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ABSTRACT

Video understanding has advanced quite a long way in the past decade, accomplishing

tasks including low-level segmentation and tracking that study objects as pixel-level seg-

ments or bounding boxes to more high-level activity recognition or classification tasks that

classify a video scene to a categorical action label. Despite the progress that has been made,

much of this work remains a proxy for an eventual task or application that requires a holistic

view of the video, such as objects, actions, attributes, and other semantic components.

In this dissertation, we argue that language could deliver the required holistic represen-

tation. It plays a significant role in video understanding by allowing machines to commu-

nicate with humans and to understand our requests, as shown in tasks such as text-to-video

search engine, voice-guided robot manipulation, to name a few. Our language-driven video

understanding focuses on two specific problems: video description and visual grounding.

What marks our viewpoint different from prior literature is twofold. First, we propose a

bottom-up structured learning scheme by decomposing a long video into individual pro-

cedure steps and representing each step with a description. Second, we propose to have

both explicit (i.e., supervised) and implicit (i.e., weakly-supervised and self-supervised)

grounding between words and visual concepts which enables interpretable modeling of the

two spaces.

We start by drawing attention to the shortage of large benchmarks on long video-

language and propose the largest-of-its-kind YouCook2 dataset and ActivityNet-Entities

dataset in Chap. II and III. The rest of the chapters circle around two main problems: video

description and visual grounding. For video description, we first address the problem of de-

composing a long video into compact and self-contained event segments in Chap. IV. Given
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an event segment or short video clip in general, we propose a non-recurrent approach (i.e.,

Transformer) for video description generation in Chap. V as opposed to prior RNN-based

methods and demonstrate superior performance. Moving forward, we notice one poten-

tial issue in end-to-end video description generation, i.e., lack of visual grounding ability

and model interpretability that would allow humans to directly interact with machine vi-

sion models. To address this issue, we transition our focus from end-to-end, video-to-text

systems to systems that could explicitly capture the grounding between the two modalities,

with a novel grounded video description framework in Chap. VI. So far, all the methods are

fully-supervised, i.e., the model training signal comes directly from heavy & expensive hu-

man annotations. In the following chapter, we answer the question “Can we perform visual

grounding without explicit supervision?” with a weakly-supervised framework where mod-

els learn grounding from (weak) description signal. Finally, in Chap. VIII, we conclude the

technical work by exploring a self-supervised grounding approach—vision-language pre-

training—that implicitly learns visual grounding from web multi-modal data. This mimics

how humans obtain their commonsense from the environment through multi-modal inter-

actions.
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CHAPTER I

Introduction

1.1 Motivation

We are entering the era of video. Hundreds of hours of videos are uploaded to major

video sharing platforms like YouTube every single minute, with billions of views.1 Short

video content has gained popularity among younger generations worldwidely.2 Apart from

the significant social impact the videos are creating, from a research perspective, videos

could be regarded as a reflection of human knowledge (e.g., conversation, storytelling,

humor) and intelligence (e.g., instructional video), which makes researchers wonder how

the enormous video resources could open a new gate to general intelligence systems. We

name the discipline of information mining or learning from videos as video understanding.

Video understanding has been long framed as a pure computer vision problem, accom-

plishing tasks including low-level segmentation [5, 6, 7] and tracking [8, 9, 10, 11] that

study objects as pixel-level segments or bounding boxes to more high-level activity recog-

nition or classification tasks [12, 13, 14, 15] that classify a video scene to a categorical

action label. Despite the progress that has been made, much of this work remains a proxy

for eventual tasks or applications that require a holistic view of video content, such as

objects, actions, attributes, and other semantic components (see Fig. 1.1).

1https://merchdope.com/youtube-stats/
2https://www.oberlo.com/blog/tiktok-statistics
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Figure 1.1: We need more than object labels and action labels to understand a scene. For
instance, attributes help us disambiguate similar concepts and better ground the visual se-
mantics. (left) It is the person in a orange hoodie who is holding a dog, not the two girls
with the sign nor the people in the background. (right) The girl is sitting in the green chair
on the leftmost side, not the green one on the right side nor the ones in the distance.

In this dissertation, we argue that language could deliver the required holistic represen-

tation. It plays a significant role in video understanding by allowing machines to commu-

nicate with humans and to understand our requests, as shown in tasks such as text-to-video

search engine [16]3, voice-guided robot manipulation [17]4, to name a few. Our language-

driven video understanding focuses on two specific problems: video description and visual

grounding. Video description aims to describe the content of a video with a descriptive

natural language, allowing the summarization of video content in a human-understandable

fashion. Visual grounding aims to link semantics from language back into video, allowing

the interpretability in the communication. Our research was made possible as multi-modal

video-language data (e.g., video descriptions, subtitles) became prevalent and increasingly

accessible recently. The scale of datasets grows substantially (see Fig. 1.2), and the im-

portance of language in video understanding could no longer be overlooked. To what de-

gree could language benefit video scene understanding and how well could language be

grounded to visual semantics are among the prominent problems in the community.

Based on the video format, the current focus on video-language includes two major cat-

egories: open-domain trimmed short video clips and closed-domain uncurated long videos

3http://howto100m.inria.fr/youcook
4https://www.youtube.com/watch?v=4L6Q8sAjiCI
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Figure 1.2: Total video duration of video-language datasets over the past decade. Note that
our ANet-Entities dataset is based on the train & val splits of ActivityNet Captions [1].

(such as movies, sports, instructional videos). Video clips are usually a few second in length

and contain limited and focused content (e.g., a physical action). It is relatively well-studied

due to the existence of major benchmarks such as MPII-MD [18], M-VAD [19], and MSR-

VTT [20]. Long videos, however, are less-studied partially due to the lack of sufficient data

resources. We aim to fill this gap from both the data perspective and the model perspective,

and in particular, in the domain of instructional videos (e.g., cooking and assembling). In-

structional videos are engaging to the multi-modal learning community, partially because

they simulate a teaching-learning environment where the objective is to fulfill a complex

procedure through necessary steps. This unique problem setting enables researchers to de-

velop perception-based systems which are capable of learning new tasks, potentially with

less or no extra human intervention. Hence, in this work, we focus on this concrete and

grounded task: learning from instructional videos.

To address the shortage of instructional video-language data, we propose the first large-

scale benchmark named YouCook2 [21]. Since then, the field has accomplished a lot

more as a whole [22, 23, 24]. We later propose two more benchmarks namely YouCook2-

BoundingBox [25] and ActivityNet-Entities [26] to facilitate research on language-based
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Two women are on a tennis court, showing 
the technique to posing and hitting the ball.

Figure 1.3: An example on our grounding annotation. Object words (or noun phrases) are
located in the video as spatial bounding boxes.

visual grounding (see Fig. 1.3). The availability of the new grounding annotation allows us

to study how visual grounding improves the interpretability of a system as opposed to end-

to-end video description models. However, creating dense video annotation is costly and

time-consuming, which is arguably the major hurdle to the growth of dataset scale. For ex-

ample, datasets with automatically-generated annotations could be two magnitudes larger

than densely-annotated ones in terms of total video duration [24]. Hence, another aspect we

want to highlight in this dissertation is making visual grounding less annotation-hungry. We

propose a weakly-supervised grounding framework where models learn to localize objects

from (weak) description signal. We also propose a self-supervised approach that implicitly

learns grounding from loosely structured image-text pairs from the web, inspired by the

recent success of language model pre-training (e.g., BERT [27]). We demonstrate that the

joint vision-language representation learned through implicit grounding could generalize

well to unseen domains and lead to performance gains on downstream tasks.

1.2 Thesis Statement

In this dissertation, we argue that language plays a significant role in video under-

standing. Language allows machines to communicate with humans and to understand our
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requests, delivering a holistic view of video content through compact descriptions. We in-

troduce our approach on video understanding from a unique language-driven perspective,

with detailed analyses of video description generation (first half) and language-based vi-

sual grounding (second half), mostly in the context of instructional videos. What marks our

viewpoint different from prior literature is twofold. First, we propose a bottom-up struc-

tured learning scheme by decomposing a long video into individual procedure steps and

representing each step with a description. Second, we propose to have both explicit (i.e.,

supervised) and implicit (i.e., weakly-supervised and self-supervised) grounding between

language semantics and video semantics, which enables us an interpretable modeling of

the two spaces.

1.3 Contributions

1.3.1 Dataset and Benchmark for Video-Language Understanding

We collect and distribute a large-scale instructional video dataset YouCook2 for pro-

cedure learning and recipe generation, which is one of the major testbeds of our methods

in this dissertation. YouCook2 contains 2000 videos from 89 recipes with a total length

of 176 hours, which is largest-of-its-kind. The procedure steps for each video are anno-

tated with temporal boundaries and described post-hoc by a viewer/annotator with imper-

ative English sentences (see Fig. 1.4). The follow-up work on object grounding leads to

YouCook2-BoundingBox, which further maps object words in YouCook2 descriptions to

bounding boxes in the video. Later, as a larger-scale effort to bridge video description

and visual grounding, we collect the ActivityNet-Entities dataset, which grounds video de-

scriptions to bounding boxes on the level of noun phrases, with 158k boxes on 15k videos.

Our dataset allows both, teaching models to explicitly rely on the corresponding evidence

in the video frame when generating words and evaluating how well models are doing in

grounding individual words or phrases they generated.
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Grill the tomatoes in 

a pan and then put 

them on a plate. Add oil to a pan and spread 

it well so as to fry the bacon
Place a piece of lettuce as 

the first layer, place the 

tomatoes over it.

Sprinkle salt and 

pepper to taste.

Add a bit of Worcestershire 

sauce to mayonnaise and 

spread it over the bread.

Place the bacon at 

the top.

Place a piece of 

bread at the top.Cook bacon until crispy, 

then drain on paper towel

00:21                      00:54          01:06                                            01:56               02:41              03:08  03:16   03:25    

00:51          01:03                                              01:54                      02:40    03:00    03:15       03:25 03:28    

Start time:

End time:

Figure 1.4: An example from the YouCook2 dataset on making a BLT sandwich. Each
procedure step has time boundaries annotated and is described by an English sentence.
Video from YouTube with ID: 4eWzsx1vAi8.

1.3.2 Instructional Video as Procedure Segments

We introduce and are the first to tackle the class-agnostic procedure segmentation prob-

lem in untrimmed videos. We define procedure as the sequence of necessary steps com-

prising a complex task (e.g., making sandwiches [28], changing tires [29]), and define each

individual step as a procedure segment, or simply segment for convenience. For example,

there are 8 segments in the making a BLT sandwich video shown in Fig. 1.4. We represent

these segments by their start and end temporal boundaries in a given video. Note that one

procedure segment could contain multiple actions, but it should be conceptually compact,

i.e., described with a single sentence. The number of procedure segments and their loca-

tions reflect human consensus on how the procedure is structured. To that end, we define

the Procedure Segmentation problem as: automatically segment a video containing a pro-

cedure into class-agnostic procedure segments. We introduce a model that captures this

human consensus from data and generate semantically meaningful segments.

1.3.3 Fine-Grained Video Description Generation

Video description aims to describe the content of a video with a descriptive natural

language. It works as a bridge for human-machine interaction in the context of video.

Since the capacity of a single sentence is rather limited, in the context of untrimmed videos

where multiple events might occur, we first detect the event segments (i.e., start and end

timestamps) by using our techniques developed earlier in Sec. 1.3.2 and then describe each
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segment with a sentence. We call this Dense Video Description [1] and the two stages are

named event proposal and description generation accordingly. In our work, we propose

an end-to-end model for this task. A differentiable masking scheme is proposed to ensure

the consistency between the proposal module and the description module during training.

Also, we employ self-attention: a scheme that facilitates the learning of long-range visual

dependencies existing in dense video description better than traditional RNN-based meth-

ods.

1.3.4 Visually-Grounded Learning from Videos

The major challenge of video description lies in the large variability both on the video

and language side. Existing models, hence, typically shortcut the difficulty in recognition

and generate plausible sentences that are based on priors but are not necessarily grounded

in the video. Therefore, we propose to explicitly link the sentence to the evidence in the

video by annotating each noun phrase in a sentence with a corresponding bounding box in

one of the frames of a video (our ActivityNet-Entities dataset). To generate grounded cap-

tions, we propose a novel video description model which is able to exploit these bounding

box annotations. More importantly, with the grounding annotation, we can now evaluate

how grounded or faithful the learned model is to the video it describes. We demonstrate

the effectiveness of our model on multiple benchmarks across both video and image do-

mains and also showcase that our generated descriptions are more interpretable compared

to baseline methods. We further show that even when grounding annotations are unavail-

able during training, we can still learn object grounding with (weak) language supervision

through weighted ranking losses.

1.3.5 Grounding as Commonsense: Vision-Language Pre-training

Now, we take weakly-supervised grounding a step further. So far, available paired

video-language data are rather limited as descriptions require manual annotation. What
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if we can generate unlimited paired data? Can we learn a “commonsense” grounding be-

tween the two? The commonsense here indicates a general relationship between words and

visual concepts that could generalize to unseen domains and tasks. Contemporaneously

with [30, 31, 32, 33, 34, 35, 36, 37], we propose Vision-Language Pre-training where a

base model (e.g., BERT [27]) is first pre-trained on a large amount of web image-text pairs

using unsupervised learning objectives and then fine-tuned for various downstream tasks

with minor architecture changes. The pre-training phase works as a warm-start for down-

stream tasks such that the model reaches a higher accuracy faster compared to the baseline

(without pre-training) and achieves a better final performance. Our proposed method has

two main advantages in comparison with the contemporaneous works. First, it unifies the

language encoder and decoder and learns a more universal contextualized vision-language

representation that can be more easily fine-tuned for vision-language generation and un-

derstanding tasks as different as image captioning and visual question answering (VQA).

Second, the unified pre-training procedure leads to a single model architecture for two dis-

tinct vision-language prediction tasks, i.e., bidirectional and seq2seq, alleviating the need

for multiple pre-training models for different types of tasks without any significant perfor-

mance loss in task-specific metrics.

1.4 Relevant Publications

1. Luowei Zhou, Chenliang Xu, and Jason J Corso. Towards automatic learning of pro-

cedures from web instructional videos. In Proceedings of the Conference on Artificial

Intelligence (AAAI), 2018

2. Luowei Zhou, Yingbo Zhou, Jason J Corso, Richard Socher, and Caiming Xiong.

End-to-end dense video captioning with masked transformer. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 8739–

8748, 2018
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3. Luowei Zhou, Nathan Louis, and Jason J Corso. Weakly-supervised video object

grounding from text by loss weighting and object interaction. In Proceedings of the

British Machine Vision Conference (BMVC), 2018

4. Luowei Zhou, Yannis Kalantidis, Xinlei Chen, Jason J Corso, and Marcus Rohrbach.

Grounded video description. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 6578–6587, 2019

5. Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong Hu, Jason J Corso, and Jian-

feng Gao. Unified vision-language pre-training for image captioning and vqa. In

Proceedings of the Conference on Artificial Intelligence (AAAI), 2020

9



CHAPTER II

Related Work

In this chapter, we summarize all the related work throughout the dissertation.

2.1 Learning from Instructional Videos

Procedure Learning from Subtitles. This line of work mainly emphasizes on video-

subtitle alignment [39, 40] or discovery of common procedure steps from subtitles [29, 41].

They typically make a strong assumption on the availability of the subtitles, or the number

of procedure steps for a certain procedure is fixed, or both. Such assumptions are limited:

the text/speech instruction input is unavailable in some scenarios, e.g., streaming video

from robot camera; the subtitles or action sequences automatically generated by machines,

e.g., YouTube’s Automatic Speech Recognition (ASR) system, are not fully reliable and

require manual intervention [29]; and many procedures of a certain type, such as a specific

recipe, will differ in the number of steps in different instances due to process variation.

Action Segmentation. Action segmentation or labeling [42, 43, 44, 45] approaches the

problem in a more grounded setting, i.e., by analysing atom actions (e.g., grind coffee

beans, pour coffee) based on the visual input alone. It addresses the problem of segment-

ing a long video into contiguous segments that correspond to a sequence of actions. Most

recently, Huang et al. [44] propose to enforce action alignment through frame-wise visual

similarities. Kuehne et al. [43] apply Hidden Markov Models (HMM) to learn the likeli-
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hood of image features given hidden action states. Both methods focus on the transitions

between adjacent action states, leaving long-range dependencies not captured. Also, these

methods generally assume contiguous action segments with limited or no background activ-

ities between segments. Yet, background activities are detrimental to the action localization

accuracy [44].

Temporal Action Proposals. Another common approach to study action is through Tem-

poral Action Proposals (TAP) or simply Action Proposals. It aims to temporally localize

action-agnostic proposals in a long untrimmed video. Existing methods formulate TAP

as a binary classification problem and differ in how the proposals are proposed and dis-

criminated from the background. Shuo et al. [46] propose and classify proposal candidates

directly over video frames in a sliding window fashion, which is computationally expen-

sive. More recently, inspired by the anchoring mechanism from object detection [47], two

types of methods have been proposed—explicit anchoring [48, 21] and implicit anchor-

ing [49, 50]. In the former case, each anchor is an encoding of the visual features between

the anchor temporal boundaries and is classfied as action or background. In implicit an-

choring, recurrent networks encode the video sequence and, at each anchor center, multiple

anchors with various sizes are proposed based on the same visual feature.

Summary. Our approach on instructinal video understanding is largely inspired by Action

Proposals. We treat video as a set of well-structured and semantically-meaningful segments

and make no assumption on subtitle availability nor recipe type (e.g., number of recipe

steps). We will demonstrate later in Chapter IV and V our improvements over existing

methods.

2.2 Video and Language: a historical view

The history of bridging video and Language dates back to “pre-deep learning era”,

roughly a decade ago. Inspired by natural language generation from images [51, 52], the

initial efforts on video-language mainly focus on description generation [53, 54]. A few
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salient characteristics of this line of work include i) high-level concept detections from

video, such as objects, ii) template-filling. The detection outcome is first converted into

subject-verb-object triplets through ranking and then filled in pre-defined description tem-

plate. Hence the generated descriptions are less human-like and can easily be distinguished.

Follow-up works [55, 56] refine the detection outcome and the subject-verb-object ranking

procedure by incorporating external language knowledge. Contemporaneous with these,

Yu et al. [57] start to study video-language from a grounding perspective — learning word

embedding from video clips paired with descriptive sentences. The visual concepts are rep-

resented by object tracks or their compounds and are grounded to the linguistic semantics,

such as nouns, verbs, and adjectives. Later on, Yang et al. [58] consider visual grounding

in a more situated setting called Semantic Role Labeling (SRL), where the arguments of

verbs in a descriptive sentence (i.e., agent and patient) are grounded to video object tracks

and a joint-inference is performed between video and language. These two are among the

first works dedicated to explicit language grounding in video.

After the deep learning revolution started in the early 2010s, numerous works have

been poured into this field, and hence we will focus on the most relevant works to this

dissertation in the following sections, including description generation and visual ground-

ing. We have spread detailed discussions in the following sections and want to note one

work particularly by Xu et al. [59], who propose a generic framework for learning joint

video-language embedding and attack a series of video-language tasks, namely, video de-

scription generation, video-to-text retrieval, and text-to-video retrieval, all of which have

been intensively studied until now. Another interesting perspective from this work is that it

emphasizes the importance of learning linguistic concepts with corresponding visual con-

cepts in mind, again, visual grounding. It points out that “commonly used word similarity

captures more syntactic expression than visually grounded semantics, e.g., in WordNet, the

Lesk similarity [60] between cat and kitten is 0.4 while the similarity between cat and dog

is 1.04”, which is a sound demonstration.
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Summary. The core problem of video-language is essentially learning a joint embedding

space between the two. The concept of visual grounding emerged recently, linking the

two modalities in a fine-grained level and making the joint embedding space more human-

interpretable. Overall, the core problem has not changed much over time while methodol-

ogy migrates, especially with the recent boom of artificial neural networks.

2.3 Description Generation

Image & Video Description. Early work on automatic caption generation mainly in-

cludes template-based approaches [56, 52, 61], where predefined templates with slots are

first generated and then filled in with detected visual evidences. Although these works

tend to lead to well-grounded methods, they are restricted by their template-based nature.

More recently, neural network-based methods have started to dominate major captioning

benchmarks. They follow a similar encoder-decoder architecture where the encoder trans-

forms each input frame or clip into a feature vector, aggregates features across video and

then the decoder projects the aggregated feature into a sequence of words (see Fig. 2.1).

The feature aggregation strategy varies from basic static approaches such as mean pooling

and LSTM, to visual attention [62], in which the decoder dynamically focuses on differ-

ent location on the “feature bank” as the caption generation proceeds. The prior visual

attention-based work usually comes in the form of temporal attention [63] (or spatial-

attention [64] in the image domain), semantic attention [65, 66, 67, 68] or both [69]. The

recent unprecedented success in object detection [47, 70] has regained the community’s

interests on detecting fine-grained visual clues while incorporating them into end-to-end

networks [71, 72, 73, 74]. This line of work is usually based on region attention [73].

Grounding happens during region attention and could be either implicit [73, 71] or explicit

(i.e., with grounding annotation for training) [74, 26]. Our work heavily relies on region

attention and grounding and hence we will have a detailed review below.

Grounded Caption Generation. Grounding-based methods [71, 75, 73, 74, 56, 52] tackle
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Figure 2.1: Schematic illustration of neural network-based video description methods. Im-
age description methods have a similar structure that takes in a single image as the input
and uses feature from either global image feature, 2D-CNN activation map, or region pro-
posals.

the captioning problem in two stages. They first use off-the-shelf or fine-tuned object de-

tectors to propose object proposals/detections as for the visual recognition heavy-lifting.

Then, in the second stage, they either attend to the object regions dynamically [71, 75, 73]

or classify the regions into labels and fill into pre-defined/generated sentence templates [74,

56, 52]. However, directly generating proposals from off-the-shelf detectors causes the pro-

posals to bias towards classes in the source dataset (i.e., for object detection) vs. contents in

the target dataset (i.e., for description). One solution is to fine-tune the detector specifically

for a dataset [74] but this requires exhaustive object annotations that are difficult to obtain,

especially for videos. Instead of fine-tuning a general detector, we transfer the object clas-

sification knowledge from off-the-shelf object detectors to our model and then fine-tune

this representation as part of our generation model with sparse box annotations. With a

focus on co-reference resolution and identifying people, [72] proposes a framework that

can refer to particular character instances and do visual co-reference resolution between

video clips. However, their method is restricted to identifying human characters whereas

we study more general the grounding of objects. Other works include capturing the rela-

tionships among object regions by using Graph Convolutional Networks (GCNs) [76] and

incorporating language inductive bias [77].
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Attention Supervision. As fine-grained grounding becomes a potential incentive for next-

generation vision-language systems, to what degree it can benefit remains an open ques-

tion. On one hand, for VQA [78, 79] the authors point out that the attention model does not

attend to same regions as humans and adding attention supervision barely helps the perfor-

mance. On the other hand, adding supervision to feature map attention [80, 81] was found

to be beneficial. We noticed in our preliminary experiments that directly guiding the re-

gion attention with supervision [74] does not necessary lead to improvements in automatic

sentence metrics. We hypothesize that this might be due to the lack of object context infor-

mation and we thus introduce a self-attention [82] based context encoding in our attention

model, which allows information passing across all regions in the sampled video frames.

