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Abstract 
 
Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer that is projected to become the 

second leading cause of cancer-related death by 2030. The 5-year survival rate for PDAC is only 

10% which can be attributed to the aggressive and chemo-resistant nature of the cancer. PDAC, 

starting from its precursor lesions, is characterized by an extensive fibroinflammatory stroma. 

Cancer-associated fibroblasts (CAFs) are a prominent cellular component of the stroma, but their 

role during carcinogenesis remains controversial, with both tumor-supporting and tumor-

restraining functions reported in different studies. One explanation for these contradictory findings 

is the heterogeneous nature of the fibroblast populations and the functionally distinct roles each 

subset might play in carcinogenesis. However, the origin of CAFs and their respective contribution 

to carcinogenesis has yet to be explored. Here, we show that Gli1 and Hoxb6 label distinct 

fibroblast populations in the healthy mouse pancreas. We developed a dual-recombinase 

approach that allowed us to induce pancreatic cancer formation through FlpO-driven epithelial 

recombination of Kras while labelling Gli1+ or Hoxb6+ fibroblasts in an inducible manner. Using 

these models, we followed the fate of these two fibroblast populations during the process of 

carcinogenesis. While Gli1+ fibroblasts and Hoxb6+ fibroblasts are present in similar numbers in 

the healthy pancreas, they contribute differently to the stroma in carcinogenesis. Namely, Gli1+ 

fibroblasts proliferate and contribute to the fibrotic reaction, while Hoxb6+ cells do not. Our findings 

suggest that not all resident fibroblast populations expand and transition into cancer-associated 

fibroblasts within the pancreas, and that fibroblasts are heterogenous with potentially distinct 

functional roles even at the healthy stage. These findings advance our understanding of how the 

pancreatic fibroinflammatory environment is established during carcinogenesis. 
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Chapter 1 Introduction to Pancreatic Fibroblast Heterogeneity 
 

 

In the pancreas, the mesenchyme surrounds and supports epithelium 

development though epithelial-mesenchymal crosstalk 1 and differentiates to form cell 

types such as fibroblasts, pancreatic stellate cells, and pericytes 2,3. Fibroblasts are 

spindle-shaped cells which proliferate, express smooth muscle actin (SMA), and deposit 

extracellular matrix (ECM) when activated by local signals released from surrounding 

cells. Activated fibroblasts, also known as myofibroblasts, help regulate wound repair and 

recovery before dramatically reducing in number through apoptosis when the wound is 

healed, resolving the associated fibrosis 4,5. In the context of certain pancreatic diseases, 

such as chronic pancreatitis and pancreatic cancer, the fibrosis is not resolved, and it 

progressively impairs normal tissue function.  

Cancer-associated fibroblasts (CAFs), a term which refers to all fibroblastic cells 

in the tumor microenvironment, are a prominent cellular component of pancreatic ductal 

adenocarcinoma (PDAC). PDAC is a deadly disease and is the currently the third leading 

cause of cancer deaths in the USA; over 56,000 adults are diagnosed each year and 

almost all are expected to die from the disease [NIH SEER Database]. The characteristic 

fibroinflammatory stroma of PDAC starts to accumulate at the onset of disease 

progression and can contribute to over 70% of the tumor volume 6,7. Given the abundance 

of fibroblasts in these pancreatic diseases, there has been great research interest into 

the role of fibroblasts in pancreatic diseases over the past 20 years. Despite this extensive 
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effort, the role of fibroblasts still remains controversial. Numerous studies have identified 

tumor-supporting roles for cancer-associated fibroblasts (CAFs), such as recruiting 

immunosuppressive cells 8–10, supporting tumor metabolism 11, and creating a barrier to 

drug delivery by depositing extracellular matrix (ECM) 12–16. However, recent data has 

also identified tumor-suppressive functions within the stroma 17–20. One explanation of 

these seemingly contradictory findings could be that CAFs are more heterogeneous than 

previously thought. To investigate this possibility, researchers are utilizing a combination 

of animal models, human samples, and novel bioinformatic techniques to study the tumor 

microenvironment (TME) in greater depth. 

Genetically engineered mouse models are a useful tool to study the in vivo 

complexity of pancreatic tumor microenvironment. Several mouse models utilize 

mutations that are common to PDAC and faithfully recapitulate the histology of human 

disease. Most of these models feature an oncogenic mutation of KRAS, a gene that is 

almost universally disrupted in PDAC 21,22. Mice that express oncogenic KRAS (K: LSL-

KRASG12D) in the pancreatic epithelium (C: Pdx1-Cre or Ptf1a-Cre) are predisposed to 

forming pre-cancerous lesions, and this process can be synchronized and accelerated by 

inducing acute pancreatitis 23–25. These “KC” mice are a useful tool for studying the early 

stages of pancreatic neoplasia. To study metastatic pancreatic cancer in vivo, KC mice 

have been crossed with loss-of-function tumor suppressor lines, such as mutant p53 

(KPC) 26, p16-Ink4a/p19-Arf (KIC or KPP) 27. In addition to these Cre-driven models of 

PDAC, researchers have recently generated a FlpO-driven mouse model (KF, K: FSF-

KRASG12D; F: Ptf1a-FlpO) 28,29. This model can then be crossed with other cell type-

targeting Cre lines, enabling genetic manipulation of multiple cell types within the TME. 
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This is of particular interest to the study of stromal cells in PDAC, whose origin, fate, and 

function has been poorly understood. This combined genetic system allows for cell-type 

specific lineage tracing, in which a Cre-expressing cell lineage can be identified 

throughout different stages of PDAC progression 30. This model can also be used to 

ablate a Cre-targeted cell lineage by introducing an inducible and transgenic lethality to 

diphtheria toxin 31. Together, the combination of disease modeling with a diverse genetic 

tool kit makes the mouse a useful system for investigating the role of fibroblasts in 

pancreatic disease. 

These models become increasingly powerful when paired with large-scale 

genomic, proteomic, and transcriptomic analysis. These bioinformatic techniques have 

enabled researchers to characterize diverse cell populations within the TME to a much 

greater depth than previously possible. In particular, single-cell RNA sequencing has 

been used to identify distinct transcriptional subpopulations in breast 32, colon 33, and lung 

cancer 34. Now, similar techniques are being used to characterize different cell 

populations in the pancreas, at different stages of development and disease 35–38. By 

analyzing fibroblast populations in both human patients and mouse models, researchers 

are starting to identify conserved patterns of fibroblast heterogeneity.  

Here, I explore what is known about fibroblast populations in the pancreas, with a 

focus on heterogeneity. I discuss the different populations that have been identified in the 

developing, adult, and diseased pancreas, and discuss some of the current challenges 

facing the field. 
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Mesenchyme function and heterogeneity during pancreas development 

During embryogenesis, the pancreatic buds emerge from the gut endoderm, and 

receive key signaling cues from the mesoderm-derived mesenchyme (for review see 39). 

The essential role of the mesenchyme in pancreas development was proposed in the 

1960s, when pancreas cultures lacking mesenchyme failed to form primitive acinar 

structures 40–42. Almost 50 years later, this idea was tested in vivo by conditionally 

depleting the developing pancreatic mesenchyme. Researchers utilized an Nkx3.2-Cre 

mouse line in combination with a Cre-dependent diptheria toxin receptor (DTR)  to ablate 

a broad mesenchymal population in the developing pancreas, leading to a severe 

reduction in pancreas growth  43. Thus, the mesenchyme plays an essential role during 

pancreas development. Further, proper pancreas development requires communication 

between the mesenchyme and the epithelium through an array of inter-connected 

signaling pathways.  

During pancreas development, the repression of specific epithelial signals is 

important. One classic example is the requirement for repression of epithelial Sonic 

Hedgehog (Shh) expression for proper pancreas lineage specification 44–46. Ectopic Shh 

expression in the pancreatic epithelium drives intestinal differentiation at the expense of 

pancreas 44, while antibody-mediated inhibition of SHH is sufficient to induce the 

expression of pancreas  differentiation markers in endoderm explants 46. Further, 

mesenchyme-specific activation of the HH pathway restricts epithelial growth, while 

stimulating mesenchymal hyperplasia 47. Following pancreatic lineage specification, there 

is a continuing requirement for epithelial-mesenchymal cross-talk for growth and 
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maturation of the pancreas. Mesenchymal Hox6 plays a key role in this process, as loss 

of Hox6 paralogs in the mesenchyme impairs endocrine cell differentiation 48.  

Historically, the pancreatic mesenchyme has been viewed as a homogenous 

population, equally competent to respond to different developmental cues. However, 

recent data indicate that specific mesenchymal subpopulations have enriched activity for 

particular signaling pathways 35, suggesting a previously under-appreciated level of 

heterogeneity within the mesenchyme. Research efforts in the past few years have 

sought to characterize this mesenchymal heterogeneity in greater detail. One such effort 

utilized Nkx3.2-Cre as a lineage trace, allowing researchers to study this mesenchyme-

derived population throughout development and adulthood. Proteomic analysis of the 

Nkx3.2 lineage revealed that this population changes its expression profile from 

embryonic to postnatal stages, giving rise to a pericyte population in adults that supports 

endocrine differentiation 49,50. Further, depleting these cells in the adult reduces B-cell 

function 51, demonstrating that the functional role of mesenchymal populations can 

change from development to adulthood.  

Novel technologies have expanded our concept of heterogeneity within the 

developing pancreatic mesenchyme by identifying additional distinct populations of 

fibroblasts. Single cell RNA sequencing of the pancreatic mesenchyme at different stages 

of embryonic development revealed seventeen transcriptionally distinct clusters 35. While 

some of these populations were clearly identifiable (e.g., mesothelium, vascular smooth 

muscle, etc.), many of these clusters represented previously undefined groups of 

mesenchymal cells within the developing pancreas. This transcriptional analysis also 

identified candidate markers for these novel groups, which can identify distinct stromal 
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populations in vivo. By linking related transcriptional groups across development, the 

authors determined that mesenchymal populations undergo dramatic transcriptional 

changes throughout development, and that mesothelial cells may give rise to multiple 

mesenchymal subtypes. While this research suggests lineage relationships and unique 

functions between these different mesenchymal subpopulations, this has yet to be directly 

tested. Fortunately, the existence of commercially available Cre lines  (WT1-GFPCre and 

WT1-CreERT2 52 provides an opportunity to investigate a subset of these mesenchymal 

populations during pancreas development.  The future generation of Cre lines for other 

mesenchymal subpopulations (e.g., Stmn2, Barx1) will allow even greater functional 

characterization of these proposed lineages throughout pancreas development.  

Beyond the open questions within the context of development, the relationship 

between mesenchymal heterogeneity in the embryo and the adult organ is still poorly 

understood. Many of the recently identified mesenchymal subpopulations have not been 

followed into adulthood, and as a result it is unknown which populations persist in the 

adult organ, and how their functional role may change. The work by Landsman et al., 

Harari et al., and Sasson et al. demonstrates how genetic lineage tracing tools can be 

used to determine the contribution of different mesenchymal populations to adult tissues, 

and evaluate the function of these populations at developmental and postnatal timepoints 

43,49,51. 

 

Fibroblast heterogeneity in the healthy pancreas 

The bulk of the healthy pancreas is comprised of epithelial tissue, predominantly 

lobular acinar cells which secrete digestive enzymes into the small intestine via a ductal 
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system. Mesenchymal cells, conversely, occupy less than 10% of the mature organ 53. 

Despite their relatively low abundance, pancreatic fibroblasts are surprisingly diverse. 

Recent data has started to define these different populations in new levels of detail and 

suggest novel functions in the healthy pancreas. 

One group of fibroblasts with a relatively well-defined origin and adult function are 

the pancreatic pericytes. Derived (at least in part) from the Nkx3.2-expressing embryonic 

mesenchyme 49, these cells are found adjacent to endothelial cells throughout the adult 

pancreas 54. Importantly, these cells can be distinguished from other fibroblast 

populations in vivo by the expression of NG2 3,55. Despite their presence throughout the 

pancreas, pericytes have primarily been studied in association with pancreatic islets. 

Ablating the Nkx3.2 lineage of pericytes via DT reduced the insulin response to a glucose 

load in mice 51. Further, live imaging data from pancreatic slice cultures suggest that 

pericytes respond to neural and islet-derived signals to regulate blood flow to the islets 

56. While these data suggest that pericytes act as an essential mediator for the endocrine 

pancreas, their impact on the exocrine pancreas still remains poorly understood. Utilizing 

existing genetic tools to target pericytes in vivo (e.g. Nkx3.2-Cre, NG2-Cre 43,57), could 

determine how this cell type impacts other pancreatic functions.   

