assumptions in Ref. [22], its STZ volume 
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values are about a factor of 5 greater than that of the largest active STZ in the present work. Ref. 

[22] follows Ref. [23] in equating the transformation strain to the universal macroscopic yield 

strain observed, 0.036. We suggest that the former is greater than the latter for the following 

reasons: a) Physical analogs (Refs. [3,4]) indicate larger transformation strains, > 0.1. b) This may 

be explained by the expectation that macroscopic yield involves autocatalytic STZ avalanches, 

which likely begin at weak spots and for which local strains are higher than the macroscopic strain 

[12]. When comparing results, one should note that our data were obtained at room temperature, 

and larger STZs are expected to become active with increasing temperature. 

 

We further reiterate the distinction between data obtained at low strain, when STZs are isolated, 

and at higher strain, when back stress is lost and STZ interactions with each other are significant. 

Following Ref. [14], the latter activated flow state is reached for a total volume fraction of ~40 % 

occupied by STZs, corresponding to macroscopic permanent or anelastic shear strains > 0.033 for 

our value of 𝛾𝑜
𝑇 . While the present study expands our work into the nonlinear regime, the 

macroscopic anelastic shear strain is below 0.0060, with corresponding STZ volume fractions that 

are still small, ≤ 7.2 %. Reported processes such as stress overshoot [24,25] and loss of neighbors 

[26] occur at far higher strains. 

 

7.6 Conclusions 

In conclusion, a method of constraining samples in bending geometry with bending strains up to 

0.0155 was developed. The anelastic strain rate was nonlinear in the applied stress due to the high 

value of the latter. Combining the constitutive law and zero bending moment condition, the 
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nonlinear regime allows us to determine the transformation shear strain and atomic volume of the 

largest active STZs independently, which are 0.18 and 4.8×10-28 m3, respectively. The respective 

random errors, 1.5 % and 3 %, are small because these parameters appear in the exponent in the 

constitutive law. 

 

7.7 Appendix: Symbol Definitions 

“Apparent” strain values below are those determined from curvature by assuming linear variation 

across the sample. The term “actual” is used to distinguish strain and stress values from their 

apparent values. 

 

d: sample thickness 

y: distance from sample midplane 

z: normalized distance from sample midplane, 2y/d 

R: mandrel radius 

r0: initial radius of curvature of the sample before constraint 

t: time during unconstrained relaxation after constraint removal 

r(t): radius of curvature of the previously constrained section at time t 

𝛽̅2: dilatancy factor (≈ 1 [14]) 

𝜈𝐺: attempt frequency (= 1013 s-1 [16]) 

𝜎𝑆𝑇𝑍̅̅ ̅̅ ̅̅ : shear resistance of STZs 
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μ: shear modulus, equal to 𝐸0 [2(1 + 𝜈)]⁄  

𝜎𝑆𝑇𝑍̅̅ ̅̅ ̅̅ 𝜇⁄  = 0.025 [17] 

𝜈: Poisson’s ratio (= 0.35 [18]) 

E0: Young’s modulus (= 48.2 GPa [19]) 

m = 1,…8 index denoting spectrum peaks 

𝛺𝑚: Volume of m-type STZs 

∆𝐹𝑚: Activation barrier associated with m-type STZs 

n = 13 + m: number of atoms an m-type STZ comprises. Used as a subscript in Eq. (7.9) and below 

τn, n = 14,…,21: time constant for unconstrained anelastic relaxation associated with STZs 

comprising n atoms 

cn: volume fraction of potential STZs comprising n atoms 

tc: time under constraint 

𝑡𝑐
𝑡𝑜𝑡𝑎𝑙: total constraining time, equal to 2×106 s 

𝛾0
𝑇: unconstrained transformation shear strain 

𝛾0
𝑐: constrained transformation shear strain, equal to [2(4 − 5𝜈) (15(1 − 𝜈))⁄ ] × 𝛾0

𝑇 

k: Boltzmann constant 

T: temperature (= 295.15 K) 

𝛺21: volume of STZs comprising n = 21 atoms 
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∆𝐹21: activation free energy for shear transformation of n = 21 STZs 

𝜀𝑐𝑜𝑛𝑠𝑡𝑟(𝑦): position-dependent constraining strain (Eq. 7.3) 

𝜀𝑒𝑙,𝑐𝑜𝑛𝑠𝑡𝑟
𝑎𝑝𝑝 (𝑦, 𝑡𝑐

𝑡𝑜𝑡𝑎𝑙): apparent position-dependent elastic strain at the end of the constraining period, 

obtained from curvature by assuming a linear dependence of the elastic strain on y (Eq. 7.4). Actual 

value is defined below 

𝜀𝑎𝑛,𝑐𝑜𝑛𝑠𝑡𝑟
𝑎𝑝𝑝 (𝑦, 𝑡𝑐

𝑡𝑜𝑡𝑎𝑙): apparent position-dependent anelastic strain at the end of the constraining 

period, obtained from curvature by assuming a linear dependence of the anelastic strain on y (Eq. 

7.5). Actual value is defined below 

𝑀(𝑡 = 0): total bending moment immediately after constraint removal (Eq. 7.6) 

𝜎𝑢(𝑦, 𝑡 = 0): position-dependent unloading stress immediately after constraint removal (Eq. 7.7) 

𝜎𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙): position-dependent applied stress at the end of the constraining period (Eq. 7.8) 

𝜀𝑎𝑛,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙): total position-dependent anelastic strain due to all active STZ sizes at the end 

of the constraining period (Eq. 7.9) 

𝜀𝑛,𝑐𝑜𝑛𝑠𝑡𝑟
0 (𝑦, 𝑡𝑐

𝑡𝑜𝑡𝑎𝑙): equilibrium position-dependent anelastic strain due to STZs comprising n 

atoms (n = 14 to 20) at the end of the constraining period 

𝜀21,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙): position-dependent anelastic strain due to n = 21 STZs, which did not reach 

mechanical equilibrium, at the end of the constraining period (Eqs. 7.12 and 7.18) 

𝜀𝑒𝑙,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙): actual position-dependent elastic strain at the end of the constraining period 

𝛾̇21,𝑐𝑜𝑛𝑠𝑡𝑟(𝑦, 𝑡𝑐): actual position-dependent macroscopic shear strain rate due to n = 21 STZs as a 

function of time under constraint (Eqs. 7.13 and 7.15) 
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𝛾̇21,𝑐𝑜𝑛𝑠𝑡𝑟
𝑎𝑝𝑝𝑟

(𝑦, 𝑡𝑐
𝑡𝑜𝑡𝑎𝑙): position-dependent macroscopic shear strain rate due to n = 21 STZs at the 

end of the constraining period approximated as constant in time (Eq. 7.17) 

𝜀𝑎𝑛
𝑎𝑝𝑝(𝑦, 𝑡): apparent position-dependent anelastic strain at time t after constraint removal, obtained 

from curvature by assuming a linear dependence of the anelastic strain on y (Eq. 7.19) 
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CHAPTER 8 

Summary and Future Work

 

8.1 Summary 

The present study offers microscopic details of α vs. β relaxation by characterizing STZ spectra 

over ten orders of magnitude in time constants for MGs with and without a pronounced β relaxation. 

