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ABSTRACT

Video understanding has advanced quite a long way in the past decade, accomplishing
tasks including low-level segmentation and tracking that study objects as pixel-level seg-
ments or bounding boxes to more high-level activity recognition or classification tasks that
classify a video scene to a categorical action label. Despite the progress that has been made,
much of this work remains a proxy for an eventual task or application that requires a holistic
view of the video, such as objects, actions, attributes, and other semantic components.

In this dissertation, we argue that language could deliver the required holistic represen-
tation. It plays a significant role in video understanding by allowing machines to commu-
nicate with humans and to understand our requests, as shown in tasks such as text-to-video
search engine, voice-guided robot manipulation, to name a few. Our language-driven video
understanding focuses on two specific problems: video description and visual grounding.
What marks our viewpoint different from prior literature is twofold. First, we propose a
bottom-up structured learning scheme by decomposing a long video into individual pro-
cedure steps and representing each step with a description. Second, we propose to have
both explicit (i.e., supervised) and implicit (i.e., weakly-supervised and self-supervised)
grounding between words and visual concepts which enables interpretable modeling of the
two spaces.

We start by drawing attention to the shortage of large benchmarks on long video-
language and propose the largest-of-its-kind YouCook?2 dataset and ActivityNet-Entities
dataset in Chap. II and III. The rest of the chapters circle around two main problems: video
description and visual grounding. For video description, we first address the problem of de-

composing a long video into compact and self-contained event segments in Chap. IV. Given

Xvi



an event segment or short video clip in general, we propose a non-recurrent approach (i.e.,
Transformer) for video description generation in Chap. V as opposed to prior RNN-based
methods and demonstrate superior performance. Moving forward, we notice one poten-
tial issue in end-to-end video description generation, i.e., lack of visual grounding ability
and model interpretability that would allow humans to directly interact with machine vi-
sion models. To address this issue, we transition our focus from end-to-end, video-to-text
systems to systems that could explicitly capture the grounding between the two modalities,
with a novel grounded video description framework in Chap. VI. So far, all the methods are
fully-supervised, i.e., the model training signal comes directly from heavy & expensive hu-
man annotations. In the following chapter, we answer the question “Can we perform visual
grounding without explicit supervision?” with a weakly-supervised framework where mod-
els learn grounding from (weak) description signal. Finally, in Chap. VIII, we conclude the
technical work by exploring a self-supervised grounding approach—vision-language pre-
training—that implicitly learns visual grounding from web multi-modal data. This mimics
how humans obtain their commonsense from the environment through multi-modal inter-

actions.
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CHAPTER1

Introduction

1.1 Motivation

We are entering the era of video. Hundreds of hours of videos are uploaded to major
video sharing platforms like YouTube every single minute, with billions of views.! Short
video content has gained popularity among younger generations worldwidely.> Apart from
the significant social impact the videos are creating, from a research perspective, videos
could be regarded as a reflection of human knowledge (e.g., conversation, storytelling,
humor) and intelligence (e.g., instructional video), which makes researchers wonder how
the enormous video resources could open a new gate to general intelligence systems. We
name the discipline of information mining or learning from videos as video understanding.

Video understanding has been long framed as a pure computer vision problem, accom-
plishing tasks including low-level segmentation [5, 6, 7] and tracking [8, 9, 10, 11] that
study objects as pixel-level segments or bounding boxes to more high-level activity recog-
nition or classification tasks [12, 13, 14, 15] that classify a video scene to a categorical
action label. Despite the progress that has been made, much of this work remains a proxy
for eventual tasks or applications that require a holistic view of video content, such as

objects, actions, attributes, and other semantic components (see Fig. 1.1).

"https://merchdope.com/youtube-stats/
https://www.oberlo.com/blog/tiktok-statistics


https://merchdope.com/youtube-stats/
https://www.oberlo.com/blog/tiktok-statistics

ADOPTED
+ by mel ¢

Figure 1.1: We need more than object labels and action labels to understand a scene. For
instance, attributes help us disambiguate similar concepts and better ground the visual se-
mantics. (left) It is the person in a orange hoodie who is holding a dog, not the two girls
with the sign nor the people in the background. (right) The girl is sitting in the green chair
on the leftmost side, not the green one on the right side nor the ones in the distance.