In contrast to the endothelial association of pericytes, mesenchymal stem cells 

(MSCs) have been found in close association with pancreatic exocrine tissue 58,59. While 

no single marker has been found to conclusively mark MSCs, they can be identified 

through flow cytometry as CD45−;CD44+;CD49a+;CD73+;CD90+ 60,61. These isolated 

pancreatic MSCs retain the ability to differentiate into adipocytes, chondrocytes, and 

osteoblasts 58–61. However, it is unknown whether MSCs contribute to multiple 
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mesenchymal cell types in vivo, or whether they impact exocrine or endocrine function in 

the healthy pancreas. In the absence of direct lineage tracing tools, isolated MSCs could 

be compared to other fibroblast populations through RNA sequencing analysis, in order 

to determine: 1) whether MSCs have a unique interactome that may impact other cell 

types, and 2) whether MSCs share a transcriptional “lineage” with other mesenchymal 

populations 35, suggestive of MSC differentiation in the pancreas.  

In addition to MSCs, the exocrine portion of the pancreas is also the reported niche 

for pancreatic stellate cells (PSCs). PSCs have received substantial attention for their 

suggested contribution to fibrosis in the context of pancreatic disease 62–66. PSCs have 

been defined by the presence of lipid droplets and their ability to “activate” aSMA 

expression and deposit ECM when isolated in 2D culture 53,67. Additional PSC markers 

have been suggested that can be identified through staining, including desmin and 

GFAP53. It is worth noting, however, that many of the markers used to identify PSCs 

historically have either been inaccurate (such as the neuron-detecting GFAP) or overlap 

with general fibroblast populations (e.g., Desmin, aSMA) 68. Further, no lineage tracing of 

these populations in vivo has been done, making their developmental origin as well as 

their direct contribution to pancreatic fibrosis unclear. It is therefore worth considering 

whether the cells we refer to as “PSCs” are not a single population, but rather a 

heterogeneous group of different fibroblast cell types that are independently capable of 

contributing to pancreatic fibrosis. 

Much like the development field, researchers studying heterogeneity within adult 

pancreatic fibroblasts have utilized large-scale transcriptome analysis to describe these 

populations on a molecular level. One research group performed single cell RNA 
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sequencing on a combination of healthy adult mouse and human samples, in order to 

identify transcriptional patterns consistent between species 69. The researchers identified 

two distinct clusters of PSCs in both mice and humans: which they defined as “activated” 

(enriched for ECM-associated genes, including COL1A1 and FN1) and “quiescent” 

(enriched for adipogenic genes, including ADIRF and FABP4). Within the human 

samples, the researchers also found a subgroup within the “activated” PSCs that was 

enriched for cytokines, suggesting a possible immune-modulating population in the 

healthy organ 69. Although these data identify PSC populations with unique transcriptional 

profiles, it still remains unclear whether these populations have independent functions in 

the healthy pancreas. Further, the authors do not differentiate the “PSCs” analyzed from 

other fibroblast populations, such as pericytes or MSCs. It is therefore unknown whether 

these subcategories are unique to PSCs or shared by multiple fibroblast populations 

within the adult pancreas.  

 

Fibroblast heterogeneity in pancreatic injury and disease 

Beyond their role in the healthy pancreas, there has been great interest in the role 

of fibroblasts in pancreatic disease. In particular, fibroblasts have been studied 

extensively for their role in fibrosis, the accumulation of dense, ECM-rich stroma following 

chronic pancreatic injury 70. Fibrosis is considered a hallmark of chronic pancreatitis and 

pancreatic cancer, and has been suggested as a barrier to therapies and an impediment 

to tissue recovery 71. However, new data has revealed that the role of this fibrotic stroma 

is more complex. In the following sections, we discuss the known roles of fibroblasts within 
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the context of these fibrotic pancreatic diseases, the growing evidence for fibroblast 

heterogeneity, and present some of the open questions that still remain in the field. 

Chronic pancreatitis is a painful disease with limited therapy options, and patients 

face an increased likelihood of developing pancreatic cancer 72,73. Histologically, chronic 

pancreatitis is identified by a loss of mature acinar tissue, increased inflammation, and an 

abundance of fibrotic tissue 74. Multiple rodent models have been generated in order to 

recapitulate this chronic human disease. These models utilize exposure to exogenous 

compounds (e.g., Trinitrobenzene sulfonic acid [TNBS], caerulein), surgical intervention 

(e.g., pancreatic duct ligation) or a combination of both  to induce pancreatic damage, 

acinar necrosis, and eventually fibrosis 75–77. Early studies stained for fibroblast markers 

in a combination of chronic pancreatitis patient samples and TNBS-treated rats, and 

found that PSCs were abundant in ECM-rich fibrotic areas 75. In vitro studies further 

indicated that isolated PSCs could activate in response to a number of pancreatitis-

associated cues, including TGFb, TNFa, and ethanol 63,64,78,79. More recent data has 

indicated that fibroblasts may affect chronic pancreatitis development through 

interactions with the immune system. In a repeated caerulein  mouse model of chronic 

pancreatitis, researchers found that isolated PSCs are able to alternatively activate 

macrophages via IL-4 and IL-13, and disrupting this interaction reduced fibrosis in vivo 77. 

A different group utilized a combined caerulein and pancreatic duct ligation model, and 

found that PSCs can activate in response to immune complement signal C5a 80. 

Antagonizing this signaling pharmacologically minimized the accumulation of fibrotic 

stroma 80. Although these studies indicate this fibro-inflammatory cross-talk can promote 

pancreatitis, recent evidence has also suggested that these two populations also 
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communicate during tissue recovery. Disruptions of stromal HH signaling in mice, 

particularly through the loss of a single Gli1 allele, delays recovery from pancreatitis and 

alters cytokine production in pancreatic fibroblasts 17. Loss of GLI1 function has also been 

linked to inflammatory bowel diseases, suggesting that this HH-mediated immune 

modulation may be a common feature of chronic inflammatory diseases  81.  

 Although these studies have enhanced our understanding of fibroblasts in chronic 

pancreatitis, they have predominantly focused on PSCs. Given the evidence for distinct 

fibroblast populations in both development and the healthy adult pancreas, one current 

area of interest is how different populations of fibroblasts contribute to chronic 

pancreatitis. A group of researchers collected human chronic pancreatitis samples and 

analyzed the expression of general fibroblast markers (e.g.,  aSMA, Desmin) as well as 

proposed stellate cell markers (e.g., CD34, NGFR, Tenascin C) through 

immunohistochemistry 82. Interestingly, several of the proposed stellate cell markers, 

occupied distinct niches (e.g., periacinar vs. periductal) within the fibrotic 

microenvironment. Although this non-uniform expression is suggestive of fibroblast 

heterogeneity, unbiased single cell RNA sequencing efforts of broad fibroblast 

populations would provide better resolution of the stromal diversity in chronic pancreatitis. 

Further, lineage labeling of healthy fibroblast populations (described above) prior to 

inducing chronic pancreatitis would directly determine the relative contribution of different 

populations to fibrosis. Such genetic tools could also be paired with DT-mediated modes 

of targeted ablation 51, allowing researchers to determine the functional contribution of 

these different populations to fibrosis development and maintenance.  
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Fibroblast heterogeneity in pancreatic cancer 

PDAC is believed to arise from pre-cursor lesions, most commonly pancreatic 

intraepithelial neoplasias (PanINs) 83. Oncogenic mutations in KRAS are believed to be a 

key part of this PanIN progression process22,84. As the epithelium progresses through 

neoplasia and eventually carcinogenesis, the stroma also undergoes dramatic changes. 

Fibroblasts activate and transition into CAFs, a process that involves the production of 

chemokines, growth factors, and extracellular matrix 85–87. Interestingly, fibroblast 

activation is dependent on oncogenic KRAS within the epithelium, and is reversed when 

oncogenic KRAS is inactivated in the epithelium 88. 

CAFs were previously considered to be a homogenous cellular component of the 

tumor, all derived from a single population of pancreatic stellate cells (PSCs). However, 

a growing body of research supports the idea that CAFs are heterogenous, both in their 

phenotype and their function within the microenvironment. This heterogeneity can exist 

across multiple axes: physical location within the tumor microenvironment, ability to 

respond to different intercellular signals, and transcriptional profiles.  

 

Positional heterogeneity – Heterogeneity based on localization 

Evidence of cancer-associated fibroblast heterogeneity began to accumulate with 

descriptive reports of nonuniform staining of fibroblast markers. In human and mouse 

PDAC, researchers found that common fibroblast markers such as aSMA, podoplanin, 

PDGFRa/b, fibroblast specific protein 1 (FSP1), and desmin varied in their staining 

intensity, distribution, and overlap throughout the tumor tissue 28,82,89–94. Interestingly, 

researchers have identified marker expression differences between the stroma 
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immediately adjacent to tumor tissue compared to more distant stroma. In both KPC 

mice and human PDAC, tumor-adjacent stroma expressed higher levels of aSMA, while 

more distant fibroblasts expressed IL6 93,95. The differing spatial distribution between 

these CAF subtypes suggests that different populations occupy unique niches within the 

carcinogenic stroma.  

Despite progress in identifying these different CAF populations, the clinical 

significance of stromal markers has remained controversial. The expression of broad 

CAF markers has been correlated with worse prognosis in patients; including PDGFRb 

89, aSMA 82,96, and podoplanin 92. However, clinical efforts to target broad stromal 

populations have shown minimal or inconsistent benefits to patient survival (reviewed in 

97), making the clinical utility of these correlative studies unclear. Further, these 

correlations are likely confounded by heterogeneity within these broad populations. To 

gain a better sense of the heterogeneity within CAFs, techniques such as multiplex 

immunohistochemistry would allow researchers to determine the spatial distribution of 

different subtypes in relation to other elements of the TME. This would provide better 

clarity of the exact niches of these different sub populations. 

 

Interactive heterogeneity – Heterogeneity based on cell signaling 

Throughout the process of pancreatic cancer progression, the developing tumor 

epithelium produces a vast array of secreted proteins. This dramatically changes the 

nature of cell signaling within the tumor microenvironment, notably within the stroma. 

However, there is heterogeneity in cell signaling activity within stromal populations, and 
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different CAF populations respond to different signaling molecules. A selection of key 

stromal cell signaling pathways are highlighted below: 

 

Hedgehog Signaling 

Hedgehog (HH) signaling is a core signaling pathway in human pancreatic 

cancer, first described over a decade ago when sonic hedgehog ligand (SHH) was 

found to be expressed in a majority of pancreatic tumor cell lines and human patients 

84,98,99. Later, Hedgehog signaling was shown to function in a paracrine manner in 

pancreatic cancer. The tumor cells secrete HH ligands, which bind to the 

transmembrane receptor Patched 1 (PTCH1) on the surrounding fibroblasts 100–102. 

Binding of the ligand to PTCH1 releases the inhibition of Smoothened (SMO), which in 

turn activates the GLI family of HH transcription factors (for review see 103). In the adult 

pancreas, the activity of the HH pathway is generally low unless activated in the context 

of injury or disease.  

Although canonical HH signaling has been identified in PDAC, the exact role of HH 

is complex. Disrupting the HH pathway by SMO inhibition reduced tumor growth in a 

subcutaneous tumor model 100, and slightly prolonged survival when combined with 

chemotherapy in tumor-bearing KPC mice 12. These data supported a model in which HH 

promoted tumor growth and could potentially be targeted to improve patient survival. This 

led to a clinical trial of the small molecular SMO inhibitor, IPI-926, also called saridegib, 

(Infinity Pharmaceuticals), and a parallel trial of a different SMO inhibitor, GDC-0449, or 

vismodegib (Genentech) in patients with pancreatic cancer. Unfortunately, the Infinity trial 

had to be terminated early due to decreased survival in the experimental group 104 and 
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the Genentech trial provided little to no benefit to patients 105,106. To explain the trial 

findings, researchers re-evaluated the role of HH signaling in pancreatic cancer.   