La55Ni20Al25 and La70(NixCu1-x)15Al15, x=0,1 were investigated. Similar to an Al-based MG in a 

previous study, a quantized hierarchy of STZs were observed. However, the results suggest that 

the chemical composition of STZs corresponding to α vs. β relaxation is different, indicated by 

two regimes of STZ activation volumes, which are not observed in the Al-based MG, where the 

STZ volume increment between two adjacent STZ types is very close to the atomic volume of Al. 

The activation-volume increment in the hierarchy is smaller for β relaxation than for α relaxation, 

suggesting that small atoms (Al for La55Ni20Al25, and Al plus Cu/Ni for La70Cu15Al15/La70Ni15Al15, 

respectively) dominate the STZs associated with the β relaxation, whereas Cu plus La vs. all atoms 

possibly participate in STZs associated with the α relaxation for La70Cu15Al15 vs. La55Ni20Al25 and 

La70Ni15Al15, respectively. The pronounced β peak observed in the normalized loss modulus of 

La70Ni15Al15 but not La70Cu15Al15 is a result of both a larger volume fraction of fast and small 

potential STZs and a smaller volume fraction of slow and large potential STZs in La70Ni15Al15 vs. 

La70Cu15Al15, and no general correlation exists between the pronounced β peak and macroscopic 

plasticity. 
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A detailed microscopic picture of the effect of structural relaxation and cryogenic cycling was also 

revealed by performing anelastic relaxation measurements on samples aged at room temperature 

for various amounts of time with or without subsequent cryogenic cycling. The results show that 

for La55Ni20Al25 and La70(NixCu1-x)15Al15, x=0,1, room-temperature ageing decreases the volume 

fraction of potential large and slow STZs, corresponding to α relaxation, while increasing their 

corresponding relaxation time constants, which can be explained with the observed increase in 

Young’s modulus during structural relaxation. The dominant structural relaxation effect is on the 

observed largest and slowest STZs. On the other hand, the small and fast STZs, corresponding to 

the β relaxation, are not obviously affect by RT ageing. For partially relaxed La70(NixCu1-x)15Al15, 

x=0,1, ten cryogenic cycles between liquid nitrogen temperature and room temperature, performed 

after RT ageing and before anelastic relaxation measurements, reverse the increase in large time 

constants corresponding to the α relaxation in La70(NixCu1-x)15Al15, x=0,1, but do not significantly 

affect the small time constants corresponding to β relaxation. The decreasing time constants after 

cycling treatment point to a rejuvenation effect. However, the treatment does not significantly 

affect the volume fraction of the corresponding potential STZs. It should be noted that the same 

effect of cycling treatment was not observed for La70(NixCu1-x)15Al15, x=0,1, aged at RT for two 

years or for La55Ni20Al25, which indicates that the cryogenic cycling effect changes with the 

structural state of samples and alloy compositions. Similar observations have been reported in 

other studies [1,2]. Therefore, one should exercise caution when applying the present result to 

other alloy systems. 

 

Both the composition difference between STZs corresponding to α vs. β relaxation, and the 

obvious effects of RT ageing and cryogenic cycling only on the large and slow STZs are consistent 
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with alloy heterogeneity. Recently, it has been reported that some metallic glasses exhibit 

heterogeneity on a nanoscale – different domains showing different compositions [3] and moduli 

[4]. Even though to the author’s knowledge, heterogeneity has not been reported for the present 

alloys, it is important to consider such a possible effect on the present results. In the present study, 

assuming a single shear modulus value for all STZ types, two regimes of apparent STZ volume vs. 

m (Figs. 4.6 & 6.3) corresponding to α vs. β relaxation were obtained. However, these two regimes 

are possibly due to anelastic relaxation in different domains with different shear moduli. The 

observation that only processes corresponding to α relaxation are affected by RT ageing and 

cryogenic cycling further supports this hypothesis, since the structural relaxation rate is likely 

composition dependent: Due to the decreasing glass transition temperature with increasing La 

concentration* [1,5], the structural relaxation rate of the La-rich domains is expected to be higher 

than that of the low-La domains. 

 

In addition to the above-mentioned linear anelasticity, nonlinear anelastic relaxation measurements 

were performed on Al86.8Ni3.7Y9.5 metallic glass by developing a constraining method with a 

bending strain up to 0.0155. A deviation from linearity of the anelastic strain rate in the applied 

stress was observed, which is a result of the non-Newtonian viscosity. By combining the 

constitutive law and zero bending moment condition, the transformation shear strain and atomic 

volume of the largest active STZs were obtained independently, 0.18 and 4.8×10-28 m3, 

respectively, with a random error of 1.5% and 3%, respectively. This observation helps rule out 

the common assumption that the transformation strain is equal to the macroscopic yield strain [6]. 

 
* Tg is 475 K for La55Ni20Al25, and 431 K for La70Ni15Al15, and 391 K for La70Cu15Al15. 
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In the present work, the α vs. β relaxation, structural relaxation vs. cryogenic rejuvenation, and 

nonlinear anelastic relaxation have been studied in terms of STZ properties. The details revealed 

enable a more comprehensive understanding of the relaxation behavior in MGs. To obtain a more 

complete picture of the MG relaxation, future works are suggested below. 

 

8.2 Future Work 

8.2.1 Structural Relaxation Kinetics 

Metallic glasses have a frozen-in melt structure and undergo thermally activated structural 

relaxation toward an internal equilibrium state. This relaxation is manifested by changes in various 

properties, e.g., an obvious increase in Young’s modulus. In the present study, microscopic details 

of room-temperature structural relaxation were obtained, e.g., Chapter 4 shows that structural 

relaxation increases the time constants of the largest and slowest observed STZs while decreasing 

the volume fraction of the corresponding potential STZs the most. In addition, Chapter 5 offers 

insights on the structural relaxation kinetics, which deserve further investigation since that 

information would be very helpful for predicting material property evolution as a function of 

relaxation time. 

 

In Chapter 5, it was observed that the volume fraction occupied by different potential STZ types, 

cm, evolves differently with RT ageing time, ta, as shown in Fig. 5.4, reproduced below. The 

volume fraction occupied by potential STZs with time constants larger than the measurement range, 

c∞, decreases at a higher absolute or relative rate than that occupied by STZ types corresponding 

to the last two spectrum peaks, c5+c6. In addition, it was noted that while c∞ > (c5+c6) for short 
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ageing times, the reverse holds for longer ageing times. Therefore, the kinetics of structural 

relaxation seem different for different STZ types. However, the small number of ageing times and 

cm values (c5+c6 instead of c1, …, c6) in Fig. 5.4 is insufficient to reliably determine the kinetics 

associated with each STZ type. Therefore, a future plan is suggested as below. 

 

Relaxation time spectra corresponding to larger number of RT ageing times, e.g., equal to or more 

than ten, will provide useful information on relaxation kinetics. The shortest ageing time should 

be as short as possible, so that the relaxation kinetics of small and fast STZs could be studied. For 

the present work, the shortest ageing time was 1.9×106 s because of sample shipping time. The 

longest ageing time should be much longer than 2.9×107 s for the present alloys to determine the 

limiting value of cm. It should be noted that the time constant of large and slow STZs increases 

with increasing ageing time. Therefore, an appropriate range of anelastic relaxation measurement  

 

    

Figure 5.4. ctotal, the integrated area of the entire spectrum plus the constant in the spectrum fit, 

c5,6, the integrated area of the last two peaks and c∞ vs. aging time for La70Cu15Al15 and 

La70Ni15Al15 MGs. Lines are a guide to the eye. 
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corresponding to each ageing time should be planned ahead so that the largest and slowest STZs 

observed in the “youngest” sample can also be observed in the “oldest” sample. 