In this dissertation, we argue that language could deliver the required holistic represen-
tation. It plays a significant role in video understanding by allowing machines to commu-
nicate with humans and to understand our requests, as shown in tasks such as text-to-video
search engine [16]°, voice-guided robot manipulation [17]%, to name a few. Our language-
driven video understanding focuses on two specific problems: video description and visual
grounding. Video description aims to describe the content of a video with a descriptive
natural language, allowing the summarization of video content in a human-understandable
fashion. Visual grounding aims to link semantics from language back into video, allowing
the interpretability in the communication. Our research was made possible as multi-modal
video-language data (e.g., video descriptions, subtitles) became prevalent and increasingly
accessible recently. The scale of datasets grows substantially (see Fig. 1.2), and the im-
portance of language in video understanding could no longer be overlooked. To what de-
gree could language benefit video scene understanding and how well could language be
grounded to visual semantics are among the prominent problems in the community.

Based on the video format, the current focus on video-language includes two major cat-

egories: open-domain trimmed short video clips and closed-domain uncurated long videos

3http://howto100m.inria.fr/youcook
“https://www.youtube.com/watch?v=4L6Q8sAjiCI
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Figure 1.2: Total video duration of video-language datasets over the past decade. Note that
our ANet-Entities dataset is based on the train & val splits of ActivityNet Captions [1].

(such as movies, sports, instructional videos). Video clips are usually a few second in length
and contain limited and focused content (e.g., a physical action). It is relatively well-studied
due to the existence of major benchmarks such as MPII-MD [18], M-VAD [19], and MSR-
VTT [20]. Long videos, however, are less-studied partially due to the lack of sufficient data
resources. We aim to fill this gap from both the data perspective and the model perspective,
and in particular, in the domain of instructional videos (e.g., cooking and assembling). In-
structional videos are engaging to the multi-modal learning community, partially because
they simulate a teaching-learning environment where the objective is to fulfill a complex
procedure through necessary steps. This unique problem setting enables researchers to de-
velop perception-based systems which are capable of learning new tasks, potentially with
less or no extra human intervention. Hence, in this work, we focus on this concrete and
grounded task: learning from instructional videos.

To address the shortage of instructional video-language data, we propose the first large-
scale benchmark named YouCook2 [21]. Since then, the field has accomplished a lot
more as a whole [22, 23, 24]. We later propose two more benchmarks namely YouCook?2-

BoundingBox [25] and ActivityNet-Entities [26] to facilitate research on language-based
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Figure 1.3: An example on our grounding annotation. Object words (or noun phrases) are
located in the video as spatial bounding boxes.

visual grounding (see Fig. 1.3). The availability of the new grounding annotation allows us
to study how visual grounding improves the interpretability of a system as opposed to end-
to-end video description models. However, creating dense video annotation is costly and
time-consuming, which is arguably the major hurdle to the growth of dataset scale. For ex-
ample, datasets with automatically-generated annotations could be two magnitudes larger
than densely-annotated ones in terms of total video duration [24]. Hence, another aspect we
want to highlight in this dissertation is making visual grounding less annotation-hungry. We
propose a weakly-supervised grounding framework where models learn to localize objects
from (weak) description signal. We also propose a self-supervised approach that implicitly
learns grounding from loosely structured image-text pairs from the web, inspired by the
recent success of language model pre-training (e.g., BERT [27]). We demonstrate that the
joint vision-language representation learned through implicit grounding could generalize

well to unseen domains and lead to performance gains on downstream tasks.

1.2 Thesis Statement

In this dissertation, we argue that language plays a significant role in video under-

standing. Language allows machines to communicate with humans and to understand our



requests, delivering a holistic view of video content through compact descriptions. We in-
troduce our approach on video understanding from a unique language-driven perspective,
with detailed analyses of video description generation (first half) and language-based vi-
sual grounding (second half), mostly in the context of instructional videos. What marks our
viewpoint different from prior literature is twofold. First, we propose a bottom-up struc-
tured learning scheme by decomposing a long video into individual procedure steps and
representing each step with a description. Second, we propose to have both explicit (i.e.,
supervised) and implicit (i.e., weakly-supervised and self-supervised) grounding between
language semantics and video semantics, which enables us an interpretable modeling of

the two spaces.