After the clinical trial results became public, the question of HH signaling in 

pancreatic cancer was revisited in two studies that inactivated the expression of Shh in 

the KPC models of pancreatic cancer. In both studies, investigators observed faster 

development of invasive tumors and shortened lifespan for the mice 18,107. However, the 

tumors observed were quite different: Rhim et al. observed tumors devoid of fibrosis; 

conversely, Lee and coauthors observed tumors that retained the fibrotic stroma (albeit 

with a slight reduction on quantitation) yet progressed faster. Targeting the HH pathway 

results in a complex phenotype that underscores the need to more thoroughly examine 

the role of CAFs in tumor growth and survival. A caveat of both studies is that SHH is only 

one of three HH ligands, and at least two of them, SHH and IHH, are expressed in 

pancreatic cancer. Thus, it is likely that inactivation of SHH led to a reduction, but not 

ablation of HH activity.  HH signaling has profoundly different effects in a dosage-

dependent manner in embryonic development (for review see 108; whether the same 

paradigm applies to cancer is less clear. Taking a different approach, our group has 

inactivated the HH coreceptors, GAS1, BOC, and CDON, which are HH pathway 

activators and are expressed in CAFs. We showed that fibroblasts with decreased levels 

of HH signaling promote tumor growth, while HH-unresponsive fibroblasts do not 109. It 

will therefore be important to consider how levels of HH-response vary throughout the 

tumor microenvironment, and how these different HH-responding populations are 

influencing pancreatic tumor development. 
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TGF-b Signaling 

Another signaling pathway that is highly active within the tumor microenvironment 

is the TGF-β pathway. Some of the first studies into pancreatic fibroblasts identified TGF-

β signaling as a pro-fibrotic pathway 63,67. However, dissecting the TGF-β interaction 

network within the diseased pancreas is complex, as multiple cell types (including 

fibroblasts) within the microenvironment express TGF-β ligands, allowing for both 

autocrine and paracrine modes of signaling 64,66. Within the context of PDA progression, 

the role of TGF-β signaling has been controversial, as there have been conflicting reports 

over whether disruption of TGF-β signaling is protective 110,111 or deleterious 112–115. 

However, it has been suggested that both effects are possible, and that the role of TGF-

β may depend on the stage of disease and the cell populations involved 116,117. Recent 

work in support of this idea has demonstrated that while global disruption of TGF-β 

signaling increased immune evasion, targeting TGF-β signaling specifically in CD8 T-cells 

slowed PanIN progression 118. Since another study found genetic ablation of CD4+ T cells 

is sufficient to block PanIN formation and reduce the quantity of SMA+ CAFs 119, these 

data highlight the complex cross talk between the immune cells, epithelium, and CAFs, 

and the importance of detailed characterization of these different signaling pathways 

within the tumor microenvironment to better understand how heterogeneous stromal 

populations may influence cell signaling in PDA progression. 

 

Transcriptional heterogeneity – Heterogeneity based on gene expression 

The transcriptional profile of CAFs can help differentiate distinct CAF populations, 

especially with the increasing availability of single-cell RNA sequencing as a tool to 
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examine rare and heterogenous populations in an unbiased manner. A series of papers 

classified pancreatic CAFs from a KPC mouse model and human PDAC into simple 

replicable subsets with distinct transcriptional profiles and activation pathways. 

Pancreatic CAFs may generally be characterized by either a myofibroblast “myCAF” or 

inflammatory “iCAF” phenotype 38,93,95. The myCAF population is directly adjacent to 

tumor cells, expresses high levels of aSMA, and is maintained by the TGFb pathway 93,95. 

These aSMA-expressing myCAFs are believed to be tumor restricting, as depletion of 

aSMA-expressing fibroblasts promoted PDAC progression 20. A separate population, the 

distant iCAF population, expresses IL6 among other inflammatory chemokines and 

cytokines, and relies on Il1/Jak-Stat signaling 93,95. A third antigen-presenting “apCAF” 

population has recently been described after performing single-cell RNA-seq on ten 

treatment-naïve PDAC patients 38, though another group described the antigen-

presenting population as part of the healthy-associated mesothelium when analyzing the 

same data set 37. This second group was, however, able to independently identify an IL1-

driven iCAF-like subset and a TGFb-driven myCAF-like subset from KPP mice 37.   

Another recent single cell RNA-seq study analyzed the fibroblasts from healthy 

and KrasLSL-G12D;Ink4afl/fl;Ptf1aCre/+ (KIC) mice throughout lesion development 91. The 

researchers identified three fibroblast populations in the healthy and early lesion stage, 

and only two in the advanced PDAC. The transcriptional profiles of the CAF populations 

were described as inflammatory and myofibroblastic, consistent with the previously 

defined iCAF and myCAF subtypes. Notably, for sequencing analysis done on genetically 

engineered mouse models, the exact profile of the fibroblast groups is significantly 
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impacted by the specific model used 37,38,91,120,121, highlighting the importance of stroma 

– epithelial cross talk in tumor microenvironment formation and model selection 122.  

These new transcriptional data sets of PDAC converge on the concept that there 

are at least two transcriptionally, and likely functionally, distinct subgroups of CAFs – with 

either an inflammatory or myofibroblast dominant phenotype.  Notably, these CAF subset 

designations appear to be interconvertible in vitro 38,95 and share a common base 

fibroblast program 37,95. For example, inflammatory CAFs can also contribute to ECM 

deposition by expressing hyaluronan and collagens 37,38. The boundaries between CAF 

populations are likely fluid and context-dependent. It is therefore worth tracing these 

different subtypes in vivo throughout different stages of PDAC progression, to see how 

different CAF populations respond to a changing TME. 

 

Challenges in studying fibroblast heterogeneity  

Although the research described above has provided novel insight into fibroblast 

heterogeneity, the field is currently challenged by conflicting data. It has been particularly 

difficult to come to a consensus regarding the specificity of fibroblast population markers 

and their expression patterns. For example, commonly used fibroblast markers such as 

PDGFRa, aSMA, PDPN have each been described as a pan-stromal marker by some 

groups, and a subtype specific marker by others 37,38,93,123,124. Further, aSMA+ and 

PDGFRa+ fibroblasts were reported to be nearly mutually exclusive in mouse models of 

PDAC 91, while other research reported that these populations overlap 90. Such 

inconsistencies in the field have made it difficult to generate a unified model of stromal 
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heterogeneity. As such, a number of considerations must be accounted for when 

evaluating fibroblast populations in PDAC.  

The first consideration is the source of the tissue. Although human patients and 

mouse models have many similarities within the tumor microenvironment 15,37,38, the 

progression of the disease differs fundamentally between these two groups; the former 

typically acquiring mutations and experiencing histological changes over the course of 

years, while the latter experiences accelerated disease progression driven by oncogenic 

mutations as early as embryonic development. Obtaining data from human patients is 

also complicated by natural variability in patient cohorts (age, sex, lifestyle, stage of 

disease, etc.), as well as the relative scarcity of patient tissue. Data from mouse models 

can also be difficult to compare, considering the multitude of models (e.g. KPC, KIC, KPP) 

utilizing different oncogenes to drive carcinogenesis. An analysis of the effect of mutant 

tumor suppressor gene p53 versus loss of p53 observed key differences in the stiffness 

of the ECM matrix and the susceptibility to chemotherapy 121, which suggests the slight 

genetic variations of modeling can impact the stromal microenvironment. In addition, 

using an in vitro cell system introduces environmental cues, either by tumor conditioned 

media 123, signaling molecules 95, or dimensionality of the culture conditions (2D vs 3D) 

38,121 that impact the cell state and phenotype. Since CAF subtypes may interconvert with 

one another given the appropriate cue, care must be made to not overgeneralize findings 

95. 

Another major source of data discrepancy may be due to technical variability while 

obtaining and processing samples. Different studies have utilized very different protocols 

to isolate, digest, sort, sequence, and analyze stromal populations, and as a result there 
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are dramatic differences in cell types captured and abundance of fibroblasts. This can 

have very real impact on sequencing efforts, as low or biased yields will limit the ability to 

fully capture all of the fibroblast populations within the tumor microenvironment. To 

resolve some of these conflicting findings moving forward, there needs to be enhanced 

transparency and collaboration regarding the processing of both mouse and human 

samples. In particular, developing optimized protocols to enrich for stromal populations 

will be necessary in order to capture the diversity of fibroblasts that exist within the tumor 

microenvironment. There also needs to be more specific vocabulary to acknowledge the 

origin, profile, and function of different fibroblast populations. Simply referring to all 

fibroblasts throughout pancreatic cancer progression as “CAFs” fails to capture the 

diversity and complexity of this critical cell population. 

 

Origin of cancer-associated fibroblasts 

Pancreatic CAFs have long been assumed to derive from a resident population of 

pancreatic stellate cells (PSCs). However, growing data supports the possibility that 

multiple fibroblast populations in the healthy pancreas may contribute to the heterogeneity 

of CAFs. Lineage-tracing experiments in fibrosis models in other organs such as the liver, 

kidney, heart, skin, and lung, consistently demonstrate that various resident fibroblast 

populations proliferate in response to injury to contribute to fibrosis 125–131. Beyond PSCs, 

MSCs have been identified healthy tissue and are expanded in neoplastic tissue, raising 

the possibility that MSCs can also contribute to neoplastic stroma 60,132. Beyond these 

resident progenitors, it has been suggested that some CAFs may arise in part from bone 

marrow derived cells 133 or transdifferentiate from pericytes and endothelial cells (for 
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review see 134). Single-cell RNA sequencing data suggests that CAFs may arise in part 

from cancer cells that have transformed through EMT, though they account for a relatively 

small portion of fibroblasts 32,37. Although these populations have been suggested to give 

rise to CAFs, researchers have been largely limited by a lack of effective lineage-tracing 

tools for these populations in vivo. It is therefore difficult to conclusively determine the 

relative contributions of these different populations to the PDAC stroma. 

Instead, gene ontogeny analysis has been used to track similar transcriptional 

programs throughout lesion development and to parse the origin of pancreatic CAFs. As 

mentioned earlier, Dominguez et al utilized single cell RNA sequencing analysis to define 

transcriptionally distinct fibroblast populations in the KPP mouse model 37. The authors 

similarly sequenced healthy and adjacent-to-tumor samples to construct a hypothetical 

evolutionary roadmap. The transcriptional profiles of the two healthy fibroblast 

populations ultimately mapped closer to either a tumor-associated myCAF or iCAF 

population than themselves, suggesting CAF evolution evolves from healthy fibroblast 

heterogeneity 37. However, since these populations were linked in silico, this data set can 

only suggest a lineage relationship between healthy resident populations and CAFs.  

In a smaller study by Bernard et al, transcriptomic changes were examined by 

single cell RNA sequencing on surgically resected samples that progressed from low-

grade to high-grade noninvasive intraductal papillary mucinous (IPMN) and PDAC 

samples 120. Similar to the studies described above, the researchers were able to 

identify two distinct CAF clusters that corresponded to myCAF and iCAF phenotypes. 

However, they found that these populations emerged at different stages of PDAC 

progression. While the myCAF phenotype was detected at all three stages of PDA 
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progression (low-grade IPMN, high-grade IPMN, PDAC), the iCAF phenotype was only 

observed in PDAC 120. Together, these data support the idea that distinct fibroblast 

populations in the healthy pancreas evolve over time to give rise to unique CAF 

subtypes 37,120. However, in the absence of direct lineage tracing of healthy populations 

throughout PDAC progression, the true origin of different CAF populations will remain 

uncertain.  

 

Targeting cancer-associated fibroblasts in the clinic 

While our understanding of CAFs in PDAC is still evolving, interactions between 

CAFs and the tumor microenvironment have been leveraged for potential therapies. CAFs 

have many reported tumor-promoting functions, including metabolic support, recruitment 

of immunosuppressive cells,  and creating a physical barrier to drugs through ECM 

deposition and remodeling (Reviewed by 11,122). Many clinical trials have hoped to 

improve patient survival by targeting these CAF-associated elements of the tumor 

microenvironment (thoroughly summarized in 135). However, recent data demonstrates 

that CAFs have also tumor-suppressive roles 18,20,107,109, making the clinical targeting of 

the stroma all the more complex. I have included a brief summary of some of these 

strategies and potential next steps below. 

A popular clinical strategy has been to target pro-tumor intercellular signaling 

pathways, due to the extracellular accessibility of pathway ligands and receptors. A 

notable attempt to target CAF signaling involved inhibiting the HH signaling pathway. 

Although HH inhibitor IPI-926 with chemotherapeutic gemcitabine was reported to 

improve survival in mouse models of PDAC 12, neither IPI-926 nor Vismodegib (GDC-
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0449) significantly improved survival in human patients (described in detail above) 

105,106,136. In addition to HH, vascular endothelial growth factor (VEGF) signaling has been 

targeted as a potential anti-stromal therapy. VEGF is produced by both tumor cells as 

well as stromal cells 137, and VEGF expression has been correlated with decreased 

survival in human patients 138. Clinical trials tested anti-VEGFa monoclonal antibodies 

(bevacizumab) and small-molecule inhibitors of VEGF receptors (Axitinib) in combination 

with chemotherapy, but neither strategy improved survival in human patients 139,140. 