 

8.2.2 Effect of Ni vs. Cu on Mechanical Behavior in Different Alloy Systems 

As mentioned in Chapter 2, in the La70(NixCu1-x)15Al15, x=0 or 1 system, Ni tends to promote the 

β relaxation while Cu reduces it. The opposite trend exists in the Pd40Ni10(NixCu1-x)30P20, x=0 or 1 

system. Therefore, it would be instructive to study the effect of Cu vs. Ni in different alloy systems, 

which may offer valuable details for alloy design. Chapter 6 provides a microscopic 

characterization of the composition effect on both α and β relaxations in La70(NixCu1-x)15Al15, x=0 

or 1. Two regimes of STZ activation volumes were observed – fast and small STZs, corresponding 

to β relaxation, more likely include Al plus Cu/Ni for La70Cu15Al15/La70Ni15Al15, respectively, 

while all atoms more likely participate in slow and large STZs, corresponding to α relaxation. In 

addition, the pronounced β relaxation in normalized dynamic-mechanical measurements, observed 

in La70Ni15Al15 but not in La70Cu15Al15, is due to both the larger volume fraction of fast and small 

potential STZs and the smaller volume fraction of slow and large potential STZs in La70Ni15Al15 

than La70Cu15Al15. 

 

Due to the opposite effect of Ni vs. Cu in La70(NixCu1-x)15Al15 vs. Pd40Ni10(NixCu1-x)30P20, x=0 or 

1, investigating the latter may offer valuable insights, as detailed below. One difference between 

the two systems is that all elements in the former are metallic, while the latter is composed of both 

metal and nonmetal elements. In addition, in La70(NixCu1-x)15Al15, x=0 or 1, the concentration of 

La, which has the largest atomic volume, is much greater than those of the other elements. 

Therefore, it is likely that La is involved in larger and slower STZs, because the volume fraction 
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of the corresponding potential STZs is large and unlikely to exclude La. However, in 

Pd40Ni10(NixCu1-x)30P20, x=0 or 1, the concentration of the largest atom, Pd (atomic volume = 

0.15·10-28 m3), is similar or equal to that of the smaller atoms, e.g., Ni (atomic volume = 0.11·10- 28 

m3) in Pd40Ni40P20. It would be instructive to obtain the STZ properties, e.g., STZ volume and 

volume fraction occupied by potential STZs, for the Pd-based alloy, and to examine which element 

more likely involved in STZs corresponding to α vs. β relaxation. A comparison of STZ properties 

between La70(NixCu1-x)15Al15 vs. Pd40Ni10(NixCu1-x)30P20, x=0 or 1 may offer a more 

comprehensive understanding of the composition effect on α vs. β relaxation. 

 

In addition, the opposite effect of the same element in different systems indicates that the 

interaction with other elements plays an important role in the α and β relaxations. Therefore, 

techniques that are able to provide atomic-scale information, e.g., below one nanometer, may be 

useful for studying local properties, such as nearest neighbor distribution. Such techniques include 

atom probe tomography and scanning transmission electron microscopy. 
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APPENDIX A 

Large-Curvature Sample Constraining and Curvature Measurement After Its Release 

 

A.1 Experimental Setup for Large-Curvature Constraint 

In order to conduct mandrel measurements of Al86.8Ni3.7Y9.5 in the nonlinear anelastic regime, 

higher stress was applied by developing a new constraining method with smaller mandrel radius, 

0.09 cm or 0.11 cm. The constraining setup is shown in Fig. A.1: A vise was used to apply load 

on the constraining components, which include a machined device, a mandrel, a neoprene block, 

and a sample. The sample was placed between the mandrel and neoprene block. The machined 

device was used to press the mandrel until two constraint-free ends of the sample just touching 

each other, so that a well-characterized geometry was obtained, as detailed below. A peephole on 

the side surface of the machined device was used to observe the two touching ends during 

constraining, and one photograph of the two touching ends of a sample under constraint is shown 

in Fig. A.1 (top right). 

 

Since only a small section of the sample was under constraint, it would be challenging to directly 

measure the radius of curvature of the previously constrained section at time t after constraint 

removal, r(t). The well-characterized geometry allows for a reliable determination of r(t), which 

is used to determine the anelastic strain (Eq. 7.5). In this appendix, the procedure to determine r(t) 

in the nonlinear anelastic deformation is detailed. 
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Figure A.1. Constraining setup for the nonlinear-regime mandrel measurement. A vise is used to 

apply load on the constraining component – a sample placed between a mandrel and neoprene 

block, and a machined device to press the mandrel until two constraint-free ends of the sample just 

touching each other. A peephole on the side surface is to observe the two touching ends during 

constraining. One photograph of the two touching ends of one sample under constraint is shown 

in the upper-right corner. 

 

A.2 Determination of the Radius of Curvature after Constraint Removal 

Figure A.2 illustrates the sample geometry under constraint and after constraint removal (not to 

scale). The red arc in Fig. A.2a and Fig. A.2b corresponds to the section under constraint and 

previously constrained section, respectively. The blue lines/curves correspond to the free ends, and  

 

(a) 
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Figure A.2. Sample geometry (a) under constraint (the small curvature of the free ends is 

neglected), (b) during constraint-free relaxation (not to scale). α(t), the angle between the two free 

ends, is used to determine the evolution of the radius of curvature of the previously bent section 

during constraint-free relaxation. The length of the constrained section (red) is equal to 
(𝜋 + 𝜑) × (𝑅 + 𝑑/2), where 𝑅 is the mandrel radius, and 𝑑 is the sample thickness. The segment 

corresponding to the angle β is the part of the free end that is not part of the determination of α(t). 

Dashed lines are fits to the free ends. 

 

(b) 
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the yellow dashed lines in Fig. A.2b are fits to the ends. Figure A.2a shows the sample geometry 

under constraint, where the two free ends just touch each other. In Fig. A.2b, one can directly 

measure 𝛼(𝑡), the angle between the two fit lines at time t after constraint removal. The segment 

corresponding to the angle β is the part of the free end that is not part of the determination of α(t). 

The following details how these are used to determine the radius of curvature of the previously 

constrained section as a function of constraint-free time. 

