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The high operations and maintenance (O&M) cost for nuclear plants is one of the most 

significant challenges facing the industry today. The research in this thesis is motivated by the 

ongoing effort to utilize automation and improved operator support technologies to reduce O&M 

costs in nuclear power plants. A diagnostic framework is first developed for the problem of 

monitoring equipment health and sensor calibration status in nuclear engineering systems. This is 

achieved by utilizing real-time data from sensors that are already in place for system monitoring 

to perform automated diagnostics of equipment degradation. Given the long-time scale over 

which component degradation typically proceeds, some of the sensors may also inevitably 

degrade and become unreliable. The need to simultaneously consider equipment and instrument 

faults is both a technical necessity and a desired capability. The automation of these monitoring 

tasks contributes to the reduction of the overall O&M cost by reducing the required human 

resources and by providing better maintenance scheduling. 

Early detection of slow degradation over the course of plant operation requires sufficient 

detection sensitivity from the diagnostic framework. The problem is more complicated in the 

presence of various sources of uncertainty and possible changes of operating conditions due to 

plant drifts. To resolve these difficulties and provide the desired capability, the proposed 

framework is a hybrid integration of quantitative model-based diagnosis, statistical change 

detection and probabilistic reasoning. Physics-based models are developed to describe the fault-

free behavior of system components. Quantitative residuals are generated from the analytical 

redundancy in each model and serve as fault symptoms for model-based diagnosis. Statistical 

change detection methods are used to detect changes in the residuals in the presence of 

uncertainty. Measurement and modelling uncertainty are robustly treated by methods of 

statistical change detection and probabilistic reasoning. A system level diagnosis framework is 

proposed to deal with the lack of local sensors to each component.  

Abstract



 xii

The overall framework has been implemented and demonstrated with a high-pressure feedwater 

system whose available sensor set is insufficient for the construction of standalone models for 

most major components. Results from the demonstration showed that the system level approach 

can be used to construct models and perform diagnostics for systems with limited 

instrumentation. Both component faults and sensor faults can be detected, and the effects of 

uncertainty can be mitigated by the proposed probabilistic reasoning framework.  Areas for 

future work were identified and include the investigation of a dynamic Bayesian network to treat 

the effects of uncertainty in the diagnosis as well as the investigation of using high fidelity 

simulation codes to construct simulation-based surrogate models of the basic plant components.
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The global energy demand is rising rapidly as a result of population and economic growth. A 

recent report by the U.S. Energy Information Administration projects a 50% increase in world 

energy consumption between 2018 and 2050 [1]. At the same time, the impact of greenhouse 

gases emission from energy production is an issue of global concerns, motivating the search for 

cleaner energy sources. From a technical perspective, nuclear energy can be a crucial part of the 

solution to both issues. However, to the opposite effect, nuclear power is struggling and its 

contribution to the energy solution does not live up to its potential. 

The main challenges facing the nuclear industry originated from both safety and cost concerns. 

The economic competition from other lower-cost alternatives makes nuclear energy, even with 

its numerous benefits, less desirable. To improve the viability of the nuclear power, technology 

advancements must be made in both safety enhancement and cost reduction [2]. Parallel with 

progress in the development of advanced fuel cycle and reactor design, advances in operator 

support technologies are crucial for improving the safety and efficiency of nuclear power plant 

operations. 

The use of operator support technologies is twofold: at the control level, a computerized operator 

support system can assist plant operators in making timely and informed decisions; at the 

maintenance level, it can help monitoring the overall equipment condition and system status, 

improving maintenance scheduling and reducing the need for human resources [3, 4]. The study 

in this thesis is part of the effort to utilize automation and operator support technologies in 

reducing the operations and maintenance (O&M) cost in nuclear power plants. Fault diagnosis 

methods are investigated and developed for application to the problems of monitoring equipment 

health and instrumentation calibration status. 

Chapter 1  

Introduction and Motivation 
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More specifically, the focus of the diagnostic problem is on equipment performance degradation 

in the thermal-hydraulic systems over the course of plant operation. Information regarding the 

status of the system can be collected and analyzed periodically from sensor data. Given the long-

time scale over which component degradation typically proceeds, some of the system monitoring 

sensors may also inevitably degrade and become unreliable. Sensors in nuclear power plants are 

typically only calibrated once every fuel cycle. The calibration activity requires significant 

human resources in detecting faulty instruments and recalibrating them. Automated on-line 

calibration monitoring can be performed during plant operation to detect sensor drifts as they 

occur and ultimately reduce the O&M cost [5]. It is therefore desirable to have a diagnostic tool 

with the capability to simultaneously deal with both component faults and sensor faults.  

The principal objective of this work is the development of a theoretical framework for 

performing fault detection and diagnosis in the thermal-hydraulic systems of nuclear power 

plants. Basic capabilities for this purpose were previously developed at Argonne National 

Laboratory in the computer code PRO-AID, originally known as PRODIAG [6, 7, 8]. This thesis 

will build upon PRO-AID by developing a new diagnostic framework to overcome its limitations 

and improve its capability and applicability. The principal target application for the approach 

developed here is for immediate implementation in currently operating nuclear power plants, 

however the methods developed here also would potentially have application for the design and 

operation of advanced nuclear reactor systems. Practical conditions in terms of available sensor 

sets and other available data and information are taken into consideration in the development. 

Afterwards, the diagnostic framework may be applied to the problem of determining the optimal 

placement for new sensors to improve the monitoring capabilities. 

PRO-AID [6] was designed as a rule-based expert system for the detection and diagnosis of 

upset events in thermal-hydraulic (T-H) systems of nuclear power plants, relying exclusively on 

T-H instrumentation readings. Faults or malfunctions in any component of a system would result 

in changing trends of T-H variables. PRO-AID emulates a “human expert” observing individual 

changing trends in T-H variables and makes diagnostic decisions using a knowledge base 

provided by a collection of reasoning rules. Changing trends are considered fault symptoms and 

the knowledge base can provide inferences based on the symptoms allowing the code to deduce 

the nature of the fault. The knowledge base of PRO-AID is constructed based mainly from the 
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qualitative form of conservation equations. The approach in PRO-AID is function-oriented in the 

sense that component malfunctions are expected to affect the component’s ability to perform its 

design function. Since each generic component in a T-H system is designed to perform a specific 

function of either mass, momentum or energy transfer, a component malfunction would lead to 

an imbalance in at least one of the conservation equations. 

The rule-based qualitative reasoning approach in PRO-AID offers several advantages. If the 

knowledge base is complete and the relevant symptoms are observed, the code can execute the 

reasoning process efficiently and mistake-free. In this sense, the code can operate as human 

experts without the human error factors. On the other hand, since the code only observes the 

system qualitatively, there is a limit on what it can deduce, especially when observations are 

limited to T-H variable signals. Since some information is lost when the conservation equations 

are converted into qualitative form, the instrumentation signals available may not be fully 

utilized. In addition, as the code considers all changing trends as direct fault symptoms, it can 

only be applicable for situations when that assumption is valid, i.e. for faults that are severe 

enough to cause direct detectable changing trends and only in a short time window before 

feedbacks and automated control actions come into effect and begin to overlay the symptoms. 

Further complications arise when one must consider system noise and measurement uncertainties 

which make the task of detecting correct changing trends nontrivial. In general, the current 

version of PRO-AID can only detect abrupt faults and is not applicable for slow degradations in 

the time frame during which where feedbacks and control system actions may interfere. 

Considering the limitations of the qualitative approach in PRO-AID, a new quantitative model-

based approach is developed and presented in this thesis. In developing this new approach, 

similar restrictions as imposed in the previous version of PRO-AID are applied: to rely solely on 

instrumentation signals and not require any component-specific design parameters. This is due to 

the business case of the target application. Ultimately, the objective for the development of fault 

detection and diagnosis tools such as PRO-AID is to reduce the cost of operations and 

maintenance activities in nuclear power plants. For that purpose, having the approach involve 

design parameters that require subject matter experts for setup and maintenance would be 

economically counterproductive.  
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The most significant original contribution of this work to the field is the development of a 

physics-based probabilistic framework for system level diagnosis in complex nuclear 

engineering systems with limited instrumentation. The proposed framework has the capability to 

deal with both equipment faults and instrument faults. For most systems with limited 

instrumentation, because of the lack of sensors locally at component level, it is not possible to 

perform diagnostics for every standalone component which limits the overall detection and 

monitoring capability. The framework proposed in this thesis resolves this limitation by utilizing 

the relations between nearby components and sensors available at the system level. Furthermore, 

one of the challenging issues in engineering applications of model-based diagnosis methods is 

the difficulty in developing sufficiently accurate models for the diagnostic purpose. High 

modeling uncertainty may result in unreliable diagnostic results which limit the applicability of 

model-based methods. In this thesis, a probabilistic reasoning framework using the Bayesian 

network method has been developed to robustly deal with modeling uncertainty and other 

inevitable sources of noise and uncertainty in engineering systems. 

1.1 Overview of the Diagnostic Problem 

Information on the structure of a T-H system will be specified by a piping and instrumentation 

diagram (P&ID). An example of a P&ID is shown in Figure 1-1 for the chemical and volume 

control system (CVCS) of the Braidwood Nuclear Generating Station [8]. The P&ID provides a 

list of all components and sensors as well as specify their locations, interconnections and the 

fluid flow directions. The basic objective of fault diagnosis in a system is to detect when a fault 

has occurred and if possible, localize the fault to a specific component or sensor. 

A fault is defined to be any change in a component or sensor that affects its performance of the 

designed function. Generally, faults in a nuclear power plant can be divided into two categories 

based on the underlying time scale. The first type, occurring abruptly in a short-time scale, is 

relevant to the control of the plant and thus must be detected and dealt which by human operators 

in the control room. The second type is performance degradation, occurring slowly in the long-

time scale over the course of plant operation. Slow performance degradation may go undetected 

even with plant staff performing routine maintenance rounds and is typically dealt with during 

periodic maintenance intervals. The current research will focus on the second category - faults of 

slow degradation type.  
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Figure 1-1. Simplified P&ID of the Braidwood Nuclear Station CVCS [8] 

 

Given the long-time scale in consideration, the degradation of the monitoring instruments is also 

inevitable, e.g. sensors drifting out of calibration. Additionally, the system may undergo changes 

in operation conditions due to control actions or other changes in boundary conditions such as 

seasonal temperature changes. The problem is more complicated with the presence of various 

sources of noise and uncertainty. The desired diagnostic approach should have the capability to 

deal with both component faults and sensor faults, have high detection sensitivity to detect slow 

degradations but remain insensitive to the various sources of uncertainty and changes in 

operating conditions. 

The theoretical framework for fault detection and diagnosis (FDD) proposed in this thesis is a 

hybrid integration of quantitative model-based diagnosis, statistical change detection and 

probabilistic reasoning. Quantitative physics-based models are constructed to describe the 

normal, fault-free, behavior of each component in a T-H system. These component models 
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provide the source of analytical redundancy needed to perform fault diagnostics. Discrepancies 

between fault-free model predictions and measurement data provided by sensor readings are 

quantified by model residuals. Non-zero residuals are interpreted as fault symptoms in fault 

detection and diagnosis. With the presence of various sources of uncertainty, a statistical change 

detection method is needed to reliably evaluate whether a residual has become non-zero 

statistically. Every time a decision is made on whether a residual is zero or non-zero, there is an 

associated false detection rate. Taking account of such false detection possibilities in a 

probabilistic reasoning approach is one of the issues addressed in this work. 

The construction of each component model for fault diagnosis requires measured data of a 

certain number of process variables at the inlet and outlet of the component. In practice, it is 

rarely the case that there are enough sensors on the boundary of each component for that 

purpose. Incorporating information from the system level into the model construction process 

and subsequently in fault diagnosis is one of the original contributions of this thesis. Difficulties 

due to the lack of sensors are dealt with in system level diagnosis using aggregate models and a 

new concept of virtual sensor. 

1.2 Thesis Outline 

Chapter 2 starts with a review on various fault detection and diagnosis methods and their 

applications with focus on model-based diagnosis methods. The qualitative approach in PRO-

AID is discussed next along with its advantage and limitations. The last section of Chapter 2 

introduces two quantitative model-based diagnosis frameworks, each provides a reasoning 

process to obtain fault diagnoses from a set of observed fault symptoms. These two reasoning 

frameworks will be used as the basis for the work in this thesis.  

Chapter 3 deals with the construction of physics-based models for model-based diagnosis and the 

difficulties involved. From each model, one or several residuals can be computed and utilized in 

detecting fault symptoms. An example with a single-phase counterflow heat exchanger is 

discussed in detail to illustrate the model construction and residual generation processes. 

In Chapter 4, various sources of uncertainty in a system and their effects on fault detection and 

diagnosis are discussed. The presence of noise and uncertainty affects not only the process of 

observing fault symptoms from sensor readings but also the reasoning process going from a set 
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of observed fault symptoms to possible fault diagnoses. Statistical change detection methods to 

detect non-zero residuals are introduced. If the false detection rates in evaluating model residuals 

can be considered negligible, the straightforward approach for the reasoning process is to accept 

the set of observed fault symptoms as definite and proceed with one of the two reasoning 

frameworks introduced in Chapter 2. Such approach is called ‘deterministic reasoning’ as the 

possibility that any observed fault symptom could be false is neglected. 

Chapter 5 introduces the probabilistic reasoning framework proposed in this study. The 

possibility of false detection rates in evaluating the model residuals are estimated and accounted 

for in the reasoning processes. Details on the concept of Bayesian network and the application in 

probabilistic reasoning are discussed.  

Chapter 6 discusses the problem of fault diagnosis at system level. As is often the case, the 

sensor set available at the boundary of a component is incomplete hence it is not possible to 

construct a model for the standalone component. One must utilize the relations between nearby 

components and make use of all available sensors at the system level to maximize the diagnostic 

capability. The concepts of virtual sensors and aggregate models are introduced for that purpose. 

Issues with residual generation and fault diagnosis at system level are also discussed. 

Chapter 7 provides results for several diagnostic scenarios for a feedwater system in the North 

Anna Nuclear Generating Station. The overall process from importing and analyzing the P&ID 

for possible virtual sensors to constructing all possible diagnostic models, generating model 

residuals and performing diagnosis has been automated in a test implementation. Diagnostic 

results for various scenarios, including feedwater heat fouling, sensor fault and pump fault are 

discussed. Possible application of the proposed framework on the problem of determining 

optimal placements for new sensors is also illustrated. 

The final chapter provides a summary of the work and proposes various directions for future 

work. 
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Fault detection and diagnosis (FDD) is an essential part of process control and abnormal event 

management in any engineering and industrial system. A fault is any change to the 

characteristics of some component in the system that could reduce or disrupt its ability to 

perform the designed function. Fault detection techniques are usually employed to monitor the 

system to ensure its efficient working conditions and enhance system safety and reliability. The 

use of advanced FDD techniques for early detection of faults would allow for timely execution 

of remedial control actions and for the orderly planning of maintenance activities. 

Generally, most FDD methods detect faults by either analyzing inconsistencies in the observed 

data or by matching the observed data to known fault modes. Inconsistencies in sensor data can 

be detected by either hardware or analytical redundancy. In a hardware redundancy approach, 

identical instruments or components are used for the same purpose and their outputs are 

compared for cross validation. Hardware redundancy is costly and therefore only feasibly 

applicable for safety-critical applications. The analytical redundancy approaches, on the other 

hand, rely a priori knowledge of the system for consistency checking. Alternatively, faults can be 

detected by matching the observed data against known fault models or signal features. 

Reviews of FDD methods are available in a great variety of books [9, 10, 11, 12, 13, 14, 15, 16] 

and journal papers [17, 18, 19, 20, 21, 22, 23, 24, 25, 26].  In general, FDD methods can be 

classified into two main categories: model-based and process-history-based. Briefly, in model-

based approaches, mathematical models of the system or its individual components are 

constructed to either provide a source of analytical redundancy or describe the system faulty 

behaviors. Process-history-based approaches include data-driven methods and signal-based 

methods. For data-driven methods, the availability of a large amount of process history data is 

Chapter 2  

Fault Detection and Diagnosis Methods 
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required. Various data processing and pattern recognition techniques can be applied to formulate 

constraints between different sensor readings in the observed data. Signal-based methods on the 

other hand are univariate and rely on numerical features of individual sensor readings, e.g. 

vibration or acoustic sensors. 

In practice, there is not always a clear distinction between these methods and the advantage of 

one over the others. For instance, system models can be constructed by data-driven techniques to 

be used in model-based methods. When considering various FDD techniques for industrial 

applications, a common consensus is that there is no single method that can satisfy all the 

desirable features for a specific application. The optimal solution can only be reached by 

combining different methods in a hybrid form [17, 23]. 

2.1 Industrial Applications of FDD Methods 

In data-driven approaches, multivariate data analysis and supervised learning techniques are 

applied to large sets of process history data to detect process faults. Data-driven methods can be 

divided into two categories, namely pattern recognition approaches and data reconstruction 

approaches [19].  

In the first category, the problem of fault diagnosis is formulated as a pattern recognition 

problem or a classifier. Quantitative features are exacted from the set of process history data and 

classified by different classes, each of which is associated with a specific type of faults. Faults 

are detected when the features of the observed data are recognized by a pre-determined class. 

Feature extraction methods include principle component analysis (PCA) [27, 28, 29, 30, 31], 

independent component analysis (ICA) [32, 33, 34, 35, 36], partial least square (PLS) [37, 38, 

39, 40], linear discriminant analysis (LDA) [41, 42]. Classifier methods include support vector 

machine (SVM) [43, 44, 45, 46, 47], artificial neural network (ANN) [48, 49, 50, 51].  

In the second category of data-driven approaches, quantitative models obtained from process 

data are used to reconstruct part of the observed data. Faults are detected from the discrepancies 

between measured data and the model estimations. Methods for data reconstruction include ANN 

and other supervised machine learning techniques [19] and multivariate state estimation 

technique (MSET) [52, 53, 54] 
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Signal-based approaches utilize univariate sensor signals for fault diagnosis, as opposed to 

multivariate process data in data-driven approaches. Numerical features are extracted from 

individual sensor readings from which faults can be detected and recognized. Signal features can 

be classified into three categories: time-domain, frequency domain and joint time-frequency 

domain. Time-domain features can be extracted from continuous dynamical process variables 

usually in terms of statistical parameters [55, 23, 56]. Frequency-domain features can be exacted 

using spectrum analysis tools from relevant sensors, e.g. vibration or acoustic sensors. 

Frequency-domain signal-based approaches have been widely applied for fault detection using in 

pump motors and other rotating machineries using vibration sensors [57, 58, 59], in industrial 

systems using acoustic sensors [60, 61]. In joint time-frequency domain approaches, time-

variations of frequency-domain features are monitored and from which faults can be detected 

[62, 63, 64]. 

In model-based approaches, models are constructed to provide description of the structure and 

behavior of a system. Faults are detected by analyzing inconsistencies between observed data 

and the expected behavior for from matching observations to expected faulty features. 

Inconsistencies in measurement data are detected from available analytical redundancy relations 

which are quantified by model residuals in quantitative approaches. Depending on the form of a 

system model, different techniques are available for the residual generation, including fault 

detection filter [65, 66], diagnostic observer [67, 13], parity space [68, 17, 67], parameter 

estimation [69, 17]. 

2.2 Fundamentals of Model-Based Diagnosis 

The characteristics of the diagnostic problem in this thesis is the need to consider complex 

systems with large numbers of components but limited sensor sets. Under such scenarios, it is 

not always possible to identify the exact root cause of each upset event and the spatial resolution 

of the diagnostic results may include multiple components or sensors. We will first investigate 

possible reasoning frameworks to obtain such diagnostic results from a set of observations. The 

effects of various sources of uncertainty to the reasoning process are discussed in Chapter 4 and 

5. For the current section, we will provide formal definitions of faults, fault symptoms, fault 

diagnoses and discuss the fundamental reasoning framework for model-based fault diagnosis. 
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Model-based diagnosis (MBD) is a general framework for fault detection and diagnosis making 

use of models of the structure and behavior of the system in consideration. The idea of model-

based diagnosis as a method that uses analytical redundancy for fault detection can be traced 

back to the work of Beard [65] and de Kleer [70]. The common approach to model-based 

diagnosis is to rely on models that describe the normal, fault-free, behavior of a system. Faults 

can be detected from discrepancies between model predictions and observed data [71, 72]. This 

approach, formally known as consistency-based, will be the focus of development in this thesis. 