1.3 Contributions

1.3.1 Dataset and Benchmark for Video-Language Understanding

We collect and distribute a large-scale instructional video dataset YouCook?2 for pro-
cedure learning and recipe generation, which is one of the major testbeds of our methods
in this dissertation. YouCook?2 contains 2000 videos from 89 recipes with a total length
of 176 hours, which is largest-of-its-kind. The procedure steps for each video are anno-
tated with temporal boundaries and described post-hoc by a viewer/annotator with imper-
ative English sentences (see Fig. 1.4). The follow-up work on object grounding leads to
YouCook2-BoundingBox, which further maps object words in YouCook2 descriptions to
bounding boxes in the video. Later, as a larger-scale effort to bridge video description
and visual grounding, we collect the ActivityNet-Entities dataset, which grounds video de-
scriptions to bounding boxes on the level of noun phrases, with 158k boxes on 15k videos.
Our dataset allows both, teaching models to explicitly rely on the corresponding evidence
in the video frame when generating words and evaluating how well models are doing in

grounding individual words or phrases they generated.
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Figure 1.4: An example from the YouCook2 dataset on making a BLT sandwich. Each
procedure step has time boundaries annotated and is described by an English sentence.
Video from YouTube with ID: 4eWzsx1vAi8.

1.3.2 Instructional Video as Procedure Segments

We introduce and are the first to tackle the class-agnostic procedure segmentation prob-
lem in untrimmed videos. We define procedure as the sequence of necessary steps com-
prising a complex task (e.g., making sandwiches [28], changing tires [29]), and define each
individual step as a procedure segment, or simply segment for convenience. For example,
there are 8 segments in the making a BLT sandwich video shown in Fig. 1.4. We represent
these segments by their start and end temporal boundaries in a given video. Note that one
procedure segment could contain multiple actions, but it should be conceptually compact,
i.e., described with a single sentence. The number of procedure segments and their loca-
tions reflect human consensus on how the procedure is structured. To that end, we define
the Procedure Segmentation problem as: automatically segment a video containing a pro-
cedure into class-agnostic procedure segments. We introduce a model that captures this

human consensus from data and generate semantically meaningful segments.

1.3.3 Fine-Grained Video Description Generation

Video description aims to describe the content of a video with a descriptive natural
language. It works as a bridge for human-machine interaction in the context of video.
Since the capacity of a single sentence is rather limited, in the context of untrimmed videos
where multiple events might occur, we first detect the event segments (i.e., start and end

timestamps) by using our techniques developed earlier in Sec. 1.3.2 and then describe each
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segment with a sentence. We call this Dense Video Description [1] and the two stages are
named event proposal and description generation accordingly. In our work, we propose
an end-to-end model for this task. A differentiable masking scheme is proposed to ensure
the consistency between the proposal module and the description module during training.
Also, we employ self-attention: a scheme that facilitates the learning of long-range visual
dependencies existing in dense video description better than traditional RNN-based meth-

ods.

1.3.4 Visually-Grounded Learning from Videos

The major challenge of video description lies in the large variability both on the video
and language side. Existing models, hence, typically shortcut the difficulty in recognition
and generate plausible sentences that are based on priors but are not necessarily grounded
in the video. Therefore, we propose to explicitly link the sentence to the evidence in the
video by annotating each noun phrase in a sentence with a corresponding bounding box in
one of the frames of a video (our ActivityNet-Entities dataset). To generate grounded cap-
tions, we propose a novel video description model which is able to exploit these bounding
box annotations. More importantly, with the grounding annotation, we can now evaluate
how grounded or faithful the learned model is to the video it describes. We demonstrate
the effectiveness of our model on multiple benchmarks across both video and image do-
mains and also showcase that our generated descriptions are more interpretable compared
to baseline methods. We further show that even when grounding annotations are unavail-
able during training, we can still learn object grounding with (weak) language supervision

through weighted ranking losses.

1.3.5 Grounding as Commonsense: Vision-Language Pre-training

Now, we take weakly-supervised grounding a step further. So far, available paired

video-language data are rather limited as descriptions require manual annotation. What



if we can generate unlimited paired data? Can we learn a “commonsense” grounding be-
tween the two? The commonsense here indicates a general relationship between words and
visual concepts that could generalize to unseen domains and tasks. Contemporaneously
with [30, 31, 32, 33, 34, 35, 36, 37], we propose Vision-Language Pre-training where a
base model (e.g., BERT [27]) is first pre-trained on a large amount of web image-text pairs
using unsupervised learning objectives and then fine-tuned for various downstream tasks
with minor architecture changes. The pre-training phase works as a warm-start for down-
stream tasks such that t