 

Firstly, it is noted that the ends are slightly curved, because the sample before constraining has an 

initial radius of curvature, r0. Therefore, the length of each end equals, 

𝐿𝑒𝑛𝑑
′ = 2𝑟0 × arcsin(𝐿𝑒𝑛𝑑 2𝑟0⁄ ),                                                                                               (A1) 

where 𝐿𝑒𝑛𝑑  is the length of the line segment corresponding to the end. From Fig. A.2a, the 

following two relationships can be obtained, 

2𝐿𝑒𝑛𝑑
′ + (𝜋 + 𝜑) × (𝑅 + 𝑑 2⁄ ) = 𝐿𝑡𝑜𝑡𝑎𝑙 ,                                                                                  (A2) 

and, 

tan(𝜑 2⁄ ) = (𝑅 + 𝑑 2⁄ ) 𝐿𝑒𝑛𝑑⁄ ,                                                                                                   (A3) 

where (𝜋 + 𝜑) × (𝑅 + 𝑑 2⁄ ) is the total length of the constrained section with 𝜑 being the angle 

between the two free ends, 𝑅 is the mandrel radius, 𝑑 is the sample thickness, and 𝐿𝑡𝑜𝑡𝑎𝑙 is the 

total length of the sample. Combining Eqs. (A1), (A2), and (A3) yields the values of 𝐿𝑒𝑛𝑑
′, 𝐿𝑒𝑛𝑑, 

and 𝜑, since all other parameters can be directly measured. 
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Figure A.2b shows the sample geometry after constraint removal, where the two dashed lines are 

fits to the free ends. The radius of curvature of the previously constrained section at time t after 

constraint removal, r(t), can be obtained from the corresponding angle between the two fit lines, 

𝛼(𝑡), as detailed below. In Fig. A.2b, the length of the previously constrained section is, 

𝑟(𝑡) × 𝛼0(𝑡) = (𝜋 + 𝜑) × (𝑅 + 𝑑 2⁄ ),                                                                                         (A4) 

where 𝛼0(𝑡)  is the angle corresponding to the previously constrained section at time t after 

constraint removal. In Eq. (A4), all parameters on the right-hand side are known. Therefore, 𝛼0(𝑡) 

is the only parameter that needs to be obtained in order to determine 𝑟(𝑡). 

 

Employing the geometry in Fig. A.2b, the following angle relationship is obtained, 

𝛼0(𝑡) = 2𝜋 − 2𝜃 − 𝛼(𝑡) = 2𝜋 − 2(𝛽 + 𝛾) − 𝛼(𝑡).                                                                 (A5) 

𝛼(𝑡) is the angle between the line segments corresponding to the free ends. Furthermore, 

𝛽 = 𝑆 𝑟0⁄ ,                                                                                                                                    (A6) 

where 𝑆 is the arc length corresponding to the angle 𝛽 and equal to, 

𝑆 = [𝐿𝑡𝑜𝑡𝑎𝑙 − (𝜋 + 𝜑) × (𝑅 + 𝑑 2⁄ ) − 2𝐿] 2⁄ .                                                                          (A7) 

𝐿 is the arc length corresponding to the angle 𝜂. Substituting Eq. (A7) into Eq. (A6) yields, 

𝛽 = [𝐿𝑡𝑜𝑡𝑎𝑙 − (𝜋 + 𝜑) × (𝑅 + 𝑑 2⁄ ) − 2𝐿] 2𝑟0⁄ .                                                                       (A8) 

The angle 𝛾 can be obtained as, 

 𝛾 = 𝜋 − 𝛿 = 𝜋 − arccos(𝐿′ 2𝑟0⁄ ).                                                                                            (A9) 
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where 𝐿′ is the length of the fit line, and its relationship with 𝐿 is, 

𝐿 = 2𝑟0 arcsin(𝐿′ 2𝑟0⁄ ).                                                                                                            (A10) 

 

Substituting Eqs. (A8), (A9), and (A10) into Eq. (A5) yields, 

𝛼0(𝑡) = 2𝜋 − 2(𝛽 + 𝛾) − 𝛼(𝑡), 

= 2𝜋 − 2 × [
𝐿𝑡𝑜𝑡𝑎𝑙−(𝜋+𝜑)×(𝑅+𝑑 2⁄ )−2𝐿

2𝑟0
+ 𝜋 − arccos (

𝐿′

2𝑟0
)] − 𝛼(𝑡), 

= −
𝐿𝑡𝑜𝑡𝑎𝑙

𝑟0
+

(𝜋+𝜑)×(𝑅+𝑑 2⁄ )

𝑟0
+

2𝐿

𝑟0
+ 2 arccos (

𝐿′

2𝑟0
) − 𝛼(𝑡), 

= 4 arcsin (
𝐿′

2𝑟0
) + 2 arccos (

𝐿′

2𝑟0
) +

(𝜋+𝜑)×(𝑅+𝑑 2⁄ )

𝑟0
−

𝐿𝑡𝑜𝑡𝑎𝑙

𝑟0
− 𝛼(𝑡).                                        (A11) 

Substituting Eq. (A11) into Eq. (A4) yields the expression of the time-dependent radius of 

curvature of the previously constrained section at t after constraint removal as, 

𝑟(𝑡) = (𝜋 + 𝜑) × (𝑅 + 𝑑 2⁄ ) 𝛼0(𝑡)⁄  

= [(𝜋 + 𝜑) × (𝑅 + 𝑑 2⁄ )] × 

× [4 arcsin (
𝐿′

2𝑟0
) + 2 arccos (

𝐿′

2𝑟0
) +

(𝜋+𝜑)×(𝑅+𝑑 2⁄ )

𝑟0
−

𝐿𝑡𝑜𝑡𝑎𝑙

𝑟0
− 𝛼(𝑡)]−1.                                   (A12) 

In Eq. (A12), 𝜑 is obtained from the sample geometry under constraint. 𝑅, 𝑑, 𝑟0, 𝐿′, and 𝐿𝑡𝑜𝑡𝑎𝑙 can 

be directly measured. Therefore, by measuring the angle between the two fit lines at time t after 

constraint removal, 𝛼(𝑡), the corresponding radius of curvature of the previously constrained 

section, 𝑟(𝑡), can be determined from Eq. (A12), which yields the corresponding anelastic strain.
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APPENDIX B 

MATLAB® Code Commands of Image Digitization for Obtaining the Radius of Curvature 

of Samples During Constraint-Free Relaxation in the Linear Anelastic Regime

 

B.1 Introduction 

In order to study room-temperature anelastic relaxation for a sufficient long time, mandrel 

measurements were employed, as shown in Fig. B.1. Samples were constrained around mandrels 

of radii R ranging from 0.348 cm to 0.802 cm for 2.0∙106 s, then relaxed constraint-free for up to 

one year. The radius of curvature, r(t), as a function of constraint-free relaxation time, t, was 

monitored by taking snapshots using a digital camera. The equilibrium elastic strain at the end of 

the constraining period, and the maximum bending strain at time t after constraint removal, both 

attained at the surface, were determined from the curvature evolution. Therefore, determination of 

r(t) is an important step, which affects the strain data quality. In the present study, an automated 

image analysis and curvature fitting method was developed, which significantly reduces the error 

in the strain data relative to the visual fitting employed in a previous study. In this appendix, the 

code commands of image digitization, part of the automated image analysis and curvature fitting 

method, are explained. They were developed by an undergraduate student Luis Rangel DaCosta. 

The purpose of the code commands is to convert a sample image taken during constraint-free 

relaxation into an excel file, which includes the coordinates of the pixels corresponding to the 

sample. Then, the coordinates can be fitted to obtain the corresponding radius of curvature.  
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Figure B.1. Schematic illustration of mandrel measurements. A sample was constrained around a 

mandrel of a radius R for 2.0∙106 s, then relaxed constraint-free for up to one year. The evolution 

of radius of curvature at time t after constraint removal, r(t), was monitored. 

 

Compared to the previously employed visual-fitting method [B.1], the code commands not only 

significantly reduce the error bars in the strain data, but also significantly shorten the fitting time. 

 

B.2 Code Commands and Explanation 

In this section, the code commands of image digitization, written in MATLAB®, are explained. 

