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Abstract

Reactivity insertion accidents are one of the design-basis accidents that drive nuclear reactor limits. In order
to operate nuclear reactors both safely and efficiently, reactor response to such an accident scenario must be
well understood through simulation. While state-of-the-art reactor codes, such as MPACT, are capable of
modeling transport physics for heterogeneous geometry, the computational cost is significant. This cost is
only amplified for reactor transients, where the solution in the time domain is obtained through a series of
calculations at discrete time points. One way to improve the computational efficiency is to adaptively select
the time points at which to perform a calculation based on the evolution of the reactor through the transient.

The objective of this work is to develop an adaptive time stepping algorithm specifically for neutron trans-
port that is able to properly characterize the evolution of the reactor throughout a transient and provide
an appropriate time step size based on that characterization. In order to accomplish this, the leading order
error term of the time discretization is limited. For implicit Euler, the standard time discretization method
for neutron transport codes, this error term is inversely proportional to the second derivative of the angular
flux in time.

Two methods are investigated for estimating the second derivative—a traditional finite difference approach
and a novel alpha (time) eigenvalue approach. The methods were implemented in MPACT and character-
ized on a variety of transient test cases. The finite difference method is shown to suffer from two major
drawbacks: untenable storage demands and oscillatory time step selection. The former issue is shown to be
resolved satisfactorily by substituting the scalar flux for the angular flux without loss of accuracy. The latter
issue is partially resolved by employing an alternative formulation of the finite difference approximation, but
this only serves to reduce, not eliminate, the oscillations. The alpha eigenvalue method is shown to resolve
both of these issues, though at a higher computational cost than the finite difference method. Both methods
present a range of choices that are explored and characterized for their performance.

The result of this work is a robust adaptive time stepping scheme for MPACT that is able to increase compu-
tational efficiency of reactor transient simulations without an adversarial effect on accuracy. The capability
is demonstrated for one of the C5G7 computational benchmarks and a miniature version of the SPERT
reactor experiments.

xiii



Chapter 1

Introduction

Nuclear power represents a carbon-free energy source that, given current trends in climate change due to
carbon emissions, should play an increasing role in power production around the world. In order for this
to happen, we must be able to reliably and efficiently model nuclear reactors to ensure their safe operation.
A major driver in the safety limits of nuclear reactors is their response to a reactivity initiated accident
(RIA). RIAs are design basis accidents that are legally required to be analyzed by 10CFR50. Following a
postulated RIA, that may produce a severe power excursion, the reactor must be shown to maintain its
pressure boundary and cooling capabilities. One regulatory form this takes is a limit on the energy density
following the RIA. In 2007, there was a proposal by the Nuclear Regulatory Commission to tighten the
historical acceptance criteria that is currently under review. The ability to accurately model time-dependent
reactor physics is crucial for setting and ensuring compliance with these RIA limits.

With ever growing computational resources, the quality of simulation capability has advanced greatly over
the last few decades. While nodal methods were considered state-of-the-art 20 years ago [52], full transport
codes are now the gold standard. MPACT [38], developed jointly by the University of Michigan and Oak
Ridge National Laboratory under the Consortium for Advanced Simulation of LWRs (CASL) program is
one such code. MPACT is capable of providing sub-pin power distributions via the 2D/1D method of char-
acteristics (MOC) calculations [31], [11], [12]. The MPACT transient capability was developed for modeling
RIAs with an internal thermal-hydraulics model [14] or coupled to the thermal-hydraulics code COBRA-TF
[55]. These time-dependent simulations can require significant computational resources with a series of cal-
culations being solved at discrete time steps, usually on the order of milliseconds. The focus of this thesis
is on developing an adaptive time stepping (ATS) methodology to automatically adjust the time step size
based on the most up-to-date analysis of the system evolution.

The remainder of this chapter will lay out the principles of neutron transport essential to modeling the behav-
ior of a nuclear reactor, including the most commonly employed approximation and eigenvalue formulations.
Chapter 2 will then focus on the details of the calculation methodology, with a focus on MPACT-specific
algorithms, including 2D/1D, MOC, acceleration, and transient modifications. Chapter 3 will introduce the
concept of ATS and propose a general methodology based on limiting the leading order truncation error of
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the time discretization through finite difference or α-eigenvalue estimations. Chapter 4 will demonstrate the
ability of MPACT to calculate the α-eigenvalue for steady state simulations before turning to its use with
ATS. Chapter 5 will explore ATS with the finite difference approach and characterize the performance of
various options. Chapter 6 will then investigate ATS with the α-eigenvalue approach. Chapter 7 will apply
the ATS methods to a SPERT mini-core and C5G7 benchmark as a final demonstration. Finally, the results
and future work will be summarized in Chapter 8.

1.1 Neutron Transport and Approximations

The behavior of individual neutrons is a stochastic process by nature, but the neutron population in a nuclear
reactor is large enough that it can be described by a statistical average. This average behavior of neutrons is
governed by the time-dependent Boltzmann transport equation and the neutron precursor balance equations
as a function of space r, energy E, angle Ω, and time t:

1

v(E)

∂

∂t
ψ(r,Ω, E, t) + Ω · ∇ψ(r,Ω, E, t) + Σt(r, E, t)ψ(r,Ω, E, t) =∫ ∞

0

∫
4π

Σs(r, E
′ → E,Ω ·Ω′, t)ψ(r,Ω′, E′, t)dΩ′dE′

+ (1− β)
χp(r, E)

4π

∫ ∞
0

∫
4π

νΣf (r, E′, t)ψ(r,Ω′, E′, t)dΩ′dE′ +
χd(r, E)

4π

∑
i

λiCi(r, t) (1.1a)

∂

∂t
Ci(r, t) = βi

∫ ∞
0

∫
4π

νΣf (r, E′, t)ψ(r,Ω′, E′, t)dΩ′dE′ − λiCi(r, t), (1.1b)

with the usual definitions:

ψ(r,Ω, E, t) – angular neutron flux
Ci(r, t) – delayed neutron precursor density for delayed group i
Σt(r, E, t) – total cross section (probability of interaction)
Σs(r, E

′ → E,Ω ·Ω′, t) – differential scattering cross section from energy E’ to E and angle Ω′ to Ω

ν(E, t) – neutrons produced per fission from neutron with energy E
Σf (r, E, t) – fission cross section
χ(r, E, t) – emission spectrum for prompt (p) and delayed (d) neutrons
βi(r, t) – delayed group i faction (β =

∑
i βi)

λi(r, t) – decay constant for delayed group i

A rigorous derivation of this equation from first principles can be found in many sources, including [15],
but fundamentally, it is a conservation equation with loss terms on the left representing time attenuation,
leakage, and attenuation (or removal), and production terms on the right, representing in-scatter, prompt
fission, and delayed neutron contributions1. Eqs. (1.1) represent a system of 7-dimensional equations. In

1When a nucleus undergoes fission, it can break into a number of different smaller nuclei, called fission products. Among these
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Cartesian coordinates, the 3-dimensional spatial dependence is given by:

r = (x, y, z). (1.2)

The angular dependence is typically represented by a 2-dimensional direction of flight variable given by its
azimuthal angle ω and the cosine of polar angle µ = cos θ:

Ω = (Ωx,Ωy,Ωz) =
(√

1− µ2 cosω,
√

1− µ2 sinω, µ
)
, (1.3)

where Ω is taken to be a unit vector so that Ω ·Ω = 1. Energy and time are 1-dimensional variables.
When there is no change over time, eqs. (1.1) reduce to the single steady-state equation:

Ω · ∇ψ(r,Ω, E) + Σt(r, E)ψ(r,Ω, E) =

∫ ∞
0

∫
4π

Σs(r, E
′ → E,Ω ·Ω′)ψ(r,Ω′, E′)dΩ′dE′

+
χ(r, E)

4π

∫ ∞
0

∫
4π

νΣf (r, E′)ψ(r,Ω′, E′)dΩ′dE′, (1.4)

where

χ(r, E, t) = (1− β(r, t)χp(r, E, t) + β(r, t)χd(r, E, t). (1.5)

Most derivations and approximations throughout this thesis will begin with the steady-state equation for
simplicity unless the time dependence is of specific importance. Also, it is often mathematically convenient
to discuss the transport equation in operator notation so that algorithms can be written generically rather
than being restricted to a specific implementation. Thus, we can write eq. (1.4) as

Lψ + Rψ = Sψ + Fψ, (1.6)

where L represents the leakage operator, R represents the removal operator, S represents the scattering
operator, and F represents the fission operator. From eq. (1.4), these operators are defined as

Lψ = Ω · ∇ψ(r,Ω, E) (1.7a)

Rψ = Σt(r, E)ψ(r,Ω, E) (1.7b)

Sψ =

∫ ∞
0

∫
4π

Σs(r, E
′ → E,Ω ·Ω′)ψ(r,Ω′, E′)dΩ′dE′ (1.7c)

fission products, a small number will decay (or their daughter products will decay) by neutron emission. Thus, they provide
an extra source of neutrons, albeit delayed from the actual fission event itself. Hence, they are referred to as delayed neutron
precursors. Delayed neutrons provide both necessary margin for safe operation of a nuclear reactor and serious challenges for
modeling the time dependent behavior. Both of these are results of the rather large discrepancy between the time scales of
neutron transport that occurs on the order of micro- or even nanoseconds and delayed neutron emission that occurs on the
on scale of milliseconds to tens of seconds. The mathematical description of the precursor behavior, given by eq. (1.1b), is a
simple balance of production through fission and decay. Rather than track each delayed neutron precursor explicitly, they are
typically divided into a number of groups, most often 1, 6 or 8, with a representative time constant. The concentrations of these
i groups are represented by Ci in eq. (1.1b) with decay constant λi and fraction of delayed neutrons βi. The total fraction of
delayed neutrons is thus given by β =

∑
i βi.
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Fψ =
χ(r, E)

4π

∫ ∞
0

∫
4π

νΣf (r, E′)ψ(r,Ω′, E′)dΩ′dE′. (1.7d)

Note that the definitions in eqs. (1.7) are not strict; this simply provides the fullest expression for consistency
with the steady-state transport equation. Simplifications may be made to the operators, such as an isotropic
scatting approximation, or they may be modified. For instance, when discussing the α-eigenvalue, it will
often be necessary to pull the χ dependency out of the fission operator F.

While the transport equation is a function of the angular flux, ψ(r,Ω, E, t), out of mathematical necessity
to correctly describe neutron leakage and scattering, this is not a quantity of physical interest. Reaction
rates quantities are integrated over the angular variable and are therefore more naturally described in terms
of the scalar flux, defined by:

φ(r, E, t) =

∫
4π

ψ(r,Ω, E, t)dΩ ≡ Γψ, (1.8)

where we have introduced the operator Γ to represent integration of the angular variable over the unit sphere.
Since the scalar flux represents the physical quantity of interest and requires less memory for storage than
the angular flux, many neutronic calculations attempt to avoid the angular flux whenever possible. This
leads to the obvious problem of trying to describe a system without two of the dependent variables, that
necessarily introduces approximations. As we will see, there are times when careful approximations can allow
the scalar flux to be used in places of the angular flux with limited impact on the overall accuracy.

While eqs. (1.1) provide a thorough neutronic account of a nuclear reactor, they are essentially never used
in this general form. For anything but very simple cases, discretization and approximations are employed to
simplify at least some of the dependenct variables. We will now explore some of the basic approximations
that can be used to simplify eqs. (1.1) to a form more amenable for numerical solution.

1.1.1 The Independent Variables and Discretization

Since general solution of the transport equation is impossible to derive in most practical applications, we
naturally seek to solve the problem numerically. There are two fundamentally different paths available to
do so– deterministic and stochastic. Deterministic codes attempt to numerically solve some form of eqs.
(1.1). This requires some discretization of the problem to reduce it to a set of linear equations that may
be solved either directly or iteratively. The discretization choices impose a limit on how accurate a solution
may be expected, but should tend toward the exact solution as they become more refined. Stochastic meth-
ods, often referred to as Monte Carlo methods, simulate a large number of particles (neutrons) traveling
and interacting within the problem geometry. Unlike deterministic methods, this can be accomplished by
treating the dependent variables continuously within the constraints of the modeling capabilities, which are
adequate for the relatively simple geometric shapes present in most reactors. However, the solution obtained
by stochastic methods necessarily has an associated statistical error that is inversely proportional to the
square of the number of trials, or particles, simulated. The focus of this research is on deterministic meth-
ods, however, so we will leave further discussion of stochastic methods behind. We will continue with the
specific considerations for each of the variables for deterministic methods.
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A description of the myriad approaches for spatial treatment of the transport equation could easily fill the
pages of this dissertation itself, so we will restrict our attention to the basics and details germane to this re-
search. Historically, direct discretization of the geometry is the most commonly employed method to reduce
the transport equation to a system of equations. This typically requires some sort of homogenization. In
nuclear reactors, the pin cell is the basic unit of geometry. In many of the early reactor analysis codes, and
indeed in many modern codes, a homogenized pin cell is therefore also the basic unit of geometry. While
advanced homogenization techniques, including corrections such as disadvantage and self-shielding factors
and a myriad of other approximations [15], can be employed to make such a homogenization usable, these
techniques cannot accurately account for the full spatial transport effects. Despite being unable to capture
detailed the flux shape, with careful construction, pin cell averaged calculations can preserve reaction rates,
which is the fundamental consistency desired of most approximations and discretizations.

For any traditional spatial discretization, the transport equation is transformed into a system of equations,
with one or more equations for each spatial cell. The removal, scattering, and fission terms are all described
within a single cell, while the leakage terms link the equations for neighboring cells. Leakage is typically
best described by face-centered unknowns, while the other terms are described by cell-centered unknowns.
The exact choice of discretization and the closures to relate face- and cell-centered values (e.g. diamond
difference, step characteristic, etc.) define the spatial discretization.

The method of characteristics employed by MPACT, discussed more thoroughly in Section 2.2.2, avoids
traditional discretization of the spatial variable in favor of tracing rays across the system. This allows the
continuous system to be reduced to a set of analytical equations without homogenization of the geometry,
in a similar vein as stochastic methods. The acceleration method MPACT employs, detailed in Section 2.2.3
occurs on a coarse mesh, typically a homogenized pin cell, and employs traditional spatial discretization
methods. (While a detailed description of MPACT will be developed in Section 2.2, we continue to point
out important high level descriptions and features throughout this chapter.)

The energy variable is almost invariably treated with the multigroup approximation in deterministic codes.
This is developed in Section 1.1.2.

The angular variable is a frequent target for approximations since the only explicit angular dependence is
contained in the the leakage and scattering terms, and its inclusion is more of a mathematical requirement
than a physical quantity of interest. The two most common treatments are the discrete ordinates (SN) and
expansion approximations. As the name discrete ordinate implies, the SN method is a traditional discretiza-
tion of the direction variable that employs a set of carefully chosen directions and weights to represent the
neutron paths of flight. Moment expansion approximations, on the other hand, express the angular flux
as a summation of expansion moments, usually chosen chosen such that a specified set of integrations are
preserved. Section 1.1.3 will address these treatments in greater detail. Independent of, or in conjunction
with, these approximations the angular dependence of the scattering term often receives special treatment.
This is discussed more thoroughly in Section 1.1.4.
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Lastly, we address the time variable. Much of reactor analysis avoids this variable entirely by focusing on
solution of the steady-state equation, rightfully so since the most common method of dealing with time-
dependent problems is discretization that reduces the time-dependent problem to a series of steady-state
solutions coupled by the time derivative term and delayed neutron source. Unfortunately, this covers a very
large range of time scales, leading to a stiff set of equations. This necessitates use of implicit, or backward,
time-differencing for stability, which requires solving a linear system at each time point [35].

1.1.2 Multigroup Approximation

Energy is a particularly difficult variable to deal with in the transport equation since 1) it spans a dozen
orders of magnitude and 2) the cross sections have a strong and highly irregular dependence on energy, as
shown in Figure 1.1. These two facts immediately preclude a straightforward discretization. Instead, the
so-called mulitgroup approximation is employed. A maximum cut off energy, typically E0 = 20 MeV, is
chosen, and the energy spectrum is divided into some number of groups, G, as shown in Figure 1.2.

Figure 1.1: Energy Dependence of the Fission and Capture Cross-section for U-238

The steady-state transport equation is then integrated over each energy group 1 ≤ g ≤ G, forming a system
of G equations coupled through the scattering and fission terms:
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Figure 1.2: Multigroup Approximation of the Energy Spectrum

Ω · ∇ψg(r,Ω) + Σt,g(r)ψg(r,Ω) =

G∑
g′=1

∫
4π

Σs,g′→g(r,Ω ·Ω′)ψg′(r,Ω′)dΩ′

+
χg(r)

4π

G∑
g′=1

∫
4π

νΣf,g′(r,Ω
′)ψg′(r,Ω

′)dΩ′, (1.9)

where the multigroup flux, cross sections, and fission spectrum are defined as:

ψg(r,Ω) =

∫ Eg−1

Eg

ψ(r,Ω, E)dE (1.10a)

Σx,g(r) =

∫ Eg−1

Eg
Σx(r, E)ψ(r,Ω, E)dE∫ Eg−1

Eg
ψ(r,Ω, E)dE

(Σx = Σt, νΣf ) (1.10b)

Σs,g′→g(r,Ω ·Ω′) =

∫ Eg−1

Eg

∫ Eg′−1

E′g
Σs(r,Ω ·Ω′, E′ → E)ψ(r,Ω′, E′)dE′dE∫ Eg−1

Eg
ψ(r,Ω, E)dE

(1.10c)

χg(r) =

∫ Eg−1

Eg

χ(r, E)dE (1.10d)

While eq. (1.9) is exact, it also requires knowledge of the solution ψ(r,Ω, E) to compute the coefficients in
eqs. (1.10). However, an approximation to the solution that sufficiently represents the energy dependence of
the actual solution can yield satisfactory coefficients. Such an approximation can be obtained via intuitive
means [33] or using an approximate solution. The latter method is employed in MPACT and is known as
cross section shielding [38].

1.1.3 Angular Approximations

As previously mentioned, treatment of the angular variable typically falls into two categories: discrete ordi-
nates (SN) and expansion methods. The method of characteristics employed by MPACT can be considered
a specific instance of discrete ordinates.

The SN equations are formed by restricting the direction of flight variable to a discrete set of directions.
As discussed in Section 1.1, the angular flux is a mathematical necessity, while the scalar flux is the phys-
ical quantity of interest. This requires that the integral over the unit sphere be preserved. This can be
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accomplished via quadrature sets that consist of M direction and weight pairings such that:

∫
4π

ψ(Ω)dΩ =

M∑
m=1

wmψ(Ωm) (1.11)

is satisfied exactly for a polynomial ψ of up to order N . A variety of quadrature sets exist to satisfy specific
limits and weightings of the integral in eq. (1.11). While a fascinating topic in its own right, we shall simply
accept the existence of such quadrature sets for the purposes of this thesis. Note that the angular variable
Ω can be broken into its component azimuthal ω and polar µ components and a separate discretization and
quadrature can be applied to each so that eq. (1.11) becomes

M∑
m=1

wmψ(Ωm)→
L∑
`=1

M∑
m=1

w`wmψ(ω`, µm). (1.12)

This is commonly referred to as “product quadrature” and is employed by MPACT.

Expansion methods comprise the other major approach to treatment of the angular variable. Rather than
discretize the angular variable directly, it is expanded in terms of the spherical harmonic functions, that are
a set of orthogonal functions defined on the unit sphere:

ψ(r,Ω, E, t) =

∞∑
`=0

∑̀
m=−`

ψ`m(r, E, t)Y`m(Ω). (1.13)

The series is truncated in ` and substituted into the transport equation. The result is then multiplied by
the various Ylm(Ω), and integrated over angle to produce a set of coupled equations that can be solved
numerically. An extremely important approximation to the transport equation, the diffusion equation, is
perhaps best motivated by a special instance of spherical harmonics– the P1 equations that arise from the
1D version of the transport equation. In this case, the complicated spherical harmonic functions of degree
N reduce to the simpler Legendre polynomials, denoted by P`(µ):

ψ(x, µ,E, t) =

N∑
`=0

2`+ 1

2
ψ`(x,E, t)P`(µ). (1.14)

1.1.4 Scattering Approximations

The scattering term is a frequent target of approximations, particularly since the differential scattering cross
section, Σs(r, E

′ → E,Ω ·Ω′, t), only depends on the cosine of the scattering angle, µ0 = Ω ·Ω′, rather than
on the angular variable itself. The most basic simplification that can be made is to assume that scattering
is isotropic:

∫ ∞
0

∫
4π

Σs(r, E
′ → E,Ω ·Ω′, t)ψ(r,Ω′, E′, t)dΩ′dE′ →∫ ∞

0

∫
4π

Σs(r, E
′ → E, t)

4π
ψ(r,Ω′, E′, t)dΩ′dE′ =

1

4π

∫ ∞
0

Σs(r, E
′ → E, t)φ(r, E′, t)dE′. (1.15)
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This approximation breaks down when there is significant forward scattering, as is the case in collisions with
low mass atoms like hydrogen. Unfortunately, hydrogen scattering is the major source of neutron thermal-
ization in nuclear reactors. Hence, we should not expect an isotropic scattering approximation to provide a
good description of neutron transport in a nuclear reactor. However, we can apply a transport correction to
the isotropic approximation that greatly improves its accuracy.