Although it is difficult to pinpoint the exact reasons these trials failed, one 

underappreciated factor could be the heterogeneity of the stroma, in which distinct 

populations respond differently to treatment.  

As an alternative to targeting CAF cells directly, several clinical trials have tried to 

target the ECM-rich physical stromal environment. One particular component of the ECM, 

hyaluronic acid (HA), is frequently overexpressed in PDAC patients 13,14, and can promote 

tumor growth and facilitate drug resistance 141. Depleting HA with a stabilized version of 

hyaluronidase (PEGPH2O) in KPC mice decreased interstitial pressure and increased 

drug delivery to the site of the tumor, and improved survival in combination with 

gemcitabine 13,14. A phase II clinical trial found a minor improvement (1 month) in 

progression-free survival for all patients receiving PEGPH2O alongside dual 

chemotherapy (Nab-paclitaxel and Gemcitabine), and a moderate benefit (4 months) for 

patients with high HA expression 142. This suggested that this might be a viable strategy 

specifically for HA-high patients. However, a phase III clinical trial that specifically enrolled 

HA-high PDAC patients failed to improve overall survival, leading to the cancellation of 

the clinical trial 143. Although the full data for this most recent trial has not been publicly 
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released, it appears that targeting the dense ECM is not sufficient to significantly improve 

patient survival.  

A potential complication with the strategies described above could be that these 

inhibitors may be disrupting the stroma too broadly, resulting in the disruption of tumor-

restricting fibroblast populations. Thus, it is worth considering whether more targeted 

approaches against specific pro-tumor CAF populations would be a more effective 

therapy option. Recent work (summarized above) has identified three CAF populations in 

PDAC: myCAFs, iCAFs, and apCAFs 38,93,144. Of these three, iCAFs in particular have 

been shown to have pro-tumor activity via IL1/JAK/STAT signaling 144. Inhibition of JAK-

STAT signaling reduced the expression of inflammatory cytokines in PSCs and reduced 

tumor growth in KPC mice 144. Two phase I clinical trials (NCT02550327, NCT02021422) 

will be testing the efficacy of the IL1-receptor antagonist (Anakinra) in PDAC, which may 

restrict the pro-tumor activity of iCAFs. Although this trial acknowledges the heterogeneity 

of CAF populations, several concerns still remain. Although JAK-STAT inhibition reduced 

tumor growth over the course of 10 days 144, it is unclear how prolonged treatment would 

affect the survival of KPC mice. It is also unclear whether this timeline would effectively 

suppress the iCAF phenotype over extended periods of time, or whether CAF populations 

would change to fill the functional niche of iCAFs. More fundamentally, the in vivo role of 

these different populations throughout pancreatic cancer progression is still poorly 

understood, as most of the inferred function so far has been based on in vitro experiments 

or correlative data following systemic drug treatments. In the absence of targeted in vivo 

manipulations of these different populations, it is difficult to fully understand how these 

different populations interact with each other and within the dynamic tumor 
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microenvironment. Fortunately, single cell sequencing efforts by the same group have 

identified a suite of potential markers that correspond to iCAFs (e.g., Clec3B, Ly6C, 

Col14a1), myCAFs (e.g., Acta2, Thy1, Col12a1), and apCAFs (e.g., H2-Ab1, Saa3, Slpi) 

38, opening the possibility for CAF-subtype genetic tools to be developed. Inducible 

systems such as CreER would avoid disrupting other populations expressing these same 

markers during embryonic development, and could be paired with FlpO-based (Ptf1a-

FlpO, Pdx1-FlpO) modes of pancreatic carcinogenesis (i.e. KF, KPF 28,29) to manipulate 

of CAF populations throughout carcinogenesis in vivo. Without closely characterizing the 

dynamic stromal responses to proposed anti-CAF treatments, future clinical trials will 

likely face the same disappointing results. 

 

Conclusions and future directions 

Fibroblasts are a dynamic and complex component of the pancreatic stroma, from 

development to adulthood to cancer. Advances in transcriptomic sequencing tools in both 

animal models and humans have helped define distinct populations of fibroblasts, 

throughout many stages of development and disease (Figure 1-1). Many questions still 

remain, however, and several coordinated efforts are necessary in order to advance the 

study of fibroblast heterogeneity. First, the latest advances in large scale transcriptomics 

need to be paired with spatial information in vivo. This is key in order to better understand 

how these diverse populations are organized and what cell types they physically interact 

with. Pairing transcriptional analysis with multiplex immunohistochemistry may enhance 

our ability to comprehensively map out the interactions of the microenvironment. Further, 

the generation and utilization of stromal genetic lineage tracing in animal models will allow 
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us to follow these diverse populations throughout different stages of pancreas 

development and disease. With the advances in dual recombination models 28,29 it is 

possible to identify and manipulate multiple populations within the in vivo 

microenvironment, to see how these cell types evolve, function, and interact. As we gain 

deeper insight into the complex nature of fibroblast heterogeneity, we will be better poised 

to leverage these populations clinically in the years to come.  

 

 

 

Figure 1-1 Schematic of fibroblast heterogeneity from development to cancer.  A cartoon representation of the location and 
diversity of healthy mesenchymal cells and cancer-associated fibroblasts overlaid on H&E stains from mouse pancreata.  
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*E18; spatial data unknown
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Chapter 2 Differential Contribution of Pancreatic Fibroblast Subsets to the Pancreatic 
Cancer Stroma 

 

Introduction 

Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer that is projected to 

become the second leading cause of cancer-related death by 2030145. The 5-year 

survival rate for PDAC is only 9% which can be attributed to the aggressive and 

chemoresistant nature of the cancer, in addition to an often late diagnosis146. In PDAC, 

more so than other solid tumors, a high percentage of the tumor volume is occupied by 

non-malignant cells that form the tumor “stroma”7. The cellular component of the stroma 

includes fibroblasts, infiltrating immune cells, vascular elements, and nerves122. This 

fibroinflammatory environment develops during the early steps of tumorigenesis and 

supports tumorigenesis and metastasis, although the roles of the individual components 

are still not fully understood122.  

Fibroblasts are a prominent and active cellular component of the stroma; they 

contribute to the secretion of extracellular matrix, and produce chemokines and growth 

factors that affect immune, endothelial, and cancer cell growth and function 122,134,147. 

Initially, research into pancreatic cancer-associated fibroblasts (CAFs) supported a 

unilateral pro-tumorigenesis role8,12,13,148–150. However, other results suggested that 

fibroblasts could restrain tumor formation and that depleting them might accelerate 

carcinogenesis20. This paradox might be explained by the observation that fibroblasts 

are not a homogenous population, but exists in subsets with different roles 60,61,93,95. 
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Recently, several studies have highlighted the heterogeneity of the CAF 

subpopulations. This concept has made considerable progress thanks to the advent of 

single-cell sequencing to tease apart populations in an unbiased manner 20,60,93–

95,132,151–153. In human and mouse PDAC tissue, researchers observe several fibroblast 

subpopulations, characterized by distinct patterns of gene expression38,91,123. However, 

a remaining open question in the field is the origin of the CAFs, and whether their 

heterogeneity is driven by different progenitors. While pancreatic CAFS have long been 

assumed to derive from the resident pancreatic stellate cells, no formal lineage tracing 

has been conducted to support this idea. The healthy pancreas contains mesenchymal 

cells in periacinar, perivascular, and periductal regions of the exocrine pancreas. The 

potential of these resident cells in populating the fibroinflammatory environment and 

shaping the heterogeneity of the pancreatic cancer-associated stroma is unknown.  

Here, we describe two fibroblast populations that are present in the healthy 

pancreas, marked by the expression of Gli1 or Hoxb6. Gli1 is a zinc-finger transcription 

factor and downstream effector and target gene of the Hedgehog signaling pathway, 

which is upregulated in human and mouse pancreatic cancer17,154,155. We have 

previously described a small population of Gli1+ fibroblasts in the healthy pancreas17,109. 

In a number of other organs, tissue-resident Gli1+ cells are mesenchymal progenitors 

that associate closely with the vasculature until activation into proliferative 

myofibroblasts by injury131,156–159. We sought to determine whether Gli1+ fibroblasts 

similarly proliferate in the pancreas in response to neoplasia. In contrast, Hoxb6 labels 

the entirety of the mesenchyme during pancreas development160, but based on our 

current data, is restricted to a subset of fibroblasts in the adult pancreas. Importantly, 
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Gli1 and Hoxb6 are expressed in separate populations in the healthy pancreas. We 

used lineage tracing and dual recombinase approaches to follow the fate of each cell 

population during carcinogenesis and determined that Gli1+ cells proliferated and 

contributed to the fibrotic reaction in pancreatic cancer, while Hoxb6+ cells do not. 

Methods 

Mouse strains 

All mouse protocols were conducted with approval from the University Committee on Use 

and Care of Animals (UCACA). Gli1eGFP/+ mice75 were crossed with Ptf1aFlpO/+;KrasFSF-

G12D/+ (KF) or Ptf1aFlpO/+;KrasFSF-G12D/+ ;Trp53FSF/+ (KPF) mouse models donated by Dr. 

Crawford44 to generate KF;Gli1eGFP/+ and KPF;Gli1eGFP/+ crosses. Gli1CreERT/+ (JAX, 

#007913) or Hoxb6CreERT/+ (contributed by Dr. Wellik76) mice were crossed into 

Rosa26YFP/+ (JAX, #006148) or Rosa26Tom/+  (JAX, #007909) reporter mice. These mice 

were then further crossed with the KF and KPF mice. Experimental and control animals 

were treated in parallel. Mice were housed in specific pathogen-free facilities at the 

University of Michigan Rogel Cancer Center.  

 

In vivo experiments 

All experiments were initiated in adult mice aged between 5-8 weeks of age. Acute 

pancreatitis was induced over 48 hours by two 8-hour serial intraperitoneal injections of 

caerulein (Sigma) as previously described163,164. To activate the CreERT transgene, mice 

received 4mg of tamoxifen in corn oil/3% ethanol (Sigma) per day via oral gavage for 5 

days. Where mentioned, mice received an additional three weeks of tamoxifen chow (400 

tamoxifen citrate mg/kg diet, Envigo).  
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Immunohistochemistry and immunofluorescence  

All immunohistochemical (IHC) and immunofluorescent (IF) stains were performed 

as previously described88. Primary antibodies used were YFP (1:200, Abcam), PDGFRβ 

(1:100, Abcam), CK19 (1:50, Iowa Developmental Hybridoma Bank), SMA (1:1000, 

Sigma), Amylase (1:100, Sigma), EPCAM (1:300, Cell Signaling), PDPN (1:300), CD31 

(1:50, Cell Signaling), Vimentin (1:100, Cell Signaling), NG2 (1:100, Abcam), Lyve-1 

(1:100, Abcam). Images were taken with an Olympus BX-51 microscope, and CellSens 

(Olympus) Standard software. For IF, Alexa Fluor-conjugated (Invitrogen) secondary 

antibodies were used. Prolong Gold-DAPI (Invitrogen) was used to counterstain the cell 

nuclei. The images were acquired using a Nikon A1 inverted confocal microscope and 

NIS-Elements software. At least five separate 60x fields (>180 cells) for IF or 20x fields 

for IHC from more than one experimental sample were quantified using HALO software 

(Perkin Elmer).  

Transmission electron microscopy (TEM) 

Tissues for transmission electron microscope analysis were prepared by University 

of Michigan Microscopy Core and images were acquired using Philips CM-100 

transmission electron microscope. 

Flow Cytometry  

Pancreatic single cell suspensions were prepared as described119 by mincing the 

tissue and then digesting in 1mg/mL collagenase IV (Sigma-Aldrich) at 37°C for 15-20 

minutes. Digested samples were filtered through a 40µm strainer and subjected to a red 

blood cell lysis step. Samples were submitted for flow analysis in HBSS with 2% FBS. 

Antibodies were used in combinations of the following: CD45-Pacific Orange (1:50, BD 
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Pharm), PDGFR⍺-PE (1:50 BD Pharm), PDGFR⍺-PECy7 (1:50 BD Pharm). 