Code commands and comments are in Calibri and Time New Roman font, respectively. Code 

commands mentioned within the comments are placed between asterisk symbols. 

 

The following commands 1) remove all variables from the system memory, 2) remove all text 

from the command window, 3) set the output format to long fixed-decimal, and 4) prepare the user 

to input the information of the image file that needs to be analyzed. 

clear 

clc 
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format long;  

answer = 'Y'; 

The following commands ask the user to input the name and extension of the image file, and write 

the output file as “image name.csv” 

while(answer == 'Y') 

    answer = 'N'; 

    nprompt = 'Enter file name: '; 

    iname = input(nprompt, 's'); 

    eprompt = 'Enter file extension: '; 

    extension = input(eprompt, 's'); 

    csv = '.csv'; 

    oname = strcat(iname, csv); 

    iImage = strcat(iname, extension); 

 

The following commands open the image file as a matrix, convert the values in the matrix to double 

precision, and then obtain the matrix size. 

    image = imread(iImage); 

    image = double(image); 
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    [rows, col, ~] = size(image); 

 

The image file is stored in an x-by-y-by-3 array, where x and y correspond to the row and column 

in the matrix, respectively, and 3 corresponds to the intensity of 3 colors, red, blue, or green. The 

commands below create a grayscale image by averaging the three colors. Since the sample image 

has the best contrast in green color, green is overweighed, i.e., *7×image(1:1:rows, 1:1:col, 3)* in 

the present example, so that pixels corresponding to the sample can be easily selected. 

bwIm2(1:1:rows, 1:1:col) = (image(1:1:rows, 1:1:col, 1) + image(1:1:rows, 1:1:col, 2) + 

7×image(1:1:rows, 1:1:col, 3))/3; 

bwIm2 = uint8(bwIm2); 

 

The commands below count the number of pixels that are below the user-specified threshold 

brightness, i.e., *180* in the present example. 

    k = 0; 

    for i = (1:1:rows) 

        for j = (1:1:col) 

          if bwIm2(i,j) < 180 

            k = k + 1; 

          end 
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        end 

    end 

 

The commands below create storage vectors for pixel locations in x and y. 

    xVec = 1:1:k; 

    yVec = 1:1:k; 

    xVec = xVec'; 

    yVec = yVec'; 

 

The commands below determine whether the intensity of each pixel is below the threshold 

brightness. If it is, its coordinate is added to the output file. 

    s = 1; 

    for i = (1:1:rows) 

        for j = (1:1:col) 

            if bwIm2(i,j) < 180 

            xVec(s, 1) = j; 

            yVec(s, 1) = i; 

            s = s +1; 
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            end 

        end 

end 

 

The command below uses matrix m to store the coordinate of the pixels corresponding to the 

sample. 

    m = [xVec yVec]; 

 

The command below writes matrix m to a CSV file named “oname”. 

    csvwrite(oname,m); 

 

The commands below prompts user to run analysis for another image file. 

    repeat = 'Would you like to run another picture? (Y/N): '; 

answer = input(repeat, 's'); 

end 

 

B.3 References

B.1 J. D. Ju, D. Jang, A. Nwankpa, and M. Atzmon, J. Appl. Phys. 109, 053522 (2011). 
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APPENDIX C 

Details of Time-Constant Spectrum Computation from Anelastic Strain Using CONTIN

 

C.1 Introduction 

The present study employs CONTIN [C.1,C.2], a FORTRAN software package for inverse 

problems, to compute time-constant spectra from anelastic strain data. Based on the standard linear 

solid model, the fitting equations corresponding to cantilever bending (for short measurement time 

from ~ 0 s to 200 s) and mandrel measurements (for longer measurement time of up to one year) 

are, 

𝜀𝑎𝑛(𝑡) 𝜀𝑒𝑙
0⁄ = 𝑐∞ + 𝐴 ⋅ 𝑡 + ∑ 𝜀𝑖[1 − exp(− 𝑡 𝜏𝑖⁄ )]𝑁1

𝑖=1 ,                                                               (C1) 

and, 

𝜀𝑎𝑛(𝑡) 𝜀𝑒𝑙
0⁄ = 𝑐∞ + ∑ 𝜀𝑖exp(− 𝑡 𝜏𝑖⁄ )𝑁2

𝑖=1 ,                                                                                     (C2) 

respectively.  𝜀𝑎𝑛(𝑡) 𝜀𝑒𝑙
0⁄  represents the time-dependent anelastic strain normalized by the 

corresponding equilibrium elastic strain. 𝑁1 and 𝑁2 are less than the number of experimental data 

points. 𝑐∞, 𝐴, and 𝜀𝑖  are fitting parameters. 𝜏𝑖  are fixed, logarithmically spaced relaxation time 

values. The linear term in Eq. (C1) and the constant term in Eqs. (C1)&(C2) account for processes 

with time constants longer than the measurement duration. The continuous spectra can be 

approximated as, 

𝑓(𝜏𝑖) = 𝜀𝑖 ∆ ln 𝜏⁄ ,                                                                                                                        (C3) 
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where, 

∆ ln 𝜏 = ln[𝜏𝑚𝑎𝑥 𝜏𝑚𝑖𝑛⁄ ] (𝑁 − 1)⁄ .                                                                                             (C4) 

𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 are the minimum and maximum relaxation time values, respectively. 𝑁 equals 𝑁1 

or 𝑁2 for cantilever bending or mandrel measurements, respectively. In this appendix, the details 

of the spectrum computation are provided by 1) giving an overview of CONTIN, and 2) explaining 

two sample input files (corresponding to cantilever bending and mandrel measurements) for 

spectrum computation using CONTIN. 

 

C.2 Overview of CONTIN 

Input file structure 

The input file for CONTIN, written in Fortran, includes control variables for specifying a problem 

and experimental data. For details, see Section C.3. 

Basic equations 

Note that all equations in this section are from the CONTIN manual [C.3]. 

CONTIN was developed by Stephen W. Provencher [C1,C2]. It can convert linear integral 

equations, e.g., Fredholm equation of the first kind [C.4], 

𝑦𝑘 ≈ ∫ 𝐾(𝑔, 𝑡𝑘)
𝑏

𝑎
𝑠(𝑔)𝑑𝑔 + ∑ 𝛽𝑖𝐿𝑖(𝑡𝑘)𝑁𝐿

𝑖=1 ,   𝑘 = 1, … , 𝑁𝑦,                                                        (C5) 

to a form, 

𝑦𝑘 ≈ ∑ 𝐴𝑘𝑗𝑥𝑗
𝑁𝑥
𝑗=1 ,   𝑘 = 1, … , 𝑁𝑦.                                                                                                (C6) 
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In Eq. (C5), 𝐾(𝑔, 𝑡𝑘) is a kernel function, 𝑠(𝑔) is to be determined, and 𝑡𝑘 are known independent 

variables. The second term with unknown 𝛽𝑖 and known 𝐿𝑖(𝑡𝑘) is optional in case additional terms 

are needed. In Eq. (C6), the 𝑦𝑘 are experimental data, which usually contain noise, 𝐴𝑘𝑗 are known, 

and 𝑥𝑗 are to be determined by using either the trapezoidal or Simpson’s rule to approximate the 

