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ABSTRACT

In many economic systems, participants are unable to internalize social costs.

These can be anything from pollution to default risk in financial systems. To deal

with these costs, regulators impose limits on the behavior of market participants.

These regulations do not always have straightforward effects, and for new regulations

a model is required to evaluate them. In this thesis I will perform this modeling

task in several domains using a computational agent-based approach. This approach

affords two advantages. First, agent-based models can handle intricate models of

participant behavior. This is often necessary when participants are operating in

a complex domain, using large modeling and computational resources of their own.

Second, agent-based models combined with empirical game theoretic analysis (EGTA)

can calculate Nash equilibria under new regulations. This addresses in part the

Lucas critique of models with regulation, which stipulates that agents can adapt

their behavior in ways that break fixed assumptions about agent behavior.

I evaluate the overall effects of regulation using metrics appropriate to each domain

I study. Using two models of the financial system, one based on an asset market and

one based on a debt market, I study Basel regulations which have been criticized for

being too simplistic and for actually being counterproductive. I find that in fact,

when accounting for the strategic adaptations of banks, Basel regulations are largely

beneficial for financial stability. I then examine recent EPA regulations that allow

the trading of emissions credits in an attempt to bring down the cost of reducing

emissions. I find that while the cost of reducing pollution is reduced as desired, costs

to consumers are increased by firms that use emissions trading to coordinate price

x



hikes. In all cases, the use of game-theoretic analysis was crucial to evaluating the

effect of regulation.
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CHAPTER I

Introduction

Markets are the primary way our society allocates goods and services. But when

a market fails to achieve acceptable social outcomes, governments are called upon to

modify the rules of engagement. In some cases, these regulations achieve their inten-

tions and become standard. An example of this is American bank deposit insurance

implemented by the FDIC. During the Great Depression, it became clear that bank

runs were a result of strategic behavior by depositors. Each individual’s withdrawal

of deposits made it more likely that the bank would default, making it rational for

all individuals to withdraw their funds at once in response to bad financial news.

This was a self-fulfilling prophecy as banks with no deposits were almost guaranteed

to go out of business. Regulators proposed deposit insurance, which stipulated that

deposits would be guaranteed by the government. This changed the incentives of de-

positors; since they would get their deposits back either way, they no longer felt the

collective need to withdraw all deposits, which kept he banks in business when there

was bad news. Most importantly, the deposit insurance never actually had to be paid!

This was intended, as the government could not afford to pay much deposit insurance

during the Depression. Changing the strategic calculus of market participants using

regulation is an effective, and sometimes necessary, way of ensuring markets operate

smoothly.

1



However, the strategic response of economic agents is not always straightforward

to predict. Modern markets consist of sophisticated agents interacting in a complex

environment. When these markets fail, new models are required to explain what

went wrong and suggest the best policy response. But governments are compelled

to respond with lawmaking immediately, to the best of their ability. The problem

with this urgency is that if market participants adapt to new rules in surprising ways,

the regulatory response becomes at best obsolete and at worst actively harmful. A

prominent example is that of the Phillips curve model, which predicted that high

inflation would lead to low unemployment. Stimulus in many countries was rolled out

in the 1970s with this model in mind. But instead of the economic growth predicted

by the Phillips curve, the surprising development of stagflation, a stagnant economy

with high inflation, came about as a result of firms decreasing hiring due to higher

expected prices. Thus when strategic adaptations by market participants are not

anticipated correctly, amendments to the original policy fix become necessary, which

themselves may not be well understood by current economic models. Without the

ability to predict strategic response, regulators are left constantly playing catch-up

to past mistakes.

Even a partial understanding of how market participants respond strategically

to regulation can help break this cycle. I advocate a computational agent-based

approach to modeling markets and understanding the impact of regulation. This

allows for models with an increased ability to handle complex agents and markets,

compared with analytically-tractable models. To ensure that I am taking the strategic

behavior of these agents into account, I use empirical game-theoretic analysis

(EGTA), a framework for gaining deeper insights into the strategic adaptations of

agents in agent-based models. EGTA is outlined in Section 1.2.

2
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Figure 1.1: Illustration of the components of an agent-based model.

1.1 Agent-based models and methods

The central tool I use in my analysis of markets is the agent-based model , which

models economic systems by simulating the behavior of many individual agents. In

these models, agents are given the task of optimizing their payoffs by choosing

actions . The market mechanism processes these actions, adds stochasticity, and

publishes agent states and a market state . These states, when input to a payoff

function , determine payoffs for each agent. An overall view of how these two pro-

cesses interact is given in Figure 1.1. One can run an agent-based model by following

the figure, starting with a state history and ending with new market and agent

states. The new states are added to the state history , and the process iterates.

This act of iterating represents the passage of time, and thus we call each iteration a

period .

Dynamic models approximate persistent markets where agents update their de-

cisions over time. In these markets, agents adapt their actions to states revealed to

them by the market mechanism in past periods. The information encoded by these

states include:

1. Realized randomness from the market clearing process.

2. The effect of agent actions on market state outcomes.

3. The effect of agent actions on agent state outcomes.

3



Depending on the modeled economic scenario, any or all of these historically

realized variables can be input into an agent’s strategy as data. A strategy is set

once and for all by an agent before the first period of running the model, and specifies

how agents translate state histories into actions that can be submitted to the market

mechanism. The set of all possible strategies is called the strategy space . This set

is constructed by the modeler and can, in general, be different for each agent. A pure

strategy profile consists of the strategies that are followed by each agent through

a complete run of the model. It is an N -tuple, with an entry indexed by i consisting

of a single member of agent i’s strategy space.

The other process in an agent-based model is the market mechanism, whose main

function is to translate the actions of agents into states, which in turn set payoffs.

The market mechanism may contain parameters that can be used to emulate different

types of economic environments. For example, a noise parameter might specify the

size of a typical stochastic shock to output states, representing volatility level in a

market. The market mechanism can use information from the state history, most

commonly historical market states, to produce new states. This dependence stems

from the fact that market mechanisms include regulations that attempt to achieve

some goal on market states. Regulators may periodically measure historical market

states to inform how stringent future regulations should be.

Figure 1.1 is abstract in that it does not depict how each individual agent’s actions

lead to an eventual payoff. In fact, the agent-based models in this thesis share the

property that any agent’s actions can affect any other agent’s payoff through any of

the market mechanism’s output states. Since agents follow strategies that process

historical states to decide on actions, this means a particular agent’s choices directly

affects the actions taken by other agents, which in turn affect the original agent

and its payoffs. Therefore, it is of paramount importance that agents consider the

strategic impact they may have on the pool of agents when committing to a strategy.

4



Accounting for this strategic behavior leads us to the original economic insights in

this thesis.

The first step towards capturing important strategic behavior is the specification

of a strategy space. Sometimes there are actual strategies that are known and widely

employed in the market we are studying. Populating the strategy space with these

is usually a good idea, as it anchors the resulting analysis and often gives a flavor

of real strategic tensions that exist in the market. In general, we want to devise a

strategy space that provides agents a diverse set of options corresponding to different

ways that they may impact their short and long term payoffs. When we solve for

which strategic profiles payoff-seeking agents prefer using (methodology explained in

Section 1.2), this results in a clear economic story of how the balancing of strategic

tensions leads to an overall economic outcome in the model.

1.2 Equilibrium and empirical game-theoretic analysis

The outcome of an agent-based model is highly sensitive to the combination of

strategies chosen by agents. Recall that this is a decision agents must make at the

beginning of the model. Their payoffs, and thus their choice of strategy, depends on

the strategies chosen by all other agents. How should agents approach this complex

decision?

The entire dynamic agent-based model can be understood as a function mapping

pure strategy profiles into payoffs for each agent. This function defines a game that

agents are playing. While models require a pure strategy profile as input, an agent

is not limited to choosing a single strategy in this game. Instead, it may randomize

over its strategy space in pursuit of better payoffs, only choosing a single strategy

once the simulated model begins. This randomized strategy selection is a mixed

strategy , which is a distribution over an agent’s strategy space, corresponding to

the probabilities that the agent will pick each member of the space for use over a

5



run of the model. A collection of mixed strategies, one for each agent, constitutes a

mixed strategy profile .

A mixed strategy profile is a Nash equilibrium if no agent can increase their

expected payoff by deviating to a different mixed strategy. A Nash equilibrium is

always guaranteed to exist, but may be hard to compute [19]. This computational

problem is exacerbated by the fact that the agent-based models used in this thesis

require a multi-step procedure to go from a particular strategy profile to a payoff. A

further complication is that the market mechanism contains stochasticity, so payoffs

may be different for different runs of the model for the same strategy profile.

EGTA is a suite of tools that automates the process of finding Nash equilibria

in agent-based models [10]. Given black-box access to an agent-based model and a

discrete set of strategies, it selects the necessary strategy profiles that must have their

payoffs evaluated in order to find an equilibrium. It then schedules simulations to

evaluate these payoffs. When payoffs are stochastic, multiple simulations for each

profile will be scheduled and an average payoff will be evaluated. The total number

of profiles is exponential in the number of strategies as well as the number of agents

in the model, so EGTA offers tools to reduce the number of profiles sampled. One

technique is called deviation-preserving reduction [70]. This allows the modeler

to specify how many reduced players to use. The number of profiles to evaluate

decreases to be commensurate with this number instead of actual number of players,

at the cost of no longer being able to find exact equilibria. This is effective when

the number of players in the game is large. Another technique is to first check for

equilibria in subgames that are played with a subset of the full strategy set. This is

called quiescing and can be effective for games with a large amount of strategies

but which have equilibria in a small subset.

Once enough payoffs have been simulated, EGTA uses replicator dynamics to find

an equilibrium to the game [59]. This equilibrium becomes our prediction for how
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agents choose strategies in a specified regulatory environment, and the question of

how regulations might trigger strategic adaptations is addressed.

1.3 Summary of contributions

Recall that the regulator’s problem in setting policies for markets is that it is

difficult to predict the strategic response of market participants. I address this diffi-

culty by first building dynamic agent-based models that provide strategic flexibility

to agents. I then use EGTA to predict how agents given this flexibility might respond

to regulation. This helps to circumvent the game of catch-up that happens when

strategic behavior does not inform regulation.

A significant portion of this thesis analyzes financial markets. I was originally

motivated by the fact that the 2008 financial crisis did not result in any philosophical

changes in regulation. Rather, the same Basel regulatory guidelines were preserved,

and made more stringent. This poses the interesting economic question of whether

these more stringent regulatory requirements will motivate financial institutions into

behavior that leads to better social outcomes. Novel insights into how agents in the

financial system adapt strategically have real-world policy implications, and demon-

strate how economic analysis of regulations may be able to catch up to real regulated

markets.

The second market we study is the automobile market. This market consists

of several interrelated products produced by a few manufacturers. This leads to

an oligopoly market structure where pricing or production quantity decisions made

for each product, by each firm, affects the decisions made by every other firm and

product combination. It is analytically intractable to solve for an equilibrium given

this market structure, so we must develop a computational approach even for an

unregulated market. Adding regulatory constraints only makes this approach more

salient. We develop a strategic model of this market that can be used to evaluate the
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effect of emissions regulations on consumers and firms.

The overall goal of building an agent-based model and applying EGTA to analyze

the impact of regulation can be broken down into three stages: defining a modeling

framework, building a model, and applying EGTA. My work in this thesis focuses

on the appropriate stage(s) given context and existing work, but all three stages are

represented. A summary and guide to this thesis is provided below.

1. An extended analysis of an existing agent-based model of financial markets in

Chapter II. The existing model predicted that regulations introduced after the

2008 crisis would lead to financial instability. I identify a possible strategic

response to regulation in this model. I use EGTA to calculate equilibria that

account for this response, with and without regulation. In the new regulated

equilibrium, more funds stay out of default and banks lose less capital, revers-

ing the findings of the original study. Presented at the ACM Conference on

Economics and Computation 2017 [13].

2. A framework for representing and analyzing network structure in financial mar-

kets, called financial credit networks (FCNs) in Chapter III. I define this

framework and develop algorithms that make it possible to represent financial

contracts and route payments [12]. FCNs make it possible to build models

where the ramifications of local credit events are felt globally, which will be key

to my work in Chapter IV. Presented at the ACM Conference on Economics

and Computation 2016.

3. An FCN-based model of interbank debt formation, used to analyze the effect of

debt market dynamics on financial stability in Chapter IV. This model repro-

duces several important systemic risks endogenously from profit-seeking bank

behavior. These risks have previously only been studied in static networks. At

equilibrium, Basel is able to reduce systemic risk significantly despite having
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access to only aggregated balance sheet data (as opposed to metrics based on

the network structure between banks). A preliminary version of this model was

presented at the AI3 workshop during AAMAS 2018 [14].

4. An investigation of how automobile manufacturers respond strategically to emis-

sions regulation in Chapter V. The model I use incorporates the oligopolistic

structure of the car market. This analysis revealed that emissions trading pro-

vides a clear benefit to consumers and producers of cars, but that producers

benefit disproportionately by using the trading platform to coordinate price

increases. Presented at the International Joint Conference on Artificial Intelli-

gence 2019 [11].

1.4 Possible extensions

The most obvious extension to this work is a continuation of modeling the bank-

ing system using EFCNs. While my model produces (qualitatively) some important

features of the 2008 crisis, the degree to which the evaluated model settings in Chap-

ter IV match data from the crisis is unknown. There are also many real-life parties

that are not modeled, such as firms in the real economy and homeowners. EFCNs

allow the modeling of dynamic debt relations between these parties, which may illu-

minate further the ways in which banking sector collapse affects the real economy.

EFCNs themselves may also be extended to include other types of financial re-

lationships. For instance, shared ownership of assets (i.e., equity) is a major way

in which participants in modern economies invest in each other, that is abstracted

away by necessity in my credit cycle model due to its absence from EFCNs. In ad-

dition, nodes in an EFCN have no ability to influence each other through non-debt

investment activities, and cannot liquidate their debt through a market. These are all

important features of the real banking system that could be added to a new modeling
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framework.

In my work on EPA regulations, I have assumed a fixed technological profile. In

reality, both gas and electric engine technologies are advancing rapidly, and it would

be informative to evaluate different scenarios that include these advances. This could

be handled with minimal changes to the modeling framework, but would require

carefully selected scenarios that are preferably based on data.
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CHAPTER II

Banking regulation and the leverage cycle

2.1 Introduction

The financial crisis in 2008 marked a seismic shift in perceptions of how markets

operate, and its reverberations are still being felt in debt markets around the world

[61]. Our understanding of how financial crises arise time and again in the midst of

sophisticated and logically motivated actors is still incomplete. After an initial rush

in academic circles to develop new economic models to reflect forensic evidence from

the crash, and to recommend regulation to prevent future crashes, we have been left

with a plethora of different viewpoints.

One approach that has gained influence even in crisis-unrelated research [31] fo-

cuses on the fact that buyers and sellers do not have the same access to information

about assets, especially in the context of debt markets. Based on this asymmetry,

Bernanke et al. [6] showed that periodic, deep financial crashes are endemic due to

an overreaction to interest rate changes. The recommendation is clear: force sellers

to be more transparent about their wares. Almost everyone agrees that making more

information available is a good policy, and regulators commonly work towards this

goal.

There are many other convincing perspectives on the crisis. The irrational exu-

berance [62] narrative posits a deep behavioral reason for market malfunction. It is
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also popular to point to systemic factors, like lax lending standards and oversight,

leading to market participants whose priorities move away from the proper valua-

tion of assets [15]. Another body of work points to the seizure of credit markets

at the most critical juncture of the crisis for amplifying the crisis. This failure has

been attributed to either too much refinancing during normal times [55], or a run

on liquidity [33] in response to financial panic. Agent-based simulations elaborating

on traditional economic models have also been used. Bookstaber et al. [7] introduce

one where agents have fixed fire-sale behavior, and the spread of the crisis can sub-

sequently be measured through different pathways. All of these models can explain

some aspects of the financial crisis, and suggest various emphases for macroeconomic

policy and regulation.

However, given the complexity of the financial system it is difficult to draw con-

clusions directly from underlying causes for ideal policies. An alternative perspective

is to start from the policies, and model the situations where they are beneficial or

harmful. I take this perspective in this chapter, focusing on international banking

regulations in the Basel framework . Basel’s salience follows from its central role

in global financial policy, and its force in governing the lending policies of major

financial institutions.

Basel regulations consist chiefly of a limit to leverage , or the ratio of gross in-

vestment to wealth (capital for banks). By taking on debt, banks can make this

ratio arbitrarily large if unregulated by investing on credit. An institution with high

leverage cannot pay its obligations if its investments underperform even slightly, so

it seems natural that limiting leverage may help control default risk. The fact that

leverage levels turned out to predict the financial crisis better than interest rates

evidences the centrality of this variable to financial stability.1 Regulator belief in

limiting leverage is so strong that their most prominent operational regulation after

1A study by Geanakoplos et al. [26] established a link between financial crashes and leverage
levels that successfully predicted data from 2.2 million American households.
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the crisis was to simply implement a stricter version of Basel. But as such policies

had failed to immunize the financial system, there is some uncertainty about how

much the stricter version will help in the future.

The leverage cycle model of Geanakoplos [24] describes the ebb and flow of

leverage, shedding light on how aggregate leverage may increase to dangerous levels.

Importantly, the model endogenizes leverage, showing how it evolves through agent

decision making. Several key predictions made by this model were borne out by

asset behavior during the crisis. First, price fluctuations were disproportionate to

fundamental value changes. Second, the failure of a few highly leveraged investors

had an outsize impact on prices. Third, the severe tightening of short term credit

markets contributed to a deeper crash. All of these predictions were entailed by the

model, with leverage choices at Walrasian equilibrium under perfect information.

While the model of Geanakoplos [24] has the advantage of being fully analytical,

it extended only to three periods and thus could not accommodate changing finan-

cial regulation over time. In a discrete agent-based extension to the leverage cycle

model, Thurner et al. [64] and Poledna et al. [52] introduced a Basel-style regula-

tor that imposes a leverage limit on financial firms. As in the latest round of Basel

financial regulations, the leverage limit in the model is more stringent in times of

high asset price volatility. Using this model, Poledna et al. [52] argue that Basel

regulations could, counter to their purpose, contribute to financial instability. In

their model under certain settings, market participants (or funds) defaulted more

frequently and produced more volatile asset prices when a Basel-based leverage limit

was implemented. Market participants also made less profit. However, funds that

defaulted were of a smaller size, so the cost per default decreased. A follow-up study

by Aymanns and Farmer [3] suggests that an inverted Basel regulation would be more

effective at preventing financial crises.

My contribution is to observe that a certain fixed assumption in these models,
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the aggression distribution , might naturally be considered a strategic choice by

agents. I extend the model of Poledna et al. [52] to a game, where the agents strate-

gically choose their aggression level in response to the regulation regime. I employ

simulation-based methods to analyze this game, identifying aggression distributions

that are in approximate Nash equilibrium. Using this approach, I reverse in aggre-

gate the finding that Basel causes more defaults. Losses that are due to default

decrease further, and agent profits decrease less. The overall case against Basel is

thus weakened by my findings.

In Section 2.2, I describe the model used by Poledna et al. [52], and explain

the effect of Basel regulations on the leverage cycle in this model. I also describe

implementation details and assumptions used in the original work that carry over into

my independent implementation. In Section 2.3, I argue that agent aggression levels in

this model should be treated as strategic variables. I propose an approach to analyze

the strategic adaptations of agent aggression using Nash equilibrium, while continuing

to clear markets in each period, using prices. Finally, I design an experiment that

distinguishes the effect of Basel on the leverage cycle for a fixed set of agents (studied

in previous work) from its effect in equilibrium, due to strategic adaptations of agents.

I measure the effect of Basel on financial stability by looking at default rate, agent

profits, capital losses, and price volatility. The strategic adaptation of agents on

its own improves every measure except price volatility, which remains unchanged.

In aggregate, I find that Basel decreases default rate and capital losses, while also

decreasing agent profits and increasing price volatility.

2.2 An agent-based model of the leverage cycle

Following Poledna et al. [52], we adopt and extend the basic leverage cycle model

of Geanakoplos [25]. This model has been credited with predicting characteristics

of the 2008 financial crisis years in advance. By treating leverage as an endogenous
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decision, it characterizes equilibrium in financial markets in terms of leverage taken

by each agent, in addition to the asset price, and the interest rate on debt. Since Basel

targets leverage as a policy variable, the leverage cycle model seems like a natural

candidate for evaluating recent financial regulation.

However, the original leverage cycle model is limited in its ability to express real-

world complexity. For example, it cannot be extended for an arbitrary number of

periods, and short asset positions are not considered. Basel regulation, since it re-

sponds to the historical volatility of asset prices, is not easily incorporated. To address

such issues, Poledna et al. [52] develop a discrete agent-based model (ABM). At a

high level, this model clears the market in each period for persistent financial agents.

Agents carry over their wealth to each new period, where demand undergoes a ran-

dom shock and new prices are formed. Basel regulation is easily expressed in this new

model since a regulator may act in each period with knowledge of historical prices.

The flip side is that agents are no longer coming to an intertemporal equilibrium as

in the leverage cycle model. But leverage remains an endogenous decision by each

market participant.

2.2.1 Agent-based model

Poledna et al. [52] include four types of agent, who interact in a market for a sin-

gle risky asset. The asset has an unchanging fundamental value , V , and a market

price p(t) at time t, determined by the cumulative demand of all agents. The central

actors are informed value investors called fund managers . Fund managers know

the fundamental value and adjust their demand for the asset based on a mispricing

signal m = V − pt. The fund managers exhibit heterogeneous demand as a function

of m, reflecting their differing levels of aggression in pursuing investment oppor-

tunities. The more aggressive a fund is, the more leverage it will take to pursue a

given mispricing signal. Aggression reflects factors such as a fund’s confidence that
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the asset price will return to its fundamental in short order, and its tolerance for risk.

A fund manager that buys an asset while it is priced under its fundamental is betting

that the price will move back up and make her a profit.

To buy or short-sell assets, fund managers may take loans from the bank , treated

as an agent in the ABM of Poledna et al. [52]. The bank provides credit to funds

but requires a set amount of collateral per unit debt. In effect, this collateral

requirement imposes a leverage limit . To see this, consider how a leveraged investor

keeps her books. She knows that to borrow a dollar from the bank she must commit

some amount of wealth as collateral. Call this collateral requirement X. But she only

has so much wealth, W , to commit in total. Thus there is a maximum amount she

can borrow, W/X, which is constant given W . The ratio of this maximum amount to

her current wealth is 1/X. If the bank decides to increase X, it effectively decreases

the leverage limit. In practice, we refer to the bank setting a leverage limit without

relating explicitly to collateral. In general, the investor is taking on debt in order to

take a larger investment position, which she is free to do until she is over the leverage

limit. Then she must wind down her investment position and reduce her debt until

she is in compliance with the bank.

Thus, in any given time period, funds are limited in the size of the asset position

they can take, either long or short, in response to asset mispricings. Note that

the bank may be forced to take losses when fund managers default. These losses are

recorded but the bank itself never defaults, as it is assumed that there is an unlimited

bailout fund.

Mispricings are made possible by stochastic, weakly mean-reverting asset demand

from aptly named noise traders . The noise traders represent a collection of ill-

informed investors. Their collective behavior exerts a random shock to total asset

demand, which in turn shifts the market-clearing asset price.

The final agent type is the fund investor . The fund investor’s role is simply to
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move capital from fund managers with poor (historical) performance, toward those

with good performance.

2.2.2 The leverage cycle and Basel: intuition

It is easy to see that without any limits on leverage, the price of the asset would

always return to its fundamental value, as funds would just increase their position

against the direction of the shock until the mispricing disappears. It requires just one

fund able to take unlimited size positions on the asset to ensure that there is never

any price volatility around V . But with leverage limits, the system exhibits complete

leverage cycles over time. The qualitative steps to the cycle are shown in Figure 2.1.

Figure 2.1: Stages of the leverage cycle modeled by Poledna et al. [52].

When shocks are small enough, wealth in the system becomes more and more

concentrated in the most aggressive funds as they take more effective leverage in

pursuing mispricing opportunities. This gradually increases the sensitivity of total

wealth in the system to random price shocks until some investors reach their leverage

limit. At that point, a decrease in the asset price would push the leverage ratio over

the limit,2 and so the investor would be forced to sell to get back in compliance when

she would actually rather be buying the asset. This action is procyclical , since the

2For example, consider the investor with $1 who borrows $5 to buy assets worth $6. Her leverage
ratio is currently 6. If the asset value decreases to $5.5, the investor still owes $5 to the bank, so
her wealth is now $0.5. Her leverage ratio increases to 11, which may be out of compliance with the
bank.
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act of selling further depresses the price, which can lead to further deleveraging by

other funds. It may even induce a mass sell-off (or buy-off for short positions), as

other, formerly less leveraged funds struggle to satisfy the leverage limit due to the

acceleration of the price movement against their positions. Eventually, enough funds

have either defaulted or deleveraged that collectively, they have become insensitive

to further price movements, and the cycle begins again. Price volatility, probability

of investor default, and losses on defaulted loans are all elevated due to this leverage

cycle.

Within this model we can also incorporate Basel-style regulation, which makes

leverage limits more stringent during periods of high volatility, and less stringent

otherwise. Under fixed fund behavior, this increases the probability that investors

get into procyclical situations, since the leverage limits themselves will adapt to be

procyclical. Intuitively, higher leverage limits in volatile times could allow funds to

provide a voice of reason and return the price to the asset’s fundamental value. So

Basel, by doing the opposite, potentially makes volatility and default more likely. On

the other hand, Basel may reduce the losses suffered by the bank on defaulted loans,

since the doomed funds were forced to deleverage more quickly before their default.

My study starts by reimplementing this ABM and replicating the original results.

