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5.4 The Completions Ŝ and B̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.5 The (Co)homology of Free Algebras Over the Stable Operads . . . . . . . . . . . 113

iii



5.6 (Co)homology Operations for Algebras Over the Stable Operads II . . . . . . . . 124
5.7 The Homotopy Coherent, or∞-, Additivity of the Stable Operads . . . . . . . . 125

6 Algebraic Models of p-Adic Stable Homotopy Types . . . . . . . . . . . . . . . . . . . 135

6.1 Spectra and Their Model Structure . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.2 Spectral Cochains as E †st-Algebras and the Relation Between B̂ and A . . . . . . 140
6.3 Change of Coefficients from Fp to Fp . . . . . . . . . . . . . . . . . . . . . . . . 147
6.4 An Adjoint to Spectral Cochains . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.5 Resolvability Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

iv



ABSTRACT

In this thesis, we study differential graded operads and p-adic stable homotopy theory.
We first construct a new class of differential graded operads, which we call the stable operads.

These operads are, in a particular sense, stabilizations of E∞ operads. We develop a homotopy theory
of algebras over these stable operads and a theory of (co)homology operations for algebras over
these stable operads. We note interesting properties of these operads, such as that, non-equivariantly,
in each arity, they have (almost) trivial homology, whereas, equivariantly, these homologies sum
to a certain completion of the generalized Steenrod algebra and so are highly non-trivial. We also
justify the adjective “stable” by showing that, among other things, the monads associated to these
operads are additive in the homotopy coherent, or∞-, sense.

We then provide an application of our stable operads to p-adic stable homotopy theory. It
is well-known that cochains on spaces yield examples of algebras over E∞ operads. We show
that in the stable case, cochains on spectra yield examples of algebras over our stable operads.
Moreover, a result of Mandell says that, endowed with the E∞ algebraic structure, cochains on
spaces provide algebraic models of p-adic homotopy types. We show that, endowed with the
algebraic structure codified by our stable operads, spectral cochains provide algebraic models for
p-adic stable homotopy types.
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CHAPTER 1

Introduction

In this work, we cover two main topics:

(1) Stable (dg) operads, which provide a new class of operads, and which are, in a particular
sense, stable analogues of E∞ operads.

(2) Algebraic models for p-adic stable homotopy types using these operads.

First, let us recall the notion of an E∞ cochain operad and how it gives rise to algebraic models
of p-adic homotopy types. Let E † be a model for the E∞ cochain operad (throughout this work,
we have used the symbol † to distinguish contexts with cochain complexes from contexts with
chain complexes). Given a cochain complex X , the structure of an algebra over an E † encodes a
homotopy coherent commutative, associative and unital multiplication. If we take the cohomology
of the complex, killing the higher homotopies, we find that H•(X) inherits a (graded) commutative
algebra structure in the traditional sense. In fact, the cohomology inherits even more structure. It
posseses certain cohomology operations P s, s ∈ Z, which satisfy an instability condition, and as a
result becomes an unstable module over B, the algebra of generalized Steenrod operations.

A particular case of such E †-algebras are the cochains C•(X) on spaces X . In this case, the
algebra structure on the cohomology is given by the cup product, while the operations are the
Steenrod operations. While the cochains, as a dg module, might not remember the homotopy type
of a space, in [Man01], Mandell demonstrated that if we take cochains with coefficients in Fp, the
cochains functor

C•(−;Fp) : Spcop → sE †-Alg

as a functor to sE †-algebras (where sE † is the E∞ cochain operad over Fp), induces a full embedding
of the homotopy category of spaces into the derived category of sE †-algebras when we restrict to
connected nilpotent p-complete spaces of finite p-type, which is to say the sE †-algebras remember
the homotopy types of such spaces. Thus, while rational homotopy types admit algebraic models
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via CDGAs, p-adically, we can take sE †-algebras.

Now we move onto stable operads and stable homotopy types. First of all, we show that the
operad E † possesses a stabilization map

Ψ: ΣE † → E †

from its operadic suspension to itself. Upon iteration, via an inverse limit, we produce a new operad,
denoted E †st, which is our stable operad. In fact, we have a new class of operads, the stable operads,
in the sense that we are able to perform the above construction for multiple models of the E∞
operad (we have a stable Barratt-Eccles operad, a stable McClure-Smith operad, and also a stable
Eilenberg-Zilber operad, though the latter is not an E∞ operad). The stable operad E †st appears to be
of independent interest outside of its application to p-adic stable homotopy theory which we discuss
below; for example, due to its homotopy additivity which we also discuss below.

First, we demonstrate that one has homotopical control over E †st and the corresponding category
of algebras E †st-Alg in the following sense.

Theorem 1.1. The monad Est
† associated to E †st preserves weak equivalences.

Theorem 1.2. The category E †st-Alg admits a Quillen semi-model structure where the weak equiva-

lences and fibrations are the quasi-isomorphisms and degreewise epimorphisms.

(See Definition 2.37 in the second chapter of the work for the definition of a Quillen semi-model
structure, a weakening of the more well-known notion of a Quillen model structure.) Next, we
develop a theory of cohomology operations for algebras over E †st. We once again get operations P s

for s ∈ Z, but they now no longer satisfy the instability condition.

Theorem 1.3. We have the following:

(i) The cohomologies of E †st-algebras possess natural operations P s for s ∈ Z which satisfy the

Adem relations. These aoperations do not, however, satisfy the instability condition seen in

the unstable case.

(ii) Given a cochain complex X , we have a natural isomorphism:

H•(E†stX) ∼= B̂ ⊗ H•(X)

Here B̂ is a certain completion, with respect to a filtration by excess, of the algebra B. Note
that, in the unstable case of E †, in (ii) above, we would not only have to tensor with B to add in the
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operations, but also enforce the instability condition and also take a polynomial algebra to add in
products. In the case of E †st, the instability of the operations and the products disappear.

Next, we justify the “stable” in “stable operad”. This should of course be a statement about
homotopy coherent, or∞-, additivity, and this is exactly what we demonstrate. In particular, we
demonstrate that the monad E†st is homotopy coherent, or∞-, additive, in the following sense.

Theorem 1.4. We have the following:

(i) For dg modules X and Y , we have a natural quasi-isomorphism:

E†st(X ⊕ Y ) ∼ E†st(X)⊕ E†st(Y )

(ii) More generally, for cofibrant E †st-algebras A and B, we have a natural quasi-isomorphism:

AqB ∼ A⊕B

Finally, we move onto the application to p-adic stable homotopy types. For this, we need to fix
a model for spectra. We take the classical sequential model in the sense of Bousfield-Friedlander,
with the exception that, rather than the ordinary suspension − ∧ S1, we use the Kan suspension of
based simplicial sets. We then define an appropriate, and concrete in the sense that we get honest
dg modules, notion of spectral cochains and then prove the following, providing another sense in
which E †st is a stable analogue of E †.

Theorem 1.5. Given any spectrum E, the spectral cochains C•(E) naturally form an algebra over

E †st.

Finally then, we get algebraic models for p-adic stable homotopy types in the following sense –
in the statement, the cochains functor C•, one over Fp, is constructed from C• simply by tensoring
with Fp, and similarly, the operad sE †st, an operad over Fp, is constructed from E †st by tensoring with
Fp.

Theorem 1.6. The spectral cochains functor

C• : Spop → sE †st-Alg

induces a full embedding of the stable homotopy category into the derived category of sEst-algebras

when we restrict to bounded below p-complete spectra of finite p-type.
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We mentioned above that rational homotopy types can be modelled by commutative DGAs, and
also that p-adic homotopy types can be modelled by E∞ DGAs. It is also well-known that rational
stable homotopy types can be modelled by chain complexes. Our result for p-adic stable homotopy
types then completes the following picture.

Algebraic models for
homotopy types

unstable stable

rational commutative DGAs chain complexes

p-adic E∞ DGAs sE †st DGAs

We can make a remark on the structure that is captured by the operad E †st. In both the unstable
and stable p-adic cases, the models arise via cochains, with coefficients in Fp. Let us consider just
Fp cochains. Given a space X , the mod p cochains are given, as a spectrum, by [Σ∞+X,HFp]. This
object carries the following structure: (i) it is an HFp-module via “pointwise” scalar multiplication
(ii) it possesses an action, via postcomposition, by [HFp,HFp] (iii) it is a ring spectrum via the
multiplication of HFp. These manifest, respectively, in our work as follows: (i) the cochains can
be modelled as a dg module (ii) the cohomology inherits an action by B/(1 − P 0) ∼= A (iii) the
cochains form an E∞ algebra. In fact, we shall see that (ii) is a consequence of (iii). Now let us
consider cochains on a spectrum E. The cochains are given, as a spectrum, by [E,HFp]. This object
carries the following structure: (i) it is an HFp-module via “pointwise” scalar multiplication (ii) it
possesses an action, via postcomposition, by [HFp,HFp]. It no longer posseses a ring structure as,
although the multiplication of HFp is still present, to define a “pointwise” multiplication, one needs
a diagonal map, which general spectra, unlike spaces and their suspension spectra, do not possess.
The structure that is still present manifests, respectively, in our work as follows: (i) the cochains can
be modelled as a dg module (ii) the cohomology inherits an action by B̂/(1− P 0) ∼= A. We shall
see that these operations in (ii) are a consequence of the E †st-algebra structure, and so it is primarily
these operations which this operad serves to encode.

To end this introduction, we list here some notations, terminology and conventions which are
used throughout the work:

• For each integer n ≥ 0, [n] denotes the poset 0→ 1→ · · · → n.

• For each integer n ≥ 0, (n) denotes the set {1, . . . , n}; (0) is the empty set.

• For n ≥ 0, Σn denotes the symmetric group on n letters; Σ0 is the trivial group, where the
unique element is thought of as representing the unique isomorphism on the empty set.
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• Given a simplicial set S, Snd
n denotes the non-degenerate n-simplices of S.

• As is standard, the term chain complex will refer to a graded module equipped with a
differential of degree−1 and the term cochain complex will refer to a graded module equipped
with a differential of degree +1; in addition, we shall let differential graded module refer to
either of these two possibilities. The phrase differential graded is often shortened to dg. The
category of chain complexes over k is denoted by Chk, and the category of cochain complexes
over k is denoted by Cok; the symbol DGk will denote either of these two possibilities.

• By default, all dg modules are unbounded.

• Given dg modules X and Y , the tensor product X ⊗ Y is defined, as usual, by letting x⊗ y
have degree |x|+ |y|, and the differential follows the standard sign convention:

∂(x⊗ y) = ∂x⊗ y + (−1)|x|x⊗ ∂y

This tensor product on dg modules is always endowed with the symmetry X ⊗ Y → Y ⊗X
defined by:

x⊗ y 7→ (−1)|x||y|(y ⊗ x)

The internal hom F(X, Y ) is defined, in degree n, as the collection of degree d graded module
maps f : X• → Y•+d (no compatibility with the differnetial is required for these maps), and
the differential on F(X, Y ) is given by:

∂f = ∂ ◦ f − (−1)|f |(f ◦ ∂)

• Given a dg module X and n ∈ Z, we let X[n] be the dg module defined by setting X[n]d =

Xd−n. Note that we do not change the sign of any differential. Note also that, if we let k
denote a ground field, X[1] ∼= X ⊗ k[1] and X[−1] ∼= F(k[1], X).

• Let k denote a field. We shall often denote the chain or cochain complex

· · · ← 0← k
deg. n
← 0← · · · · · · → 0→ k

deg. n
→ 0→ · · ·

by Sn and refer to them as sphere complexes, and the chain or cochain complex

· · · ← 0← k
deg. n−1

id← k
deg. n
← 0← · · · · · · → 0→ k

deg. n−1

id→ k
deg. n
→ 0→ · · ·

by Dn, and refer to them as disk complexes.
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• Let R denote a ring. A dg module over R is said to be of finite type if it is finitely generated
in each degree; it is said to be finite if it is, in addition, bounded from above and below. In
the case that R = Fp[Σn] for some prime p and n ≥ 0, we can replace finitely generated by
finitely presented as Fp[Σn] is Noetherian (see [BLS81]).

• All operads are dg operads, and are symmetric. The notations, in the sense of the typeface, for
operads and their corresponding monads and free algebra functors will follow the following
rule: if P denotes an operad, the corresponding monad and free algebra functor will both be
denoted by P.

• All (co)chains on spaces or spectra are normalized.
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CHAPTER 2

Differential Graded Operads and Their Algebras

In this chapter, we cover general aspects of dg operads and their algebras. Throughout this
chapter, as well as the rest of the work, we will have two versions of most results, depending on
whether the differential has degree −1 or +1. For this reason, prior to discussing operads, we begin
with some basic results regarding indexing, mostly to allow us to set in place some notations which
will allow us to be precise and clear in our statements in later parts of this work. Throughout this
chapter, k will denote an unspecified but fixed field.

Let Chk denote the category of chain complexes of k-modules, and Cok the category of cochain
complexes of k-modules.

Definition 2.1. Given a chain complex X over k, the dual chain complex D(X) of X is defined as

X∨ := F(X, k[0])

where F denotes the internal hom of chain complexes. Similarly, if Y is a cochain complex over k,
the dual cochain complex D(Y ) of Y is defined as

Y ∨ := F(Y, k[0])

where, in this case, F denotes the internal hom of cochain complexes. These yield contravariant
functors

Chk → Chk Cok → Cok

which are involutions up to natural isomorphism, and are both denoted by (−)∨.

Remark 2.2. Given a dg module X , we have that X∨ consists of graded module maps X → k[0],
of any degree; in a fixed degree d, this amounts to module maps X−d → k in the chain case, and
X−d → k in the cochain case. The negative sign here ensures that the induced differential on X∨

has the same degree as the differential of the original dg module X . Note that if X is concentrated
in non-negative degrees, X∨ will be concentrated in non-positive degrees, and vice versa. ||
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Definition 2.3. Given a chain complex X over k, the associated cochain complex X† is that which
is defined by setting:

(X†)p := X−p

Similarly, if Y is a cochain complex over k, the associated chain complex Y † is that which is defined
by the same formula:

(Y †)p := Y −p

These yield an inverse pair of functors

Chk → Cok Cok → Chk

both of which are denoted by (−)†.

Example 2.4. Given any space, the cochains on the space are constructed from the chains by first
dualizing via (−)∨ and then reindexing via (−)†.

2.1 Differential Graded Operads and Their (Co)algebras

Definition 2.5. A differential graded operad, or dg operad for short, over k, is an operad in either
Chk or Cok.

More fully, a dg operad, denoted say P , consists of the following data:

• A dg module P (n) for each n ≥ 0.

• For each n ≥ 0 and k1, . . . , kn ≥ 0, a map

γn,k1,...,kn : P (n)⊗ P (k1)⊗ · · · ⊗ P (kn)→ P (k1 + · · ·+ kn)

where, given n ≥ 0, k1, . . . , kn ≥ 0 and l1,1, . . . , l1,k1 , . . . , ln,1, . . . , ln,kn ≥ 0, the following
square commutes:

P (n)⊗ P (k1)⊗ · · · ⊗ P (kn)⊗ P (l1,1)⊗ · · · ⊗ P (ln,kn)

P (n)⊗ P (l1,1 + · · ·+ l1,k1)⊗ · · · ⊗ P (ln,1 + · · ·+ ln,kn)

P (k1 + · · ·+ kn)⊗ P (l1,1)⊗ · · · ⊗ P (ln,kn)

P (l1,1 + · · ·+ l1,kn)

• A specified element ι ∈ P (1) such that, for any n ≥ 0, the maps

γ1,1 : P (1)⊗ P (n)→ P (n) γn,1,...,1 : P (n)⊗ P (1)⊗ · · · ⊗ P (1)→ P (n)

satisfy: γ1,1(ι⊗ f) = f and γn,1,...,1(f ⊗ ι⊗ · · · ⊗ ι) = f for all f ∈ P (n).
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• For each n ≥ 0, a right action of Σn on P (n), such that for each n ≥ 0, k1, . . . , kn ≥ 0, and
σ ∈ Σn, τ1 ∈ Σk1 ,. . . ,τn ∈ Σkn , the following diagrams commute:

P (n)⊗ P (k1)⊗ · · · ⊗ P (kn)

P (k1 + · · ·+ kn)

P (n)⊗ P (k1)⊗ · · · ⊗ P (kn)

P (k1 + · · ·+ kn)

id⊗ τ1 ⊗ · · · ⊗ τn

τ1 � · · ·� τn

P (n)⊗ P (k1)⊗ · · · ⊗ P (kn)

P (n)⊗ P (kσ−1(1))⊗ · · · ⊗ P (kσ−1(n))

P (k1 + · · ·+ kn)

P (n)⊗ P (k1)⊗ · · · ⊗ P (kn)

P (k1 + · · ·+ kn)

σ ⊗ id⊗ · · · ⊗ id

σ[k1, . . . , kn]

Here τ1 � · · · � τn denotes an internal permutation of blocks and σ[k1, . . . , kn] denotes an
external permutation of blocks, in each case of blocks of size k1, . . . , kn.

Moreover, a map of dg operads, F : P → Q consists of the following data:

• For each n ≥ 0, a dg map F (n) : P (n)→ Q (n), such that the following hold:

– For each n ≥ 0 and k1, . . . , kn ≥ 0, the following square commutes:

P (n)⊗ P (k1)⊗ · · · ⊗ P (kn)

Q (n)⊗ Q (k1)⊗ · · · ⊗ Q (kn)

P (k1 + · · ·+ kn)

Q (k1 + · · ·+ kn)

– F (1)(ιP ) = ιQ .

– For each n ≥ 0, F (n) is Σn-equivariant.

We thus have a category of operads in Chk, and a category of operads in Cok, which we denote
by Op(Chk) and Op(Cok), respectively.

Remark 2.6. We will sometimes use an alternative characterization of the data of the composition
maps γ in the structure of an operad. Namely, we can instead specify, for each n,m and i = 1, . . . , n,
maps:

◦i : P (n)⊗ P (m)→ P (n+m− 1)
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Given these maps, we get the maps P (n)⊗ P (k1)⊗ · · · ⊗ P (kn)→ P (k1 + · · ·+ kn) by sending
f ⊗ g1 ⊗ · · · ⊗ gn to (((f ◦n gn) ◦n−1 gn−1) · · · ) ◦1 g1. See, for example, [Mar06] for details on the
equivalence between these two pieces of data. ||

We have seen dualization and reindexing operations, (−)∨ and (−)†, on dg modules. We now
consider what effect these operations have on dg operads. When applied termwise to an operad, the
former yields, under suitable finiteness hypotheses, a co-operad (and inversely a co-operad yields
an operad upon dualization). Since we have no use for these co-operads in this work, we say no
more on this. The reindexing operation however does yield another operad: an easy check shows
that the reindexing operation is compatible with all the structure data in an operad. Thus we may
make the following definition.

Definition 2.7. If P is an operad in Op(Chk), the associated operad in Op(Cok), denoted P †, is
defined by setting:

P †(n) := P (n)†

Similarly, if Q is an operad in Op(Cok), the associated operad in Op(Chk), denoted Q †, is defined
via the same formula:

Q †(n) := Q (n)†

These yield an inverse pair of functors

Op(Chk)→ Op(Cok) Op(Cok)→ Op(Chk)

both of which are denoted by (−)†.

Remark 2.8. We have introduced these simple definitions here as it will be important later to be
careful about this reindexing when we consider which operads act on chains on spaces or spectra,
and which act on cochains on spaces or spectra. ||

We now wish to define algebras and coalgebras over dg operads. Before we can do this, we
need to define endomorphism and coendomorphism operads.

Definition 2.9. Let X be a dg module over k. The endomorphism operad of X , denoted End X , is
the dg operad defined by setting

End X(n) := F(X⊗n, X)

where F denotes the internal hom of dg modules, and where the operadic structure data is given by
the obvious composition maps. Moreover, the coendomorphism operad of X , denoted CoEnd X , is
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the dg operad defined by setting

CoEnd X(n) := F(X,X⊗n)

and again, the operadic structure data is clear.

Now we can define algebras and coalgebras over operads.

Definition 2.10. Let P be a dg operad over k. An algebra over P is a dg module X equipped with
an operad morphism P → End X . A coalgebra over P is a dg module X equipped with an operad
morphism P → CoEnd X . Moreover, maps of algebras and coalgebras are dg maps which respect
the algebra, respectively coalgebra, structure maps in the obvious sense.

Thus, given a dg operad P , we have categories of P -algebras and P -coalgebras, which we
denote by P -Alg and P -Coalg, respectively.

Remark 2.11. One can rephrase the definitions of algebras and coalgebras over operads as se-
quences of maps P (n) ⊗ X⊗n → X and P (n) ⊗ X → X⊗n, respectively, satisfying suitable
properties. ||

Example 2.12. For any dg operad P over k, there is an initial P -algebra, namely P (0). The algebra
structure maps are given by the composition maps γ in the case k1 = · · · = kn = 0. Given any
algebra X , the unique algebra map P (0)→ X is given by the algebra structure map for X in the
case n = 0. Intuitively, this algebra contains the necessary “constant elements” and nothing else.

We now consider what effect the dualizing and reindexing constructions, (−)∨ and (−)†, have
on algebras and coalgebras over dg operads.

Proposition 2.13. Let P be a dg operad which is aritywise of finite type. We have the following:

(i) If X is a P -algebra of finite type, X∨ is canonically a P -coalgebra.

(ii) If X is a P -coalgebra, X∨ is canonically a P -algebra.

Here, in (i), by finite type we mean finite type as a dg module.

Proof. (i): The coalgebra structure maps are given by the following composites:

P (n)⊗X∨ → P (n)⊗ (P (n)⊗X⊗n)∨ ∼= P (n)⊗ P (n)∨ ⊗ (X∨)⊗n → (X∨)⊗n

Here the first map is induced by the dual of the algebra structure map for X and the third map is
induced by the canonical pairing P (n)⊗ P (n)∨ → k[0].
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(ii): The algebra structure maps are given by the following composites:

P (n)⊗ (X∨)⊗n → P (n)⊗ (X⊗n)∨ → P (n)⊗ (P (n)⊗X)∨ ∼= P (n)⊗ P (n)∨ ⊗X∨ → X∨

Here the second map is induced by the dual of the coalgebra structure map for X and the fourth
map by the canonical pairing P (n)⊗ P (n)∨ → k[0].

Proposition 2.14. Let P be a dg operad over k. The reindexing operator yields functors:

(−)† : P -Alg→ P †-Alg (−)† : P -Coalg→ P †-Coalg

Proof. Simply apply (−)† to the given structure maps, P (n)⊗X⊗n → X or P (n)⊗X → X⊗n,
and note that (−)† commutes with tensor products. In short, the structure maps are exactly as they
were, only the degree assignments change.

Finally, before moving on, we consider pullbacks of (co)algebra structures over dg operads.
Given an algebra or coalgebra X over P , and an operad morphism Q → P , by precompositon of
the map to the (co)endomorphism operad, X also becomes a (co)algebra over Q . This gives rise to
a pull back functor from P -(co)algebras to Q -(co)algebras.

Proposition 2.15. Let P and Q be dg operads over k and f : Q → P an operad map. Then the

induced pull back functors

f ∗ : P -Alg→ Q -Alg f ∗ : P -Coalg→ Q -Coalg

have right adjoints.

Proof. This follows from the adjoint functor theorem. See [lGL18].

We let
f∗ : Q -Alg→ P -Alg f∗ : Q -Coalg→ P -Coalg

denote the right adjoints provided by the result above.

2.2 Categorical Constructions With (Co)algebras Over Operads

We now consider categorical constructions with algebras over operads. First of all, the following
result ensures that such constructions always exist.

Proposition 2.16. Given any dg operad P over k, the categories P -Alg and P -Coalg are bicomplete.

Proof. See [Rez96].
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Next, the following result tells us that filtered colimits of algebras can always be computed at
the level of dg modules.

Proposition 2.17. Let P be a dg operad over k. If we have a filtered diagram of P -algebras, the

colimit is that same as that in dg modules; more precisely, filtered colimits of P -algebras are created

in the category of dg modules.

Proof. See [Rez96].

Next, we consider the case of coproducts of algebras in detail. Let P be a dg operad over k, and
let P be the associated free algebra functor. Recall that:

P(X) =
⊕
n≥0

P (n)⊗Σn X
⊗n

Proposition 2.18. Given P -algebras A and B, the coproduct AqB can be constructed as the dg

module coequalizer

P(PA⊕PB)⇒ P(A⊕B)→ AqB

where one of the two parallel maps is given by the algebra structure maps PA→ A, PB → B, and

the other is the composite of the map P(PA⊕PB)→ P(P(A⊕B)), induced by the inclusions

A→ A⊕B, B → A⊕B, and the monadic structure map P(P(A⊕B))→ P(A⊕B).

Proof. See [Fre98]. The intuition here is that P(A⊕B) freely adds in all the products that must
exist in the coproduct, and then identification of the two parallel maps enforces the product relations
which were already present in A and B. See Remark 2.19 below for more details.

We can give the above coequalizer a more concrete form. Note that

P(PA⊕PB) =
⊕
n≥0

P (n)⊗Σn (PA⊕PB)⊗n

=
⊕
n≥0

⊕
i+j=n

P (n)⊗Σi×Σj
(PA)⊗i ⊗ (PB)⊗j

=
⊕
i,j≥0

P (i+ j)⊗Σi×Σj
(PA)⊗i ⊗ (PB)⊗j

Similarly,
P(A⊕B) =

⊕
i,j≥0

P (i+ j)⊗Σi×Σj
A⊗i ⊗B⊗j

Making these substitutions, the coproduct AqB can be constructed as the following dg module
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coequalizer:⊕
i,j≥0

P (i+ j)⊗Σi×Σj
(PA)⊗i ⊗ (PB)⊗j ⇒

⊕
i,j≥0

P (i+ j)⊗Σi×Σj
A⊗i ⊗B⊗j → AqB

Here one of the two parallel maps is given by the maps PA→ A and PB → B provided by the
P -algebra structures of A and B, and the other is given by operadic composition as follows:

ρ|σ1|a1
1| · · · |a1

r1
| · · · |σi|ai1| · · · |airi |τ

1|b1
1| · · · |b1

s1
| · · · |τ j|bj1| · · · |bjsj

7→ [ρ, σ1, . . . , σi, τ 1, . . . , τ j]|a1
1| · · · |a1

r1
| · · · |ai1| · · · |airi |b

1
1| · · · |b1

s1
| · · · |bj1| · · · |bjsj

Here, for brevity, we have placed vertical bars where ⊗’s are more customary. Moreover, the term
[ρ, σ1, . . . , σi, τ 1, . . . , τ j] denotes the operadic composition of the formal operations.

Remark 2.19. The intuition behind the above construction, analogous to that of free products of
monoids, is that, given any elements a1, . . . , ai in A and b1, . . . , bj in B, and also an (i + j)-ary
operation σ in P (i + j), in the coproduct, there ought to exist an element which represents the
result of the action of σ on the tuple (a1, . . . , ai, b1, . . . , bj). For this purpose, we add in the formal
element σ ⊗ a1 ⊗ · · · ⊗ ai ⊗ b1 ⊗ · · · ⊗ bj . If we permute the tuple via a pair of permutations in
Σi × Σj , the result ought to be equivalent to that of acting on the operation σ, and so we take the
equivariant tensor product. We ought also to have products where the a’s and b’s don’t occur in
the order above, but these are taken care of by the permutations in Σn which are not in any of the
products Σi × Σj . ||

We now consider a special case of coproducts of algebras, that in which both summands are
free, namely PX qPY . In this case, the idea is that, in the second term in the coequalizer, we may
generate simply on X and Y , and then may also omit the first term, needing to impose no relations.

Proposition 2.20. Let P be a dg operad over k and X , Y dg modules over k. Then we have a

natural isomorphism:

PX qPY ∼=
⊕
i,j≥0

P (i+ j)⊗Σi×Σj
X⊗i ⊗ Y ⊗j

Proof. Since P, as a map to P -algebras, is a left adjoint, it preserves coproducts and so we have:

PX qPY ∼= P(X ⊕ Y ) ∼=
⊕
i,j≥0

P (i+ j)⊗Σi×Σj
X⊗i ⊗ Y ⊗j
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2.3 Cell Algebras

Given any dg operad over k, we have a notion of a cell algebra over this operad, defined as
follows.

Definition 2.21. Let P be a dg operad over k. A cell P -algebra is a P -algebra A such that there
exists a cotower of P -algebras

A0 → A1 → A2 → · · ·

and a colimiting map from this cotower to A, such that:

• A0 is the initial P -algebra, namely P (0).

• For each n ≥ 0, the map An → An+1 fits into an algebra pushout square

PM

PCM

An

An+1

where M is a dg module which is degreewise free and has zero differentials.

Remark 2.22. The condition that the dg module M be degreewise free and have zero differentials
is equivalent to that it be a sum of copies of the standard sphere complexes. Moreover, the cone on
such a complex, denooted CM above, is then a sum of the standard disk complexes. ||

More generally, we also define cell maps as follows.

Definition 2.23. Let P be a dg operad over k. A cell map A→ B of P -algebras is a map such that
there exists a cotower of P -algebras

A0 → A1 → A2 → · · ·

and a colimiting map from this cotower to B, such that:

• A0 = A and the map A0 → B is the given map A→ B.

• For each n ≥ 0, the map An → An+1 fits into an algebra pushout square

PM

PCM

An

An+1
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where M is a dg module which is degreewise free and has zero differentials.

Remark 2.24. Looking at the definitions, we see that a P -algebra is a cell algebra if and only if the
unique map P (0)→ A is a cell map. ||

We now describe well-known concrete models of cell algebras. Let P be a dg operad over k and
let A be a cell P -algebra. Let also

A0 → A1 → A2 → · · ·

be a cell filtration of A and fix some choices M1,M2, . . . for the dg modules which appear in
the attachment squares above. For each n ≥ 0, let Nn = ⊕i≤nMi, where N0 = 0, and let also
N = ⊕i≥1Mi. Then one can construct models for the An and A, denoted say by Bn and B, as
follows. Let P # denote the operad in graded k-modules formed by forgetting the differentials
present in P . For n ≥ 0, we have that, as a graded module

Bn = P#(Nn[1]) =
⊕
k≥0

P (k)⊗Σk
(Nn[1])⊗k

and the differentials of the Bn are induced inductively, via the Leibniz rule, the attachment maps
PMn → An+1, together with the operadic composition maps of P . In the limit, we have that, as a
graded module

B = P#(N [1]) =
⊕
k≥0

P (k)⊗Σk
(N [1])⊗k

and in this case the differential is of course induced by those of the Bn. The precise analogue of the
statement that the Bn and B are models, respectively, for the An and A is the following well-known
result (see, for example, [Man01] and [Fre09]).

Proposition 2.25. Let P be a dg operad over k. Given the cell algebra A, its skeleta An and the

algebras Bn and B defined above, there exists a diagram of isomorphisms of P -algebras as follows

A0 A1 A2 · · ·

B0 B1 B2 · · ·
∼= ∼= ∼=

and this diagram induces, in the limit, an isomorphism A→ B.

2.4 Enveloping Operads

Earlier, we considered coproducts of algebras over operads. We now consider the special case
of the coproducts where one summand is free, namely the coproducts A q PX . In this case, we
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need only impose relations from the algebra structure in A. This leads us to first define a general
construction on A, that of the enveloping operad of A, which, as the name suggests, also has
relations to other notions, such as that of representations of A.

Definition 2.26. Let P be a dg operad over k and A a P -algebra. The enveloping operad of A,
denoted UA, is defined as follows. For each j ≥ 0, the dg k[Σj]-module UA(j) is defined to be the
dg module coequalizer⊕

i≥0

P (i+ j)⊗Σi
(PA)⊗i ⇒

⊕
i≥0

P (i+ j)⊗Σi
A⊗i → UA(j)

where one of the two parallel maps is induced by the P -algebra structure map PA→ A of A and
the other by the composition product of P . Morever, the operadic structure maps of UA are induced
by those of P .

Example 2.27. (i) In operadic degree 0, we have UA(0) ∼= A, where the universal coequalizer map
is given by the P -algebra structure map of A.

(ii) In operadic degree 1, as usual, UA(1) forms a unital associative algebra via the composition
product UA(1)⊗UA(1)→ UA(1). By definition, this algebra UA(1) is the enveloping algebra of
A – see [GK94] and [Fre09].

Remark 2.28. In the construction of the UA(j), note that the two parallel maps preserve the i = 0

summands, and moreover that, the coequalizer of just these two summands is simply P (j). It
follows that, for each A and j ≥ 0, UA(j) is equipped with a canonical map P (j) → UA(j); in
fact, these assemble into an operad map P → UA. ||

Proposition 2.29. Let P be a dg operad over k and A a P -algebra. Then we have an equivalence

UA-Alg ' P -AlgA/

between the category of UA-algebras and the category of P -algebras under A.

Proof. We shall describe the correspondence between the objects of the two categories; for further
details, see [GJ], [Man01] or [Fre09]. Let B be a UA-algebra and let UA denote free UA-algebra
functor, so that we are provided a map UAB → B. To endow B with a P -algebra structure we
simply pull back across the canonical map P → UA given in Remark 2.28. Moreover, in the case
j = 0, inside UAB, we find the term UA(0) = A as per Example 2.27. Thus we have a map
A→ B, which one can check is a P -algebra map.
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Now suppose that B is instead a P -algebra equipped with a P -algebra map A→ B. We wish to
construct a map UAB → B. We have that UA(j)⊗Σj

B⊗j is given by the following coequalizer:⊕
i≥0

P (i+ j)⊗Σi×Σj
(PA)⊗i ⊗B⊗j ⇒

⊕
i≥0

P (i+ j)⊗Σi×Σj
A⊗i ⊗B⊗j → UA(j)⊗Σj

B⊗j

Via the map A→ B, from the first term, we may pass to⊕
i≥0

P (i+ j)⊗Σi×Σj
(PB)⊗i ⊗B⊗j

and from the second, to ⊕
i≥0

P (i+ j)⊗Σi×Σj
B⊗i ⊗B⊗j

which we note is simply PB. Moreover, upon taking the coequalizer, we now simply get B, so that
we have an induced map UA(j)⊗Σj

B⊗j → B. Summing these up over j ≥ 0, we get the desired
map UAB → B. Finally, one can check that this map does indeed satisfy the properties required in
order to provide a UA-algebra structure for B, as desired.

Example 2.30. (i) An easy check of the definitions and universal properties demonstrates that the
enveloping operad UP (0) of the initial P -algebra P (0) is simply P ; that is, for each j ≥ 0, we have
UP (0)(j) = P (j). This is what one ought to expect in view of Proposition 2.29 and the fact that
P (0) is initial. .

(ii) In the case of a free algebra PX , in forming the enveloping operad, we can simply generate
onX rather than PX and dispense with the relations imposed by the parallel maps in the coequalizer,
so that:

UPX(j) ∼=
⊕
i≥0

P (i+ j)⊗Σi
X⊗i

Note that we then have

UPXY ∼=
⊕
i≥0

P (i+ j)⊗Σi×Σj
X⊗i ⊗ Y ⊗j

which, by Proposition 2.20 is simply PX qPY , as we ought to expect in view of Proposition 2.29.

Proposition 2.31. Let P be a dg operad over k and let A be a P -algebra. Given any dg module X ,

we have a natural, in X , isomorphism of P -algebras under A as follows:

AqPX ∼= UAX
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The intuition here is that UA(j) incorporates the relations needed to preserve the algebra
structure of A, and no relations need be imposed for the free algebra PX .

Proof. We present two arguments. On the one hand, we can replace the general coequalizer model
for coproducts in Proposition 2.18 with a coequalizer of a pair of maps from P(PA ⊗ X) to
P(A ⊕ X), and then do a comparison of universal properties. This will demonstrate that we
have an isomorphism of P -algebras, and then we can also compare the canonical maps from A.
Alternatively, we can argue as follows. By Proposition 2.29 and its proof, the right hand side, being
the free UA-algebra on X , is the free P -algebra under A on X . On the other hand, we can construct
this left adjoint in steps:

P -AlgA/ P -Alg DGk
> >

Here the two right adjoints are forgetful, the first left adjoint freely constructs PX , and the
second then freely constructs AqPX , giving the desired natural isomorphism.

Next, we describe a well-known concrete model for the enveloping operads of cell algebras. Let
P be a dg operad over k and let A be a cell P -algebra. Let also

A0 → A1 → A2 → · · ·

be a cell filtration of A and fix some choices M1,M2, . . . for the dg modules which appear in
the attachment squares above. For each n ≥ 0, let Nn = ⊕i≤nMi, where N0 = 0, and let also
N = ⊕i≥1Mi. Then the models, for which we refer to [Man01], for the UAn(j) and UA(j), for
n, j ≥ 0, are as follows.

Proposition 2.32. Let P be a dg operad over k. Given the cell P -algebra A and its skeleta An as

above, for each n, j ≥ 0, we have that, as a k[Σj]-module:

UAn(j) =
⊕
i≥0

P (i+ j)⊗Σi
(Nn[1])⊗i

Similarly, for each j ≥ 0, we have that, as a k[Σj]-module:

UA(j) =
⊕
i≥0

P (i+ j)⊗Σi
(N [1])⊗i
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2.5 The Homotopy Theory of Operads and Their Algebras

In this section, we consider the homotopy theories, in the sense of Quillen model structures, of
operads and their algebras. First, we recall model structures on dg operads over k. In this section,
we shall let Opk denote the category of dg operads over k, which is to say that Opk denotes either
of the two categories Op(Chk) and Op(Cok), for both of which all that is said below will make
sense. In fact, we do not have a model structure on all of Opk. Instead, we shall restrict to two
possible cases. We say that an operad P is reduced if P (0) = k[0], and moreover we require that
maps of reduced operads be the identity in arity zero, which leads us to the category Opr

k of reduced
operads. On the other hand, we say that an operad P is null-reduced if P (0) = 0, and of course
maps between null-reduced operads will necessarily be the identity in arity zero, which leads us to
the category Opnr

k of null-reduced operads.

Proposition 2.33. The categories Opr
k and Opnr

k of reduced and null-reduced operads, respectively,

admit a Quillen model structure where the weak equivalences and fibrations are, respectively, the

levelwise quasi-isomorphisms and levelwise epimorphisms.

Proof. See [BM03] for the case of reduced operads and [Hin97], together with [Hin03], for the
case of null-reduced operads. In either case, the idea is to pull back the projective model structure
on dg modules across forgetful functors.

As such, given an operad which is reduced or null-reduced, via the above model structure, we
can speak of the cofibrancy of this operad.

Now let us consider model structures on algebras over operads. We of course would like the
weak equivalences to simply be maps whose underlying dg module map is a quasi-isomorphism, as
the weak equivalences of algebras ought to simply be the weak equivalences of dg modules which
respect the algebraic structure that is now present. To get an actual model structure with these weak
equivalences, the idea is once to more pull back the projective model structure on dg modules across
the obvious forgetful functor. This leads us to the following definition.

Definition 2.34. Let P be a dg operad over k. We say that P is admissible if P -Alg admits a model
structure where the weak equivalences and fibrations are the quasi-isomorphisms and degreewise
epimorphisms, respectively.

Proposition 2.35. Let P be a dg operad over k. If P is a cofibrant reduced operad or a cofibrant

null-reduced operad, it is admissible.

Proof. See [BM03] for the reduced case and [Hin01] for the null-reduced case.
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Recall the adjoints f∗ to operad algebra pull back maps in Proposition 2.15.

Proposition 2.36. Let P and Q be dg operads over k, f : Q → P an operad map and

P -Alg Q -Alg
f ∗

f∗

⊥

the induced adjunction. If P and Q are reduced and admissible, or null-reduced and admissible,

this adjunction is a Quillen adjunction.

Proof. See [BM03] for the reduced case and [Hin01] for the null-reduced case.

In fact, we will be interested in a weakening of model structures, to semi-model structures, and
a corresponding weakening of admissibility to semi-admissibility. We recall first the definition of
semi-model categories. In short, a semi-model category is (almost) exactly a model category except
that the factorization →=

∼
↪→� and the lifting property (

∼
↪→) � (�) (which is to say, those that

involve trivial cofibrations) are required to hold only in the case where the source is cofibrant.

Definition 2.37. A Quillen semi-model category is a category M, together with three specified
classes of morphisms,W , C and F , such that the following hold:

• M is bicomplete.

• The classW satisfies 2-out-of-3.

• The classesW , C and F are closed under retracts.

Given the above, we note that, by the first property, M must possess both an initial object ∅ and a
final object ∗. We then define cofibrant objects and fibrant objects as per usual, where we note that
the notions are invariant under choices of initial and final objects as they lead to maps which are
retracts of one another. Having made these definitions, we also require the following (a prefix of
“cof” means that the object is required to be cofibrant):

• We have the following liftings for maps A→ B, X → Y :

cof A

B

X

Y

∼ �
A

B

X

Y

∼�

• We have the following factorizations for a map A→ B:

cof A
∼
↪→ ·� B A ↪→ ·

∼
� B
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Finally, we add in:

• Fibrations are closed under composition, products and base change.

Remark 2.38. Similar notions of semi-model categories have been considered by White [Whi17],
Spitzweck [Spi01] and Fresse [Fre09]. ||

With this definition, one can run through the the standard arguments for model categories
to verify that we can still perform analogous constructions of the derived category and derived
functors, with appropriate modifications. In particular, one can still construct the derived category
via bifibrant replacements – see Theorem 2.13 in [Man01], and moreover, as for derived functors,
the relevant result which we will need later is the following.

Proposition 2.39. Let L : E→ M and R : M→ E be left and right adjoints between a semi-model

category E and a model category M. Then we have the following:

(i) If L preserves cofibrations between cofibrant objects and R preserves fibrations, then the

left derived functor of L and the right derived functor of R exist and are adjoint. Moreover,

L converts weak equivalences between cofibrant objects to weak equivalences, and the

restriction of the left derived functor of L to the cofibrant objects is naturally isomorphic to

the derived functor of the restriction of L.

(ii) Suppose that (i) holds and in addition for any cofibrant object A in E and any fibrant object

Y in M , a map A→ RY is a weak equivalence if and only if the adjoint LA→ Y is a weak

equivalence. Then the left derived functor of L and the right derived functor of R are inverse

equivalences.

Moreover, we also have the following:

(iii) The hypothesis in (i) above is equivalent to each of the following:

– L preserves cofibrations between cofibrant objects and acyclic cofibrations between

cofibrant objects.

– R preserves fibrations and acyclic fibrations.

Proof. These follow mostly by the standard model category theoretic arguments. See Theorems
2.14 and 2.15 in [Man01].

We can now define semi-admissibility for dg operads.

Definition 2.40. Given a dg operad P over k, we say that it is semi-admissible if P -Alg admits a
semi-model structure where the weak equivalences and fibrations are the quasi-isomorphisms and
degreewise epimorphisms, respectively.
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We shall now give criteria for the admissibility and semi-admissibility of a dg operad over k,
due to Mandell in [Man01] and Hinich in [Hin97].

Proposition 2.41. Let P be a dg operad over k, P the associated free algebra functor. Then we

have the following:

(i) If, for any P -algebra A, the natural map

A→ AqP(Dn)

where Dn is a disk complex, is a quasi-isomorphism, P is admissible.

(ii) If the above condition holds for any cell P -algebra, P is semi-admissible.

Moreover, in either case, the cofibrations are exactly the retracts of cell maps.

Proof. Let us define the weak equivalences, fibrations and cofibrations as we must. Given a map
f : A→ B of P -algebras, we set the following:

• We say that it is a weak equivalence if it is a quasi-isomorphism.

• We say that it is a fibration if it is a degreewise epimorphism.

• We say that it is a cofibration if it has the left lifting property w.r.t those maps which are both
weak equivalences and fibrations.

Now we proceed to verify the (semi-)model structure axioms. We know by Proposition 2.16 that
P -Alg is bicomplete. Moreover, 2-out-of-3 for weak equivalences is clear, just as in the case of
dg modules. Closure under retracts for weak equivalences and fibrations once again follows from
the analogous fact in the case of dg modules, and in the case of cofibrations follows from the fact
that any class of morphisms defined by a lifting property is always closed under retracts. Thus, it
remains to verify the lifting and factorization axioms.

LetW , C and F denote the classes of weak equivalences, cofibrations and fibrations. We shall
first demonstrate the factorization axioms. First we demonstrate the half of the axiom which says
that any map can be factored into a cofibration followed by a trivial fibration. To see this, consider
an arbitrary P -algebra map f : A → B and note that, by the standard small object argument,
we have that we can factor f as p ◦ i where i : A → C is a cell map and p : C → B has the
right lifting property w.r.t all maps of the form PM → PCM where M is a dg module which is
degreewise free and has zero differentials. Now, any cell map is necessarily a cofibration (as the
maps PM → PCM are cofibrations by adjointness and cofibrations are closed under pushouts and
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transfinite compositions as this holds for all classes of morphisms defined by a left lifting property).
Thus i is a cofibration. Moreover, we claim that p is a trivial fibration. To see this, note that, by
adjointness, as a dg map, p has the right lifting property with respect to all dg maps of the form
M → CM . These maps, in the cases where M is a sphere complex reduce to the maps Sn−1 → Dn,
which constitute the generating cofibrations in the standard cofibrantly generated projective model
structure on dg modules. It follows that p is a trivial fibration of dg modules, and so of P -algebras.

Now, before verifying the remaining model structure axioms, we demonstrate that the cofi-
brations are exactly the retracts of cell maps. For a dg module M which is degreewise free and
has zero differentials, by adjointness, the map PM → BCM has the left lifting property with
respect to trivial fibrations (as above, in the cases where M is a sphere complex, these maps
reduce to the generating cofibrations in the standard cofibrantly generated projective model struc-
ture on dg modules; moreover, for more general M , since M is degreewise free and has zero
differentials, these maps are coproducts of the maps Sn−1 → Dn). Since left lifting properties
are closed under retracts, pushouts and transfinite compositions, we have that all retracts of cell
maps have the left lifting property against trivial fibrations, and so are cofibrations, by definition
of cofibrations. Next, given a cofibration f : A → B. As above, we may factor it as f = pi

where i is a cell map and p is a trivial fibration. As f is a cofibration, we have f � p, and so,
by the standard retract argument, f must be a retract of i and thus is a retract of a cell map, as desired.

Next, note that if A is cofibrant, because, as above, cofibrations are retracts of cell maps, A must
be a retract of a cell algebra and moreover, the map A→ A q P(Dn) must be a retract of a map
A′ → A′ qP(Dn) where A′ is cell. Thus, the condition supposed in (ii) in fact holds not only for
cell algebras, but for all cofibrant algebras.

