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Abstract

The theory of Reinforcement Learning provides learning algorithms that are guaranteed
to converge to optimal behavior in single-agent learning environments. While these algo-
rithms often do not scale well to large problems without modification, a vast amount of
recent research has combined them with function approximators with remarkable success
in a diverse range of large-scale and complex problems. Motivated by this success in
single-agent learning environments, the first half of this work aims to study convergent
learning algorithms in multi-agent environments. The theory of multi-agent learning is
itself a rich subject, however classically it has confined itself to learning in iterated games
where there are no state dynamics. In contrast, this work examines learning in stochastic
games, where agents play one another in a temporally extended game that has nontrivial
state dynamics. We do so by first defining two classes of stochastic games: Stochastic
Potential Games (SPGs) and Global Stochastic Potential Games (GSPGs). We show that
both games admit pure Nash equilibria, as well as further refinements of their equilibrium
sets. We discuss possible applications of these games in the context of congestion and
traffic routing scenarios. Finally, we define learning algorithms that

1. converge to pure Nash equilibria and
2. converge to further refinements of Nash equilibria.

In the final chapter we combine a simple type of multi-agent learning - individual
Q-learning - with neural networks in order to solve a large scale vehicle routing and
assignment problem. Individual Q-learning is a heuristic learning algorithm that, even in
small multi-agent problems, does not provide convergence guarantees. Nonetheless, we
observe good performance of this algorithm in this setting.
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Chapter 1

Introductory Material

1.1 Goal

This work does not appear in chronological order. Chapter 4 corresponds to a project
conducted in 2017. The work in Chapters 2 and 3 was done in 2018 and 2019. Chapter
4 conducts an empirical study of deep reinforcement learning (DeepRL) methods applied
to multi-driver vehicle assignment and repositioning. DeepRL is a research area that
combines deep learning and reinforcement learning. Deep learning consists of designing
neural network architectures and training them with (stochastic) gradient descent and
reinforcement learning is a learning paradigm through which one can train an agent to
behave optimally in an environment. Chapters 2 and 3 can be viewed either as belonging to
multi-agent systems or game theoretic control, depending on the reader’s affinity. Chapter 2
examines two extensions of potential games to stochastic games. Potential games are known
to admit a number of learning algorithms that converge to Nash equilibrium. Chapter 3
studies learning algorithms in the newly introduced classes of stochastic games. The next
few paragraphs attempt to explain how the research in this work unfolded chronologically.

By 2017 DeepRL had seen a number of enormous successes. In 2014 researchers at
Deepmind trained a DeepRL agent to play many Atari 2600 games at a superhuman level
[45]. About one year later, Deepmind researchers again shocked the machine learning
community when their computer Go player, dubbed "AlphaGo" [66], beat 9-dan ranked
Lee Sedol in four out of five matches. The victories themselves were amazing, but were

1



made even more incredible by the design of AlphaGo. The system was not given any
dictionaries of opening moves, endgame sequences, or piece valuations. Rather, it was
trained only by playing matches and learning "from scratch". That work has been carried
forward and produced a new agent, "AlphaZero" [67], that plays chess, shogi, and Go at
superhuman levels and can be trained in about a day.

Despite striking empirical success, there is a notable lack of theoretical results in
DeepRL. Reinforcement learning on its own provides methods for learning in an envi-
ronment, but many of its celebrated results only have convergence guarantees in a tabular
learning setting. Tabular methods are appropriate in situations where the state and action
spaces are small, so that individual states and actions may be visited and tried many times.
Deep learning vastly extends the applicability of reinforcement learning by incorporating
function approximation, however this comes at the price of convergence guarantees. And
yet, despite the dearth of theoretical results, DeepRL has had numerous successes and
continues to be an area of great interest both in academia and industry.

While the empirical progress of DeepRL has outrun reinforcement learning theory, the
tabular theory of reinforcement learning developed in the 1980’s and 1990’s [79, 69] was
paramount to these modern triumphs. Deep Q-networks (DQN) [45], deep deterministic
policy gradient (DDPG) [33], and trust region policy optimization (TRPO) [62] are all
examples of DeepRL algorithms whose designs are informed by tabular counterparts
that preceded them by decades. Our present work is informed by the understanding that
modernDeepRL owes its success to solid theoretical work in reinforcement learning. Many
researchers have turned their focus towards integrating DeepRL algorithms in strategic,
multi-agent interactions [75]. Yet, unlike single-agent reinforcement learning, the theory
of tabular learning in the multi-agent settings is not well understood. Certain negative
results are known, for example, that agents independently engaging in tabular Q-learning
do not necessarily reach Nash equilibrium, even when the game has only one state [cite].

Chapter 4 presents empirical work in which DeepRL methods are applied to driver
dispatching and repositioning problems at DiDi Taxi, a ridesharing company. Every few
seconds, DiDi must take stock of available drivers in an area, requesting customer orders,
and decide which drivers to dispatch to which orders. With an appropriately selected
neural network architecture one may approach the problem with DeepRL techniques. One
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may either cast the problem as a single-agent problem in which the agent is DiDi, or a
multi-agent problem in which the agents are drivers. Over the course of experimentation
it became clear that while the single-agent learning method could sometimes outperform
the multi-agent method in final performance, the multi-agent methods trained much faster,
and generally was more stable. Specifically, the single-agent algorithm required more and
more training time as the number of drivers increased, while the multi-agent training time
was essentially constant. This suggests that decomposing a large single-agent problem
into multiple smaller single-agent problems can be a powerful technique. However, from
a theoretical perspective, the large single-agent problem enjoys convergence guarantees in
a tabular setting while the multi-agent approach does not.

This gap in empirical success and lack of theoretical justification motivated the work in
Chapters 2 and 3. Much work in game theory and multi-agent reinforcement learning has
explored learning in normal form games. The types of games in which players may learn to
play Nash equilibria through uncoupled dynamics (which closely resemble reinforcement
learning) remains an open area of research. However, a number of such games have been
identified: zero sum games, team games, potential games, and supermodular games [24].
Very few games are known to converge to Nash equilibria under Q-learning. As far as
that author is aware, the only positive results known are for zero sum games and 2-player
partnership games [31].

The DiDi work, as well as most domains of interest in reinforcement learning, involve
problems where there is a state that evolves in time as a result of the decisions of an agent.
Normal form games on the other hand are stateless. The appropriate extension of game
theory to problems with state are known as stochastic games. Unlike learning in normal
form games, learning in stochastic games is still quite fledgling. Very few subclasses of
games that are amenable to learning methods have been identified in the literature. Some
pioneering work has been done in the case of stochastic zero-sum games [1] and stochastic
team games [2], but this area of research could use more attention. Chapter 2 will examine
two distinct ways that we can extend the definition of normal form potential games to
the stochastic setting. Chapter 3 presents extensions of two normal form game learning
methods, joint strategy fictitious play (JSFP) with inertia and log-linear learning (LLL), to
these stochastic games.
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The preceding discussion suggests a prescriptive motivation for studying stochastic
games, with a view towards applying stochastic game learning methods as a computational
tool. However, there is also a descriptive motivation for understanding such methods.
There is an enormous amount of research in psychology and neuroscience which suggests
that mammalian learning resembles a form of reinforcement learning [85, 53, 56]. On the
other hand, we know that humans and animals learn in an environment filled with other
learning agents. A careful study of learning in stochastic games may uncover explanations
for observed animal and human behavior.

In conclusion, the study of learning in stochastic games has at least two distinct moti-
vations. First, there are real world single-agent problems that may become more compu-
tationally tractible when decomposed into several simpler interrelated learning problems.
Second, understanding the possibilities and limitations of learning in stochastic games may
help us better understand animal and human behavior. Despite these motivations, theo-
retical studies on learning in stochastic games have remained scarce. Possible directions
of research include identifying subclasses of stochastic games amenable to learning algo-
rithms, proving convergence results in such games, and characterizing various equilibria
sets for such games. This thesis embarks on such a study by extending potential games in
two different ways into the class of stochastic potential games (SPGs) and stochastic global
potential games (SGPGs). For these classes of games we study their structure, equilibria
sets, and identify several convergent learning algorithms. In the final chapter we shift to
an empirical study of the power of applying DeepRL to multi-agent decision problems.

1.2 Markov Decision Processes

MarkovDecision Processes (MDPs) provide a straightforwardmeans ofmodelling discrete-
time optimization problems in which the actions of a single decision maker within an
environment result in rewards and determine how the state of the environment changes in
time. When there is a single decision maker we will refer to them as an agent. A typical
example is an agent placed inside a maze; the agent takes actions to navigate the maze
(forward, backward, left, right), and receives a constant reward of −1 after each decision.
The environment terminates when the agent reaches the end of the maze. Given this reward
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Figure 1.1: A finite MDP with 3 states and 2 actions in each state. The edges are labelled
with the action-dependent probability transition.

signal, if an agent learns to maximize the sum of their rewards this is equivalent to saying
that the agent has learned the quickest route to the end of the maze.

Formally, an MDP consists of a state space S and an action spaces As for each state
s ∈ S. In situations where the action spaces are all the same we drop the subscript.
The agent "enters" the environment according to an initial probability distribution µ0 over
states. At each timestep t, the agent finds themselves in a state st and must select and
action at ∈ Ast . They transition to the next state st+1 according to a transition probability
distribution Pst st+1(a) = p(st+1 |st, at) and also receive a reward according to a reward
distribution R(st, at) = p(rt |st, at). A finite MDP is one in which the state space is finite,
action spaces are finite, and the possible rewards received at each timestep are finite. An
example of a finite MDP is shown below:

Often, to deal withMDPs that last for arbitrary amounts of time, we introduce a discount
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factor γ < 1 that weights future rewards less than immediate rewards. This is to guarantee
that infinite sums converge.

In Chapters 2 and 3 we will specifically be dealing with fixed-time episodic MDPs. In
such MDPs, the state of an agent is "reset" using µ0 every T timesteps where T is a fixed
constant, and it is unnecessary to perform reward discounting, so we set γ = 1. When
it is clear, we will drop γ entirely from equations. Time plays as important role in the
decision-making process of the agent in fixed-time episodic MDPs. Take for example a
basketball player dribbling the ball up across halfcourt in the first quarter of a game. When
there are 2 minutes left in the quarter, the player should continue to dribble the ball up and
run a play with his teammates to maximize the chances of a scoring a field goal. Under
essentially no circumstances should the player shoot the ball at halfcourt. In contrast, in
the exact same situation, except with 2 seconds left in the quarter, the player should almost
certainly shoot the ball. We should really consider these two different situations as separate
states, even if everything else on the court is identical. We can view the state space of a
fixed-time episodic MDP as branching at every timestep, and never returning to the same
state or earlier states in a given episode. This structure is shown in Figure 1.2.

"Time" can become overloaded in this discussion, and so from now on we will refer to
these T timesteps as layers. A state being in layer k means that it may only be encountered
at the k th timestep in the MDP.

Next, we introduce some definitions that are important in discussing agent behavior in
an MDP.

mydef]thmA policy π is a complete specification for how an agent should select actions
in each state. It consists of a collection of probability distributions πs, indexed by state s,
where each πs is a distribution over actions.

mydef]thmA policy π is called deterministic if for each distribution πs there exists an
action a ∈ As such that πs(a) = 1.

mydef]thmThe state value function of a policy π is the function

Vπ : S → R (1.1)

which maps a state to the expected sum of rewards that the agent will receive starting in

6



Figure 1.2: A finite 4 layer fixed-time MDP. There are 10 states, and two actions in every
state except the final absorbing state. Transition probabilities are omitted to more clearly
illustrate structure.
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state s and behaving according to policy π. Explicitly it is given by the following equation:

Vπ(s) = Eπ

[
T∑

t=k

Rt(at, st)|sk = s

]
(1.2)

mydef]thmA policy π∗ is called optimal or a solution to the MDP if

π∗ ∈ argmaxπEs∼µ0 [Vπ(s)]

In other words, a policy π∗ is optimal if it maximizes the expected sum of rewards that
an agent encounters during an episode. The following is a well-known fact about optimal
policies in an MDP:

Theorem 1.2.1. Every MDP admits a deterministic optimal policy π∗.

Chapter 4 adapts the well known Q-learning algorithm to a novel neural network
architecture. To discuss Q-learning we must first introduce the action-value function.

mydef]thmThe action-value or Q-value function of a policy π is the function which
maps a state s and state action a ∈ As to the expected sum of rewards that the agent
will receive starting in state s, taking action a, and then behaving according to policy π.
Explicitly it is given by the following equation:

Vπ(s, a) = Eπ

[
T∑

t=k

Rt(at, st)|sk = s, ak = a

]
(1.3)

There are two broad approaches to solving MDPs:
1. Model-based approaches such as dynamic programming
2. Model-free approaches, such as Q-learning and policy gradients
These two approaches differ in their assumptions regarding agent sophistication. Model-

based methods make the assumption that an agent has access to transition probabilities and
reward functions, meaning they may use these quantities in calculating how to behave.
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They are so named because agents have "access to the model". In contrast, model-free
methods do not make this assumption, and assume that agents only have knowledge of
their own experience. Model-free methods are attractive as they represent a more realistic
framework for "learning from scratch" as compared to model-based methods. The empiri-
cal study in Chapter 4 uses model-free methods, while our theoretical study of learning in
stochastic games in Chapter 3 makes use of model-based approaches.

1.3 Reinforcement Learning

The previous section discussed MDPs, which describe a type of sequential optimization
problem. In this section we will discuss methods of solving MDPs. This background is
relevant to the later chapters for two reasons. First, the empirical DeepRL work in Chapter
4 uses Q-learning which is an off-policy model-free reinforcement learning algorithm.
Second, themultiagent learning algorithms inChapter 3will in variousways draw analogies
to several model-based and model-free learning algorithms.
1.3.1 Policy Evaluation

Policy evaluation is a model-based method by which a player can calculate the value
function Vπ(s) for a given policy π. It is a solution to the first question one might want to
answer en route to finding an optimal policy: how can an agent compute the performance
of a given policy? The algorithm relies on the fact thatVπ(s) satisfies the Bellman equation:

Vπ(s) =
∑

a

π(a|s)

[
r(s, a) + γ

∑
s′

Pss′(a)Vπ(s′)

]
(1.4)

In fact it is the unique solution, meaning this equation completely characterizes Vπ(s).
One can calculate Vπ(s) via the recursive update

vk+1(s) =
∑

a

π(a|s)

[
r(s, a) + γ

∑
s′

Pss′(a)vk(s′)

]
(1.5)

It can be shown that limk→∞ vk(s) = Vπ(s).
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1.3.2 Policy Improvement

The next natural question one can ask is how to improve on a given policy π once it
has been evaluated. This can be accomplished through policy improvement, which is a
model-based learning method.

Suppose we have arrived at the state-value function Vπ(s), perhaps through policy
evaluation. Given access to the model, we can immediately compute the action-value
function Qπ(s, a) via

Qπ(s, a) = r(s, a) + γ
∑

s′
Pss′(a)Vπ(s′) (1.6)

From here we define a new policy π′ according to the decision rule

π′(a|s) = argmaxaQπ(s, a) (1.7)

The Policy Improvement Theorem guarantees that

Vπ′(s) ≥ Vπ(s) for all states s (1.8)

1.3.3 Policy Iteration

We now have all of the requisite ingredients to perform model-based reinforcement
learning. We can:

1. Evaluate π (policy evaluation)
2. Improve π once it has been evaluated (policy improvement)
Policy iteration simply alternates between these two steps. That is, in each epoch, the

algorithm begins with a policy π, evaluates it using policy evaluation, and derives a new
improved policy π′ from policy improvement. In the next epoch, π′ takes the place of π.
This process is guaranteed to converge to an optimal policy π∗.
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1.3.4 Q-learning

Q-learning [79] is the quintessential model-free reinforcement learning algorithm. It
leads to an optimal policy while making minimal assumptions about an agent’s knowledge
of the environment. In particular Q-learning only assumes the agent observes trajectories ie
state-action-reward sequences from the environment. Q-learning is an off-policy learning
algorithm, meaning that the agent follows one policy while estimating the value of a
different policy. The agent can essentially follow an arbitrary policy (so long as it is
sufficiently exploratory) and gain knowledge about the action-values of an optimal policy.
This makes Q-learning quite flexible. For example, the agent may explore the environment
according to any number of schemes. Also, the agent can incorporate experience from
various sources during Q-learning, for instance, it may utilize experience from expert
players [?, ?].

The goal of Q-learning is to learn the Q-values Q∗(s, a) of an optimal policy π∗. Note
that, while π∗ may not be unique, all optimal policies have the same Q-values. This follows
from the fact that Q∗ is the unique fixed point of a contraction operator. Pseudocode for
Q-learning is shown in Algorithm 1.

Algorithm 1: Tabular Q-learning algorithm.
Initialize Q(s, a) arbitrarily for non-terminal states and Q(s, a) = 0 for terminal states.
n = 0
while 1 do
Initialize starting state s
while state is not terminal do
Take action a chosen according to exploratory behavior policy π
Receive reward r and next state s′

Qn+1(s, a) ← Q(s, a) + αn [r + γmaxaQn(s′, a) −Qn(s, a)]
n← n + 1

end while
end while

The quantity αn is positive and sometimes called the learning rate. For Q-learning to
converge, the sequence {αn} must satisfy
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∑
n

αn = ∞ and,∑
n

α2
n < ∞

A standard choice is α = 1
n , which makes the update equation into a running average.

1.4 Neural Networks

Artificial neural networks are computational models for learning that have been around
since at least the 1940’s [40, 22]. Their popularity has waxed and waned over the last 7
decades, but in the last 10 years interest has grown dramatically as various computational
components such as convolutional networks [29, 27, 45], recurrent networks [41, 20, 44],
and attention mechanisms [21, 74, 81] have shown impressive performance in a variety of
classification, generation, and control tasks. The modern study of artificial neural networks
is called deep learning to emphasize the use of deep networks with many layers of neurons.
Deep learning has become a vast subfield of machine learning, with lengthy books and
monographs dedicated to its study [19, 61]. In this section we will briefly touch on some
of the key ideas in deep learning that are used in the work found in Chapter 4.
1.4.1 Overview and feedforward networks

A neural network is a parametrized function y = f (x;w)where x is an input vector and
w is a vector of parameters for the function. What gives a neural network its distinctive
characteristic is the modular and layered way in which its parameters are arranged in the
computation process. A representation of a small neural network is shown below.