The remainder of this section describes model details; my extension to incorporate

strategic response is described in Section 2.3. To implement the model, I use as

references the description of Poledna et al. [52] together with code provided by these

authors in response to our queries. Unless otherwise stated, all of the following

modeling decisions and parameters are as implemented in the prior work. I attempt

to keep the model as close as possible to prior work in order to isolate the effect that

our equilibrium concept has on the evaluation of Basel policies. Assumptions were

justified in the original work by drawing parallels with real data on financial crashes.
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2.2.3 Schedule

The state of the market is defined by an equilibrium asset price and the resulting

holdings and debt levels of the fund managers. The agent-based simulation iterates

between a price formation phase and a wealth update phase. I describe these phases

at a high level below to give a sense of the scheduling of tasks.

Price formation

1. The demand from each fund manager is a fixed function of the mispricing signal

and the fund’s current wealth. These demand functions depend on the maxi-

mum leverage allowed by banks as well as the fund’s idiosyncratic aggression

parameter.

2. Noise traders demand the asset according to a stochastic process such that

without fund managers, the asset price would weakly mean revert around the

fundamental value of the asset (an Ornstein-Uhlenbeck process). The noise

trader’s demand is what makes the mispricing signal nonzero in each period.

3. The price of the asset p(t) is set at a level that clears the market given the

collection of demand functions submitted by noise traders and fund managers.

This is a Walrasian equilibrium within period t.

Wealth update of fund managers

1. The new asset price as determined in the price-formation phase induces revised

wealth levels for each of the fund managers based on the market value of their

holdings.

2. The fund investors obtain a new datapoint regarding the profitability of each

fund manager by observing the wealth gained or lost in the update. They

withdraw or deposit capital into funds accordingly.
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3. Banks enforce leverage limits on funds. Funds that exceed leverage limits are

subject to a margin call , requiring they change their position in the asset to

comply with the limit. Note that the violation of leverage limits can be triggered

by a change in asset price, by the movement of capital by fund investors, or some

combination.

2.2.4 Basic definitions

We define the key variables describing the state of a fund h at time t.

1. Dh(t) is the amount of the asset that the fund holds at t. It may be positive,

meaning the fund owns a positive amount of the asset, or negative, indicating

a short position.

2. Mh(t) is the cash position of the fund. The cash balance is changed each period

based on purchases or sales of the asset. A negative Mh(t) indicates a debt

position.

3. The wealth of a fund is defined by

Wh(t) ≡ Dh(t)p(t) +Mh(t),

recalling that p(t) is market price of the asset. All nondefaulted funds have

Wh(t) > 0. This entails in particular that a short asset position is always

accompanied by a positive cash position.

4. The leverage taken by each firm is defined as

λh(t) ≡


Dh(t)p(t)/Wh(t) if Dh(t) ≥ 0 (long)

Mh(t)/Wh(t) if Dh(t) < 0 (short).
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Recalling that Wh(t) within a period is constant and positive, and therefore

the numerator is always positive, λh(t) ∈ [0,∞). It can in principle be made

arbitrarily large by taking a position of sufficient magnitude, although due to

leverage restrictions, the funds are constrained in the positions they can take.

These definitions allow for a fund to have short and long positions on an asset.

For a given wealth, a fund with a long position has a positive value of asset hold-

ings Dh(t)p(t) with cash Mh(t) unrestricted. A common scenario is negative Mh(t),

meaning the fund has taken on debt to finance their long position. This necessarily

makes Dh(t)p(t) > Wh(t). Thus any fund indebted to the bank must have λh(t) ≥ 1.

On the other hand, a fund with a short position owes future shares to its counter-

party (Dh(t) < 0), but holds the cash it obtained from the sale of these future shares

(Mh(t) > 0). If the price of the asset p(t) increases, the wealth of a fund that is long

on the asset goes up while the wealth of a fund that is short goes down. The opposite

occurs if p(t) decreases.

2.2.5 Regulatory environments

In the somewhat misnamed unregulated environment , λh(t) is constrained

to be less than a parameter λmax for all h. The Basel environment adaptively

selects maximum leverage λ
σ(t)
max between periods based on price volatility σ(t). λ

σ(t)
max

is calculated at the beginning of every timestep t according to the formula

λσ(t)
max = min{λmax,max{1, σb

σ(t)
}}, (2.1)

where σb = 0.0118 is a set benchmark level of volatility, and σ(t) is measured as

the average volatility of the log asset price in the previous 10 periods. Before 10

periods are available, all price data is used. Thus, maximum leverage requirements

are adjusted downwards in periods of high volatility and are allowed to reach λmax

21



when volatility is low. In the unregulated case, λmax is still a hard limit on leverage

but it does not adapt to market conditions.

2.2.6 Fund demand

Leverage limits effectively constrain the maximum and minimum demand for each

fund manager. Individually, each fund manager h with aggression parameter βh has

a demand Dh(t) of the following form, at time t:

Dh(t) ≡


(1− λσ(t)

max)Wh(t− 1)/p(t) m(t) ≤ (1− λmax)/βh

λ
σ(t)
maxWh(t− 1)/p(t) m(t) > λmax/βh

βhm(t)Wh(t− 1)/p(t) otherwise

Here the price p(t) at time t is the free variable and all other quantities are

fixed. The fundamental value is set at V = 1 and Wh(t − 1) denotes the total

wealth accumulated by h in the last period. In the original study [52], the aggression

parameter βh is fixed to be h × 5 where h ∈ {1, . . . , 10} is the index of the fund, of

which there are ten in total. In our strategic analysis we allow the funds to choose

the βh’s, but for now they are fixed. Notice that in the lower and upper regions of

price, demand does not depend on βh. In particular, demand is fixed in these regions.

This comes from the fact that funds have hit their leverage limit and cannot borrow

further to pursue investment opportunities. An example of the demand function for

two funds with different βh is shown in Figure 2.2.

2.2.7 Market clearing price

Every period, prices are used to coordinate asset allocation. Each fund submits

their demand function truthfully and an equilibrium is found after the noise traders

generate stochastic demand. Each period gets its own independent price. The only

thing that transfers information between periods is the wealth that each fund ends
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Figure 2.2: Demand as a function of mispricing. The mispricing values beyond short
saturation and long saturation on either side result in no additional demand for the
asset because leverage limits have been reached.

up holding.

Given the demand functions of all funds as well as the noise trader demand C(t),

prices are formed via the market clearing condition

∑
h

Dh(t) = N − C(t), (2.2)

where C(t) is generated by

logCn(t) = ρ logCn(t− 1) + σnχ(t) + (1− ρ) log(N).

The noise parameter σn is set to 0.035 and χ(t) is an i.i.d. standard Gaussian draw.

Parameter ρ is set to 0.99, representing extremely weak mean reversion. This is the

Ornstein-Uhlenbeck process, a standard model in finance for asset price dynamics.

We set N = 109. Equation (2.2) is a piecewise linear function of p(t) which can

be solved using standard methods.
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2.2.8 Wealth update

Using the p(t) (recall it is embedded in the demand functions Dh(t)) obtained

as solution to (2.2), the wealth of each fund Wh(t) can now be updated. Assume

for now that Dh(t − 1) is positive, that is, fund h takes a long position. There are

three possible sources of wealth change in the model: market value of assets, interest

payments, and equity flows.

The increase in asset value for each fund is simply Dh(t− 1)[p(t)− p(t− 1)], and

reflects the return on an investment made in the previous period. This is the fund’s

profit or loss.

In general, funds finance their investment opportunities using debt from the bank.

If the amount of cash Mh(t) = Wh(t) − Dh(t)p(t) is negative, then the fund has

borrowed from the bank to buy Dh(t) shares of the asset. In this case the fund pays a

fixed interest rate S = 0.015%. After paying interest, the fund’s total available assets

for withdrawal is now

M∗
h(t) = Dh(t− 1)p(t) +Mh(t− 1)(1 + S).

The other source for changes in wealth is withdrawals or deposits made by fund

investors. These make their decisions based on recent performance of each fund.

Fund investors examine each fund’s rate of return (estimated using an exponential

moving average) rh(t) and withdraw/deposit an amount Fh(t) as follows:

Fh(t) = max{−1, b(rh(t)− rb)}max{0,M∗
h(t)},

where the benchmark return rb is 0.003 and b, controlling how strongly fund investors

react to historical performance, is set at 0.15. The overall motion equation for wealth
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is then

Wh(t) = Wh(t− 1) +Dh(t− 1)[p(t)− p(t− 1)] + Fh(t) +Mh(t− 1)(1 + S).

Analogously, for a short position we have

M∗
h(t) = Dh(t− 1)p(t) +Mh(t− 1) +Dh(t− 1)S,

Wh(t) = Wh(t− 1) +Dh(t− 1)[p(t)− p(t− 1)] + Fh(t) +Dh(t− 1)p(t− 1)S.

Once all fund wealths are updated, the time step is complete and we go back to price

formation.

2.2.9 Default

Each fund starts with W0 = 2× 106 in wealth. Default occurs when wealth goes

below a critical value We = 2 × 105. In this case, the fund’s wealth, demand, and

cash positions become zero for 100 timesteps, after which the fund is resuscitated at

the same level of aggression βh and given W0 to start operations again.

2.3 Systemic risk evaluation

The motivation for using this model is to see what effect regulation can have on

the leverage cycle, and how this impacts systemic risk. We first develop an approach

for evaluating the effect of regulation when fund managers are given the opportunity

to adapt strategically according to changing external conditions. Then we define

metrics for measuring systemic risk and perform an experiment measuring the effects

of the strategic adaptations on systemic risk.
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2.3.1 Strategic aggression behavior

Recall from Section 2.2.6 that each fund is assigned an aggression level. We

call these assignments the aggression distribution . Poledna et al. [52] assume

that the aggression distribution is fixed. This assumption is problematic for several

reasons, but fundamentally because it limits the responsiveness of fund behavior to

environmental conditions, either of the market or the regulatory system.

We focus on this assumption in particular because the entire model appears to

be highly sensitive to the aggression distribution. For example, if all funds have low

aggression then leverage will almost never be high enough to induce defaults. As

circumstantial evidence for this, in all the experiments described in Section 2.3.4, no

fund at an aggression level of 5 ever defaulted. This may be considered an extreme

setting, but it is disturbing that one can generate almost any story one wants by ma-

nipulating this fixed assumption. It is far better to derive the aggression distribution

from something more fundamental, like strategic choice.

We therefore treat aggression level as an endogenous variable, taking account of

the dependence of each fund’s payoff on the aggression of other players. That is, we

cast the entire scenario as a game played among funds, where aggression distribu-

tions are strategy profiles and the strategy set is comprised of different aggression

levels. Aggression levels are chosen by all funds simultaneously. This allows us to

search through the space of possible aggression distributions using EGTA to find a

Nash equilibrium where no fund can make more profit by changing their aggression

level. This approach, notably, leaves each fund’s aggression level (and thus demand

function) in a given period fixed. Within a given time period we still have perfect

information and complete markets, so clearing the asset market still produces a Wal-

rasian equilibrium. The only intertemporal choice funds make is aggression level,

which is chosen for all periods simultaneously. Thus our strategic analysis is limited
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to aggression levels, that is, we do not consider other strategic market behavior.3

This preserves the spirit of the leverage cycle story for a given equilibrium choice of

aggression distribution. We see below that the aggregate effect of equilibrating prices

in each period and aggression over all periods has a substantial effect on financial

stability.

2.3.2 Experimental setup

In our approach we evaluate the introduction of Basel into the model on two

dimensions. First, given a particular aggression distribution, we measure the effect

of regulatory environment on systemic risk measures. This is meant to confirm the

findings of Poledna et al. [52] by isolating the effect of Basel on the leverage cycle

model given fixed aggression levels. Second, and more novel, we look at the effect

of shifting between equilibrium aggression distributions given a particular regulatory

environment. An equilibrium aggression distribution is a Nash equilibrium induced

by a regulatory environment (i.e., Basel versus unregulated). This approach isolates

the effect of Basel on the strategic choice of aggression levels while leaving its effect

on the leverage cycle constant.

Strategies and Nash equilibrium First, some implementation details. A pure

profile in this model is an H-dimensional vector β containing a single aggression level,

or strategy, for each of H funds. For our study we chose a number of funds

H ∈ {10, 21}

and a set of 7 possible aggression levels/strategies

Γ = {5, 10, 15, 20, 30, 40, 50}
3Since funds are not atomic, there could be room for exercising market power. In our setting we

view the market as competitive enough at that level to ignore such options.
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Thus a particular fund’s mixed strategy is a 7-dimensional simplex, corresponding to

the probabilities that the fund will pick each of the seven strategies for use over the

entire simulation. A mixed strategy profile D is a probability distribution over pure

profiles. Drawing from Γ using the multinomial distribution specified by D assigns a

βh to each of the H funds.

Our goal is to use EGTA to find a D∗ that is a Nash equilibrium. To do this, we

first need to define how the game is played and how payoffs are generated.

Payoffs and game definition Each run of the model provides a ready made payoff:

the fee earned by each fund. To find this fee, we first run the model for T = 50, 000

periods using H ∈ {10, 21} funds and a given β vector representing the aggression

level for each fund. At the end of the simulation, we annualize into 1000 years

containing 50 periods each as before. In each year i starting at periods t, we calculate

the average size of fund h, Wh(i) =
∑t+50

t Wh(t)/50 as well as the profit ζh(i) =

Wh(t+50)−Wh(t)−
∑t+50

t Fh(t), which is simply the change in wealth net of investor

withdrawals and deposits over the course of the year. The fee for year i is then defined

as 0.2ζh(i) + 0.02Wh(i) and the total fees over the entire simulation for fund h are

1000∑
i=1

0.2ζh(i) + 0.02Wh(i).

This is the specification used by Poledna et al. [52], based on standard practice

in the financial industry. It captures the common 2-and-20 fee structure, which pays

hedge funds 2% of assets under management and 20% of value returned to investors

annually. This annualization (1000 years that are each 50 periods long) is done

according to the original paper [52], where the model was calibrated to real yearly

data. Note that the payoff for a given mixed strategy D depends on whether or not

Basel is active as well as λmax and is an average over many 50,000-period simulations

where pure profiles β are generated from D.
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Environmental settings In summary, we can view the model input as choice

of regulation R, a particular β vector of strategies representing a pure profile, and

parameter λmax. The model itself can be viewed as a black box function, mapping

to the model output which is a vector of payoffs, or fees, for each fund. In reality,

remember that payoffs are generated by relying on separate Walrasian equilibria in

each of the 50,000 periods to set prices.

Finding the Nash equilibrium distribution D∗(R, λmax) of such a system requires

searching through input β and evaluating fees until an equilibrium is found. This is

where EGTA can be used to great effect, which we do by using a suite of tools devel-

oped by Cassell and Wellman [10]. We were able to obtain approximate D∗(R, λmax)

for R ∈ {Basel ,Unregulated} and λmax ∈ {8, 20}. These levels of λmax were chosen

to reflect a wide range of conditions.

Note that I chose to show results for the same set of strategies Γ as that used

by Poledna et al. [52]. This was mainly for comparability, but I did test lower min-

imum (down to 1), higher maximum (up to 70), and a finer resolution in between

for aggression levels. I found that the results were not qualitatively different. For

example, a β of 1 was not adopted in the mixed strategy equilibrium when added

to the reported set of strategies. In all tested cases, Basel encouraged less average

aggression in equilibrium.

Empirical game-theoretic analysis The empirical game approach imposes two

major approximations. First, the set of available strategies Γ is restricted to a modest

number of enumerated choices. As noted above, I limited attention to |Γ| = 7 choices

of aggression level, following the study by Poledna et al. [52]. Since the number of

pure strategy profiles is exponential in the number of strategies, and in the worst case

EGTA will need to evaluate payoffs for all pure strategy profiles, I have no choice but

to impose such a limit. Second, for the H = 21 setting I used a technique called

29



deviation preserving reduction [70], which employs aggregation to model the

21-player game in terms of a reduced six-player game.

2.3.3 Systemic risk metrics

Our metrics for systemic risk differ from those provided by Poledna et al. [52]

in one key respect. Rather than focusing on the risk of the most aggressive fund

manager, we instead evaluate risk aggregated over all fund managers. The aggregate

measure reflects a more direct evaluation of the entire economy. Moreover, as we

allow distribution of aggression to vary based on endogenous choices, we need a way

to evaluate the riskiness across situations with different maximum aggression levels.

This difference is only relevant for measuring probability of default and capital losses.4

Probability of default To calculate probability of default of a single fund for a

single run of the model, I record the agent-years during which a default occurred.

Then I divide this number by the number of agent-years during which default was

possible, Kh. Kh ≤ 1000 because defaulted funds go out of operation for 2 years, or

100 time steps, as specified in Section 2.2.3. Thus, there are entire agent-years during

which default is impossible, since the agent has already defaulted. Note that there

are also years during which default is only partially possible as the fund is still in a

defaulted state at the beginning of the year. We choose to exclude these years from

Kh as well. The overall probability of default is then

∑
h

#defaultsh/(KhH).

Here, recall that H is the total number of funds.

4We also calculated the original study’s metrics and verified that our implementation matched
the results reported by Poledna et al. [52].
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Capital losses to banks Capital loss is the amount of loss banks suffer when a

fund manager defaults. It is defined as the wealth Wh(t) of the defaulting fund at

default. This is an important metric for systemic risk because these losses are often

paid for through bank bailouts, which detract from social welfare.

Capital losses were measured on an annual basis, in the same way as for probability

of default. Yearly capital losses are totaled, then averaged across the number of funds

and number of years during which default was possible.

Price volatility Price volatility is detrimental to the extent it contributes to finan-

cial uncertainty. One of the functions of financial markets is efficient price discovery,

and one might hope that in a single asset market where some investors have per-

fect information about the fundamental value of the asset, this function would be

performed well. Price volatility is a good proxy for how well price discovery is per-

formed. Indeed, if we allow
∑

hDh(t) to be large compared to C(t) for all t, we would

expect price volatility to be near zero as the effect of the noise traders is minimized.

Price volatility is the average of the annual variances of p(t). This metric does not

depend on Kh like the other two, since prices can be formed regardless of the default

status of any fund.

2.3.4 Systemic risk results

Our first notable result is that in every setting evaluated, the strategy profile that

maximized total fees was for every fund to use βh = 5. This is the least aggressive

strategy available, and is the most limiting in the range of investment choices available

to the fund. The only benefit to playing this strategy is that it mitigates the leverage

cycle and may prevent crashes from happening. This is circumstantial evidence that

defaults are very harmful not only to banks and investors, but also to the funds

themselves. It also provides a basis for believing that strategy profiles with low
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aggression may be better for systemic risk.

Regulation numFunds λmax 5 10 15 20 30 40 50 βweighted

Unregulated 21 20 35% 4% 0% 0% 0% 0% 60% 32.3

Basel 21 20 40% 12% 6% 0% 0% 0% 42% 25.3

Unregulated 21 8 32% 15% 7% 2% 0% 0% 43% 26.3

Basel 21 8 46% 11% 9% 5% 10% 15% 4% 16.7

Unregulated 10 20 46% 5% 0% 0% 0% 0% 49% 27.4

Basel 10 20 51% 14% 8% 0% 0% 0% 26% 18.4

Unregulated 10 8 40% 21% 8% 0% 0% 0% 31% 20.8

Basel 10 8 53% 18% 7% 1% 11% 10% 0% 13.0

Figure 2.3: Mixed-strategy symmetric equilibria for different regulatory regimes and
leverage restrictions.

Mixed strategy Nash equilibria Shown in Figure 2.3 are approximate mixed

strategy Nash equilibria for each of 8 environmental settings. Also shown are βweighted ,

which are the average values of βh drawn from each mixed strategy profile. Notice

that decreasing λmax and imposing Basel both decrease the βweighted of the Nash

equilibrium. When Basel is imposed, it is no longer as lucrative for funds to be

aggressive since they will reach their leverage limits immediately. Decreasing λmax

has a similar effect. This strategic response has ramifications on our systemic risk

measures.

Interestingly, all equilibria are far from the social optimum. This is because it

takes coordination to prevent defaults and maximize profits. Unilaterally playing a

less aggressive strategy has positive externalities, namely a lower default rate and

crash rate for all agents, that are not internalized by fund payoffs.

Systemic risk under equilibria When Basel is imposed on a previously unregu-

lated market, two things happen in equilibrium. First, the mechanics of fund behav-

ior change as their leverage limits become more stringent in volatile periods. Second,

funds adapt their aggression to fit the regulation, shifting to less aggresive (on av-

erage) Nash equilibria over mixed strategies as in Figure 2.3. To evaluate these two

effects on financial stability, we first select a mixed strategy equilibrium. Next, we
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take 200 draws from the distribution. Each draw is a valid strategy profile. We cal-

culate the metrics from Section 2.3.3 on each of these 200 strategy profiles both with

and without Basel. The averages are presented in Figure 2.5 and Figure 2.4.

↑ Volatility ↑ Volatility

λmax = 20 Basel Unregulated λmax = 8 Basel Unregulated

Basel 0.0222 0.0182 Basel 0.0338 0.0205

Unregulated 0.0221 0.018 Unregulated 0.0341 0.0208

↓
Default 

Probability
↓

Default 

Probability

λmax = 20 Basel Unregulated λmax = 8 Basel Unregulated

Basel 3.67% 2.99% Basel 1.43% 2.20%

Unregulated 5.02% 3.73% Unregulated 3.11% 3.55%

↓ Capital Loss ↓ Capital Loss

λmax = 20 Basel Unregulated λmax = 8 Basel Unregulated

Basel 2.66E+06 3.42E+06 Basel 5.45E+05 2.13E+06

Unregulated 3.21E+06 3.88E+06 Unregulated 9.15E+05 2.76E+06

↓ Fees ↓ Fees

λmax = 20 Basel Unregulated λmax = 8 Basel Unregulated

Basel 1.80E+05 1.90E+05 Basel 1.43E+05 2.03E+05

Unregulated 1.78E+05 1.87E+05 Unregulated 1.37E+05 1.93E+05
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Figure 2.4: Three systemic risk metrics evaluated at two levels of λmax for 21 funds.
Analagous table for 10 funds in Figure 2.5. Within a table, each row fixes an equi-
librium mixed strategy and applies a different regulatory setting, each column fixes
a regulatory setting and switches to a different mixed strategy equilibrium. Down
arrows signify that the metric decreased when Basel was applied in the study by
Poledna et al. [52] while up arrows signify that the metric increased. Blue lettering
means changing that property results in a metric change that agrees with Poledna
et al. [52] while red means changing that property results in a metric change that goes
against their finding. Black means that there was no significant change in the variable.
Example: For λmax = 20’s default probability table, up arrow means that Poledna
et al. [52] found Basel increased default probability. Fixing profiles and changing
settings agrees with this finding, indicating successful replication, while fixing setting
and changing profiles goes against this finding.

Each table shows two-dimensional variation across regulatory environments. Along

rows, we keep the mixed strategy equilibrium fixed and change the environment.

Along columns, we keep the regulatory setting fixed and change the equilibrium. For

every metric and setting we tested, shifting between Basel and unregulated envi-
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↑ Volatility ↑ Volatility

λmax = 20 Basel Unregulated λmax = 8 Basel Unregulated

Basel 0.0232 0.0188 Basel 0.0317 0.0205
Unregulated 0.0229 0.0188 Unregulated 0.0313 0.0219

↓
Default 

Probability
↓

Default 

Probability

λmax = 20 Basel Unregulated λmax = 8 Basel Unregulated

Basel 2.24% 2.11% Basel 0.52% 1.35%

Unregulated 4.17% 3.65% Unregulated 1.23% 2.46%

↓ Capital Loss ↓ Capital Loss

λmax = 20 Basel Unregulated λmax = 8 Basel Unregulated

Basel 1.43E+06 2.24E+06 Basel 3.09E+05 1.41E+06

Unregulated 1.91E+06 2.79E+06 Unregulated 3.52E+05 1.56E+06

--- Fees ↓ Fees

λmax = 20 Basel Unregulated λmax = 8 Basel Unregulated

Basel 4.25E+05 4.34E+05 Basel 3.48E+05 4.63E+05

Unregulated 4.28E+05 4.26E+05 Unregulated 3.28E+05 4.34E+05
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Figure 2.5: 10 funds. See Figure 2.4 for key.

ronments under a fixed equilibrium resulted in the same effect on the metric as that

reported by Poledna et al. [52]. This should not be surprising since with a fixed aggres-

sion distribution, I am essentially repeating their experiment with slightly different

aggression settings. This is essentially just confirmation that we have a successful

replication.

Something interesting happens when we examine these tables along columns. This

is equivalent to fixing the regulatory environment and switching between mixed strat-

egy equilibria. We have already seen that the average βh for Basel equilibria is sub-

stantially lower. It turns out that less aggressive funds increase financial stability

by decreasing the probability of default and bank capital losses. For example, at

λmax = 20, even though Basel makes default more likely for a fixed aggression dis-

tribution, the shift towards the Basel equilibrium counteracts and reverses this effect

for both H = 10 and H = 21.

In aggregate, the story has changed. Basel decreases probability of default in

every measured case. Capital losses, which were already decreasing in the original
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study, decrease even further. Price volatility still increases with Basel, since the shift

in equilibrium did not have an effect. Fees are lower in the Basel setting, but by less

than was predicted by Poledna et al. [52]. Shifting between equilibria increases fees

in most cases to cancel out some of the fee loss found in the original study.

2.3.5 Discussion

So what explains Basel’s performance in decreasing systemic risk? We can break

this question into two parts. First, how does Basel allow less aggressive funds to

thrive compared to aggressive ones? And second, why do less aggressive funds allow

for better financial stability?

Consider this model with a single fund manager. Suppose she is currently oper-

ating in the unregulated environment with λmax = 20 and she hears that Basel will

soon be implemented. This can only lower her leverage limit. We posit that even

without any strategic interactions with other funds, she will be inclined to lower her

aggression levels. A fund gets more fees by generating higher returns, and higher

returns are gotten by taking high leverage when there are large mispricing signals.