Dense Caption Generation. Describing a image or video with a single sentence could be

challenging. Johnson et al. [83] propose to enlarge descriptor capacity by first generating

individual object regions and then describe each region separately. In the video domain,

similarly, a problem called video paragraph captioning is proposed by Yu et al.[84] where

sentences are generated for temporal event segments. However, the temporal locations of

each event are provided beforehand. Das et al. [56] generate dense captions over the entire

video using sparse object stitching, but their work relies on a top-down ontology for the

actual description and is not data-driven like the recent captioning methods. The most

similar work to ours is Krishna et al. [1] who introduce a dense video captioning model

that learns to propose the event locations and caption each event with a sentence. However,

they combine the proposal and the captioning modules through co-training and are not able

to take advantage of language to benefit the event proposal [85]. To this end, we propose

an end-to-end framework for doing dense video captioning that is able to produce proposal

and description simultaneously. Also, our work directly incorporates the semantics from

captions to the proposal module.
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2.4 Language & Vision-Language Pre-training

Language Pre-training. Among numerous BERT variants in language pre-training, we

review the two methods that are most relevant to our approach, namely Unified LM or

UniLM [86] and Multi-Task DNN (MT-DNN) [87]. UniLM employs a shared Transformer

network which is pre-trained on three language modeling objectives: unidirectional, bidi-

rectional, and sequence-to-sequence. Each objective specifies different binary values in the

self-attention mask to control what context is available to the language model. MT-DNN

combines multi-task training and pre-training by attaching task-specific projection heads to

the BERT network. Our work is inspired by these works and tailored for vision-language

tasks in particular.

Vision-Language Pre-training. This has become a nascent research area in the vision-

language community. Related works include ViLBERT [30] and LXMERT [88], both of

which tackle understanding-based tasks only (e.g., VQA and Retrieval) and share the same

two-stream BERT framework with a vision-language co-attention module to fuse the in-

formation from both modalities. ViLBERT is tested on a variety of downstream tasks

including VQA, referring expression, and image-to-text retrieval. LXMERT only focuses

on a particular problem space (i.e., VQA and visual reasoning) and the generalization abil-

ity further compromises when the datasets from the downstream tasks are also exploited in

the pre-training stage. The most similar work to ours is VideoBERT [36], which addresses

generation-based tasks (e.g., video captioning) and understanding-based tasks (e.g., action

classification). However, it separates the visual encoder and the language decoder and

performs pre-training only on the encoder, leaving decoder uninitialized. In contrast, we

propose a unified model for both encoding and decoding and fully leverage the benefit of

pre-training.
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2.5 Miscellaneous

Object Grounding with Weak Supervision. Supervised object grounding or referring

expression grounding has been intensively studied in the image domain [89, 90, 91] and

is gradually drawing attention in the video domain [92, 93]. These methods require dense

bounding box annotations for training, which are expensive to obtain. Recently, an in-

creasing amount of attention has shifted towards the weakly-supervised grounding prob-

lem [94, 95, 96, 97, 98], where only descriptive phrases, no explicit target grounding loca-

tions, are made accessible during training. Karpathy and Fei-Fei [97] propose to pair image

regions to words in a sentence by computing a visual-semantic similarity score, finding the

word that best describes the region. Rohrbach et al. [94] ground textual phrases in images

by reconstructing the original phrase through visual attention. Yu and Siskind [99] ground

objects from text in constrained videos. De-An et al. [98] extend [97] to the video domain

and further improve the work by modeling the reference relationships among segments. In

our work, we tackle the problem from a novel aspect as fully exploiting the visual-semantic

relations within each segment, i.e., frame-wise supervisions and object interactions.

VQA. VQA is another prevalent research area in vision and language. Given an image and

a query natural language question about the image, the task is to answer the question by

making a multi-choice selection or generating a natural language response. Since its initial

proposal [100], there has been a significant amount of works proposing model architectures

to fuse question and image representations [101, 73, 102], new datasets or models to reduce

the dataset bias [103, 104, 105] and ground the answer in the question [106]. We present

in our work a base model that tackles both description generation problem and VQA with

minor architecture changes.
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CHAPTER III

Dataset and Benchmark

3.1 YouCook2

Our YouCook2 dataset [21] contains 2000 videos that are nearly equal-distributed over

89 recipes. The recipes are from four major cuisine locales, e.g., Africa, Americas, Asia

and Europe, and have a large variety of cooking styles, methods, ingredients and cook-

wares. The videos are collected from YouTube, where various challenges, e.g., fast camera

motion, camera zooms, video defocus, and scene-type changes are present. Table 3.1 shows

the comparison between YouCook2 and other commonly-used instructional video datasets,

e.g., YouCook [56], MPII [107], 50Salads [108], Coffee [29], Breakfast [28] and Charades

[109].

Most of the datasets mentioned above have temporally localized action annotations.

Compared to action segments, our procedure segments can contain richer semantic infor-

mation and better capture the human-involved processes in instructional videos. Due to

the variety of instructional processes and how each process can be performed, a fixed set

of actions fails to describe the details in the video process (e.g., attributes and fine-grained

objects). For example, the attribute “crispy” in the recipe step “cook bacon until crispy then

drain on paper towel” (see Fig. 1.4) cannot be described by any action nor activity labels.

18



Name Duration UnCons. Proc. Ann.

YouCook 140 m Yes No
MPII 490 m No No

50Salads 320 m No No
Coffee 120 m Yes No

Breakfast 67 h Yes No
Charades 82h Yes No

YouCook2 176h Yes Yes

Table 3.1: Comparisons of instructional video datasets. UnCons. stands for Unconstrained
Scene and Proc. Ann. is short for Procedure Annotation.

3.1.1 Annotations

Each video contains 3–16 procedure segments. The segments are temporally localized

(timestamps) and described by English sentences in imperative form (e.g., grill the toma-

toes in a pan). An example is shown in Fig. 1.4. The annotators have access to audio and

subtitles but are required to organize and summarize the descriptions in their own way. As

indicated in prior work [110], people generally agree with boundaries of salient events in

video and hence we collect one annotation per video. To reflect the human consensus on

how a procedure should be segmented, we annotate each video with two annotators, one

for the major effort and the other one for verification. We also set up a series of restrictions

on the annotation to enforce this consensus among different annotators. We have found that

consensus is comparatively easy to achieve given the grounded nature of the instructional

video domain.

3.1.2 Statistics and Splits

The average number of segments per video is 7.7 and the mean and standard deviation

of the number of procedure segments per recipe are shown in Fig. 3.1. The distribution

of video duration is shown in Fig. 3.2(a). The total video length is 175.6 hours with an

average duration of 5.27 min per video. All the videos remain untrimmed and can be up

to 10 min. The distribution of segment durations is shown in Fig. 3.2(b) with mean and
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Figure 3.1: Mean and standard deviation of number of procedure segments for each recipe.
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(b) Distribution of segment duration.

Figure 3.2: YouCook2 dataset duration statistics.

Figure 3.3: Frequency count of each class label (including referring expressions).

standard deviation of 19.6s and 18.2s, respectively. The longest segment lasts 264s and

the shortest one lasts 1s. For the recipe descriptions, the total vocabulary is around 2600

words. We randomly split the dataset to 67%:23%:10% for training, validation and testing

according to each recipe.

3.1.3 YouCook2-BoundingBox

We further collect YouCook2-BoundingBox (or YouCook2-BB), where we provide

bounding box annotations for each segment-description pair in validation and testing sets of

YouCook2. The target objects to annotate are the most frequently-appearing objects from
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Figure 3.4: Annotations completed by MTurk workers; The images on the left denote
correct annotations and the right shows incorrect annotations. Each image is a frame from
the video segment accompanied with its descriptive phrase. Better viewed in color.

YouCook2 recipe descriptions, i.e., the top 63 recurring objects along with four referring

expressions: it, them, that, they (see Fig. 3.3). Note that the training set is not annotated as

we only need bounding boxes for evaluation purposes only.

For annotation, we sample each segment at 1 fps and tailor VATIC [111] for our task.

We request Amazon Turk workers to draw bounding box around the objects in the video

segment using the highlighted words in the sentence (from the 67 objects in our vocabu-

lary). All annotations are further verified by the top 30 annotators. Some example annota-

tions are in Fig. 3.4.

Dataset Statistics From the validation & testing segments annotated we have a total of

4,325 annotated segments with 2,962 validation and 1,363 testing segments, respectively.

These segments were extracted from 647 videos that contain words from our vocabulary

list.

Fig. 3.5 displays the number of target objects from the annotated YouCook2-BoundingBox
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Figure 3.5: Distribution of number of target objects within each segment for train/val/test
splits. Target objects belong in our vocabulary of 67 words.

Figure 3.6: Span of object duration in each segment for annotated val/test splits.

segments. The mean target object per sentence is 2.05 with a standard deviation of 1.49.

The target objects are words that belong in our vocabulary list of 67 objects.

When completing the annotations, the workers were given the option to mark an object

as ”outside of view frame”, ”occluded”, or both. We define an object’s visibility as in view

of the current frame with no occlusion. From our collected annotations, Fig. 3.6 shows

each object’s visibility duration in the validation & testing split. In the validation split

objects are visible 60.72% of the time, and 60.58% for testing. Note from Fig. 3.6 there is

a spike in objects with 100% duration, this is attributed to the shorter segments from our

collected data. It is perfectly reasonable to have a visible object for the entire duration of

shorter segments, some as short as 2 seconds.

3.2 ActivityNet

ActivityNet dataset [4] is a large-scale benchmark with video-level human activity la-

bels. ActivityNet Captions dataset [1] extend the all the 20k ActivityNet videos with dense
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language annotations, i.e., both temporal event segments and natural language descrip-

tions. We further extend ActivityNet Captions with object entity annotations, in the form

of bounding boxes. We named our dataset ActivityNet-Entities.

3.2.1 ActivityNet-Entities Dataset

Our ActivityNet-Entities (ANet-Entities) dataset1 provides more than 158k entity-level

bounding box annotations on 15k videos, making it the largest annotated dataset of its

kind to the best of our knowledge. Enriched with semantic information, ANet-Entities is

designed for the grounded video description problem where explicit grounding is critical.

When it comes to videos, region-level annotations come with a number of unique chal-

lenges. A video contains more information than can fit in a single frame, and video descrip-

tions reflect that. They may reference objects that appear in a disjoint set of frames, as well

as multiple persons and motions. To be more precise and produce finer-grained annotations,

we annotate noun phrases (NP) (defined below) rather than simple object labels, as from

Sec. 3.1.3. Moreover, one would ideally have dense region annotations at every frame, but

the annotation cost in this case would be prohibitive for even small datasets. Therefore in

practice, video datasets are typically sparsely annotated at the region level [112]. Favour-

ing scale over density, we choose to annotate segments as sparsely as possible and annotate

every noun phrase only in one frame inside each segment.

Noun Phrases. Following [89], we define noun phrases as short, non-recursive phrases that

refer to a specific region in the image, able to be enclosed within a bounding box. They can

contain a single instance or a group of instances and may include adjectives, determiners,

pronouns or prepositions. For granularity, we further encourage the annotators to split

complex NPs into their simplest form (e.g.“the man in a white shirt with a heart” can be

split into three NPs: “the man”, “a white shirt”, and “a heart”).

1ActivityNet-Entities is released at https://github.com/facebookresearch/
ActivityNet-Entities.
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Dataset Domain # Vid/Img # Sent # Obj # BBoxes

Flickr30k Entities [89] Image 32k 160k 480 276k

MPII-MD [72] Video �1k �1k 4 2.6k
YouCook2 [25] Video 2k 15k 67 135k
ActivityNet Humans [3] Video 5.3k 30k 1 63k
ActivityNet-Entities (ours) Video 15k 52k 432 158k

–train 10k 35k 432 105k
–val 2.5k 8.6k 427 26.5k
–test 2.5k 8.5k 421 26.1k

Table 3.2: Comparison of video description datasets with noun phrase or word-level
grounding annotations. Our ActivityNet-Entities and ActivityNet Humans [3] dataset are
both based on ActivityNet [4], but ActivityNet Humans provides boxes only for person on
a small subset of videos. YouCook2 is restricted to cooking and only has box annotations
for the val and the test splits.

3.2.2 Annotation Process

We uniformly sampled 10 frames from each video segment and presented them to the

annotators together with the corresponding sentence. We asked the annotators to identify

all concrete NPs from the sentence describing the video segment and then draw bound-

ing boxes around them in one frame of the video where the target NPs can be clearly ob-

served. Further instructions were provided including guidelines for resolving co-references

within a sentence, i.e., boxes may correspond to multiple NPs in the sentence (e.g., a single

box could refer to both “the man” and “him”) or when to use multi-instance boxes (e.g.,

“crowd”, “a group of people” or “seven cats”). An annotated example is shown in Fig. 3.7.

It is noteworthy that 10% of the final annotations refer to multi-instance boxes. We trained

annotators, and deployed a rigid quality control by daily inspection and feedback. All

annotations were verified in a second round. The full list of instructions provided to the

annotators, validation process, as well as screen-shots of the annotation interface can be

found in the Appendix B.
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A man in a striped shirt is playing the piano on the street while people watch him.

Figure 3.7: An annotated example from our dataset. The dashed box (“people”) indicates
a group of objects.

3.2.3 Dataset Statistics and Analysis

As the test set annotations for the ActivityNet Captions dataset are not public, we only

annotate the segments in the training (train) and validation (val) splits. This brings the total

number of annotated videos in ActivityNet-Entities to 14,281. In terms of segments, we

ended up with about 52k video segments with at least one NP annotation and 158k NP

bounding boxes in total.

Respecting the original protocol, we keep as our training set the corresponding split

from the ActivityNet Captions dataset. We further randomly & evenly split the original val

set into our val set and our test set. We use all available bounding boxes for training our

models, i.e., including multi-instance boxes. Complete stats and comparisons with other

related datasets can be found in Tab. 3.2.

From Noun Phrases to Objects Labels. Although we chose to annotate noun phrases, in
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this work, we model sentence generation as a word-level task. We follow the convention

in [74] to determine the list of object classes and convert the NP label for box to a single-

word object label. First, we select all nouns and pronouns from the NP annotations using

the Stanford Parser [113]. The frequency of these words in the train and val splits are

computed and a threshold determines whether each word is an object class. For ANet-

Entities, we set the frequency threshold to be 50 which produces 432 object classes.

Stats on Object Annotations. The average number of annotated boxes per video segment

is 2.56 and the standard deviation is 2.04. The average number of object labels per box is

1.17 and the standard deviation is 0.47. The top ten frequent objects are “man”, “he”, “peo-

ple”, “they”, “she”, “woman”, “girl”, “person”, “it”, and “boy”, indicating that the dataset

is human-centered. Note that these stats are on object boxes, i.e., after pre-processing.

3.3 Miscellaneous

We list here other existing datasets used in our work, all based on images. Further

reading on each dataset paper is encouraged for more information.

3.3.1 COCO Captions and Flickr30k Captions

COCO Captions [114] and Flickr30k Captions [115] are the two major benchmarks on

image captioning. Both are collected by first gathering images from Flickr and then crowd-

sourcing the image descriptoin. They each has 113.2k/5k/5k and 29.8k/1k/1k images for

training/validation/testing respectively, following Karpathy’s split.2 Each image has five

caption descriptions.

3.3.2 VQA 2.0

The VQA 2.0 dataset [104] has become the major benchmark for Visual Question An-

swering (VQA). The task is to given an image, answer a question related to the image in

2cs.stanford.edu/people/karpathy/deepimagesent/captiondatasets.zip
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an open-ended format. We split the dataset with the official partition, i.e., 443.8k questions

from 82.8k images for training, 214.4k questions from 40.5k images for validation and re-

port results on the Test-Dev set and the Test-Standard set through the official evaluation

server.

3.3.3 Flickr30k-Entities

Flickr30k-Entities [89] augments the original Flickr30k dataset with 276k entity-level

bounding box annotations. The annotation format is similar to our ANet-Entities dataset,

but on images only.
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CHAPTER IV

Video Structure Learning through Event Proposal

4.1 Introduction

Action understanding remains an intensely studied problem-space, e.g., action recog-

nition [116, 117], action detection [118, 119, 46] and action labeling [43, 44, 45]. These

works all emphasize instantaneous or short term actions, which clearly play a role in under-

standing short or structured videos [120]. However, for long, unconstrained videos, such

as user-uploaded instructional videos of complex tasks—preparing coffee [28], changing

tires [29]—learning the steps of accomplishing these tasks and their dependencies is essen-

tial, especially for agents’ automatic acquisition of language or manipulation skills from

video [57, 121, 122].

As defined in Sec. 1.3.2, procedure is the sequence of necessary steps comprising such

a complex task, and each individual step is a procedure segment, or simply segment for con-

venience, inspired by [41, 29]. The problem of Procedure Segmentation is to automatically

segment a video containing a procedure into category-independent procedure segments.

Although this is a new problem, there are two related, existing problems: event proposal

and procedure learning. The event proposal problem [1] is to localize category-independent

temporal events from unconstrained videos. Both event proposals and procedure segments

can contain multiple actions. However, the event proposal problem emphasizes the recall

quality given a large amount of proposals, rather than the identification of a procedure (se-
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quence of segments) from limited but necessary proposals. Events might overlap and are

loosely-coupled but procedure segments barely overlap, are closely-coupled and usually

have long-term dependencies.

The existing work in procedure learning is less-supervised than that of event proposals

(no labels are given for the segments). It emphasizes video-subtitle alignment [39, 40] and

discovery of common procedure steps of a specific process [29, 41]. However, the meth-

ods proposed in these works make restrictive assumptions: they typically assume either

language is concurrently available, e.g., from subtitles, or the number of procedure steps

for a certain procedure is fixed, or both. Such assumptions are limited: extra textual input

is unavailable in some scenarios; the subtitles or action sequences automatically generated

by machines, e.g., YouTube’s ASR system, are inaccurate and require manual intervention;

and many procedures of a certain type, such a specific recipe, will vary the number of steps

in different instances (process variation).

Unfortunately, work in neither of these two problems sheds sufficient light on under-

standing procedure segmentation, as posed above. In this work, we directly focus on

procedure segmentation. We propose a new dataset (see Sec. 3.1) of sufficient size and

complexity to facilitate investigating procedure segmentation, and we present an automatic

procedure segmentation method, called Procedure Segmentation Networks.

Procedure Segmentation Networks or ProcNets make neither of the assumptions made

by existing procedure learning methods: we do not rely on available subtitles and we do

not rely on knowledge of the number of segments in the procedure. ProcNets segments

a long, unconstrained video into a sequence of category-independent procedure segments.

ProcNets have three pieces: 1) context-aware frame-wise feature encoding; 2) procedure

segment proposal for localizing segment candidates as start and end timestamps; 3) sequen-

tial prediction for learning the temporal structure among the candidates and generating the

final proposals through a Recurrent Neural Network (RNN). The intuition is: when hu-

mans are segmenting a procedure, they first browse the video to have a general idea where
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Figure 4.1: Schematic illustration of the ProcNets. The input are the frame-wise ResNet
features (by row) for a video. The output are the proposed procedure segments. First, the
bi-directional LSTM embeds the ResNet features into context-aware features. Then, the
procedure segment proposal module generates segment candidates. Finally, the sequential
prediction module selects the final proposals for output. During training, the ground-truth
segments are embedded to composite the sequential prediction input, which are replaced
with beam-searched segment in testing (as shown in the dashed arrows).

are the salient segments, which is done by our proposal module. Then they finalize the

segment boundaries based on the dependencies among the candidates, i.e., which happens

after which, achieved by our sequential prediction module.

For evaluation, we compare variants of our model with competitive baselines on stan-

dard metrics and the proposed methods demonstrate top performance against baselines.

Furthermore, our detailed study suggests that ProcNets learn the structure of procedures as

expected.

4.2 Procedure Segmentation Networks

We propose Procedure Segmentation Networks (ProcNets) for segmenting an untrimmed

and unconstrained video into a sequence of procedure segments. We accomplish this by

three core modules: 1) context-aware video encoding; 2) segment proposal module that
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localizes a handful of proposal candidates; 3) sequential prediction that predicts final seg-

ments based on segment-level dependencies among candidates. At training, ProcNets are

given ground-truth procedure segment boundaries for each video; no recipe categories or

segment descriptions are given. At testing, for any given unseen video, ProcNets propose

and localize procedure segments in the video based on their visual appearance and tempo-

ral relations. The overall network structure is shown in Fig. 4.1 and next, we explain each

component.

4.2.1 Context-Aware Video Encoding

Define a video as x = {x1, x2, . . . , xL}, whereL denotes the number of sampled frames

and xi is the frame-wise CNN feature vector with fixed encoding size. In this workL = 500

and encoding size is 512. We use ResNet [123] as the appearance feature extractor for its

state-of-the-art performance in image classification. We then forward the ResNet features

through a bi-directional long short-term memory (Bi-LSTM) [124] as context encoding.

The outputs (forward and backward) are concatenated with the ResNet feature at each

frame and the feature dimension is reduced to the same as ResNet feature for a fair compar-

ison. We call these frame-wise context-aware features, denoted as bi = Bi-LSTM(x). Em-

pirically, Bi-LSTM encoder outperforms context-free ResNet feature and LSTM-encoded

feature by a relative 9% on our evaluation metric.

4.2.2 Procedure Segment Proposal

Inspired by the anchor-offset mechanism for spatial object proposal, such as in Faster

R-CNN [47], we design a set of K explicit anchors for segment proposal. Each anchor has

the length: lk (k = 1, 2, .., K) and their centers cover all the frames.

Each anchor-based proposal is represented by a proposal score and two offsets (center

and length), from the output of a temporal convolution applied on the context-aware feature.

The score indicates the likelihood for an anchor to be a procedure segment and the offsets
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are used to adjust the proposed segment boundaries. By zero-padding the video encoding

at the boundaries (depending on anchor sizes), we obtain score and offset matrices of size

K × L (see upper right of Fig. 4.1) respectively, and hence the output of proposal module

is K × L × 3. Sigmoid function and Tanh functions are applied for proposal score and

offsets, respectively.

We formulate the proposal generation as a classification problem and proposal offset as

a regression problem. The segment proposals are classified as procedure segment or non-

procedure segment with binary cross-entropy loss applied. During training, the segment

proposals having at least 0.8 IoU (Intersection over Union) with any ground-truth segments

are regarded as positive samples and these having IoU less than 0.2 with all the ground-truth

are treated as negative samples. We randomly pick U samples from positive and negative

separately for training. Then for the positive samples, we regress the proposed length and

center offsets to the ground-truth ones from a relative scale. Given a ground-truth segment

with center cg and length lg, the target offsets (θc, θl) w.r.t. anchor (center ca and length la)

are given by:

θc =
cg − ca
la

θl = log
lg
la

. (4.1)

Smooth l1-loss [47] is applied in a standard way. For inference, the proposed offsets adjust

the anchor location towards the final prediction location.

4.2.3 Sequential Prediction

Contrary to spatial objects, video procedure segments, by their nature, have strong tem-

poral dependencies and yet ambiguous temporal boundaries. Therefore, we treat them

differently. Recently, modeling frame-level temporal dependency in video has been ex-

plored [125]. However, memorizing dependencies over enormous frames is still challeng-

ing for recurrent models to date [118]. In contrast, we propose to learn segment-level
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Figure 4.2: An example on sequential prediction during inference with unrolled LSTM.
The <start> token is feed into model at time 0. The previously generated segment is feed
into model at time 1. Best viewed in color.

dependency because the number of proposal segments could be smaller so learning depen-

dencies over segments are more tractable. By leveraging the segment-level dependency,

we predict the sequence of procedure segments while dynamically determine the number

of segments to propose.