The input vector x is represented at the bottom by the 5 green blocks, indicating that
the input is a 5-dimesional vector. The input vector undergoes 4 successive layers of
computation. Each arrow in the diagram corresponds to a single parameter (also known
as a weight) in the network. In the first layer, the input is transformed into a 3-dimensional
vector. The result is then transformed into a 2-dimensional vector, a 3-dimensional vector,
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Figure 1.3: A small neural network. The network has a 5 dimensional input, 4 dimensional
output, and 3 hidden fully connected layers.

13



and finally the output (shown as orange blocks) which is a 4-dimensional vector. We
say this network has 3 hidden layers, corresponding to the layers of intermediate vectors
displayed as blue circles. We denote these by the vectors h1, h2, and h3. The computational
components in each layer may vary from network to network; we will describe one example
using sigmoid activation functions.

Each arrow in the network corresponds to a weight. We let wk
i j denote the weight

connecting the it h component of the layer k vector with the j th component of the layer
k + 1 vector. By convention we call the input vector the 0th layer. The first hidden layer h1

is calculated from the input x by

h1
j = σ

(∑
i

wi j xi

)
(1.9)

Where σ is the sigmoid function

σ(x) =
ex

ex + 1
Once we computesh1, we can in turn move on to computing h2 and so on, until we at

last calculate the output vector. This process is often called the forward pass of a neural
network; it is the sequential process by which one computes outputs y from inputs x.
1.4.2 Training neural networks

The process of training a neural network begins by initializing all of the weights of the
network. Often, this is done through random sampling, although some work begins by
initializing the network to a known "good" set of weights. After initialization, the network
weights are adjusted slowly based on how well its output fits to a particular task. This
"goodness of fit" is characterized by an error function E(x;w).

In the case of supervised learning, one starts with a set of training data {(xi, yi)} and
the error may be taken to be the mean squared distance between the neural network outputs
and the true outputs given by the data:

E(x,w) =
∑

i

( f (xi,w) − yi)
2 (1.10)
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Backpropagation [58] is an efficient algorithm for computing the partial derivative of

error with respect to network weights,
∂E
∂wk

i j

. Once these partial derivatives are calculated,

one can adjust the weights of the network by following the negative gradient of the network
weights. Typically one does not compute the error with respect to all of the training data
but only a small subset, called a minibatch, at a time. This introduces randomness into
the gradient descent process that has been shown empirically to result in networks that
generalize to unseen data better [26, 54].
1.4.3 Deep Q-learning

Only in the last 5 years have neural networks and reinforcement learning algorithms
seen consistent and successful integration. In their groundbreaking work [45] researchers
at DeepMindwere able to train a feedforward neural network using a gradient-based version
of Q-learning which they dubbed Deep Q-learning (DQN) to play Atari 2600 games. The
nature of training a network to learn Q-values via experience rather than a supervised
learning task forced several innovations to how data is processed and fed to networks when
performing reinforcement learning tasks.

Q-learning is built on the idea of learning a guess from a better guess. While interacting
with the enviornment (in their case, a video game), the system collects one step trajectories
(st, at, rt, st+1). The network takes state s as input and outputs one scalar quantity for
each action. The output of the neural network is interpreted as action-values Qw(s, a),
parametrized by the set of weights w. Given a one step trajectory, the system can calculate
the one step error [

rt + γmaxaQwtarg(st+1, a)
]
−Qw(st, at) (1.11)

and perform backpropagation using this error function. Without special care this kind
of training can be unstable, as the network is using its own calculations as targets in the
error function. The researchers used two strategies for stabilizing the learning process.
First, they obtained minibatch samples by maintaining one step trajectories in a large replay
buffer and sampling randomly from the buffer. Second, when calculating the target for the
error function, they used an old and slow updating set of weights wtarg for Qwtarg(st+1, a),
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which they called “target weights”. These techniques have been employed in a vast number
of followup papers, and indeed they are employed in the Chapter 4 work.

1.5 Normal Form Games

Normal form games are one of the foundational models of strategic interaction that is
studied in game theory. A finite n-player normal form game consists of a set of players
{1, 2, . . . , n}. Each player i has a finite set of actionsAi. We define the set of joint actions
to be

A = ×iA
i (1.12)

In addition to an action set, each player is endowed with a utility function

ui : A → R (1.13)

A player’s utility serves to specify their goal within the strategic confines of the game.
A player wishes to maximize their utility, yet the utility is determined by both action of the
player and the actions of other players.

Normal form games can be represented as tensors, and the special case of 2 player
games can be represented as a bimatrix. For example, as a bimatrix the standard prisoner’s
dilemma [28] is given by

c d( )
c -1,-1 -3,0
d 0,-3 -2,-2

Utility structure in the Prisoner’s dilemma (1.14)
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The data of the game may be read directly from the bimatrix. For example, the utility
of player 1 when player one cooperates (c) and player two defects (d) is the first entry in
the (c, d) position of the matrix.

In Chapters 2 and 3 there will be examples of games in which there are 3 players. This
can be represented by a collection of trimatrices, one for each action of the third player.
For example, in the 3-player matching pennies game, player one wins by selecting the same
action as player two, player two wins by selecting a different action from player one, and
player 3 bets on the winner and is rewarded if they are correct. This is represented in the
following two trimatrices:

bet 1
h t( )

h 1,-1,1 -1,1,-1
t -1,1,-1 1,-1,1

bet 2
h t( )

h 1,-1,-1 -1,1,1
t -1,1,1 1,-1,-1

(1.15)

The first trimatrix gives the utilities that each player receives when player three bets on
player one. The second trimatrix gives the utilities if player 3 bets on player two.

Game theory seeks to understand the kinds of strategies one would expect to arise
when rational agents engage in a given game. The most fundamental notion of equilibrium
behavior is that of Nash equilibrium. Before we explain this concept, we introduce notation
and vocabulary related to actions within a game.
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Let ∆Ai denote the simplex of discrete probability distributions overAi. We will refer
to an element xi of this distribution as a player strategy, and a pure strategy if the support
of xi is a single action ai. Otherwise we call the strategy mixed. By a small abuse of
notation we will call such pure strategies by their action name ai. We may linearly extend
the domain of each utility function to the domain × j∈{1,...,n}A

j , and we will generally think
of the ui’s as having this enlarged domain.

A list of strategies, one per player: x = (x1, . . . , xn) is called a joint strategy. Often,
it is useful to consider two joint strategies that differ by one or two players’ actions. For
notational convenience, we define the joint action (x1, . . . , xi−1, yi, xi+1, . . . , xn) by x\yi

and the joint action (x1, . . . , xi−1, yi, xi+1, . . . , x j−1, y j, x j+1, . . . , xn) by x\yiy j . A joint
pure strategy is one where all players’ strategies are pure. In this case we will often use a

and b rather than x and y.
mydef]thmFor a game G = (Ai, ui) and player i, a strategy xi ∈ ∆Ai is said to be a

best response to {x j} j,i if

ui(x1, . . . , xi, . . . , xn) ≥ ui(x1, . . . , yi, . . . xn)

for any yi ∈ Ai.

We now introduce the important concept of Nash equilibrium. Simply put, a Nash
equilibrium is a joint strategy such that no player can unilaterally deviate and receive a
larger utility.

mydef]thmA Nash equilibrium is a set of strategies xi ∈ ∆Ai such that for all i, the
player strategy xi is a best response to {x j} j,i

A pure Nash equilibrium is a Nash equilibrium such that each player strategy is a pure
strategy. Otherwise we call the equilibrium mixed. A priori, a game need not have a pure
Nash equilibrium. For instance, the following is the original 2-player matching pennies
game
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h t( )
h 1,-1 -1,1
t -1,1 1,-1

(1.16)

As we can see, no pure joint strategy will have players in simultaneous best response.
However, if both player selects their action uniformly at random, then their behavior will
be in equilibrium. In his original on the subject, Nash shows that all finite games contain
at least one Nash equilibrium.

There are a variety of other equilibrium and dominance concepts that have been devised,
however these are outside of the scope of the present work.

1.6 Learning in Iterated Normal Form Games

1.6.1 General Background

The traditional view of game theory views equilibrium as the end result of computation
done by rational agents with complete knowledge of a game. For example, when we looked
at the example of matching pennies in the previous section, we noted that there is no pure
Nash equilibrium, and that there is a single mixed strategy equilibrium in the game. We
did this without "playing" the game. We simply noted the structure of the utility functions
and came to this conclusion theoretically. We could have done a formal analysis showing
that the mixed strategy uniquely simultaneously maximizes the utility functions.

Learning in games takes an alternative, experiential perspective on equilibrium. It
views equilibrium as the end result or limit of a process in which players repeatedly face
an instance of a game and adapt their strategy over time. Depending on which players are
adapting, and how much information each knows about the game, various situations and
questions can be fit into this paradigm. These subjects fill entire books [16]; we provide a
small sampling below.
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The following is the general set up that we mean by learning in iterated games. We
begin with a fixed n-player game G and play proceeds sequentially at discrete timesteps.
At each timestep t, players are faced with an instance (we will refer to this as an iterate) of
the game G. Each player selects a strategy at time t. Let ht denote the history of actions
and received utilities for all players up to time t. A learning methodL, or adaptive strategy,
is a function which maps a play history, utility functions ut , and player index i to a player
strategy xi

t :

L(ht, ut, i) = xi
t (1.17)

It is of course not necessary for the learningmethod tomake use of all input information.
For example, some adaptive strategies do not assume that players have knowledge of utility
functions, so that the calculation of xi

t does not use ut , perhaps they only have knowledge
of their own utility function (so only ui

t may appear in the calculation). A very simple
learning method simply assigns a constant strategy, xi to player i regardless of history and
utilities:

L(ht, ut, i) = xi (1.18)

Let’s consider a few examples that fit into the iterated game learning paradigm. For
example, first suppose only one player is able to adapt their strategy across these instances,
while all other players’ strategies are fixed. That is, for all players other than i, the learning
method is constant. In this case, the player that is adapting is faced with an MDP with
only a single state. As such, there are a number of adaptive strategies that the player may
employ to optimize their utility. First, suppose the player has complete knowledge of its
own utility function and the strategies of all other players. In this case, the player may
directly compute

L(ht, ut, i) = argmaxa∗∈AiEa−i
[
ui(bi, a−i)

]
(1.19)

This player "learns" to play optimally in one step. On the other end of the spectrum,
suppose that the player only has access to its own history of actions and the resulting

20



timestep player 1 action player 2 action

0 H T
1 T T
2 T H
3 H H
4 H T
5 T T

Figure 1.4: Plays in matching pennies under best response dynamics.

realized utility. In this situation, the player cannot immediately compute ??, however
they may learn it over multiple timesteps via a model-free reinforcement learning such as
Q-learning. Note that in both cases described above, the limiting joint strategy is likely not
a Nash equilibrium, since only one player has been allowed to update their strategy.

Best response dynamics

Now suppose that all players adapt their strategy as they iterate G. If each player has
knowledge of their utility function, and of the actions played by all other players at the
previous timestep, then they may employ best response dynamics. The best response
dynamic is one of the first studied [49] adaptive rules for learning in games and it has an
exceptionally simple description. In the first timestep, players select their actions arbitrarily,
leading to an initial joint action a0. For t > 0, player i will select an action uniformly from
the set of best responses to the previous opponent action a−i

t−1. We can write down the best
response learning dynamic LBR as follows

LBR(ht, ut, i) = unif
(
BR(a−i

t−1)
)

(1.20)

where unif() is the uniform distribution over the set of best responses. Depending
on the structure of the game, best response dynamics may or may not converge to Nash
equilibrium. For example, in matching pennies, suppose player 1 begins by playing H and
player 2 begins by playing T . 1.4 shows the first 6 timesteps of best response dynamics.

As we can see, the strategies cycle every four timesteps. At no point in time do
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timestep player 1 action player 2 action

0 c c
1 d d
2 d d
3 d d

Figure 1.5: Convergence of best response dynamics in the prisoner’s dilemma.

the player strategies constitute a Nash equilibrium - this is immediately clear since their
strategies at each timestep are deterministic and the only Nash equilibrium is mixed.
However, the empirical frequencies of play do approach the unique Nash equilibrium,
since both players will play H half the time and T the other half of the time. We call this
empirical frequency convergence, and consider it a less desirable outcome than if the play
itself directly converged to Nash equilibrium. There are games for which best response
dynamics do not even converge in empirical frequency.

In contrast, consider best response dynamics applied to the Prisoner’s dilemma problem.
Suppose that players initially both cooperate with one another (ie they both start with
strategy c). 1.5 shows the immediate convergence of best response dynamics.

In this case the strategies directly converge to the unique pure Nash equilibrium [d, d]
very quickly.

Despite being awell known and studied learningmethod, it can still be hard to determine
whether best response dynamics will converge in a given game.

Fictitious play

A closely related learning algorithm is fictitious play (FP) [8]. Fictitious play uses the
entire history of opponent strategies, rather than only using the strategy at the previous
timestep. At time t player i calculates the empirical frequency of each other player j as

z j
t =

1
t

t−1∑
k=0

a j
k

Player i will then choose their action by uniformly selecting a best response to z−i
t :
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LBR(ht, ut, i) = unif
(
BR(z−i

t )

)
FP and BR dynamics can behave slightly differently, however, they are almost the same

process. A way of formalizing this is to consider continuous time variants of both FP and
BR, where the learning method is defined by a differential equation rather than an iterative
formula. One can explicitly compute the gradients of the two processes and see that they
are the same up to a time transformation.

Stochastic fictitious play and Smooth best response

Stochastic fictitious play (SFP) [17] and smooth best response (SBR) dynamics [23] are
variants of FP andBR that allow for the possibility of direct convergence tomixed equilibria.
Like FP and BR, there are few rules for determining whether they will converge in a given
game.
1.6.2 Learning in iterated potential games

Chapter 3will focus on extending two learningmethods for learning in iterated potential
games into the stochastic game setting. These are joint strategy fictitious play (JSFP) with
inertia [38] and log-linear learning (LLL) [84, 39]. The details of both methods will be
explained in Chapter 3, but we will summarize the main characteristics of each below.

Joint strategy fictitious play with inertia

Requirements: JSFP with inertia requires that all players be able to compute their
own utility function. JSFP also requires that players observe the sequence of opponent
actions. All players update their strategy at every timestep.

Convergence Results: JSFP is guaranteed to converge with probability one to a
pure strategy Nash equilibrium in potential games. This strategy need not maximize the
potential function.
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Log linear learning

Requirements: LLL requires that all players be able to compute their own utility
function. LLL also requires that players observe the sequence of opponent actions. Only
one player updates their strategy at each timestep.

Convergence Results: LLL is a perturbed markov process, so it describes a family of
Markov processes Pε controlled by a single parameter ε . For a fixed member of the family
with ε sufficiently close to zero, the process is guaranteed to converge to near-potential
maximizing joint actions in potential games. This means that the process selects for the
specific subset of Nash equilibria that maximize the potential function.

1.7 Potential Games

The formal study of potential games began with [46], although the use of potential theory
for studying certain types of games was initiated decades prior by Rosenthal [57]. Potential
games can be viewed as a natural extension of team games. In a team game, all players
possess the same utility function. In potential games, players may have different utility
functions, but these utility functions are all linked together by a shared potential function.
Potential games possess a wide number of applications in economics and engineering
[9, 10, 32, 37, 59, 63, 68, 60].

Potential games are a class of normal-form games that admit pure Nash equilibria, with
several learning methods that are guaranteed to converge to Nash equilibria. Their equi-
librium sets are also interesting because they admit natural refinements of Nash equilibria.

mydef]thmA finite potential game is an finite n-player game G = (Ai, ui) together with
a function (called a potential function)

ϕ : A → R

such that for any joint strategy x = (x1, . . . , xn) and player strategy yi ∈ Ai,

ϕ(x\yi) − ϕ(x) = ui(x\yi) − ui(x)

24



This equation says that when a player unilaterally changes the joint strategy (that is,
they change their strategy and all other players maintain the same strategy), the change
in that player’s utility is equal to the change in the potential function. This means that
potential functions are not unique: if ϕ is a potential for the game G then clearly so is ϕ+ c

where c is any constant. It’s also not hard to see that this completely characterizes the set
of potential functions that exist for a potential game G.

We can view the existence of a potential function as a graph-theoretic condition on the
graph of joint strategies as follows. Let G be a finite game, and let Γ be a weighted directed
graph whose vertices correspond to the set of joint strategies in G. This graph will have
edges between strategies a→ b if and only if a and b differ by exactly one player strategy.
That is, b = a\bi for some player i (this also means that there is an edge b → a). The
weight on edge a→ b is ui(b) − ui(a), and the weight on edge b→ a is ui(a) − ui(b). The
distance of a directed path P in Γ is the sum of weights along the directed edges that make
up P.

prop]thmA game G is a potential game if and only if for all pure joint strategies a1 and
a2, all paths between a1 and a2 have the same distance.

In fact, any pair of paths P1 and P2 between a1 and a2 can be decomposed as a sum of
simple commutative squares in Γ. So, one needs only check local commutativity conditions
to guarantee the existence of a potential function:

cor]thm[46] Let G be a normal-form game. Then G is a potential game if and only
if for any pure joint stragegy a, players i and j, and pure player strategies bi ∈ Ai and
b j ∈ A j

ui(a\bib j) − ui(a\b j) + u j(a\b j) − u j(a) = u j(a\bib j) − u j(a\bi) + ui(a\bi) − ui(a)

This corollary will play an important role in much of the work generalizing potential
games to stochastic games.
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1.7.1 Examples of potential games

The following is a sampling of some two and three player potential games with discus-
sion on their equilibrium sets.

Let’s start with the simplest possible potential game. The "trivial" game

a b( )
a 0,0 0,0
b 0,0 0,0

(1.21)

is a potential game with trivial potential function ϕ ≡ 0. Any strategies in this game
will constitute a Nash equilibrium, which includes both pure and mixed strategies.

A game may have nonzero utilities but still admit a trivial potential function. Consider
the following game:

a b( )
a 0,0 1,0
b 0,1 1,1

(1.22)

In this game, utilities are not trivial, however, players are unable to influence their own
utilities. That is, the action of player 1 determines player 2’s utility and vice versa. This
game still has a trivial potential function ϕ ≡ 0, and all strategies are in Nash equilibrium.