When leverage limits are high, an aggressive fund will just snap up all the mispriced

assets and profit off of all of them. But when leverage limits become more stringent

under Basel, too much aggression will quickly lead to paralysis due to hitting the

leverage limit. In contrast, less aggression will preserve some investment capacity for

the truly large mispricing signals, generating a better return.

Now consider two funds who each know that Basel is coming. If they both decide

to be aggressive, they can mitigate more price movements, reduce price volatility, and

operate as if Basel was never implemented. However, if fund A decides to shirk its

price enforcing duties by being less aggressive, Basel will restrict maximum leverage

since price volatility will rise. This doesn’t affect fund A much since it doesn’t take

much leverage anyway. In fact, in all of our simulations, the funds playing strategy
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βh ∈ {5, 10} never defaulted a single time. But the leverage limit does affect the

more aggressive fund B, and will cause it to default eventually. When this happens,

A will have the entire market to itself. When this strategic advantage is coupled with

the fact that less aggressive funds stand to make more profit regardless of what other

funds do, it is easy to see why Basel induces funds to be less aggressive.

Now why does the shift to a less aggressive set of funds result in better default

rates, bank losses, and fees while not having any effect on price volatility? Note that

here we are only giving intuition for the effect of the shift in aggression distribution,

not the aggregate effect of Basel.

Less aggressive funds simply do not take much leverage before the mispricing

signal disappears randomly. Thus, they never get to the point where a price shock

can cause them to lose all their wealth. Again we quote the result that not a single

low-aggression fund defaulted in our experiments. Thus, default rates decrease when

funds are less aggressive.

Funds that are aggressive under equilibrium that default also cause less capital

loss to banks. Recall the feedback cycle that occurs with Basel. First, aggressive

firms accumulate all the wealth in good times since Basel hasn’t kicked in yet. Then,

a price shock happens that forces the aggressive funds to wind down their positions to

comply with collateral requirements. This procyclical unwinding deepens the initial

shock, increasing volatility and forcing Basel to make leverage limits more stringent.

When there are many less aggressive funds, none of this volatility can be absorbed

and the Basel requirements will get extremely stringent. Thus, the funds that end up

defaulting will have been trying to reach a lower leverage limit. This reduces their

size when they default.

Fees are slightly helped by less aggression for the same reason funds decided to

be less aggressive in the first place. And price volatility is definitely increased in

normal times by less aggressive funds, but the decrease in default rate reflects a lower
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incidence of financial crashes, which helps price volatility. It seems these two effects

cancel out.

2.4 Summary

When evaluating the effect of financial regulation on markets, we should always be

aware that agents in this arena are highly sophisticated and resourceful. It is a good

bet that any possible path to profit will eventually be explored. So when economic

models make fixed assumptions on behavior, we should always be on guard for the day

these assumptions start break down. To become more robust, models can endogenize

important behavioral assumptions so that agent response to the environment is as

realistic as possible.

In this chapter I argued for endogenizing the aggression level of funds in an agent

based leverage cycle model used to evaluate Basel regulations. I then proposed a

strategic analysis that endogenizes an important fixed assumption, the aggression

distribution. After making appropriate approximations to make finding equilibria

feasible, I performed a series of experiments to measure the aggregate effect of Basel

on financial stability under our new equilibrium concept. My findings suggest that

the pessimism surrounding Basel’s exacerbation of leverage cycles may be overstated.

I find that irrecoverable losses on the part of banks and defaulted funds are reduced

substantially under Basel. Although fund profits fall, my new equilibrium concept

lessens the fall compared to the one without endogenous aggression. Volatility remains

a problem, as funds still cannot prevent day to day fluctuations in price effectively.

There is still much work to be done, both in evaluating Basel and in building

richer economic models. For the former, the obvious question is how to improve on

Basel so that we get its benefits (less aggressive agents on average) without its costs

(agents constrained from taking volatility out of prices). There has been some work

on this, but not under endogenous aggression levels [3, 50, 51].
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There are also many other directions where computer science techniques can aid

in understanding Basel regulations. A notable fixed assumption in the leverage cycle

model is that funds may borrow at fixed terms from banks, and that funds have

no credit operations of their own. In reality, interest rates and leverage limits are

dynamically evolving according to the strategy employed by banks. In addition, the

separate roles of banks (who extend credit) and funds (who invest in assets) are

not so clear cut; major financial players tend to be active in both arenas. In fact,

this omission of credit policies by leverage cycle models causes several phenomenon

observed during the 2008 crisis to be ignored, including:

1. The seizing up of credit markets, causing liquidity shortages.

2. The widespread effects of isolated defaults, dubbed contagion.

3. The simultaneous downgrading of credit by ratings agencies and credit issuers.

The infrastructure for building a model incorporating these phenomena requires

a new type of agent-based model, which we will build from the ground up in the

upcoming chapters.
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CHAPTER III

Financial credit networks and strategic payments

In this chapter I detail a general framework for representing the state of a financial

system as a graph, called financial credit networks or FCNs [12]. This frame-

work can be used as a basis to construct agent-based models where strategic loan

decisions that are made locally can have global implications on financial stability,

as in Chapter IV. I use an abstract agent-based model in this chapter in order to

establish basic properties of the FCN framework, from which I can build economic

intuition in more realistic models. I will show that a strategic tension exists in how

agents choose to utilize the network to make payments, and use EGTA to establish

equilibrium behavior under different environmental conditions.

3.1 Introduction

The key functions of a financial system are to allocate funds to productive uses

and support transactions across a heterogeneous set of agents. These functions often

interact; for example banks provide payment services to consumers in order to attract

deposits, which they can then lend out. At the core of both these functions is the

management of financial obligations between parties. I therefore view expression of

such obligations as prerequisite to comprehensive financial modeling, and introduce

here the FCN framework based on these relations. My focus in this chapter is on
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payment operations, which serve as a foundation for general economic transactions

such as the purchase of routine products and services, lending and saving, and capital

investment.

I extend an existing abstract model of credit networks: weighted directed

graphs that represent the capacity of agents (each represented as a node in the graph)

to transact with each other. The credit network model was proposed independently

by several distinct groups of researchers who were motivated to capture distributed

trust in different contexts. Ghosh et al. [27] aimed to support distributed payment

and multi-user credit checking for multi-item auctions. Karlan et al. [36] wanted to

construct an economic model of informal borrowing networks. In both of these cases,

the concept of credit is financial in nature. In two other cases [20, 45], credit serves

as an accounting mechanism to limit computational actions. Moreno-Sanchez et al.

[46] demonstrated a privacy-preserving payment protocol for credit networks, and

also suggest that some real distributed payment systems like Ripple are based on the

credit network model.

The effectiveness of credit networks for distributed transactions was most pow-

erfully demonstrated by Dandekar et al. [17], who established several propositions

indicating that transaction failures are unlikely given sufficient network connectivity.

That is, credit networks provide a high degree of liquidity : the ability to transact at

any time at prevailing terms. In particular they showed for several classes of graphs,

the transaction failure probability goes to zero as either network size, link density, or

credit capacity increases, holding the other two parameters constant. Computational

experiments further demonstrate that even networks small in size or overall credit

capacity exhibit high transaction success rates if they are sufficiently well-connected.

A follow-up study addressed the question of whether self-interested agents would

issue sufficient credit to form such high-performing networks [18]. Issuing credit

entails a tradeoff between increasing the prospect of valuable transactions at the cost
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of exposure to risk of defaulting counterparties. The study found, across a range of

experimental environments, that if there is sufficient transaction profit to be earned,

a network will form to extract a sizable fraction of that surplus. However, the credit

networks formed in equilibrium are still suboptimal, as might be expected given the

positive externality in credit issuance. Namely, when an agent issues a credit line,

the entire network benefits from the liquidity it provides while only the issuer bears

the risk that the borrower may default.

To provide proper incentives to issue credit, a natural approach is to allow creditors

to charge interest on outstanding obligations. Pricing credit is of course standard in

actual financial systems, and so extending the credit network formalism to support

interest charges would also make them more suitable as a modeling substrate for this

domain. The extension to FCNs developed here is driven primarily by the requirement

for handling interest rates. I show how the representation of obligations must be

refined to accommodate interest on outstanding debt, and demonstrate how to realize

payment operations in the extended model.

In §3.2 I introduce the basic concepts of FCNs, through an extended example.

§3.3 presents the formal FCN model, and defines what constitutes a feasible solution

to the payment routing problem. Next (§3.4) I describe a polynomial algorithm that

solves for maximum flow on financial credit networks when interest rates are restricted

to the set of contract interest rates. I then show that this is equivalent to solving the

problem under unrestricted interest rates. This algorithm is due to my coauthor1, but

is included in this chapter for readability and completeness. In §3.5 I define several

payment mechanisms that select among multiple feasible routing solutions. In §3.6

I evaluate the liquidity of each mechanism experimentally and find that there is a

positive relationship between how much interest agents pay and how much liquidity is

available in the network. I find that several mechanisms exhibit liquidity performance

1Kareem Amin
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close to the no interest rate setting. The ability to pay interest rates above that offered

by lenders plays a large role in this good performance. Finally (§3.7), I consider

strategic choice by payers over routing mechanisms. I find that the socially optimum

payment mechanism is not strategically stable, but that agents are willing to pay a

limited amount in exchange for maintaining liquidity on a financial credit network.

3.2 Financial Credit Networks

A prerequisite for any payment is trust. Transactions between unknown parties

are often enabled by third parties (e.g., banks or credit card issuers) that assure suc-

cessful execution by mediating a transfer of obligations tantamount to a flow of funds.

In the early days of Internet commerce, platforms like eBay introduced reputation

mechanisms to facilitate the development of trust necessary to overcome lack of di-

rect experience with counterparties [54]. Others provided more direct mediation. For

example, Alibaba offered an escrow service whereby two parties that mutually trust

Alibaba can transact with each other, relying on Alibaba to make them whole if the

counterparty defaults [72].

In the basic credit network formalism, a’s trust of b is represented by a directed

weighted edge from a to b, where weight w denotes the capacity of credit a offers to

b. This credit is interpreted as an obligation for a to accept up to w units of IOUs

from b in exchange for commensurate service. These IOUs may be returned by a to

b at a later time, in exchange for service from b. The real power of credit networks,

though, comes from transactions along paths, achieving an effective transitivity of

trust. If a offers credit to b and b to c, then c can transact with a by routing its

payment through b: specifically, for a unit transaction c sends one of its IOUs to b,

and b sends one of its IOUs to a. The net result is a payment of one unit from a

to c. Node b has exchanged one its own IOUs for one of a’s, and thus its balance of

obligations is unchanged.
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3.2.1 Illustrative example

Chains of payment are common occurrences in everyday commerce. Suppose Bob

wishes to buy a new car from his local dealership, AAWheels. He negotiates a deal

to purchase his favorite model for $25,000. Bob however does not carry that much

cash, and AAWheels does not trust him directly. Anticipating this issue, before car-

shopping Bob had applied for a credit line from MichiCarCash, a prominent consumer

lender, who after some research decided to issue a credit line of $25,000 at a healthy

interest rate (20%). MichiCarCash has a checking account with BigBank1, with a

current balance of $100,000. This deposit is essentially a loan to the bank (at a

relatively smaller interest rate, 2%), so we can think of MichCarCash as holding

100,000 BigBank1 IOUs. AAWheels maintains a no-interest checking account with

BigBank2, currently with zero balance, however it is willing to hold up to $400,000

there. This can be represented as a credit line from AAWheels to BigBank2.

The situation as described thus far comprises part of the FCN depicted in Fig-

ure 3.1a. BigBank1 and BigBank2 are connected through the interbank network,

which for present purposes I model as a complete subgraph of high-capacity credit

lines with nominal interest rates (1%). In the figure, credit edges are indicated with

solid arrows, and holdings of IOUs (i.e., actual loans) are indicated with dashed ar-

rows. Whereas in the original credit network formalism credit lines and IOU holdings

are treated uniformly, in FCNs we must distinguish them because IOUs accrue inter-

est payments and unused credit lines do not. The rates of interest associated with

credit and debt edges are annotated along with the capacities.

To purchase the car, Bob routes a payment of $25,000 to AAWheels. He can do so

by drawing on his credit line with MichiCarCash, who in turn returns a like number of

IOUs to BigBank1 (i.e., withdraws from its BigBank1 checking account), which then

sends its own IOUs through the interbank network2 to BigBank2, which credits the

2I do not model the actual network here, but capturing the structure of the broader financial
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(a) Initial credit network

(b) Credit network after 25K payment from Bob to AAWheels through
MichiCarCash

Figure 3.1: Financial credit networks before and after the transaction. Arrows indi-
cate obligations: solid for credit and dashed for IOUs. An arrow from x to y with
marking c | r denotes an obligation from x to y with capacity c at an interest rate r.
The direction of payment flow is against the arrows.

checking account of AAWheels (i.e., grants AAWheels 25,000 BigBank2 IOUs). As in

the basic credit network a → b → c example above, the source has decreased its net

capacity balance by the payment amount, and the destination accrues a corresponding

increase. The FCN after executing this payment is shown in Figure 3.1b.

3.2.2 Example continued: interest considerations

We can verify from the figure that intermediate nodes on the payment path ex-

perience no change in net capacity. For FCNs, however, I must also consider the

effect of interest rates. MichiCarCash receives new IOUs from Bob, in exchange for

returning BigBank1 IOUs. It is happy to do so though, because the Bob IOUs carry a

higher interest rate than the BigBank1 (interest checking) rate. Similarly, BigBank1

system is a long-term goal motivating this research. For instance, I could model cash as IOUs from
a central bank, which everyone trusts with high capacity at zero interest.
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accepts the payment routing because the rate on its checking IOUs exceeds the in-

terbank rate. Finally, BigBank2 effectively gets the interbank rate on the BigBank1

IOUs, and pays no interest on the checking account of AAWheels. The payment path

satisfies interest rate monotonicity, and so I deem it feasible; no agent routes this

payment at a loss.

I next consider other potential payment paths in this network. Bob has a friend

Joan, who also (coincidentally) trusts him for $25,000 and requires only 10% interest.

Joan, however, has no bank deposits, and her only way to route a payment through

the banking system is to use her BigBank1 credit card, which carries a 16% interest

rate and $25,000 credit limit. Routing a payment through Joan at the contract

rate (interest rates associated with issued credit lines) would violate monotonicity,

and is therefore infeasible. However, if Bob were to borrow from Joan at a higher

rate (say 16%), she would cover her credit card interest and still offer Bob a better

payment deal than he is getting from MichiCarCash. This keeps everyone satisfied,

so I consider paths that use credit lines above contract rates to be feasible as well.

Suppose instead of this credit line, Bob had been holding 25,000 IOUs from Joan

at a 10% interest rate. Joan cannot be expected to take these IOUs back to route

a payment that will cost her a higher rate. Moreover, unlike the situation with

credit lines, there is no obvious way to restore monotonicity by increasing a rate.

Bob has no means to compensate Joan other than by returning her IOUs (e.g., he

cannot route her a side payment), which merely saves her interest at the specified

rate. I therefore consider interest on IOUs to be fixed at the rate at which they were

incurred, and disallow payments along paths where a debt link would violate interest

rate monotonicity.
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3.3 Model

Credit networks are formally specified by a capacitated graph G = (V,E) where

vertices represent agents, and edges represent credit relationships. A directed edge

e = (u, v) of capacity c(e) indicates that u is willing to lend up to c(e) units to v.

Dandekar et al. [17] observed that to determine whether agent s can pay agent t a

sum of X > 0 units, one needs only check whether there exists an s− t flow of value

X in the network derived by flipping the direction of edges in G.

To extend the basic framework with interest rates, we must first capture the

additional constraint that intermediary agents not incur a net interest cost. Second,

the introduction of interest requires that we distinguish capacity on outstanding credit

lines from capacity based on actually incurred debts (the IOU holdings).

3.3.1 Credit networks with interest rates

Formally, a financial credit network (FCN: credit network with interest rates)

is specified by a directed network G = (V,E). Each edge e ∈ E is associated with

three values. The first value is e’s obligation type, indicated by τ : E → {credit, iou}.

Second is the edge’s capacity, given by the function c : E → R+. As in the interest-

free setting, edge e’s capacity indicates the credit limit associated with that edge (if

τ(e) = credit), or the number of IOUs held, (if τ(e) = iou). Finally, a third value

r : E → R+ represents the edge’s contract interest rate . The values τ, c, r at an

edge e can be interpreted as follows. An edge e = (u, v) with τ(e) = credit, means

that u is willing to lend c(e) units to v at an interest rate of r(e). Edge e with

τ(e) = iou means that u owes c(e) units to v, on which v is charging an interest rate

of r(e).

One reason that credit edges must be distinguished from iou edges is to assess

periodic interest obligations. Another is that credit lines provide greater flexibility

on interest rates than do IOU holdings. For a credit line, willingness to lend at an
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interest rate r(e) implies willingness to lend at any interest rate r′ > r(e). In contrast,

the interest rate on debt represented by an IOU edge is fixed once the debt is incurred.

This flexibility turns out to be valuable for maximizing the liquidity of the network.

In particular, our model assumes that intermediaries along a payment path will not

route a payment at a loss. This amounts to requiring that payments be routed along

paths of monotonically nonincreasing interest rates. By paying a larger interest rate

on one of its immediate credit lines, an agent s may be able to route a payment to

another agent t that would otherwise be infeasible.

In describing our routing algorithm, it is convenient to refer to the reverse net-

work of G where edges point in the direction that payments occur, rather than the

direction of credit obligations. Define G† = (V,E†), the network identical to G but

with edges flipped. When applied to edges in E†, the functions τ , c, and r take the

same values as they would on the unflipped edges in E. We also define for each v ∈ V ,

In(v) = {(u, v) | (u, v) ∈ E†} and Out(v) = {(v, u) | (v, u) ∈ E†}. Note that G is

in fact a multigraph, as there may be many edges between two vertices, differing in

types or interest rates.3

3.3.2 Payment routing problem

Given a financial credit network N = {G, τ, c, r}, we now define what it means

for a payment of X > 0 units from agent s to t to be feasible . We call the problem

of determining whether a payment is feasible the payment routing problem .

As in an interest-free credit network, we demand that there exists an s − t flow

f : E† → R+ of value at least X in G†, where f respects the capacity constraints

denoted by c. In order for an FCN payment to be feasible, we also impose requirements

on the interest rates. Informally, we demand that payments between s and t flow along

3Thus, the use of the functions τ(e), r(e), c(e) is a slight abuse of notation. A single pair e = (u, v)
may, for example, be assigned multiple types. An edge in G is more accurately written as a 5-tuple
(u, v, c, r, τ). Nevertheless, for clarity, we write τ , r, and c unless this distinction is important.
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edges of non-increasing interest rate, which we call the monotonicity condition .

This condition is complicated by the fact that realized interest rates are not always

equal to contract rates. Whereas the contract interest rates on iou edges are fixed,

rates on credit edges can be increased to satisfy monotonicity. Payments that respect

this invariant are said to have valid realized interest rates.

Let a sequence of s− t paths P = (P (1), . . . , P (K)) and corresponding nonnegative

quantities F = (f (1), . . . , f (K)) be a consistent decomposition of a flow f if for

any edge e, f(e) =
∑K

k=1 1[e ∈ P (k)]f (k). In other words, f can be thought of as the

finite union of paths in G†, where each path P (k) is assigned flow value f (k).

For each such path P (k), which we take as a set of edges, we can define a function

r̂(k) : P (k) → R+ which assigns a realized interest rate to each edge along the

path. For example, if edge (u, v) belongs to path P (k), r̂(k)((u, v)) corresponds to

the interest rate charged to u by v on the f (k) units of payment routed along edge

e in path P (k). Consistent decompositions can be used to state the aforementioned

monotonicity and validity conditions more formally.

Definition III.1 (Validity). Given a consistent decomposition P, F , for some flow

f , and realized interest rate s {r̂(k)}, we say that the realized interest rates are valid

if, ∀k ∈ {1, . . . , K} and e ∈ P (k), r̂(k)(e) = r(e) if τ(e) = iou and r̂(k)(e) ≥ r(e) if

τ(e) = credit.

Definition III.2 (Monotonicity). Given a consistent decomposition P, F , for some

flow f , and realized interest rates {r̂(k)}, we say that the realized interest rates are

monotonic if, ∀k ∈ {1, . . . , K} with P (k) = (e
(k)
1 , e

(k)
1 , . . . , e

(k)
nk ), and i ∈ {0, . . . , nk−1},

r̂(k)(ei) ≥ r̂(k)(ei+1).

Suppose there exists an s− t flow f of value X that admits a decomposition P, F

with valid and monotonic realized interest rates {r̂(k)}. A payment of X units can

be executed by routing, for each k, f (k) units along the s − t path P (k). Assigning
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each edge e on that path an interest rate of r̂(k)(e) ensures that no agent along the

path P (k) is routing this payment at a loss, as a consequence of monotonicity. Finally,

the validity of r̂(k) ensures that the realized interest rates are consistent with existing

rates on IOUs, and no smaller than the contract rate on credit lines employed.

Definition 1 (Feasible Payment). For FCN N with s, t ∈ V , we say that a payment

of amount X > 0 from source s to destination t is feasible if there exist (1) an s− t

flow f : E† → R+ of at least X, in the standard flow network defined by G† and

c, and (2) a consistent decomposition P, F of f , and corresponding realized interest

rates {r̂(k)} that are valid and monotonic.

3.4 Payment routing algorithm

Given an instance of the payment routing problem (N, s, t,X), our goal is to find

a flow f of value at least X in G†, and corresponding realized interest rates that

are valid and monotonic, or output that no such flow exists. In general, realized

interest rates may be any nonnegative real number. We start by restricting the rates

to come from some finite set I = {I1, . . . , Il} ⊂ R+. We show that this I-restricted

payment routing problem can be solved via linear programming. We then observe

that taking I to be the set of contract interest rates I = {r(e) | e ∈ E} suffices to

solve the unrestricted payment routing problem. In other words, payment (N, s, t,X)

is feasible if and only if it is feasible with realized interest rates restricted to the set

of initial contract rates.

3.4.1 I-restricted payment routing: monotonicity

The key construct for solving the I-restricted routing problem is a function f ′ :

E† × I → R+, which we call an interest-flow . We can think of f ′ as indicating

for each edge e ∈ E† and interest rate level I ∈ I the amount of payment along

edge e routed at a realized interest rate level I. Cast in this way, the problem is
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reminiscent of a multicommodity flow [22], where payment routed at an interest rate

I corresponds to a distinct commodity. Such problems are known to be NP-hard. In

our problem, however, a unit of flow entering a vertex v at interest rate I can exit as

a unit of flow at any interest rate I ′ ≤ I (i.e., monotonicity). This relaxation proves

crucial for developing a polynomial-time algorithm.

We say an interest flow is valid in the analogous way to realized interest rates.

Namely f ′ is valid if for any e, I, f ′(e, I) ≥ 0 only if τ(e) = iou and I = r(e)

or τ(e) = credit and I ≥ r(e). The main result of this section establishes that the

monotonicity of the realized interest rates can be compactly represented as a collection

of local inequalities on the interest-flow. We see that monotonicity is equivalent to

the requirement that for every interest rate level I, and vertex v, the flow into v at

interest rates I ′ ≤ I is no more than the flow out of v at interest rates I ′ ≤ I.

Lemma 1. Let f : E† → R+ be an arbitrary s − t flow. f admits a consistent

decomposition, along with a set of I-restricted, valid, monotonic realized interest

rates if and only if there exists a valid interest-flow satisfying the following conditions.

For every e ∈ E†:
∑
I∈I

f ′(e, I) = f(e), and (3.1)

for every I ∈ I and vertex v ∈ V, v 6∈ {s, t}:

∑
e∈In(v)

∑
I′∈I,I′≤I

f ′(e, I ′) ≤
∑

e∈Out(v)

∑
I′∈I,I′≤I

f ′(e, I ′). (3.2)

Proof. In the first direction, we suppose that f admits a consistent decomposition

with valid, monotonic interest rates, then show that there exists a valid interest-

flow satisfying the conditions (3.1) and (3.2). Fix an s − t flow f , a consistent

decomposition F, P , and realized interest rates {r̂(k)}. Define f ′(e, I) ≡
∑K

k=1 1[e ∈

P (k)]1[r̂(k)(e) = I]f (k). That is, f ′(e, I) simply aggregates the flow values along edges

e that were assigned interest rate I. We now check condition (3.2). Fixing a vertex
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v, and interest rate I,

∑
e∈In(v)

∑
I′≤I

f ′(e, I ′) =
∑

e∈In(v)

∑
I′≤I

K∑
k=1

1[e ∈ P (k)]1[r̂(k)(e) = I ′]f (k). (3.3)

If there exists some path P (k) containing an edge (u, v) with r̂(k)((u, v)) = I ′, then

the very next edge (v, w) in P (k) must satisfy r(k)((v, w)) ≤ I ′, by monotonicity. Thus,

for every summand in the right hand side of (3.3) equal to f (k), there exists a distinct

summand in
∑

e∈Out(v)

∑
I′≤I

∑K
k=1 1[e ∈ P (k)]1[r̂(k)(e) = I ′]f (k) also equal to f (k).

Since
∑

e∈Out(v)

∑
I′≤I

∑K
k=1 1[e ∈ P (k)]1[r̂(k)(e) = I ′]f (k) =

∑
e∈Out(v)

∑
I′≤I f

′(e, I ′),

condition (3.2) is satisfied.

From the definition of consistent decomposition, we know that f(e) =
∑K

k=1 1[e ∈

P (k)]f (k) =
∑

I∈I
∑K

k=1 1[e ∈ P (k)]1[r̂(k)(e) = I]f (k) which is equal to
∑

I∈I f
′(e, I)

by how we have defined f ′, and so (3.1) is satisfied as well. Finally, the validity of f ′

follows immediately from the validity of the realized interest rates.

In the other direction, fix f , and let f ′ be a valid interest-flow satisfying conditions

(3.1) and (3.2). We use f ′ to reconstruct a consistent decomposition P, F of f with

valid and consistent interest rates. Consider a vertex v ∈ V . We assign interest rates

to the flow entering and exiting v according to f ′. That is, for each edge e containing

v, with flow value f(e), we take f ′(e, I) units of that flow and assign it a realized

interest rate of I.