Now let us consider the half of the factorization axiom which says that any map can be factored
into a trivial cofibration followed by a fibration; the following proof works in all cases in the case of
(i) and for those cases in which the source is cofibrant in the case of (ii). Once again, let f : A→ B

be an arbitrary P -algebra map. We can factor f as follows:

A
i−→ Aq

(∐
b∈B

P(Ddeg(b))

)
p−→ B

Here i is the canonical inclusion of A. On the other hand, p, on the summand A is the given map f ,
while on a summand P(Ddeg(b)), is the map induced by the dg map Ddeg(b) → B which sends the
generator in degree deg(b) to b. It is clear then that p is fibration. Moreover, i is a cofibration as it is
the coproduct of the identity on A and the cell maps P (0)→ P(Ddeg(b)). Finally, i is also a weak
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equivalence. To see this, choose some ordering (according to some ordinal) on the elements b ∈ B
and write the coproduct as a composition:

A→ AqP(Dn1)→ AqP(Dn1)qP(Dn2)→ · · ·

Each map in this cotower is a quasi-isomorphism by the assumption in the proposition statement. If
the cotower is finite, the resulting composite is of course a quasi-isomorphism. If it is infinite, the
composite is once again a quasi-isomorphism because the forgetful functor to dg modules commutes
with filtered colimits as per Proposition 2.17 and the result of course holds in dg modules.

Finally, it remains to verify the lifting properties. That C�W∩F is immediate by the definition
of cofibrations. Thus we need to demonstrate thatW ∩ C � F ; again, the following proof works in
all cases in the case of (i) and for those cases in which the source is cofibrant in the case of (ii). Let
f : A→ B be a trivial cofibration. As above, factor f as follows:

A
i−→ Aq

(∐
b∈B

P(Ddeg(b))

)
p−→ B

By 2-out-of-3, p is now not only a fibration but a trivial fibration. Since, C�W ∩F , we have f � p.
Thus, by the standard retract argument, f is a retract of i. Since the identity on A obviously has the
left lifting property against fibrations, and, by adjointness so do the maps P (0)→ P(Ddeg(b)) (note
that P (0) is the free P -algebra on the zero complex), we have that f has the left lifting property
against fibrations, as such a property is closed under coproducts and retracts.

This completes the proof, except that in case (ii), we also need to verify that the fibrations
are closed under composition, products and base change, which is not automatic in semi-model
categories. This holds because the forgetful functor to dg modules commutes with limits and
because fibrations of algebras are detected at the dg module level.

2.6 Operadic (De)suspensions

We now discuss notions of operadic suspension and desuspension, which will be important for
us when we discuss stabilizations of E∞ operads. We shall need to explicitly distinguish the case of
chain complexes and cochain complexes, i.e., of chain operads and cochain operads.

If X is a chain complex and n ∈ Z, we let X[n] be the chain complex where X[n]d = Xn−d.
Note that we do not change the sign of any differential.
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Definition 2.42. Given a chain operad P over k, it’s operadic suspension ΣP is defined by setting

ΣP := P ⊗k End k[1]

where (P⊗End k[1])(n) = P (n)⊗End k[1](n), the symmetric group Σn acts diagonally, the identity
is the diagonal one and the composition structure maps are those which permute tensor factors and
then apply the composition maps for P and End k[1].

Remark 2.43. Intuition for the operadic suspension may be provided as follows. The chain complex
k[1] can be thought of as the k-linear 1-sphere. The endomorphism operad on it then as a dg operadic
analogue of the 1-sphere, and so P ⊗ End k[1] as a smash product with an analogue of the 1-sphere.
||

Note that we have

End k[1](n)d = {maps k[1]⊗n → k[1] in Grk of degree d}

where Grk denotes the category of Z-graded k-modules. Thus End k[1](n)d is zero if d 6= 1− n and
is k otherwise, so that End k[1](n) = k[1− n]. Thus we have:

(ΣP )(n) ∼= P (n)⊗ k[1− n] ∼= P (n)[1− n]

Next, we consider operadic desuspensions of chain operads.

Definition 2.44. Given a chain operad P over k, it’s operadic desuspension ΣP is defined by setting

Σ−1P := P ⊗k End k[−1]

where (P ⊗ End k[−1])(n) = P (n) ⊗ End k[−1](n), the symmetric group Σn acts diagonally, the
identity is the diagonal one and the composition structure maps are those which permute tensor
factors and then apply the composition maps for P and End k[−1].

Remark 2.45. The intuition now is of course that we think of k[−1] and End k[−1] as analogues of
the (−1)-sphere. ||

In this case, we find that:

(Σ−1P )(n) ∼= P (n)⊗k k[n− 1] ∼= P (n)[n− 1]

Now we consider the case of cochain complexes and cochain operads. In this case, the roles of
k[1] and k[−1] are swapped. If X is a cochain complex and n ∈ Z, we again let X[n] be the cochain
complex where X[n]d = Xn−d. Note again that we do not change the sign of any differential.
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Definition 2.46. Given a cochain operad P over k, it’s operadic suspension ΣP is defined by setting

ΣP := P ⊗k End k[−1]

where (P ⊗ End k[−1])(n) = P (n) ⊗ End k[−1](n), the symmetric group Σn acts diagonally, the
identity is the diagonal one and the composition structure maps are those which permute tensor
factors and then apply the composition maps for P and End k[−1].

Definition 2.47. Given a cochain operad P over k, it’s operadic desuspension Σ−1P is defined by
setting

Σ−1P := P ⊗k End k[1]

where (P ⊗ End k[−1])(n) = P (n) ⊗ End k[1](n), the symmetric group Σn acts diagonally, the
identity is the diagonal one and the composition structure maps are those which permute tensor
factors and then apply the composition maps for P and End k[1].

Earlier, we discussed a reindexing operator (−)† between chain and cochain complexes. We
now discuss how this construction behaves with respect to operadic (de)suspensions.

Proposition 2.48. Let P be a chain or cochain operad over k. Then we have:

(ΣP )† = Σ(P †) and (Σ−1P )† = Σ−1(P †)

Proof. An easy direct check one degree at a time. Note that, for either identity, the notion of
suspension on one side is that for chain operads, while on the other is for cochain operads.

2.7 On (Co)algebras Over (De)suspended Operads

Let P be a dg operad over k. We now wish to discuss the relation between (co)algebra structures
over P and (co)algebra structures over the (de)suspensions ΣrP , where r ∈ Z. Once again, we
must explicitly distinguish between the chain and cochain cases.

Proposition 2.49. Let P be a chain operad over k. Then, for each r ∈ Z, we have functors as

follows:

P -Alg
(·)[r]−→ ΣrP -Alg P -Coalg

(·)[−r]−→ ΣrP -Coalg

On the other hand, if P is a cochain operad over k, then, we have functors as follows:

P -Alg
(·)[−r]−→ ΣrP -Alg P -Coalg

(·)[r]−→ ΣrP -Coalg
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Proof. We first consider the chain case. Let X be an algebra over P . We wish to show that X[r] is
an algebra over ΣrP . To do so, we must construct maps:

(ΣrP )(n)⊗Σn X[r]⊗n → X[r]

These are as follows:

(ΣrP )(n)⊗Σn X[r]⊗n = P (n)[r − rn]⊗Σn X
⊗n[rn] = (P (n)⊗Σn X

⊗n)[r]→ X[r]

Now suppose that X is a coalgebra over P . We wish to show that X[−r] is a coalgebra over ΣrP .
To do so, we must construct maps:

(ΣrP (n))⊗Σn X[−r]→ X[−r]⊗n

These are as follows:

(ΣrP )(n)⊗Σn X[−r] = P (n)[r − rn]⊗Σn X[−r] = (P (n)⊗Σn X)[−rn]→ X⊗n[−rn]

= X[−r]⊗n

Now we consider the cochain case. Let X be an algebra over P . We wish to show that X[−r] is
an algebra over ΣrP . To do so, we must construct maps:

(ΣrP )(n)⊗Σn X[−r]⊗n → X[−r]

These are as follows:

(ΣrP )(n)⊗Σn X[−r]⊗n = P (n)[rn− r]⊗Σn X
⊗n[−rn] = (P (n)⊗Σn X

⊗n)[−r]→ X[−r]

Finally, suppose that X is a coalgebra over P . We wish to show that X[r] is a coalgebra over ΣrP .
To do so, we must construct maps:

(ΣrP (n))⊗Σn X[r]→ X[r]⊗n

These are as follows:

(ΣrP )(n)⊗Σn X[r] = P (n)[rn− r]⊗Σn X[r] = (P (n)⊗Σn X)[rn]→ X⊗n[rn] = X[r]⊗n
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Now let us discuss free algebras over (de)suspended operads. Given a dg operad P , and a
(de)suspension ΣrP , we shall let ΣrP denote the monad and free algebra functor associated to ΣrP .
Note though that we are not (de)suspending the monad, but rather the operad.

Proposition 2.50. Let P denote a chain operad over k. Then, for a chain complex X , we have:

(ΣrP)X = P(X[−r])[r]

On the other hand, if P is a cochain operad over k, for a cochain complex X , we have:

(ΣrP)X = P(X[r])[−r]

Proof. We first consider the chain case. We have:

(ΣrP)X =
⊕
n≥0

(ΣrP )(n)⊗Σn X
⊗n

=
⊕
n≥0

P (n)[r − rn]⊗Σn X
⊗n

=
⊕
n≥0

(P (n)⊗Σn X
⊗n[−rn])[r]

=

(⊕
n≥0

P (n)⊗Σn X[−r]⊗n
)

[r]

= P(X[−r])[r]

Now we consider the cochain case. We have that:

(ΣrP)X =
⊕
n≥0

(ΣrP )(n)⊗Σn X
⊗n

=
⊕
n≥0

P (n)[rn− r]⊗Σn X
⊗n

=
⊕
n≥0

(P (n)⊗Σn X
⊗n[rn])[−r]

=

(⊕
n≥0

P (n)⊗Σn X[r]⊗n

)
[−r]

= P(X[r])[−r]
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CHAPTER 3

E∞ Operads and p-Adic Homotopy Types

In this chapter, we shall introduce a particular class of dg operads, the E∞ operads. The ground
field will now be taken to be Fp for an unspecified but fixed prime p.

3.1 E∞ Operads

We begin with the definition of E∞ operads.

Definition 3.1. A chain operad P over Fp is said to be an E∞ operad if, for each n ≥ 0, we have
that P (n) is zero in negative degrees, is quasi-isomorphic to Fp[0] and is Fp[Σn]-free; if P is a
cochain operad, we use the same term E∞ operad for the same condition but with negative degrees
replaced by positive degrees.

There exist many models of E∞ operads over Fp. We will now introduce two models, the former
of which, the Barratt-Eccles operad, will usually be our favoured one. In spaces, by which we mean
simplicial sets, there exists an operad Espc where:

Espc(n) = EΣn

Here EΣn denotes the total space of the universal Σn-bundle; in particular, in simplicial degree
d, we have that (EΣn)d = Σ

×(d+1)
n . This is the operad originally defined by Barratt and Eccles

in [BE74]. We are interested in dg operads and so we take chains on this operad.

Definition 3.2. The Barratt-Eccles chain operad, denoted E , is the dg operad over Fp defined by:

E(n) = C•(EΣn)

Moreover, the Barratt-Eccles cochain operad is then the operad E †.

Here C• denotes normalized chains, and we get a dg operad upon taking these because the
normalized chains functor is symmetric monoidal. As in this case, all other (co)chains in this work
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shall be normalized. The chains here are of course taken with coefficients in Fp, so that we get a dg
operad over Fp. In defining the Barratt-Eccles cochain operad, we are employing the reindexing
operator in Definition 2.7. Note that the Barratt-Eccles chain operad is concentrated in non-negative
degrees, while the Barratt-Eccles cochain operad is concentrated in non-positive degrees.

Proposition 3.3. The Barratt-Eccles chain and cochain operads are E∞ operads.

Proof. We shall demonstrate the chain case, from which the cochain case of course obviously
follows. The operad E is clearly concentrated in non-negative degrees. Moreover, as is standard,
each EΣn is contractible, so that we have, for each n ≥ 0, H•E(n) = H•(EΣn) = Fp[0], as desired.
Finally, we can show that each E(n) is free over Fp[Σn]. To see this, consider E(n)d, which is the
free Fp-module on tuples (σ0, . . . , σd) of permutations of (n) = {1, . . . , n} where no two adjacent
permutations coincide. We want an Fp[Σn]-basis of this module. The symmetric group Σn acts,
on the right, freely on the collection of such tuples. Let t1, . . . , tr be representatives of each orbit
of this action. We claim that the ti form an Fp[Σn]-basis. To see this, first consider some linear
combination:

t1

(∑
aiσ

1
i

)
+ · · ·+ tr

(∑
ajσ

r
j

)
Upon expanding out each of the summands

t1

(∑
aiσ

1
i

)
, . . . , tr

(∑
ajσ

r
i

)
no cancellations can occur between expansions as no two terms which come from different expan-
sions can coincide (since the resulting tuples will lie in distinct orbits of the action by Σn), and no
two terms from within a single expansion can coincide since, as already noted, the action of Σn on
the the tuples (σ0, . . . , σd) is free. Thus, we have Fp[Σn]-linear independence of the ti. It remains to
show that these span all of E(n)d. Consider some arbitrary term a1u1 + · · ·+ asus in E(n)d, where
the ai ∈ Fp and the ui are tuples of permutations of (n). Each ui lies in some orbit of the action of
Σn on the tuples, say that of ti, so that ui = tiσ for some unique (due to freeness) σ ∈ Σn. Upon
collecting like terms together, we will have an expression of this arbitrary term as an Fp[Σn]-linear
combination of the ti, which completes the proof.

We now consider the homotopy theory of E-algebras and E †-algebras. Recall the notion of
admissibility for operads as in Definition 2.34.

Proposition 3.4. The Barrat-Eccles chain and cochain operads, E and E †, are admissible.

Proof. The case of E is demonstrated in [BF04] and the exact same proof works also in the cochain
case. The crucial point behind the argument is the existence of a diagonal map E → E ⊗ E , which

31



arises from the fact that E is constructed by taking chains on an operad in spaces and a diagonal
exists at the level of spaces.

Thus, the categories E -Alg and E †-Alg admit Quillen model structures in which the weak
equivalences and fibrations are those maps whose underlying dg maps are quasi-isomorphisms and
degreewise epimorphisms, respectively.

Before moving on, we now describe another model for the E∞ operad, which will be useful for
us in constructing the E∞ operad action on cochains on spaces, and which was defined originally
by McClure and Smith in [McC03], so that we call it the McClure-Smith operad (see also [BF04],
where it is called the surjection operad). In order to define this operad, we require some prelimi-
naries. For each integer n ≥ 0, let (n) denote the set {1, . . . , n}, where (0) := ∅. Given a set map
f : (m)→ (n), we will often view it as, and denote it by, the indexed sequence (f(1), . . . , f(m)).

Suppose given n ≥ 0 and a surjection f : (m)→ (n). Say that f is degenerate if there exists
some l ∈ (m) such that f(l) = f(l + 1), and otherwise non-degenerate; that is, call f degenerate
exactly when the sequence (f(1), . . . , f(m)) contains two equal adjacent entries. For each n ≥ 0,
let S(n) be the graded Fp-module freely generated by maps f : (−) → (n), where, if the source
is (m), the assigned degree is m − n. Let N(n) denote the sub graded module generated by the
non-surjective maps and D(n) the sub graded module generated by the degenerate surjections. For
each n ≥ 0, set:

M (n) := S(n)/(N(n) + D(n))

Remark 3.5. Taken over n ≥ 0, the above graded modules will be the underlying graded modules
of the McClure-Smith chain operad. It is clear that M (n) is the graded Fp-module freely generated
by the non-degenerate surjections f : (−)→ (n), where, as above, if the source is (m), the assigned
degree is m − n. Moreover, M (n)d is zero if d < 0, and otherwise is freely generated by the
non-degenerate surjections (n+ d)→ (n). ||

We now endow the M (n) with differentials. To keep track of signs, given a surjection f : (m)→
(n) and a i ∈ (m), we set:

τf (i) = #{j ∈ (m) | f(j) < f(i) or f(j) = f(i) and j ≤ i}

The differential of M (n) is then defined as follows. Given a non-degenerate surjection f : (m)→
(n), denoted also by (f(1), . . . , f(m)), we set:

∂(f) =
m∑
i=1

(−1)τf (i)−f(i)(f(1), . . . , f̂(i), . . . , f(m))
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Here, for i ∈ (m), the term (f(1), . . . , f̂(i), . . . , f(m)) on the righthand side denotes the the
map (m − 1) → (n) whose images are, in order, exactly those that appear in the sequence
(f(1), . . . , f̂(i), . . . , f(m)); if, upon omitting f(i), this resulting map is no longer a surjection or is
degenerate, that term is taken to be zero. The verification that this indeed defines a well-defined
differential may be found in [McC03].

It remains to describe the operadic structure data. The identity in M (1) is the identity on (1) and
the action of Σn on M (n) is by postcomposition of surjections onto (n). As for the composition
maps, we shall specify this in the form of maps ◦r : M (n) ⊗ M (m) → M (n + m − 1), for
r = 1, . . . , n, as per Remark 2.6. Let f : (N) → (n) and g : (M) → (m) be non-degenerate
surjections. We need to define a composite f ◦r g, which will be zero or a non-degenerate surjection
(N +M − 1)→ (n+m− 1). This composite can be described algorithmically as follows:

• In the sequence (f(1), . . . , f(N)), let t be the number of occurences of r. Let these occurences
be given by f(i1), . . . , f(it).

• Fix a choice of t+ 1 entries 1 = j0 ≤ j1 ≤ · · · ≤ jt−1 ≤ jt = M inside (M), where the first
is 1 and the final M . In the sequence (f(1), . . . , f(N)), replace f(i1) by the subsequence
(g(j0), . . . , g(j1)), f(i2) by the subsequence (g(j1), . . . , g(j2)), and so on, with the final re-
placement being that of f(it) by the subsequence (g(jt−1), . . . , g(jt)). Note that the resulting
sequence has length N − t+M + t− 1 = N +M − 1. Now alter this sequence as follows:
(i) increase each entry g(j) which has been entered by r − 1 (ii) increase those entries f(i)

which remain and where f(i) > r by M − 1.

• The resulting sequence gives a map f(j0,...,jt) : (N + M − 1) → (n + m − 1); if it is not a
surjection or is a degenerate surjection, replace it with zero.

• The composite f ◦r g is then the sum of all the resulting maps f(j0,...,jt), the sum being taken
over the tuples (j0, j1, . . . jt).

The verification that the above algorithmic procedure yields well-defined maps M (n)⊗M (m)→
M (n+m− 1) for r = 1, . . . , n, and yields an operad structure on the chain complexes M (n), may
be found in [BF04]. As per Remark 2.6, the composition maps in the form

M (n)⊗M (k1)⊗ · · · ⊗M (kn)→M (k1 + · · · kn)

can be computed iteratively by applying, when given f ⊗ g1 ⊗ · · · ⊗ gn, the above algorithmic
procedure first to compute f ◦n gn, and then to compute (f ◦n gn) ◦n−1 gn−1, and so on.
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Definition 3.6. The McClure-Smith chain operad is the operad consisting of the chain complexes
M (n) and structural data specified above. Moreover, the McClure-Smith cochain operad is then the
operad M †.

In defining the cochain operad, we are making use of the reindexing operator in Definition 2.7.

Proposition 3.7. The McClure-Smith chain and cochain operads are E∞ operads.

Proof. We shall demonstrate the chain case, from which the cochain case of course obviously
follows. For each n ≥ 0, M (n) is concentrated in non-negative degrees because there cannot be
a surjection (m) → (n) if m < n. Moreover, that M (n), for each n ≥ 0, has the homology of a
point is proven in [McC03]. Thus we need only show that M (n), for each n ≥ 0, is Fp[Σn]-free.
Consider M (n)d, which is the free Fp-module on non-degenerate surjections (n+ d)→ (n). We
want an Fp[Σn]-basis of this module. Consider all partitions, denoted by say A, of (n+ d) which
have exactly n pieces and which are such that no piece contains two adjacent entries. For each
such partition A, choose any surjection fA : (n+ d)→ (n) which identifies exactly those elements
which lie within a single piece of the partition. We claim that the fA form an Fp[Σn]-basis. To see
this, first consider some linear combination:

fA1

(∑
aiσ
A1
i

)
+ · · ·+ fAr

(∑
ajσ

Ar
j

)
Upon expanding out each of the summands

fA1

(∑
aiσ
A1
i

)
, . . . , fAr

(∑
ajσ

Ar
i

)
no cancellations can occur between expansions as no two terms which come from different expan-
sions can coincide (since if two surjections coincide, the two partitions they induce on (n+ d) must
coincide), and no two terms from within a single expansion can coincide since the action of Σn

on the surjections (n+ d)→ (n) is free. Thus, we have Fp[Σn]-linear independence of the fA. It
remains to show that these span all ofM(n)d. Consider an arbitrary element a1f1 + · · · + arfr

where the ai ∈ Fp and the fi are non-degenerate surjections (n + d) → (n). Each fi induces
some partition, say Ai, on (n + d), and it is then clear that f = fAi

σ for some unique σ ∈ Σn.
Upon collecting like terms together, we will have an expression of our arbitrary element as an
Fp[Σn]-linear combination of the fA, which completes the proof.

Finally, we now describe a relation between the Barratt-Eccles and McClure smith operads. The
two chain operads are related via a map:

TR : E →M
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This map can be described algorithmically as follows:

• Consider some tuple (ρ0, . . . , ρd) ∈ E(n)d = Cd(EΣn), where the ρi are permutations of (n).

• Let r0, . . . , rd be any positive integers such that r0 + · · · + rd = n + d. Note that each ri
is necessarily ≤ n; moreover, each r0 + · · · + ri is necessarily ≤ n + i. Form a sequence
(ρ0(1), . . . , ρ0(r0)) of length r0 using the first r0 entries of the sequence given by ρ0. Next,
form a sequence of length r1 using the first r1 entries of the sequence given by ρ1, but skipping
any entry which has already occured as a non-final entry of a previous sequence (there are
r0 − 1 such entries, and we have n− (r0 − 1)− r1 = n− r0 − r1 + 1 ≥ 0). Now repeat this
process to construct sequences of length r2, . . . , rd.

• Concatenate the d+ 1 sequences constructed in the previous point to construct an indexed
sequence of length r0 + · · · + rd = n + d. This yields a map f(r0,...,rd) : (n + d) → (n). If
this map is not a surjection or is a non-degenerate surjection, replace it by zero.

• The image of (ρ0, . . . , ρd) under TRn is the sum
∑
f(r0,...,rd) over the tuples (r0, . . . , rd).

The verification that the above algorithmic procedure defines a well-defined map of operads may be
found in [BF04]. Moreover, in the same work, it is shown that the map TR is onto in each operadic
degree. Thus we see that the McClure-Smith chain operad M is a quotient of the Barratt-Eccles
chain operad E .

Finally, upon reindexing, we also get a map between the corresponding cochain operads:

TR† : E † →M †

This map is of course also onto in each operadic degree, so that the McClure-Smith cochain operad
M is a quotient of the Barratt-Eccles cochain operad E .

3.2 Products and Operations for the (Co)homologies of E∞ DG Algebras

The algebraic structure encoded by an E∞ operad is that of a homotopy coherent commutative,
associative and unital multiplication, where the binary multiplication itself is encoded in the arity 2

part of the operad. Given an algebra A over an E∞ operad, if we take the (co)homology of A, in
a sense nullifying the higher homotopies, setting them to be the identities, we shall show that we
get a multiplication which is graded-commutative, associative and unital in the traditional sense.
Moreover, this product is not all the structure inherited by the (co)homology of A. There are also
operations, denoted Qs in the chain case and P s in the cochain case, where s ∈ Z and where Qs
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and P s are of degree s. These operations are very much a characteristic p phenomenon, as they
arise from generalized power maps x 7→ xp, which are of course linear only in characteristic p. In
discussing the products and these operations, we shall use the Barratt-Eccles chain and cochain
operads as our models of the E∞ operads. All the theory that we develop, however, could also be
developed with the McClure-Smith chain and cochain operads.

Let us first consider the case of the chain operad E . As mentioned above, the binary multi-
plication on the (co)homology of an E-algebra will arise, unsurprisingly, from the arity 2 part
of E . For this reason, we first describe in detail the chain complex E(2) and set in place some
convenient notations. By definition, we have that E(2) = C•(EΣ2), where we recall that the chains
are normalized. In degree d ≥ 0, we have that (EΣ2)d = Σ

×(d+1)
2 . Moreover, the degenerate

simplices in EΣ2 correspond to those tuples of permutations which have repeated adjacent entries.
Thus, if we let τ denote the only non-trivial permutation of (2) = {1, 2}, we find that, for d ≥ 0:

(EΣ2)nd
d = {(1, τ, 1, . . . ), (τ, 1, τ, . . . )}

Here “nd” indicates “non-degenerate”. Henceforth, for d ≥ 0, we shall always let ed denote the
non-degenerate d-dimensional simplex (1, τ, 1, . . . ) of EΣ2; the simplex (τ, 1, τ, . . . ) of EΣ2 is then
edτ . Thus, in each non-negative degree d ≥ 0, we have that E(2)d = Fp{ed, edτ}. Moreover, the
differential E(2)d → E(2)d−1 arises by making successive omissions of the entries of a given tuple.
On the non-degenerate simplices (1, τ, 1, . . . ), (τ, 1, τ, . . . ), only the omission of the first and final
entries result in a non-degenerate simplex, and so, we see that:

∂(ed) =

{
ed−1(τ − 1) d is odd
ed−1(τ + 1) d is even

That is, we have the following picture of E(2), where ed, for d ≥ 0, is the Fp[Σ2]-generator in
degree d:

E(2) : · · · ←− 0←− Fp[Σ2]
deg 0

τ−1←− Fp[Σ2]
deg 1

τ+1←− Fp[Σ2]
deg 2

←− · · ·

In the cochain case, we instead have the following picture of E †(2), where ed, for d ≥ 0, is the
Fp[Σ2]-generator now in degree −d:

E †(2) : · · · −→ Fp[Σ2]
deg−2

τ+1−→ Fp[Σ2]
deg−1

τ−1−→ Fp[Σ2]
deg 0

−→ 0 −→ · · ·

In either case, we have precisely the standard Fp[Σ2]-free resolution of Fp (see [May70]).
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We now describe the product structure on the (co)homology of an algebra over E or E †.

Proposition 3.8. Given an algebra A over E , under the composite

H•(A)⊗2 ∼= Fp[0]⊗ H•(A)⊗2 ∼= H•(E(2))⊗ H•(A)⊗2 ∼= H•(E(2)⊗ A⊗2)→ H•(A)

the homology H•(A) is a graded-commutative, unital and associative, graded algebra over Fp.
Similarly, given an algebra A over E †, under the composite

H•(A)⊗2 ∼= Fp[0]⊗ H•(A)⊗2 ∼= H•(E(2))⊗ H•(A)⊗2 ∼= H•(E(2)⊗ A⊗2)→ H•(A)

the cohomology H•(A) is a graded-commutative, unital and associative, graded algebra over Fp.

In the composites above, in either case, the second map sends 1⊗ [a]⊗ [a′] to [e0]⊗ [a]⊗ [a′],
and the third map is a Kunneth map. We see that, in either case, the total composite sends [a]⊗ [a′]

to [(e0)∗(a, a
′)], where we use the notation σ∗(c, c′) to denote the image of σ ⊗ a ⊗ a′ under the

map E(2)⊗ A⊗2 → A in the chain case, and the map E †(2)⊗ A⊗2 → A in the cochain case.

Proof. We shall outline the chain case; the cochain case is entirely analogous. To see associativity,
note that:

[a] · ([a′] · [a′′]) = [(e0)∗(a, (e0)∗(a
′, a′′))] ([a] · [a′]) · [a′′] = [(e0)∗((e0)∗(a, a

′), a′′)]

The result now follows by noting that e0⊗(id(1))⊗e0 and e0⊗e0⊗(id(1)) have the same image under
the composition maps E(2)⊗E(1)⊗E(2)→ E(3) and E(2)⊗E(2)⊗E(1)→ E(3), respectively.

To see unitality, first, let u denote the image of (id(0)) under the map E(0) → A, and then
consider [u] ∈ H•(A) (note that u is a cycle since (id(0)) is of degree zero). Note that:

[u] · [a] = [(e0)∗((id(0))∗(1), a)] [a] · [u] = [(e0)∗(a, (id(0))∗(1))]

The result now follows by noting that e0 ⊗ (id(0))⊗ (id(1)) and e0 ⊗ (id(1))⊗ (id(0)) have the same
image under the composition maps E(2)⊗E(0)⊗E(1)→ E(1) and E(2)⊗E(1)⊗E(0)→ E(1),
respectively.
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Finally, to see commutativity, note that:

[a] · [a′] = [(e0)∗(a, a
′))]

= (−1)|a||a
′|[(e0τ)∗(a

′, a)]

= (−1)|a||a
′|[(e0)∗(a

′, a)]

= [a′] · [a]

Here the second equality comes from the fact that the map E → End A respects the symmetric group
actions and the third equality comes from the fact that, e0 and e0τ are homologically equivalent, as
∂(e1) = e0τ − e0.

The above describes the product structure of the (co)homology of E∞ dg algebras. We now
describe the operations Qs and P s on these (co)homologies. Once again, we shall discuss the case
of the chain operad E first. As mentioned above, these operations arise from generalized power
maps x 7→ xp, which, unsuprisingly, arise from the arity p part of E . For this reason, we shall first
discuss in detail the complex E(p). Recall from above that E(2) is exactly the standard Fp[Σ2]-free
resolution of Fp. In arity p, for the purpose of the operations, we shall be interested in an Fp[Cp]-
resolution, where Cp is cyclic of order p. Let α be the permutation 1, 2, · · · , p 7→ 2, 3, · · · , p, 1, and
let Cp then be the group generated by α. Recall, as in [May70], that the desired resolution is given
by the following chain complex, which we denote by W :

W : · · · ←− 0←− Fp[Cp]
deg 0

α−1←− Fp[Cp]
deg 1

1+α+···+αp−1

←− Fp[Σ2]
deg 2

α−1←− Fp[Σ2]
deg 3

←− · · ·

Now, since W is free and since E(p) is acylic in positive dimensions, the standard acylic models
lemma tells us that there is a, unique up to homotopy, map

F : W → E(p)

which, on H0 induces the isomorphism H0(W )→ H0(E(p)) given by 1 7→ (id(p)). In fact, we can
inductively explicitly construct such a map as follows:

• In degree 0, set F0(1) = (1), where the righthand 1 denotes id(p), and then set, necessarily
and more generally, for j = 0, 1, . . . , p− 1, set F0(αj) = (αj).

• In degree 1, set F1(1) = (1, α), and then, necessarily and more generally, for j = 0, 1, . . . , p−
1, F1(αj) = (αj, αj+1). Note that ∂(1, α) = (α)− (1) = (1) · (α− 1), as desired.

• In degree 2, set F2(1) = (1, α, α2) + (1, α2, α3) + · · ·+ (1, αp−1, 1), and then set F2(αj) as
one must for j = 0, 1, . . . , p−1. An easy computation shows that ∂((1, α, α2) + (1, α2, α3) +
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· · · + (1, αp−1, 1)) = (1, α) + (α, α2) + · · · + (αp−1, 1) = (1, α) · (1 + α + · · · + αp−1), as
desired.

• In all remaining degrees, define the map inductively as follows: when making the definition
in an odd degree d, we take the tuples occuring in Fd−1(α) and append 1 at the beginning of
each one; when making the definition in an even degree d, we take the tuples occuring in
each of the images Fd−1(α), · · · , Fd−1(αp−1) and append 1 at the beginning of each one. An
induction demonstrates that, as in the cases above, the necessary relations hold so that we
have a map W → E(2), and one which obviously satisfies the specified condition in degree
0.

Henceforth, for d ≥ 0, we shall let fd ∈ E(p)d denote the image of 1 under the map Fd as
defined specified above.

Remark 3.9. In the case p = 2, we have C2 = Σ2, W coincides exactly with E(2), the map F is
an isomorphism and the elements fd are exactly the elements ed which we defined in the previous
section. ||

In the case of the cochain operad E †, we replace W by W †, F by

F † : W † → E †(p)

and then, for d ≥ 0, let fd ∈ E †(p)−d denote the image of 1 under F †−d.

We can now construct the desired operations. We shall separate the cases p = 2 and p > 2. First,
we consider the case p = 2, for which we recall that the elements fd and ed which we have defined
above coincide.

Proposition 3.10. Suppose that p = 2, where p is our fixed prime. Given an algebra A over E , for

each s ∈ Z and [a] ∈ Hq(A), by setting

Qs([a]) =

{
[(es−q)∗(a, a)] s ≥ q

0 s < q

we get a well-defined graded map

Qs : H•(A)→ H•(A)

which is linear over F2, of degree s and natural in A. Similarly, given an algebra A over E †, for
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each s ∈ Z and [a] ∈ Hq(A), by setting

P s([a]) =

{
[(eq−s)∗(a, a)] s ≤ q

0 s > q

we get a well-defined graded map

P s : H•(A)→ H•(A)

which is linear over F2, of degree s and natural in A.

As we have done earlier, here we use the notation σ∗(a, a) for the image of σ ⊗ a ⊗ a under
E(2)⊗ A⊗2 → A in the chain case, or under E †(2)⊗ A⊗2 → A in the cochain case. As such, we
see that the maps a 7→ σ∗(a, a) are generalized squaring maps.

Proof. Let us first consider the case of the chain operad E . To see that the Qs are well-defined, we
refer to [May70], where it is shown that if a, a′ ∈ Aq are homologous cycles, then eq−s ⊗ a ⊗ a
and eq−s ⊗ a′ ⊗ a′ are homologus in H•(E(2)⊗Σ2 A

⊗2). The well-definedness then follows from
noting that, in the case s ≥ q, Qs([a]) is precisely the image of this well-defined element of
H•(E(2)⊗Σ2 A

⊗2) under the map H•(E(2)⊗Σ2 A
⊗2)→ H•(A).

To see linearity over F2, first, we have homogeneity, in the non-trivial case where s ≥ q, as
follows:

Qs(λ[a]) = Qs([λa])

= [es−q(λa, λa)]

= λ2[es−q(a, a)]

= λ[es−q(a, a)]

= λQs([a])

As for additivity, first, let [a], [b] ∈ Hq(A) and suppose that s ≥ q, as the case s < q is clear.
Consider es−q⊗ (a+ b)⊗ (a+ b)− es−q⊗a⊗a− es−q⊗ b⊗ b as an element of E(2)⊗Σ2 A

⊗2. We
need to show that, under the map H•(E(2)⊗Σ2 A

⊗2)→ H•(A), the class of this element has image
zero. We have es−q⊗ (a+ b)⊗ (a+ b)− es−q⊗a⊗a− es−q⊗ b⊗ b = es−q⊗a⊗ b+ es−q⊗ b⊗a,
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and then the result follows by the following:

es−q ⊗ a⊗ b+ es−q ⊗ b⊗ a = es−q ⊗ a⊗ b+ es−qτ ⊗ a⊗ b

= es−q(τ + 1)⊗ a⊗ b

= ∂(es−q ⊗ a⊗ b)

To see that Qs is homogeneous of degree s, simply note that, given [a] ∈ Hq(A), in E(2)⊗A⊗2,
es−q ⊗ a⊗ a has degree (s− q) + q + q = q + s.

Finally, we verify naturality. Let f : A → B be a map of algebras over E . We need to show
that, for each s ∈ Z, the following square commutes:

H•(A)

H•(B)

H•(A)

H•(B)

�
?f∗

Qs

f∗

Qs

This follows from the commutativity of the following diagram:

H•(E(2)⊗Σ2 A
⊗2) H•(A)

H•(E(2)⊗Σ2 B
⊗2) H•(B)

E -action

E -action

f∗ f∗

This completes the proof in the case of the chain operad E . The proof in the case of the cochain
operad E † is entirely analogous; the only essential difference to note is that, in this case, eq−s has
degree s− q, as opposed to q − s.

Remark 3.11. As above, the complex E(2), in the case p = 2, is as follows:

· · · ←− 0←− F2[Σ2]
deg 0

τ+1←− F2[Σ2]
deg 1

τ+1←− F2[Σ2]
deg 2

←− · · ·

Note that the equivariant homology of E(2), which is to say the homology of E(2)/Σ2, is generated
precisely by the ei. Thus we see that homology operations arise from this equivariant homology.
We can also anticipate this via an intuitive argument as follows. Suppose we generate the free
algebra EF2[0] on the “point” F2[0]. Later, we will see that the homologies of free algebras are
given by freely adding in products and operations, subject to certain properties. As EF2[0] is the
free algebra on a point, from an intuitive standpoint we expect its homology H•(EF2[0]) to be a
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minimal object containing the operations and products, which is to say, we expect it to be an algebra
of the operations and products thereof (this will be made precise later – see Remark 3.35). On
the other hand, we have that H•(EF2[0]) = ⊕nH•(E(n)/Σn), so that its homology is precisely
the sum of the equivariant homologies of the E(n). In fact, we will see that the homology of
E(0)/Σ0 contributes a multiplicative unit, the homology of E(1)/Σ1 contains the generating point,
the homology of E(2)/Σ2 contributes the operations, while the rest of the E(n)/Σn contribute
the iterated operations as well as products of these operations. Similar considerations apply in the
cochain case, where the complex is given by

· · · −→ F2[Σ2]
deg−2

τ+1−→ F2[Σ2]
deg−1

τ+1−→ F2[Σ2]
deg 0

−→ 0 −→ · · ·

and the homology of E †(2)/Σ2, which is concentrated in non-positive degrees, is generated again
precisely by the ei. ||

Next, we describe the case p > 2. For this purpose we introduce the following notation for
q ∈ Z:

ν(q) =

{
(−1)q/2 q even
(−1)(q−1)/2((p− 1)/2)! q odd

Proposition 3.12. Suppose that p > 2, where p is our fixed prime. Given an algebra A over E , for

each s ∈ Z and [a] ∈ Hq(A), by setting

Qs([a]) =

{
(−1)sν(q)[(f(2s−q)(p−1))∗(a, . . . , a)] 2s ≥ q

0 2s < q

βQs([a]) =

{
(−1)sν(q)[(f(2s−q)(p−1)−1)∗(a, . . . , a)] 2s > q

0 2s ≤ q

we get well-defined graded maps

Qs : H•(A)→ H•(A) βQs : H•(A)→ H•(A)

which are linear over Fp, of degrees 2s(p− 1) and 2s(p− 1)− 1 respectively, and natural in A.

Similarly, given an algebra A over E †, for each s ∈ Z and [a] ∈ Hq(A), by setting

P s([a]) =

{
(−1)sν(−q)[(f(q−2s)(p−1))∗(a, . . . , a)] 2s ≤ q

0 2s > q

βP s([a]) =

{
(−1)sν(−q)[(f(q−2s)(p−1)−1)∗(a, . . . , a)] 2s < q

0 2s ≥ q
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we get well-defined graded maps

P s : H•(A)→ H•(A) βP s : H•(A)→ H•(A)

which are linear over Fp, of degrees 2s(p− 1) and 2s(p− 1) + 1 respectively, and natural in A.

Once more, as earlier, here we use the notation σ∗(a, . . . , a) for the image of σ ⊗ a⊗ · · · ⊗ a
under E(p)⊗A⊗p → A in the chain case, or under E †(p)⊗A⊗p → A in the cochain case. As such,
we see that the maps a 7→ σ∗(a, . . . , a) are generalized pth power maps. Note also that βQs and
βP s are individual symbols in their own right, not composites of an individual β with the Qs or P s.

Proof. In both the chain and cochain case, the proof is similar to the p = 2 case which we have
already considered, and so we will be brief and mention only the chain case. Well-definedness
follows because, as in [May70], we have that if a, a′ ∈ Aq are homologous cycles, then fq−s ⊗ a⊗
· · ·⊗ a and fq−s⊗ a′⊗ · · ·⊗ a′ are homologous in H•(E(p)⊗Cp A

⊗p). Naturality follows just as in
the p = 2 case. The degrees follow from recalling that, for d ≥ 0, fd has degree d in the chain case
and −d in the cochain case. As for linearity over Fp, homogeneity follows just as in the case p = 2

case. For additivity, consider [a], [b] ∈ Hq(A). Note that ∆(a, b) = (a+ b)⊗p − a⊗p − b⊗p is a sum
of monomials each of which contains at least one a and at least one b as a factor, and moreover, that,
given any such monomial, say m, each monomial m ·αj , where j = 0, . . . , p− 1 and αj ∈ Cp, also
occurs in ∆(a, b). Since Cp permutes such monomials freely we can choose some representatives
of the Cp-orbits of such monomials and let c denote the sum of such representatives. Then we have
that ∆(a, b) = (1 + α + · · ·+ αp−1) · c (note that each αj is an even permutation, so that no signs
are required). Now the result follows by noting that, in E(p)⊗Cp A

⊗p, if i is odd, we have

∂(fi+1 ⊗ c) = (fi · (1 + α + · · ·+ αp−1))⊗ c

= fi ⊗ ((1 + α + · · ·+ αp−1) · c)

= fi ⊗∆(a, b)

whereas, if i is even, we have

∂(fi+1 · (α− 1)p−2 ⊗ c) = (fi · (α− 1)p−1)⊗ c

= fi ⊗ ((α− 1)p−1 · c)

= fi ⊗ ((1 + α + · · ·+ αp−1) · c)

= fi ⊗∆(a, b)

where we have used that (α− 1)p−1 = 1 +α+ · · ·+αp−1 in Fp[Cp], which follows from the identiy(
p−1
i

)
= (−1)i in Fp. This completes the proof.
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We have now developed operations for (co)homologies of algebras over E and E †. Recall from
Proposition 2.14 that if A is an algebra over one of these operads, then A† is naturally an algebra
over the other. Via this, we can relate the operations Qs and P s as follows.

Proposition 3.13. If A is an algebra over E , so that A† is an algebra over E †, then the operations

Qs on H•(A) and P s on H•(A†), for s ∈ Z, if p = 2, and also the βQs and βP s if p > 2, are

related as follows:

Qs = (P−s)†, βQs = (βP−s)† P s = (Q−s)†, βP s = (βQ−s)†

Moreover, the same relations hold if A is an algebra over E †, so that A† is an algebra over E , and

the operations Qs, βQs act on H•(A†) while the P s, βP s act on H•(A).

Proof. This follows by an easy direct check of the definitions. For example, let us consider the case
where A is an algebra over E † and p = 2. Given [a] ∈ Hq(A), we have that, for s ≤ q, P s([a]) is the
image of [eq−s⊗a⊗a] under the map θq+s : Hq+s(E †(2)⊗Σ2A

⊗2)→ Hq+s(A). By definition ofA†

and the E -action on A†, we have that [a] ∈ H−q(A†) and the aforementioned image is equivalent to
the image of [eq−s ⊗ a⊗ a] under the map θ−q−s : H−q−s(E(2)⊗Σ2 (A†)⊗2)→ H−q−s(A†), which,
noting that −s ≥ −q, is exactly Q−s([a])

We now proceed to develop some basic properties of the above operations. As before, we shall
separate the cases p = 2 and p > 2.

Proposition 3.14. Suppose that p = 2, where p is our fixed prime. Given an algebra A over E , we

have the following on the operations Qs:

(i) For all a, b such that a > 2b, we have QaQb =
∑

i∈Z
(
i−b−1
2i−a

)
Qa+b−iQi.

(ii) For any c ∈ H•(A), we have that Qsc = 0 whenever s < |c|.

(iii) For any c ∈ H•(A), we have that Qsc = c2 if s = |c|.

(iv) Letting 1 denote the multiplicative unit of H•(A), we have that Qs1 = 0 for all s 6= 0.

Similarly, given an algebra A over E †, we have the following on the operations P s:

(v) For all a, b such that a < 2b, we have P aP b =
∑

i∈Z
(
b−i−1
a−2i

)
P a+b−iP i.

(vi) For any c ∈ H•(A), we have that P sc = 0 whenever s > |c|.

(vii) For any c ∈ H•(A), we have that P sc = c2 if s = |c|.

(viii) Letting 1 denote the multiplicative unit of H•(A), we have that P s1 = 0 for all s 6= 0.
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In this case where p = 2, the relations in (i) and (v) are known as the Adem relations. The
properties in (ii) and (vi), a condition on the action of the operations on the (co)homology, will
henceforth be referred to as the instability of the operations. While trivial to prove from the
definitions, this property of the action of the operations is an important one. It is what will
distinguish these operations from the operations which we shall construct later for algebras over the
stabilizations of E and E †. This is also why we refer to this property as instability; later, we will
see that it arises precisely because E(2) is zero in negative degrees and because E †(2) is zero in
positive degrees. The properties in (iii)-(iv) and (vii)-(viii) relate the action of the operations to the
product structures on the (co)homologies.

Proof. We shall discuss only the case of the chain operad E . The case of the cochain operad E †

then follows via Proposition 3.13.

(i): See [CLM76].

(ii): Immediate from the definition of the operations.

(iii): Let c = [a]. Since s = |a|, we have that:

Qsc = [(es−|a|)∗(a, a)] = [(e0)∗(a, a)] = [a]2 = c2

(iv): If s ≤ −1, this follows by (ii). Otherwise, letting 1 = [u] where u denotes the image of 1

under E(0)→ A, we have that:

Qs1 = [(es)∗(u, u)] = [(es)∗((id(0))∗(1), (id(0))∗(1))]

The result now follows from noting that E(2)⊗ E(0)⊗ E(0)→ E(0) maps es ⊗ (id(0))⊗ (id(0)),
for s ≥ 1, to an element of positive degree, and so to zero.

Finally, we mention the basic properties in the case p > 2.

Proposition 3.15. Suppose that p > 2, where p is our fixed prime. Given an algebra A over E , we

have the following on the operations Qs:

(i) For all a, b, if a > pb, we have that QaQb =
∑

i∈Z(−1)a+i
(

(p−1)(i−b)−1
pi−a

)
Qa+b−iQi and

βQaQb =
∑

i∈Z(−1)a+i
(

(p−1)(i−b)−1
pi−a

)
βQa+b−iQi, and, if a ≥ pb, we have that QaβQb =∑

i∈Z(−1)a+i
((

(p−1)(i−b)
pi−a

)
βQa+b−iQi −

(
(p−1)(i−b)−1

pi−a−1

)
Qa+b−iβQi

)
and also that βQaβQb =∑

i∈Z(−1)a+i
(

(p−1)(i−b)−1
pi−a−1

)
βQa+b−iβQi.
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(ii) For any c ∈ H•(A), we have that Qsc = 0 whenever 2s < |c|, and that βQsc = 0 whenever

2s ≤ |c|.

(iii) For any c ∈ H•(A), we have that Qsc = cp if 2s = |c|.

(iv) Letting 1 denote the multiplicative unit of H•(A), we have that Qs1 = 0 for all s 6= 0 and

βQs1 = 0 for all s.