One more complete example of a potential games is:
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a b( )
a 1,1 0,1
b 1,0 1,1

(1.23)

This game is interesting from the perspective of its pure Nash equilibria. It is a potential
game with potential function:

ϕ(a, a) = 0

ϕ(a, b) = 0

ϕ(b, a) = 0

ϕ(b, b) = 1

The potential maximizing pure joint strategy [b, b] is a Nash equilibrium, and so is
the pure strategy [a, a]. The other two pure strategies are not Nash equilibria. It is also
interesting to note that the two equilibria have identitical utilities but different potential
function values.

Any team game G is a potential game. A team game is a game where there is a single
utility function u = ui that is shared for all players. In this case, G is a potential game with
potential function ϕ = u.

Here is one more important class of potential games. Consider a system of n interacting
players, by which we mean a set of n players, where each player i has a strategy set Ai.
This is not yet a game because we have not specified the utility functions. Now suppose
we are given a welfare function

W : A → R (1.24)
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which is meant to be some global measure of the "goodness" of a joint strategy. From
this welfare function we may derive theWonderful Life Utility (WLU) [80]. Let a0 be some
baseline fixed joint strategy and define

ui(a) = W(a) −W(a\ai
0) (1.25)

A game with these utilities will be a potential game, and the welfare function W is a
potential function for this game.
1.7.2 Equilibrium sets in potential games

In the examples above we saw several potential games with different equilibrium set
characteristics. An important unifying fact about potential game equilibria is

Theorem 1.7.1. [46] Let Γ be a potential game with potential function ϕ. Any pure joint
strategy x that maximizes ϕ is a Nash equilibrium.

There of course is always such a joint strategy, and therefore potential games are
guaranteed to admit at least one pure Nash equilibrium. As we saw in one of the preceding
examples, this theorem cannot be extended to an if and only if statement, that is, there can
be pure Nash equilibria that do not maximize the potential function.
1.7.3 Generalizations of potential games

While the present work only makes use of the strict definition of potential games, it
is worth describing drawbacks of this definition as well as some extensions of potential
games that overcome such drawbacks. These more general versions of potential games
may serve as the bedrock of future research into “nice” classes of stochastic games.

First, consider strategic situations where player utilities are aligned but operate at
different scales. A contrived but concrete example would be a team game where players
are using different units to measure their utility. This can be represented by a modified
version of the standard 2-player coordination game:
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a b( )
a 1,2 0,0
b 0,0 1,2

(1.26)

It is to both players’ advantages to coordinate, and this closely resembles a team game,
however it does not admit a potential function. This game is however a weighted potential
game:

mydef]thmA finite weighted potential game is an finite n-player game Γ = (Ai, ui)

together with a function (called a potential function)

ϕ : A → R

alongwith player-specificweightsw1, . . . ,wn such that for any joint strategy x = (x1, . . . , xn)

and player strategy yi ∈ Ai,

ϕ(x\yi) − ϕ(x) = wi
[
ui(x\yi) − ui(x)

]
In our example, we can make the game a weighted potential game with w1 = 2 and

w2 = 1.
Weighted potential games are able to handle player utilities that are at different multi-

plicative scales. An even more general game is an ordinal potential game, where utility
difference and potential function difference merely have the same sign:

mydef]thmA finite ordinal potential game is an finite n-player game Γ = (Ai, ui)

together with a function (called a potential function)

ϕ : A → R

such that for any joint strategy x = (x1, . . . , xn) and player strategy yi ∈ Ai, ϕ(x\yi)−ϕ(x) >

0 if and only if ui(x\yi) − ui(x) > 0
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A generalized ordinal potential game only has one side of the implication, that is,
ui(x\yi) − ui(x) > 0 =⇒ ϕ(x\yi) − ϕ(x) > 0.

1.8 Stochastic Games

In this section we will introduce the definition of a stochastic game. A stochastic game
is like an MDP, except instead of a single agent interacting with an environment there are
multiple agents. To more closely match game theoretic language, we will call these agents
players.

mydef]thmAn n-player stochastic game G consists of a state space S, state-dependent
action setsAi

s for each player, and games {Gs}s∈S with utilities ui
s(a), called “stage games”,

and transition probabilities Pss′(x) for each state pair s, s′ ∈ S and joint strategy x. The
players begin the game by entering a state determined by an initial probability distribution
µ0. The game G progresses by agents simultaneously selecting actions ai

s ∈ A
i in state s.

Player i receives utility ui
s(as = {a1

s, . . . , a
n
s }) and the state transitions to s′ according to the

transition probability distribution.

In this work we will always assume that |S| is finite. We will also assume that the
action sets are finite and shared across all states, ieAi

s = A
i
s′ for all states s, s′. In this case

we will simply refer to the action set as Ai.
The stochastic game framework lies at the intersection of game theory and control

theory. By introducing a state space and transition dynamics it extends the normal-form
game from game theory. Specifically, a normal-form game can be viewed as a stochastic
game with one state and trivial transition dynamics. On the other hand, it extends the
Markov decision process (MDP) framework to the multi-agent setting. An MDP is a
stochastic game where n = 1.

It will also be useful to restrict the form of stochastic games for later analysis in the
paper. For this purpose we introduce the following definition:

mydef]thmA stochastic game G is said to be “fixed finite-time" If the underlying MDP
(that is, considering the game as an MDP with 1 agent representing all players) is a fixed
finite-time MDP.
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A different way of stating this is that there exists a time T and a partition of the state
space S = S1 ∪ . . . ∪ ST such that for si ∈ Si and s j ∈ Sj we have

Psisj = 0

if j , i + 1.
In normal-form games, each player chooses a player strategy. In stochastic games, a

player must choose a strategy in every state. We refer to such a choice as a behavior, and
denote it by πi ∈ ×s∈SA

i. The specific strategy employed in state s will be denoted by πi
s.

A joint behavior is a collection of behaviors for all players π = (πi, . . . , πn). It is useful
to introduce notation for joint behaviors that differ by one or two players’ behaviors. Let
τi be a behavior for player i. We denote the joint behavior (π1, . . . , πi−1, τi, πi+1, . . . πn) by
π\τi. Similarly, if we change two players behaviors, we denote the joint strategy by π\τiτ j .
Finally, we will often modify a joint behavior π by changing a player’s strategy in a single
state s from pure strategy ai

s to bi
s. We will denote the modified joint behavior by π\bi

s or
π\bi when the particular state is clear.

In normal-form games, players wish to maximize their utilities. In stochastic games,
players wish to maximize their returns. A return is simply the sum of utilities from the
stage games the player encounters, and so it is analogous to the notion of return in MDPs.
In analogy with the reinforcement learning literature, we let V i

π(s) denote the expected
return for player i starting from state s when players employ the joint behavior π. We let
Qi
π(s, a) denote the expected return for player i starting from state s when they first take

action a in state s while other players play πs, and then all players play π in subsequent
states.

As in normal form games, stochastic games have a notion of Nash equilibrium. A joint
behavior is in Nash equilibrium if no individual player can increase their expected return by
changing their strategy. All stochastic games admit at least one Nash equilibrium, although
this fact is nontrivial [14, 65].

At this point we have introduced three distinct models of environment and agent (player)
interaction: MDPs, normal form games, and stochastic games. The differences in language
between the three models are summarized in 1.6.
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MDP normal form game stochastic game
agent player player
reward utility utility (in stage game)
return – return
– (player) strategy (player) behavior

policy – joint behavior
action joint strategy joint strategy (in stage game)

optimal policy Nash equilibrium Nash equilibrium
deterministic pure pure

Figure 1.6: Language differences in MDPs, normal form games, and stochastic games.

1.9 Learning in Stochastic Games

The stochastic game framework is a very flexible model for studying learning because
stochastic games encompass and extend two already large bodies of problems: the Markov
decision process framework of single agent learning and the normal form game framework
of strategic multi-player interaction. Researchers at the turn of the century realized the
possibility of approaching game theoretic problems with reinforcement learning solutions
[34, 25, 7]. However, it became clear that one could not simply use existing reinforcement
learningmethods in stochastic games and expect any type of convergence to equilibrium [6]
despite earlier claims to the contrary [11]. Ultimately this period of research produced a few
convergent "reinforcement style" algorithms in stochastic games [7, 34, 25, 35], however
their applicability was limited. For example, some apply only in zero sum games, 2-person
2 action games, or require specific conditions apply throughout the learning process.

The question of how to learn in stochastic games remained somewhat dormant from
2005 until 2015. With the incredible success of combining reinforcement learning and
neural networks, some researchers began taking this empirical success and applying it to
multi-agent environments. In fact, one of the monumental successes of DeepRL, Alphago
[66, 67], was a result of applying DeepRL in a zero sum game, not a stationary single-agent
environment. More concretely multi-agent DeepRL papers include [15, 55, 3, 83, 70, 52,
73, 36]. These works are primarily empirical, but inspired by older, theoretical work in
game theory and reinforcement learning. For example, counterfactual policy gradients
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[15] are closely related to the wonderful life utility in collective intelligence [80], and mean
field Q-learning [83] is informed by the study of mean field games [30].

There has also been some recent theoretical work on learning on stochastic games
[1, 2]. These two works study learning in stochastic zero-sum games [1] and stochastic
team games [2]. The work in chapters 2 and 3 most naturally belong in this family of
work, as we define two other classes of stochastic games and perform a theoretical study
of learning methods in these games.
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Chapter 2

Stochastic Extensions of Potential
Games

2.1 Introduction

In its early years, game theory focused on the static concepts of equilibria in normal-form
games, proving their existence, and computing their behavior. From the period of the
1980’s until the early 2000’s there was a shift in research focus towards learning equilibria.
This was motivated both by descriptive applications in economics as well as prescriptive
applications in engineering. This led to a more in-depth study of simple learning rules
such as best response, fictitious play, log-linear learning, and joint strategy fictitious play.
A number of papers presented convergence results for special subclasses of games. Two
types of games that are of particular interest are zero-sum games [48] and potential games
[46]. Both classes of games admit pure Nash equilibria, and furthermore a number of the
simple learning rules listed above converge to Nash equilibria in these types of games.

While a great deal of work has been done on learning to play equilibria strategies in
normal-form games, the same cannot be said for stochastic games. The defining feature of
stochastic games is that they introduce state dynamics, with each state corresponding to a
normal-form “stage” game. Stochastic games are of interest both from a theoretical and
practical point of view. They are the natural generalization of Markov decision processes
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(MDPs) to the multiagent setting. As such they extend the modelling capacity of MDPs,
and can be used to model markets, bargaining, and routing problems for example.

In this chapter we will study two classes of stochastic games that are motivated by
their connections to normal form potential games. They are stochastic potential games
(SPGs) and stochastic global potential games (SGPGs). We will study the properties of
their equilibrium sets, transition dynamics, and stage games. In the next chapter we will
follow this up by considering learning methods in these games.

2.2 Definitions

In this section we will present the two basic types of stochastic games that will be studied
in the next two chapters: SPGs and SGPGs. Before stating these definitions we will give
some motivation for each of them.

Motivation for SPGs

In [1] the authors study the convergence properties of best response dynamics in zero sum
stochastic games. For this purpose they study continuation games. Given a stochastic game
G with state space S and a set of continuation vectors zi = {zi

s}s∈S , one for each player i,
one can define the following (normal form, not stochastic) continuation games Gs(z):

ui
s(a) +

∑
s′∈S

Pss′(a)zi
s′ (2.1)

These define normal form games for every state s. This equation is closely related to
the Bellman equation in MDPs. Specifically, if we choose the continuation vectors to be
the value functions V i

π(s
′) for a joint behavior π, then this equation is exactly the recursive

definition of the value function. The point of defining a continuation game is that it can
capture both short term (utility) and long term (continuation payoff / value) considerations
in a single normal form game.

One of the learning processes - “stopping time best response dynamics” - defined in
[1], makes use of a two phase learning process. In the first phase, at learning step t, players
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are presented with zero sum continuation games at each state, defined by continuation
payoffs zi

s(t). Players converge to minimax behavior (or more accurately, nearly converge)
π̃s in all of these continuation games using normal best response dynamics on each game.
In the second phase, the continuation value zi

s(t + 1) becomes the minimax value of the
continuation game from the first phase. This algorithm, and specifically phase one, a priori
relies on the fact that each time a new continuation game is defined, that game will be zero
sum. This is a somewhat special property of zero sum games: if every stage game is a zero
sum game, then automatically each continuation game one encounters will also be zero
sum.

By comparison, supposewe have a stochastic gamewhere every stage game is a potential
game. In this case, one cannot expect every continuation game to be a potential game. To
force this to be true, we must also make assumptions about the transition probabilities in
the game. It will be these transition probabilities that define SPGs.

Motivation for SGPGs

One traditional motivation for the study of potential games is that the potential function
may be a kind of "system-wide" welfare function. As discussed in Chapter 1, if one starts
with a welfare function, one can always construct a potential game where the welfare
function is its potential function. From this perspective, the subset of potential maximizing
equilibria in potential games are important, since they are stable behaviors that maximize
the potential function. In SPGs, all continuation games will be potential games, but we
will give examples of SPGs that have no notion of a "global potential", that is, a potential
function whose inputs are player behaviors. SGPGs will be defined by the existence of such
a global potential. As a result, SGPGs will have a notion of equilibrium that is completely
analogous to potential maximizing equilibria in potential games.
2.2.1 Definition of stochastic potential games

mydef]thmWe say that a stochastic game G has modular dynamics if, for any two
players i and j, any joint action a ∈ ×iA

i, and any states s, s′ ∈ S:

Pss′(a) + Pss′(a\bib j) = Pss′(a\bi) + Pss′(a\b j) (2.2)
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mydef]thmWe say that a stochastic game G is a stochastic potential game if
Definition 2.2.0. 1. Every stage game Gs is a potential game and

2. G has modular dynamics

Wewould like to show that the two properties of SPGs guarantee that every continuation
game is a potential game. We will make use of the following lemma from [46]:

lem]thmLet G and H be two potential games with potential functions ϕ and ψ respec-
tively. The games G+H and G−H, defined by adding and subtracting payoffs respectively,
are potential games with potential functions ϕ + ψ and ϕ − ψ respectively.

Theorem 2.2.1. Consider a stochastic game G. Every continuation game is a potential
game if and only if G is a stochastic potential game.

Proof. Suppose G is a stochastic potential game. Fix z, a collection of continuation vectors
for each player and consider the continuation game Gs(z) with payoffs

ui
s(a) +

∑
s′inS

Pss′(zi
s′)

The stage game Gs is a potential game since Γ is a stochastic potential game, and so by
the lemma it suffices to show that the game Ds(z) = Gs(z) − Gs is a potential game. This
game has utilities ∑

s′∈S

Pss′(a)zi
s′

We will refer to Ds(z) as the "delay game".
By , it suffices to check that for any players i and j, any joint action a, and any player

actions bi ∈ Ai and b j ∈ A j we have

∑
s′

Pss′(a\bib j)zi
s′ −

∑
s′

Pss′(a\b j)zi
s′ +

∑
s′

Pss′(a\b j)z j
s′ −

∑
s′

Pss′(a)z
j
s′

=
∑

s′
Pss′(a\bib j)zi

s′ −
∑

s′
Pss′(a\bi)z j

s′ +
∑

s′
Pss′(a\bi)zi

s′ −
∑

s′
Pss′(a)zi

s′
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which can be rearranged to

∑
s′

[
Pss′(a) + Pss′(a\bib j) − Pss′(a\bi) − Pss′(a\b j)

]
zi

s′

=
∑

s′

[
Pss′(a) + Pss′(a\bib j) − Pss′(a\bi) − Pss′(a\b j)

]
z j

s′ (2.3)

And, since, the dynamics are modular, all terms in both the left-hand and right-hand
sum are zero. Therefore the continuation game is a potential game.

Now, assume every continuation game is a potential game. Then in particular this is
true when z is identically zero, and therefore the stage games of G are potential games.
Finally we need to show that this implies G has modular dynamics.

Fix a players i and j, states s and s′, joint strategy a and player strategies bi and b j .
Let z j be the zero vector, and zi be zero everywhere except at state s′. Then equation ??
reduces to

Pss′(a) + Pss′(a\bib j) − Pss′(a\bi) − Pss′(a\b j) = 0

Hence G has modular dynamics.
�

2.2.2 Stochastic Global Potential Games

Notice that while our definition of SPGs places a potential at each state, there is not
necessarily a unified potential function defined over the stochastic game. A different
approach to extending potential games is to draw the analogy as follows: that the definition
of a normal form potential game uses a potential function over strategies, and so a stochastic
version should define a potential function over behaviors. We will call this a stochastic
global potential game (SGPG).

mydef]thmA stochastic global potential game is a stochastic game Γ together with a
global potential function:

Φ : S × Π1 × · · ·Πn → R
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such that for every state s, joint behavior π, and player i with behavior τi,

Φ(s, π\τi) − Φ(s, π) = V i
π\τi
(s) − V i

π(s)

Stochastic global potential games are amenable to reinforcement learning methods
because they admit acyclic "strict better reply graphs". This essentially means that if
players sequentially make improvements to their own behaviors, their joint behavior will
eventually constitute a Nash equilibrium. However, determining whether a stochastic game
is an SGPG is not straightforward. A priori, there is no way to check whether a global
potential function exists other than to construct one, and the temporally extended nature of
the global potential function may make this difficult. In contrast, SPGs are characterized
by temporally local conditions on stage games and one-step transition probabilities.

2.3 Stochastic Potential Games

In this section we aim to answer three questions. First, is the class of SPGs distinct from
SGPGs? In other words, are there really SPGs that do not have global potential functions?
The answer is yes, and we will provide a simple example in this section. Second, to
what extent are SPGs applicable in the real world? We will answer this question by
examining modular dynamics further, and leveraging the equivalence between potential
games and congestion games to examine a "realistic" subclass of SPGs, which we call
routing/construction games. Finally, we will discuss some properties of the set of Nash
equilibrium in SPGs.