We use long short-term memory (LSTM) for sequential prediction due to its state-of-

the-art performance in sequence modeling [20, 125]. The input of LSTM is constructed

from three parts: 1) Proposal Vector S: max-pooled proposal scores from the proposal

module, fixed over time; 2) Location Embedding Bt: a set of vectors that discretely en-

code the locations of ground-truth or previously generated segments; 3) Segment Content

Ct: the visual features of the ground-truth or previously generated segments. The tuple

(S, Bt, Ct), t = 1, 2, ..., N , is concatenated as the input to LSTM at each time step t. In-

tuitively, when we learn to choose a few winners from a pool of candidates, we need to

know who and how good they are (Proposal Vector), what they look like (Segment Con-

tent) and the target candidates (location embedding). We will detail each component after

introducing the overall model first.
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The softmax output of LSTM is the likelihood of each proposal being the next segment

prediction. Therefore, the likelihood for the entire procedure segment sequence ε1, ..., εS

of a video can be formulated as:

log p(ε1, ..., εS|S) (4.2)

=
N∑
t=1

log p(εt|S, Bt−1, Ct−1, ε0, ..., εt−1) ,

where ε0 is the special <start> segment token, B0 is the embedding for the <start> token,

C0 is the meal-pooled video feature over all frames, Bt−1 and Ct−1 are determined by εt−1.

The objective is to maximize the segment sequence likelihood for all training videos. We

apply cross-entropy loss to the likelihood output Pt at time step t given the ground-truth

segment index. During inference, we sample a sequence of segment indexes with greedy

search while beam search does not improve further [126, 116], i.e., greedily picking the

index with the maximal likelihood as the next proposed segment. The algorithm terminates

when the special <end> token is picked. An example is shown in Fig. 4.2. Next, we

describe the three input vectors in details.

Proposal Vector. As shown at the middle right of Fig. 4.1, we apply max-pooling to

proposal score to filter out proposals with low proposal scores. The max-pooling kernel

size is h × w and so as its stride, i.e., no overlapping. Empirically, h = 8 and w at 4 or

5 yields the best results. Given the filtered proposals (score and offsets), we flatten the

proposal scores into a vector S by columns as Proposal Vector, which encodes the location

and confidence information of all likely segment candidates in a video.

Location Embedding. During training, each ground-truth segment is represented by a

one-hot vector where the index of one matches to the nearest proposal candidate as illus-

trated in Fig. 4.3. This discrete representation of location is easier to learn than continuous

location values. Through a trainable embedding matrix (similar to word embedding in lan-

guage modeling), this one-hot vector maps to a vector, which we call Location Embedding
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Figure 4.3: An example on converting ground-truth segments into one-hot vector represen-
tations from Proposal Vector.

vector and depicts the location information of a segment. This Location Embedding vector

has the same size as the Proposal Vector. During testing, we greedily sample the softmax

output of LSTM at previous time step to form location embedding for the current time step.

Location Embedding represents the previous selected candidate, i.e., who we have and who

we need next.

Segment Content. We then encode the visual content for the candidate represented in

the one-hot vector. We mean-pool the video ResNet feature bounded by the start and end

timestamps of the candidate. Its dimension is reduced to the same as Proposal Vector by a

fully-connected layer. Segment Content indicates what the candidate looks like.

Relations to Other Models. To the best of our knowledge, we are the first to apply

segment-level sequential modeling on category-independent procedure segments. The pro-

posed model builds the video temporal structure without the need of knowing the hidden

states such as in HMM. Note that there are other design choices.

Non-Maximal Suppression (NMS). In terms of proposal selection, a commonly adopted

method in object detection [47] or action detection [46] is NMS. This approach fails to cap-

ture the temporal structure or segment dependencies of instructional videos. We consider

it as a baseline in our experiment along with our sequential prediction model.
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Other Time Sequence Models. Other methods for proposing segments have rigid model

configurations, such as an HMM or pre-defined “grammar” for the whole video, which is

infeasible for general video structure inference.

4.2.4 Loss Function

The loss function for procedure segmentation network consists of three parts, the bi-

nary cross-entropy loss for procedureness classification, the smooth l1-loss [47] for offset

regression and the cross-entropy loss for sequential prediction. The formulations are as

follows:

L = Lcla + αrLreg + αsLseq (4.3)

Lcla = − 1

Up + Un

(
Up∑
i=1

log(S
(pos)
i ) +

Un∑
i=1

log(1− S(neg)
i )

)

Lreg =
1

Up

Up∑
i=1

||Bi −B(gt)
i ||smooth−l1

Lseq = − 1

N

N∑
t=1

log(P T
t 1

(gt)
t )

where Up and Un are the number of positive and negative samples, respectively, S(pos)
i and

S
(neg)
i represents their scores, B(gt)

i is the ground-truth boundary corresponding to positive

sample i, Pt is the softmax output of LSTM at time t and 1(gt)
t is one-hot vector of ground-

truth segment index. Discount factors αr and αs are applied to balance the contributions

of the regression loss and sequential prediction loss, respectively. Empirically, equally

weighting each part, i.e. αr = αs = 1, yields good results.

4.3 Experiments and Results

In this section, we benchmark our new dataset YouCook2 [21] on procedure segmenta-

tion with competitive baselines and our proposed methods under standard metrics. We also
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show ablation studies, qualitative results and analysis on the procedure structure learned by

our approach.

Baselines. We compare our methods against state-of-the-art methods in video summa-

rization and action proposal due to lack of direct baselines in our new problem. These

methods include: 1) Video Summarization LSTM (vsLSTM) [125], 2) Segment CNN for

proposals (SCNN-prop) [46]. The major difference between ProcNets and vsLSTM is, our

model learns the segment-level temporal dependency while vsLSTM learns the frame-level

temporal dependency. SCNN-prop is the proposal module of action detector SCNN, which

achieves state-of-the-art performance in action proposal.1 In addition, we also evaluate a

uniform segment baseline (denoted as Uniform). Two variants of ProcNets are evaluated,

one with all the modules (ProcNets-LSTM) and one that replaces sequential prediction

with NMS (ProcNets-NMS). Finally, note that we compare with no action segmentation

methods since these approaches require an action pool and directly model the finite action

states (e.g., with HMM) which requires the “grammar” of the video procedure; both of

these needs violate the core assumptions in this work.

Metrics. For procedure segmentation, we adopt two standard metrics for evaluating seg-

ment proposals: Jaccard [45] and mean Intersection over Union (mIoU). In Jaccard mea-

sure, the maximal intersection over prediction between all the final proposals and each

ground-truth segment is computed and averaged. The individual Jaccard for each video

is then averaged as the overall Jaccard. mIoU replaces the intersection over prediction in

Jaccard with intersection over union (IoU). Hence, mIoU penalizes all the misalignment of

segments while Jaccard only penalizes the partition of proposal beyond the ground truth.

All the methods except for ProcNets-LSTM output 7 segments per video, determined by

the average number of segments in the training set. Note that the average number of pro-

posals from ProcNets-LSTM is also around 7, makes that a fair comparison. Inspired by

the average recall metric in action proposal [49], we also report the proposal averaged

1New results comparing DAPs and SCNN-prop: https://github.com/escorciav/daps/
wiki
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recall, precision and F1 score but with limited segments (10 per video), as motivated in

Introduction section.

Data Preprocessing. To preserve the overall information in the videos, we uniformly

down-sample 500 frames for each video in YouCook2. The average sample rate is 1.58

fps. To further enlarge the training samples, we temporally augment the data, i.e., sample

each video 10 times with temporal shifts. Then, we extract the frame-wise ResNet-34

feature [123],2 pretrained on both ImageNet [127] and MSCOCO caption [128, 68]. Hence,

each video is represented as a sequence of image spatial features. Local motion features

are not used in our study; they may further improve performance.

Implementation and Training Details. The sizes of the temporal conv. kernels (also

anchor length) are from 3 to 123 with an interval of 8, which covers 95% of the segment

durations in training set. The 16 explicit anchors centered at each frame, i.e., stride for

temporal conv. is 1. We randomly select U = 100 samples from all the positive and

negative samples respectively and feed in negative samples if positive ones are less than

U . Our implementation is in Torch. All the LSTMs have one layer and 512 hidden units.

For hyper-parameters, the learning rate is 4× 10−5. We use the Adam optimizer [129] for

updating weights with α = 0.8 and β = 0.999. Note that we don’t fine-tune the layers of

the CNN which heavily slows down the training process.

4.3.1 Procedure Segmentation Results

We report the procedure segmentation results on both validation and testing sets in

Tab. 4.1. The proposed ProcNets-LSTM model outperforms all other methods by a huge

margin in both Jaccard and mIoU. SCNN-prop [46] suffers in our sequential segmentation

task result from the lack of sequential modeling. vsLSTM [125] models frame-level tem-

poral dependency and shows superior results than SCNN-prop. However, our model learns

segment-level temporal dependency and yields better segmentation results, which shows

2Torch implementation of ResNet by Facebook: https://github.com/facebook/fb.resnet.
torch
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validation test
Method (%) Jaccard mIoU Jaccard mIoU

Uniform 41.5 36.0 40.1 35.1
vsLSTM 47.2 33.9 45.2 32.2
SCNN-prop 46.3 28.0 45.6 26.7

ProcNets-NMS (ours) 49.8 35.2 47.6 33.9
ProcNets-LSTM (ours) 51.5 37.5 50.6 37.0

Table 4.1: Results on temporal segmentation. Top two scores are highlighted. See text for
details.

Jaccard mIoU

Full model 50.6 37.0
-Proposal Vec 47.6 36.1
-Location Emb 46.2 35.1
-Segment Feat 49.0 36.4

Table 4.2: Ablation study on LSTM input. We remove either Proposal Vector (as -Proposal
Vec), Location Embedding (as -Location Emb) or Segment Content (as -Segment Feat).

its effectiveness. Uniform baseline shows competitive results and the possible reason is, in

instruction videos, generally procedures span the whole video which favors segments that

can cover the majority of video. For rest of the experiments, all the results are on testing

set.

Ablation study on sequential prediction. The input of the sequence modeling LSTM is

the concatenation of three parts: Proposal Vector, Location Embedding and Segment Con-

tent. We remove either one of them as the ablation study. Results are shown in Tab. 4.2.

Unsurprisingly, the proposal scores (Proposal Vector) play a significant role in determining

the final proposals. When this information is unavailable, the overall performance drops by

6% on Jaccard relatively. The Location Embedding encodes the location information for

ground-truth segments and is the most important component for procedure structure learn-

ing. Jaccard and mIoU scores drop by 8.7% and 5.1% relatively when location embedding

is not available. The segment visual feature has less impact on the sequence prediction,

which implies the visual information represented in the video appearance feature is noisy
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Method (%) Recall Precision F1

vsLSTM 22.1 24.1 23.0
SCNN-prop 28.2 23.2 25.4

ProcNets-NMS 37.1 30.4 33.4

Table 4.3: Results on segment localization accuracy. Top two scores are highlighted.

Ground-truth:
Proposed:

Grilled Cheese

Ground-truth:
Proposed:

Ground-truth:
Proposed:

Chapati

Calamari

Figure 4.4: Qualitative results from test set. YouTube IDs: BlTCkNkfmRY, jD4o_
Lmy6bU and jrwHN188H2I.

and less informative.

Proposal localization accuracy. We study the proposal localization problem when each

model proposes 10 segments per video. Note that the metrics used here are not suitable for

ProcNets-LSTM as they impose a fixed number of segments, where ProcNets-LSTM learns

that automatically; nonetheless, we evaluate ProcNets-NMS for the quality of procedure

segment proposal. The average recall, precision and F1 are shown in Tab. 4.3. The IoU

threshold for true positive is 0.5. SCNN-prop shows competitive localization results as

expected. vsLSTM yields inferior localization accuracy even though it performs better

than SCNN-prop on segmentation. Our proposed model has more than 9% and 7% higher

recall and precision than the baselines.

Qualitative results. We demonstrate qualitative results with videos from YouCook2 test

set (see Fig. 4.4). The model can accurately localize some of the segments and predict

their lengths. Moreover, the number of segments proposed is adapted to individual videos

and the model learns to propose fewer segments at the beginning and the end of the video,

where usually no cooking processes happen. In the example of making Grilled Cheese,
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Pancake

Ground-truth:

Original:

Permuted:

Va Vb

Figure 4.5: An example output of ProcNets on the original and the permutated video.
YouTube ID: ejq2ZsHgwFk.

ProcNets propose the fifth segment to cover the process of cutting bread slices into two

pieces. This trivial segment is not annotated but is still semantically meaningful.

Analysis on temporal structure learning. We conduct additional experiments to eval-

uate the temporal structure learning capability of ProcNets. For a given testing video,

denote the first half as Va and the second half as Vb. We inverse the order of VaVb to VbVa to

construct the permutated video. We evaluate our model on both original test set and the per-

mutated test set. The performance of pre-trained ProcNets decreases by over a half in the

permutated set and 10%-20% of the videos only have segments predicted at the beginning

of Vb (see Fig. 4.5). We believe reasons are two. First, the model captures the ending con-

tent in Vb and terminates the segment generation within Vb. Second, the temporal structure

of Va has no dependencies on Vb and hence is ignored by the model.

4.4 Discussion

We introduce a new problem called procedure segmentation to study human consen-

sus on how a procedure is structured from unconstrained videos. Our proposed ProcNets

take frame-wise video features as the input and predict procedure segments exist in the

video. We evaluate the model against competitive baselines on the newly collected dataset

YouCook2 with standard metrics and show significant improvements. Besides, ProcNets

are capable of inferring the video structure by video content and modeling the temporal

dependencies among procedure segments. There are potential extensions of our work for

weakly-supervised learning and multi-modal learning. The first one is weakly supervised
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segmentation, which is to first align the weak subtitle signal with the video and then train

our model with the aligned annotation. The other one is dense video description, which is

covering in the following chapter.
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CHAPTER V

Dense Video Description

5.1 Introduction

Video content consumes high cognitive bandwidth, and thus is slow for humans to

digest. Although the visual signal itself can sometimes disambiguate certain semantics, one

way to make video content more easily and rapidly understood by humans is to compress

it in a way that retains the semantics. This is particularly important given the massive

amount of video being produced everyday. Video summarization [125] is one way of doing

this, but it loses the language components of the video, which are particularly important

in instructional videos. Dense Video Description [1]—describing events in the video with

descriptive natural language—is another way of achieving this compression while retaining

the language components.

A Dense Video Description model contains two parts: event detection and event de-

scription. Existing methods tackle these two sub-problems using event proposal and cap-

tioning modules, and exploit two ways to combine them for Dense Video Description. One

way is to train the two modules independently and generate descriptions for the best event

proposals with the best captioning model [130]. The other way is to alternate training [1]

between the two modules, i.e., alternate between i) training the proposal module only and

ii) training the captioning module on the positive event proposals while fine-tuning the

proposal module. However, in either case, the language information cannot have direct
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Figure 5.1: Dense Video Description is to localize (temporal) events from a video, which
are then described with natural language sentences. We leverage temporal convolutional
networks and self-attention mechanisms for precise event proposal generation and caption-
ing.

impacts on the event proposal.

Intuitively, the video event segments and language are closely related and the language

information should be able to help localize events in the video. To this end, we propose

an encoder-decoder based end-to-end model for doing Dense Video Description (see Fig.

5.1). The encoder encodes the video frames (features) into the proper representation. The

proposal decoder then decodes this representation with different anchors to form event

proposals, i.e., start and end time of the event, and a confidence score. The captioning

decoder then decodes the proposal specific representation using a masking network, which

converts the event proposal into a differentiable mask. This continuous mask enables both

the proposal and captioning decoder to be trained consistently, i.e., the proposal module

now learns to adjust its prediction based on the quality of the generated caption. In other

words, the language information from caption now is able to guide the visual model to

generate more plausible proposals. In contrast to the existing methods where the proposal
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module solves a class-agnostic binary classification problem regardless the details in the

video content, our model enforces the consistency between the content in the proposed

video segment and the semantic information in the language description.

Another challenge for Dense Video Description, and more broadly for sequence mod-

eling tasks, is the need to learn a representation that is capable of capturing long term

dependencies. Recurrent Neural Networks (RNN) are possible solutions to this problem,

however, learning such representation is still difficult [131]. Self-attention [132, 133, 82]

allows for an attention mechanism within a module and is a potential way to learn this

long-range dependence. In self-attention the higher layer in the same module is able to

attend to all states below it. This made the length of the paths of states from the higher

layer to all states in the lower layer to be one, and thus facilitates more effective learning.

The shorter path length facilitates learning these dependencies because larger gradients can

now pass to all states. Transformer [82] implements a fast self-attention mechanism and has

demonstrated its effectiveness in machine translation. Unlike traditional sequential mod-

els, transformer does not require unrolling across time, and therefore trains and tests much

faster as compared to RNN based models. We employ transformer in both the encoder and

decoder of our model.

5.2 End-to-End Dense Video Description

Our end-to-end model is composed of three parts: a video encoder, a proposal decoder,

and a captioning decoder that contains a mask prediction network to generate text descrip-

tion from a given proposal. The video encoder is composed of multiple self-attention lay-

ers. The proposal decoder takes the visual features from the encoder and outputs event

proposals. The mask prediction network takes the proposal output and generates a dif-

ferentiable mask for a certain event proposal. To make the decoder caption the current

proposal, we then apply this mask by element-wise multiplication between it, the input

visual embedding and all outputs from proposal encoder. In the following sections, we

45



illustrate each component of our model in detail.

5.2.1 Preliminary

Our model relies heavily on the Transformer networks [82]. We strongly recommend

you to read Appendix A for a detailed walk-through and examples if you are new to this

topic.

5.2.2 Video Encoder

Each frame xt of the video X = {x1, . . . , xT} is first encoded to a continuous repre-

sentation F 0 = {f 0
1 , . . . , f

0
T}. It is then fed forward to L encoding layers, where each layer

learns a representation F l+1 = V (F l) by taking input from previous layer l,

V(F l) = Ψ(PF(Γ(F l)),Γ(F l)) (5.1)

Γ(F l) =


Ψ(MA(f l1, F

l, F l), f l1)
>

· · ·

Ψ(MA(f lT , F
l, F l), f lT )>


>

(5.2)

Ψ(α, β) = LayerNorm(α + β) (5.3)

PF(γ) = M l
2 max(0,M l

1γ + bl1) + bl2 (5.4)

where Ψ(·) represents the function that performs layer normalization on the residual output,

PF(·) denotes the 2-layered feed-forward neural network with ReLU nonlinearity for the

first layer, MA(·) indicates the multi-head attention as detailed in Appendix A, M l
1, M l

2 are

the weights for the feed-forward layers, and bl1, bl2 are the biases. Notice the self-attention

used in Eq. 5.2. At each time step t, f lt is given as the query to the attention layer and

the output is the weight sum of f lt , t = 1, 2, ..., T , which encodes not only the information
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regarding the current time step, but also all other time steps. Therefore, each time step of

the output from the self-attention is able to encode all context information. In addition,

it is easy to see that the length of the path between time steps is only one. In contrast to

recurrent models, this makes the gradient update independent with respect to their position

in time, and thus makes learning potential dependencies amongst distant frames easier.

5.2.3 Proposal Decoder

The event proposal decoder is based on our ProcNets from Chap. IV, for its state-

of-the-art performance on long dense event proposals. We adopt the same anchor-offset

mechanism as in ProcNets and design a set of N explicit anchors for event proposals. Each

anchor-based proposal is represented by an event proposal score Pe ∈ [0, 1] and two offsets:

center θc and length θl. The associated anchor has length la and center ca. The proposal

boundaries (Sp, Ep) are determined by the anchor locations and offsets:

cp = ca + θcla lp = la exp{θl},

Sp = cp − lp/2 Ep = cp + lp/2.

(5.5)

These proposal outputs are obtained from temporal convolution (i.e., 1-D convolutions)

applied on the last layer output of the visual encoder. The score indicates the likelihood for

a proposal to be an event. The offsets are used to adjust the proposed segment boundaries

from the associated anchor locations. We made following changes to ProcNets:

• The sequential prediction module in ProcNets is removed, as the event segments in a

video are not closely coupled and the number of events is small in general.

• Use input from a multi-head self-attention layer (see Appendix A) instead of a bidi-

rectional LSTM (Bi-LSTM) layer [124].

• Use multi-layer temporal convolutions to generate the proposal score and offsets.

The temporal convolutional network contain three 1-D conv. layers, with batch nor-

malization [134]. We use ReLU activation for hidden layers.
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• In our model, the conv. stride depends on kernel size (dkernel size
s

e) versus always 1

in ProcNets.1

We encode the video context by a self-attention layer as it has potential to learn better

context representation. Changing stride size based on kernel size reduces the number of

longer proposals so that the training samples is more balanced, because a larger kernel size

makes it easier to get good overlap with ground truth. It also speeds up training as the

number of long proposals is reduced.

5.2.4 Captioning Decoder

Masked Transformer. The captioning decoder takes input from both the visual encoder

and the proposal decoder. Given a proposal tuple (Pe, Sp, Ep) and visual representations

{F 1, . . . , FL}, the L-layered captioning decoder generates the t-th word by doing the fol-

lowing

Y l+1
≤t = C(Y l

≤t) = Ψ(PF(Φ(Y l
≤t)),Φ(Y l

≤t)) (5.6)

Φ(Y l
≤t) =


Ψ(MA(Ω(Y l

≤t)1, F̂
l, F̂ l),Ω(Y l

≤t)1)

· · ·

Ψ(MA(Ω(Y l
≤t)t, F̂

l, F̂ l),Ω(Y l
≤t)t)

 (5.7)

Ω(Y l
≤t) =


Ψ(MA(yl1, Y

l, Y l), yl1)
>

· · ·

Ψ(MA(ylt, Y
l, Y l), ylt)

>

 (5.8)

F̂ l = fM(Sp, Ep)� F l (5.9)

p(wt+1|X, Y L
≤t) = softmax(W V yLt+1) (5.10)

where y0i represents word vector, Y l
≤t = {yl1, . . . , ylt}, wt+1 denotes the probability of each

word in the vocabulary for time t+1,W V ∈ Rν×d denotes the word embedding matrix with
1s is a scalar that affects the convolution stride for different kernel size
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vocabulary size ν, and � indicates elementwise multiplication. C(·) denotes the decoder

representation, i.e., the output from feed-forward layer in Fig. 5.1. Φ(·) denotes the cross

module attention that use the current decoder states to attend to encoder states (i.e., multi-

head attention in Fig. 5.1). Ω(·) represents the self-attention in decoder. Notice that the

subscript ≤ t restricts the attention only on the already generated words. fM : R2 7→

[0, 1]T is a masking function that output values (near) zero when outside the predicted

starting and ending locations, and (near) one otherwise. With this function, the receptive

region of the model is restricted to the current segment so that the visual representation

focuses on describing the current event. Note that during decoding, the encoder performs

the forward propagation again so that the representation of each encoder layer contains

only the information for the current proposal (see Eq. 5.9). This is different from simply

multiplying the mask with the existing representation from the encoder during proposal

prediction, since the representation of the latter still contains information that is outside

the proposal region. The representation from the L-th layer of captioning decoder is then

used for predicting the next word for the current proposal using a linear layer with softmax

activation (see Eq. 5.10).

Differentiable Proposal Mask. We cannot choose any arbitrary function for fM as a

discrete one would prevent us from doing end-to-end training. We therefore propose to

use a fully differentiable function to obtain the mask for visual events. This function fM

maps the predicted proposal location to a differentiable mask M ∈ RT for each time step

i ∈ {1, . . . , T}.

fM(Sp, Ep, Sa, Ea, i) = σ(g( (5.11)

[ρ(Sp, :), ρ(Ep, :), ρ(Sa, :), ρ(Ea, :),Bin(Sa, Ea, :)]))

ρ(pos, i) =


sin(pos/10000i/d) i is even

cos(pos/10000(i−1)/d) otherwise
(5.12)
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Bin(Sa, Ea, i) =


1 if i ∈ [Sa, Ea]

0 otherwise

(5.13)

where Sa and Ea are the start and end position of anchor, [·] denotes concatenation, g(·) is

a continuous function, and σ(·) is the logistic sigmoid function. We choose to use a multi-

layer perceptron to parameterize g. In other words, we have a feed-forward neural network

that takes the positional encoding from the anchor and predicted boundary positions and

the corresponding binary mask to predict the continuous mask. We use the same positional

encoding strategy as in [82].