Fluorescence activated cell sorting (FACS) was performed on a MoFlo Astrios (Beckman 

Coulter) and data analyzed using Summit 6.1 Software and Flow Jo 10.6. The gating 

strategy was as follows: cells were first selected on forward (FSC-A) and side (SSC-A) 

scatters to exclude debris. Then single cells were gated based on SSC-H versus SSC-W 

and FSC-H versus FSC-W parameters. Alive cells were selected from an SSC-H versus 

DAPI plot. Non-immune cells were selected from an SSC-H versus CD45-Pacific Orange 

plot. At least 1x105 events that pass these selection parameters were recorded for each 

sample. Further gating based on PDGFR, YFP, and Tomato parameters was used to 

analyze and sort the cells. 

Statistical Analysis 

The student t-test with Welch’s correction or non-parametric Brown-Forsythe and 

Welch ANOVA using Dunnett’s T3 multiple comparisons tests were performed by the 

Graphpad Prism 8 software to analyze the statistical differences between experimental 

cohorts. Significance was established for p-values < 0.05. All data presented as mean +/- 

standard error (SEM). 

Results 

Gli1+ fibroblasts are present in the healthy and neoplastic pancreas 

A well-established model for pancreatic carcinogenesis involves the targeted 

expression of mutant Kras in the murine pancreas. Oncogenic mutations in Kras are a 

near universal feature of human pancreatic cancer165 and occur early during disease 

progression166,167. Expression of mutant Kras in genetically engineered mice leads to the 

formation of pancreatic intraepithelial neoplasia, PanIN, that with time, or additional 
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genetic manipulation, progress to cancer. Using a Gli1EGFP/+ reporter, we conducted a 

detailed analysis of Gli1 expression in the normal pancreas, in PanINs, and in pancreatic 

cancer. 

First, we examined the pancreata of healthy young adult mice between 4-8 weeks 

of age that are heterozygous for Gli1eGFP/+. Gli1eGFP/+ is a knock-in allele that faithfully 

recapitulates the expression of the endogenous locus (Figure 2-1A). The mice lack one 

functional allele of Gli1 but are nevertheless viable and fertile168. Since the natural 

fluorescence of EGFP does not persist following fixation and paraffin embedding, we used 

an anti-GFP antibody to visualize the reporter expression in immunohistochemistry (IHC) 

or immunofluorescence (IF). We observed Gli1+ cells in a perivascular location in the 

healthy pancreas, in a similar position previously described in the kidney, liver, lung, 

heart, and bone 131,157–159 (Figure 2-1B). IF staining with alpha smooth muscle actin 

(⍺SMA) and PDGFRb, both fibroblast markers, indicated that, as previously described for 

the Hedgehog target gene Ptch1100, Gli1 is expressed only in pancreatic fibroblasts 

(Figure 2-1C).  

Next, to evaluate Gli1 in PanIN lesions, we crossed Ptf1aFlpO/+;KrasFSF-G12D/+ (KF) 

mice with the Gli1EGFP/+ reporter, generating KF;Gli1eGFP/+ mice (Figure 2-1A). KF mice44, 

similar to the Cre-based KC mice41, can recapitulate the progression of pancreatic cancer, 

though they rarely spontaneously develop neoplastic lesions41. PanIN lesions were 

accelerated in KF mice by inducing acute pancreatitis in mice aged 5-8 weeks as 

previously described45–47. As expected, we observed widespread PanIN development in 

KF;Gli1EGFP/+ mice 3 weeks following acute pancreatitis. Immunostaining for EGFP 

revealed conspicuous positive staining limited to the stroma  (Figure 2-1B). As in the 
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healthy pancreas, staining was limited to the fibroblasts (SMA+ and PDGFRb+ cells) and 

not detected in epithelial cells (Figure 2-1C). Finally, to examine Gli1 in high-grade PanINs 

and pancreatic cancer, we generated KF;Trp53FSF/+;Gli1eGFP/+ mice (Figure 2-1C). In these 

animals, FlpO recombinase activates the oncogenic Kras allele while also deleting one 

copy of the tumor suppressor Trp53, thus essentially mimicking the commonly used KPC 

model48. These mice were aged for approximately 20 weeks until becoming moribund. In 

advanced disease progression, Gli1 can become expressed in epithelial cells30. We 

observed that the expression of the EGFP reporter in this cohort resembled that of low-

grade lesions, with prevalent stromal expression  (Figure 2-1B, C). Thus, Gli1 expression 

is present in a small subset of fibroblasts in the normal pancreas and becomes more 

prevalent in the neoplastic pancreas, and in pancreatic cancer. We observed no 

expression of the EGFP reporter in amylase-expressing acinar cells (Figure 2-1C). 

Then, we used flow cytometry to obtain a quantitative measure of Gli1+ fibroblasts 

in the healthy and neoplastic pancreas using PDGFRa, as a cell surface marker for 

fibroblasts. The expression of EGFP was limited to PDGFRa+ cells in healthy and 

neoplastic pancreata alike (Figure 2-1D), as we observed minimal expression of EGFP in 

CD45+ immune cells (data not shown). Among PDGFRa+ cells, the mean EGFP positivity 

was 21% in the healthy pancreas, 62% in low-grade lesions, and 39% in high-grade 

lesions/cancer (Figure 2-1D). Together our data show that Gli1 expression is limited to a 

subset of fibroblasts in the healthy pancreas. In the neoplastic pancreas, Gli1 expression 

expands to a larger proportion of fibroblasts, a finding that might be explained by either 

de novo expression of Gli1 or expansion of Gli1+ cells. 
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Pancreatic stellate cells (PSCs) have long been presumed to be the predominant 

mesenchymal population62. PSCs, similar to the hepatic stellate cells, store vitamin A in 

lipid droplets in the cytoplasm53, which are visible as electron-dense inclusions in TEM 

images. Intrigued by the mesenchymal populations of the healthy pancreas, we used 

Transmission electron microscope (TEM) to visualize and confirm the existence of both 

PSCs and fibroblasts in healthy mouse pancreata (Figure 2-1E).   



 35 

 

Figure 2-1 Gli1+ fibroblasts are present in healthy and neoplastic pancreas. (A) Genetic schemes for the knock-in Gli1eGFP/+ 

reporter mouse models. (B) Immunohistochemical (IHC) staining for YFP. Insets have no Gli1eGFP/+ reporter. (C) 
Immunofluorescence (IF) staining of GFP(green), SMA(red), and AMY(pink); and GFP(green), PDGFR(red), and CK19(pink). 
(D) Representative flow cytometry plot of GFP against PDGFR⍺, gated on DAPI- CD45- cells, and quantification of the 
percentage of GFP+ PDGFR⍺+ cells at the different disease stages (n≥5). All data expressed as mean +/- SEM. (E) TEM images 
of a healthy mouse pancreas. Scale bar = 50um 
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Establishing a lineage tracing approach for Gli1+ fibroblasts 

We established a lineage tracing approach to follow the fate of Gli1+ fibroblasts. 

For this purpose, we bred Gli1CreERT/+ knock-in mice with mice conditionally expressing 

YFP or tdTomato from the Rosa6 locus, Rosa26LSL-YFP/LSLYFP hereby RYFP or RTom 

(Figure 2-2A). In the resulting dual transgene progeny, administration of tamoxifen 

induces Cre recombination, permanently labelling those cells expressing Gli1 and their 

progeny.  

To examine Gli1-expressing cells in the healthy pancreas, mice aged 5-8 weeks 

old were administered tamoxifen daily for 5 consecutive days by oral gavage, and then 

analyzed a week later (Figure 2-2B). As expected, immunostaining for YFP in 

Gli1CreERT/+;RYFP mice showed an expression pattern similar to the Gli1eGFP mouse 

(Figure 2-2C). Labeled Gli1 cells often colocalized with fibroblast markers such as SMA 

and PDGFRb (Figure 2-2D). Gli1+ cells did not colocalize with Lyve-1+ lymphatic 

endothelial cells, though were closely associated, but not overlapping, with NG2+ 

pericytes (Figure 2-2D).  

We sought to validate that our lineage tracing system sufficiently labeled the 

healthy Gli1 population. We crossed our Gli1CreERT/+;RTom mice into Gli1EGFP/+ mice to 

generate Gli1CreERT/+;Rtom;Gli1EGFP/+ transgenic animals that allowed us to compare real-

time expression of Gli1 with short-term lineage-tracing (Figure 2-2E). A week after 

tamoxifen administration, we harvested the healthy tissue and looked at the expression 

of the two fluorescent reporter genes. In this model, we found that the recombination-

induced tdTomato expression was closely associated, if not colocalized, with EGFP 

expression (Figure 2-2F).  
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To obtain a quantitative measure of the YFP in our healthy Gli1CreERT/+;RYFP mice, 

we performed flow cytometry as previously described. On average, 3% of the 

PDGFRa positive cells were labelled by YFP (Figure 2-2G). Consistent with our direct 

reporter, immune cells (CD45+) did not express YFP (Figure 2-2H). By gating exclusively 

on live YFP+ cells, we conclude that fewer than 10% of the Gli1CreERT/+;RYFP cells are 

CD45 positive. Almost all are PDGFRa positive (82%), and about 30% of the YFP+ cells 

co-express mesenchymal stem cell marker, CD105 (Figure 2-2I). Overall, our analysis 

revealed that the Gli1CreERT allele recombined the expected cell population, and that 

about a sixth of the Gli1-expressing cells in the pancreas were successfully recombined. 

Some discrepancy from the expression of a gene and CreER-mediated recombination is 

expected, and likely exacerbated in this case by the low level of expression of Gli1. 

However, the recombination efficiency was sufficient to track these cells during 

carcinogenesis. 
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Figure 2-2 CreERT model labels healthy adult Gli1-expressing fibroblasts. (A) Genetic scheme for Gli1CreERT/+ crossed with 
either a Rosa26YFP/+ or a Rosa26tdTomato/+ reporter. (B) Experimental design for examining healthy adult mice expressing Gli1 in 
the pancreas. Adult mice aged 5-8 weeks were given tamoxifen gavages (4mg/mouse/day) for 5 days. Tissue was examined one 
week after completing gavages. (C) IHC staining for YFP, and (D) IF staining of Lyve-1(green), Tomato(red), DAPI(blue); 
NG2(green), Tomato(red); DAPI(blue); PDGFR(green), Tomato(red), DAPI(blue), and SMA(green), Tomato(red), DAPI (blue) 
in Gli1CreERT/+;RTom samples. (E) Genetic scheme for a Gli1CreER/+;Gli1EGFP/+,RTom mouse model. (F) IF staining of GFP and 
tomato in the Gli1CreERT/+;Gli1EGFP/+;RTom mouse. (G) Representative YFP vs PDGFR⍺, flow cytometry plots of DAPI- cells in a 
healthy Gli1CreERT/+;RYFP mouse and wildtype control. Flow cytometry quantification of the percentage of YFP+ PDGFR⍺+ cells 
in Gli1CreERT/+;RYFP mouse and wildtype control (n≥10), p = 0.0001. (H) Representative YFP vs CD45 flow cytometry plot. (I) 
Flow cytometry quantification of the percentage of YFP+ cells that express CD45, PDGFR⍺, or CD105. All data expressed as 
mean +/- SEM. Scale bar = 50um. 
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Gli1+ fibroblasts expand during the formation of neoplastic lesions in the pancreas 

While the healthy pancreas consists mostly of epithelial cells, pancreatic cancer 

and the precursor lesions known as PanINs, are characterized by extensive accumulation 

of fibroinflammatory stroma122. KF mice29, like their counterpart KC166, are born and reach 

adulthood with a normal pancreas, notwithstanding the expression of oncogenic Kras. 

Lesions occur spontaneously and stochastically, but can be accelerated by the induction 

of acute pancreatitis169. We crossed our Gli1CreERT/+;RYFP mice with the KF model to 

generate KF;Gli1CreERT/+;R26YFP mice (Figure 2-3A). To determine the contribution of 

Gli1+ fibroblasts to the fibrotic reaction, we administered tamoxifen to experimental and 

control mice when they reached 5-8 weeks of age, prior to the occurrence of spontaneous 

lesions. Then we induced acute pancreatitis and harvested the tissue 3 weeks later 

(Figure 2-3B). The 3-week time point was chosen because we and others have shown 

that this is when the pancreas parenchyma is almost completely replaced with low-grade 

PanIN lesions surrounded by an extensive fibroinflammatory reaction. We performed IHC 

for YFP, and found Gli1+ progeny were significantly more abundant in the neoplastic 

tissue than in the healthy tissue (Figure 2-3C,D). As in the healthy pancreas, Gli1 

expression was confined to the fibroblasts (PDGFRb) and excluded from ductal or acinar 

epithelial cells (Figure 2-3E). Furthermore, Gli1CreERT/+;RYFP mice without KF alleles 

exposed to the same treatment fully recovered from pancreatitis (Figure 2-3F), and in 

these tissues YFP expression resembled that of untreated healthy mice. 