Let’s begin with an example of an SPG that has no global potential function.
eg]thmConsider a 2-player stochastic game G with 3 states: s1, s2, and s3. We will call

the corresponding stage games G1, G2, and G3 for ease of notation. Episodes of the game
always start in s1. Both players have two actions, a and b, in each state. The stage games
in s1 and s3 are trivial, that is, all actions yield zero utility for both players. The stage game
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in s2 is given by the following bimatrix:

a b( )
a 4, 2 2, 2
b 2, 1 2, 3

Finally, the transition probabilities are

P12 =

(
0 0.5

0.5 1

)
and then necessarily

P13 =

(
1 0.5

0.5 0

)
It is straightforward to see that these transition probabilities are modular. G1 and G3

are trivially potential games with potential function ϕ ≡ 0. G2 is a potential game with
potential function:

a b( )
a 0 0
b −2 0

Since all stage games are potential games and the dynamics are modular, G is an SPG.
Now, let

π1 = π2 = [a, a, a]

π̃1 = [b, a, a]

π̃2 = [a, b, a]

Here we use the notation [x, y, z] as shorthand for the deterministic player behavior:
Example 2.3.0. "Take action x in state s1, action y in state s2, and action z in state s3."
It is a simple exercise to calculate the value difference of the following joint behaviors:
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V1
s1
(π̃1, π2) − V1

s1
(π1, π2) = 2

V2
s1
(π̃1, π̃2) − V2

s1
(π̃1, π2) = 1

V2
s1
(π1, π̃2) − V2

s1
(π1, π2) = 1

V1
s1
(π̃1, π̃2) − V1

s1
(π1, π̃2) = 1

Because these returns do not commute (ie 2 + 1 , 1 + 1) there cannot exist a global
potential function. In the next section we will describe all of the constraints associated
with SGPGs and write them down explicitly. At that point, we will be able to more clearly
identify why the above example has no global potential function. For now we simply point
out that in the above example the commutativity issue arose when we changed the players’
actions at different states, namely s1 and s2. In particular, these states occur at different
layers in the finite MDP over joint actions.

2.3.1 Modular dynamics with a view towards applications

In the previous subsection we confirmed that SPGs are a distinct class of stochastic
games, and that theymay not have global potential functions. In this section wewill explore
the definition of SPGs and characterize modular dynamics in a way that suggests possible
real-world applications. We will end this section by identifying a subclass of SPGs, which
we call routing/construction gameswhich may be of interest in engineering and economics
applications.

Recall that a stochastic game G has modular dynamics if for all state pairs s and s′, joint
action a, players i and j with alternative actions bi and b j , the following equation holds:

Pss′(a) + Pss′(a\bib j) = Pss′(a\bi) + Pss′(a\b j) (2.4)

This equation defines the transition probabilities of SPGs in terms of constraints.
The following sequence of results transforms this into a constructive characterization of
transition probabilities.
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If G has modular dynamics then for any player i, states s and s′, joint actions a and b

with ai = bi, and player action ci,

Ps′(a) − Pss′(a\ci) = Ps′(b) − Pss′(b\ci)

Proof. We know this is true when a−i and b−i differ by a single player’s action since
modular dynamics tells us that

Pss′(a) − Pss′(a\bi) = Pss′(a\b j) − Pss′(a\bib j)

For general a and b with ai = bi, we simply chain together single action changes,
maintaining equality throughout the process, ie

Pss′(a) − Pss′(a\ci) = Pss′(a\b1) − Pss′(a\cib1)

= Pss′(a\b1b2) − Pss′(a\cib1b2)

...

= Pss′(a\b1 · · · bi−1bibn) − Pss′(a\b1 · · · bi−1bi+1bnci)

= Pss′(b) − Pss′(b\ci)

�

lem]thmIf G is a stochastic game with modular dynamics then for any pair of states s

and s′, there exists a nonnegative constant css′ and nonnegative functions

f i
ss′ : Ai → R

for each player such that

Pss′(a) = css′ +

n∑
i=1

f i
ss′(a

i)

Proof. Fix player i and joint action b such that
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bi ∈ argminbi Pss′(bi, b−i)

Define the following functions

f i
ss′(a

i) := Pss′(ai, b−i) − Pss′(bi, b−i)

gi
ss′(a

−i) := Pss′(bi, a−i)

Notice that by construction

Pss′(ai, a−i) = f i
ss′(a

i) + gi
ss′(a

−i)

Since we can do this for all players, we can decompose Pss′(a) as

Pss′(a) = css′ +

n∑
i=1

f i
ss′(a

i)

Furthermore, since bi ∈ argminbi Pss′(bi, b−i), all of the functions f i
ss′ are nonnegative,

and reach their minimum value of 0 when ai = bi. Note that there are possibly other
minima.

Finally, we need to show that css′ is nonnegative. But, based on our previous statement,
we can certainly choose a joint action c such that all of the functions f i

ss′ are simultaneously
zero. Then

Pss′(c) = css′

�

Theorem2.3.1. LetG be a stochastic game. ThenG hasmodular dynamics if and only if for
every state s there exist state dependent player weights wi

s, action-conditional probability
distributions over next states {pi

ss′(a
i)}, and "natural weights" w0

ss′, such that

Pss′(a) = w0
ss′ +

∑
i

wi
spi

ss′(a
i)
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Proof. Suppose G has modular dynamics. Then by the previous lemma we have the
decomposition

Pss′(a) = css′ +

n∑
i=1

f i
ss′(a

i)

where css′ and f i
ss′(a

i) are all nonnegative. Since Pss′(a) is a probability distribution
over next states s′,

∑
s′

n∑
i=1

f i
ss′(a

i) =
∑

s′
Pss′(a) = 1

Suppose we fix a player j and alter their action to b j while keeping all other actions
fixed. Then ∑

s′

n∑
i=1

f i
ss′(a

i) = 1 =
∑

s′
f j
ss′(b

j) +
∑

s′

n∑
i=1,i, j

f i
ss′(a

i)

The terms not related to player j cancel on both sides leaving∑
s′

f j
ss′(a

j) =
∑

s′
f j
ss′(b

j)

This equality holds for any pair of player j actions and so it defines an action independent
quantity w

j
s :=

∑
s′ f j

ss′(a
j). For a given action b j let

pss′(b j) =
f j
ss′(b

j)

w
j
s

This defines a probability distribution over next states s′ that depends on the current
state s and player action b j . Letting w0

ss′ = css′ yields

Pss′(a) = w0
ss′ +

∑
i

wi
spi

ss′(a
i)

Now we need to show the reverse implication. Suppose G has transition probabilities
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that can be decomposed as

Pss′(a) = w0
ss′ +

∑
i

wi
spi

ss′(a
i)

Let bi and b j be alternative actions for players i and j. Then

Pss′(a) − Pss′(a\bi) = wi
spi

ss′(a
i) − wi

spi
ss′(b

i)

and similarly

Pss′(a\b j) − Pss′(a\bib j) = wi
spi

ss′(a
i) − wi

spi
ss′(b

i)

So

Pss′(a) − Pss′(a\bi) = Pss′(a\b j) − Pss′(a\bib j)

Pss′(a\b j) + Pss′(a\b j) = Pss′(a) + Pss′(a\bib j)

Therefore G has modular dynamics. �

The above theorem allows us to describe the mechanics of an SPG G in plain language
as follows. In a give state, players are endowed with "voting shares" specified by the wi

s’s.
The various actions that a player i can take determine how that player’s voting share is
distributed across next states. A priori, player i does not have full control in distributing
wi

s across next states, but rather is constrained by their action set. For example, suppose
that the action setAi

s of a layer k state s exactly corresponds to Sk+1, the set of layer k + 1
states. So an element ofAi

s can be identified with a next state s′. Furthermore, suppose that
pi

ss′(s
′) = 1. In this kind of game, players can only distribute their voting share unilaterally

on a single next state and cannot "manage risk" by placing voting shares on multiple next
states.

In addition to each player having a voting share, nature is also endowed with a state-
dependent voting share w0

s =
∑

s′ w
0
ss′. In the extreme case w0

s = 1, in which case players
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have no control on transition probabilities and should therefore act myopically in state s.
As a first example, let’s reexamine . There are two state dependent weights

w1
1 = 0.5

w2
1 = 0.5

The natural weights are all zero. Furthermore the probability distributions are simply

pi
12(a) = 0

pi
13(a) = 1

and

pi
12(b) = 1

pi
13(b) = 0

For both players i = 1 and i = 2. This is an example not only of an SPG in general, but
of the special case noted in the paragraph above. Namely, each player has two actions that
correspond exactly with the number of next states. Action a casts a vote for state s3 and
action b casts a vote for s2. Both players have equal voting shares, and the natural weights
are zero.
2.3.2 Routing/construction games

In the pioneering paper on potential games [46], Monderer and Shapley show that
the class of potential games is equivalent to the class of congestion games. They do
so through explicitly constructing potential functions for arbitrary congestion games, and
conversely constructing a congestion game out of an arbitrary potential function. The link
between congestion games and potential functions can be traced further back to the work
of Rosenthal [57] where congestion games are defined and the existence of pure Nash
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equilibrium is shown through the construction of a potential function.
A congestion game arises when a set of homogeneous players have to select from a set

of resources, and where the payoff of a player depends on the number of players selecting
each resource [46]. Congestion games form a natural model for traffic routing, both in
the context of automobile traffic [78] and internet packet traffic [18]. Below is a precise
definition of a congestion game:

mydef]thmA (finite) congestion game consists of the following data:
Definition 2.3.1. 1. A (finite) set of n players

2. A (finite) set of resources M

3. For each player i a (finite) set of actions Ai where each action a ∈ Ai corresponds
to a subset of M .

4. For each resource m ∈ M a delay function dm : N→ R
For a joint action a and resource m let Cm(a) be the number of player actions that

contain resource m. The payoff of player i is defined to be

ui(a) =
∑
m∈ai

dm(Cm(a)) (2.5)

Routing games form a special subclass of congestion games. A routing game is a
congestion game where the resources M consist of edges in a fixed graph Γ and the actions
of player i consist of paths in the graph that all have the same starting and ending location.
The iterated version of this problem models the strategic aspect of morning commutes.
Each day drivers must decide amongst multiple routes between their home and workplace.
These routes have different trip times that are dependent on the number of other players
utilizing the roadways.

Figure 2.1 shows a simple two player congestion game. There are two players, and they
each need to travel from vertex A to vertex B. The edges are labelled with pairs of numbers
(a, b) where a is the delay cost when one player utilizes the edge and b is the delay cost
when two players utilize the edge. There are two pure Nash equilibria in this game. Either
player one takes the upper route and player two takes the lower route or vice versa.
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Figure 2.1: A simple routing game.

Connecting routing games and SPGs

Recall that the first property of SPGs is that each stage game is a potential game. Since
every potential game is equivalent to a congestion game, we can instead think of the SPG
as being made up of a collection of congestion games with modular transition probabilities.
A priori there may be no "physical" relationship between the stage congestion games in an
SPG. Below we describe routing/construction games which are a subset of SPGs in which
the stage congestion games (specifically, routing games) are connected in a physical way.

In the traditional routing game story, one imagines a network of roads, and a set of
commuters with various start and end locations. Each road has an associated delay function
which relates the number of commuters on a road to the expected time it will take a given
commuter to traverse that road. This can depend on a number of road characteristics such
as speed limit, lanes, and road quality. It is the "job" of commuters (players) to select how
to route themselves.

We are going to modify this story by adding in a new actor which we will call "the
government". At each timestep, the government observes the strategy of commuters and
elects to take on construction projects to fix roads, add lanes, etc. based which roads the
commuters chose at the last timestep. These choices are reflected in modifications to the
road delay functions. It is natural to assume that the government is more likely to fix roads
that are used by a large number of drivers, and this is where the "voting" interpretation
of modular dynamics is employed. In order to fit the SPG model to this situation, the
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government must modify the roads probabilistically. We provide the full definition of
routing/construction games below.

mydef]thmAn n-player routing/construction game consists of a directed graph Γ =
(V, E). The graph has an initial set of delay functions

d0
e : {1, . . . , n} → R

for each e ∈ E which defines an initial stage routing game. It is also equipped with
"construction" functions

ce(de, b) : Rn × {0, 1} → Rn

which describe how the delay functions change from state to state. At state s, let ds
e denote

the delay function on edge e. From this state, the government will be able to strengthen
one edge, and all other roads will decay. Suppose players select joint action a. This action
defines a probability distribution over edges as follows. Each player has identical voting
share wi

s =
1
n . If player i’s action is made up of a subset of edges ei

1, . . . , e
i
r , then their

corresponding vote is a uniform distribution over these edges. A sample is drawn from this
distribution. For the selected edge, the new delay function is

ds′
e = ce(ds

e, 1)

and for all other edges f , the new delay function is

ds′
f = c f (ds

f , 0)

The game G proceeds for a fixed number of layers k and then terminates. Intuitively,
construction on an edge should reduce the values of the delay function while decay should
increase values of the delay function, so that

ds′
e = ce(ds

e, 1) ≤ ds
e ≤ ds′

e = ce(ds
e, 0)

By construction, routing/construction games are SPGs since we have described their
transition dynamics in terms of state and player dependent weights and action conditional
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probability distributions.
2.3.3 Equilibria

The set of Nash equilibria in a potential games has two immediately interesting fea-
tures. First, every potential games admits at least one pure Nash equilibrium. Second,
potential games admit further specialized equilibria which are called "potential maximiz-
ing equilibria". These are joint behaviors that maximize the potential function. In some
applications, the potential function is interpreted as a welfare function, and one desires to
find learning algorithms that converge to potential maximizing behavior. We say that a
learning algorithm has "equilibrium selection properties" if it is guaranteed to converge to
a certain subset of Nash equilibria. So, an algorithm that converges to the set of potential
maximizing equilibria in a potential game has an equilibrium selection property. Log linear
learning [39, 84] is an example of such a learning algorithm, and we will discuss it further
in the next chapter.

mydef]thmLet G be an SPG. A joint behavior π is called a simultaneously potential
maximizing if, for each state s, the joint behavior πs maximizes the potential function that
has utilities

ui
s(a) +

∑
s′

Pss′V i
π(s
′) (2.6)

The three main results of this section are

Theorem 2.3.2. Every stochastic potential game admits a pure Nash equilibrium.

Theorem 2.3.3. Every simultaneously potential maximizing equilibrium is a Nash equi-
librium.

Theorem 2.3.4. Every stochastic potential game admits a simultaneously potential maxi-
mizing equilibrium.

We will prove all of these results together.

Proof. Let G be an n-player stochastic potential game. As usual denote the state layers by
S1, . . . ,ST , the stage potential games by Gs with potential ϕs and utilities ui

s.
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We will construct a pure simultaneously potential maximizing Nash equilibrium π by
a backwards iterative method through the layers of G.

First, for each state s ∈ ST let as be a pure potential maximizing Nash equilibrium
for the stage game Gs. Set πs B as and then V i

π(s) = ui
s(as). Note that we haven’t fully

defined π yet, but it is okay to talk about V i
π(s) for states s ∈ ST since we have described

the behavior of π at layer T .
Next, for each state s ∈ ST−1 consider the continuation game Gs(V i

π) with utilities

ui
s(a) +

∑
s′∈ST

Pss′(a)V i
π(s
′)

SinceG is a stochastic potential game, eachGs(V i
π) is a potential game and hence admits

a pure potential maximizing Nash equilibrium as. For the states in ST−1 set πs B as and
then V i

π(s) = ui
s(as) +

∑
s′∈ST Pss′(as)V i

s′.
Iterating this process, for each state s ∈ Sj consider the continuation game Gs(V i

π) with
utilities

ui
s(a) +

∑
s′∈ST

Pss′(a)V i
π(s
′)

This game admits a pure Nash equilibrium as. We set πs B as for all s ∈ Sj and
V i
π = ui

s(as) +
∑

s′∈ST Pss′(as)V i
π(s
′).

Eventually this process terminates, at which point it defines a pure joint strategy in every
state, that is, a pure joint behavior π. By construction it is clear that π is simultaneously
potential maximizing. Finally, we need to show that π is a Nash equilibrium.

Fix a player i whose behavior under π is πi and consider an alternative behavior τi.
Let t0 be the last layer where πi and τi differ. That is, the largest t0 such that there exists
s0 ∈ St0 withπi

s0
, τi

s0
. Then the behaviors πi and π\τi correspond to strategies in the game

Gs0(z(t0 + 1)). But, since we know that πs is a Nash equilibrium for the game Gs0(V
i
π), it

must be the case that

ui
s(πs) +

∑
s′∈St0+1

Pss′(πs)V i
π(s
′) ≥ ui

s(πs\τ
i) +

∑
s′∈St0+1

Pss′(πs\τ
i)V i

π(s
′)
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Therefore π is a Nash equilibrium.
�

2.4 Stochastic Global Potential Games

In the previous section we found that not all SPGs are SGPGs. Is the opposite true? That
is, does the existence of a global potential imply stage games are potential games and that
transition probabilities are modular? We will see that the existence of a global potential
function is in some ways more restrictive than the assumption of modular dynamics,
although it does not implymodular dynamics. In this sectionwewill attempt to characterize
the structure of SGPGs by looking at the constraints created by a global potential function.
We will begin by deriving a constraint for SGPGs that resemble modular dynamics. Then,
we will examine additional restrictions on SGPGs. We will conclude this section by
discussing equilibrium properties of SGPGs.

The following is a class of games that are SGPGs but not SPGs:
eg]thmLet G be any stochastic team game (ie all players receive the same utility in

every state) with non-modular dynamics. By definition it cannot be an SPG. However, it
admits a global potential function:

Φ(s, π) = V i
π(s)

Note that the right hand side is independent of the choice of player i since all players receive
the same utilities and hence have the same V functions.

2.4.1 A gap between SGPGs and SPGs

Now that we’ve established that SPGs and SGPGs are distinct classes of stochastic
games, we’ll examine their relationship in more detail.

The definition of SPG is derived from a consistency equation based on the desire for
continuation games to be potential games. The same kind of consistency equation can be
derived from a global potential in SGPGs.