Similarly, given an algebra A over E †, we have the following on the operations P s:

(v) For all a, b, if a < pb, we have that P aP b =
∑

i∈Z(−1)a+i
(

(p−1)(b−i)−1
a−pi

)
P a+b−iP i and

βP aP b =
∑

i∈Z(−1)a+i
(

(p−1)(b−i)−1
a−pi

)
βP a+b−iP i, and, if a ≤ pb, we have that P aβP b =∑

i∈Z(−1)a+i
((

(p−1)(b−i)
a−pi

)
βP a+b−iP i −

(
(p−1)(b−i)−1

a−pi−1

)
P a+b−iβP i

)
and also that βP aβP b =∑

i∈Z(−1)a+i
(

(p−1)(b−i)−1
a−pi−1

)
βP a+b−iβP i.

(vi) For any c ∈ H•(A), we have that P sc = 0 whenever 2s > |c|, and that βP sc = 0 whenever

2s ≥ |c|.

(vii) For any c ∈ H•(A), we have that P sc = cp if 2s = |c|.

(viii) Letting 1 denote the multiplicative unit of H•(A), we have that P s1 = 0 for all s 6= 0 and

βP s1 = 0 for all s.

In this case where p > 2, the relations in (i) and (v) are known as the Adem relations. The
properties in (ii) and (vi), a condition on the action of the operations on the (co)homology, will
henceforth be referred to as the instability of the operations. As in the case where p = 2, while
trivial to prove from the definitions, this property of the action of the operations is an important
one. It is what will distinguish these operations from the operations which we shall construct later
for algebras over the stabilizations of E and E †. This is also why we refer to this property as
instability; later, we will see that it arises precisely because E(2) is zero in negative degrees and
because E †(2) is zero in positive degrees. The properties in (iii)-(iv) and (vii)-(viii) relate the action
of the operations to the product structures on the (co)homologies.

Proof. See [May70] for the Adem relations in (i) and (v). The proofs of (ii)-(iv) and (vi)-(viii) are
analogous to the case where p = 2.

3.3 The Algebras S and B of Generalized Dyer-Lashof & Steenrod Operations

We are now going to define two algebras, one, S, which arises from considerations with the
chain operad E , and another, B, which arises from considerations with the cochain operad E †. The
two algebras will in fact be isomorphic (almost – one needs to negate the degrees of one algebra), so
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that consideration of one given that of the other is in a sense superfluous. However, for the purpose
of clarity, it is convenient to define both. In fact, we have an algebra S and another B for each
value of the prime p. In order to define these algebras, we need to discuss multi-indices and some
associated definitions, both of which shall vary depending on whether p = 2 or p > 2.

First suppose that p = 2. In this case, a multi-index is a sequence I = (i1, . . . , ik) of integers
ij ∈ Z, where k ≥ 0 (if k = 0, we have the empty sequnce ()). Given such a multi-index, we
will associate to it either the formal string Qi1 · · ·Qik , or the formal string P i1 · · ·P ik . Given the
multi-index I = (i1, . . . , ik), we then set the following:

• If to the multi-index we associate the string Qi1 · · ·Qik , or if instead we associate to it the
string P i1 · · ·P ik , in either case, the length l(I) is k; if I = (), this is to be interpreted as 0.

• If to the multi-index we associate the string Qi1 · · ·Qik , or if instead we associate to it the
string P i1 · · ·P ik , in either case, the degree d(I) is i1 + · · · + ik; if I = (), this is to be
interpreted as 0.

• If to the multi-index we associate the string Qi1 · · ·Qik , or if instead we associate to it the
string P i1 · · ·P ik , in either case, the excess e(I) is i1 − i2 − · · · − ik; if I = (), in the former
association, this is to be interpreted as +∞, and in the latter, as −∞.

• If to the multi-index we associate the string Qi1 · · ·Qik , we say that it is admissible if
ij ≤ 2ij+1 for each j; the empty multi-index I = () is also, by convention, taken to be
admissible. On the other hand, if to the multi-index we associate the string P i1 · · ·P ik , we use
the same term admissible to mean that ij ≥ 2ij+1 for each j; the empty multi-index I = () is
again also, by convention, taken to be admissible.

Now suppose that p > 2. In this case, a multi-index is a sequence I = (ε1, i1, . . . , εk, ik)

of integers ij ∈ Z and εj ∈ {0, 1}, where k ≥ 0 (if k = 0, we have the empty sequnce ()).
Given such a multi-index, we associate to it the formal string βε1Qi1 · · · βεkQik , or the string
βε1P i1 · · · βεkP ik , where β1 here is to be intepreted as β and β0 as an empty symbol. Given the
multi-index I = (ε1, i1, . . . , εk, ik), we then set the following:

• If to the multi-index we associate the string βε1Qi1 · · · βεkQik , or if instead we associate to
it the string βε1P i1 · · · βεkP ik , in either case, the length l(I) is k; if I = (), this is to be
interpreted as 0.

• If to the multi-index we associate the string βε1Qi1 · · · βεkQik , the degree d(I) is (2i1(p −
1)− ε1) + · · ·+ (2ik(p− 1)− εk); if I = (), this is to be interpreted as 0. If to the multi-index
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we associate the string βε1P i1 · · · βεkP ik , the degree d(I) is (2i1(p−1)+ε1)+ · · ·+(2ik(p−
1) + εk); if I = (), again, this is to be interpreted as 0.

• If to the multi-index we associate the string βε1Qi1 · · · βεkQik , the excess e(I) is (2i1 −
ε1) − (2i2(p − 1) − ε2) − · · · − (2ik(p − 1) − εk); if I = (), this is to be interpreted
as +∞. If to the multi-index we associate the string βε1P i1 · · · βεkP ik , the excess e(I) is
(2i1 + ε1)− (2i2(p− 1) + ε2)− · · · − (2ik(p− 1) + εk); if I = (), this is to be interpreted as
−∞.

• If to the multi-index we associate the string βε1Qi1 · · · βεkQik , it is said to be admissible if
ij ≤ pij+1 − εj+1 for each j; the empty multi-index I = () is also, by convention, taken to be
admissible. On the other hand, if to the multi-index we associate the string βε1P i1 · · · βεkP ik ,
we use the same term admissible to mean that ij ≥ pij+1 + εj+1 for each j; the empty
multi-index I = () is again, by convention, taken to be admissible.

Remark 3.16. We can immediately see that the admissibility of a multi-index is related to the Adem
relations. For example, consider the case of p = 2, a multi-index I = (i1, . . . , ik) and associated
string Qi1 · · ·Qik . Certainly when k = 2, the term Qi1Qi2 , interpeted as an iterated homology
operation, admits an application of the Adem relations if and only if i1 > 2i2, which is to say if
and only if (i1, i2) is not admissible. More generally, we will see below that the relations apply to
Qi1 · · ·Qik if and only if I is not admissible. As for the excess of a multi-index I = (i1, . . . , ik),
we will see below that it is related to the instability of the operations Qs on the homology H•(A)

of an E-algebra A. Note also that the the excess in this case where p = 2 may also be written as
ik −

∑k
j=2(2ij − ij−1), which gives a relation to the admissibility condition; moreover, it can also

be written as 2i1 − d(I), giving a relation to the degree. ||

Now we proceed to define the algebras S and B.

Definition 3.17. If p = 2, where p is our fixed prime, we set

S := F{Qs | s ∈ Z}/IAdem B := F{P s | s ∈ Z}/IAdem

where F{Qs | s ∈ Z} and F{P s | s ∈ Z} denote the free graded algebras over F2 on formal
symbols Qs and P s, for s ∈ Z, where Qs and P s have degree s, and, in either case, IAdem denotes
the two-sided ideal generated by the Adem relations. On the other hand, if p > 2, we set

S := F{Qs, βQs | s ∈ Z}/IAdem B := F{P s, βP s | s ∈ Z}/IAdem

where F{Qs, βQs | s ∈ Z} and F{P s, βP s | s ∈ Z} denote the free graded algebras over
Fp on formal symbols Qs, βQs and P s, βP s, for s ∈ Z, where Qs, βQs, P s, βP s have degrees
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2s(p− 1), 2s(p− 1)− 1, 2s(p− 1), 2s(p− 1) + 1 respectively, and, in either case, IAdem denotes the
two-sided ideal generated by the Adem relations. In either case, we call S the algebra of generalized

Dyer-Lashof operations and B the algebra of generalized Steenrod operations.

Remark 3.18. In the above definition, the Adem relations are those which can be found in Proposi-
tion 3.14 and Proposition 3.15. Note that we have used the same symbol IAdem for four different
objects. Note also that the Adem relations apply per degree (that is, the ideal generated by them is a
homogeneous one), so that S and B do indeed inherit the gradings of the free algebras. ||

Now we note that the two algebras are almost isomorphic. Recall that we have a reindexing
construction (−)† which negates degrees and which we have applied to dg modules, dg operads and
(co)algebras over these operads. We can clearly also apply it to graded algebras, and we do so in the
following result.

Proposition 3.19. If p = 2, where p is our fixed prime, we have an isomorphism

S ∼= B†

where Qs 7→ P−s. If p > 2, we again have such an isomorphism, where in this case Qs 7→ P−s

and βQs 7→ βP−s.

Proof. We spell out the p = 2 case; the p > 2 case is analogous. Consider the correspondence
Qs 7→ P−s. Let a > 2b. We need to check that QaQb and

∑
i

(
i−b−1
2i−a

)
Qa+b−iQi map to the same

elements. We have that QaQb maps to P−aP−b. Since (a, b) is non-admissible in the Q-sense,
(−a,−b) is non-admissible in the P -sense, that is, −a < −2b. Thus by the Adem relations we have
that the image is: ∑

i

(
−b− i− 1

−a− 2i

)
P−a−b−iP i

We can replace the summation variable from i to −i, giving us:

∑
i

(
i− b− 1

2i− a

)
P−(a+b−i)P−i

This is exactly the prescribed image of
∑

i

(
i−b−1
2i−a

)
Qa+b−iQi, as desired. Thus we have a well-

defined map S → B†. To see that this is an isomorphism, note that we can define a map in the other
direction as well in an analogous manner and then note that the two are inverse to one another.

Remark 3.20. The above isomorphism allows transfer of results about one of S and B to results
about the other. For future reference, we note the following about this isomorphism:

• It maps admissible monomials to admissible monomials.
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• It negates the excess of a monomial.

• It respects the obvious filtrations by length on the two algebras.

||

Next, we make precise the relation between admissibility and the Adem relations.

Proposition 3.21. The algebra S has an Fp-basis given by the monomials QI where I is admissible;

the algebra B has an Fp-basis given by the monomials P I where I is admissible.

These bases are known as the Cartan-Serre bases. Note: as above, admissibility in the two cases
here means different things, and moreover, its meaning varies between the cases p = 2 and p > 2.

Proof. See [CLM76].

Remark 3.22. Consider the case of p = 2 and the algebra S. The relevant Adem relation reads

QaQb =
∑
i

(
i− b− 1

2i− a

)
Qa+b−iQi

where a > 2b. For a term on the righthand size to have a non-zero coefficient, we must have, on the
one hand, 2i ≥ a, which is to say i ≥ a/2 (which then implies that i > b and so i ≥ b + 1) and,
on the other hand, 2i − a ≤ i − b − 1, which is to say i ≤ a − b − 1. Moreover, for such i, we
have a + b − i < a + a/2 − i ≤ a + a/2 − a/2 = a ≤ 2i. Thus, the terms which appear on the
right-hand side are indeed admissible. ||

Now, by construction of S and B, and the results of the previous section, we have that, if A is
an algebra over E , H•(A) is a module over S, and if A is an algebra over E †, H•(A) is a module
over B. Moreover, these modules satisfy certain special properties, which are extensions of the
instability properties which we noted in Proposition 3.14 and 3.15 (they are upgrades of these
instability properties to iterated operations). These properties make precise the relation between the
excess of a multi-index and the instability of the operations.

Proposition 3.23. Given an algebra A over E , the iterated operations QI satisfy the following

instability condition:

QIc = 0 whenever e(I) < |c|

Similarly, given an algebra A over E †, the iterated operations P I satisfy the following instability

condition:

P Ic = 0 whenever e(I) > |c|
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Proof. We shall describe the case of the chain operad E ; the case of the cochain operad E †

is analogous. First suppose that p = 2, where p is our fixed prime. Let c ∈ Hq(A) and con-
sider the iterated operation Qi1 · · ·Qik . We have that Qi2 · · ·Qikc ∈ Hq+i2+···+ik(A), and so, by
Proposition 3.14, Qi1 · · ·Qikc is zero whenever i1 < q + i2 + · · ·+ ik, or, put another way, when-
ever i1 − i2 − · · · − ik < q, which gives the required result. Now suppose that p > 2. We
have that βε2Qi2 · · · βεkQikc ∈ Hq+(2i2(p−1)−ε2)+···+(2ik(p−1)−εk)(A), and so, by Proposition 3.15,
βε1Qi1 · · · βεkQikc is zero whenever 2i1 − ε1 < q + (2i2(p− 1)− ε2) + · · · + (2ik(p− 1)− εk),
which is to say whenever e(I) < q, as desired.

We make a definition to codify the above behaviour.

Definition 3.24. We say that an S-module H is unstable if QIh = 0 is zero whenever e(I) < |h|.
Similarly, we say that a B-module H is unstable if P Ih = 0 is zero whenever e(I) > |h|.

Corollary 3.25. Given an algebra A over E , H•(A) is an unstable module over S; similarly, given

an algebra A over E †, H•(A) is an unstable module over B.

Now, if A is an algebra over E which happens to be bounded below, say by the degree d, by
the above, we will have that QI acts by zero for all I such that e(I) < d. Moreover, an analogous
remark of course applies for algebras over E †. For this reason, it will be convenient to introduce the
following definitions and results.

Definition 3.26. For each k ∈ Z, we set:

S≥k := F{Qs | s ∈ Z}/(IAdem + Iexc<k) = S/I<k

B≤k := F{P s | s ∈ Z}/(IAdem + Iexc>k) = S/I>k

Here, in the former case, Iexc<k denotes the two-sided ideal of F{Qs | s ∈ Z} generated by
monomials of excess < k, and simlarly, in the latter case, Iexc>k denotes the two-sided ideal of
F{P s | s ∈ Z} generated by monomials of excess > k. Moreover, we have I<k := (IAdem +

Iexc<k)/IAdem and I>k := (IAdem + Iexc>k)/IAdem.

Remark 3.27. Sometimes, we will use the notations Iexc≤ k, I≤k and S>k in place of Iexc<k+1,
I<k+1 and S≥k+1, and similarly Iexc≥ k, I≥k and B<k in place of Iexc>k−1, I>k−1 and B≤k−1. ||

Proposition 3.28. For each k ∈ Z, the algebra S≥k has an Fp-basis given by the monomials QI

where I is admissible and e(I) ≥ k. Similarly, For each k ∈ Z, the algebra B≤k has an Fp-basis

given by the monomials P I where I is admissible and e(I) ≤ k.

Proof. See [CLM76].
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3.4 The (Co)homology of Free E∞ DG Algebras

In this section, we describe the homology of free algebras over the operads E and E †. The
final result essentially says that the structure inherited by the (co)homology of E-algebras and
E †-algebras is precisely the graded-commutative algebra structure and the operations which were
described in the previous section, together with the conditions on these two pieces of data de-
scribed in Propositions 3.14 and 3.15. That is, given a dg module X , the (co)homology H•(EX) or
H•(E†X) will be constructed from H•(X) or H•(X), respectively, by freely adding in operations
and products which satisfy the properties listed in Propositions 3.14 and 3.15. To make this precise,
we first define the necessary free functors which we require.

First, let OS be the functor which sends a graded Fp-module to the free S-module on it; namely,
M 7→ S ⊗M . Similarly, let OB be the functor M 7→ B ⊗M . Upon applying say the former to the
homology of an input chain complex on which to generate the free algebra, we will have taken care
of the operations (we use the notation O to indicate “operations”). However, we also want the action
to be unstable. Thus, we define a functor OS,un, on graded Fp-modules, as follows. Given a graded
Fp-module M , we set OS,unM to be the quotient of OSM by the submodule generated by the terms
QIm where e(I) < |m|. That is, OS,unM is the free unstable module over S on M . (We use the
“un” to indicate “unstable”.) Upon applying OS,un to the homology of an input chain complex on
which to generate the free algebra, we will have taken care of the operations and properties (i) and
(ii) in Propositions 3.14 and 3.15. Similarly, we let OB,un be the functor on graded Fp-modules
which sends M to the quotient of OBM by the submodule generated by the terms P Im where
e(I) > |m|.

Next, let PS be the functor which sends an unstable S-module to the free graded-commutative
algebra on the underlying graded Fp-module (we use P to indicate “products”). Note that PSH
still carries an action by S, defined via the following requirements: (i) on the unit, we require that
Qs1 is 1 if s = 0 and 0 if s 6= 0, and also, if p > 2, that βQs1 is zero for all s (ii) we require the
following internal Cartan formulae to hold, where the second applies only in the case p > 2:

Qs(xy) =
∑
i+j=s

(Qix)(Qjy)

βQs(xy) =
∑
i+j=s

(βQix)(Qjy) + (−1)|x|(Qix)(βQjy)

Similarly, let PB be the functor which sends an unstable B-module to the free graded-commutative
algebra on the underlying graded Fp-module. Note again that PBH still carries an action by B,
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defined via the following requirements: (i) on the unit, we require that P s1 is 1 if s = 0 and 0 if
s 6= 0, and also, if p > 2, that βP s1 is zero for all s (ii) we require the following internal Cartan
formulae to hold, where the second applies only in the case p > 2:

P s(xy) =
∑
i+j=s

(P ix)(P jy)

βP s(xy) =
∑
i+j=s

(βP ix)(P jy) + (−1)|x|(P ix)(βP jy)

Upon applying say the former functor, namely PS , to the homology of an input chain complex on
which to generate the free algebra, having already applied OS,un to add in the operations, we will
have also added in the products, and taken care of (iv) in Propositions 3.14 and 3.15. We still require,
however, the compatibility between the product structure and the operations described by (iii) in the
same propositions. Thus, we define a functor PS,pw, on unstable S-modules, as follows. If p = 2,
given such a module H , we set PS,pwH to be the quotient of PSH by the Fp-ideal generated by the
terms Q|h|h−h ·h; if p > 2, we set PS,pwH to be the quotient of PSH by the Fp-ideal generated by
the terms Q|h|/2h−hp where h of course is required to lie in even degrees. (We use “pw” to indicate
“powers”.) Similarly, we define a functor PB,pw, on unstable B-modules, as follows. If p = 2, given
such a module H , we set PB,pwH to be the quotient of PBH by the Fp-ideal generated by the terms
P |h|h − h · h; if p > 2, we set PB,pwH to be the quotient of PBH by the Fp-ideal generated by
the terms P |h|/2h − hp where h of course is required to lie in even degrees. We have now taken
into account all the necessary compatibilities between the products and operations, insofar as we
can show that the operations remain well-defined, for note that we did not require the ideal to be
an S-submodule in the former case or a B-submodule in the latter case. This is indeed the case
however, as the following lemma demonstrates; as a result of it, we have that PS,pwH and PB,pwH ,
where H is an appropriate input in either case, carry a well-defined action by S and B, respectively.

Lemma 3.29. Given an unstable S-module H , the Fp-ideal of PSH generated by the terms

Q|h|h− h2, if p = 2, or by Q|h|/2h− hp if p > 2, is an S-submodule of PSH . Similarly, given an

unstable B-module H , the Fp-ideal of PBH generated by the terms P |h|h − h2, if p = 2, or by

P |h|/2h− hp if p > 2, is a B-submodule of PBH .

Proof. We shall give the proof in the case of the unstable S-module and where p = 2; the other
cases are similar. Set s := |h| and let r ∈ Z be arbitrary. We must show that the ideal contains:

Qr(Qsh− h · h) = QrQsh−Qr(h · h)

Note that this suffices to show closure of the ideal under the action of S because iterated operations
Qi1 · · ·Qik act one at a time, and because the action of Qr on any product of terms of the form
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(Qsh− h · h) will reduce to this case by the Cartan formula.

Suppose first that r < 2s. Then we have that QrQsh = 0 by the instability of the action
of S on H , since Qsx has degree 2s. Moreover, we have, by the Cartan formula, Qr(h · h) =∑

i+j=r(Q
ih) · (Qjh), and this is also zero since, for Qih and Qjh to be non-zero, by instability

once more, we require that i, j ≥ s, but then i+ j ≥ 2s, so that the sum is in fact empty.

Now suppose that r = 2s. Then QrQsh = Q2sQsh. On the other hand, by instability, the only
non-zero term in Qr(h · h) =

∑
i+j=r(Q

ih) · (Qjh) is that which has i = j = s, thus leaving us
with (Qsh) · (Qsh). We are thus left with Q2sQsh− (Qsh) · (Qsh), and this is of the form required
to be a generator of the ideal since Qsh has degree 2s.

Finally, suppose that r > 2s. By the Adem relations, we have that:

QrQsh =
∑
i

(
i− s− 1

2i− r

)
Qr+s−iQih

Given a term in the sum on the right-hand side, for it to be non-zero, we require that 2i ≥ r, as
this value occurs in the binomial coefficient. On the other hand, by instability, we also require
that r + s− i ≥ i+ s, which is to say, 2i ≤ r. Thus the only non-zero term which occurs is that
which has 2i = r. In particular, if r is odd, the sum is zero, and otherwise, setting r = 2s+ 2k for
some k ≥ 1, it is given by Q2s+kQs+kh. On the other hand, we have that the non-zero terms in
Qr(h·h) =

∑
i+j=r(Q

ih)·(Qjh) are those given by (i, j) = (s, r−s), (s+1, r−s−1), . . . , (r−s, s).
This sequence contains r − 2s + 1 terms. Thus, if r is odd, so that the number of terms is even,
as we are in characteristic 2, the sum will amount to zero by symmetry. On the other hand, if
r is even, there will remain one term, which, if r = 2s + 2k where k ≥ 1, will be the case of
(s+ k, s+ k), which is to say the sum will amount to (Qs+kh) · (Qs+kh). All told, if r is odd, the
QrQsh − Qr(h · h) amounts to zero, which is in the ideal, and if r is even and equal to 2s + 2k,
k ≥ 1, it amounts to Q2s+kQs+kh− (Qs+kh) · (Qs+kh), which is also in the ideal, since Qs+kh has
degree 2s+ k.

We now combine the above functors to define the functors which will give the (co)homology of
free algebras over E and E †. We define the functor QS , on graded Fp-modules, to be the composite:

QS := PS,pwOS,un
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Similarly, we define the functor QB, on graded Fp-modules, to be the composite:

QB := PB,pwOB,un

It is clear that, given a graded Fp-module M , QSM is the free object on M which carries an action
by operations Qs, and also the βQs if p > 2, and a product structure such that the properties in
(i)-(iv) of Proposition 3.14 if p = 2, or those in (i)-(iv) of Proposition 3.15 if p > 2, are satisfied.
Similarly, given a graded Fp-module M , QBM is the free object on M which carries an action
by operations P s, and also the βP s if p > 2, and a product structure such that the properties in
(v)-(viii) of Proposition 3.14 if p = 2, or those in (v)-(viii) of Proposition 3.15 if p > 2, are satisfied.
Thus, if X is a chain complex, we have a natural map:

ϕ : QS(H•X)→ H•(EX)

On the other hand, if X is a cochain complex, we have a natural map:

ψ : QB(H•X)→ H•(E†X)

Finally then, the precise result on the homologies of the free algebras over E and E † is as follows.

Proposition 3.30. If X is a chain complex, we have a natural isomorphism:

H•(EX) ∼= QS(H•X)

If X is a cochain complex, we have a natural isomorphism:

H•(E†X) ∼= QB(H•X)

More specifically, the canonical maps ϕ and ψ above are isomorphisms.

Proof. See [CLM76].

We can also give a slighty different description of the functors QS and QB, in which there is no
need to enforce the pth power relations when adding in products. Consider the case of the functor
QS . Given a graded module M , if {ci} is a basis of M , then, by Proposition 3.21, PSOS,unM is
the free graded-commutative algebra over Fp on the monomials QIci where I is admissible and
e(I) ≥ |ci|; note that I may be empty here. Moreover, QSM is the quotient of this free algebra by
the Fp-ideal generated by the terms Qsci− cpi where s = p if p = 2 and 2s = p if p > 2. The change
in our alternative description will be that, if we modify the additon of the operations so as to omit
those monomials where e(I) = |ci|, we can replace PS,pw with simply the free graded-commuative
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algebra functor PS , and exactly analogous remarks apply in the case of QB. The precise statement
is as follows.

Proposition 3.31. If X is a chain complex, and {ci} is a homogeneous basis of H•(X), then we

have that:

H•(EX) ∼= Fp{QIci | I admissible, e(I) > |ci|}

Here the right-hand side denotes the free graded-commutative algebra over Fp on the monomials

QIci where I is admissible and e(I) > deg(ci). Similarly, if X is a cochain complex, and {ci} is a

homogeneous basis of H•(X), then we have that:

H•(E†X) ∼= Fp{P Ici | I admissible, e(I) < |ci|}

The important differences here, in the chain case, are the change of the condition “e(I) ≥ |ci|”
to “e(I) > |ci|” and the omission of the quotient on the algebra. The idea is that the formation of this
quotient of the algebra amounts exactly to the omission of the terms QIci where e(I) = |ci| because,
for example, the terms Qsci where the excess s = |ci| are set equivalent to the product ci · ci and,
more generally, the terms Qi1 · · ·Qikci where i1− i2−· · ·− ik = |ci| (and so i1 = i2 + · · · ik + |ci|)
are set equivalent to the product (Qi2 · · ·Qikci) · (Qi2 · · ·Qikci). Put in other terms, this holds, in
the p = 2 and chain case, because, due to (iii) in Proposition 3.14, in any degree, the lowest excess
operations which act non-trivially serve only to square elements in that degree, and act trivially on
all other degrees, so that they are represented exactly by the formal squares of elements.

Proof. We shall describe the case of a chain complex and where p = 2. The other cases are similar.
Let M be a graded module with basis {ci}. Let FM denote the free graded-commutative algebra
over F2 on the monomials QIci where I is admissible and e(I) > |ci|. We then have an obvious
map

ϕ : FM → QSM

and, by Proposition 3.30, it suffices to show that this map is an isomorphism, which amounts
to demonstrating that it is bijective, as the compatibility with the rest of the data is automatic.
Injectivity is clear as the extra relations imposed in QSM are not between the generators present in
FM . Now let us demonstrate surjectivity. To do this, the only non-obvious thing which we need to
show is that any monomial QIci where I = (i1, . . . , ik) is admissible and e(I) = |ci| occurs in the
image. We will do this by induction on the length l(I) of I . We know that I cannot be empty since
the empty multi-index has infinite excess. Suppose then that I has length 1, so that I = (i1) and
i1 = |ci|. By the power relation imposed in constructing QSM , we have that

Qiici = ci · ci
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and so we are done, as ci · ci certainly occurs in the image. Now suppose that we have demonstrated
the result for all lengths < k and let I = (i1, . . . , ik) where e(I) = |ei|. Since e(I) = i1 − i2 −
· · · − ik = |ci|, we have that, in QSM :

QIci = (Qi2 · · ·Qikci) · (Qi2 · · ·Qikci)

Thus, if Qi2 · · ·Qikci occurs in the image, we are done. Note that

i2 − i3 − · · · − ik = ik −
k∑
j=3

(2ij − ij−1) ≥ ik −
k∑
j=2

(2ij − ij−1) = i1 − i2 − · · · − ik

since I is admissible. Thus, the new multi-index I ′ = (i2, . . . , ik), which is obviously admissible
as I is, is also such that e(I ′) ≥ |ci|. If in fact e(I ′) > |ei|, we are done, as then Qi2 · · ·Qikci of
course lies in the image. If not, we have e(I ′) = |ci| and I ′ has length < k, so that we are done by
the inductive hypothesis.

Next, we wish to describe certain refinements of Propositions 3.30 and 3.31. Let X be a chain
complex. Note that EX is naturally filtered by setting

FtEX =
⊕
n≤t

E(n)⊗Σn X
⊗n

for t ≥ 0. We then also have filtration of H•(EX) by setting

FtH•(EX) = img(H•(FtEX)→ H•(EX))

again for t ≥ 0. Similarly, if X is a cochain complex, we have filtrations FtE†X and FtH•(E†X) of
E†X and H•(E†X), respectively. In either case, the refinement will compute these filtration pieces
of the (co)homology. Note that, with this filtration, H•(EX) in the chain case, or H•(E•X) in the
cochain case, is a filtered algebra. To see this, say in the chain case, it suffices to consider an element
of H•(EX) of the form [σ⊗(x1⊗· · ·⊗xn)] ∈ FnH•(EX), and another, say [τ⊗(x′1⊗· · ·⊗x′m)] ∈
FmH•(EX), of the same form, where σ ∈ E(n) and τ ∈ E(m). We have that

[σ ⊗ (x1 ⊗ · · · ⊗ xn)] · [τ ⊗ (x′1 ⊗ · · · ⊗ x′m)] = e0([σ ⊗ (x1 ⊗ · · · ⊗ xn)], [τ ⊗ (x′1 ⊗ · · · ⊗ x′m)])

= (e0;σ, τ)⊗ x1 ⊗ · · · ⊗ xn ⊗ x′1 ⊗ · · · ⊗ x′m
where (e0;σ, τ) is the image of e0⊗ σ⊗ τ under the operadic composition map E(2)⊗E(n)⊗

E(m)→ E(n+m). We thus see that the product lies in Fn+mH•(EX), as desired.

Now, note that, given a graded module M , QSM and QBM also carry natural filtrations. To see
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this, say in the case of QSM , first note that the free algebra, say F , on the symbols Qs, and also the
symbols βQs if p > 2, has a filtration by length, where, for t ≥ 0, we set FtF to comprise sums of
those monomials QI where pl(I) ≤ t, which is to say where l ≤ blogp tc (we choose this indexing
of the filtration by length because, in the action on EX , each operation in QI will amount to an
application, for some n, of the map E(p)⊗ E(n)⊗ · · · ⊗ E(n)→ E(pn) and so will multiply the
arity of the operad tensor factor by p). Next, via the images in S of these filtration pieces, we get
a filtration of S. Now note that the images, tensored with M , of these, give a filtration of S ⊗M
and then that, in turn, the images of these give a filtration of OS,unM . Finally, we get a filtration of
PSOS,unM by simply requiring that it be a filtered algebra and then, via images, we get a filtration
of QSM . Similar remarks apply in the case of QBM .

Now consider once more the canonical maps

ϕ : QS(H•X)→ H•(EX)

ψ : QB(H•X)→ H•(E†X)

defined above, where in the first case X is a chain complex, and in the second a cochain complex.
We claim that these maps are in fact compatible with the filtrations which we have just described
above.

Lemma 3.32. The maps ϕ and ψ respect the filtrations defined above, in that they induce maps

ϕt : FtQS(H•X)→ FtH•(EX)

ψt : FtQB(H•X)→ FtH•(E†X)

for each t ≥ 0.

Proof. We shall outline the case in which X is chain complex and p = 2; the other cases are
analogous. First note that F0QS(H•X) is simply the free F2-module on the unit 1 of the algebra.
On the other hand, F0H•(EX) is simply H•(E(0)) ∼= F2[0]. Moreover, the unit 1 is sent to to the
generator of H•(E(0)), so that we have the desired result.

Next, in F1QS(H•X), we also have the homology classes in H•(X) and products of these
classes. On the other hand, F1H•(EX) = H•(E(0))⊕ H•(E(1)⊗X). Given c = [x] ∈ H•(X), it
is mapped to [(id(1))⊗ x], which lies in H•(E(1)⊗X), and so we have the desired result.

Now consider FtQS(H•X) for some t ≥ 2. We have FtH•(EX) =
⊕

n≤t H•(E(n)⊗Σn X
⊗n).
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It suffices to demonstrate the result for those elements of FtQS(H•X) which are of the form
(QI1c1) · · · (QIkck) where the multi-indices I1, . . . , Ik are such that 2l(I1) + · · ·+ 2l(Ik) ≤ t and the
ci are homogeneous. Consider firstQIkck. As above, ck is mapped to [(id(1))⊗xk] ∈ H•(E(1)⊗X),
where xk is a representative cycle of ck. Let Ik = (ik,1, . . . , ik,l(Ik)). We have that Qik,l(Ik)c maps to

[eik,l(Ik)−deg(ck)((id(1))⊗ xk, (id(1))⊗ xk)]

where eik,l(Ik)−deg(ck) ∈ E(2) and, if ik,l(Ik) − deg(ck) < 0, we understand this element to be zero.
Now, the representative eik,l(Ik)−deg(ck)((id(1))⊗ xk, (id(1))⊗ xk) denotes the image under

E(2)⊗ EX ⊗ EX → EX

of eik,l(Ik)−deg(ck) ⊗ ((id(1))⊗ xk)⊗ ((id(1))⊗ xk) and this image is precisely

(eik,l(Ik)−deg(ck); (id(1)), (id(1)))⊗ (xk ⊗ xk) ∈ E(2)⊗Σ2 X
⊗2

where (eik,l(Ik)−deg(ck); (id(1)), (id(1))) is the image of eik,l(Ik)−deg(ck) ⊗ (id(1)) ⊗ (id(1)) under the
operadic composition map:

E(2)⊗ E(1)⊗ E(1)→ E(2)

Thus, we see that QIkck maps into H•(E(2) ⊗Σ2 X
⊗2) ⊆ F2H•(EX). Now, we may repeat this

procedure to apply each of the operations in QIk , where at each stage we have an application of one
of the operadic composition maps

E(2)⊗ E(n)⊗ E(n)→ E(2n)

so that the arity of operadic tensor factor is doubled while the original element of H•X , or in fact
its representative xk, goes along for the ride, being repeated so as to double the length of the other
tensor factor. All told, upon inducting on the r in ik,r, an arbitrary entry of Ik = (ik,1, . . . , ik,l(Ik)),
we find that QIkck maps into

H•
(

E(2l(Ik))⊗Σ
2l(Ik)

X⊗2l(Ik)
)

which is contained in F2l(Ik)H•(EX). By the same argument, we have more generally, for each
r = 1, . . . , k, that QIrcr maps into

H•
(

E(2l(Ir))⊗Σ
2l(Ir)

X⊗2l(Ir)
)

which is contained in F2l(Ir)H•(EX). Thus, we have that the product (QI1c1) · · · (QIkck) maps
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into F2l(I1)+···+2l(Ik)H•(EX), and so, because 2l(I1) + · · · + 2l(Ik) ≤ t, we have that it maps into
FtH•(EX), as desired.

Now we can provide the refinement of Proposition 3.30.

Proposition 3.33. If X is a chain complex, for each t ≥ 0, the map

ϕt : FtQS(H•X)→ FtH•(EX)

defined above is an isomorphism. Similarly, if X is a cochain complex, for each t ≥ 0, the map

ψt : FtQB(H•X)→ FtH•(E†X)

defined above is an isomorphism.

Proof. See [CLM76].

Using this result, we can also refine the description of the (co)homologies in Proposition 3.31.

Proposition 3.34. If X is a chain complex and {ci} is a basis of H•(X), then, for each t ≥ 0, we

have that:

FtH•(EX) ∼= 〈{(QI1c1) · · · (QIkck) | k ≥ 0, I admissible, e(I) > |ci|, pl(I1) + · · ·+ pl(Ik) ≤ t}〉
Here the right-hand side denotes an Fp-submodule of the free graded-commutative algebra over

Fp on the monomials QIci where I is admissible, e(I) > |ci|. Similarly, if X is a cochain complex

and {ci} is a basis of H•(X), then, for each t ≥ 0, we have that

FtH•(E†X) ∼= 〈{(P I1c1) · · · (P Ikck) | k ≥ 0, I admissible, e(I) < |ci|, pl(I1) + · · ·+ pl(Ik) ≤ t}〉

Proof. This follows by a deduction from Proposition 3.33 almost identical to the deduction of
Proposition 3.31 from 3.30.

Remark 3.35. We can now revisit Remark 3.11 and make the ideas there more precise. Suppose
that p = 2 and let us work with chain complexes. In that remark, we mentioned that we expect
EF2[0] to be an algebra of operations and products thereof. By Proposition 3.31, we see that

H•(EF2[0]) ∼= F2{QI | I admissible, e(I) > 0}

which is exactly an algebra of operations and products (where, as we have seen, the admissibility
and excess conditions are direct consequences of, and so are to be interpreted here as manifestations
of, the properties in Proposition 3.14 that the operations and products satisfy). In Remark 3.11, we
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also mentioned that we will later be able to identify the contributions to the above algebra from each
piece in the direct sum decomposition H•(EF2[0]) = ⊕nH•(E(n)/Σn). Proposition 3.34 allows
us to do this. Looking at the case t = 0 in that proposition, we see that the homology of E(0)/Σ0

contributes precisely the multiplicative unit (or, more accurately, the F2-submodule generated by the
multiplicative unit). Looking at the case t = 1, we see that the homology of E(1)/Σ1 contains the
generating point. Looking at the case t = 2, we see that the homology of E(2)/Σ2 contributes the
operations. Finally, we see that the remaining E(n)/Σn contribute the iterated operations as well as
products thereof – and we can clearly read off exactly in which summand any such contribution
arises. Moreover, we can easily make analogous observations in the case of the homology H•(EX)

of the free algebra EX on a general chain complex X . ||

3.5 The Eilenberg-Zilber Operad

We now introduce another operad, the Eilenberg-Zilber operad, as always in both a chain and a
cochain version. Let GrFp denote the category with objects the Z-graded Fp-modules and morphisms
the homogeneous maps (maps with some fixed degree). Let also Spc denote the category of spaces,
by which we mean simplicial sets. Fix some n ≥ 0. For each d ∈ Z, we set:

Z(n)d := {nat trans, as functors Spc→ GrFp , C•(−)→ C•(−)⊗n of deg d}

Thus Z(n)d consists of the degree d, n-ary co-operations on chains; note that, as always throughout
this work, the chains here are normalized. Given such a natural transformation α = {αS : C•(S)→
C•(S)⊗n} of degree d, we get a natural transformation ∂α of degree d−1 by setting, for a simplicial
set S and a non-degenerate simplex s ∈ S, (∂α)S(s) = ∂αS(s) − (−1)dαS∂(s). An easy check
shows that this gives us a differential:

∂ : Z(n)d → Z(n)d−1

The operad identity in Z(1) is the identity transformation. The symmetric group Σn acts on Z(n)

by permuting the tensor factors. Finally, the operad composition maps are analogous to those that
occur in co-endomorphism operads, defined in the previous chapter.

Definition 3.36. The Eilenberg-Zilber chain operad is the operad Z defined above; the Eilenberg-

Zilber cochain operad is the operad Z†.

Remark 3.37. An easy check shows that, since we are working over a field and since co-operations
on chains and operations on cochains are determined by their values on the standard simplices, we
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can equivalently define the Eilenberg-Zilber cochain operad by setting

Z†(n)d = {nat trans, as functors Spcop → GrFp , C•(−)⊗n → C•(−) of deg d}

and setting the rest of the operad data in a manner analogous to that above for the chain operad.
Thus Z†(n)d consists of the degree d, n-ary operations on cochains. ||

In [HS87], Hinich and Schechtman demonstrated that, for each n, Z(n), has the homology of
a point. It is not, however, E∞, as it fails to be zero in negative degrees and is not Σ-free. It does
however admit a map, in fact an embedding

AW : M → Z

from the McClure-Smith operad, which we shall now describe. Once we have done so, we of course
will also have a map:

AW† : M † → Z†

First, we need some definitions.

Definition 3.38. Let V be a finite linearly ordered set. An overlapping partition A of V with m
pieces is a collection of subsets A1, . . . , Am of L with the following properties:

• If i < j, then each element of Ai is ≤ each element of Aj .

• For i < m, Ai ∩ Ai+1 has exactly one element.

Definition 3.39. Suppose given n ≥ 0 and a surjection f : (m) → (n). We then get a natural
transformation, over simplicial sets, 〈f〉 : C•(−)→ C•(−)⊗n, where given a simplicial set S and
σ : ∆p → S, we have that

(3.40) 〈f〉(σ) =
∑
A

n⊗
i=1

σ| qf(j)=i Aj

where A runs through the overlapping partitions of [p] = {0, 1, . . . , p} with m pieces. We call these
natural transformations, the sequence co-operations. Note that since

∑
A
⊗n

i=1 σ| qf(j)=i Aj has
degree

∑n
i=1(|f−1(i)| − 1) = m− n, the sequence operation 〈f〉 is homogeneous of degree m− n.

For the following lemma, recall that we say that a surjection (m)→ (n) is degenerate if it maps
two adjacent entries in the source to the same entry in the target.

Lemma 3.41. Suppose given n ≥ 0 and a surjection f : (m)→ (n). If f is degenerate, 〈f〉 is the

zero transformation.
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Proof. If the surjection is degenerate, one of the tensor factors in the righthand side of (3.40)
receives a repeated coordinate and so is zero as the chains are normalized.

By the above lemma, for each n ≥ 0, we have a map:

AWn : M (n)→ Z(n)

As in [BF04], we use the notation “AWn” because the sequence operations generalize the classical
Alexander-Whitney diagonal operation.

Proposition 3.42. We have the following:

(i) The maps AWn : M (n)→ Z(n) are injective and are chain maps.

(ii) Together, the AWn yield an operad map AW : M → Z.

Proof. See [McC03].

Thus, as claimed earlier, the McClure-Smith operad M embeds into the Eilenberg-Zilber operad
Z. Moreover, as we mentioned earlier, we then of course also get an embedding AW† : M † → Z† of
cochain operads. As we already had maps, in fact quotient maps, TR : E → Z and TR† : E † →M †,
we now have the following sequences of maps:

E →M → Z E † →M † → Z†

3.6 Cochains On Spaces as E∞ DG Algebras and the Steenrod Algebra A

In this section, with the help of the Eilenberg-Zilber operad as an intermediary, we shall endow
cochains on spaces with an E∞ algebra structutre. This will also allow us to construct the Steenrod
operations.

Proposition 3.43. Given any simplicial set S, C•(S;Fp) is naturally an E †-algebra.

Proof. The chains C•(S;Fp) admit an obvious Z-coalgebra structure. To be precise, the map

Z(n)⊗ C•(S;Fp)→ C•(S;Fp)⊗n

sends α⊗ s to α(s). Thus, by Propositions 2.13 and 2.14, the cochains C•(S;Fp) are naturally a
Z†-algebra. The E †-algebra structure now arises by pull back across the map E † → Z† constructed
in the previous section.

By the general results in earlier sections regarding E † algebras, we get the following corollary.
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Corollary 3.44. For any simplicial set S, H•(S;Fp) is a graded-commutative algebra over Fp and,

if p = 2, possesses operations P s, of degree s, for s ∈ Z, while if p > 2, possesses operations βεP s,

of degree 2s(p− 1) + ε, for s ∈ Z and ε ∈ {0, 1}.

Remark 3.45. In the case p = 2, the operations P s are exactly the Steenrod squares Sqs. The
construction of the Steenrod operations by this algebraic method was first carried out in [May70].
Moreover, the product yielding the graded-commutative algebra structure of the cohomology is
exactly the cup product. ||

In the case of cochains on spaces, the operations P s and βP s satisfy certain important properties
which do not hold in general. These are as follows.

Proposition 3.46. Given a simplicial set S, the operation P 0 acts by the identity on H•(S;Fp).

Proof. We shall outline the proof in the case p = 2; the case p > 2 can be demonstrated
by analogous, though more laboursome, arguments. By Proposition 3.13, the operation P 0

on H•(C•(S)) arises by application of the reindexing operator (−)† to the operation Q0 on
H•(C•(S)†) = H•(C•(S)∨); here (−)∨ denotes the dualization operator. Let us consider the
map:

(3.47) E(2)⊗ C•(S)∨ ⊗ C•(S)∨ → C•(S)∨

Let [α] be a cohomology class in degree d. Then, in C•(S)∨, α lies in degree −d. We need to show
that the class of the image, under the above map, of e0−(−d) ⊗ α⊗ α = ed ⊗ α⊗ α is exactly [α].
In fact, we shall show that the image, call it β, itself is exactly α. Note that, in C•(S)∨, β lies in
degree d− d− d = −d, and so it is a degree d cochain, and thus it acts on degree d chains. As in
the proof of Proposition 3.43, we have a map dual to the one above as follows:

(3.48) E(2)⊗ C•(S)→ C•(S)⊗ C•(S)

Via this map, the action of β on a degree d simplex s can be described as follows: under (3.48),
we take the image of ed ⊗ s, and then we apply α ⊗ α. Now, as the map E → Z factors as
E →M → Z, the map (3.48) factors as:

(3.49) E(2)⊗ C•(S)→M (2)⊗ C•(S)→ C•(S)⊗ C•(S)

An easy check shows that the map E(2)→M (2) sends ed to the surjection (d+ 2)→ (2) given
by the sequence (1212 · · · ). We now need to apply the sequence co-operation, as defined in Defini-
tion 3.39, corresponding to this surjection. Let v0, . . . , vd denote the vertices of s. As required by
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the sequence co-operation, we need to subdivide these vertices to form an overlapping partition, as
defined in Definition 3.38, containing d+ 2 pieces. We then need to form the tensors which occur in
the righthand side of (3.40) and then apply α⊗ α. Since α is non-zero only on degree d simplices,
if either tensor factor is a proper face, the final result will be zero. Thus we need only consider those
overlapping partitions which lead to the tensor s⊗ s.

We claim that there is exactly one overlapping partition which yields the tensor s⊗ s, namely,
that given by v0, v0v1, v1v2, . . . , vd−1vd, vd. Note that this partition has exactly d + 2 terms, as
desired. Note also that this does indeed yield the tensor s⊗ s in the righthand side of (3.40). To see
that it is the only possible such overlapping partition, note first that no piece can have more than 3

entries as than, according to the surjection (1212 · · · ), any vertex interior to this piece will be fed to
only one of the tensor factors in (3.40). As such, any piece of the overlapping partition has length
at most 2. As such, if we include the repetitions due to the overlaps, the total number of vertices
which occur in the partition will be exactly 2(d + 2) − x, where x is the number of pieces with
length 1. If we desire the tensor s⊗ s, the total such number must be 2(d+ 1), and so x must be 2.
The first piece must be simply v0, as otherwise the second tensor factor won’t receive this vertex,
and similarly, the final piece must be simply vd, as otherwise the first tensor factor won’t receive
this vertex. It follows that the partition must be exactly the partition considered above. Finally then,
we have

β(s) = (α⊗ α)(s⊗ s) = α(s)2 = α(s)

so that β = α, as desired.

Next, we wish to show that, on cochains on spaces, the operations P s and βP s for negative s
act by zero. A direct proof like that above is once again possible. However, we can be more brief
via the following result.

Proposition 3.50. In the algebra B, we have that, for s > 0, P−s(P 0)s = 0 and, if p > 2,

βP−s(P 0)s.

Proof. This follows by the Adem relations and an induction. See [Man01].

Proposition 3.51. Given a simplicial set S, for s < 0, the operations P s and βP s act by zero on

H•(S).