It should be noted that there is an alternative approach, known as abductive diagnosis, relying on 

abnormal models that describe the behavior a system in faulty modes. Faults or malfunctions are 

detected when their predicted abnormal behaviors match the observed data [73, 74, 75].   

The logical framework of consistency-based approach for model-based diagnosis was introduced 

and formalized by Reiter [76] and de Kleer [77]. A detailed description of the approach was 

provided by de Kleer in [13] for a simplified system of an electronic circuit. In this section, we 

will generalize that framework to treat systems with the possibility of multiple fault modes in 

system components as well as sensor faults. 

To start, a system in model-based diagnosis is defined by a complete description of its structure, 

a list of fault-free models for the components in the system and a list of observations obtained 

from various locations in the system: 

Definition 2-1. A system is a triple ( , , )SD COMPS OBS , where: 

 SD - System Description: specifies the structure of the system, 
including a list of all components, sensors, and their interconnections. 

 COMPS  - System Components: a list of models that describe the 
normal (fault-free) behavior of each component 

 OBS - Observations: List of data, observed at various locations in the 
system. 

Each component model provides an analytical relation between the process variables on the 

boundary of the component. The component models together constitute a fault-free system 

model which imposes various relations and constraints on the observed data. For the formulation 

in this section, we shall assume that all component models are provided. Furthermore, all sources 
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of uncertainty, including modeling uncertainty and measurement uncertainty, are neglected. 

Complications in the development of component models and uncertainty treatment will be 

discussed in Chapter 3 and 5, respectively. 

A component fault is any change in the characteristics of a component that can cause it to deviate 

from the expected normal behavior. A sensor fault is any change to a sensor that causes its 

reading value to no longer reflect the true value of the underlying process variable. If the system 

is fault-free, the observed data provided by sensor readings must satisfy the relations and 

constraints imposed by the fault-free system model. In that case, we say that the observations are 

consistent with the fault-free system model. Consequently, any inconsistency between the set of 

observations and the fault-free system model is defined to be a fault symptom. 

Definition 2-2. A fault symptom is an inconsistency detected between the set of 
observations and the fault-free system model. 

Following the underlying physics, each physical state of the system would result in a specific 

combination of fault symptoms. That specific combination of fault symptoms will be referred to 

as the fault signature of the state. An upset event is detected when one or more fault symptoms 

are observed. The objective of fault diagnosis is then to deduce the state of the system from a set 

of observed fault symptoms. 

To elaborate, suppose that there are N  possible faults in the system, each can be denoted by a 

label iF  with 1 i N  . Each physical state of the system can be then identified by a set of faults. 

Thus, the space of physical states consists of 2N  possible states. Now, suppose that the set of 

available observations and the fault-free system model allow us to construct n  distinct fault 

symptoms. There are then 2n  possible combinations of fault symptoms.  

The causal relations from the underlying physics dictates that to each physical state of the 

system, there is a specific set of fault symptoms defined to be its fault signature. That is, one can 

theoretically construct a function that maps each set of faults to a specific set of fault symptoms. 

The term function is to emphasize that each set of faults is mapped to one and only one set of 

fault symptoms. Each physical state cannot have more than one signature. On the other hand, it is 
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possible that different physical states can share the same fault signature, i.e. different sets of 

faults can be mapped to the same set of fault symptoms. 

 

Figure 2-1. Forward mapping from physical states to fault signatures 

The forward mapping from physical states to fault signatures in the space of combinations of 

fault symptoms is illustrated in Figure 2-1. Mathematically, the map is injective but not 

surjective. Every physical state is mapped into a fault signature but not every combination of 

symptoms is the signature of a physical state. If a set of fault symptoms is a fault signature to 

some state, we say the set of fault symptoms represents the state. Then among the 2n  possible 

combinations of fault symptoms, some combinations do not represent any physical states while 

the others may represent one or multiple states. Usually, the number of distinct fault symptoms 

in the system is less than the number of possible faults, thus 2 2n N , and we can see clearly the 

mapping from 2N  distinct states to 2n  different sets of symptoms cannot be one-to-one. 

The objective of fault diagnosis is to determine the physical state of a system given a set of 

observed fault symptoms. As we have seen, different states can give the same fault signature and 

therefore it is not always possible to identify the exact state of a system. One must settle with all 

possible states that can yield the set of observed symptoms. Each point in the space of physical 

states can be a guess for the actual state of the system. More formally, we define a diagnosis to 
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be any hypothesis on the state of a system in the attempt to explain the observed fault symptoms. 

A diagnosis is valid if the corresponding state yields the observed set of fault symptoms.  

Mathematically, the task of determining all valid diagnoses is equivalent to finding the inverse 

mapping from the space of fault symptoms to the space of physical states. 

 

Figure 2-2. Backward mapping from a set of fault symptoms to possible states in fault diagnosis 

If one can enumerate all the faults in the systems and can construct the forward mapping, as 

shown in Figure 2-1, from each state to a set of symptoms, then the task of fault diagnosis can be 

done straightforwardly. All valid diagnoses can be found by a simple search for all physical 

states whose fault signature matches the observed set of symptoms. However, it is usually not 

practical to construct the forward mapping, especially for complex systems with high number of 

continuous fault modes. Furthermore, it is not computationally efficient to perform diagnosis by 

enumerating all possible states of the system. As shown, the number of possible states increases 

exponentially with the number of faults. 

The objective of the MBD framework formulated here is to determine all valid diagnoses for a 

given set of symptoms without the need to construct the forward mapping by employing a 

reasoning method known as backward chaining inference. Valid diagnoses are logically inferred 

from the implications provided by the observed fault symptoms. 
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For that, we first need to express each diagnosis in the form of a logical statement. Intuitively, 

each diagnosis with a set of faults is a logical statement claiming those faults to be present in the 

system. Any component or sensor not implicated by this set of faults is implicitly presumed to be 

fault-free.  

Definition 2-3. A diagnosis with a set of faults fC  is the hypothesis that the 

faults included in fC  have occurred and the rest of the system is fault-free. 

                               )(
i i

iF C F Cf i
f f

C F F
 

   
     
   
                   (2.1) 

where   is the logical ‘AND’ operator;   is the logical negation and iF  is the 

label for a particular fault. 

 

We will use a short-handed notation to write each diagnosis by a list of fault labels inside the 

square brackets ‘[ ] ’. For instance, 1 2[ , ]F F  is the diagnosis claiming that only faults 1F   and 2F  

have occurred. 

Again, at any moment of time, there can be only one diagnosis matching the actual state of the 

system, but we must settle with all the diagnoses that are consistent with the observed symptoms. 

We defined those to be valid diagnoses, or more formally, consistency-based diagnoses. More 

specifically, a diagnosis is called a consistency-based diagnosis if its set of faults can account for 

all the inconsistencies between the observations and the fault-free system model.  

For each abnormal event detected by a specific set of observed fault symptoms, we are interested 

in obtaining the list of all consistency-based diagnoses.  From a practical point of view, however, 

it might be helpful to narrow such list down by removing some less useful diagnoses at the 

tradeoff of some comprehensiveness. That is, it is not practically useful to consider all 

mathematically valid solutions and one may consider removing some of the less probable 

diagnoses. In the current framework, we will do this by introducing the concept of minimal 

diagnosis and consider keeping only minimal diagnoses in the diagnostic result. 
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To see the logic behind the use of minimal diagnoses, consider a scenario in which we have 

obtained a list of all valid diagnoses for a given set of fault symptoms. Suppose that among the 

list of valid diagnoses, there exists a group of related diagnoses 0 )(C , 1)(C ,…, )( nC  such 

that the first member of the group is a subset of all the other members, i.e. 0  for all 1iC C i  . 

Every diagnosis in this group is just 0 )(C  plus at least one additional fault. In other words, for 

any diagnosis )( iC  in the group with 1i  , we can remove at least one fault from its set of 

faults iC  and still have a valid diagnosis. The same cannot be said for 0 )(C ; we cannot remove 

any of its faults and still retain a valid diagnosis. In this case, 0 )(C  is called a minimal 

diagnosis. 

From a practical point of view, for the purpose of reducing the number of possibilities one needs 

to consider in the diagnostic result, it is a reasonable choice to focus only on the minimal 

diagnosis 0 )(C  and ignore the other non-minimal members of the group. In terms of actionable 

information, every diagnosis in the group implies the set of faults 0C  in 0 )(C . In terms of prior 

probability, assuming the faults are independent, it is clear that the minimal diagnosis 0 )(C  is 

the most likely candidate among the group, regardless of what the prior probability of each fault 

might be. The prior probability of each diagnosis )( iC  in the group with at least one additional 

fault compared to 0 )(C  is smaller than the prior probability of 0 )(C . (To be precise, the 

requirement for this statement to hold is that the prior probability of each fault is less that 50%  

which we can safely assume to always be the case for all practical purposes).  

Formally, a valid consistency-based diagnosis 0 )(C  is called a minimal diagnosis if there is no 

proper subset 0C   of 0C   such that 0 )(C   is also a consistency-based diagnosis. Given a list of 

all valid diagnoses, we can divide it to separate groups of related diagnoses as described and 

from that obtain all minimal diagnoses. It should be noted that the term “minimal” here does not 

necessarily imply a minimum number of faults. For instance it could be the case that both 

1 2[ , ]F F  and 3[ ]F , for some fault labels 1 2 3, ,F F F , are valid minimal diagnoses and without 

considering the prior probabilities, one has no basis to prefer one minimal diagnosis to another.  
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Definition 2-4. A minimal diagnosis is a valid consistency-based diagnosis such 
that none of its proper subsets is also a valid diagnosis. 

 

The use of the minimal diagnosis concept allows one to logically remove some of the less useful 

diagnoses, thus reduces the number of diagnoses one needs to consider. The tradeoff is that in the 

unlikely event that multiple faults occur in a system and the actual state of the system 

corresponds to a non-minimal diagnosis then by only considering minimal diagnoses, one may 

miss some of the multiple faults. 

The objective of model-based diagnosis is then to obtain all minimal diagnoses for a given set of 

observed fault symptoms. In framework of MBD, minimal diagnoses are deduced by logical 

inference using the information obtained from each fault symptom. Each fault symptom 

represents an inconsistency between the observations and the fault-free system model. From each 

fault symptom, one can conclude that at least one of the involved components or sensors must be 

faulty. Such statement is known as a conflict. Formally, a conflict, identified by a set of faults fC

, is defined to be the logical statement claiming at least one fault in fC  must be true.  

Definition 2-5. A conflict for a set of faults fC  is the statement that at least one 

of the faults included in fC   must have occurred. 

 )(
i

i
F C

f
f

C F


   (2.2) 

where   is the logical ‘OR’ operator. 

 

In that context, a conflict among some set of fault fC  is valid if the observed fault symptoms 

cannot be explained without at least one fault in fC . Parallel to the definition of minimal 

diagnosis, a minimal conflict is defined to be a valid conflict such that none of its proper subsets 

is also a valid conflict. One cannot remove any fault from the set of faults in a minimal conflict 

without invalidating the associated logical statement. 
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As an example, suppose that from a certain fault symptom one can logically conclude that at 

least one fault among the three faults, labeled by 1F , 2F , and 3F , must be true. Then we have a 

valid conflict among the set of these three faults, conventionally written as 1 2 3, ,F F F  . Notice 

that if one were to pick from the space of all possible conflicts, any conflict with the same three 

faults plus some additional faults, e.g. 1 2 3 4, , ,F FF F  , is also valid as the associated logical 

statement immediately follows. However, 1 2 3 4, , ,F FF F   is not a minimal conflict since one can 

remove 4F  and still retain a valid conflict. 

In summary, each fault symptom provides a logical statement in the form of a conflict. Thus, for 

each abnormal event, a collection of conflicts can be derived from the observed fault symptoms. 

A fault diagnosis is valid if it is consistent with every observed conflict. By logical inference, 

one can then obtain all valid fault diagnoses for the abnormal event.  

Alternatively, in the language of set theory, given the set of all minimal conflicts derived from 

the observed fault symptoms, the list of all minimal diagnoses can be obtained using the 

following proposition: 

Proposition 2-1. Let   denote the set of all minimal conflicts in a system, a diagnosis )(  
is a valid minimal diagnosis if and only if its set of faults   is a minimal set to have a non-
empty intersection with the set of faults expressed by every conflict in  : 

 : )(,f f fC C C      (2.3) 

  being a minimal implies that no proper subset of   satisfies the same condition. 

 

To summarize, if the logical implication from each fault symptom is known, the model-based 

diagnosis framework formulated in this section provides an algorithm to obtain all valid minimal 

diagnoses without the need to construct the fault signatures for all possible combination of faults.  

The algorithm consists of the following steps: 

1) Search for inconsistencies between observed data and fault-free system model. Each 
inconsistency serves as a fault symptom, which gives rise to a conflict. 
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2) Obtain a set of minimal conflicts from the observed fault symptoms. 
3) Search for all minimal diagnoses from the set of minimal conflicts, using the proposition 

given by Eqn. (2.3). 

Up until now, we have not discussed how component models and subsequently fault symptoms 

can be constructed. For the original applications of MBD in electronic circuits, component 

models are usually known as part of the system specifications. For applications in engineering 

systems, however, components models are generally not provided and need to be developed for 

diagnostic purposes. The construction of component models is one of the challenging issues one 

needs to address in order to apply the MBD framework to complex engineering systems. For our 

current application for TH systems, the development of physics-based component models will be 

discussed in Chapter 3. 

2.3 The Qualitative Approach in PRO-AID 

The idea of qualitative physics based on confluences was introduced by de Kleer and Brown in 

[78]. Intuitively, when we observe the behavior of a physical system, the instantaneous values of 

the process variables are often not of interest. The changing trends of the process variables 

convey most of the information regarding the status of the system. From the qualitative 

understanding of the system, one can make sense of what the observed trends indicate without 

performing any calculations or knowing the exact quantitative details of the system. 

Wei and Reifman [6] applied this concept to the FDD problem of TH systems. More specifically, 

the concept of qualitative physics provided an approach to construct qualitative models for each 

generic type of component in a TH system without the need to know component-specific design 

parameters. Since each generic component in a T-H system is designed to perform a specific 

function of either mass, momentum or energy transfer, faults in the component would result in 

the violation of at least one of the balance equations formulated under normal working 

conditions. The qualitative form of each balance equation serves as a qualitative model for the 

component.  

Each qualitative component model provides several relations between individual variable trends 

at the inlet and outlet of the component and an imbalance indicator, referred to as a Q value. 

Each component fault would lead to changing trends in one or several related Q values and thus, 

changing trends in Q values serve as fault symptoms for the reasoning process in fault diagnosis. 
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Qualitative rules based on the qualitative component models form the knowledge base of PRO-

AID. Using the knowledge base, fault symptoms, i.e. Q trends, can be inferred from observed 

process variable trends and from that possible faults can be deduced by applying the MBD 

reasoning framework. 

2.3.1 Qualitative Physics Based on Confluences 

We will use the square brackets “[ ] ” to denote the qualitative property of a variable, which 

could take three possible values: positive (+), zero (0) or negative (-).The trend of a variable Q  

can be determined by the qualitative value of its differential dQ : 

                                                          [ ]dQ Q    is increasing ( )  

                                                          [ ] 0dQ Q   is unchanging ( )  

                                                          [ ]dQ Q    is decreasing ( )  

Confluence equations are simple qualitative forms of differential equations. For our application, 

we are interested in obtaining the relations between qualitative trends of various T-H variables 

and the imbalance indicators in generic components of the system. The confluence equations in 

that case can be derived from the corresponding conservation equations of either mass, 

momentum or energy.  

To illustrate the transformation of a quantitative equation into qualitative form, consider an 

example given by the following arbitrary equation: 

 Q ax by   (2.4) 

where x  and y  are some variables of interest, say some sensor readings; a  and b  are some 

positive but otherwise unknown parameters; Q  is an indicator that we are interested in and 

cannot measure directly. Again, this is just a hypothetical arbitrary equation which does not 

necessarily represent any actual physical phenomenon.   

Under these conditions, we can only observe the qualitative trends of x  and y  separately and 

not the value of ax by . To transform the equation into the qualitative form, we can simply 

differentiate both sides and consider the sign of each term: 
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 (2.5) 

For the third step, [ ]a dx b dy  is set equal to [ ] [ ]a dx b dy . Such operation is only valid if the 

two terms, a dx  and b dy  have opposite signs. The fourth step immediately follows since both 

a  and b  are assumed to be positive. [ ] [ ] [ ]dQ dx dy   is the qualitative form we want. The 

trend of the imbalance indicator Q  can then be inferred from the trend of the individual variables 

x  and y . 

Notice the loss of information in the third step. The sign [ ]a dx b dy  can always be determined 

if one knows the values of a  and b  but the difference [ ] [ ]a dx b dy  is mathematically ill 

defined. For example, if a dx  and b dy  are both positive, their qualitative difference is 

undetermined: 

 positive positive unknown   

Such loss of information is inevitable in the transformation of an equation from quantitative form 

to qualitative form. The emphasis here is that when applicable, the qualitative form 

[ ] [ ] [ ]dQ dx dy   allows us to infer the trend of the variable Q  even though the exact value of 

the “design parameters” are a  and b  unknown. 

Formally, the set of rules to formulate qualitative equations and manipulate qualitative variables 

are summarized below, as described in [78]: 

1. ][ ][ 00 ] [x   

2. ][0] [ ] [xx   

3. ][ ][ ] [x x   

4. ][ ][ ] [x x    

5. [ ][ ][ ] xxy y  

6. [ ] [ ][ ]y xx y   

Most of these transformation rules are intuitive and straightforward, except for the last rule 

which may cause some loss of information as discussed. 
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 2.3.2 Qualitative Models and the Knowledge Base in PRO-AID 

For PRO-AID, qualitative component models are constructed using confluence equations derived 

from the conservation equations of mass, momentum and energy. Consider, for example, a single 

inlet/outlet component under quasi-static conditions, the mass conservation equation can be 

written as: 

 out in massw w Q   (2.6) 

where inw  and outw  are the inlet and outlet flow rates, assumed to be available by sensor 

readings. massQ  is a source/sink term in the mass balance and will be used as the imbalance 

indicator. For this component under normal working conditions we can expect to have 0massQ  , 

i.e. there is no source or sink of mass. 

Following the transformation rules established in the last section, it is straightforward to obtain 

the following confluence equation from Eqn. (2.6): 

 mass out in ][ [[ ]]dQ d dww   (2.7) 

This serves as a qualitative mass balance model for the component. The trend of the imbalance 

indicator massQ  can be obtained from the inlet and outlet flowrate trends using the following 

reasoning rules: 

 out mass

out mass

If  and  then 

If  and  then 

in

in

Qw

Q

w

w w

  

  
 (2.8) 

Changing trends in massQ  serve as fault symptoms  indicating there is a leak in or out of the 

component. 