Directly learning the mask would be difficult and unnecessary, since we would already

have a reasonable boundary prediction from the proposal module. Therefore, we use a

gated formulation that lets the model choose between the learned continuous mask and

the discrete mask obtained from the proposal module. More precisely, the gated masking

function fGM is

fGM(Sp, Ep, Sa, Ea, i) =

PeBin(Sp, Ep, i) + (1− Pe)fM(Sp, Ep, Sa, Ea, i) (5.14)

Since the proposal score Pe ∈ [0, 1], it now acts as a gating mechanism. This can also

be viewed as a modulation between the continuous and proposal masks, the continuous

mask is used as a supplement for the proposal mask in case the confidence is low from the

proposal module.

5.2.5 Model Learning

Our model is fully differentiable and can be trained consistently from end-to-end.2 The

event proposal anchors are sampled as follows. Anchors that have overlap greater than 70%

with any ground-truth segments are regarded as positive samples and ones that have less

2Source code is made available at https://github.com/LuoweiZhou/densecap
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than 30% overlap with all ground-truth segments are negative. The proposal boundaries

for positive samples are regressed to the ground-truth boundaries (offsets). We randomly

sample U = 10 anchors from positive and negative anchor pools that correspond to one

ground-truth segment for each mini-batch.

The loss for training our model has four parts: the regression loss Lr for event boundary

prediction, the binary cross entropy mask prediction loss Lm, the event classification loss

Le (i.e., prediction Pe), and the captioning model loss Lc. The final loss L is a combination

of these four losses,

Lr = Smooth`1(θ̂c, θc) + Smooth`1(θ̂l, θl) (5.15)

Lim = BCE(Bin(Sp, Ep, i), fM(Sp, Ep, Sa, Ea, i)) (5.16)

Le = BCE(P̂e, Pe) (5.17)

Ltc = CE(ŵt, p(wt|X, Y L
≤t−1)) (5.18)

L = λ1Lr + λ2
∑
i

Lim + λ3Le + λ4
∑
t

Ltc (5.19)

where Smooth`1 is the smooth `1 loss defined in [135], BCE denotes binary cross entropy,

CE represents cross entropy loss, θ̂c and θ̂l represent the ground-truth center and length

offset with respect to the current anchor, P̂e is the ground-truth label for the proposed

event, ŵt denotes the ground-truth word at time step t, and λ1...4 ∈ R+ are the coefficients

that balance the contribution from each loss.

Simple Single Stage Models. The key for our proposed model to work is not the single

stage learning of a compositional loss, but the ability to keep the consistency between

the proposal and captioning. For example, we could make a single-stage trainable model

by simply sticking them together with multi-task learning. More precisely, we can have

the same model but choose a non-differentiable masking function fM in Eq. 5.9. The

same training procedure can be applied for this model (see the following section). Since

the masking function would then be non-differentiable, error from the captioning model
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cannot be back propagated to modify the proposal predictions. However, the captioning

decoder is still able to influence the visual representation that is learned from the visual

encoder. This may be undesirable, as the updates the visual representation may lead to

worse performance for the proposal decoder. As a baseline, we also test this single-stage

model in our experiments.

5.3 Implementation Details

For the proposal decoder, the temporal convolutional networks take the last encoding

output from video encoder as the input. The sizes of the temporal convolution kernels vary

from 1 to 251 and we set the stride factor s to 50. For our Transformer model, we set the

model dimension d = 1024 (same as the Bi-LSTM hidden size) and set the hidden size of

feed-forward layer to 2048. We set number of heads (H) to 8. In addition to the residual

dropout and attention dropout layers in Transformer, we add a 1-D dropout layer at the

visual input embedding to avoid overfitting. We use recurrent dropout proposed in [136]

for this 1-D dropout. Due to space limits, more details are included in the supplementary

material.

5.4 Experiments

5.4.1 Datasets

ActivityNet Captions and YouCook2 are the two largest datasets with temporal event

segments annotated and described by natural language sentences, detailed in Chap. III.

ActivityNet Captions contains 20k videos, and on average each video has 3.65 events an-

notated. YouCook2 has 2k videos and the average number of segments per video is 7.70.

The train/val/test splits for ActivityNet Captions are 0.5:0.25:0.25 while for YouCook2 are

0.66:0.23:0.1. We report our results from both datasets on the validation sets. For Activi-

tyNet Captions, we also show the testing results on the evaluation server while the testing
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set for YouCook2 is not available.

Data Preprocessing. We down-sample the video every 0.5s and extract the 1-D appear-

ance and optical flow features per frame, as suggested by Xiong et al. [137]. For appearance

features, we take the output of the “Flatten-673” layer in ResNet-200 [123]; for optical

flow features, we extract the optical flow from 5 contiguous frames [138], encode with BN-

Inception [134] and take output of the “global-pool” layer. Both networks are pre-trained

on the ActivityNet dataset [4] for the action recognition task. We then concatenate the two

feature vector and further encode with a linear layer. We set the window size T to 480. The

input is zero padded in case the number of sampled frames is smaller than the size of the

window. Otherwise, the video is truncated to fit the window. Note that we do not fine-tune

the visual features for efficiency considerations, however, allowing fine-tuning may lead to

better performance.

5.4.2 Baseline and Metrics

Baselines. Most of the existing methods can only caption an entire video or specified

video clip. For example, LSTM-YT [139], S2YT [140], TempoAttn [63], H-RNN [84] and

DEM [1]. The most relevant baseline is TempoAttn, where the model temporally attends

on visual sequence inputs as the input of LSTM language encoder. For a fair comparison,

we made the following changes to the original TempoAttn. First, all the methods take

the same visual feature input. Second, we add a Bi-LSTM context encoder to TempoAttn

while our method use self-attention context encoder. Third, we apply temporal attention

on Bi-LSTM output for all the language decoder layers in TempoAttn since our decoder

has attention each layer. We name this baseline Bi-LSTM+TempoAttn. Since zero inputs

deteriorates Bi-LSTM encoding, we only apply the masking on the output of the LSTM

encoder when it is passed to the decoder. We also compare with a simple single-stage

Masked Transformer baseline as mentioned in section 5.2.5, where the model employs a

discrete binary mask.
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Method B@3 B@4 M

Bi-LSTM
2.43 1.01 7.49

+TempoAttn

Masked Transformer 4.47 2.14 9.43
End-to-end Masked Transformer 4.76 2.23 9.56

Table 5.1: Captioning results from ActivityNet Caption Dataset with learned event propos-
als. All results are on the validation set and all our models are based on 2-layer Trans-
former. We report BLEU (B) and METEOR (M). All results are on the validation set. Top
scores are highlighted. The improvements of our methods over the baseline method are
statistically significant (p-value<<0.05).

For event proposals, we compare our self-attention transformer-based model with Proc-

Nets and our own baseline with Bi-LSTM. For captioning-only models, we use the same

baseline as the full Dense Video Description but instead, replace the learned proposals with

ground-truth proposals. Results for other dense captioning methods (e.g.the best published

method DEM [1]) are not available on the validation set nor is the source code released.

So, we compare our methods against those methods that participated in CVPR 2017 Activ-

ityNet Video Dense-captioning Challenge [130] for test set performance on ActivityNet.

Evaluation Metrics. For ground-truth segment captioning, we measure the captioning

performance with most commonly-used evaluation metrics: BLEU{3,4} and METEOR.

For dense captioning, the evaluate metric takes both proposal accuracy and captioning ac-

curacy into account. Given a tIoU threshold, if the proposal has an overlapping larger than

the threshold with any ground-truth segments, the metric score is computed for the gener-

ated sentence and the corresponding ground-truth sentence. Otherwise, the metric score is

set to 0. The scores are then averaged across all the proposals and finally averaged across

all the tIoU thresholds–0.3, 0.5, 0.7, 0.9 in this case.
3This work is unpublished by Nov. 2017. It employs external data for model training and the final

prediction is obtained from an ensemble of models.
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Method METEOR

DEM [1] 4.82
Wang et al. 9.12
Jin et al. 9.62
Guo et al. 9.87
Yao et al.3(Ensemble) 12.84

Our Method 10.12

Table 5.2: Dense Video Description challenge leader board results. For results from the
same team, we keep the highest one.

Method
GT Proposals Learned Proposals
B@4 M B@4 M

Bi-LSTM
0.87 8.15 0.08 4.62

+TempoAttn

Our Method 1.42 11.20 0.30 6.58

Table 5.3: Recipe generation benchmark on YouCook2 validation set. GT proposals indi-
cate the ground-truth segments are given during inference. The improvement of our method
over the baseline method is statistically significant (p-value<<0.05).

5.4.3 Comparison with State-of-the-Art Methods

We compare our proposed method with baselines on the ActivityNet Caption dataset.

The validation and testing set results are shown in Tab. 5.1 and 5.2, respectively. All our

models outperform the LSTM-based models by a large margin, which may be attributed to

their better ability of modeling long-range dependencies.

We also test the performance of our model on the YouCook2 dataset, and the result is

shown in Tab. 5.3. Here, we see similar trend on performance. Our transformer based

model outperforms the LSTM baseline by a significant amount. However, the results on

learned proposals are much worse as compared to the ActivityNet dataset. This is possibly

because of small objects, such as utensils and ingredients, are hard to detect using global

visual features but are crucial for describing a recipe. Hence, one future extension for

our work is to incorporate object detectors/trackers [141, 57] into the current captioning

system.
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Ground-truth
Event 0: Two teams are playing volleyball in 
a indoor court.
Event 1: Two teams wearing dark uniforms 
are doing a volleyball competition, then 
appears a team with yellow t-shirts.
Event 2: Then, a boy with a red t-shirt 
serves the ball and the teams start to hit and 
running to pass the ball, then another team 
wearing green shorts enters the court.
Event 3: After, team wearing blue uniform 
competes with teams wearing white and red 
uniforms.

Masked Trans. (ours)
Event 0: a large group of people are seen 
standing around a gymnasium playing a 
game of volleyball
Event 1: the people in black and yellow 
team scores a goal
Event 2: the people continue playing the 
game back and fourth while the people 
watch on the sidelines
Event 3: the people continue playing the 
game back and fourth while the camera 
captures their movements

Bi-LSTM+TempoAttn
Event 0: a large group of people are seen 
standing around a field playing a game of 
soccer
Event 1: the players are playing the game 
of tug of war
Event 2: the people continue playing with 
one another and end by walking away
Event 3: the people continue playing and 
ends with one another and the other  

Ground-truth
Event 0: A man is writing something on a 
clipboard.
Event 1: A man holds a ball behind his 
head and spins around several times and 
throws the ball.
Event 2: People use measuring tape to 
measure the distance.

Masked Trans. (ours)
Event 0: a man is seen standing in a large 
circle and leads into a man holding a ball 
and
Event 1: the man spins the ball around 
and throws the ball
Event 2: the man throws the ball and his 
throw the distance

Bi-LSTM+TempoAttn
Event 0: a man is seen standing on a field 
with a man standing on a field
Event 1: he throws the ball and throws it 
back and forth
Event 2: he throws the ball and throws it 
back and forth  

Figure 5.2: Qualitative results on ActivityNet Captions. The color bars represent different
events. Colored text highlight relevant content to the event. Our model generates more
relevant attributes as compared to the baseline.

We show qualitative results in Fig. 5.2 where the proposed method generates captions

with more relevant semantic information. More visualizations are in the supplementary.

5.4.4 Model Analysis

In this section we perform experiments to analyze the effectiveness of our model on

different sub-tasks of Dense Video Description.

Video Event Proposal. We first evaluate the effect of self-attention on event proposal,

and the results are shown in Tab. 5.4. We use standard average recall (AR) metric [49, 130]

given 100 proposals. Bi-LSTM indicates our improved ProcNets-prop model by using tem-

poral convolutional and large kernel strides. We use our full model here, where the context

encoder is replaced by our video encoder. We have noticed that the anchor sizes have a large

impact on the results. So, for fair comparison, we maintain the same anchor sizes across
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Method Average Recall (%)

ProcNets-prop [21] 47.01
Bi-LSTM (ours) 50.65
Self-Attn (our) 52.95

Table 5.4: Event proposal results from ActivityNet Captions dataset. We compare our
proposed methods with our baseline method ProcNets-prop on the validation set.

Figure 5.3: Event proposal recall curve under tIoU threshold 0.8 with average 100 propos-
als per video.

all three methods. Our proposed Bi-LSTM model gains a 7% relative improvement from

the baseline results from the deeper proposal network and more balanced anchor candi-

dates. Our video encoder further yields a 4.5% improvement from our recurrent nets-based

model. We show the recall curve under high tIoU threshold (0.8) in Fig. 5.3 follow the con-

vention [1]. DAPs [49], is initially proposed for short action proposals and adapted later for

long event proposal [1]. The proposed models outperforms DAPs-event and ProcNets-prop

by significant margins. Transformer based and Bi-LSTM based models yield similar recall

results given sufficient number of proposals (100), while our self-attention encoding model

is more accurate when the allowed number of proposals is small.

Dense Video Description. Next, we look at the Dense Video Description results in an

ideal setting: doing the captioning based on the ground-truth event segments. This will give

us an ideal captioning performance since all event proposals are accurate. Because we need
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Method B@3 B@4 M

Bi-LSTM
4.8 2.1 10.02

+TempoAttn

Our Method
1-layer 5.80 2.66 10.92
2-layer 5.69 2.67 11.06
4-layer 5.70 2.77 11.11
6-layer 5.66 2.71 11.10

Table 5.5: Captioning results from ActivityNet Caption Dataset with ground-truth propos-
als. All results are on the validation set. Top two scores are highlighted. The improvement
of our selected method (2-layer) over the baseline method is statistically significant (p-
value<<0.05).

GT Proposals Learned Proposals
Method B@4 M B@4 M

Bi-LSTM
0.84 5.39 0.42 3.99

+TempoAttn

Our Method 1.13 5.90 1.04 5.93

Table 5.6: Evaluating only long events from ActivityNet Caption Dataset. GT proposals
indicate the ground-truth segments are given during inference.

access to ground-truth event proposal during test time, we report the results on validation

set (see Tab. 5.5).4 The proposed Masked Transformer (section 5.2.4) outperforms the

baseline by a large margin (by more than 1 METEOR point). This directly substantiates

the effectiveness of the transformer on both visual and language encoding and multi-head

temporal attention. We notice that as the number of encoder and decoder layers increases,

the performance gets further boosts by 1.3%-1.7%. As can be noted here, the 2-layer

transformer strikes a good balance point between performance and computation, and thus

we use 2-layer transformer for all our experiments.

Analysis on Long Events. As mentioned in section 5.2.2, learning long-range depen-

dencies should be easier with self-attention, since the next layer observes information from

4The results are overly optimistic, however, it is fine here since we are interested in the best situation per-
formance. The comparison is also fair, since all methods are tuned to optimize the validation set performance.
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all time steps of the previous layer. To validate this hypothesis directly, we test our model

against the LSTM baseline on longer event segments (where the events are at least 50s

long) from the ActivityNet Caption dataset, where learning the long-range dependencies

are crucial for achieving good performance. It is clear from the result (see Tab. 5.6) that

our transformer based model performs significantly better than the LSTM baseline. The

discrepancy is even larger when the model needs to learn both the proposal and caption-

ing, which demonstrate the effectiveness of self-attention in facilitate learning long range

dependencies.

5.5 Discussion

We propose an end-to-end model for Dense Video Description. The model is composed

of an encoder and two decoders. The encoder encodes the input video to proper visual rep-

resentations. The proposal decoder then decodes from this representation with different

anchors to form video event proposals. The captioning decoder employs a differentiable

masking network to restrict its attention to the proposal event, ensures the consistency be-

tween the proposal and captioning during training. We achieved significant performance

improvement on both event proposal and captioning tasks as compared to RNN-based

models. We demonstrate the effectiveness of our models on ActivityNet Captions and

YouCook2 dataset. Despite the progress, one issue we suffer with most of concurrent end-

to-end systems is that we have not shed enough light on why the system is performing well

due to the low system interpretability. In the next chapter, we explore how could visual

grounding further improve the model performance and interpretability.
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CHAPTER VI

Grounded Video Description

6.1 Introduction

Image and video description models are frequently not well grounded [80] which can

increase their bias [142] and lead to hallucination of objects [143], i.e., the model mentions

objects which are not in the image or video e.g.because they might have appeared in simi-

lar contexts during training. This makes models less accountable and trustworthy, which is

important if we hope such models will eventually assist people in need [144, 145]. Addi-

tionally, grounded models can help to explain the model’s decisions to humans and allow

humans to diagnose them [146]. While researchers have started to discover and study these

problems for image description [80, 142, 143, 146],1 they are even more pronounced for

video description due to the increased difficulty and diversity, both on the visual and the

language side.

Fig. 6.1 illustrates this problem. A video description approach (without grounding su-

pervision) generated the sentence “A man standing in a gym” which correctly mentions

“a man” but hallucinates “gym” which is not visible in the video. Although a man is in

the video it is not clear if the model looked at the bounding box of the man to say this

word [142, 143]. For the sentence “A man [...] is playing the piano” in Fig. 6.2, it is impor-

1We use description instead of captioning as captioning is often used to refer to transcribing the speech
in the video, not describing the content.
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A  man  is seen standing in a  room  speaking to the camera while holding a  bike .

A group of  people  are in a  raft  down a  river .

w/o grounding supervision: A man is standing in a gym .
[42]: A man is seen speaking to the camera while holding a piece of exercise equipment.
GT: A man in a room holds a bike and talks to the camera.

w/o grounding supervision: A group of people are in a river.
[42]: A large group of people are seen riding down a river and looking off into the distance.
GT: Several people are on a raft in the water.

Figure 6.1: Word-level grounded video descriptions generated by our model on two seg-
ments from our ActivityNet-Entities dataset. We also provide the descriptions generated
by our model without explicit bounding box supervision, the descriptions generated by [2]
and the ground-truth descriptions (GT) for comparison.

tant to understand that which “man” in the image “A man” is referring to, to determine if

a model is correctly grounded. Such understanding is crucial for many applications when

trying to build accountable systems or when generating the next sentence or responding to

a follow up question of a blind person: e.g.answering “Is he looking at me?” requires an

understanding which of the people in the image the model talked about.

The goal of our research is to build such grounded systems. As one important step

in this direction, we collect ActivityNet-Entities (short as ANet-Entities) which grounds

or links noun phrases in sentences with bounding boxes in the video frames. It is based

on ActivityNet Captions [1], one of the largest benchmarks in video description. When

annotating objects or noun phrases we specifically annotate the bounding box which cor-

responds to the instance referred to in the sentence rather than all instances of the same
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A man in a striped shirt is playing the piano on the street while people watch him.

Figure 6.2: An annotated example from our dataset. The dashed box (“people”) indicates
a group of objects. Same as Fig. 3.7.

object category, e.g.in Fig. 6.2, for the noun phrase “the man” in the video description, we

only annotate the sitting man and not the standing man or the woman, although they are all

from the object category “person”. We note that annotations are sparse, in the sense that we

only annotate a single frame of the video for each noun phrase. ANet-Entities has a total

number of 51.8k annotated video segments/sentences with 157.8k labeled bounding boxes,

more details can be found in Sec. 3.2.1.

Our new dataset allows us to introduce a novel grounding-based video description

model that learns to jointly generate words and refine the grounding of the objects gener-

ated in the description. We explore how this explicit supervision can benefit the description

generation compared to unsupervised methods that might also utilize region features but

do not penalize grounding.
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Figure 6.3: The proposed framework consists of three parts: the grounding module (a),
the region attention module (b) and the language generation module (c). Region proposals
are first represented with grounding-aware region encodings. The language model then
dynamically attends on the region encodings to generate each word. Losses are imposed on
the attention weights (attn-loss), grounding weights (grd-loss), and the region classification
probabilities (cls-loss). For clarity, the details of the temporal attention are omitted.

6.2 Description with Grounding Supervision

In this section we describe the proposed grounded video description framework (see

Fig. 6.3). The framework consists of three modules: grounding, region attention and lan-

guage generation. The grounding module detects visual clues from the video, the region

attention dynamically attends on the visual clues to form a high-level impression of the

visual content and feeds it to the language generation module for decoding. We illustrate

three options for incorporating the object-level supervision: region classification, object

grounding (localization), and supervised attention.

6.2.1 Overview

We formulate the problem as a joint optimization over the language and grounding

tasks. The overall loss function consists of four parts:

L = Lsent + λαLattn + λcLcls + λβLgrd, (6.1)
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where Lsent denotes the teacher-forcing language generation cross-entropy loss, commonly

used for language generation tasks (details in Sec. 6.2.2). Lattn corresponds to the cross en-

tropy region attention loss which is presented in Sec. 6.2.3. Lcls and Lgrd are cross-entropy

losses that correspond to the grounding module for region classification and supervised ob-

ject grounding (localization), respectively (Sec. 6.2.4). The three grounding-related losses

are weighted by coefficients λα, λc, and λβ which we selected on the dataset validation

split.

We denote the input video (segment) as V and the target/generated sentence description

(words) as S. We uniformly sample F frames from each video as {v1, v2, . . . , vF} and

define Nf object regions on sampled frame f . Hence, we can assemble a set of regions

R = [R1, . . . , RF ] = [r1, r2, . . . , rN ] ∈ Rd×N to represent the video, where N =
∑F

f=1Nf

is the total number of regions. We overload the notation here and use ri (i ∈ {1, 2, . . . , N})

to also represent region feature embeddings, as indicated by fc6 in Fig. 6.3. We represent

words in S with one-hot vectors which are further encoded to word embeddings yt ∈ Re

where t ∈ {1, 2, . . . , T}, where T indicates the sentence length and e is the embedding

size.

6.2.2 Language Generation Module

For language generation, we adapt the language model from [74] for video inputs, i.e.,

extend it to incorporate temporal information. The model consists of two LSTMs: the

first one for encoding the global video feature and the word embedding yt into the hidden

state htA ∈ Rm where m is the dimension and the second one for language generation (see

Fig. 6.3c). The language model dynamically attends on videos frames or regions for visual

clues to generate words. We refer to the attention on video frames as temporal attention

and the one on regions as region attention.

The temporal attention takes in a sequence of frame-wise feature vectors and determines

by the hidden state how significant each frame should contribute to generate a description

64



word. We deploy a similar module as in [2], except that we replace the self-attention context

encoder with Bi-directional GRU (Bi-GRU) which yields superior results. We train with

cross-entropy loss Lsent.

6.2.3 Region Attention Module

Unlike temporal attention that works on a frame level, the region attention [73, 74]

focuses on more fine-grained details in the video, i.e., object regions [47]. We denote the

region encoding as R̃ = [r̃1, r̃2, . . . , r̃N ], more details are defined later in Eq. 6.5. At time t

of the caption generation, the attention weight over region i is formulated as:

αti = w>α tanh(Wrr̃i +Whh
t
A), αt := Softmax(αt), (6.2)

where Wr ∈ Rm×d, Wh ∈ Rm×m, wα ∈ Rm, and αt = [αt1, α
t
2, . . . , α

t
N ]. The region

attention encoding is then R̃αt and along with the temporal attention encoding, fed into the

language LSTM.

Supervised Attention. We want to encourage the language model to attend on the correct

region when generating a visually-groundable word. As this effectively assists the language

model in learning to attend to the correct region, we call this attention supervision. Denote

the indicators of positive/negative regions as γt = [γt1, γ
t
2, . . . , γ

t
N ], where γti = 1 when the

region ri has over 0.5 IoU with the GT box rGT and otherwise 0. We regress αt to γt and

hence the attention loss for object word st can be defined as:

Lattn = −
N∑
i=1

γti logαti. (6.3)

6.2.4 Grounding Module

Assume we have a set of visually-groundable object class labels {c1, c2, . . . , cK}, short

as object classes, whereK is the total number of classes. Given a set of object regions from
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all sampled frames, the grounding module estimates the class probability distribution for

each region.