Proof. This follows immediately from Propositiona 3.46 and 3.50.

We now recall the Steenrod algebra A, comprising operations on the mod p cohomology of
spaces, and use the above results to relate B to A. We take the following as our definition of the
Steenrod algebra.
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Definition 3.52. If p = 2, where p is our fixed prime, we set

A := F{P s | s ≥ 0}/(IAdem, 1− P 0)

where F{P s | s ∈ Z} denotes the free graded algebra over F2 on formal symbols P s, for s ≥ 0,
where P s has degree s, and IAdem denotes the two-sided ideal generated by the Adem relations. On
the other hand, if p > 2, we set

A := F{P s, βP s | s ≥ 0}/(IAdem, 1− P 0)

where F{P s, βP s | s ≥ 0} denotes the free graded algebra over Fp on formal symbols P s, βP s,
for s ≥ 0, where P s, βP s have degrees 2s(p− 1), 2s(p− 1) + 1 respectively, and IAdem denotes the
two-sided ideal generated by the Adem relations. In either case, we call A the Steenrod algebra.

Remark 3.53. In the above definition of A, the Adem relations are to be understood as those in
Propositions 3.14 and 3.15 except where the summation index is restricted so as to yield only
operations of non-negative degree. ||

The Steenrod algebra has a basis, the Cartan-Serre basis, similar to the Cartan-Serre basis which
we described earlier for B.

Proposition 3.54. The Steenrod algebra A has an Fp-basis given by the monomials P I where

I is admissible and, if p = 2, I = (i1, . . . , ik) satisfies ij > 0 for each j, and if p > 2, I =

(ε1, i1, . . . , εk, ik) satisfies, once again, ij > 0 for each j.

Proof. See [Mil58].

Next, note that we have an algebra map

B → A

given by first passing from B to F{P s | s ≥ 0}/IAdem by sending P s to P s if s ≥ 0, and otherwise
to 0. That this is well-defined follows by an easy check which says that if a < 2b, the non-zero
summands in the Adem relation for P aP b must all possess a negative degree operation so long as
one of a and b is negative. Now, this map mathcalB → A is clearly surjective and clearly kills the
two-sided ideal of B generated by 1− P 0. In fact, this ideal is precisely what it annihilates, as the
following result shows.

Proposition 3.55. The map B → A yields an isomorphism B/(1− P 0) ∼= A.

Proof. This follows by a comparison of the Cartan-Serre bases. See [Man01].

66



Remark 3.56. By Proposition 3.46, we have that the E †-action on cochains on spaces yields an
action on the cohomology of a space by B/(1− P 0), and so the proposition above yields an action
by the Steenrod algebra on the cohomologies of spaces. ||

3.7 Algebraic Models of p-Adic Homotopy Types

In the previous section, we saw that cochains on spaces are E∞ dg algebras. In this section, we
describe how, when endowed with this algebraic structure, the cochains provide algebraic models
for p-adic homotopy types. Let Spc denote the category of spaces, by which we mean simplicial
sets. So far, we have considered the cochain functor

C• : Spcop → CoFp

where the coefficients lie in Fp. In order to model p-adic homotopy types however, it is necessary to
take coefficients in the algebraic closure Fp. We let

C
•
: Spc→ CoFp

denote the cochains functor with coefficients in Fp. Moreover, we let sE † denote the Barrat-Eccles
cochain operad, though with coefficients taken in Fp. With coefficients in Fp, the relations which we
saw in previous sections between the Barratt-Eccles, McClure-Smith and Eilenberg-Zilber operads
continue to hold, with the exact same proofs. In particular, given a simplicial set S, C

•
(S) is

naturally an algebra over sE †. We can thus lift our Fp-cochains functor above to a functor as follows:

C
•
: Spc→ sE †-Alg

Next, note that, by exactly the same proof as in Proposition 3.4, the operad sE † is admissible, so that
the category sE †-Alg admits a Quillen model structure where the weak equivalences and fibrations
are, respectively, the quasi-isomorphisms and surjections. In particular, we can then construct the
homotopy category of sE † in the usual fashion. Equipped with this, we can now make precise the
idea that the cochains, as E∞ dg algebras, and with coefficients in Fp, yield algebraic models for
p-adic homotopy types.

Proposition 3.57. The cochains functor

C
•
: Spc→ sE †-Alg

admits a left derived functor from the homotopy category of spaces to the homotopy category of
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sE †-algebras, and, when restricted to the connected nilpotent p-complete spaces of finite p-type, this

derived functor is a full embedding.

Proof. See [Man01]. The idea is to show that this holds when we restrict to the Eilenberg-MacLane
spaces K(Z/pi, n) and K(Z∧p , n) and then induct up Postnikov towers for the general case.
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CHAPTER 4

Stabilizations of E∞ Operads

In this chapter, we shall construct stable analogues of the Eilenberg-Zilber, McClure-Smith and
Barratt-Eccles operads. Note that only the latter two constitute stabilizations of E∞ operads, as
the Eilenberg-Zilber operad is not E∞, as already noted earlier. In order to construct actions of the
latter two on spectral cochains, however, as we will do later, it is convenient to also have a stable
analogoue of the Eilenberg-Zilber operad. Now, prior to constructing these stabilizations, we first
discuss some basic constructions on simplicial sets, which we shall also need in later chapters. As
in the previous chapter, at the outset we let p denote an unspecified but fixed prime, and, when
considering the aforementioned operads, the ground field will be taken to be Fp.

4.1 Cones, Kan Suspensions and Moore Loop Spaces

As is standard, we let ∆ denote the simplex category. As we have done earlier, we let Spc denote
the category of spaces, by which we mean simplicial sets. We also let Spc∗ denote the category
of based spaces, by which we mean based simplicial sets. For each d ≥ 0, we let ∆d denote the
standard d-simplex. Given a based simplicial set, there exists more than one possible choice for a
suspension functor. The most obvious one is perhaps −∧ S1, where S1 = ∆1/∂∆1, but we will use
a different one, the Kan suspension, which is weakly equivalent to − ∧ S1. Similarly, rather than
F(S1,−) for loopings, we will use a different, but weakly equivalent, looping functor, the Moore
loopings. We reserve the standard suspension and loops notations for the Kan suspensions and
Moore loopings:

Σ: Spc∗ � Spc∗ : Ω

In order to define the Kan suspension, we first consider a cone functor, first in the unbased case
and then the based case. Let S be a simplicial set. Then the (unreduced) cone on S, denoted Ĉ(S),
is defined to be the simplicial set given by the colimit

Ĉ(X) := colim
∆d→S

∆d+1
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where the indexing category is the simplex category of S (the category of maps from the standard
simplices to S). Using this, we can define the cones on based simplicial sets.

Definition 4.1. Let S be a based simplicial set. Then the (reduced) cone on S, denoted C(S) is
defined to be the pushout

Ĉ(∆0)

∗

Ĉ(S)

C(S)

where the upper map is induced by the map ∆0 → S classifying the basepoint of S and the pushout
is formed in Spc∗.

Unravelling the above definition, and in particular computing the pushout, the cones on based
simplicial sets can be given the following more explicit description (see Chapter 3, Section 5
in [GJ09]). Let S be a based simplicial set as above. In degree n, we find that:

C(S)d = Sd ∨ Sd−1 ∨ · · · ∨ S0

Moreover, the action of the simplicial operators is as follows. Consider some map θ : [d]→ [e] in ∆.
We want a function Se∨Se−1∨· · ·∨S0 → Sd∨Sd−1∨· · ·∨S0. Let i ∈ {0, 1, . . . , e}. Our function
will be a based one, so that we need to define, for each such i, a map Si → Sd ∨ Sd−1 ∨ · · · ∨ S0.
Consider the last i+ 1 elements [e]. If the preimage under θ of these elements is empty, our map
is just the constant one at the basepoint. Otherwise, we form the restricted map with source the
preimage of the final i+1 elements of [e] and target these final i+1 elements of [e] and then reindex
so that we have a map

(4.2) θ(i) : [j]→ [i]

for some j ∈ {0, 1, . . . , d}. The desired map is then θ(i)∗ : Si → Sj followed by the inclusion into
Sd ∨ Sd−1 ∨ · · · ∨ S0.

In the following result, in which we compute the non-degenerate simplices in cones, and in later
results, given a simplicial set S, we let Snd

d denote the collection of non-degenerate d-simplices of
S. Note that, for any simplicial set S, Snd

0 = S0. Note also that, if S is a simplicial set, and S+ the
corresponding disjointly based simplicial set, we have:

C(S+)d = Sd q Sd−1 q · · · q S0 q ∗
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Proposition 4.3. Let S be a based simplicial set. We have:

C(S)nd
d =


Snd
d q Snd

d−1 if d ≥ 2

Snd
1 q (S0 r ∗) if d = 1

S0 if d = 0

In particular, for a disjointly based S+, where S is now an unbased simplicial set, we have:

C(S+)nd
d =

{
Snd
p q Snd

p−1 if d ≥ 1

S0 q ∗ if d = 0

Proof. First suppose that d ≥ 2. Let s ∈ C(S)d = Sd ∨ Sd−1 ∨ · · · ∨ S0 and suppose that s ∈ Si
for some i ≤ d− 2. Consider s0 : [d]→ [d− 1], which can be pictured as:

0 1 2 3 · · · d

0 0 1 2 · · · d− 1

Using notation as in (4.2), consider s0(i) (that is, the map formed by restricting to the preimage of
the final i + 1 elements and then reindexing). Since i + 1 ≤ d − 1, the first two elements of the
above list are ignored. Thus we see that, upon the reindexing, s0(i) is just the identity on [i]. This
shows that s0 : C(S)d−1 → C(S)d, i.e., s0 : Sd−1 ∨ Sd−2 ∨ · · · ∨ S0 → Sd ∨ Sd−1 ∨ · · · ∨ S0, is just
the inclusion on the summands Sd−2, . . . , S0, and this shows that our s above is degenerate.

Next, consider any degeneracy operator sk : C(S)d−1 → C(S)d, 0 ≤ k ≤ d− 1. We show that,
in the summands Sd and Sd−1 of C(S)d, only the basepoint and degenerates can occur as images.
Let s ∈ C(S)d−1. Consider sk(i) : [j]→ [i]. For the image sk(s) to lie in Sd or Sd−1, we need j to
be d − 1 or d. Suppose that it is d. Then i must have been d − 1 and we see that sk(i) is just sk

again, so that the image sk(s) will certainly be degenerate. Now suppose that j is d − 1. Then i
must have been d− 2 and k must have been ≥ 1, so that sk(i) will be some degeneracy operator
sl : [d− 1]→ [d− 2], and so sk(s) once again will be degenerate.

Next, we need to show that every s in Sd or Sd−1 which was degenerate as a simplex in Sd or
Sd−1 is degenerate as a simplex in C(S)d. This follows from the previous argument because, in the
case j = d above, sk(i) could have been any degeneracy operator sk : [d]→ [d− 1], 0 ≤ k ≤ d− 1,
and in the case j = d − 1, sk(i) could have been any degeneracy operator sl : [d − 1] → [d − 2],
0 ≤ l ≤ d− 2 (that is, any such l can be acheived with an appropriate choice for k).

This completes the proof for the case d ≥ 2. For d = 1, the argument is analogous: we don’t
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have to bother with the i ≤ d − 2 cases, and the rest is the same except that we can’t have any
degeneracy operator mapping into the summand S0 since there is no S−1 summand in degree 0.
Finally, the d = 0 result holds because 0-simplices are always non-degenerate.

The case of a disjointly based S+ follows immediately from the general case upon noting that
(S+)0 r ∗ = S0.

Proposition 4.4. For any d ≥ 0, we have an isomorphism of based simplicial sets

∆d+1

∼=−→ C(∆d+)

where ∆d+1 is based at 0.

Proof. The map is as follows. Consider some θ : [e]→ [d+1] in (∆d+1)e. We have that C(∆d+)e =

(∆d)e q · · · q (∆d)0 q ∗. If θ doesn’t map anything to the final d+ 1 elements of [d+ 1], that is, if
it maps everything to 0, then we send it to ∗. Otherwise, we get some new map θ(d) : [j]→ [d] (the
notation here is as in (4.2)), for some j ∈ {0, 1 . . . , d} and θ is mapped to this element of C(∆d+)e.
An easy check shows that this does indeed define a map, in fact an isomorphism, of based simplicial
sets.

Now we proceed to discuss Kan suspensions of based simplicial sets. First, note that, given any
based simplicial set S, we have a canonical inclusion map

(4.5) i : S → C(S)

which, in degree d, is just the inclusion Sd → Sd∨Sd−1∨ · · ·∨S0 of the Sd summand (this is a map
of based simplicial sets because the simplicial operators act on the wedge sums “summand-wise”).

Definition 4.6. Given a based simplicial set S, its Kan suspension, denoted ΣS, is defined by
setting

ΣS := C(S)/S

where the inclusion S → C(S) is as above.

Thus, given a based simplicial set S and d ≥ 0, we have:

(ΣS)d ∼=

{
Sd−1 ∨ · · · ∨ S0 if d ≥ 1

∗ if d = 0

In particular, for the case of a disjointly based S+, where S is now an unbased simplicial set, we
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have:

(ΣS+)d ∼=

{
Sd−1 q · · · q S0 q ∗ if d ≥ 1

∗ if d = 0

Remark 4.7. The Kan suspension of based simplicial sets can also be described as a left Kan
extension, capturing the idea which might be expressed as “formally shift up by 1 all simplices
and then freely add in the degeneracies”. To make this precise, let sh : ∆ → ∆ denote the shift
functor which sends [d] to [d+ 1] and a map θ : [d]→ [e] to the map [d+ 1]→ [e+ 1] which sends
0 to 0 and is a shifted copy of θ on the final d + 1 entries. Let ∆sh denote the subcategory of ∆

which is the image of this shift functor; this is the subcategory of ∆ comprising the same objects,
except [0], and arrows only those which map 0, and only 0, to 0. Now, given a based simplicial set
S, if we formally set (ΣS)d = Sd−1 for d ≥ 1, given a map [d] → [e] in ∆sh, we can act on ΣS,
yielding a map (ΣS)e → (ΣS)d, by first dropping the 0 7→ 0 portion of the map, reindexing to get
a map [d− 1]→ [e− 1], and then acting as in S. That is, ΣS, as defined here, gives us a functor
∆sh → Set. The Kan suspension then is exactly the left Kan extension of this functor ∆sh → Set

along the inclusion ∆sh ↪→ ∆. ||

Remark 4.8. We say here a few words regarding the relation between the Kan suspension to the
more usual smash suspension − ∧ S1, where S1 = ∆1/∂∆1. Recall that a weak equivalence of
simplicial sets is a map which, under geometric realization, maps to a weak homotopy equivalence
of topological spaces. The relation between the two suspensions is that, for based simplicial sets S,
there is a natural weak equivalence:

S ∧ S1 → ΣS

For a proof, see Proposition 2.17 in [Ste15]. ||

We now wish to compute the non-degenerates in Kan suspensions. To do so, we first compute,
more generally, non-degenerates in quotients.

Proposition 4.9. Let S be a based simplicial set and A a non-empty based sub simplicial set of S.

We have:

(S/A)nd
d =

{
Snd
d r Ad if d ≥ 1

(S0 r A0)q ∗ if d = 0

Proof. The case d = 0 is obvious. Let then d ≥ 1. Consider an arbitrary degeneracy operator

sj : Sd−1/Ad−1 → Sd/Ad :


s 7→ sj(s) if s ∈ Sd−1 r Ad−1 and sj(s) ∈ Sd r Ad

s 7→ ∗ if s ∈ Sd−1 r Ad−1 and sj(s) ∈ Ad
a 7→ ∗ if a ∈ Ad−1

We see that if s ∈ Sd was degenerate in S, say s = sj(s
′), this will still hold in S/A (note that s′

will necessarily not lie in Sd−1). This shows that (S/A)nd
d ⊆ Snd

d r Ad. Moreover, it is clear that if
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s ∈ Sd wasn’t the image of any degeneracy operator sj before, it won’t be again, except possibly if
s ∈ Ad. Thus Snd

d r Ad ⊆ (S/A)nd
d .

Proposition 4.10. Let S be a based simplicial set. We have:

(ΣS)nd
d
∼=


Snd
d−1 if d ≥ 2

S0 r ∗ if d = 1

∗ if d = 0

In particular, for a disjointly based S+, where S is now an unbased simplicial set, we have:

(ΣS+)nd
d
∼=

{
Snd
d−1 if d ≥ 1

∗ if d = 0

Proof. The first part follows from Propositions 4.3 and 4.9. For the second part, note that (S+)nd
d−1 =

Snd
d−1 for d ≥ 2 and (S+)0 r ∗ = S0.

Next, we record some simple facts and a definition regarding Kan suspensions which will be
needed later.

Proposition 4.11. The Kan suspension Σ preserves monomorphisms.

Proof. This is immediate from the fact that induced maps act “wedge-wise”.

Definition 4.12. Given a based simplicial set S and a simplex s : ∆d → S of S, of dimension d, let
Σs : ∆d+1 → ΣS denote the corresponding simplex of dimension d+ 1, given by inclusion into the
first wedge summand, of ΣX . We call Σs the suspension of s.

Proposition 4.13. Let S and T be based simplicial sets, f : S → T a based map and s a simplex of

S. We have that (Σf)(Σs) = Σ(f(s)).

Proof. This follows immediately from the fact that Σf acts “wedge-wise”.

Proposition 4.14. Let S be a based simplicial set and s a d-simplex of S. Then we have:

di(Σs) =

{
Σ(di−1s) i = 1, . . . , d+ 1

∗ i = 0

Note that the Σ’s here are used in the sense of Definition 4.12, not as summation symbols.

Proof. Let s ∈ Sd and consider some di : Sd → Sd−1, di : [d − 1] → [d]. Consider the map
[d]→ [d+ 1] achieved by adjoining 0 7→ 0 at the beginning (that is, we send 0 to 0 and otherwise, i,
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for i ≥ 1, to di(i− 1) + 1) and note that this is exactly di+1. By definition of the action of simplicial
operators on cones and suspensions, we have that di+1(Σs) = Σ(dis). For the d0 case, again, this
follows from the definition of the action of the simplicial operators on cones and suspensions.

Finally, we note a fact about the chains on Kan suspensions. Recall our convention that all
(co)chains are normalized, and moreover, in the case of based simplicial sets, they are of course
reduced.

Proposition 4.15. Let S be a based simplicial set. We have a natural isomorphism of chain

complexes:

Φ: C•(ΣS)
∼=−→ C•(S)[1]

The chains here may be taken to have any desired coefficients.

Proof. This follows from Propositions 4.10 and 4.14.

Finally, we discuss Moore loop spaces, which constitute the loops functor which is right adjoint
to the Kan suspension defined above. For more detail on this loops functor, see, for example,
Chapter 2, Section 6 of [Wu10].

Definition 4.16. Let S be a based simplicial set. The Moore loop space of S is defined by setting,
for each d ≥ 0:

(ΩS)d := {s ∈ Sd+1 | d1 · · · dd+1(s) = ∗, d0(s) = ∗}

We of course also need actions of the simplicial operators ddi : (ΩS)d → (ΩS)d−1 and sdi : (ΩS)d →
(ΩS)d+1, and for these, we apply dd+1

i+1 and sd+1
i+1 ; one can check that the simplicial identities do

indeed hold.

Remark 4.17. On the action of the simplicial operators, more generally, given a map θ : [d]→ [e]

in ∆, to act on an element of (ΩX)e, we abut 0 7→ 0 at the beginning to get a map [d+ 1]→ [e+ 1]

and then act. ||

Prior to discussing the adjunction with the Kan suspension, as we did with cones and suspensions,
we compute the non-degenerates in Moore loop spaces.

Proposition 4.18. Let S be a based simplicial set. Given any d ≥ 0, we have that:

(ΩS)nd
d
∼=

{
Snd
d+1 ∩ (ΩS)d if d ≥ 1

(Snd
1 ∪ ∗) ∩ (ΩS)0 if d = 0
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Proof. Let s ∈ (ΩS)d ⊆ Sd+1. If d = 0, the inclusion (Snd
1 ∪ ∗) ∩ (ΩS)0 ⊆ (ΩS)nd

0 is immediate
since 0-dimensional simplices are always non-degenerate. Suppose then that d ≥ 1, and that s is
non-degenerate as a (d+1)-dimensional simplex of S. If s is degenerate as a d-dimensional simplex
of ΩS, we have that s = (sd−1

i )ΩS(s′) for some s′ ∈ (ΩS)d−1 ⊆ Sd and 0 ≤ i ≤ d − 1. Since
(sdi )

ΩS(s′) = (sdi+1)S(s′), this contradicts the fact that s is non-degenerate as a (d+ 1)-dimensional
simplex of S. Thus we have that Snd

d+1 ∩ (ΩS)d ⊆ (ΩS)nd
d , for all d ≥ 1.

Now suppose that s is non-degenerate as a d-dimensional simplex of ΩS. First consider
the case where d = 0. If s is degenerate as a 1-simplex of S, then we have s = (s0

0)S(s′) for
some s′ ∈ S0, and so, because s ∈ (ΩS)0, we have that ∗ = (d1

0)Ss = (d1
0)S(s0

0)S(s′) = s′,
so that also s = ∗. Thus we have that (ΩS)nd

0 ⊆ (Snd
1 ∪ ∗) ∩ (ΩS)0. Now consider the case

where d ≥ 1. If S is degenerate as a (d + 1)-dimensional simplex of S, then s = (sdi )
S(s′)

for some s′ ∈ Sd and 0 ≤ i ≤ d. Suppose that i = 0. Then, because s ∈ (ΩS)d, we have that
∗ = (dd+1

0 )Ss = (dd+1
0 )S(sd0)S(s′) = s′, so that also s = ∗. As d ≥ 1, this contradicts the assumption

that s is non-degenerate in ΩS, giving us (ΩS)nd
d ⊆ Snd

d+1 ∩ (ΩS)d. Now suppose that i ≥ 1. Then
we have that s′ = (dd+1

i+1 )S(sdi )
S(s′) = (dd+1

i+1 )S(s) = (ddi )
ΩS(s), so that s′ ∈ (ΩS)d−1, and moreover,

s = (sdi )
S(s′) = (sd−1

i−1 )ΩS(s′). This contradicts the assumption that s is non-degenerate in ΩS, and
so we have (ΩS)nd

d ⊆ (Snd
d+1 ∪ ∗) ∩ (ΩS)d, as desired.

Proposition 4.19. We have the following:

(i) The Kan suspensions and Moore loop spaces constitute an adjunction as follows:

Spc∗ Spc∗

Σ

Ω

⊥

(ii) For all based simplicial sets S, the unit S → ΩΣS is an isomorphism.

(iii) For all based simplicial sets S, the counit ΣΩS → S is a monomorphism.

Proof. (i): The necessary verifications are straightforward; for a written account, see Proposition
2.14 in [Ste15] – our loop functor is dual to the one used there, but an entirely analogous argument
carries through.

(ii): To demonstrate this, we explicitly describe the unit of adjunction. It is given by maps
S → ΩΣS. We have (ΩΣS)d = {s ∈ (ΣS)d+1 | d0(s) = d1 · · · dd+1(s) = ∗} = {s ∈ Sd∨· · ·∨S0 |
d0(s) = d1 · · · dd+1(s) = ∗}. Using the definition of the action of the simplicial operators on sus-
pensions, we find that on each Sd, . . . , S0, the action by d0 is the identity, so that the elements
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that go to ∗ under d0 are exactly those in Sd. Moreover, the condition d1 · · · dd+1(s) = ∗ is auto-
matic for all simplices since (ΣT )0 = ∗ for any T (one can also directly check that, for s ∈ Sd,
d1 · · · dd+1(s) = d0 · · · dd(s)). Thus (ΩΣS)d = Sd. One can check that the unit of adjunction is
then just the identity on Sd and hence an isomorphism.

(iii): It suffices (by, for example, the Eilenberg-Zilber lemma expressing degenerate simplices
uniquely as iterated degeneracies of non-degenerate simplices) to show that the counit preserves
non-degenerate simplices and that it is injective when restricted to the non-degenerate simplices. In
dimension d = 0, this is clear since (ΣT )0 = ∗ for any T . Let d ≥ 1. We have that:

(ΣΩS)d = (ΩS)d−1 ∧ · · · ∧ (ΩS)0

By Proposition 4.10, the non-degenerate simplices are exactly the elements which lie in the first
summand, (ΩS)d−1 (excluding the basepoint if d = 1). Moreover, an easy check shows that the
counit, restricted to this summand, is simply the inclusion into Sd. This map is then certainly
injective on the non-degenerate simplices. It remains to show that the non-degenerate simplices are
preserved, and this follows by Proposition 4.18, which tells us that a non-degenerate element in
(ΩS)d−1 is necessarily non-degenerate in Sd (except possibly in the case d = 1, where the element
may also be the basepoint, but as just mentioned above, in the case d = 1, the basepoint is to be
excluded).

4.2 The Stable Eilenberg-Zilber Operad

We are now ready, having covered the preliminaries in the previous section, to construct a stable
analogoue of the Eilenberg-Zilber operad. In order to stabilize this operad, we first need introduce
basepoints. Thus, we alter the Eilenberg-Zilber operad slightly, and consider instead the following
operad, consisting of co-operations on chains on based simplicial sets.

Definition 4.20. The reduced Eilenberg-Zilber chain operad, denoted Z∗, is the operad constructed
in the same manner as the Eilenberg-Zilber chain operad Z except that the chains are to be taken on
based simplicial sets (and so are of course reduced, as well as being normalized as always). Thus,
for example, we have the following:

Z∗(n)d := {nat trans, as functors Spc∗ → GrFp , C•(−)→ C•(−)⊗n of deg d}

The reduced Eilenberg-Zilber cochain operad is then defined to be Z†∗.
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Now we show that the operad Z∗ admits a stabilization map

Ψ: ΣZ∗ → Z∗

where Σ here denotes the operadic suspension of chain operads, found in Definition 2.42. In order
to define this map, we need to first specify maps Z∗(n)[1− n] → Z∗(n). Consider some natural
transformation α in Z∗(n)[1− n]d. This is a natural transformation C•(−)→ C•(−)⊗n of degree
d+ n− 1 over based simplicial sets. By precomposition with the Kan suspension, we get a natural
transformation C•(ΣS) → C•(ΣS)⊗n over based simplicial sets X . From Proposition 4.15, we
have the natural isomorphism Φ: C•(ΣS)→ C•(S)[1]. Thus, by pre and postcomposition, we get
a natural transformation ΦαΦ−1 : C•(S)[1] → (C•(S)[1])⊗n. Thus, for each S we have, for any
i ∈ Z, a map:

C•(S)i

C•(S)[1]i+1

⊕
j1+···+jn=i+1+d+n−1 C•(S)[1]j1 ⊗ · · · ⊗ C•(S)[1]jn

⊕
j1+···+jn=i+d+n C•(S)j1−1 ⊗ · · · ⊗ C•(S)jn−1

⊕
j1+···+jn=i+d C•(S)j1 ⊗ · · · ⊗ C•(S)jn

(C•(S)⊗n)i+d

id
ΦαΦ−1

id

id

This gives us a natural transformation C•(−)→ C•(−)⊗n of degree d, which is to say an element,
say α′, of Z∗(n)d. This correpondence α 7→ α′ gives us a map (ΣZ∗)(n)→ Z∗(n). Moreover, one
can check that this map is a chain map, and then that, assembling over n, we get an operad map
Ψ: ΣZ∗ → Z∗, as desired. Upon iterating this construction, we have maps

Σk+1Z∗ → ΣkZ∗

for each k ≥ 0. We shall be somewhat loose in our notation and denote these also by Ψ.

By Proposition 2.48, the operadic suspension Σ and the reindexing operator (−)† commute, so
that all of the above applies also to the reduced Eilenberg-Zilber cochain operad, in that we have a
stabilization map

Ψ: ΣZ†∗ → Z†∗
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for which we use the same symbol Ψ, and, upon iteration, more generally, a map

Σk+1Z∗ → ΣkZ∗

for each k ≥ 0. With these maps in hand, we can now define the stable Eilenberg-Zilber chain and
cochain operads.

Definition 4.21. The stable Eilenberg-Zilber chain operad, denoted Zst, is the operad defined by as
follows:

Zst := lim
←−

(· · · Ψ−→ Σ2Z∗
Ψ−→ ΣZ∗

Ψ−→ Z∗)

Similarly, the stable Eilenberg-Zilber cochain operad, denoted Z†st, is the operad defined by as
follows:

Z†st := lim
←−

(· · · Ψ−→ Σ2Z†∗
Ψ−→ ΣZ†∗

Ψ−→ Z†∗)

Remark 4.22. As the reindexing operator (−)† commutes with the operadic suspension, as noted
above, and clearly also with the inverse limit, there is no ambiguity of notation in writing Z†st

to denote the stable Eilenberg-Zilber cochain operad, in that we can also construct it simply by
applying (−)† to the Zst. ||

Consider the chain complex Zst(n) in operadic degree n of the Eilenberg-Zilber chain operad.
Since limits of operads are formed termwise, Zst(n) is equivalent to the limit, in chain complexes,
of the diagram:

· · · Ψ−→ Σ2Z∗(n)
Ψ−→ ΣZ∗(n)

Ψ−→ Z∗(n)

That is, it is the limit of:

· · · Ψ−→ Z∗(n)[2− 2n]
Ψ−→ Z∗(n)[1− n]

Ψ−→ Z∗(n)

In degree d ∈ Z then, we have:

(4.23) Zst(n)d ⊆
∏
k≥0

Z∗(n)[k − kn]d =
∏
k≥0

Z∗(n)d+kn−n

More specifically, an element of Zst(n) in degree d is a sequence (α0, α1, α2, . . . ) where α0 is
a degree d chain co-operation C•(−) → C•(−)⊗n, α1 is a degree d + n − 1 chain co-operation
C•(−)→ C•(−)⊗n such that Ψ(α1) = α0, and so on. Similarly, the cochain complex Z†st(n) is the
limit, in cochain complexes, of the diagram

· · · Ψ−→ Z†∗(n)[2n− 2]
Ψ−→ Z†∗(n)[n− 1]

Ψ−→ Z†∗(n)
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and, recalling what was said in Remark 3.37, an element of Z†st(n) in degree d is a sequence
(α0, α1, α2, . . . ) where α0 is a degree d cochain operation C•(−)⊗n → C•(−), α1 is a degree
d− n+ 1 cochain operation C•(−)⊗n → C•(−) such that Ψ(α1) = α0, and so on.

4.3 The Stable McClure-Smith Operad

In this section, as we did for the Eilenberg-Zilber operad, we stabilize the McClure-Smith
operad, as always in both a chain form and a cochain form. First, we discuss the chain complex
version. As with the Eilenberg-Zilber chain operad, we first show that M admits a stabilization
map:

Ψ: ΣM →M

Here we have once again used the symbol Ψ, just as in the stabilization of Z∗. The context will
always make it clear which map we intend by this symbol. Now, to define this map, we need to
define, for each n ≥ 0, a map (ΣM )(n)→M (n), which is to say a map M (n)[1− n]→M (n).
Consider a non-degenerate surjection f ∈ M (n)[1 − n]d. This is a non-degenerate surjection
f : (m)→ (n) where m− n = d+ n− 1 and so m = d+ 2n− 1. We define Ψ(f) algorithmically
as follows:

• If (f(1), . . . , f(n)) is not a permutation of (1, . . . , n), Ψ(f) is zero.

• If (f(1), . . . , f(n)) is a permutation of (1, . . . , n), Ψ(f) is represented by the map (n+ d)→
(n) given by the sequence (f(n), . . . , f(d+ 2n− 1)).

Proposition 4.24. The above algorithmic procedure yields an operad map Ψ: ΣM →M .

Proof. See [BF04].

As for the cochain operad M †, by Proposition 2.48, the operadic suspension Σ and the reindexing
operator (−)† commute, so that we also have a stabilization map

Ψ: ΣM † →M †

for which we once more use the same symbol Ψ.

Definition 4.25. The stable McClure-Smith chain operad, denoted Mst, is the operad defined as
follows:

Mst := lim
←−

(· · · Ψ−→ Σ2M Ψ−→ ΣM Ψ−→M )

The stable McClure-Smith cochain operad, denoted M †
st , is the operad defined as follows:

M †
st := lim

←−
(· · · Ψ−→ Σ2M † Ψ−→ ΣM † Ψ−→M †)
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Remark 4.26. As per Proposition 2.48, the reindexing operator (−)† commutes with the operadic
suspension. As it clearly also commutes with the inverse limit, there is no ambiguity of notation in
writing M †

st to denote the stable Eilenberg-Zilber cochain operad, in that we can also construct it
simply by applying (−)† to the Mst. ||

Next, we wish to compare the stabilization maps for the McClure-Smith and Eilenberg-Zilber
operads. First, note that, given a surjection f : (m)→ (n), the sequence co-operations, as defined in
Definition 3.39, yield a natural transformation C•(−)→ C•(−)⊗n not only over simplicial sets, but
also over based simplicial sets. To see this, let S be a based simplicial set and let ∆0 → S classify
the basepoint ∗S ∈ S0 of S. Then, since every piece of an overlapping partition of [0] is just {0},
the only case in which each tensor factor in (3.40) will be non-degenerate is if the input surjection
is the identity on (n). In this case the image is ∗S ⊗ · · · ⊗ ∗S , and this tensor is zero in C•(X)⊗n as
the chains are reduced chains. As such, an easy check shows us that we then have an operad map

AW : M → Z∗

which we denote by the same symbol, AW, as earlier. Upin applying (−)†, we also get a map
between the corresponding cochain operads:

AW† : M † → Z†∗

Proposition 4.27. The following squares commute:

ΣM M

ΣZ∗ Z∗

Ψ

ΣAW AW

Ψ

ΣM † M †

ΣZ†∗ Z†∗

Ψ

ΣAW† AW†

Ψ

Proof. We shall give a proof in the case of the chain operads; the case of the cochain operads
of course then is an immediate consequence. Let n ≥ 0, d ∈ Z and let f be a non-denerate
surjection in (ΣM )(n)d = M (n)[1 − n]d = M (n)d+n−1. Then f is a non-degenerate surjection
(d+ 2n− 1)→ (n). Suppose first that (f(1), . . . , f(n)) is not a permutation of (1, . . . , n). Then,
upon applying AW ◦Ψ, we get zero. We then wish to show that application of Ψ ◦ΣAW also yields
zero. Thus we wish to show that the transformation

Ψ(〈f〉) : C•(S)→ C•(S)⊗n

ranging over arbitrary based simplicial sets S, is zero. Consider some e-dimensional simplex s
of S, classified by say σ : ∆e → S. This yields a (e + 1)-simplex Σs of ΣS, classifed by some
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τ : ∆e+1 → ΣS. Then we have

(4.28) Ψ(〈f〉)(σ) =
∑
A

n⊗
i=1

τ | qf(j)=i Aj

where A ranges over the overlapping partitions of [e+ 1] with d+ 2n− 1 pieces. Consider a tensor
factor τ | qf(j)=i Aj . This simplex is classified by the composite

∆e′ −→ ∆e+1
τ−→ ΣS

where the first map is induced by some map θ : [e′]→ [e+ 1] which is itself formed by including
qf(j)=iAj into [e + 1] and then reindexing the source. The actual simplex, in (ΣS)e′ , is given by
the image of the identity on [e′] under this composite. Now, the first map in the composite sends
id[e′] to θ. Then, recalling the definition of the action of simplicial operators on Kan suspensions,
the second map sends θ to θ(e)∗s where θ(e) : [e′′]→ [e] (the notation here is as in (4.2)) is the map
constructed from θ : [e′]→ [e+ 1] by restricting the target to the final e+ 1 entries (that is, all but
the first entry 0), the source to the corresponding preimage, and then reindexing both the source and
target. By Proposition 4.10, this simplex θ(e)∗(s) ∈ (ΣS)e′ , is non-degenerate exactly when the
map θ : [e′]→ [e+ 1] fixes 0 and maps no other entry to 0. Thus, for the tensor factor τ | qf(j)=i Aj

to be non-zero, it is necessary that the first entry of the first Aj in the disjoint union to be 0. In
particular, for Ψ(〈f〉)(σ) to be non-zero, we need this to be true of all the tensor factors. Thus the
only possibly non-zero terms in the sum in the righthand side of (4.28) are those corresponding
to overlapping partitions A for which at least the first n pieces of A begin with 0. Now, by our
assumption that (f(1), . . . , f(n)) is not a permutation of (1, . . . , n), we have that there is a repeat
in the first n entries. Thus, in a term

⊗n
i=1 τ | qf(j)=i Aj , where A is such that the first n pieces

begin with 0, there is some tensor factor for which the map θ : [e′]→ [e+ 1] maps both 0 and 1 to 0.
This tensor factor then is zero and so the entire tensor is zero. Thus we see that the entire sum in
(4.28) is necessarily zero, as desired.

Now suppose that (f(1), . . . , f(n)) is a permutation of (1, . . . , n). Consider (AW ◦Ψ)(f). We
have that Ψ(f) is a map (n+ d)→ (n) and AW(Ψ(f)) is a sequence co-operation

〈Ψ(f)〉 : C•(S)→ C•(S)⊗n

ranging over based simplicial sets S. Let us apply this co-operation to some e-dimensional simplex s
of S, classified by say σ : ∆e → S. To compute the result, we need to choose overlapping partitions
of [e] with n+d pieces, and the assignment of tensor factors to these pieces is given by the sequence
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(f(n), . . . , f(d + 2n − 1)). On the other hand, consider instead the image of f under Ψ ◦ ΣAW.
This image is a sequence co-operation

Ψ(〈f〉) : C•(S)→ C•(S)⊗n

again ranging over based simplicial sets. In this case, to compute the action of this co-operation
on the simplex s, we first pass to the suspended (e+ 1)-dimensional simplex Σs of ΣS, and then
we need to choose overlapping partitions of [e + 1] with d + 2n − 1 pieces. As above, in this
latter case, we need only consider those overlapping partitions in which the first n pieces begin
with zero, as all others lead to a zero tensor. In such overlapping partitions, in particular, the first
n− 1 pieces must be just {0}. Moreover, we can restrict further and also require that the nth piece
contain both 0 and 1, as if the nth piece is simply {0}, then the (n+ 1)th piece will necessarily also
begin with 0 and so, since, by assumption, the sequence (f(1), . . . , f(n)) already contains each of
1, . . . , n, a tensor factor will be degenerate and so the tensor will be zero. All told, we consider only
overlapping partitions such that the first n− 1 pieces are {0} and the nth piece contains both 0 and
1. In particular, we are left to choose only the final (d+ 2n− 1)− (n− 1) = n+ d pieces, and in
fact, the choice of these amounts exactly to that of an overlapping partition of [e] with n+ d pieces:
to see the bijection, given such a partition of [e], add 1 to each entry, and then add 0 at the beginning
of the first piece. Next, given such data which encodes both kinds of overlapping partitions, in
either case the assignment of tensor factors is the same as, in the case of 〈Ψ(f)〉 it is given, by the
definition of Ψ, by (f(n), . . . , f(d+ 2n− 1)), and, in the case of Ψ(〈f〉), the assignment of tensor
factors for the final n + d pieces is given by the same subsequence (f(n), . . . , f(d + 2n − 1)).
Finally, the actual simplices which occur as tensor factors coincide because, in the case of 〈Ψ(f)〉,
we take restrictions, or faces, of s, whereas in the case of Ψ(〈f〉), there is an extra coordinate, a 0 at
the beginning, for each restriction, but we take restrictions of Σs, and, in forming these restrictions,
as per the definition of the action of simplicial operators on Kan suspensons, we first remove the
first coordinate, the extra 0, and then take the corresponding restriction of s, so that, all told, we get
the same restricted simplex, as desired.

As a result of Proposition 4.27, we have commutative diagrams as follows:

ΣM M

ΣZ∗ Z∗

Σ2M· · ·

Σ2Z∗· · ·

Ψ

ΣAW AW
Ψ

Ψ Ψ

Ψ Ψ
Σ2AW
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ΣM † M †

ΣZ†∗ Z†∗

Σ2M †· · ·

Σ2Z†∗· · ·

Ψ

ΣAW† AW†
Ψ

Ψ Ψ

Ψ Ψ
Σ2AW†

From these, we get induced maps

(4.29) AWst : Mst → Zst AW†st : M †
st → Z†st

between the stable Eilenberg-Zilber and stable McClure-Smith, chain and cochain, operads.

4.4 The Stable Barratt-Eccles Operad

We have now constructed stabilizations of both the Eilenberg-Zilber and McClure-Smith operads.
In this section, we present a third and final stabilization, that of the Barratt-Eccles operad. Once
more, we begin by constructing a stabilization map

Ψ: ΣE → E

which will yet again be denoted by Ψ just as in the previous two stabilizations (the context will
always make it clear which map we intend by this symbol). Now, in order to define this map, we need
to define, for each n ≥ 0, a map (ΣE)(n)→ E(n), which is to say a map E(n)[1− n]→ E(n).
Consider a tuple (ρ0, . . . , ρd+n−1) in E(n)[1− n]d = E(n)d+n−1, where each ρi is a permutation in
Σn. Then we define the image Ψ((ρ0, . . . , ρd+n−1)) algorithmically as follows:

• If (ρ0(1), . . . , ρn−1(1)) is not a permutation of (1, . . . , n), Ψ((ρ0, . . . , ρd+n−1)) is zero.

• If (ρ0(1), . . . , ρn−1(1)) is a permutation of (1, . . . , n), Ψ((ρ0, . . . , ρd+n−1)) is the tuple
(ρn−1, . . . , ρd+n−1) ∈ E(n)d.

Proposition 4.30. The above algorithmic procedure yields an operad map Ψ: ΣE → E .

Proof. See [BF04].

The above will take care of the Barratt-Eccles chain operad. As for the cochain operad E †, just
as we noted for the previous two stabilizations, by Proposition 2.48, the operadic suspension Σ and
the reindexing operator (−)† commute, so that we also have a stabilization map

Ψ: ΣE † → E †

for which we once more use the same symbol Ψ.
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Definition 4.31. The stable Barratt-Eccles chain operad, denoted Est, is the operad defined as
follows:

Est := lim
←−

(· · · Ψ−→ Σ2E Ψ−→ ΣE Ψ−→ E)

The stable Barratt-Eccles cochain operad, denoted E †st, is the operad defined as follows:

E †st := lim
←−

(· · · Ψ−→ Σ2E † Ψ−→ ΣE † Ψ−→ E †)

Remark 4.32. As the reindexing operator (−)† commutes with the operadic suspension, as noted
above, and clearly also with the inverse limit, there is no ambiguity of notation in writing E †st

to denote the stable Eilenberg-Zilber cochain operad, in that we can also construct it simply by
applying (−)† to the Est. ||

Next, we wish to compare the stabilization maps for the Barratt-Eccles and McClure-Smith
operads.

Proposition 4.33. The following squares commute:

ΣE E

ΣM M

Ψ

ΣTR TR

Ψ

ΣE † E †

ΣM † M †

Ψ

ΣTR† TR†

Ψ

Proof. See [BF04] for the case of the chain operads; the case of the cochain operads then follows
immediately.

Combining the above commutative squares with the ones earlier which compared the stabiliza-
tion maps for the McClure-Smith and Eilenberg-Zilber operads, we have the following commutative
diagrams:

ΣM M

ΣZ∗ Z∗

Σ2M· · ·

Σ2Z∗· · ·

EΣEΣ2E· · ·

Ψ

ΣAW AW
Ψ

Ψ Ψ

Ψ Ψ
Σ2AW

Ψ Ψ Ψ

Σ2TR ΣTR TR
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ΣM † M †

ΣZ†∗ Z†∗

Σ2M †· · ·

Σ2Z†∗· · ·

E †ΣE †Σ2E †· · ·

Ψ

ΣAW† AW†
Ψ

Ψ Ψ

Ψ Ψ
Σ2AW†

Ψ Ψ Ψ

Σ2TR† ΣTR† TR†

From this, our canonical maps in (4.29) now extend to the following sequences of maps:

Est
TRst−→Mst

AWst−→ Zst E †st
TR†st−→M †

st
AW†st−→ Z†st
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CHAPTER 5

Working With the Stable Operads and Their Algebras

In this chapter, we shall begin to do some work with the stable operads which we constructed in
the previous chapter. As we mentioned earlier, it is the stable Barratt-Eccles and stable McClure-
Smith operads which constitute stabilizations of E∞ operads. Henceforth, we will work with the
stable Barratt-Eccles operad as our preferred stabilization, though all that we say holds also for
the stable McClure-Smith operad. As in the previous chapter, the ground field will be Fp, for an
unspecified but fixed prime p.

5.1 The (Co)homology of the Stable Operads

To begin, we have a result regarding the stabilization maps for the Barratt-Eccles operad, which
allows us below to compute the non-equivariant homology of the stable Barratt-Eccles operad, and
which will be useful also for other purposes later.

Proposition 5.1. For each n ≥ 0, the towers

· · · → (Σ2E)(n)→ (ΣE)(n)→ E(n) · · · → (Σ2E †)(n)→ (ΣE †)(n)→ E †(n)

satisfy the Mittag-Leffler condition. In fact, if n ≥ 1, the maps in the towers are onto.

Proof. We shall give a proof of the case of the chain operad; the case of the cochain operad follows
by reindexing. First, suppose that n = 0. In this case, the Mittag-Leffler property holds because
(ΣkE)(0) is simply Fp[k], and so the stabilization maps are then necessarily zero maps. Now
suppose that n ≥ 1. We will prove surjectivity of the map (ΣE)(n)→ E(n); the surjectivity of the
remaining maps is entirely analogous. Let d ≥ 0. Then E(n)d is generated by tuples (ρ0, . . . , ρd)

where the ρi are permutations in Σn. On the other hand, (ΣE)(n)d = E(n)[1− n]d = E(n)d+n−1

is generated by tuples (ρ′0, . . . , ρ
′
d+n−1) where the ρ′i are once again permutations in Σn. Given

a particular tuple (ρ0, . . . , ρd) in E(n)d, we can of course find permutations ρ′1, . . . , ρ
′
n−1 in Σn

such that (ρ′1(1), . . . , ρ′n−1(1), ρ0(1)) is a permutation of (1, . . . , n). Then, by definition of the
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stabilization map, we have that (ρ0, . . . , ρd) is the image of (ρ′1, . . . , ρ
′
n−1, ρ0, . . . , ρd), and so we

have the desired surjectivity.

The above result allows us to compute the non-equivariant (co)homology of the stable Barratt-
Eccles operad. The result is that, non-equivariantly, the operads are simply zero (except that the
unit is present in arity 1). Later, we shall contrast this with a result which shows that the equivariant
(co)homologies, on the other hand, are highly non-trivial.