Similarly, the static momentum conservation equation for the component can be written as: 

 
2

in out 2
0

kw
P P

A
    (2.9) 

where inP  and outP  are inlet and outlet pressures, respectively; w  is the flow rate through the 

component. k ,  , and A   respectively denote the loss coefficient, fluid density and effective 
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cross-sectional area. k  and A   are component-specific parameters and can be expected to 

remain the same if the component is fault-free. We can lump these parameters into a status 

indicator momQ , thus: 

 
2

in out
mom

0
w

P P
Q

    (2.10) 

Under normal working conditions we can expect to have mom const.Q  Using the transformation 

rules described in the last section, we can obtain the qualitative form: 

 
in out mom2

mom mom

mom in out

2 0

[ ] [ ] [ ] [ ]

w w
dP dP dw dQ

Q Q

dQ dw dP dP

   

   
 (2.11) 

This qualitative equation serves as a qualitative momentum model, from which we can construct 

reasoning rules to infer the trend of momQ  for the component. For instance: 

 in out momIf  and  and  then w P P Q     (2.12) 

momQ  decreasing would serve as a fault symptom indicating a blockage-type fault, i.e. increased 

loss coefficient, in the component. 

This procedure of constructing qualitative models can be generalized for each generic component 

type in TH systems. The reasoning rules defined using such qualitative models form the 

knowledge base for PRO-AID. The knowledge base allows the code to infer changing trends of 

various Q  values from individual process variable trends. Changing trends of the Q  values 

serve as fault symptoms and the logical MBD framework as described in Section 2.2 can be 

applied to obtain possible diagnoses by logical inference. 

2.3.3 Limitations of the Qualitative Reasoning Approach in PRO-AID 

The main advantage of the qualitative approach in PRO-AID is that qualitative models can be 

constructed for each type of generic component in a TH system without the need to know 

component-specific design parameters. The approach was applied successfully in detection of 

abrupt faults in various systems [79, 80, 81]. However, the applicability of this qualitative 
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approach in detecting long-time scale slow degradations is subject to several limitations. 

Furthermore, its capability to deal with sensor faults is limited.  

The limitations in PRO-AID are intrinsic to the qualitative approach. The qualitative model 

developed for each component as a specific set of if-then rules which does not account for the 

possibility of sensor faults generally cannot handle multiple-fault events. The approach requires 

continuous sensor readings to be transformed into discrete qualitative values, which limits the 

detection sensitivity. Faults need to be severe enough to trigger the reasoning rules within a 

relatively short timeframe before feedback and control action responses obscure the underlying 

variable trends. Some loss of information is inevitable when a quantitative equation is 

transformed into qualitative form, which could lead to scenarios where no reasoning rule is 

applicable. The issue is even more significant if number of qualitative variables involved in a 

confluence equation is high in which case the effectiveness of the approach is very limited.  

For the current application, the need for detection of slow degradations in both system 

components and sensors motivates the search for an alternative quantitative approach. 

2.4 Quantitative Model-Based Diagnosis Frameworks 

Quantitative models can be constructed to either describe the normal fault-free behavior of a 

system or to provide a description of its different fault modes. For a consistency-based fault 

diagnosis approach, we need models of the fault-free behavior to check for inconsistencies in the 

observed data. The construction of fault-free quantitative models and their usage in fault 

diagnosis are the focus of this section. 

We will first discuss the reasoning process in quantitative approaches, assuming that quantitative 

models and subsequently model residuals can be constructed for each component in a system. 

Furthermore, model residuals are constructed in a way that would allow us to infer which faults 

are implicated when a residual is non-zero. Various model construction and residual generation 

approaches are then discussed in Section 2.4.2 and explored more in detail in Chapter 3. 

2.4.1 Quantitative Reasoning Frameworks 

From the formulation in Section 2.2, the key step in the MBD framework as a consistency-based 

approach is to identify the set of all minimal conflicts. Conflicts can be derived from 
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discrepancies between the observations and the fault-free system, defined as fault symptoms. The 

constraints between observations and the expected fault-free behavior are formally defined as 

analytical redundancy relations (ARRs). Each analytical redundancy relation provides an 

equation governing the relation between certain observations and components in the system. All 

the ARR equations must hold when the system is fault-free. 

In a quantitative approach, analytical redundancy relations can be expressed by quantitative 

equations. If a certain ARR equation does not hold then at least one of the involved components 

or sensors must be faulty and the degree to which the relation is violated is quantified by a 

residual, defined as the difference between the two sides of the ARR equation. Thus, each non-

zero residual from each independent ARR equation serves as a fault symptom from which a 

minimal conflict can be derived.  

Following the formulation in Section 2.2, the MBD framework for the quantitative approach can 

be summarized in three main steps as listed in Table 2-1.  

Table 2-1. The MBD framework for quantitative model-based diagnosis 

Step 1 
Identify available ARRs from component models, from which 
define possible residuals. 

Step 2 Obtain minimal conflicts from non-zero residuals 

Step 3 
Obtain all valid minimal diagnoses from the set of all minimal 
conflicts. 

 

The MBD framework as introduced above was originally developed in the computer science and 

artificial intelligence community [72, 82]. An independent but closely related framework was 

developed in parallel by the fault detection and isolation (FDI) community [82]. We will refer to 

this alternative approach as the FDI framework just to distinguish it from the former although 

both serve as a framework for model-based diagnosis. 

The two frameworks are analogous in the sense that both are consistency-based and rely on 

system models and the same redundancy information for consistency-checking. More 

specifically for both frameworks in the context of a quantitative approach, the occurrence of a 
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fault is detected by non-zero residuals indicating discrepancies between the observed behavior 

and the normal operation behavior described by the system model. The distinction is on how 

diagnoses are obtained from the observed residuals. 

As described above, in the MBD framework, only non-zero residuals are used as fault symptoms 

to formulate the required minimal conflicts while zero residuals are ignored. In the FDI 

framework, a significant but commonly employed assumption is the notion of exoneration using 

zero residuals. In addition to the fact that non-zero residuals indicate possible faults, it is often 

assumed zero residuals indicate ‘no-faults’, thus all relevant faults in the involved components 

and sensors are exonerated [72, 67].  

The notion of exoneration is an approximation and not mathematically exact. It is possible that 

multiple faults can occur simultaneously and compensate one another to give a zero residual. In 

such scenario, the invalid exonerations may lead to false diagnoses. However, for most cases in 

practice, such scenarios can be considered statistically insignificant. The notion of exoneration 

can help simplify the reasoning process and provide more detailed diagnoses.  

Using the notion of exoneration, relevant faults from zero residuals can be removed from the 

observed conflicts. The reasoning process for fault diagnosis in the FDI framework is 

summarized in Table 2-2. 

Table 2-2. The FDI framework for quantitative model-based diagnosis 

Step 1 
Identify available ARRs from component models, from which 
define possible residuals. 

Step 2 Obtain minimal conflicts from non-zero residuals 

Step 3 Use zero residuals to exonerate relevant faults from the conflicts 

Step 4 Obtain all valid diagnoses from the reduced conflicts. 

 

So far, we have assumed that all component models are known and there is no uncertainty in the 

model predictions or observed data. That is not the case for most applications in engineering 

systems. Modeling uncertainty is inevitable, and all observations are subject to noise and 



 27

measurement uncertainty. The effects of modeling and measurement uncertainty add another 

layer of complications one needs to account for.  

In the next chapter, we will discuss the development of component models in TH systems of 

nuclear power plants. As dictated by the underlying physics, the models for most components in 

the thermal-hydraulic systems are non-linear, even in steady-state operation. A crucial part of the 

model development process is to account for the possibility that the plant may undergo various 

controlled changes in operating conditions and the validity of the component models should be 

insensitive to such changes.  

2.4.2 Model Construction and Residual Generation Approaches 

Generally, quantitative models of technical processes in engineering systems can either be 

derived analytically from understanding of the underlying physics or constructed empirically as 

black-box models using past data. In practice, the two approaches may be combined to create 

gray-box models using both physical laws and operational data [17].  

The dynamics of a technical process in a system can be characterized by its response outputs 

( )ty  to inputs ( )tu , where ( )ty  and ( )tu  are column vectors. For linear time-invariant (LTI) 

systems, the response is more conveniently expressed by an input-output model under Laplace 

transform: 

 ( ) ( ) ( )us G s sy u  (2.13) 

where ( )uG s  is known as the transfer matrix; the label s  denotes the complex variable of 

Laplace transform. For any time-dependent function ( )f t , Laplace transform is a generalization 

of Fourier transform to express the function in frequency domain, defined by: 

 ( ) ( ) stF s f t e dt






   (2.14) 

where s  is a complex variable with s i    for a weighting constant   and frequency 

variable  . For 0   we get the Fourier transform. The inverse transform is given by: 
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1

( ) ( )
2

stf t F s e d






   (2.15) 

Thus, to model the system, one must either obtained the transfer matrix ( )uG s  either analytically 

or empirically. Both the inputs ( )tu  and outputs ( )ty  are assumed to be measurable. At any 

given time t , the state of the system can defined by a set of unmeasurable state variables ( )tx . 

The model of the LTI system can be expressed in the state-space representation as: 

 
( ) ( ) ( )

( ) ( ) ( )

t A t B t

t C t D t

 
 

x x u

y x u


 (2.16) 

where A , B , C  and D  are parameter matrices. The state-space model (2.16) can be obtained 

directly by modeling or derived from the minimum state-space realization of the transfer matrix 

( )uG s  using the relation   1
( )u BG s D C sI A

    [67]. 

In general, the fault-free behavior of a dynamic LTI system can be described by either an input-

output model or a state-space model. Given the fault-free model, one can then generate model 

residuals for fault diagnosis. Ideally, we want the residuals to be mostly sensitive to the effects of 

various faults and insensitive to noise and model uncertainty. A straightforward approach to 

residual generation is to use the difference between the measured outputs ( )sy  and fault-free 

model prediction ˆ ( )sy : 

 ˆ( ) ( ) ( ) ( ) ( ) ( )us s s s G s s   r y y y u  (2.17) 

However, in the presence of model uncertainty and possible sources of noise and disturbances, 

the performance of such residual generator is often poor [67]. In the effort of reducing the 

sensitivity to noise and model uncertainty, residuals are defined as functions of the measured 

inputs and outputs using filter and factorization techniques. Ding and Frank introduced the 

following form for residuals of LTI systems [67]: 

  ( ) ( ) ( ) ( ) ( ) ( )u us R s M s s N s s r y u  (2.18) 

where ( )R s  is a parametrization matrix, and: 

 1( ) ( )uM s I C sI A LC L     (2.19) 
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 1( ) ( ) ( )uN s D C sI A LC B LD      (2.20) 

for a matrix L  known as the observer gain matrix. The forms of ( )R s  and L  depend on the 

particular residual generator chosen for a system. Residual generation methods for LTI systems 

include: fault detection filter [65, 66], diagnostic observer [67, 13], parity space [68, 17, 67]. 

In the above analysis, the time variable is continuous. For discrete time, the Laplace transform is 

replaced by z-transform and the analyses hold with s  replaced by the variable z  of the z-

transform. It should be noted that in general, the effects of different faults may combine in the 

residual vector ( )sr . Thus, additional techniques in analyzing the residuals are needed to 

differentiate between different faults in a system. 

In practice, most technical processes are non-linear, and it is generally not possible to 

analytically model non-linear dynamic processes. Linear assumptions or linearization techniques 

are required to represent such systems by linear input-output or state-space models. For instance, 

the behavior of each non-linear system in operating conditions close to a reference point can be 

approximated by a linear model. Alternatively, data-driven methods can be used to directly 

construct the relation between input and output variables, provided that a large set of operational 

data is available. Data-driven methods to construct quantitative models include principle 

component analysis (PCA), artificial neural network (ANN) [23]. 

Besides input-output and state-space models, one can also construct models to express certain 

process parameters ( )t  as functions of both the input and output variables. The parameters ( )t  

are in turn related to other physical parameters and variables relevant to different faults in the 

system. Using the models for ( )t , one can generate different residuals relevant to various faults 

in the system. Such approach to residual generation is known as the parameter estimation 

approach [69, 17]. 

For the current application in this thesis, we will use a physics-based approach to construct 

models for each performance-related parameter in a component and generate model residuals via 

the parameter estimation approach. The approach will be discussed in more detail in Chapter 3. 
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Considering the characteristics of the diagnostic problem and the objectives for the target 

application, the quantitative model-based approach was selected as the basis for the fault 

detection and diagnosis framework in this thesis. The key factors that shaped the development of 

the proposed FDD approach include the need for sufficiently high detection sensitivity to detect 

faults of slow degradation type, the capability to simultaneously deal with both component faults 

and sensors faults, and the desired insensitivity to various sources of uncertainty and possible 

changes in operating conditions. 

The proposed theoretical framework consists of a quantitative model-based approach to quantify 

slow performance degradations and uncertainty treatments, including statistical change detection 

and probabilistic reasoning, to robustly deal with modeling uncertainty and measurement error. 

As discussed in Chapter 2, developing component models adequate for diagnostic purpose is one 

of the challenging issues one needs to address in order to apply the model-based diagnosis 

frameworks to complex engineering systems.  

There are generally two approaches to constructing quantitative component models, namely data-

driven approach and physics-based approach. For the data-driven approach, each component 

model is constructed by machine learning techniques relying solely on a set of data describing 

past behavior of the component. As such, the quality of the model depends on the coverage of 

the data set used as training data and the capability to extrapolate is limited. In applications for 

nuclear power plants, the data available are often not ideal for purely data-driven approaches. 

The physics-based approach, on the other hand, relies on understanding of the underlying 

physics to formulate the functional form of the component model with only a few parameters left 

to be determined for each specific component. The quality of physics-based models is less data-

Chapter 3  

Physics-based Component Models 
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dependent and generally one can expect the physics-based approach to be less sensitive to 

changes in operation conditions. The physics-based approach for model construction is preferred 

for the framework developed in this thesis. 

3.1 Physics-based Model Construction 

In this section, we will discuss the physics-based approach to construct quantitative models for 

the model-based diagnosis frameworks. Although some of the component-specific design 

parameters may be available, it is often not practical to use them directly in deriving analytical 

models to describe the underlying physics. Constructing models solely from geometric design 

parameters often requires computational simulations and cannot be done analytically. The 

general approach proposed here is to construct parametric models to describe the behavior of the 

component by simplifying the underlying physics. Effectively, all geometric characteristics of 

the component are lumped into a few unknown parameters of the parametric models. The 

unknown model parameters are to be determined using past data. 

Each TH system in a nuclear power plant can be decomposed into separate components of 

known generic types, e.g. valve, pump, heat exchanger. Each component of a generic type is 

designed to perform a basic function of either mass, momentum or energy transfer. The behavior 

or performance of a component in normal working conditions can be described by separate 

models constructed for each of these three processes.  

A fault is defined to be any change in the characteristics of a component that affect its ability to 

perform its designed function. Any fault or malfunction in the component would alter its 

characteristic which will be reflected by an inconsistency between the actual observed behaviors 

and a model prediction. More specifically, since the models for each component are constructed 

based on the three conservation equations, any fault in the component would result in an 

unaccounted imbalance in at least one of the conservation equations which leads to a non-zero 

residual for the corresponding model. For the current application, we are considering faults of the 

slow degradation type in the long-time scale during which the operation of each component can 

be considered quasi-static. 
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To clarify, consider a one-dimensional incompressible flow through a single inlet/outlet 

component. The integral equations for the conservation of mass, momentum and energy for the 

control volume are respectively given by [83]: 

 in out

dm
w

t
w

d
   (3.1) 

 
2

in out in out loss2 2
in out

1 1
)(

2T

l dw w
P P z

A dt A A
g z P


          

   
 (3.2) 

 in in out out eng

d
H w h w h Q

dt
    (3.3) 

where the indices ‘in’ and ‘out’ denote the inlet and outlet location; m is the total fluid mass 

enclosed in the control volume; w  denotes the mass flow rate; P  denotes pressure; A  denotes 

cross-sectional area;  T
l A  is the equivalent inertia length for the component defined by its 

geometric dimensions;   is the fluid density; g  is the gravitational acceleration constant; z  

denotes the relative elevation at each location of the flow; lossP  denotes the total pressure loss; 

H  denotes the total energy enclosed in the control volume; h  denotes the specific enthalpy and 

engQ  is the combined energy source/sink term. 

By assuming quasi-static conditions, we are setting the time derivative terms, i.e. the left sides of 

Eqns. (3.1-3.3) to zero. Explicitly, we are assuming that even though the TH process variables at 

the inlet and outlet of each component may vary over time, the contribution of the time 

derivatives to the conservation equations are negligible. 

In general, for each component, one can construct three models to describe its fault-free behavior 

with regard to the conservation of mass, momentum and energy. For brevity, we will refer to 

these models for each component as the mass, momentum and energy models. As discussed, we 

will formulate physics-based parametric models for each generic type of generic component with 

a few component-specific parameters left to be determined using past data. 
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3.1.1 Mass Models 

Using Eqn. (3.1) and setting the derivative term to zero, we obtain a simple relation enforcing the 

balance of mass flow rates between the inlet and outlet. This serves as a mass model for the 

component with no unknown parameters involved. For a generic component with multiple inlet 

or outlet, the mass model is given by: 

 in outw w   (3.4) 

To evaluate the performance of a component regarding the mass model, a full set of flowrate 

sensors at every inlet and outlet location is required. 

3.1.2 Momentum Models  

Setting the left side to zero and rearranging the terms in Eqn. (3.2), we have: 
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in out in out loss2 2
in out
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P P z
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g P

A
z


 

        
 

 (3.5) 

This relation is valid for single-phase incompressible flows in components with no source of 

momentum, i.e. not a pump. The first term is the gravity effect which is fixed for each 

component. The second term, account for the acceleration of the fluid, vanishes if the cross-

sectional areas at the inlet and outlet are the same. The total pressure loss lossP  can be further 

decomposed into pressure losses due to friction ( frictionP )  and form losses ( formP ) due to any 

abrupt changes of flow direction or geometry.  

Generally, for incompressible flow, the form loss term formP  is proportional to the square of the 

flow rate. The friction loss frictionP  can be written as: 

 
2

friction 2
m

e

vL
P f

D


  (3.6) 

where f  is the frictional pressure drop coefficient, L  is the length of the flow channel, eD  the 

equivalent diameter and mv  is the bulk velocity of the flow. The pressure drop coefficient f  is 

usually given as function of the Reynolds number Re , with: 
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 Re m ev D


  (3.7) 

where   is the viscosity of the fluid. The exact form of f  depends on the flow regime, 

identified by the magnitude of Re , and other characteristics of the flow surface. For example, 

with laminar flow: 

 
64

Re
f   (3.8) 

Or for turbulent flow inside a smooth tube using the McAdams correlation with 4 610 Re 10   

[83]: 

 0.200.184Ref   (3.9) 

Notice that the bulk velocity mv  is generally proportional to the flow rate. Thus, the right side of 

Eqn. (3.5) only depends on a single process variable, the flow rate w . All other parameters are 

either constant or are geometric characteristics of the component which should remain the same 

if the component is fault-free. The dependence of fluid properties on slight change of pressure or 

temperature can be neglected. 

Therefore, to monitor the performance of the component regarding the conservation of 

momentum, we need to construct a parametric model for the pressure difference between the 

inlet and outlet as a function of the flow rate: 

 in out ( )P P f w   (3.10) 

The parametric form of the function ( )f w  is to be determined. Expressed as a polynomial of w , 

it can have a zero-order term from the gravity effect, a second-order term from the form losses 

term ( formP ). The friction loss contribution can be lumped into a term of order between first and 

second order, depending on the flow regime. Overall, it suffices to use a quadratic form for the 

parametric function ( )f w . Thus, the momentum model for a generic component with 

incompressible fluid is given by: 

 2
in out 0 1 2P P ww      (3.11) 
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where 0 , 1 , and 2  are the three unknown model parameters to be determined for each specific 

component using sensor data in a calibration process. Effectively, the geometric and design 

characteristics of the component are lumped into these three model parameters. Any momentum-

related faults, e.g. leakage or blockage, would result the change of at least one parameter.  

The calibration and subsequent use of this momentum model requires reading data from three 

sensors: inlet pressure inP , outlet pressure outP  and flowrate w  at either the inlet or outlet. 