Let Φ be the global potential function for a SGPG G.
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Consider a state s, a joint action a, a joint pure behavior π with πs = a, players i and
j, and bi ∈ Ai and b j ∈ A j alternative actions for players i and j in state s. The global
potential function must satisfy

Φ(s, π\bib j)−Φ(s, π\bi)+Φ(s, π\bi)−Φ(s, π) = Φ(s, π\bib j)−Φ(s, π\bi)+Φ(s, π\bi)−Φ(s, π)

We can replace these with Q-values, and write the Q-values using the one step Bellman
equation:

[
u j(a\bib j) +

∑
s′

Pss′(a\bib j)V j
π

]
−

[
u j(a\bi) +

∑
s′

Pss′(a\bi)V j
π

]
+

[
ui(a\bi) +

∑
s′

Pss′(a\bi)V i
π

]
−

[
ui(a) +

∑
s′

Pss′(a)V i
π

]
=

[
ui(a\bib j) +

∑
s′

Pss′(a\bib j)V i
π

]
−

[
ui(a\b j) +

∑
s′

Pss′(a\b j)V i
π

]
+

[
u j(a\b j) +

∑
s′

Pss′(a\b j)V j
π

]
−

[
u j(a) +

∑
s′

Pss′(a)V
j
π

]
Rearranging terms and simplifying yields

[
u j(a\bib j) − u j(a\bi) + ui(a\bi) − ui(a)

]
−

[
ui(a\bib j) − ui(a\b j) + u j(a\b j) − u j(a)

]
=

∑
s′∈Sk+1

[
Pss′(a\bib j) − Pss′(a\bi) − Pss′(a\b j) + Pss′(a)

] (
V i
π(s
′) − V j

π (s
′)

)
There is a lot to unpack in this equation. First, the left hand side of this equation is the

consistency equation on the stage game Gs. That is, if the right hand side of the equation
is zero, one can conclude that the Gs is a potential game. Note that only the right hand side
of this equation depends on π. So, if there is any choice of π where the right hand size is
zero, then Gs will be a potential game. In contrast, suppose we start with the assumption
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that Gs is a potential game, so that the left hand side of the equation is zero. In this case
we have

∑
s′∈Sk+1

[
Pss′(a\bib j) − Pss′(a\bi) − Pss′(a\b j) + Pss′(a)

]
V i
π(s
′)

=
∑

s′∈Sk+1

[
Pss′(a\bib j) − Pss′(a\bi) − Pss′(a\b j) + Pss′(a)

]
V j
π (s
′)

This equation resembles equation ?? except that continuation vectors zi are replaced
by expected rewards V i

π(s). When we had the freedom to choose zi arbitrarily, we could
construct them such that the onlyway to satisfy the equationswas to havemodular dynamics.
In contrast, the V i

π(s) are given as part of the stochastic game, and their differences V i
π(s
′) −

V j
π (s′) may span a comparatively low-dimensional subspace of an |S|-dimensional space.

This is particularly clear in the case of stochastic team games, where V i
π ≡ V j

π for all i and
j so that their difference spans a zero-dimensional space.
2.4.2 Further constraints on SGPGs

In the preceding analysis, we made use of consistency equations 2.7 for SGPGs in
which the changes in player i and player j’s strategies occur in the same state s. However,
if we vary the states that the strategy changes occur, we can derive a much larger set of
consistency equations that restrict the form of SGPGs even further.

Suppose alternative actions bi and b j occur in adjacent layers, that is, in states s1 ∈ Sk

and s2 ∈ Sk+1 respectively. Fix a baseline joint pure behavior π, and for notational
simplicity let a1 = πs1 and a2 = πs2 . As usual, we start from the consistency equation

Φ(s1, π\bib j) − Φ(s1, π\bi) + Φ(s1, π\bi) − Φ(s1, π)

= Φ(s1, π\bib j) − Φ(s1, π\b j) + Φ(s1, π\b j) − Φ(s1, π)

Replacing each difference with a difference in values, and then simplifying yields:
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Φ(s1, π\bib j) − Φ(s1, π\bi) =

u j
s1(a1\bi) +

∑
s′∈Sk+1

Ps1s′(a1\bi)V j
π\bibj (s

′) − u j
s1(a1\bi) −

∑
s′∈Sk+1

Ps1s′(a1\bi)V j
π\bibj (s

′)

Notice that changing actions in earlier layer states has no effect on the value of later
states so

V j
π\bibj (s

′) = V j
π\bj (s

′)

Furthermore, when s′ , s2,
V j
π\bj (s

′) = V j
π (s
′)

So most terms above cancel, leaving

Φ(s1, π\bib j) − Φ(s1, π\bi) = Ps1s2(a1\bi)

[
Q j
π(s2, a2\b j) −Q j

π(s2, a2)
]

Following a similar process for the other differences in the consistency equation we get

Φ(s1, π\bi) − Φ(s1, π) = ui
s1
(a1\bi) − ui

s1
(a) +

[
Ps1s2(a1\bi) − Ps1s2(a)

]
V i
π(s2)

Φ(s1, π\bib j) − Φ(s1, π\b j) = ui
s1
(a1\bi) − ui

s1
(a) +

[
Ps1s2(a1\bi) − Ps1s2(a)

]
Qi
π(s2, a2\b j)

Φ(s1, π\b j) − Φ(s1, π) = Ps1s2(a1)
[
Q j
π(s2, a2\b j) − V j

π (s2)
]

Substituting these into the original consistency equation and rearranging terms results
in

[
Ps1s2(a) − Ps1s2(a\b

i)
] (

Qi
π(s2, a2\b j) −Qi

π(s2, a2)
)

=
[
Ps1s2(a) − Ps1s2(a\b

i)
] (

Q j
π(s2, a2\b j) −Q j

π(s2, a2)
)
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For a fixed player i, this implies one of two possibilities. Either
Statement 1:

Ps1s2(a) − Ps1s2(a\b
i) = 0 (2.7)

for all choices of a1, bi, and s1, or
Statement 2:

Qi
π(s2, a2\b j) −Qi

π(s2, a2) = Q j
π(s2, a2\b j) −Q j

π(s2, a2) (2.8)

For all choices of j, a2, b j , and π.
If Statement 1 is false for every player i, then Qi

π = Q j
π for all players, which would

mean that G is a team game. If Statement 1 is true for some player i it means that player i

has no control with respect to transitioning to state s2. This condition is quite restrictive.
2.4.3 Equilibria

The existence of a single potential function makes SGPGs more closely analogous
to normal form potential games. In potential games, potential maximizing strategies are
examples of Nash equilibria. Similarly, in SGPGs, potential maximizing behaviors are
examples of Nash equilibria. This is obvious, as any change in a single players behavior
from a potential maximizing joint behavior will negatively impact that players returns.
Hence:

Theorem 2.4.1. Every SGPG admits at least one pure Nash equilibrium.
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Chapter 3

Learning Methods in Stochastic
Potential Games and Stochastic Global

Potential Games

3.1 Introduction

In the previous chapter we defined two classes of stochastic games: stochastic potential
games (SPGs) and stochastic global potential games (SGPGs). Via their analogies with
normal form potential games, these two classes of games admit extra structure on their Nash
equilibrium sets. Namely, both SPGs and SGPGs admit pure Nash equilibrium behaviors.
Furthermore, each admits a distinguished class of Nash equilibrium. In the case of SPGs
we called these “simultaneously potential maximizing equilibria.” SGPGs on the other
hand admit “potential maximizing equilibria,” so named because they follow essentially
the same definition as potential maximizing equilibria in normal form potential games.

The structure of their Nash equilibrium sets immediately raise the question of whether
there are convergent learning methods that converge to Nash equilibria, pure Nash equilib-
ria, or the specialized Nash equilibria in each class of game. This chapter will focus on two
learning methods: joint strategy fictitious play (JSFP) with inertia and log-linear learning
(LLL). These two learning methods converge to pure Nash equilibria and potential maxi-
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mizing equilibria respectively in potential games. For each of these learning methods we
will examine how they may be extended to SPGs and SGPGs in order to define convergent
learning dynamics in both.

3.2 Joint Strategy Fictitious play with Inertia in
Stochastic Games

3.2.1 Background on JSFP for repeated games

In standard Fictitious play (FP), agents learn by selecting best responses to the empirical
past play of their opponents. If at is the joint action played at stage t, then ai

t+1 is obtained
as a best response

ai
t+1 ∈ BR(x−i

t )

to the (typically mixed) opponent actions x j
t where

x j
t =

1
t

t∑
k=1

a j
k

Here we identify an action ai
k with the discrete probability distribution with all proba-

bility concentrated on ai
k . A different way of describing the choice of ai

t+1 is that it is an
action which maximizes ui(·, x−i

t ) where ui is the utility function of player i.
The essential difference between FP and JSFP is that, from the perspective of player i,

JSFP treats all other opponents as if they were a single entity. This manifests in the way
that player i calculates empirical frequencies of opponent play. JSFP will calculate ai

t+1 as
a best response

ai
t+1 ∈ BR(z−i

t )

to the empirical joint opponent play
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z−i
t =

1
t

t∑
k=1

a−i
k

As in FP, the action choice ai
t+1 can also be viewed as maximizing ui(·, z−i

t ). On initial
inspection, it seems that JSFP has a very costly memory constraint compared to FP since
each player needs to maintain empirical joint strategy counts. However, it is in fact not
necessary for players to keep track of z−i

t , but instead each player can instead track and
maximize ui(·, z−i

t ) directly. By linearity,

ui(y, z−i
t ) =

1
t

t∑
k=1

ui(y, a−i
t )

At each timestep, this quantity can be updated recursively:

ui(y, z−i
t+1) =

1
t + 1

ui(y, a−i
t+1) +

t
t + 1

ui(y, z−i
t )

At time t, player i can now calculate argmaxy∈Aui(y, z−i
t ) and therefore can perform

JSFP without storing the empirical joint distribution of opponent play.
JSFP with Inertia In [38] the authors modify JSFP using an inertial condition to

guarantee convergence to pure Nash equilibrium. We will now describe JSFP with inertia
and then state the main theorem of [38].

At time t player i plays according to the following rule:
1. If ai

t−1 is a best response to z−i
t , then ai

t = ai
t−1. That is, player i repeats their action.

2. Otherwise, player i will repeat their action with probability αi(t) or will select a
different action according to the probability distribution βi(t)with probability 1−αi

t .
βi(t) can be any distribution that is supported on a subset of the best responses. We
assume that αi(t) is bounded away from 0 and 1.

mydef]thmA player is indifferent between two strategies a1 and a2 if there exists a joint
opponent play a−i such that

ui(a1, a−i) = ui(a2, a−i)

Note that the player actions do not have to yield the same utilities for all opponent plays;
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one will suffice.

Theorem 3.2.1. [38] In any finite generalized ordinal potential game in which no players
are indifferent between two strategies the joint actions at generated by JSFP with inertia
will converge to a pure Nash equilibrium almost surely.

3.2.2 Extension to Finite-time SPGs

The almost-sure nature of convergence allows us to make a straightforward extension
of the JSFP with inertia algorithm to the finite-time SPG setting. This establishes that there
exists a decoupled learning method that converges to a pure Nash equilibrium in SPGs.

Before we get into the algorithmic details we first need be clear about the learning
setting: At each time t, each player i must choose an action ai

s(t) for every state s ∈ S.
This is a bit different from the sequential decision making problem, where at each timestep
the agent is only faced with a decision in a single state, that is typical when working with
MDPs. The way we have formulated the learning problem allows for a more stylized
argument for convergent dynamics, however there is no significant barrier to rephrasing it
as a sequential decision making algorithm.

Let G be an SPG. We let zs(t) denote the empirical joint play in state s at time t, and
z−i

s (t) denote the empirical joint play of opponents against player i in state s at time t. We
begin by defining an extension of JSFP to stochastic games and after this define the full
algorithm which employs inertia.

Stochastic Game JSFP (SG-JSFP) At each timestep, players will update two state-
dependent quantities: their behavior ai

s(t) and continuation payoffs ci
s(t). At time t, player

i computes a best response ai
s(t + 1) to z−i

s in the game Gs(ci(t)) which has utilities

ui
s(a) +

∑
s′∈S

Pss′(a)ci
s′(t)

For ease of notation we will simply refer to Gs(ci(t)) as Gs(t). Once the actions as(t+1)
are computed, the continuation payoff is updated to be the utility player i receives in game
Gs(t) when joint action as(t + 1) is taken. Explicitly:
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ci
s(t + 1) = ui

s(as(t + 1)) +
∑
s′∈S

Pss′(as(t + 1))ci
s′(t)

As in JSFP, players can perform SG-JSFP without explicitly maintaining the empirical
joint play zs(t) in every state. At each timestep player i must select an action which is a
best response to z−i

s (t) in game Gs(t). In the same way as JSFP, player i can update their
expected immediate utility for playing action y against the empirical joint opponent play
via

ui
s(y, z

−i
s (t + 1)) =

1
t + 1

ui
s(y, a

−i
s (t + 1)) +

t
t + 1

ui
s(y, z

−i
s (t)).

Then player i can calculate the utility in game Gs(t) of any action y according to

ui
s(y, z

−i
s (t + 1)) +

∑
s′∈S

Pss′(a)ci
s′(t + 1)

Note that this requires the player to know the structure of the game. In standard JSFP,
knowing the structure of the game simply means that a player can calculate any value
of their utility function. In the stochastic game setting this knowledge requirement is
stronger—players must also be able to calculate all transition probabilities Pss′(a).

SG-JSFP with inertia We now introduce SG-JSFP with inertia. At each timestep
player i must select an action in each state. We wish to impose additional decision-making
rules on top of SG-JSFP which guarantee convergence to pure Nash equilibrium. They
are:

1. If ai
s(t − 1) is a best response to z−i

t in the game Gs(t) then ai
s(t) = ai

s(t − 1).
2. Otherwise, player i will repeat their action in state s with probability αi(t) or will

select a different action according to the probability distribution βi(t)with probability
1−αi(t). βi(t) can be any distribution with support on best responses and αi(t)must
be bounded away from 0 and 1.

The last point wemust address before the theorem is "indifference to distinct strategies".
This is needed to show that JSFP with inertia converges to a pure Nash equilibrium in
(repeated) potential games. We will need a similar kind of indifference to guarantee our
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theorem.
mydef]thmWe say that a stage game Gs(c) with continuation payoff c is indifferent

to distinct strategies of one can find two joint plays a1 and a2 differing only in player i’s
behavior such that the utility of player i is the same. That is,

ui
s(a1) +

∑
s′

Pss′(a1)ci
s′ = ui

s(a1) +
∑

s′
Pss′(a1)ci

s′

mydef]thmWe say that a continuation payoff c (indexed by states and players) is
"grounded" or "grounded in reality" if it is equal to a value function of some joint be-
havior. That is, there exists a joint behavior π such that

ci
s = V i

π(s)

mydef]thmWe say that a stochastic game Γ is "indifferent to distinct strategies of
grounded continuations" if Gs(c) is indifferent to distinct strategies whenever c is grounded
in reality.

Theorem 3.2.2. In any finite-time SPG that is indifferent to distinct strategies of grounded
continuations, the behaviors ai(t) converge to a pure Nash equilibrium almost surely.

Proof. This proof relies on two simple facts. First, JSFP with inertia converges to a pure
Nash equilibrium in potential games. Second, for any continuation payoff c, the game
Gs(c) is a potential game.

To show almost sure convergence, we can show that with probability one there is a finite
time T such that aT consititutes a pure Nash equilibrium in the stochastic game. Once such
an action is played, the inertial condition (1) guarantees that it will continue to be played
forever.

Let L be the number of layers/times that elapse in the game before an episode ends.
Consider states s that arise in the final layer/time of the game. The games played in these
states are each potential games, and are never modified with a continuation payoff since
the episode ends after an action is taken in any of these states. Hence Gs(t) = Gs for all
times. It is clear that SG-JSFP with inertia reduces simply to JSFP with inertia in these
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states, and therefore by 3.2.1, with probability one there is a finite time T1(s) for each state
in this layer such that the action profiles constitute a Nash equlibrium. By the inertial
condition (1), since the stage game Gs(t) is not changing, players will play the same action
in state s forever once it is played once. Since the number of states is finite, this means
that with probability one there is a time T1 where all action profiles in all layer L states are
simultaneously Nash equilibria.

Now consider states in layer L − 1. Initially, the stage games Gs(t) are changing as the
payoffs in layer L change. However, after time T1, these continuation payoffs stabilize to
a constant value, and therefore Gs(t) = Gs(t′) for times t, t′ > T1. As a result, eventually
SG-JSFP with inertia is identical with JSFP with inertia in the repeated games Gs(T1).
Hence, since we are in an SPG and all continuation games are potential games, behavior in
each layer-(L − 1) state s converges to a pure Nash equilibrium of Gs(T1) with probability
one in finite time T2(s). Again, since the number of states is finite, with probability one
there is a time T2 such that all layer-(L − 1) states are playing Nash equilibria to their
continuation games.

We may repeat this argument moving backwards step-by-step through all layers of the
stochastic game and conclude that with probability one, there is a finite time TL such that
for all t > TL and states s, as(t) is a Nash equilibrium for the game Gs(TL). Furthermore,
Gs(TL) is the "true" continuation game. That is, the continuation payoff of player i for the
game Gs(TL) is V i

a(s). Therefore at is a pure Nash equilibrium for the stochastic game.
�

3.2.3 SG-JSFP with inertia for SGPGs

Let’s return for amoment to the proof of theorem 3.2.2 and consider the learning process
in an intermediate layer k. In terms of learning, nothing that happens in the first TL−k steps
has any bearing on what behaviors eventually converge to in this layer. In particular, only
two facts were important when establishing convergence to pure Nash equilibrium in this
layer:

1. Eventually the behavior in layer k + 1 converged to a fixed pure Nash equilibrium,
and therefore the continuation payoffs c(t) also converged.

2. The final continuation games Gs(t) = Gs(c(TL−k)) are potential games
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In order to guarantee the second point, we assumed that our stochastic game was an
SPG. This guarantees that any continuation game is a potential game, and in particular,
Gs(c(T1)) is a potential game. However, these final continuation games are special: by
construction their continuation payoff is equal to the true expected return ie

ci
s(TL−k) = V i

π(s),

where π is a joint pure behavior where πi
s = ai

s(TL−k) when s is in a layer greater than k,
and πi

s is arbitrary for any earlier layers.
But, as we showed in section 2.4, such continuation games will be potential games for

SGPGs. Hence, the argument for SPGs will also work for SGPGs and we can conclude the
following theorem:

Theorem3.2.3. In any finite-time SGPG that is indifferent to distinct strategies of grounded
continuations, the behaviors ai(t) converge to a pure Nash equilibrium almost surely.

3.2.4 Conclusion on SG-JSFP with inertia

The benefits of SG-JSFP is that it offers a convergent decoupled learning algorithm
that converges to a pure Nash equilibrium in both SPGs and SGPGs. Furthermore, this
algorithm has a small memory requirement which is similar to the memory requirement
in regular JSFP (with inertia). One significant drawback of SG-JSFP with inertia is that it
requires players to know the "structure of the game", in that they must be able to compute
arbitrary stage game utility functions and transition probabilities.