Such a correction may be obtained from the 1D monoenergetic P1 equations where

Σs0 =

∫
4π

Σ(x, µ0)dµ0 = Σs(x), (1.16a)

Σs1 =

∫
4π

µ0Σ(x, µ0)dµ0 = µ̄0Σs(x) (1.16b)

are the differential scattering cross sections for the the zeroth and first angular moments. Note that under
assumptions of isotropic elastic scattering in the center-of-mass system with low energy neutrons, µ0 may
be approximated as 2/3A, where A is the atomic mass number of the scattering nuclei [33]. While more
advanced treatments may be employed, the important point is that Σs1 is a known coefficient. This result
can be generalized for the 3D multigroup problem. In MPACT, transport-corrected isotropic scattering is
utilized to approximate the linearly anisotropic scattering operator, with the outscatter correction for heavy
elements, the inscatter correction for light elements, and the neutron leakage conservation correction for
hydrogen [38] [56].

1.1.5 Diffusion Approximation

The most commonly employed approximation to the transport equation is the diffusion equation, which
eliminates the angular dependence. To derive the diffusion approximation, operate on eq. (1.4) by

∫
4π

(·)dΩ.
The removal and fission terms simplify in a straightforward manner to dependence on the scalar flux, while
the leakage and scattering terms require more careful treatment. The leakage term depends on the first
angular moment of the flux, the current J =

∫
4π

ΩψdΩ. The simplest approach is to approximate the
current with Fick’s Law

J(r, E) = −D(r, E)∇φ(r, E). (1.17)

Of course we have now introduced a diffusion coefficient D for which we have no definition. If we obtain the
first angular moment of the transport equation by operating on (1.4) with

∫
4π

Ω(·)dΩ and employ the P1

approximation as in Section 1.1.4, we can obtain an expression for the diffusion coefficient:

D(r, E) =
1

3Σtr(r, E)
=

1

3(Σt(r, E)− Σs1(r, E))
, (1.18)

where Σtr is the so-called transport-corrected total cross section. Employing Σtr instead of Σt allows for the
scattering source to be treated isotropically while preserving some of the linear dependence on the angular
variable. While a purely isotropic approximation cannot sufficiently describe typical reactor physics, this
transport-corrected isotropic approximation is often adequate. The resulting diffusion equation is
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−∇·D(r, E)∇φ(r, E)+Σt(r, E)φ(r, E) =

∫ ∞
0

Σs0(r, E′ → E)φ(r, E′)dE′+χ(r, E)

∫ ∞
0

νΣf (r, E′)φ(r, E′)dE′.

(1.19)
The multigroup formulation of the diffusion equation is then

−∇ ·Dg(r)∇φg(r) + Σt,g(r)φg(r) =

G∑
g′=1

Σs0,g′→g(r)φg(r) +
χg(r)

k

G∑
g′=1

νΣf,g(r)φg(r). (1.20)

The diffusion equation is not exact and in general should not be expected to be consistent with the transport
equation. The diffusion equation is valid only when the angular flux has weak (linear) dependence on
the angular variable. In general, this applies to highly scattering systems without sharp discontinuities in
material properties. In other words, the diffusion equation is accurate in the moderator, questionable in
the presence of strong absorbers, and inaccurate near the system boundaries. Despite these short-comings,
the diffusion equation does provide a reasonable approximation to the the transport solution in many cases
without requiring the angular flux. Since the scalar flux is generally the quantity of interest for determining
reaction rates, this reduction in dependent variables (and hence computational complexity) is much desired.

1.2 Eigenvalue Formulations of the Transport Equation

Another class of approximations to the transport equation is obtained by converting eq. (1.1) to a steady-
state eigenvalue problem. The resulting equations are similar in form to (1.4) with the introduction of an
eigenvalue. While the eigenvalues for any given formulation exist in a discrete or even continuous spectrum,
there is typically a single eigenvalue of interest that provides some physical insight to the system. Discussion
will generally be focused on this fundamental eigenvalue rather than the complete eigenspectrum.

1.2.1 k-eigenvalue

Of most interest to nuclear reactors is the k-eigenvalue problem. In this formulation, the fission source in
eq. (1.4) is scaled by 1

k :

Ω · ∇ψ(r,Ω, E, t) + Σt(r, E, t)ψ(r,Ω, E, t) =

∫ ∞
0

∫
4π

Σs(r, E
′ → E,Ω ·Ω′, t)ψ(r,Ω′, E′, t)dΩ′dE′

+
1

k

χ(r, E)

4π

∫ ∞
0

∫
4π

νΣf (r, E′, t)ψ(r,Ω′, E′, t)dΩ′dE′. (1.21)

Or in operator notation

Lψ + Rψ = Sψ +
1

k
Fψ. (1.22)

The k-eigenvalue is referred to as the effective multiplication factor and is often thought of as the ratio
of neutrons in one generation to the the previous generation [15]. Physically, the dominant k-eigenvalue
characterizes the criticality of the system.
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k < 1 implies a subcritical system with greater neutron loss than gain
k = 1 implies a critical system with no change in the neutron population over time, i.e. eq. (1.4) is
satisfied.
k > 1 implies a supercritical system with greater neutron gain than loss

Mathematically, this eigenvalue enables the steady-state problem to be satisfied for systems where k 6= 1.
That is, we have replaced the time dependence with the k-eigenvalue that artificially reduces the fission
source when k > 1 and amplifies the fission source when k < 1 in compensation. Thus, the solution of eq.
(1.21) is an approximation to the instantaneous solution of eq. (1.1), achieving equality only when there
is no time dependence. However, for nearly critical systems, this approximation is sufficient for preserving
measurable quantities like reaction rates.

The k-eigenspectrum for this problem is well-studied and characterized, such as in [15], [10], [48], and many
others. The eigenvalues are all positive and real, and a dominant eigenvalue exists. That is, there is a
single eigenvalue with a magnitude greater than all the other eigenvalues. This dominant eigenvalue is
the eigenvalue of interest for the k-eigenvalue problem and the corresponding eigenvector is considered the
fundamental mode of the solution.

1.2.2 α-eigenvalue

The α-eigenvalue problem is derived by approximating the time dependence of the angular flux with an
exponential form:

ψ(r,Ω, E, t) ≈ ψ(r,Ω, E)eαt ⇒ 1

v(E)

∂ψ(r,Ω, E, t)

∂t
≈ α

v(E)
ψ(r,Ω, E) (1.23)

Inserting the approximation of eq. (1.23) into eq. (1.1a) yields

α

v(E)
ψ(r,Ω, E) + Ω · ∇ψ(r,Ω, E) + Σt(r, E)ψ(r,Ω, E) =∫ ∞

0

∫
4π

Σs(r, E
′ → E,Ω ·Ω′)ψ(r,Ω′, E′)dΩ′dE′

+
χp(r, E)(1− β(r))

4π

∫ ∞
0

∫
4π

νΣf (r, E′)ψ(r,Ω′, E′)dΩ′dE′ +
χd(r, E)

4π

∑
i

λiC(r) (1.24)

In operator notation, we introduce the diagonal operator V that consists of multiplication by velocity and
the vector D to represent the delayed neutron contribution to complete the α-eigenvalue formulation.

αV−1ψ + Lψ + Rψ = Sψ + Fpψ +D, (1.25)

where we have added the subscript p to the fission operator to denote that it is the prompt fission source
only. Similar to the k-eigenvalue, the fundamental α-eigenvalue can be used to characterize the criticality of
the system.
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α < 0 implies a subcritical system with greater neutron loss than gain
α = 0 implies a critical system with no change in the solution over time, i.e. eq. (1.4) is satisfied.
α > 0 implies a supercritical system with greater neutron gain than loss

For critical configurations, eq. (1.24) reduces to eqs. (1.4). A notable difference between the k-eigenvalue eq.
(1.21) and α-eigenvalue eq. (1.24) is immediately apparent– the α-eigenvalue problem has an inhomogeneous
term representing the delayed neutron contribution.

Less obvious are the significant differences in the k- and α-eigenspectra. While the spectral properties of the
α-eigenvalue are not the focus of this thesis, they will be important when considering calculation methods
in Chapters 2 and 4. A number of studies have been undertaken to understand the α-eigenspectrum from
a theoretical standpoint. In reference [32], Larsen and Zweifel provide an excellent summary (despite their
explicit insistence to the contrary) and expansion of this work. Much of the early investigations focused on
specific geometries and scattering treatments, while attempts to extend to more general cases encountered
difficulties. Nonetheless, many of the specific results obtained appear to be generalizable, if not by formal
mathematics, then at least by experiment. We will summarize the most important points, making sure to
clarify.

Generally, the α-eigenspectrum exists as points, lines, and a continuum [4], as shown in the example spec-
trum provided by Betzler [5] in Figure 1.3. However, with the introduction of two reasonable restrictions–
that velocity cannot be zero and that there are no infinite streaming paths– Jörgens has shown that only the
point spectrum is present [28]. Since neutron velocity obeys a Maxwellian distribution at low energies, the
zero velocity assumption is acceptable, and the restriction to finite streaming paths is consistent with any
physical system. Lehner and Wing showed that the point spectrum may not exist in the continuum, and
hence there is a lower bound on the point spectrum [34]. Mika established that this lower bound is equal to
the minimum value of vΣt. [37]

As with the k-eigenvalue, we are concerned with the fundamental (right-most) α-eigenvalue. The funda-
mental mode is shown to exist and be real by Nelkin for a thermal neutron distribution in a sufficiently
large sphere [39]. However, the higher order α-eigenvalues may be complex. Additionally, the fundamental
α-eigenvalue need not be, and in fact rarely is, the largest magnitude eigenvalue. This has important rami-
fications for the available solution methodology.

Moving on to more practical matters, the inhomogeneous delayed neutron contribution term in eq. (1.24) can
be dealt with in a variety of ways. If the precursor densities Ci are known, then no additional assumptions are
needed. If this is not the case, then additional assumptions are needed. We will note two such assumptions.
The first is that steady-state precursor densities are valid. This is equivalent to setting the time derivative
to zero in the precursor balance equation, eq. (1.1b). This allows for the precursor densities to be solved for
and upon substitution into eq. (1.24), we obtain the equation
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Figure 1.3: Example Spectrum for the α-eigenvalue Showing Points, Lines, and Continuum [4]

αp
v(E)

ψ(r,Ω, E, t) + Ω · ∇ψ(r,Ω, E, t) + Σt(r, E, t)ψ(r,Ω, E, t) =∫ ∞
0

∫
4π

Σs(r, E
′ → E,Ω ·Ω′, t)ψ(r,Ω′, E′, t)dΩ′dE′

+
χ(r, E)

4π

∫ ∞
0

∫
4π

νΣf (r, E′, t)ψ(r,Ω′, E′, t)dΩ′dE′. (1.26)

Note that eq. (1.26) is precisely the steady state eq. (1.4) with an additional α/v term. The conditions of this
derivation are fulfilled immediately after a transient has been initiated from steady-state, and corresponds
to the prompt jump in point kinetics parlance. Hence the subscript p on the eigenvalue in eq. (1.26) to
represent the prompt α-eigenvalue. Another possibility is assuming that the precursors have the same time
dependence as the angular flux:

Ci(r, t) ≈ Ci(r)eαt ⇒ ∂Ci(r, t)

∂t
≈ αCi(r). (1.27)

By introducing this approximation to the precursor balance eq. (1.1b) and eliminating Ci(r, t) from eq.
(1.1a), we obtain:

αa
v(E)

ψ(r,Ω, E, t) + Ω · ∇ψ(r,Ω, E, t) + Σt(r, E, t)ψ(r,Ω, E, t) =∫ ∞
0

∫
4π

Σs(r, E
′ → E,Ω ·Ω′, t)ψ(r,Ω′, E′, t)dΩ′dE′

+
χα(r, E)

4π

∫ ∞
0

∫
4π

νΣf (r, E′, t)ψ(r,Ω′, E′, t)dΩ′dE′ (1.28)

where
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χα(r, E) = (1− β)χp(r, E) +

(∑
i

βi
αa/λi + 1

)
χd(r, E)

= χ(r, E)− χd(r, E)
∑
i

αaβi
αa + λi

. (1.29)

Unlike the prompt α-eigenvalue, this formulation is valid in the asymptotic equilibrium limit, which is why
we have introduced the subscript a for this formulation of the eigenvalue.

1.3 Time Dependent Neutron Transport and Reactor Kinetics

We now turn our attention to the specifics of time-dependent neutron transport. While steady-state cal-
culations have the luxury of eliminating the precursor balance equations, time-dependent calculations must
account for this phenomenon in addition to the extra variable.

1.3.1 Point Kinetics

Perhaps the most useful approximation for exploring the time dependent behavior of nuclear reactors are
the Point Kinetics Equations (PKE). Multiple forms and derivations exist in the literature [15] [41] [33], but
the general idea is to assume separability of time and the remaining dimensional space and reduce eqs. (1.1)
to a system dependent on only one variable, time. We will present the form utilized in this work referred
to as the Exact Point Kinetics Equations (EPKE) [21] [16] [57]. The diffusion equations, eq. (1.19) are
multiplied by the adjoint of the scalar flux, φ∗, that need be calculated before commencing the transient,
and the resulting equations are integrated over energy and space. This operation can be represented by the
inner product:

< φ∗(r, E)f(r, E, t) >=

∫
r∈V

∫ ∞
0

φ∗(r, E)f(r, E, t)dEdr (1.30)

The resulting EPKE has the form:

dp

dt
=
ρ(t)− βeff (t)

Λ(t)
p(t) +

1

Λ(0)

∑
i

λi(t)ζi(t) (1.31a)

dζi
dt

=
Λ(0)

Λ(t)
βip(t)− λi(t)ζi(t) (1.31b)

where p(t) is the amplitude function and ζi(t) is the adjoint weighted precursor concentration. The reactiv-
ity, delayed neutron fraction, prompt generation time, and delayed neutron precursor decay constants are
calculated, respectively, as:

ρ(t) =
< φ∗(r, E), (F− L−R)φ(r, E, t) >

< φ∗(r, E),Fφ(r, E, t) >
, (1.32a)

βeff (t) =
< φ∗(r, E), χd(r, E)β(r)Fφ(r, E, t) >

< φ∗(r, E),Fφ(r, E, t) >
, (1.32b)
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Λ(t) =
< φ∗(r, E), 1

v(E)φ(r, E, t) >

< φ∗(r, E),Fφ(r, E, t) >
, (1.32c)

λi(t) =
< φ∗(r, E), λiχd(r, E)Ci(r, t) >

< φ∗(r, E), χd(r, E)Ci(r, t) >
, (1.32d)

ζi(t) =< φ∗(r, E), Ci(r, E, t) > (1.32e)

The EPKEs require knowledge of the flux to calculate the coefficients, but then reduce to a simple set of
ordinary differential equations if the time dependence of the constants is ignored. On a short time scale, this
is a reasonable constraint and allows calculation of the overall core amplitude as a function of time.
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Chapter 2

Calculation Methodology

In this chapter we will introduce some of the fundamental methodology for deterministically solving the
neutron transport equation. We begin with source iteration, the most commonly employed scheme. Next we
will introduce a Jacobian-Free Newton-Krylov methodology based around the source iteration architecture.
After these general discussions, we will move on to the specifics of the MPACT methodology that will be
important for the remainder of the work in this thesis.

2.1 Basic Solution Algorithm

2.1.1 Source Iteration

The workhorse of many neutronic codes is a variation on power iteration known as source iteration (SI).
Power/source iteration are a fixed-point, or Picard, iteration where the solution u∗ satisfies the relation

u∗ = f(u∗). (2.1)

Power iteration is a two step iterative method to solve the basic eigenvalue problem Ax = λx for the
dominant eigenpair; that is the largest magnitude eigenvalue λ and associated eigenvector x. In the first
step, the operator A is applied to some guess of the eigenvector to produce an update to the eigenvector. In
the second step, the Rayleigh quotient or a similar equation is used to update the guess of the eigenvalue.
The two steps together form the operator f in eq. (2.1) with the solution u∗ = (x, λ). SI is a generalization
of power iteration to solve the generalized eigenvalue problem Ax = λBx. In its most basic form, the two
step process then becomes:

xn =
1

λn−1
B−1Axn−1, (2.2a)

λn = λn−1
‖Axn‖
‖Axn−1‖

, (2.2b)

where the eigenvalue update equation is derived by requiring Axn = λnBxn to be satisfied and noting that
the eigenvector update can be rearranged to yield the identity Bxn = 1

λn−1 Axn−1. For the k-eigenvalue
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problem, note that A = F and B = L + R − S1 and the eigenvector is the angular flux2 ψ (or scalar
flux φ in the case of the diffusion equation). The immediate implications of this are that the eigenvector
update requires an inversion of the form (L + R− S)

−1, and that the eigenvalue update only requires the
action of the fission operator F on the updated flux. Since the discretization of a nuclear reactor in space,
direction, and energy produces a very large system of equations, the inversion drives the computational cost
of the solution method. Typically, this cannot be accomplished through a direct method, such as Guassian
elimination, and requires some iteration scheme. This inner iteration does not provide an exact inversion,
but it can produce a close approximation to the solution at a significantly lower computational cost. A wide
variety of methods exist for iteratively computing the inversion; these are commonly referred to as transport
sweeps.

There are two less obvious point that warrant discussion as well. The first is that the eigenvector up-
date eq. (2.2a) need not adhere to this exact form. The only requirements are that it be consistent
with the eigenvalue equation being solved and that it produce a suitable update to the eigenvector es-
timate. So for the k-eigenvalue problem, it is perfectly acceptable to substitute the standard update
ψn = (L + R− S)

−1 1
kn−1 Fψn−1 with an alternative such as ψn = (L + R)

−1 (
S + 1

kn−1 F
)
ψn−1. The

eigenvalue update eq. (2.2b) does not require modification to accommodate this change as it only requires
a suitable estimate of the eigenvector.

The other point to consider is the convergence of SI. For a steady-state, one-group isotropically scattering,
fixed source problem in planar geometry with and initial guess of ψ0 = 0, the angular flux ψn generated
by n applications of SI can easily be shown to represent the angular flux contribution of particles that have
scattered up to n− 1 times [1]. This physical insight leads to the observation that for scattering-dominated
problems, SI will converge slowly. For problems that are leakage- or absorption-dominated, however, SI will
converge rapidly. Unfortunately, a typical nuclear reactor falls into the former category, necessitating some
sort of acceleration.

2.1.2 Jacobian-Free Newton-Krylov Method

While SI is well-suited for calculating the k-eigenvalue, its utility and/or efficiency for calculating the α
eigenvalue is questionable, owing to the spectral properties of the α eigenvalue problem. Therefore, we
will also explore a fundamentally different solution methodology within MPACT. Newton’s method is an
alternative to fixed-point iteration that is used to solve the equation Gu = 0. This is accomplished via a
two step process:

J(un−1)δun = −Gun−1 (2.3a)

un = un−1 + δun (2.3b)

where eq. (2.3a) is a linear equation employing the Jacobian, J, as a linear approximation to G to solve for
the Newton correction δun. The overwhelming difficulty in this approach is forming the Jacobian and solving

1Often with the k-eigenvalue problem λ is used to represent 1/k. For this discussion we have eschewed this convention to
marry the SI methodology with the usual mathematical eigenvalue definitions.

2Throughout this thesis we will often refer to the eigenvector, which the reader may think of as the angular or scalar flux.
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the linear equation. For many applications, including neutron transport, explicitly forming the Jacobian is
either impossible or impractical, which is perhaps one of the main reasons fixed-point iteration methods
have been the primary approach for most reactor physics codes. However, interest in Newton’s method has
been rekindled recently by employing the Jacobian-Free Netwon-Krylov (JFNK) variation of the traditional
implementation. Knoll and Keyes’s seminal review of JFNK approaches and applications [29] has been a
significant driver of this resurgence, and provides an excellent overview of the overall methodology. By using
a Krylov method to solve the linear equation in (2.3a), such as GMRES [46], we only require the action
of the Jacobian on an arbitrary vector rather than full knowledge of the entries of the Jacobian. By only
requiring the product Jv for arbitrary v, formation of the Jacobian about u may be avoided by employing
the finite difference approximation

J(u)v ≈ 1

ε
[G(u+ εv)−G(u)] (2.4)

where ε is the perturbation parameter, typically chosen as
√
εmachine per ref. [29].

Unlike for SI, the convergence of Newton’s method is expected to be quadratic, so we expect JFNK to show
significant speedup over SI. This comes at the cost of additional storage in the form of the orthonormal basis
formed during the Krylov iteration. With GMRES, for example, each iteration produces a new solution (fine
mesh multigroup scalar flux, boundary conditions, and eigenvalue) that must be stored.

2.2 MPACT Methodology

MPACT is a method of characteristics (MOC) based 2D/1D neutron transport code developed jointly by
the University of Michigan and Oak Ridge National Laboratory under the Department of Energy’s Consor-
tium for Advanced Simulation of Light Water Reactors (CASL) [38]. MPACT is capable of solving both
the steady-state k-eigenvalue problem and time-dependent problems. SI is the algorithm underlying the
MPACT solution methodology, though the implementation is significantly more complex than the basic SI
methodology outlined in section 2.1.1.

MPACT employs the multigroup method to treat energy and the SN approximation with a product quadra-
ture to discretize direction, while employing the method of characteristics (MOC) to allow for an exact
representation of basic geometrical structures. Thus, the discretized transport equation MPACT attempts
to solve is:
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1

vg

∂ψm,`,g(r, t)

∂t
+ Ωm,` · ∇ψm,`,g(r, t) + Σt,g(r, t)ψm,`,g(r, t) =

G∑
g′

L∑
`′

M∑
m′

Σs,g′→g(r,Ωm′,`′ ·Ωm,`, t)ψm′,`′,g′(r, t)wm′w`′

+
χg(r, t)

4π

G∑
g′

L∑
`′

M∑
m′

νΣf,g′(r, t)ψm′,`′,g′(r, t)wm′w`′

r ∈ V, 1 ≤ m ≤M, 1 ≤ ` ≤ L, 1 ≤ g ≤ G, (2.5)

with M azimuthal angles, L polar angles, and G energy groups.