For pumps, we have an additional term for momentum gain ( gainP ) to Eqn. (3.5) due to the 

pump motor shaft power. In general, gainP  may depend on not only the flow rate but also pump 

speed and other operating conditions. Momentum model for pumps, if not provided, need to be 

developed for each specific design type. For a simple constant speed pump, we can use a model 

similar to Eqn. (3.11) with the inlet and outlet pressure interchanged to quantify the pump head: 

 2
head out in 0 1 2wPP P w        (3.12) 

3.1.3 Energy Models 

The quasi-static conservation of energy equation for a generic component is given by Eqn. (3.3) 

with the left side set to zero: 

 out out in in engw h w h Q   (3.13) 

The energy source term engQ  is component- and situation-dependent.  Thus, to model the 

component behavior in energy-related process, we need a model for engQ  in terms of other 

process variables. 

For a pump, engQ  is the effective shaft power provided by the pump motor which will be 

modeled as a function of the flowrate and pump speed. For other non-heat-exchanging 

components, engQ  is a small loss term, including external heat loss, which is often not of interest 

and can be neglected. For heat exchangers, e.g. heaters or condensers, engQ  depends on the 

component type and operating conditions. In general, we only need to construct energy models 

for heat-exchanging components with the parametric forms depend on the component type. 
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As an example, consider the case of a single-phase counterflow shell-tube heat exchanger. 

Following the above analysis, the heat exchanger is a composite of two single inlet/outlet 

components, one for each side. The loss term engQ  from the hot side is approximately the gain 

term engQ  for the cold side. Thus, it is more convenient to model both sides together.  

Assuming negligible external heat loss, the total heat transfer rate is related to the inlet and outlet 

enthalpies on each side by: 

 eng in out out in( ) ( )h h h c c cQ w h h w h h     (3.14) 

where the superscripts h  and c  denote the hot side and cold side of the heat exchanger, 

respectively. Each enthalpy value can be obtained from the corresponding temperature sensor 

given the operating pressure. 

This is the heat balance equation that holds when there is no leakage or significant external heat 

loss in the heat exchanger. Besides the heat balance, we are more interested in monitoring the 

heat-exchanging capability of the heat exchanger. Faults related to the heat-exchanging 

capability, like fouling, would not affect the heat balance. Briefly, fouling in a heat exchanger is 

the accumulation of unwanted materials on the heat-exchanging surfaces which may affect both 

the heat transfer process as well as the momentum transfer along the axial direction. 

To monitor the heat-exchanging capability, the overall heat transfer coefficient is defined via the 

log-mean temperature difference (LMTD) model: 

 eng
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



  (3.15) 

where out in
h c

o TT T   and in out
h c

i TT T    are the temperature differences between the two sides 

at the outlet and inlet of the hot side. U  is defined to be the overall heat transfer coefficient and 

A  is the effective heat transfer area. 

As A  can be considered a constant for each heat exchanger, we can combined U  and A  into a 

single parameter UA  which can be used to monitor the heat transfer performance of the heat 

exchanger. For brevity, we will also refer to UA  as the overall heat transfer coefficient.  
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For the exchanger, even in fault-free state, UA  is not a constant but depends on other process 

variables. The problem of constructing a model for the heat transfer process reduces to 

constructing a model for UA . At each axial location, the local heat transfer coefficient of the 

shell-tube geometry is given by [84]: 

 
1 1 1i

w
i h o c

d
R

U h d h
    (3.16) 

where id   and od  are the inner and outer tube diameters; hh   and ch  are the film heat transfer 

coefficients for the hot side and cold side, respectively; wR  is the heat resistance by the tube wall 

per unit area on the inner side. The film heat transfer coefficient on each side can be expressed in 

terms of the Nusselt number by: 

 f

h

k Nu
h

D
  (3.17) 

where fk   is the fluid conductivity and the hydraulic diameter hD   for each side is used as the 

characteristic length. 

To obtain a parametric model for UA  as a function of the process variables at the inlet and outlet 

of the heat exchanger, we first need an expression for iU . For that purpose, we need to 

investigate the functional form of the heat transfer coefficients hh   and ch , which in general 

depend on the fluid properties, heat exchanging surface conditions and flow conditions. For 

instance, for fully developed turbulent flow of nonmetallic fluids, the Nusselt number is given by 

a generic expression [83]: 

 Re Pr wNu C


  


 
  

 
 (3.18) 

where w  is the fluid viscosity at wall temperature;   is the fluid viscosity at bulk temperature; 

C ,  ,  , and   are constants that depend on the fluid properties and geometry of the flow 

channel; and Pr  is the Prandtl number of the fluid. 
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For single-phase water with w  , the Dittus-Boelter correlation is commonly used [83, 84]: 

 0.80.023Re PrnNu   (3.19) 

with 0.3n    for cooling and 0.4n    for heating. 

Notice that for each side of the heat exchanger, the Reynolds number Re  is proportional to the 

flow rate w  hence in this case using Eqn. (3.19) the Nusselt number Nu  is proportional to a 

power of the mass flowrate, 0.8w . If the dependence of other fluid properties on slight changes of 

on temperature can be considered negligible, we have the following expression for the local heat 

transfer coefficient iU  under changes of flow rate on each side: 

 0.8 0.80 0
0

0 0

1 1 1( ) ( )h c
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i h h c c

w w

h w
R

wU h
    (3.20) 

where the subscript 0 the values evaluated at a reference operating point.  

Note that the overall heat transfer coefficient U  as defined by Eqn. (3.15) is a weighted average 

of the local iU  along the axial direction. Thus, using the expression for iU , we can obtain a 

parametric model for UA  that explicitly only depends on the two flowrates hw  and cw : 

 0.8 0.8
0

1
h h c cw w

UA
       (3.21) 

with three model parameters h ,  c  and 0  to be determined in the calibration process. 

Physically, these three parameters encode the fluid properties and geometric characteristics of 

the heat exchanger. Heat-exchanging-related faults would cause the heat exchanger to deviate 

from this expected model. 

In practice, the flow characteristic on the shell side is not the same as the tube side. For instance, 

in the presence of the baffles on the shell side (usually the cold side), a better approximation is to 

adjust the power of the flow rate term from 0.8  to 0.6  [85]. Thus, for a heat exchanger with 

the baffles in the cold shell side, the parametric model for UA  becomes: 
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h h c cw w

UA
       (3.22) 

In practice, an extra correction factor, to account for the temperature profile along the axial 

direction especially for the case with multiple shell or tube passes, is often included in the 

definition of UA  in Eqn. (3.15) [85]. For the current application as we only consider small 

deviations around a steady state operating point, the variation of such correction factor due to 

changes in temperature is assumed to be negligible. 

To summarize, the energy model for a single-phase counterflow shell-tube heat exchanger 

include the heat balance given by Eqn. (3.14), the overall heat transfer coefficient UA  computed 

using the LMTD model in Eqn. (3.15) and a parametric model for UA  in terms of the two flow 

rates given by Eqn. (3.21) or (3.22). The parametric model for UA  has three unknown model 

parameters left to be determined for each specific heat exchanger by using measurement data. 

Monitoring both the heat balance and the heat transfer performance via UA  requires six sensors 

at the inlet and outlet of the heat exchanger: the flow rate, inlet and outlet temperatures on each 

side. If the heat balance can be ensured by other means, the construction of the parametric model 

for UA  requires five of the six sensors. In that case the sixth sensor can be computed from the 

other five using the heat balance equation. 

In this section, we have discussed the approach to construct physics-based models for 

components in TH systems. Only some of the most common components have been discussed. 

The procedure will be generalized to apply for a larger class of components of each design type. 

Each parametric model for a component in general may contain several model parameters. These 

parameters are to be determined for each specific component by fitting the model against 

measurement data in a process referred to as model calibration. Depending on the parametric 

form of the model, model calibration can be performed using linear or polynomial regression 

[86]. Details on the relevant regression methods will be provided in Appendix A. 

3.2 Residual Generation 

After quantitative models have been constructed for all possible components in a system, the 

next step is to obtain all available analytical redundancy relations from each model. Each ARR 

can be used to generate one residual whose non-zero value serves as a fault symptom in 
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quantitative model-based diagnosis as discussed in Section 2.4. From Section 3.1, the physics-

based models for each component are constructed separately for each of the mass, momentum 

and energy processes. As such, ARRs from each model will only be sensitive to specific type of 

faults. We have developed component models and subsequently model residuals in a way that 

would allow us to differentiate between different types of faults in a component. 

By definition, each ARR must remain valid even under changes of boundary or operating 

conditions if the related components and sensors are fault-free. As an example, for a single-phase 

heat exchanger, the overall heat transfer coefficient UA  is a performance-related parameter but it 

may not stay the same under changes in operating conditions.  Thus, setting UA  to a reference 

value does not produce a valid ARR. Fouling in the heat exchanger would affect UA  but so do 

possible changes in operating conditions like the flow rate on either side. An ARR to detect 

fouling must be obtained from a model that can account for the possible changes of operating 

conditions.  

Residuals from Mass Models 

The mass balance model for a generic component does not contain any model parameters. For 

each mass model, we have a single ARR enforcing the flow rate balance between the inlets and 

outlets the residual can be computed as: 

 mass in outr w w    (3.23) 

The calculation of massr  involves a set of flow rate sensors, one for each inlet or outlet. A non-

zero value for massr  would indicate either a sensor fault or a leakage in or out of the component. 

Residuals from Momentum Models 

For a generic momentum model given by Eqn. (3.11), we have a single ARR relating the 

measured pressure loss provided by the two pressure readings and the model pressure loss model 

prediction. The residual from that ARR can be computed as: 

    2
press in out 0 1 2r P P ww      (3.24) 
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The calculation of pressr  requires three sensor readings for inP , outP  and w . A non-zero value for 

pressr  would indicate either one of the sensor faults or a blockage or leakage in the component. 

Residuals from Energy Models 

Consider energy model for the heat exchanger described in 3.1.3 which includes a heat balance 

equation and a parametric model for UA , we have two independent ARRs: 

 in out out in( ) ( ) ( )Heat Balanceh h h c c cw h h w h h    (3.25) 
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Each of these ARRs involves six sensors: a flow rate sensor, inlet temperature and outlet 

temperature for each side. For a given operating pressure on each side, the enthalpy values can 

be obtained directly from temperature sensor readings.  

If all six sensors are available, we can straightforwardly compute the following two residuals: 

 in out out in( ) ( )h h h c c c
Lr w h h w h h     (3.27) 
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Note that for each side of the heat exchanger, the flow rate could be measured at either the inlet 

or outlet. A leakage causing a loss of mass would violate both ARRs and cause both residuals to 

be non-zero. The calculation of each residual involves six sensors. In general, a non-zero Lr

would indicate a leakage or one of the sensor faults. A non-zero 0r  would indicate either leakage, 

fouling or one of the sensor faults. 

To detect and differentiate sensor faults, we can combine the two ARRs and compute one 

residual without using one of the sensors. That is, when all six sensors are available, we have the 

option to leave out one sensor. Using the other five sensors and assuming the first ARR holds, 

we can estimate the sixth sensor and use the result with the second ARR to generate a new 

residual. That way, we can have up to six residuals using each combination of five sensors. Each 

residual serves as a possible fault symptom and as discussed in Chapter 2, we would like to 
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maximize the number of fault symptoms in order to improve the resolution of the diagnostic 

result.  

If only five sensors are available, we cannot enforce the two ARRs. In this case, one must rely on 

other methods to detect possible leakage in the heat exchanger. Then assuming no leakage, the 

heat balance equation can be used to estimate the missing sixth sensor. The result can be used 

with the second ARR to generate one residual. 

3.3 Example – Fault Diagnosis of a Single-phase Heat Exchanger 

After all residuals have been constructed from the component models, one can apply one of the 

two frameworks listed in Table 2-1 and 2-2 to perform fault diagnosis. 

To demonstrate this process, consider an example with the single-phase counterflow heat 

exchanger described in Section 3.1 and 3.2. We will assume six sensors are available. Let iS   

with 1,2,...6i   to denote the sensors for the flow rate, inlet temperature, outlet temperature of 

the cold side and then those for the hot side, respectively. 

We will consider both component faults and sensor faults: 

 Component faults: leakage (denoted by LF  ) and fouling ( 0F ) 

 Sensors faults: fault in sensor iS  , denoted by iF  for 1,2,...6i   

 
A leakage fault is the loss of mass from tube side to the shell side or the shell side to the external 

environment. Fouling is the accumulation of unwanted materials on the tube inner and outer 

surfaces affecting both the heat transfer process between the tube and shell sides as well as the 

momentum transfer along the axial direction. A sensor is said to be out of calibration if there is a 

significant bias between its reading value and the true value. 

Since we only have a flow rate sensor for each side of the heat exchanger, it is possible to 

construct any mass or momentum model. We can only construct the energy model as described 

in 3.1.3. It follows that we can construct eight residuals in total. One from the heat balance 

relation given by Eqn. (3.27), a second residual from the HX performance relation given by Eqn. 

(3.28), and the other six residuals by combining the two ARRs and use each combination of five 

sensors, leaving out one sensor. 
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For instance, without using the sensor for the cold side inlet temperature, i.e. sensor 2S , the 

value for that variable can be estimated from the heat balance equation: 

 in in,p out in out( ) ( )
h

c c c h h
c

w
h T h h h

w
    (3.29) 

where the subscript ‘p’ indicates that the temperature in,p
cT  is to be predicted from the compute 

enthalpy in
ch . Using in,p

cT  with the second ARRs, we can compute a residual, denoted by 2r : 
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The subscript ‘2’ in 2r  is to emphasize that this residual is computed without using sensor 2S . 

Similarly, we have six residuals, denoted by ir  for 1,2,...6i  , each computed without using 

sensor iS . 

Overall, this system has eight independent faults, denoted by LF  , 0F , …, 6F  and we have 

constructed eight  different eight residuals Lr , 0r ,…, 6r . The dependencies of each residual are 

summarized in Table 3-1. 

Table 3-1. Structure of the residuals in the HX Example 

Residual 
Relevant Component 

Fault Types 
Sensors Involved 

Lr  Leakage 1S , 2S , 3S , 4S , 5S , 6S  

0r  Leakage, Fouling 1S , 2S , 3S , 4S , 5S , 6S  

1r  Leakage, Fouling        2S , 3S , 4S , 5S , 6S  

2r  Leakage, Fouling 1S ,        3S , 4S , 5S , 6S  

3r  Leakage, Fouling 1S , 2S ,        4S , 5S , 6S  

4r  Leakage, Fouling 1S , 2S , 3S ,        5S , 6S  

5r  Leakage, Fouling 1S , 2S , 3S , 4S ,        6S  

6r  Leakage, Fouling 1S , 2S , 3S , 4S , 5S  

  

The calculation of each residual involves a certain number of sensors as listed in the third 

column. For each residual, the relevant components faults are those that can affect the underlying 



 44

analytical redundancy relation and cause the residual to become non-zero. With the structure of 

each residual known, one can then apply a quantitative model-based diagnosis framework to 

obtain possible diagnoses for a given set of fault symptoms. 

As mentioned in Section 2, we will use a short-handed notation to write diagnoses and conflicts: 

 Each diagnosis is denoted by the square brackets “[] ” containing a list of faults. For 

example, 0 3[ , ]F F  is a diagnosis claiming both 0F  and 3F  must be true. 

 Each conflict relation is denoted by the angle brackets “  ” containing a list of faults. For 

instance, 0 3,F F   is a conflict relation claiming that either 3F  or 3F  must be true. 

3.3.1 Fault Diagnosis Using the MBD Framework 

Consider a scenario in which all residuals are observed to be non-zero, except for 3r . The set of 

residual values can be written in a column vector as (1,1,1,1,0,1,1,1)T , with each index list the 

value for a residual in the order of appearance in Table 3-1. The binary value 1 indicates a 

residual is non-zero. 

We will now apply the MBD framework for quantitative model-based diagnosis, as detailed in 

Table 2-1. Step 1 has already been done. The next step is to obtain a conflict from each non-zero 

residual. The logical basis to construct a conflict is the claim: if a residual is non-zero then either 

the component is faulty with a fault of the specified relevant types or one of the involved sensors 

is faulty. Thus, using the structure of the residuals listed in Table 3-1, we can construct the 

following seven minimal conflicts from the seven non-zero residuals: 

Table 3-2. Minimal conflicts for a scenario with residuals (1,1,1,1,0,1,1,1)T  

Symptom Minimal conflict 
0Lr   61 2 3 4 5, , , , , ,L F F F FF F F   

0 0r   0 1 2 63 4 5, , , , , , ,L F F F F FF F F   

1 0r   60 2 3 4 5, , , , , ,L F F F FF F F   

2 0r   3 4 5 60 1, , , , , ,L F F F FF F F   

4 0r   60 1 2 3 5, , , , , ,L F F F FF F F   

5 0r   60 1 2 3 4, , , , , ,L F F F FF F F   

6 0r   50 1 2 3 4, , , , , ,L F F F FF F F   
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Thus, we have a set of seven minimal conflicts. Each conflict is the logical statement claiming 

one of the faults as listed must be true. Following the logical framework, a diagnosis is valid if 

and only if it can simultaneously satisfy all these seven logical statements. 

Using the proposition given by Eqn. (2.3), we can search for all valid minimal diagnoses ( )  

under the condition that   is a minimal set with at least one element from the set of faults in 

each conflict. In this case, the list of all valid minimal diagnoses  can be found to be: 

 3 3[ ,] ] or [ ] or [  for any , ,L i jF iFF j LF   (3.31) 

As shown in Table 3-2, LF  and 3F  are two common elements for all seven conflicts. It follows 

that [ ]LF  and 3[ ]F  are two valid single-fault minimal diagnoses. Any combination of two or 

more faults is also a valid diagnosis but since we are considering only minimal diagnoses, the 

other possibilities are limited to two-fault diagnoses [ , ]i jF F  for the indices  , ,3i j L . All other 

possibilities are either not valid or not minimal. 

Therefore, in this scenario the diagnostic result contains two single-fault diagnoses ( [ ]LF , 3[ ]F ) 

and 15 two-fault diagnoses ([ , ]i jF F  with 3, ,i j L ). Mathematically, all these 17 diagnoses are 

equally valid. The only way one can narrow the list down further is by considering the prior 

probability of each fault. For instance, if all eight faults can be assumed to be equally likely with 

a small probability, then multiple-fault events can be considered significantly less likely than 

single-fault events. In that case, one can consider the single-fault assumption and eliminate all 

multiple-fault diagnoses. 

In this framework, non-zero residuals are used to construct conflicts while zero residuals are not 

utilized. More specifically, the approach only makes a backward reasoning claim that when a 

residual is non-zero then at least one of the involved components or sensors must be faulty. It 

does not make any assumption in the forward cause-effect direction or any claim on how an 

ARR is affected when a fault occurs. In particular, it does not eliminate the possibility that some 

faults may not be detected by some ARRs in which they are involved. In the context of the 

current example, such possibility means a sensor may involve in the calculation of multiple 

residuals, but a fault in that sensor, depending on the magnitude, may affect only some of those 
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residuals. Without neglecting such possibility, no definite logical statement can be drawn from a 

zero residual. 

Overall, the MDB framework is logically sound and mathematically exact. But since no 

assumption or simplification is made, the diagnostic results in some cases may be too generic. As 

shown for the current example with the residuals observed to be (1,1,1,1,0,1,1,1)T , there are 17 

valid minimal diagnoses one need to consider. 

3.3.2 Fault Diagnosis Using the FDI Framework 

We will now proceed to the FDI framework, following the steps as described in Table 2-2. The 

first two steps are common to the MBD framework. For step 3, zero residuals are used to reduce 

the observed conflicts by the notion of exoneration. 

Consider again the scenario with the residuals observed to be (1,1,1,1,0,1,1,1)T . From the seven 

non-zero residuals, we can obtain seven minimal conflicts as listed in Table 3-2. The residual 

3 0r   allows us to exonerate all of its relevant faults from the seven conflicts. From the structure 

of 3r  listed in Table 3-1, the relevant faults are 21 4 5 60{ }, , , , , ,L F F F F FF F . The process of reducing 

the observed conflicts is summarized in Table 3-3. 