3.3 Log-linear Learning

The goal of this section is to define a learning algorithm for stochastic games that resembles
the log-linear algorithm used in iterated normal form games. We will begin by reviewing
log-linear learning (LLL) and stating the main convergence results in iterated games. We
will then describe a variant that converges to potential maximizing equilibrium in SGPGs.
Finally we will discuss the challenge of extending LLL to SPGs.
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3.3.1 Log-linear Learning in Repeated Normal-form Games

Log-linear learning is a learning algorithm that provably converges to pure Nash equi-
libria in potential games. That is, if players repeatedly play the same normal-form game,
adjusting their strategies at each timestep according to LLL, then their play will approach a
pure Nash equilibrium in probability. In fact, one can say even more: LLL will converge to
potential–maximizing pure Nash equilibria. This is referred to as an "equilibrium-selection
property" in that the algorithm converges to a particular type of Nash equilibrium. In
the context of potential games, the potential function often characterizes some notion of
social/global utility, and so it can be valuable to have an algorithm that will converge to
such behavior.

LLL proceeds as follows. At each timestep t, players simultaneously select actions
ai ∈ Ai and receive utility ui(a). The players select these actions according to probability
distributions xi ∈ Ai over their action sets. The players update these distributions as
follows. At time t, one player i is selected uniformly at random and generates a distribution
xi

t . All other players will play the same action they did at the previous timestep, ie a j
t = a j

t−1
for players j , i. In contrast, player i will play by sampling from the distribution

xi
t (a) =

eui(a,a−i
t−1)/τ∑

b∈Ai eui(b,a−i
t−1)/τ

,

where a−i
t−1 is the list of actions played at time t − 1 by players other than player i, xi

t (a)

is the probability of selecting action a under the distribution xi
t , and τ is a temperature

parameter. Notice that as the temperature parameter tends to zero, the probability distri-
bution concentrates on best responses to the other players’ actions at the last timestep. In
[5] they show that the stationary distribution µ of joint strategies is

µ(a) =
eϕ(a)/τ∑
b eϕ(b)/τ

,

where b varies over the set of joint actions b ∈ ×iA
i.

From this explicit form of the stationary distribution it follows that as the temperature is
brought to zero, the joint distribution concentrates on potential maximizing joint behaviors.
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In [39] the authors provide an alternative proof method using the theory of resistance
trees in Markov processes. This allows them to characterize the stochastically stable states,
which are exactly the potential maximizing joint actions, without explicitly writing down
the stationary distribution.

Theory of resistance trees

Let P0 denote the probability transition matrix for a finite state Markov chain over the
state space Z . We refer to P0 as the unperturbed process. Consider a perturbed process
where the size of the perturbation is indexed by a scalar ε > 0, and let Pε be the associated
transition matrix. The process Pε is called a regular perturbed Markov process if Pε is
ergodic for sufficiently small ε and Pε approaches P0 at an exponentially smooth rate.
Specifically, the latter condition means that for all z, z′ ∈ Z ,

lim
ε→0+

Pε
z→z′ = P0

z→z′

and,

Pε
z→z′ > 0 for some ε > 0 implies lim

ε→0+

Pε
z→z′

εR(z→z′

for some nonnegative real number R(z → z′), which we call the resistance of the
transition z → z′ under the perturbed process.

Consider a complete directed graph with |Z | vertices for each state. The vertex corre-
sponding to state z j will be called j. The weight on the directed edge i → j is the resistance
R(zi → z j). A j-tree, or “tree rooted at j”, is a directed tree T such that all paths terminate
at j. The resistance of T is the sum of the edge resistances composing it, and the stochastic
potential, γ j , of z j is the minimum resistance among all j-trees.

Theorem 3.3.1. [84] Let Pε be a regular perturbed Markov process, and for each ε > 0
let µε be the unique stationary distribution of Pε . Then limε→0+ µε exists and the limiting
distribution µ0 is a stationary distribution of P0. The stochastically stable states (i.e. the
support of µ0) are precisely those states with minimal stochastic potential. Furthermore, if
a state is stochastically stable then the state must be in a recurrent class of the unperturbed
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process P0.

In [39] the authors show that log-linear learning converges to potential maximizing
behavior by proving the following sequence of results:

lem]thmLog-linear learning induces a regular perturbed Markov process where the
unperturbed Markov process is an asynchronous best reply process and the resistance of
any feasible transition a→ b = (bi, a−i) is

R(a→ b) = max
ai∗∈Ai

ui(ai
∗, a
−i) − ui(b)

lem]thmConsider any finite n-player potential game with potential function ϕ : A → R
where all players adhere to log-linear learning. For any feasible action path

P = {a0 → a1 → · · · → am}

and its reverse path
PR = {am → am−1 → · · · → a0},

the difference in the total resistance across the paths is

R(P) − R(PR) = ϕ(a0) − ϕ(am).

Finally,
prop]thmConsider any finite n-player potential gamewith potential function ϕ : A → R

where all players adhere to log-linear learning. The stochastically stable states are the set
of potential maximizers, i.e., {a ∈ A : ϕ(a) = maxa∗∈A ϕ(a∗)}

3.3.2 Generalization to Stochastic Games, and Convergence in Stochastic Global
Potential Games

This section will generalize log-linear learning to the stochastic setting and show that, in
the case of stochastic global potential games, the stochastically stable states of generalized
log-linear learning are precisely those joint behaviors that maximize the global potential
function.
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Generalized log-linear learning proceeds as follows. At each timestep t, players select
pure behaviors πi. The players update their behavior choices as follows. At time t, a player
i and a state s are selected uniformly at random. Player i will generate a distribution xi

s. All
other players select the same behavior as they did at the previous timestep, i.e. π j

t = π
j
t−1

for players j , i. In contrast, player i will play by sampling from the distribution

xi
s(a) =

eV i
πt−1\a

(s0)/τ∑
b∈Ai eV i

πt−1\b
(s0)/τ

,

where πt−1 is the joint behavior played at time t−1 and s0 is the initial state of the stochastic
game. xi

s(a) is the probability of selecting action a in state s under the distribution xi
s, and

τ is a temperature parameter.
It is important to note that this learning method is not based solely on payoff outcomes.

It requires that players are able to compute their state values in order to update their strategy.
lem]thmGeneralized log-linear is a regular perturbed Markov process where the resis-

tance of any feasible transition π → τ = (ai
s, π
−i) is

R(π → τ) = max
ai∗∈Ai

V i
π\ai∗
(s0) − V i

τ(s0)

Proof. The unperturbed process behaves as follows for each timestep t > 0. Choose a
player i and state s, both uniformly at random. Change player i’s action in that timestep
to an element of a∗ ∈ arg maxa V i

πt−1\a
(s0). Keep the behavior of player i in all other states

unchanged, and keep the behaviors of all other players the same.
Let ε = e−1/τ. Under the perturbed process Pε , the probability of transitioning from π

to τ is

Pε
π→τ =

1
n

1
|S|

ε
−V i

π\ais
(s0)∑

b∈Ai ε
−V i

π\b
(s0)

Let Wi(s, π) = maxa∈Ai V i
π\a(s0). Multiply the numerator and denominator by εWi(s,π)

yields
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Pε
π→τ =

1
n

1
|S|

ε
Wi(s,π)−V i

π\a
(s0)∑

b∈Ai ε
Wi(s,π)−V i

π\a
(s0)

So then,

lim
ε→0+

Pε
π→τ

ε
Wi(s,π)−V i

π\a
(s0)
= lim

ε→0+
1

n|S|
1∑

b∈Ai ε
Wi(s,π)−V i

π\a
(s0)

The summands in the denominator will approach either 0 or 1 depending on if b is in
arg max V i

π\a(s0). So this limit is equal to

1
n|S| | arg max V i

pi\a(s0)|

Therefore generalized log-linear learning is a regular perturbed Markov process with
resistances

R(π → τ) = max
ai∗∈Ai

V i
π\ai∗
(s0) − V i

τ(s0)

�

In order to relate the graph-theoretic notion of stochastic potential to the stochastic
game-theoretic notion of global potential we must define feasible paths and reverse paths.
A feasible path is a sequence of joint behaviors P = {π0 → π1 → · · · → πm} such that two
adjacent behaviors differ by the action of a single player in a single state. The resistance
R(P) of a path is the sum of edge resistances

R(P) =
n∑

i=1
R(πi−1 → πi)

The reverse path consists of the same joint behaviors, but with arrows travelling in the
opposite direction. We can relate path resistances with changes in global potential with the
following lemma.

lem]thmConsider any finite n-player SGPG with potential function Φ : A → R where
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all players adhere to log-linear learning. For any feasible action path

P = {π0 → π1 → · · · → πm}

and its reverse path
PR = {πm → πm−1 → · · · → π0}

the difference in the total resistance across the paths is

R(P) − R(PR) = ϕ(s0, π0) − ϕ(s0, πm)

Proof. Consider a single edge πk → πk+1 in the path and its reverse πk+1 → πk . By the
previous lemma we have

R(πk → πk+1) = Wi(s, πk) − V i
πk+1
(s0)R(πk+1 → πk) = Wi(s, πk+1) − V i

πk
(s0)

Since πk and πk+1 only differ by player i’s action in state s we have that:

Wi(s, πk+1) = Wi(s, πk)

So then

R(P) − R(PR) = V i
πk
(s0) − V i

πk+1
(s0) = Φ(s0, πk) − Φ(s0, πk+1)

Adding these differences up over all pairs in the path gives the desired result. �

prop]thmConsider any finite n-player SGPG G with potential function Φ : A → R
where all players adhere to log-linear learning. The stochastically stable states are the set
of potential maximizers, i.e., {π : Φ(π) = maxπ∗ Φ(π∗)}

Proof. Let π be a behavior with minimum stochastic potential, and let Γ be a π-tree that
realizes this stochastic potential. Let π∗ be a behavior that minimizes Φ(s0, ·).

Within the graph Γ there is a path P beginning at π∗ and ending at π. Let Γ∗ be the
graph obtained by removing P from Γ and replacing it with PR. So Γ∗ is a tree rooted at
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π∗. By the previous lemma,

R(Γ) − R(Γ∗) = Φ(s0, π) − Φ(s0, π∗).

Since π has minimum stochastic potential, the right hand side of the equation is greater
than or equal to zero. Hence

Φ(s0, π) ≤ Φ(s0, π∗)

and so π must also minimize Φ(s0, ∗). �

3.3.3 Log-linear learning in SPGs

Thefirst questionwe need to answerwhen addressing log-linear learning for SPGs is one
of goals. In repeated potential games, log-linear learning is attractive as amethod because it
guarantees potential maximizing behavior. Potential maximizers are a subset of pure Nash
equilibria in potential games, and therefore log-linear learning exhibits an "equilibrium
selection" property, in that it selects Nash equilibria with an additional restriction (namely
those that maximize potential). When we extended log-linear learning to SGPGs there was
still a clear goal: define a learning algorithm whose stationary distribution is supported
on Nash equilibria that maximize the global potential function. Generalized log-linear
learning selects for these more restrictive Nash equilibria in SGPGs. In contrast, an SPG
does not necessarily have a global potential function, and so first we need to describe the
kind of equilibria we would like log-linear learning to select for in SPGs. The kind of
equilibria we are interested in are simultaneously potential–maximizing.

mydef]thmLetG be an SPG. A joint behavior π is simultaneously potential maximizing
if for all states s, the joint strategy πs is a potential maximizing strategy in the continuation
stage game Gs(Vπ).

Recall that for an SPG G, any continuation game Gs(c) is a potential game. As a result
we are able to talk about potential maximizing strategies for Gs(Vπ).

We’ve remedied one issue that the lack of global potential presents us. However, there
is a deeper issue: without a global potential function we do not have a global way to
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characterize resistances in log-linear learning for SPGs. As a result, a "naive" attempt to
use log-linear learning in SPGs will fail. We will illustrate this with an example of an
SPG that does not converge under a naive log-linear learning rule. Like all of our previous
discussions of SPGs, we will be in the fixed finite-time setting.

Naive log-linear learning. At each timestep t all players select actions ai
s(t) in all

states simultaneously. Let as(t) denote the joint action taken in state s at time t, and a(t)

denote the entire behavior at time t. At time t, a player i and state s are selected uniformly
at random. Player i selects an action according to the distribution

pr(ai) =
eQi

a(t−1)(s,a
i,a−is (t−1))/τ∑

bi eQi
a(t−1)(s,b

i,a−is (t−1))/τ

where τ is a temperature parameter. The action taken in all other states is the same as
at time t − 1, and the action taken by all other players in state s is the same as at time t − 1.
We are interested in understanding the stochastically stable states of this process. Namely
we’d like to answer

1. In an SPG, are the stochastically stable states of this process simultaneously potential
maximizing Nash equilibria?

2. In an SPG, are the stochastically stable states of this process Nash equilibria?
The following example will show that neither of these statements is necessarily true.
eg]thmConsider the 3 state, 2-horizon game G described as follows. G is a two player

game, and in each state both players have two actions a and b. Every episode begins in
state s1 and transitions either to state s2 or s3 where the players take a final move and the
episode ends. The stage games for s1 and s3 are trivial (that is, all utilities are zero) and
the stage game for s2 is defined by the bimatrix:

a b( )
a 100, 100 −100, 100
b 100,−100 −100,−100

Notice that by construction, all stage games are potential games with trivial potential
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functions ϕ ≡ 0. The transition matrices are

P12 =

(
0 0.5

0.5 1

)
and

P13 =

(
1 0.5

0.5 0

)
One can describe the pure Nash equilibria of this game as follows. Both players may act
arbitrarily in state s3 and s2 (since all actions are potential maximizing in those states).
However, the action to be taken in state s1 is determined based on the action in s2. The
equilibria are:

s1 s2 s3

(a, a) (a, a) (·, ·)

(a, b) (a, b) (·, ·)

(b, a) (b, a) (·, ·)

(b, b) (b, b) (·, ·)

Where (·, ·) denotes that the players may perform any actions in s3. Now, suppose players
adhere to log-linear learning as described above. Our goal is to show that the unperturbed
process may move the behavior out of Nash equilibrium. Suppose at time t the joint action
is

a1(t) = [a, a, a]

a2(t) = [a, a, a]

With positive probability, the following will occur at time t:
Example 3.3.1. • state 2 is selected

• player 2 is selected

• player 2 changes their action from a to b
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But then the new joint action is

a1(t) = [a, a, a]

a2(t) = [a, b, a]

which does not simultaneously maximize potentials, and is not a Nash equilibrium.

The problem that this example brings forward is that an action change in a layer k state
may alter the continuation games played in layer l < k states such that their behaviors are no
longer Nash equilibria. This is exactly what happens in our example—asynchronous best
response dynamics can alter the behavior in state s2, which in turn changes the continuation
game played at s1 and what constitutes Nash equilibrium.

3.4 Conclusion

In this chapter we reviewed two learning methods that converge to Nash equilibrium in
iterated potential games: JSFP with inertia and LLL. We were able to extend JSFP with
inertia to SG-JSFP with inertia, a stochastic game learning algorithm that converges to
pure Nash equilibria in both SPGs and SGPGs. We also extended LLL to an algorithm
that converges to potential maximizing behavior in SGPGs. Finally, we discussed the
obstruction to naively extendingLLL to SPGs. This study has been far fromcomprehensive;
with their added structure stochastic games offer amultitude of choices in designing learning
algorithms. This chapter merely served as a first push into the study of learning in SPGs
and SGPGs.
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Chapter 4

Q-Learning Approaches to Dynamic
Multi-Driver Dispatching and

Repositioning

The driver management system at a ride-sharing company must make decisions both for
assigning available drivers to nearby unassigned passengers (hereby called orders) over a
large spatial decision-making region (e.g., a city) and for repositioning drivers who have
no nearby orders. Such decisions not only have immediate to short-term impact in the form
of revenue from assigned orders and driver availability, but also long-term effects on the
distribution of available drivers across the city. This distribution critically affects how well
future orders can be served. The need to address the exploration-exploitation dilemma
as well as the delayed consequences of assignment actions makes this a Reinforcement
Learning (RL) problem.

Recent works [4, 50] have successfully applied Deep Reinforcement Learning tech-
niques to dispatching problems, such as the Traveling Salesman Problem (TSP) and the
more general Vehicle Routing Problem (VRP), however they have primarily focused on
static (i.e., those where all orders are known up front) and/or single-driver dispatching
problems. In contrast, for use in ride-sharing applications, one needs to find good policies
that can accommodate a multi-driver dispatching scheme where demands are not known
up front but rather generated dynamically throughout an episode (e.g., a day). We refer to
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this problem as a multi-driver vehicle dispatching and repositioning problem (MDVDRP).
We define an MDVDRP as a continuous-time semi-Markov decision process with the

following state-reward dynamics. At any time, state is given by a set of requesting orders
oi

t ∈ Ot , a set of drivers drivers di
t ∈ Dt , and time of day t. There is also a set of

repositioning movements m j ∈ M, which are not part of state but will be part of the
action space. The size of Ot will change in time due to orders stochastically appearing in
the environment and disappearing as they are served or canceled. Orders are canceled if
they do not receive a driver assignment within a given time window. Dt can be further
subdivided into available drivers and unavailable drivers. A driver is unavailable if and
only if they are currently fulfilling an order. An action is a pairing of an available driver
with either a requesting order or repositioning movement. An order is characterized by
a pickup location (where the passenger is located), and end location (where the customer
wants to go), a price, and the amount of time since the order arrived in the system. A driver
is described by her position if she is available, and her paired order or reposition movement
if she is unavailable. A reposition movement is described by a direction and duration, e.g.
“Travel west for three minutes”. When a driver is assigned to an order, the agent receives
a reward equal to the price of that order, and the driver becomes unavailable until after it
has picked up its order at the start location and dropped it off at the end location. When a
driver is assigned a repositioning movement, the agent receives no reward and repositions
until it either reaches the maximum repositioning duration or is assigned an order. When
any action is taken in the environment, time advances to the next time that there is a driver
that is available and not repositioning. Note that if there are multiple non-repositioning
drivers at time t and multiple requesting orders, then time will not advance after the first
action is taken since there will still be at least one available non-repositioning driver and
order pairing.