2.2.1 2D/1D Formulation

One of the fundamental approximations made within MPACT is a separation of the radial (x, y) and axial
(z) solution methods known as the 2D/1D formulation, that takes advantage of the fact that nuclear reac-
tors are more homogenous in the axial direction than the radial direction. The solution in the radial and
axial directions is thus solved to a level commensurate with the geometrical complexity. The idea was first
introduced by two different groups in Korea [11] [12] and was used as the basis of the DeCART code, from
which MPACT evolved.

The details of the 2D/1D formulation are laid out in the MPACT manual [38], but we will summarize the
basic idea and implications here. A 2D version of the transport equation is created by defining an axial
leakage term to represent the z-directional derivative and the resulting planar equation is integrated over
an axial slice. Similarly, a 1D version of the transport equation is created by defining a radial leakage term
to represent the x- and y-directional derivatives, that is then integrated over a coarse cell (typically a pin
cell) in the radial direction. However, instead of solving the resulting transport equation in the z direction,
a simplified form of the equation is solved, most typically the P3 equation (though numerous other options
are available in MPACT). The radial and axial equations are then coupled via the leakage terms. Thus in
the radial direction eq. (2.5) becomes

1

vg

∂ψk,m,g(x, y, t)

∂t
+ Ωm,x

∂ψk,m,g(x, y, t)

∂x
+ Ωm,y

∂ψm,g(x, y, t)

∂y
+ Σt,k,g(x, y, t)ψk.m,g(x, y, t) =

G∑
g′

M∑
m′

Σs,k,g′→g(x, y,Ωm′ ·Ωm, t)ψk,m′,g′(x, y, t)wm′+

χk,g(x, y, t)

4π

G∑
g′

M∑
m′

νΣf,k,g′(x, y, t)ψk,m′,g′(x, y, t)wm′−

1

4π∆zk

[
Jk+1/2,g(x, y, t)− Jk−1/2,g(x, y, t)

]
, (2.6)

where Jk±1/2 are the isotropic axial leakage through the top and bottom of plane k. While the P3 formulation
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for the axial direction is typically employed in MPACT, we present the P1 axial equation for better clarity:

1

vg

∂φXYg (z, t)

∂t
− ∂

∂z
DXY
g (z, t)

∂φXYg (z, t)

∂z
+ ΣXYt,g (z, t)φXYg (z, t) =

G∑
g′

Σs,g′→g(z, t)
XY φXYg′ (z, t) + χXYg (z, t)

G∑
g′

νΣs,g′(z, t)
XY φXYg′ (z, t)− TLXYg (z, t) (2.7a)

TLXYg (z, t) =
1

∆x

[
Jx+1/2,g(z, t)− Jx−1/2,g(z, t)

]
+

1

∆y

[
Jy+1/2,g(z, t)− Jy−1/2,g(z, t)

]
, (2.7b)

where J again represents this leakage, but this time in the transverse x and y directions. Details of the
derivation can be found in Chapters 4 and 6 of the MPACT manual [38], but we will note that maintaining
consistency between the solutions is the main concern for the precise formulation of the leakage terms.

2.2.2 Method of Characteristics

The power of MPACT lies in the MOC methodology used to provide the eigenvector update. As detailed in
Section 2.1.1, the eigenvector update requires an inversion of operators, see eq. (2.2a). Rather than explicitly
invert the matrix, however, MOC relies upon the fact that the eq. (2.6) can be solved analytically along a
characteristic, or ray, if the right hand side of eq. (2.6) is known [2]. That is,

Ωm,x
∂ψk,m,g(x, y)

∂x
+ Ωm,y

∂ψm,g(x, y)

∂y
+ Σt,k,g(x, y)ψk.m,g(x, y) = qk,m,g(x, y), (2.8)

where

qk,m,g(x, y) =

G∑
g′

M∑
m′

Σs,k,g′→g(x, y,Ωm′ ·Ωm)ψk,m′,g′(x, y)wm′+

χk,g(x, y)

4π

G∑
g′

M∑
m′

νΣf,k,g′(x, y)ψk,m′,g′(x, y)wm′−

1

4π∆zk

[
Jk+1/2,g(x, y)− Jk−1/2,g(x, y)

]
, (2.9)

and we have omitted the time dependence for simplicity. If a variable transformation:

r = r0 + sΩm (2.10)

is applied to (2.8), then the directional derivative can be expressed in terms of the new variable:

dψk,m,g
ds

(r0 + sΩm) +
Σt,k,g(r0 + sΩm)√

1− µ2
m

ψk.m,g(r0 + sΩm) =
qk,m,g(r0 + sΩm)√

1− µ2
m

. (2.11)

This equation can be solved analytically by multiplying through by the integrating factor
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exp

(
−
∫ s

0

Σt,k,g(r0 + s′Ωmy)√
1− µ2

m

ds′

)
, (2.12)

which yields the solution

ψk.m,g(r0 + sΩm) = ψk.m,g(r0) exp

(
−
∫ s

0

Σt,k,g(r0 + s′Ωmy)√
1− µ2

m

ds′

)

+

∫ s

0

qk,m,g(r0 + s′Ωm) exp

(
−
∫ s

s′

Σt,k,g(r0 + s′′Ωmy)√
1− µ2

m

ds′′

)
ds′ (2.13)

with qk,m,g defined by eq. (2.9). If the geometry can be represented by discrete regions with constant material
properties and if a flat source is also assumed within those regions, eq. (2.13) can be further simplified. For
a given characteristic n passing through a discrete region i:

ψoutk,i,g,m,n = ψink,i,g,m,n exp

(
−Σt,k,i,gsk,i,m,n√

1− µ2
m

)
+
qk,i,g,m
Σt,k,i,g

[
1− exp

(
−Σt,k,i,gsk,i,m,n√

1− µ2
m

)]
, (2.14)

with

qk,i,g,m =

G∑
g′

M∑
m′

Σs,k,i,g′→g(Ωm′ ·Ωm)ψ̄k,i,m′,g′wm′+

χk,i,g
4π

G∑
g′

M∑
m′

νΣf,k,i,g′ ψ̄k,i,m′,g′wm′ −
1

4π∆zk

[
Jk+1/2,g − Jk−1/2,g

]
. (2.15)

Here we have introduced the definitions sk,i,m,n as the distance ray n travels through region i in plane k
along direction m, the quantities

ψink,i,g,m,n = ψk,i,g,m,n(r0), (2.16a)

ψoutk,i,g,m,n = ψk,i,g,m,n(r0 + sk,i,m,nΩm), (2.16b)

and the region-averaged angular flux

ψ̄k,i,m,g =

∑
n∈i ψ̄k,i,m,g,nsk,i,m,nδAm,n∑

n∈i sk,i,m,nδAm,n
. (2.17)

This in turn has introduced the cross-sectional area of the characteristic δAm,n and the segment-averaged
angular flux

ψ̄k,i,m,g,n =

∫ sk,i,m,n

0
ψk,i,m,g,n(s′)ds′∫ sk,i,m,n

0
(s′)ds′

=
ψink,i,g,m,n − ψoutk,i,g,m,n

Σt,k,i,gsk,i,m,n
+
qk,i,m,g
Σt,k,i,g

(2.18)

Since the boundary conditions are defined, as they must be for a well-posed problem, ψin is known for each
ray at the boundary of the system. This gives a starting point from which to trace a ray across the entire
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system, with ψout from one discrete, flat-source region equal to ψin for the next region. Thus, eqs. (2.14),
(2.18), and (2.17) provide an algebraic means to update the angular flux from a known source, q in eq.
(2.15), without inverting a matrix. This ingenious methodology is much more amenable to parallelization
than traditional matrix inversion techniques. It offers an additional benefit in that it does not require explicit
storage of the angular flux. From the definition of the scalar flux in the discrete ordinance approximation,
we can immediately deduce that the region-averaged scalar flux is given by

φ̄k,i,g =

M∑
m

ψ̄k,i,m,gwm, (2.19)

so the contribution of the angular flux to the scalar flux can be accumulated as the rays are traced, and
the angular flux can be immediately discarded. In fact, the segment-averaged and region-averaged angular
fluxes need not be explicitly calculated at all if only the scalar flux is needed for the overall iteration scheme.
The angular flux contribution to the scalar flux can be tabulated more efficiently through an algebraically
optimized scheme that moves as many operations to the outer loop as possible. The content of this section
is meant to provide only a basic understanding of MOC, as there are numerous considerations and subtleties
beyond the scope of this thesis. Further detail can be found in references [38], [31].

In terms of the numerical implementation, the MOC method may be viewed as a collection of three primary
operators. The source is computed via eq. (2.15) through individual applications of the scattering operator
S and the fission operator F. The MOC kernel, eq. (2.14), is an application of (L + R)

−1 to the source.
MPACT avoids explicit formation of the L operator by tracing rays, and as such, it should be noted that
MPACT is incapable of calculating the the action of L.

2.2.3 Coarse Mesh Finite Difference Acceleration

As noted in Section 2.1.1, the convergence for SI can be quite slow for scattering-dominated systems like
nuclear reactors. This necessitates an acceleration scheme for SI to be of practical use. The standard choice
is Coarse Mesh Finite Difference (CMFD) acceleration that utilizes a lower order diffusion solve to provide
a coarse mesh correction to the transport solution.

The derivation of CMFD, like the diffusion equation, begins by integrating the transport equation over the
angular variable. As the name implies, the acceleration method is not solved on the fine mesh, but rather
on a coarse mesh, typically a pin cell. The resulting balance equation for a coarse mesh cell j with surfaces
s3 is then:

∑
s

Jnetj,g,sAj,s + Σt,j,gφj,gVj =

 G∑
g′

(
Σs0,j,g′→g +

χg
keff

νΣf,j,g′

)
φj,g′

Vj , (2.20)

where the coarse mesh-averaged quantities are defined from the fine mesh quantities as
3In the CMFD discussion, s is used to denote a surface, which should not be confused with the s in the MOC derivation

that represents distance traveled along a characteristic
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Σx,j,g =

∑
i∈j Σx,i,gφi,gVi∑

i∈j φi,gVi
, (2.21a)

φj,g =

∑
i∈j φi,gVi∑
i∈j Vi

, (2.21b)

χj,g =

∑
i∈j χi,gνΣf,i,gφi,gVi∑
i∈j νΣf,i,gφi,gVi

. (2.21c)

Using the standard finite difference approximation to the diffusion equation, the net current across surface
s in eq. (2.20) can be approximated as

Jnetj,g,s ≈ −D̃j,g,s (φj,g − φjs,g) , (2.22)

where φjs,g is the cell-averaged flux in the cell adjacent to cell j sharing surface s, and the diffusion coefficient
D̃j,g,s is defined with the distance hj,s between the center of cells j and js and the traditional diffusion
coefficient defined in eq. (1.18):

D̃j,g,s =
2Dj,gDjs,g

hj,s (Dj,g +Djs,g)
. (2.23)

CMFD improves upon this approximation by introducing a correction D̂j,g,s:

Jnetj,g,s ≈ −D̃j,g,s (φj,g − φjs,g) + D̂j,g,s (φj,g + φjs,g) , (2.24)

where D̂j,g,s is calculated during the fine mesh transport solve:

D̂j,g,s =
Jnetj,g,s + D̃j,g,s (φj,g − φjs,g)

(φj,g + φjs,g)
. (2.25)

This correction factor, that can be viewed as an Eddington factor that represents the higher order angular
contributions [54] [33], creates equivalence between the CMFD solution and transport (MOC) solution upon
convergence, a most desirable trait for any acceleration scheme. The CMFD solution is then used to correct
the fine mesh transport solution:

φn+1
i,g = φ

n+1/2
i,g

φn+1
i,g

φ
n+1/2
i,g

, i ∈ j (2.26)

where the superscript n+ 1/2 represents the solution after the transport solve and and n+ 1 represents the
solution after the CMFD solve.

2.2.4 Transients

MPACT is capable of analyzing reactor transients (time-dependent problems), which necessitates solving
a k-eigenvalue problem for the initial condition and then a series of calculations at discrete time points
to characterize the evolution of the transient. Like most neutronic codes, the time dependent problem in
MPACT is discretized with implicit Euler [35]. This provides necessary stability for the stiff set of equations
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represented by eqs. (1.1) at the cost of solving a full linear system at each time point.

Furthermore, the time derivative term is treated with the isotropic approximation:

1

v(E)

∂

∂t
ψ(r,Ω, E, t) ≈ 1

4πv(E)

∂

∂t
φ(r, E, t). (2.27)

While this approach is unable to capture high order transport effects, cancellation of error renders it an
acceptable approximation [26] and allows avoidance of storing two instances of the angular flux. Combining
this with implicit Euler, the time derivative term of eq. (1.1) becomes

1

v(E)

∂

∂t
ψ (r,Ω, E, tn+1) ≈ 1

4πv(E)

φ (r, E, tn+1)− φ (r, E, tn)

tn+1 − tn
. (2.28)

In addition to the time derivative term, solving the fully time dependent eqns. (1.1) requires solution of the
neutron precursor equations to complete the modifications to the steady-state case. Rather than solve these
explicitly, eq. (1.1b) is multiplied by the integrating factor e−λit and a second order approximation in time is
applied to the fission source (νΣfφ) that allows for the precursor equations to be solved analytically in terms
of the fission source from the current and two previous time steps. We will leave the precise mathematical
formulation in reference [57] unrepeated here, as the important aspect is simply that it depends on the
current fission source and other terms that can be considered a known external source at the current time
point (no dependency on the current flux). This allows the overall fixed-source solution methodology from
the steady-state calculation to be used for transient calculations as well by adding a transient source term,
Sntr, to the right hand side:

Ω · ∇ψn(r,Ω, E) + Σt(r, E)ψn(r,Ω, E) =

∫ ∞
0

∫
4π

Σs(r, E
′ → E,Ω ·Ω′)ψn(r,Ω′, E′)ldΩ′dE′

+
χ(r, E)

4π

∫ ∞
0

∫
4π

νΣf (r, E′)ψn(r,Ω′, E′)dΩ′dE′ + Sntr(r, E), (2.29)

Sntr(r, E) = A(E)φn(r, E) +B(r, E)

∫ ∞
0

∫
4π

νΣf (r, E′)ψn(r,Ω′, E′)dΩ′dE′ + C(r, E) (2.30)

where

A(E) = − 1

v(E)∆tn
, B(r, E) = χd(r, E) [ωn(r)− β(r)] ,

C(r, E) = χd(r, E)S̃n−1d (r) +
1

v(E)∆tn
φn−1(r, E). (2.31)

The time derivative appears as the sole term in A(E) and the second term in C(r, E) while the delayed
neutron precursor source appears in the first terms of B(r, E) and C(r, E). The second term of B(r, E) is
necessary to isolate all of the transient source modification into a single term, otherwise the fission source in
eq. (2.29) would have to be modified as well.
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MPACT typically employs the Transient Multilevel Method (TML) [57] for transient calculations, that
consists of solves on the transport, CMFD, and EPKE levels with successively finer time steps in a Predictor-
Corrector methodology. The focus of this work is on the transport step, since that provides the most
difficulties, though much of what will be discussed applies to the CMFD and EPKE levels as well.

2.3 Modification of MPACT for Solution by JFNK

We now revisit the JFNK solution methodology from Section 2.1.2 in order to adapt it for use with MPACT.
First let us summarize the basic MPACT SI algorithm:

Algorithm 1: MPACT Source Iteration

1 Choose φ0, k0

2 for n = 1... do
3 qn = Sφn−1 + 1

kn−1 Fφn−1

4 φn = Γ (L + R)
−1
qn

5 kn = kn−1 Fφn

Fφn−1

6 Exit if φn and kn are sufficiently converged

7 end

Now we must recast the fixed-point iteration into the form Gu = 0. First, we define the solution vector
u = [φ, ψIN , k]

T and the black box operator M to represent steps 3-5 from Algorithm 1 that produce the
solution [ φn, ψnIN , k

n]
T

=M
[
φn−1, ψn−1IN , kn−1

]T
and rearrange the definition of the fixed-point iteration

to define G = I−M. Hence, Newton’s method will be used to solve the problem:

(I−M)u = 0, u = [φ, ψIN , k]
T (2.32)

For each Newton (outer) iteration, the linear system

J(un−1)δun =Mun−1 − un−1 (2.33)

is solved using a Krylov method. One MPACT sweep is thus required for each outer iteration to determine
the right hand side of eq. (2.33). The Krylov (inner) iterations used to solve eq. (2.33) will require the
product J(un−1)v for arbitrary v, that can be estimated via finite difference as defined in eq. (2.4):

J(un−1)v ≈ 1

ε

[
G
(
un−1 + εv

)
−Gun−1

]
=

1

ε

[
Mun−1 −M

(
un−1 + εv

)]
+ v. (2.34)

SinceMun−1 has already been calculated to determine the right hand side of eq. (2.33), one MPACT sweep
is required to calculateM

(
un−1 + εv

)
for each Jacobain product required by the Krylov method. GMRES

[46] is employed as the Krylov method for the remainder of this thesis due to its simplicity and robustness.
For GMRES, only one Jacobian product, and hence one MPACT sweep, is required per Krylov iteration.
The resulting algorithm to reconfigure MPACT for JFNK with GMRES is shown in Algorithm 2.
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Algorithm 2: MPACT with JFNK

1 Choose u0 =
[
φ0, ψ0

IN , k
0
]T

2 for n = 1. . . do
3 MPACT sweep and eigenvalue update to produce u∗ =Mun−1

4 Guess δun0 = 0→ r0 = −Gun−1 = u∗ − un−1

5 Set δun1 = r0
‖r0‖ , β = ‖ro‖

6 for k=1. . . n-1 do
7 MPACT sweep and eigenvalue update to produceM

(
un−1 + εδunk

)
8 δunk+1 = J(un−1)δunk ≈ 1

ε

[
u∗ −M

(
un−1 + εδunk

)]
+ εδunk

9 Orthonormalize δunk+1, producing Qk+1 and Hk

10 Find yk such that rk = ‖Hkyk − βe1‖ is minimized
11 Check rk

r0
against tolerance

12 end
13 δun = Qkyk

14 Newton update un =
[
φn, ψnIN , k

(n)
]T

= un−1 + δun

15 Check if un converged

16 end
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Chapter 3

Adaptive Time Stepping

As detailed in Section 2.2.4, transient calculations typically take the form of a series of calculations at discrete
time points. While the simplest method to select these time points is to employ constant time steps, this
is not necessarily computationally efficient. When the reactor is evolving very quickly, shorter time steps
should be taken to ensure that error incurred by the time discretization is kept to a minimum. On the
other hand, when the reactor state is evolving slowly, taking shorter time steps is a waste of computational
resources with minimal gain in accuracy. Figure 3.1 shows the distribution of calculation points in time
with the vertical red lines for a typical power pulse with constant time steps (CTS) on the left and the
optimal selection of time points with ATS on the right. This figure demonstrates how greater accuracy can
be achieved with the same number of time points. Conversely, fewer time points with an optimal distribution
could be used to obtain the same level of accuracy as the CTS case.

Figure 3.1: Demonstration of how ATS can redistribute the time steps more efficiently
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3.1 Error Analysis of Time Discretization

Recently, Hackemack, Pounders and Boffie [22] [45] [6] have proposed a class of ATS schemes for the neutron
diffusion equation based on limiting the local truncation error of the backward difference (implicit Euler) time
discretization. The backward difference formulation is chosen specifically since it is used by most neutron
diffusion and transport codes, including MPACT, as detailed in Section 2.2.4. While these papers focus on
diffusion, the underlying methodology is equally applicable to the full transport equation, so we will present
the ideas here in terms of the angular flux instead of the scalar flux. Note that the derivation is specific to
the implicit Euler discretization of time, not the underlying physics being solved, so the scalar flux or total
power could be substituted for the angular flux without affecting the results, as would be appropriate for
the CMFD and EPKE levels of the MPACT transient calculation. The backward difference formula can be
derived by applying a Taylor series expansion in time to the angular flux [35]:

ψ(tn−1) =

∞∑
n=0

(tn−1 − tn)n

n!

∂nψ

∂tn
|tn

= ψ(tn)− (tn − tn−1)
∂ψ

∂t
|tn +

(tn − tn−1)2

2

∂2ψ

∂t2
|tn +O

(
(tn − tn−1)3

)
, (3.1)

where the spatial, direction, and energy dependence of ψ have been omitted for brevity. Letting ψn = ψ(tn)

and rearranging eq. (3.1) for the first derivative yields the backward difference formula

∂ψ

∂t
|tn =

ψn − ψn−1

tn − tn−1
+ τn, (3.2)

where the truncation error τn is proportional to the time step size hn = tn − tn−1 and the second derivative
of the angular flux in time:

τn =
hn
2

∂2ψ

∂t2
|tn +O

(
h2n
)
. (3.3)

From eq. (3.2), it is apparent that an effective ATS scheme should seek to limit the truncation error τn.
This requires calculation, or at least estimation, of the second derivative in time of the angular flux, per eq.
(3.3). This necessity will be addressed shortly, but first we will consider how the optimal time step size may
be calculated given the second derivative and a prescribed error tolerance ε. It should be noted that the
calculation of the second derivative and the calculation of the optimal time step size from some constraint
placed on (3.3) are independent of each other.