Table 3-3. FDI reasoning process for a scenario with residuals (1,1,1,1,0,1,1,1)T  

Symptom Minimal conflicts Reduced conflicts 
0Lr   61 2 3 4 5, , , , , ,L F F F FF F F   3F   

0 0r   0 1 2 63 4 5, , , , , , ,L F F F F FF F F   3F   

1 0r   60 2 3 4 5, , , , , ,L F F F FF F F   3F   

2 0r   3 4 5 60 1, , , , , ,L F F F FF F F   3F   

4 0r   60 1 2 3 5, , , , , ,L F F F FF F F   3F   

5 0r   60 1 2 3 4, , , , , ,L F F F FF F F   3F   

6 0r   50 1 2 3 4, , , , , ,L F F F FF F F   3F   

 

Thus, after exoneration, all conflicts are reduced to 3F   and we are left with only one 

possibility, a fault in sensor 3S . The final diagnostic result in this case is 3[ ]F . 
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It is clear that in this case, the FDI framework produced a more detailed result. That is possible 

because the additional information from zero residuals was utilized by the use of the notion of 

exoneration. Effectively by using the notion of exoneration for all zero residual, the FDI 

framework makes two claims: 

 A fault would result in a non-zero residual for all ARRs it is involved in. 

 Multiple faults do not counteract one another to give a zero residual. 

Both of these claims are only approximations and not mathematically exact. Nevertheless, the 

notion of exoneration allows us to simplify the reasoning process and obtain more detailed 

results.  

The two claims in the notion of exoneration can be combined into a single forward statement that 

if one or more faults relevant to a residual occur then the residual is non-zero. Using such 

statement, one can construct the forward mapping from each set of faults to a set of fault 

symptoms, known as the fault signature as discussed in Section 2.2 and illustrated in Figure 2-1. 

For the current example, the fault signatures for all possible scenarios are listed in Table 3-4. 

Table 3-4. Fault signatures for the HX example under the notion of exoneration 

 LF  0F  1F  2F  3F  4F  5F  6F  Multiple 
Faults 

No 
Fault 

Lr  1 0 1 1 1 1 1 1 1 0 

0r  1 1 1 1 1 1 1 1 1 0 

1r  1 1 0 1 1 1 1 1 1 0 

2r  1 1 1 0 1 1 1 1 1 0 

3r  1 1 1 1 0 1 1 1 1 0 

4r  1 1 1 1 1 0 1 1 1 0 

5r  1 1 1 1 1 1 0 1 1 0 

6r  1 1 1 1 1 1 1 0 1 0 

LF : leakage, 0F : fouling, iF  for 1i   : fault in sensor iS  

1  indicates a non-zero residual, 0  indicates zero residual 
 

Given the fault signature table, fault diagnosis can be done by simply matching the fault 

signatures to the observed set of fault symptoms. For the current example, the observed set of 
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symptoms is (1,1,1,1,0,1,1,1)T  which matches the signature for 3[ ]F . The final diagnostic result is 

3[ ]F , in agreement with the result we have obtained previously by backward inference.  

In this simple example for a single component, we were able to construct the forward mapping 

represented by a fault signature table. All the multiple-fault states were shown to have the same 

signature but that is not the case in general. Again, it should be emphasized that the premise of 

the model-based diagnosis frameworks formulated in Chapter 2 is to perform diagnosis without 

the need to construct the forward mapping as that task may not be practically possible, especially 

for complex system with a large number of faults. 

 

 



 49

The physics-based approach developed in Chapter 3 can be summarized by the following 

flowchart. 

 

Figure 4-1. Model-based diagnosis framework using physics-based component models 

Physics-based parametric models are obtained for each generic type of component from 

simplifying the underlying physics. Each parametric model may contain several model 

parameters which are then determined for each specific component in a calibration process using 

a set of training data. Calibration data can be obtained from the startup data of the system. The 
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calibrated component models provide the source of analytical redundancy relations for fault 

diagnosis. Residuals are computed from each component model using live sensor readings. 

Residuals are then evaluated with each non-zero residual serving as a fault symptom. The 

reasoning process going from fault symptoms to diagnostic results is performed using one of the 

diagnosis frameworks as discussed in Section 2.4. Such reasoning processes were demonstrated 

in Section 3.3 for an example of a single-phase heat exchanger. 

Up until now, we have not considered the effects of noise and uncertainty. In practice, various 

sources of uncertainty could be present in a system and affect most of the steps of the flowchart 

in Figure 4-1. Different approaches to uncertainty treatment in model-based diagnosis are 

discussed in this chapter. 

4.1 Uncertainty Sources and Effects 

The two main sources of uncertainty in the current diagnostic problem are measurement 

uncertainty and modeling uncertainty. Measurement uncertainty, present in both the calibration 

data and live sensor data, originates from the uncertainty in the reading value of each sensor. 

Modeling uncertainty comes from both the parametric form for each model and the calibration 

process. Parametric models are obtained by simplifying the underlying physics and thus 

inevitably cannot describe the physical phenomena exactly. Furthermore, in the calibration 

process to determine the model parameters, the presence of measurement uncertainty in the 

calibration data leads to uncertainty in model parameters. The two sources of uncertainty in 

model parameters and the parametric form of each model combine into modeling uncertainty in 

the calibrated models. 

In the residual generation step, the measurement uncertainty in live sensor readings combines 

with modeling uncertainty into the uncertainty of each residual computed at each time step. The 

immediate effect is that all residuals appear ‘noisy’. Subsequently, for the residual evaluation 

step, a statistical treatment is needed to decide at each given time if a residual is statistically zero 

or non-zero. Such statistical treatment is generally known as change detection. A residual is 

observed to be non-zero when its distribution is detected to have deviated from the original 

expected distribution.  

In statistical change detection, there are two types of detection error: 
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 Type I error (false positive): A residual is zero but detected to be non-zero. 

 Type II error (false negative): A residual is non-zero but detected to be zero. 

 
Consequently, the uncertainty in the value of each residual inevitably leads to uncertainty in the 

observed fault symptoms. There is an associated false alarm rate whenever a fault symptom is 

observed, and there is a possibility that some fault symptoms may not be detected.  

In the reasoning frameworks described in Chapter 2, one proceeds from a definite set of fault 

symptoms and cannot consider the possibility that the observed fault symptoms could be wrong. 

As discussed, in the presence of uncertainty, some of the observed symptoms could be false and 

some of the fault symptoms may be undetected. Performing reasoning on a set of incorrect fault 

symptoms would inevitably lead to false diagnoses. 

Furthermore, for practical applications, not all type of component faults and sensor faults are 

equally likely to occur. Such information, provided as the prior probability of each fault, is 

relevant to fault diagnosis. Dealing with the possibility of false alarms and the prior probability 

of different types of faults in the reasoning process is the topic of reasoning under uncertainty. 

4.2 Reasoning Under Uncertainty 

The two types of error in change detection lead to the possibility that an observed set of fault 

symptoms could be false. In general, such false alarm rates depend on the statistical change 

detection tool being used and the magnitude of the changes relatively to the uncertainty of the 

residuals. A straightforward approach in dealing with the possibility of false observations is to 

rely on a statistical change detection tool to minimize the false detection rates. Then if the false 

alarm rates can be reduced to a tolerable level, they can be neglected, and the two reasoning 

frameworks developed in Chapter 2 can be directly. Such treatment is referred to as deterministic 

reasoning. The term “deterministic” is used to emphasize that these reasoning approaches take 

the inputs as definite fact. The two deterministic reasoning approaches correspond to the two 

model-based diagnosis frameworks described in Section 2.4 are: 

 Deterministic I: Use statistical change detection to detect non-zero residuals then apply 
the MBD framework (summarized in Table 2-1) for fault diagnosis. 

 Deterministic II: Use statistical change detection to detect non-zero residuals then apply 
the FDI framework (summarized in Table 2-2) for fault diagnosis. 
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Information on prior probability of the faults can be used to eliminate some of the less probable 

diagnoses from the results obtained using Deterministic I or II. Various statistical change 

detection methods are summarized in the next section with the details to be provided in 

Appendix B.  

In general, however, it is not always possible to reduce the false alarm rates to a negligible level. 

For a given change detection method, the rate of type I error depends on the detection threshold 

whereas the rate of type II error depends on both the detection threshold and the magnitude of 

the change relatively to the uncertainty of the residual. Raising the detection threshold would 

reduce the rate of type I error but increase the rate of type II error. Also, the rate of type II error 

depends on the ratio between the change in mean value and the standard deviation representing 

the uncertainty. Recall that the residual uncertainty originates from both measurement 

uncertainty and modeling uncertainty. Thus, the rate of type II error depends on the quality of the 

component models used for diagnosis. 

Therefore, depending on the quality of the component models, it may not be possible to choose a 

detection threshold such that both type I and type II errors can be neglected. In that case, one 

must account for the possibility of false alarms in the reasoning process. This is the motivation 

for the probabilistic reasoning framework developed in this study and will be discussed in 

Chapter 5. 

4.3 Statistical Change Detection 

In the context of the current application, the problem of statistical change detection is to detect 

whether the mean value of a noisy residual has deviated from its normal value, i.e. changing 

from zero to non-zero. We will assume that the mean  0  and standard deviation  0  in the zero 

state are known or can be estimated. The new mean value after a change is unknown but the 

standard deviation is assumed to remain the same. The change in mean value can occur either as 

an abrupt shift or a slow drift. 

The most straightforward approach to detect a change in mean value is by using the limit-

checking method, formally known as the Shewhart control chart [87, 88]. A change is detected 
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when the difference between the current value and the normal mean exceeds a pre-defined 

threshold. This approach is easy to implement but it was shown to be less effective for detecting 

small changes [89]. 

Other approaches include the exponentially weighted moving average (EWMA) control chart 

and the generalized likelihood ratio (GLR) test [89, 90]. The criteria to assess the performance of 

a change detection method includes detection delay, false positive and false negative rates. 

Comparison between various change detection methods can be found in [89]. We will be using 

the GLR test for the current application. The methodology of the GLR method is summarized in 

the remainder of this section. 

Consider a noisy variable that can be described by a Gaussian distribution with known mean 0  

and standard deviation 0 . After a change, the mean value of the variable shifts to an unknown 

value   . We would like to detect the change, estimate the time step at which the change started 

and the new mean  .  

The values of the variable, collected at discrete time steps, can be put into a time series { }ky . For 

the GLR test, at a time step k , a decision function can be evaluated using past values of the 

variable and a change is detected when the decision function exceeds a pre-defined threshold. 

The GLR decision function to detect a shift in mean value is given by: 
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If a change is detected, the location of the change is the index j  that maximizes the above 

expression. The detection threshold can be defined based on a pre-defined tolerable false 

detection rate.  

For the case of slow drift in mean value, as opposed to an abrupt shift, a slight modification is 

needed, as discussed in [91, 92, 93]. The GLR-D decision function for detecting small drift is 

given by: 
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To demonstrate, consider the heat exchanger example with the residual 0r  computed for the heat 

transfer model given by Eqn. (3.28). Gaussian noise was added to simulate measurement 

uncertainty. The mean and standard deviation of the residual was estimated during normal 

operation when the residual can be considered statistically zero. The plot of the residual at each 

time step and the corresponding GLR-D decision function is shown in Figure 4-2. A change is 

detected when the decision function exceeds the detection threshold, shown by the red line on the 

right plot. 

 
Figure 4-2. Application of the GLR-D test to detect non-zero residual 

 

4.4 Deterministic Reasoning Approaches 

To demonstrate the two deterministic reasoning approaches, we consider again the example with 

a single-phase counter flow heat exchanger as analyzed in Chapter3. Simulation data was 

obtained for the heat exchanger using design parameters from those of a regenerative heat 

exchanger in the chemical and volume control system (CVCS) of the Braidwood Nuclear 

Generating Station [3]. For reference, the operating conditions and geometry specifications are 

listed in Table 4-1, as modeled in the GPASS 1-D system code [94].  
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Table 4-1. Reference operating conditions and geometry specifications of the Braidwood CVCS 
regenerative HX 

Parameter Value 

Hotside mass flow rate (kg/s) 4.724 

Hotside inlet temperature (oC) 290 

Hotside pressure (MPa) 15.0 

Coldside mass flow rate (kg/s) 3.467 

Coldside inlet temperature (oC) 40 

Coldside pressure (MPa) 14.65 

Configuration Type Shell-Tube 

Number of tubes 256 

Tube inner diameter (mm) 9.525 

Tube outer diameter (mm) 12.633 

Shell inner diameter (m) 0.254 

Total length (m) 5.0 

Tube wall thermal conductivity (W/m.K) 25 

Tube wall roughness (m) 0.00001 

 

For the calibration process, GPASS simulation data with noise added for uncertainty was used to 

calibrate the UA  model given by Eqn. (3.21). The eight residuals were generated as described in 

Section 3.3. Afterwards, the mean 0  and standard deviation 0  of each residual was estimated 

using data sampled around the reference operating point. These distribution parameters 0 0( , )   

are needed for the GLR test to evaluate each residual. These steps are straightforward and are 

omitted here. 

Consider a scenario with sensor 3S  drifting out of calibration starting at certain time step. The 

sensor fault was simulated by an increasing bias added to its reading value. More specifically, 

the simulated fault started at 200cpt   with an increasing bias rate of 5% per 100 time-steps. 

Applying the GLR-D test to each of the 8 residuals, the results are plotted on Figure 4-3. 
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Figure 4-3. GLR-D decision functions for the 8 residuals in a sensor fault scenario (left) and a zoomed-in 
version (right). 

The detection threshold, as shown by the dashed red line in Figure 4-3, was set to 8.3h   for a 

false positive rate of 0.1% . After sufficient wait-time, all the residuals except 3r  can be observed 

to be non-zero as their decision functions eventually exceed the threshold. The observed set of 

fault symptoms is (1,1,1,1,0,1,1,1)T  after around timestep 236. We can now apply the two 

deterministic reasoning approaches to perform fault diagnosis. As already discussed in Section 

3.3, the diagnostic result by Deterministic I for this particular set of fault symptoms is given by 

Eqn. (3.31) consisting of 17 minimal diagnoses. The result by Deterministic II is 3[ ]F , which is 

the correct diagnosis. 

The notion of exoneration using zero residuals from the FDI framework allows Deterministic II 

to provide more detailed diagnostic results. However, in situations where that notion does not 

hold, the Deterministic II approach may fail to produce a valid diagnosis. In the presence of 

uncertainty, such situations arise more often due to the possibility of false negative in change 

detection, i.e. a residual with changed mean value detected to be zero. 

To elaborate on the limitation of the Deterministic II approach, notice in Figure 4-3 that for a 

period prior to time step 236, the GLR-D decision function for residual 6r  dropped below the 

detection threshold and the change detection algorithm failed to detect the change. During that 

period, the observed fault symptoms are (1,1,1,1,0,1,1,0)T . For Deterministic I, we have a set of 5 
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minimal conflicts (see Table 3-2, excluding the last row) which lead to the following minimal 

diagnoses: 

 3 6] or [ ] or [ ] or [  for any , ,3,6[ , ]L i jFF FF F i j L  (4.3)                                 

In comparison with Eqn. (3.31), the consequence of the false negative, 6r  incorrectly observed to 

be zero, is that we now have one additional single-fault diagnosis 6F .  On the other hand, the 

deterministic II approach failed to produce a valid diagnosis since the combination of 3 0r    and 

6 0r   exonerates all 8 faults. 

Generally, in the presence of uncertainty, Deterministic II is more sensitive to errors in change 

detection. In Deterministic I, the effect of change detection false alarms often results in an 

increased number of possible diagnoses. On the other hand, in Deterministic II, the set of 

observed fault symptoms is required to exactly match the fault signature defined under the notion 

of exoneration. Thus, false alarms that invalidate the notion of exoneration often result in no 

valid diagnosis being found.  

An alternative approach to deal with such issue in Deterministic II is to use a concept of distance 

when matching the observed fault symptoms to fault signatures. Instead of requiring a fault 

signature to exactly match the observed symptoms, one can use a definition of distance, e.g. the 

norm of the difference, to find a fault signature closest to the observed set of fault symptoms. 

This way, the Deterministic II approach will always produce at least one diagnosis. However, in 

doing so, all false detection rates are implicitly assumed to be equal. Furthermore, in such 

process, one cannot incorporate information on the prior probability of each fault. Thus, in 

general, the shortest distance may not necessarily imply the most likely diagnosis. 

To overcome these issues, one must take account of both the fault prior probabilities and the 

possibility of false alarms in the reasoning process. In the next chapter, we will discuss the 

probabilistic reasoning framework for quantitative model-based diagnosis in which diagnostic 

results are determined based on the fault posterior probabilities computed using both prior 

probabilities and the conditional probabilities between related variables. 
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The characteristics of the two quantitative reasoning frameworks formulated in Chapter 2, 

namely the MBD and FDI frameworks, were discussed in Chapter 3. We have demonstrated that 

the MBD framework, inherently a logically sound framework, cannot fully utilize the 

information available from zero and non-zero residuals. The FDI framework relying on the 

notion of exoneration can generally provide more detailed diagnostic results. By applying the 

notion of exoneration, one must assume that a residual is only zero if none of the relevant faults 

in the underlying analytical redundancy relation is present. While the notion of exoneration is not 

mathematically exact, it can be considered a good approximation for practical use in the absence 

of measurement and modeling uncertainty. 

When considering various sources of uncertainty in a system, the straightforward approach is to 

neglect the possibility of false detections in evaluating residuals and directly apply the two 

quantitative reasoning frameworks. We referred to such approach as deterministic reasoning. 

The deterministic reasoning approaches are justifiable when the false alarm rates in evaluating 

noisy residuals can be minimized to an insignificant level by a statistical change detection tool. 

However, that is not always possible, especially when modeling uncertainty is significant. In 

particular, when modeling uncertainty is high relatively to the amplitude of the effects of the 

faults we are trying to detect, it may not be possible to reduce the possibility of false negative to 

a negligible level. When the false negative rate in residual evaluation is significant, non-zero 

residuals can be falsely detected to be zero and the notion of exoneration for zero residuals may 

longer be a good approximation. We have demonstrated the limitations of the two deterministic 

reasoning frameworks in Chapter 4. 

Chapter 5  

Probabilistic Model-based Diagnosis Framework 



 59

In the two quantitative reasoning frameworks, diagnostic results are obtained from a definite set 

of observed fault symptoms. In the presence of uncertainty, false detections in evaluating noisy 

residuals could result in uncertain observation of fault symptoms. For a probabilistic reasoning 

framework, one must account for the possibility that some of the observations could be false in 

the reasoning process going from observed fault symptoms to fault diagnoses. Furthermore, for a 

general system, some faults are more likely to occur to others. Information on the prior 

probability of each fault is relevant to fault diagnosis, especially when there could be multiple 

valid diagnoses for the same set of fault symptoms. Incorporating both the prior probability of 

faults and the possibility of false observations into the reasoning process of fault diagnosis is the 

focus of this chapter on probabilistic reasoning. 

5.1 Probabilistic Reasoning using Bayesian Network  

As discussed in Chapter 2, each state of a system in a fault diagnosis problem can be identified 

by a set of faults. The physical cause-effect relations dictate that each set of faults result in a 

certain set of fault symptoms. In the reasoning process, we are interested in inferring the state of 

the system from an observed set of fault symptoms. In a probabilistic setting, the reasoning 

process becomes the task of computing the probability of each physical state given the set of 

observed symptoms, known as the posterior probability. 

To elaborate, let us consider the simplest case: a system with a single fault and a single 

observation denoted by binary variables F  and O , respectively. 0F   if the system is fault-

free and 1F   if the fault is present. Suppose that we cannot measure F  directly and can only 

make observations through O . From a model of the system, we know that 1F   would cause O  

to be 1 and thus, O  can be considered a fault symptom. The cause-effect relation is 1F   leads 

to 1O  . In the reasoning process for fault diagnosis, one can infer 1F   if O  is observed to be 

1. 