Heuristic solutions construct an approximation to the true problem by ignoring the
spatial extent, or the temporal dynamics, or both, and solve the approximate problem
exactly. One such example is myopic pickup distance minimization (MPDM), which
ignores temporal dynamics and always assigns the closest available driver to a requesting
order [86]. We illustrate this below in two simple dispatching domains that capture the
essence of these suboptimalities, and demonstrate that our methods can overcome such
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issues.
In this paper we construct a global state representation along with a neural network

(NN) architecture that can take this global state as input and produce action-values (Q-
values). Due to the variable number of orders, which appear both as part of state and
part of actions, we make use of attention mechanisms both for input and output of the
NN. We then present two methods for training this network to perform dispatching and
repositioning: single-driver deep Q-learning network (SD-DQN) and multi-driver deep Q-
learning network (MD-DQN). Both approaches are based on the deep Q-learning network
(DQN) algorithm [45], but differ from each other in the extent to which individual driver
behaviors are coordinated. SD-DQN learns a Q-value function of global state for single
drivers by accumulating rewards along single-driver trajectories. On the other hand, MD-
DQN uses system-centric trajectories, so that the Q-value function accumulates rewards
for all drivers. We find that MD-DQN can learn superior behavior policies in some cases,
but that in practice SD-DQN is competitive in all environments and scales well with the
number of drivers in the MDVDRP while MD-DQN performs poorly in real-data domains.
Empirically we compare performance of SD-DQN and MD-DQN on a static assignment
problem, illustrative MDVDRPs, and a data-driven MDVDRP designed using real world
ride-sharing dispatching data.

4.1 Related Work

There have been several recent approaches to solving dispatching and routing problems.
Some examples include Bello et al. ([4]), Nazari et al. ([50]), and Vinyals et al. ([76]).
All of these works use an encoding-decoding scheme, where first information is processed
into a global-context, and then from this context actions are decoded sequentially. Pointer
networks [76] offer an approximate solution to TSPs by encoding cities (in our terminology,
orders) sequentially with a recurrent network, and then producing a solution by sequentially
“pointing” to orders using an attention mechanism [44]. The network is trained with a
supervised loss function by imposing a fixed ordering rule on decoded orders. Bello et
al.([4]) build off of the pointer network architecture, but train the network with policy
gradients and so may dispense with the fixed ordering during the decoding phase.
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While related to our work, the above papers typically focus on problems that are static
and/or single-driver (in the sense that there is only one driver that must be controlled). In
contrast, we are interested in making dispatching decisions for many drivers in a dynamic
environment. Furthermore, the sequential encoding in Bello et al. and Vinyals et al.
introduces an unnecessary forced ordering of inputs into the neural network by encoding
using a recurrent network. Instead we follow an architecture more closely related to Nazari
et al.([50]), which uses an attention mechanism [44] for encoding, however they only apply
their architecture to static and single-driver vehicle routing problems. We depart from their
architecture further by dispensing with the recurrent network used for decoding. Instead,
we construct a global representation of state that is encoded and decoded in a completely
feed-forward fashion.

Next we discuss a previous work on a problemmore closely related toMDVDRPs. Oda
et al. [51] offer a value-based approach to the dynamic fleet management problem, which
is a strict subproblem of the MDVDRP. In dynamic fleet management, one is concerned
only with repositioning available drivers, while driver-order assignments are handled via
hard-coded rules (in their case, minimizing pickup distance). A MDVDRP combines fleet
management with driver-order matching.

Another thread of related work comes from themulti-agent reinforcement learning liter-
ature. Specifically, our two training approaches, SD-DQN andMD-DQN, are analogous to
the multi-agent reinforcement learning (MARL) algorithms of “independent Q-learning”
[11] and “team-Q learning” [35] respectively. The tradeoffs between these two approaches
to team problems are broadly known but not well understood. Team-Q has the benefit of
theoretical justification, but its action set grows exponentially in the number of agents. On
the other hand, while mostly lacking in theory, independent Q-learning has been leveraged
successfully in a number of problems [12, 51]. Claus and Boutilier ([11]) conjecture that
independent Q-learners will converge to a Nash equilibrium under appropriate assumptions
in team games, however this claim remains unproven. Our results reflect the theme that
SD-DQN works well in practice at a variety of scales in team problems despite the dearth
of convergence results, while MD-DQN has considerable difficulty scaling beyond a small
number of agents.
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Figure 4.1: The neural network architecture used in SD-DQN and MD-DQN. Order and
driver embeddings are attended to for global context. The network then uses global context
to query order/driver pairs (represented by the matrix in the top left) and reposition/driver
pairs (represented by the matrix in the top right) to produce Q-values for all possible
actions.

4.2 Our Approach

4.2.1 Neural Network Overview

At time t there is a collection of orders oi
t ∈ Ot , drivers d j

t ∈ Dt , and subsetDavail
t ⊂ Dt

of available drivers. A driver is available if it is not currently serving an order. State is
given to the neural network as st = (Ot,Dt,D

avail
t , t). At time t, the action space is made

up of available driver-order pairings or non-repositioning driver-repositioning pairings.
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Input representation

The exact vector representation of oi
t and d j

t depend on the environment. In the static
assignment problem [47], we are only concerned with the position of drivers and start
positions of orders. Therefore drivers and orders are each represented as two-dimensional
vectors of their x and y coordinates. In MDVDRP, orders are given as six-dimensional
vectors consisting of starting x position, starting y position, ending x position, ending y

position, price, and time waiting, where time waiting is the difference between the current
time and the time that the order first began requesting a driver. A driver is represented by a
six-dimensional vector: an x position, y position, time to completion, repositioning x and y
coordinates, and reposition counter. If the driver is available, its x and y position are given
by its actual location, and time to completion is 0. If the driver is not available, the x and
y position are the ending location of the order it is servicing, and the time to completion
is the time it will take to finish the order. If a driver is repositioning, the direction of
repositioning is reflected in the repositioning coordinates, and reposition counter counts
down from the maximum repositioning time.

Embedding and global context

The network first embeds orders {oi
t}i and drivers {d

j
t } j into memory cells {hi

t}i and {g
j
t } j

respectively found in the purple and red boxes in ??. Then, a single round of attention is
performed over each to produce a global order context CO

t and global driver context CD
t .

These contexts as well as global time are concatenated to produce a global context vector
CG

t , which is the system’s internal global representation of state.

Action-value calculation

The network then computes two types of Q-values: those for driver-order pairs and those
for driver-reposition pairs. Each of these two processes can be viewed as their own
attention mechanisms over pairs, with the attention coefficients interpreted as Q-values.
More precisely, for available driver-order pairs we construct a small fully connected neural
network Atto such that Q(st, d

j
t , o

i
t) = Atto(Ct, g

j
t , h

i
t). Similarly, for available driver-

reposition pairs, we construct another small neural network Attr , so that Q(st, d
j
t ,m

i
t) =
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Attr(Ct, g
j
t ,m

i
t) where mi

t is a vector representation of a reposition action. The top left
of ?? represents a generic example of Atto while the top right represents Attr . In all
repositioning experiments, there are 9 reposition actions consisting of 8 cardinal directions
and a stationary action (no movement). The mi

t’s are represented as one-hot vectors, and
displayed as yellow boxes in ??.
4.2.2 Single-driver and multi-driver Q-values

We take two approaches to training the above network: single-driver DQN (SD-DQN)
and multi-driver DQN (MD-DQN). Each can be viewed as a 1-step bootstrapping approach
like in the standard DQN, but they differ from one another in the form of one step data that
is given to the network. As a result, the learned Q-values in each approach have distinct
semantics.

In SD-DQN, we use driver-centric transitions. At time t, the system is in global state
st = (Ot,Dt,D

avail
t , t) and a driver-order or driver-reposition action is selected, yielding

reward rt . Let d be the selected driver, and at denote the action. We then proceed to
make dispatching and repositioning decisions for other drivers as they become available,
until eventually driver d is available again in state st ′ = (Ot ′,Dt ′,D

avail
t ′ , t′). The change

in time t′ − t is the time it takes for driver d to complete a single trip or repositioning,
which is typically between 10 and 30 minutes for trips or 2 − 3 minutes for repositionings.
In SD-DQN, this yields a transition (st, at, rt, st ′). To train our network in the SD-DQN
setting, we update the outputs of the network using the target:

Q̂(st, at ; θt) = rt + γ
t ′−t ·max

a′
QT (st ′, a′; θ′t), (4.1)

where θt are the current network weights and θ′t are the weights of the target network,
which are slow updating weights that sync with the network’s current weights at fixed
intervals. To account for the fact that transitions occur over a variable time interval, future
value is discounted continuously with discount factor γ. The network is trained to reduce
the Huber loss between Q̂(st, at) and Q(st, at). Intuitively, SD-DQN updates the network
towards driver-centric Q-values, only accounting for the discounted return associated to a
single driver. We collect driver-centric transitions from each driver into a single shared
replay buffer. The drawback of this method is that, as we learn the single driver Q-values,
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we update the behavior of all drivers, and so one perspective is that the driver, as an agent,
is learning in a nonstationary MDP. This has the potential to cause instability issues in
training, though we did not observe such issues in our experiments. Another issue with
SD-DQN is that it may train single drivers to behave selfishly. That is, drivers might
learn to choose actions that are best for themselves rather than actions that promote the
greatest overall reward for the system. This issue is raised in work on learning in collectives
[80, 72], however the interaction of individual learning and system optimization is not well
understood.

In MD-DQN we use system-centric transitions. At time t, the system is in global state
st = (Ot,Dt,D

avail
t , t) and we select action at , yielding reward rt . When the next new

driver becomes available, we transition to state st ′ = (Ot ′,Dt ′,D
avail
t ′ , t′). In contrast to the

SD-DQN transition, the change in time t′− t is the time it takes for the next available driver
to appear, which is on the order of fractions of a second in large cities. As in the SD-
DQN case, this yields a 1-step transition (st, at, rt, st ′). We use the same target and update
procedure from equation (1), but with this different transition as input data. MD-DQN
will update the network towards a global, system-centric Q-value that sums the discounted
rewards of all drivers together. This means the Q-values produced by MD-DQN will be
approximately n times larger than those of SD-DQN, where n is the number of drivers.
Ignoring issues related to function approximation MD-DQN provides a correct learning
signal for solving an MDVDRP. However, as a practical matter, the Q-values learned in
MD-DQN are based on many more transitions, and therefore should be harder to learn.
This has been our empirical experience. In the results section we describe steps we needed
to take in order to stabilize MD-DQN learning, but the primary change we make is to do
n-step Q-learning [43] with n equal to the number of drivers in the system.
4.2.3 Architecture details

For ease of exposition, in the following section we omit subscript t’s that had denoted
time in previous sections.

Memory embedding. We begin with a global state s, consisting of order and drivers
and time. All orders and drivers are both embedded into length 128 memory cells using a
single layer network with 128 output units followed by RELU nonlinearities.
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Attention for global context. Given a set of N order memories hi and M driver
memories g j . The attention mechanism for orders/drivers are given by the following
equations:

CO =

N∑
i=1

aihi

CD =

M∑
j=1

b jg
j

where
ai = σ(vo · tanh(WO · hi)), b j = σ(vd · tanh(W D · g j)) (4.2)

and σ is a sigmoid activation function, WO and W D are 128 dimensional square matrices,
and vO and vD are 128 dimensional vectors so that ai and b j are scalars. Both W’s and v’s
are trained.

We concatenate the two contexts, along with the episode time t, to produce a 257
dimensional global context vector

CG = [Co |Cd |t], (4.3)

Q-values. To compute a driver-order Q-value Q(s, d j, oi), we concatenate the global
context with the order’s memory embedding hi and driver’s memory embedding g j , and
pass this through a fully connected layer with 64 units and RELU activation, and finally pass
this to a single linear unit. We use the same network architecture for driver-repositioning
pairs, butwe do not shareweights between the driver-order network and driver-repositioning
network.

Further training details

In all experiments, we use a replay memory that is initialized with random behavior
transitions. The size of replay memory as well as how frequently the target network is
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synced are both environment dependent, and are specified in the appendix. We also use a
target network for setting Q-value targets. During training, each training loop begins by
taking one step in the environment. Behavior is ε-greedy with respect to the network’s
Q-values, where ε is linearly annealed in all experiments as specified in the appendix.
For both SD-DQN and MD-DQN, one new transition will be added to replay memory
(though they differ in what this one step transition is). Then, we sample a batch of 32
transitions from replay memory, and perform a Q-value update using equation (1). For
all experiments, γ = 0.99. Gradients are applied using the Tensorflow implementation of
RMSProp with gradients clipped at 100.

4.3 Empirical Results

Results are presented in table format. Entries with error bars are computed as follows. We
run the learning method (SD-DQN or MD-DQN) 4 times, with each experiment differing
only in random seed. For each run, once learning has appeared to converge, we average
reward, pickup distance, and orders served percentages over 20 episodes. We then compute
the average and error bars across the four runs. If no error bars are included, this means
the table is showing results over a single run, with entries averaged over 20 episodes.
4.3.1 Static multi-driver assignment problem

The assignment problem [47] is a combinatorial optimization problem defined by a
cost matrix, where the i − j th entry represents the cost of assigning the ith row object to
the j th column object. The goal is to produce an assignment that minimizes the sum of
costs. In the context of driver assignment, the assignment cost is given by the Euclidean
distance between order oi and driver d j . The assignment problem is the core subproblem
for a dispatching problem with fixed windowing and a distance-minimization objective.
An episode is initialized by a uniform random distribution of k orders and k drivers over
the unit square. At each step, we choose a random driver, and the agent selects an order to
match with the given driver. The reward associated to this action is the negative Euclidean
distance between the driver-order pair. We do not perform discounting due to the static
nature of the problem.
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policy total pickup distance

Random 10.25
SD-DQN 4.83 ± .06
MD-DQN 4.12 ± .03
Optimal 3.82

Table 4.1: 20 driver 20 order static assignment problem

The assignment problem is a particularly good environment for demonstrating the
potential miscoordination of SD-DQN. For the single-driver approach, each transition
ends in a terminal state, meaning that Q-learning reduces to one–step reward prediction.
Therefore a policy which is greedywith respect to single driver Q-values will be suboptimal
since it does not learn any coordination between drivers. On the other hand, an MD-DQN
agent is concerned with maximizing the aggregate return across all drivers, and so should
be capable of learning a better policy.

Results are summarized in ??. We show total distance traveled (that is, the sum of the
distances of all assignments) for SD-DQN and MD-DQN when there are 20 orders and 20
drivers. We compare them to optimal solutions as well asRandom assignments. The results
reflect our intuition regarding the shortcomings of SD-DQN in sensitive coordination
problems. Namely, SD-DQN performs quite a bit worse than MD-DQN. This emphasizes
the innate desirability of MD-DQN—it is capable of learning more complex coordination
behavior.

4.3.2 Dynamic Multi-Driver Dispatching Problems

The remaining experiments will focus on dynamic dispatching problems. In the dy-
namic setting, orders arrive at different times throughout an episode. Additionally, we are
focused on ride-sharing, so orders now are defined by pickup and dropoff locations. When
a driver is assigned to an order, it must first navigate to the pickup location and then travel
to the dropoff location. We first present results on small domains where myopic policies
are demonstrably suboptimal. Then, we apply the SD-DQN and MD-DQN approaches
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to a large-scale dispatching simulator derived from real-world data collected from DiDi
Chuxing. We find that SD-DQN outperforms all other methods in the realistic simulators,
but is occasionally worse than MD-DQN in illustrative domains.

Illustrative domains with no repositioning

In this group of experiments, we use a simple dispatching simulator to show that both
SD- and MD-DQN can learn good policies in two key scenarios where myopic behavior
fails. The city is represented by the unit square. In these domains, at the start of a new
episode, drivers are all located at a "dispatching depot" at position [0.5, 0.5]. Drivers travel
at a constant speed of .1, and travel along straight lines from their initial position to the
order pickup location, and then from order pickup to order dropoff location. Order arrivals
are generated according to a Poisson distribution, with controllable parameter κ. In the
following experiments, κ is set to either 3 or 10 (that is, average order arrivals per unit
time are either 3 or 10) to simulate "low demand" and "high demand" environments. The
pickup and dropoff locations as well as the reward for an order are specified below for two
different environment settings. An episode lasts 5000 timesteps.

Surge domain

The Surge domain illustrates an explicit, temporal effect caused by order pricing that cannot
be exploited by myopic dispatchers. In the Surge domain, there are three regions: left,
center, and right. One quarter of all orders go from the center to the upper-left region,
one quarter from center to bottom-right, one quarter from upper-left to center, and one
quarter from bottom-right to center. All orders yield a reward of 2 except those that go
from right to center, which yield a reward of 4. For this domain, the best policy first
assigns drivers to travel to the bottom-right region, and once they are there, assign them to
the bonus reward trips back from right to center. A policy that minimizes pickup distance
will fail to value trips to the bottom-right more than trips to top-left, and therefore yield
suboptimal behavior. On the other hand, a policy which is greedy with respect to rewards
will always select the bonus order regardless of driver location. In effect the policy "skips"
the price 2 order that will ferry a driver out to the bottom-right region, and is therefore also

86



suboptimal. An illustration of the surge domain can be found in the appendix.

Hot/Cold domain

In the Surge domain, the advantage of traveling to the bottom right region is clear; it
is directly tied to the price of orders found in that region (4 vs. 2). In the Hot/Cold
domain, the agent must learn a more subtle advantage. Order pickup locations are located
uniformly along the top edge of the unit square, called the "hot region". Half of the orders
end uniformly along the bottom edge of the unit square, called the "cold region" and half
end uniformly in the hot region. Order price is given by the Euclidean distance from order
pickup to order dropoff locations. The hot region can be thought of as a busy area of
downtown, while the cold region represents surrounding suburbs. Despite orders to the
cold region having higher price (since they are longer), it is generally more advantageous
for drivers to stay in the hot region, since they can quickly pick up new orders. In other
words, the advantage is entirely temporal. An illustration of the Hot/Cold domain can be
found in the appendix.

We compare SD-DQN and MD-DQN with 3 other algorithms: myopic revenue max-
imization (MRM), myopic pickup distance minimization (MPDM), and local policy im-
provement (LPI). MRM always assigns the highest value order to an available driver.
MPDM always assigns the closest order to an available driver. LPI [82] discretizes the
environment into a 20x20x144 spatiotemporal grid and performs tabular TD(0). We report
average revenue, pickup distance, and served percentages with error bars over 100 episodes.
Each episode lasts 5000 time units, which allows each driver to serve approximately 1000
orders.