The simplest method to determine the time step size is to directly limit the truncation error via an absolute
error tolerance εdir.abs., such that τn ≤ εdir.abs.. Note that the second derivative has an inherent spatial, angular,
and energy dependence. Since time step size does not have such a dependence, this must be dealt with. The
most robust choice is to take the minimum time step size over all dimensions, which equates the maximum
second derivative (or second derivative over the angular flux for the relative criteria). The resulting absolute
direct criteria is:
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hn = 2εdir.abs.

∥∥∥∥∂2ψ∂t2 |tn
∥∥∥∥−1
∞
. (3.4)

References [22], [45], and [6] all go on to describe a relative error criterion that is not a direct extension of
this absolute error tolerance, but actually introduces time step integration as well. That criteria will also be
explored in this work, but will be denoted with the superscript int. to differentiate it from the direct criteria.
First, however, we will introduce a more basic relative error tolerance εdir.rel.:

hn = 2εdir.rel.

∥∥∥∥∂2ψ∂t2 |tn/ψn
∥∥∥∥−1
∞
. (3.5)

Another possible constraint is to limit the incurred error integrated over the time step instead of the trun-
cation error itself. By conservatively assuming that the truncation error is constant over the time step,
this approach requires limiting the quantity hnτn or hnτn/ψ(tn) for the absolute and relative constraints,
respectively. The resulting time step calculations are then:

hn =

√
2εint.abs.

∥∥∥∥∂2ψ∂t2 |tn
∥∥∥∥−1
∞

(3.6)

and

hn =

√
2εint.rel.

∥∥∥∥∂2ψ∂t2 |tn/ψn
∥∥∥∥−1
∞
. (3.7)

These are not the only constraints possible on the truncation error, but are the most natural choices. For
clarity, we will refer to the first two time step criteria given by eqns. (3.4) and (3.5) as absolute and relative
direct methods, respectively, and the latter set of time step criteria given by eqns. (3.6) and (3.7) as absolute
and relative integrated methods, respectively. The merits of these four criteria will be investigated in this
thesis, but the general expectations of the criteria relative to each other are summarized in Table 3.1.

Table 3.1: Qualitative expectations of the ATS criteria

Direct Integrated

Absolute more stringent error limit more stringent error limit
more reactive to evolution less reactive to evolution

Relative more adaptable error limit more adaptable error limit
more reactive to evolution less reactive to evolution

Additionally, we consider the impact of replacing the angular flux in eq. (3.4) through (3.7) with the scalar
flux and power. For the absolute criteria, using the scalar flux amounts to an isotropic approximation of the
second derivative which will require division by 4π. As in the treatment of the time derivative term for the
transient solution, eq. (2.27), we expect cancellation of error to improve the validity of this approximation
since the variation in the angular dependence of the solution is typically much slower than the spatial or
energy dependence [27]. For the relative criteria, the cancellation of error should be more obvious. Since the
angular flux does not have a simple approximate relation to the power like to the scalar flux, we employ the
following:
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1

ψ

∂ψ

∂t
≈ 1

P

dP

dt
→ ∂ψ

∂t
≈ φ

4πP

dP

dt
, (3.8)

which necessarily includes the isotropic approximation ψ ≈ φ/4π for the absolute criteria since the purpose
of the investigation is to avoid the angular flux in the first place. The validity of these approximations will
be investigated in Chapter 5 and 6.

3.1.1 Finite Difference Approach

We now turn to the task of calculating the second derivative. Since we are already relying on a finite
difference approach to handle the time dependence of the calculation in general, the most intuitive approach
for calculating the second derivative is to again employ a finite difference method. Indeed, this is the approach
taken by Hackemack, Pounders, and Boffie [22] [45] [6]. They investigate both a traditional 3-point stencil
in time:

∂2ψ

∂t2
|tn ≈ 2

hn−1ψ
n − (hn−1 + hn)ψn−1 + hnψ

n−2

hn−1hn(hn−1 + hn)
, (3.9)

referred to in reference [45] as the interpolated difference method, and an alternative 3-point stencil:

∂2ψ

∂t2
|tn ≈

hn−1ψ
n − (hn−1 + hn)ψn−1 + hnψ

n−2

hn−1hnhn
, (3.10)

referred to as the nested difference method. While the interpolated difference can be obtained in a straight-
forward manner from Taylor expansion, the nested difference method is obtained by dual application of
the backward difference operator. Pounders shows that for an idealized surrogate model, the interpolated
difference method can lead to oscillations in time step size, which results in a decrease in accuracy when the
calculated time step is too large and a decrease in computational efficiency when the time step is too small.
The nested difference method is proposed to resolve this issue. Indeed, the interpolated difference method is
shown to exhibit these oscillations in predicted time step size for a simple slab model without feedback, while
the nested difference method does not show oscillatory behavior. The nested difference method does, how-
ever, carry an additional grid-bias term that tends to zero as time step size tends to constant. Limits on the
growth rate of time steps may be required to ensure this term does not affect the accuracy of the calculations.

For the transport solution, this method raises an immediate and substantial concern– it requires storing the
angular flux from three time points. The MOC method is optimized to avoid storing even the angular flux
of the current time point to ensure reasonable memory requirements of the code, so storing three instances
of the angular flux is obviously undesirable. This concern may be circumvented by averaging the angular
flux over any of space, angle, and energy, including sub-domains. The viability and tradeoffs of using any of
these lower order approximations to estimate the second derivative via eqns. (3.9) or (3.10) are investigated
in Chapter 5.

3.1.2 α-Eigenvalue Eigenvalue Approach

An alternative approach, and the focus of this thesis, is to employ the α-eigenvalue eigenvalue for the
calculation of the second derivative in hopes that this might lead to more favorable (non-oscillatory) behavior.
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From the definition of the α-eigenvalue in eq. (1.23), it is tempting to simply define the second derivative of
the angular flux in time as

∂2ψ

∂t2
|tn ≈ α2

nψ
n. (3.11)

This, however, is a stretch of the α-eigenvalue beyond its physical representation. One only need consider
that since the fundamental α-eigenvalue lies on the real axis, eq. (3.11) can never yield a negative result
to realize that such a simple approach is unlikely to yield a meaningful estimation of the second derivative.
Instead, we perform a backward difference estimation of the first derivative to calculate the second derivative:

∂2ψ

∂t2
|tn ≈

1

∆tn

(
∂ψ

∂t
|tn −

∂ψ

∂t
|tn−1

)
=
αnψ

n − αn−1ψn−1

∆tn
. (3.12)

For the relative criteria

1

ψn
∂2ψ

∂t2
|tn ≈

αn − αn−1ψn−1/ψn

∆tn
. (3.13)

These approximations still utilize finite differencing, and therefore may not resolve the oscillations observed
by Pounders, et al. However, previous work with MPACT has shown the second derivative to be a par-
ticularly finicky quantity [27]. The α-eigenvalue approach only requires a first derivative finite difference
approximation, which we expect will be less prone to oscillations. Additionally, the quantities in eqs. (3.12)
and (3.13) still depend on the angular flux, though it does require one less instance of it than the finite
difference method. For both the finite difference and α methods of estimating the second derivative, we will
consider the impact of substituting an isotropic approximation for the time derivative(s) of angular flux.
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Chapter 4

α-eigenvalue Calculations with MPACT

Before utilizing the α-eigenvalue for ATS, MPACT must be modified to enable its calculation. Since MPACT
is a source iteration solver by construct, the most obvious choice would be direct modification to calculate
α instead of k. However, we recall from our initial introduction of the α-eigenvalue in Section 1.2.2 that
the fundamental α-eigenvalue is not necessarily the largest magnitude eigenvalue that is located by SI. Since
there is an a priori lower bound on the eigenspectrum, a shift could be applied to ensure that the funda-
mental eigenvalue is the largest in magnitude [47]. However, convergence of SI is generally proportional to
the dominance ratio, or ratio of the largest eigenvalue to the next largest eigenvalue [17]. Since the lower
limit of the α point eigenspecturm is vΣt and neutron velocities extend into the range of 1E9 cm/s, such a
shift would have detrimental effects on the convergence properties of SI, even with acceleration.

A pivot to a fundamentally different methodology such as Arnoldi’s method has some appeal. Unfortunately,
the operator associated with the α-eigenvalue is V [(S + F)− (L + R)]. From Section 2.2.2, we recall that
a foundation of MPACT is its avoidance of explicitly formulating the leakage operator. In lieu of a direct
calculation of α, we turn to k−α iteration [13] [43] [50]. In this basic methodology, a k-eigenvalue calculation
is performed for some guess of α; the estimate of α is updated from the result; and the process is repeated
until the calculation yields k = 1. This forces the α-eigenvalue to the fundamental mode that correlates with
the fundamental k-eigenvalue, thereby assuaging our spectral concerns.

To implement the k − α iteration in MPACT, the nominal MPACT k-eigenvalue solver is wrapped in an
outer iteration that estimates α and repeats the k-eigenvalue calculation until α is sufficiently converged
such that k = 1.0. For each guess of α, the total (and therefore transport) cross-sections are modified by the
addition of α/v and the modified fission spectrum χα is calculated as necessary. The natural choice for an
initial guess is α0 = 0, corresponding to the critical case k = 1.

The three major choices for this algorithm are how often to update the α-eigenvalue, how to treat the flux
after each α-eigenvalue update, and the convergence criteria. Before we can consider any of these, which we
shall in the ensuing sections of this chapter, we must first establish how the α-eigenvalue is to be updated
and how convergence is to be checked. First, let us consider the update. For the second α iteration and
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beyond, a simple linear relationship is assumed between k and α and the value of α that would yield k = 1.0

is interpolated or extrapolated from this relation. After the first α iteration, however, this relation cannot be
established, so a general relation is desired. For this we turn to the point kinetics equation. By performing
the point kinetics derivations explicitly on the α-eigenvalue equation, the PKE equation for the amplitude
function, eq. (1.31a) becomes:

αp(t) =
ρ(t)− βeff (t)

Λ(t)
p(t) +

1

Λ(0)

∑
i

λiCi(t) (4.1)

We wish to obtain a simple expression that is not dependent on the delayed neutron precursor density since
these are not calculated during the steady-state calculation. One option is to simply neglect the contribution
of the delayed neutrons, resulting in a simple estimate for the α-eigenvalue from a single k iteration:

α =
ρ− βeff

Λ
, (4.2)

where ρ = (k− 1)/k. Alternatively, this relation can be obtained directly by performing the PKE derivation
on the asymptotic α-eigenvalue eq. (1.28). We note that for a critical system (k = 1) eq. (4.2) yields
α = −β/Λ, that does not fit with our basic conception of the α-eigenvalue. For large α, the precursor
balance equation is dominated by the source term (βiFψ >> λCi), and hence the time constant of the
precursor equations approaches that of the neutron balance equation. This is precisely the assumption used
in deriving eq. (1.28), so we expect eq. (4.2) to provide an approximation to the asymptotic eigenvalue, αa.
An alternative estimate suggested by Perdu [43] and further explored by Singh [50] is:

α =
ρ

Λ
. (4.3)

Eq. (4.3) can be obtained by applying the PKE derivation to the prompt α-eigenvalue eq. (1.26), and hence
we expect that it will provide a good approximation to αp. Note that αp does fulfill our intuition that k = 1

corresponds to α = 0. We will explore both variations in our calculation of the α-eigenvalues:

1. A “asymptotic α-eigenvalue”, αa, that includes the α adjustment to the fission spectrum

2. A “prompt α-eigenvalue”, αp, that does not include an adjustment to the fission spectrum

We expect that αa should generally be consistent with eq. (4.2), while αp will be better described by eq. (4.3).

The other major concern is how to check if α is sufficiently converged. The fundamental α-eigenvalue exists
in a much larger range than the k-eigenvalue, necessitating the use of relative convergence criteria. However,
if α is close to zero, relative convergence criteria can result in severely over-solving the problem. Thus,
both relative and and absolute errors are calculated from successive calculations of α, and the minimum is
compared to the convergence criteria:

εα ≥ min

(∣∣∣∣αn − αn−1αn

∣∣∣∣ , |αn − αn−1|) . (4.4)

For |α| ≥ 1, relative errors will be used, while for |α| < 1, absolute errors will be used, ensuring that α is
converged to a reasonable level regardless of its magnitude. A value of 2E-3 for the α-eigenvalue convergence
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criteria provides a good balance between accuracy and computational efficiency

Our initial investigations will utilize a 2D single fuel pin so that we can easily compare the fine mesh flux.
The pin, shown in Figure 4.1, consists of a UO2 fuel pin with a 0.412 cm radius and zirconium cladding
with a 0.476 cm outer radius surrounded by pure water moderator in a square pin with pitch 1.265 cm.
Reflective boundary conditions are used on all sides, representing an infinite array of the pins. There are 6
radial divisions (3 in the fuel, 1 in the clad, 2 in the moderator) and 8 azimuthal divisions. Five different
enrichments, that are detailed in Table 4.1, are analyzed to cover various levels of criticality. MPACT is run
with CMFD enabled.

Figure 4.1: MPACT Single Pin Model

Table 4.1: Single Pin Steady State α Calculation Test Cases

Label pin00 pin01 pin02 pin03 pin04
Enrichemnt (wt%) 1.042 1.070 1.074 1.077 1.106

k 0.990 0.999 1.000 1.001 1.010
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4.1 Basic k − α Iteration in MPACT

Naturally, the most stable k−α algorithm will allow k and the associated eigenvector to converge fully before
updating α, so we begin our calculations there. Algorithm 3 shows the overall structure of such an iterative
scheme.

Algorithm 3: k − α Iteration with fully converged k with Flux Reset

1 Choose α0 = 0

2 while α not converged do
3 Modify Σt with α/v
4 if calculating αa then
5 Calculate χα
6 end
7 Choose k0 = 1, φ(r, E) = φ0

8 while k and φ not converged do
9 MPACT SI iteration

10 end
11 Update α

12 end

For each case detailed in Table 4.1, both the αa and αp eigenvalues are calculated by Algorithm 3 and the
results are shown in Table 4.2. Both eigenvalues are compared to the expected relations in eqs. (4.2) and
(4.3), respectively. The results indicate that the majority of the computational burden lies in converging the
eigenvector since each α iteration requires the same number of k iterations. Figure 4.2 further demonstrates
this point with the pin04 case, showing the evolution of both the αp eigenvalue and the k-eigenvalue in each
α iteration.

Additionally, Tables 4.4 and 4.5 present a comparison of the average and maximum relative differences be-
tween the eigenvectors (fine mesh scalar flux) associated with the k and α-eigenvalues. Figure 4.3 compares
the radial dependence of the k and αp fluxes for pin04 for energy groups 2 and 8 (slowing down and thermal
regions, respectively). The result clearly indicate that the k eigenvector is a close approximation to the
α-eigenvector.

Finally, we note the differences between the “asymptotic” and “prompt” α-eigenvalues. Both eigenvalues are
well-predicted by their respective relations given in eqs. eqs. (4.2) and (4.3). Generally, the αp eigenvector is
a bit closer to the k-eigenvector than the αa eigenvector. This result is expected since the αa eigenvalue uses
an adjusted delayed neutron spectrum while the αp eigenvalue uses the same spectrum as the k eigenvalue
problem, and bears out in the number of iterations required to achieve convergence. The critical case also
provides an interesting result for the asymptotic α-eigenvalue, requiring two extra α iterations to converge
as the algorithm seems to be converging on the prompt eigenvalue for one iteration before correcting course.
This seems to suggest that it might be more appropriate to use α0 = −β/Λ as the initial guess rather than
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α0 = 0 for the asymptotic α-eigenvalue.

Table 4.2: Results of k − α Iteration with Algorithm 3 for Steady State Pins for αa

Label pin00 pin01 pin02 pin03 pin04
k 0.990 0.999 1.000 1.001 1.010
αa -308.42 -150.04 -132.17 -114.27 53.98

Predicted αa -321.13 -152.61 -134.07 -115.57 49.28
No. of α Iterations 4 4 6 4 4

Total No. of k Iterations 60 60 90 60 60

Table 4.3: Results of k − α Iteration with Algorithm 3 for Steady State Pins for αp

Label pin00 pin01 pin02 pin03 pin04
k 0.990 0.999 1.000 1.001 1.010
αp -180.25 -18.33 0.00 18.40 187.12

Predicted αp -187.06 -18.54 0.00 18.50 183.35
No. of α Iterations 3 3 1 3 3

Total No. of k Iterations 45 45 15 45 45

Figure 4.2: Evolution of k and αp eigenvalues for k − α Iteration with Algorithm 3 for pin04

Table 4.4: αa Flux Comparison for k − α Iteration with Algorithm 3 for Steady State Pins

Label pin00 pin01 pin02 pin03 pin04
k 0.990 0.999 1.000 1.001 1.010
αa -308.42 -150.04 -132.17 -114.27 53.98

Avg. Rel. Diff. φ 0.98% 0.92% 0.96% 0.99% 1.29%
Max. Rel. Diff. φ 1.28% 1.30% 1.31% 1.31% 1.66%
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Table 4.5: αp Flux Comparison for k − α Iteration with Algorithm 3 for Steady State Pins

Label pin00 pin01 pin02 pin03 pin04
k 0.990 0.999 1.000 1.001 1.010
αp -180.25 -18.33 0.00 18.40 187.12

Avg. Rel. Diff. φ 0.53% 0.49% 0.00% 0.56% 0.86%
Max. Rel. Diff. φ 0.76% 0.52% 0.00% 0.65% 1.78%

Figure 4.3: Radial Comparison of k and αp Eigenvectors fork − α Iteration with Algorithm 3 for pin04
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4.2 Eigenvector Treatment for k − α Iteration

As we have seen in Section 4.1, much of the computational expense of the k calculation is associated with
converging the eigenvector (flux). This would suggest that great improvement to the computational effi-
ciency of Algorithm 3 could be obtained with a simple modification– do not reset φ(r, E) at the beginning
of each iteration. As discussed in Section 1.2.2, the eigenvectors associated with the fundamental k and
α-eigenvalues are not generally equal (except in the critical case), but they may be good approximations to
each other as we have seen in the previous section, and certainly a better approximation than a flat guess.
Thus, we might expect the α iterations beyond the first to converge much more quickly by reusing the flux
from the previous k calculation, as shown in Algorithm 4.

Algorithm 4: k − α Iteration with fully converged k with Flux Reuse

1 Choose α0 = 0, φ(r, E) = φ0

2 while α not converged do
3 Modify Σt with α/v
4 if calculating αa then
5 Calculate χα
6 end
7 Choose k0 = 1

8 while k and φ not converged do
9 MPACT SI iteration

10 end
11 Update α

12 end

Once again, each of the cases in Table 4.1 are run, this time with Algorithm 4 and the results are shown in
Tables 4.6 and 4.7. The first α iteration of Algorithms 3 and 4 are identical, as they start with an initial
guess of α0 = 0, k0 = 1, φ(r, E) = φ0. However, subsequent α iterations converge much more quickly since
the flux begins from a close approximation to the eigenvector, as expected. Figure 4.4 demonstrates this
point nicely for pin04 αp when compared to Figure 4.2.

As for the initial k − α implementation, we would like to characterize the difference between the k- and
α-eigenvectors. Tables 4.8 and 4.9 present a comparison of the average and maximum relative differences
between the eigenvectors. We would expect the k- and α-eigenvectors to show greater agreement than in
the case where the flux is reset for each α iteration since the convergence is purely on the eigenvalue in the
former case. This is true for the cases near critical, but actually the α-eigenvectors calculated with the reused
flux show greater deviation from the k-eigenvectors further from critical. Note that this does not imply the
expected eigenvector is different between the methods, only the calculation result. Figure 4.5 compares the
radial dependence of the k and α fluxes for pin04 for energy groups 2 and 8 (slowing down and thermal
regions, respectively).
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In addition to a comparison of the k- and α-eigenvectors, the α-eigenvectors computed by Algorithms 3 and
4 are compared in Tables 4.10 and 4.11 and Figure 4.6. The results indicate that Algorithm 4 can be used
to calculate the α-eigenvalues much more efficiently than Algorithm 3 with little impact on the final result.
This has very important implications when we attempt to calculate the α-eigenvalue during transients, since
we will already have a good estimate of the eigenvector from the most recent time step calculation.