In the presence of noise and uncertainty, one cannot observe O  exactly and in general cannot 

establish deterministic cause-effect relations. Statements such that 1F   leads to 1O   must 

now be provided in terms of conditional probabilities, e.g. ( 1| 1)P O F  . In the forward cause-

effect direction, one must provide the probability ( )P F  for each value of F  known as the prior 

probability of the fault;  and ( | )P O F  for each combination of F  and O  known as the 
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likelihood of the observations. Intuitively, the prior probability indicates how likely it is for the 

fault to occur and the likelihood specifies how often each value of O  is observed in each state of 

the system. 

In performing probabilistic reasoning, one must compute the posterior probabilities ( | )P F O  for 

the observed value of O . If O  is observed to be 1, the posterior probability ( 1| 1)P F O   

indicates how probable it is that the fault is present. One can then conclude that the fault has 

occurred if ( 1| 1)P F O   is close to 100%.  The posterior probability can be computed using 

Bayes’ theorem: 

 
( | )

( | )
( )

( )
i i i

i i
i

P O F
P F

P F
F O O

P O


    (5.1) 

Since the prior probability ( )iP F  and likelihood ( | )i iP O F  are provided, the posterior 

probability can be computed if the marginal probability ( )iP O  is known. ( )iP O  is the 

probability to observe iO  regardless of whether the fault is present. ( )iP O  can be computed by 

summing over all possibilities in a process known as marignalization:  
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 (5.2) 

In fact, to decide if the fault has occurred, one only need to compare the relative magnitude of 

the posterior probability of the fault, ( 1| )iP F O , with that of the other possibility, 

( 0 | )iP F O . In that case, since ( )iP O  is common to the two posibilities, it may not be 

necessary to compute ( )iP O  explicitly.  

In summary, to perform probabilistic reasoning for this simple example, one need to provide the 

prior probability of the fault and the likelihood of the observations. Afterwards, the posterior 

probability of the fault can be computed. 

To apply this probabilistic reasoning process to a general problem of fault diagnosis, there are 

several complications. For a system in general, there are various faults and observations with 

each observation only affected by some of the faults. Furthermore, the faults may not directly 
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affect the observations, but the causal effects may propagate through various intermediate 

variables. Therefore, it is generally not possible to pre-determine the likelihood ( | )P O F  for 

complex systems. Instead, one must provide the conditional probability distributions of directly 

related variables. For instance, if the effects of fault F  propagate to O  through an intermediate 

variable r , one must provide the distributions ( | )P r F  and ( | )P O r  from which the likelihood 

( | )P O F  can be computed. 

The conditional dependencies between different variables in a system can be represented 

graphically by a Bayesian network. Formally, a Bayesian network is a directed acyclic graph 

whose nodes represent random variables and directed edges represent conditional dependent 

relations [95]. The arrow directions of the directed edges represent cause-effect directions. As an 

example, the simple system with a single fault F  and single observation O  we have considered 

above can be represented by the Bayesian network shown in Figure 5-1. 

  

 

In this case, we only have two nodes, representing the two variables F  and O . The direct effect 

of F  on O  is represented by the arrow between the two nodes. As discussed, for a general 

system, we may have any number of nodes and edges. To completely define a system for 

probabilistic reasoning, one need to define all the nodes to represent relevant variables, directed 

edges between the nodes to represent the cause-effect relations and provide the conditional 

probability distribution of each node on its parent nodes. Generally, the first layer, consisting of 

nodes with no parent nodes, represent physical states and the last layer represents observations. 

Figure 5-1. Bayesian network representation of the system with a single fault and single 
observation 

O 

F 
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The structure of the Bayesian network allows one to compute the likelihood of the observations 

and from that the posterior probability of the physical states. 

5.2 Probabilistic Reasoning for Quantitative Model-Based Diagnosis 

In the framework of quantitative model-based diagnosis, the state of a system at any given time 

can be described by a set of faults. Faults, including component faults and sensor faults, can lead 

to changes in the mean values of certain model residuals which will be observed by change 

detection tools as non-zero residuals. The observations of zero and non-zero residuals in the 

evaluation of model residuals are the inputs for the reasoning process for fault diagnosis. 

More specifically, a fault can directly lead to changes in the mean value of a model residual. At 

the same time, the computed value of the residual is also affected by measurement and modeling 

uncertainty. The observation on whether the residual is statistically zero or non-zero is obtained 

from performing statistical change detection on the computed residual. Consider a system with a 

single fault mode and a single model residual, the dependencies between the variables can be 

represented by the following Bayesian network. 

 

The change detection output O  only depends on the time series of the computed values of 

residual r . At any given time, the value of r  depends on the various uncertainty sources and on 

whether the fault F has occurred. Usually, the combined measurement and modeling uncertainty 

F 

r 

O 

Measurement + 

Modeling Uncertainty  

Figure 5-2. General Bayesian network for quantitative model-based fault diagnosis 
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can be considered constant and thus can be omitted from the graph. To completely define the 

structure of the network, one need to specify the probability distributions for nodes, which in this 

case are ( )P F , ( | )P r F , and ( | )P O r . 

( )P F  the prior probability of the fault, indicating how likely it is for the fault to occur. The 

conditional probability distribution ( | )P r F  of residual r  on fault F  is directly related to the 

sensitivity of the residual on the fault. The conditional probability distribution ( | )P O r  of O  on 

r  is related to the sensitivity of the change detection tool. 

Note that the observation O  can be considered binary, i.e. 0  if the detection output is zero and 1 

if non-zero, but the residual r  and fault F  are natively continuous variables. One may take the 

magnitude of the fault as the continuous value for F . The change in mean value of residual r , 

as the result of a fault, is continuous and depends on the magnitude of the fault. In this case, one 

need to provide the conditional distributions ( | )P r F  and ( | )P O r  in forms of probability 

density functions. Alternatively, one may choose to discretize the fault F  and residual r  into 

binary variables: 

 1F   if the fault has occurred with magnitude exceeding a certain threshold; 0F   

otherwise. 

 1r   if there is a change in the mean value of the residual that exceeds a certain 

threshold; 0r   otherwise. 

The discretization of faults into binary variables comes naturally from the practical use. As is the 

case with deterministic reasoning, at any given time, we are mostly interested in whether a fault 

has occurred. Thus, each fault is practically a binary variable. Considering the residuals as binary 

variables, the CPTs ( | )P O r  can be computed directly from the false positive and false negative 

rates of the change detection tool. Such discretization process of the faults and residuals allows 

one to simplify the calculation and reduce the computational cost. Although the use of a finer 

discretization can theoretically provide more accurate computation, it is not necessary for the 

current practical application. 

The discretization of sensor faults is straightforward. For each sensor in practice, there are pre-

defined thresholds to determine when the sensor is considered out of calibration. One can then 
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simply define the binary sensor fault based on such thresholds. For component faults, the 

threshold may be set based on the effect of the fault on performance-related parameters. For 

example, one can set the threshold for the definition of fouling based on the change of the overall 

heat transfer coefficient in a heat exchanger. After the threshold for each fault is defined, the 

prior probability of the fault, ( )P F , may be assumed or estimated from past data.  

After the threshold for each residual is defined, one can estimate the distributions ( | )P r F  and 

( | )P O r  by based on the sensitivity of the residual on the fault and the characteristics of the 

change detection tool being used. The distributions ( | )P r F  and ( | )P O r  will be provided as 

conditional probability tables (CPTs) for each combination of the discrete variables: 

Table 5-1. Conditional probability tables for discrete faults and residuals 

 0F   1F   
0r   

| (0 | 0)r FP  | (0 |1)r FP  

1r   | (1| 0)r FP  | (1|1)r FP  
 

 0r   1r   
0O   

| (0 | 0)O rP  | (0 |1)O rP  

1O   
| (1| 0)O rP  | (1|1)O rP  

 

 

The entries for the ( | )P r F  CPT can be estimated by sampling the model being used to compute 

the residual. Let   be the shift in mean value that was used as the threshold to discretize the 

residual r .  Then, for example, | (1|1)r FP  is the probability that the change in residual r  as the 

effect of fault F  is larger than  . Each entry of the CPT for ( | )P r F  depends on the chosen 

threshold   and the sensitivity of the model to the fault F . 

In the CPT for ( | )P O r , | (1| 0)O rP  is the false positive rate, i.e. the probability to detect a change 

when 0r  . | (0 |1)O rP  is the false negative rate, the probability that a change is undetected. Note 

that the computed value for each residual is subject to measurement and modeling uncertainty. 

Let   denote the standard deviation of the residual as the result of the combined uncertainty. 

The ratio      is known as the signal-to-noise ratio. For each change detection tool, the 

false detection rates can be pre-computed as functions of the signal-to-noise ratio . 

The estimation process for the CPTs ( | )P r F  and ( | )P O r  depends on how the threshold   is 

defined. Physically, it is reasonable to set   based on the sensitivity of the fault, allowing 
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| (1|1)r FP  to be approximately set to 1.0 . In general, each residual may depend on multiple faults 

in which case one can set   based on the sensitivity of the least sensitive faults but will need to 

sample each combination of faults to compute the entries of the CPT. In this case, the ratio 

     is different for each residual and one will need to compute a ( | )P O r  CPT for each 

residual. An alternative, and somewhat more convenient, approach is to set   based on the 

‘noise level’  , i.e. choose the same      for all residuals. In that case, the same ( | )P O r  

table is applicable for all residuals and one just need to sample the model to compute the 

( | )P r F  table for each residual. 

In summary, a Bayesian network for probabilistic reasoning in quantitative model-based 

diagnosis consists of three layers: the nodes on the first layers represent different faults in the 

system; the second layer represents model residuals and the third layer represents change 

detection observations. Each residual may be connected to various faults as dictated by the 

underlying model. On the other hand, each change detection output only depends on the residual 

on which change detection is performed. To define the structure of the network, one needs to 

provide the prior probability ( )P F  and the conditional probability tables ( | )P r F  and ( | )P O r . 

After the diagnostic problem has been formulated in form of a Bayesian network with its 

structure defined, the existing methods of Bayesian inference can be applied to compute the 

posterior probability of each fault given a set of observation. The structure of the Bayesian 

network can be used as input for a generic Bayesian network tool or probabilistic reasoning 

engine to perform the posterior probability calculation. Efficient algorithms for such 

calculations, which fall outside the scope of this thesis, are omitted here. Overall, the 

probabilistic reasoning framework for quantitative model-based diagnosis is summarized to the 

four main steps listed in Table 5-2.  
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Table 5-2. The proposed probabilistic reasoning framework for quantitative model-based diagnosis 

Step 1 
Identify available ARRs from component models, from which 
define possible residuals. 

Step 2 
Construct a Bayesian network representing the dependencies 
between faults and residuals 

Step 3 
Compute the posterior probability of each fault given a set of 
observed zero and non-zero residuals. 

Step 4 
Obtain the final diagnosis from faults with significant posterior 
probability. 

 

5.3 Results for the Heat Exchanger Example 

As an example, let us consider the case with a single-phase counterflow heat exchanger as 

discussed in Chapter 3 and 4. The available residuals and related component and sensor faults 

have been identified in Chapter 3 and listed in Table 3-1. The diagnostic problem in this case can 

be represented by the Bayesian network in Figure 5-3. 

 

Figure 5-3. A Bayesian network for fault diagnosis in the single-phase heat exchanger example 
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The first layer consists of eight nodes representing the eight component and sensor faults. The 

second layer represents the eight model residuals. Each relevant fault to a residual is connected 

to the residual by an arrow as shown. Effects of measurement and modeling uncertainty are 

considered constant and omitted in the drawing. Overall, the structure of the network represents 

the causality relations between faults, residuals and the observations. For instance, the true mean 

value of each residual depends on certain faults as indicated by the arrows: fault 0F   does not 

affect 0r  as there is no edge connecting the two.   

To completely define the Bayesian network, we must specify the conditional probability 

distribution at each node. To demonstrate the calculation of posterior probabilities in 

probabilistic reasoning, for this section we will assume the faults and residuals have been 

discretized into binary variables. For the first layer, we need to provide the prior probability of 

each fault, which usually depends on the fault type and time into the operation cycle. Prior 

probabilities can be estimated from past experience with the system. In this example, we will 

arbitrarily assume that at the time of consideration, sensors have a 5%  chance to be out of 

calibration; the prior probability for fouling in the heat exchanger is 10%  chance and that for 

leakage is 1% , making it the least likely fault: 

 1) 0.01( LP F    (5.3) 

 0 1) 0.10(P F    (5.4) 

 11) 0.0(  for5  iP F i   (5.5) 

The conditional probability of each residual on its relevant faults depends on the sensitivity of 

the underlying model to each fault. Furthermore, in multiple-fault scenarios, it is possible that 

faults can counteract one another. In general, the conditional probability distribution of each 

residual can be computed by sampling the underlying model. For the current demonstration, we 

will apply the two assumptions that were used for the notion of exoneration in the FDI 

framework: 

 A fault would result in a non-zero residual for all ARRs it involves in. 

 Multiple faults do not counteract one another to give a zero residual. 
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Under these assumptions, a residual is non-zero if at least one of its parent nodes takes value 1, 

thus: 

 ( all paren 0d0 | t no es 1.0)iP r    (5.6) 

 ( any pare 0o1| nt n de 1.1)iP r    (5.7) 

The conditional dependence of each observation iO , i.e. change detection output, on the true 

mean value of the residual ir   depends on the false positive and false negative rates of the change 

detection algorithm. These false detection rates depend on the specific change detection method 

being used, the change magnitude relatively to the variance and the chosen detection threshold. 

For the demonstration, suppose that the detection threshold has been chosen such that the false 

positive rate is 0.1%  and the false negative rate is 1.0% . Thus, by definition: 

 1| ) 0.001( 0i iP O r   (5.8) 

 10 | ) 0.0( 1i iOP r    (5.9) 

In Eqns. (5.3) - (5.9), we have provided the conditional probability for every node in the 

Bayesian network. Thus, the structure of the network is completely defined. Existing methods of 

Bayesian network can then be employed to compute the marginal probability and likelihood of 

each set of observations and from that the posterior probability for each fault or each diagnosis. 

For example, consider the case with the fault symptoms observed to be (1,1,1,1,0,1,1,1)TO  , as 

discussed in Sections 3.3 and 4.4, the posterior probability for 3 1F  , i.e. for sensor iS   to be 

faulty, can be calculated to be: 

 3 1| (1,1,1,1,0,1,1,1) ) 0.986( TP F O    (5.10) 

The posterior probability of all other faults is negligible. Thus, we can conclude that 3F  is the 

most likely fault. Here 3 )( 1|P F O  represents the probability for fault 3F , i.e. sensor 3S  out of 

calibration, regardless of the status of the other faults. The probability for the single-fault 

diagnosis 3 )(  for |3, 0  1 iP F iF O   can be computed similarly and is slightly lower.  
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For the case with the fault symptoms (1,1,1,1,0,1,1,0)TO  , which the Deterministic II approach 

failed to produce a valid diagnosis due to the invalid notion of exoneration, the two dominated 

possibilities are: 

 3 1| (1,1,1,1,0,1,1,0) ) 0.498( TP F O    (5.11) 

 6 1| (1,1,1,1,0,1,1,0) ) 0.498( TP F O    (5.12) 

The probability for other faults is less than 1%. Hence, we can conclude that the two most likely 

faults are 3F  and 6F . In comparison, recall the diagnosis produced by the Deterministic I 

approach, given by Eqn. (4.3), which includes [ ]LF  and multiple two-fault diagnoses, in addition 

to 3F  and 6F . Here we were able to use the posterior probability to eliminate [ ]LF  and the 

multiple-fault diagnoses.  

The proposed probabilistic framework requires posterior probability calculation for each fault in 

the system. This task could be computationally expensive if the number of possible faults is 

large. Additionally, it may be helpful to consider specific diagnosis instead of each fault 

independently, e.g. 3[ ]F  which implies 3 31, 0 for iF iF    instead of  3 1F   regardless of the 

other faults. The alternative approach is by combining the Deterministic I approach with the 

probabilistic framework: One can use the Deterministic I approach to produce a list of minimal 

diagnoses and then use the probabilistic framework to compute the posterior probability for each 

minimal diagnosis. Diagnoses with insignificant posterior probability can then be eliminated.   

The diagnostic results by the three reasoning approaches for the two scenarios of the single-

phase the heat exchanger example is summarized in Table 5-3. 

Table 5-3. Results for the two diagnostic scenarios for the single-phase HX 

Symptoms Deterministic I Deterministic II Probabilistic 

(1,1,1,1,0,1,1,1)T   3 3[ ,] ] or [ ] or [  for any , ,L i jF iFF j LF   3[ ]F  3[ ]F  

(1,1,1,1,0,1,1,0)T   3 6] or [ ] or [ ] [ L F FF  or 

[  for a 6, ] ny , ,3,i jF i LF j    

None found 
3[ ]F  or 6[ ]F  
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Effectively in this probabilistic framework, information from zero residuals can be utilized in a 

similar manner to the notion of exoneration but without suffering its limitation due to false 

detections in residual evaluations. Overall, by considering the possibility of false alarms and the 

prior probability of each fault in the reasoning process, the probabilistic approach can provide 

improved diagnostic results in the presence of modelling and measurement uncertainty.  
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The methods we have discussed in the last four chapters constitute the overall quantitative 

diagnostic framework. In Chapter 3, physics-based models are constructed to describe the fault-

free behavior of T-H components. Quantitative residuals can be generated from each component 

model to serve as possible fault symptoms. Chapter 2 provides the reasoning frameworks to 

obtain valid fault diagnoses from a set of observed fault symptoms. The presence of 

measurement and modeling uncertainty affects all the steps from model construction, residual 

generation to diagnostic reasoning. Treatments of the effects of uncertainty are discussed in 

Chapter 4 and 5. The overall process has been demonstrated for the example of a single-phase 

heat exchanger. 

To apply this physics-based diagnostic framework to complex T-H systems, the general strategy 

is to decompose each system into separate components of known generic types whose physical 

behavior can be described by pre-defined models. Fault-free models for each generic component 

type can be formulated from the underlying physical laws in forms of parametric models. Each 

parametric model may contain a few unknown parameters which are to be determined in a 

process, referred to as model calibration, for each specific component by using training data 

obtained from measured data of various process variables on the boundary of the component.  

To provide the required measured data for the model calibration process, a certain number of 

sensors available to the component is needed. For the discussion in the previous chapters, we 

have assumed that there are enough sensors on the boundary of each component for that purpose. 

That is not usually the case in practice. In fact, most T-H systems in nuclear power plants are not 

fully instrumented and it is rarely the case that one has sufficient sensors to allow the calibration 

of the parametric models for each standalone component. To improve the diagnostic capability, 

Chapter 6  

System Level Diagnosis 
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one needs to utilize information available not just locally to each component but also from other 

components and sensors in the system. 

In case the sensor set available at the inlet and outlet of a component is insufficient for the 

calibration process, there are two possible directions one can follow for a solution: 

 Construct parametric models for a combination of multiple components that can then be 

calibrated by the available sensor set. 

 Compute the missing sensors by utilizing other sensors at system level and the relations 

between the component with nearby component on its upstream and downstream. 

The first solution produces aggregate models as permitted by the available sensors, i.e. physics-

based models covering multiple physical components. The second option gives rise to the 

concept of virtual sensors. Virtual sensors are created in place of missing physical sensors by 

solving system balance equations. The calculation of each virtual sensors involves certain 

physical sensors and components. For the purpose of model construction, during which the 

system can be considered fault-free, each virtual sensor acts as a physical sensor to provide 

calibration data for component models. For fault diagnosis, special care must be taken since the 

validity of each virtual sensor depends on the status of the involved components and physical 

sensors. For the framework developed in this thesis, both concepts of aggregate models and 

virtual sensors are utilized to maximize the diagnostic capabilities for T-H systems with limited 

sensor sets.  