Results can be found in ?? and ??. There are a few key takeaways from these results.
First, all learning methods, including LPI, outperform myopic strategies across the board.
SD-DQN andMD-DQN also typically improve over LPI, though themargin is considerably
smaller. Finally, it is not clear what situations favor SD-DQN vs. MD-DQN. For instance,
one might expect SD-DQN to do comparatively better in high demand situations, where
there would seem to be a reduced need for coordination, however this is not the case.
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Low Demand High Demand
Algorithm Revenue Pickup distance Served % Revenue Pickup distance Served %

MRM 29447 .33 73.6 35939 .54 18.1
MPDM 32279 .178 86.3 42842 .016 34.2
LPI 31112 .245 80.0 50147 .046 33.6

SD-DQN 31860 ± 448 .279 ± .0005 78.2 ± .19 50323 ± 87 .045 ± .02 33.54 ± .09
MD-DQN 33700 ± 225 .177 ± .0001 88.23 ± .28 49031 ± 130 .056 ± .0012 32.79 ± .05

Table 4.2: Surge Domain

Low Demand High Demand
Algorithm Revenue Pickup distance Served % Revenue Pickup distance Served %

MRM 50953 1.04 31.5 52094 1.11 8.7
MPDM 56546 .535 53.8 58287 .508 16.5
LPI 58173 .45 60.64 76840 .1545 30.06

SD-DQN 58580 ± 124 .4609 ± .007 59.26 ± .13 78552 ± 212 .1108 ± .003 39.25 ± .04
MD-DQN 58893 ± 181 .5158 ± .008 52.97 ± .027 78860 ± 285 .111 ± .012 33.625 ± 1.16

Table 4.3: Hot/Cold Domain

Illustrative Domains with Repositioning

Whereas the previous experiments only dealwith dispatching, we nowexamine ourmethods
on domains where drivers can both be dispatched and repositioned.

Repositioning Hot/Cold Domain

The first such environment is the same as the previous Hot/Cold domain, except we impose
a broadcasting radius dbcast on drivers. This means that drivers may only pair with orders if
they are within dbcast units of the driver. Otherwise, the drivermay only take a repositioning
action. For this domain we set dbcast = 0.3 If a driver matches to an order that ends in the
cold region, the agent must learn to reposition that driver from the cold region towards the
hot region (which consists of approximately 4 consecutive "move up" repositioning actions)
so the driver can pair with additional orders. As with the dispatch-only experiments, we
present results for high and low demand regimes.
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Low Demand High Demand
Algorithm Revenue Pickup distance Served % Revenue Pickup distance Served %

MRM-random 932 .199 4.2 911 .177 1.8
MPDM-random 939 .174 8.1 936 .161 2.5
MRM-demand 4861 .180 34.1 4902 .178 8.1
MPDM-demand 5234 .1624 53.2 5644 .164 15.9

SD-DQN 5478 ± 188 .1615 ± .03 57.5 ± .31 7387 ± 41 .0781 ± .008 33.8 ± .43
MD-DQN 5717 ± 213 .1879 ± .05 54.5 ± .25 7309 ± 56 .1519 ± .04 24.2 ± .22

Table 4.4: Hot/Cold with repositioning

We compare our methods against two versions of MPDM with repositioning: MPDM-
random and MPDM-demand. If a driver has no orders within broadcast distance, MPDM-
random randomly selects a repositioning action, whereas MPDM-demand repositions the
driver towards the nearest order. As we can see in ??, SD-DQN and MD-DQN both main-
tain their advantage over baselines when required to learn repositioning and dispatching
together.

Distribute Domain

While Hot/Cold with repositioning tests an important aspect of learning—namely, the
ability of MD-DQN and SD-DQN agents to reposition drivers to locations where they can
pick up new orders, this repositioning behavior is quite simple in that it is uniform across
drivers. This means that the agent can always reposition drivers in the same manner (i.e.
"if in cold region, go to hot region"). In order to test whether our methods can learn
non-uniform repositioning behavior, we introduce a class of “Distribution environments”
where drivers must be repositioned so as to match their spatial distribution with a fixed
future order distribution. A Distribute domain operates in two phases. In the first phase,
the environment resets with k drivers and no orders in the system, so drivers may only
reposition during this phase. In the second phase, k orders appear according to a fixed
spatial distribution, and drivers can match to orders if they are within a given broadcast
radius dbcast . The second phase only lasts long enough to allow drivers to reposition one
more time before all orders cancel and the environment is reset. We alter the reward
function so that each order–matching action receives +1 reward. Order destinations are
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designed to be far away from start locations so that each driver may only serve one order
per episode. As a result, the episodic return is proportional to the number of orders served,
so we may interpret the episode score as a measure of how well the agent arranges driver
supply in phase 1 with order demand in phase 2.

In our experiments, the distribution of orders always consists of two small patches in
the top left and bottom right parts of the unit square. The order start locations are sampled
uniformly within each patch. The total number of orders in each patch is fixed across
episodes, and we denote it fractionally. An even order split between patches (eg 10 orders
in both patches) is denoted 50/50. If 80 percent of orders are in the first patch and 20
percent are in the second patch, we denote it as 80/20. Visualizations of the Distribute
domain are in the appendix.

Results for 20-driver Distribute domains are shown in ??. We include the optimal
served percentage (which is 100 %) and the “uniform optimal” served percentage. This
quantity reflects the maximum score one can obtain if the repositioning behavior is uniform
across drivers. SD- andMD-DQN are able to get near optimal test scores when the demand
is balanced. However, in the 80/20 task, only SD-DQN was able to escape the uniform
optimum. For all experiments it was critical to allow for sustained high exploration.
Specifically, in all experiments we used an ε-greedy behavior policy where ε was linearly
annealed epsilon from 1.0 to 0.2 over the first 1000 episodes. Test performance is averaged
over 10 episodes. Also, we ran each experiment 4 times changing only the random seeds.
We found that final performance across seeds was nearly identical in all experiments.
Learning curves can be found in the appendix.

We also used the distribute domain to test the saliency of global state information in
the learning process of SD-DQN. Traditionally, independent learning in games assumes
that agents only have a partial view of state at decision time [16]. In contrast, SD-DQN
receives full state information as input. We demonstrate the salience of global state through
a small distribute domain in which there are 4 drivers and a 75/25 split i.e., three orders
appear in one region and 1 order appears in the other. We then trained SD-DQN with and
without the inclusion of global context. Without global context, the network becomes stuck
in the uniform optimal strategy that sends all drivers to the three–order region. A graph
comparing served percentage with and without global state can be found in the appendix.
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Algorithm 50/50 Served % 80/20 Served %
Optimal 100% 100%

Uniform Optimal 50% 80%
SD-DQN 96 ± .13% 92 ± .72%
MD-DQN 95 ± .11% 80 ± 3.42%

Table 4.5: Distribute Domain with 20 Drivers

Non-repositioning Historical-Statistics Real-World Domain

Finally, we test our method in more realistic dispatching environments. We refer to the
first of these as the Historical-Statistics domain, because it derives distributional order
and driver generation parameters from historical data. This first realistic simulator does
not include repositioning. Specifically, we used 30 days of dispatching data from DiDi
Chuxing’s GAIA dataset [13], which contains spatial and temporal information for tens
of millions of trips in one of the largest cities in China. To build the simulator from this
data, we first covered the city in a square 20 by 20 grid, and extracted Poisson parameters
κx,y,t where x is an order start tile, y is an order end tile, and t is the time of day in hours.
This results in 400 × 400 × 24 = 3.84 million parameters which we use to specify an
order generation process. In addition to these, we also extract the average ETA, as well as
its variance, for each (x, y, t) triple. When a driver is assigned to an order, the simulator
computes a Gaussian sample (using the historical mean and variance) of the ETA t1 from
the driver’s position to the order’s start location, and another sample of the ETA t2 for the
order’s start location to the order’s end location. The driver will become available at the
order’s end location in time t1 + t2. Orders price is equal to max(5, t2), where t2 is given in
minutes. Driver entry and exit parameters are also derived from data. For each tile-hour
triple (x, y, t) we compute the poisson parameter from driver arrival, and the duration that
the driver remains in the system is given by a poisson parameter that is a function only of t.

91



.1% scale 1% scale
Algorithm Revenue Pickup ETA Served % Revenue Pickup ETA Served %

MRM 10707 22.74 20.9 117621 22.32 20.16
MPDM 11477 11.99 31.6 134454 6.1 36.79
SD-DQN 12085 ± 19 19.15 ± .16 24.96 ± .11 146182 ± 244 15.07 ± .11 27.64 ± .09
MD-DQN 11145 ± 78 21.77 ± .62 21.38 ± .32 122671 ± 698 19.50 ± .52 22.14 ± .76

Table 4.6: .1% and 1% scaled real data

Algorithm Revenue Pickup ETA Served %
MRM 1112340 22.37 20.04
MPDM 1333180 6.2 29.4
SD-DQN 1391141 17.28 25.3
MD-DQN 1161780 20.05 23.17

Table 4.7: 10% scaled real data

To control computational costs we control the scale of the MDVDRP via a scaling
parameter 0 < λ ≤ 1. All order and driver generation parameters are multiplied by λ. For
example, a 1% scaled environment means that we multiplied all generation parameters by
0.01. We present results for 3 scale regimes: .1%, 1% (??), and 10% (??). For .1% and 1%
we report values with standard errors across 100 episodes, and for 10% we report values
with standard error across 10 episodes.

Across all scales, SD-DQN outperforms both myopic baselines, while MD-DQN gen-
erally only performs slightly above myopic revenue maximization.

Repositioning Historical-Order Real-World Domain

We also experiment with a simulator that uses historical days of orders instead of generating
orders randomly from historical statistics. The GAIA dataset provides 30 days of orders in
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Algorithm Revenue Pickup ETA Served %
MRM 414 2.60 44
MPDM 511 1.1 79

MPDM-random 494 .9 73
MPDM-demand 502 .8 76

SD-DQN 542 1.2 75
MD-DQN 474 1.8 53

Table 4.8: 10% region real data

the city of Chengdu. We first found a small spatial region of Chengdu for which 10% of
orders both start and end in that region. This region defined the historical data simulator.
We then created 30 order generation schemes. Precisely, when the environment is reset,
it randomly selects one of the 30 days, and generates orders exactly according to how
orders arrived on that day. We used a fixed number of drivers (100), and a fixed speed (40
km/h). An illustration of this environment can be found in the appendix. For SD-DQN and
MD-DQN, we impose a 2 kilometre broadcast radius. We compare performance against
the standard non-repositioning baselines of myopic revenue maximization (MRM) and
myopic pickup distance minimization (MPDM), both of which have no broadcast distance
and no repositioning. We also compare against MPDM-random and MPDM-demand. The
broadcast distance used in these repositioning baselines is 2 kilometers.

We obtain the similar relative performance as the historical statistics domain, with
MD-DQN performance above MRM but below MPDM, and SD-DQN outperforming all
myopic strategies.

4.3.3 Conclusion

We performed a detailed empirical study of two reinforcement learning approaches
to multi-driver vehicle dispatching and repositioning problems: single-driver Q-learning
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and multi-driver Q-learning. Both approaches leverage a global representation of state
processed using attention mechanisms, but differ in the form of Q-learning update used.
We found that, while one can construct environments whereMD-DQN is superior, typically
SD-DQN is competitive. Furthermore we applied these methods to domains built from
real dispatching data, and found that SD-DQN is able to consistently beat myopic strategies
across scales, as well as with and without repositioning actions.

4.4 Environment descriptions and visualizations

The following figures show and describe MDVDRPs in general, as well as particular
visualizations for all dispatching environments.
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Figure 4.2: A visual representation of a dispatching state. Blue dots represent drivers. The
black centered driver located at position (60, 20) is available, and all others are dispatched.
Orders start at red dots and end at the connected green dot. Order prices are denoted above
their pickup location
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Figure 4.3: The above image shows a length 4 trajectory. The currently available driver is
green, dispatched driver is red, and the order that the available driver accepts at time ti is
ai and has price ri. The accepted order at time ti is labeled by its action name and price,
(ai, ri) and travels from the solid black dot to the terminal arrow. SD-DQN transitions
are indicated by blue arrows above state, e.g. transition (st1, a1, r1, st3), which is driver-
centric with respect to driver 1. MD-DQN transitions are indicated by red arrows e.g.
transition(st1, a1, r1, st2), which transitions from a state where driver 1 is available to a state
where driver 2 is available.
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Figure 4.4: Surge domain. Orders travel between the three red squares. Each square is
labeled with its outgoing order value. Within each square, order start and end locations are
generated uniformly randomly.
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Figure 4.5: Hot/Cold domain. Orders all begin in the red bar, with their positions generated
uniformly randomly. For the destination, a fair coin is flipped to decide whether the order
ends in hot or cold, and then the exact position is sampled uniformly randomly in the
designated region.

Figure 4.6: Distribute domain. Drivers begin in the center of the region. They then proceed
with 5 steps of repositioning. At the 6th timestep, orders appear in the two corners. Drivers
that are within .3 units of an order start, denoted by a red circle, are assigned. All orders
end in the opposing cornerâĂŹs green dot so that trips are long enough that a single driver
can only satisfy one order per episode. After two timesteps, all remaining orders cancel
and the environment resets.
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Figure 4.7: Historic data order start distribution and corresponding simulator rendering.
The red box indicates the spatial region that is selected for the simulator. an average of
10 percent of orders start and end in this region, which roughly correspond to an edge of
downtown and some outlying areas.

4.4.1 Graphs

In the following graphs, the units of the x-axis are in episodes. For the nonrepositioning
illustrative domains, an episode lasts 5000 time units. In the Repositioning Hot/Cold
domain an episode is 500 time units. The distribute domain lasts 7 time units. The realistic
domains last for 1440 time units in the realistic simulator. Graphs for Distribute domains
show served percentage on the y-axis, while all other curves are environment reward.
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Figure 4.8: SD-DQN on 10% historical statistics simulator
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4.4.2 Distribute Domains

Figure 4.9: SDDQN served percentage on 20 driver 50/50 distribute domain
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Figure 4.10: MDDQN served percentage on 20 driver 50/50 distribute domain
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Figure 4.11: SDDQN served percentage on 20 driver 80/20 distribute domain
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Figure 4.12: MDDQN served percentage on 20 driver 80/20 distribute domain
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Figure 4.13: SDDQN served percentage on 4 drivers 75/25 distribute domain. The orange
curve shows SD-DQN performance when global context is included during the Q-value
querying while the gray curve does not include global context. SDDQN without global
context learns a policy that is uniform across drivers, and so it never escapes the uniform
optimum.
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4.4.3 Historical Data Domain

Figure 4.14: SD-DQN revenue on 10% historical simulator. The blue curve shows learning
when revenue itself is used as the reward function. The red curve shows revenue when
negative pickup distance is used as the reward function.

4.4.4 Training Details

20 Driver Static Assignment Problem

ε-exploration is annealed linearly over 10, 000 episodes from 1.0 to 0.03, and the target
network is updated every 500 training steps. The replay buffer maintains the 10000 most
recent transitions, and is initialized with 5000 samples. We used a learning rate of 0.001.
Unlike the following domains, the reward function is given as the negative Euclidean
distance between the selected driver-order pair.

All other illustrative domains

For SD-DQN we used a size 20000 replay buffer, learning rate 0.001, and we annealed
ε-exploration linearly over 100 episodes. We update the target network every 500 training
updates, and perform a training update every environment step. For MD-DQN we used
a size 20000 20-step Q-learning, a learning rate of 0.0001, and annealed ε-exploration
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linearly over 100 episodes. We found it critical to stability to reduce the learning rate and
perform n-step Q-learning in MD-DQN.
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Chapter 5

Future Work

Chapters 2 and 3 of this work served as first expedition into "potential-like" stochastic
games. It leaves open several corridors to be explored in future work. Four of these are
briefly summarized below.

5.1 Learning Methods and Learning by Reinforcement

The learningmethodswe presented inChapter 3were somewhat stylized and had significant
knowledge requirements for players. For example, we made the assumption in SG-JSFP
that all players select all actions in all states simultaneously. For both SG-JSPF and SG-
LLL we also assumed that players could calculate their utility functions and that all players
could observe the actions of all other players at every timestep. The first assumption for
SG-JSFP can be dispelled with, but the second two assumptions are necessary for the
implementation of both algorithms.

Are there learning methods for SPGs and/or SGPGs that do not require players to
compute their utility functions? These would resemble reinforcement-style algorithms,
where players merely estimate their stage game utility functions from experience. Regret
matching [64] is a learning method in iterated games that does not require computing utility
functions, however its convergence guarantees are weaker than the learning methods we’ve
discussed. In particular, strategies converge to the set of coarse correlated equilibria. So,
one concrete research direction is to explore if regret matching can be extended to stochastic
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games, and if so, whether one can make universal convergence guarantees. This may not
be straightforward - recall that we were unable to extend LLL to SPGs because the set of
stochastically stable states contained more than one strategy. For the same reason it may
be difficult to extend regret matching algorithms to stochastic games.

5.2 Other Subclasses of Stochastic Games

SPGs were motivated by the desire to make all continuation games be potential games.
This required the stochastic game to have modular dynamics. In contrast, stochastic zero
sum games automatically have this feature, without any requirements on their transition
probabilities. We may use this general template the construct new classes of stochastic
games:

1. Start with an interesting class C of normal form games.
2. Identify constraints on a stochastic games such that all of its continuation games

belong to C.
3. Use these constraints to define a subclass of stochastic games.
One class of games that could be studied in this way are supermodular games. These

games are interesting from a learning perspective as there are learning methods that con-
verge to Nash equilibrium [24]. Furthermore, supermodular games have interesting equi-
libria sets. They also have a number of economic applications [71, 77, 42].

5.3 Infinite Horizion SPGs

It was important in our analyses of SPGs and SGPGs that we make them finite fixed-
time. In particular this mean that states were visited only once in an episode. For SPGs
we made use of this fact in arguing for both the existence of simultaneously potential
maximizing equilibria, and the convergence of SG-JSFP to a pure Nash equilibrium. To
briefly summarize its use: At a state in layer k, modification of behavior in this state
can only change the continuation payoffs in layers less than k. So we were able to make
arguments that iterate backwards through time, and be sure that once behavior stabilizes in
layers l > k, the continuation payoffs for these layers will also remain constant.
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Do simultaneously potential maximizing equilibria exist in SPGs? Are there even pure
Nash equilibria? And are there convergent learning algorithms? These questions are not
addressed by the current work. The author suspects however that these could be approached
through the average reward formulation of MDPs.

5.4 Learning Methods for Simultaneously Potential
Maximizing Equilibria

As far as we are aware, log-linear learning (LLL) is the only known learning algorithm that
converges to potential maximizing behavior in potential games. So, it offers a promising
way to learn simultaneously potential maximizing behavior in SPGs. However, as we saw
in Chapter 3, our naive extension of LLL to stochastic games does necessarily converge
to Nash equilibrium, let alone simultaneously potential maximizing equilibrium. So, it
remains an open question to describe learning dynamics that converge to simultaneously
potential maximizing equilibria in SPGs.
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