Proposition 5.2. We have the following:

H•Est(n) ∼=

{
0 n 6= 1

Fp[0] n = 1
H•E †st(n) ∼=

{
0 n 6= 1

Fp[0] n = 1

Proof. We shall give a proof of the case of the chain operad; the case of the cochain operad follows
by reindexing. By definition, Est(n) is the limit of the following tower:

· · · → (Σ2E)(n)→ (ΣE)(n)→ E(n)

By Proposition 5.1, this tower satisfies the Mittag-Leffler condition, and so, for each d ∈ Z, we
have an induced short exact seqeuence as follows:

0→ lim
k

1 Hd+1((ΣkE)(n))→ Hd(Est(n))→ lim
k

Hd((Σ
kE)(n))→ 0

Moreover, as E is E∞, Hd+1((ΣkE)(n)) is simply Fp if d+ 1 = k − kn, and zero otherwise, the
tower comprising the Hd+1((ΣkE)(n)) clearly satisfies the Mittag-Leffler condition itself, so that
the induced map

Hd(Est(n))→ lim
k

Hd((Σ
kE)(n))

is in fact an isomorphism, for each d ∈ Z. The result now follows immediately from the fact that E
is E∞ and (ΣkE)(n) = E(n)[k − kn].

5.2 The Homotopy Theory of Algebras Over the Stable Operads

In this section, we describe how one can do homotopy theory, in the sense of Quillen (semi-
)model structures, with algebras over the stable Barratt-Eccles operad. In order to do this, we wish
first to demonstrate that the corresponding monad preserves weak equivalences.

Proposition 5.3. The monads Est and E†st associated to the stable Barratt-Eccles chain and cochain

operads preserve quasi-isomorphisms.
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Proof. We shall demonstrate the case of the chain operad; the case of the cochain operad is entirely
analogous. First, recall that the monad E, associated to the unstable Barratt-Eccles chain operad,
preserves quasi-isomorphisms, which follows immediately from the fact that, for each n ≥ 0, E(n)

is Fp[Σn]-free. For each k ≥ 0, let ΣkE denote the monad associated to the operadic suspension
ΣkE . For exactly the same reason as for E, each ΣkE also preserves quasi-isomorphisms.

Next, we show that Est preserves quasi-isomorphisms between finite chain complexes. Here by
“finite chain complex” we mean a complex which is bounded and finitely generated in each degree,
or, equivalently, bounded and finitely presented in each degree (to see the equivalence, note that
Fp[Σn] is Noetherian, as per [BLS81]) . Given any chain complex X , we have that:

Est(X) =
⊕
n≥0

Est(n)⊗Σn X
⊗n

Fix some n ≥ 0. Because, in each degree, each (ΣkE)(n) is of finite dimension over Fp[Σn], and
because, ifX is finite over Fp, we have thatX⊗n is finite over Fp[Σn], we have that we can commute
the tensor product and inverse limit to conclude that:

Est(n)⊗Σn X
⊗n = (lim

k
(ΣkE)(n))⊗Σn X

⊗n = lim
k

((ΣkE)(n)⊗Σn X
⊗n)

Moreover, given a map f : X → Y between finite complexes X and Y , we can write, for each
n ≥ 0, the induced map Est(n)⊗Σn X

⊗n → Est(n)⊗Σn Y
⊗n as the map induced on inverse limits

by the maps (ΣkE)(n)⊗Σn X
⊗n → (ΣkE)(n)⊗Σn Y

⊗n. If f if a quasi-isomorphism, each of the
latter maps (ΣkE)(n)⊗Σn X

⊗n → ΣkE(n)⊗Σn Y
⊗n is also a quasi-isomorphism. Thus we have

the following diagram of quasi-isomorphisms

(ΣE)(n)⊗Σn X
⊗n E(n)⊗Σn X

⊗n

(ΣE)(n)⊗Σn Y
⊗n E(n)⊗Σn Y

⊗n

(Σ2E)(n)⊗Σn X
⊗n· · ·

(Σ2E)(n)⊗Σn Y
⊗n· · ·

∼ ∼∼

and the map Est(n)⊗Σn X
⊗n → Est(n)⊗Σn Y

⊗n is the map induced on the limits of the towers
by the vertical arrows in this diagram. Now, it follows easily from Proposition 5.1 that both the
upper and lower towers satisfy the Mittag-Leffler condition. As such, for each d ≥ 0, the vertical
arrows induce a map of short exact sequences as follows:
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limk Hd((ΣkE)(n)⊗Σn X⊗n) 0

limk Hd((ΣkE)(n)⊗Σn Y ⊗n) 0

Hd(Est(n)⊗Σn X⊗n)lim1
k Hd+1((ΣkE)(n)⊗Σn X⊗n)0

Hd(Est(n)⊗Σn Y ⊗n)lim1
k Hd+1((ΣkE)(n)⊗Σn Y ⊗n)0

∼=∼=

Thus, by the five lemma, the map induced on the limits is itself a quasi-isomorphism. Moreover,
taking the direct sum of these maps for n ≥ 0, it follows that the map

Est(X) =
⊕
n≥0

Est(n)⊗Σn X
⊗n →

⊕
n≥0

Est(n)⊗Σn Y
⊗n = Est(Y )

is a quasi-isomorphism as desired.

It remains to show that Est preserves quasi-isomorphisms between not necessarily finite chain
complexes. To deduce this from the case of finite complexes, recall that any monad associated to
an operad preserves filtered colimits (see [Rez96]) and also that filtered colimits of complexes are
exact. Next, given any chain complex X , note that

X = colim
S⊆finX

S

where S ⊆fin X denotes the category of finite subcomplexes of X , the category of which is clearly
filtered. Let f : X → Y be a quasi-isomorphism, where X and Y are arbitrary. Because Est

preserves filtered colimits, we have a map

colim
S⊆finX

Est(S)→ colim
T⊆finY

Est(T )

induced by f and we need to show that this map is a quasi-isomorphism; note that these colimits can
be taken to be in complexes due to Proposition 2.17. We wish to use the fact that filtered colimits
of complexes are exact, but are unable to do so at the moment because there are no induced maps
between the summands in the colimits; in fact, the indexing categories for the colimits are not
even the same. We remedy this as follows. It is standard that, over Fp, as over any field, any chain
complex can be written as a direct sum (

⊕
i∈I Sni) ⊕ (

⊕
j∈J Dnj), where Sn and Dn denote the

standard sphere and disk complexes. Note that, given the complex (
⊕

i∈I Sni)⊕(
⊕

j∈J Dnj), the ho-
mology is given exactly by the spherical summands

⊕
i∈I Sni . We now split the proof into two cases.

Case 1: Suppose that X = (
⊕

i∈I Sni), Y = (
⊕

i∈I Sni)⊕ (
⊕

j∈J Dnj) and f is the inclusion
X → Y , which is obviously a quasi-isomorphism. Note that every subcomplex T of Y is necessarily
a sum of the summands in (

⊕
i∈I Sni)⊕ (

⊕
j∈J Dnj). For each finite subcomplex T of Y , let ST
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denote the finite subcomplex of X which contains only the spherical summands which occur in T .
We thus have that, for each finite subcomplex T of Y , f restricts to a map iT : ST → T and that this
map is itself a quasi-isomorphism. Moreover, we clearly have that

X = colim
T⊆finY

ST

as the change of index category simply causes some repeats in the summands. We have thus
decomposed the map f : X → Y into the map induced on colimits by the maps iT :

X = colim
T⊆finY

ST → colim
T⊆finY

T = Y

Moreover, the map EstX → EstY induced by f is then decomposed as the following:

EstX = colim
T⊆finY

Est(ST )→ colim
T⊆finY

Est(T ) = EstY

Finally, this map induced on colimits is a quasi-isomorphism by what we have shown above in the
case of finite complexes and the exactness of filtered colimits.

Case 2: Now consider general X and Y and a quasi-isomorphism f : X → Y . Let X =

(
⊕

i∈I1 S
ni)⊕(

⊕
j∈J1

Dnj) and let Y = (
⊕

i∈I2 S
ni)⊕(

⊕
j∈J2

Dnj). Since f is a quasi-isomorphism,
it follows that f must restrict to an isomorphism

⊕
i∈I1 S

ni →
⊕

i∈I2 S
ni . We then get the following

commutative square: ⊕
i∈I1 S

ni
⊕

i∈I2 S
ni

X Y

∼=

⊆ ⊆

f

Upon applying Est to this square, having already established Case 1, we get the desired result.

Next, in order to construct a Quillen semi-model structure for algebras over the stable Barratt-
Eccles operad, our goal is to show that the operads Est and E †st are semi-admissible. To demonstrate
semi-admissibillity, due to Proposition 2.41, we shall be interested in the coproducts Aq Est(Dn)

and A q E†st(Dn) for cell algebras A. Due to Proposition 2.31, this leads us to consider the
enveloping operads UA for cell algebras A. In particular, we shall wish to show that each term
UA(j) is sufficiently nice in that, as a functor on left Fp[Σj]-complexes, UA(j)⊗Fp[Σj ] − preserves
quasi-isomorphisms between finite complexes. We now begin to demonstrate these facts about Est
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and E †st. First of all, we need a few lemmas. For the following lemmas, given a ring R and a dg right
R-module C, let us say that C is finitely flat if, as a functor on finite dg left R-modules, C ⊗R −
preserves quasi-isomorphisms.

Lemma 5.4. For each n ≥ 0, Est(n) and E †st(n) are finitely flat over Fp[Σn].

Proof. The argument is exactly that which occured in the proof of Proposition 5.3, noting that, for
finite complexes, we can commute tensors past the limits which appear in the construction of the
stable operads, that the resulting towers satisfy the Mittag-Leffler condition due to Proposition 5.1
and then that the map induced on the limits is itself a quasi-isomorphism by the standard lim1

argument which we used in the proof of Proposition 5.3.

Lemma 5.5. Let m,n ≥ 0. Given a finitely flat dg right Fp[Σm+n]-module M and a finite dg left

Fp[Σm]-module N , M ⊗Fp[Σm] N is finitely flat over Fp[Σn].

Proof. Given a finite dg left Fp[Σn]-module P , we have a natural isomorphism

(M ⊗Fp[Σm] N)⊗Fp[Σn] P ∼= M ⊗Fp[Σm+n] (Fp[Σm+n]⊗Fp[Σm]⊗FpFp[Σn] (N ⊗Fp P ))

and from this the result follows immediately, noting that Fp[Σm+n] is flat over Fp[Σm]⊗Fp Fp[Σn],
and that Fp[Σm+n]⊗Fp[Σm]⊗FpFp[Σn] (N⊗FpP ) is a finite complex over Fp[Σm+n] given the finiteness
of N and P .

Lemma 5.6. Let R be a ring and let i : C → D be a map of dg right R-modules which is split as a

morphism of graded right R-modules. Then, if any two of C, D and D/C are finitely flat, so is the

third.

Proof. We shall consider the case of chain complexes, the case of cochain complexes differing
mostly only in some notations. Given any chain complex P of left R-modules, the sequence

0→ C ⊗R P → D ⊗R P → (D/C)⊗R P → 0

is exact, as tensor is always right exact and the given retraction r : D → C gives an induced
retraction r ⊗R idP : D ⊗R P → C ⊗R P (at the level of graded modules). This yields a long exact
sequence in homology:

· · · → Hn(C ⊗R P )→ Hn(D ⊗R P )→ Hn((D/C)⊗R P )→ · · ·

Given any quasi-isomorphism P → Q between finite chain complexes of left R-modules, we get a
morphism of these long exact sequences:
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· · · Hn(C ⊗R P ) Hn(D ⊗R P ) Hn((D/C)⊗R P ) · · ·

· · · Hn(C ⊗R Q) Hn(D ⊗R Q) Hn((D/C)⊗R Q) · · ·

The result now follows by the five lemma.

We can now demonstrate the result regarding the finite flatness of the terms of the enveloping
operads.

Proposition 5.7. LetA be a cell Est-algebra or a cell E †st-algebra. Let also UA denote the associated

enveloping operad. Then, for all j ≥ 0, UA(j) is finitely flat over Fp[Σj].

Proof. We shall demonstrate the result in the case of the chain operad Est, the case of the cochain
operad being entirely analogous. Let

A0 → A1 → A2 → · · ·

be a cell filtration of A and fix some choices M1,M2, . . . for the chain complexes which appear
in the attachment squares. For each n ≥ 0, let Nn = ⊕i≤nMi, where N0 = 0, and let also
N = ⊕i≥0Mi. As in Section 2.4 of the second chapter, we have that, for each j ≥ 0, as a graded
right Fp[Σj]-module:

UA(j) =
⊕
i≥0

Est(i+ j)⊗Σi
(N [1])⊗i

The differential on UA(j), we recall, is given by the Leibniz rule, the attachment maps and the
operadic composition. Moreover, for each n ≥ 0, and again for each j ≥ 0, as a graded right
Fp[Σj]-module:

UAn(j) =
⊕
i≥0

Est(i+ j)⊗Σi
(Nn[1])⊗i

Thus we see that the operad UA is filtered by the operads UAn . Now, as A0 is the initial Est-algebra
Est(0), we have UA0 = UEst(0) = Est (see Example 2.30). The terms of the operad UA1 then
arise from the terms of UA0 by attachment of cells; more generally, for n ≥ 1, the terms of the
operad UAn arise from the terms of UAn−1 by attachment of cells. This allows us to define, for
n ≥ 1, a filtration on the terms of the operad UAn as follows. Fix such an n. For any j ≥ 0, we
let FmUAn(j), where m ≥ 0, denote the sub graded module of UAn(j) generated by the elements
σ ⊗ a1 ⊗ · · · ⊗ ai where at most m of the factors a1, . . . , ai ∈ Nn[1] project to a non-zero element
in Mn[1] (which constitutes the “most recently added cells”); note that, since, when computing the
differential of σ ⊗ a1 ⊗ · · · ⊗ ai via the Leibniz rule, if ar ∈Mn[1], we map it to the corresponding
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element of ⊕i≥0Est(i) ⊗Σi
(Nn−1[1])⊗i via the attachment map Mn → An−1, we have that the

differential preserves the sub graded module FmUAn(j) so that we in fact have a sub chain complex.
Now, given n ≥ 1 and j ≥ 0, as graded right Fp[Σj]-modules, note that we have that

UAn(j) =
⊕

i≥0 Est(i+ j)⊗Σi
(Nn[1])⊗i =

⊕
i≥0

⊕i
l=0 Est(i+ j)⊗Σi−l×Σl

Nn−1[1]⊗(i−l) ⊗Mn[1]⊗l

and, for any m ≥ 0, the submodule FmUAn(j) is then given by:

FmUAn(j) =
⊕
i≥0

min(i,m)⊕
l=0

Est(i+ j)⊗Σi−l×Σl
Nn−1[1]⊗(i−l) ⊗Mn[1]⊗l

Thus we see that, for m ≥ 1, the inclusions Fm−1UAn(j) → FmUAn(j) are, at the level of the
underlying graded modules, split monomorphisms. We also have that:

FmUAn(j)/Fm−1UAn(j) ∼=
⊕
i≥m

Est(i+ j)⊗Σi−m×Σm Nn−1[1]⊗(i−m) ⊗Mn[1]⊗m

∼=

(⊕
i≥m

Est(i+ j)⊗Σi−m
Nn−1[1]⊗(i−m)

)
⊗Σm Mn[1]⊗m

=

(⊕
i≥0

Est(i+m+ j)⊗Σi
Nn−1[1]⊗i

)
⊗Σm Mn[1]⊗m

= UAn−1(m+ j)⊗Σm Mn[1]⊗m

Moreover, recalling that when we compute the differential of σ⊗a1⊗· · ·⊗ai via the Leibniz rule, if
ar ∈Mn[1], we map it to the corresponding element of⊕i≥0Est(i)⊗Σi

Nn−1[1]⊗i via the attachment
map Mn → An−1, and so in particular we map to zero in the quotient FmUAn(j)/Fm−1UAn(j), we
see that the isomorphism

FmUAn(j)/Fm−1UAn(j) ∼= UAn−1(m+ j)⊗Σm Mn[1]⊗m

is in fact one of chain complexes, not only of graded modules.

Now we prove the desired result by an induction. We shall show that, for each m, j, n ≥ 0,
FmUAn(j) is finitely flat over Fp[Σj], and we will do this by inducting on n. In the case n = 0,
as noted above, we have that UA0 = Est, and moreover that FmUA0(j) = Est(j) for all m, j ≥ 0.
The required flatness then follows by Lemma 5.4. Suppose now that, for some n ≥ 1, we have
that FmUAn−1(j) is finitely flat over Fp[Σj] for all m, j ≥ 0. We wish to show that FmUAn(j) is
finitely flat over Fp[Σj] for all m, j ≥ 0. We shall do this by inducting over m. By definition of
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the filtration piece F0, we have that, for each j ≥ 0, F0UAn(j) = UAn−1(j) = colimm FmUAn−1(j)

which, by invoking the inductive hypothesisis for the induction over n and passing to the colimit,
we see is finitely flat over Fp[Σj]. Next, suppose that for some m ≥ 1, Fm−1UAn(j) is finitely flat
over Fp[Σj]. As above, we have that:

FmUAn(j)/Fm−1UAn(j) ∼= UAn−1(m+ j)⊗Σm Mn[1]⊗m

Now, by invoking the inductive hypothesis for the induction over n and passing to the colimit,
we see that UAn−1(j +m) = colimm′ Fm′UAn−1(m+ j) is finitely flat over Fp[Σm+j]. Moreover,
by Lemma 5.5, we have that UAn−1(m + j) ⊗Σm Mn[1]⊗m is then finitely flat over Fp[Σj] so
long as Mn is finite. In fact, this holds for arbitrary Mn as a non-finite Mn can be written as
a filtered colimit of its finite subcomplexes and both the tensor product UAn−1(m + j) ⊗Σm −
and the tensor power (−)⊗m commute with filtered colimits. Next, recalling that the inclusion
Fm−1UAn(j) → FmUAn(j) is split at the level of the underlying graded modules, we may now
invoke the inductive hypothesis for the induction over m and apply Lemma 5.6 to conclude that
FmUAn(j) is finitely flat over Fp[Σj], as desired. This completes the induction over m so that
we have that FmUAn(j) is finitely flat over Fp[Σj] for all m, j ≥ 0. Moreover, this conclusion
then completes the induction over n so that we have that FmUAn(j) is finitely flat over Fp[Σj]

for all m, j, n ≥ 0. Finally then, if we fix a j ≥ 0, upon passing to the colimit, we have that
UAn(j) = colimmFmUAn(j) is finitely flat over Fp[Σj], and then, passing to the colimit again, we
have the desired result that UA(j) = colimnUAn(j) is finitely flat over Fp[Σj], which completes
the proof.

We now use the above result to achieve our original goal, which was to show that the operads
Est and E †st are semi-admissible.

Proposition 5.8. The Barratt-Eccles chain and cochain operads, Est and E †st, are semi-admissible.

Proof. We shall demonstrate the case of the chain operad, the case of the cochain operad being
entirely analogous. By Proposition 2.41, it suffices to show that, if A is a cell Est-algebra, then for
each n ∈ Z, the canonical map

A→ Aq Est(Dn)

is a quasi-isomorphism. We note that, by Proposition 2.31, as an algebra under A, we have:

Aq Est(Dn) ∼= UA(Dn) =
⊕
j≥0

UA(j)⊗Σj
(Dn)⊗j = A⊕

(⊕
j≥1

UA(j)⊗Σj
(Dn)⊗j

)

Now, for j ≥ 1, (Dn)⊗j has zero homology and is finite. Moreover, by Proposition 5.7, UA(j) is
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finitely flat over Fp[Σj], so that this zero homology is preserved by the tensor, which gives us the
desired result.

Thus, by Proposition 2.41, we have the following.

Corollary 5.9. The categories of algebras Est-Alg and E †st-Alg possess a Quillen semi-model

structure where:

• The weak equivalences are the quasi-isomorphisms.

• The fibrations are the surjective maps.

• The cofibrations are retracts of relative cell complexes, where the cells are the maps EstM →
EstCM in the chain case, and the maps E†stM → E†stCM in the cochain case, where M is a

degreewise free complex with zero differentials.

5.3 (Co)homology Operations for Algebras Over the Stable Operads I

In the case of the unstable Barratt-Eccles operad, earlier, we demonstrated that if A is an algebra
over this operad, that its (co)homology inherits a product structure as well as certain operations.
We now make analogous considerations with the stable Barratt-Eccles operad. We will see that the
products disappear, whereas the operations, the Qs in the case of the chain operad, and the P s in the
case of the cochain operad, remain, though they no longer satisfy the instability property which
we saw earlier. In fact, in the next two sections, we will see that the Qs and P s, respectively, and
their iterations, do not account for all the operations that exist in the (co)homology of algebras over
Est and E †st. Instead, rather than the algebras of operations S and B which we saw earlier, one gets
certain completions Ŝ and B̂, which we define in the next section, and which contain certain infinite
sums. Nevertheless, the action of the infinite sums, in any given instance, we shall see reduces
to an action by elements of S and B, and so we spend some time in this section making explicit
just this latter case. We do this also because it is illustrative to do so in the sense of seeing exactly
how it is that the products and instablity of the operations disappear. We shall restrict ourselves in
this section alone to the case p = 2; analogous explicit considerations in the p > 2 case are also
possible, though more cumbersome.

Now, to begin, recall that the products, and also the operations as p = 2 here, in the case of the
unstable operad were defined with the help of the arity 2 part of the operad. As such, our first goal
is to examine the arity 2 part of the stable Barratt-Eccles operad. Recall that, the complexes E(2)

96



and E †(2) were exactly the standard F2[Σ2]-free resolutions of F2, namely:

E(2) : · · · ←− 0←− F2[Σ2]
deg 0

1+τ←− F2[Σ2]
deg 1

1+τ←− F2[Σ2]
deg 2

←− · · ·

E †(2) : · · · −→ F2[Σ2]
deg−2

1+τ−→ F2[Σ2]
deg−1

1+τ−→ F2[Σ2]
deg 0

−→ 0 −→ · · ·

Here, τ denotes the non-trivial permutation of {1, 2}. Moreover, earlier, we used the notation ed for
the element (1, τ, 1, τ, . . . ) in both E(2), E †(2), where in the former it had degree d while in the
latter it had degree −d. Now let us see what we get in our stable situation.

Proposition 5.10. The chain complex Est(2), and the cochain complex E †st(2), are as follows:

Est(2) : · · · ←− F2[Σ2]
1+τ←− F2[Σ2]

1+τ←− F2[Σ2]
1+τ←− F2[Σ2]←− · · ·

E †st(2) : · · · −→ F2[Σ2]
1+τ−→ F2[Σ2]

1+τ−→ F2[Σ2]
1+τ−→ F2[Σ2] −→ · · ·

Proof. We shall prove the case of the chain operad, the case of the cochain operad being entirely
analogous. We have a description of E(2) above. Moreover, for each k ≥ 0, we have that
(ΣkE)(2) = E(2)[−k]. Now, given as input a tuple (ρ0, . . . , ρd) of permutations ρi ∈ Σ2, for
some d ≥ 0, by definition, the stabilization map (Σk+1E)(2) → (ΣkE)(2) simply drops the
first entry of the tuple. It follows that, if we write the complexes (ΣkE)(2) vertically, the tower
· · · → (Σ2E)(2)→ (ΣE)(2)→ E(2) looks as follows:

...

F2[Σ2]

F2[Σ2]

F2[Σ2]

F2[Σ2]

0

...

...

F2[Σ2]

F2[Σ2]

F2[Σ2]

0

0

...

...

F2[Σ2]

F2[Σ2]

0

0

0

...

· · ·

· · ·

· · ·

· · ·

· · ·

1 + τ

1 + τ

1 + τ

1 + τ

1 + τ

1 + τ

τ τ

τ τ

τ
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The inverse limit is then clearly the desired complex.

Remark 5.11. We saw earlier, in Proposition 5.2, that the non-equivariant homology of Est(2) is
zero. On the other hand, Proposition 5.10 above and an easy calculation shows that the equivariant
homology of Est, by which we mean the homology of Est(2)/Σ2, consists of exactly a unique F2

generator in each degree:

H•(Est(2)/Σ2) : · · · F2 F2 F2 F2 · · ·

For comparison, in the unstable case, via the description of E(2) in the third chapter and another
easy calculation, we have that the homology of E(2)/Σ2, consists of exactly a unique F2 generator
in each non-negative degree: non-negative degree:

H•(E(2)/Σ2) : · · · 0 F2 F2 F2 · · ·

We have seen before that it is precisely these generators which lead to the operations Qs, and,
moreover, we shall see below that it is precisely the existence of generators in also the negative
degrees which will eliminate the instability property of the operations in the case of the stable
operad. Furthermore, entirely analogous remarks hold in the case of the cochain operads. ||

Just as we did with the unstable Barratt-Eccles operad, we set in place some standardized
notations to work with the stable Barratt-Eccles operad. For each d ∈ Z, when working with the
stable Barratt-Eccles chain operad, we shall let ed, a degree d element of Est(2), be as follows:

• In the case d = 0, we set e0 to be the following infinite tuple of tuples:

(· · · , (1, τ, 1), (τ, 1), (1))

In the case d = 1, we set e1 to be the following infinite tuple of tuples:

(· · · , (1, τ, 1, τ), (τ, 1, τ), (1, τ))

More generally, for any d ≥ 0, ed is the infinite tuple of tuples constructed as follows: begin
with the tuple (1, τ, 1, τ, . . . ) containing d+ 1 entries, and then alternately append either 1 or
τ at the beginning, starting with τ .

• In the case d = −1, we set e−1 to be the following infinite tuple of tuples:

(· · · , (1, τ, 1), (τ, 1), (1), 0)
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In the case d = −2, we set e−2 to be the following infinite tuple of tuples:

(· · · , (1, τ, 1), (τ, 1), (1), 0, 0)

More generally, for d < 0, ed is the infinite tuple of tuples constructed as follows: begin with
|d| zeros, and then proceed as in e0.

Similarly, when we are working with the stable Barratt-Eccles cochain operad, we let ed denote
the very same elements in E †(2), but which now have degree −d.

Remark 5.12. Our use of the notation ed here is in fact consistent with our use of the same notation
earlier, in the following sense. By construction of the stable Barratt-Eccles operad, we have
canonical maps

Est(2)→ E(2) E †st(2)→ E †(2)

and, for d ≥ 0, these map the element of Est(2) or E †st(2) denoted by ed to the element of E(2) or
E †(2) denoted also by ed. Moreover, in the case d < 0, these maps kill the element ed. ||

Having made explicit the arity 2 part of the stable Barratt-Eccles operad, we can now consider the
disappearance of products. The precise statement regarding this will be that of the computation of
the (co)homology of free algebras, to appear below. Here, however, we can make a remark regarding
exactly how it is that the products disappear. Recall that E(2) is non-negative and that its homology
is F2[0]. Similarly, E †(2) is non-positive and its cohomology is F2[0]. Moreover, in either case, the
degree 0 (co)homology generator, denoted e0, was precisely what led to the existence of products in
the (co)homologies of the corresponding algebras. Here, however, we see that Est(2) extends also
into negative degrees, and that E †st(2) extends also into positive degrees, and in particular, as we can
explicitly see from Proposition 5.10, or as we already saw in Proposition 5.2, the (co)homology is
zero; in fact, the degree zero element e0 is no longer a cycle. It is this disappearance of the degree 0

(co)homology generator which leads to the disappearance of the products.

Remark 5.13. One can also consider the disappearance of products in an iterative manner, as
follows. We have seen that the (co)homologies of algebras over E or E † have a product. By
an entirely analogous construction, or with the help of Proposition 2.50, one can show that the
(co)homologies of algebras over ΣE or ΣE † have a shifted product where the product of a degree a
element with a degree b element lies in degree a+ b− 1 in the chain case, and in degree a+ b+ 1

in the cochain case. Similarly, the (co)homologies of algebras over Σ2E or Σ2E † have a shifted
product where the product of a degree a element with a degree b element lies in degree a+ b− 2 in
the chain case, and in degree a+ b+ 2 in the cochain case. This continues, and eventually, in the
limit, in the case of the stabilizations Est and E †st, the product disappears. ||
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Having considered the products, we now consider the operations, which, as we mentioned above,
do continue to exist, though now will no longer satisfy the instability property which we saw earlier.

Proposition 5.14. Given an algebra A over Est, for each s ∈ Z and [a] ∈ Hq(A), by setting

Qs([a]) = [(es−q)∗(a, a)]

we get a well-defined graded map

Qs : H•(A)→ H•(A)

which is linear over F2, of degree s and natural in A. Similarly, given an algebra A over E †st, for

each s ∈ Z and [a] ∈ Hq(A), by setting

P s([a]) = [(eq−s)∗(a, a)]

we get a well-defined graded map

P s : H•(A)→ H•(A)

which is linear over F2, of degree s and natural in A.

As we did earlier, here we use the notation σ∗(a, a) for the image of σ ⊗ a⊗ a under Est(2)⊗
A⊗2 → A in the chain case, or under E †st(2)⊗ A⊗2 → A in the cochain case. Note the similarity
with Proposition 3.10; the key difference is that, here, the ed exist also in negative degrees in the
chain case and also in positive degrees in the cochain case, so that we are not forced to set the
operations to be zero when s < q in the chain case, or when s > q in the cochain case (we could of
course also have defined ed to be zero in the unstable case).

Proof. In either case, linearity, the degree and naturality follow exactly as in the proof of the unstable
version of this result in Proposition 3.10. It is only the well-definedness which we need to be careful
about. We shall demonstrate it in the case of the chain operad, the case of the cochain operad being
entirely analogous. This follows from the following two facts, which we shall demonstrate: (i) given
a cycle a in A, ed ⊗ a⊗ a, for any d, is a cycle in Est(2)⊗Σ2 A

⊗2 (ii) if a and a′ are homologous
cycles in A, ed ⊗ a ⊗ a and ed ⊗ a′ ⊗ a′ are homologous cycles in Est(2) ⊗Σ2 A

⊗2. Consider (i)
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first. This follows from the following identities, which hold in Est(2)⊗Σ2 A
⊗2:

∂(ed ⊗ a⊗ a) = (ed−1 · (1 + τ))⊗ a⊗ a

= ed−1 ⊗ ((1 + τ) · a⊗ a)

= ed−1 ⊗ a⊗ a+ ed−1 ⊗ (τ · a⊗ a)

= ed−1 ⊗ a⊗ a+ ed−1 ⊗ a⊗ a = 0

Next, consider (ii). We need to show that ed⊗ a⊗ a− ed⊗ a′⊗ a′ is a boundary in Est(2)⊗Σ2 A
⊗2.

By assumption, we know that a− a′ is a boundary in A; let a− a′ = ∂b. The desired result then
follows from the following easily verifiable identity:

∂(ed ⊗ a⊗ b+ ed ⊗ b⊗ a′ + ed−1 ⊗ b⊗ b) = ed ⊗ a⊗ a− ed ⊗ a′ ⊗ a′

The above result gives us a stable analogue of Proposition 3.10, which constructed operations in
the unstable case. We now consider what is an appropriate analogue of Proposition 3.14, which
described certain fundamental properties of the operations in the unstable case. We may ignore (iii),
(iv) in the chain case and (vii), (viii) in the cochain case, as those involve the products, which we
have seen disappear in our stable situation here. Moreover, we can also ignore (ii) in the chain case
and (vi) in the cochain case, as these give the instability property of the operations, which we have
seen above disappeared due to the existence of the ed now also in negative dimensions in the chain
case, or also in positive dimensions in the cochain case. Thus, we are left to consider only the Adem
relations. These do indeed hold, though we do not verify them here (they follow, for example, from
the computation of the (co)homologies of free algebras given in the next section).

Remark 5.15. Above, in Remark 5.13, we showed how one can see the disappearance of the
products in an iterative manner. We can also see the disappearance of the instability of the operations
in an iterative manner, as follows. We have seen that the operations in the case of algebras over
E and E † satisfy instability. By an analogous construction, or with the help of Proposition 2.50,
one can show that one also has operations in the case of algebras over ΣE and ΣE † and moreover,
these satisfy a shifted instability condition, which says, in the chain case, that Qs[a] is zero so long
as s < |a| − 1, and in the cochain case, that P s[a] is zero so long as s > |a|+ 1. Similarly, one also
has operations in the case of algebras over Σ2E or Σ2E †, and these satisfy the shifted instability
condition which says that, in the chain case, Qs[a] is zero so long as s < |a| − 2, and in the cochain
case, that P s[a] is zero so long as s > |a|+ 2. This continues, and eventually, in the limit, in the
case of the stabilizations E and E †, the instability disappears. ||
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Finally, note that if A is an algebra over E or E †, by pull back across the canonical maps

Est → E E †st → E †

A is also an algebra over Est or E †st, respectively. The following result compares the operations that
then result.

Proposition 5.16. If A is an algebra over E or E †, the operations on its (co)homology as an

algebra over E or E † coincide with the operations of the same name on its (co)homology as an

algebra over Est or E †st, respectively.

Proof. This follows immediately from what was said in Remark 5.12.

5.4 The Completions Ŝ and B̂

In the case of algebras over the unstable operads E and E †, we found that their (co)homologies
inherited actions by the algebras of operations S and B, respectively. In the case of algebras over
Est and E †st, at least when p = 2, we have seen actions by the same algebras in the previous section;
an important difference, as we noted, is that the actions are no longer unstable, in the sense of
Definition 3.24. However, as we already mentioned in the pervious section, in the stable case, these
operations do not account for all operations. Instead, one needs to allow certain infinite sums of the
QI’s or P I’s, leading to certain completions Ŝ and B̂ of S and B, respectively. In this section, we
shall give a precise construction of these completions, and then, in the next section, we shall see
that, in the case of a free algebra on a complex X , in the chain case, the homology of the algebra is
precisely the free Ŝ-module on H•(X), whereas in the cochain case, the cohomology of the algebra
is precisely the free B̂-module on H•(X).

We shall first construct the completion Ŝ . We begin with a construction of the underlying graded
module of Ŝ. To define this graded module, consider functions:

f : {admissible multi-indices} → Fp

We have an addition and a scalar multiplication for such functions, computed pointwise. We think
of such a function as a possibly infinite sum, and so use the suggestive notation∑

I admissible

aIQ
I

where aI = f(I). Our graded module will consist of such sums, with particular finiteness properties
in relation to the length and excess of multi-indices. Specifically, the underlying graded module of
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Ŝ is defined by setting that, in degree d ∈ Z, the graded piece Ŝd is to consist of the sums∑
I admissible

aIQ
I

with the following requirements:

• For all I , if aI 6= 0, d(I) = d.

• The set of lengths #{l(I) | aI 6= 0} is bounded above, or, equivalently, finite.

• For any k ∈ Z, #{I | aI 6= 0, e(I) > k} is finite.

Remark 5.17. Since, given any non-empty multi-index I of degree d, we have e(I) = 2i1−d(I) =

2i1−d, where I = (i1, . . . , ik), in the p = 2 case and e(I) = 2pi1−2ε1−d(I) = 2pi1−2ε1−d ≥
2pi1 − 2− d, where I = (ε1, i1, . . . , εk, ik), in the p > 2 case, we can rephrase the third condition
as saying that, given any k ∈ Z, there may exist at most finitely many I with aI 6= 0 which are
non-empty and are such that the entry i1 is larger than k. We may then also, imprecisely though
suggestively, package the condition as “i1 → −∞”. ||

Note that we have an obvious embedding of graded modules:

S ↪→ Ŝ

An example of an element, one in degree 0, which is present in the completion Ŝ but not in S, in
the case p = 2, is the following infinite sum:∑

k≥0

Q−kQk

In fact, as the following proposition demonstrates, all elements of Ŝ which are not in S share the
features of this example which say that the initial entries of the multi-indices tend to −∞ while the
final entries tend to +∞.

Proposition 5.18. Let
∑
aIQ

I be an element of Ŝ. We have the following:

(i) Given any k ∈ Z, for all but finitely many I , the initial entry is less than k.

(ii) Given any k ∈ Z, for all but finitely many I , the final entry is greater than k.

Here, in the case p > 2, where multi-indices take the form (ε1, i1, . . . , εr, ir), where the ij lie in
Z while the εj lie in {0, 1}, the first entry is taken to be i1, and the final entry, ir, which is to say we
disregard the εj for this particular purpose.

103



Proof. (i): Let the given element lie in degree d. When p = 2, the result follows by the fact that
e(I) = 2i1 − d for any I = (i1, . . . , ir) of degree d and that, in the sum, there can only be finitely
many elements of excess above a given bound. When p > 2, the result follows in a similar fashion,
using instead the identity e(I) = 2pi1 − 2ε1 − d for any I = (ε1, i1, . . . , εr, ir) of degree d.

(ii): Let the given element lie in degree d. Of course there can be only one length one monomial
which occurs in the sum. Consider then monomials of length r ≥ 2. First consider the case where
p = 2. Given a multi-index I = (i1, . . . , ir), by admissibility, we have i1 ≤ 2i2 ≤ 22i3 ≤ · · · ≤
2r−1ir. Put another way, we have that ij ≤ 2r−jir for j = 1, . . . , r. Thus, we have

d = i1 + (i2 + · · ·+ ir)

≤ i1 + (2r−2ir + 2r−3ir + · · ·+ ir)

= i1 + Cir

where C = 1 + 2 + · · ·+ 2r−2 > 0. Thus we have ir ≥ 1
C

(d− i1) and so the result follows by part
(i). Now consider the case p > 2. In this case, given a multi-index (ε1, i1, . . . , εr, ir), admissibility
gives us that ij ≤ pij+1 − εj+1 for each j = 1, . . . , r − 1, and so, in particular, ij ≤ pij+1 for
each j = 1, . . . , r − 1. It follows that ij ≤ pr−j(ir) for j = 1, . . . , r. Moreover, we have that
d(I) = 2(p− 1)(i1 + · · ·+ ik)− ε1 − · · · − εr ≥ 2(p− 1)(i1 + · · ·+ ik)− r. The argument now
is analogous to the one above for the p = 2 case.

We now wish to endow our graded module Ŝ with an algebra structure. To do so, however, we
first need some technical lemmas regarding the Adem relations. Given any multi-index I , via the
Cartan-Serre basis provided by Proposition 3.21, we know that QI can be written uniquely as a sum∑

aKQ
K

where each K is admissible. We shall call this the admissible monomials expansion of QI . Note
that since the Adem relations either annihilate a monomial or preserve its length, any K for which
aK is non-zero must have the same length as I .

Lemma 5.19. Let I be a non-empty multi-index. If K is a multi-index which appears in the

admissible monomials expansion of QI , then the following hold:

(initial entry of K) ≤ (initial entry of I) (final entry of K) ≥ (final entry of I)

As before, here we follow our convention that, in the case p > 2, where multi-indices take the
form (ε1, i1, . . . , εr, ir), where the ij lie in Z while the εj lie in {0, 1}, the first entry is taken to be
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i1, and the final entry, ir, which is to say we disregard the εj for this particular purpose.

Proof. We shall give a proof of the case where p = 2; the case where p > 2 follows by a similar
proof, upon appropriate modifications. Let I = (i1, . . . , in). In the case n = 1, we already have
admissibility and so the result is trivial. Consider the case where n = 2. Let I = (a, b). If a ≥ 2b,
QaQb is admissible and so the result is trivial. Suppose then that a > 2b. Then, by the Adem
relations, we have that the admissible monomials expansion is:

∑
i

(
i− b− 1

2i− a

)
Qa+b−iQi

(Recall, as in Remark 3.22, that we have seen that the terms on the right-hand side are indeed
admissible.) The terms on the right-hand side which appear are those with index i satisfying
a/2 ≤ i ≤ a− b− 1. Thus the maximum first entry, say kmax init, of the multi-indices (a+ b− i, i)
which occurs satisfies kmax init ≤ a + b− a/2 = a/2 + b < a/2 + a/2 = a, giving us the desired
result. On the other hand, the minimum second entry, say kmin final, of the multi-indices (a+ b− i, i)
which occurs satisfies kmin final ≥ a/2 > b, once again giving us the desired result.

Now let us consider the case n ≥ 3. We have that there exists a finite sequence of terms, say
T1, . . . , Tr, r ≥ 1, in the free algebraF over F2 on theQi, i ∈ Z, which is such that T1 = Qi1 · · ·Qin ,
Tr =

∑
QK is the admissible monomials expansion of Qi1 · · ·Qin , and, for each j ≥ 2, Tj is

constructed from Tj−1 by taking some monomial summandQJ and replacing a sub-monomialQaQb

of QJ with the equivalent
∑

i

(
i−b−1
2i−a

)
Qa+b−iQi provided by the Adem relations. Now, if the move

which is made in transitioning from Tj−1 to Tj is applied to a sub-monomial QaQb where Qa is not
the initial entry of the corresponding monomial QJ , there is no change made to any initial entry in
any monomial summand. If, on the other hand, the move is applied to a sub-monomial QaQb where
Qa is the initial entry of Qj , by the argument in the n = 2 case above, the maximum of all the initial
entries in the resulting multi-indices in Tj is bounded above by the original such maximum in Tj−1.
Thus, by a simple induction, we have that the maximum of the initial entries of all the multi-indices
appearing in

∑
QK is indeed bounded above by i1. By an entirely analogous argument, considering

instead the cases where Qb is, or is not, the final entry of QJ , we have that the minimum of the final
entries of all the multi-indices appearing in

∑
QK is indeed bounded below by ik.

Lemma 5.20. Let I be a multi-index. If K is a multi-index which appears in the admissible

monomials expansion of QI , then e(K) ≤ e(I).

Proof. The case of an empty I is trivial, so suppose that it is non-empty. Suppose that p = 2. Let
I = (i1, . . . , in) and K = (k1, . . . , kn), where n ≥ 1. We can write e(I) = 2i1 − d(I) and e(K) =

2k1 − d(K). The Adem relations preserve degree, so that d(I) = d(K). The result then follows
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by Lemma 5.19. Now suppose that p > 2. Let I = (ε1, i1, . . . , εn, in) and K = (ε′1, k1, . . . , ε
′
n, kn),

where n ≥ 1. We can write e(I) = 2pi1 − 2ε1 − d(I) and e(K) = 2pk1 − 2ε′1 − d(K). The Adem
relations preserve degree, so that d(I) = d(K). Moreover, an examination of the Adem relations
in Proposition 3.15 shows that, if ε1 = 1, then ε′1 = 1, so that ε1 ≤ ε′1 and so −2ε1 ≥ −2ε′1. The
result now follows by Lemma 5.19.

Lemma 5.21. Let I and J be admissible multi-indices. If K is a multi-index which appears in the

admissible monomials expanasion of QIQJ , then e(K) ≤ e(J).

Proof. We shall give a proof of the case where p = 2; the case where p > 2 follows by a similar
proof, upon appropriate modifications. The proof will be via three inductions.

Consider the case when I has length 1. Let I = (a). We will prove this case by induction on
the length of J . If J has length 0, it is empty, the monomial in question is Qa, which is already
admissible, and e(J) = +∞, so that we have the desired result. Now suppose J has length 1. Let
J = (b). If a ≤ 2b, the monomial in question, QaQb, is already admissible, and the excess is a− b,
which is bounded above by e(J) = b since a ≤ 2b. On the other hand, if a > 2b, the admissible
monomials expansion is given by

∑
i

(
i− b− 1

2i− a

)
Qa+b−iQi

where a/2 ≤ i ≤ a − b − 1. The excess of a generic term on the right-hand side is given by
a + b − 2i and this is bounded above by a + b − 2(a/2) = b = e(J), giving us the desired
result. Now suppose that we have the desired result for J of length < n, where n ≥ 2. Consider
QaQj1 · · ·Qjn = (QaQj1 · · ·Qjn−1)Qjn . Let

∑
QK be the admissible monomials expansion of

QaQj1 · · ·Qjn−1 . By the induction hypothesis, for each K, we have e(K) ≤ e(J) + jn. We now
have QaQj1 · · ·Qjn =

∑
QKQjn . By Proposition 5.20, for a given K, any multi-index which

appears in the admissible monomials expansion of the term QKQjn has excess bounded above
by e(K, jn) = e(K) − jn ≤ e(J) + jn − jn = e(J), giving us the desired result. We have thus
established, by induction on the length of J , the case in which I has length 1.

Now consider the case where J has length 1. Let J = (b). We will prove this case by induction
on the length of I . If I has length zero, it is empty, the monomial in question is Qb, which is
already admissible and so the desired result is trivial. Suppose that I has length 1. Let I = (a). The
monomial in question is then QaQb and the desired result follows by exactly the same argument as
the one above which was already made for this monomial. Now suppose that we have the desired
result for I of length < n, where n ≥ 2. Consider Qi1 · · ·QinQb = Qi1(Qi1 · · ·Qjn−1Qb). Let
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∑
QK be the admissible monomials expansion of Qi1 · · ·Qjn−1Qb. By the induction hypothesis,

for each K, we have e(K) ≤ b. We now have Qi1 · · ·QinQb =
∑
Qi1QK . By the result established

by the previous induction, that of the case in which I has length 1, we have that, for a given K, any
multi-index which appears in the admissible monomials expansion of the term Qi1QK has excess
bounded above by e(K) ≤ b, giving us the desired result. We have thus established, by induction
on the length of I , the case in which J has length 1.

We will now prove the general statement in the proposition by induction on the length of J .
First suppose that J has length 0. Then the monomial in question is QI , the admissible monomials
expansion is also simply QI (as I is assumed to be admissible), and we have e(I) ≤ e(J) for
any I since e(J) = +∞. If J has length 1, we have the desired result by the second of the two
previous inductions. Now suppose that we have the desired result for J of length < n, where
n ≥ 2. Consider QIQj1 · · ·Qjn = (QIQj1 · · ·Qjn−1)Qjn . Let

∑
QK be the admissible monomials

expansion of QIQj1 · · ·Qjn−1 . By the induction hypothesis, for each K, we have e(K) ≤ e(J) + jn.
We now have QIQj1 · · ·Qjn =

∑
QKQjn . By Lemma 5.20, for a given K, any multi-index which

appears in the admissible monomials expansion of the term QKQjn has excess bounded above
by e(K, jn) = e(K) − jn ≤ e(J) + jn − jn = e(J), giving us the desired result. We have thus
established, by induction on the length of J , the completely general case.

We are now ready to equip our graded module Ŝ with an algebra structure. For each d1, d2 ∈ Z,
we must construct maps:

Ŝd1 ⊗ Ŝd2 → Ŝd1+d2

Consider two infinite sums, the product of which(∑
I

aIQ
I

)
·

(∑
I

bIQ
I

)

we wish to construct, where we suppose that the only aI and bI which are non-zero are those for
which the degree is d1, d2 respectively. Given any two admissible I and J , let

QIQJ =
∑

K admissible

cI,JK QK

be the admissible monomials expansion of QIQJ ; note that only finitely many of the cI,JK may be
non-zero. We then set:

(5.22)

(∑
I

aIQ
I

)
·

(∑
I

bIQ
I

)
:=
∑
K

(∑
I,J

aIbJc
I,J
K

)
QK

107



Proposition 5.23. The product on Ŝ as above is well-defined and equips Ŝ with an algebra structure

over Fp.