6.1 Virtual Sensors 

For each T-H component of a known generic type, one can formulate models to describe its 

performance in the processes of mass, momentum and energy transport. Physics-based models 

for the component are generally expressed by parametric models with a few unknown 

parameters. For each component model, the process of determining the model parameters and the 

subsequent use of the model in monitoring the component require measurement data of certain 

process variables. For example, as discussed in Section 3.1, the mass balance model for a single 

inlet/outlet component requires two flowrate sensors whereas the momentum model require two 

pressure sensors and a flowrate sensor.  
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Ideally, measured data for the required variables are provided by sensors at the inlet and outlet of 

the component. When a required sensor is missing, one can try to solve for the underlying 

process variables by using reading values of other physical sensors and the conservation laws 

available at system level. Balance equations among components at system level may allow one 

to solve for certain process variables on the boundary of each component. This is the main idea 

for the concept of virtual sensor. We will refer to this concept of virtual sensor, obtained from 

solving balance equations to be used in both model construction and subsequently in fault 

diagnosis, as type I virtual sensor. 

Definition 6-1. A type I virtual sensor is the analytical solution of a process 
variable that is required for the construction of certain component models but 
there is no available physical sensor for that purpose. 

 

Additionally, we have demonstrated in Section 3.3 for the example of a single-phase heat 

exchanger that even with a full set of sensors, one may generate additional residuals by using 

different combinations of sensors. In that case, for each of the additional residuals, one sensor 

was left out and the underlying process variable was computed from the other sensors. The 

additional residuals helped differentiate sensor faults from component faults. As each residual 

could potentially serve as a fault symptom, maximizing the number of residuals would help 

improving the resolution of diagnostic results. This is the motivation for a second type of virtual 

sensors, henceforth referred to as type II virtual sensors. Even if a physical sensor is already 

available, it may be helpful to create a type II virtual sensor for the underlying variable to be 

used as an alternative for the purpose of maximizing the number of model residuals. Type II 

virtual sensors are utilized for residual generation and not needed during model construction. 

Definition 6-2. A type II virtual sensor is the analytical solution of a process 
variable that can be used as the alternative of a physical sensor or type I virtual 
sensor in the process of generating model residuals. 
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6.1.1 Type I Virtual Sensors  

The process variables of interest in a T-H system can be characterized to flowrate, pressure and 

enthalpy. Under the quasi-static condition, the conservation laws for a control volume, given by 

Eqns. (3.1) – (3.3) in Chapter 3, can be written as simple balance equations providing constraints 

between T-H process variables at various locations in a system. When the system is fault-free, 

there is no loss of mass and external heat loss can be considered negligible. In that case, 

collections of system level mass and heat balance equations may be used to solve for virtual 

sensors of flowrate and enthalpy type. On the other hand, since pressure loss is a crucial part of 

the momentum equation, it is generally not possible to create virtual sensors for pressure.  

Type I virtual sensors will be constructed solely from solving system balance equations. If a 

virtual sensor is solvable, its value is valid if and only if all the involved balance equations are 

valid, i.e. the involved sensors and components must be free of the related faults. Such 

conditions can be assumed in the model construction process during which the system can be 

considered fault-free. Type I virtual sensors are constructed firstly for model calibration 

purposes. In the subsequent use of such virtual sensor for residual generation, one must keep 

track of the relevant faults that can invalidate the virtual sensor. 

More specifically, the mass balance equation for a block of a system with an arbitrary number of 

inlet and outlet points is given by: 

 in outw w   (6.1) 

where w  denotes a flowrate variable and the subscripts indicate either inlet or outlet locations. 

The validity conditions for this equation include no fault among the flowrate sensors and no 

leakage in any component in the block. 

Similarly, the heat balance equation for a system block with no heat-exchanging component is 

given by: 

 in in out outw wh h    (6.2) 

where the h ’s denote enthalpy values. For heat exchangers, the heat balance equation is given 

by: 
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    
cold side hot sideio tut in n ouw h hh w h           (6.3) 

The validity conditions for heat balance equations in general include no sensor faults, no leakage 

for the involved component and no faults that can cause significant external heat loss, if 

applicable.  

Given the structure of a system, mass and heat balance equations can be generated and collected, 

each involves certain virtual sensors. One can then put the equations into groups of common 

unknowns and search for solvable virtual sensors. If a virtual sensor can be solved from a certain 

group of balance equations, its computed value is valid only if all equations in the group are 

valid. One can keep track of the relevant faults that can invalidate the virtual sensor from the 

involved components and sensors in each equation. 

6.1.2 Type II Virtual Sensors 

In the previous section, type I virtual sensors are obtained from solving system balance 

equations. Type I virtual sensors are created to provide the required data for the model 

construction process as opposed to type II virtual sensors which are only created and used in the 

subsequent residual generation process after all available models have been constructed. 

Having various component models constructed using physical sensors and type I virtual sensors, 

one can then utilize both model predictions and system balance equations to create additional 

virtual sensors of type II. Type II virtual sensors are created for the purpose of increasing the 

number of independent model residuals one can generated for the system in order to improve the 

diagnostic resolution. 

The availability of type II virtual sensors is system- and situation-specific. We recall from 

Section 3.3 that for a single-phase heat exchanger, when a full set of six physical sensors are 

available, the six sensors are constrained by the heat balance equation: 

 in out out in( ) ( ) ( ) ( )h h h c c cw h T h T w h T h T          (6.4) 

where enthalpy values are evaluated as functions of temperature readings. Under the assumption 

that this equation holds, one can predict the value of each sensor from the other five sensors. For 
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example, the prediction for inlet temperature on the cold side is in,p
cT  such that in,p in,p( )c ch T h  

with: 

 in,p out in out( ) ( ) ( )
h

c c h h
c

w
h h T h T h T

w
      (6.5) 

In this case, in,p
cT  is a type II virtual sensor in additional to the available physical sensor in

cT . To 

generate residuals from the heat transfer model, one has the option to use either the physical 

sensor or its alternative - the type II virtual sensor.  

As with type I virtual sensors, when using a type II virtual sensor for residual generation in fault 

diagnosis, one must keep track of the relevant faults that can invalidate its value. In this case, it is 

clear that in,p
cT  is only valid if there is no fault among the five sensors being used and the balance 

equation holds. Thus, the relevant faults include five sensor faults, leakage in the heat exchanger 

and any other faults that can violate the balance equation. 

In principle, type II virtual sensors can be created from any model predictions. However, in the 

presence of uncertainty, both measurement and modeling uncertainty can combine in the model 

predictions use for type II virtual sensors. When such type II virtual sensors are used to compute 

a residual, uncertainty from multiple models can combine resulting in high uncertainty for the 

residual. To utilize such residuals in fault diagnosis, the residual evaluation tool and 

subsequently the reasoning framework must have the capability to tolerate such scenarios. In this 

thesis, the probabilistic reasoning framework developed to deal with cases when measurement 

and modeling uncertainty are significant, thus can be expected to fulfil that role.  

6.2 Aggregate Models 

After all type I virtual sensors have been identified for a system, one can proceed to construct 

component models from the combined set of physical sensors and virtual sensors. It is often the 

case that even with the addition of type I virtual sensors, it is not possible to construct models for 

every separate component. In that case, one must resort to models of multiple nearby 

components, which we refer to as aggregate models. 
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Recall from the discussion previously that type I virtual sensors are limited to flowrate and 

temperature/enthalpy variables only. It is not possible to obtain virtual pressure sensors from 

balance equations. In addition to the condition of no sensor faults, virtual flowrate sensors 

obtained from solving balance equations are only valid if there is no leakage in the involved 

components. Similar conditions apply for virtual temperature or enthalpy sensors. 

Aggregate Mass Models 

Mass balance models are created for the purpose of detecting leakage and therefore should only 

involve physical flowrate sensors. As a generalization of the discussion in Section 3.1, an 

aggregate mass balance model can be constructed for any block of components if a physical 

flowrate sensor is available at every inlet and outlet point. The aggregate mass model is 

expressed by: 

 in outw w   (6.6) 

where each inlet inw  or outlet outw  flowrate must be available by a physical sensor. 

Aggregate Momentum Models 

In Section 3.1.2, we have developed a momentum model for a component with a single inlet and 

single outlet. For the generalization to aggregate momentum models, we limit our consideration 

to a block of isolated components between single inlet and outlet points. The term ‘isolated’ is to 

emphasize that there is no external mass exchange in between the inlet and outlet. More 

specifically, for a part of the system under single-phase flow between a single inlet and outlet, 

the overall pressure loss can be expressed as a parametric model of the flowrate as: 

 in out ( )P P f w   (6.7) 

where inP  and outP  are the inlet and outlet pressure readings and w  is a flowrate reading at either 

the inlet and outlet; ( )f w  is the parametric form of the model. Generally, we can use the 

quadratic form as provided by Eqn. (3.11). As mentioned, there is no virtual sensors for pressure 

variables thus both inP  and outP  must be provided by physical sensors. On the other hand, the 

flowrate reading may be obtained from a type I virtual sensors. Given the structure of a system, 

one can search for all available pressure models satisfying these conditions. 
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Aggregate Energy Models 

Unlike mass end momentum models, the energy process is only relevant to specific component 

types, e.g. pumps or heat exchangers. Thus, energy models are only constructed for separate 

components of relevant types. The sensor requirement is model-specific. In general, flowrate and 

enthalpy variables at the inlet and outlet of each component are of interest which must be 

provided by either available physical sensors or type I virtual sensors. 

For the example of the single-phase heat exchanger described in Section 3.1.3, the full set of six 

sensors for the construction of the heat transfer model include the two flowrates, inlet and outlet 

temperatures on each side. If only five of those six are available, the missing sensor can be 

replaced by the virtual sensor computed using the heat balance equation. 

6.3 Fault Diagnosis at the System Level 

Following the framework developed in this thesis, the overall process to perform fault diagnosis 

at system level for arbitrary T-H systems is summarized by the flowchart in Figure 6-1. 

A model library is developed with specifications on possible models for each generic T-H 

component type. The model specifications include information on sensor requirement and 

possible generalization to include multiple components in aggregate models. 

After the P&ID specifying the structure of the system is imported, all virtual sensors that could 

be helpful for model construction is spawned by comparing the available sensor set against the 

sensor requirement provided by the model library. Balance equations throughout the system are 

collected to determine solvable virtual sensors. We referred to these solvable variables as type I 

virtual sensors. Unsolvable virtual sensors are then discarded. 

The next step is to search for available models, including component-specific models and 

aggregate models as allowed by the available physical sensors and active type I virtual sensors. 

From the available models, we can then define additional type II virtual sensors for residual 

generation.  

For each virtual sensor, including both types, information on the involved sensors and 

component faults is stored. These are the faults that can invalidate the computed value of the 

virtual sensor. From the available models, different model residuals can be defined using both 
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real sensors and virtual sensors. The structure of each residual, i.e. the sensors and components 

involved in the underlying ARR, is identified and stored. 

The next step is to determine the unknown parameters in each model in a model calibration 

process using a set of training data. Afterwards, model uncertainty and the uncertainty in each 

model residual are quantified. Information on the distribution of each model residual, i.e. its 

mean and variance, will be used by the statistical change detection tool selected for the residual 

evaluation step. 

For each new time step, live sensor readings are collected and imported. System balance 

equations are then solved to update the value of available virtual sensors. The value of each 

model residual is then updated for the new time step. Afterwards, each residual is evaluated by a 

change detection tool to determine if the residual is statistically zero or non-zero. 

After the residual evaluation step, the list of zero and non-zero residual will be used as input for 

the reasoning process for fault diagnosis. To perform diagnosis, we have the option to use either 

one of the deterministic reasoning frameworks as discussed in Section 4.2 or the probabilistic 

reasoning framework developed in Chapter 5. Diagnostic result is obtained from the reasoning 

engine and updated after each time step. 
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Figure 6-1. Overall scheme of the proposed system level diagnostic framework 
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Recall that to perform the reasoning process in quantitative model-based diagnosis, one needs to 

know the dependency structure of each residual. For the deterministic reasoning frameworks, the 

list of relevant faults that can cause a residual to become non-zero is needed to construct a 

conflict relation from each non-zero residual. For the probabilistic framework, the structure of 

each residual is needed to construct a Bayesian network for the system.  

To clarify the reasoning process in system level diagnosis, it should be emphasized that each 

residual, even if computed from a component-specific model, may involve other components and 

sensors at system level. More specifically, the calculation of each model residual may involve 

one or more virtual sensors whose validity depends on other system components and sensors. 

The dependency structure of a model residual in general is given by the flowchart in Figure 6-2. 

A fault can cause a non-zero model residual in two ways: either by directly affecting the model 

used for residual generation or by affecting the balance equations or model predictions used in 

the calculation of the involved virtual sensors. 

 

In general, the list the relevant faults to each residual may include not just faults from the 

components and sensors directly involved in the underlying model but also the faults that can 

invalidate the involved virtual sensors. Such list of relevant faults will be generated and stored 

when each model residual is defined.  

Figure 6-2. Dependency structure of a model residual in system level diagnosis 
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7.1 System Description 

In this chapter, to demonstrate the proposed diagnostic framework, we will consider various 

diagnostic scenarios in a high-pressure feedwater system of a typical PWR plant. The high-

pressure feedwater system is part of the condensate and feedwater system that is responsible for 

the supply of pre-heated feedwater to the steam generators. Exhausts from the turbines turn into 

condensate and get heated up by feedwater heaters in multiple heating stages before re-entering 

the steam generators. The high-pressure feedwater system we are considering here consists of the 

two heating stages closest to the inlets of the steam generators, referred to as the first-point and 

second-point stages. Detailed description of such system can be found, for example, in the final 

safety analysis report for Unit 1 and 2 of the North Anna Power Station [96]. The structure of the 

system in consideration is illustrated by the P&ID in Figure 7-1. 

The feedwater heater in each stage is of the closed two-shell type and thus, each heating stage 

effectively consists of two feedwater heaters in parallel piping lines [96]. Therefore, for this 

example we have four feedwater heaters: two first-point heaters, labeled by 1-FW-E-1A and 1-

FW-E-1B, and two second-point heaters, labeled by 1-FW-E-2A and 1-FW-E-2B, as shown by 

the P&ID in Figure 7-1. The system as shown also include three steam generator feed pumps, 

labeled by 1-FW-P-1A to -P-1C, and three drain pumps, labeled by 1-SD-P-1A to -P-1C. 

 

Chapter 7  

Results – High Pressure Feedwater System 
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Figure 7-1. The P&ID of a high-pressure feedwater system 
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From the top of the P&ID, two-phase mixtures from the high-pressure turbine and moisture 

separator reheaters flow into the shells of the first and second-point heaters. Drains from the 

first-point heaters flow into the shells of the second-point heaters. On the right of the P&ID, 

feedwater from later heating stages flows through the two second-point heaters to the suction 

header of the feed pumps. Drains from the two-point heater shells are collected by the high-

pressure heater drain receivers, TK-2A and TK-2B. Drains from the moisture separators (not 

shown in Figure 7-1) are collected by a third drain receiver, TK-2C. The three drain pumps pump 

condensate from the drain receivers to the suction header of the feed pumps. During normal 

operation, only two of the three feed pumps operate to pump feedwater through the two first-

point heaters to a discharge header to supply the steam generators. In emergency situations, 

excessive drains from the first-point heaters and the drain receivers are collected by a condenser. 

All the valves to the condenser are otherwise closed off during normal operation. 

The yellow tags in Figure 7-1 indicate the sensors typically available for such system. Each label 

containing PT denotes a pressure sensor, FE denotes a flowrate sensor and TE denotes a 

temperature sensor. For brevity, we will use short-handed labels when referring sensors. For 

example, E2.T, with E2 being the location label and T the variable type, refers to the temperature 

sensor at the inlet of FWH 1B as shown in Figure 7-1. A Dymola simulation model for this 

system has been developed at Argonne National Laboratory [97]. Simulation data from the 

model will be used for the analysis in this chapter.  

For this demonstration, we will exclude the condenser from the P&ID as all its incoming piping 

lines are normally closed. The components in the system can be characterize by known generic 

types. Each drain receiver will be treated as coolant tank. Model development for each generic 

component type is discussed in the remainder of this section. 

Vertical Feedwater Heaters 

The feedwater heaters in this example are of the vertical channel down shell-tube design. The 

steam and water flow paths in a typical heater of this design are illustrated by the diagram in 

Figure 7-2 [98]. Steam flows in on the shell side, exchanges heat with the feedwater on the tube 

side and turns into condensate collected in the drain pool. In general, if the inlet steam is 

superheated, the shell side of the heater consists of three sections: a de-superheating section, a 
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condensing section and a drain cooling section. The feedwater on the tube side remains in the 

subcooled regime throughout the heating process. 

For the system in consideration, we have two-

phase mixtures, i.e. wet steam, coming into 

the shell side of the feedwater heaters. Thus, 

the shell of each heater consists of only two 

sections, condensing and drain cooling, 

without the de-superheating section. For 

normal operating conditions, the water level 

of the drain cooling section is maintained 

relatively constant by a level control system. 

For the diagnostic problem, we are interested 

in using sensor readings at the inlet and outlet 

of the heater to monitor its performance. As 

with the example of the single-phase 

counterflow heat exchanger analyzed in 

Section 3.1.3, the performance-related criteria 

include the heat balance and overall heat 

transfer capability. 

Recall that with the single-phase heat 

exchanger, to establish the heat balance 

equation, we need six sensors: mass flowrate, 

inlet temperature and outlet temperature for 

each side. Temperature readings are used to 

compute the corresponding enthalpy values. From these six sensors, the heat transfer 

performance of the single-phase heat exchanger can be evaluated in terms of the overall heat 

transfer coefficient UA . If only five out of those six sensors are available, one can make the 

assumption that the heat balance equation, Eqn. 3.14, is valid and from that compute the missing 

sensor. Thus, a set of five sensors is the minimum requirement for one to evaluate UA  and from 

that construct a performance model for the single-phase heat exchanger. 

Figure 7-2. Steam and water flow paths in a typical 
vertical high-pressure feedwater heater [98] 
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To apply the same procedure to the feedwater heater, note that we have wet steam at the inlet of 

the shell side whose enthalpy depends strongly on two variables: pressure and steam quality. 

Thus, to check for the heat balance, a set of seven sensors is required: feedwater flow rate, 

feedwater inlet and outlet temperatures, steam inlet pressure, steam inlet quality, drain flowrate 

and drain temperature. Locations of these sensors on the steam and water flow paths are shown 

by the diagram in Figure 7-3. 3T  and 4T  are the intermediate feedwater temperatures leaving and 

re-entering the drain cooling section.  

 

Figure 7-3. Simplified schematic of the vertical HP feedwater heater. 

3T  and 4T  can be computed from the heat balance equations. The other variable labels as shown 

in Figure 7-3 denote the full set of seven sensors: each label T  denotes a temperature sensor, w  

denotes mass flowrate, p  denotes pressure and x  denotes steam quality. 

Steam quality sensors are generally not available and in that case one must assume the heat 

balance in order to compute the steam inlet enthalpy. Thus, by a similar analysis as with the 

single-phase heat exchanger, the minimum sensor requirement to evaluate the performance of the 

feedwater heater is a set of six sensors, as shown in Figure 7-3 excluding steam quality. 

The dashed line in Figure 7-3 representing the water level separating the condensing zone and 

the drain cooling zone. The condensing zone is responsible for most of the heat transfer rate in 

the heater. Wet steam from the shell side inlet can be considered to completely condense to 

saturated liquid as it reaches the boundary of the drain cooling zone. 
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The heat transfer rate between the outgoing feed water and the drain pool can be considered 

negligible and thus 4 out
cT T . The intermediate temperature 3T  can be computed from the heat 

balance equation for the condensing zone: 

 out 3 in in sat in( ) ( ) ( , ) ( )c c h h h hw h T h T w h p x h p          (7.1) 

where sath  denoted the water saturation enthalpy at the given pressure. 