To determine whether Gli1+ progeny persist through cancer progression and 

without an acute inflammation induction event, we generated KPF;Gli1CreERT/+;RYFP mice 

(Figure 2-4A). We administered tamoxifen as these animals reached early adulthood (5-



 40 

8 weeks), and then let them develop lesions with time. We harvested the pancreata when 

the mice were expected to harbor both high-grade PanIN lesions and malignant disease, 

approximately 18 weeks after labelling, and found Gli1+ fibroblasts still present in the 

stroma (Figure 2-4B, C, D).  

Unlike the normal pancreas, the neoplastic tissue contains a myofibroblast-like 

population characterized by the expression of smooth muscle actin (SMA). We observed 

partial co-localization of YFP and SMA in both KF and KPF lineage models (Figure 2-4E). 

By quantifying the dual IF stain we observed lineage-traced Gli1+ cells on average 

contributed to less than half of the myofibroblast population (Figure 2-4F). Meanwhile, the 

majority of our lineage-traced Gli1+ cells are myofibroblastic: an average of 76% of the 

YFP+ cells in the KF model co-expressed SMA and an average of 70% of the YFP+ cells 

in both models co-expressed SMA (Figure 2-4F, lower panel). Healthy resident Gli1+ 

fibroblasts expand and contribute to the SMA+ myofibroblast population during 

carcinogenesis.  
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Figure 2-3 Gli1+ fibroblasts lineage-traced before pancreatitis-induced PanIN lesion formation contribute to the stroma. 
(A) Genetic scheme for a KF;Gli1CreERT/+;RYFP mouse. (B) Experimental design for labelling adult (5-8wks old) mice before 
PanIN generation. Adult mice 5-8 weeks old were given 5 tamoxifen gavages and rested a week before two days of caurelein 
injections to induce pancreatitis. After 3 weeks, mice were harvested. (C) IHC staining for YFP in KF;Gli1CreERT/+;RYFP and KF 
control tissue (inset) labelled before PanIN generation. Scale bar = 100um. (D) Quantification of YFP positive staining area from 
IHC (n≥8) (E) IF staining on KF;Gli1CreERT/+;RYFP and KF control (inset) samples of YFP(green), PDGFR(red), CK19(white), 
DAPI (blue); YFP(green), SMA(red), Amylase(pink), DAPI(blue); YFP(green), PDPN(red), ECAD(white), DAPI(blue); and 
YFP(green), CD105(red), and DAPI(blue). Scale bar = 50um. (F) A representative YFP IHC image of a Gli1CreERT/+;RYFP 
mouse following the same acute pancreatitis labelling scheme. Scale bar = 100um 
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Figure 2-4 Gli1+ fibroblasts contribute to the stroma when lineage-traced in a spontaneous pancreatic carcinogenesis 
model. (A) Genetic scheme for a KPF;Gli1CreERT/+;RYFP mouse. (B) Experimental design for labelling adult mice (5-8wks old) 
before aging. Adult mice 5-8 weeks old were given 5 tamoxifen gavages and were harvested upon evidence of disease burden. 
(C) IHC staining for YFP in KPF;Gli1CreERT/+;RYFP and KPF control (inset) mice. Scale bar = 100um. (D) IF staining for 
YFP(green), SMA(red), Amylase(gray), and DAPI(blue); and YFP(green), PDPN(red), ECAD(white), DAPI(blue) in 
KPF;Gli1CreERT/+;RYFP and KPF control (inset) samples. Scale bar = 50um. (E) Merged and single channel IF images for 
YFP(green), SMA(red), and DAPI(blue) in KF and KPF Gli1CreER;RYFP samples. Scale bar = 50um. (F) IF quantification of the 
percentage of SMA+ cells that co-express YFP in lineage-traced KF and KPF samples (n≥5). (F) IF quantification of the 
percentage of YFP+ cells that co-express SMA in lineage-traced KF and KPF samples (n≥8). All data expressed as mean +/- 
SEM. 
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The pancreas is home to heterogenous fibroblast populations that differentially 

contribute to the neoplastic stroma 

We then sought to determine whether all pancreatic fibroblast populations expand 

during carcinogenesis. For this purpose, we sought to track a different population of 

fibroblasts, namely Hoxb6+ cells. The homeobox factor Hoxb6 is widely expressed in the 

mesenchyme of the developing pancreas, and regulates the embryonic development of 

the organ160. To assess the expression of Hoxb6 in the adult pancreas, we followed a 

similar strategy to that described before for Gli1. We generated Hoxb6CreERT/+;RYFP or 

Hoxb6CreERT/+;RTom, administered tamoxifen once they reached adulthood, and 

harvested the tissues one week later (Figure 2-5A, B). Interestingly, the distribution of 

Hoxb6+ fibroblasts appeared different than that of Gli1+ fibroblasts, with the former being 

interspersed in the pancreas parenchyma, rather than concentrated around blood vessels 

and ducts (Figure 2-5C). Though like Gli1, Hoxb6 labels a small subset of cells in the adult 

pancreas and is limited to fibroblasts, with no expression in other cell compartments, 

including endothelial cells (Figure 2-5D-G).  

To determine whether Gli1+ and Hoxb6+ fibroblasts indeed represented different 

cell populations, we generated Hoxb6CreERT/+;RTom;Gli1eGFP/+ mice to dual label the 

populations (Figure 2-6A). To maximize labeling of Hoxb6+ cells, we first administered 

tamoxifen by oral gavage, as previously described, and then placed the mice on 

tamoxifen chow for three weeks before harvesting the tissue (Figure 2-6B). Although the 

low frequency of each cell population complicated the analysis, we detected mainly single 

labeled tdTomato+ or EGFP+ cells, and, less frequently, cells expressing both reporters 

(Figure 2-6C). To obtain a quantitative measure, we performed flow cytometry on the 
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pancreata from mice expressing one or both reporters. In Hoxb6CreERT/+;RYFP mice, an 

average of 6% of the PDGFRa+ fibroblasts were labeled with the reporter (Figure 2-5E). 

In the dual labelled Hoxb6CreERT/+;RTom;Gli1eGFP/+ mice, we observed closer to 20% 

PDGFRa+ cells that only expressed tdTomato, the Hoxb6 marker (Figure 2-6D). The 

higher incidence of Hoxb6 in the later experiment can be attributed to the additional three 

weeks of tamoxifen chow, allowing a more complete recombination, and a stronger 

fluorophore to detect in flow analysis. In the Hoxb6CreERT/+;RTom;Gli1eGFP/+ mice, about 

10% of PDGFRa+ cells express both Hoxb6 and Gli1 (Figure 2-6D). We conclude that 

Hoxb6 expression sufficiently captures a healthy mesenchymal cell population within the 

healthy pancreas, distinct from those that express Gli1, and with only occasional overlap.  

Now, with these separate fibroblast markers, we could finally address whether 

healthy resident fibroblasts expand equally during carcinogenesis. Thus, we generated 

KF;Hoxb6CreERT/+;RYFP mice (Figure 2-7A). We labelled Hoxb6+ expressing cells prior to 

lesion formation, and harvested the tissue 3 weeks after inducing pancreatitis, as 

described above for Gli1+ traced animals (Figure 2-7B). As expected, the pancreas 

parenchyma in these animals was replaced by widespread PanIN lesions and 

surrounding stroma, and mice without KF alleles fully recovered from pancreatitis (Figure 

2-7C, D). Within the stroma, labelled fibroblasts were rare (Figure 2-7D). Flow cytometry 

analysis confirmed these observations: while Gli1+ cells give rise to an average of 14% 

of the fibroblasts within the stroma, Hoxb6+ cells give rise to only 2% (Figure 2-7E, F). 

Finally, we altered our experimental design, inducing pancreatitis in adult mice, 

and then inducing Cre recombination two weeks later to examine the overall expression 

of Gli1 and Hoxb6 in PanINs, and to determine the extent of de novo expression of either 
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marker. The pancreata were harvested 3 weeks after the induction of pancreatitits in this 

experiment (Figure 2-8A). IHC and flow cytometry analysis showed a slightly higher 

prevalence of Gli1+ fibroblasts (an average of 20% of PDGFRa+ cells) than in the samples 

labeled prior to PanIN formation, indicating that Gli1 may be activated de novo in cells 

that were previously not expressing it (Figure 2-8B, C). In contrast, the expression of 

Hoxb6 was still rather minimal and observed in only about 2% of the PDGFRa+ fibroblasts 

(Figure 2-8B, C).  

To expand on an observation that our Gli1+ traced cells often remained near 

neoplastic epithelial cells, we revisited our KF;Gli1CreERT/+;RYFP samples and examined 

areas of lesser lesion burden. In those areas, we noticed that our lineage-traced Gli1+ 

cells surround the nascent areas of acinar to ductal metaplasia and PanINs (Figure 2-9A). 

A subset of pancreatic fibroblasts in PDAC are described as SMA+ myofibroblast-CAFs 

(myCAFs) and are positioned adjacent to the epithelial cancer cells93. We co-stained our 

lineage-traced Gli1+ cells with aSMA to further examine if our Gli1+ were myofibroblast-

like myCAFs. The resulting staining around these early lesions suggested not all YFP+ 

cells were SMA+, and not all SMA+ cells were YFP+ (Figure 2-9B). Gli1+ fibroblasts may 

play a myCAF-like role in nascent lesion development, however even at this earliest stage 

fibroblast heterogeneity is present. In summary, our data show that the healthy pancreas 

is home to heterogenous fibroblast populations, which have a differential potential to 

expand during the process of carcinogenesis. While we were able to lineage trace two of 

these populations, our data also indicates that other progenitors for the fibrotic stroma 

must exist, to contribute to the remaining fibroblast populations.  
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Figure 2-5 Hoxb6 labels a subset of mesenchymal cells in the healthy pancreas. (A) Genetic scheme for Hoxb6CreERT/+ 
crossed with either a RYFP reporter or RTom reporter. (B) Experimental protocol for examining healthy adult mice expressing 
Hoxb6 in the pancreas. Adult mice aged 5-8 weeks were given tamoxifen gavages (4mg/mouse/day) for 5 days. Tissue was 
examined one week after completing gavages. (C) IHC staining for YFP. (D) IF staining of SMA(green), Tomato(red), DAPI 
(blue); CD31 (green), Tomato (red), DAPI (blue); Vimentin (green), Tomato (red), DAPI (blue); and PDGFR (green), 
Tomato(red), DAPI (blue) in Hoxb6CreERT/+;RTom tissue. Scale bar = 50um. (E) Representative PDGFR⍺+ flow cytometry plots 
of DAPI- cells in a Hoxb6CreERT/+;RYFP mouse and wildtype control, and quantification of the percentage of YFP+ PDGFR⍺+ 
cells (n≥5), p = 0.0001. (F) Representative YFP vs CD45 flow cytometry plot. (G) Flow cytometry quantification of the 
percentage of YFP+ cells that express CD45, PDGFR⍺, or CD105. All data expressed as mean +/- SEM. 
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Figure 2-6 Hoxb6 and Gli1 are expressed in different populations. (A) Genetic scheme for a Hoxb6CreERT/+;RTom;Gli1EGFP/+ 
mouse model. (B) Experimental design for examining healthy Hoxb6CreERT/+;RTom;Gli1EGFP/+ mice. Adult mice aged 5-8 weeks 
were given tamoxifen gavages (4mg/mouse/day) for 5 days. Mice were then placed on tamoxifen chow for 3 weeks. Tissue was 
examined one week after completing chow regimen (C) IF staining of GFP and Tomato in the Hoxb6CreERT/+;RTom;Gli1EGFP/+ 
mouse. Scale bar = 50um. (D) Flow cytometry quantification of the percentage of healthy CD45- PDGFR⍺+ cells that expressed 
either Rtom+GFP-, RTom+GFP+ or Rtom-GFP+ in Hoxb6CreERT/+;Rtom;Gli1EGFP/+ or control mice (n≥6). All data expressed as 
mean +/- SEM. 
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Figure 2-7 Hoxb6+ fibroblasts lineage-traced before pancreatitis-induced PanIN lesion formation do not contribute to the 
stroma. (A) Genetic scheme for the KF;Hoxb6CreERT/+;RYFP model. (B) Experimental design to labelling adult (5-8wks old) 
mice before PanIN generation. Adult mice 5-8 weeks old were given 5 tamoxifen gavages and rested a week before two days of 
caurelein injections to induce pancreatitis. After 3 weeks, mice were harvested. (C) A representative Hoxb6CreERT/+;RYFP mouse 
labelled before PanIN generation. Scale bar = 100um (D) IHC staining for YFP (scale bar = 100um) and IF of YFP(green), 
PDGFR(red), CK19(white), DAPI (blue) and YFP(green), SMA(red), Amylase (pink), DAPI (blue) (scale bar = 50um) in 
KF;Hoxb6CreERT/+;RYFP and KF control (inset) mice labelled before PanIN generation. (E) Representative YFP vs PDGFR⍺ flow 
cytometry plot of DAPI-, CD45- cells in a KF control, KF;Gli1CreERT/+;RYFP, and KF;Hoxb6CreERT/+;RYFP mouse (F) Flow 
cytometry quantification of the percentage of CD45- PDGFR+ cells that express YFP in lineage-traced Gli1 and Hoxb6 mice and 
their controls (n≥5). 
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Figure 2-8 Gli1+ healthy cells still contribute more than Hoxb6 to PanIN lesion stroma when labelled after lesion 
generation. (A) Experimental design for labelling after PanIN generation. Adult mice 5-8 weeks old were given caerulein 
injections, rested for 2 weeks, and then given five gavages of tamoxifen before tissue collection. (B) IHC staining for YFP in 
KF;Gli1CreERT/+;RYFP and KF;Hoxb6CreERT/+;RYFP mice labelled after PanIN generation. KF control mice in insets. Scale bar = 
100um. (C) Flow cytometry quantification of the percentage of CD45-PDGFR+ cells that express YFP in KF;Gli1CreERT/+;RYFP 
and KF;Hoxb6CreERT/+;RYFP mice labelled after PanIN generation (n≥2). All data expressed as mean +/- SEM. 
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Figure 2-9 Lineage-traced Gli1 fibroblasts are present around the earliest lesion development. (A) IHC staining for YFP in 
KF;Gli1CreERT/+;RYFP mice labelled before PanIN generation. Scale bar = 100um. (B) IF merged and single channel images for 
YFP (green), SMA (red), and amylase (pink) in KF;Gli1CreERT/+;RYFP mice. Scale bar = 50um. 
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Discussion 