Table 4.6: Results of k − α Iteration with Algorithm 4 for Steady State Pins for αa

Label pin00 pin01 pin02 pin03 pin04
k 0.990 0.999 1.000 1.001 1.010
αa -308.50 -150.11 -132.21 -114.33 53.92

Predicted αa -321.13 -152.61 -134.07 -115.57 49.28
No. of α Iterations 4 4 6 4 5

Total No. of k Iterations 21 22 27 22 22

Table 4.7: Results of k − α Iteration with Algorithm 4 for Steady State Pins for αp

Label pin00 pin01 pin02 pin03 pin04
k 0.990 0.999 1.000 1.001 1.010
αp -180.31 -18.39 0.00 18.35 187.06

Predicted αp -187.06 -18.54 0.00 18.50 183.35
No. of α Iterations 3 4 1 3 3

Total No. of k Iterations 20 20 15 18 20

Figure 4.4: Evolution of k and αp eigenvalues for k − α Iteration with Algorithm 4 for pin04
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Table 4.8: αa Flux Comparison for k − α Iteration with Algorithm 4 for Steady State Pins

Label pin00 pin01 pin02 pin03 pin04
k 0.990 0.999 1.000 1.001 1.010
αa -308.50 -150.11 -132.21 -114.33 53.92

Avg. Rel. Diff. φ 1.20% 0.60% 0.65% 0.39% 0.31%
Max. Rel. Diff. φ 1.74% 0.96% 1.00% 0.63% 1.00%

Table 4.9: αp Flux Comparison for k − α Iteration with Algorithm 4 for Steady State Pins

Label pin00 pin01 pin02 pin03 pin04
k 0.990 0.999 1.000 1.001 1.010
αp -180.31 -18.39 0.00 18.35 187.06

Avg. Rel. Diff. φ 0.68% 0.07% 0.00% 0.07% 0.70%
Max. Rel. Diff. φ 0.88% 0.10% 0.00% 0.10% 0.93%

Figure 4.5: Radial Comparison of k and αp Eigenvectors for k − α Iteration with Algorithm 4 for pin04

Table 4.10: Comparison of Flux for Algorithms 3 and 4 for αp

Label pin00 pin01 pin02 pin03 pin04

αa
Algorithm 3 -308.42 -150.04 -132.17 -114.27 53.98
Algorithm 4 -308.50 -150.11 -132.21 -114.33 53.92

Avg. Rel. Diff. φ 0.47% 0.31% 0.31% 0.69% 1.58%
Max. Rel. Diff. φ 0.48% 0.33% 0.33% 0.71% 1.59%

Table 4.11: Comparison of flux for Algorithms 3 and 4 for αp

Label pin00 pin01 pin02 pin03 pin04

αp
Algorithm 3 -180.25 -18.33 0.00 18.40 187.12
Algorithm 4 -180.31 -18.39 0.00 18.35 187.06

Avg. Rel. Diff. φ 0.38% 0.43% 0.00% 0.62% 1.46%
Max. Rel. Diff. φ 0.39% 0.45% 0.00% 0.63% 1.48%
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Figure 4.6: Radial comparison of αp eigenvectors for fully converged k − α Iteration with Algorithm 3 for
pin04
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4.3 Frequency of α Update

One of the fundamental questions for the k − α iteration scheme is when to update α. The update can be
performed after each k update, only upon a fully converged k, or anywhere in between (e.g. after every nth
iteration or after k has met some partial convergence criteria). The flux would necessarily be reused from step
to step. Such an algorithm was implemented in MPACT, but, unsurprisingly, proved to be unstable since k
does not converge monotonically1. When it did converge, the results were comparable to those generated by
Algorithms 3 and 4, but were less efficient than the results presented in the previous section.

4.4 α-Eigenvalue Calculation with JFNK

As an alternative to the SI methodology, MPACT was modified to operate with a JFNK solver, as in Algo-
rithm 2 in Section 2.3. For a simple comparison, MPACT was run with SI only (no CMFD acceleration). The
overall k−α iteration strategy is unmodified except now the k solve is accomplished via JFNK. The results
from the prompt α-eigenvalue are presented in Tables 4.12 and 4.13 for Algorithms 3 and 4, respecitvely. For
comparison’s sake, the total number of sweeps is simply the sum of the Newton iterations and the Krylov
iterations. To calculate k with pure SI requires 230-240 iterations, so the fact that we are able to complete
the k − α iteration for less than that (at least in the case of flux reuse) is a testament to the power of JNK.

While the ability to modify MPACT to use JFNK is a fascinating topic in its own right, this solution
methodology will be abandoned going forward for three primary reasons: lack of a suitable preconditioner,
degradation of performance when paired with CMFD2, and untenable storage demands. These three items
are really all tied together. Preconditioning is paramount for efficient Krylov solves to reduce the storage
demands by solving the linear system in fewer Krylov iterations. It was hoped that CMFD could be utilized
as a preconditioner. Unfortunately, this would require CMFD to act directly on the Newton correction δu
rather than the perturbed solution u+ εv. By acting on a vector that does not approximate the scalar flux
(and in fact is all but guaranteed to have negative components), the closures D̃ and D̂ break down.

Table 4.12: Results of JFNK k − α Iteration with Algorithm 3 for Steady State Pins for αp

Label pin00 pin01 pin02 pin03 pin04
k 0.990 0.999 1.000 1.001 1.010

αp (SI) -180.25 -18.33 0.00 18.40 187.12
αp (JFNK) -180.31 -18.39 -0.06 18.34 187.06

No. of α Iterations 3 3 3 3 3
No. of Newton Iterations 9 9 9 9 9
No. of Krylov Iterations 282 282 282 282 282

1For an illustration of this, refer to Figure 4.2 and note the oscillatory convergence of the k-eigenvalue. When the α eigenvalue
is updated after each k iteration, these oscillations have been observed to lead to divergence in some calculations

2When CMFD is combined with the transport operator for the definition of an MPACT sweep, there is speed up with respect
to JFNK without the CMFD operator, but the nominal CMFD-accelerated SI algorithm in MPACT is more efficient than the
JFNK algorithm.
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Table 4.13: Results of JFNK k − α Iteration with Algorithm 4 for Steady State Pins for αp

Label pin00 pin01 pin02 pin03 pin04
k 0.990 0.999 1.000 1.001 1.010

αp (SI) -180.25 -18.33 0.00 18.40 187.12
αp (JFNK) -180.31 -18.39 -0.06 18.34 187.06

No. of α Iterations 3 3 3 3 3
No. of Newton Iterations 7 6 5 6 7
No. of Krylov Iterations 212 181 151 181 212

4.5 Summary of Steady State k − α Calculation Investigations

MPACT is capable of calculating both the asymptotic and prompt α-eigenvalues through k − α iteration.
The calculated eigenvalues show good agreement with the values predicted by PKE, giving hope that we
may be able to obtain a useful approximation to the second derivative for ATS purposes directly from the
PKE. Another important result of these studies is demonstration of the similarity of the eigenvectors asso-
ciated with the k and α-eigenvalues, as least for the basic single pin test case examined. While there is little
mathematical basis to assume such similarity (except in the critical case), the eigenvectors show very little
divergence in practice. This has a very important implication in that it’s generally much more efficient to
calculate an eigenvalue if we already possess a good approximation to the eigenvector. Since the ultimate
goal of the α calculation is to efficiently predict a desirable time step size, it may in fact be more prudent to
simply use a relation derived from PKE and accept the small error incurred rather than explicitly calculate
the α-eigenvalue.

We have also demonstrated that it is also possible to modify MPACT to employ a JFNK algorithm in place
of the nominal SI solution algorithm. This is independent of the application to calculation of the α eigenvalue
and is an extraordinarily interesting topic in its own right. However, it presents numerous challenges that
are better addressed independently from ATS, so it will not be pursued further in this dissertation.
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Chapter 5

ATS Calculations with Finite
Differencing in MPACT

MPACT was initially developed for transient with a constant time step. Later a variable time step capability
was added (by the author). For the work in this thesis, MPACT was modified to allow time steps to be
calculated as the transient progresses, rather than a priori.

Regardless of the ATS method, the transient calculation begins with a steady state calculation to determine
the initial conditions. Transients are assumed to start from a true steady state configuration, so the steady
state k is used to modify the fission source throughout the transient. Since there is no time dependent data
available from the steady state position, the first two time steps must be taken with a set value that was
chosen as half of the nominal CTS time step size. User experience has shown that this value is typically
more than sufficient to produce a well-converged solution with constant time steps, but that it is smaller
than the typical time step size needed to obtain an accurate solution. This provides a good balance between
the two major concerns with the initial time step size: 1) minimizing the error in the initial time steps since
this has a tendency to propagate and even amplify through the transient 2) not over-solving the beginning
of the transient such that the computational efficiency of the ATS schemes are dominated by this.

After the second transient step is completed, the beginning of each subsequent step begins with a time step
determination. The second derivative is estimated by the finite difference method. This is a straightforward
application of eqns. (3.9) or (3.10) with stored data. Once an estimate for the second derivative (relative or
absolute) is obtained, eqns. (3.4) through (3.7) are then used to determine the ensuing time step size. The
transient calculation proceeds unmolested through the time step.

The initial investigations will again utilize the single pin configuration described in Section 4.1 with an en-
richment of 1.09%. This corresponds to a very nearly critical configuration (k = 1.0000003). The transient is
driven by a fictitious ramp change in the enrichment over 50 ms and run to tend = 200 ms. Transients with
and without feedback were considered. MPACT was run in serial with CMFD acceleration, but with the
transient multilevel calculation disabled to provide a simpler comparison. The 8-group library was employed
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with 16 azimuthal angles with Chebyshev quadrature. A reference solution was generated with a constant
time step size of 0.2 ms and treated as the exact solution for purposes of error quantification.

MPACT was modified to calculate and store the angular flux of the three most recent time steps in order to
carry out the finite difference approximation. This requires an additional 2 arithmetic operation in the inner-
most loop of the MOC solver since the fine mesh angular flux is not typically calculated. In order to quantify
performance, we require a measure of both computational efficiency and accuracy. For the computational
performance, we will compare run times. While individual run times are not necessarily a good measure of
computational efficiency since they can be adversely affected by the state of the processor(s), the sensitivity
studies provide us a large sample of data points to draw general conclusions from. For a measure of accuracy,
the power curves generated by a given set of modeling choices will be compared to a reference solution
generated with a very fine time step (in this case 0.2 ms). For the superprompt transients, the peak power
and time to peak power will be directly compared to the reference solution. For both the subprompt and
superprompt transients, we will compare the entire power curve to the reference solution with the maximum
relative difference, the root mean square (RMS) relative difference, and the integral of the difference:

εrel.MAX = max
t

∣∣∣∣P (t)− Pref.(t)
Pref.(t)

∣∣∣∣ , (5.1a)

εrel.RMS =

√(
P (t)− Pref.(t)

Pref.(t)

)2

(5.1b)

εrel.INT =

∫ tend

0

∣∣∣∣P (t)− Pref.(t)
Pref.(t)

∣∣∣∣ dt. (5.1c)

Since the solutions are discrete, rather than continuous, the evaluation of eqs. (5.1) require interpolation.
For the maximum and RMS quantification, the reference solution is interpolated onto the grid of the solution
to be quantified, but for the integral quantification, the solution to be quantified is interpolated on the grid
of the reference solution so that valuable data is not lost.

We begin by analyzing the various choices available for using the second derivative for optimal time step
size determination. The parameters for consideration are the criteria used for time step determination,
the tolerance used with the criteria, how the second derivative is calculated, and the limit on how much
consecutive steps may be increased or decreased by, referred to as the growth limit. In addition, we will
compare performance of the two finite difference schemes proposed by Hackemack [22].

5.1 Finite Difference Results without Feedback

We begin with the simpler case of no feedback since this allows us to properly evaluate the ATS method
on the merits of neutron transport only, from which the methodology was developed. For the case of
no feedback, we will analyze a subprompt reactivity insertion of $0.56, which corresponds to increasing the
enrichment to 1.10%. This transient has been selected since, in general, positive reactivity insertions are more
challenging/interesting transients than negative reactivity insertions. While the limiting RIAs for reactor
analysis are typically superprompt transients, without feedback this corresponds to a purely exponential
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increase in power that deviates from any physical significance very quickly. A subprompt transient, however,
maintains physical significance for low power excursions since the temperature change may be small enough
that feedback is negligible anyway.

5.1.1 ATS Criteria for Finite Difference Method without Feedback

We begin by studying the four different criteria defined in eqs. (3.4) through (3.7). For each criteria, a
range of tolerances covering 3 orders of magnitude were analyzed. The initial time step size was selected
to be 2.5 ms to ensure that unnecessary error is not accumulated at the beginning of the transient. From
there, the ATS scheme was allowed to dictate the time step size within the range of 0.5 ms to 20 ms. Con-
secutive time steps were also limited to a growth factor of 100%. The resulting power curves are shown
in Appendix A Figures A.1, A.2, A.3, A.4 for the absolute direct, relative direct, absolute integrated, and
relative integrated criteria, respectively. Quantification of the errors with respect to the reference solution
are also shown in Appendix A Tables A.1, A.2, A.3, and A.4 as well. For comparison, a 5 ms constant time
step case is also shown in the tables and figures. This is meant to provide a reference point for what we
might expect from a reasonable simulation that balances the need for accuracy and computational efficiency.
In order to compare the criteria directly, the tolerances are adjusted for each criterion until a result com-
parable to the 5 ms CTS case is obtained. The results are plotted in Figure 5.1 and summarized in Table 5.1.

For all criteria types, as the tolerance is tightened, the number of time steps increases and the power curve
approaches the reference solution. This can be observed qualitatively in the figures and quantitatively in the
tables. As general observations, the direct criteria are more sensitive to the tolerance than the integrated
criteria. This sensitivity is owed to the direct criteria’s proportionality to the tolerance, while the integrated
criteria is proportional to the square root of the tolerance. The inverse of the second derivative shares this
same relation to the criteria. However, the results do clearly indicate whether this sensitivity is advantageous
or not yet.

The finite difference ATS scheme is able to produce comparable accuracy to the 5 ms CTS case with about
35% fewer time steps. However, there is a roughly 15% increase in the average calculation time for each time
step (RT ts). This increase is owed mostly to the additional operations needed to calculate the angular flux,
as we shall see shortly. Overall, we see a 20-25% improvement in run time with no adversarial effects on the
solution. The timesteps used for each criteria are plotted in Figure 5.2 to show how the time step size evolves
through the transient. Figure 5.3 also shows the maximum second derivative of the angular flux to confirm
our intuition of the time step behavior. Between about 25 and 50 ms, the growth rate of the angular flux
(and power) is reasonably linear, leading to an increase in time step size, before an inflection point between
the prompt jump and the asymptotic solution causes the time step size to reduce. From Figure 5.3, we note
that this is not a traditional inflection point corresponding to a second derivative of zero. It actually marks
a discontinuity in the second derivative as the ramp perturbation ends where the second derivative flips from
positive to negative. As the solution converges to the asymptotic solution, the growth rate is nearly linear,
allowing for very large time steps with little loss of accuracy. The final fluctuation in time step size is to
ensure the transient simulation ends at the desired time and does so without violating the minimum time
step size or growth limit. We do note the oscillatory behavior described by Hackemack and Pounders, but
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we will address this further in Section 5.1.2.

Figure 5.1: Single Pin Subprompt Power Curves for ATS with Interpolated Finite Difference Method Using
the Angular Flux for Each Criteria Type, Time Steps Shown in Parentheses

Table 5.1: Single Pin Subprompt Error Comparison for ATS with Interpolated Finite Difference Method
Using the Angular Flux for Each Criteria Type

Crit. Type Tol.
No. of
Time
Steps

εrel.MAX (%) εrel.RMS (%) εrel.INT (%) RT ts (s)

ref. - 1000 - - - 0.024
CTS - 40 1.22 0.52 0.08 0.025

Absolute
Direct 8.0e-01 25 1.41 0.62 0.09 0.030

Relative
Direct 9.0e-01 27 1.14 0.54 0.09 0.029

Absolute
Integrated 4.0e-03 27 1.12 0.58 0.09 0.029

Relative
Integrated 5.0e-03 26 1.07 0.58 0.09 0.029
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Figure 5.2: Single Pin Subprompt Time Step Size for ATS with Interpolated Finite Difference Method Using
the Angular Flux for Each Criteria Type

Figure 5.3: Single Pin Subprompt Transient Power and Second Derivative of the Angular Flux
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5.1.2 Finite Difference Second Derivative Estimation

Having confirmed the oscillatory behavior observed by Hackemack and Pounders [22] [45], we immediately
turn to their proposed solution– replacing the so-called interpolated finite difference scheme, eq. (3.9) with
the nested finite difference scheme, eq. (3.10). The results presented in Figures 5.1 and 5.2 and Table 5.1 are
reproduced in Figures 5.4 and 5.5 and Table 5.2 with the nested difference scheme in place of the interpolated
difference scheme. As the figure shows, the nested difference scheme does indeed eliminate the oscillations1.

Figure 5.4: Single Pin Subprompt Power Curves for ATS with Nested Finite Difference Method Using the
Angular Flux for Each Criteria Type, Time Steps Shown in Parentheses

1The variation in the time step size around 50 ms is due to the end of the reactivity insertion ramp where the time step size
must be adjusted to end at the desired time without violating the minimum, maximum, or growth limits. In the same vein,
the time step size must be adjusted to exactly reach the end time of the transient causing some ugly, but necessary variation
in the time step size for the purely practical requirement of ending the transient at the desired time without violating the time
step limits. This artifact could be resolved by allowing the transient to run to an end time in a given range.
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Table 5.2: Single Pin Subprompt Error Comparison for ATS with Nested Finite Difference Method Using
the Angular Flux for Each Criteria Type

Crit. Type Tol.
No. of
Time
Steps

εrel.MAX (%) εrel.RMS (%) εrel.INT (%) RT ts (s)

ref. - 1000 - - - 0.024
CTS - 40 1.22 0.52 0.08 0.025

Absolute
Direct 8.0e-01 25 1.40 0.66 0.10 0.028

Relative
Direct 9.0e-01 27 1.11 0.56 0.10 0.028

Absolute
Integrated 4.0e-03 27 1.14 0.59 0.09 0.028

Relative
Integrated 5.0e-03 26 1.07 0.59 0.09 0.028

Figure 5.5: Single Pin Subprompt Time Step Size for ATS with Nested Finite Difference Method Using the
Angular Flux for Each Criteria Type
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5.1.3 Finite Difference Flux Choice

While the angular flux is the “correct” quantity to track for ATS at the transport level, we will consider using
the scalar flux in its place. As discussed in Section 2.2.4, the scalar flux is already used in MPACT as a
stand-in for the angular flux in the time derivative term. It has been shown that cancellation of error makes
the isotropic approximation of time derivative(s) of the angular flux more reasonable than a general isotropic
approximation of the angular flux [27], hence we might expect the same behavior in calculating the second
derivative for ATS. This offers both computational and memory savings since the angular flux need not be
calculated and stored. No modifications are required to the transport solver and since the scalar flux from
the previous time point is already stored for calculating the time derivative, only one additional instance of
the scalar flux need be stored for the finite difference scheme. For the absolute criteria, the second derivative
is divided by 4π to maintain consistency with the angular flux calculation; for the relative criteria, this is
unnecessary. The results presented in Figures 5.1 and 5.2 and Table 5.1 are reproduced in Figures 5.6 and
5.7 and Table 5.3 with the scalar flux used to estimate the second derivative rather than the angular flux.
The results for the scalar flux in Figures 5.6 and 5.7 and Table 5.3 are nearly identical to the results for
the angular flux in Figures 5.1 and 5.2 and Table 5.1, indicating that the scalar flux is indeed a suitable
substitute for the angular flux for ATS determination. Additionally, the average run time for a time step is
reduced to where it is not significantly distinguishable from the CTS case.

Figure 5.6: Single Pin Subprompt Power Curves for ATS with Interpolated Finite Difference Method Using
the Scalar Flux for Each Criteria Type, Time Steps Shown in Parentheses
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Table 5.3: Single Pin Subprompt Error Comparison for ATS with Interpolated Finite Difference Method
Using the Scalar Flux for Each Criteria Type

Crit. Type Tol.
No. of
Time
Steps

εrel.MAX (%) εrel.RMS (%) εrel.INT (%) RT ts (s)

ref. - 1000 - - - 0.024
CTS - 40 1.22 0.52 0.08 0.025

Absolute
Direct 8.0e-01 25 1.33 0.64 0.10 0.026

Relative
Direct 9.0e-01 27 1.10 0.56 0.10 0.026

Absolute
Integrated 4.0e-03 27 1.17 0.60 0.09 0.026

Relative
Integrated 5.0e-03 26 1.05 0.59 0.09 0.025

Figure 5.7: Single Pin Subprompt Time Step Size for ATS with Interpolated Finite Difference Method Using
the Scalar Flux for Each Criteria Type
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We will take this one step further and consider using the power as a stand-in for the angular flux, as described
in eq. (3.8). For this simple pin cell case, the logarithmic second derivative of the power agrees well enough
with the angular flux that we would expect it to yield good results. This is indeed the case, as we once again
reproduce Figure 5.1 and 5.2 and Table 5.1 using the second derivative of the power instead of the angular
flux in Figures 5.8 and 5.9 and Table 5.4. As expected, the results are in excellent agreement.

Figure 5.8: Single Pin Subprompt Power Curves for ATS with Interpolated Finite Difference Method Using
the Power for Each Criteria Type, Time Steps Shown in Parentheses

Table 5.4: Single Pin Subprompt Error Comparison for ATS with Interpolated Finite Difference Method
Using the Power for Each Criteria Type

Crit. Type Tol.
No. of
Time
Steps

εrel.MAX (%) εrel.RMS (%) εrel.INT (%) RT ts (s)

ref. - 1000 - - - 0.024
CTS - 40 1.22 0.52 0.08 0.025

Absolute
Direct 8.0e-01 24 1.45 0.66 0.10 0.026

Relative
Direct 9.0e-01 26 1.10 0.57 0.10 0.025

Absolute
Integrated 4.0e-03 27 1.16 0.60 0.09 0.025

Relative
Integrated 5.0e-03 26 1.05 0.59 0.09 0.026
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Figure 5.9: Single Pin Subprompt Time Step Size for ATS with Interpolated Finite Difference Method Using
the Power for Each Criteria Type
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5.2 Finite Difference Results with Feedback

We now introduce feedback to the model. For the proceeding studies, we induce a superprompt transient by
increasing the enrichment to 1.11% This corresponds to a reactivity insertion of $1.23, on par with a limiting
RIA for reactor analysis. This also presents a much more challenging, though interesting, case for ATS since
there is a large power spike over a short period of time.