integral in Eq. (C5) [C.5]. Therefore, Eq. (C5) becomes, 

𝑦𝑘 ≈ ∑ 𝑐𝑚𝐾(𝑔𝑚, 𝑡𝑘)𝑠(𝑔𝑚)
𝑁𝑔

𝑚=1 + ∑ 𝛽𝑖𝐿𝑖(𝑡𝑘)𝑁𝐿
𝑖=1 ,   𝑘 = 1, … , 𝑁𝑦,                                               (C7) 

where the coefficient 𝑐𝑚 are always equal to 1 in the present spectrum computation, and the 𝑔𝑚, 

m = 1,…, 𝑁𝑔, are grid points. Then, the solution 𝑥𝑗, 𝑗 = 1, … , 𝑁𝑥, in Eq. (C6) equals the set 𝑠(𝑔𝑚), 

plus the set 𝛽𝑖 , i = 1, …, 𝑁𝐿  in Eq. (C7). In the present spectrum computation, 𝐾(𝑔𝑚, 𝑡𝑘) 

corresponds to 1 − exp(− 𝑡 𝜏𝑖⁄ ) in Eq. (C1) and −exp(− 𝑡 𝜏𝑖⁄ ) in Eq. (C2) for cantilever bending 

and mandrel measurements, respectively. 𝑠(𝑔𝑚) correspond to the 𝜀𝑖 in Eqs. (C1)&(C2) with the 

𝑔𝑚 corresponding to the 𝜏𝑖. 𝑡𝑘, k = 1,…, 𝑁𝑦 correspond to experimental time values. The second 

term in Eq. (C7) becomes a constant plus a linear term or just a constant for cantilever bending or 

mandrel measurements, respectively. 

 

Constraints can be added on the solution 𝑥𝑗 in Eq. (C6), such as, 

∑ 𝐷𝑖𝑗𝑥𝑗
𝑁𝑥
𝑗=1 ≥ 𝑑𝑖, 𝑖 = 1, … , 𝑁𝑖𝑛𝑒𝑞                                                                                                 (C8) 

∑ 𝐸𝑖𝑗𝑥𝑗
𝑁𝑥
𝑗=1 = 𝑒𝑖, 𝑖 = 1, … , 𝑁𝑒𝑞                                                                                                    (C9) 



134 
 

where 𝑁𝑥 = 𝑁𝑔 + 𝑁𝐿, and 𝐷𝑖𝑗, 𝐸𝑖𝑗, 𝑑𝑖, and 𝑒𝑖 are specified by users. 𝑁𝑖𝑛𝑒𝑞 and 𝑁𝑒𝑞 correspond to 

the number of inequality constraints and number of equality constraints, respectively. In the 

present work, these are not used. 

 

Solving Eqs. (C5), (C6) or (C7) is an inverse problem, which is often ill-posed — even for a small 

noise level, there are a large amount of different solutions that all fit the data within the noise level. 

One example is the linear least-squares solution of Eq. (C6), i.e., 𝑥𝑗 satisfies, 

variance ≡ ∑ 𝑤𝑘(𝑦𝑘 − ∑ 𝐴𝑘𝑗𝑥𝑗
𝑁𝑥
𝑗=1 )

2𝑁𝑦

𝑘=1 = minimum,                                                           (C10) 

where 𝑤𝑘 are weights specified by the users. However, there is no guarantee that this is the correct 

answer. On the other hand, CONTIN computes a constrained regularized solution, where 𝑥𝑗 

satisfies, 

variance + 𝛼2 ∑ (𝑟𝑖 − ∑ 𝑅𝑖𝑗𝑥𝑗
𝑁𝑥
𝑗=1 )

2𝑁𝑟𝑒𝑔

𝑖=1
= minimum,                                                             (C11) 

subject to Eqs. (C8) and (C9). The second term in Eq. (C11) is a regularizor, the form and strength 

of which are determined by 𝑟𝑖  & 𝑅𝑖𝑗  and the regularization parameter 𝛼 , respectively. The 

advantage of the regularizor is to penalize a solution due to its deviation from expected behavior 

based on known information, e.g., the expected smooth variation of 𝑓(𝜏) with 𝜏, or the principle 

of parsimony, as detailed in Refs. [C.1,C.2]. 
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Execution 

To compute a spectrum using CONTIN, the user needs to download the CONTIN source code, 

which can be found on the website – http://s-provencher.com/contin.shtml. Then, compile the 

source code to create an executable program by using the Linux command, “gfortran -fmax-stack-

var-size=10 -O3 -o contin contin.for”, where “contin” is the file name of the executable program, 

and “contin.for” is the file name of the source code. Subsequently, create an input file named 

“problem1.in” to specify the problem to be solved, and two example input files corresponding to 

mandrel measurements and cantilever bending are explained in detail in the next section. At last, 

run CONTIN with the input file by using the Linux command “./contin    

<problem1.in”   >problem1.out”, and an output file named “problem1.out” is generated, which 

includes solutions corresponding to various regularization parameters and the chosen solution (i.e., 

the optimal solution selected by CONTIN), all of which are detailed in the next section. 

 

C.3 The Input File for Spectrum Computation Using CONTIN 

In this section, the components of the input file, written in FORTRAN, for spectrum computation 

using CONTIN are detailed. The input file includes 1) control variables (for various purposes, such 

as specifying input data format, setting up grid points and regularization parameters) and their 

corresponding values specified for the present study, and 2) experimental time and strain data, 

which follow the control variables. There are more than 40 control variables, which are set to 

default values in the CONTIN source code if not specified in the input file. Reference [C.2] shows 

the default values of all control variables. In principle, only the control variables, the values of 

which need to be changed, are written in the input file. However, in the following two sections, 

http://s-provencher.com/contin.shtml
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some control variables, the values of which are the same as their default values, are written in the 

example input files and explained due to their importance. The input file should be placed in the 

same folder with CONTIN software. Below, the code commands in the input file are written in 

Calibri font, and explanations are in Times New Roman font. The code commands mentioned in 

the comment are placed between asterisk symbols. 

 

C.3.1 Sample Input File for the Mandrel Measurements 

In an input file, the user needs to first input the control variables that specify one problem, then 

input the experimental data corresponding to the problem. Sometimes, for convenience, the user 

can create an input file including control variables and experimental data, corresponding to 

multiple problems. For example, consider two problems –“problem1” vs. “problem2”, the control 

variable and experimental data of which are named “variable1” and “data1” vs. “variable2” and 

“data2”, respectively. The user can write an input file to solve both problems, and the structure of 

the input file is “variable1” followed by “data1”, then “variable2” followed by “data2”. For each 

data set, the control variable *LAST* specifies if it is the last data set to be analyzed or not. *LAST 

x.000000E+00*, x=1 or -1, correspond to the respective data set being the last one or not. 

*1.000000E+00* is the value of this variable set by the user, which is in scientific format and equal 

to 1×100=1. This format applies to the values of all control variables discussed below. Therefore, 

for “data1”, *LAST -1.000000E+00* is used, because it is followed by another data set (“data2”) in 

the same input file, and for “data2”, *LAST 1.000000E+00* is used, indicating it is the last data set 

in the input file. In the present example for mandrel measurements, *LAST 1.000000E+00* is used 

because there is only one data set in the input file. 
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LAST          1.000000E+00 

 

*NINTT* is a control variable that determines how to input 𝑁𝑦 and 𝑡𝑘 in Eq. (C7), the number of 

experimental data points and the time values for the spectrum computation, respectively. *NINTT 

-1.000000E+00* means that the data are to be input directly. 