In the pancreas, the mesenchyme surrounds and supports epithelium 

development though epithelial-mesenchymal crosstalk 51 and differentiates to form cell 

types such as fibroblasts, pancreatic stellate cells, and pericytes 52,53. Activated 

fibroblasts, also known as myofibroblasts, help regulate wound repair and recovery54,55, 

but in the context of certain pancreatic diseases, such as chronic pancreatitis and 

pancreatic cancer, the fibrosis is not resolved. Pancreatic adenocarcinoma is associated 

with an extensive fibroinflammatory stromal reaction. Fibroblasts are an abundant, active, 

and heterogeneous player within the tumor microenvironment. Currently, functionally 

distinct subclasses of CAFs have been defined in other cancers such as breast 

carcinoma21,56, colorectal carcinoma57, and lung adenocarcinoma22. In pancreatic cancer, 

a putative mesenchymal stem cell population has been identified in mouse and human 

samples16,17, and CAFs have been classified into myCAF, iCAF, and apCAF populations 

with potentially distinct functions and activation pathways14,15,23.  

Here, we sought to determine which fibroblasts in the healthy pancreas give rise 

to CAFs during the progression of carcinogenesis. A population of pancreatic stellate 

cells, containing lipid droplets with vitamin A deposits, similar to the liver hepatic stellate 

cells, has been described49,58,59 and is traditionally considered the source of the fibrotic 

reaction in pancreatic cancer. However, no experimental validation supports the notion 

that stellate cells lead to CAFs. Recent single-cell transcriptomic profiles of healthy or 

low-grade lesion fibroblast populations have been mapped in silico to CAFs, which 

suggests that resident pancreatic fibroblasts do contribute to CAFs26,28. In order to directly 
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trace resident fibroblast populations, we first needed to define markers of distinct 

populations of fibroblasts. 

We characterized two different populations of pancreatic fibroblasts present in the 

healthy organ by the expression of the transcription factors Gli1 and Hoxb6. Gli1 is a 

target gene and transcriptional effector of the Hedgehog signaling pathway (for review 

see 31,60). Hedgehog signaling is active throughout embryonic development of the 

gastrointestinal tract but needs to be suppressed to allow for the formation of the pancreas 

anlage 60–62.  However, some low level of Hedgehog signaling persists63 to maintain 

homeostasis and assist in injury recovery 35,64,65. Thus, we found that a subset of 

fibroblasts in the healthy pancreas consistently express Gli1 and do not have 

characteristics of stellate cells. Meanwhile, Hoxb6 is expressed throughout the 

mesenchyme of the developing pancreas66, and in a portion of fibroblasts in the adult 

organ. While there is partial overlap in Gli1 and Hoxb6 expressing cells, largely they 

consist of separate populations. We thus set out to lineage trace these populations with 

the goal to answer the following questions: 1) whether either fibroblast population gives 

rise to CAFs; 2) whether all fibroblast populations expand during carcinogenesis; and 3) 

whether different functional CAF subpopulations derive from different progenitors in the 

healthy pancreas.  

Gli1+ fibroblasts have been lineage-traced in several organ fibrosis models. 

Following injury, the majority of Gli1+ cells acquire SMA expression and contribute to 

fibrosis131. Approximately 40% of myofibroblasts in the kidney, liver, and lung, and 60% 

myofibroblasts in the heart originated from tissue-resident Gli1+ progenitors after a 

fibrosis-inducing injury131,156. In addition, Gli1 progenitors contribute about half of the 
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myofibroblasts in instances of endochondral heterotopic ossification and bone marrow 

fibrosis156,159. Gli1+ fibroblasts have not been characterized in the pancreas, and their 

contribution to tumor-associated fibroblasts has not yet been studied. We found Gli1 to 

be expressed in 3-20% of healthy PDGFRa+ fibroblasts, adjacent to pericytes and 

localized in a perivascular position. When we lineage-traced the progeny of healthy Gli+ 

fibroblasts, we found they expanded in quantity and contributed to CAFs. 

Hoxb6 is a developmental transcription factor prominently expressed in the 

pancreas mesoderm until E16.5160. We show that Hoxb6 expression is present in the 

healthy mouse pancreas in 7-20% of PDGFRa+ fibroblasts and not in immune cells. We 

had hypothesized that this fibroblast subpopulation would expand and contribute to the 

fibrotic stroma in a similar manner as the Gli1+ population due to the relative prevalence 

of the cells and due to the occasional overlap between Hoxb6 and Gli1 expression. 

Interestingly, as we lineage-traced Gli1 and Hoxb6 cells from the healthy pancreas into 

carcinogenesis, we found that they contributed in a very different manner to the stroma. 

While Gli1+ fibroblasts expanded during carcinogenesis, Hoxb6+ cells failed to do so. 

Further, the expression of Gli1 was extensive in lesion and up to advanced disease, while 

Hoxb6 expression did not increase (Figure 2-10).  

Our findings suggest that not all resident fibroblast populations expand and 

transition into cancer-associated fibroblasts within the pancreas, and that fibroblasts are 

heterogenous with separate functional roles even at the healthy stage. Gli1+ cells likely 

are contributing to the tumor-associated myCAF population, though it is worth noting that 

even within the Gli1+ cells of the healthy pancreas, there is heterogeneity. For instance, 

a subset of Gli1+ cells also express Hoxb6. This dual positive population does not appear 
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to proliferate since we observed minimal Hoxb6+ fibroblasts among the PanIN stroma 

when we lineage-traced Hoxb6+ cells. However, Hoxb6+ fibroblasts could conceivably be 

proliferating and dying before our analysis time points. We hypothesize that a Gli1+ 

Hoxb6- subset is proliferating, but unfortunately due to the fact that Hoxb6 has close 

homology with other homeobox genes, further antibody or RNA -based investigation is 

hindered. Instead, an investigation into the fate, function, and drivers of other fibroblast 

populations is needed to best comprehend the complexity of the fibrotic reaction. Different 

CAF subpopulations may derive from different progenitors, as suggested in an 

experiment where the single-cell transcriptional profiles of two healthy fibroblast 

populations mapped closer to the tumor-associated myCAF or iCAF populations than to 

themselves26.  

Understanding the complexity of fibroblasts in healthy organs and disease has 

been hampered by the limited availability of specific markers. Pancreatic cancer 

fibroblasts have long been assumed to derive from resident stellate cells49, with no in vivo 

experimental support. Here, we show that non-stellate cell fibroblast populations exist in 

the pancreas and they have the ability to expand during carcinogenesis. In addition, we 

determined that the ability to contribute to the cancer-associated stroma during 

carcinogenesis is unique to only some fibroblast subsets in the pancreas. It is important 

to note that Gli1+ fibroblasts give rise to less than half of the total fibroblast population 

during carcinogenesis, conservatively measured by our Cre-recombinase lineage model, 

indicating that other subsets with the ability to expand must exist in the healthy organ. 

Alternative sources of the CAFs may arise from other resident fibroblast populations, 

circulating progenitor cells from the bone marrow, or pericytes (reviewed in 6,67). Overall, 



 55 

these findings are consistent with fate-mapping experiments performed in the liver34,68, 

kidney34,69, heart34,70, lung34,71,72, spinal cord73, bone33, and skin74, in which resident 

fibroblasts proliferate in response to injury to contribute, at least partially, to the organ 

fibrosis. Our findings advance our understanding of how the pancreatic fibroinflammatory 

environment is established during carcinogenesis and offer new directions with which to 

examine the main stromal regulators of carcinogenesis, and eventually, improve patient 

outcome.  

 

 

 

 

Figure 2-10 Graphical Abstract. The healthy pancreas contains a heterogenous mix of fibroblasts. Lineage-tracing Gli1-
expressing fibroblasts results in expansion and contribution to cancer-associated fibroblasts. In contrast, lineage-tracing Hoxb6-
expressing fibroblasts results in no expansion.  
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Chapter 3 Conclusions and Future Directions 

 

Summary and Conclusions 

Pancreatic cancer is characterized by a highly fibroinflammatory stroma. Cancer-

associated fibroblasts (CAFs) are a dominant, dynamic, and controversial component of 

the stroma. With developments in transcriptomic sequencing and animal modeling, 

researchers are now beginning to grasp the depth of the transcriptional and functional 

diversity of CAFs.  Fibroblast heterogeneity is becoming an increasingly likely explanation 

for the seemingly paradoxical tumor-promoting and tumor-repressive qualities of CAFs93.  

My thesis work sought to examine the origins of pancreatic CAFs and their heterogeneity, 

and to determine whether fibroblasts in the healthy pancreas give rise to CAFs during 

carcinogenesis.  

The healthy pancreas contains mesenchymal cells such as fibroblasts, pancreatic 

stellate cells (PSCs), pericytes, and mesenchymal stem cells37,53,55,60. The potential of 

these resident cells in populating the fibroinflammory environment is unknown partially 

due to a lack of appropriate markers and a fate-tracking model. We first identified two 

markers of healthy mouse fibroblast populations. Thanks to previous research done by 

our lab, we knew Gli1 was expressed in a subset of fibroblasts in the healthy and fibrotic 

pancreas17. Hoxb6 is a transcription factor active in the developing pancreas 

mesenchyme, but had not yet been examined in the context of the adult organ160. I found 

Gli1 and Hoxb6 expressing fibroblasts in the healthy pancreas to be in mostly spatially 
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distinct populations. Of interest, Gli1 fibroblasts are adjacent to pericytes and do not have 

the characteristics of pancreatic stellate cells (PSCs). Since PSCs have long been 

assumed to be the source of CAFs65, we were eager to track a non-PSC population 

through carcinogenesis.  

I labeled Gli1 and Hoxb6 cells respectively before lineage-tracing these 

populations during KRAS-driven carcinogenesis. We observed an expansion of Gli1+ 

cells, but not Hoxb6+ cells in the precursor and cancer- associated stroma. My findings 

suggest that some, but not all, resident fibroblasts can expand to contribute to the stroma. 

The majority of the Gli1+ traced CAFs express SMA, which is a marker for the 

myofibroblast phenotype currently explored in CAF heterogeneity37,38,93, though only 

about a third of SMA+ CAFs were Gli1+ derived. This is consistent with Gli1 lineage-tracing 

efforts in several organ fibrosis models. Approximately 40% of myofibroblasts in the 

kidney, liver, and lung, and 60% myofibroblasts in the heart originated from tissue-

resident Gli1+ progenitors after a fibrosis-inducing injury131,156. While Gli1+ cells contribute 

to myofibroblast CAFs, alternative sources of CAFs must exist.  