5.2.1 ATS Criteria for Finite Difference Method with Feedback

As for the analysis without feedback, we begin by studying the four different criteria defined in eqs. (3.4)
through (3.7). For each criteria, a range of tolerances covering three orders of magnitude were analyzed.
The initial time step size was selected to be 1 ms to ensure that unnecessary error was not accumulated
at the beginning of the transient. From there, the ATS scheme was allowed to dictate the time step size
within the range of 0.5 ms to 20 ms with a growth limit of 100%. The resulting power curves are shown
in Appendix A Figures A.5, A.6, A.7, A.8 for the absolute direct, relative direct, absolute integrated, and
relative integrated criteria, respectively. Quantification of the errors with respect to the reference solution
are shown in Appendix A Tables A.5, A.6, A.7, and A.8 as well. For comparison, a 2 ms constant time
step case is also shown in the tables and figures. This is meant to provide a reference point for what we
might expect from a reasonable simulation that balances the need for accuracy and computational efficiency.
In order to compare the criteria directly, the tolerances are adjusted for each criterion until a result com-
parable to the 2 ms CTS case is obtained. The results are plotted in Figure 5.10 and summarized in Table 5.5.

Again, for all criteria types, as the tolerance is tightened, the number of time steps increases and the power
curve approaches the reference solution. This can be observed qualitatively in the figures and quantitatively
in the tables. The direct criteria are more sensitive to the tolerance (and second derivative) than the inte-
grated criteria. However, with feedback on we notice a marked difference in performance– the direct criteria
are overly sensitive to the second derivative and require significantly more time steps to produce solutions
of comparable accuracy to the integrated criteria. Another observable trend is that the absolute criteria
predict the peak power better, while the relative criteria predict the time to peak power better. The relative
criteria yield smaller time steps at the beginning of the transient that lead to a more accurate capture of
the power rise than the absolute criteria. However, as the power increases, the relative criteria allow larger
absolute errors that cannot capture the peak behavior as well as the absolute criteria. This can be observed
by plotting the time steps used for each criteria as in Figure 5.11, which confirms our intuition that the
absolute criteria produce larger time steps at the beginning of the transient while using smaller time steps
near the peak compared to the relative criteria.

In order to produce comparable accuracy as the 2ms CTS case, the ATS schemes actually require a similar
number of or even more time steps for each of the criteria analyzed. This exposes a weakness in the ATS
scheme dealing with inflection points where the second derivative passes through zero as it changes signs, as
shown in Figure 5.12. The inflection points cause the predicted time step size to be large at a time when
the system is actually evolving rapidly. When the second derivative is zero, the leading order error term
from eq. (3.1) is actually proportional to the square of the time step size and the third derivative in time,
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and, while Figure 5.12 does not show the third derivative, it is readily observable that this quantity is not
negligible as the second derivative rapidly crosses from positive to negative and vice versa. Physically, the
75 ms inflection point represents the transition between the prompt excursion and the feedback-dominated
portion of the transient. Initially, the change in time is purely exponential, but as the power level rises,
thermal-hydraulic feedback causes a departure from the exponential behavior that briefly appears linear
before the feedback effects take over. This brief linear behavior corresponds to a zero (or nearly so) sec-
ond derivative that results in large time steps at moment when the transient is actually evolving quite rapidly.

Finally, we also note from Figure 5.11 that the oscillations have worsened considerably for this transient.
This will be explore more thoroughly in Section 5.2.2
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Figure 5.10: Single Pin Superprompt Power Curves for ATS with Interpolated Finite Difference Method
Using the Angular Flux for Each Criteria Type, Time Steps Shown in Parentheses

Table 5.5: Single Pin Superprompt Error Comparison for ATS with Interpolated Finite Difference Method
Using the Angular Flux for Each Criteria Type

Crit. Type Tol.
No. of
Time
Steps

Peak
Power
(%)

Time to
Peak
(ms)

εrel.MAX

(%)
εrel.RMS

(%)
εrel.INT

(%) RT ts (s)

ref. - 1000 2016 101.40 - - - 0.061
CTS - 100 2039 100.00 5.41 2.55 0.40 0.061

Absolute
Direct 3.0e+00 101 2081 97.53 6.41 3.34 0.55 0.063

Relative
Direct 5.0e-01 168 2037 99.90 5.15 1.69 0.40 0.063

Absolute
Integrated 8.0e-03 85 2025 99.00 5.28 3.06 0.51 0.065

Relative
Integrated 2.0e-03 92 2056 98.67 5.22 2.16 0.38 0.063
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Figure 5.11: Single Pin Superprompt Time Step Size for ATS with Interpolated Finite Difference Method
Using the Angular Flux for Each Criteria Type

Figure 5.12: Single Pin Superprompt Transient Power and Second Derivative of the Angular Flux
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5.2.2 Finite Difference Second Derivative Estimation and Growth Limits

Once again, we attempt to resolve the oscillations by replacing the interpolated finite difference scheme, eq.
(3.9) with the nested finite difference scheme, eq. (3.10). The results presented in Figures 5.10 and 5.11 and
Table 5.5 are reproduced in Figures 5.13 and 5.14 and Table 5.6 with the nested difference scheme in place
of the interpolated difference scheme. As the figure shows, the nested difference scheme does indeed reduce,
but not eliminate the oscillations. Unfortunately, this also comes at a fairly significant cost to the accuracy
of the solution, as can be noted by comparing Figure 5.13 with Figure 5.10 and Table 5.6 with Table 5.5.
The non-uniformity of the effects on accuracy indicate that the ATS scheme is generally performing in a less
than ideal manner.

Figure 5.13: Single Pin Superprompt Power Curves for ATS with Nested Finite Difference Method Using
the Angular Flux for Each Criteria Type, Time Steps Shown in Parentheses

Pounders specifically notes in [45] the need for a growth limit on consecutive time steps to limit the error
in the finite difference estimates. We will now examine what affect the growth limit has on the oscillations.
For each criteria with tolerances as in Figure 5.14 and Table 5.6, cases were run with growth limits of 0%
(which corresponds to constant time steps), 1%, 10%, 50%, and 100%. The results are plotted in Figures
5.15 through 5.18 for absolute direct, relative direct, absolute integrated, and relative integrated criteria,
respectively. In each figure, the “ideal” time step size is plotted as well from the actual second derivative of
the solution. These figures seem to suggest that the oscillations increase in magnitude with the growth limit,
but there is a tradeoff. While the smaller growth limits do limit the oscillations, they restrict the ability of
the time steps to adapt to the state of the system. It appears somewhere in the 50% to 100% range provides
a reasonable compromise to somewhat limit the oscillations, while allowing the time steps sufficient flexibility
to respond to the evolution of the system. The results shown are with the nested difference scheme, but
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Table 5.6: Single Pin Superprompt Error Comparison for ATS with Nested Finite Difference Method Using
the Angular Flux for Each Criteria Type

Crit. Type Tol.
No. of
Time
Steps

Peak
Power
(%)

Time to
Peak
(ms)

εrel.MAX

(%)
εrel.RMS

(%)
εrel.INT

(%) RT ts (s)

ref. - 1000 2016 101.40 - - - 0.061
CTS - 100 2039 100.00 5.41 2.55 0.40 0.061

Absolute
Direct 3.0e+00 96 2012 99.10 20.16 5.02 1.50 0.064

Relative
Direct 5.0e-01 157 2269 102.66 14.10 3.34 0.75 0.063

Absolute
Integrated 8.0e-03 83 2053 98.82 6.62 3.18 0.48 0.065

Relative
Integrated 2.0e-03 87 2228 98.56 10.96 3.62 0.73 0.063

Figure 5.14: Single Pin Superprompt Time Step Size for ATS with Nested Finite Difference Method Using
the Angular Flux for Each Criteria Type

similar results are observed with the interpolated difference scheme.
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Figure 5.15: Single Pin Superprompt Time Step Size as a Function of Growth Limit for ATS with Nested
Finite Difference Method Using the Angular Flux for Absolute Direct Criteria

Figure 5.16: Single Pin Superprompt Time Step Size as a Function of Growth Limit for ATS with Nested
Finite Difference Method Using the Angular Flux for Relative Direct Criteria
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Figure 5.17: Single Pin Superprompt Time Step Size as a Function of Growth Limit for ATS with Nested
Finite Difference Method Using the Angular Flux for Absolute Integrated Criteria

Figure 5.18: Single Pin Superprompt Time Step Size as a Function of Growth Limit for ATS with Nested
Finite Difference Method Using the Angular Flux for Relative Integrated Criteria
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5.2.3 Finite Difference Flux Choice

Once again, we will consider using the scalar flux in place of the angular flux for this more severe transient.
The results presented in Figures 5.10 and 5.11 and Table 5.5 are reproduced in Figures 5.19 and 5.20 and
Table 5.7 with the scalar flux used to estimate the second derivative rather than the angular flux.

The results for the scalar flux in Figures 5.19 and 5.20 and Table 5.7 are nearly identical to the results for
the angular flux in Figures 5.10 and 5.11 and Table 5.5, indicating that the scalar flux is indeed a suitable
substitute for the angular flux for ATS determination. We again take this one step further and consider using
the power as a stand-in for the angular flux, as described in eq. (3.8). The validity of this approximation is
examined in Figure 5.21 by plotting the logarithmic second derivatives (normalized by the value) of angular
flux, scalar flux, and power. Note that these values are calculated for a case with constant time steps so
as not to introduce any oscillations and distort the overall trend. The agreement is excellent, particularly
between the angular flux and the scalar flux. For this simple pin cell case, the logarithmic second derivative
of the power agrees well enough with the angular flux that we would expect it to yield good results. This is
indeed the case, as we once again reproduce Figure 5.10 and 5.11 and Table 5.5 using the second derivative
of the power instead of the angular flux in Figures 5.22 and 5.23 and Table 5.8.

Figure 5.19: Single Pin Superprompt Power Curves for ATS with Interpolated Finite Difference Method
Using the Scalar Flux for Each Criteria Type, Time Steps Shown in Parentheses
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Table 5.7: Single Pin Superprompt Error Comparison for ATS with Interpolated Finite Difference Method
Using the Scalar Flux for Each Criteria Type

Crit. Type Tol.
No. of
Time
Steps

Peak
Power
(%)

Time to
Peak
(ms)

εrel.MAX

(%)
εrel.RMS

(%)
εrel.INT

(%) RT ts (s)

ref. - 1000 2016 101.40 - - - 0.061
CTS - 100 2039 100.00 5.41 2.55 0.40 0.061

Absolute
Direct 3.0e+00 112 2006 99.11 5.92 3.19 0.60 0.063

Relative
Direct 5.0e-01 167 2037 99.90 5.19 1.71 0.40 0.063

Absolute
Integrated 8.0e-03 82 2024 99.36 5.53 3.31 0.59 0.063

Relative
Integrated 2.0e-03 94 2058 98.99 5.28 2.12 0.36 0.064

Figure 5.20: Single Pin Superprompt Time Step Size for ATS with Interpolated Finite Difference Method
Using the Scalar Flux for Each Criteria Type
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Figure 5.21: A Comparison of Logarithmic Second Derivative of Power, Scalar Flux, and Angular Flux for
Single Pin Superprompt Transient

Figure 5.22: Single Pin Superprompt Power Curves for ATS with Interpolated Finite Difference Method
Using the Power for Each Criteria Type, Time Steps Shown in Parentheses
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Table 5.8: Single Pin Superprompt Error Comparison for ATS with Interpolated Finite Difference Method
Using the Power for Each Criteria Type

Crit. Type Tol.
No. of
Time
Steps

Peak
Power
(%)

Time to
Peak
(ms)

εrel.MAX

(%)
εrel.RMS

(%)
εrel.INT

(%) RT ts (s)

ref. - 1000 2016 101.40 - - - 0.061
CTS - 100 2039 100.00 5.41 2.55 0.40 0.061

Absolute
Direct 3.0e+00 111 2006 99.68 5.88 3.22 0.61 0.063

Relative
Direct 5.0e-01 165 2038 99.86 5.43 1.78 0.42 0.062

Absolute
Integrated 8.0e-03 82 2024 99.36 5.52 3.32 0.59 0.065

Relative
Integrated 2.0e-03 94 2056 99.29 5.20 2.17 0.37 0.062

Figure 5.23: Single Pin Superprompt Time Step Size for ATS with Interpolated Finite Difference Method
Using the Power for Each Criteria Type
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5.3 Summary of Finite Difference Results

We have demonstrated that ATS in MPACT may be achieved via the time step selection criteria in eqs.
(3.4) through (3.7) by using the finite difference method to estimate the second derivative. The method is
prone to oscillations in the time step size with the standard “interpolated difference” scheme, but these can
be resolved fully without feedback and partially with feedback by using the nested finite difference scheme
proposed by Hackemack and Pounders. With feedback included, the nested difference scheme incurs an ad-
ditional accuracy penalty, negating its utility. We have shown that the scalar flux may serve as a surrogate
for the angular flux without significantly affecting the accuracy. Furthermore, the power itself may be an
acceptable surrogate for cases without a sharp spatial dependence.

Finally, we have verified that the proposed ATS scheme works well in the absence of inflection points and can
reduce run times by over 30%. However, the introduction of feedback assures the existence of such inflection
points for superprompt transients. This challenges the underlying ATS scheme by violating our assumption
that the higher order error terms are negligible, thereby predicting large time step sizes when the system
is actually evolving rapidly. As a result, the ATS scheme incurs large error during a crucial time in the
transient development, degrading the overall performance of the scheme.
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Chapter 6

Adaptive Time Stepping Calculations
with the α-Eigenvalue in MPACT

From the apparent difficulties of the finite difference ATS method, we turn to the α-eigenvalue. As for
the finite difference method, the MPACT calculation begins with a steady state calculation to determine
the initial conditions. Unlike the finite difference method, the α method can proceed after the first time
step since it only requires data from one previous time point. After the first transient step is completed,
the beginning of each subsequent step begins with a time step determination. The transient calculation
is essentially “paused”. This involves storing the current iterate and toggling a series of parameters within
MPACT. In accordance with the results from Section 4.2, we begin the k − α iteration with the current
flux and estimating α0 as the α value from the previous time step. In the case of the initial α calculation,
this would be 0. The α-eigenvalue is generally computed as per Algorithm 4 with the addition of the
delayed neutron source directly from the transient solution. The fission source during the k−α calculation is
multiplied by the steady state k calculated before initiating the transient. As for the transient solution itself,
this is a requirement for consistency with the idea that the transient begins from a steady-state condition.
Upon completion of the k−α iteration, the transient calculation is restored with only the α value remaining
from the k−α calculation. Once an estimate for the second derivative (relative or absolute) is obtained, eqns.
(3.4) through (3.7) are then used to determine the ensuing time step size. The transient calculation proceeds
as usual. An alternative calculation of α from the EPKE will also be considered that is less computationally
demanding.

6.1 α-Eigenvalue Calculation Method

While we have already demonstrated that MPACT is capable of calculating the α-eigenvalue in Chapter 4,
both the prompt and asymptotic eigenvalues calculated correspond to a system in some sort of equilibrium.
For the case of αa, it as an equilibrium of asymptotic growth/decay; for αp, the delayed neutron precursors
are in equilibrium (no change in time). During an actual transient, neither of these conditions are fulfilled,
casting doubt on the utility of these eigenvalues in accurately describing the time evolution of the system.
Therefore, we will consider a modification to the α-eigenvalue calculation obtained directly from the transient
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formulation of the transport equation solved by MPACT, eq. (2.29). By making the usual replacement of
the time derivative with the α-eigenvalue, the time derivative terms disappear from the transient source term
Sntr and are instead represented with augmentation of the total cross section by α/v. From the definitions
in eqs. (2.30) and (2.31), this corresponds to setting A(E) = 0 and the second term of C to 0, so C(r, E) =

χd(r, E)S̃n−1d (r). Hence the equation being solved is:

Ω · ∇ψn(r,Ω, E) +

[
Σt(r, E) +

αn

v(E)

]
ψn(r,Ω, E) =

∫ ∞
0

∫
4π

Σs(r, E
′ → E,Ω ·Ω′)ψn(r,Ω′, E′)ldΩ′dE′

+
χntr(r, E)

4π

∫ ∞
0

∫
4π

νΣf (r, E′)ψn(r,Ω′, E′)dΩ′dE′ + χd(r, E)S̃n−1d (r), (6.1)

where

χntr = χnp (r, E)(1− β) + ωn(r)χnd (E). (6.2)

To differentiate this version of the α-eigenvalue from αa and αp calculated for the steady-state case, we will
refer to this as the transient α-eigenvalue, αt. For confirmation that this is the most desirable formulation
of the α-eigenvalue, we calculate αa, αp, and αt for the single pin superprompt transient and compare them
to the time constant (logarithmic first derivative) of the power in Figure 6.1. This leaves no doubt that αt
is the quantity of interest for use with ATS.

Figure 6.1: A Comparison of the Different α-Eigenvalues and the Logrithmic Derivative of Power for Single
Pin Superprompt Transient

Since αp and αa were predicted so well by the PKE, we might expect that αt can also be calculated directly
from the PKE at a much lower computational expense than the full k − α iteration. This possibility will
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be explored and compared to the full k − α iteration results. Further discussion of the α-eigenvalue will be
centered on αt and we will therefore drop the subscript.

6.2 α-Eigenvalue Results without Feedback

As for the finite difference method, we begin by examining the subprompt positive reactivity insertion
described in Section 5 and 5.1 without thermal-hydraulic feedback.

6.2.1 Adaptive Time Stepping Criteria with the α-Eigenvalue without Feedback

Once again, we start by studying the four different criteria defined in eqs. (3.4) through (3.7) for a range of
tolerances with an initial time step size of 2.5 ms, a minimum time step size of 0.5 ms, a maximum time step
size of 20 ms, and a growth limit of 100%. The resulting power curves are shown in Appendix A Figures A.9,
A.10, A.11, A.12 for the absolute direct, relative direct, absolute integrated, and relative integrated criteria,
respectively. Quantification of the errors with respect to the reference solution are shown in Appendix A
Tables A.9, A.10, A.11, and A.12 as well. For comparison, a 5 ms constant time step case is also shown
in the tables and figures. This is intended to provide a reference point for what we might expect from a
reasonable simulation that balances the need for accuracy and computational efficiency.

We observe the same general trends for the α-eigenvalue ATS as for the finite difference ATS. As the toler-
ances are tightened, the number of time steps increases and approaches the reference solution. Once again,
we compare the criteria by optimizing the tolerance for each criteria to most closely match the errors of the
5 ms CTS case. The results are plotted in Figure 6.2 and summarized in Table 6.1. Without feedback, there
is no meaningful difference between the various criteria other than the obvious observation that the direct
criteria are more sensitive to the tolerance than relative criteria. Also similar to the finite difference method,
all criteria yield a 30-35% reduction in the number of time steps required to achieve similar accuracy as the
CTS case. Unfortunately, the k−α iteration drives the computational cost of each time step up by a similar
amount, resulting in only a net 5-10% reduction in transient run time. This is not a surprising result, and
actually offers some encouragement since there is still a net reduction in time step size.

The main driver for investigating the α-eigenvalue as an alternative to the finite difference method is the
oscillations of the predicted time step observed for the latter method. An examination of the time steps
predicted by the α-eigenvalue is shown in Figure 6.3. The encouraging feature of this plot is that the
oscillations observed for the finite difference method have indeed been resolved.
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Figure 6.2: Single Pin Subprompt Power Curves for ATS with α Method Using the Angular Flux for each
Criteria Type, Time Steps Shown in Parentheses

Table 6.1: Single Pin Subprompt Error Comparison for ATS with α Method Using the Angular Flux for
each Criteria Type

Crit. Type Tol.
No. of
Time
Steps

εrel.MAX (%) εrel.RMS (%) εrel.INT (%) RT ts (s)

ref. - 1000 - - - 0.047
CTS - 40 1.22 0.52 0.08 0.058

Absolute
Direct 7.0e-01 27 1.27 0.62 0.08 0.076

Relative
Direct 9.0e-01 27 1.22 0.57 0.08 0.083

Absolute
Integrated 3.0e-03 26 1.39 0.62 0.08 0.079

Relative
Integrated 4.0e-03 28 1.08 0.56 0.07 0.080
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Figure 6.3: Single Pin Subprompt Time Step Size for ATS with α Method Using the Angular Flux for each
Criteria Type
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6.2.2 α-Eigenvalue Flux Choice

Since the α-eigenvalue calculation does not require the angular flux, we would like to substitute the scalar
flux for the angular flux in the second derivative estimates given in eqs. (3.12) and (3.13). For the absolute
criteria, this requires division by 4π, but this is unnecessary for the relative criteria. The cases from Table
6.1 are run with the scalar flux in lieu of the angular flux, with the results shown in Table 6.2. The power
curves are not reproduced since there is no visually discernible difference. This reduces the run time as well
as the storage requirements without any noticable effect on accuracy.

Table 6.2: Single Pin Subprompt Time Comparison for ATS with α Method Using the Scalar Flux for each
Criteria Type

Crit. Type Tol.
No. of
Time
Steps

εrel.MAX (%) εrel.RMS (%) εrel.INT (%) RT ts (s)

ref. - 1000 - - - 0.047
CTS - 40 1.22 0.52 0.08 0.058

Absolute
Direct 7.0e-01 26 1.49 0.65 0.08 0.072

Relative
Direct 9.0e-01 27 1.22 0.57 0.08 0.073

Absolute
Integrated 3.0e-03 25 1.33 0.64 0.08 0.073

Relative
Integrated 4.0e-03 28 1.08 0.56 0.07 0.071
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6.2.3 Calculation of the α-Eigenvalue by Point Kinetics for ATS without Feed-
back

In the interest of computational efficiency, an alternative calculation of the α-eigenvalue by means of the PKE
was implemented. The PKE coefficients (ρ(t), β(t), λ(t) and Λ(t)) are already computed at each time step.
They are then linearly interpolated over the time step and the resulting PKEs are solved via a quadratic
method on a fine time step. The solution of this 1D system of equations has negligible computational
overhead compared to the MOC calculations, and the final few fine steps can be used to determine the α-
eigenvalue for the end of the time step. The cases from Table 6.1 are run with this alternative methodology
and the results are shown in Table 6.3. The results show no loss of accuracy with run times per time step that
are essentially identical to CTS. The α-eigenvalues as calculated by the full k − α and PKE methodologies
are shown in Figure 6.4, as are the resulting second derivatives in Figure 6.5. The results show excellent
agreement without feedback.