Proof. We first show that the righthand side of (5.22) is well-defined as an infinite sum. To do this,
we need to ensure that the sum

∑
I,J aIbJc

I,J
K is finite for any given K. Fix such a K, say K0. Let

d = d(K0) and e = e(K0). By definition of Ŝ as a graded module, we know that, for all but finitely
many I , we have that aI = 0 or e(I) < e(K0) + d2. Note that given such an I , it is necessarily
non-empty. Now, for such an I , where e(I) < e(K) + d2, we have that, for any J for which bJ 6= 0,
e(IJ) = e(I) − d2 < e(K) + d2 − d2 = e(K), where IJ denotes the concatenation of I and J .
Thus, by Lemma 5.20, there are only finitely many I for which aI 6= 0 and cI,JK0

6= 0, where the
latter amounts to saying that QK0 appears in the admissible monomials expansion of QIQJ . Fix
such an I , say I0. We know that, for all but finitely many J , we have that bJ = 0 or e(J) < e(K).
Thus, by Lemma 5.21, there are only finitely many J for which bJ 6= 0 and cI0,JK0

6= 0, where the
latter amounts to saying that QK0 appears in the admissible monomials expansion of QI0QJ . All
told, we have demonstrated that, for any given K, there are only finitely many terms in both the
infinite sums ∑

I

aIQ
I and

∑
I

bIQ
I

which make a non-zero contribution to the coefficient∑
I,J

aIbJc
I,J
K

of QK . Thus the product is indeed well-defined, at least as infinite sum.

Next, it is moreover an element of Ŝd1+d2 for the following reasons: (i) the degree condition is
satisfied because the Adem relations preserve degree (ii) the length condition is satisfied because
the Adem relations either annihilate an element or preserve its length (iii) the excess condition is
satisfied by the same argument as above, which showed not only well-definedness as an infinite
sum, but more strongly that all but finitely many pairings of the QI and QJ yield monomials with
an associated excess below any given bound.

Finally, because any given coefficient arises from a product of finite sums, it is clear that the
requisite associativity, identity and bilinearity follow from the fact that the definition yields the
product of S when restricted to finite sums and that these properties do indeed hold for the product
of S .
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We have now constructed Ŝ as a graded algebra over Fp. Moreover, the embedding

S ↪→ Ŝ

is now clearly one of algebras. It remains to make precise in what sense Ŝ is a completion of S . For
k ≥ 0, recall the quotients S>k of S defined as per Definition 3.26 and Remark 3.27. Each of these
algebras is filtered by length where FtS>k consists of those monomials QI satisfying the length
bound pl(I) ≤ t. Note that, for any k ≤ l, we have a canonical map

S>k → S>l

and that this map is a filtered map, in that, for each t ≥ 0, we have induced maps:

FtS>k → FtS>l

Next, note that we can also filter Ŝ similarly by length by setting, for t ≥ 0, FtŜ to comprise the
sums

∑
I admissible aIQ

I which satisfy the degree, length and excess requirements in the definition of
Ŝ and which also satisfy, more specifically regarding length, the bound pl(I) ≤ t for any I where
aI 6= 0. For each k ≥ 0, we have a map

Ŝ → S>−k

which projects an infinite sum to the sub-sum of the elements of excess > −k, of which there are
finitely many by definition of Ŝ. Moreover, this map is a filtered map in that we have, for each
t ≥ 0, an induced map:

FtŜ → FtS>−k

These maps are compatible with the maps FtS>k → FtS>l above in that they yield a left cone on
the tower

· · · → FtS>−2 → FtS>−1 → FtS>0

and so yield a map FtŜ → limk≥0 FtS>−k. The precise statement then regarding in what sense Ŝ is
a completion of S is the following.

Proposition 5.24. The map FtŜ → limk≥0 FtS>−k constructed above is an isomorphism of graded

modules. Moreover, as graded modules, we have that:

Ŝ ∼= colim
t≥0

lim
k≥0

FtS>−k

Proof. By Proposition 3.28, S>−k has a basis given by the admissible monomials of excess strictly
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larger than −k. Moreover, each FtS>−k then has a basis given by the admissible monomials QI

satisfying both e(I) > −k and the length bound pl(I) ≤ t. Moreover, the map FtS>−k−1 → FtS>−k
simply kills those basis elements with excess exactly−k−1. The first part of the result now follows
by an easy verification of the necessary universal property. The second part then follows by noting
that, under this established isomorphism, given t ≤ t′, the map induced on the limits by the natural
maps FtS>−k → Ft′S>−k corresponds exactly to the inclusion FtŜ → Ft′Ŝ

We have now completed all of our desired goals regarding the algebra Ŝ . We now consider the
algebra B̂. Having done the work to construct Ŝ , the isomorphism B ∼= S† in Proposition 3.19 will
allow for an expedited construction of B̂. As in the case of Ŝ, we first construct the underlying
graded module of B̂. To do this, we once again consider functions

f : {admissible multi-indices} → Fp

where now we recall that the notion of admissibility has a different meaning. Once more, we think
of such a function as a possibly infinite sum, and this time use the suggestive notation∑

I admissible

aIP
I

where aI = f(I). Our graded module will consist of such sums, with a particular finiteness
properties in relation to the length and excess of multi-indices. Specifically, we define the underlying
graded module of B̂ by setting that, in degree d ∈ Z, B̂d is to consist of the sums∑

I admissible

aIP
I

with the following requirements:

• For all I , if aI 6= 0, d(Ii) = d.

• The set of lengths #{l(I) | aI 6= 0} is bounded above, or, equivalently, finite.

• For any k ∈ Z, #{I | aI 6= 0, e(I) < k} is finite.

Note the change in the excess condition, as compared to the definition of the underlying graded
module of Ŝ.

Remark 5.25. Since, given any non-empty multi-index I of degree d, we have e(I) = 2i1−d(I) =

d, where I = (i1, . . . , ik), in the p = 2 case, and e(I) = 2pi1 + 2ε1 − d(I) = 2pi1 + 2ε1 − d ≤
2pi1 + 2− d, where I = (ε1, i1, . . . , εk, ik), in the p > 2 case, we can rephrase the third condition
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as saying that, given any k ∈ Z, there may exist at most finitely many I with aI 6= 0 which are
non-empty and are such that the entry i1 is smaller than k. We may then also imprecisely though
suggestively package the condition as “i1 → +∞”. ||

We now have a graded module B̂ and an obvious embedding of graded modules:

B ↪→ B̂

An example of an element, one in degree 0, which is present in the completion B̂ but not in B is the
following infinite sum: ∑

k≥0

P kP−k

In fact, as the following proposition demonstrates, all elements of B̂ which are not in B share the
features of the above example which say that the initial entries of the multi-indices tend to +∞
while the final entries tend to −∞.

Proposition 5.26. Let
∑
aIP

I be an element of B̂. We have the following:

(i) Given any k ∈ Z, for all but finitely many I , the initial entry is greater than k.

(ii) Given any k ∈ Z, for all but finitely many I , the final entry is less than by k.

Here, as before, in the case p > 2, where multi-indices take the form (ε1, i1, . . . , εr, ir), where
the ij lie in Z while the εj lie in {0, 1}, the first entry is taken to be i1, and the final entry, ir, which
is to say we disregard the εj for this particular purpose.

Proof. The proof is exactly that of Proposition 5.18, with the appropriate modifications.

We now equip B̂ with an algebra structure. We could develop analogues of all the technical
results which we proved in the process of constructing the algebra structure of Ŝ. However, as
mentioned earlier, the isomorphism B ∼= S† in Proposition 3.19 provides a shorter route. Recall,
as per Remark 3.20, that this isomorphism maps admissible monomials to admissible monomials,
preserves length and negates the excess. It follows that it extends to an isomorphism of graded
modules B̂ ∼= Ŝ† such that the following square commutes:

B B̂

S† Ŝ†

∼= ∼=
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Now, to define the product structure of B̂, we simply transfer the corresponding structure on Ŝ†

across the right vertical isomorphism. It then immediately follows that the isomorphism B̂ ∼= Ŝ†

is now one of algebras, and that the inclusion B ↪→ B̂ is now also one of algebras, so that the
entire commutative square above is now one in the category of algebras. Moreover, because the
isomorphism between B and S† maps admissible monomials to admissible monomials (and so
admissible monomial expansions to admissible monomial expansions), an easy check shows that
the products (∑

I

aIP
I

)
·

(∑
I

bIP
I

)

in B̂ admit a definition by expansion of the terms P IP J entirely analogous to that for the products
in Ŝ.

We have thus constructed the desired algebra B̂. It remains to make precise in what sense it is a
completion of B; the final result, presented below, is of course analogous to the case of S and Ŝ.
For k ≥ 0, recall the quotients B<k of B defined as per Definition 3.26 and Remark 3.27. Each
of these algebras is filtered by length where FtB<k consists of those monomials P I satisfying the
length bound pl(I) ≤ t. Note that, for any k ≤ l, we have a canonical map

B<l → B<k

and that this map is a filtered map, in that, for each t ≥ 0, we have induced maps:

FtB<l → FtB<k

Next, note that we can also filter B̂ similarly by length by setting, for t ≥ 0, FtB̂ to comprise the
sums

∑
I admissible aIP

I which satisfy the degree, length and excess requirements in the definition of
B̂ and which also satisfy, more specifically regarding length, the bound pl(I) ≤ t for any I where
aI 6= 0. For each k ≥ 0, we have a map

B̂ → B<k

which projects an infinite sum to the sub-sum of the elements of excess < k, of which there are
finitely many by definition of B̂. Moreover, this map is a filtered map in that we have, for each
t ≥ 0, an induced map:

FtB̂ → FtB<k

These maps are compatible with the maps FtB<l → FtB<k above in that they yield a left cone on
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the tower
· · · → FtB<2 → FtB<1 → FtB<0

and so yield a map FtB̂ → limk≥0 FtB<k. The precise statement then regarding in what sense B̂ is a
completion of B is the following.

Proposition 5.27. The map FtB̂ → limk≥0 FtB<k constructed above is an isomorphism of graded

modules. Moreover, as graded modules, we have that:

B̂ ∼= colim
t≥0

lim
k≥0

FtB<k

Proof. The proof is entirely analogous to that of Proposition 5.24, with the appropriate modifications.

5.5 The (Co)homology of Free Algebras Over the Stable Operads

In the previous section, we constructed the algebras Ŝ and B̂. In this section, we shall show that,
if X is a chain complex, the homology of the free Est-algebra on X is precisely the free Ŝ-module
on H•(X), namely Ŝ ⊗ H•(X), and similarly that, if X is a cochain complex, the cohomology of
the free E †st-algebra on X is precisely the free B̂-module on H•(X), namely B̂ ⊗ H•(X). In order
to compare H•(EstX) and Ŝ ⊗ H•(X) when X is a chain complex, or H•(E†stX) and B̂ ⊗ H•(X)

when X is a cochain complex, we shall introduce intermediating constructions. Thus, we define a
functor A on chain complexes by setting:

A(X) := colim
t≥0

lim
k≥0

FtH•((ΣkE)X)

Similarly, we define a functor B on cochain complexes by setting:

B(X) := colim
t≥0

lim
k≥0

FtH•((ΣkE†)X)

We study these functors by studying the steps in their construction, one at a time. Let X be a chain
complex. Let {ci} be a basis of H•(X). By Propositions 3.31 and 2.50, we have that, for each
k ≥ 0, H•((ΣkE)X) is isomorphic to a shift up by k of the free graded-commutative algebra over
Fp on the terms QIci where I is admissible and e(I) > |ci| − k. Let Fk denote this latter object.
Then, via the maps Σk+1E → ΣkE , we have a commutative diagram as follows:

F1 F0

H•((ΣE)X) H•(EX)

F2· · ·

H•((Σ2E)X)· · ·

∼= ∼=∼=
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Now, let X instead be a cochain complex, and let {ci} be a basis of H•(X). By the same
Propositions 3.31 and 2.50, we have that, for each k ≥ 0, H•((ΣkE†)X) is isomorphic to a shift
down by k of the free graded-commutative algebra over Fp on the terms P Ici where I is admissible
and e(I) < |ci| + k. Let Gk denote this object. Then, via the maps Σk+1E → ΣkE , we have a
commutative diagram as follows:

G1 G0

H•((ΣE†)X) H•(E†X)

G2· · ·

H•((Σ2E†)X)· · ·

∼= ∼=∼=

Proposition 5.28. Let X be a dg module. For each k ≥ 0, the maps Fk+1 → Fk and Gk+1 → Gk
kill any product, including the empty product, which is to say the multiplicative unit.

One can sum up this proposition as “the instability of products”.

Proof. We shall give a proof of the chain version, which is to say of the maps Fk+1 → Fk, as the
cochain version is analogous. Let us first deal with non-empty products. Recall our notation ed,
for d ≥ 0, for particular elements of E(2), where ed has degree d. Let ekd denote the corresponding
element of (ΣkE)(2) = E(2)[−k]. Note that ekd has degree d − k. In particular ek0 has degree
−k, and, since ΣkE is zero below degree k, the stabilization map Σk+1E → ΣkE must map
ek+1

0 to 0. Now, fix k ≥ 0 and consider some product (QIc) · (QI′c′) in Fk+1. Let [η] and [ξ],
respectively, be the images of QIc and QI′c′ under the isomorphism Fk+1 → H•((Σk+1E)X).
Then, by definition of the products in the homologies, (QIc) · (QI′c′) maps, under this same
isomorphism, to [ek+1

0 (η, ξ)], by which we mean the class of the image of ek+1
0 ⊗η⊗ξ under the map

(Σk+1E)(2) ⊗ ((Σk+1E)X)⊗2 → (Σk+1E)X . Now, since ek+1
0 maps to 0 under Σk+1E → ΣkE ,

as noted above, we have that the product (QIc) · (QI′c′) maps to zero under the composite Fk+1 →
H•((Σk+1E)X) → H•((ΣkE)X), and this proves the required result for the map Fk+1 → Fk,
except in the case of the empty product. For the empty product, the argument is similar: one notes
that the multiplicative unit in Fk+1 corresponds to the generator in degree k + 1 of (Σk+1E)(0),
and this generator is mapped to zero in (ΣkE)(0) since the latter is zero above degree k.

We can also consider filtered versions of the above diagrams. Consider again the case where
X is a chain complex and {ci} is a basis of H•(X). By Propositions 3.34 and 2.50, given
t ≥ 0, FtH•((ΣkE)X) is a shift up by k of the Fp-submodule of Fk generated by the prod-
ucts (QI1c1) · · · (QIkcr), where r ≥ 0, I is admissible, e(I) > |ci| − k and pl(I1) + · · ·+ pl(Ir) ≤ t.
As usual, we let FtFk denote this filtration piece of Fk. We then have a commutative diagram as
follows:

114



FtF1 FtF0

FtH•((ΣE)X) FtH•(EX)

FtF2· · ·

FtH•((Σ2E)X)· · ·

∼= ∼=∼=

Now consider again the case where X is a cochain complex and {ci} is a basis of H•(X).
By Propositions 3.34 and 2.50, given t ≥ 0, FtH•((ΣkE†)X) is a shift up down by k of the Fp-
submodule of Gk generated by the products (P I1c1) · · · (P Ikcr), where r ≥ 0, I is admissible,
e(I) < |ci|+ k and pl(I1) + · · ·+ pl(Ir) ≤ t. As usual, we let FtGk denote this filtration piece of Gk.
We then have a commutative diagram as follows:

FtG1 FtG0

FtH•((ΣE†)X) FtH•(E†X)

FtG2· · ·

FtH•((Σ2E†)X)· · ·

∼= ∼=∼=

Next, we make precise in what sense the products, due to their instability as described in
Proposition 5.28 above, disappear in the limits. If X is a chain complex, {ci} is a basis of H•(X)

and Fk is as above, we let F+
k be the submodule of Fk generated by the monomials QIci where

e(I) > |ei|−k; that is, it is submodule which omits all products, including the empty product, and is
also a free graded module over Fp on the monomials QIei where I is admissible and e(I) > |ei|−k.
Just like Fk, F+

k is filtered, where FtF+
k denotes the submodule generated by the monomials QIci

which satisfy e(I) > |ei| − k and also the additional requirement that pl(I) ≤ t. The inclusion
F+
k ↪→ Fk is then clearly a filtered one, in that, for each t ≥ 0, we have an induced inclusion

FtF+
k ↪→ FtFk. We now have commutative diagrams as follows:

F1 F0

H•((ΣE)X) H•(EX)

F2· · ·

H•((Σ2E)X)· · ·

F+
0F+

1F+
2· · ·

∼= ∼=∼=

FtF1 FtF0

FtH•((ΣE)X) FtH•(EX)

FtF2· · ·

FtH•((Σ2E)X)· · ·

FtF+
0FtF+

1FtF+
2· · ·

∼= ∼=∼=
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On the other hand, if X is a cochain complex, {ci} a basis of H•(X) and Gk is as above, we
let G+

k be the submodule of Gk generated by the monomials P Ici where e(I) < |ei| + k; that is,
it is submodule which omits all products, including the empty product, and is also a free graded
module over Fp on the monomials P Iei where I is admissible and e(I) < |ei| + k. Just like Gk,
G+
k is filtered, where FtG+

k denotes the submodule generated by the monomials P Ici which satisfy
e(I) < |ei|+ k and also the additional requirement that pl(I) ≤ t. The inclusion G+

k → Gk is then
clearly a filtered one, in that, for each t ≥ 0, we have an induced inclusion FtG+

k → FtGk. We now
have commutative diagrams as follows:

G1 G0

H•((ΣE†)X) H•(E†X)

G2· · ·

H•((Σ2E†)X)· · ·

G+
0G+

1G+
2· · ·

∼= ∼=∼=

FtG1 FtG0

FtH•((ΣE†)X) FtH•(E†X)

FtG2· · ·

FtH•((Σ2E†)X)· · ·

FtG+
0FtG+

1FtG+
2· · ·

∼= ∼=∼=

Proposition 5.29. If X is a chain complex, {ci} is a basis of H•(X) and t ≥ 0, the induced maps

lim
k≥0
F+
k → lim

k≥0
H•((ΣkE)X) lim

k≥0
FtF+

k → lim
k≥0

FtH•((ΣkE)X)

are isomorphisms. Similarly, if X is a cochain complex, {ci} is a basis of H•(X) and t ≥ 0, the

induced maps

lim
k≥0
G+
k → lim

k≥0
H•((ΣkE†)X) lim

k≥0
FtG+

k → lim
k≥0

FtH•((ΣkE†)X)

are isomorphisms.

Proof. Consider the case of the map limk F+
k → limk H•((ΣkE)X); the other cases are analogous.

We need to show that the induced map limk F+
k → limk Fk is an isomorphism, as we already know

that the map limk Fk limk H•((ΣkE)X) is an isomorphism. Injectivity is obvious from the standard
description of inverse limits of towers via infinite tuples and, moreover, surjectivity follows from
this description and the instability of products described in Proposition 5.28.
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Thus, given a chain complex X , we have a description of limk≥0 FtH•((ΣkE)X) and so, upon
taking the colimit over t, a description of A(X). Similarly, given a cochain complex X , we have
a description of limk≥0 FtH•((ΣkE†)X) for each k ≥ 0, and so, upon taking the colimit over t, a
description of B(X). This allows us to demonstrate the following a priori unexpected properties of
A and B.

Proposition 5.30. The functors A and B are additive.

Proof. We shall demonstrate the case of A; the case of B is entirely analogous. LetX and Y be chain
complexes, and let {ci} and {dj} be basses of their homologies H•(X) and H•(Y ), respectively.
We wish to show that the canonical map

A(X)⊕ A(Y )→ A(X ⊕ Y )

is an isomorphism. Now, by definition, we have:

A(X) = colim
t≥0

lim
k≥0

FtH•((ΣkE)X)

Moreover, by Proposition 5.29, for each k, t ≥ 0, limk≥0 FtH•((ΣkE)X) is isomorphic to limk≥0 FtF+
k ,

where FtF+
k is the free graded module on the monomials QIci which satisfy e(I) > |ei| − k and

pl(I) ≤ t. It follows that, in degree say d ∈ Z, A(X) is isomorphic to the module which consists of
infinite sums ∑

aIi,ci(Q
Iici)

by which we mean functions f : {(Ii, ci) | Ii admissible} → Fp, where f(Ii, ci) = aIi,ci , satisfying
the following requirements:

• For all (Ii, ci), if aIi,ci 6= 0, d(Ii) + |ci| = d.

• The set of lengths #{l(Ii) | aIi,ci 6= 0} is bounded above, or, equivalently, finite.

• For any k ≥ 0, #{(Ii, ci) | aIi,ci 6= 0, e(Ii) > |ci| − k} is finite.

Similarly, A(Y ) is isomorphic to the module which consists of infinite sums∑
aIj ,dj(Q

Ijdj)

satisfying the following requirements:

• For all (Ij, dj), if aIj ,dj 6= 0, d(Ij) + |dj| = d.

• The set of lengths #{l(Ij) | aIj ,dj 6= 0} is bounded above, or, equivalently, finite.
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• For any k ≥ 0, #{(Ij, dj) | aIj ,dj 6= 0, e(Ij) > |dj| − k} is finite.

Moreover, as H•(X ⊕ Y ) = H•(X)⊕ H•(Y ) has basis {ci} q {dj}, A(X ⊕ Y ) is isomorphic to
the module which consists of infinite sums∑

aIi,ci(Q
Iici) +

∑
aIj ,dj(Q

Ijdj)

satisfying the following requirements:

• For all (Ii, ci) and (Ij, dj), if aIi,di 6= 0, d(Ii) + |ci| = d, and if aIj ,dj 6= 0, d(Ij) + |dj| = d.

• Both sets of lengths #{l(Ii) | aIi,ci 6= 0} and #{l(Ij) | aIj ,di 6= 0} are bounded above, or,
equivalently, finite.

• For any k ≥ 0, both sets #{(Ii, ci) | aIi,ci 6= 0, e(Ii) > |ci| − k} and #{(Ij, dj) | aIj ,dj 6=
0, e(Ij) > |dj| − k} is finite.

An easy check shows that, under the identifications provided by the above isomorphisms, the
canonical map A(X)⊕A(Y )→ A(X ⊕ Y ) corresponds to the obvious inclusion of sets of infinite
sums. The map is then clearly an isomorphism, as desired.

We now show how A(X) and B(X) intermediate between H•(EstX), Ŝ ⊗H•(X) and H•(E†stX),
B̂ ⊗ H•(X), respectively. First, let X be a chain complex. Via the canonical maps Est → ΣkE , we
get canonical maps EstX → (ΣkE)X , and as a result also maps FtH•(EstX) → FtH•((ΣkE)X).
These maps are compatible with the maps FtH•((Σk+1E)X) → FtH•((ΣkE)X), so that we get
an induced map FtH•(EstX) → limk≥0 FtH•((ΣkE)X). Upon taking colimits over t, we get an
induced natural, in X , map:

Φ1 : H•(EstX)→ A(X)

Now consider Ŝ ⊗ H•(X). We construct a natural map:

Φ2 : Ŝ ⊗ H•(X)→ A(X)

This map is defined as follows; the idea is that the term limk H•((ΣkE)X) which arises in the con-
struction of A(X) inherits an action by the term S>−k which arises in the construction of Ŝ . Recall,
as we saw in Propostion 5.24, that we have Ŝ = colimt≥0 limk≥0 FtS>−k. For each d1, d2, we need to
specify a map Ŝd1⊗Hd2(X) = colimt≥0(FtŜd1⊗Hd2(X))→ colimt≥0 limk≥0 FtHd1+d2((ΣkE)X).
Fix some t0 ≥ 0. For each k ≥ 0, consider the following composite:

Ft0Ŝd1 ⊗ Hd2(X)→ Ft0(S>d2−k)d1 ⊗ F1Hd2((ΣkE)X)→ Ft0+1Hd1+d2((ΣkE)X)
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Here the first map is induced by the canonical map Ft0Ŝd1 → Ft0(S>d2−k)d1 (where, if d2 − k ≥ 1,
we first pass to Ft0(S>0)d1 and then to Ft0(S>d2−k)d1) and the unit of adjunction X → (ΣkE)X .
Moreover, the second map is that which is provided by Propositions 3.30, 3.33 and 2.50. The above
composites are compatible with the maps Ft0+1Hd1+d2((Σk+1E)X)→ Ft0+1Hd1+d2((ΣkE)X), so
that we get an induced map

Ft0Ŝd1 ⊗ Hd2(X)→ lim
k≥0

Ft0+1Hd1+d2((ΣkE)X) ↪→ colimt≥0 lim
k≥0

FtHd1+d2((ΣkE)X)

and then finally, we note that the above maps are compatible with the inclusions FtŜd1 ↪→ Ft+1Ŝd1 ,
so that we get the desired map

Ŝd1 ⊗ Hd2(X)→ colim
t≥0

lim
k≥0

FtHd1+d2((ΣkE)X)

and this completes the construction of Φ2.

On the other hand, if X is a cochain complex, by entirely analogous constructions, we get
natural maps

Φ1 : H•(E†stX)→ B(X)

Φ2 : B̂ ⊗ H•(X)→ B(X)

which we also denote by Φ1 and Φ2 (the context will always make it clear which maps we intend by
these symbols).

Proposition 5.31. For finite dg modules X , the maps Φ1 and Φ2, in both the chain and cochain

cases, defined above are isomorphisms.

Recall that by a finite dg module over Fp we mean one which is bounded and of finite dimension
in each degree. In order to demonstrate this result, we first need the following lemma.

Lemma 5.32. For any chain complex X , the towers

· · · → (Σ2E)X → (ΣE)X → EX

· · · → H•((Σ2E)X)→ H•((ΣE)X)→ H•(EX)

satisfy the Mittag-Leffler condition. Moreover, for each t ≥ 0, the towers

· · · → Ft(Σ2E)X → Ft(ΣE)X → FtEX

· · · → FtH•((Σ2E)X)→ FtH•((ΣE)X)→ FtH•(EX)
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also satisfy the Mittag-Leffler condition. Similarly, if X is a cochain complex, the towers

· · · → (Σ2E†)X → (ΣE†)X → E†X

· · · → H•((Σ2E†)X)→ H•((ΣE†)X)→ H•(E†X)

satisfy the Mittag-Leffler condition. Moreover, for each t ≥ 0, the towers

· · · → Ft(Σ2E†)X → Ft(ΣE†)X → FtE†X

· · · → FtH•((Σ2E†)X)→ FtH•((ΣE†)X)→ FtH•(E†X)

also satisfy the Mittag-Leffler condition.

Proof. We shall demonstrate the case of the chain operad; the case of the cochain operad is entirely
analogous. In fact, we shall show that, for each n ≥ 0 and any chain complex X , the towers

· · · → (Σ2E)(n)⊗Σn X
⊗n → (ΣE)(n)⊗Σn X

⊗n → E(n)⊗Σn X
⊗n

· · · → H•((Σ2E)(n)⊗Σn X
⊗n)→ H•((ΣE)(n)⊗Σn X

⊗n)→ H•(E(n)⊗Σn X
⊗n)

satisfy the Mittag-Leffler condition, from which the desired results follow immediately. The
Mittag-Leffler property for the first of the two towers above follows immediately from the Mittag-
Leffler property of the tower · · · → (Σ2E)(n) → (ΣE)(n) → E(n), which was established in
Proposition 5.1. Consider then the second tower. Let {ci} denote a basis of H•(X), and recall,
as in the previous section, that, by Propositions 3.31 and 2.50, we have that, for each k ≥ 0,
H•((ΣkE)X) is isomorphic to a shift up by k of the free graded-commutative algebra over Fp on
the terms QIci where I is admissible and e(I) > |ci| − k. Let Fk denote this object, as earlier. By
Proposition 3.34, we have that H•((ΣkE)(n)⊗ΣnX

⊗n) is the Fp-submodule of Fk generated by the
terms (QI1c1) · · · (QIrcr) where r ≥ 0, I is admissible, e(I) > |ci| − k and pl(I1) + · · ·+ pl(Ik) = n.
Now, given a fixed k, the map H•((Σk+1E)(n)⊗Σn X

⊗n)→ H•((ΣkE)(n)⊗Σn X
⊗n) sends any

QIc which satisfies, not only that e(I) > |c| − k − 1, but rather e(I) > |c| − k, to itself, so that
all monomials QIc in Fk occur in the image. On the other hand, by Proposition 5.28, all products
are killed, and in particular, no products occur in the image. We have thus identified the image of
the map H•((Σk+1E)(n) ⊗Σn X

⊗n) → H•((ΣkE)(n) ⊗Σn X
⊗n), and, moreover, essentially the

same argument shows that all maps H•((Σk′E)(n) ⊗Σn X
⊗n) → H•((ΣkE)(n) ⊗Σn X

⊗n), for
k′ ≥ k + 1, have this same image, which gives us the desired result.

Proof of Proposition 5.31. We shall demonstrate the chain case; the cochain case is analogous. Let
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X be a finite chain complex. We first consider the map of Φ1. We have:

FtEstX =
⊕
n≤t

Est(n)⊗Σn X
⊗n

=
⊕
n≤t

lim
k≥0

(ΣkE(n))⊗Σn X
⊗n

∼=
⊕
n≤t

lim
k≥0

(ΣkE(n)⊗Σn X
⊗n)

∼= lim
k≥0

(
⊕
n≤t

ΣkE(n)⊗Σn X
⊗n)

= lim
k≥0

Ft(ΣkE)X

Here the first isomorphism holds because X is finite. By Lemma 5.32, we have that

FtH•(EstX) ∼= lim
k≥0

FtH•((ΣkE)X)

and then, upon taking colimits over t ≥ 0, we get that Φ1 : H•(EstX)→ A(X) is an isomorphism,
as desired. Now consider the map Φ2. It is standard that, over Fp, as over any field, any chain
complex can be written as a direct sum (

⊕
i∈I Sni) ⊕ (

⊕
j∈J Dnj), where Sn and Dn denote the

standard sphere and disk complexes. As X is finite, both I and J here must be finite. Because,
by Proposition 5.30, A is additive, and because Ŝ ⊗ H•(−) is of course also additive, we need
only demonstrate the case where X is a sphere complex Sn or a disk complex Dn. The case of the
disk complex follows immediately from the fact that the ΣkE preserve quasi-isomorphisms (as the
operads ΣkE are Σ-free). Thus, it remains to consider the case where X = Sn for some n ∈ Z. Let
cn denote a generator of H•(X) in degree n. By Proposition 5.24, we have that:

Ŝ ⊗ H•(X) = colim
t≥0

lim
k≥0

FtS>−k ⊗ Fp{cn}

By Proposition 3.28, it follows that Ŝ ⊗ H•(X), in degree say d ∈ Z, is isomorphic to the module
which consists of infinite sums ∑

aI(Q
Icn)

by which we mean functions f : {I | Iadmissible} → Fp, where f(I) = aI , satisfying the following
requirements:

• For all I , if aI 6= 0, d(I) + n = d.

• The set of lengths #{l(I) | aI 6= 0} is bounded above, or, equivalently, finite.

• For any k ≥ 0, #{I | aI 6= 0, e(I) > −k} is finite.
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On the other hand, as in the proof of Proposition 5.30, A(X), in degree d, is isomorphic to the
module which consists of infinite sums ∑

aI(Q
Icn)

satisfying the following requirements:

• For all I , if aI 6= 0, d(I) + n = d.

• The set of lengths #{l(I) | aI 6= 0} is bounded above, or, equivalently, finite.

• For any k ≥ 0, #{I | aI 6= 0, e(I) > n− k} is finite.

The only difference occurs in the third condition; however, the two conditions are obviously
equivalent, and an easy check shows that the map Φ2, under these isomorphisms, corresponds to
simply the identity, and so is an isomorphism.

Finally, we are now able to compute the (co)homologies of free algebras over the stable Barratt-
Eccles chain and cochain operads.

Proposition 5.33. Given a chain complex X , we have a natural isomorphism:

H•(EstX) ∼= Ŝ ⊗ H•(X)

Similarly, given a cochain complex X , we have a natural isomorphism:

H•(E†stX) ∼= B̂ ⊗ H•(X)

Proof. We shall demonstrate the chain case, the cochain case being analogous. Consider the maps

Φ1 : H•(EstX)→ A(X)

Φ2 : Ŝ ⊗ H•(X)→ A(X)

which we recall are natural in X . We will demonstrate the desired result by showing that Φ1

and Φ2 are both injective and that they have the same image inside A(X). It is standard that,
over Fp, as over any field, any chain complex is, up to isomorphism, a direct sum (

⊕
i∈I Sni) ⊕

(
⊕

j∈J Dnj), where Sn and Dn denote the standard sphere and disk complexes. Thus, by naturality,
it suffices to show that we have the aforementioned injectivity and coincidence of images for
the complexes (

⊕
i∈I Sni) ⊕ (

⊕
j∈J Dnj). Given such a complex (

⊕
i∈I Sni) ⊕ (

⊕
j∈J Dnj), the

inclusion
⊕

i∈I Sni → (
⊕

i∈I Sni) ⊕ (
⊕

j∈J Dnj) is a quasi-isomorphism. Note that H•(EstX)
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preserves quasi-isomorphisms by Proposition 5.3, A(X) preserves quasi-isomorphisms because the
ΣkE are Σ-free and Ŝ ⊗ H•X preserves quasi-isomorphisms for obvious reasons. It follows, by
naturality again, that it suffices to demonstrate that the result for a complex X of the form

⊕
i∈I Sni .

Let X be such a complex and let then {ci} be a basis for H•(X). Letting λ be an ordinal in bijection
with I , construct a filtration

X0 → X1 → · · · → Xα → · · ·

of X , where each Xα is finite, and where, for each α ∈ λ, {ci}i∈α gives a basis of H•(Xα). Because
H•(EstX) and Ŝ ⊗ H•(X) commute with filtered colimits, and because, by Proposition 5.31, Φ1

and Φ2 are isomorphisms when the input is finite, we can factor Φ1 and Φ2 as follows:

H•(EstX)

Ŝ ⊗ H•(X)

colimαH•(EstXα)

colimα(Ŝ ⊗ H•(Xα))

colimαA(Xα) A(X)

∼=

∼=

∼=

∼=

It follows that the images of Φ and Ψ coincide, as desired. As for injectivity, by the above
factorizations, it suffices to demonstrate injectivity of the map:

colimαA(Xα) −→ A(X)

As in the proof of Proposition 5.30, A(X), in degree d, is isomorphic to the module which consists
of infinite sums ∑

aIi,ci(Q
Iici)

by which we mean functions f : {(Ii, ci) | Ii admissible} → Fp, where f(Ii, ci) = aIi,ci , satisfying
the following requirements:

• For all (Ii, ci), if aIi,ci 6= 0, d(Ii) + |ci| = d.

• The set of lengths #{l(Ii) | aIi,ci 6= 0} is bounded above, or, equivalently, finite.

• For any k ≥ 0, #{(Ii, ci) | aIi,ci 6= 0, e(Ii) > |ci| − k} is finite.

In the above, i varies over all of λ. For each α, under the above isomorphism, A(Xα) can then be
identifed with the subset of A(X) comprising the sums which satisfy the additional requirement
that aIi,ci = 0 if i /∈ α. It follows that the map colimαA(Xα) → A(Xα) is injective, with image
consisting of the sums which satisfy the additional requirement that there exists some α ∈ λ such
that aIi,ci = 0 for all i /∈ α.

Remark 5.34. We saw in Proposition 5.2 that the non-equivariant homologies of the stable operads
Est and E †st are simply zero (except the unit in arity 1). On the other hand, the equivariant homologies,
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summed up, ⊕nH•(Est(n)/Σn) in the chain case and ⊕nH•(E †st(n)/Σn) in the cochain case, yield
H•(EstFp[0]) and H•(E†stFp[0]), respectively. By Proposition 5.33 above, these are exactly Ŝ and
B̂. Thus, while the non-equivariant homologies are (almost) zero, the equivariant homologies are
highly non-trivial objects. ||

Remark 5.35. By Proposition 5.33 above, we see that the (co)homology of a free algebra over Est

or E †st is a module over Ŝ or B̂, respectively. We saw earlier that in the unstable case we get modules
over S and B, and in fact, unstable such modules. One might wonder why Ŝ and B̂ were not seen
in the unstable case. We note here that, if we impose the instability condition (QIx is zero for
e(I) < |x| in the case of actions by S or Ŝ , and P Ix is zero for e(I) > |x| in the case of actions by
B and B̂), that actions by S and Ŝ , and those by B and B̂, amount to the same thing. More precisely,
an unstable action by S , or by B, extends uniquely to an unstable action by Ŝ , or by B̂, respectively.
This is because, in any infinite sum in Ŝ , the excess decreases to −∞ and so, on any given x, all but
finitely many terms must act by zero; similarly, in any infinite sum in B̂, the excess increases to
+∞ and so, on any given x, again, all but finitely many terms must act by zero. In particular, in the
case of the unstable operads, we could equivalently have said that we get unstable modules over Ŝ
and B̂. ||

5.6 (Co)homology Operations for Algebras Over the Stable Operads II

In Section 5.3, we constructed (co)homology operations for algebras over the stable Barratt-
Eccles operad. We did this however only for p = 2. In this section, we shall provide operations
for all p, and moreover, we shall show that, not only do we have the operations which lie in S and
B, but in fact also have certain infinite sums of the QI and P I , namely those which lie in Ŝ and B̂,
respectively.

Proposition 5.36. Given an algebra A over Est, H•(A) is naturally an algebra over Ŝ. Similarly,

given an algebra A over E †st, H•(A) is naturally an algebra over B̂.

We have not mentioned it explicitly in the statement of the theorem, but, in the case p = 2, the
operations here inside S and B of course coincide with those constructed in Section 5.3.

Proof. As usual, we will just outline the case of the chain operad. The map describing the action of
Ŝ is the following composite:

Ŝ ⊗ H•(A)
∼=−→ H•(EstA)→ H•(A)

Here the first map is the isomorphism provided by Proposition 5.33. The second map is that which
arises by applying H•(−) to the structure map α : EstA → A which describes the Est-algebra
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structure of A. The properties required by an Ŝ-action follows from those required by an Est-action.
For example, associativity can be derived as follows. Letting m : EstEst ⇒ Est denote the monadic
multiplication, we have the following commutative square:

EstEstA

EstA

EstA

A

Estα

mA

α

α

Upon applying H•(−), and invoking Proposition 5.33, we get the following commutative square:

Ŝ ⊗ Ŝ ⊗ H•(A)

Ŝ ⊗ H•(A)

Ŝ ⊗ H•(A)

H•(A)

A diagram chase now yields associativity of the Ŝ-action.

5.7 The Homotopy Coherent, or∞-, Additivity of the Stable Operads

As our final results in this chapter, we wish to demonstrate the homotopy coherent, or ∞-,
additivity of stable Barratt-Eccles operad, justifying the adjective “stable”, in three successively
more general forms. First, we will show that given free algebras EstX , EstY in the chain case, or
E†stX , E†stY in the cochain case, the algebra coproducts EstXqEstY and E†stXqE†stY are naturally
quasi-isomorphic to the direct sums EstX ⊕EstY and E†stX ⊕E†stY , respectively. As Est and E†st

are left adjoints as functors from dg modules to algebras, and so preserve colimits, we can also
phrase this result as saying that Est and E†st, as monads on dg modules, are homotopy additive. Next,
we shall generalize this result and show that, for cofibrant algebras A and B, over either of Est and
E †st, the coproduct A q B is naturally quasi-isomorphic to A ⊕ B. Here the cofibrancy is in the
sense of the Quillen semi-model structures provided by Corollary 5.9. Finally, we shall generalize
this one step further and show that if, given a diagram of algebras A ← C → B, if A and B are
cofibrant and C → A is a cofibration, then AqC B is naturally quasi-isomorphic to A⊕C B.

We begin with the homotopy additivity of the monads Est and E†st.

Proposition 5.37. If X and Y are chain complexes, we have a natural quasi-isomorphism:

Est(X ⊕ Y ) ∼ Est(X)⊕ Est(Y )
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Similarly, if X and Y are cochain complexes, we have a natural quasi-isomorphism:

E†st(X ⊕ Y ) ∼ E†st(X)⊕ E†st(Y )

Proof. As usual, we shall demonstrate the case of the chain operad; the case of the cochain operad
is entirely analogous. Given the chain complexes X and Y , we have a canonical map

Est(X)⊕ Est(Y )→ Est(X ⊕ Y )

and we claim that this map is a quasi-isomorphism. If X and Y are finite (where, as before, by
a finite complex over Fp we mean one which is bounded and of finite dimension in each degree),
Proposition 5.31 gives us a computation of the necessarily homologies via the functor A, and then
the result follows by the additivity of A as per Proposition 5.30. Now fix X to be some finite
complex, say X0, and consider Est(X0) ⊕ Est(−) and Est(X0 ⊕ −) as endofunctors on chain
complexes. Due to Proposition 2.17, both of these functors preserve filtered colimits. Since any
complex Y can be written as a filtered colimit of its finite subcomplexes, by naturality and exactness
of filtered colimits of complexes, we have that the map Est(X0) ⊕ Est(Y ) → Est(X0 ⊕ Y ) is a
quasi-isomorphism for all Y . Now repeat this argument, fixing instead Y to be some, this time
arbitrary, complex and considering the terms as functors of X , to get the desired general result.

As we noted above, Propostion 5.37 can be regarded as a statement about coproducts of free
algebras. We now consider, more generally, coproducts of cofibrant algebras. As we saw in the
second chapter, coproducts of cell algebras may be computed via enveloping operads, and so we
shall be led to consider once more these enveloping operads. First, however, we have the following
lemma.

Lemma 5.38. For each j ≥ 2 and each non-trivial partition j = j1 + · · ·+ jk, we have that:

Est(j)/Σj1 × · · · × Σjk ∼ 0 E †st(j)/Σj1 × · · · × Σjk ∼ 0

Here non-trivial means that the partition is not indiscrete. Moreover, by Est(j)/Σj1 × · · · × Σjk ,
we mean Est(j)⊗Σj1

×···×Σjk
(S0)j1 ⊗ · · · ⊗ (S0)jk , where S0 is the complex Fp[0], and similarly in

the case of the cochain operad.

Proof. By Proposition 5.37, we have that the canonical map

Est(S0)⊕ · · · ⊕ Est(S0)→ Est(S0)q · · · q Est(S0)

where S0 denotes the complex Fp[0], and where we take k copies in the case of partitions of size k, is
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a quasi-isomorphism. The result then follows by the formula for coproducts in Proposition 2.20.

Now, given an algebra A over Est or E †st, and the associated enveloping operad UA, recall, as in
Remark 2.28, that, we have a canonical map Est → UA, or E †st → UA in the cochain case.

Lemma 5.39. Given a cofibrant algebra A over Est, for each j ≥ 1 and any partition j =

j1 + · · ·+ jk, the canonical map

Est(j)/Σj1 × · · · × Σjk → UA(j)/Σj1 × · · · × Σjk

is a quasi-isomorphism. Similarly, given a cofibrant algebra A over E †st, for each j ≥ 1 and any

partition j = j1 + · · ·+ jk, the canonical map

E †st(j)/Σj1 × · · · × Σjk → UA(j)/Σj1 × · · · × Σjk

is a quasi-isomorphism.

Proof. As usual, we consider only the chain case, as the cochain case is analogous. Moreover,
without loss of generality, we may take A to be a cell E -algebra. Let

A0 → A1 → A2 → · · ·

be a cell filtration ofA and fix some choicesM1,M2, . . . for the chain complexes which appear in the
attachment squares. For each n ≥ 0, let Nn = ⊕i≤nMi, where N0 = 0, and let also N = ⊕i≥0Mi.
As per Proposition 2.32, we have that, for each j ≥ 0, as a graded right Fp[Σj]-module:

(5.40) UA(j) =
⊕
i≥0

Est(i+ j)⊗Σi
(N [1])⊗i

The differential on UA(j), we recall, is given by the Leibniz rule, the attachment maps and the
operadic composition. Moreover, for each n ≥ 0, and again for each j ≥ 0, as a graded right
Fp[Σj]-module:

(5.41) UAn(j) =
⊕
i≥0

Est(i+ j)⊗Σi
(Nn[1])⊗i

Thus we see that the operad UA is filtered by the operads UAn . Now, as A0 is the initial Est-algebra
Est(0), we have UA0 = UEst(0) = Est (see Example 2.30). The terms of the operad UA1 then arise
from the terms of UA0 by attachment of cells; more generally, for n ≥ 1, the terms of the operad
UAn arise from the terms of UAn−1 by attachment of cells. Recall, as in the proof of Proposition 5.7,
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that this yields filtrations FmUAn on the UAn .

Now, for each j ≥ 0, the map Est(j) → UA(j) corresponds to the inclusion of the i = 0

summand in (5.40), and, similarly, for each n ≥ 0, the map Est(j)→ UAn(j) corresponds to the
inclusion of the i = 0 summand in (5.41). It follows that the map Est(j)→ UA(j) factors through
UAn(j) for each n ≥ 0 and, moreover, the maps Est(j)→ UAn(j) factor through FmUAn(j) for
each m ≥ 0. We shall now prove the desired result via an induction. Specifically, we shall show
that, for each m,n ≥ 0, the map

Est(j)/Σj1 × · · · × Σjk → FmUAn(j)/Σj1 × · · · × Σjk

is a quasi-isomorphism for all j ≥ 1 and any partition j = j1 + · · ·+ jk. The desired result then
follows by passage to colimits. We will prove this statement by an induction on n. In the case
n = 0, we have that FmUA0(j) = Est(j) for each m ≥ 0 and j ≥ 1, so that the result is obvious.
Next suppose that, for some n ≥ 1, the property holds for FmUAn−1 holds for all m ≥ 0. We shall
show that this same property holds for FmUAn for m ≥ 0, by an induction over m. We have that,
for each j ≥ 1, F0UAn(j) = UAn−1(j) = colimm FmUAn−1(j) which, by invoking the inductive
hypothesisis for the induction over n and passing to the colimit, we see satisfies the required property,
recalling the exactness of filtered colimits of complexes. Next, suppose that the required property
holds for Fm−1UAn(j) for some m ≥ 1. Fix some j ≥ 1 and a partition j = j1 + · · ·+ jk. We wish
to show that the map Est(j)/Σj1×· · ·×Σjk → FmUAn(j)/Σj1×· · ·×Σjk is a quasi-isomorphism.
Since we can factor this map as

Est(j)/Σj1 × · · · × Σjk → Fm−1UAn(j)/Σj1 × · · · × Σjk → FmUAn(j)/Σj1 × · · · × Σjk

it suffices, due to the inductive hypothesis for the induction over m, to show that the second map
Fm−1UAn(j)/Σj1 × · · · × Σjk → FmUAn(j)/Σj1 × · · · × Σjk is a quasi-isomorphism. As in the
proof of Proposition 5.7, we have an exact sequence

0→ Fm−1UAn(j)→ FmUAn(j)→ FmUAn(j)/Fm−1UAn(j)→ 0

which is split as the level of graded modules at the lefthand end. As in the proof of Lemma 5.6, we
thus have an induced exact sequence as follows:

(5.42) 0→ Fm−1UAn(j)/Σj1 × · · · × Σjk → FmUAn(j)/Σj1 × · · · × Σjk

→ (FmUAn(j)/Fm−1UAn(j))/Σj1 × · · · × Σjk → 0
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By the long exact sequence in homology, it suffices to show that the righthand term, namely
(FmUAn(j)/Fm−1UAn(j))/Σj1 × · · · ×Σjk , has zero homology. As in the proof of Proposition 5.7,
we have that:

FmUAn(j)/Fm−1UAn(j) ∼= UAn−1(m+ j)⊗Σm Mn[1]⊗m

It follows that (FmUAn(j)/Fm−1UAn(j))/Σj1 × · · · × Σjk is isomorphic to:

UAn−1(m+ j)⊗Σm×Σj1
×···×Σjk

Mn[1]⊗m ⊗ (S0)j1 ⊗ · · · ⊗ (S0)jk

By the inductive hypothesis for the induction over n, and by writing Mn[1] as a filtered colimit of
its finite subcomplexes if it isn’t finite, we have that this term is isomorphic to

Est(m+ j)⊗Σm×Σj1
×···×Σjk

Mn[1]⊗m ⊗ (S0)j1 ⊗ · · · ⊗ (S0)jk

and since m+ j ≥ 2, this has zero homology by Lemma 5.38. This completes the induction over m
and then also the induction over n.