If interest rates are assigned in this manner, all flow entering v can be routed out of

v while respecting monotonicity. In particular, order the interest rates I1 < · · · < Il.

(3.2) implies
∑

e∈In(v) f
′(e, I1) ≤

∑
e∈Out(v) f

′(e, I1) which in turn implies that all

incoming flow at interest rate I1 can be routed out of some edge at rate I1. Now

fix some Ik−1 and suppose for induction that there is a way to route all incoming

flow at I ′ ≤ Ik−1 out of v while respecting monotonicity. To route all incoming

flow at level I ′ ≤ Ik, we first assign all flow entering v at level I ′ ≤ Ik−1 to outgoing
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edges, which by induction we can do while respecting monotonicity. To monotonically

route the
∑

e∈In(v) f
′(e, Ik) units of flow entering at exactly level Ik there needs to be

enough remaining capacity on the outgoing edges at interest rate I ′ ≤ Ik. In other

words, it needs to be the case that
∑

e∈In(v) f
′(e, Ik) ≤

∑
e∈Out(v)

∑
I′≤Ik f

′(e, I ′) −∑
e∈In(v)

∑
I≤Ik−1

f ′(e, I ′). Rearranging we get

∑
e∈In(v)

∑
I′≤Ik

f ′(e, I ′) ≤
∑

e∈Out(v)

∑
I′≤Ik

f ′(e, I ′)

which is implied by (3.2).

Thus, f can be decomposed into P, F , where the interest rates {r(k)} assigned

along the paths are derived from the above procedure. By (3.1) all flow is accounted

for, and since f ′ is valid, {r(k)} is also valid.

3.4.2 A linear program for I-restricted payment routing

With Lemma 1 in hand, we can derive a linear program for solving the I-restricted

payment routing problem (Algorithm MaxInterestFlowLP). The first four condi-

tions of the LP make it so that the ordinary flow f derived from the interest-flow f ′

(via (3.1)) is both a valid flow and routes X units of payment from s to t. The re-

maining conditions specify that f ′ also induces valid, monotonic, interest rates, which

is a direct consequence of Lemma 1.

Theorem III.3. Given an instance (N, s, t,X) of the I-restricted routing problem,

the payment is feasible if and only if the LP solved by Algorithm MaxInterestFlowLP

has a solution of value at least X. Furthermore, the LP has a total of O(|I||E|)

variables and O(|I|(|V |+ |E|)) constraints.

52



3.4.3 A solution to the unrestricted problem

We now prove that the payment (N, s, t,X) is feasible with unrestricted interest

rates if and only if there is a feasible payment for the I-restricted routing problem,

when taking I = {r(e) | e ∈ E}, the set of initial contract interest rates. As a con-

sequence, Algorithm MaxInterestFlowLP gives us an algorithm for the unrestricted

payment routing problem.

Algorithm MaxInterestFlowLP:

max
fe,I ,X

X s.t. (Objective)

∀e ∈ E† : fe =
∑
I∈I

fe,I (Total Flow)

X +
∑

e∈In(s)

fe =
∑

e∈Out(s)

fe,
∑
e∈In(t)

fe = X +
∑

e∈Out(t)

fe (Flow Value)

∀v 6∈ {s, t} :
∑

e∈In(v)

fe =
∑

e∈Out(v)

fe (Flow Conservation)

∀v 6∈ {s, t},∀I :
∑

e∈In(v)

∑
I′≤I

fe,I′ ≤
∑

e∈Out(v)

∑
I′≤I

fe,I′ (Monotonicity)

∀e ∈ E†, τ(e) = credit,∀I < r(e) : fe,I = 0

∀e ∈ E†, τ(e) = iou,∀I 6= r(e) : fe,I = 0 (Valid Interest Rates)

∀e ∈ Ef, I : 0 ≤ fe,I ,∀e : 0 ≤ fe ≤ c(e) (Capacity)

First note that if there is no solution to the general (non-restricted) payment

routing problem, then clearly there cannot be a solution to the I-restricted payment

routing problem (for any I). The following lemma states that the other direction

holds as well, when taking I to be the original set of contract interest rates.

Lemma 2. Given an instance of the payment routing problem, let I = {r(e) | e ∈ E}.

There exists a feasible payment for the payment routing problem if and only if there

exists a feasible payment for the I-restricted payment routing problem.
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Proof. As described above, one direction is immediate, and so we prove that the exis-

tence of a solution to the non-restricted payment routing problem implies a solution

to the I-restricted payment routing problem.

Let f be the flow solution to the non-restricted problem, with consistent decom-

position P, F , and valid, monotonic realized interest rates {r̂(k)}. We define a new

set of realized interest rates {r̂(k)
I } which take values only in I, but are still valid

and monotonic. f is still a flow for the restricted problem, and F, P a consistent

decomposition, so this is sufficient to prove the lemma.

To define {r̂(k)
I }, fix a k, and consider the path P (k) = (e

(k)
1 , . . . , e

(k)
nk ). For any

edge ei such that τ(ei) = iou, we leave the interest rate unchanged. That is, we set

r̂
(k)
I (ei) = r̂(k)(ei) which is also equal to r(ei) since {r̂(k)} are valid.

Next consider edges ei such that τ(ei) = credit. At a high level, we define r̂
(k)
I (ei)

by taking r(k)(ei) and increasing it to the contract rate of the preceding iou edge

along the path. In detail, if ei and ej, for i < j, are consecutive iou edges in P (k),

then for all ei′ , i < i′ < j we define r̂
(k)
I (ei′) by letting r̂

(k)
I (ei′) = r(ei). The validity

and monotonicity of r̂(k) tells us that r(ei) = r̂(k)(ei) ≥ r̂(k)(ei+1) ≥ · · · ≥ r̂(k)(ej) =

r(k)(ej). And therefore r(ei) = r̂
(k)
I (ei) = r̂

(k)
I (ei+1) = · · · = r̂

(k)
I (ej−1) ≥ r̂

(k)
I (ej) =

r(ej). Similarly, if ei is the last iou edge, we set r̂
(k)
I (ei′) = r(ei) for i < i′ ≤ nk.

Finally, if ej is the first iou edge, we set r̂
(k)
I (ei′) = max{r(e1), r(e2), . . . , r(ej)}, and

therefore r̂
(k)
I (e1) = · · · = r̂

(k)
I (ej−1) ≥ r̂

(k)
I (ej) = r(ej). In each of these cases r̂

(k)
I (·)

is monotonically nonincreasing over the subsequence in question, and is therefore

nonincreasing along the entire path.

The {r̂(k)
I } are also valid since the realized interest rate for iou edges are unchanged

(compared to r̂(k)), and the realized interest rate for credit edges only increase, so

the validity of {r̂(k)} also ensures that r̂
(k)
I (ei) ≥ r̂(k)(ei) ≥ r(ei) for any edge ei.

Observing that the construction ensures the each r̂
(k)
I takes values in I concludes the

proof.
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Lemma 2 tells us that the I-restricted problem is equivalent to the non-restricted

problem when I = {r(e) ∈ E}. Thus, we can state our main algorithmic result as a

corollary of this lemma and Theorem III.3.

Corollary 1. Let I = {r(e) | e ∈ I} be the set of contract interest rates. Given an

instance (N, s, t,X) of the payment routing problem, the payment is feasible if and

only if the the LP solved by Algorithm MaxInterestFlowLP finds a solution of value

at least X for the I-restricted routing problem.

3.4.4 Routing multiple payments

The preceding demonstrates how to efficiently compute whether a payment is

feasible for some static instance (N, s, t,X) of the payment routing problem in an

FCN. To route multiple payments in sequence, we update the FCN N after each to

reflect the state of obligations between agents. An illustration of such an update is

provided in Figure 3.1a. Here we describe this update formally. In order to do so,

we must be explicit about the fact that G contains multi-edges described by 5-tuples

(u, v, τ, c, r).

A feasible payment is given by a flow f in G†, a consistent decomposition F =

{f (1), . . . , f (K)}, P = {P (1), . . . , P (K)}, and realized interest rates {r̂(1), . . . , r̂(1)}.

Given such a payment N = (G, τ, c, r) is updated as follows. For each k ∈ {1, . . . , K},

consider each edge e = (u, v) ∈ P (k).

If τ(e) = iou, the payment was routed through edge e by having v relinquish

f (k) IOUs back to u. Thus, there exists some edge (v, u, iou, c, r) in G, for some c

and r. We update this edge to (v, u, iou, c − f (k), r). At the same time, if there

exists a credit line from u to v represented by (u, v, credit, c′, r′), we update this edge

to (u, v, credit, c′ + f (k), r′), (allowing c′ = 0 if the credit line between u and v is

saturated).

If τ(e) = credit, the payment was routed through edge e by drawing upon a line
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of credit that v extends to u. Thus, there exists some edge (v, u, credit, c, r) in G, for

some values of c and r. We update this edge to (v, u, credit, c−f (k), r). Drawing upon

this credit creates a debt that u owes v at realized interest rate r(k)(e). Thus, if there

exists an edge (u, v, iou, c′, r(k)(e)), we update this edge to (u, v, iou, c′+ f (k), r(k)(e)),

otherwise we create a new iou edge given by (u, v, f (k), r(k)(e)). Note that in both

these cases, the newly created IOU is given the realized interest rate for the credit

line.

3.5 Payment mechanisms

In general, there may be several feasible ways to route a payment between two

agents. In this section, I discuss payment mechanisms : rules for choosing flows

to achieve a designated payment.

3.5.1 Choice of payment paths

In basic credit networks, the selection of payment paths has no bearing on long-

term liquidity. Dandekar et al. [17] showed that if a sequence of unit flows defined by

source/sink pairs {s1, t1}, . . . , {sk, tk} is feasible using corresponding payment paths

{P1, . . . , Pk} on a network with unit capacities, they remain feasible if Pi, for any i,

is changed to an arbitrary feasible payment path P ′i . Given this invariance, and the

lack of any differential costs, selecting among feasible payment paths has not been a

pressing issue in the basic model without interest rates.

s A

1|0.4, # 1

t

1|0.4, # 3

1|0.2, # 2 1|0.2, # 4

Figure 3.2: Dotted arrows represent IOUs, and edges are identified by #num labels.
The max flow from s to t is two, but a unit payment on the (red) path (#1,#4)
blocks any subsequent flow.
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In FCNs, however, interest rates do pose differential costs, and moreover the liq-

uidity invariance property does not hold. Consider the simple example of Figure 3.2.

The max flow between s and t is 2, but if a payment of one unit is first routed along

the red path, no further flow is achievable. Payment on the path comprising edges

#2 and #3 in the residual FCN would be infeasible due to the interest monotonicity

constraint. So in general the success of a sequence of transactions may depend on

which feasible payment paths are chosen. As I show below, alternative path selection

mechanisms exhibit systematically different long-term liquidity properties.

3.5.2 Mechanism definitions

One way to define alternative payment mechanisms is by refining the objective

function of MaxInterestFlowLP. Instead of maximizing flow, I specify the requested

flow as a constraint and insert criteria for choosing among feasible flows in the objec-

tive. For example, I could choose based on length of paths, or some function of the

interest rates on the included paths.

The monotonicity constraint ensures that intermediate nodes accrue nonnegative

net interest, but alternative paths may differ on the amount of positive net interest.

The payment source generally pays positive interest. I term the interest associated

with the first edge on a payment path the originating rate . To the extent the

transaction initiator has influence over paths chosen, it may be particularly concerned

with minimizing this rate.

For mechanisms below, fix I to be the set of initial contract interest rates, and

let I+ , max(I) be the maximum possible interest rate in the network. Let s be

the source, and Out(s) the outgoing edges from s in the reverse network G†, as

defined in §3.3.1. The mechanisms are defined by replacing the objective function of

MaxInterestFlowLP with those exhibited, fixing the flow to the requested amount,

and in one instance adding additional constraints. The optimization variables and
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remaining constraints in MaxInterestFlowLP are unchanged.

min
∑

e∈Out(s),I∈I

fe,I × I Minimize source cost (MinSrc)

The MinSrc mechanism minimizes the originating rate. I place a cost equal to the

interest rate that would be paid on all potential outgoing flows from the source.

min
∑

e∈Out(s),I∈I

fe,I × (I + (I+ + 1)× 1{τ(e) = credit})

Minimize credit usage (MinCred)

The MinCred mechanism prioritizes use of IOUs relative to credit lines. The idea

is that since credit edges have flexible realized interest rates, their capacity should be

preserved for future situations. The originating rate is minimized secondarily. The

flexibility provided by a credit line could enable additional payment paths by raising

the originating interest rate when necessary. The I+ + 1 term is simply a way to

ensure that IOU status has priority in the objective over originating rate.

min
∑

e∈Out(s),I∈I

fe,I × I Restrict to contract rates (NoMarkup)

∀e, I > r(e) : fe,I = 0

For flow fe,I on a credit line, I refer to the difference I − r(e) as the interest

markup. The markup is additional interest above the contract rate assessed on

credit edges in order to make a payment path monotone. The NoMarkup mechanism

minimizes originating rate, subject to constraints disallowing any agent from drawing
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on credit lines at anything other than their contract rates. NoMarkup is unique

among the mechanisms I consider in that it imposes additional constraints beyond

flow feasibility. This allows us to evaluate the effect of flexible markup policies (which

all our other mechanisms allow) on liquidity.

max
∑

e∈E,I∈I

fe,I × 1{I = I+} Maximize total interest paid (MaxIR)

Given an FCN initially consisting of credit edges, liquidity is maximized by always

assessing the highest interest rate possible. In fact, this MaxIR mechanism provides

liquidity equivalent to that of basic credit networks (Theorem III.5). Note that MaxIR

is sensitive to the maximum interest rate I+, and thus is not very robust. I can peg

the interest paid to an arbitrarily high rate r∗ by introducing a single credit edge e′

with r(e′) = r∗, regardless of how much credit exists at reasonable rates. I include

MaxIR to provide an upper bound on liquidity and demonstrate the tradeoff between

liquidity and interest rates.

3.6 Steady-state liquidity analysis

With respect to a given transaction, any payment mechanism that does not re-

strict feasible payments (i.e., all those listed above except NoMarkup) offers the same

prospects for success. As illustrated in §3.5.1, however, how a payment is routed

can affect the network’s configuration, which changes the prospects for subsequent

transactions. Alternative payment mechanisms may affect network configurations sys-

tematically, and thus have a qualitative impact on liquidity. I measure liquidity by

the long-term failure rate of transactions once the network has reached a steady-state

distribution over network configurations. I call this the steady-state transaction

failure rate . I show in §3.6.2 that given our experimental setup, such a steady state

59



exists.

3.6.1 Experimental setup

Our experimental setup is designed as an extension of the no-interest liquidity

analysis of Dandekar et al. [17]. I initialize an Erdos-Renyi graph [21] with a chosen

average degree between 5 and 35, and size of 200 nodes. Each directed edge represents

a credit line with initial capacity 10. Edge orientation is a fair coin toss and interest

rates are generated uniformly from a specified set I. Namely, if I choose to have

four interest rates, each edge is assigned contract rates of 0.01, 0.02, 0.03, or 0.04

uniformly, and so on for different |I|. I generate transactions by selecting source

and destination nodes uniformly at random and attempting to route 10 units of flow

between them.

For each mechanism, I attempt to route transactions sequentially while recording

any failures. Following a failure, I do nothing to the graph. After 9000 transaction

attempts, I check the failure rate among the first 4500 against the second 4500 trans-

actions. If the two failure rates are within 0.002 of each other, I stop and record the

failure rate of the entire history as the steady-state failure rate. Otherwise, I gener-

ate another transaction and move our observation window forward by one, that is, I

compare observations 2 through 4501 with 4502 through 9001. This continues until

I satisfy our steady-state criterion. I perform the whole process ten times, averaging

the results.

Note that for purposes of this liquidity analysis, I do not consider actual interest

payments. Interest plays a role here only for transaction feasibility and selection of

flows by payment mechanisms.
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3.6.2 Steady-state liquidity of FCNs

A network configuration, or state , is a single specification of the tuple {G, τ, c, r}.

In our simulations, the initial state is set at τ(e) = credit, c maps to a constant integer,

r maps to an element of a set of constant size, and G is an Erdos-Renyi graph, for all

e ∈ E. The number of reachable states is in general unbounded, since a flow on an

edge may take on any value between 0 and c(e), leaving any real value as a possible

residual capacity. However, if |I| is finite, payment amounts are integers, and all flows

are restricted to be integral, then the number of states is finite. In all the simulations

reported here, I route constant integer payment amounts under bounded |I|. As the

linear program solver software I used (CPLEX) maintains integer solutions, the set

of states is finite and discrete [32].

The generation of random transactions induces a transition probability matrix

between states. The resulting stochastic process is an ergodic Markov chain and

therefore has a steady-state distribution.

Theorem III.4. Let h, h′ ∈ T where T is the finite state space over states of the

FCN, when routing integer valued flows of amount X. Let P (h, h′) be the probability

of moving from state h to state h′. These probabilities are induced by the transaction

probability matrix Λ which picks any source and sink node pair (s, t) with positive

probability, between which a payment of amount X is attempted. This stochastic

process χ is an ergodic Markov chain.

Proof. First note that χ satisfies the Markov property. Given I are in state h, P (h, h′)

is independent of any other future or historical state for any state h′. To calculate

this probability, I can just sum the probabilities of every transaction that will get us

from h to h′.

To show that χ is ergodic, first I need that h is reachable from h′ with nonzero

probability (irreducibility), for any h, h′ ∈ T . I use the fact that any pair of nodes
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can be selected for a transaction with nonzero probability, since I choose the source

and sink uniformly at random. So any series of pairwise transactions also has nonzero

probability. In particular, neighbors in the graph can be selected with positive prob-

ability. Given h, I can always find a series of pairwise transactions between neighbors

to reach h′. The reason for this is that any one-hop path can be routed ignoring

the monotonicity constraint, since the source is willing to pay any originating rate.

So first I can route flows on a sequence of one-hop paths that cancels all existing

IOUs and returns to G to the all-credit edge graph. I can then route a sequence of

transactions that result in the exact configuration of h′. So χ is irreducible.

A version of the ergodicity theorem says that for a finite-state irreducible Markov

chain, I need only one state to be aperiodic in order for all states to be aperiodic [60].

Consider a state h, with two agents s and t such that a payment between s and t

is not feasible. Since there is a non-zero probability of picking s and t for the next

transaction, there is a non-zero probability that h transitions to itself. Therefore, the

state h is aperiodic, which implies that the Markov chain is aperiodic. Such a state

is always reachable by considering a sequence of states that fill all feasible payment

paths from s to t to capacity.

This means that after routing enough transactions, the overall probability of being

in a particular state is invariant. Since failure probability is a function of network

state, this probability is also invariant. Following Dandekar et al. [17], I use this

steady-state failure probability as our measure of liquidity. I expect the procedure

of §3.6.1 to yield the correct liquidity if our error tolerance is appropriately chosen.

Thus, I can evaluate the liquidity when using each of our payment mechanisms.

Notably, the MaxIR mechanism maximizes liquidity.

Theorem III.5. Initialize an FCN G = (V,E) such that ∀e ∈ E, τ(e) = credit.

If mechanism MaxIR is used for every payment in G with contract rates I, each

transaction is infeasible iff it is infeasible under a basic (interest-free) credit network
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with the same graph structure.

Proof. If a transaction is infeasible in the interest-free network, then adding additional

constraints by including interest rates will not cause it to succeed. In the other

direction, no matter how many transactions are routed on G under I, there will never

exist an interest rate on an IOU that is not I+. That is, ∀e ∈ E.τ(e) = IOU =⇒

r(e) = I+, by definition of the mechanism. Furthermore, the mechanism always opts

for the maximum markup on every credit edge. Thus, realized interest rates are

constant, at the value I+, and monotonicity is trivially satisfied. If a payment of

amount X is not feasible it must be because there was no s − t flow of amount X,

which implies that the payment is not feasible in the interest-free network.

3.6.3 Markup flexibility on credit lines

Figure 3.3 indicates that steady-state failure rate converges and becomes small at

around degree 25 regardless of how many interest rates are available and regardless

of which payment mechanism I use. The number of available interest rates is much

more influential when the NoMarkup mechanism is used. Especially striking is how

much allowing markups increased liquidity at lower degrees. The liquidity of MinSrc

is almost as good as the basic credit network case (i.e., one interest rate) at degrees

as low as 10. |I| has minimal effect on liquidity. For comparison, NoMarkup has

almost three times the failure rate of the basic credit network at degree 10. This

suggests that accounting for interest has modest effect on liquidity as long as agents

are allowed to increase rates on credit lines.

3.6.4 Tradeoff between high markups and better liquidity

I already know that FCN liquidity is maximized by forcing every agent to pay

the maximum possible interest rate on every edge. The relationship between higher

interest rates and improved liquidity is also exhibited more generally. In Figure 3.4b, I
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Figure 3.3: Steady-state failure probabilities for NoMarkup and MinSrc mechanisms
at degrees 5 to 25, Erdos-Renyi graphs with 200 nodes. “xIR” means |I| = x.

see that compared to MinSrc, the MinCred mechanism yields a slightly higher average

interest rate on IOUs. Correspondingly, it has a slightly lower steady-state failure rate

(Figure 3.4a). Many other heuristic mechanisms were tested and the relation between

interest and failure rates held true. For brevity, I omit detailed descriptions, and show

only average interest and failure rates (Figure 3.5). Conditional on average degree of

the graph, almost all variation in liquidity among mechanisms can be explained by the

average interest rate paid by agents when the mechanism is employed. The tradeoff

is clear: better liquidity comes with higher interest rates. This tradeoff diminishes

when the graph is well-connected, as almost all transactions succeed.
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Figure 3.4: Failure rate and average interest rate level over all IOUs in the final graph,
obtained after reaching steady state. Starting from degree 7, difference in failure rate
between MinSrc and MinCred is statistically significant.
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tested at a fixed average degree.

The explanation for this is straightforward. Given the monotonicity constraint,

an IOU at low interest restricts the completing paths. Thus, higher interest on IOUs

promotes greater transaction capacity for the network.

3.7 Strategic routing game

The relationship between interest rates and liquidity presents a strategic dilemma

for choice among mechanisms. A low originating interest rate minimizes costs for the

payer, but imposes an externality on the rest of the network in the form of reduced

liquidity. I explore the conflict between individual incentives and global effectiveness

in FCNs by defining a game, where the source of each transaction chooses a payment

mechanism. I evaluate the game by simulation, over a range of network settings and

payment mechanisms similar to those explored in the liquidity study above.

Our scenario employs 100 agents initialized to a random-graph FCN, who attempt

to execute a randomly generated sequence of transactions. Specifically, the steps of

each simulation run are: (1) Assign strategies to agents according to a specified
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strategy profile. Strategies in this context are simply payment mechanisms as defined

in §3.5.2. (2) Generate a directed Erdos-Renyi graph with 100 nodes and a specified

average degree. Assign agents to these nodes. Set the capacity on each edge to 100,

and the contract interest uniformly at random from the set {0.01, 0.02, 0.03, 0.04}.

Initialize the payoff for each agent to zero. (3) Choose a source and sink uniformly at

random. (4) Attempt to route 100 units from source to sink using the source’s fixed

strategy. If successful, update the FCN based on the chosen flows, and increment

the source’s payoff by the amount xVal . (5) Repeat steps (3) and (4) 2000 times.

(6) Calculate net interest income for each node, and add this to the corresponding

payoff.

The interest income is defined under the assumption that IOUs resulting from

the transaction sequence remain outstanding for one period. Let INx = {euv ∈

E : v = x, τ(euv) = iou} denote the set of incoming IOUs of node x, and similarly

OUTx = {euv ∈ E : u = x, τ(euv) = iou} the outgoing IOUs of x. Node x’s net

interest income is then
∑

e∈INs
c(e)× r(e)−

∑
e∈OUTs c(e)× r(e). An agent’s overall

payoff is the cumulative value from successful transactions plus net interest income.

In our analysis the only scenario parameter I vary is the average degree of the

initial random graph.4 I explored three settings: 8, 15, and 22.

Since promoting liquidity comes with positive externalities, I would not expect to

see social welfare maximized in equilibrium. Our hypothesis was that agents would

choose to pay a lower originating rate than is socially optimal. To evaluate this hy-

pothesis, I performed simulations over strategy profiles combining three mechanisms:

MinSrc, MinCred, and MaxIR. These represent three points on the spectrum between

minimizing interest cost (MinSrc) and maximizing liquidity (MaxIR).

To evaluate a profile, I average over at least 1500 simulation runs, to produce

accurate payoff estimates. This takes 50-100 core-hours, depending on average node

4I explored two xVal settings, but observed no interesting differences, so report results only for
xVal = 10.
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Pure Strategy Profile Payoffs
Average 
Degree

MaxIR MinCred MinSrc PSNE
Dominated 
Strategies

8 145 139 132 MinSrc, MinCred MaxIR

15 180 178 177 MinCred MaxIR

22 193 192 192 MinCred MaxIR, MinSrc

Figure 3.6: Payoff and symmetric equilibria information for varying average degree.

degree. Even with only three strategies, exhaustive simulation of profiles for 100

players is not feasible. Exploiting symmetry, there are 5151 profiles in the full game,

which would take too long to cover with available resources. I therefore employed

deviation preserving reduction [71] to approximate the 100-player game with a reduced

4-player version. This required simulation of only 30 full-game (100-agent) profiles to

estimate each game model.

Among the symmetric pure-strategy profiles (i.e., where all players choose the

same strategy) shown in Figure 3.6, the profile with the highest social welfare (i.e.,

sum of all payoffs) in every setting is that where all players play MaxIR. The MinCred

profile had lower social welfare, followed by MinSrc. MaxIR was dominated at all

settings. I searched for symmetric Nash equilibria using replicator dynamics [59].