Table 6.3: Single Pin Subprompt Time Comparison for ATS with PKE α Method Using the Scalar Flux for
each Criteria Type

Crit. Type Tol.
No. of
Time
Steps

εrel.MAX (%) εrel.RMS (%) εrel.INT (%) RT ts (s)

ref. - 1000 - - - 0.047
CTS - 40 1.22 0.52 0.08 0.058

Absolute
Direct 7.0e-01 28 1.18 0.57 0.09 0.055

Relative
Direct 9.0e-01 28 1.01 0.53 0.09 0.064

Absolute
Integrated 3.0e-03 25 1.30 0.61 0.09 0.054

Relative
Integrated 4.0e-03 28 0.94 0.54 0.08 0.041
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Figure 6.4: A Comparison of Time Constants for the α-Eigenvalue Calculation Methods without Feedback

Figure 6.5: A Comparison of Second Derivatives for the α-Eigenvalue Calculation Methods without Feedback
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6.3 α-Eigenvalue Results with Feedback

6.3.1 Adaptive Time Stepping Criteria with the α-Eigenvalue

Yet again, we begin by studying the four different criteria defined in eqs. (3.4) through (3.7) for a range of
tolerances with an initial time step size of 1 ms, a minimum time step size of 0.5 ms, a maximum time step
size of 20 ms, and a growth limit of 100%. The resulting power curves are shown in Appendix A Figures A.13,
A.14, A.15, A.16 for the absolute direct, relative direct, absolute integrated, and relative integrated criteria,
respectively. Quantification of the errors with respect to the reference solution are shown in Appendix A
Tables A.13, A.14, A.15, and A.16 as well. For comparison, a 5 ms constant time step case is also shown
in the tables and figures. This is intended to provide a reference point for what we might expect from a
reasonable simulation that balances the need for accuracy and computational efficiency. We compare the
criteria by optimizing the tolerance for each criteria to most closely match the errors of the 2 ms CTS case.
The results are plotted in Figure 6.6 and summarized in Table 6.4.

We observe the same general trends for the α-eigenvalue method as for the finite difference method with
feedback. The direct criteria appear to be overly sensitive to the second derivative in comparison to the
integrated criteria, resulting in more time steps being required to obtain a similar level of accuracy. As for
the finite difference method, the α-eigenvalue method is challenged by the inflection points where the second
derivative is zero (or nearly so) but the higher order error terms are not negligible. This is examined further
in Section 6.3.3. An examination of the time steps predicted by the α-eigenvalue is shown in Figure 6.7. Here
we note the absence of oscillations, a much desired improvement from the finite difference method. Recall
that even the nested difference scheme was unable to resolve oscillations fully for the superprompt transient
with feedback.
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Figure 6.6: Single Pin Superprompt Power Curves for ATS with α Method Using the Angular Flux for each
Criteria Type, Time Steps Shown in Parentheses

Table 6.4: Single Pin Superprompt Error Comparison for ATS with α Method Using the Angular Flux for
each Criteria Type

Crit. Type Tol.
No. of
Time
Steps

Peak
Power
(%)

Time to
Peak
(ms)

εrel.MAX

(%)
εrel.RMS

(%)
εrel.INT

(%) RT ts (s)

ref. - 1000 2016 101.40 - - - 0.063
CTS - 100 2039 100.00 5.41 2.55 0.40 0.064

Absolute
Direct 2.0e+00 147 2046 98.20 6.48 2.60 0.41 0.097

Relative
Direct 2.0e-01 287 2034 100.08 5.88 1.94 0.32 0.104

Absolute
Integrated 6.0e-03 100 2031 99.34 5.39 2.66 0.40 0.104

Relative
Integrated 2.0e-03 92 2067 99.64 6.98 2.52 0.43 0.104
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Figure 6.7: Single Pin Superprompt Time Step Size for ATS with α Method Using the Angular Flux for
each Criteria Type
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6.3.2 α-Eigenvalue Calculation by Point Kinetics with Feedback

Again, we explore employing an alternative calculation of the α-eigenvalue by means of the PKE in order
to reduce the computational expense of estimating the second derivative. The cases from Table 6.4 are run
with this alternative methodology and the results are shown in Table 6.5. The results are decidedly mixed
with the direct criteria actually showing a general improvement in accuracy while the integrated criteria is
degraded. The run times per time step are again reduced to on par with CTS. We plot the time steps pre-
dicted by the PKE method in Figure 6.9 and immediately notice a worrying feature– substantial oscillation.
This is particularly pronounced for the direct criteria.

We explore this further by plotting the α-eigenvalues for the relative integrated criteria with the full k − α
and PKE methods and comparing them to the logarithmic first derivative of power in Figure 6.10, as well
as the resulting second derivative in Figure 6.11. Unlike without feedback, we notice that α and the second
derivative as calculated by the PKEs deviate meaningfully from the expected value. This deviation in α is
then amplified by the second derivative calculation, introducing the unwanted oscillations.
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Figure 6.8: Single Pin Superprompt Power Curves for ATS with α Method Using the Scalar Flux for each
Criteria Type, Time Steps Shown in Parentheses

Table 6.5: Single Pin Superprompt Error Comparison for ATS with α Method Using the Scalar Flux for
each Criteria Type

Crit. Type Tol.
No. of
Time
Steps

Peak
Power
(%)

Time to
Peak
(ms)

εrel.MAX

(%)
εrel.RMS

(%)
εrel.INT

(%) RT ts (s)

ref. - 1000 2016 101.40 - - - 0.063
CTS - 100 2039 100.00 5.41 2.55 0.40 0.064

Absolute
Direct 2.0e+00 157 2014 100.12 3.11 1.86 0.34 0.064

Relative
Direct 2.0e-01 270 2052 100.00 3.87 1.27 0.23 0.062

Absolute
Integrated 6.0e-03 85 2126 98.35 7.61 3.37 0.63 0.064

Relative
Integrated 2.0e-03 87 2343 101.34 16.25 5.10 1.01 0.067
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Figure 6.9: Single Pin Superprompt Time Step Size for ATS with α Method Using the Scalar Flux for each
Criteria Type

Figure 6.10: A Comparison of Time Constants for the α-Eigenvalue Calculation Methods with Feedback
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Figure 6.11: A Comparison of Second Derivatives for the α-Eigenvalue Calculation Methods with Feedback
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6.3.3 Examination of the Role of Feedback

In order to understand the poor performance of the ATS methodology for the superprompt transient with
feedback, we examine the relative integrated criteria results from Figure A.16 and Table A.16 more closely.
Note that this is applicable to the ATS scheme in general, not the specific α or finite difference formulation
of it. While all of the criteria demonstrate the same basic trends, the relative integrated criteria provide the
clearest example. First we examine the evolution of the α-eigenvalue through the transient to ensure that
it is consistent with the time constant. The time constant of the power and the α-eigenvalues are shown in
Figure 6.12, showing excellent agreement as the tolerance is tightened.

Figure 6.12: Single Pin Superprompt α-Eigenvalue and Transient Time Constant for ATS with Relative
Integrated Criteria

Next, we turn to an examination of the second derivative. This is shown in Figure 6.13. We see that the
second derivative crosses the y-axis at around 75 and 125 ms, corresponding to the inflection points. Where
the second derivative is nearly zero, but changing rapidly, as occurs at 75 ms, the higher order terms that
were neglected in the Taylor expansion may actually contribute substantially to the error. As was discussed
in Section 5.2.1, physically, the inflection point represents the departure from the purely exponential behavior
of the neutronic solution to the feedback-dominated peak behavior. From this physical interpretation, it is
obvious that this represents a critical time in the development of the transient. This intuition is confirmed
by plotting the reference rate of change of the fuel temperature in Figure 6.14, where we note the fuel
temperature is rising rapidly at 75 ms. In order to investigate the relative performance of ATS, Figure 6.15
plots the error in the fuel temperature rate of change for CTS and a single ATS case (relative integrated
criteria with a tolerance of 1.0E-3) compared to the reference case. Here we see that the ATS case, chosen
because it produces similar accuracy to the CTS case but requires more 30% more time steps, does a better
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job of capturing the rate of fuel temperature change up until 75 ms. By taking a large time step in that region,
the feedback is being improperly accounted for, to the detriment of the accuracy at large. The accuracy of
the solution cannot recover from this critical misstep without sacrificing the computational efficiency of the
method.

Figure 6.13: Single Pin Superprompt Logarithmic Second Derivative Estimated from α for ATS with Relative
Integrated Criteria
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Figure 6.14: Single Pin Superprompt Reference Fuel Temperature Rate of Change

Figure 6.15: Single Pin Superprompt Error in Fuel Temperature Rate of Change
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6.4 Summary

MPACT has been modified to calculate the α-eigenvalue via k − α iteration and via the PKEs during the
transient in order to estimate the second derivative of the angular flux for use with ATS. The α-eigenvalue
method is able to perform at the same level as the finite difference method in terms of accuracy and time steps
required without oscillations in the time step size. However, the computational expense of the α-eigenvalue
is significantly higher than the finite difference method. Use of the point kinetics equations to estimate the
α-eigenvalue can be used in place of the full k − α iteration. This method brings the computational cost
in line with the finite difference method while also avoiding oscillatory behavior in the case of no feedback.
However, with feedback, the oscillations reappear with the less robust PKE method of α calculation.

The α ATS method does not improve upon the finite difference method for handling inflection points of
superprompt transients with feedback since this is a weakness of the underlying ATS scheme. It does,
however, remove the oscillations from the time step size, providing a more efficient and desirable ATS
scheme overall.
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Chapter 7

Benchmarks Calculations

The initial investigations of the ATS methodologies presented in Chapters 5 and 6 utilize a single pin to
facilitate detailed examination of the results. However, we are generally interested in modeling more realistic
cases, so we apply the results from the preceding chapters to two more complex models– the SPERT mini-core
and the C5G7-TD benchmark problem TDW1b.

7.1 SPERT Mini-Core

The SPERT III E-Core reactor was an experimental reactor in Idaho in the 1960’s. It was specifically de-
signed for reactor transient experiments and provides some of the only available data to benchmark full scale
transient calculations against. As such, it has been an important aspect of validation of MPACT transient
capabilities. The author produced KENO models for direct comparison to MPACT as part of the early
validation work [9]. These were then tested with the MPACT internal thermal-hydraulics model [14] and
eventually coupled to the thermal-hydraulics code COBRA-TF by the author [19].

Here we test the ATS capability on a 2D mini-core version of the SPERT experiments that models 16
fuel assemblies with quarter-core symmetry. Details of the SPERT configuration and experiments can be
found in any of the aforementioned references or the original technical reports [18], [44], and [36]. The
2D SPERT mini-core encompasses the 16 central fuel assemblies modeled in quarter-core symmetry. The
resulting model consists of four fuel assemblies, which include two of the nominal 5x5 assemblies, one of the
control rod follower 4x4 assemblies, and one of the transient 4x4 assemblies, shown in Figure 7.1. For all
assemblies, each pin consists of 4.8 wt% UO2 fuel with a diameter of 1.0068 cm and 0.0508 cm thick stainless
steel cladding surrounded by water with a pitch of 1.4859 cm. Each assembly is enclosed in a steel channel
box with an overall assembly pitch of 7.62 cm. The transient assembly in the lower right corner of Figure
7.1 also contains one quarter of the cruciform transient rod composed of 1.35 wt% borated steel. It is the
removal of this rod that drives the transient. These four assemblies are superimposed into the corner of the
actual reactor to capture the steel and water reflector regions surrounding the core, that accounts for the
somewhat choppy nature in Figure 7.1. This model presents an excellent test case for our methods owing to
the sharp spatial heterogeneity. The transient is induced by withdrawing the transient rod over 50 ms; this
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amounts to a reactivity insertion of $1.10.

Figure 7.1: SPERT Mini-core Overall Configuration

7.1.1 SPERT Mini-Core Results

The SPERT cases are run with the MPACT simplified TH for 0.2 s. The 47-group library is employed
with 16 azimuthal angles with the Chebyshev azimuthal quadrature. CMFD acceleration is used but the
multilevel method is not. All cases were run in parallel on 9 processors. An initial time step size of 2 ms
was utilized with a minimum of 1 ms, a maximum of 50 ms, and a growth limit of 100%.

As for the single pin studies, MPACT was run with each criteria type at a tolerance that produces similar
errors as the CTS case with 2 ms time steps. The resulting power curves are shown in Figure 7.2 and the
error quantification in Table 7.1. The results are generally consistent with what we have observed for the
single pin cases. The reduction in time steps is greater for this transient, mostly owing to the sharper power
pulse, which has a longer tail that allows the ATS scheme to really show its value. However, the more
complex geometry degrades the performance of the k − α calculation, resulting in a significant increase in
the overall run time per time step. The net result is a noticeable increase in the overall run time. We next
investigate using the PKE estimation of α in lieu of the full k − α calculation, but before we do, let us
comment on the performance of the individual criteria.

As we have noted before, the direct criteria appear to be overly sensitive to changes in the second derivative
and generally require far more time steps to produce a solution of comparable accuracy when compared to
the integrated criteria when there is thermal-hydraulic feedback. The question of absolute versus relative
criteria does not have as clear of a “winner.” However, if we examine the time steps predicted by the methods,
as in Figure 7.3, we note that both of the absolute criteria show a proclivity for oscillations. Furthermore, the
large increases at the beginning of the transient present opportunity for error to accumulate and propagate
early on. This is further evidenced by examination of the α-eigenvalues computed by the methods compared
to the logarithmic time derivative of power shown in Figure 7.4, where we note a significant deviation for
the absolute criteria early in the transient. As such, it appears that the relative integrated criteria is the
best choice, though this conclusion is not universally demonstrative.
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Figure 7.2: SPERT Power Curves with k − α Alpha ATS

Table 7.1: Error Comparison for ATS with k − α Alpha Method For Each Criteria

Crit. Type Tol.
No. of
Time
Steps

Peak
Power
(%)

Time to
Peak
(ms)

εrel.MAX

(%)
εrel.RMS

(%)
εrel.INT

(%) R̄T ts

ref. - 2000 3397 76.80 - - - 1.228
CTS - 100 3477 76.00 10.89 3.65 0.49 2.334

Absolute
Direct 7.0e-01 88 3292 76.14 8.89 3.77 0.74 6.199

Relative
Direct 1.0e+00 106 3435 74.75 7.38 2.54 0.42 5.982

Absolute
Integrated 7.0e-03 53 3395 73.85 9.51 5.35 0.79 6.780

Relative
Integrated 6.0e-03 68 3478 75.22 9.73 3.31 0.45 7.384

We again explore the option of calculating the α-eigenvalue by means of the PKEs instead of the costly
k−α iteration and present the results in Figures 7.5 through 7.7 and Table 7.2. The accuracy of the relative
criteria is degraded, while the absolute criteria show little difference. However, examination of the time step
size in 7.6 again reveals the presence of oscillations, defeating the purpose of employing the α-eigenvalue in
the first place.
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Figure 7.3: Time Step Sizes for SPERT with k − α Alpha ATS

Figure 7.4: Time Constants for SPERT with k − α Alpha ATS
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Figure 7.5: SPERT Power Curves with PKE Alpha ATS

Table 7.2: Error Comparison for ATS with PKE Alpha Method For Each Criteria

Crit. Type Tol.
No. of
Time
Steps

Peak
Power
(%)

Time to
Peak
(ms)

εrel.MAX

(%)
εrel.RMS

(%)
εrel.INT

(%) R̄T ts

ref. - 2000 3397 76.80 - - - 1.228
CTS - 100 3477 76.00 10.89 3.65 0.49 2.334

Absolute
Direct 7.0e-01 101 3392 76.56 7.24 2.42 0.53 2.093

Relative
Direct 1.0e+00 68 3791 73.45 13.89 4.93 0.83 2.661

Absolute
Integrated 7.0e-03 56 3415 75.20 9.51 5.03 0.74 2.343

Relative
Integrated 6.0e-03 65 3866 78.20 14.18 4.51 0.65 2.671
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Figure 7.6: Time Step Sizes for SPERT with PKE Alpha ATS

Figure 7.7: Time Constants for SPERT with PKE Alpha ATS
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7.1.2 SPERT Summary

The SPERT results have confirmed the trends we have observed for ATS with the α-eigenvalue for a single
pin case with feedback for a more complex geometry. The main points are summarized here:

• The α-eigenvalue calculated through k−α iteration may be used to accurately approximate the second
derivative of the angular flux.

• The k − α calculation adds a significant computational overhead, limiting the efficacy of the ATS
scheme to reduce overall run time.

• The point kinetics estimation of α is not as robust as the k−α result, and is prone to oscillations with
feedback.

• The integrated criteria are preferable to the direct criteria since the latter are overly sensitive to the
second derivative.

• The relative criteria are more robust when combined with the α-eigenvalue than the absolute criteria.
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7.2 C5G7-TD Benchmark

The C5G7-TD benchmark problems consist of a hypothetical miniature light water reactor [7]. The bench-
marks have been well studied and provide a rigorous test for state-of-the-art neutron transport codes without
spatial homogenization. The reactor consists of 16 fuel assemblies that are modeled by four assemblies in
quarter-core symmetry with reflective boundary conditions on two adjacent sides and vacuum boundary
conditions on the other two sides. This is illustrated in Figure 7.8. Half of the assemblies are fueled with
UO2, while the other half are fueled by mixed oxide (MOX) fuel at three different enrichment levels– 4.3%,
7.0%, and 8.7%. Each assembly consists of a 17x17 grid of fuel pins with a central fission chamber and 24
guide tubes for the control rods. Figure 7.9 provides a detailed overview of the four assemblies. Each pin
cell consists of two regions, as shown in Figure 7.10. The inner region is the pin with a radius of 0.54 cm
and consists of the homogenized fuel, gap, and clad. The outer moderator region has a pitch of 1.26 cm
containing water. All macroscopic cross sections are specified in a 7-group format as part of the benchmark.

For this work, we have selected the TDW1b C5G7-TD benchmark. This corresponds to a control rod with-
drawal, represented in 2D by a ramp change in the material composition of the control rod regions. All
control rods begin inserted 1/3 of the way into the core. The bank 1 control rods are withdrawn over 2.0 s.
However, a reactor trip is initiated at 1.0 s, and the control rods are reinserted over 1.5 seconds, such that
no more material movement occurs after this point. The transient is then allowed to run to 10 s [7]. The
position of the bank 1 control rods are shown in red in Figure 7.11.

MPACT models were already developed for this work as part of the MPACT validation suite [49], and were
run with fine time steps (0.1 ms) to generate a reference solution and 2 ms constant time steps to generate
a solution for comparison. The reference solution was only generated out to 3.0 s to conserve computational
resources. MPACT was run with the benchmark-provided 7-group library and 64 azimuthal angles with
Chebyshev azimuthal quadrature. CMFD acceleration was used, but not the multilevel method, except
for the reference case, which did utilize the multilevel method. All runs were performed in parallel on 16
processors. An initial time step size of 2 ms was utilized with a minimum of 1 ms, a maximum of 50 ms,
and a growth limit of 100%.

Figure 7.8: C5G7-TD 2D Overall Configuration
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Figure 7.9: C5G7-TD Assembly Detail

Figure 7.10: C5G7-TD Pin Cell Layout
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Figure 7.11: C5G7 TDW1 Specification for Control Rod Movement
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7.2.1 C5G7-TD Simulations

As for the single pin studies, MPACT was run with each criteria type at a tolerance that produces similar
results as the CTS case with 2 ms time steps. However, given the lengthy run times, this was done much
more coarsely, varying the tolerance only by powers of 10. The general evolution of the transient power
pulse is shown in Figure 7.12. Since the power pulse is so severe without feedback, the peak is blown up in
Figure 7.13 for comparison. We forego our usual error tables because the length and severity of the tran-
sient greatly distort the results. The peak power is the most useful quantification of error in this instance
anyway, and that is available in Figure 7.13. All of the ATS cases shown in that figure required 4.5±0.5
hrs to run, while the CTS case required over 14.5 hours. An examination of the time step sizes in Fig-
ure 7.14 reveals the obvious– the prolonged period of the transient without material movement after 2.5 ms
is ripe for long time steps. In fact, the ATS performance could be even more dramatic without the 50 ms cap.

Finally, we consider the calculation method of the α-eigenvalues as well, and plot these in Figure 7.15. In
addition to the full k − α results, the PKE estimation of α is also shown for ATS runs with absolute and
relative integrated criteria that are in excellent agreement with the k − α results, as we have previously
observed without feedback. No separate plot is shown for the power curves generated by the PKE runs
since they are indistinguishable from the k − α results. However, we note that the run time is reduced by
a factor of 2 in these cases since the PKE solution is effectively free compared to the computational cost of
the transient step.

Figure 7.12: C5G7-TD Power Curves with k − α Alpha ATS
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Figure 7.13: Closeup of C5G7-TD Power Curves Peaks with k − α Alpha ATS

Figure 7.14: Time Step Sizes for C5G7-TD with k − α Alpha ATS
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Figure 7.15: Time Constants for C5G7-TD with k − α Alpha ATS
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7.2.2 C5G7-TD Summary

The C5G7-TD results have confirmed the trends we have observed for ATS with the α-eigenvalue for a single
pin case with feedback for a more complex geometry and demonstrated the power of ATS. The main points
are summarized here:

• The ATS scheme achieves drastic speedup for simulations that contain a significant period without
material perturbations.