We define a set of object classifiers asWc = [w1, w2, . . . , wK] ∈ Rd×K and the learnable

scalar biases as B = [b1, b2, . . . , bK]. So, a naive way to estimate the class probabilities for

all regions (embeddings) R = [r1, r2, . . . , rN ] is through dot-product:

Ms(R) = Softmax(W>
c R +B1>), (6.4)

where 1 is a vector with all ones,W>
c R is followed by a ReLU and a Dropout layer, andMs

is the region-class similarity matrix as it captures the similarity between regions and object

classes. For clarity, we omit the ReLU and Dropout layer after the linear embedding layer

throughout Sec. 6.2 unless otherwise specified. The Softmax operator is applied along the

object class dimension of Ms to ensure the class probabilities for each region sum up to 1.

We transfer detection knowledge from an off-the-shelf detector that is pre-trained on a

general source dataset, i.e., Visual Genome (VG) [147], to our object classifiers. We find

the nearest neighbor for each of the K object classes from the VG object classes according

to their distances in the embedding space (glove vectors [148]). We then initialize Wc and

B with the corresponding classifier, i.e., the weights and biases, from the last linear layer

of the detector.

On the other hand, we represent the spatial and temporal configuration of the region

as a 5-D tuple, including 4 values for the normalized spatial location and 1 value for the

normalized frame index. Then, the 5-D feature is projected to a ds = 300-D location

embedding for all the regions Ml ∈ R300×N . Finally, we concatenate all three components:

i) region feature, ii) region-class similarity matrix, and iii) location embedding together and

project into a lower dimension space (m-D):

R̃ = Wg[ R |Ms(R) |Ml ], (6.5)
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where [·|·] indicates a row-wise concatenation and Wg ∈ Rm×(d+K+ds) are the embedding

weights. We name R̃ the grounding-aware region encoding, corresponding to the right

portion of Fig. 6.3a. To further model the relations between regions, we deploy a self-

attention layer over R̃ [82, 2]. The final region encoding is fed into the region attention

module (see Fig. 6.3b).

So far the object classifier discriminates classes without the prior knowledge about the

semantic context, i.e., the information the language model has captured. To incorporate

semantics, we condition the class probabilities on the sentence encoding from the Attention

LSTM. A memory-efficient approach is treating attention weights αt as this semantic prior,

as formulated below:

M t
s(R,α

t) = Softmax(W>
c R +B1> + 1αt

>
), (6.6)

where the region attention weights αt are determined by Eq. 6.2. Note that here the Soft-

max operator is applied row-wise to ensure the probabilities on regions sum up to 1. To

learn a reasonable object classifier, we can deploy a region classification task on Ms(R)

or a sentence-conditioned grounding task on M t
s(R,α

t), with the word-level grounding

annotations from Sec. 3.2.1. Next, we describe them both.

Region Classification. We first define a positive region as a region that has over 0.5 in-

tersection over union (IoU) with an arbitrary ground-truth (GT) box. If a region matches

to multiple GT boxes, the one with the largest IoU is the final matched GT box. Then we

classify the positive region, say region i to the same class label as in the GT box, say class

cj . The normalized class probability distribution is hence Ms[:, i] and the cross-entropy

loss on class cj is

Lcls = − logMs[j, i]. (6.7)

The final Lcls is the average of losses on all positive regions.

Object Grounding. Given a visually-groundable word st+1 at time step t + 1 and the
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encoding of all the previous words, we aim to localize st+1 in the video as one or a few

of the region proposals. Supposing st+1 corresponds to class cj , we regress the confidence

score of regions M t
s[j, :] = βt+1 = [βt+1

1 , βt+1
2 , . . . , βt+1

N ] to indicators γt as defined in

Sec. 6.2.3. The grounding loss for word st+1 is defined as:

Lgrd = −
N∑
i=1

γti log βt+1
i . (6.8)

Note that the final loss onLattn orLgrd is the average of losses on all visually-groundable

words. The difference between the attention supervision and the grounding supervision is

that, in the latter task, the target object cj is known beforehand, while the attention module

is not aware of which object to seek in the scene.

6.3 Experiments

Datasets. We conduct most experiments and ablation studies on the newly-collected ActivityNet-

Entities dataset on video description given the set of temporal segments (i.e., using the

ground-truth events from [1]) and video paragraph description [149]. We also demonstrate

our framework can easily be applied to image description and evaluate it on the Flickr30k

Entities dataset [89]. Note that we did not apply our method to COCO captioning as there

is no exact match between words in COCO captions and object annotations in COCO (lim-

ited to only 80). We use the same process described in Sec. 3.2.3 to convert NPs to object

labels. Since Flickr30k Entities contains more captions, labels that occur at least 100 times

are taken as object labels, resulting in 480 object classes [74].

Pre-processing. For ANet-Entities, we truncate captions longer than 20 words and build a

vocabulary on words with at least 3 occurrences. For Flickr30k Entities, since the captions

are generally shorter and it is a larger corpus, we truncate captions longer than 16 words

and build a vocabulary based on words that occur at least 5 times.

Compared Methods The state-of-the-art (SotA) video description methods on ActivityNet
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Captions include Masked Transformer and Bi-LSTM+TempoAttn [2]. We re-train the mod-

els on our dataset splits with the original settings. For a fair comparison, we use exactly

the same frame-wise feature from this work for our temporal attention module. For video

paragraph description, we compare our methods against the SotA method MFT [149] with

the evaluation script provided by the authors [149]. For image captioning, we compare

against two SotA methods, Neural Baby Talk (NBT) [74] and BUTD [73]. For a fair com-

parison, we provide the same region proposal and features for both the baseline BUTD and

our method, i.e., from Faster R-CNN pre-trained on Visual Genome (VG). NBT is specially

tailored for each dataset (e.g., detector fine-tuning), so we retain the same feature as in the

work, i.e., from ResNet pre-trained on ImageNet. All our experiments are performed three

times and the average scores are reported.

6.3.1 Evaluation Metrics

Localization Metrics. To measure the object grounding and attention correctness, we first

compute the localization accuracy (Grd. and Attn. in the tables) over GT sentences fol-

lowing [94, 25]. Given an unseen video, we feed the GT sentence into the model and

measure the localization accuracy at each annotated object word. We compare the region

with the highest attention weight (αi) or grounding weight (βj) against the GT box. An ob-

ject word is correctly localized if the IoU is over 0.5. We also study the attention accuracy

on generated sentences, i.e., given a test video segment, we perform the standard language

generation inference and compute attention localization accuracy (no grounding measure-

ment here because it is usually evaluated on GT sentences). The metrics are denoted by

F1all and F1loc in the tables. In F1all, a region prediction is considered correct if the object

word is correctly predicted and also correctly localized. We also compute F1loc, which

only considers correctly-predicted object words. We explain F1all and F1loc in details as

follows.

We define the number of object words in the generated sentences as A, the number of
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object words in the GT sentences as B, the number of correctly predicted object words in

the generated sentences as C and the counterpart in the GT sentences as D, and the number

of correctly predicted and localized words as E. A region prediction is considered correct

if the object word is correctly predicted and also correctly localized (i.e., IoU with GT box

> 0.5).

In F1all, the precision and recall can be defined as:

Precisionall =
E

A
, Recallall =

E

B
(6.9)

However, since having box annotation for every single object in the scene is unlikely, an

incorrectly-predicted word might not necessarily be a hallucinated object. Hence, we also

compute F1loc, which only considers correctly-predicted object words, i.e., only measures

the localization quality and ignores errors result from the language generation. The preci-

sion and recall for F1loc are defined as:

Precisionloc =
E

C
, Recallloc =

E

D
(6.10)

If multiple instances of the same object exist in the target sentence, we only consider

the first instance. The precision and recall for the two metrics are computed for each object

class, but it is set to zero if an object class has never been predicted. Finally, we average

the scores by dividing by the total number of object classes in a particular split (val or test).

To address the sparsity of the annotation, we twist our evaluation protocol in the following

way. During model training, we restrict the grounding region candidates within the target

frame (w/ GT box), i.e., only consider the Nf proposals on the frame f with the GT box.

Other Metrics. For the region classification task, we compute the top-1 classification ac-

curacy (Cls. in the tables) for positive regions. For all metrics, we average the scores across
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object classes. To evaluate the sentence quality, we use standard language evaluation met-

rics, including Bleu@1, Bleu@4, METEOR, CIDEr, and SPICE, and the official evaluation

script.2 We additionally perform human evaluation to judge the sentence quality.

6.3.2 Implementation Details

Region proposal and feature. We uniformly sample 10 frames per video segment (an

event in ANet-Entities) and extract region features. For each frame, we use a Faster R-CNN

detector [47] with ResNeXt-101 backbone [150] for region proposal and feature extraction

(fc6). The detector is pretrained on Visual Genome [147]. More model and training details

are in the Appendix B.

Feature map and attention. The temporal feature map is essentially a stack of frame-wise

appearance and motion features from [2, 137]. The spatial feature map is the conv4 layer

output from a ResNet-101 [74, 123] model. Note that an average pooling on the temporal

or spatial feature map gives the global feature. In video description, we augment the global

feature with segment positional information (i.e., total number of segments, segment index,

start time and end time), which is empirically important.

Hyper-parameters. Coefficients λα ∈ {0.05, 0.1, 0.5}, λβ ∈ {0.05, 0.1, 0.5}, and λc ∈

{0.1, 0.5, 1} vary in the experiments as a result of model validation. We set λα = λβ when

they are both non-zero considering the two losses have a similar functionality. The region

encoding size d = 2048, word embedding size e = 512 and RNN encoding size m = 1024

for all methods. Other hyper-parameters in the language module are the same as in [74].

We use a 2-layer 6-head Transformer encoder as the self-attention module [2].

2https://github.com/ranjaykrishna/densevid eval
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Method λα λβ λc B@1 B@4 M C S Attn. Grd. F1all F1loc Cls.

Unsup. (w/o SelfAttn) 0 0 0 23.2 2.28 10.9 45.6 15.0 14.9 21.3 3.70 12.7 6.89
Unsup. 0 0 0 23.0 2.27 10.7 44.6 13.8 2.42 19.7 0.28 1.13 6.06
Sup. Attn. 0.05 0 0 23.7 2.56 11.1 47.0 14.9 34.0 37.5 6.72 22.7 0.42
Sup. Grd. 0 0.5 0 23.5 2.50 11.0 46.8 14.7 31.9 43.2 6.04 21.2 0.07
Sup. Cls. 0 0 0.1 23.3 2.43 10.9 45.7 14.1 2.59 25.8 0.35 1.43 14.9
Sup. Attn.+Grd. 0.5 0.5 0 23.8 2.44 11.1 46.1 14.8 35.1 40.6 6.79 23.0 0
Sup. Attn.+Cls. 0.05 0 0.1 23.9 2.59 11.2 47.5 15.1 34.5 41.6 7.11 24.1 14.2
Sup. Grd. +Cls. 0 0.05 0.1 23.8 2.59 11.1 47.5 15.0 27.1 45.7 4.79 17.6 13.8
Sup. Attn.+Grd.+Cls. 0.1 0.1 0.1 23.8 2.57 11.1 46.9 15.0 35.7 44.9 7.10 23.8 12.2

Table 6.1: Results on ANet-Entities val set. “w/o SelfAttn” indicates self-attention is not
used for region feature encoding. Notations: B@1 - Bleu@1, B@4 - Bleu@4, M - ME-
TEOR, C - CIDEr, S - SPICE. Attn. and Grd. are the object localization accuracies for
attention and grounding on GT sentences. F1all and F1loc are the object localization accu-
racies for attention on generated sentences. Cls. is classification accuracy. All accuracies
are in %. Top two scores on each metric are in bold.

Method B@1 B@4 M C S Attn. Grd. F1all F1loc Cls.

Masked Transformer [2] 22.9 2.41 10.6 46.1 13.7 – – – – –
Bi-LSTM+TempoAttn [2] 22.8 2.17 10.2 42.2 11.8 – – – – –

Our Unsup. (w/o SelfAttn) 23.1 2.16 10.8 44.9 14.9 16.1 22.3 3.73 11.7 6.41
Our Sup. Attn.+Cls. (GVD) 23.6 2.35 11.0 45.5 14.7 34.7 43.5 7.59 25.0 14.5

Table 6.2: Results on ANet-Entities test set. The top one score for each metric is in bold. On
language evaluation, the improvements of our GVD model over the SotA method Masked
Transformer on metrics METEOR and SPICE are statistically significant (p-value<0.02).

6.3.3 Results on ActivityNet-Entities

6.3.3.1 Video Event Description

Although dense video description [147] further entails localizing the segments to de-

scribe on the temporal axis, in this work we focus on the language generation part and

assume the temporal boundaries for events are given. We name this task Video Event De-

scription. Results on the validation and test splits of our ActivityNet-Entities dataset are

shown in Tab. 6.1 and Tab. 6.2, respectively. Given the selected set of region proposals, the

localization upper bound on the val/test sets is 82.5%/83.4%, respectively.

In general, methods with some form of grounding supervision work consistently better

than the methods without. Moreover, combining multiple losses, i.e., stronger supervision,
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leads to higher performance. On the val set, the best variant of supervised methods (i.e.,

Sup. Attn.+Cls.) ourperforms the best variant of unsupervised methods (i.e., Unsup. (w/o

SelfAttn)) by a relative 1-13% on all the metrics. On the test set, the gaps are small for

Bleu@1, METEOR, CIDEr, and SPICE (within ± 2%), but the supervised method has a

8.8% relative improvement on Bleu@4.

The results in Tab. 6.2 show that adding box supervision dramatically improves the

grounding accuracy from 22.3% to 43.5%. Hence, our supervised models can better local-

ize the objects mentioned which can be seen as an improvement in their ability to explain or

justify their own description. The attention accuracy also improves greatly on both GT and

generated sentences, implying that the supervised models learn to attend on more relevant

objects during language generation. However, grounding loss alone fails with respect to

classification accuracy (see Tab. 6.1), and therefore the classification loss is required in that

case. Conversely, the classification loss alone can implicitly learn grounding and maintains

a fair grounding accuracy.

Temporal attention & region attention. We conduct ablation studies on the two attention

modules to study the impact of each component on the overall performance (see Tab. 6.3).

Each module alone performs similarly and the combination of two performs the best, which

indicates the two attention modules are complementary. We hypothesize that the temporal

attention captures the coarse-level details while the region attention captures more fine-

grained details. Note that the region attention module takes in a lower sampling rate input

than the temporal attention module, so we expect it can be further improved if having a

higher sampling rate and the context (other events in the video). We leave this for future

studies.

Comparison to existing methods. We refer to our best model (Sup. Attn.+Cls.) as GVD

(Grounded Visual Description) and show that it sets the new SotA on ActivityNet Captions

for the Bleu@1, METEOR and SPICE metrics, with relative gains of 2.8%, 3.9% and 6.8%,

respectively over the previous best [2]. We observe slightly inferior results on Bleu@4 and
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Method B@1 B@4 M C S

Region Attn. 23.2 2.55 10.9 43.5 14.5
Tempo. Attn. 23.5 2.45 11.0 44.3 14.0
Both 23.9 2.59 11.2 47.5 15.1

Table 6.3: Ablation study for two attention modules using our best model. Results reported
on val set.

vs. Unsupervised vs. [2]

Judgments Judgments
Method % ∆ % ∆

About Equal 34.9 38.9

Other is better 29.3
6.5

27.5
6.1

GVD is better 35.8 33.6

Table 6.4: Human evaluation of sentence quality. We present results for our supervised
approach vs. our unsupervised baseline and vs. Masked Transformer [2].

CIDEr (-2.8% and -1.4%, respectively) but after examining the generated sentences (see

qualitative examples below) we see that [2] generates repeated words way more often. This

may increase the aforementioned evaluation metrics, but the generated descriptions are of

lower quality. Another noteworthy observation is that the self-attention context encoder (on

top of R̃) brings consistent improvements on methods with grounding supervision, but hurts

the performance of methods without, i.e., “Unsup.”. We hypothesize that the extra context

and region interaction introduced by the self-attention confuses the region attention module

and without any grounding supervision makes it fail to properly attend to the right region,

something that leads to a huge attention accuracy drop from 14.9% to 2.42%.

Human Evaluation. Automatic metrics for evaluating generated sentences have frequently

shown to be unreliable and not consistent with human judgments, especially for video de-

scription when there is only a single reference [145]. Hence, we conducted a human evalu-

ation to evaluate the sentence quality on the test set of ActivityNet-Entities. We randomly

sampled 329 video segments and presented the segments and descriptions to the judges.

From Tab. 6.4, we observe that, while they frequently produce captions with similar qual-
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Method B@1 B@4 M C

MFT [149] 45.5 9.78 14.6 20.4
Our Unsup. (w/o SelfAttn) 49.8 10.5 15.6 21.6
Our GVD 49.9 10.7 16.1 22.2

Table 6.5: Results of video paragraph description on test set.

ity, our GVD works better than the unsupervised baseline (with a significant gap of 6.1%).

We can also see that our GVD approach works better than the Masked Transformer [2] with

a significant gap of 6.5%. We believe these results are a strong indication that our approach

is not only better grounded but also generates better sentences, both compared to baselines

and prior work [2] (see our qualitative results below).

Qualitative examples. See Figs. 6.4 and 6.5 at the end of this chapter for qualitative results

of our methods and the Masked Transformer on ANet-Entities val set. We visualize the

proposal with the highest attention weight in the corresponding frame. In (a), the supervised

model correctly attends to “man” and “Christmas tree” in the video when generating the

corresponding words. The unsupervised model mistakenly predicts “Two boys”. In (b),

both “man” and “woman” are correctly grounded. In (c), both “man” and “saxophone”

are correctly grounded by our supervised model while Masked Transformer hallucinates a

“bed”. In (d), all the object words (i.e., “people”, “beach”, “horses”) are correctly localized.

The caption generated by Masked Transformer is incomplete. In (e), surprisingly, not

only major objects “woman” and “court” are localized, but also the small object “ball”

is attended with a high precision. Masked Transformer incorrectly predicts the gender of

the person. In (f), the Masked Transformer outputs an unnatural caption “A group of people

are in a raft and a man in red raft raft raft raft raft” containing consecutive repeated words

“raft”.
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6.3.3.2 Video Paragraph Description

Besides measuring the quality of each individual description, we also evaluate the co-

herence among sentences within a video as in [149]. We obtained the result file and eval-

uation script from [149]3 and evaluated both methods on our test split. The results are

shown in Tab. 6.5. We outperform the SotA method [149] by a large margin, with relative

improvements of 8.9-10% on all the metrics. The results are even more surprising given

that we generate description for each event separately, without conditioning on previously-

generated sentences. We hypothesize that the temporal attention module can effectively

model the event context through the Bi-GRU context encoder and context benefits the co-

herence of consecutive sentences.

6.3.4 Results on Flickr30k Entities

We show the overall results on image description in Tab. 6.6 (val) and Tab. 6.7 (test).

The upper bounds on the val/test sets are 90.0%/88.5%, respectively. On the val set, we

perform a light hyper-parameter search on supervised methods and notice the setting λα =

0.1, λβ = 0.1 and λc = 1 generally works well. The supervised methods outperform

the unsupervised baseline by a decent amount in all the metrics with only one exceptions:

Sup. Cls., which has a slightly inferior result in CIDEr. The best supervised method (Sup.

Attn.+Grd.+Cls., denoted also as GVD) outperforms the best unsupervised baseline by a

relative 0.9-4.8% over all the metrics. On the test set, we see that the supervised method

outperforms the unsupervised baseline by a relative 1-3.7% over all the metrics. Our GVD

model sets new SotA for all the five metrics with relative gains up to 10%. In the meantime,

object localization and region classification accuracies are significantly boosted, showing

that our captions can be better visually explained and understood.

3The authors kindly provided us with their result file and evaluation script, but as they were unable to
provide us with their splits, we evaluated both methods on our test split. Even though we are under an unfair
disadvantage, i.e., the authors’ val split might contain videos from our test split, we still outperform the SotA
method by a large margin.
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Method λα λβ λc B@1 B@4 M C S Attn. Grd. F1all F1loc Cls.

Unsup. (w/o SelfAttn) 0 0 0 70.0 27.5 22.0 60.4 15.9 22.0 25.9 4.44 12.8 17.6
Unsup. 0 0 0 69.3 26.8 22.1 59.4 15.7 4.04 16.3 0.80 2.09 1.35
Sup. Attn. 0.1 0 0 71.0 28.2 22.7 63.0 16.3 42.3 44.1 8.08 22.4 6.59
Sup. Grd. 0 0.1 0 70.1 27.6 22.5 63.1 16.1 38.5 49.5 7.59 21.0 0.03
Sup. Cls. (w/o SelfAttn) 0 0 1 70.1 27.6 22.0 60.2 15.8 20.9 32.1 4.12 11.5 19.9
Sup. Attn.+Grd. 0.1 0.1 0 70.2 27.6 22.5 62.3 16.3 42.7 49.8 8.62 23.6 0
Sup. Attn.+Cls. 0.1 0 1 70.0 27.9 22.6 62.4 16.3 42.1 46.5 8.35 23.2 19.9
Sup. Grd. +Cls. 0 0.1 1 70.4 28.0 22.7 62.8 16.3 29.0 51.2 5.19 13.7 19.7
Sup. Attn.+Grd.+Cls. 0.1 0.1 1 70.6 28.1 22.6 63.3 16.3 41.2 50.8 8.30 23.2 19.6

Table 6.6: Results on Flickr30k Entities val set. The top two scores on each metric are in
bold.

Method VG Box B@1 B@4 M C S Attn. Grd. F1all F1loc Cls.

ATT-FCN* [67] 64.7 19.9 18.5 – – – – – – –
NBT* [74] X 69.0 27.1 21.7 57.5 15.6 – – – – –
BUTD [73] X 69.4 27.3 21.7 56.6 16.0 24.2 32.3 4.53 13.0 1.84

Our Unsup. (w/o SelfAttn) X 69.2 26.9 22.1 60.1 16.1 21.4 25.5 3.88 11.7 17.9
Our GVD model X X 69.9 27.3 22.5 62.3 16.5 41.4 50.9 7.55 22.2 19.2

Table 6.7: Results on Flickr30k Entities test set. * indicates the results are obtained from
the original papers. GVD refers to our Sup. Attn.+Grd.+Cls. model. “VG” indicates region
features are from VG pre-training. The top one score is in bold. On language evaluation,
the improvements of our GVD model over the SotA method BUTD on metrics METEOR
and CIDEr are statistically significant (p-value<0.02).

Qualitative examples. See Fig. 6.6 for the qualitative results by our methods and the

BUTD on Flickr30k Entities val set. We visualize the proposal with the highest attention

weight as the green box. The corresponding attention weight and the most confident object

prediction of the proposal are displayed as the blue text inside the green box. In (a), the

supervised model correctly attends to “man”, “dog” and “snow” in the image when generat-

ing the corresponding words. The unsupervised model misses the word “snow” and BUTD

misses the word “man”. In (b), the supervised model successfully incorporates the detected

visual clues (i.e., “women”, “building”) into the description. We also show a negative ex-

ample in (c), where interestingly, the back of the chair looks like a laptop, which confuses

our grounding module. The supervised model hallucinates a “laptop” in the scene.
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6.4 Discussion

In this work, we collected ActivityNet-Entities, a novel dataset that allows joint study

of video description and grounding. We show how to leverage the noun phrase annota-

tions to generate grounded video descriptions. We also use our dataset to evaluate how

well the generated sentences are grounded. We believe our large-scale annotations will

also allow for more in-depth analysis which have previously only been able on images,

e.g.about hallucination [143] and bias [142] as well as studying co-reference resolution.