I found only pure-strategy Nash equilibria (PSNE) in our experiments, reflecting a

coordination benefit for adopting a uniform mechanism.

MinSrc and MinCred exhibited similar payoffs in most profiles containing both

strategies. At low average degree (8), I found PSNE consisting of both strategies,

but at high average degree (15, 22) only MinCred is an equilibrium. At average

degree 22, the Mincred PSNE was confirmed statistically using the bootstrapped

regret methodology outlined by Wiedenbeck et al. [69]. No other games exhibited

solutions with zero regret at the 95th percentile.

Though the socially optimal outcome (i.e., all agents playing MaxIR) is strate-

gically unstable, the fact that MinCred is competitive with MinSrc is encouraging.

From Figure 3.4 I know that MinCred trades off higher interest rate for better liquidity
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compared to MinSrc. This suggests that agents have some willingness to pay higher

interest, in conjunction with the coordination benefit, to achieve higher liquidity.

3.8 Summary

I have extended the credit-network model of distributed trust with interest rates

and a distinction between credit lines and debt. FCNs provide a standard means to

represent incentives for extending credit, and thereby also support direct modeling

of real-world financial relationships. The extension to support interest rates raises

new issues in routing payments over the network, in the form of constraints to assure

the willingness of intermediaries to participate. These are further complicated by a

distinction between credit lines and debt, namely that the former may admit flexibility

in rates whereas the latter are more rigid. I formalize these constraints, and develop

an efficient algorithm for determining a feasible payment flow, as well as a range of

mechanisms for choosing among feasible flows.

Given the plethora of routing policies and options, I perform computational studies

to explore the implications of alternative mechanisms on network liquidity. I find that

performance can vary greatly across mechanisms, and moreover that there may be

a strategic tension between preferences of the transaction source and global network

effectiveness. I explore this issue through empirical game-theoretic analysis, and

find that while this tension does exist, there is evidence that agents will not simply

maximize myopic gain and instead consider overall network liquidity in equilibrium.

3.9 Economic modeling using FCNs

In this chapter I have focused on outlining how the ability to make payments is

affected by network structure and choice of payment mechanism. I showed through

experiments that the failure rate of transactions is drastically reduced by the use
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of interest rate markups, but equally important to constructing economic models is

the amount of the markup. Given an FCN, a payment mechanism, and a payment,

the amount of markup given by Algorithm MaxInterestFlowLP reflects in some sense

the cost of providing liquidity (remember that liquidity is defined as the likelihood

of a successful transaction). A real-world analog of this cost is the liquidity haircut

that firms typically take in order to sell illiquid assets (such as long term debt or

mortgages). This is the liquidity cost of making the payment. The experiments

done in this chapter show that liquidity costs in an FCN consist of:

1. Remoteness of the payment destination (i.e., how many types of IOUs the des-

tination will accept as payment)

2. Liquidity of the payment source’s assets

3. Average degree in the FCN

4. Choice of payment mechanism

All of 1-3 reflect determinants of liquidity cost in real debt markets. An example

of 1) is a vendor not accepting personal checks as payment, or requiring a fee. 2) can,

for example, reflect how much cash the payment source decides to carry; cash will

never incur a liquidity cost because it can be used to make any payment. 3) is more of

a macroeconomic condition reflecting overall competition for servicing the payment.

High degree implies more possible payment paths, out of which a low markup one

can be chosen by the source. 4) does not correspond to real debt markets directly, so

I will simply assume all payment source agents are choosing the markup-minimizing

mechanism going forward.

In order to establish the basic payments properties of FCNs, two economic activ-

ities have been abstracted away in this chapter. First is the motivation for making

payments. What good or service is being paid for, and what is the decision process
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behind making these payments? Second is the origin of the underlying trust modeled

by the FCN. Why should there be trust, and how does it form? These questions rep-

resent the opportunity to build an agent-based model of the financial system using

FCNs, which I proceed to do in Chapter IV.
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CHAPTER IV

An agent-based model of the credit cycle

In Chapter IV we evaluated Basel-style leverage regulations using a dynamic model

of the asset market. In this chapter, I introduce a new agent-based model that en-

ables further evaluation of such regulation, considering evolving debt relations among

banks. Debt as an investment is qualitatively different from investing in single-asset

markets since each debt contract entitles the holder to payments from a specific bor-

rower. Thus, in a system with n banks, there are n − 1 different types of debt for

each creditor to invest in (lenders cannot borrow from themselves). To accommodate

this heterogeneity, creditors offer highly variable terms based on the perceived risk-

iness of borrowers. A model of debt dynamics must be able to express these terms.

The original FCNs allow creditors to specify a single term feature on debt contracts:

the interest rate. I introduce extended FCNs (or EFCNs) in order to model debt

contracts that also specify a collateral rate . This allows creditors to specify how

much of their debt they will automatically recoup if a borrower defaults. Setting this

rate is an important tactic for lenders to control risk, and allows for two broad types

of debt to be issued: secured debt , which has a high collateral rate, and unsecured

debt, which has a low collateral rate. These have been the two basic types of debt

for decades, serving crucial and disparate funding needs [4]. EFCNs allow them to

be modeled using a network formation process.
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By constructing a behavioral model for banks as well as a payment mechanism

compatible with EFCNs, I examine experimentally how the collective debt issued by

lenders can contribute to systemic risk, and how Basel regulations affect this risk. The

model focuses on how the network of obligations among banks changes over time due

to profit-maximizing behavior from banks. There are two stages to bank behavior.

In the first stage, banks choose over a set of heuristic strategies. Specifically, these

strategies include whether to offer secured or unsecured debt as well as how much to

tolerate risk when deciding on investment mix and amount. Once a heuristic strategy

is chosen, it cannot be changed.

In the second stage, banks execute their heuristic strategy by observing market

conditions (such as the cost of funding debt and assets, their own access to funding,

and the demand for debt) and change the mix of cash, debt, and assets they hold

in their investment portfolios in response. Banks borrow from each other in order to

satisfy investment or liquidity needs. This means that the availability of funding as

well as the exposure to risks of default are endogenously generated. As a result of this

behavior, a credit cycle emerges in our model as aggressive banks take on leverage

until creditors become leery of their exposure to risk, and withdraw their credit lines.

This causes either a spate of defaults or a gradual deleveraging, luring creditors to

reopen credit lines, starting the cycle anew.

Similarly to the evaluation of Basel in Chapter II, the effect of regulation can be

broken down into two parts. First, any particular fixed strategy implemented by a

bank will express itself differently in specific actions under the constraints of a new

regulation. This is a mechanical effect that can be seen by introducing regulation into

the model while fixing banks’ choice of heuristic strategy. Second, banks may change

the strategies they employ in response to regulation. To analyze these changes, I use

empirical game-theoretic analysis to find Nash equilibrium strategy profiles.

Overall, results of this analysis indicate that Basel regulations decrease losses on
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debt, default rates, and interest rate volatility significantly. The effect on profit levels

for banks is mixed. There is some evidence to suggest that Basel induces banks

to shift towards more risky strategy profiles, but the majority of equilibria under

Basel are qualitatively similar to the unregulated ones. It appears that Basel is able

to attenuate the excesses of the credit cycle without inducing a significant strategic

response from banks.

4.1 Introduction

One of the driving forces behind the 2008 financial crisis was the interconnectivity

between banks [39]. The failure of a single bank, for any reason, can influence the

survival of other banks. The failure of Lehman Brothers is the most prominent

example of this in recent history. Directly preceding the crisis, Lehman suffered large

losses due to its exposure to subprime mortgages. But Lehman on its own was not

deemed to control a systemically important amount of assets, and therefore it was

not within the purview of regulators to offer a bailout. This decision ultimately led to

a deepening of the crisis. The network of credit relationships between banks enabled

this deepening in two ways.

First, since other banks were depending on payments owed to them by Lehman to

continue operations, many had difficulties meeting obligations to their own creditors.

Some of these banks were not able to meet all of their own obligations, in turn

causing some of their creditors to become financially stressed. This phenomenon is

called financial contagion , and it propagates through tangible debt obligations

that must be repaid on penalty of default. These debt obligations are collectively

called the interbank debt network in this chapter.

Second, the same market conditions that led to the failure of Lehman Brothers

caused creditors to revise upwards their assessments of the risk of holding debt from

each other. In addition, Lehman Brothers themselves could no longer provide credit.
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Thus, right as banks needed emergency funding, it became more expensive (or impos-

sible) to borrow funds. This phenomenon is dubbed a credit freeze . Credit freezes

take place on the network of potential debt contracts at terms set by lenders. These

potential contracts are called credit lines in this chapter, and collectively they form

the interbank credit network . It represents the confidence that lenders have that

debt will be repaid.

The leverage cycle models employed in Chapter II predict that small external

shocks to asset prices can produce amplified swings due to a differential proclivity

among market participants to take leverage. This story fits quite well with what

happened in the subprime mortgage market that was responsible for Lehman’s initial

troubles. But in these leverage cycle models, banks interact with each other only

through transactions in an asset market. Without explicit treatment of dynamics

in the credit market, important systemic risks such as credit freezes and financial

contagion are overlooked.

In this chapter I rectify this by modeling the formation of both of the interbank

debt network and interbank credit network within the EFCN framework. Both net-

works form as a result of decisions that banks make to maximize profits. In particular,

banks strategize over how and to what extent to manage investment risk. Each bank’s

profit is a function of actions taken by all other banks in a complex, networked en-

vironment. Periodically, the collective actions of all banks produce credit freezes and

financial contagion. This model provides an opportunity to evaluate the effect on

financial stability that Basel has on a dynamic, strategically reactive debt market.

The rest of this chapter is organized as follows. Section 4.2 covers some basic

concepts of credit dynamics captured in the new model. In Section 4.3 I describe

specific processes incorporated in the credit cycle model and explain some of its

dynamics. I then introduce EFCNs and various notation used throughout the rest

of the chapter in Section 4.4. Particulars of the credit cycle agent-based model are
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specified in Section 4.5. I present experimental setup and results in Section 4.6.

Finally, I summarize findings in Section 4.7.

4.2 Background: credit dynamics

Banks and other financial institutions deploy massive resources to make sure that

their risk profile fits that of their management and investors. Yet disastrous phenom-

ena like financial contagion and credit freeze have happened repeatedly in recent his-

tory. Some prominent policymakers have advocated modeling the complex network

of relationships between banks for answers to this conundrum [39]. Subsequently,

economists have developed models using techniques from network theory that focus

mostly on analyzing financial contagion.

Financial contagion A common strategy for modeling contagion is to fix either

the debt network or the credit network and theorize about how a stylized version

of the financial system may cause defaults and contagion. This approach has the

advantage of being analytically tractable and establishes some important baselines.

Roughly speaking, the mechanism for contagion in these models is for a borrower to

default due to an unforeseen demand for liquid assets, or a liquidity shock , leaving

creditors with a loss that may cause them to default as well, and so on. A classic

example comes from Allen and Gale [2]. These authors find that a fixed, complete

(i.e., fully connected and infinite capacity) credit line network facilitates an egalitarian

response to deposit shocks and decreases the size of shock needed to trigger contagion

compared to an incomplete network where some banks do not offer credit lines to

each other. Another result due to Acemoglu et al. [1] fixes a debt network. In that

model, the robustness of complete debt networks drops sharply beyond a certain

shock magnitude threshold.

To date, analytically tractable models have been able to incorporate only the most
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basic features of real financial networks. Gale and Allen assume deposits are shared

among connected banks, meaning credit lines must be reciprocal and (functionally)

infinite in capacity. Acemoglu et al. restrict attention to debt networks with reciprocal

edges and uniform debt sizes. Banks in these models have a binary relation with other

banks (trust for infinity or zero credit, borrow a set amount or not). Thus, the graph

models are unweighted, and unable to capture degrees and direction of dependence.

This is where the expressivity of EFCNs, which allow for credit lines with arbitrary

capacity and debt contracts with flexible terms, can shine.

Credit freeze In contrast to contagion, which is tied to the debt network, credit

freezes depend crucially on the available terms for potential debt in the credit network.

These terms are a response to evolving market conditions, so the fixed debt network

models used to evaluate financial contagion are inadequate. Instead, the motivations

of lenders must be carefully examined and modeled. There have been many empiri-

cal studies documenting credit freeze during the financial crisis [34]. There is widely

available evidence that liquidity management was the source of the credit shortage, as

banks with more illiquid assets on their balance sheet decreased lending by more [16].

Theoretical models point to uncertainty in asset markets and borrower solvency as

explanations for credit drying up [63]. Gorton and Metrick [29] cite increased collat-

eral requirements during the crisis as a major reason for credit freeze. Note that none

of these studies model interbank credit lines explicitly; debt is instead handled using

a monolithic market mechanism.

In my model I include liquidity management, uncertainty over borrower quality,

and the volatility of asset values as drivers of credit freeze. I model credit line forma-

tion so that the interbank credit network is made explicit. As a result, a unique driver

of credit freeze arises: when one bank decides to decrease the amount it wants to lend

out, other banks see a decrease in the maximum they may invest, which induces them
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to decrease the credit they extend as well. The opposing effect is also true, resulting

in temporary credit bubbles.

Towards dynamic network models Network models are particularly appealing

for modeling the financial system because several phenomena observed in the last

financial crisis can be modeled. The interbank debt and credit networks both may

include pairs of banks that know nothing about each other and have no direct credit

or debt relationship. Yet they can still influence each other indirectly through the

network. Even if somehow the entire network were known to every bank, extracting

the relevant information to manage risk is still a hard problem that is beyond current

financial practice. It is conceivable that the incongruity between the risk practices of

banks and the reality of systemic risks in the financial system is due to this opaqueness

of network information. Financial contagion is an example of this gap in practice.

If banks were aware of how the state of the network affected their own profit, they

could gauge how exposed they were to contagion and take the appropriate measures.

But because the true network is not known, default cascades are not checked and can

take banks by surprise.

Another way for crisis to happen in network models with risk-aware banks is when

systemic risks are not adequately represented in the banks’ profit. Since each bank

can exacerbate or alleviate risks in the network for all other banks, it is possible for

profit-seeking banks to collectively ignore the damage they are doing to the financial

system. If this type of externality happens at equilibrium, then banks can be locked

into a cycle of repeating crises. A game-theoretic analysis of a dynamic model can

reveal this path to crisis.

The model I develop in this chapter models banks as profit-seeking enterprises

while incorporating the complexity of interbank debt and credit network formation.

Banks make decisions at the most granular level: evaluating whether or not to lend

77



or borrow from specific counterparties. This granularity gives rise to macro-level

phenomena naturally, and enables the macroeconomic response to regulation to have

foundations in the intricate profit-seeking behavior of banks. However, this type

of model demands that bank decisions be made in an extremely high dimensional

action space, so a behavioral model is needed to specify reasonable bank reactions

to market conditions. In turn, empirical game theoretical analysis must be used to

bring the behavioral model to equilibrium. I use this approach to create a rich credit

cycle model incorporating both credit freeze and financial contagion that offers new

perspectives on the efficacy of Basel regulations.

4.3 Credit cycle overview

As in the Allen and Gale model, N banks each operate in their own region with

a specific set of retail customers. These customers put their savings into banks as

deposits , effectively creating debt that the bank must repay on demand. Every

period a random amount of deposits will either be created (signifying consumers

putting more cash into a bank) or withdrawn (signifying consumers withdrawing

their cash from banks). The inability of banks to honor large withdrawals is a major

reason for default.

A bank’s business is to take cheap forms of funding (such as deposits) and trans-

form them into higher-yield investments. Two investments are available: assets

which represent readily purchasable but illiquid securities, and interbank debt which

are contracts between banks to exchange currently available funding for interest and

repayment in the future. Both types of investment are funded using a combination

of interbank debt, retail deposits, and the bank’s own capital.

Assets have high expected return, but also high volatility of returns. They require

payment in the current period, and offer a random, unknown payoff in the next period.

They lose value if liquidated to make payments before the next period comes. Asset
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liquidation is the most expensive way to make payments, and can lead to insolvency.

All properties of the distribution of asset returns are public knowledge, and

throughout this chapter I assume an infinite supply of assets, with price normalized

to 1 (so that k units of asset costs k dollars). Notice that asset prices in this model

do not change as a result of bank demand, as they do in the leverage cycle model in

Chapter II. So the sale and purchase of assets does not have a direct effect on other

banks; rather it serves as a catalyst for interesting debt and credit network dynamics.

This choice makes the causal link between interbank debt dynamics and the economic

findings in Section 4.6 more clear, especially as some of these findings mirror results

from the leverage cycle literature which highlights asset market dynamics.

An alternative to buying assets is to loan other banks money by extending credit

lines . Creditors use these to express terms at which a they are willing to accept

a borrower’s debt. Debt issued on these lines is subordinate to deposits, so that

in the event of a default, deposits will always be paid before interbank debt. In

the work of Allen and Gale, as well as in numerous subsequent models of financial

contagion, banks are connected to each other via static, homogeneous credit lines.

My model departs from this treatment significantly, as credit lines originate from

efforts by creditors to procure debt as an investment. Specifically, banks estimate

and compare the return and return variance on debt versus assets, and construct an

expected utility-maximizing portfolio. But while the the asset’s stochastic properties

are assumed to be known, those of debt are not analytically tractable and must be

approximated throughout the simulation. In addition, debt is not readily available for

purchase as assets are. Instead, creditors must adjust their offerings based on market

conditions, in the hope of achieving their investment goal. For these two reasons,

the market for debt does not naturally come to an equilibrium. Instead, creditors

are given a set of heuristic strategies to choose from and the model is solved, using

EGTA, for a Nash equilibrium in the set of strategies.
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When borrowers utilize credit lines and pay back their debt with interest in the

next period, then the credit line has paid off as an investment. If a borrower defaults,

then the creditor loses part of its principal determined by the collateral rate on the

credit line, and the credit line has yielded a negative return. An unused credit line

corresponds to zero return. Both collateral rate and interest rate are properties of

the credit line, and are set by creditors in a competitive environment.

Finally, banks can keep deposits in the form of cash, forgoing investment returns

entirely. This shields them from investment risk, and also preserves their ability

to make required payments (such as returning cash to depositors) in a universally

accepted currency. Forcing banks to maintain cash reserves is a major regulatory

pillar that will be implemented in the model.

Banks in this model are heterogeneous in the following ways:

1. Their depositors are different, which means each bank gets a different liquidity

shock each period.

2. They differ in their investment preferences, and thus their targeted portfolios

have different mixes of debt and assets.

3. The set of fellow banks they extend credit to differs (but may overlap), and the

terms at which they extend credit is chosen according to differing policies.

2) and 3) together provide the basis for a debt market . 2) splits the population

of banks into borrowers and lenders. The typical borrower uses credit lines in order to

buy assets, while the typical lender issues credit lines in order to receive stable interest

income. 3) results in competition between creditors for a limited pool of available

debt investments. The fact that creditors do not consider every potential borrower

during every period is a substantial assumption. It stems from the fact that creditors

in the real world must bear the cost of evaluating and maintaining relationships with
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institutional borrowers. Therefore, there is some stickiness in the process for which

borrowers are considered for credit lines.

The modeled debt market described in Section 4.5.6 is a heuristic for allocating

debt at set terms to banks who wish to invest in debt. It is not economically efficient

or strategically stable, but it allows for a large, realistic set of debt investment options.

Every credit line is considered an investment by the issuing bank, and therefore the

terms of each credit line are updated according to investment needs.

4.3.1 Payments on EFCNs and the balance sheet

A unique aspect of this model, enabled by the use of EFCNs to encode debt and

credit relations, is that it considers exchanges of debt that are made possible by

intermediaries . Consider the following scenario:

Suppose there are three banks A, B, and C. They each extend a credit line of

five dollars to each other, so that each has access to ten dollars of credit. Let A have

five dollars of cash, B have five dollars, and C ten dollars. Suppose A wants to make

a payment of twenty dollars to its depositors. It can immediately pay fifteen using

its ten dollars in credit from B and C and its own cash. This leaves B and A with

zero dollars, and C with five dollars. C is unwilling to lend these last five dollars to

A to complete the payment. But B can intermediate by borrowing five dollars from

C using its own credit line, and lending those five dollars to A. A can incentivize B

to do this by offering a higher interest rate than B pays C. The opportunity for B

to intermediate is created by the fact that C isn’t willing to lend out all its cash to

one party. Unlike in previous work, these opportunities are abundant in our model,

where credit lines are issued based on profitability.

All of these payments between banks with and without intermediaries, and using

either credit or debt, are handled naturally by an EFCN. The overall structure of

the EFCN, and the way in which it reflects a bank’s balance sheet during a liquidity
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shock, is depicted in Figure 4.1. A payment to depositors through an intermediary is

also shown.

Bank Capital Deposits Cash Assets Debt

1 10 100 10 100 0

2 10 100 20 90 0

3 10 100 30 80 0 3

1

2

Banks

Depositors

100/100

100/100

100/100

0/50

0/20

0/
20

(a) Initial EFCN. Each bank holds 100 in deposits, which they have
invested in varying amounts of assets and cash. Banks extend credit
lines to each other in different amounts.

Bank Capital Deposits Cash Assets Debt

1 10 50 0 100 40

2 10 100 0 90 -20

3 10 100 10 80 -20 3

1

2

Banks

Depositors
100/100

50/50

100/100

40/50

20/2
0

0/
20

(b) FCN after Bank 1 pays its depositors back 50 dollars. Bank 2 lends
all of its 20 dollars in cash, and facilitates the lending of another 20
dollars of Bank 3’s cash, to Bank 1.

Figure 4.1: Financial credit networks before and after a liquidity shock of 50 dollars.
Arrows indicate credit lines. An arrow from x to y with marking x/y denotes a credit
line with capacity y and utilization x. The direction of payment flow is against the
direction of arrows.

While it may seem that intermediaries are not readily observed or regulated, in

reality the sale of a complex debt instrument is functionally equivalent to explicit

intermediation. Although the correspondence is not one-to-one, the real life debt

network is certainly highly influenced by intermediate lenders and borrowers. Inter-

mediated transactions generate more aggregate debt, which has implications on the

level of financial contagion that happens in the event of a default.
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4.3.2 The credit cycle

While there are many moving parts in the credit cycle model, its namesake emerges

as a fairly consistent dynamic process. At the start of the model, banks invest in a

differential manner according to their risk tolerance. For aggressive banks, this means

borrowing on the interbank market to buy risky assets. For conservative banks, this

means extending credit lines, which are not perceived to be risky, and conserving

cash. Over time, creditors adapt to market conditions so that they offer credit lines

that are utilized by borrowers, at interest rates that they are willing to pay. Cheaper

secured debt is used by all banks to deal with deposit shocks, providing liquidity for a

pledge of illiquid assets. Higher-interest unsecured debt is used to increase investment

by taking leverage.

Eventually, a large asset shock causes damage to the balance sheets of relatively

aggressive borrowers, which have accumulated large amounts of capital by taking more

leverage. A default may happen, and its ensuing contagion spreads. Or borrowers

may be able to avert catastrophe. Regardless, interest rates skyrocket as creditors

revise default risk upwards, making leverage-funded investment less attractive. The

entire system undergoes deleveraging until balance sheets recover, and the cycle starts

again.

A key feature of bank behavior is that they are constantly monitoring the prof-

itability of investing in debt versus assets. For assets this means monitoring the

interest rates paid for buying assets on leverage, and for debt this means monitoring

credit line capacities and default rates. If interest rates become high, banks will shift

their investment towards debt and if interest rates are low or default rates are high,

they will buy assets. During a crisis, the cost of buying assets increases as interest

rates rise, which discourages banks from investing. Meanwhile, during boom years

assets purchases become cheap to fund as interest rates fall due to lower perceived

borrower risk. The credit cycle is powered by this profit-seeking behavior by creditors.
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Basel regulation enters fairly naturally into the model as an additional constraint

on leverage taken by banks. It imposes a constraint that is more stringent the higher

the weighted (by capital) average estimated default rate is.

4.4 Extended FCNs

The FCNs developed in Chapter III are a natural modeling tool for representing

interbank network dynamics. Credit edges in an FCN correspond to an offer to invest

in a specific borrower’s debt at a specific interest rate, up to a limit. Once a set of

these offers/credit edges have been established, banks can use them as a source of

funding for any payments they choose to make. These payments generate debt edges

which are also encoded in the FCN, representing obligations to repay current funding

in the future. Collectively, debt edges map to the debt networks which are used in

the literature to study financial contagion.

Interest payments are an important pricing tool for banks, but perhaps equally

important is the collateral rate. This sets the amount of a loan that the lender

recovers in the event that the borrower defaults. Since default is the only risk to

lenders, loans at different collateral rates are extremely differentiated products with

macroeconomic ramifications. One way to see this is that the aggregate collateral

required by lenders defines a leverage limit on the financial system. This leverage

limit constrains investment and thus decreases exposure to risky assets. In fact,

lenders perform a similar function to regulators by setting collateral rates to limit

their exposure to default risk. Endogenously set collateral rates interact with the

leverage limits set by regulators to create an overall tolerance for leverage in the

financial system.

From the borrower side, credit lines with different collateral requirements require-

ments are qualitatively different funding opportunities. At the extreme, if a collateral

rate of one hundred percent is required on a credit line, borrowing is simply a way
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to access liquidity using assets that may be difficult or costly to unload immediately.

No leverage is taken, at all in this case. On the other hand, a collateral rate of zero

is an opportunity to increase leverage and invest more than would be possible other-

wise. So borrowers have an entirely different set of considerations in choosing which

collateral requirements to take on.

In order to incorporate collateral requirements into a model of credit network

formation, FCNs must be extended to include collateral requirements. This extension

leads to the construction of a richer payment mechanism where banks choose between

debt options at different collateral rates, detailed in Section 4.5.3. It also introduces

richness in lending strategy, as banks can set rates according to market conditions and

consider how much collateral to require on their loans. This is done given estimates

of each borrower’s risk of default.