Taken together this work sheds light on the evolving fibroblast heterogeneity 

associated with pancreatic carcinogenesis. We are the first to show that a resident 

fibroblast population contributes to the fibroinflammatory environment of cancer in any 

organ, outside of fibrosis-associated wound repair. Several limitations of our model 

system do exist. One is that we may not be achieving complete recombination and 

labelling all of our cells of interest. We are likely underrepresenting the contribution of 

Gli1+ and Hoxb6+ cells to the stroma. Another limitation of our work is that we chose very 

few time points to examine the lineage-tracing progression. Hoxb6+ and Gli1+ may be 
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dynamically contributing to the stroma at an earlier time point prior to our notice, though 

we were limited by the complicated genetic modeling to do a more thorough time course 

analysis. Overall, a number of exciting avenues of exploration still remain to be 

investigated, such as whether the developmental origin of CAFs has any functional 

significance, how plastic or context-dependent these fibroblast populations are, and how 

this research translates to developing new therapeutic strategies for patients.    

 

Future Directions 

Investigating the functional significance of Gli1-derived cancer-associated fibroblasts 

Our findings show that Gli1+ fibroblasts expand to contribute to the CAF population. 

We have not addressed how this correlates with fibroblast function, and that should be 

the immediate next step for this project. As we are accumulating single-cell RNA 

sequencing data sets, we can perform a gene differential analysis of Gli1 or Hoxb6 

expressing cells in the healthy or cancerous pancreas. A GO enrichment analysis could 

elucidate any particular pathways our Gli1 and Hoxb6 cells upregulate as a way to 

investigate their function. The limitations to this are that we do not currently have any 

healthy pancreas data sets with enough fibroblasts or read depth to detect Hoxb6 or Gli1 

transcription levels. And while we can search for the genes in pancreatic cancer data 

sets, the data fail to provide information on cells that have derived from Gli1+ or Hoxb6+ 

progenitors.  

Another strategy to examine fibroblast population function is to ablate the 

population and observe the effects in tumor generation and stroma formation. The 

Diptheria toxin receptor (DTR) transgene is a popular strategy to kill cells of interest when 
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exposed to the toxin. Unfortunately, this strategy failed to ablate Gli1+ or Hoxb6+ cells due 

to a failure to localize the DT receptor to the membrane (Figure 3-1). Since we cannot 

easily target our cells of interest for ablation, an alternative strategy we explored utilized 

sorted fibroblast populations. We tested the ability of healthy Gli1 and lineage-traced 

KF;Gli1 cell cultures to impact tumor weight or growth over time when coinjected with 

tumor cells in nude mice. We observed no significant differences in tumor weight or 

growth between healthy Gli1 positive/negative populations or between lineage-traced 

KF;Gli1 positive/negative populations (Figure 3-2). A limitation is that the immune 

microenvironment is compromised in nude mice. Further experimentation using a 

syngeneic model or organoid co-culture may elucidate further functional differences 

between our fibroblast populations.  
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Figure 3-1 Diptheria toxin receptor (DTR)-assisted ablation of fibroblast subsets failed due to improper localization of 
receptor to the cellular membrane. A) Adult mice with Cre-inducible DTR and YFP expression received five tamoxifen 
gavages and then four DT injections (25ng/g BW) to conditionally ablate Gli1 or Hoxb6 cells. (B) Immunohistochemical staining 
for YFP revealed lack of ablation of Gli1 or Hoxb6 cells with DT treatment. (C) The protocol repeated with a pancreatic-specific 
Cre driver, Ptf1a-Cre, showed successful widespread acinar depletion via HE staining. (D) Next, adult Gli1CreER;R26DTR/YFP mice 
were treated with tamoxifen and then an injection of subcutaneous tumor cells before DT ablation. (E) Gli1 expression, as 
determined by qPCR, was not reduced in the tumors or pancreata of DT-treated mice. (F) Co-IF staining of DTR in Gli1CreER or 
Hoxb6CreER;R26DTR sections showed the receptor localized to the cytoplasm of the cell, and not the membrane. In contrast, in a 
Foxp3DTR model, the receptor is membrane-localized.  
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Figure 3-2 Subcutaneous tumor growth and weight was not affected by fibroblasts originating from Gli1+ cells. (A) Adult 
nude mice were given subcutaneous Matrigel injections consisting of 100K 7940bl KPC tumor cells and 400K fibroblasts on both 
sides of their flank. Tomato positive or negative fibroblasts were sorted from either healthy Gli1CreER/+;RTom or lineage-traced 
KF;Gli1CreER/+;RTom mice. Control injections of 100K 7940bl alone or 100K 7940bl with 400K KPF CAFs were used. (B) Cells 
were injected in adult nude mice. Tumor size was monitored for three weeks before harvesting the tumors for size and weight. 
(C) Tumor weight upon harvest for the experimental groups. There was no significant difference in tumor weight between Gli1 
positive and negative tumors (n≥5). (D) Tumor size over the period of tumor injection showed no significant difference in tumor 
growth between experimental groups. 
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Gli1 and Hoxb6 fibroblasts can be interrogated in vitro as well. I have sorted out 

positive and negative healthy labelled cell cultures based on YFP expression (Figure 

3-3A,C). Since Gli1 is a Hedgehog effector gene, we initially sought to determine if both 

the Gli1+ and Gli1- populations respond to Hedgehog signaling via a small molecule 

agonist called SAG (Figure 3-3B,D). Both Gli1+ and Gli1- cultures responded to the 

extrinsic SAG signal and upregulated Gli1, suggesting that the Gli1 may initially label a 

plastic, context-dependent population. Similarly, Hoxb6+ and Hoxb6- cultures trend 

towards responding to SAG. Further characterization of the fibroblast populations can 

proceed with these cultures, such as utilizing their conditioned media to detect 

polarization differences in macrophages or placing them in iCAF and myCAF culture 

conditions to further test their plasticity. 
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Figure 3-3 Response to Hedgehog agonist, SAG, is not limited to Gli1 or Hoxb6- sorted populations (A) Healthy 
Gli1CreER/+;RYFP cell cultures were generated by sorting YFP positive or negative CD45-PDGFR+ cells. Fluorescent imaging 
confirmed successful fibroblast sort. (B) Confluent, serum-starved Gli1CreER;RYFP cells were exposed to 600nM SAG for two 
days. Both Gli1 positive and negative cultures increased Hedgehog target, Gli1, and Hedgehog receptor, Ptch1, expression in 
response to SAG exposure. (C) Healthy Hoxb6CreER;RYFP cell cultures were generated by sorting YFP positive or negative 
CD45- PDGFR+ cells. Fluorescent imaging confirmed successful fibroblast sort. (D) Confluent, serum-starved Hoxb6CreER;RYFP 
cells were exposed to 600nM SAG for two days. Both Hoxb6 positive and negative cultures increased Hedgehog target, Gli1, and 
Hedgehog receptor, Ptch1, expression in response to SAG exposure.  

.  
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Finally, another avenue to functionally characterize these fibroblasts is with RNA 

analysis. Sorting via FACS allows us to isolate CD45 negative populations that do not 

express the fibroblast marker PDGFRa (PDGFRa-YFP-), fibroblast populations that do 

not express our lineage label (PDGFRa+ YFP-), and fibroblast populations which do 

(PDGFRa+ YFP+). Overall, the quantity of experimental mice has been low, and the 

resulting quantity and quality of fibroblast RNA even lower when sorted, but with more 

time to develop large KPF lineage-traced tumors, additional RNA interrogation of gene 

expression can proceed. Initial data has been collected on the sorted populations, 

looking at Gli1; HH receptor, PTCH1; myofibroblast marker, ACTA2; PSC marker, 

FABP4; and adipocyte marker, DLK1 (Figure 3-4).  
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Figure 3-4 RNA analysis of sorted fibroblast populations. Data presented as mean +/- SEM.  
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Utilizing the genetic models to answer other scientific inquires 

The dual recombinase models used to lineage-trace Gli1 and Hoxb6 cells are 

genetically complex and took several years to generate. Additional outstanding questions 

can be addressed using these tools, such as the developmental contributions to the adult 

mesenchyme and the contributions of healthy fibroblasts to pancreatitis.  

Hoxb6 was initially of interest to us since it is prominently and exclusively 

expressed in the pancreas mesoderm until E16.548. We had initially hypothesized that 

Hoxb6 could function as a pan-mesenchymal marker in the adult pancreas. While that 

proved to be false, only a fifth of the adult fibroblasts express Hoxb6, our lineage tracing 

model could be utilized to study developmental inquires. Another developmental 

mesenchymal marker, Nkx3.2, was lineage-traced throughout development and 

adulthood and found to differentiate into pericytes49. By exposing a pregnant female to 

tamoxifen chow, we can label Hoxb6 cells in utero and trace their contribution to the 

healthy mesenchyme, and even to the cancer-associated stroma. It is still relatively 

unexplored how developmental mesenchymal populations persist into adulthood and how 

their functional role may change.  

My research has focused on how Gli1 and Hoxb6 contribute to the fibrosis of 

carcinogenesis, though cancer is not the only fibrotic disease of the pancreas. Chronic 

pancreatitis is a painful disease with limited therapy options and a characteristic 

fibroinflammatory environment not dissimilar to pancreatic cancer72,82. We can lineage-

trace our resident fibroblasts throughout a model of chronic pancreatitis to determine if 

and how they contribute to that model of fibrosis. It would illuminate how unique a 

response the Gli1 expansion to carcinogenesis was and further interrogate the fibroblast 

heterogeneity and origins of chronic pancreatitis.  
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Investigating other sources of cancer-associated fibroblasts 

 Healthy Gli1-expressing fibroblasts contributed to about a fifth of the cancer-

associated fibroblast population. We assumed that resident Gli1+ fibroblasts are the 

cells responsible for such a contribution, but it is possible that bone-marrow derived 

Gli1+ cells may be translocating to the pancreas. In a quick investigation into that 

possibility, we performed a bone marrow transplant experiment (Figure 3-5). Bone 

marrow from bl6 Gli1lacz/+ mice was injected into wildtype bl6 mice. After a month of 

recovery, the mice received orthotopic injections of bl6 KPC tumor cells. Then, the 

tumors were analyzed for positive b-galactosidase staining which would indicate cells 

expressing Gli1 that derived from the bone marrow. We did not observe any positive 

staining in our mice, suggesting that Gli1+ cells likely do not originate from the bone 

marrow and we can assume they arose from resident pancreatic cells. 

While a certain amount of recombination inefficiency may result in our 

underestimation of the Gli1 contribution, there likely are alternative origins of the CAFs. 

A previous limitation to lineage-tracing fibroblasts was a lack of specific mesenchymal 

markers and no dual recombinase labelling system. We now can utilize the Flp-based 

KF model29 to label other cell populations, and with the advent of widespread single cell 

sequencing, we can mine the data of healthy fibroblast populations to find additional 

markers to lineage-trace. FABP4 is an adipogenic gene recently used to label 

pancreatic stellate cells. Crossing in a FABP4-CreERT allele into the KF model would 

allow us to trace PSCs throughout carcinogenesis. Similarly, obtaining NG2-CreERT, 
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WT1-CreERT, or PDPN-Cre mice can provide information about the fate of pericytes, 

mesothelium, and other fibroblasts during carcinogenesis.  

As we begin to deconvolute the fate, function, and drivers of fibroblast 

populations, we are improving our knowledge on the main regulators of tissue repair 

and carcinogenesis. With the data accumulated so far, it remains unclear if these 

fibroblast subsets are responsible for pro-tumor or anti-tumor effects. We ultimately 

seek to exploit any functional knowledge to target CAF populations that promote tumor 

growth and survival, so that we may improve the outcome for this deadly disease.  

 

 

 

Figure 3-5 Bone marrow transplant experiment to determine origin of Gli1+ cells (A) Experimental set-up for the three 
conditions. The main experimental condition had bl6 Gli1lacz/+ bone marrow transplanted into irradiated wildtype bl6 mice before 
bl6 KPC tumor cells were injected. The negative control condition had bl6 wildtype bone marrow transplanted into irradiated 
wildtype bl6 mice before bl6 KPC tumor cells were injected. The positive control condition only had bl6 Gli1lacz/+ mice receiving 
pancreatic orthotopic injections of bl6 KPC tumor cells. (B) Representative 10x images of the b-galactosidase staining performed 
on the three conditions. No positive staining was observed in the experimental group ( n≥3). 
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