NINTT        -1.000000E+00 

 

*IQUAD* is a control variable that specifies which equation, i.e., Eq. (C5), (C6), or (C7), is to be 

solved. *IQUAD 1.000000E+00* corresponds to solving Eq. (C6) directly with no quadrature. 

*IQUAD 2.000000E+00* and *IQUAD 3.000000E+00* correspond to approximating Eq. (C5) with 

Eq. (C7) using the trapezoidal and Simpson’s rule, respectively. In the present example, the 

trapezoidal rule is employed. 

IQUAD         2.000000E+00 

 

*IGRID* is a control variable that specifies the spacing of the grid point in the quadrature, e.g., 𝜏𝑖 

in Eq. (C2). *IGRID 1.000000E+00* means that the grid points are equally spaced on a linear scale. 

*IGRID 2.000000E+00* means that the grid points are equally spaced in a function defined in the 

source code. For the spectrum computation, 𝜏𝑖  are equally spaced on a logarithmically scale. 

Therefore, *IGRID 2.000000E+00* is used with the function in the source code set to be ln (𝜏𝑖), 
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see line number 1211-1223 in the source code which are accompanied by many comment lines for 

details. 

IGRID         2.000000E+00 

 

To set up the quadrature grid points, e.g., 𝜏𝑖 in Eq. (C2), the control variables *NG* and *GMNMX* 

are employed. *NG* corresponds to the number of 𝜏𝑖 values, e.g., 𝑁2 in Eq. (C2) for the mandrel 

measurements. *GMNMX 1* and *GMNMX 2* correspond to the 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 values in Eq. (C4), 

respectively. In the present example, 50 𝜏𝑖 values are used, and 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 are 10 s and 3×107 

s, respectively. 

NG            5.000000E+01 

GMNMX     1   1.000000E+01 

GMNMX     2   3.000000E+07 

 

All 𝜀𝑖 values in Eq. (C2) are nonnegative. Therefore, a control variable *NONNEG* is employed, 

which sets constraints on 𝜀𝑖. *NONNEG 1.000000E+00* constrains 𝜀𝑖 to be nonnegative. 

NONNEG        1.000000E+00 

 

To specify the least-squares weights, the control variables *IWT* and *NERFIT* are used. *IWT* 

corresponds to the “𝑤𝑘”, k = 1,…, Ny in Eq. (C10), which equals 1/𝜎𝑘
2 with 𝜎𝑘 being the standard 

deviation of the noise at data point k [C.3]. If the noise is independent of k, then *IWT 
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1.000000E+00*. *IWT 2.000000E+00* means that 𝑤𝑘 = 1/𝜎𝑘
2 = 1/𝑦(𝑡𝑘) with 𝑦(𝑡𝑘) being the 

noise-free value of 𝑦𝑘 . This applies when the data follow Poisson statistics [C. 6 ], *IWT 

3.000000E+00* means that 𝑤𝑘 = 1/𝜎𝑘
2 = 1/𝑦2(𝑡𝑘), and *IWT 4.000000E+00* means that the 

weights are entered directly [C.1]. However, 𝑦(𝑡𝑘)  is unknown. Therefore, for *IWT 

2.000000E+00* and *IWT 3.000000E+00*, CONTIN performs a PRELIMINARY 

UNWEIGHTED ANALYSIS to yield an estimation (not the final value) of 𝑦(𝑡𝑘), which is the fit 

to the 𝑦𝑘  and termed “YFITk”. Then, the improved value of 𝑦(𝑡𝑘) used for computing 𝑤𝑘  is 

max{|YFIT𝑘|, ERRFIT}, where ERRFIT is a maximum safety margin to prevent a very large 𝑤𝑘 

[C.3]. To compute ERRFIT, the user needs to find the k at which |YFIT𝑘| is minimum. Then, 

compute residuals (the residual at datum k is yk-YFITk) at adjacent*NERFIT* data points centered 

at k. Lastly, ERRFIT equals the root mean square of the *NERFIT* residuals. For example, if 

*NERFIT* equals 10, then the residuals at 10 data points centered at k, are used to compute ERRFIT. 

For the present spectrum computation with uniform weighting, *IWT 1.000000E+00* is used, and 

therefore no safety margin is needed, which leads to *NERFIT 0.000000E+00*. 

IWT           1.000000E+00 

NERFIT        0.000000E+00 

 

The control variable *NLINF* corresponds to 𝑁𝐿 in Eq. (C7), which is the number of coefficients 

in the ∑ 𝛽𝑖
𝑁𝐿
𝑖=1 𝐿𝑖(𝑡𝑘) term. For the mandrel experiment, this term consists of a constant only, so 

*NLINF* is one. 

NLINF         1.000000E+00 
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*NENDZ* is a variable that controls the behavior of the solution at the edges of the grid. It includes 

two parameters, *NENDZ 1* and *NENDZ 2*, which are the number of extra zeros before the first 

data point (e.g., 𝑖 = 1 in Eq. (C2)) and after the last point (e.g., 𝑖 = 𝑁2 in Eq. (C2)) of the solution, 

respectively. When extra zeros are added, the solution tends to approach zero more smoothly at 

the respective edge of the grid. For the mandrel experiment, it is unlikely that the spectrum peak 

with time constants shorter than the first measurement time will be revealed with the technique 

used. Therefore, *NENDZ 1* is set to its default value, which is 2, as *NENDZ 1 0.000000E+00*, 

and this command is not written in the input file. Since there are spectrum peaks with larger time 

constants than those observed, no extra zero will be placed after 𝜀𝑁2
, and therefore *NENDZ 2 

0.000000E+00* is used. 

NENDZ     2   0.000000E+00 

 

As mentioned above, CONTIN computes constrained regularized solutions by minimizing the sum 

of the variance and regularizor (Eq. (C11)), and the strength of the regularizor is determined by 

the regularization parameter, α. In order to determine the optimal spectrum, CONTIN first 

computes spectra for a range of logarithmically spaced α values on a coarse grid. Then, it selects 

a region of interest and computes spectra for a range of logarithmically spaced α values 

corresponding to the region of interest on a fine grid. Lastly, CONTIN determines the optimal 

spectrum by using a default selection criterion. The whole procedure is detailed below. 

 

To specify the regularization parameter, α, on both coarse and fine grids, the control variables 

*RSVMNX* and *NQPROG* are employed. *RSVMNX* includes four values, the first/last two of 
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which specify the 𝛼  ranges on the coarse/fine girds, respectively. *NQPROG* includes two 

parameters, *NQPROG 1* and *NQPROG 2*, which correspond to the number of 𝛼 values on 

coarse and fine grids, respectively. In the default setting, CONTIN first scans *NQPROG 1* 𝛼 

values on a coarse grid, e.g., six (i.e., *NQPROG 1 6.000000E+00*) 𝛼 values from 10-8 to 102, 

which are 10-8, 10-6, 10-4, 10-2, 10-0, 102, and computes the corresponding solution. Then, CONTIN 

determines the region of interest, defined by the two adjacent 𝛼 values on the coarse grid, based 

on the default selection criterion in CONTIN – the PROB1 TO REJECT criterion. The PROB1 

TO REJECT value of each solution (and therefore of each 𝛼 value) is a value obtained from 

Fisher’s F-distribution function associated with that solution [C.3]. Two 𝛼 values selected, the 

PROB1 TO REJECT values of which are closest to 0.5. For example, if the PROB1 TO REJECT 

values corresponding to α = 10-8, 10-6, 10-4, 10-2, 10-0, 102, are 0, 0, 0.4, 0.6, 0.7, 0.8, 1, respectively, 

CONTIN chooses the range α = 10-4 to 10-2 as the region of interest, due to PROB1 TO REJECT 

values being closest to 0.5. Subsequently, CONTIN scans *NQPROG 2* 𝛼 values over a fine grid 

between α = 10-4 and 10-2, e.g., six (i.e., *NQPROG 2 6.000000E+00*) 𝛼 values, to determine the 

CHOSEN SOLUTION, the PROB1 TO REJECT value of which is closest to 0.5. 