Besides, we showed in our comprehensive experiments on video and image description,

how the box supervision can improve the accuracy and the explainability of the gener-

ated description by not only generating sentences but also pointing to the corresponding

regions in the video frames or image. According to automatic metrics and human evalua-

tion, on ActivityNet-Entities our model performs state-of-the-art description quality, both

when evaluated per sentence or on paragraph level with a significant increase in ground-

ing performance. We also adapted our model to image description and evaluated it on the

Flickr30k Entities dataset where our model outperforms existing methods, both description

quality and grounding accuracy.
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(a) Sup.: A man and a woman are standing in a room with a Christmas tree;
Unsup.: Two boys are seen standing around a room holding a tree and speaking to one
another;
Masked Trans.: They are standing in front of the christmas tree;
GT: Then, a man and a woman set up a Christmas tree.

(b) Sup.: The man and woman talk to the camera;
Unsup.: The man in the blue shirt is talking to the camera;
Masked Trans.: The man continues speaking while the woman speaks to the camera;
GT: The man and woman continue speaking to the camera.

(c) Sup.: A man is standing in a room holding a saxophone;
Unsup.: A man is playing a saxophone;
Masked Trans.: A man is seated on a bed;
GT: We see a man playing a saxophone in front of microphones.

(d) Sup.: The people ride around the beach and ride around on the horses;
Unsup.: The people ride around the beach and ride around;
Masked Trans.: The camera pans around the area and the girl leading the horse and the
woman leading the;
GT: We see four people on horses on the beach.

Figure 6.4: Qualitative results on ANet-Entities val set. The red text at each frame indi-
cates the generated word. The green box indicates the proposal with the highest attention
weight. The blue text inside the green box corresponds to i) the object class with the highest
probability and ii) the attention weight. Better zoomed and viewed in color.
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(e) Sup.: The woman is then seen standing in a tennis court holding tennis rackets and
hitting the ball around;
Unsup.: The woman serves the ball with a tennis racket;
Masked Trans.: We see a man playing tennis in a court;
GT: Two women are on a tennis court, showing the technique to posing and hitting the ball.

(f) Sup.: A group of people are in a raft on a raft;
Unsup.: A group of people are in a raft;
Masked Trans.: A group of people are in a raft and a man in red raft raft raft raft raft;
GT: People are going down a river in a raft.

Figure 6.5: (Continued) Qualitative results on ANet-Entities val set. See the caption in
Fig. 6.4 for more details.
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(a) Sup.: A man and a dog are pulling a sled through the snow;
Unsup.: A man in a blue jacket is pulling a dog on a sled;
BUTD: Two dogs are playing in the snow;
GT (5): A bearded man wearing a blue jacket rides his snow sled pulled by his two dogs
/ Man in blue coat is being pulled in a dog sled by two dogs / A man in a blue coat is
propelled on his sled by two dogs / A man us using his two dogs to sled across the snow /
Two Huskies pull a sled with a man in a blue jacket.

(b) Sup.: Three women are standing in front of a building;
Unsup.: Three women in costumes are standing on a stage with a large wall in the back-
ground;
BUTD: Three women in yellow and white dresses are walking down a street;
GT (5): Three woman are crossing the street and on is wearing a yellow coat / Three ladies
enjoying a stroll on a cold, foggy day / A woman in a yellow jacket following two other
women / Three women in jackets walk across the street / Three women are crossing a street.

(c) Sup.: A man in a gray jacket is sitting in a chair with a laptop in the background;
Unsup.: A man in a brown jacket is sitting in a chair at a table;
BUTD: A man in a brown jacket is sitting in a chair with a woman in a brown jacket in a;
GT (5): Several chairs lined against a wall, with children sitting in them / A group of
children sitting in chairs with monitors over them / Children are sitting in chairs under some
television sets / Pre-teen students attend a computer class / Kids conversing and learning in
class.

Figure 6.6: Qualitative results on Flickr30k Entities val set. Better zoomed and viewed in
color. See Sec. B for discussion. 81



CHAPTER VII

Weakly-Supervised Object Grounding

7.1 Introduction

Like most fine-grained recognition problems [47, 89], grounding can be extremely data

intensive, especially in the context of untrimmed videos (e.g., our work [26] from the last

chapter). On the other hand, video-sentence pairs are easier to obtain than object region

annotations (e.g., YouTube subtitles or ASR scripts). We focus on the weakly-supervised

version of the grounding problem where the only supervision is sentence descriptions; no

spatially-aligned object bounding boxes are available for training. Sentence grounding can

involve multiple interacting objects, which sets our work apart from the relatively well-

studied weakly-supervised object localization problem, where one or more objects are lo-

calized independently [151, 152].

Existing work on visual grounding falls into two categories: multiple instance learn-

ing [97, 98] and visual attention [94]. In either case, the visual-semantic similarity is first

measured between the target object/phrase and all the image-level, i.e., spatial object region

proposals. Then, either a ranking loss or a reconstruction loss—both of which we refer to

here as matching losses—measures the quality of the matching. A naive extension of the

existing approaches to the video domain is to treat the entire video segment as a bag of spa-

tial object proposals. However, this presents two issues. First, existing methods rely on the

assumption that the target object appears in at least one of the proposal regions. This as-
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sumption is weak when it comes to video, since a query object might appear sparsely across

multiple frames1 and might not be detected completely. The segment-level supervision, i.e.,

object labels, could be potentially strengthened if applied to individual frames. Second, a

video segment can last up to several minutes. Even with temporal down-sampling, this can

bring in tens or hundreds of frames and hence thousands of proposals, which compromise

the visual-semantic alignment accuracy.

To address these two issues, we propose a frame-wise loss weighting framework for

video grounding. We ground the target objects on a frame-by-frame basis. We face the

challenge that the segment-level supervision is not applicable to individual frames where

the query object is off-screen, occluded, or just not present in the proposals for that frame.

Our solution is to first estimate the likelihood that the query object is present in (a proposal

in) each video frame. If the likelihood is high, we judge the matching quality mainly on the

matching loss. Otherwise, we down-weight the matching loss while bringing in a penalty

loss. The lower the confidence, the higher the penalty. With the conditioned frame-wise

grounding framework, the proposed model can avoid being flooded with massive proposals

even when the sampling rate is high and only make predictions for applicable frames.

We propose two approaches to estimate frame-wise object likelihood (confidence) scores.

The first one is conditioned on both visual and textual inputs, namely, the maximum visual-

semantic similarity scores in each frame. The second approach is inspired by the fact that

the combination of objects can imply their order of appearance in the video. For example,

when a sequence of objects “tomatoes”, “pan” and “plate” appears in the description, the

video scene is likely to include a shot of tomatoes being grilled in the pan at the begin-

ning, and a shot of tomatoes being moved to the plate at the end. In the temporal domain,

“pan” appears mostly ahead of “plate” while “tomatoes” intersects with both. We implicitly

model the object interaction with self-attention [82] and use textual guidance to estimate

the frame-wise object likelihood.

1In YouCook2-BoundingBox, the target object appears in 60.7% of the total frames, on average.
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For evaluation, due to lack of existing video grounding benchmarks, we have collected

annotations over the large-scale instructional video dataset YouCook2, which provides over

15,000 video segment-description pairs (see Sec. 3.1). We sample the validation and testing

videos at 1fps and draw bounding box for the 67 most frequent objects when they are

present in both the video segment and the description. We compare our methods against

competitive baselines on video grounding and our proposed methods achieve state-of-the-

art performances.

7.2 Preliminary

In this section we provide background on visual-semantic alignment framework (ground-

ing by ranking), which is the backbone of our model. The background on Transformer is

included in Appendix A.

Grounding by Ranking. We start by describing ranking-based grounding approach from [97].

Given a sentence description including O query objects/phrases and a set of N object re-

gion proposals from an image, the goal is to target each referred object in the query as one

of the object proposals. Queries and visual region proposals are first encoded in a common

d-dimensional space. Denote the object query feature vectors as {qk}, k = 1, 2, . . . , O and

the region proposal feature vectors as {ri}, i = 1, 2, . . . , N . We pack the feature vectors

into matrices Q = (q1, . . . , qO) and R = (r1, . . . , rN). The visual-semantic matching score

of the description and the image is formulated as:

S(Q,R) =
1

O

O∑
k=1

max
i
aik, (7.1)

where aik = q>k ri measures the similarity between query qk and proposal ri. Defining

negative samples Q′ and R′ as the query and proposal from texts and images that are not

paired with R nor Q, the grounding by ranking framework minimizes the following margin
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loss:

Lrank =
∑
R′ 6=R

∑
Q′ 6=Q

[max(0, S(Q,R′)−S(Q,R)+∆)+max(0, S(Q′, R)−S(Q,R)+∆)], (7.2)

where the first ranking term encourages the correct region proposal matching and the

second ranking term encourages the correct sentence matching. ∆ is the ranking margin.

During inference, the proposal with the maximal similarity score aik with each object query

is selected.

7.3 Methods

In Sec. 7.3.1, we describe the video object grounding baseline. We then propose our

framework in Sec. 7.3.2 by extending the segment-level object label supervision to the

frame-level. Two novel approaches are proposed in judging under what circumstances the

frame-level supervision is applicable.

7.3.1 Video Object Grounding

We adapt the Grounding by Ranking framework [97] to the video domain, and this

adaptation will serve as our baseline. Denote the set of T frames in a video segment as

{ft} and the object proposals in frame t as rti , i = 1, 2, . . . , N . As before, define the object

queries as qk, we compute the similarity between the query object and all the proposals

{rti} in a segment. Note that the similarity dot product might grow large in magnitude as

d increases [82]. Hence, we scale the dot-product by 1√
d

and restrict at,ik to be between 0

and 1 with a Sigmoid function. The similarity function and segment-description matching

score are then:

at,ik = Sigmoid(q>k r
t
i/
√
d), S(Q,R) =

1

O

O∑
k=1

max
t,i

at,ik , (7.3)

85



Figure 7.1: An overview of our framework. Inputs to the system are a video segment and
a phrase that describes the segment. The objects from the phrase are grounded for each
sampled frame t. Object and proposal features are encoded to size d and visual-semantic
similarity scores are computed. The ranking loss is weighted by a confidence score which
combined with the penalty form the final loss. The object relations are further encoded to
guide the loss weights (see Sec. 7.3.3 for details). During inference, the region proposal
with the maximum similarity score with the object query is selected for grounding.

where matrix R = (r11, . . . , r
1
N , r

2
1, . . . , r

T
N) indicates the pack of all proposal features.

This “brute-force” extension of Grounding by Ranking framework to the video do-

main presents two issues. First, depending on the video sampling rate, the total number

of proposals per segment (T × N ) could be extremely large. Hence this solution does

not scale well to long frame sequences. Second, an object existing sparsely across multi-

ple frames might not be detected completely since successfully spotting it from one single

frame would trigger a satisfactory match. We explain next how we propagate this weak

supervisory signal from the segment level to frames that likely contain the target object.

7.3.2 Frame-wise Loss Weighting

In our framework, each frame is considered separately to ground the same target ob-

jects. Fig. 7.1 shows an overview of our model. We first estimate the likelihood that the

query object is present in each video frame. If the likelihood is high, we judge the matching

quality mainly on the matching loss (e.g., ranking loss). Otherwise, we down-weight the

matching loss while bringing in a penalty loss. The lower the confidence, the higher the
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penalty. For clarity, we explain our idea when the matching loss is the ranking loss Lrank

but note that this can be generalized to other loss functions.

Let the ranking loss for frame t be Ltrank and the similarity score between query k and

proposal i be at,ik . Let Q = (q1, . . . , qO) and Rt = (rt1, . . . , r
t
N). We define the confidence

score of the prediction at frame t as the visual-semantic matching score:

Ct =
1

O

O∑
k=1

max
i

(at,ik ) ≡ S(Q,Rt), (7.4)

where S(·, ·) is defined in Eq. 7.1. The corresponding penalty is:

Dt = − log(2Ct) = − log[
2

O

O∑
k=1

max
i

(at,ik )], (7.5)

inspired by [153]. The final loss for the segment is a weighted sum of frame-wise ranking

losses and penalties:

L =
1

T

T∑
t=1

[λCtL
t
rank + (1− λ)Dt], (7.6)

Ltrank =
∑
R′

t 6=Rt

∑
Q′ 6=Q

[max(0, S(Q,R′t)− S(Q,Rt) + ∆) + max(0, S(Q′, Rt)− S(Q,Rt) + ∆)],

(7.7)

where λ is a static coefficient to balance the ranking loss and the penalty and can be

validated on the validation set. A low λ might cause the system to be over-confident on the

prediction.

7.3.3 Object Interaction

We assume that the object types and their order in the language description can roughly

determine when they appear in the video content, as motivated in Sec. 8.1. We show that

this language prior can work as the frame-wise confidence score. To consider the interac-
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tion among objects, we further encode each object query feature qk as:

J(qk) = MA(qk, Q,Q), (7.8)

where MA(·, ·, ·) is the multi-head self-attention layer [82], taking in the (query, key, value)

triplet. It represents each query as the combination of all other queries based on their

inter-relations. The built-in positional encoding layer [82] in multi-head attention cap-

tures the order of objects appearing in the description. Note that the formulation is non-

autoregressive, i.e., all the objects in the same description can interact with each other.

We evenly divide each video segment into T ′ snippets and predict the confidence score

for object k to appear in each snippet based upon the concatenation of J(qk) and qk. Note

that T ′ is a pre-specified constant that satisfies T ′ ≤ T . The language-based confidence

score Clang = (C1
lang, . . . , C

T ′

lang) is formulated as:

Clang =
1

O

O∑
k=1

Sigmoid(Wlang[J(qk); qk] + blang), (7.9)

where [· ; ·] indicates the feature concatenation, Wlang ∈ RT ′×2d and blang ∈ RT ′ are

embedding weights and biases. We average the language-based and the similarity-based

confidence score and rewrite Eq. 7.6 as:

L =
1

T

T∑
t=1

[λ
1

2
(Ct + Cts

lang)L
t
rank − (1− λ) log(Ct + Cts

lang)] (7.10)

where ts = min(dt/d T
T ′ ee, T ) is the snippet index and d·e stands for the ceiling operator.
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7.4 Experiments

7.4.1 Baselines and Metrics

Baselines. We include two competitive baselines from published work: DVSA [97] and

GroundeR [94]. DVSA is the Grounding by Ranking method which we build all our

methods upon. For fair comparison, all the approaches take in the same object propos-

als generated by Faster-RCNN [47] (pre-trained on MSCOCO). Following the convention

from [97, 98], we select the top N = 20 proposals per frame and sample T = 5 frames per

segment unless otherwise specified. We also evaluate the Baseline Random, which chooses

a random proposal as the output.

Metrics. We evaluate the grounding quality by bounding box localization accuracy (de-

noted as Box Accuracy). The output is positive if the proposed box has over 50% IoU with

the ground-truth annotation, otherwise negative. We compute accuracy for each object and

average across all the object types.

7.4.2 Implementation Details

The number of snippets T ′ in Sec. 7.3.3 is set to 5. The encoding size d is 128 for

all the methods. Object labels are represented as one-hot vectors, which are encoded by

a linear layer without the bias term. The loss factor λ is cross-validated on the validation

set and is set to 0.9. The ranking margin ∆ is set to 0.1. For training, we use stochastic

gradient descent (SGD) with Nesterov momentum. The learning rate is set at 0.05 and the

momentum is 0.9. We implement the model in PyTorch and train it using either a single

Titan Xp GPU with SGD or 4 GPUs with synchronous SGD, depending on the validation

accuracy. The model typically takes 30 epochs, i.e., 4 hours to converge.

When sampling frames from a segment, we evenly divide the segment into T clips and

randomly sample one frame from each clip as temporal data augmentation. The negative

sample sentence Q′ is randomly sampled from all available sentences, but we exclude sen-
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Method
Box Accuracy (%)

Val. Test

Compared methods
Baseline Random 13.30 14.18
GroundeR [94] 19.63 19.94
DVSA [97] 30.51 30.80

Our methods
Loss Weighting 30.07 31.23
Object Interaction 29.61 30.06
Full Model 30.31 31.73

Upper bound 57.77 58.56

Table 7.1: Evaluation on localizing objects from the grounding-truth captions.

tences that have overlapped objects with the positive sample Q. For self attention, we use a

2-layer 6-head multi-head attention module with the hidden size set to 256 and the dropout

ratio set to 0.2.

For fair comparison, all the approaches take in the same object proposals generated by

Faster-RCNN [47]. The model is based upon ResNet-101 and pre-trained on MSCOCO for

the object detection task.2 We take the 2048-dimension output after the RoI pooling as the

region feature. We reduce the size of the region feature from 2048 to 128 with two linear

layers, followed with dropout (p = 0.2) and ReLU.

7.4.3 Results on Object Grounding

The quantitative results on object grounding are shown in Tab. 7.1. The model with

the highest score on the validation set is evaluated on the test split. We compute the upper

bound as the accuracy when proposing all 20 proposals, to see how far the methods are

from the performance limit. Note that the upper bound reported here is lower than that

in [94]. This is largely due to the domain shift from general scenes to cooking scenes and

the large variance in our object states, e.g. zoom-in and zoom-out views, onions v.s. fried

onion rings.

2Details see https://github.com/jwyang/faster-rcnn.pytorch.
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Figure 7.2: Top 10 accuracy increases & decreases by object category. (Left) Improvements
of our Loss Weighting model over DVSA. (Right) Improvements of our Full Model over
DVSA.

We show results on our proposed models, where the “Loss Weighting” model com-

putes the confidence score with visual-semantic matching and the “Object Interaction”

model computes the confidence score with textual guidance (Sec. 7.3.3). Our full model

averages these two scores as the final confidence score (Eq. 7.10). The proposed meth-

ods demonstrate a steady improvement from the DVSA baseline, with a relative 1.40%

boost from loss weighting and another 1.62% from combining object interaction, a total

improvement of 3.02%. On the other hand, the baseline has a higher validation score,

which indicates model overfitting. Note that text guidance alone (“Object Interaction”)

works slightly worse than the baseline, showing that both visual and textual information

are critical for inferring the frame-wise loss weights. Our methods also outperform other

compared methods, GroundeR and Baseline Random by a large margin.

Analysis. We show in Fig. 7.2 the top 10 accuracy increases and decreases of our methods

over the DVSA baseline, by object category. Our methods make better predictions on static

objects such as “squid”, “beef”, and “noodle” and worse predictions on cookwares, such

as “wok”, “pan”, and “oven”, which involves more state changes, such as containing/not

containing food or different camera perspectives. Our hypothesis is, our loss weighting

framework favors consistent objects across frames, due to the shared frame-wise supervi-

sion.

Impact of Sampling Rate. We investigate the impact of high video sampling rate on
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Figure 7.3: Visualization of localization output from baseline DVSA and our proposed
methods. Red boxes indicate ground-truths and green boxes indicate proposed regions.
The first two rows show examples where our methods perform better than DVSA. The last
row displays a negative example where all methods perform poorly. Better viewed in color.

grounding accuracy by increasing the total number of frames per segment (T ) from 5 to 20.

The accuracy from DVSA drops from 30.80% to 29.90% and the accuracy from our Loss

Weighted model drops from 31.23% to 30.93%. We expected these inferior performances,

due to the excessive object proposals. However, our loss weighted method only compro-

mises 0.96% of the accuracy while the accuracy from DVSA drops by 2.92%, showing

that our method is less sensitive to high sampling rate and predicts better on long frame

sequences.

Qualitative Results. Fig. 7.3 visualizes the grounded objects with DVSA and our pro-

posed methods. The first two rows show some positive examples. In Fig. 7.3 (a), we see

with DVSA baseline the ”plate” object is grounded to the incorrect regions in the frames.

However our methods correctly select regions with a large IOU with the ground truth box.

In Fig. 7.3 (b) the labels ”bacon” and ”it” refer to the same target object. Per our annotation

requirements, there is only one ground truth box instead of two. The full model correctly

combines both ”bacon” and ”it” grounds them to the same region proposal. The last row

that shows where all methods fail to ground the target objects adequately. This may be a

result of errors in the top object proposals proposed since the scene is rather complicated.
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An additional explanation may be bias in the dataset, where during training the ”bowl”

object typically occupies the majority of the frame.

Limitations. There are two limitations in our method we hope to address in our future

work. First, even though the frame-wise loss can to some degree enforce the temporal

consistency between frames, we do not explicitly model the relation between frames, for

instance motion information. The transition between object states across frames, e.g., raw

meat to cooked meat, should be further studied. Second, our grounding performance is

upper-bounded by the object proposal accuracy and we have no control over the errors

from the proposals. An end-to-end version of the proposed method that solves both the

proposing and the grounding problem can potentially improve the grounding accuracy.

7.5 Discussion

We propose a frame-wise loss-weighted model for weakly-supervised video object

grounding. Our model applies segment-level labels to the frames in each segment, while

being robust to inconsistencies between the segment-level label and each individual frame.

We also leverage object interaction as textual guidance for grounding. We evaluate the

effectiveness of our models on the newly-collected video grounding dataset YouCook2-

BoundingBox. We show that our proposed methods outperform competitive baseline meth-

ods. However, even in the weakly-supervised setting, the model training still requires

descriptions, obtained from tedious manual annotation. In the next chapter, we explore

self-supervised grounding where descriptions are collected automatically from the web.
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CHAPTER VIII

Grounding as Commonsense: Vision-Language

Pre-training

8.1 Introduction

Inspired by the recent success of pre-trained language models such as BERT [27] and

GPT [154, 155], there is a growing interest in extending these models to learning cross-

modal representations like image-text [30, 88] and video-text [36, 37], for various vision-

language tasks such as Visual Question Answering (VQA) and video captioning, where

traditionally tedious task-specific feature designs and fine-tuning are required.

Table 8.1 summarizes some of the recent works on vision-language pre-training where

all the models are unexceptionally built upon Bidirectional Encoder Representations from

Transformers (BERT) [27]. These models use a two-stage training scheme. The first stage,

called pre-training, learns the contextualized vision-language representations by predicting

the masked words or image regions based on their intra-modality or cross-modality rela-

tionships on large amounts of image-text pairs. Then, in the second stage, the pre-trained

model is fine-tuned to adapt to a downstream task.

Although significant improvements have been reported on individual downstream tasks

using different pre-trained models, it remains challenging to pre-train a single, unified

model that is universally applicable, via fine-tuning, to a wide range of vision-language
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Figure 8.1: We propose a unified encoder-decoder model for general vision-language pre-
training. The pre-trained model is then fine-tuned for image captioning and visual question
answering. Thanks to our vision-language pre-training, both training speed and overall
accuracy have been significantly improved on the downstream tasks compared to random
initialization or language-only pre-training. All the results are evaluated on the validation
set of the corresponding dataset.
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Type Method Domain Architecture Downstream Tasks

Understanding-based
only

LXMERT [88],
ViLBERT [30],
other similar works
[35], [32], [31],
[34], [33]

Image Single-stream or
two stream Transformer

Visual question answering
Visual commonsense reasoning
Image retrieval
Grounding referring expressions

Generation-based and
understanding-based

VideoBERT [36] Video Single-stream Transformer+
Masked Transformer [2]

Zero-shot action classification
Video captioning

CBT [37] Video Two-stream Transformer encoder+
Transformer decoder

Action anticipation
Video captioning

Our VLP Image Single unified encoder-decoder
Visual question answering
Image captioning

Table 8.1: Comparison between our method and other vision-language pre-training works.

tasks as disparate as vision-language generation (e.g., image captioning) and understanding

(e.g., VQA). Most existing pre-trained models are either developed only for understanding

tasks, as denoted by “understanding-based only” in Tab. 8.1, or designed as hybrid models

that consist of multiple modality-specific encoders and decoders which have to be trained

separately in order to support generation tasks. For example, VideoBERT and CBT in

Tab. 8.1 perform pre-training only for the encoder, not for the decoder. This causes a dis-

crepancy between the cross-modal representations learned by the encoder and the represen-

tation needed by the decoder for generation, which could hurt the generality of the model.