Proposition 5.43. Let A and B be cofibrant algebras over Est or E †st. Then we have a natural

quasi-isomorphism:

AqB ∼ A⊕B

Proof. We shall demonstrate the case of the chain operad; the case of the cochain operad is
analogous. Without loss of generality, we may take A and B to be cell E -algebras. Let

A0 → A1 → A2 → · · ·

be a cell filtration of A and fix some choices MA
1 ,M

A
2 , . . . for the chain complexes which appear in

the attachment squares. Let also
B0 → B1 → B2 → · · ·

be a cell filtration of B and fix some choices MB
1 ,M

B
2 , . . . for the chain complexes which appear

in the attachment squares. Recall then the formulae for UAn(j) and UBn(j), for example in the
proof of Lemma 5.39 above, and also their filtration pieces FmUAn(j) and FmUBn(j). It suffices
to show that the canonical map

An ⊕Bn → An qBn

is a quasi-isomorphism for each n ≥ 0. In the case n = 0, we get a map Est(0) ⊕ Est(0) →
Est(0)q Est(0) ∼= Est(0) (this isomorphism holds since Est(0) is initial) and this map is necessarily
a quasi-isomorphism since Est(0) has zero homology as per Proposition 5.2. Suppose then that, for
some n ≥ 1, the map An−1 ⊕ Bn−1 → An−1 q Bn−1 is a quasi-isomorphism. Note that An, Bn,
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An qBn, may be identified, respectively, with UAn(0), UBn(0), UAnqBn(0). Moreover, we have
filtration pieces FmUAn(0),FmUBn(0) and FmUAnqBn(0), and the map An ⊕Bn → An qBn is a
filtered map, in that we have induced maps as follows:

FmUAn(0)⊕ FmUBn(0)→ FmUAnqBn(0)

We thus get an induced map of the strongly convergent spectral sequences associated to these
filtrations. Recalling, from the proof of Proposition 5.7, the computations of the associated graded
pieces corresponding to the filtrations on the UAn(j), we have that the map on the E1-terms consists
of the maps:

(
UAn−1(m)⊗Σm (MA

n [1])⊗m
)
⊕
(

UBn−1(m)⊗Σm (MB
n [1])⊗m

)
−→ UAn−1qBn−1(m)⊗Σm (MA

n [1]⊕MB
n [1])⊗m

If m = 0, this map reduces to An−1 ⊕Bn−1 → An−1 qBn−1 and so is a quasi-isomorphism by the
inductive hypothesis. Suppose then that m ≥ 1. Then, by Lemma 5.39, it suffices to show that the
map

(
Est(m)⊗Σm (MA

n [1])⊗m
)
⊕
(

Est(m)⊗Σm (MB
n [1])⊗m

)
−→ Est(m)⊗Σm (MA

n [1]⊕MB
n [1])⊗m

is a quasi-isomorphism. If m = 1, this is obvious, so suppose that m ≥ 2. We have that

Est(m)⊗Σm (MA
n [1]⊕MB

n [1])⊗m ∼=
m⊕
l=0

Est(m)⊗Σm−l×Σl
(MA

n [1])⊗(m−l) ⊗ (MB
n [1])⊗l

By Lemma 5.38, the only two summands which have non-zero homology are those corresponding
to l = 0,m, and so we once more have a quasi-isomorphism, as desired. It follows that the
aforementioned map of spectral sequences is an isomorphism from E2 onwards, and so we have
that the map An ⊕Bn → An qBn is a quasi-isomorphism, completing the induction.

Next, we provide a relative form of Proposition 5.43, which is to say, we consider pushouts
of algebras. The claim will be that, for algebras A, B and C over Est or E †st, under suitable
circumstances, we have that A qC B ∼ A ⊕C B. We shall compute the pushout via a bar
construction. Given a diagram A ← C → B of algebras over Est or E †st, the bar construction
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β•(A,C,B) is the simplicial Est-algebra that is given in simplicial degree n as follows:

βn(A,C,B) := Aq C q · · · q C︸ ︷︷ ︸
n factors

qB

Given this simplicial algebra, we can consider its normalization N(β•(A,C,B)), which is once again
an algebra over Est or E †st via the shuffle map (see [KM95] for the normalization of a simplicial
algebra and its algebra structure). Now, regarding A qC B as a constant simplicial algebra,
the canonical maps A q B → A qC B and C → A qC B induce a map of simplicial algebras
β•(A,C,B)→ AqCB and therefore a map of algebras on their normalizations, N(β•(A,C,B))→
AqC B.

Proposition 5.44. Given a diagram A← C → B of algebras over Est or E †st, if each of A and B

and C are cofibrant and C → B is a cofibration, then the canonical map

N(β•(A,C,B))→ AqC B

is a quasi-isomorphism.

In order to prove this result, we first need two lemmas.

Lemma 5.45. Given a diagram A← C → B of algebras over Est or E †st, if each of A, B and C is

cofibrant, the normalization N(Uβ•(A,C,B)(j)) is finitely flat as a dg right Fp[Σj]-module.

Proof. Given a dg left Fp[Σj]-module X , we have a natural isomorphism:

N(Uβ•(A,C,B)(j))⊗Σj
X ∼= N(Uβ•(A,C,B)(j)⊗Σj

X)

The required flatness now follows from Proposition 5.7.

Lemma 5.46. Let n ≥ 0, P and Q be dg right Fp[Σn]-modules which are finitely flat, and let

P → Q be a quasi-isomorphism. Then, for all dg Fp-modules X , the induced map

P ⊗Σn X
⊗n → Q⊗Σn X

⊗n

is a quasi-isomorphism.

Proof. We shall show this for finite X; the case of a general X then follows since any X is a filtered
colimit of its finite subcomplexes and filtered colimits commute with finite tensor powers and tensor
products. In fact, we will show that, for any finite dg right Fp[Σn]-module Z, the natural map

P ⊗Σn Z → Q⊗Σn Z
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is a quasi-isomorphism. To see this, let Zcof → Z be a cofibrant approximation of Z, in the
projective Quillen model structure on dg right Fp[Σn]-modules, and then consider the following
commutative square:

P ⊗Σn Z

P ⊗Σn Zcof

Q⊗Σn Z

Q⊗Σn Zcof

The bottom horizontal map is then a map

P ⊗L
Σn
Z → Q⊗L

Σn
Z

between the derived tensor products. To be precise, the derived functors are those of the functors
P ⊗Σn − and Q⊗Σn −. Since, however, the two possible derived tensor products, achieved upon
fixing one or the other variable, are naturally isomorphic, the above map can be identified with the
image of P → Q under the derived functor of−⊗L

Σn
Z. As such, as P → Q is a quasi-isomorphism,

the above map is also quasi-isomorphism. Now, if we can show that the vertical maps are also
quasi-isomorphisms, we will have the desired result. The proofs for the two are identical, so we
will describe just the one for the lefthand vertical map. Also, we shall consider the case of chain
complexes; the case of cochain complexes is analogous. Since Z is bounded below, we can take
Zcof to also be bounded below. Suppose that Z is bounded above at degree d, in that Zd′ is zero for
d′ > d. Consider the truncation τ≤d+1Zcof which is to say the complex which coincides with Zcof up
to, and including, degree d+ 1, but is zero thereafter. More generally, we consider the truncations
τ≤d+iZcof for i ≥ 1. Then we can write Zcof as the colimit of:

τd+1Zcof → τd+2Zcof → · · ·

Moreover, since Z is zero above degree d, we have maps τ≤d+iZcof → Z, each of which is a
quasi-isomorphism. Thus we get the following diagram:

τ≤d+1Zcof τ≤d+2Zcof τ≤d+3Zcof · · ·

Z Z Z · · ·

∼ ∼ ∼

If we tensor this diagram with P , since P is finitely flat, the vertical arrows remain quasi-
isomorphisms. Moreover, the map induced on the colimits of the two cotowers in the resulting
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diagram is exactly the arrow P⊗ΣnZcof → P⊗ΣnZ, so that we have our desired result, as sequential
colimits are exact.

Proof of Proposition 5.44. As usual, we shall prove only the case of the chain operad, the case of
the cochain operad being analogous. Moreover, we may assume without loss of generality that A is
a cell algebra and that C → B is a relative cell map. We shall in fact prove the more general fact
that the map

N(Uβ•(A,C,B)(j))→ UAqCB(j)

is a quasi-isomorphism for each j ≥ 0. The desired result is the case j = 0. Let

B0 → B1 → B2 → · · ·

be a factorization of C → B as a relative cell map, so that B0 = C, and fix some choices
M1,M2, . . . for the chain complexes which appear in the attachment squares. By passage to
colimits, it suffices to show that, for all n ≥ 0, the map

N(Uβ•(A,C,Bn)(j))→ UAqCBn(j)

is a quasi-isomorphism for each j ≥ 0. Now, in the case n = 0, we get the map N(Uβ•(A,C,C)(j))→
UA(j). By a standard argument, the map of simplicial algebras β•(A,C,C) → A is a homo-
topy equivalence, and so, upon forming the arity j parts of the enveloping operads, we have
that the map Uβ•(A,C,C)(j) → UA(j) is a homotopy equivalence of simplicial dg right Fp[Σj]-
modules and, as simplicial homotopies induce chain homotopies on normalizations, upon taking
normalizations, we get a chain homotopy equivalence of dg right Fp[Σj]-modules. In particu-
lar, the map is a quasi-isomorphism, as desired. Now suppose that, for some n ≥ 1, the map
N(Uβ•(A,C,Bn−1)(j))→ UAqCBn−1(j) is a quasi-isomorphism for each j ≥ 0. Recall the filtrations
on the enveloping operads of cell algebras, for example, as in the proof of Lemma 5.39. The
simplicial map Uβ•(A,C,Bn)(j) → UAqCBn(j) is in fact a filtered map, in that, for each m ≥ 0,
we have an induced map FmUβ•(A,C,Bn)(j) → FmUAqCBn(j). We now take the normalization
and consider the induced map on the strongly convergent spectral sequences associated to these
filtrations. Recalling, from the proof of Proposition 5.7, the computations of the associated graded
pieces corresponding to the filtrations on the enveloping operads, we have that the map on the
E1-terms consists of the following maps:

N(Uβ•(A,C,Bn−1)(m+ j))⊗Σm Mn[1]⊗m → UAqCBn−1(m+ j)⊗Σm Mn[1]⊗m

By Lemma 5.45, Proposition 5.7, the inductive hypothesis and Lemma 5.46, this map is a quasi-
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isomorphism for all m ≥ 0. It follows that the map of spectral sequences is an isomorphism
from E2 onwards, and so the map N(Uβ•(A,C,Bn)(j))→ UAqCBn(j) is a quasi-isomorphism. This
completes the induction.

Finally, with the help of the computation of the pushout in Proposition 5.44, we can now prove
the desired result.

Proposition 5.47. Given a diagram A← C → B of algebras over Est or E †st, if each of A, B and

C are cofibrant, and C → B is a cofibration, then we have that:

AqC B ∼ A⊕C B

Proof. Let βdg
• (A,C,B) denote the bar construction in dg modules, so that, in simplicial degree n,

we have:
βdg
n (A,C,B) := A⊕ C ⊕ · · · ⊕ C︸ ︷︷ ︸

n factors

⊕B

Then we have a composite quasi-isomorphism:

N(βdg
• (A,C,B))

∼→ N(β•(A,C,B))
∼→ AqC B

Here the first map is a quasi-isomorphism by Proposition 5.43, and the second is a quasi-isomorphism
by Proposition 5.44. Moreover, since cofibrations of algebras, being retracts of relative cell maps,
are necessarily cofibrations of complexes (in the standard projective Quillen model structure on
complexes), we have a natural quasi-isomorphism N(βdg

• (A,C,B)) ∼ A⊕C B, and this gives us
the desired result.
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CHAPTER 6

Algebraic Models of p-Adic Stable Homotopy Types

In this chapter, we develop an application of the stable operads to p-adic stable homotopy theory.
As in the previous chapter, we will fix the stable Barratt-Eccles operad Est as a model for the stable
operad; all that we say, however, also applies to the stable McClure-Smith operad. We shall see that
cochains on spectra, appropriately defined, yield algebras over the stable Barratt-Eccles operad and
moreover that, endowed with this structure, the cochains yield algebraic models for p-adic stable
homotopy types, where p here is a fixed but unspecified prime, as in previous chapters.

6.1 Spectra and Their Model Structure

We begin by fixing what it is that we mean by a spectrum. We adopt the following definition.

Definition 6.1. A spectrum E is a sequence of based simplicial sets E0, E1, E2, . . . together with a
collection of maps ρn : ΣEn → En+1, where the suspension is the Kan suspension, or equivalently,
maps σn : En → ΩEn+1, where the loop space is the Moore loop space. A map of spectra

f : E → F is given by a collection of maps fn : En → Fn which are compatible with the structure
maps.

We thus have a category of spectra, and we denote this category by Sp.

Definition 6.2. We set the following:

• Given a spectrum E, for i ∈ Z, the ith stable homotopy group of E is the colimit πst
i (E) :=

colimk≥0πi+k(|Ek|); here, given k ≥ 0, the map πi+k(|Ek|)→ πi+k+1(|Ek+1|) is that which
sends the class of a based map Si+ktop → |Ek| to the class of the composite Si+k+1

top
∼= ΣSi+ktop →

|ΣEk| → |Ek+1| where we use the fact that, upon geometric realization, the Kan suspension
can be identified, up to natural isomorphism, with the usual topological suspension, as shown
for example in Proposition 2.16 in [Ste15].

• Given a map f : E → F of spectra, we call it a stable weak homotopy equivalence if the
induced maps πst

i (E)→ πst
i (F ) are isomorphisms for each i ∈ Z.
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Proposition 6.3. On Sp, there is a model structure such that:

(i) A map f : E → F is a weak equivalence if and only if it is a stable weak homotopy

equivalence.

(ii) A map f : E → F is a cofibration if and only if the map f0 : E0 → F0 and the maps

En+1 qΣEn ΣFn → Fn+1, for n ≥ 0, are cofibrations of based simplicial sets; they are, in

particular, levelwise cofibrations.

(iii) A map f : E → F is a fibration if and only if it has the right lifting property with respect to

maps which are both cofibrations and weak equivalences; they are, in particular, levelwise

fibrations.

Proof. All except that the cofibrations are levelwise monomorphisms is immediate from Theorem
2.29 in [Ste15]. To see that cofibrations are monomorphisms, let f : E → F be a cofibration of
spectra E and F . By definition, f0 is a monomorphism, and moreover, so is E1qΣE0 ΣF0 → F1.
Consider the following pushout square:

ΣE0

E1

ΣF0

E1qΣE0 ΣF0

Σf0

ρ0

i

By Proposition 4.11, Σf0 is a monomorphism. Since in simplicial sets, pushouts of monomorphisms
are once again monomorphisms, we see that the map i is a monomorphism, and thus so is the
composite E1 → E1qΣE0 ΣF0 → F1, which is exactly f1. Repeating this argument, we see by
induction that each fn : En → Fn is a monomorphism.

Remark 6.4. As per [BF78, §2.5] and [Ste15], there is a Quillen equivalence

Sp : Sp� CSp : Ps

between our category of spectra and CSp, the category of Kan’s combinatorial spectra, equipped
with the model structure of Brown in [Bro73]. ||

Definition 6.5. We set the following:

• Given a spectrum E, say that it is an Ω-spectrum if each En is a Kan complex and the maps
σn are weak homotopy equivalences of based simplicial sets.
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• Given a spectrum E, say that it is a strict Ω-spectrum if each En is a Kan complex and the
maps σn are isomorphisms of based simplicial sets.

• Given a spectrum E, say that it is Σ-cofibrant if the maps ρn are cofibrations of based
simplicial sets.

Remark 6.6. Given an Ω-spectrum E, we clearly have that πst
i (E) ∼= πi(E0) for i ≥ 0, and

πst
i (E) ∼= π0(E|i|) for i < 0. ||

Proposition 6.7. We have the following:

(i) The fibrant spectra are exactly the Ω-spectra. The cofibrant spectra are exactly the Σ-cofibrant

spectra. The strict Ω-spectra are bifibrant.

(ii) A map between Ω-spectra is a weak equivalence if and only if it is a levelwise weak homotopy

equivalence of based simplicial sets.

(iii) A map between strict Ω-spectra is a fibration if and only if it is levelwise fibration of based

simplicial sets.

Proof. (i): The case of fibrant objects follows from Theorem 2.29 in [Ste15]. For the cofibrant
objects, note that a map f : E ′ → E is a cofibration if E ′0 → E0 and E ′n+1qΣE′n ΣEn → En+1 are
cofibrations. Taking the E ′n to be ∗, we are left with the map ∗ → E0 and the maps ΣEn → En+1.
The former is of course always a cofibration of based simplicial sets. Now consider the case
of strict Ω-spectra. If each map En → ΩEn+1 is an isomorphism, the maps ΣEn → En+1 are
monomorphisms as they may be written as ΣEn → ΣΩEn+1 → En+1 where the first map is an
isomorphism and the second is a monomorphism by part (iii) of Proposition 4.19.

(ii): See [Ste15].

(iii): Let E → F be a levelwise fibration between strict Ω-spectra E and F . Consider the
adjunction between spectra and Kan’s combinatorial spectra in Remark 6.4 above. It is immediate
from the definitions (in, e.g., [Ste15]) that if E is a strict Ω-spectra, then the unit of adjunction
E → Ps SpE is an isomorphism. Thus the induced map Ps SpE is a levelwise fibration. By
Proposition 3.18 in [Ste15], given a map f between combinatorial spectra, Ps(f) is a levelwise
fibration if and only if it is a fibration. Thus Ps SpE is a fibration. It follows that the map E → F is
itself a fibration, as desired.

Next, we give a few examples of spectra. The first is that of suspension spectra, which are
spectra freely generated on a space.
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Definition 6.8. Given a based simplicial set S, the suspension spectrum Σ∞S is defined by setting
(Σ∞S)n = ΣnS, and the structure maps, in the form via suspensions, are identities. More generally,
for each n ≥ 0, we define Σ∞−nX by setting (Σ∞−nX)m = Σm−nX for m ≥ n, and ∗ for m < n

and the structure maps to be the obvious ones in suspension form. If n = 0, we recover Σ∞S.

Remark 6.9. Given a based simplicial set X , the structure maps ρn : Σ(Σ∞X)n → (Σ∞X)n+1

for the corresponding suspension spectrum Σ∞ are identities. It follows that the structure maps
σn : (Σ∞X)n → Ω(Σ∞)n+1X are components of the unit of the (Σ,Ω)-adjunction and so are, by
Proposition 4.19, isomorphisms. The component simplicial sets ΣnX , however, are not necessarily
Kan complexes, even ifX is (e.g., consider the case of the 0-sphere), and so the suspension spectrum
is not necessarily a strict Ω-spectrum, or an Ω-spectrum at all for that matter. ||

The second example is that of Eilenberg-MacLane spectra, associated to abelian groups. Let
A be any abelian group. Then we set the Eilenberg-MacLane space K(A, n), for each n ≥ 0, as a
simplicial set, to be the simplicial set whose d-simplices are given by the cocycles Zn(∆d;A). Let
us now consider the simplicial sets K(A, n) as a based simplicial set, with zero as the basepoint.
We claim that the based simplicial sets K(A, 0),K(A, 1),K(A, 2), . . . assemble into a spectrum. To
see this, we need structure maps:

K(A, n)→ ΩK(A, n+ 1)

These are as follows. Let α be an n-cocycle on ∆d. Then, we may act on the chains on ∆d+1 by
stipulating that, given a simplex [n + 1] → [d + 1] in ∆d+1, if no entry maps to zero, we send
it to zero, or if exactly one entry maps to zero, we drop 0 from both the source and target and
then reindex to get a map [n] → [d], a simplex in ∆d, and then act by α. (We needn’t concern
ourselves with the case of maps [n+ 1]→ [d+ 1] which send more than one entry to zero as those
yield degenerate simplices of ∆d+1.) An easy check shows that this action on chains defines an
(n+ 1)-cocycle β on ∆d+1,that this cocycle lies in ΩK(A, n+ 1) and moreover that the assignment
α 7→ β yields a map of based simplicial sets K(A, n)→ ΩK(A, n+ 1), as desired.

Definition 6.10. Given an abelian group A, the Eilenberg-MacLane spectrum HA is the spectrum
where (HA)n = K(A, n) with the structure maps as above.

Remark 6.11. Combining Proposition 6.12 below and Remark 6.6 above, we have that πst
0 (HA) ∼=

π0(K(A, 0)) ∼= A, whereas πst
i (HA) ∼= πi(K(A, 0)) ∼= ∗ for i > 0 and πst

i (HA) ∼= π0(K(A, |i|)) ∼=
∗ for i < 0. ||

Proposition 6.12. Given any abelian group A, the Eilenberg-MacLane spectrum HA is a strict

Ω-spectrum, and so is bifibrant.
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Proof. We only need to verify that HA is a strict Ω-spectrum as the bifibrancy then follows by
Proposition 6.7. That each (HA)n is a Kan complex follows by the fact that it is the underlying
simplicial set of a simplicial group. It then remains to show that the structure maps K(A, n) →
ΩK(A, n+ 1) above are isomorphisms. First, note that the graded pieces are in fact abelian groups
and that the structure maps are clearly maps of abelian groups. Thus, for injectivity, we can simply
check that only zero maps to zero. Consider some n-cocycle on ∆p which maps to the zero (n+ 1)-
cocycle on ∆p+1. Given [n]→ [p], abut 0 7→ 0. On the resulting map [n+ 1]→ [p+ 1] the image
cocycle acts by the original one. Thus the original one must be zero. This demonstrates injectivity.
Now we show surjectivity. Consider some (n + 1)-cocycle on ∆p+1. We define an n-cocycle on
∆p as follows: given any [n]→ [p], abut 0 7→ 0 and then act by the given cocycle. This is indeed a
cocycle: given [n + 1] → [p], if we take faces then abut 0 7→ 0 we get the same as first abutting
to [n + 2] → [p + 1] and then taking the faces di for 1 ≤ i ≤ n + 2, so that we must be getting
the same final result as if we acted upon d0 of the abutment to [n + 2] → [p + 1] by the original
cocycle, but then this will map nothing to 0 (since in the abutment only 0 mapped to 0), and thus
the final result will be zero, as desired. Now we note that our given (n + 1)-cocycle on ∆p+1 is
exactly the image of this newly constructed n-cocycle on ∆p: it certainly is if exactly one entry
maps to 0; moreover, if no entry maps to 0, it must be mapped to 0 by our cocycle due to the d0 = ∗
condition, and we can ignore the cases where more than one entry maps to zero since we are taking
normalized cochains.

Finally, we consider shifts of Eilenberg-MacLane spectra. Let A be any abelian group. Then,
as above, we have the Eilenberg-MacLane spectrum HA. Given any k ∈ Z, we define a spectrum
ΣkHA, where if k = 0, the construction will recover HA.

Definition 6.13. Given an abelian group A and k ∈ Z, the shifted Eilenberg-MacLane spectrum

ΣkHA is the spectrum where (ΣkHA)n = K(A, k + n).

Here, for n < 0, we interpret K(A, n) to be ∗, by which we mean the based ∆0. A unifying
formula which holds in all cases is achieved by setting (ΣkHA)n,d = Zk+n(∆d;A).

Remark 6.14. Case by case considerations similar to those in Remark 6.11 show that πst
k (ΣkHA) ∼=

πk(K(A, k)) ∼= A whereas πst
i (ΣkHA) ∼= ∗ for i 6= k. ||

The structure maps for shifted Eilenberg-MacLane spectra are as in the case of the (unshifted)
Eilenberg-MacLane spectra. As a result, the following result follows immediately from Proposi-
tion 6.12 above.

Proposition 6.15. Given any abelian group A and k ∈ Z, the shifted Eilenberg-MacLane spectrum

ΣkHA is a strict Ω-spectrum, and so is bifibrant.
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6.2 Spectral Cochains as E †st-Algebras and the Relation Between B̂ and A

Our goal in this chapter is to construct algebraic models for p-adic stable homotopy types. In
Chapter 3, via Proposition 3.57, we found algebraic models for p-adic unstable homotopy types,
and the algebraic objects were constructed via cochains. We thus wish to define notions of spectral
chains and spectral cochains for our model of spectra.

Let E be a spectrum, with structure maps ρn : ΣEn → En+1. If we apply the mod p chains
functor, we get maps C•(En;Fp)[1] → C•(ΣEn;Fp) → C•(En+1;Fp) where the first map is that
which is in Proposition 4.15. Equivalently, we have a map:

C•(En;Fp)→ C•(En+1;Fp)[−1]

Moreover, upon applying the dualization operator (−)∨ from the second chapter, we get maps
C•(En+1;Fp)∨[1] = C•(En+1;Fp)[−1]∨ → C•(En;Fp)∨, and so, upon applying the reindexing
operator (−)† from the second chapter, and moving the shift from the source to the target, we get
maps:

C•(En+1;Fp)[−1]→ C•(En;Fp)

We now define our notion of spectral chains and cochains.

Definition 6.16. Let E be a spectrum. The chains on E with coefficients in Fp, denoted C•(E;Fp),
are defined as follows:

C•(E;Fp) := colim(C•(E0;Fp)→ C•(E1;Fp)[−1]→ C•(E2;Fp)[−2]→ · · · )

The cochains on E with coefficients in Fp, denoted C•(E;Fp), are defined as follows:

C•(E;Fp) := lim(· · · → C•(E2;Fp)[−2]→ C•(E1;Fp)[−1]→ C•(E0;Fp))

Remark 6.17. We can be describe the spectral (co)chains more explicitly. LetE be a spectrum, with
structure maps ρn : ΣEn → En+1. Given a simplex d-simplex x in En, we have a corresponding
(d+ 1)-simplex Σx in ΣEn (the notation Σx here is as in Definition 4.12), and thus, upon applying
ρ, a (d+ 1)-simplex ρ(Σx) ∈ En+1. Pictorially:

x ∈ (En)d  Σx ∈ (ΣEn)d+1  ρ(Σx) ∈ (En+1)d+1
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We then clearly have that:

C•(E;Fp) =
⊕
n≥0

C•(En;Fp)[−n]
/

(x− ρ(Σx))

To be even more explicit, an easy check, using Proposition 4.14, shows that Cd(E;Fp) is the free
Fp-module on qe−n=d(En)e, modulo the submodule generated by the basepoint, the degenerate
simplices and the terms x− ρ(Σx) where x ∈ (En)e for some n, e such that e− n = d and so then
ρ(Σx) ∈ (En+1)e+1, and we also have that (e+ 1)− (n+ 1) = d. To keep the bookkeeping precise,
in the future, given an element x ∈ qe−n=d(En)e, we shall let [n, e, x] denote the corresponding
element of Cd(E;Fp). Moreover, on the cochains: an easy degreewise check shows that the internal
hom complex functor F(−,Fp[0]) converts the colimit appearing in the definition of the chains into
a limit, and it then follows that the cochains are exactly the cochain complex formed by application
of (−)† ◦ (−)∨ to the chains, where (−)∨ and (−)† are as in the second chapter. ||

Remark 6.18. We can relate the (co)chains to those on combinatorial spectra. We have that the
(co)chains on E as defined above are exactly the (co)chains, in the usual sense, on the associated
combinatorial spectrum Ps(E), where Ps is as in Remark 6.4. ||

Now, we wish to show that the spectral cochains defined above yield algebras over the stable
Barratt-Eccles cochain operad E †st. We first show that chains on spectra naturally form coalgebras
over the stable Eilenberg-Zilber chain operad Zst.

Proposition 6.19. Let E be a spectrum. The chains C•(E;Fp) naturally form a coalgebra over the

stable Eilenberg-Zilber chain operad Zst.

Proof. We wish to produce a coaction of the stable Eilenberg-Zilber operad on the chains C•(E).
Fix k ≥ 0. We then want a map:

µ : Zst(k)⊗ C•(E)→ C•(E)⊗k

To do so, we will construct a bilinear map µ̄ : Zst(k) × C•(E) → C•(E)⊗k which preserves the
degrees and then check that the resulting map on the tensor product commutes with the differentials.
We first produce a map ¯̄µ : Zst(k)× S•(E)→ C•(E)⊗k where S•(E) = Fp[qn,d(En)d] (of which
C•(E) is a quotient, as per Remark 6.17). Let α = (α0, α1, . . . ) ∈ Zst(k) be of degree d and let
x ∈ (En)e, which is of degree e− n in S•(E). We set ¯̄µ(α, x) := αn(x); or more precisely, we set
¯̄µ(α, x) to be the image of x under the composite:

S•(En) −→ C•(En)
αn−→ C•(En)⊗k −→ C•(E)⊗k
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(Here S•(En) = Fp[qe(En)e].) Next we extend this definition to all of Zst(k) × S•(E) by lin-
earity in the second variable, recalling that S•(E) is the free Fp-module onqn,e(En)e. The map
is then clearly bilinear in both variables. We need to check that ¯̄µ(α, e) is of degree d + e − n.
Recall that αn is of degree d + n(k − 1). As an element of S•(En), x has degree e, and then,
after application of the first map in the composite above, degree e once more. Upon appli-
cation of αn, we get an element of degree e + d + n(k − 1) = d + e − n + nk, and then,
since the final map reduces degree by n in each tensor factor, we get an element of degree
d + e − n + nk − nk = d + e − n as desired. (More precisely: prior to application of the
final map, we have a sum of terms of the form t1 ⊗ · · · ⊗ tk ∈ (En)d1 ⊗ · · · ⊗ (En)dk where
d1 + · · ·+ dk = d+ e− n+ nk, and then after application of the final map, such terms have degree
(d1 − n) + · · · + (dk − n) = (d1 + · · · + dk) − nk = d + e − n + nk − nk = d + e − n.) Thus
¯̄µ(α, x) lies in (C•(E)⊗k)d+e−n, as desired.

Now we show that our map Zst(k)× S•(E)→ C•(E)⊗k descends to a map Zst(k)× C•(E)→
C•(E)⊗k. Suppose first that x ∈ (En)e is degenerate, the basepoint or a degeneracy of a basepoint.
Then, it will be killed by the first of the three maps in the composite above, and so will be killed by
¯̄µ. Next, we need [n, e, x] and [n+ 1, e+ 1, ρn(Σx)] (the notations here are as in Remark 6.17) to
be identified. That is, we need αn+1(ρn(Σx)) to be equal to αn(x). Or, more precisely, we need the
image of x under

(6.20) S•(En) −→ C•(En)
αn−→ C•(En)⊗k −→ C•(E)⊗k

to coincide with the image of ρn(Σx) under:

(6.21) S•(En+1) −→ C•(En+1)
αn+1−→ C•(En+1)⊗k −→ C•(E)⊗k

Consider the following diagram, in which the square commutes by naturality of αn+1:

C•(ΣEn)

C•(En+1)

C•(ΣEn)⊗k

C•(En+1)⊗k C•(E)⊗k

(αn+1)ΣEn

C•(ρn)

(αn+1)En+1

C•(ρn)⊗k

Start with Σx at the topleft corner. Applying the sequence of maps given by ↓,→,→, we get
the desired image of ρn(Σx). On the other hand, applying →, because αn = Ψ(αn+1), we get,
upon altering the degree assignment, αn(x) (note that C•(ΣEn)⊗k and C•(En)⊗k are exactly equal,
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except for the degrees); or more precisely, we get the image of x under the first two of the three
maps in the composite (6.20). Letting this image be

∑
[Σt1] ⊗ · · · ⊗ [Σtk], where the ti are

simplices of En of degrees say di (and Σti denote the corresponding suspended simplices as
in Definition 4.12), the image under the entire composite is then

∑
[n, d1, t1] ⊗ · · · ⊗ [n, dk, tk].

Now, go back to
∑

[Σt1]⊗ · · · ⊗ [Σtk] and apply ↓. We get
∑

[ρn(Σt1)]⊗ · · · ⊗ [ρn(Σtk)]. Next,
applying →, we get

∑
[n + 1, d1 + 1, ρn(Σt1)] ⊗ · · · ⊗ [n + 1, dn + 1, ρn(Σtk)]. Because the

square commutes, we have that the desired image of ρn(Σe) under the composite in (6.21) is
this sum

∑
[n + 1, d1 + 1, ρn(Σt1)] ⊗ · · · ⊗ [n + 1, dn + 1, ρn(Σtk)]. But in C•(E), we have

[n+ 1, di + 1, ρn(Σti)] = [n, di, ti], so that this desired image is
∑

[n, d1, t1]⊗ · · · ⊗ [n, dk, tk], and
this was exactly also the desired image of x under the composite (6.20), so that the two coincide, as
was needed.

By the above, we see that ¯̄µ : Zst(k)×S•(E)→ C•(E)⊗k descends to a bilinear map µ̄ : Zst(k)×
C•(E)→ C•(E)⊗k which preserves the degrees, and we let the associated map Zst(k)⊗ C•(E)→
C•(E)⊗k be µ. It remains to check that µ commutes with the differentials. Consider α ∈ Zst(k)d

and x ∈ (En)e. We have ∂(α⊗ [n, e, x]) = ∂α⊗ [n, e, x]+(−1)dα⊗∂[n, e, x] = (∂α0, ∂α1, . . . )⊗
[n, e, x] + (−1)dα⊗ (

∑
i[n, e, di(x)]) which under µ has image

(∂αn)(x) + (−1)dαn(
∑
i

di(x)) = ∂C•(E)⊗k(αn(x))− (−1)dαn(
∑
i

di(x)) + (−1)dαn(
∑
i

di(x))

= ∂C•(E)⊗k(αn(x))

= ∂C•(E)⊗k(µ(α, x))

as desired.

We now have the coaction maps µ, and one can verify that the compatibility conditions required
for an operad coaction are indeed satisfied.

Next, we demonstrate the functoriality. Let E and F be spectra and f : E → F a map of spectra.
We then have an induced map f∗ : C•(E)→ C•(F ) of chain complexes as above, and we need to
check that this map is compatible with the coaction of Zst. Consider [n, e, x] in C•(E). Applying f∗
and then µF : Zst(k)⊗ C•(F )→ C•(F )⊗k, we get αn(fn(x)), which by naturality of αn is equal to
f⊗kn (αn(x)), and this is exactly the result upon instead first applying µE and then f⊗k∗ . This gives
us induced maps and preservation of identity and composition is clear.

Proposition 6.22. Given a spectrum E, the cochain complex C•(E) is naturally an algebra over

the stable Barratt-Eccles cochain operad E †st.
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Proof. By Propositions 6.19, the chains C•(E) are a coalgebra over Zst. By Proposition 2.13, if
we apply (−)∨ to the chains, we get an algebra over Zst. Thus, by Proposition 2.14, if we apply
(−)† ◦ (−)st to the chains, yielding the cochains as per Remark 6.17, we get an algebra over Z†st.
Finally, we get an E †st-algebra structure by pulling across the map E †st → Z†st constructed in the
fourth chapter.

As a result of the above, we can interpret cochains on spectra as a functor to algebras over E †st:

C• : Spop → E †st-Alg

Remark 6.23. We can in fact view the action of the stable operad on spectral cochains in an iterative
manner, as follows. By definition, we have that

C•(E) := colim(C•(E0)→ C•(E1)[−1]→ C•(E2)[−2]→ · · · )

C•(E) := lim(· · · → C•(E2)[−2]→ C•(E1)[−1]→ C•(E0))

As in Proposition 3.43 and its proof, we have that C•(E0;Fp) and C•(E0;Fp) form, respectively, a
coalgebra over E and an algebra over E †. Thus, by Proposition 2.49, we have that the second terms,
C•(E0;Fp)[−1] and C•(E0;Fp)[−1] form, respectively, a coalgebra over ΣE and an algebra over
ΣE †. Similarly, we have that the third terms, C•(E0;Fp)[−2] and C•(E0;Fp)[−2] form, respectively,
a coalgebra over Σ2E and an algebra over Σ2E †. In the limit, we get (co)algebra structures over the
stable operads. ||

Now, by Proposition 6.22 and the work in the previous chapter, the cohomologies H•(E;Fp)
inherit operations P s, and also βP s in the case p > 2. As in the case of spaces, as shown below,
they satisfy an important property which does not hold in general.

Proposition 6.24. Given a spectrum E, the operation P 0 acts by the identity on H•(E;Fp).

Proof. We shall prove the p = 2 case; the p > 2 case is analogous. The operation P 0 is computed
via images under the map E †st(2)⊗ C•(E)⊗2 → C•(E). Let us use the notation eun

d for that element
of E †(2) which we called ed in Section 3.2 of the third chapter, and let us use the notation est

d for
that element of E †st(2) which we called ed in Section 5.3 of the fifth chapter. By Proposition 5.10
and its proof, we have that:

(6.25) est
d =

{
(eun
d , τe

un
d+1, e

un
d+2, τe

un
d+3, . . . ) d ≥ 0

(0, . . . , 0, eun
0 , τe

un
1 , e

un
2 , τe

un
3 , . . . ) d < 0

Here in the second case there are |d| zeros. Consider some cocycle α in Cd(E). Let β ∈ Cd(E) be
the image of est

d ⊗ α ⊗ α under E †st(2) ⊗ C•(E)⊗2 → C•(E). By definition of P 0, P 0α is given
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by the class of β. Thus we need to show that β = α. Consider a simplex x ∈ (En)e, where
e − n = d. As the E †st-action on cochains is dual to a Est-coaction on chains, β(x) is given by
(α ⊗ α)(y) where y is the image of est

d ⊗ x under Est(2) ⊗ C•(E) → C•(E)⊗2. By the definition
of the Est-coaction on chains and by (6.25) above, we have that, since x lies in En, computation
of y reduces to a computation of the image of eun

e ⊗ x ⊗ x under the unstable coaction map
E(2)⊗C•(En)→ C•(En)⊗2. As in the proof of the unstable case in Proposition 3.46, y is precisely
x⊗ x. As such β(x) = (α⊗ α)(x⊗ x) = α(x)2 = α(x), and so β = α, as desired.

Now, we have seen that spectral cochains yield algebras over E †st. Due to this, and Proposi-
tions 5.33 and 6.24, we consider now the quotient B̂/(1− P 0). First, we construct a map:

B̂ → A

Recall that the Steenrod algebra A is defined to be the quotient of F{P s | s ≥ 0}, or F{P s, βP s |
s ≥ 0}, by the ideal generated by the Adem relations and 1 − P 0. Given an arbitrary element∑
aIP

I of B̂ we map it to the class of the subsum consisting of those multi-indices in which all
entries are non-negative; this sum is finite by Proposition 5.26. That this is a map of algebras follows
by the following lemma.

Lemma 6.26. Given admissible multi-indices I and J , if either of them contains a negative entry,

than all terms in the admissible monomials expansion of P IP J must contain a negative entry, or,

equivalently by admissibility, must have a negative final entry.

Proof. We shall outline the case where p = 2; the p > 2 case is analogous. If J contains a negative
entry, or, equivalently by admissibility, has a negative final entry, the result follows by the obvious
analogue for B of Lemma 5.19. Assume then that it is I that has a negative final entry. We shall
prove the result by inducting on the length of J . If J has length zero, it is empty and the result is
trivial. Suppose that J has length one, and say that it is equal to (b), for some b ∈ Z. Consider
P IP b. We shall prove the result in this case by an induction on the length of I . As I is required to
contain an negative entry, it cannot have zero length. Suppose that I has length one, and say that it
is equal to (a), where we must have a < 0. If a ≥ 2b, the result is obvious as then b < 0. Suppose
that a < 2b. Then the admissible monomials expansion of P aP b is given by the Adem relations:

∑(
b− i− 1

a− 2i

)
P a+b−iP i

In order for the binomial coefficient to be non-zero, we must have i ≤ a/2, and so we see that
the final entry i in the multi-index (a+ b− i, i) is always negative, as desired. Now suppose that
we have the result for terms P IP b where I has length < n, for some n ≥ 2. Given an admissible
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multi-index I = (i1, . . . , in) of length n, where in < 0, we have P IP b = P i1(P i2 · · ·P inP b). Upon
first forming the admissible monomials expansion of P i2 · · ·P inP b, the inductive hypothesis for
the induction on the length of I and Lemma 5.19 give us the desired result. Now let us return
to the induction on the length of J . We have demonstrated the result in the cases where J has
length zero or one. Now suppose that we have the result for terms P IP J where J has length
< n, for some n ≥ 2. Given an admissible multi-index J = (j1, . . . , jn) of length n, we have
P IP J = (P IP j1 · · ·P jn−1)P jn . The result now follows by the inductive hypothesis and by the case
where J has length one.

Proposition 6.27. We have the following:

(i) The left ideal of B̂ generated by 1− P 0 coincides with the two-sided ideal and the above map

B̂ → A induces an algebra isomorphism:

B̂/(1− P 0) ∼= A

(ii) The following sequence is exact:

0 −→ B̂ 1−P 0

−→ B̂ −→ A −→ 0

In the above sequence, the map denoted by 1− P 0 is right multiplication by 1− P 0. Note that,
as shown in [Man01], both of these statements hold true if we replace B̂ with B.

Proof. We demonstrate these facts in reverse order, beginning with (ii). As in [Man01], for each
k ≥ 0, we have an exact sequence as follows:

0 −→ B≤k
1−P 0

−→ B≤k −→ A≤k −→ 0

For each t ≥ 0, we can consider the sequence

0 −→ FtB≤k
1−P 0

−→ Ft+1B≤k −→ Ft+1A≤k −→ 0

and this sequence is itself exact: surjectivity at the righthand end is clear, injectivity at the lefthand
end follows from the exactness of the previous sequence, and exactness in the middle follows
by examination of the bases provided by Proposition 3.28, just as in the case of the previous
sequence. Upon taking limits over k, since the maps FtB≤k+1 → FtB≤k are clearly onto, so that the
corresponding lim1 vanishes, we get an exact sequence as follows:

0 −→ lim
k≥0

FtB≤k −→ lim
k≥0

Ft+1B≤k −→ lim
k≥0

Ft+1A≤k −→ 0
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Upon taking colimits over t, by Proposition 5.27, we get an exact sequence as follows:

0 −→ B̂ −→ B̂ −→ colim
t≥0

lim
k≥0

Ft+1A≤k −→ 0

Now, colimt≥0 limk≥0 Ft+1A≤k can be given a description via potentially infinite sums just as
colimt≥0 limk≥0 Ft+1B≤k was described via the potentially infinite sums in B̂. However, due to
Proposition 5.26, any such sum must necessarily be finite, which is to say colimt≥0 limk≥0 Ft+1A≤k ∼=
A and so we have an exact sequence:

0 −→ B̂ −→ B̂ −→ A −→ 0

Finally, unravelling the identifications which we have made, an easy check shows that the maps in
this sequence are exactly those in the proposition statement. This completes the proof of (ii).

Now let us consider (i). By the exactness in (ii), the kernel of the map B̂ → Â coincides with
the image of the map B̂ → B̂ which we have denoted by 1 − P 0. This latter image is the left
ideal of B̂ generated by 1− P 0. By definition of the map B̂ → Â, its kernel clearly contains the
two-sided ideal of B̂ generated by 1 − P 0, and so we have that this two-sided ideal is contained
in the aforementioned left ideal, from which it follows that these two ideals coincide. Finally, we
have the isomorphism B̂/(1 − P 0) ∼= A because the map B̂ → A is onto and the kernel, as just
established, is precisely the two-sided ideal generated by 1− P 0.

6.3 Change of Coefficients from Fp to Fp

Hitherto, we have worked with coefficients in Fp, whether it was with the stable operads or
with the spectral cochains. In order to construct algebraic models of p-adic stable homotopy types
however, we must pass to the algebraic closure Fp. We describe the necessary modifications in this
section. First, we define a new operad, one over Fp.

Definition 6.28. The operad sE †st, an operad in cochain complexes over Fp, is defined as follows:

sE †st(n) := E †st(n)⊗Fp[Σn] Fp[Σn]

We now have three tasks to complete, tasks which we completed in the case of the operad Est: (i)
show that one can do homotopy theory over sE †st (ii) compute the cohomology of free algebras over
sE †st and develop a theory of cohomology operations (iii) demonstrate homotopy additivity properties
of sE †st. Let us first consider (i). Our goal is to show that, just like Est, the monad associated to sE †st

preserves quasi-isomorphisms, and moreover, that sE †st is semi-admissible. As usual, we denote the
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monad, and also the free algebra functor, associated to the operad sE †st, by E
†
st.

Proposition 6.29. We have the following:

(i) The monad corresponding to the operad sE †st preserves quasi-isomorphisms.

(ii) The operad sE †st is semi-admissible, which is to say the category of algebras sE †st-Alg possesses

a Quillen semi-model structure where:

– The weak equivalences are the quasi-isomorphisms.

– The fibrations are the surjective maps.

– The cofibrations are retracts of relative cell complexes, where the cells are the maps

E
†
stM → E

†
stCM where M is a degreewise free Fp-complex with zero differentials.

Proof. (i): Given a cochain complex X over Fp, an easy check shows that:

(6.30) E
†
st(Fp ⊗Fp X) ∼= Fp ⊗Fp (E†stX)

As in the proof of Proposition 5.3, it suffices to consider quasi-isomorphisms which are monomor-
phisms. Given a monomorphism f : X → Y of Fp-complexes, by an appropriate choice of bases,
we can find Fp-complexes X and Y together with a commutative square as follows:

X Fp ⊗Fp X

Y Fp ⊗Fp Y

∼=

f

∼=

The result now follows by Proposition 5.3 and (6.30) above.