 

When the PROB1 TO REJECT criterion does not yield a reasonable result as judged by the user 

performing the computation, the two control variables *RSVMNX* and *NQPROG* need to be 

manually modified, as detailed below. For spectrum computation, the first and second values after 

*RSVMNX*, corresponding to the lower and upper limit of the coarse grid, are always set to *1.E0*, 

equal to l×100=1, which means that the coarse grid starts with a very small 𝛼 value and ends with 

a very large 𝛼. Then, in the output file, the user needs to identify two α values on the coarse grid, 
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named “𝛼𝑙𝑜𝑤” and “𝛼𝑢𝑝𝑝𝑒𝑟”, the spectra associated with which are more physically meaningful 

than others. Therefore, the region of interest can be determined with “𝛼𝑙𝑜𝑤” and “𝛼𝑢𝑝𝑝𝑒𝑟” being 

the lower and upper limit of the fine grid. However, the third and fourth input values after 

*RSVMNX*, i.e., *3.1E+6* and *1.38E-7* in this example, are not simply equal to “𝛼𝑙𝑜𝑤” and 

“𝛼𝑢𝑝𝑝𝑒𝑟”. To determine the third and fourth values, the user needs to, firstly, in the output file, 

find the two values of the parameter named “ALPHA/S(1)” (highlighted in Fig. C1) corresponding 

to “ 𝛼𝑙𝑜𝑤 ” and “ 𝛼𝑢𝑝𝑝𝑒𝑟 ”, which are termed “ 𝛼1 ” and “ 𝛼2 ”, respectively. The “ALPHA” 

(highlighted in Fig. C1) equals 𝛼𝑙𝑜𝑤 or 𝛼𝑢𝑝𝑝𝑒𝑟, and “S(1)” is a scaled singular value and equal to 

the first value in the “SINGULAR VALUES” section of the output file. For details of “S(1)”, refer 

to Sec. 3.5 in Ref. [C.1]. Then, the third and fourth values after *RSVMNX* equal 

𝛼1/(1.49 × 10−15) and 𝛼2, respectively. 

 

 

Figure C.1. Screenshot of one sample output file. 
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RSVMNX         

      1.E0     1.E0    3.1E+6   1.38E-7 

NQPROG    1   6.000000E+00 

NQPROG    2   6.000000E+00 

 

*IFORMY* controls the input format for the 𝑦𝑘 in Eq.(C7), corresponding to the strain data in the 

spectrum computation. *1E11.4* represents the format and follows one Fortran variable format 

type – the E format, the syntax of which is “rEw.d”. This format allows the user to enter the data 

in scientific form. “E” is the exponent of 10, “w” is the total number of decimal places and “d” is 

the number of decimal places to the right of the decimal point. “rEw.d” “r” being an integer, is 

equivalent to repeating “Ew.d” “r” times. 

 

IFORMY 

(1E11.4) 

 

*IFORMT* controls the input format for the 𝑡𝑘 in Eq.(C7). *1E11.4* has the same meaning as that 

explained above. 

IFORMT 

(1E11.4) 
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END 

*NY* corresponds to the number of experimental data points, which is *66* in this example. 

NY       66 

 

The section below inputs the experimental time data first, 60 points from *2.2000E+01* to 

*1.5044E+07* in the present sample, then it inputs the corresponding strain values, from *3.5227E-

01* to *8.6018E-02*. The format of each datum follows *1E11.4* as defined above. Based on the 

number of data points (*NY 66* above), these are identified. 

2.2000E+01 

… 

1.5044E+07 

3.5227E-01 

… 

8.6018E-02 
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C.3.2 Sample Input File for the Cantilever Bending 

Below is a sample input file for the cantilever bending measurement. Note that the code commands 

that are essentially the same as that for mandrel measurements have the same purpose, and 

explanations are only added below only for features that are different. 

LAST          1.000000E+00 

NINTT        -1.000000E+00 

NG            5.000000E+01 

IQUAD         2.000000E+00 

 

The control variables *GMNMX 1* and *GMNMX 2*, which correspond to 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 values 

in Eq. (C1) for cantilever measurements, are 0.0015 s and 400 s, respectively. 

GMNMX     1   1.500000E-03 

GMNMX     2   4.000000E+02 

 

IWT           1.000000E+00 

NERFIT        0.000000E+00 

 

The control variable *NLINF* specifies the number of the linear and constant terms in Eq. (C1), 

which equals 2. Therefore, *NLINF 2.000000E+00* is used. 
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NLINF         2.000000E+00 

 

IFORMT 

(1E11.4) 

IFORMY 

(1E11.4) 

 

*PRY* is a control variable which specifies whether to print the experimental data, i.e., time and 

strain values, in the output file or not. *PRY 1.000000E+00* or *PRY -1.000000E+00* correspond 

to printing or suppressing this output, respectively. The default value of *PRY* is 1. However, due 

to the large number of data points of the cantilever measurement, ~ 60000, * PRY -1.000000E+00* 

is employed. 

PRY        -1.000000E+00 

 

The control parameter *IPLRES 2* specifies whether to plot the weighted residuals or not. *IPLRES 

2* has four options, where are *IPLRES 2 x.000000E+00*, x=0,1,2,3, corresponding to never 

plotting the residuals, plotting them only after plotting the Peak-Constrained Solutions [C.3] (not 

employed in the spectrum computation), plotting them just before plotting the CHOSEN 

SOLUTION (the solution CONTIN automatically selected based on its default setting, see Section 

C.3.1), and plotting them after plotting every solution, respectively. For the cantilever 
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measurement, due to the large amount number of data points, the weighted residuals are not plotted, 

and therefore *IPLRES 2 0.000000E+00* is used. 

IPLRES   2    0.000000E+00 

 

The control parameter *IPLFIT 2* determines whether to plot the fit to the data or not. The options 

and their corresponding explanation are the same as those of *IPLRES 2* as detailed above. For the 

cantilever measurement, due to the large amount number of data points, the fit to the data is not 

plotted, and therefore *IPLFIT 2 0.000000E+00* is used. (If a plot is desired, one uses a different 

value, e.g., *IPLFIT   2    3.000000E+00*.) 

IPLFIT   2    0.000000E+00 

 

NONNEG        1.000000E+00 

IGRID         2.000000E+00 

NQPROG    2   6.000000E+00 

END 

 

*NY* corresponds to the number of data points of cantilever bending, which is *59990* in this 

example. 

NY    59990 
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Then, the data are entered as detailed above for the mandrel measurements. 
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