In this work, we strive to develop a new method of pre-training a unified representation

for both encoding and decoding, eliminating the aforementioned discrepancy. In addition,

we expect that such a unified representation would also allow more effective cross-task

knowledge sharing, reducing the development cost by eliminating the need of pre-training

different models for different types of tasks.

To this end, we propose a unified encoder-decoder model, called the Vision-Language

Pre-training (VLP) model, which can be fine-tuned for both vision-language generation and

understanding tasks. The VLP model uses a shared multi-layer Transformer network [82]

for encoding and decoding, pre-trained on large amounts of image-caption pairs [156],

and optimized for two unsupervised vision-language prediction tasks: bidirectional and

sequence to sequence (seq2seq) masked language prediction. The two tasks differ solely

in what context the prediction conditions on. This is controlled by utilizing specific self-
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attention masks for the shared Transformer network. In the bidirectional prediction task,

the context of the masked caption word to be predicted consists of all the image regions and

all the words on its right and left in the caption. In the seq2seq task, the context consists of

all the image regions and the words on the left of the to-be-predicted word in the caption.

We validate VLP in our experiments on both the image captioning and VQA tasks

using three challenging benchmarks: COCO Captions [114], Flickr30k [115], and VQA

2.0 dataset [104]. We observe that compared to the two cases where we do not use any

pre-trained model or use only the pre-trained language model (i.e., BERT), using VLP sig-

nificantly speed-ups the task-specific fine-tuning and leads to better task-specific models,

as shown in Fig. 8.1. More importantly, without any bells and whistles, our models achieve

state-of-the-art results on both tasks across all three datasets.

8.2 Vision-Language Pre-training

We denote the input image as I and the associated/target sentence description (words)

as S. We extract a fixed number N of object regions from the image using an off-the-shelf

object detector, denoted as {r1, . . . , rN} and the corresponding region features as R =

[R1, . . . , RN ] ∈ Rd×N , region object labels (probabilities) as C = [C1, . . . , CN ] ∈ Rl×N ,

and region geometric information asG = [G1, . . . , GN ] ∈ Ro×N , where d is the embedding

size, l indicates the number of the object classes of the object detector, and o = 5 consists

of four values for top left and bottom right corner coordinates of the region bounding box

(normalized between 0 and 1) and one value for its relative area (i.e., ratio of the bounding

box area to the image area, also between 0 and 1). The words in S are represented as one-

hot vectors which are further encoded to word embeddings with embedding size e: yt ∈ Re

where t ∈ {1, 2, . . . , T} and T indicates the length of the sentence.
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[SEP]
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Figure 8.2: Model architecture for pre-training. The input comprises of image input, sen-
tence input, and three special tokens ([CLS], [SEP], [STOP]). The image is processed as
N Region of Interests (RoIs) and region features are extracted according to Eq. 8.1. The
sentence is tokenized and masked with [MASK] tokens for the later masked language mod-
eling task. Our Unified Encoder-Decoder consists of 12 layers of Transformer blocks, each
having a masked self-attention layer and feed-forward module, where the self-attention
mask controls what input context the prediction conditions on. We implemented two self-
attention masks depending on whether the objective is bidirectional or seq2seq. Better
viewed in color.

8.2.1 Vision-Language Transformer Network

Our vision-language Transformer network, which unifies the Transformer encoder and

decoder into a single model, is depicted in Fig. 8.2 (left). The model input consists of

the class-aware region embedding, word embedding and three special tokens. The region

embedding is defined as:

ri = WrRi +Wp[LayerNorm(WcCi)|LayerNorm(WgGi)] (8.1)

where [·|·] indicates the concatenation on the feature dimension, LayerNorm represents

Layer Normalization. The second term mimics the positional embedding in BERT, but

adding extra region class information, andWr,Wp,Wc,Wg are the embedding weights (the

bias term and the nonlinearity term are omitted). Note that here we overload the notation of

ri ∈ Rd (i ∈ {1, 2, ..., N}) to also represent class-aware region embeddings. In addition,
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we add segment embeddings to ri as in BERT where all the regions share the same segment

embedding where the values depend on the objectives (i.e., seq2seq and bidirectional, see

the following section).

The word embeddings are similarly defined as in [27], adding up yt with positional

embeddings and segment embeddings, which is again overloaded as yt. We define three

special tokens [CLS], [SEP], [STOP], where [CLS] indicates the start of the visual input,

[SEP] marks the boundary between the visual input and the sentence input, and [STOP]

determines the end of the sentence. The [MASK] tokens indicate the masked words which

will be explained in the next section.

8.2.2 Pre-training Objectives

In the BERT masked language modeling objective, 15% of the input text tokens are

first replaced with either a special [MASK] token, a random token or the original token,

at random with chances equal to 80%, 10%, and 10%, respectively. Then, at the model

output, the hidden state from the last Transformer block is projected to word likelihoods

where the masked tokens are predicted in the form of a classification problem. Through

this reconstruction, the model learns the dependencies in the context and forms a language

model. We follow the same scheme and consider two specific objectives: the bidirectional

objective (bidirectional) as in BERT and the sequence to sequence objective (seq2seq),

inspired by [86].

As shown in Fig. 8.2 (right), the only difference between the two objectives lie in the

self-attention mask. The mask used for the bidirectional objective allows unrestricted mes-

sage passing between the visual modality and the language modality while in seq2seq, the

to-be-predicted word cannot attend to the words in the future, i.e., it satisfies the auto-

regressive property. More formally, we define the input to the first Transformer block as

H0 = [r[CLS], r1, . . . , rN , y[SEP], y1, . . . , yT , y[STOP]] ∈ Rd×U whereU = N+T+3, and then

the encoding at different levels of Transformer as H l = Transformer(H l−1), l ∈ [1, L].

99



We further define a self-attention mask as M ∈ RU×U), where

Mjk =


0, allow to attend

−∞, prevent from attending
j, k = 1, . . . , U. (8.2)

For simplicity, we assume a single attention head in the self-attention module. Then, the

self-attention output on H l−1 can be formulated as:

Al =softmax
(
Q>K√

d
+M

)
V >, (8.3)

V =W l
VH

l−1, Q = W l
QH

l−1, K = W l
KH

l−1, (8.4)

where W l
V , W l

Q, and W l
K are the embedding weights (the bias terms are omitted). The

intermediate variables V , Q, and K indicate values, queries and keys, respectively, as

in the self-attention module [82]. Al is further encoded by a feed-forward layer with a

residual connection to form the output H l. During the pre-training, we alternate per-batch

between the two objectives and the proportions of seq2seq and bidirectional are determined

by hyper-parameters λ and 1− λ, respectively.

It is worth noting that in our experiments we find that incorporating the region class

probabilities (Ci) into region feature (ri) leads to better performance than having a masked

region classification pretext as in [30, 88]. Therefore, differing from existing works where

masked region prediction tasks are used to refine the visual representation, we indirectly

refine the visual representation by utilizing it for masked language reconstruction. We also

choose not to use the Next Sentence Prediction task as in BERT, or in our context predict-

ing the correspondence between image and text, because the task is not only weaker than

seq2seq or bidirectional but also computationally expensive. This coincidentally agrees

with a concurrent work of RoBERTa [157].

Sequence-to-sequence inference. Similar to the way seq2seq training is performed, we

can directly apply VLP to sequence-to-sequence inference, in the form of beam search.
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More details follow next in the Image Captioning section.

8.3 Fine-Tuning for Downstream Tasks

8.3.1 Image Captioning

We fine-tune the pre-trained VLP model on the target dataset using the seq2seq objec-

tive. During inference, we first encode the image regions along with the special [CLS] and

[SEP] tokens and then start the generation by feeding in a [MASK] token and sampling a

word from the word likelihood output (e.g., greedy sampling). Then, the [MASK] token in

the previous input sequence is replaced by the sampled word and a new [MASK] token is

appended to the input sequence to trigger the next prediction. The generation terminates

when the [STOP] token is chosen. Other inference approaches like beam search could

apply as well.

8.3.2 Visual Question Answering

We frame VQA as a multi-label classification problem. In this work we focus on open

domain VQA where top k most frequent answers are selected as answer vocabulary and

used as class labels. Following [73] we set k to 3129.

During the fine-tuning, a multi-layer Perceptron (Linear+ReLU+Linear+Sigmoid) on

top of the element-wise product of the last hidden states of [CLS] and [SEP] is learned,

similar to [30]. We optimize the model output scores with respect to the soft answer la-

bels using cross-entropy loss. Note that unlike [88] where the task-specific objective (i.e.,

VQA) is exploited during pre-training by using the target datasets (from intensive human

annotations), our pre-training does not have this requirement and is therefore more general.
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Dataset Batch size LR # of epochs GPUs T/E

CC 64(x8) 1e-4(x8) 30 8x V100 5hr

COCO 64(x8) 3e-5(x8) 30 8x V100 12min
VQA 2.0 64(x2) 2e-5(x2) 20 2x V100 32min
Flickr30k 64(x8) 3e-5(x8) 30 8x V100 3min

COCO (w/o pre-training) 64(x8) 3e-4(x8) 30 8x V100 12min
COCO (SCST training) 16(x4) 1e-6(x4) 30 4x Titan Xp 3hr

Table 8.2: Model hyper-parameters and training specifications. LR indicates learning rate
and T/E indicates time per epoch.

8.4 Experiments and Results

Data preparation. We conduct pre-training on the Conceptual Captions (CC) dataset [156]

which has around 3 million web-accessible images with associated captions. The datasets

for downstream tasks include COCO Captions [114], VQA 2.0 [104] and Flickr30k [115]

(described in Sec. 3.3). For all the dataset, we trim long sentences and pad short sentences

to 20 words and all the words are tokenized and numericalized as in BERT [27].

Implementation details. Our Transformer backbone is the same as BERT-base [27]. The

input of the network consists of image (regions) and the associated/target caption. We

represent each input image as 100 object regions extracted from a variant of Faster R-

CNN [47] with ResNeXt-101 FPN backbone [150] pre-trained on Visual Genome [147,

73, 158]. We take the model output from fc6 layer as the region feature (Ri) and fine-

tune the fc7 layer. The class likelihood on the 1600 object categories as region object

labels (Ci). Note that if not specified, the weights in our BERT model are initialized from

UniLM [86] pre-trained on text corpora only. For caption inference, we use greedy search

on the validation set and beam search with beam size 5 on the test set. The same training

optimizer including learning rate scheduler is used as in BERT [27]. We perform light

model/training hyper-parameter search with the configurations presented in Tab. 8.2. The

SCST training on COCO is performed after the VLP pre-training and COCO fine-tuning.

λ is set to 0.75 for CC pre-training from light model validation (out of {0.25, 0.5, 0.75}),
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COCO VQA 2.0 (Test-Standard) Flickr30k
Method B@4 M C S Overall Yes/No Number Other B@4 M C S

BUTD [73] 36.2 27.0 113.5 20.3 65.7 - - - 27.3 21.7 56.6 16.0
NBT (with BBox) [74] 34.7 27.1 107.2 20.1 - - - - 27.1 21.7 57.5 15.6
GCN-LSTM (spa) [76] 36.5 27.8 115.6 20.8 - - - - - - - -
GCN-LSTM (sem) 36.8 27.9 116.3 20.9 - - - - - - - -
GVD [26] - - - - - - - - 26.9 22.1 60.1 16.1
GVD (with BBox) - - - - - - - - 27.3 22.5 62.3 16.5
BAN [101] - - - - 70.4 85.8 53.7 60.7 - - - -
DFAF [102] - - - - 70.3 - - - - - - -

AoANet* [159] 37.2 28.4 119.8 21.3 - - - - - - - -
ViLBERT* [30] - - - - 70.9 - - - - - - -
LXMERT* [88] - - - - 72.5 88.2 54.2 63.1 - - - -

Ours
w/o VLP (baseline) 35.5 28.2 114.3 21.0 70.0 86.3 52.2 59.9 27.6 20.9 56.8 15.3
seq2seq PT only 36.5 28.4 117.7 21.3 70.2 86.7 52.7 59.9 31.1 23.0 68.5 17.2
bidirectional PT only 36.1 28.3 116.5 21.2 71.3 87.6 53.5 61.2 30.5 22.6 63.3 16.9
Unified VLP 36.5 28.4 116.9 21.2 70.7 87.4 52.1 60.5 30.1 23.0 67.4 17.0

Table 8.3: Results on COCO Captions test set (with cross-entropy optimization only, all
single models), VQA 2.0 Test-Standard set and Flickr30k test set. * indicates unpublished
works by Sept. 2019. PT indicates pre-training, B@4 represents for BLEU@4, M for
METEOR, C for CIDEr, and S for SPICE. Results on previous works are obtained from
the original papers. Top two results on each metric are in bold. The improvement of
Unified VLP over the baseline method (w/o VLP ) on Flickr30k is statistically significant
(p-value<0.02).

and set to 1 for image captioning (i.e., full seq2seq) and 0 for VQA (i.e., full bidirectional).

Model variants and metrics. To demonstrate the effectiveness of our vision-language

pre-training, we first include a baseline model without this pre-training. We then include

two extreme settings of our model with λ = 1 (seq2seq pre-training only) and λ = 0

(bidirectional pre-training only) to study how each objective individually works with dif-

ferent downstream tasks. Our full model conducts joint training on the two objectives. The

fine-tuning procedure is performed the same regardless of the pre-training configurations.

Regarding evaluation metrics, we use standard language metrics for image captioning, in-

cluding Bleu@4, METEOR, CIDEr, and SPICE and the official measurement on accuracy

for VQA, over different answer types including Yes/No, Number, and Other.

Comparisons against SotAs. Results comparing our methods and SotA methods on the

test set are in Tab. 8.3. We include state-of-the-art published works (upper part of Tab. 8.3),

unpublished works that are currently in submission (middle part), and our methods (lower
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COCO (w/ CIDEr optimization)
Method B@4 M C S

BUTD 36.3 27.7 120.1 21.4
GCN-LSTM (spa) 38.2 28.5 127.6 22.0
SGAE [77] 38.4 28.4 127.8 22.1

AoANet* 38.9 29.2 129.8 22.4

Ours (Unified VLP) 39.5 29.3 129.3 23.2

Table 8.4: Results on COCO Captions test set (with CIDEr optimization, all single models).
* indicates unpublished works. Top one result on each metric is in bold.

part). All the image captioning methods are single models, with cross-entropy optimization

only for a fair comparison. Our full model (Unified VLP) outperforms SotA methods on

three out of four metrics on COCO, overall accuracy on VQA 2.0, and all four metrics

on Flickr30k. The improvements are particularly sound on Flickr30k, where we get 5.1%

absolute gain on CIDEr metric and 2.8% on BLEU@4.

We further perform CIDEr optimization on COCO Captions through Self-Critical Se-

quence Training (SCST) [160], as in most of the recent image captioning literatures. The

results are in Tab. 8.4 where our full model sets new SotA on all the metrics.

Boost from pre-training. Our full model leads our baseline model by a large margin on

most of the metrics thanks to our pre-training. Some noticeable improvements include over

10% absolute gain on CIDEr metric on Flickr30k, and over 2% gain on CIDEr on COCO

and B@4, METEOR on Flickr30k. Small datasets (i.e., Flickr30k) benefit the most as

vision-language pre-training alleviates overfitting issues. Our model variants under the two

extreme settings work well as expected on their “favorable” tasks, i.e., seq2seq pre-training

alone improves downstream captioning tasks significantly and bidirectional pre-training

benefits understanding tasks (i.e., VQA), but not the opposite. They set new SotAs on all

metrics except the “Number” accuracy on VQA 2.0. The joint training organically com-

bines the representations learned from the two rather different objectives and yields slightly

compromised but decent accuracy on all the downstream tasks. That said, from an engi-
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COCO VQA 2.0 Flickr30k
Method B@4 M C S Overall Yes/No Number Other B@4 M C S

From scratch 34.5 28.1 114.2 21.1 63.4 80.2 46.4 55.2 26.9 20.8 52.1 14.4
Init from BERT 34.6 28.4 114.8 21.4 65.1 82.9 48.0 56.1 27.5 21.9 58.4 15.5

Init from UniLM
w/o VLP (baseline) 34.5 28.1 113.9 21.3 66.1 83.8 49.7 56.9 27.5 21.5 58.3 15.3
seq2seq PT only 35.3 28.4 116.7 21.5 66.4 84.6 50.1 56.9 28.9 23.6 67.0 17.2
bidirectional PT only 35.3 28.3 116.1 21.4 68.2 85.6 51.9 59.3 29.6 23.2 67.2 16.8
Unified VLP 35.5 28.5 118.0 21.6 67.4 85.4 50.1 58.3 29.7 23.8 69.1 17.6

Table 8.5: Results on COCO Captions, VQA 2.0, and Flickr30k validation set. PT indicates
pre-training, B@4 represents for BLEU@4, M for METEOR, C for CIDEr, and S for
SPICE. Top two results on each metric are in bold.

COCO VQA 2.0 (Test-Dev) Flickr30k
Method B@4 M C S Overall Yes/No Number Other B@4 M C S

From scratch 35.2 27.9 112.5 20.6 67.7 83.5 50.7 58.1 28.4 20.8 53.5 15.2
Init from BERT 34.8 28.1 112.6 20.7 68.6 85.2 50.9 58.3 29.1 21.7 60.4 15.9
Init from UniLM 35.5 28.2 114.3 21.0 69.6 86.1 52.4 59.4 27.6 20.9 56.8 15.3
Unified VLP 36.5 28.4 116.9 21.2 70.5 87.2 52.1 60.3 30.1 23.0 67.4 17.0

Table 8.6: Impact of different levels of pre-training on downstream tasks. All results are on
the test set (Test-Dev for VQA 2.0). Top one result on each metric is in bold.

neering perspective, if we can afford having separate pre-training models for generation

task or understanding task, we will get the optimal model performance. If we value model

architecture and parameter sharing, the joint model is a good trade-off. Note that we also

include the corresponding results on the val set in Tab. 8.5.

Impact of pre-training types. Depending on how the base model Transformer is initial-

ized, we define four “degrees” of pre-training from weakest to strongest as i) without any

pre-training, i.e., base model is trained from scratch, ii) bidirectional language pre-training,

i.e., base model is initialized from BERT weights [27], iii) seq2seq and bidirectional lan-

guage pre-training, i.e., base model is initialized from UniLM weights [86] which is our

baseline setting, and iv) our full Vision-Language Pre-training. The corresponding fine-

tuning results on downstream tasks are presented in Fig. 8.1 and Tab. 8.5 on the val set

and Tab. 8.6 on the test set. As shown from the figure, our vision-language pre-training

significantly accelerates the learning process of downstream tasks and contributes to better

overall accuracy. It is worth noting that the learning process of VQA is greatly shortened

despite that the hidden states associated with tokens [CLS] and [SEP] are not learned dur-
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Method B@4 M C S

From scratch 5.5 9.4 63.8 14.9
Init from BERT 5.7 9.7 66.7 15.3
Init from UniLM 5.8 9.7 67.0 15.5

Table 8.7: Impact of model weight initializations on pre-training. Results are on Concep-
tual Captions val set on caption generation.

Method B@4 M C S

Region label as pretext 5.4 9.4 62.2 14.5
Region label probability as input 5.8 9.7 67.0 15.5

Table 8.8: Comparison between having region class prediction pretext and feeding in class
probabilities as a part of the model input. Results are on Conceptual Captions val set.

ing the pre-training. This indicates that the contextualized vision-language representations

can generalize to unseen domains and work reasonable well as a warm-start for new tasks.

Note that for VQA 2.0, all the methods here are only trained on the training set while for

the results reported on the test set (Tab. 8.3 and Tab. 8.6), all the models are trained on both

training set and validation set following the practice from early works.

We also study how the pre-training types 1-3 influence our vision-language pre-training

in terms of caption generation. The results on Conceptual Captions val set at epoch 20 are

shown in Tab. 8.7. All the models are trained based on the unified VLP objective (λ = 0.75)

for a fair comparison. We observe that initializing base model with weights transferred

from pure language pre-training benefits vision-language pre-training. The training ob-

jectives of UniLM are closer to our seq2seq and bidirectional objectives than the ones in

BERT and hence we hypothesize that this counts for the slightly larger improvement. Note

that our intention here is to demonstrate how different weight initializations can influence

pre-training performance rather than pursuing possibly high quantitative scores (with full

seq2seq training, CIDEr could climb to 77.2 after training for 30 epochs).

Region object labels as pretext. Existing works [26, 74] regard region object labels (prob-

abilities) (Ci) as an important auxiliary to enrich image region features and here we follow
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a similar design. We can also instead use these labels for a masked region classification

pretext as in [88]. Here we have a comparison over the two design choices. “region label

probability as input” is equivalent to our full model Unified VLP and “region label as pre-

text” is the implementation from [88]. As shown in Tab. 8.8, predicting class labels as a

pretext has a negative impact on the pre-training, in terms of captioning performance. We

hypothesize that this is because the class labels from the off-the-shelf object detector might

be noisy which compromises the learned feature representation. In contrast, our model

refines the visual representation through a more reliable masked language modeling and

could correct the errors exist in the class labels.

Qualitative results and analyses. Qualitative examples on COCO Captions and VQA 2.0

are shown in Fig. 8.9. In the first two examples, our full model with vision-language pre-

training captures more details in the image, such as “umbrellas” and “a blue wall” than

the baseline methods. It also answers questions correctly. In the third example, all the

methods dis-identify the gondola as a train due to their visual similarity. When it comes

to the question answering, our methods all give correct answers while the GT answer is

incorrect (note that there is a person in the gondola). In the fourth example, all the models

mistakenly classify the activity as “surfing” while the correct one is “kayaking/boating”.

This is consistent across both the caption model and the VQA model, which implies that

the feature representations are indeed shared across tasks.

8.5 Discussion

This chapter presents a unified Vision-Language Pre-training (VLP) model that can

be fine-tuned for both vision-language generation and understanding tasks. The model is

pre-trained on large amounts of image-text pairs based on two objectives: bidirectional

and seq2seq vision-language prediction. The two disparate objectives are fulfilled un-

der the same architecture with parameter sharing, avoiding the necessity of having sep-

arate pre-trained models for different types of downstream tasks (i.e., generation-based or
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understanding-based). In our comprehensive experiments on image captioning and VQA

tasks, we demonstrate that the large-scale unsupervised pre-training can significantly speed

up the learning on downstream tasks and improve model accuracy. Besides, compared to

having separate pre-trained models, our unified model combines the representations learned

from different objectives and yields slightly compromised but decent (SotA) accuracy on

all the downstream tasks. Finally, we emphasize that VLP is self-supervised, which means

that the training of VLP requires no human annotation. VLP is applicable to various in-

put data formats and the learned vision-language representation (grounding) is generic to

various scenarios.
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CHAPTER IX

Conclusion

In this dissertation, we first propose the largest-of-its-kind video-language benchmark

YouCook2 dataset and ActivityNet-Entities dataset in Chap. III. The rest of the chapters

circle around two main problems: video description and video grounding. For video de-

scription, we first address the problem of decomposing a long video into compact and

self-contained event segments in Chap. IV. Based on these individual event segments, we

propose a non-recurrent approach (i.e., Transformer) for video description generation in

Chap. V as opposed to prior RNN-based methods. In Chap. VI, we introduce a grounded

video description framework, transitioning our focus from end-to-end systems to visually-

grounded systems which yield better model interpretability. The next two chapters study

visual grounding in an annotation-efficient fashion and demonstrate its positive impact on

downstream tasks. Throughout this dissertation, we elaborated how language plays a sig-

nificant role in video understanding and how it delivers a holistic view of the video content

through compact descriptions.