• For simulations with a significant period of no material perturbation, the computational overhead of
the k − α iteration is acceptable since the number of solution points can be reduced drastically.

• Without feedback, the point kinetics estimation of α provides an alternative to k − α iteration with
essentially no computational overhead.
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Chapter 8

Summary and Conclusions

An adaptive time stepping algorithm has been developed for the neutronic solution of MPACT that can
reduce the number of time steps required to model a transient without adversely affecting the accuracy of
the calculation. This is accomplished by limiting the leading order error term of the time discretization
scheme, which has been shown to be proportional to the second derivative of the angular flux in time. The
second derivative may be estimated by a finite difference scheme or through the α-eigenvalue.

The finite difference method ostensibly requires storage of the angular flux, but we have shown that the scalar
flux may be substituted without loss of accuracy. The finite difference method is also prone to oscillations,
which can be at least partially resolved by employing a nested difference finite difference scheme instead of
the standard interpolated difference.

As an alternative to the finite difference method, an α-eigenvalue method is explored. The α-eigenvalue can
be calculated through the k−α iteration or through the point kinetics equation. The former is more accurate
and robust, while the latter is significantly more efficient. The α-eigenvalue methodology can produce similar
results to the finite difference methodology without the proclivity for oscillations.

Both methods are shown to perform well without thermal-hydraulic feedback. The introduction of feedback,
however, introduces inflection points in the evolution of the angular flux that violate one of the assumptions
from which the ATS scheme was derived– that the higher order error terms are negligible. The ATS scheme
can still be effective, particularly if there is a significant period without material perturbations, but requires
a tighter tolerance than would otherwise be necessary to produce results of comparable accuracy.

8.1 Future Work

Much work remains on this subject, including, but not limited to, the following:

1. The α-eigenvalue (or finite differencing) methodology must be modified to account for the inflection
points that occur during superprompt transients with feedback. The most logical extension of this
work would be to place a limit on the third derivative in time as well, but this raises substantial
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concerns. The second derivative has already shown itself to be prone to oscillations when computed
numerically. Furthermore, the second derivative is discontinuous at the commencement or end of
material perturbations. It may be possible to address this weakness around inflection points by directly
accounting for the evolution of thermal-hydraulic feedback in the ATS scheme. This is no simple task
as the evolving thermal-hydraulic conditions must be examined for their effect on neutron transport.
Thus, the time constants of the temperature/density changes that are easily calculable provide no
value, and derivatives with respect to the thermal-hydraulic parameters, which are notoriously difficult
to characterize, are required instead.

2. The solution from the k − α iteration should be explored for use in the transient solution itself. Since
the transport solution is obtained in the k− α iteration, it stands to reason that this could be used to
replace the transport sweeps of the transient calculation. This would represent a fundamental shift in
transient solution methodology for MPACT, but the idea of combining the time step size determination
with the transient step itself is tantalizing. The eigenvector solution of the k−α iteration needs to be
thoroughly examined to ensure that it suitably captures the evolution of the flux. The advancement
of the material perturbations through the transient seems to provide the most significant question and
may require iteration.

3. A less aggressive measure than the previous item would be to explore using the result of the k − α
iteration to update the fission source for the ensuing transient step.

4. The methodology presented in this thesis should be extended to 3D simulations. This is not a formal
hurdle, simply a matter of implementation, as has been demonstrated by utilizing CMFD acceleration
with the α-eigenvalue.

5. This work has essentially neglected the ingenious TML method of MPACT transient calculations that
allows coarser time steps than would otherwise yield an accurate solution. While the general framework
of the ATS method is equally applicable to TML, modifications may be needed to the criteria to properly
account for any changes to the leading order error that TML introduces. The author investigated this,
but was unable to determine precisely how the TML methodology affected the leading order error
term. Additionally, adaptive time stepping at the CMFD and PKE levels of the transient could also
be implemented.

6. The JFNK work contained in this thesis was abandoned before being fully explored. Despite many
hurdles, the idea that the solution could be generated via JFNK, while a meaningful eigenvalue could
be extracted from the matrix formed during the Krylov steps, remains enticing.
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Appendix A

Tolerance Studies for each Criteria

A.1 Finite Difference ATS without Feedback

Figure A.1: Single Pin Subprompt Power Curves for ATS with Interpolated Finite Difference Method Using
the Angular Flux and Absolute Direct Criteria for a Range of Tolerances, Time Steps Shown in Parentheses
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Table A.1: Single Pin Subprompt Error Comparison for ATS with Interpolated Finite Difference Method
Using the Angular Flux and Absolute Direct Criteria for a Range of Tolerances

Tol.
No. of
Time
Steps

εrel.MAX (%) εrel.RMS (%) εrel.INT (%) RT ts (s)

ref. 1000 - - - 0.024
CTS 40 1.22 0.52 0.08 0.025

1.0e-01 132 0.39 0.13 0.02 0.028
2.0e-01 77 0.39 0.21 0.03 0.026
5.0e-01 35 0.79 0.44 0.07 0.028
1.0e+00 22 1.54 0.73 0.11 0.029
2.0e+00 15 3.54 1.18 0.20 0.030
5.0e+00 14 3.16 1.45 0.28 0.030
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Figure A.2: Single Pin Subprompt Power Curves for ATS with Interpolated Finite Difference Method Using
the Angular Flux and Relative Direct Criteria for a Range of Tolerances, Time Steps Shown in Parentheses

Table A.2: Single Pin Subprompt Error Comparison for ATS with Interpolated Finite Difference Method
Using the Angular Flux and Relative Direct Criteria for a Range of Tolerances

Tol.
No. of
Time
Steps

εrel.MAX (%) εrel.RMS (%) εrel.INT (%) RT ts (s)

ref. 1000 - - - 0.024
CTS 40 1.22 0.52 0.08 0.025

1.0e-01 148 0.39 0.12 0.02 0.026
2.0e-01 92 0.39 0.18 0.03 0.026
5.0e-01 41 0.60 0.35 0.06 0.026
1.0e+00 25 1.27 0.59 0.10 0.029
2.0e+00 18 2.09 0.91 0.16 0.030
5.0e+00 14 3.16 1.45 0.28 0.031
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Figure A.3: Single Pin Subprompt Power Curves for ATS with Interpolated Finite Difference Method Us-
ing the Angular Flux and Absolute Integrated Criteria for a Range of Tolerances, Time Steps Shown in
Parentheses

Table A.3: Single Pin Subprompt Error Comparison for ATS with Interpolated Finite Difference Method
Using the Angular Flux and Absolute Integrated Criteria for a Range of Tolerances

Tol.
No. of
Time
Steps

εrel.MAX (%) εrel.RMS (%) εrel.INT (%) RT ts (s)

ref. 1000 - - - 0.024
CTS 40 1.22 0.52 0.08 0.025

1.0e-04 132 0.39 0.13 0.02 0.027
5.0e-04 63 0.39 0.25 0.03 0.027
1.0e-03 46 0.58 0.33 0.05 0.026
5.0e-03 25 1.36 0.65 0.10 0.028
1.0e-02 20 1.85 0.83 0.13 0.028
5.0e-02 14 3.17 1.41 0.25 0.030
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Figure A.4: Single Pin Subprompt Power Curves for ATS with Interpolated Finite Difference Method Us-
ing the Angular Flux and Relative Integrated Criteria for a Range of Tolerances, Time Steps Shown in
Parentheses

Table A.4: Single Pin Subprompt Error Comparison for ATS with Interpolated Finite Difference Method
Using the Angular Flux and Relative Integrated Criteria for a Range of Tolerances

Tol.
No. of
Time
Steps

εrel.MAX (%) εrel.RMS (%) εrel.INT (%) RT ts (s)

ref. 1000 - - - 0.024
CTS 40 1.22 0.52 0.08 0.025

1.0e-04 139 0.39 0.13 0.02 0.026
5.0e-04 67 0.39 0.23 0.03 0.026
1.0e-03 49 0.50 0.30 0.04 0.026
5.0e-03 26 1.07 0.58 0.09 0.029
1.0e-02 21 1.64 0.76 0.12 0.029
5.0e-02 14 3.49 1.31 0.24 0.031
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A.2 Finite Difference ATS with Feedback

Figure A.5: Single Pin Superprompt Power Curves for ATS with Interpolated Finite Difference Method Using
the Angular Flux and Absolute Direct Criteria for a Range of Tolerances, Time Steps Shown in Parentheses

Table A.5: Single Pin Superprompt Error Comparison for ATS with Interpolated Finite Difference Method
Using the Angular Flux and Absolute Direct Criteria for a Range of Tolerances

Tol.
No. of
Time
Steps

Peak
Power
(%)

Time to
Peak
(ms)

εrel.MAX

(%)
εrel.RMS

(%)
εrel.INT

(%) RT ts (s)

ref. 1000 2016 101.40 - - - 0.061
CTS 100 2039 100.00 5.41 2.55 0.40 0.061

1.0e-01 396 2020 100.94 0.86 0.42 0.07 0.062
5.0e-01 312 2019 100.88 1.01 0.55 0.09 0.062
1.0e+00 218 2016 100.56 2.16 1.21 0.24 0.063
5.0e+00 68 2013 97.86 11.19 5.99 1.13 0.064
1.0e+01 35 2001 93.04 36.09 14.44 2.51 0.066
5.0e+01 17 2357 77.00 131.05 43.05 6.99 0.071
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Figure A.6: Single Pin Superprompt Power Curves for ATS with Interpolated Finite Difference Method Using
the Angular Flux and Relative Direct Criteria for a Range of Tolerances, Time Steps Shown in Parentheses

Table A.6: Single Pin Superprompt Error Comparison for ATS with Interpolated Finite Difference Method
Using the Angular Flux and Relative Direct Criteria for a Range of Tolerances

Tol.
No. of
Time
Steps

Peak
Power
(%)

Time to
Peak
(ms)

εrel.MAX

(%)
εrel.RMS

(%)
εrel.INT

(%) RT ts (s)

ref. 1000 2016 101.40 - - - 0.061
CTS 100 2039 100.00 5.41 2.55 0.40 0.061

1.0e-01 367 2020 101.04 0.90 0.43 0.06 0.063
5.0e-01 168 2037 99.90 5.15 1.69 0.40 0.063
1.0e+00 88 2267 103.73 12.82 3.40 0.86 0.063
5.0e+00 26 2549 100.67 26.46 10.93 2.05 0.069
1.0e+01 17 2557 89.29 43.33 19.88 2.86 0.073
5.0e+01 15 2436 90.00 131.05 43.53 7.40 0.073
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Figure A.7: Single Pin Superprompt Power Curves for ATS with Interpolated Finite Difference Method
Using the Angular Flux and Absolute Integrated Criteria for a Range of Tolerances, Time Steps Shown in
Parentheses

Table A.7: Single Pin Superprompt Error Comparison for ATS with Interpolated Finite Difference Method
Using the Angular Flux and Absolute Integrated Criteria for a Range of Tolerances

Tol.
No. of
Time
Steps

Peak
Power
(%)

Time to
Peak
(ms)

εrel.MAX

(%)
εrel.RMS

(%)
εrel.INT

(%) RT ts (s)

ref. 1000 2016 101.40 - - - 0.061
CTS 100 2039 100.00 5.41 2.55 0.40 0.061

1.0e-04 392 2020 101.17 0.86 0.42 0.07 0.062
5.0e-04 290 2019 100.77 1.13 0.60 0.10 0.063
1.0e-03 231 2017 100.68 1.55 0.88 0.15 0.062
5.0e-03 106 2024 99.53 3.99 2.37 0.40 0.063
1.0e-02 77 2029 99.12 5.90 3.42 0.56 0.063
5.0e-02 36 2046 94.45 18.52 9.04 1.45 0.066
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Figure A.8: Single Pin Superprompt Power Curves for ATS with Interpolated Finite Difference Method
Using the Angular Flux and Relative Integrated Criteria for a Range of Tolerances, Time Steps Shown in
Parentheses

Table A.8: Single Pin Superprompt Error Comparison for ATS with Interpolated Finite Difference Method
Using the Angular Flux and Relative Integrated Criteria for a Range of Tolerances

Tol.
No. of
Time
Steps

Peak
Power
(%)

Time to
Peak
(ms)

εrel.MAX

(%)
εrel.RMS

(%)
εrel.INT

(%) RT ts (s)

ref. 1000 2016 101.40 - - - 0.061
CTS 100 2039 100.00 5.41 2.55 0.40 0.061

1.0e-04 332 2021 100.93 1.31 0.51 0.07 0.063
5.0e-04 177 2038 100.00 2.87 1.00 0.17 0.062
1.0e-03 125 2041 99.86 3.52 1.73 0.33 0.063
5.0e-03 59 2115 96.40 8.54 3.60 0.61 0.066
1.0e-02 42 2439 106.58 22.71 7.59 1.51 0.066
5.0e-02 23 2484 92.59 28.25 12.48 2.16 0.073
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A.3 Alpha Eigenvalue ATS without Feedback

Figure A.9: Single Pin Subprompt Power Curves for ATS with Alpha Method Using the Angular Flux and
Absolute Direct Criteria for a Range of Tolerances, Time Steps Shown in Parentheses

Table A.9: Single Pin Subprompt Error Comparison for ATS with Alpha Method Using the Angular Flux
and Absolute Direct Criteria for a Range of Tolerances

Tol.
No. of
Time
Steps

εrel.MAX (%) εrel.RMS (%) εrel.INT (%) RT ts (s)

ref. 1000 - - - 0.047
CTS 40 1.22 0.52 0.08 0.058

1.0e-01 136 0.29 0.16 0.02 0.124
2.0e-01 79 0.35 0.24 0.03 0.108
5.0e-01 36 0.88 0.47 0.06 0.113
1.0e+00 21 2.00 0.84 0.11 0.116
2.0e+00 14 3.70 1.29 0.20 0.126
5.0e+00 13 3.56 1.50 0.27 0.141
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Figure A.10: Single Pin Subprompt Power Curves for ATS with Alpha Method Using the Angular Flux and
Relative Direct Criteria for a Range of Tolerances, Time Steps Shown in Parentheses

Table A.10: Single Pin Subprompt Error Comparison for ATS with Alpha Method Using the Angular Flux
and Relative Direct Criteria for a Range of Tolerances

Tol.
No. of
Time
Steps

εrel.MAX (%) εrel.RMS (%) εrel.INT (%) RT ts (s)

ref. 1000 - - - 0.047
CTS 40 1.22 0.52 0.08 0.058

1.0e-01 150 0.29 0.15 0.02 0.127
2.0e-01 93 0.29 0.20 0.02 0.117
5.0e-01 42 0.67 0.36 0.05 0.103
1.0e+00 25 1.27 0.62 0.09 0.126
2.0e+00 16 2.41 1.00 0.16 0.131
5.0e+00 13 3.56 1.50 0.27 0.172
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Figure A.11: Single Pin Subprompt Power Curves for ATS with Alpha Method Using the Angular Flux and
Absolute Integrated Criteria for a Range of Tolerances, Time Steps Shown in Parentheses

Table A.11: Single Pin Subprompt Error Comparison for ATS with Alpha Method Using the Angular Flux
and Absolute Integrated Criteria for a Range of Tolerances

Tol.
No. of
Time
Steps

εrel.MAX (%) εrel.RMS (%) εrel.INT (%) RT ts (s)

ref. 1000 - - - 0.047
CTS 40 1.22 0.52 0.08 0.058

1.0e-04 134 0.29 0.17 0.03 0.151
5.0e-04 63 0.48 0.27 0.03 0.116
1.0e-03 47 0.65 0.35 0.04 0.130
5.0e-03 23 1.59 0.69 0.09 0.142
1.0e-02 19 2.07 0.88 0.12 0.118
5.0e-02 13 3.56 1.45 0.24 0.165
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Figure A.12: Single Pin Subprompt Power Curves for ATS with Alpha Method Using the Angular Flux and
Relative Integrated Criteria for a Range of Tolerances, Time Steps Shown in Parentheses

Table A.12: Single Pin Subprompt Error Comparison for ATS with Alpha Method Using the Angular Flux
and Relative Integrated Criteria for a Range of Tolerances

Tol.
No. of
Time
Steps

εrel.MAX (%) εrel.RMS (%) εrel.INT (%) RT ts (s)

ref. 1000 - - - 0.047
CTS 40 1.22 0.52 0.08 0.058

1.0e-04 141 0.29 0.16 0.02 0.152
5.0e-04 67 0.42 0.25 0.03 0.133
1.0e-03 49 0.57 0.32 0.04 0.127
5.0e-03 25 1.33 0.61 0.08 0.135
1.0e-02 19 2.00 0.81 0.11 0.163
5.0e-02 13 3.89 1.42 0.24 0.148
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A.4 Alpha Eigenvalue ATS with Feedback

Figure A.13: Single Pin Superprompt Power Curves for ATS with Alpha Method Using the Angular Flux
and Absolute Direct Criteria for a Range of Tolerances, Time Steps Shown in Parentheses

Table A.13: Single Pin Superprompt Error Comparison for ATS with Alpha Method Using the Angular Flux
and Absolute Direct Criteria for a Range of Tolerances

Tol.
No. of
Time
Steps

Peak
Power
(%)

Time to
Peak
(ms)

εrel.MAX

(%)
εrel.RMS

(%)
εrel.INT

(%) RT ts (s)

ref. 1000 2016 101.40 - - - 0.063
CTS 100 2039 100.00 5.41 2.55 0.40 0.064

1.0e-01 393 2024 101.16 1.15 0.55 0.09 0.095
5.0e-01 319 2025 100.56 1.72 0.79 0.13 0.094
1.0e+00 233 2029 99.91 3.36 1.49 0.25 0.096
5.0e+00 58 2136 92.96 16.55 8.64 1.59 0.101
1.0e+01 33 2206 90.21 24.30 12.30 1.95 0.105
5.0e+01 15 2471 82.08 153.27 49.61 7.68 0.110
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Figure A.14: Single Pin Superprompt Power Curves for ATS with Alpha Method Using the Angular Flux
and Relative Direct Criteria for a Range of Tolerances, Time Steps Shown in Parentheses

Table A.14: Single Pin Superprompt Error Comparison for ATS with Alpha Method Using the Angular Flux
and Relative Direct Criteria for a Range of Tolerances

Tol.
No. of
Time
Steps

Peak
Power
(%)

Time to
Peak
(ms)

εrel.MAX

(%)
εrel.RMS

(%)
εrel.INT

(%) RT ts (s)

ref. 1000 2016 101.40 - - - 0.063
CTS 100 2039 100.00 5.41 2.55 0.40 0.064

1.0e-01 350 2029 100.33 2.32 0.83 0.14 0.096
5.0e-01 171 2055 99.02 9.95 2.84 0.56 0.102
1.0e+00 98 2169 95.31 13.80 3.64 0.75 0.095
5.0e+00 24 2549 87.21 40.58 13.17 2.11 0.117
1.0e+01 15 2442 85.72 153.27 48.54 7.78 0.109
5.0e+01 14 2462 70.00 153.27 50.18 8.24 0.120
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Figure A.15: Single Pin Superprompt Power Curves for ATS with Alpha Method Using the Angular Flux
and Absolute Integrated Criteria for a Range of Tolerances, Time Steps Shown in Parentheses

Table A.15: Single Pin Superprompt Error Comparison for ATS with Alpha Method Using the Angular Flux
and Absolute Integrated Criteria for a Range of Tolerances

Tol.
No. of
Time
Steps

Peak
Power
(%)

Time to
Peak
(ms)

εrel.MAX

(%)
εrel.RMS

(%)
εrel.INT

(%) RT ts (s)

ref. 1000 2016 101.40 - - - 0.063
CTS 100 2039 100.00 5.41 2.55 0.40 0.064

1.0e-04 392 2024 100.89 1.10 0.54 0.08 0.095
5.0e-04 300 2024 100.77 1.54 0.72 0.10 0.101
1.0e-03 234 2024 100.25 2.51 1.07 0.15 0.096
5.0e-03 110 2029 99.39 4.84 2.39 0.37 0.098
1.0e-02 79 2034 98.44 7.14 3.53 0.53 0.100
5.0e-02 36 2113 93.66 19.07 9.78 1.64 0.105
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Figure A.16: Single Pin Superprompt Power Curves for ATS with Alpha Method Using the Angular Flux
and Relative Integrated Criteria for a Range of Tolerances, Time Steps Shown in Parentheses

Table A.16: Single Pin Superprompt Error Comparison for ATS with Alpha Method Using the Angular Flux
and Relative Integrated Criteria for a Range of Tolerances

Tol.
No. of
Time
Steps

Peak
Power
(%)

Time to
Peak
(ms)

εrel.MAX

(%)
εrel.RMS

(%)
εrel.INT

(%) RT ts (s)

ref. 1000 2016 101.40 - - - 0.063
CTS 100 2039 100.00 5.41 2.55 0.40 0.064

1.0e-04 335 2026 100.90 1.55 0.63 0.10 0.102
5.0e-04 184 2037 100.28 3.05 1.15 0.20 0.102
1.0e-03 131 2046 100.05 4.49 1.66 0.28 0.104
5.0e-03 60 2090 98.97 9.64 3.81 0.63 0.106
1.0e-02 42 2174 95.28 15.65 5.81 0.97 0.110
5.0e-02 21 2571 86.79 42.69 17.03 2.98 0.118
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