(ii): Let A be a cell sE †st-algebra. As in the proof of Proposition 5.8, it suffices to show that
UA(j)⊗Fp[Σj ] − preserves the quasi-isomorphism 0→ (Dd)⊗j , where j ≥ 1. In the proof of the
semi-admissibility of E †st, we showed that tensoring with the enveloping operad pieces preserves
quasi-isomorphisms between finite Fp[Σj]-complexes. By an analogous argument, in the case here,
we have that tensoring with the enveloping operad pieces preserves those quasi-isomorphisms
between Fp[Σj]-complexes which are of the form f ⊗Fp[Σj ] Fp[Σj] where f : X → Y is a quasi-
isomorphism between finite Fp[Σj]-complexes. As the quasi-isomorphism 0 → (Dd)⊗j , where
j ≥ 1, is of this form, we have the desired result.

The semi-model structure constructed above yields also the derived category of sE †st-algebrs. We
now move onto the second task (ii), that of computing the cohomologies of free sE †st-algebras, and
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developing a theory of cohomology operations. The former is achieved via the following result and
Proposition 5.33.

Proposition 6.31. Given an Fp-complex X , we have that:

H•(E
†
stX) ∼= B̂ ⊗Fp H•(X)

Note that the tensor is over Fp, not over Fp.

Proof. Choose an Fp-complex X such that Fp ⊗Fp X . We then have that:

H•(E
†
stX) ∼= H•(E

†
st(Fp ⊗Fp X))

∼= H•(Fp ⊗Fp E
†
st(X))

∼= Fp ⊗Fp H•(E†stX)

∼= Fp ⊗Fp B̂ ⊗Fp H•(X)

∼= B̂ ⊗Fp H•(X)

Now we consider cohomology operations for sE †st-algebras.

Proposition 6.32. Given an algebra A over sE †st, the cohomology H•(A) possesses an Fp-linear

action by B̂.

Note that the operations are Fp-linear, as opposed to Fp-linear.

Proof. As per Proposition 6.31, we have an isomorphism H•(sE†stA) ∼= B̂ ⊗Fp H•(A). The Fp-linear
action of B̂ is then via the composite

B̂ ⊗Fp H•(A)
∼=−→ H•(sE†stA) −→ H•(A)

where the second map is that which we achieve by applying H•(−) to the algebra structure map
sE†stA→ A of A.

Next, we consider task (iii), that of the homotopy additivity of sE †st.

Proposition 6.33. We have the following:

(i) Given Fp-complexes X and Y , we have a natural quasi-isomorphism:

E
†
st(X ⊕ Y ) ∼ E

†
st(X)⊕ E

†
st(Y )
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(ii) Given cofibrant sE †st-algebras A and B, we have a natural quasi-isomorphism:

AqB ∼ A⊕B

(iii) Given a diagram A ← C → B of sE †st-algebras, if each of A, B and C are cofibrant, and

C → B is a cofibration, then we have that:

AqC B ∼ A⊕C B

Proof. (i): Given the Fp-complexes X and Y , we have a canonical map:

E
†
st(X)⊕ E

†
st(Y )→ E

†
st(X ⊕ Y )

Upon choosing bases for X and Y , we have Fp-complexes X and Y such that X ∼= Fp ⊗Fp X and
Y ∼= Fp ⊗Fp Y . We of course then also have a basis for X ⊕ Y and an isomorphism X ⊕ Y ∼=
Fp ⊗Fp (X ⊕ Y ). It follows that the above canonical map can be constructed by tensoring the map

E†st(X)⊕ E†st(Y )→ E†st(X ⊕ Y )

with Fp. The result now follows by Proposition 5.37.

(ii): Note that the obvious analogue of Lemma 5.38 holds for sE †st, by the same proof, using (i)
above. With this, all arguments for the case of E †st carry through also for sE †st.

(iii): Note that an analogue of Lemma 5.45 holds for sE †st; this is the analogue where one
replaces the finite Fp[Σj]-modules with those of the form Fp[Σj] ⊗Fp[Σj ] M where M is a finite
Fp[Σj]-module. Note also that the obvious analogue of Lemma 5.46 also holds for sE †st. With this,
all the remaining arguments in the case of E †st carry through also in our case here.

We have now completed the transition from coefficients in Fp to coefficients in Fp at the level of
the operad. Next, we consider spectral cochains with coefficients in Fp.

Definition 6.34. Given a spectrum E, we set the following:

C
•
(E) := C•(E)⊗Fp Fp

Of couse, one would hope that the cochains C
•
(E) yield algebras over sE †st. The following result

confirms this.
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Proposition 6.35. Given a spectrum E, C
•
(E) is naturally an algebra over sE †st.

Proof. In general, if X if an Fp-complex which is an E †st-algebra via a structure map E†stX → X ,
then X ⊗Fp Fp is an Fp-complex which is an sE †st-algebra, via the structure map:

E
†
st(X ⊗Fp Fp) ∼= (E†stX)⊗Fp Fp → X ⊗Fp Fp

We have now completed the transition of all previous material to coefficients in Fp.

6.4 An Adjoint to Spectral Cochains

Consider the spectral cochains functor:

C
•
: Spop → sE †st-Alg

We shall construct an adjoint to this spectral cochains functor. That is, we will construct an adjoint
functor:

U : sE †st-Alg→ Spop

We define U by setting, given an sE †st-algebraA, the following in spectral degree n ≥ 0 and simplicial
degree d ≥ 0:

U(A)n,d := sE †stAlg(A,C
•
(Σ∞−n∆d+)) = sE †stAlg(A,C•(Σ∞−n∆d+)⊗Fp Fp)

WithA and n fixed, U(A)n,d is clearly contravariantly functorial in d, so that we have a simplicial
set U(A)n; moreover, it becomes a based simplicial set upon endowing it with the zero map as a
basepoint. We now want maps U(A)n → ΩU(A)n+1 or ΣU(A)n → U(A)n+1. In dimension p, this
means a map ΣU(A)n,p → U(A)n+1,p+1, such that d0 and d1 · · · dp+1, applied to simplices in the
image, map to ∗. Thus we want a map

sE †st-Alg(A,C•(Σ∞−n∆d+)⊗Fp Fp)→ sE †st-Alg(A,C•(Σ∞−n−1∆d+1,+)⊗Fp Fp)

which is such that the algebra maps which lie in the image of this map satisfy the property that
they yield the zero map upon postcomposition either with the map C•(Σ∞−n−1∆d+1,+)⊗Fp Fp →
C•(Σ∞−n−1∆d+) ⊗Fp Fp induced by d0, or instead with the map C•(Σ∞−n−1∆d+1,+) ⊗Fp Fp →
C•(Σ∞−n−1∆0+) ⊗Fp Fp induced by d1 · · · dd+1. We first note that we have an isomorphism of
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differential graded Fp-modules

C•(Σ∞−n∆d+)→ C•(Σ∆d+)

of degree n+ 1 (note that here in the source we are taking chains on a spectrum while in the target
we are taking chains on a based simplicial set). This isomorphism is given by sending [n, e, x] (see
Remark 6.17 for this notation) in ∆d+, which is of degree e − n, to [Σx] in Σ∆d+, which is of
degree e+ 1; that this is an isomorphism follows from Proposition 4.10. Next, note that we have an
isomorphism of differential graded Fp-modules

C•(Σ∞−n−1∆d+1,+)→ C•(∆d+1,+)

again of degree n + 1. This isomorphism is given by sending [n + 1, e, x] in ∆d+1,+, which is of
degree e− n− 1, to [x] in ∆d,+, which is of degree e. Now, using Proposition 4.4 and the canonical
map C(X) → ΣX , we have a canonical map ∆d+1 → Σ∆d+, yielding a map ∆d+1,+ → Σ∆d+,
and so, using the above isomorphisms, we get a composite map

C•(Σ∞−n−1∆d+1,+)→ C•(∆d+1,+)→ C•(Σ∆d+)→ C•(Σ∞−n∆d+)

which is a map of chain complexes since the degree is (n+ 1) + 0− (n+ 1) = 0. Moreover, we
claim that it is a map of Est-coalgebras. Once we have this, by dualization, tensoring with Fp, and
postcomposition, we get the desired map:

Est-Alg(A,C•(Σ∞−n∆d+)⊗Fp Fp)→ Est-Alg(A,C•(Σ∞−n−1∆d+1,+)⊗Fp Fp)

To see that the map is an Est-coalgebra map, consider some element [n + 1, e, x] in the source
C•(Σ∞−n−1∆d+1,+), where x is some map [e]→ [d+1]. Let x′ be the corresponding map [e′]→ [d]

by restricting to the preimage of the final d + 1 elements (if this preimage is empty, or if it is all
of [e], we have ∗). The corresponding element of C•(Σ∞−n∆d+) is [n + 1, e′, x′] (we have n + 1

here instead of n since in the third map in the composition, the isomorphism maps to the (n+ 1)st

level, instead of the nth level, of the spectrum C•(Σ∞−n∆d+)). Thus an element α = (α0, α1, . . . )

of Est(k) coacts on both the element in the source and the element in the target target by αn+1,
yielding αn+1(e) and αn+1(e′). Thus what we want is for the following square to commute:
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C•(∆d+1,+)

C•(∆d+1,+)⊗k

C•(Σ∆d+)

C•(Σ∆d+)⊗k

αn+1 αn+1

This commutativity follows from the naturality of αn+1.

Next, we check the required condition above that postcomposing maps in the image with the map
C•(Σ∞−n−1∆d+1,+)→ C•(Σ∞−n−1∆d,+) induced by d0, or with the map C•(Σ∞−n−1∆d+1,+)→
C•(Σ∞−n−1∆0+) induced by d1 · · · dd+1, gives the zero map. That is, first, given a map

A→ C•(Σ∞−n∆d+)→ C•(Σ∞−n−1∆d+1,+)

we want the composite

A→ C•(Σ∞−n∆d+)→ C•(Σ∞−n−1∆d+1,+)→ C•(Σ∞−n−1∆d,+)

where the final map is given by d0, to be zero. Here the composite of the latter two maps is the dual
of the following composite:

C•(Σ∞−n−1∆d+)

C•(Σ∞−n−1∆d+1,+) C•(∆d+1,+) C•(Σ∆d+) C•(Σ∞−n∆d+)

Start with some q-simplex [e]→ [d]. Then it gets postcomposed to [e]→ [d+ 1] where the image
doesn’t contain 0, then we get this same map again but with a different degree, then we restrict to
those entries which don’t map to 0 and so get back the original [e]→ [d] which in the suspension is
killed (mapped to ∗) and thus we will get zero in A at the end of the composition.

On the other hand, if we had postcomposed instead with the map C•(Σ∞−n−1∆d+1,+) →
C•(Σ∞−n−1∆0+) induced by d1 · · · dd+1, the vertical map above alone would change, and, proceed-
ing as in the analysis above, we would start with the identity on [0] and this will map under the map
induced by d1 · · · dd+1 to the inclusion [0]→ [d + 1] mapping 0 to 0, and this will be killed by the
map C•(∆d+1,+)→ C•(Σ∆d+) (see the definition of the map to the cone in Proposition 4.4).

We have now constructed maps U(A)n,d → U(A)n+1,d+1, i.e., maps (U(A)n)d → (ΩU(A)n+1)d.
Moreover, one can readily check that these maps commute with the simplicial operators, so that we
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have the desired simplicial set maps U(A)n → ΩU(A)n+1.

We now have a spectrum U(A) associated to A. We next show that this construction is functorial
in sE †st-algebras A. This is easily seen from the fact that

U(A)n,d = sE †st-Alg(A,C•(Σ∞−n∆d+)⊗Fp Fp)

as, given a map A → B, we get an induced map from sE †st-Alg(B,C•(Σ∞−n∆d+) ⊗Fp Fp) to
sE †st-Alg(A,C•(Σ∞−n∆d+)⊗Fp Fp) by precomposition. Considering these for a fixed n but variable
d, we get a simplicial set map U(B)n → U(A)n since the simplicial operators act by postcom-
position and so commute with the precomposition maps sE †st-Alg(B,C•(Σ∞−n∆d+) ⊗Fp Fp) →
sE †st-Alg(A,C•(Σ∞−n∆d+) ⊗Fp Fp). Moreover, one can immediately verify that these simplicial
set maps are compatible with the structure maps of the spectra U(A) and U(B). Thus we have a
functor:

U : sE †st-Alg→ Spop

Proposition 6.36. The functor U is left adjoint to the cochains functor on spectra, so that we have

an adjunction:

Spop
sE †st-Alg

C
•

U
>

Proof. Let E be a spectrum and A a Est-algebra. We wish to construct the natural isomorphism
between Sp(E,U(A)) and sE †st-Alg(A, sC•(E)). This requires verifications which are not obvious
but not too difficult, though they are rather lengthy. We shall provide here the part of the corre-
spondence which yields an sE †stalgebra map g = {gn} : A → sC•(E) when given a spectrum map
f = {fn} : E → U(A). Fix such a spectrum map f = {fn} : E → U(A). We want an algebra map
g = {gn} : A→ sC•(E). Consider a ∈ A, of degree say n. We desire a map gn(a) : sCn(E)→ Fp.
Consider some [m, e, x] in (Em)e where e−m = n. We have an element fm(x) ∈ U(A)m,e, which
is to say a map A→ sC•(Σ∞−m∆e+), and so, taking the image of a, a map sCn(Σ∞−m∆e+)→ Fp.
Let g(a)([m, e, x]) be the image under this map of [m, e, id[e]] (note that this cell is of degree
e −m = n); that is, gn(a)([m, e, x]) = fm(x)(a)([m, e, id[e]]). Linearity of gn follows from that
of fm(x). Next, we must check that the differentials are preserved. Fix some a ∈ An. We have
two (n + 1)-cochains gn+1(∂a), ∂gn(a) : sCn+1(E) → Fp and we desire that these two to be the
same. Consider some [m, e, x] where x ∈ (Em)e and e−m = n+ 1. The latter cochain first forms
∂[m, e, x] =

∑
i[m, e − 1, di(x)] and then sends this to

∑
i fm(di(x))(a)([m, e − 1, id[e−1]]). On

the other hand, the former cochain sends it to fm(x)(∂a)([m, e, id[e]]). Now, since fm is a map of
simplicial sets, we have

∑
i fm(di(x))(a)([m, e−1, id[e−1]]) =

∑
i(difm(x))(a)([m, e−1, id[e−1]]).
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For each i, the map difm(e) is the composite:

A
fm(x)−→ sC•(Σ∞−m∆e+)

di−→ sC•(Σ∞−m∆e−1,+)

It follows that
∑

i(difm(x))(a)([m, e− 1, id[e−1]]) =
∑

i(fm(x))(a)([m, e− 1, di]). On the other
hand, since fm(x) is a map of cochain complexes, we have that fm(x)(∂a) = ∂fm(x)(a). It follows
that

fm(x)(∂a)([m, e, id[e]]) = (∂fm(x)(a))([m, e, id[e]])

= fm(x)(a)(∂[m, e, id[e]])

= fm(x)(a)

(∑
i

[m, e− 1, di]

)
=
∑
i

fm(x)(a)([m, e− 1, di])

Thus, as desired, the two cochains coincide. Next, we must check that our map g = {gn} : A →
C•(E) respects the actions by sE †st. Let α = (α0, α1, . . . ) ∈ sE †st(k). Consider some a1, . . . , ak ∈ A,
and assume without loss of generality (due to linearity), that the ai are homogeneous, say of
degrees n1, . . . , nk. If we first act by α and then apply g, we get a cochain whose image at [m, e, x],
where e − m = n1 + · · · + nk, is fm(x)(α(a1, . . . , ak))([m, e, id[e]]). Since fm(x) is a map of
algebras, this is equivalent to α(fm(x)(a1), . . . , fm(x)(ak))([m, e, id[e]]). On the other hand, if we
apply g first and then act by α, we first get cochains gn1(a1), . . . , gnk

(ak) and then the cochain
α(gn1(a1), . . . , gnk

(ak)). Let the coaction of α on [m, e, id[e]] be
∑

[m, e1, θ1] ⊗ · · · ⊗ [m, ek, θk],
where θi is a map [ei] → [e]. Then, considering the map ∆e → Em corresponding to the same
x ∈ (Em)e as above, and using naturality of αm, we find that the coaction of α on [m, e, x] is given
by
∑

[m, e1, θ
∗
1x]⊗ · · · ⊗ [m, ek, θ

∗
kx]. Now, by definition of the sE †st-action on spectral cochains, if

we evaluate the cochain α(gn1(a1), . . . , gnk
(ak)) at [m, e, x], we get

α(gn1(a1), . . . , gnk
(ak))([m, e, x]) = (gn1(a1)⊗ · · · ⊗ gnk

(ak))(α · [m, e, x])

which amounts to:

(gn1(a1)⊗ · · · ⊗ gnk
(ak))

(∑
[m, e1, θ

∗
1x]⊗ · · · ⊗ [m, ek, θ

∗
kx]
)

On the other hand, we have:

α(fm(x)(a1), . . . , fm(x)(ak))([m, e, id[e]]) = (fm(x)(a1)⊗ · · · ⊗ fm(x)(ak))(α · [m, e, id[e]])
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which is to say

(fm(x)(a1)⊗ · · · ⊗ fm(x)(ak))
(∑

[m, e1, θ1]⊗ · · · ⊗ [m, ek, θk]
)

and this amounts to:∑
fm(x)(a1)([m, e1, θ1])⊗ · · · ⊗ fm(x)(ak)([m, ek, θk])

In either case, we only have to worry about summands where ei −m = ni for each i. In this case,
the former becomes:∑

(fm(θ∗1x)(a1)[m, q1, id[q1]]⊗ · · · ⊗ fm(θ∗kx)(ak)[m, qk, id[qk]]

which is to say:∑
((θ∗1fm)(x)(a1)[m, e1, id[e1]]⊗ · · · ⊗ (θ∗kfm)(x)(ak)[m, ek, id[ek]]

Now, for each i, θ∗i fm(x) is the composite:

A
fm(x)−→ sC•(Σ∞−m∆e+)

θi−→ sC•(Σ∞−m∆ei,+)

It follows that, for each i, ((θ∗1fm)(x)(a1)[m, ei, id[ei]] = fm(x)(a1)[m, ei, θi]. Thus the two
cochains coincide, as desired.

Now we consider homotopical properties of the above spectral cochains adjunction.

Proposition 6.37. The spectral cochains adjunction

Spop
sE †st-Alg

C
•

U
>

is a Quillen adjunction.

Note that here on the righthand side we have a Quillen semi-model category, as opposed to a
Quillen model category. By a Quillen adjunction, we mean one which satisfies the conditions in
Proposition 2.39 (iii).

Proof. We first demonstrate that C
•

preserves fibrations, which is to say that C
•

sends a cofibration
i : E → F of spectra to an epimorphism. Since i is a cofibration, we have that i0 : E0 → F0 and,
for n ≥ 0, the maps

En+1qΣEn ΣFn → Fn+1
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are cofibrations of based simplicial sets, which is to say that they are injective in each simplicial
degree. In particular, by Proposition 6.3, each in : En → Fn, for n ≥ 0, is a monomorphism.
Since monomorphisms of simplicial sets preserve non-degenerate simplices, each in, for n ≥ 0,
preserves non-degenerate simplices, and of course also the basepoints and their degeneracies. Thus,
upon taking chains C•(−), we get a sequential colimit of monomorphisms, which is once again
a monomorphism since sequential colimits are exact. As we are over a field, we have a split in-
clusion, so that, upon dualizing, reindexing and tensoring, we have the result for the cochains sC•(−).

Next, we shall show that U preserves cofibrations. Given a cofibration A→ B of algebras, we
wish to show that U(A)→ U(B) is a cofibration in the opposite category of spectra. We know that
all cofibrations of algebras may be written as retracts of cell maps. As U is a left adjoint and so
preserves colimits, we need only show that U maps the cofibrations sE†stM → sE†stCM to cofibrations.
Here M is an Fp-complex with zero differentials. In fact, since for such M the map M → CM
decomposes as a direct sum of maps Sn → Dn+1 for various n, we need only consider this case.
We shall show, more generally, that if X → Y is an inclusion of complexes where X and Y are of
finite type (by which we mean they are finite dimensional in each degree), then UsE†stY → UsE†stX

is a fibration of spectra.

To begin, we claim that, given any complex X of finite type, UsE†stX is a strict Ω-spectrum. First,
note that, in each spectral degree n and simplicial degree d, we have that:

(UsE†stX)n,d = sE †st-Alg(sE†stX,C
•(Σ∞−n∆d+)⊗Fp Fp)

∼= CoFp
(X,C•(Σ∞−n∆d+)⊗Fp Fp)

As maps of complexes are closed under addition, we have that, for each n ≥ 0, (UsE†stX)n is the
underlying simplicial set of a simplicial abelian group, and so a Kan complex. Next, we will show
that the maps U(A)n → ΩU(A)n+1 are bijections in each simplicial degree d. To see this, first note
that, since X is of finite type, we may dualize to find that

(UsE†stX)n,p ∼= ChFp
(C•(Σ∞−n∆p+)⊗Fp Fp,DX) ∼= ChFp(C•(Σ∞−n∆p+),DX)

where DX is the chain complex given by (DX)e = HomFp
(Xe,Fp). Under this isomorphism,

the map U(A)n → ΩU(A)n+1 is given by sending a complex map C•(Σ∞−n∆d+) → DX to the
composite

C•(Σ∞−n−1∆d+1,+) C•(∆d+1,+) C•(Σ∆d+) C•(Σ∞−n∆d+) DX

157



where the first three maps are standard maps defined as part of the definition of U. Consider a
map C•(Σ∞−n∆d+) → DX which is non-zero. Then there exists some simplex θ : [e] → [d] in
∆d+ which is not mapped to zero. Consider now the map θ′ : [e + 1] → [d + 1] which maps 0

to 0 and maps i to θ(i − 1) + 1 for i ≥ 1. This gives a simplex in ∆d+1,+ and so an element
of the source of the composite above. Upon applying the first map, we get θ′ again, and then
upon applying the second map, we get the original θ : [e] → [d] but in dimension e + 1, then the
original θ and then finally a non-zero element in X by our assumption above. This shows that
U(X)n → ΩU(X)n+1 is injective in each simplicial degree. It remains to demonstrate surjectivity.
The proof is similar. Suppose given a map f : C•(Σ∞−n−1∆d+1,+) → DX and suppose that it
satisfies the “d0 = d1 · · · dn+1 = ∗” condition required for membership in ΩU(X)n+1,d. We then
need to define a map g : C•(Σ∞−n∆d+)→ DX . Given θ : [e]→ [d], we map it to f(θ′) where θ′ is
defined as above. One can check directly that this is indeed a map of complexes, and we see that,
upon precomposition with the first three maps above, we get the original map f since, as before,
θ′ 7→ θ under the composite of the first three maps. This completes the proof that UsE†stX is a strict
Ω-spectrum.

Now, invoking Proposition 6.7 (iii), it remains to show that if X → Y is an inclusion of
complexes where X and Y are of finite type, then UsE†stY → UsE†stX is a levelwise fibration of
spectra. Thus, for each n ≥ 0, we desire lifts of the following squares:

(6.38)

Λi
d (UsE†stY )n

∆d (UsE†stX)n

Via the earlier identifications, this amounts to a lift of the square:

(6.39)
Λi
d (V(DY ))n

∆d (V(DX))n

Here V is the functor ChFp
→ Sp given by setting

V(Z)n,d := ChFp
(C•(Σ∞−n∆d+), Z)

which we note is a right adjoint to the spectral chains functor taken as a functor to simply chain
complexes, forgetting the coalgebra structure. Considering the composite adjunction
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Sp ChFpSet∆

C•

V
⊥

Σ∞−n

(−)n

⊥

we see that the above lifting problem is equivalent to one of the following form in chain complexes:

C•(Σ∞−nΛi
d+) DY

C•(Σ∞−n∆d+) DX

Df

Now, up to shifts, we have that C•(Σ∞−n∆d+) ∼= C•(∆d+) and C•(Σ∞−nΛi
d+) ∼= C•(Λi

d+). As a re-
sult, C•(Σ∞−n∆d+) and C•(Σ∞−nΛi

d+) are acyclic chain complexes. Moreover, C•(Σ∞−nΛi
d+)→

C•(Σ∞−n∆d+) is clearly an inclusion between free complexes. Thus the lefthand vertical map is a
trivial cofibration in the standard projective model structure on chain complexes. On the other hand,
since X → Y was an inclusion of complexes, DY → DX is an epimorphism. Thus the lift exists,
as desired.

As a result of the above, we have a derived adjunction:

hSpop
hsE †st-Alg

6.5 Resolvability Theorems

In this section, we study the derived cochains adjunction

hSpop
hsE †st-Alg

constructed in the previous section. We wish to show that, when restricted to the bounded below
p-complete spectra of finite p-type, the map hSpop → hsE †st-Alg is fully faithful. This is equivalent,
for formal reasons, to showing that, for any such spectrum E, the “unit” of the derived adjunction
E → (der U) ◦ (der C

•
(−))(E) (“der” indicates a derived functor) is an isomorphism. For this

reason, we make the following definition.

Definition 6.40. A spectrum E is said to be resolvable if the unit of the derived spectral cochains
adjunction for this spectrum is an isomorphism.

To begin, we wish to prove that HFp, and more generally ΣnHFp, n ∈ Z, is resolvable. In
order to do this, due to Proposition 6.15, we need not perform any replacement of ΣnHFp, but do
need to perform a cofibrant replacement of C

•
(ΣnHFp). We will do this by constructing a cell

model for C
•
(ΣnHFp). Fix n ∈ Z. Intuitively, one expects that ΣnHFp on the spectral side ought to
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correspond to E†stFp[n], or something similar, on the algebraic side. As per Proposition 6.32, we
have an operation P 0 on the cohomology of the free algebra E†stFp[n]. As per Proposition 6.24,
P 0 always acts by the identity on spectral cochains. Moreover, we shall see that this is the only
special circumstance which we need to take into account, in that we shall be able to construct our
cell model for C

•
(ΣnHFp) by forcing this operation P 0 to be the identity.

First, recall that C
•
(HFp) is given by applying −⊗Fp Fp to the following:

lim(· · · → C•(K(Fp, 2))[−2]→ C•(K(Fp, 1))[−1]→ C•(K(Fp, 0)))

Thus, in particular C
0
(HFp) is given by applying −⊗Fp Fp to the following:

lim(· · · → C2(K(Fp, 2))→ C1(K(Fp, 1))→ C0(K(Fp, 0)))

Next, recall that, for each m ≥ 0, K(Fp,m) is the based simplicial set whose d-simplices are given
by Zm(∆d;Fp) (note that this is ∗ when d < m and Fp when d = m). For each m ≥ 0, we have a
canonical fundamental class given by the cocyle km in CmK(Fp,m) which sends α ∈ Zm(∆m;Fp)
to α(id[m]). Upon unravelling the definition of the structure maps for Eilenberg-MacLane spectra,
we find that, for each m ≥ 0, the map Cm+1(K(Fp,m + 1)) → Cm(K(Fp,m)) sends km+1 to km.
As such, we have a well-defined canonical element (· · · , k2, k1, k0) in the inverse limit and so a
well-defined canonical element h0 = (· · · , k2, k1, k0)⊗ 1 in C

0
(HFp). More generally, with n as

above, consider again C
•
(ΣnHFp), which is given by applying −⊗Fp Fp to the following:

lim(· · · → C•(K(Fp, n+ 2))[−2]→ C•(K(Fp, n+ 1))[−1]→ C•(K(Fp, n)))

We have that, in particular, C
n
(ΣnHFp) is given by applying −⊗Fp Fp to the following:

lim(· · · → Cn+2(K(Fp, n+ 2))→ Cn+1(K(Fp, n+ 1))→ Cn(K(Fp, n)))

Once again, upon unravelling the definition of the structure maps for generalized Eilenberg-MacLane
spectra, we find that, for each m ≥ n, the map Cm+1(K(Fp,m+ 1))→ Cm(K(Fp,m)) sends km+1

to km. As such, we have a well-defined canonical element (· · · , kn+2, kn+1, kn) in the inverse limit
and so a well-defined canonical element hn = (· · · , kn+2, kn+1, kn)⊗ 1 in C

n
(ΣnHFp). Note that,

for each n, hn is a cocycle, because each km, m ≥ 0, is a cocycle.

Now, we shall construct our cell model for C
•
(ΣnHFp) by attaching a cell to the free algebra

E
†
stFp[n] to set P 0 to act by the identity. Let in denote the degree n cocycle of E

†
stFp[n] given by the
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tensor id⊗ 1. Let also pn be a representative of the class (1− P 0)[in], and then denote also by the
same symbol the map E

†
stFp[n]→ E

†
stFp[n] induced by the map Fp[n]→ E

†
stFp[n] : 1 7→ pn. Now

define an sE †st-algebra Jn via the following pushout diagram:

E
†
stFp[n]

E
†
stCFp[n]

E
†
stFp[n]

Jn

pn

This algebra Jn is our putative cell model for C
•
(ΣnHFp). In order to show that it is in-

deed a model for these cochains in an appropriate sense, we construct a comparison map Jn →
C
•
(ΣnHFp). First, let f : E

†
stFp[n] → C

•
(ΣnHFp) denote the map induced by the map Fp[n] →

C
•
(ΣnHFp) : 1 7→ hn. Next, let qn denote a degree n + 1 element in C

•
(ΣnHFp) which is such

that ∂(qn) is a representative of (1 − P 0)[hn] (such an element qn exists since, as per Proposi-
tion 6.24, (1 − P 0)[hn] is zero). Denote by g the map E

†
stCFp[n] → C

•
(ΣnHFp) induced by the

map CFp[n]→ C
•
(ΣnHFp) which sends the degree n and n+ 1 generators, respectively, to pn and

qn. Now, by checking the images of in, we have that the following square commutes:

E
†
stFp[n]

E
†
stCFp[n]

E
†
stFp[n]

C
•
(ΣnHFp)

pn

g

f

As such, we get an induced map:

a : Jn → C
•
(ΣnHFp)

The following result now makes precise that Jn is a cell model for C
•
(ΣnHFp).

Proposition 6.41. For each n ∈ Z, the map a : Jn → C•(ΣnHFp) above is a quasi-isomorphism.

Proof. Consider the composite:

E
†
stFp[n]⊕E†stFp[n] E

†
stCFp[n] −→ Jn

a−→ C•(ΣnHFp)

By Proposition 5.47, the first map is a quasi-isomorphism, and so it suffices to demonstrate that the
composite, say c, is a quasi-isomorphism. Consider now instead the following composite:

E
†
stFp[n]

b−→ E
†
stFp[n]⊕E†stFp[n] E

†
stCFp[n]

c−→ C•(ΣnHFp)
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Here b is the canonical map from the first summand in the pushout. We claim that, upon taking
cohomology, both b and c ◦ b are onto and have the same kernel. It suffices to do this as then c is
clearly necessarily a quasi-isomorphism. Let ι denote the map E

†
stFp[n]→ E

†
stCFp[n] and consider

the following exact sequence:

0→ E
†
stFp[n]

pn−ι−→ E
†
stFp[n]⊕ E

†
stCFp[n] −→ E

†
stFp[n]⊕E†stFp[n] E

†
stCFp[n]→ 0

By Proposition 6.31, we can identify the cohomology of E
†
stFp[n] with B̂ ⊗Fp Fp[n], and by Proposi-

tions 6.31 and 6.29, we can identify the cohomology of E
†
stFp[n]⊕E

†
stCFp[n] also with B̂ ⊗Fp Fp[n].

Moreover, under this identification, the map corresponding to pn− b sends 1 to 1−P 0 and so, more
generally, becomes right multiplication by 1− P 0. Noting that this map is injective (which follows
from the fact that the Adem relations preserve length), it follows from the long exact sequence
in cohomology that, on cohomology, the map b is onto with kernel the left ideal of B̂ ⊗Fp Fp[n]

generated by 1 − P 0, which we note, by Proposition 6.27, coincides with the two-sided ideal
generated by 1− P 0.

Now consider the composite c ◦ b. Upon identifying once more the cohomology of E
†
stFp[n]

with B̂ ⊗Fp Fp[n], we have a map B̂ ⊗Fp Fp[n]→ H•(C
•
(ΣnHFp)). By Propositions 6.24 and 6.27,

we get an induced map:

(B̂ ⊗Fp Fp[n])/(1− P 0) ∼= A⊗Fp Fp[n]→ H•(C
•
(ΣnHFp))

Noting that 1 is mapped to the fundamental class [hn], by the standard calculation of the cohomology
of Eilenberg-MacLane spectra, we have that this map is an isomorphism. As such, just as with b, at
the level of cohomology, c ◦ b is onto with kernel the two-sided ideal generated by 1− P 0, and this
completes the proof.

Having constructed our cofibrant replacement of C
•
(ΣnHFp), we now need to consider how this

replacement transforms under application of U. For this purpose, we have the following result.

Proposition 6.42. We have the following:

(i) UE
†
stFp[n] ∼= ΣnHFp and, under the identification, Upn induces on πst

n the map 1− Φ where

Φ is the Frobenius automorphism of Fp.

(ii) UE
†
stCFp[n] ∼ ∗ or, more specfically, UE

†
stCFp[n] is a contractible Kan complex in each

spectral degree.
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Proof. (i): In spectral degree m and simplicial degree d, we have:

(UE
†
stFp[n])m,d = E †st-Alg(E

†
stFp[n],C•(Σ∞−m∆d+))

∼= CoFp
(Fp[n],C•(Σ∞−m∆d+))

∼= Zn(C•(Σ∞−m∆d+))

= Zn(C•(Σ∞−m∆d+)⊗Fp Fp)
∼= Zn(C•(∆d+)[−m]⊗Fp Fp)
∼= Zn+m(∆d;Fp)

= (ΣnHFp)m,d

One can readily verify directly that the action of the simplicial operators coincide and that so do the
spectral structure maps.

By Proposition 6.15 and Remark 6.6, we can compute the nth stable homotopy group of ΣnHFp
via the nth unstable homotopy group of the space in spectral degree 0. Moreover, we find that, under
the identification πst

n(UE
†
stFp[n]) ∼= πst

n(ΣnHFp) ∼= Fp, an element λ ∈ Fp corresponds to the class
of the map

E
†
stFp[n] −→ C•(Σ∞∆n+) ∼= C•(∆n+)

which sends in to the cochain α which sends ιn ∈ (∆n)n to λ. To act by Upn, we precompose
with pn : E

†
stFp[n] → E

†
stFp[n]. Thus, we need to compute the image of in under the following

composite:
E
†
stFp[n]

pn−→ E
†
stFp[n] −→ C•(Σ∞∆n+) ∼= C•(∆n+)

To do this, we need to act by 1− P 0 on α ∈ C•(Σ∞∆n+). If we unravel the definition of the action
of 1− P 0 on the cochains on the spectrum Σ∞∆n+, we find that this action reduces to the action
of 1 − P 0 on the cochains on the space ∆n and, moreover, in the proof of Proposition 3.46, we
saw that the action of P 0 on the cochains on a space sends a cochain β to a cochain β′ such that
β′(s) = β(s)p for all simplices s. Thus, under the composite above, in maps to a cochain which
sends ιn to 1− λp, as desired.

(ii): By Proposition 6.29 (i), as CFp is acyclic, the canonical map E †st(0) → E
†
stCFp[n] is a

quasi-isomorphism. Since E
†
stCFp[n] is a cell algebra, by the semi-model categories result and

Proposition 6.37, we have that UE
†
stCFp[n]→ UE †st(0) is a weak equivalence of spectra. As E †st(0)

is the initial algebra, by the definition of U, we have that UE †st(0) = ∗. Moreover, we saw in the
proof of Proposition 6.37 that UE

†
stX is a strict Ω-spectrum, and so a fibrant spectrum, when X
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is a complex of finite type, so that UE
†
stCFp[n] is fibrant spectrum. Thus, by Proposition 6.7 (ii),

UE
†
stCFp[n]→ UE †st(0) is a levelwise weak equivalence, from which the desired result immediately

follows.

We can now demonstrate the resolvability of ΣnHFp.

Proposition 6.43. For each n ∈ Z, ΣnHFp is resolvable.

Proof. Consider again the pushout square

E
†
stFp[n]

E
†
stCFp[n]

E
†
stFp[n]

Jn

pn

and the map Jn → C•(ΣnHFp) which we constructed above. Upon applying U to the pushout
square, as U is a left adjoint and maps to the opposite category of spectra, we get a pullback square
of spectra as follows:

UJn

UE
†
stFp[n]

UE
†
stCFp[n]

UE
†
stFp[n]Upn

Here the vertical maps are fibrations because E
†
stFp[n] → E

†
stCFp[n] is a cofibration between

cell algebras and because, by Proposition 6.37, U maps cofibrations between cofibrant algebras to
fibrations of spectra. By Proposition 6.41, the unit of the derived adjunction is represented by the
composite

ΣnHFp → UC•(ΣnHFp)→ UJn

so that we need to show that this map is weak equivalence. We saw in the proof of Proposition 6.37
that UE

†
stX is a strict Ω-spectrum, and so a fibrant spectrum, when X is a complex of finite type.

This implies that all spectra in the square above are fibrant. By Proposition 6.42 and the long
exact sequence in stable homotopy groups, we have that πst

i (UJn) is Fp when i = n, and zero
otherwise. Thus, it suffices to show that the map ΣnHFp → UJn, say η, is an isomorphism on πst

n .
This amounts to showing that the map

hSp(Σ∞Sn,ΣnHFp)→ hSp(Σ∞Sn,UJn) = hSpop(UJn,Σ∞Sn) ∼= hsE †st-Alg(Jn,C•(Σ∞Sn))
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induced by η and the derived adjunction isomorphism is bijective, or equivalently, injective. For
each λ ∈ Fp, consider the map σλ : Σ∞Sn → ΣnHFp given by the map Sn → K(Fp, n) which
sends the unique non-denenerate n-simplex to the n-cocycle α on ∆n defined by α(id[n]) = λ. The
images of these maps under the localization functor γSp : Sp → hSp give the p distinct maps in
hSp(Σ∞Sn,ΣnHFp). Fix λ ∈ Fp and consider σλ. Unravelling the definition of the above map, the
image of γSp(σλ) is computed as follows: form the composite Jn → C•(ΣnHFp) → C•(Σ∞Sn),
where the second map is σλ and the first map is the adjoint of η, and then take the image of this map
under the localization functor γE†st-Alg

: E †st-Alg→ hE †st-Alg. We have that, for different values of λ,
the maps C•(ΣnHFp)→ C•(Σ∞Sn) differ on cohomology, and thus so must the composite maps
Jn → C•(ΣnHFp)→ C•(Σ∞Sn), and as a result the images of these maps under γE†st-Alg

must be
distinct. Thus the above map is injective, and so bijective, as desired.

Above, we have demonstrated the resolvability of certain Eilenberg-MacLane spectra. We
now demonstrate results which will also allow us to induct up Postnikov towers for more general
resolvability results.

Proposition 6.44. Let E be a spectrum and suppose that it can be described as the inverse limit of

a diagram

· · · → E2 → E1 → E0

such that:

• Each map En+1 → En is a fibration and E0 is fibrant.

• The canonical map colim H•En → H•E is an isomorphism.

Then E is resolvable whenever each of the En is resolvable.

Proof. Suppose that the En are resolvable. We can factor maps of E †st-algebras into relative cell
inclusions followed by trivial fibrations. Applying this to the cotower C•E0 → C•E1 → C•E2 →
· · · we get a diagram of sE †st-algebras as follows:

Fp A0

C•E0 C•E1

A1 · · ·

· · ·

∼ ∼

Set A = colimAn. Then, by the assumption that H•E ∼= colim H•En, we have that the
canonical map A→ C•E is a quasi-isomorphism. Applying U, we have that UA is the inverse limit
of the UAn and have a commutative diagram as follows:
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E1 E0

UA1 UA0

· · ·

· · ·

∼ ∼

Here the vertical maps are the compositesEn → UC•En → UAn which are quasi-isomorphisms
as the En are resolvable and these composites represent components of the unit of the derived
adjunction. Moreover, since U maps cofibrations between cofibrant algebras to fibrations of spectra,
each map in the bottom row is a fibration and each of the UAn are fibrant. As weak equivalences
between fibrant spectra are simply levelwise weak equivalences (see Proposition 6.7 (ii)), by the
usual argument for inverse limits of weak equivalences of spaces along towers of fibrations, we
find that the induced map on limits E → UA is a weak equivalence. This map is the composite
E → UC•E → A and so represents the unit of the derived adjunction, which is thus an isomorphism,
and so E is resolvable, as desired.

Next, we wish to consider resolvability of fibre products.

Proposition 6.45. Let E be a spectrum and suppose that it can be written as a fibre product

E

E1

E2

F

such that:

• E1, E2 and F are fibrant and E1, E2 are of finite p-type.

• The righthand vertical map E2 → F is a fibration.

• There exists an N such that, for n > N , (E1)n, (E2)n are connected and Fn is simply

connected.

Then E is resolvable whenever each of E1, E2, F is resolvable.

Proof. Suppose that E1, E2 and F are resolvable. For the diagram C•(E1) ← C•(F ) → C•(E2),
we take a cofibrant approximation:

A C

C•(F ) C•(E2)

B

C•(E1)

∼ ∼∼
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Suppose that we can show that the map B qA C → C•(E) is a quasi-isomorphism. Then the
unit of the derived adjunction for E1 ×F E2 is represented by the map E → U(B qA C). We have
the following commutative diagram:

E

E1

E2

F

U(B qA C)

UB

UC

UA

If E1, E2, F are resolvable, each of the maps E1 → UB, E2 → UC and F → UA is a weak
equivalence. Combining this with the fact that U maps quasi-isomorphisms between cofibrant
algebras to weak equivalences and using 2-out-of-3, we conclude that E → U(B qA C) is a weak
equivalence, as desired.

Thus it remains to show that the composite

B qA C → C•(E1)qC•(F ) C•(E2)→ C•(E)

is a quasi-isomorphism. Recall that the pushout may be computed via the bar construction

Barn(B,A,C) = B q Aq · · · q A︸ ︷︷ ︸
n factors

qC

in that, by Proposition 5.44, the induced map N(Bar•(B,A,C))→ B qA C from the normalization
is a quasi-isomorphism. We wish to relate this pushout to the fibre product. We first construct
cochains on the fibre product via a cobar construction. The cobar construction is defined as follows:

Cobarn(E1, F, E2) = E1 × F × · · · × F︸ ︷︷ ︸
n factors

×E2

This gives a cosimplicial spectrum with coface maps induced by diagonal maps and codegeneracies
by projections. Applying cochains, we get a simplicial cochain complex:

C•(Cobar•(E1, F, E2))
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Considering E as a constant cosimplicial spectrum, we have an induced map

N(C•(Cobar•(E1, F, E2)))→ C•(E)

and we claim that this is a quasi-isomorphism. Expressing spectral cochains as an inverse limit of
space level cochains, we have that the map C•((Cobar•(E1, F,E2)))→ C•(E) is an inverse limit of
the maps:

C•(Cobar•((E1)n, Fn, (E2)n))[−n]→ C•(En)[−n]

As in the proof of Lemma 5.2 in [Man01], for sufficiently large n, upon normalization, these maps
are quasi-isomorphisms. Moreover, the maps forming the inverse limit tower are epimorphisms since
E1, E2, F are fibrant. Thus, by a lim1 argument, we have that the map C•((Cobar•(E1, F,E2)))→
C•(E) between the inverse limits is also a quasi-isomorphism.

Now we relate the bar and cobar constructions. Using the various projection maps on E1 ×
(F × · · · × F )× E2, we have maps:

B q (Aq · · · q A)q C → C•(E1)q (C•(F )q · · · q C•(F ))q C•(E2)

→ C•(E1 × (F × · · · × F )× E2)

These maps are quasi-isomorphisms because if we postcompose with the map

C•(E1 × (F × · · · × F )× E2)→ C•(E1 q (F q · · · q F )q E2)

induced by the canonical map

E1 q (F q · · · q F )q E2 → E1 × (F × · · · × F )× E2

(given by a matrix with identity maps along the diagonal and zero maps elsewhere) and make the
identification C•(E1 q (F q · · · q F ) q E2) ∼= C•(E1) q (C•(F ) q · · · q C•(F )) q C•(E2), we
get a quasi-isomorphism by definition of A,B and C, and because the canonical map E1 q (F q
· · · qF )qE2 → E1× (F × · · · ×F )×E2 is a weak equivalence of spectra by the usual argument
(coproducts and products of fibrant spectra are weakly equivalent). Now, it follows that we get a
quasi-isomorphism of simplicial sE †st-algebras

Bar•(B,A,C)→ C•(Cobar•(E1, F, E2))
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and so a quasi-isomorphism:

N(Bar•(B,A,C))→ N(C•(Cobar•(E1, F, E2)))

Finally, we can make use of this by noting that we have a commutative square as follows

N(Bar•(B,A,C))

B qC A

N(C•(Cobar•(E1, F, E2)))

C•(E)

∼

∼ ∼

where the bottom map is the aforementioned composite B qA C → C•(E1)qC•(F ) C•(E2)→
C•(E), and so we are done.

We can now extend our resolvability result to include further Eilenberg-MacLane spectra.

Proposition 6.46. The Eilenberg-MacLane spectra ΣnHA, for n ∈ Z, with A = Z/pm for some

m ≥ 1 or A = Z∧p are resolvable.

Proof. For m ≥ 1 and n ∈ Z, recall that we have well-known commutative squares as follows:

K(Z/pm, n)

K(Z/pm−1, n)

PK(Z/p, n+ 1)

K(Z/p, n+ 1)

(Here P denotes a path space, and, given the description of the Eilenberg-MacLane spaces
before, these maps can be given entirely combinatorial descriptions.) An easy check shows that the
maps in these squares in fact assemble together to yield maps of the Eilenberg-MacLane spectra, so
that, for m ≥ 1 and n ∈ Z, we have commutative squares as follows:

ΣnHZ/pm+1

ΣnHZ/pm

PΣn+1HZ/p

Σn+1HZ/p

Moreover, the conditions of Proposition 6.45 are satisfied, so that, by induction, we have the
desired result for Z/pm for m ≥ 1. Next, Proposition 6.44 gives us the case of ΣnHZ∧p using the
following tower:

ΣnHZ∧p = lim(· · · → ΣnHZ/pm → · · · → ΣnHZ/p)
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We are now finally able to provide the desired algebraic models of p-adic stable homotopy types.

Proposition 6.47. All bounded below, p-complete spectra of finite p-type are resolvable. As a result,

the cochains functor

C
•
: Spop → E †st-Alg

induces a full embedding of the homotopy category of spectra into the derived category of sE †st-

algebras when we restrict to bounded below, p-complete spectra of finite p-type.

Proof. This follows by our resolvability results above, namely Propositions 6.46, 6.45 and 6.44, and
the fact that bounded below, p-complete spectra of finite p-type admit Postnikov towers in which
the fibres are ΣnHA, for n ∈ Z, with either A = Z/pm for some m ≥ 1 or A = Z∧p .
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