4.4.1 Extended FCNs: notation

To handle realistic debt contracts, the original FCN framework from Chapter III

must be extended with collateral rates. To do so, we will use the following set of

notation.

An EFCN is represented by a tuple (V,E) where V is a set of nodes indexed by

{1, . . . , N} and E is a set of edges on V . The following functions allow agents to

access important characteristics of nodes and edges.

• τ : E → {debt , credit} is the type of the edge.

• C : E → R+ denotes the edge’s capacity . For credit edges, this is the amount

that may be borrowed. For debt edges, this is the amount of the debt.

• R : E → R+ is the edge’s interest rate. For credit, this is the rate at which the

lender is willing to lend, or the contract rate. For debt, this is the agreed-upon

rate for the debt contract.
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• CR : E → R+ is the edge’s collateral rate. For credit edges this specifies, per

unit borrowed, how much capital must be set aside as collateral to be seized

by the creditor in case the borrower cannot repay its debt. For debt, it is the

collateral rate agreed upon at the time of issuance.

• DR : V → R+ is the default rate of the node. D̂R : V → R+ is an estimated

default rate.

I slightly overload notation and sometimes refer to DR(e) or D̂R(e) with e ∈ E.

This will be understood to mean the default rate of the borrower for either credit or

debt edges.

As far as the basic difference between EFCNs and FCNs, the function CR is the

only one. But we will see that this simple addition has large ramifications in terms

of the model we may build as well as how payment mechanisms must be constructed.

4.4.2 Nodes as banks: notation

The original FCNs considered interest payments to be the only way of receiv-

ing returns by holding debt. In our EFCN-based model, creditors value debt more

realistically in two ways. First, the ex-ante default rate of the borrower can be es-

timated and used to help creditors decide on what terms to offer. Second, creditors

can set a collateral rate which controls losses on defaults for themselves, and imposes

a constraint on how borrowers use capital. To include these two factors, payment

mechanisms on EFCNs must allow for asymmetrical valuations of debt by borrowers

and creditors. To see this, consider a single piece of debt e ∈ E. The creditor must

worry about losing the value of the debt in the event of default. Meanwhile, the bor-

rower values the debt only insofar as it allows it to achieve a payment. Default is a

catastrophic event for the borrower, but it has no impact on how it values the cost of

using e. A similar asymmetry between creditors and borrowers exists when gauging
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the value of the collateral rate on debt. In light of this, we define two functions to

access the value of using edges to make payments. See Section 4.5.3 for details.

• DR : V → R+ is the default rate of the node.

• Val in : E → R is the debt value of receiving a payment on a particular edge.

• Valout : E → R is the debt value of making a payment on a particular edge.

For our purposes, it will be convenient to also refer to payer and receiver banks:

• Payer : E → V returns the node which can utilize an edge to make a payment.

For a credit edge, this is the borrower (by issuing debt), and for a debt edge

this is the creditor (by debt cancellation).

• Receiver : E → V returns the node which can receive a payment on a particular

edge. For a credit edge, this is the creditor (who receives the borrower’s debt),

and for a debt edge this is the borrower (who can have its debt cancelled).

We define the following edge subsets for convenience. With v ∈ V :

• Out c(v) are credit edges where v is the lender, Outd(v) are debt edges where v

is the borrower, and Out(v) is Out c(v) ∪ Outd(v). Thus Out(v) consists of all

edges that can be used to pay v.

• Inc(v) are credit edges where v is the borrower, Ind(v) are debt edges where v

is the lender, and In(v) is Inc(v)∪ Ind(v). Thus In(v) consists of all edges that

v can use to pay other nodes.

Banks in this model do not always have perfect information. For uncertain quan-

tities X, estimates are often used, and are denoted by X̂. Notable estimated quan-

tities are the default rate D̂R and the expected debt values Ê(Val in) and Ê(Valout),
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where E is the standard notation for the expected value, and Ê is an approximation

of the expected value.

Finally, in every EFCN discussed in this chapter, there is a market node that

accepts payments for deposit shocks and assets. All other nodes in the graph (rep-

resenting banks), offer a credit edge with unlimited capacity, zero interest, and zero

collateral rate to the market node. Debt issued by the market node can be interpreted

as cash , since it is completely liquid and is accepted by all banks as payment. None

of the credit edges issued to the market node are included in the In and Out subsets,

and the market node is not counted within the N bank nodes.

4.5 Credit cycle model environment and bank behavior

The credit cycle model will consist of banks alternating between making invest-

ment decisions, including issuing credit lines, and seeing their investments play out.

Each cycle is called a period, and the model ends after T periods. T is chosen to be

large enough so that interesting dynamics may play out.

4.5.1 Model schedule

During the investment phase , each bank prepares a balance sheet according to

targets set in the last period, and updates targets for the next period based on new

observed returns. Targets are distinguished from actual achieved balance sheet values

using brackets 〈〉. An EFCN consisting of credit lines is originated in this phase, to

be utilized for all payments during the rest of the period.

1. Check every bank for overleveraging. See Section 4.5.2.

2. Purchase asset amounts Akt according to target amount 〈Akt 〉 for all

k ∈ {1, . . . , N} in random order.

3. Update default rate estimates D̂R(k), for all k. See Section 4.5.4 for details.
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4. Set asset investment target 〈Akt+1〉, debt investment target 〈
∑

e∈Ind(k)t+1
C(e)〉,

and target cash reserve amount 〈mk
t+1〉. This requires updating estimates for

the cost of funding, asset/debt returns, and the volatility of asset/debt returns.

It also entails requesting credit from other banks. See Section 4.5.6 for details.

5. Each bank issues credit according to their own target debt investment level

〈
∑

e∈Ind(k)t+1
C(e)〉, credit requests made by other banks, and their own credit

allocation strategy. Credit lines from last period expire. Details in Section 4.5.6.

6. Update all debt valuations for every edge. This includes updating collateral

values. Create debt valuation clusters for use in payment algorithm. See Sec-

tion 4.5.3.

7. End the iteration, t← t+ 1.

During the capital update phase , the balance sheets and the EFCN constructed

during the investment phase are shocked stochastically. Debt is also repaid in this

phase with interest. All potential default events happen during this phase.

1. A deposit shock for each bank is generated, and if necessary payments are made

to depositors. After the shock, debt valuations are updated.

2. Debt is repaid with interest. Debt valuations are then updated.

3. υt is generated, and the new asset value Akt−1υt is returned to bank k as cash.

Debt valuations are then updated. See Section 4.5.7 for details on υt.

4.5.2 Bank state and balance sheet

Each bank k has a balance sheet equality at time t of the following form:

mk
t + hAkt +

∑
e∈Ind(k)t

C(e) = wkt + dkt +
∑

e∈Outd(k)t

C(e) (4.1)
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mk
t is cash, Akt is assets, wkt is capital , h is an asset liquidity haircut , and dkt is

deposits. Banks start with an initial endowment of winit , and initial deposits of dinit ,

which is all granted in cash. A bank must maintain certain conditions on its balance

sheet in order to continue operations, as described below.

Overleveraging Overleveraging occurs when wkt <
∑

e∈Ind(k)

CR(e)C(e). Banks

that are overleveraged cannot meet all of their collateral requirements, and thus do

not have further access to credit. Typically, banks become overleveraged when their

assets lose value. They are particularly susceptible to this when they choose to borrow

close to their leverage limit in search of returns.

Banks can default in two ways: becoming insolvent or failing to pay a debt.

These events are described below.

Insolvency A bank that owes more than its total asset value (equivalently, has

negative capital) is insolvent :

wkt = mk
t + hAkt +

∑
e∈Ind(k)t

C(e)− dkt −
∑

e∈Outd(k)t

C(e) < 0. (4.2)

There are three main ways for banks to lose capital.

1. Assets can lose value.

2. A large deposit shock can cause the bank to liquidate assets at a loss.

3. A borrower can default on their debt and never repay it.

Payment failure If at any point a bank cannot honor its depositors’ random with-

drawals, or cannot pay back its interbank debts with interest, then it defaults. Over-

leveraging is a common root cause of this failure, as banks with access to credit can

access the liquidity of creditor banks to pay off shocks and debt. Overleveraged banks,
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however, have only their own cash and assets that, if liquidated, must be sold at a

loss.

Consequences of default A defaulted bank first pays back its collateral to the

best of its ability. It is then forced to be inactive for a set number of periods ε, after

which it is reset to an initial state in which it is forgiven of all debt, and granted winit

and dinit .

Note that there is a growing literature on handling default as an endogenous

decision, and settling payments between defaulting banks simultaneously in financial

networks. For example, Schuldenzucker et al. [58] explore the simultaneous clearing

of default swap obligations. This layer of complexity is largely omitted from this

model and we only consider sequential defaults.

4.5.3 Debt valuation

A key feature of EFCNs is the ability for banks to set both interest rates and

collateral rates on credit lines. In addition, banks are aware that a portion of the

debt owed them will not be paid back, and estimate default rates to account for this.

These features distinguish EFCNs from FCNs, and require that each bank be able to

make a more complex calculation for the value of debt. Creditors need this value to

judge the value of debt as an investment and set terms, and debtors need it in order

to choose which credit lines to utilize. All banks need this value to decide whether to

participate in a payment chain. Values can be negative, signifying the cost of utilizing

debt, or positive, signifying the value of receiving debt.

In this section we specify Val in and Valout , functions that return the value per

unit of debt utilizing edge e. If τ(e) = credit , then a borrower needs to know Valout(e)

the cost for the act of borrowing, and a creditor needs Val in(e), value for the act of

holding debt as an investment. If τ(e) = debt , then a creditor must have Valout(e),
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cost for the act of debt cancellation and a borrower must have Val in(e), the value

for having its debt cancelled. Val in(e) returns the value of receiving a payment on

edge e, and Valout returns the cost of making a payment.

First, we examine the debt valuation problem from a creditor’s point of view,

receiving a unit payment on credit edge e and considering what Val in(e) should be.

The return on the resulting debt if the debtor does not default is R(e). The re-

turn if the debtor does default is −(1 − CR(e)). Let the estimated default rate

of the borrower be DRB = D̂R(Payer(e)). Then the estimated expected return

is −DRB(1 − CR(e)) + (1 − DRB)R(e). So Ê(Val in(e)) takes this value when

τ(e) = credit . Here Ê denotes an estimated expected value, since the default rate

used in this calculation is not exact. This is explained in Section 4.5.2. This is the

value of receiving debt from a borrower on credit edge e. It is also the cost to the

creditor for canceling an existing debt owed it (as in when routing a payment). So

Ê(Valout(e)) also takes this value when τ(e) = debt .

Now consider a borrower utilizing a credit edge. It will have to fulfill two promises:

pay the interest rate R(e) and commit to maintaining enough collateral at rate CR(e).

Intuitively, having to commit more collateral is costly, as it hampers investment

flexibility. But a collateral requirement that is lax enough will not cost the borrower

anything, as it does not constrain the execution of her investment plan. Call the value

of the collateral pledged towards a unit of debt on edge e CV (e) : E → R. This can be

positive or negative depending on how high the collateral rate is. Ultimately, the cost

of the collateral requirement depends on whether the borrower’s investment goals are

achieved. It is impossible to consider all of the environmental and strategic factors

that contribute to this success or failure, so for this model I use an approximation.

Start with the borrower’s investment target :

Target = 〈Akt 〉+ 〈
∑

e∈Ind(k)t

C(e)〉.

92



Target is bank k’s preferred amount of total investment. Let the expected rate of

return on this investment be Ωk
t . Taking on debt at a stringent collateral rate can cost

bank k investment returns if Target is not achieved. To find out if this is the case, the

first baseline to establish is whether or not the investment target is realistic to achieve,

overall. We can do this by calculating the maximum investment possible with current

levels of capital. Define mDebtkt =
∑

e∈Ind(vkt ) C(e)(1 + R(e)), the debt payments

owed to node k at time t + 1. Then the maximum investment is approximately the

amount of cash on hand mk
t−1 +Akt−1υt+mDebt

k
t−1 in addition to the amount of credit

accessible given current levels of capital wkt−1. Call the sum of these quantities the

max payment in period t for bank k, Πk
t . If Πk

t > Target , then the investment

target is feasible . The baseline expectation for feasible targets is that they will be

achieved, so stringent collateral requirements will contribute a negative debt value

but lax collateral requirements will be viewed as not affecting debt value. Meanwhile,

the baseline expectation for infeasible targets (i.e., Πk
t < Target) is that the they

will not be achieved, so lax collateral requirements will contribute positive debt value

while stringent ones will be viewed as not affecting debt value.

We rely on two assumptions to calculate the impact on debt value of a particular

collateral rate.

Assumption IV.1 (Linear interpolation). CV (e) is constant for a particular bank

and period, and thus does not depend on the amount borrowed, X. Therefore, λX is

the total collateral value of borrowing X > 0 dollars, for constant λ > 0.

So given an edge e, two amounts borrowed X and Y , and their corresponding total

collateral values A and B, a valid equality under this assumption is that CV (e) =

A−B
X−Y . Since linear interpolation doesn’t hold exactly, the collateral value we calculate

using this equality is an approximation, and is thus denoted by ĈV (e).

To see why linear interpolation is an approximation, note that taking on any single

collateral requirement (no matter how stringent or lax) at a low borrowed amount is
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likely to be inconsequential to the final investment amount achieved. So CV (e) = 0

for many small debts, but increases as the debt amount increases.

The second assumption we make is that credit lines are usable to make payments.

Assumption IV.2 (Creditor Liquidity). The feasible payment level Πk
t is achievable

using a combination of credit and cash.

In reality, not all creditors have enough access to liquidity to help borrowers

make investments. In our calculation of the maximum payment, we also refrain from

including assets that may be liquidated at a loss or debt that may be exchanged or

canceled because these are investments that should only be liquidated in emergencies.

Now we have the ingredients necessary to estimate CV (e). The strategy will be to

first note that the total collateral value of utilizing zero dollars on edge e is 0. Then,

we will calculate the total collateral value of utilizing all available capital wkt−1 at the

collateral rate of CR(e). This total value will be calculated in several different ways

depending on the bank’s funding situation as compared to their investment goals.

Finally, we will use linear interpolation to calculate ĈV (e).

First, imagine we have a feasible target, so that the bank expects to achieve

its investment target. Consider a credit line e with collateral rate CR(e). If the

bank used all of its available capital wkt as collateral to borrow at collateral rate

CR(e), it would end up investing the amount wkt /CR(e). If wkt−1/CR(e) > Target ,

the bank keeps ĈV (e) = 0, since using the credit line keeps it at its baseline of

achieving its investment target. The bank would actually be on track to invest more

than its target, but it does not prefer to do so, and thus assigns no extra value to

the lax collateral terms. However, if wkt /CR(e) < Target then the bank is losing

out on Target − wkt /CR(e) in investment amount and Ωk
t (Target − wkt /CR(e)) in

investment returns. So we have that at a utilization amount of 0, the total collateral

value is 0, but at a utilization amount of wkt /CR(e), the total collateral value is

Ωk
t (Target − wkt /CR(e)). Using linear interpolation, we stipulate that the estimated
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collateral value is Ωk
t
Target−wk

t /CR(e)

wk
t /CR(e)

.

Now suppose instead that the target is infeasible, so that the bank expects to

achieve at best an investment level of Πk
t < Target . Then for a credit edge e with

collateral rate CR(e), the value of borrowing wkt /CR(e) amount is Ωk
t
wk

t /CR(e)−Πk
t

wk
t /CR(e)

.

Note that if (wkt−1/CR(e) − Πk
t ) < 0, the bank assigns a penalty to using the credit

edge, as the collateral rate is below the rate required to invest Πk
t . There is no scenario

where a collateral constraint is valueless, as the bank which cannot ever achieve its

investment goal is always desperate for more collateral.

Finally, consider the collateral value for cancelling debt. When debt edge e is can-

celled, bank k = Receiver(e) receives some collateral back from its creditor Payer(e).

The value of this collateral for bank k depends on how it is used to achieve bank k’s

investment target. If Πk
t > Target , the extra wealth has no investment value since the

target is already achieved. Otherwise, the wealth can be used to increase Πk
t to be

closer to Target . Let (Πk
t )CR(e) be the maximum payment achievable by bank k given

CR(e) more units of capital. Then the collateral value is given by
(Πk

t )CR(e)−(Πk
t )

Ω

k

t
.

So our collateral value function ĈV : E → R+, which is the value that having

collateral rate CR(e) contributes for utilizing one unit of new debt, is the following

for τ(e) = credit:

ĈV (e) =


Ωk
t
wk

t /CR(e)−Πk
t

wk
t /CR(e)

, if Πk
t < Target

0, if Πk
t > Target and wkt /CR(e) > Target

Ωk
t
wk

t /CR(e)−Target
wk

t /CR(e)
, otherwise

and for τ(e) = debt:

ĈV (e) =


0, if Πk

t > Target

Ωk
t [(Π

k
t )CR(e) − (Πk

t )], otherwise
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Now we can sum up the two debt valuation functions. For edge e, k = Receiver(e),

and recalling DRB = DR(Payer(e)):

Ê(Val in(e)) =


(1−DRB)R(e)−DRB(1− CR(e)), if τ(e) = credit

R(e) + ĈV (e), if τ(e) = debt

Ê(Valout(e)) =


−(R(e) + ĈV (e)), if τ(e) = credit

−(1−DRB)R(e) +DRB(1− CR(e)), if τ(e) = debt

4.5.4 Default rate estimation

A bank can default in several ways, outlined in Section 4.5.2. Out of these,

insolvency represents the greatest danger to creditors since creditors take losses on

their debt when borrowers default due to insolvency. Given that the asset return

distribution is known to be lognormal, we can calculate in closed form an approximate

insolvency rate. We want the probability that the bank capital of bank k is below

zero:

P (wkt < 0) = P (mk
t + υtA

k
t +

∑
e∈Ind(k)t

C(e)− dkt −
∑

e∈Outd(k)t

C(e) < 0) (4.3)

= P (υt <
dkt +

∑
e∈Outd(k)t

C(e)−mk
t −

∑
e∈Ind(k)t

C(e)

Akt
) (4.4)

The CDF of υt is known, so this probability may be calculated to estimate the

insolvency rate, which in turn can be used as an estimate of the default rate for any

bank given their balance sheet information. This estimate D̂R(k) is publicly available

to all banks.

D̂R is an underestimate of insolvency, as it only considers asset return shocks. It

misses financial contagion effects completely, and also fails to capture capital losses
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due to asset liquidation. Its purpose is to provide banks with a simple, actionable

insight that requires only balance sheet information, which in the real world is read-

ily available. In contrast, financial contagion estimation requires knowledge of the

entire debt network, and asset liquidation prediction requires knowing the maximum

payment a bank can make. The former is not public knowledge in this model or in

reality, and the latter requires knowing intimate details about each bank’s access to

credit.

4.5.5 Payments

Making payments in EFCNs requires a new payment mechanism with newly

thought out desiderata. For a payment of X dollars from node s to t in an EFCN to

succeed, we require that it must consist of payment paths that satisfy the following

properties.

1. The paying bank (source) loses P dollars immediately, and the paid bank (des-

tination) gains P dollars.

2. All intermediary banks net a positive debt valuation , as defined in Sec-

tion 4.5.3.

3. All new debt contracts on any credit edge pay at least the contract interest rate,

but possibly higher.

4. No bank k in the transaction has
∑

e∈Ind(k)

CR(e)C(e) > wkt after the transaction

if they had
∑

e∈Ind(k)

CR(e)C(e) ≤ wkt before the transaction.

Apart from property 2 and 4, these are all equivalent to conditions satisfied by

payment paths in FCNs as described in Chapter III. In words, property 4 stipu-

lates that any bank that was not overleveraged before a payment path is executed

cannot become overleveraged after execution. Overleveraging and its consequences
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are described in Section 4.5.2. Preventing overleveraging guarantees that every bank

maintains enough collateral to pay back its creditors if it defaults.

Property 2 is similar to the interest rate monotonicity property in the original

FCNs, but with one key difference. Interest rates are a universal valuation for debt

accepted by all agents. Debt valuations, on the other hand, are not universal. In fact,

for a single piece of debt, the creditor and the borrower will generally differ in how

they value it. The interpretation for interest rate markups in EFCNs is that they are

payments made to smooth out differences in debt valuations along payment paths.

Algorithm MaxInterestFlowLP must be modified to handle these changes and pro-

duce valid payments. Recall that in the original FCNs, Algorithm MaxInterestFlowLP

chose from a set of interest rates with limited cardinality. Similarly, Algorithm

MaxDebtValueFlowLP will choose from a set of debt values of limited cardinality,

DV . Recall that flow variables in Algorithm MaxInterestFlowLP consisted of an edge

on which to route the flow as well as an interest rate at which to route the flow. This

setup is modified slightly here, as we instead consider flow variables to pairs of edges

and debt values to the receiver of the flow. This is an arbitrary choice, as setting

this value fixes the interest rate paid on the flow, and also fixes the value paid by the

sender of the flow.

Define ValClust : R × {sending, receiving} → R as taking a tuple (v, s) and

returning the closest member of DV that is greater than v if s = receiving and the

closest member of DV that is smaller than v otherwise.

In addition, define the functions IRVal : R × E → R, ValIR : R × E → R, and

SendVal : R× e→ R as follows:

IRVal(v, e) =
(v + (1− CR(e))D̂R(e))

1− D̂R(e)
(4.5)

ValIR(ir, e) = ValClust(ir + CV (e), sending) (4.6)
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SendVal(recV al, e) = ValClust(Valout(e) + IRVal(recV al, e)− r(e)), sending) (4.7)

Algorithm MaxDebtValueFlowLP:

max
fe,DV ,X

X s.t. (Objective)

∀e ∈ E† : fe =
∑

DV∈DV

fe,DV (Total Flow)

X +
∑

e∈In(s)

fe =
∑

e∈Out(s)

fe,
∑
e∈In(t)

fe = X +
∑

e∈Out(t)

fe

(Flow Value)

∀v 6∈ {s, t} :
∑

e∈In(v)

fe =
∑

e∈Out(v)

fe (Flow Conservation)

∀v 6∈ {s, t},∀DV ∈ DV :
∑

e∈In(v)

∑
DV ′≤DV

fe,DV ′ ≤
∑

e∈Out(v)

∑
SendV al(DV ′,e)≤DV

fe,DV ′

(Monotonicity)

∀e ∈ E†, τ(e) = credit,∀DV ∈ DVs.t. IRVal(DV ) < r(e) or

DV < Val in(e) : fe,DV = 0

∀e ∈ E†, τ(e) = iou,∀DV ∈ DV 6= ValIR(r(e)) : fe,DV = 0

(Valid Interest Rates)

∀e ∈ E†,DV : 0 ≤ fe,DV ,∀e : 0 ≤ fe ≤ c(e) (Capacity)

To make payments, one can simply write down a tuple (X, s, t) representing the

amount to route X, payer s and destination t. This is the basic payment algorithm

used throughout, and produces payments consisting of valid payment paths. Max

flow is achieved if all possible debt valuations are included in DV . Otherwise, some

payments that might have been routed are not, due to the rounding up and down of

true debt valuations to members of DV .
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Note that there are two types of payments in the model: discretionary and

necessary . Buying assets is discretionary as failure to complete the full payment is

inconsequential, so if P is more than the max flow, then the max flow is routed for a

partial payment instead.

On the other hand, payments to depositors and creditors are necessary to contin-

ued operation. For these payments, if X is more than the max flow, then

1. Any non-liquid assets will be liquidated, even at a loss, to attempt to complete

the payment.

2. If there is no way to make the payment, no partial payments are made. Instead,

the appropriate default proceedings will be triggered.

Payment mechanisms Payment mechanisms will implement flows calculated us-

ing Algorithm MaxDebtValueFlowLPȦs a modeling choice, we will replace the ob-

jective in Algorithm MaxDebtValueFlowLP for all our payment mechanisms so that

the debt value lost by s is minimized.

Denote the payment mechanism for necessary payments as Pay : R+ × V × V ×

EFCN → P ∈ P where P is the space of all possible payments (i.e., collections of

payment flows). Pay takes as arguments a tuple (X, s, t, G) and produces a set of

s-t payment paths P = P (1), . . . , P (m) such that the sum of their flows is X. The

mechanism proceeds to route this payment. If a valid P does not exist, then a max

flow payment P will be returned. The bank will proceed to route this payment and

assets will be liquidated at a loss of ρ to pay the difference. If there are not enough

assets, then the bank defaults.

PayAsset : (R+, V, V, EFCN) → P ∈ P is similar, but does not have to route

the full amount X, as it is paying for discretionary investment in assets. It does not

proceed with liquidation if X is not feasible, and just routes the max flow.
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4.5.6 Investment stage

During the investment stage, each bank buys assets, reserves cash, and issues

credit lines to obtain debt investments. To make these decisions, they use a utility

function for guidance.

Utility function At the end of period t, t ∈ {1, . . . , T}, bank k decides on a

target investment portfolio size λkt+1w
k
t as well as the proportion of the portfolio to

be used on assets, αkt+1. Naturally, the proportion that is reserved for making loans

is 1− αkt . These quantities are chosen by maximizing an estimated constant relative

risk aversion (CRRA) utility function of the following form.

ukt =
1

1− θk
{1+λkt ((α

k
t µ

a+(1−αkt )µc)−
1

2
θk(λkt )

2[(αkt )
2(σa)2+(1−αkt )2(σc)2]}1−θk

The risk aversion parameter θk is strategically chosen at the beginning of the

simulation. µa and σa are the known and constant asset return and asset return

variance, respectively. The cost of capital for credit βct , the cost of capital for βat ,

credit return (µct) and credit return variance (σct ) are unknown, as they depend on

events that transpire during the simulation. They are estimated as described in

Section 4.5.8 Note that µct and σct are parameters for the entire debt market, and do

not reflect the profitability of lending to any single bank.

The utility function boils down to a preference for high returns at low volatility.