9.1 Takeaways and Lessons Learned

Here are some takeaways and lessons we have learned so far on video description,

grounding, and related areas throughout the dissertation.

The power of data. The majority of this dissertation is on supervised learning where
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the target output is guided by ground-truth human annotations during training. The effec-

tiveness of supervised learning has been demonstrated in almost every aspect of machine

learning applications, such as vision [127, 97], language [62, 82], speech [161, 162] and

has made no exception in our study. Pre-trained models on large-scale data corpus, either

vision-based [123], language-based [27], or cross-model [38], have led to significant per-

formance boost on various downstream tasks. In computer vision, supervised pre-training

is pervasive and has been largely taken granted. In computational linguistics, this sort of

transfer learning emerged recently and has dominated major research areas, particularly

those that require language understanding. Interestingly, there has been heated debates in

computer vision on whether supervision in pre-training is necessary [163] or pre-training at

all [164]. Before more evidence on the effectiveness of the recent challengers, supervised

pre-training is believed to continue dominating for the foresee future.

Transformer and BERT. Transformer and its variant BERT language model have been

intensively used in this dissertation. Our discussion here mainly focuses on BERT, as it

represents a wider range of concurrent models on contextualized representation learning.

Due to the complexity presents in the model, BERT remains a “black-box” and the internal

mechanism behind why multi-head self-attention benefits representation learning is still

unclear. Some studies have shown that no single attention head in BERT has the com-

plete syntactic tree information as such human would define, while only preserves partial

knowledge of syntax [165, 166]. This makes it challenging to probe/visualize what BERT

has learned and opens opportunities on potential future works (discussed later in Sec. 9.2).

Overall, we have seen in our work the capability of Transformer on learning semantic

knowledge, both visual and linguistic concepts. Rogers et al. [167] summarizes probing

studies on BERT into a primer in “BERTology”, stating that BERT also preserves syntactic

knowledge and world knowledge. How much of the knowledge and what knowledge could

be transferred to downstream tasks are still among the many open questions. For example,

we mentioned in Chap. VIII, the fourth qualitative example in Fig. 8.9, our models consis-
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tently misclassify the activity as “surfing” across all the downstream tasks while the correct

answer is “kayaking/boating”. This implies that the model has transferred generic semantic

knowledge from pre-training. How to identify and quantify the transferred knowledge is

an interesting future direction.

Blessing and curse of inductive bias. Inductive bias is ubiquitous in machine learning.

It essentially leads to a simpler and more generic target function (relative to overfitting)

that helps the model to generalize beyond the training data. As far as we’ve seen in this

dissertation, most of the inductive bias learned through model training is beneficial in the

sense that it facilitates the learning process. For instance, in grounding, the models learns

to attend to the center of the scene as this is where the object often appears; in procedure

segmentation, the model tends to distribute segments uniformly across the video as recipe

proceeds along with the video timeline; in description generation, the model frequently

predicts confident common words (e.g., man, woman, standing, talking) in the outcome

and leads to high automatic evaluation metrics. However, there are downsides. First, the

model might shortcut the difficult in representation learning and make predictions based

on trivial visual clues (e.g., center bias, color bias). Second, it leads to low vocabulary

diversity in description generation. How to mitigate the negative impact of inductive bias

remains an open question. The following will shed some light on this.

Reconstruction vs. contrastive learning. Self-supervised representation learning has be-

come a hot spot in machine learning community recently. We are familiar with one of its

famous application in language understanding — BERT, which is mainly based on (cor-

rupted) input reconstruction. Also, we have talked a lot about vision-language pre-training,

which is inspired by BERT and learns the joint embedding space in a self-supervised fash-

ion. In pure computer vision, there has not had any dominating methods. Early methods

such as Jigsaw [168] and Colorization [169] are reconstruction-based. However, perform-

ing a pretext on the same image sample permits model to learn trivial visual shortcut (e.g.,

local color and textual bias in Jigsaw), which compromises the feature learning. Therefore,
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later methods instead adopt contrastive learning to ensure the source sample and the target

sample differ in trivial clues (e.g., histograms of pixel intensities [170]). Now, switch the

gear to the language domain. We notice that in BERT, besides the reconstruction-based pre-

text (i.e., Masked Language Modeling, or MLM), it also has a contrastive objective called

Next Sentence Prediction, or NSP. However, Liu et al. [157] demonstrate that NSP is rather

optional compared to the main MLM objective. So, contrastive learning had a major set-

back in the language domain. Would it eventually replace reconstruction-based objective?

More study needs to be done.

Deep learning “alchemy”. We cannot emphasize more on the engineering aspect of the

dissertation, including but not limited to efficient data loading and storage, model archi-

tecture design, and hyper-parameter search. Andrej Karpathy had an awesome blog on

tricks, pitfalls, and caveats on training Neural Networks1 and is a good supplementary

read. Among all the lessons we learned over time, learning rate tuning is always the most

basic and one of the most important routines in model training (e.g., apply a coarse-to-

fine search). Besides, tricks like model regularization (i.e., weight decay), auxiliary losses

(i.e., attention/grounding loss in GVD), and dropout are generally helpful, but the impact

is sometimes limited.

9.2 Perspectives on Future Work

Quo vadis, instructional video understanding? Instructional video understanding has

become one of the major focuses in the video-language research community and is the cen-

ter of this dissertation. This nascent field demonstrates strong potential in bridging vision

modality and language modality in a annotation-free fashion (self-supervised through video

and its auto-generated ASR transcripts). The learned multi-modal representation has shown

to generalize well to unseen domains and tasks in preliminary studies [36, 37, 24, 16].

As self-supervised learning increasingly appears to be the next breakthrough in vision-

1http://karpathy.github.io/2019/04/25/recipe/
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language research, the keen questions to ask include i) what data can further benefit rep-

resentation learning and ii) what model can digest the enormous data we have or soon to

come.

Regarding the first question, we obviously are eager for larger datasets, but we reckon

that the data quality is even more important. The current description data (ASR transcripts)

present the following issues:

• missing or incorrect punctuation, which leads to imprecise alignment between video

clips and sentences,

• missing sentences, sometimes even a whole conversation block,

• grammar mistakes, such as “a” vs. “the”, singular vs. plural,

• other speech recognition-related errors.

For a cleaner language supervision, one way is to substitute ASR transcripts with user-

uploaded (“GT”) transcripts. These transcripts usually have high quality and accurate

punctuations so the video clip can align well with the text. We sampled a small portion

of the 1.22M videos from HowTo100M dataset [24] and observed around 10% videos have

user-uploaded speech transcripts (snippet.trackKind=default).

Model-wise, the following problems remain to be further explored. First of all, the

multi-head and multi-layer natural makes it cumbersome to visualize the region/temporal

attention in BERT-inspired vision-language models. There are some existing attempts [32,

171] but more efforts are required in demystifying the specific functionality of different

heads/layers in the model. Secondly, as self-attention resembles the “complete” graph

version of Graph Attention Networks [172], how to sparsify the connections and improve

computation efficiency is an open question. For instance, when we model the intra-sentence

relationship, we can simply keep the graph connections determined by a parsing tree (i.e.,

dependency parsing) and study what impact could inductive biases have in model train-

ing speed. This could potentially make the model more data efficient. Finally, under the
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context of self-supervised learning, we need to rethink problems from improving model

interpretability [173], overcoming data bias [174], to detecting novel objects [175, 176].

Beyond representation learning, there are other challenges. First, how to improve per-

ception accuracy to better identify object-of-target, actions, and attributes in the cluttered

scene. Second, the appearance of an object might change dramatically in instructional

videos (e.g., raw meat vs. cooked meat, whole tomato vs. tomato slices), and therefore

how to model an object in an action-conditioned and attribute-aware fashion. Third, de-

spite that action/activity grounding in the temporal dimension [177, 178, 179] is relative

well-studied in the video community compared to object grounding, a higher-granularity

spatial-temporal action grounding lacks enough attention. Four, transfer learning from dif-

ferent domains and different views. For example, most of the online videos are shot in a

third-person view but in robotics applications, robots usually require a first-person view.

Despite the primitiveness of the field, there are potential real-world applications. For

instance, Microsoft has used Hololens and AR to teach factory workers new skills, with

visually-grounded instructions and guidance.2 The same technique could be applied for

surgeries and better human-machine interactions. Also, with the recent progress on learn-

ing from demonstration [180], learning dynamics from video [181], and a lot of others

on combining video understanding and robotics, sci-fi-like self-taught robot chefs might

emerge in not-so-far future.

2https://news.microsoft.com/en-gb/features/the-power-of-mixed-reality-in-the-modern-workplace/
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APPENDIX A

Preliminary: Transformer Networks

In this Appendix, we introduce background on Transformer [82], which is the building

block of our models in Chap. V, VII, and VIII.

Scaled Dot-Product Attention

We start by introducing the scaled dot-product attention, which is the foundation of

transformer. Given a query qi ∈ Rd from all T ′ queries, a set of keys kt ∈ Rd and values

vt ∈ Rd where t = 1, 2, ..., T , the scaled dot-product attention outputs a weighted sum

of values vt, where the weights are determined by the dot-products of query q and keys

kt. In practice, we pack kt and vt into matricies K = (k1, ..., kT ) and V = (v1, ..., vT ),

respectively. The attention output on query q is:

A(qi, K, V ) = V
exp

{
KT qi/

√
d
}

∑T
t=1 exp{kTt qi/

√
d}

(A.1)

The multi-head attention consists ofH paralleled scaled dot-product attention layers called

“head”, where each “head” is an independent dot-product attention. The attention output
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from multi-head attention is as below:

MA(qi, K, V ) = WO


head1

· · ·

headH

 (A.2)

headj = A(W q
j qi,W

K
j K,W

V
j V ) (A.3)

whereW q
j ,W

K
j ,W

V
j ∈ R d

H
×d are the independent head projection matrices, j = 1, 2, ..., H ,

and WO ∈ Rd×d.

This formulation of attention is quite general, for example when the query is the hidden

states from the decoder, and both the keys and values are all the encoder hidden states, it

represents the common cross-module attention. Self-attention [82] is another case of multi-

head attention where the queries, keys and values are all from the same hidden layer (see

also in Fig. A.1). A walk-through example on self-attention could be found in this blog

(section “Self-Attention in Detail”).1

Transformer Networks

Now we are ready to introduce Transformer model, which is an encoder-decoder based

model that is originally proposed for machine translation [82]. The building block for

Transformer is multi-head attention and a pointwise feed-forward layer. The pointwise

feed-forward layer takes the input from multi-head attention layer, and further transforms

it through two linear projections with ReLU activation. The feed-forward layer can also

be viewed as two convolution layers with kernel size one. The encoder and decoder of

Transformer is composed by multiple such building blocks, and they have the same number

of layers. The decoder from each layer takes input from the encoder of the same layer

as well as the lower layer decoder output. Self-attention is applied to both encoder and

1http://jalammar.github.io/illustrated-transformer/
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Figure A.1: Transformer with 1-layer encoder and 1-layer decoder.

decoder. Cross-module attention between encoder and decoder is also applied. Note that

the (masked) self-attention layer in the decoder can only attend to the current and previous

positions to preserve the auto-regressive property. The feed-forward block indicates a two-

layer perceptron and the linear block indicates a linear layer. Residual connection [123] is

applied to all input and output layers. Additionally, layer normalization [182] (LayerNorm)

is applied to all layers. Fig. A.1 shows a one layered transformer.

Note that Transformers are a special form of Graph Neural Networks,2 where the nodes

are fully-connected (Transformer encoder) or mostly-connected (Transformer encoder).

Transformer encoder is also the backbone of concurrent bidirectional language models,

such as BERT [27]. Transformer decoder has been used intensively for language genera-

tion [155, 86].

Other learning resources. The blogs on “The Illustrated Transformer”3 and “How Trans-

formers Work”4 are excellent supplementary read to this section.

2https://graphdeeplearning.github.io/post/transformers-are-gnns/
3http://jalammar.github.io/illustrated-transformer/
4https://towardsdatascience.com/transformers-141e32e69591
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Implementations. Transformer comes with the official PyTorch library.5 Other implemen-

tations include Hugging Face’s Transformers [183].

5https://pytorch.org/docs/master/nn.html?highlight=transformertorch.nn.Transformer
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APPENDIX B

Grounded Video Description

This Appendix provides additional details, evaluations, and implementation details on

Chap. VI. In Sec. B, we provide more details on our dataset including the annotation inter-

face and examples of our dataset, which are shown in Figs. B.1, B.2. In Sec. B, we provide

additional results on our ActivityNet-Entities dataset. In Sec. B, we provide additional re-

sults on the Flickr30kEntities dataset. Finally in Sec. B, we provide more implementation

details (e.g., training details).

Dataset

Definition of a noun phrase. Following the convention from Flickr30k Entities dataset [89],

we define noun phrase as:

• short (avg. 2.23 words), non-recursive phrases (e.g., the complex NP “the man in a

white shirt with a heart” is split into three: “the man”, “a white shirt”, and “a heart”)

• refer to a specific region in the image so as to be annotated as a bounding box.

• could be

– a single instance (e.g., a cat),
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– multiple distinct instances (e.g.two men),

– a group of instances (e.g., a group of people),

– a region or scene (e.g., grass/field/kitchen/town),

– a pronoun, e.g., it, him, they.

• could include

– adjectives (e.g., a white shirt),

– determiners (e.g., A piece of exercise equipment),

– prepositions (e.g.the woman on the right)

– other noun phrases, if they refer to the identical bounding concept & bounding

box (e.g., a group of people, a shirt of red color)

Annotator instructions. Further instructions include:

• Each word from the caption can appear in at most one NP. “A man in a white shirt”

and “a white shirt” should not be annotated at the same time.

• Annotate multiple boxes for the same NP if the NP refers to multiple instances.

– If there are more than 5 instances/boxes (e.g., six cats or many young children),

mark all instances as a single box and mark as “a group of objects”.

– Annotate 5 or fewer instances with a single box if the instances are difficult to

separate, e.g.if they are strongly occluding each other.

• We don’t annotate a NP if it’s abstract or not presented in the scene (e.g., “the camera”

in “A man is speaking to the camera”)

• One box can correspond to multiple NPs in the sentence (e.g., “the man” and “him”),

i.e., we annotate co-references within one sentence.
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(a) “Teams” refers to more than 5 instances
and hence should be annotated as a group.

(b) “People” and “horses” can be clearly
separated and the # of instances each is ≤ 5.

So, annotate them all.

(c) “plant life” and “it” refer to the same
box and “He”, “’his”, “he”, “his” all refer to

the same box.

(d) Only annotate the NP mentioned in the
sentence, in this case, “The weight lifter”.
“proper stance” is a NP but not annotated
because it is abstract/not an object in the

scene.

(e) Note that (e) and (f) refer to the same
video segment. See the caption of (f) for

more details.

(f) “The radio” is annotated in a different
frame as “a man” and “a baseball bat”,

since it cannot be clearly observed in the
same frame.

Figure B.1: Examples of our ActivityNet-Entities annotations in the annotation interface.
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Figure B.2: A screen shot of our annotation interface. The “verify (and next)” button in-
dicates the annotation is under the verification mode, where the initial annotation is loaded
and could be revised.

See Fig. B.1 for more examples.

Annotation interface. We show a screen shot of the interface in Fig. B.2.

Validation process. We deployed a rigid quality control process during annotations. We

were in daily contact with the annotators, encouraged them to flag all examples that were

unclear and inspected a sample of the annotations daily, providing them with feedback on

possible spotted annotation errors or guideline violations. We also had a post-annotation

verification process where all the annotations are verified by human annotators.

List of objects. Tab. B.5 lists all the 432 object classes which we use in our approach. We

threshold at 50 occurrences. Note that the annotations in ActivityNet-Entities also contain

the full noun phrases w/o thresholds.
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F1all F1loc
Method Precision Recall Precision Recall

Unsup. (w/o SelfAttn) 3.76 3.63 12.6 12.9
Unsup. 0.28 0.27 1.13 1.13
Sup. Attn. 6.71 6.73 22.6 22.8
Sup. Grd. 6.25 5.84 21.2 21.2
Sup. Cls. 0.40 0.32 1.39 1.47
Sup. Attn.+Grd. 7.07 6.54 23.0 23.0
Sup. Attn.+Cls. 7.29 6.94 24.0 24.1
Sup. Grd. +Cls. 4.94 4.64 17.7 17.6
Sup. Attn.+Grd.+Cls. 7.42 6.81 23.7 23.9

Table B.1: Attention precision and recall on generated sentences on ANet-Entities val set.
All values are in %.

F1all F1loc
Method Precision Recall Precision Recall

Unsup. (w/o SelfAttn) 3.62 3.85 11.7 11.8
Sup. Attn.+Cls. 7.64 7.55 25.1 24.8

Table B.2: Attention precision and recall on generated sentences on ANet-Entities test set.
All values are in %.

Results on ActivityNet-Entities

We include here the precision and recall associated with F1all and F1loc (see Tabs. B.1,

B.2).

Results on Flickr30k Entities

We include here the precision and recall associated with F1all and F1loc (see Tabs. B.3,

B.4).

Implementation Details

Region proposal and feature. We uniformly sample 10 frames per video segment (an

event in ANet-Entities) and extract region features. For each frame, we use a Faster RCNN
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F1all F1loc
Method Precision Recall Precision Recall

Unsup. (w/o SelfAttn) 4.08 4.89 12.8 12.8
Unsup. 0.75 0.87 2.08 2.10
Sup. Attn. 7.46 8.83 22.4 22.5
Sup. Grd. 6.90 8.43 21.0 21.0
Sup. Cls. (w/o SelfAttn) 3.70 4.66 11.4 11.5
Sup. Attn.+Grd. 7.93 9.45 23.7 23.6
Sup. Attn.+Cls. 7.61 9.25 23.2 23.1
Sup. Grd. +Cls. 4.70 5.83 13.7 13.7
Sup. Attn.+Grd.+Cls. 7.56 9.20 23.2 23.2

Table B.3: Attention precision and recall on generated sentences on Flickr30k Entities val
set. All values are in %.

F1all F1loc
Method Precision Recall Precision Recall

BUTD [73] 4.07 5.13 13.1 13.0
Our Unsup. (w/o SelfAttn) 3.44 4.47 11.6 11.8
Our Sup. Attn.+Grd.+Cls. 6.91 8.33 22.2 22.2

Table B.4: Attention precision and recall on generated sentences on Flickr30k Entities test
set. All values are in %.

model [47] with a ResNeXt-101 FPN backbone [150] for region proposal and feature ex-

traction. The Faster RCNN model is pretrained on the Visual Genonme dataset [147]. We

use the same train-val-test split pre-processed by Anderson et al. [73] for joint object de-

tection (1600 classes) and attribute classification. In order for a proposal to be considered

valid, its confident score has to be greater than 0.2. And we limit the number of regions per

image to a fixed 100 [158]. We take the output of the fc6 layer as the feature representation

for each region, and fine-tune the fc7 layer and object classifiers with 0.1× learning rate

during model training.

Training details. We optimize the training with Adam (params: 0.9, 0.999). The learning

rate is set to 5e-4 in general and to 5e-5 for fine-tuning, i.e., fc7 layer and object classifiers,

decayed by 0.8 every 3 epochs. The batch size is 240 for all the methods. We implement
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the model in PyTorch based on NBT1 and train on 8x V100 GPUs. The training is limited

to 40 epochs and the model with the best validation CIDEr score is selected for testing.

1https://github.com/jiasenlu/NeuralBabyTalk
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background egg nail kid snowboard hoop roller pasta
bagpipe stilt metal butter cheerleader puck kitchen stage
coach paper dog surfboard landscape scene guitar trophy
bull dough tooth object eye scissors grass stone
rod costume pipe ocean sweater ring drum swimmer
disc oven shop person camera city accordion stand
dish braid shot edge vehicle horse ramp road
chair pinata kite bottle raft basketball bridge swimming
carpet bunch text camel themselves monkey wall image
animal group barbell photo calf top soap playground
gymnast harmonica biker polish teen paint pot brush
mower platform shoe cup door leash pole female
bike window ground sky plant store dancer log
curler soccer tire lake glass beard table area
ingredient coffee title bench flag gear boat tennis
woman someone winner color adult shorts bathroom lot
string sword bush pile baby gym teammate suit
wave food wood location hole wax instrument opponent
gun material tape ski circle park blower head
item number hockey skier word part beer himself
sand band piano couple room herself stadium t-shirt
saxophone they goalie dart car chef board cloth
team foot pumpkin sumo athlete target website line
sidewalk silver hip game blade instruction arena ear
razor bread plate dryer roof tree referee he
clothes name cube background cat bed fire hair
bicycle slide beam vacuum wrestler friend worker slope
fence arrow hedge judge closing iron child potato
sign rock bat lady male coat bmx bucket
jump side bar furniture dress scuba instructor cake
street everyone artist shoulder court rag tank piece
video weight bag towel goal clip hat pin
paddle series she gift clothing runner rope intro
uniform fish river javelin machine mountain balance home
supplies gymnasium view glove rubik microphone canoe ax
net logo set rider tile angle it face
exercise girl frame audience toddler snow surface pit
body living individual crowd beach couch player cream
trampoline flower parking people product equipment cone lemon
leg container racket back sandwich chest violin floor
surfer house close sponge mat contact helmet fencing
water hill arm mirror tattoo lip shirt field
studio wallpaper reporter diving ladder tool paw other
sink dirt its slice bumper spectator bowl oar
path toy score leaf end track member picture
box cookie finger bottom baton flute belly frisbee
boy guy teens tube man cigarette vegetable lens
stair card pants ice tomato mouth pan pool
bow yard opening skateboarder neck letter wheel building
credit skateboard screen christmas liquid darts ball lane
smoke thing outfit knife light pair drink phone
trainer swing toothbrush hose counter knee hand mask
shovel castle news bowling volleyball class fruit jacket
kayak cheese tub diver truck lawn student stick

Table B.5: List of objects in ActivityNet-Entities, including the “ background ” class.
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APPENDIX C

Open Source, Workshops, and Challenges

In this Appendix, we listed our open-sourced projects, organized major workshops and

challenges.

Open Source

• YouCook2 and YouCook2-BoundingBox dataset (Chap. III):

http://youcook2.eecs.umich.edu/

• ActivityNet-Entities dataset (Chap. III):

https://github.com/facebookresearch/ActivityNet-Entities

• PyTorch Implementation of Vision-Language Pre-training (Chap. VIII):

https://github.com/LuoweiZhou/VLP

• PyTorch Implementation of Grounded Video Description (Chap. VI):

https://github.com/facebookresearch/grounded-video-description

• PyTorch Implementation of Dense Video Description (Chap. V):

https://github.com/salesforce/densecap
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• PyTorch Implementation of Weakly-Supervised Object Grounding (Chap. VII):

https://github.com/MichiganCOG/Video-Grounding-from-Text

• Torch Implementation of ProcNets (Chap. IV):

https://github.com/LuoweiZhou/ProcNets-YouCook2

Workshops and Challenges

• Co-organizer, CVPR 2018 Workshop on Fine-grained Instructional Video undER-

standing (FIVER):

http://fiver.eecs.umich.edu/

• Co-organizer, Challenge on ActivityNet-Entities Object Localization (Grounding):

http://activity-net.org/challenges/2020/tasks/guest_anet_

eol.html, a part of the International Challenge on Activity Recognition (Activi-

tyNet) at CVPR 2020.

• Program Committee, CVPR 2020 Workshop on Learning from Instructional Videos

(WLIV):

https://sites.google.com/view/wliv20/home

• Program Committee, ECCV 2018 Workshop on Shortcomings in Vision and Lan-

guage (SiVL):

https://sites.google.com/view/sivl

• Program Committee, NAACL 2018 Workshop on Storytelling:

http://www.visionandlanguage.net/workshop2018/index.html
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