θk governs how the two are balanced for a particular bank. An important assumption

made here is that there is no correlation between asset and credit returns that might

increase or decrease the total return volatility of the portfolio.
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The proportion of capital invested that maximizes utility is

(λkt )
∗ =

µaσ
2
c + µc(σ

a)2

(σa)2(σc)2θk
(4.8)

and the optimal proportion of the investment target allocated to buying assets is

(αkt )
∗ =

µa(σc)2

µa(σc)2 + µc(σa)2
.

Asset investment The multiplier on capital used to calculate the asset investment

target is then (λkt )
∗(αkt )

∗ = µa

(σa)2θk
. This quantity is often greater than one, implying

that banks would like to take leverage to buy assets. Cash is required to buy assets,

which can be taken either from mk
t or borrowed from other banks. The actual amount

of assets bought is

PayAsset{(λkt )∗(αkt )∗wkt−1, k,Market} = Akt ≤ 〈Akt 〉 = (λkt )
∗(αkt )

∗wkt−1, (4.9)

with inequality since there may not be enough cash available for bank k to achieve its

investment goal. Remember that PayAsset does not permit k to become overleveraged

as a result of the transaction. For details on the payment mechanism PayAsset , see

Section 4.5.5.

Cash reserves Banks might choose to hold cash reserves for reasons other than

issuing debt. In this model it is actually regulators who mandate that a certain

amount of cash be carried in order to service deposits. They do this by setting

mReserve ∈ [0, 1], dictating the percentage of deposits that must be held in cash.

Credit investment The total amount of debt desired by bank k is (λkt )
∗(1 −

αkt )
∗wkt−1. This debt is obtained by extending credit lines to other banks, and fa-

cilitating payments on these credit lines. To do this, creditors reserve a portion of

102



their cash mDebtkt = min{(mk
t −mReserve)(1−αkt ), (λkt )∗(1−αkt )∗wkt−1} so that they

can service their credit lines.

In borrowers’ eyes, debt is a commodity and is differentiated only by price. Under

some conditions, economic theory predicts that there should be a single price of debt

established. There are a few reasons that this expectation does not hold in this model.

1. Borrowers have different default rates, which affects the terms on loans.

2. There are two terms on loans that affect value: collateral rate and interest rate.

Lenders may strategize over which to focus on, resulting in differing loan terms.

3. Lenders prefer to offer debt to repeat customers. This modeling choice is in-

spired by the real-life cost of vetting borrowers.

Although the aggregate debt target is set using aggregate return and volatility

estimates, the terms on individual credit lines are adapted using performance data

each borrower. The full policy is a complex heuristic, but it is easy to understand

the basic idea. At the highest level, creditors must decide on the premium that

they charge for each borrower. Remember that the value of debt edge e for creditors

is R(e)DR(Payer(e)) + (1 − R(e))(1 − CR(e)). A higher interest rate or a higher

collateral rate increase value for the creditor, but decrease value for the borrower.

The premium ζ it that creditor i assigns to its credit is thus equal to the value of edge

e ∈ Inc(i):

ζ it = R(e)(1−DR(Payer(e)))− DR((Payer(e)))(1− CR(e)). (4.10)

Each creditor in our model chooses strategically whether to offer secured debt at a

collateral rate of 1 or unsecured debt at a collateral rate of 0 for the duration of model.

This simplification reduces the strategy space, but compromises on profit opportunity

for lenders. In practice lenders can always use interest rate to differentiate their debt
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offerings. In addition, these two types of debt make up the majority of real debt

instruments.

The strategic parameter Ki ∈ {0, 1} is used to specify the collateral rate offered

on all credit lines extended by bank i.

So the terms that are offered on all e ∈ Outc(i) with are fixed as:

R(e) =
ζ it + (1−Ki)DR(Payer(e))

1− DR(Payer(e))
(4.11)

Creditors choose ζ it every period according to market conditions. Roughly, if credit

lines are fully utilized then the creditor will explore increasing the premium in order

to make more profit. Conversely, if credit lines are lightly utilized then the creditor

will decrease the premium in the hope of attracting more debt. Utilization U i is

simply:

U i =

∑
e∈Ind(i) C(e)∑

e∈Ind(i) C(e) +
∑

e∈Outc(i) C(e)
(4.12)

The specific update rule for ζ it is to set a threshold parameter UT and parameters

UpPrem, DownPrem. When U i > UT , ζ it = ζ it−1 ∗ UpPrem. Otherwise, ζ it = ζ it−1 ∗

DownPrem.

The second lever that creditors use in their credit extension policy is the capacity

of extended credit lines. This includes extending zero capacity credit lines to some

potential borrowers (i.e., doing borrower selection). The main idea is that at all

times, each creditor maintains an active set ASkt of borrowers that receive the bulk

of all borrowing capacity. Namely, the active set receives up to γ〈
∑

e∈Ind(k)t
C(e)〉 .

Borrowers that have consistently low utilization drop out of the active set. Meanwhile,

a small budget is set aside to extend credit to an exploratory set ESkt of borrowers.

These are chosen randomly, and may enter the active set if they have a consistently

high utilization rate. The amount of credit extended to the exploratory set is just (1−
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γ)〈
∑

e∈Ind(k)t
C(e)〉. The maximum size of the active set is a constant, environmental

parameter |ES|.

If it is within investment targets, the capacity of credit that the creditor extends

to the active set is 〈C(e)〉, which is the amount requested by the borrower during its

investment targeting step. If
∑

e:Payer(e)∈ASk
t
〈C(e)〉 > γ〈

∑
e∈Ind(k)t

C(e)〉 then credit

capacities are normalized: C(e) = γ〈C(e)〉. All credit 〈
∑

e∈Ind(k)t
C(e)〉 not invested

in ASkt is invested into credit lines for banks in ESkt , proportionately according to

their credit requests.

Before Gt is updated with new credit edges, banks record the debt principle and

interest that must be repaid in a matrix D≈.

∀i ∈ {1, . . . , N} :

∀j ∈ {1, . . . , N} :

Dt(i, j)←
∑

e∈IOU(j,i)

C(e)[1 +R(e)] (4.13)

Since the maturity of debt is always 1 period in our simulation, we then clear

Gt of all debt. This allows each bank to later choose between paying off its matured

debt and interest (if paid back using cash) or extending the debt if the updated Gt

affords enough credit (by paying using credit). Finally, Gt is updated with new credit

edges.

4.5.7 Capital update

Deposit shock A random amount of deposits are withdrawn or deposited into each

bank. Unlike asset returns, this is not a common shock. Rather, it is idiosyncratic
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for each bank, defined by a uniform distribution:

∀k ∈ {1, . . . , N} :

∆k
t ∼ wktU(−dt−1, dt−1) (4.14)

dkt ← dkt−1 + ∆k
t (4.15)

If the shock ∆k
t is positive, bank k receives ∆k

t in cash. If the shock ∆k
t is negative

and Pay(∆k
t , k,Market) does not return a solution, so that the depositors’ withdrawal

is not satisfied, then bank k defaults. See Section 4.5.2 for details on default.

Asset payoff After investments are made, each bank k’s matured assetsAkt generate

a random payoff in period t+1 according to a lognormally distributed return factor

υt+1.

∀k ∈ {1, . . . , N} :

log pt ∼ N(µa, σ
2
a) (4.16)

mk
t ← mk

t−1 + Akt−1υt (4.17)

Interbank debt repayment Finally the interbank loan obligations encoded in

~Dt−1 are paid. These are loans generated on Gt−1 that are now matured and must

be repaid with interest.

∀i ∈ {1, . . . , N} :

∀j ∈ {1, . . . , N} :

Pay( ~Dt−1(i, j), i, j) (4.18)
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Again, if Pay( ~Dt−1(i, j), i, j) returns no solution, then bank i defaults.

4.5.8 Estimating returns

To make investment decisions, banks require an estimate for µct , σ
c
t , µ

a
t , and σat .

They also need an estimate for βct and βat , the funding costs for credit and assets

respectively. To obtain these, they monitor the state of the entire credit and asset

markets, since their individual performance in these markets is not stable from period

to period. Funding costs are recorded in real time, right as their associated payments

are made. The rest of these calculations are done right before investment targets are

set, after banks have already ended an iteration by purchasing assets and finalizing

their balance sheet.

Debt market As the performance of debt investments depends on an unpredictable

collection of decisions made by banks, all of µct , σ
c
t , and βct are estimated from history.

The following sums are calculated to do this.

DebtSumt = [
∑
e∈Et

C(e)1(τ(e) = Debt)] + [max(0,mk
t −mReservet)] (4.19)

DebtMuSumt =
∑
e∈Et

C(e)Ê[V alin(e)]1(τ(e) = Debt) (4.20)

DebtSigmaSumt =
∑
e∈Et

C(e)V̂ ar[V alin(e)]1(τ(e) = Debt) (4.21)

Here DebtSumt captures the total funding spent on procuring debt investments.

DebtMuSumt captures the total expected returns on debt. DebtSigmaSumt captures

the volatility of returns on debt. There is randomness in that we do not know the

default status of borrowers. Thus, the expectations and variances of V alin are taken
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over the random Bernoulli variable indicating default.

In Equation 4.19, the second term represents uninvested cash that was reserved

for funding debt. Intuitively, it should be the case that when debt cannot be obtained

in exchange for cash, then the estimated return on debt should go down to reflect

scarcity. The way to think about this scenario is that the bank invested a portion

of its cash in debt, and a portion back into cash. Cash is an investment with sure

returns of zero, so it contributes nothing to DebtMuSumt and DebtSigmaSumt, but

is counted as utilized funding in DebtSum.

Some approximations are being made here. First, we do not know the true ex-

pectation or variance of debt returns because we do not have the true default rate

on debt. Ê is thus an approximate expectation, and V̂ ar is an approximate variance.

Since in general D̂R < DR, DebtMuSumt is overestimated. In addition, a major

assumption embedded in Equation 4.21 is that the return distributions for all debt

are mutually independent. This assumption tends to bias DebtSigmaSumt down-

wards (since in reality returns on debt are positively correlated due to a common

asset price shock and financial contagion), which decreases the variance estimate for

debt returns. Thus, debt tends to look over-attractive as an investment to banks.

To calculate the cost of funding for debt, observe that along a payment chain of

length L (i.e., consisting of L individual payments) in an EFCN consisting entirely

of credit edges, the Lth payment funds the L − 1st debt investment, the L − 1st

funds the L − 2nd, and so on up to the second payment funding the source’s issued

debt. Now consider a single debt cancellation in the middle of a payment path. The

receiver of the debt cancellation payment does not hold any new debt as a result of

the payment, so the next payment along the path should not count towards the cost

of funding debt. However, the payer of the debt cancellation is possibly funding debt

that was originated to it in the payment preceding the debt cancellation.

Suppose we have a payment P of amount X given by payment mechanism Pay,
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consisting of payment paths P (1), . . . , P (K). Each payment path may originate debt,

and we would like to know the funding cost of this debt so that we may include it in

our estimate of the debt market’s expected return. Recall that each P (k) consists of a

subset of edges on which a flow of f (k) is routed from s to t, and
∑

k∈{1,dots,K} f
(k) = X.

Let the total cost of funding debt during period t be CODt, and initialize

CODt = 0 every period. To update this given a single payment P , iterate through

each P (k) ∈ P . Let |P (k)| = L. Index the edges e ∈ P (k) in order using i ∈ {1, dots, L}

so that Receiver(ei) = Payer(ei+1). Now start with e1 and note its type τ(e1). Move

on to consider e2. If τ(e1) = debt, do nothing. Else, update CODt = CODt +

XValout(e2). Repeat for all pairs ei, ei+1, i ∈ {2, . . . , L − 1}. Note that the interest

rate used to calculate Valout is the realized interest rate specified by P . For borrowing,

this is the interest rate that will be paid by the borrower. For debt cancellation, this

is the interest rate on the cancelled debt. CODt is updated every time there is a

payment for any reason, as debt can be issued on any payment.

Once all four sums have been calculated, the investment parameters are updated:

µct =
DebtMuSumt

DebtSumt

, σct =
DebtSigmaSumt

DebtSumt

, βct =
CODt

DebtSumt

(4.22)

These parameters are used by all banks via a utility function optimization to make

investment decisions for the next period.

Asset market The asset return distribution is invariant over time so µat = µa and

σat = σa. The values of µa and σa are public information, and can be used directly by

banks. Meanwhile, the cost of funding used to buy assets varies over time depending

on how deposit shocks and the debt market play out. These dynamics are opaque to

banks, so historical data is used to estimate βat .

Every payment made for asset purchases is executed using the PayAsset payment

mechanism. This mechanism returns a payment P of amount X ′ = min(X,MF )
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where MF is the max flow from s to t and X is the amount requested by s. We

want to keep track of the sum of costs used to fund asset purchases , COAt.

In each period, initialize COAt = 0. Then for every payment made using PayAsset ,

do COAt = COAt +
∑

e∈P |Payer=sC(e)V alOut(e). Here, Valout is again using the

realized interest rates that PayAsset returns, which are the actual per-unit payment

costs to s.

Finally, update the cost of funding for asset purchases:

βat =
COAt∑

i∈{1,...,N}A
i
t

. (4.23)

4.5.9 Regulation

Several of the model parameters are assumed to be fixed by a regulator. First,

the reserve rate mReserve for every bank is fixed. A maximum leverage ratio λmax

is also instituted for the unregulated settings.

Meanwhile, Basel regulation institutes a maximum leverage ratio λBt during period

t that takes a minimum value of 1 and a maximum value of λmax. Basel regulates

based on the overall capital-weighted default rate of all banks, D̂R(allt). It is a

sigmoid function with input D̂R(allt)β + α for α, β chosen so that λBt = λmax when

D̂R(allt) = 0 and λBt = 1 when D̂R(allt) = crit.

4.6 Experiments and results

4.6.1 Basic properties of the credit cycle model

To illustrate how the credit cycle looks in practice, I first present aggregate results

showing the relationship between several key macroeconomic indicators. Note that

the figures in this section specify which profile and environment they are generated

with, but the qualitative features of each graph are invariant to these factors. I display
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just one example per graph type for viewability. Environmental settings are the same

as in the credit cycle game in Section 4.6.3.

A note on notation for this section: x%(0.2 0.0), (100− x)%(0.4 1.0) denotes the

mixed strategy profile with weight x/100 on θ = 0.2 and issuing unsecured debt,

weight (100-x)/100 on θ = 0.4 and issuing secured debt.
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Figure 4.2: Total credit line capacity as a function of interest rates weighted by debt
amount
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Figure 4.3: Total debt as a function of interest rates weighted by debt amount.

As evidence that the debt market is working as intended, note the non-monotonic

relationship between interest rates and credit offered in Figure 4.2. This is indicative

of the fact that interest rates are set according to both scarcity (via changing the
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Figure 4.4: Estimated default rates weighted by debt amount as a function of capital.

credit premium) as well as default rate. When premiums increase, more creditors are

lured into providing credit lines as debt is seen as a more profitable investment. But

as estimated default rates increase, the perceived riskiness of debt increases and banks

are more reluctant to extend credit. The first effect dominates at low interest rates

and the second effect dominates at high rates. The fact that credit supply decreases

at the highest interest rates supports the credit cycle story, where banks withdraw

credit in times of high leverage.

Figure 4.3 shows that debt has the same non-monotonic relation with interest

rates that credit does. This shows that the credit supply is tracking the demand for

debt fairly well. Otherwise, increasing interest rates would lead to a decrease in debt

as banks choose to invest less in response.

Figure 4.4 shows that the estimated default rate of banks falls with the amount of

capital a bank has. But the estimated default rate is just a function of leverage, and

a bank’s target leverage should not vary with wealth. The explanation for this oddity

is that there is high inequality in size between banks. Banks with a large amount of

capital cannot execute high-leverage investment strategies because of a lack of credit

issued from surrounding banks. The bigger a bank gets, the more constrained its
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Figure 4.5: Top: default rates and estimated default rates for entire 80 epoch runs,
weighted by debt amount. Bottom: Estimated default rate as a function of default
rate weighted by debt amount.

leverage, and the healthier its balance sheet in the eyes of lenders.

Figure 4.5 shows that estimated default rates are extremely biased and fairly

noisy. Since these estimates correspond to the probability of a default due purely to

asset valuation fluctuations, we can surmise that the bias is due to financial contagion

pushing real default rates up.

4.6.2 Systemic risk measures

To evaluate the effect of Basel, we need to dictate which measures to use for

systemic risk. The first is default rate, which is calculated as the total number of

defaults divided by the total number of defaultable periods (i.e., a defaulted bank
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cannot default again during its ε period sojourn). The second is interest rate volatil-

ity, calculated as the standard deviation of average interest rate paid each period,

weighted by debt amount. Volatile interest rates lead to uncertainty about funding

availability, which poses a risk for banks. We also look at losses on debt due to

default. This is just an average of sums over each period. This tells us the direct

damage caused by default.

4.6.3 Credit cycle game

Experimental setup I run the model for T = 80 periods, with the following

parameters settings: N = 10, h = 1, ε = 7, winit = 10, dinit = 500, |DV | = 5 ,

µa = 0.05, σa = 0.2, mReserve = 0.3, UpPrem = 1.05,DownPrem = 0.9,UT = 0.95,

γ = 0.75, crit = 0.03. The strategy set available to banks was {(0.20), (0.21), (0.40),

(0.41), (0.60), (0.61)}. Both λmax = 40, where the maximum leverage allowed is 40

regardless of Basel regulations, and λmax = 10 are explored.

I present results from our main experiment evaluating Basel regulations. The key

takeaways are as follows:

1. Basel regulations taken as an external treatment decrease default rates, inter-

est rate volatility, and debt losses almost across the board in our examined

scenarios.

2. Profiles with smaller |~θ| and where less secured debt is offered are more dan-

gerous for financial stability (on default rates, debt losses, and interest rate

volatility).

3. Although Basel does not encourage strategic shifts towards less risky profiles,

in most cases it does not encourage riskier profiles either. The one exception

is the 52% 0.20.0, 48% 0.21.0 profile which is, by a thin margin, the riskiest

equilibrium seen in the λmax = 10 scenario.
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4. Basel tends to improve bank profit in riskier profiles, where the benefit to avoid-

ing crisis outweighs the additional leverage constraints.

It is quite surprising that Basel regulations are so effective while acting on ex-

tremely noisy and biased estimates of default rate. These estimates are quite useless

for giving an idea of actual systemic risk. However, because they are correlated with

the real default rate, a policy based on its fluctuations can effectively deter banks

from pursuing risky portfolios in times of high systemic leverage. The fact that the

estimated default rate is a leading indicator of upcoming defaults is good enough for

Basel to drastically decrease systemic risk. This finding puts to question the notion

that an accurate measure of network risk is necessary to control financial contagion.

Banks pursuing profit are heavily biased towards taking more risks. The benefit

to taking more risk is unbounded, while the cost of taking risk is limited to being

inactive for ε number of periods. This reflects the situation facing banks in the real

financial system, and underscores the need for effective regulation of risk.

Default Rate Interest Rate Volatility
Profile Basel Unregulated Profile Basel Unregulated

100% (0.2_0.0) 4.0% 8.0% 100% (0.2_0.0) 0.100 0.151
92.8% (0.2_1.0), 
7.2% (0.4_1.0) 3.8% 5.0% 92.8% (0.2_1.0), 

7.2% (0.4_1.0) 0.013 0.016

Capital Losses on Debt
Profile Basel Unregulated Profile Basel Unregulated

100% (0.2_0.0) 52,442 64,563 100% (0.2_0.0) 223 1019
92.8% (0.2_1.0), 
7.2% (0.4_1.0) 63,382 86,280 92.8% (0.2_1.0), 

7.2% (0.4_1.0) 66 133

Figure 4.6: Four systemic risk metrics evaluated at λmax = 40 for 10 funds. Analagous
table for λmax = 10 in Figure 4.7. Within a table, each row fixes an equilibrium mixed
strategy and applies a different regulatory setting, each column fixes a regulatory
setting and switches between different mixed strategy equilibrium. Green signifies
Basel setting/equilibrium profile, red signifies non-Basel, and blue signifies that the
profile appeared in equilibrium undeer both Basel and non-Basel settings.
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Default Rate Interest Rate Volatility
Profile Basel Unregulated Profile Basel Unregulated

4.63% (0.2_0.0), 
95.37% (0.2_1.0) 3.7% 4.5% 4.63% (0.2_0.0), 

95.37% (0.2_1.0) 0.025 0.032

52% (0.2_0.0), 
48% (0.2_1.0) 3.9% 7.3% 52% (0.2_0.0), 

48% (0.2_1.0) 0.019 0.078

100% (0.4_0.0) 1.0% 1.1% 100% (0.4_0.0) 0.047 0.051
16% (0.2_0.0), 
84% (0.2_1.0) 3.8% 4.7% 16% (0.2_0.0), 

84% (0.2_1.0) 0.028 0.052

Capital Losses on Debt
Profile Basel Unregulated Profile Basel Unregulated

4.63% (0.2_0.0), 
95.37% (0.2_1.0) 74,325 69,354 4.63% (0.2_0.0), 

95.37% (0.2_1.0) 200 368

52% (0.2_0.0), 
48% (0.2_1.0) 70,039 51,679 52% (0.2_0.0), 

48% (0.2_1.0) 168 896

100% (0.4_0.0) 21,505 39,428 100% (0.4_0.0) 52 29
16% (0.2_0.0), 
84% (0.2_1.0) 38,075 55,920 16% (0.2_0.0), 

84% (0.2_1.0) 177 435

Figure 4.7: Four systemic risk metrics evaluated at λmax = 10 for 10 funds. See
Figure 4.6 for key.

4.7 Summary

The model developed in this chapter captures a dynamic process of debt formation

at its most granular level. The network that evolves from this debt exhibits both credit

freeze and financial contagion endogenously. We find that Basel regulations inserted

into the model results in a much more stable financial system. While this seems to

encourage slightly more risky behavior from banks, who can rely on regulators to

limit them when they invest excessively, the overall effect of Basel is still positive.

This finding is surprising in light of the limited information on systemic risk available

to regulators. While there has been extensive interest in new network-based risk

measures, we found that in this complex network-based model, simple balance sheet

information was enough for Basel to reduce systemic risk. These findings supplement

those in Chapter II and paint Basel regulations as a useful regulation.
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CHAPTER V

Strategic adaptations by automobile firms to the

opening of a carbon emissions market

5.1 Introduction

In 1992, the UN established cap-and-trade as the standard regulatory approach to

achieve reduction of greenhouse gases (GHG) [8]. This approach allocates pollution

rights to large-scale polluters according to a desired emissions cap. Polluters are then

permitted to trade these rights, thereby achieving a more efficient economic outcome.

Several studies commissioned at the time, as well as numerous subsequent studies,

found that this approach resulted in great cost savings as compared to a simple hard-

cap approach that does not allow the trading of pollution rights [48, 49].

One domain under the purview of GHG regulation is the vehicle market. The

auto market in the US alone represents hundreds of billions of dollars per year in

transactions, and environmental regulation has a significant impact on the vehicles

produced and sold. A technical challenge in analyzing this market is that vehicles are

differentiated products in the eyes of consumers, and the oligopolistic nature of the

industry means that each firm has individual pricing power. The demand for each

vehicle line depends not only on its own price, but on the price of every other vehicle.

In general these prices are set by different firms, resulting in profit functions that
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are strategically entwined. This is in contrast to the heavily studied power industry,

where the product (electricity) is homogeneous. There, the typical scenario has prices

that are fixed by an independent party that attempts to maximize social welfare [41].

In the vehicle market, prices are determined as a result of a game that firms play

with each other. This complicates the determination of the effects of cap-and-trade,

both on overall efficiency and the distribution of costs among firms and consumers.

The innovation in our approach is to cast the cost of pollution to firms as lost

opportunities to increase profit due to regulation. We model firms in a vehicle market

with many vehicle types. These firms are tied together by consumer demand, which

is modeled using a nested-logit form that combines a comprehensive set of vehicle fea-

tures. This demand model is the product of industrial research, born from the need to

make accurate predictions rather than to build analytical models. We compute strate-

gic equilibria among firms in the vehicle market through iterative best-response

(IBR), which is guaranteed to converge for several of the models that we compare.

Because our model allows explicit computation of strategic dynamics, we are able

to explore counterfactual scenarios such as alternative industrial organization, and

different regulation setups.

The market for trading pollution rights (or credits) introduces another level of

strategic behavior for firms, as they consider their utilization of credits to shape their

vehicle production, along with their bidding behavior in the market for credits. We

model the credits market as an iterative double auction mechanism. Equilibrium

analysis, or even best-response calculation, is not apparently feasible for the credits-

market behavior alone, let alone considering the coupling of credits allocation with

strategic behavior in the vehicle market. We therefore explore heuristic strategies

for credit trading, and employ empirical game-theoretic analysis (EGTA), a

simulation-based game reasoning framework, to derive equilibrium behavior in this

heuristic strategy space.
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Our main contributions are twofold. First, we construct and solve novel models

for studying emissions trading in the vehicle market. Second, we produce economic

insights for this domain, most notably the finding that the welfare gained by moving

from hard-cap to cap-and-trade is disproportionately accrued by firms. In aggregate,

firm profits under the cap-and-trade regulation approach those of the unregulated

case, thanks to market segmentation opportunities created by emissions regulation.

In contrast, consumers absorb the brunt of costs through higher prices for polluting

vehicles. This effect is more pronounced with a less fragmented industrial organi-

zation. When firms use credit trading to manipulate their position in the vehicle

market, this effect is reduced slightly, as firms lose some credit trading volume due

to an inability to coordinate trades, and thus are not able to segment as efficiently.

5.1.1 Relation to prior work

The standard tool for analyzing cap-and trade emissions regulation is the marginal

abatement cost (MAC) curve [30]. At competitive equilibrium, the marginal cost for

abating one more unit of GHG pollution is the same for all firms—otherwise, firms

could gain from trading the right to pollute. This facilitates analysis of cap-and-

trade in the electric power industry [5, 9, 41], where firms lack pricing power and

therefore marginal costs directly determine equilibrium. Prior studies on vehicles

[37, 38] likewise apply MAC analysis in a non-strategic manner, by focusing on the

cost of improving vehicle efficiency. In our setting, the more relevant abatement cost

is foregone opportunity to sell profitable high-polluting vehicles, which calls for a

more explicitly strategic analysis.

Previous work has followed different approaches to estimate MAC curves for ve-

hicle markets. Firm behavior has been modeled as fixed and non-optimizing [23, 43],

as well as attempting to maximize fuel economy for consumers [56]. Our approach

models firms as strategic profit maximizers, and represents consumer utility using a
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demand function.

Studies using simple analytical models have examined the effect of industrial orga-

nization, specifically oligopoly, on emissions regulation [42, 57]. These models suggest

that oligopolies are detrimental to overall welfare outcomes under cap-and-trade reg-

ulation. We duplicate these results under a more complex model, and in addition find

that consumers bear the brunt of this welfare loss.

Strategic credit trading has been studied in experimental laboratory settings as

well as through stylized analytical models [28, 47, 68]. In general, prior studies have

found that when participants have market power in the emissions credit market, there

is a decrease in efficiency. We see the same in our study, with total welfare falling

when we allow strategic credit trading, but we find in addition that consumers benefit,

while firms make less profit.

This work adds to a growing library of AI research that seeks to uncover economic

insights using tools from computational game theory [35, 40, 53, 67].

5.1.2 Background

The US government regulates auto emissions primarily through two programs.

The CAFE program, administered by the National Highway Traffic Safety Adminis-

tration, mandates corporate average fuel economy standards. The second program,

maintained by the Environmental Protection Agency (EPA), directly regulates GHG

emissions. We focus exclusively on the EPA regulations, which broadly operate as

follows:

1. Each vehicle is assigned a real-numbered rating: negative for polluting, positive

for non-polluting.

2. Each firm’s annual credit balance , defined as sum of ratings weighted by sales

volume, must exceed zero.
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3. Positive balances may be carried forward into the next year.

4. Credits may be traded between firms within each year.

Due to a combination of technological, consumer-preference, and other economic fac-

tors, non-polluting vehicles tend to be much less profitable than polluting vehicles

such as SUVs and trucks. Acquiring credits allows a firm to produce a larger fraction

of more profitable vehicles.

5.1.3 Overview of models and assumptions

The regulation market cap-and-trade is implemented by opening a market in com-

pliance credits, secondary to the auto market itself. We are interested in understand-

ing the dynamics of the credits market, particularly to examine possible strategic

behavior by automakers, and how the special dynamics of this secondary market

affect the auto market.

For this purpose, we model four different environments:

1. Unregulated . This represents a world where the auto market operates without

constraint on emissions.

2. Hard-cap. This serves as a baseline model, where each firm must satisfy EPA

requirements individually, with no trading of compliance credits.

3. Credits trading with price takers . In this model we derive a single clearing

price for emission credits, under competitive (Walrasian) assumptions. These

assumptions are similar to the MAC models which dominate the literature.

4. Trading with strategic bidders . This model includes a concrete trading mech-

anism for compliance credits, where firms interact through a bidding process,

iterating between actions in the credits market and decisions about vehicle
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production. Including strategic bidding captures issues of market power and

dynamic information that are reflective of cap-and-trade in practice.

In each setting, the solution concept is Nash equilibrium with respect to the decision

variables in that setting.

We assume complete information in the vehicle market game; that is, each

firm knows the set of vehicles and costs of its competitors, and also has an accu-

rate consumer demand model. Though not exactly realistic, we believe this provides

a reasonable approximation. Real firms can make an educated guess of their com-

petitors’ costs using their own costs, and by observing equilibrium prices over time.

Furthermore, consumer demand models can be built using historic transaction data

available from commercial sources.

Another assumption we make is that the cost of producing vehicles, the consumer

demand for vehicles, and the way regulators assign credit balances do not change over

time. This assumption is not made because the methods in this chapter rely on it;

rather, we do this mainly for convenience as we do not have the information required

to forecast these quantities. If forecasts were provided, the analysis could be updated

without any model changes.

Finally, we assume that firms do not price their vehicles below cost. This as-

sumption is salient for non-polluting vehicles whose production generates emissions

credits that could be sold. We make this assumption mainly as a reasonable baseline

expectation for firm behavior. Our models and methodology do not depend on this

assumption, and only the empirical results are affected by it.
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5.2 A model of auto emissions trading

5.2.1 Notation

Consider a set of m products , denoted V = {v1, . . . , vm}. These products are

sold in each of T time periods. Each product is produced by a single firm from set

F = {f1, . . . , fn} where |F | = n. The firm producing a particular product is given

by function f : V → F . The products produced by firm i are denoted Vi ⊂ V . The

set of indices corresponding to Vi are Ii ⊂ {1, . . . ,m}. Product prices , which are

set by their producers, are given by vector Ψ = {ψ1, . . . , ψm} ∈ Rm. The demand

function φ : Ψ ∈ Rm → Rm returns the quantity of each product that is sold to

a mass of consumers given Ψ. Costs , which are fixed and given per marginal unit

of production, are denoted Σ = {σ1, . . . , σm}. Regulation credits are assigned

according to a function κ : φ(Ψ) ∈ Rm → Rn. Roughly speaking, these are non-

negative for production mixes that achieve a regulatory goal, and negative otherwise.

For convenience, we use Vj to denote a vector selecting V ’s elements with indices

Ij. V−j denotes a vector selecting elements of V with indices from the complement

of Ij. It is understood that the union operation, ∪, preserves indices such that, for

example, Σ−j∪Σj = Σ. To select a particular element of vector V with index i, we use

V(i). We use superscripts to denote an instantiation of a vector. These instantiations

can be of functions or vectors. So for period t, Ψt
j is the vector of product prices

actually set by firm j. Meanwhile, κtj is equivalent to κ(φ(Ψt
j)). This is the actual

amount of regulation credits assigned to firm j in time t.

To denote elements of a function that are given, we use the | symbol in the following

way: F (x) | y,G = x + G(y) means that x is a variable, G is a given function, and

y is fixed value. It should be clear from context whether functions or constants are

being given.

Finally, let θtj denote credits retained without being sold (by firm j). These
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Figure 5.1: Profit generation process.

credits will roll over into the next period, t + 1, and must be non-negative because

deficits cannot be rolled over. And, let λtj denote credit obligations held by firm j

at time t. Negative λtj means obligations owed (sold) while positive means obligations

held (purchased).

5.2.2 The vehicle market model

We model the vehicle market as a Bertrand pricing game, for n multi-product

firms with differentiated products. Firm j at time t strategizes over the prices it

controls (each element of Ψt
j). The profit for firm j made by selling cars at time t is

fully determined given a set of vehicle prices {
⋃

Ψt, t ∈ {1, . . . , T}}, as follows.

Πcars
j (Ψ1, . . . ,ΨT ) | Σj, φ =

T∑
t=1

[Ψt
j − Σj]

′φtj. (5.1)

The demand function φ is a consumer choice model with (nested) logit demand,

loosely based on real industry data. Naturally, vehicles in this model are gross

substitutes (increasing the price of a product can only increase the demand for

other products). We assume throughout that φ is known to all firms.
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5.2.3 Unregulated vehicle market

In the unregulated vehicle market, firms set prices in an attempt to maximize

Πcars
j . In Equation 5.1, every component of firm payoffs is constant over time. This

means that firms treat each period independently and equivalently. Their decision on

price is independent of T . Call this constant decision Ψ0. Then the payoff function

can be reduced to

ΠU
j (Ψ0) | Σj, φ = T × [Ψ0

j − Σj]
′φ0
j .

We can now define a Nash equilibrium for the pricing game in the unregulated

market.

Definition V.1 (Unregulated price equilibrium). A set of prices Ψ∗ is an unregulated

price equilibrium if, for all j ∈ {1, . . . , n}:

ΠU
j (Ψ∗) | Σj, φ ≥ ΠU

j (Ψj ∪Ψ∗−j) | Σj, φ,∀Ψj ∈ R|Ij |.

Our simulations find Nash Equilibrium in this market using IBR - simulating each

automaker’s optimal response to the current prices of other automakers. In general

games, IBR might not converge, and would instead cycle forever. However, since the

game model we employ is a Bertrand pricing game with logit demand model and

linear cost function, we can show that IBR converges.

Theorem V.2 (Convergence of Iterative Best Response). IBR on the market de-

scribed above converges to a unique (unregulated) price equilibrium. [44]

5.2.4 Emissions regulation: Hard-cap

Under hard-cap emissions regulation, firms need to satisfy a cap on emissions per

vehicle while maximizing vehicle profits. Again letting Ψ0 be the firms’ constant

decision, this leads to a constrained profit function in the following form.
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Πcap
j (Ψ0) | Σj, φ, κ =


−∞, if κ0

j < 0

T × [Ψ0
j − Σj]

′φ0
j , otherwise

Recall that κ0
j is the overall amount of emissions credits assigned to firm j by

regulators based on its vehicle sales, and is a weighted sum of φ0
j where the coefficients

are the EPA rating for each vehicle. We can now define Nash equilibrium.

Definition V.3 (Hard-cap price equilibrium). A set of prices Ψ∗ is a hard-cap price

equilibrium if, for all j ∈ {1, . . . , n},

Πcap
j (Ψ∗) | Σj, φ, κ ≥ Πcap

j (Ψj ∪Ψ∗−j) | Σj, φ, κ,

∀Ψj ∈ R|Ij |.

Although the hard-cap breaks the linearity of the cost function, we can still show

(by employing results by [65, 66]) that this market maintains the same useful property

of the unregulated case.

Theorem V.4 (Convergence of iterative best response under hard cap). IBR on the

market described above converges to a unique (hard-cap) price equilibrium.

5.2.5 A price-takers emissions credits market

In an effort to allow firms to meet regulatory constraints as efficiently as possible,

credits can be traded on a credits market . This is intended to incentivize firms

that have a lower cost for producing credits to take on more of the burden.

In the price-takers market, firms maximize the following profit function.
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ΠW
j (Ψ0)|Σj, φ,Ω, κ = 

−∞, if κ0
j + λ0

j < 0

T × [Ψ0
j − Σj]

′φ0
j + Ωλ0

j , otherwise

Recall that λ0
j is the number of credit obligations bought or sold. These are

credits that transfer hands from a firm who produces them by producing non-polluting

vehicles, to a firm who needs them to satisfy regulatory requirements.

There are two key assumptions embedded in this payoff function. First, firms take

credits prices as given externally. Second, firms do not attempt to manipulate the

credits market by retaining credits for the next period, as is allowed by regulation.

We will loosen both of these assumptions in our strategic credit trading model.

We can specify a Nash equilibrium given this payoff function. Note that although

λ0
j is a choice made by firms, it is determined mechanically given Ψ0

j via the constraint

κ0
j + λ0

j < 0. Thus, λ0
j is not a strategic variable.

Definition V.5 (Price taker’s credit market equilibrium). A set of prices Ψ∗ is a

price taker’s credit market equilibrium if, for all j ∈ {1, . . . , n},Ψj ∈ R|Ij |:

ΠW
j (Ψ∗)|Σj, φ, κ,Ω ≥ ΠW

j (Ψj ∪Ψ∗−j) | Σj, φ, κ,Ω.

The convergence result of Iterative Best Response can easily be extended to this

setting by adding the cost of compliance to the cost of each vehicle.

Theorem V.6 (Convergence of iterative best response under credit market price).

IBR on the market described above converges to a (credit market) equilibrium.

Firms in this setting assume they will be able to buy and sell λ0
j credits without

considering who their trading partner will be. In reality, these trades are not all

feasible, as setting a particular Ω will usually induce a shortage or surplus in the

127



credits market. So the price taker’s Nash equilibrium is only feasible if a market

clearing condition holds:

Definition V.7 (Walrasian credit equilibrium). A tuple (Ψ∗,Ω) is a Walrasian credit

equilibrium if Ψ∗ is a Price taker’s credit market equilibrium, and in addition the

following condition holds: ∑
j∈{1,...,n}

λ∗j = 0

With credits in hand, a firm has the flexibility to produce more polluting vehicles

and earn more profit. By selling credits, a firm has constrained itself to losing profits

in the vehicle market since it must produce enough non-polluting vehicles to honor the

sale. At a Walrasian credit equilibrium, buyers have determined that their collective

profit gain per credit in the Bertrand pricing game from buying a set number of

credits is equal to the given price of credits. Similarly, the collective profit loss per

credit experienced by sellers by selling a set number of credits is equal to the given

price of credits. Thus, the price of credits is analogous to the cost of abatement, and

the market clearing condition is analogous to equality of marginal costs of abatement

across firms.

5.3 Strategic behavior in the emissions market

The assumption that firms are strictly price takers in the credits market is a

simplification of reality. Firms have an incentive to buy and sell credits at prices

favorable to themselves, and they have different levels of bargaining power to achieve

those prices. In the strategic emissions market, we allow firms to play out this bar-

gaining process using heuristic strategies while trying to maximize estimated profit

from both credit obligation transactions as well as the vehicle market.

The mechanism for exchanging credits is a single price multi-unit double auction.

Firms submit (price, quantity) bids to either sell or buy credits. After all bids clear,
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firms observe the outcome of their bids and submit a new round of bids. This process

iterates until a fixed horizon is reached. This mechanism does nothing to ensure truth

telling, and rich strategic behavior is expected.

Firms in this model strategize over two bidding parameters: χj, an impatience

parameter , and µj, a shading parameter . Roughly speaking, χj corresponds to

a bid pricing strategy, while µj corresponds to a bid quantity strategy. A baseline

bidding strategy for each firm is to offer around the historically observed market price

of credits at a quantity given by the amount of credits transacted at the associated

price taker’s credit market equilibrium. This strategy, utilized by choosing a large µj

and large χj, signifies a firm’s willingness to be a price taker.

Firms choose their bidding parameters strategically by observing an overall payoff,

generated as follows. First, firms submit bids in the credit market. They observe the

resulting clearing price and execute any bids that have been matched. They then

adjust their bids based on this information, and submit them to the double auction

again. They do this for ν bidding iterations , coming away with either positive or

negative revenue and, correspondingly, a negative or positive credits balance. Using

what they have observed in the credits market, they form a belief about what the

future credits price is. Armed with their actual credit balance and their estimated

credit price, they enter the vehicle market where iterated best response runs and

converges. They then carry forward any unused credits into the next period, and

repeat the process. The total number of periods is an environment setting, called

T . The total payoff is the sum of all credit revenues added to the sum of all vehicle

profits.

We need to simulate payoffs for many strategy profiles before being able to find

a Nash equilibrium in χ and µ. To do this search, we use empirical game-theoretic

analysis, which is a tool for sampling payoffs intelligently [10].

The purpose of this model is not to incorporate every possible bidding strategy,
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but to complement our price-takers credit market analysis. By allowing firms to

exercise market power to some degree, we address a gap in our analysis of the credit

market for vehicles, since we know that, in reality, there are firms who can bargain

successfully. For a deeper, reproducible explanation of the strategic credit trading

model, see the s upplemental materials1.

5.4 Experiments and results

5.4.1 Scenarios and setup

The baseline scenario in our experiments has n = 3 and m = 14. φ, Σ,

and κ are given by our industry sponsor and are based on real data and government

guidance. Each firm can produce a mix of emissions credit generating (mostly electric)

vehicles and credit consuming (gas) vehicles, at different profitability levels. Firm 1

can produce credit generating vehicles at a lower cost than the others, and will be

the seller in the credits market. The other two firms produce highly profitable gas

vehicles, and will be buyers in the credits market. Unlike firms 1 and 2, firm 3 does

not produce trucks, and produces a much smaller total number of vehicles than the

other two.

Two other scenarios examine how extreme types of industrial organization affect

the model. The first scenario is a monopoly scenario, where all products are

produced by a single firm (n = 1,m = 14). The second scenario is a fragmented

scenario, where every product is produced by a different firm (n = 14, m = 14).

Although the ownership relation from firms to vehicles changes, we keep φ, Σ, and κ

constant throughout.

For the strategic credit market model, we examine two settings. First, we set

T = 4 and ν = 20. We call this model setting strategic credits (long). The

1https://www.dropbox.com/s/a2dfjzkfp25ppgv/ijcai2019_supplemental.pdf?dl=0
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Figure 5.2: Aggregate welfare in millions. Profit in green followed by consumer surplus
in red followed by total welfare in blue.

other strategic model setting, strategic credits (short), has T = 5 and ν = 10.

The firms in strategic credits models draw bidding strategy (µj, χj) from the set

(χ, µ)|χ ∈ {0.5, 0.7, 0.9, 0.999}, µ ∈ {0.01, 0.4, 0.7}.

5.4.2 Evaluating welfare

The measure of value we use to judge equilibria is total welfare . Welfare in our

case is defined as the sum of consumer surplus and firm profit. We do not attempt

to quantify the benefit to the environment, assuming that emissions regulation is doing

its job.

Consumer surplus is a measure of the total savings that consumers get from buying

vehicles at an equilibrium price. Given a set of equilibrium prices Ψ∗, consumer

surplus for vehicle i (denoted γi) is calculated as follows:

γi =

∞∫
Ψ∗

(i)

φ(Ψ(i)|Ψ∗(−i)) dΨ(i)

Total consumer surplus is
∑m

i=1 γi. In general, consumer surplus decreases with

higher equilibrium prices. Calculation is done via numerical integration.

Welfare results are shown in Figure 5.2. Omitted entries for the monopoly row
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were due to the impossibility of trading with oneself. Instead, since the monopoly

controls all vehicle markets, it generates credits in fuel-efficient segments for use in

fuel inefficient ones. Thus, the hard-cap model for monopoly is comparable to the

credit trading models for other scenarios.

Omitted entries in the competitive setting were due to computational constraints.

Since none of these games are symmetric, expanding to 14 firms using the full strategy

set requires evaluating payoffs for 1214 = 1.28e+15 profiles.

We call attention to several phenomena in Figure 5.2:

1. Monopoly profit is higher than all other scenarios in the unregulated model.

In addition, monopoly profit under the hard-cap scenario beats profit under all

other regulated scenarios. Both of these results are expected, as monopolies can

coordinate between the different vehicle markets more efficiently, both to avoid

cannibalization and to navigate regulatory requirements.

2. The credits market allows firms to collectively achieve a near-monopolistic profit

level under regulation. The hard-cap monopoly beats the regulated credit trad-

ing scenarios by much less than the unregulated monopoly beats all other un-

regulated scenarios.

3. In the baseline and fragmented scenarios, credit trading results in profit levels at

or above those of the unregulated model. Meanwhile, consumer surplus always

decreases greatly when regulation with credit trading is applied. Consumers are

hurt more than firms by emissions regulation. This effect is least pronounced

(though still significant) in the fragmented scenario out of all scenarios.

4. Strategic bidding decreases profits and raises consumer surplus slightly.

The overarching theme is that when credit trading is introduced, firms are able

to offset and even overturn losses due to hard-cap emissions constraints by raising

prices in tandem. Consumer surplus suffers as a result.
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It is the unique industrial organization in the baseline scenario that allows firms to

maintain high prices and profits, given the ability to trade credits. Namely, each firm

has a very diverse set of vehicles. This allows each firm to strategically exit and enter

certain markets based on their credit costs. Compared to the unregulated scenario,

firm 1, which must maintain a high credits balance in the credit markets trading

scenario, abandons high-pollution trucks. Firm 2, which can buy low-cost credits

from firm 1, abandons low-pollution cars. This segmentation gets rid of competitive

forces within each vehicle type’s market and keeps prices high.

This is in contrast to the fragmented scenario, where firms do not have the option

of exiting a vehicle segment. Thus, competitive forces are maintained in each vehicle

segment, and consumer surplus is highest in this scenario out of all regulated scenarios.

Profit is actually almost at monopoly levels as well. This is because of the firms

producing polluting vehicles; the most cost-efficient firms become more dominant, as

they can afford to pay for more credits at the same vehicle price. They do this because

they know that they can maintain margins even with the credit price factored in. This

efficiency results in the highest total welfare out of any regulated scenario. Overall,

we find that a more fragmented industrial organization is beneficial to cap-and-trade

regulation.

5.4.3 Strategic credit trading analysis

The shift from greater profits to greater consumer surplus in the strategic trading

case stems from the fact that fewer credits are traded. Figure 5.4 shows how profit

and credit market activity varies among firms, compared to the Walrasian equilibrium

baseline. In all cases, fewer credits are traded in the strategic case. The one exception

is for Firm 3 in the “long” model, where the credit balance is similar to the Walrasian

case. Both large firms (1 and 2) suffer profit losses, while the smaller firm 3 comes out

ahead. For an analogous table for the “short” setting, see the supplemental materials.
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μ* χ* μ* χ*

Firm 1 0.5 0.01 0.5 0.4

Firm 2 0.5 0.01 0.5 0.4

Firm 3 0.9 0.01 0.7 0.7

ν = 20, T = 4 ν = 10, T = 5

Figure 5.3: Nash equilibrium bidding parameters

Firm Vehicle Profit Total Profit Absolute Credits Balance Average Credit Price

1 -2.83% -4.16% -4.26% -1.41%

2 -8.53% -9.74% -5.09% -1.54%

3 3.28% 4.85% -0.69% -0.87%

Figure 5.4: Aggregate changes in strategic trading (long) baseline vehicle market as
a percentage from Walrasian model.

The root cause of this is the large amount of shading applied at equilibrium (see

Figure 5.3). The two large firms are engaged in restricting credits volume for fear

of the credit price moving against them if they yield. Thus, they both shade to the

maximum level. This leads them to compete with each other in the vehicle market,

as firm 1 owes less credit obligations, so can sell more polluting vehicles. A secondary

effect is that firm 2 focuses on selling its most profitable polluting vehicle, trucks,

since it has limited access to pollution credits. This creates an opening for firm 3,

who chooses to shade less in order to buy more credits and sell more SUVs. Overall,

there is less segmentation of the market between the two large firms, resulting in a

transfer of welfare from firms to consumers. For evidence of this summary of results

at the vehicle level, see the supplemental materials.

The biggest welfare effect of the strategic maneuvering in the credits market is

more competition in the truck sector in the (long) model. Since firm 3 has a relatively

large quantity of credits, it focuses on selling SUVs, crowding the other two firms out

into the truck market. The subsequent price war transfers welfare from firms to

consumers.

5.5 Policy implications

By analyzing how firms adapt strategically to emissions regulation, we gain insight

into the question: Who pays for emissions reduction in the US vehicles market?
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The answer is, resoundingly, that consumers pay as firms segment themselves by

vehicle type and raise prices to protect themselves against production constraints.

Trading emissions credits provides a remarkably efficient way for firms to preserve

profits, as even a monopoly facing emissions regulation cannot do appreciably better.

Strategic trading provides some relief to consumers, as firms tend to limit credits

trading volume and thus compete more. But with this redistribution of welfare comes

some deadweight loss. The best way we have found to bring consumer surplus up,

and with it, overall welfare, is to fragment the production of vehicles so that no firm

has an incentive to focus on one vehicle at the expense of another. Our results suggest

that cap-and-trade is definitely an improvement over a hard cap, but that caution

must be used to ensure that price hikes do not become an issue for consumers in the

oligopolistic vehicle market.
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CHAPTER VI

Conclusions

In this thesis I have evaluated new and upcoming regulations in two of the largest

and most complex markets in the United States: the financial market and the au-

tomobile market. The financial markets consist of two main traded products: debt

and assets. Basel regulations changed how both of these markets work by imposing

stricter, procyclical leverage requirements. I take an existing model of asset market

dynamics with a fixed supply of debt, and show how the strategic adaptation of banks

to Basel changes systemic risk measures. These changes are enough to overturn the

finding from the study in which the model was originally developed that Basel is

destabilizing in asset market.

I then turn to examine the market for debt. An important feature of the debt

market is that there are as many types of debt as pairs of agents, and possibly

more. These many types of debt form a network through which banks impact each

other, unlike the monolithic asset market where they can only impact each other

through price movements. Being able to model the full network of debt is important

in order to account for phenomena seen during the last crisis, such as credit freeze and

financial contagion. As no existing model has the ability to do this, I build my own. I

start with specifying EFCNs, a framework for writing down debt and credit networks

and making payments on them. I then use EFCNs to build a behavioral model

136



for profit-seeking banks that dynamically updates an EFCN in response to market

conditions. I use this model to evaluate Basel regulations, finding that it performs

well at reducing instability by using only balance sheet data, despite the fact that deep

network insights (such as the exposure of each bank to potential financial contagion)

are completely hidden to this type of data.

In the automobile market, I evaluate the impact of emissions regulations that allow

the trading of emissions credits. I find that the credits market becomes a platform

for firms to maintain profits through price increases. Thus, the majority of the cost

of implementing an emissions cap falls on consumers.

Beyond the economic findings, I have also demonstrated that EGTA is a power-

ful tool in the analysis of agent-based models. Without the ability to solve for an

equilibrium, agent-based models can often come to a variety of conclusions depend-

ing on how agent behavior is fixed. This is especially true if agents are permitted

to execute complex strategies as the range of outcomes of the model becomes quite

diverse. EGTA allows agent-based models to be principled in selecting among model

outcomes: following an equilibrium profile rather than an arbitrarily chosen one.

As mentioned in the introduction, EFCNs offer a rich opportunity for further

modeling of the banking system. A more complex asset market where banks influence

each other through their decisions on asset purchases would help connect the model to

a large branch of asset market-based research such as the works based on the leverage

cycle. Banks with shared equity stakes might behave quite differently when deciding

how much to invest.

The economic findings in this thesis reproduce qualitative observations (such as

financial contagion in the 2008 crisis and lack of price decreases following EPA cap-

and-trade regulations), but no attempt has been made to match quantitative data.

This shortcoming could be addressed given access to the right data sources, and would

help sharpen findings to be more relevant to policy-making. The scenarios evaluated
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experimentally in this thesis are chosen using common sense, an approach which could

be improved upon using data.
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