The overall heat transfer coefficient of the condensing zone can be evaluated from a LMTD 

model: 
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where sat sat in( )hpT T  is the saturation temperature at the given pressure in
hp . The total heat 

transfer rate of the condensing zone, cQ , is given by either side of the heat balance equation in 

Eqn. (7.1). It should be emphasized that the flow path of the feedwater in the condensing zone is 

a two-pass U-tube. To evaluate the overall heat transfer coefficient in practice, one usually needs 

to include a correction factor tF  into the LMTD model to account for the two-pass geometry 

[85]. The correction factor tF  is typically a function of the temperature profile along the flow 

path. For diagnostic purpose, here we are effectively lumping tF  into the overall coefficient cUA  

and assume the dependence on small variation of temperature is negligible.  

As with the single-phase heat exchanger, we will now construct a parametric model for cUA  as a 

function of the two flow rates, assuming the water level of the drain cooling section can be 

considered constant. The functional form of the parametric model depends on the flow and heat 

transfer condition on each side. For the tube side, the feedwater remains subcooled and thus the 

dependence of cUA  on the tube side flow rate cw  can be taken to be the same as in the single-

phase heat exchanger, given by Eqn. (3.21). For the shell side, the heat transfer process can be 

described as vertical film condensation. For turbulent flow outside vertical tubes, the 

recommended correlation for the heat transfer coefficient is [99]: 
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where f , fk  and f  are respectively the density, heat conductivity and viscosity of the 

condensate, evaluated at the tube wall temperature; Reb  is the Reynold’s number of the 

condensate flow. 

Following the same procedure as with the single-phase heat exchanger, we have the following 

parametric model for the overall heat transfer coefficient in the condensing zone: 
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where 10 , 11  and 12  are the three model parameters to be determined using training data. 

For the drain cooling zone, most of the heat transfer takes place between the incoming leg of the 

feedwater and the drain pool. Similarly, the overall heat transfer coefficient of the drain cooling 

zone is given by a LMTD model: 
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dQ w h T h T w h p h T           (7.6) 

The parametric model for the overall heat transfer coefficient of the drain cooling zone can be 

taken to be that of a single-phase exchanger by: 
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with three model parameters 20 , 21  and 22 . 

Eqn. (7.4) and (7.7) provide two parametric models for the heat transfer coefficients that can be 

used to monitor the performance of the feedwater heater. To calibrate these models, one need to 

sensor data to evaluate the heat transfer coefficients from Eqn. (7.2) and (7.5). For that, a 
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minimum of six sensors is required: cw , hw , in
cT , out

cT , in
hp  and out

hT . Provided enough sensors, 

these models can be calibrated and used to generate residuals for model-based diagnosis. 

Other Components 

The other major components of the system as shown in Figure 7-1 include the feed pumps and 

drain pumps. For each pump, the two performance-related parameters of interest are the pressure 

head, out inP P , and consumed power, W . As discussed in Chapter 3, for a general variable-speed 

pump, both the pump head and power can be described by parametric models of the rotational 

speed n  and flow rate w : 

 out in ( , )P P f n w   (7.8) 

 ( , )W g n w  (7.9) 

The functional forms ( , )f n w  and ( , )g n w  can be obtained from the pump specifications or 

analytically formulated. For constant speed pumps, both the head and power reduce to function 

of only the total flow rate w . Unless a specific performance curve is provided for ( )f w , one can 

take the quadratic parametric form as described in Section 3.1.2. To calibrate the head model for 

a constant-speed pump, the required sensors are flowrate w , inlet pressure inP  and outlet 

pressure outP . To calibrate the power model, a sensor reading for the consumed power is 

required. For variable-speed pumps, an additional sensor for the pump speed is required. 

For the rest of the system, the drain receivers, without being fully instrumented, will be treated as 

a mass source/sink. The valves, including motor-operated valves and pressure-operated valves, 

will be treated as generic pressure loss components as no reading on the opening of each valve is 

available.  

7.2 Virtual Sensors and Balance Equations 

By comparing the available sensors at the inlet and outlet of each component to the sensor 

requirement for the construction of its models, it is straightforward to check for the missing 

sensors and from that create all possible virtual sensors. One must then collect all the available 

system balance equations and from that determine which of the virtual sensors created previously 
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are solvable. Only solvable virtual sensors are kept, which we referred to as type I virtual 

sensors, the rest are discarded. For the system in consideration, among the missing sensors, the 

most notable virtual sensors that are solvable and of interest to us are the feedwater flowrate for 

the two first-point feedwater heaters (FWHs).  

More specifically, as described in Section 7.1, the full sensors set for each FWH consists of 

seven sensors, at least six of which are required for the construction of its heat transfer 

coefficient models. As shown in Figure 7-1, only five of those sensors are available for each of 

the first-point FWH. Thus, the available sensor set for each FWH is insufficient for the 

construction of the FWH model. 

 

Figure 7-4. Type I virtual sensors for the two first-point FWHs 

The two missing sensors are for each first-point FWH are: feedwater flowrate and steam inlet 

quality, or equivalently steam inlet enthalpy. The locations of the missing sensors are shown by 

the red labels, 1.F w , 1.D w , 2.F w , and 2.D w , in Figure 7-4. Additionally, notice that the two 

first-point FWHs share the same steam inlet condition whose enthalpy is denoted by sh . 

The balance equations involving these virtual sensors are: 
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where the capitalized labels denote measurement locations for brevity. The first equation 

establishes the mass balance between the feedwater flowrate from the two first-point FWHs with 

the total flowrate to the steam generators. The second and third equations enforce the same steam 

inlet condition for the two FWHs. The fourth and fifth equations are the heat balance equations 

for the two FWHs. With five equations and five unknowns, the virtual sensors are solvable. 

Other solvable virtual sensors include to total mass flowrate from the feed pump suction header, 

flowrate coming out of each drain receiver, total flowrate from the two second-point FWHs. For 

the second-point FWHs, each has three missing sensors, none of which is solvable. The missing 

flow rate for each feed pump is also unsolvable.  

7.3 Model Construction and Residual Generation 

The calibration and subsequent use of each component or aggregate model in diagnostics require 

measured data of a certain number of process variables. Such required measurements can be 

provided by either physical sensors or type I virtual sensors. After all solvable type I virtual 

sensors have been identified, the next step is to determine all possible component and aggregate 

models as allowed by the set of available physical sensors and type I virtual sensors.  

For the current system, no mass balance model is available as each mass model requires a full set 

of physical flowrate sensors for all inlets and outlets. 

The generic pressure model for each single inlet/outlet block of components require two pressure 

readings and one flowrate reading. One model of this type is available between the feed pump 

suction header and the discharge header. For each drain pump, the available sensor set allows a 

model for the pressure head. No model is possible for the individual feed pump. We will use a 

quadratic form for the parametric models of the generic pressure model and the pump head, as 

described in Eqn. (3.11) and (3.12). 
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Notice that the two first-point FWHs are on parallel piping lines. From the constraint of equal 

pressure loss on each line, one can construct a flow ratio model to monitor the flowrate ratio 

between the two line. There are no physical flow rate sensors available for these two piping lines, 

but the virtual flow rate sensors constructed for the two FWHs can be used for this purpose. If 

the system is fault-free, one can expect the flow ratio to remain constant. 

Since no power meter is available for the pumps, it is not possible to construct pump power 

models. For the FWHs, the addition of the virtual flowrate sensor for the feedwater side allows 

us to construct a heat transfer model for each first-point FWH. No model is possible for the 

second-point FWHs as the available sensor set is insufficient. 

A summary of the available models is provided in Table 7-1.  

Table 7-1. Available diagnostic models for the high-pressure feedwater system. 

ID Name Model Type Components Relevant Fault Types 

1 DP-1 
Generic pressure 
difference 

Feed pumps 1A and 1B, 
valves, FWH 1A and 1B, pipes 

Leakage, Blockage 

2 FR-1 Flow ratio FWHs 1A and 1B, pipes Leakage, Blockage 
3 SDP-1A Pump head Drain pump 1A Pump fault 
4 SDP-1B Pump head Drain pump 1B Pump fault 
5 SDP-1C Pump head Drain pump 1C Pump fault 
6 FWH-1A HX performance FWH 1A Leakage, Fouling 
7 FWH-1B HX performance FWH 1B Leakage, Fouling 

 

DP-1 is the generic pressure difference between the feed pump suction header and discharge 

header near the inlet of the steam generators. The pressure difference between those two points 

depends on the pressure gain provided by the pumps and the pressure loss along the piping lines. 

Recall that for normal operation, only two of the feed pumps are running.  

From these models, one can generate model residuals for diagnostics. In Chapter 3, we have 

discussed possible residuals for each model type. For the model DP-1, we can generate a residual 

from the model prediction of the pressure difference: 

 1 out in( ) )(pr w PP P    (7.11) 
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where ( )pP w  is the model prediction of the pressure difference, as a function of the flowrate 

reading w ; inP  and outP  are the inlet and outlet pressure measured at the feed pump suction 

header and discharge header, respectively. The calculation of this residual involves three sensors 

for w , inP , and outP . 

From the model FR-1, we can generate a residual to monitor changes in the flow rate ratio. The 

fault-free ratio is computed from calibration data. 

 2
fault free

1. 1.

2. 2.

F w F w
r

F w F w
    
 

 (7.12) 

The calculation of 2r  involves two type I virtual sensors 1.F w  and 2.F w . Thus, in addition to 

the faults that can cause the actual flow ratio to deviate, any faults that can invalidate these two 

virtual sensors would also cause the residual to be non-zero. 

For each pump head model, we can generate a residual for the pressure head prediction, similar 

to that of the pressure difference model: 

 i3 out n ) Drain pump 1A)( ) ( (pr P w P P   (7.13) 

 i4 out n ) Drain pump 1B)( ) ( (pr P w P P   (7.14) 

 i5 out n ) Drain pump 1C)( ) ( (pr P w P P   (7.15) 

The calculation of each of these residuals require three sensors for the flow rate w , suction 

pressure inP  and discharge pressure outP . By an abuse of notations, we have used the same 

variable labels for all three drain pumps. Each drain pump has a distinct set of sensors, as shown 

by the P&ID in Figure 7-1. 

For each of the two FWH models, in this demonstration we will focus on the condensing zone 

only as it is responsible for most of the heat transfer rate in the FWH. From the model prediction 

for the overall heat transfer coefficient of the condensing zone, we can generate one residual 

from each model: 
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where the notations for the T-H variables are as described for Eqns. (7.1) and (7.2). The label for 

each variable is based on the variable type and its location relatively to the attached FWH. It 

should be noted that although the variables in Eqns. (7.16) and (7.17) have the same labels, they 

are provided by a different set of sensors for each FWH. Here , ( , )c h
c pUA w w  is the model 

prediction for the overall heat transfer coefficient of the condensing zone; cUA  is the value 

computed directly from its definition. In this demonstration, we will use the parametric model as 

expressed by Eqn. (7.4) for , ( , )c h
c pUA w w . Considerations of more sophisticated models will be 

part of the future work. The calculation of each of these residuals requires six readings: 

feedwater flowrate cw , feedwater inlet temperature in
cT , outlet temperature out

cT , drain flowrate 

hw , steam inlet pressure in
hp , and drain temperature out

hT . Five of these six variables can be 

obtained from physical sensors while the flowrate cw  will be provided by a virtual sensor. 

Recall that the feedwater flowrate virtual sensors for FWHs 1A and 1B, 1.F w  and 2.F w , can be 

obtained from solving the system of five equations in (7.10). These are type I virtual sensors. 

For the purpose of residual generation, we can also use the prediction of the flow ratio model 

FR-1 to compute these feedwater flowrates thus obtain two type II virtual sensors that can be 

used as alternative: 
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where the fault-free ratio is the prediction of the flow ratio model. The solution of these two 

equations give us the two type II virtual sensors that can be used as alternative to the two type I 

virtual sensors obtained from solving (7.10). When the system is fault-free, the solutions of 

(7.10) and (7.18) agree, i.e. the value of each type II virtual sensor is equivalent to its 

corresponding type I virtual sensor.  
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However, notice that the validity conditions of the balance equations in (7.18) are not the same 

as those for the equations in (7.10). It follows that the validity conditions of the type II virtual 

sensors are different from those of the type I virtual sensors. A sensor fault for the inlet 

temperature of FWH 1B would violate the fifth equation in (7.10) thus invalidate the solutions 

for the two type I virtual sensors but it would not affect the equations in (7.18). 

Using the type II virtual sensors for the feedwater flowrate, denoted by c
IIw , we can generate two 

additional residuals for FWHs 1A and 1B: 
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Note the distinction between the residual 6r  in Eqn. (7.16) where a type I virtual sensor is used 

for the flowrate cw  and 8r  where a type II virtual sensor is used instead. Recall the dependency 

structure of each residual as shown by the flowchart in Figure 6-2. For this example, these two 

residuals, 6r  and 8r , have different dependency structures although they were computed from the 

same model. Similarly, the same applies for 7r  and 9r . 

Table 7-2. Model residuals for the high-pressure feedwater system. 

Residual Model Sensors Formula 

1r  DP-1 Inlet, outlet pressure, flowrate (7.11) 

2r  FR-1 Two virtual flowrates (7.12) 

3r  SDP-1A Inlet, outlet pressure, flowrate (7.13) 

4r  SDP-1B Inlet, outlet pressure, flowrate (7.14) 

5r  SDP-1C Inlet, outlet pressure, flowrate (7.15) 

6r  FWH-1A Five physical sensors, 1 type I VS (7.16) 

7r  FWH-1B Five physical sensors, 1 type I VS (7.17) 

8r  FWH-1A Five physical sensors, 1 type II VS (7.19) 

9r  FWH-1B Five physical sensors, 1 type II VS (7.20) 
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7.4 Diagnostic Results 

To demonstrate the diagnostic process, we will use simulation data obtained from a Dymola 

model developed at Argonne National Laboratory [97]. A start-up procedure was simulated, and 

the simulation data was used for the calibration of the seven models listed in Table 7-1. 

Afterwards, various scenarios of faults were simulated and investigated. In this section, we will 

consider a case of fouling in one of the FWHs and a case of sensor faults. 

7.4.1 Fault Scenarios 

To clarify the diagnostic process, let us first consider the fault scenarios without measurement 

uncertainty.  

Fouling in FWH 1A 

For a case of fouling in FWH 1A, the residuals were computed and plotted in Figure 7-5. 

 

Figure 7-5. Fouling in FWH 1A causes two non-zero residuals (right plot) while the other seven remain 
unaffected (left plot). 

The fouling fault, started at time step 1000, causes two non-zero residuals, 6r  and 8r , which were 

computed from the heat transfer model for FWH 1A. Notice that when the system is fault-free, 

all nine residuals are all approximately zero, indicating that the modeling uncertainty in each 

model is negligible. This is because the simulation was performed in Dymola which, for its 1-D 

T-H component models, uses similar pressure drop and heat transfer correlations to the ones that 

were based on for the development of the physics-based parametric models in this thesis. The 

simulation results are therefore in good agreement with the diagnostic models.  
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Furthermore, on the right plot of Figure 7-5, the residual 6r  is shown to be nearly identical to 8r . 

This is expected since the fouling fault does not affect any balance equations. The solutions of 

(7.10) for the type I virtual sensors are equivalent to the solution of (7.18) for the type II virtual 

sensors and thus, the value of 6r  and 8r  are equivalent. 

To show the effect of the fouling fault, the outlet feedwater temperature, F1.T, from FWH 1A is 

plotted on Figure 7-6 in comparison with the temperature, F2.T, from FWH 1B.  

 

Figure 7-6. Effect of fouling on the feedwater outlet temperature of FWH 1A 

To perform the reasoning process, we have the option to use either the probabilistic reasoning 

framework in Chapter 5 or one of the deterministic reasoning approaches described in Chapter 

4. Without measurement and modeling uncertainty, there is no benefit in using probabilistic 

reasoning. In the deterministic reasoning approaches, we first need to detect non-zero residuals 

and then apply either the MBD reasoning framework in Table 2-1 (Deterministic I) or the FDI 

reasoning framework in Table 2-2 (Deterministic II). 

The task of change detection in this case is trivial. The observed fault symptoms are the two non-

zero residuals ( 6r  and 8r ). All other residuals are zero. With the structure of all residuals known, 

we can apply the FDI reasoning framework similarly to the process described in detail for the 
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single-phase heat exchanger example. The valid minimal diagnoses are fouling in FWH 1A or 

sensor fault for the steam pressure of FWH 1A. 

 

Table 7-3. Diagnostic result for the case of fouling in FWH 1A 

Fault symptoms Diagnoses 

6r  and 8r  non-zero [Fouling in FWH 1A] or 

[Pressure sensor fault at FWH 1A steam inlet] 

 

More specifically, recall the dependency of each residual listed in Table 7-2. From residual 6r  

being non-zero, one can obtain a conflict implicating either fouling or leakage in FWH 1A, a 

sensor fault among the five involved physical sensors or invalidity of the type I virtual sensor for 

the flowrate F1.w. Similarly, 6r  being non-zero provides a conflict implicating either fouling or 

leakage in FWH 1A, a sensor fault among the five involved physical sensors or invalidity of the 

type II virtual sensor for F1.w. 

Using the notion of exoneration with the zero residuals, one can then exonerate most of the faults 

from the two conflicts and is left with only two possibilities of either fouling in FWH 1A or a 

sensor fault in the steam inlet pressure of FWH 1A. Both these faults can directly cause 6r  and 8r  

to be non-zero and in this case, we cannot differentiate between the two faults. 

For this system, the number of possible faults is much higher than the number of fault symptoms. 

Under such condition, as discussed in Chapter 2, without the notion of exoneration, the 

diagnostic result using the MBD reasoning framework (Deterministic I) often consists of too 

many possibilities, thus is not suitable for practice uses. For most cases in practice when 

considering both component faults and sensor faults, we will use only either Deterministic II or 

probabilistic reasoning. 

Sensor Fault at E2.T 

The second fault scenario we will consider is a temperature sensor fault at the feedwater inlet of 

FWH 1B. The sensor fault is simulated by a bias, increasing over time, added to its reading 
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value. Reading values from the faulted sensor is plotted in Figure 7-7. The residuals in this 

scenario were computed and plotted in Figure 7-8. The sensor fault causes four non-zero 

residuals: 2r , 6r , 7r  and 9r . 

A fault in sensor E2.T directly affect the calculation of the heat transfer model in FWH 1B, 

causing both 7r  and 9r  to be non-zero. Additionally, the sensor fault violates the fifth balance 

equations in Eqn. (7.10). Thus, the two type I virtual sensors obtained by solving 7.10 are invalid 

which results in 2r , residual for the flow rate ratio, and 6r , residual for FWH 1A, as both are 

computed using at least one type I virtual sensor.  

 

Figure 7-7. A simulated fault for the feedwater inlet temperature sensor of FWH 1B 

 

Figure 7-8. Sensor fault at E2.T causes four non-zero residuals (right plot). 



 100

Applying the FDI reasoning framework for the Deterministic II approach, the diagnostic result 

for this set of fault symptoms are listed in Table 7-4. In this case, the diagnostic result includes 

one component fault, leakage from the shell of FWH 1B, or one of the four sensor faults. The 

available sensor set does not allow us to differentiate between the true fault, which is sensor 

E2.T, from the other four faults. 

Table 7-4. Diagnostic result for the case of sensor E2.T fault 

Fault symptoms Diagnoses 

2r , 6r , 7r  and 9r  

non-zero 

[Leakage from the FWH 1B shell] or 

[Sensor fault E2.T] or 

[Sensor fault F2.T] or 

[Sensor fault G2.w] or 

[Sensor fault G2.T] 

 

7.4.2 Effects of Uncertainty 

To investigate the effect of measurement uncertainty, we will add Gaussian noise to each 

variable of the simulation output. The measurement uncertainty of each sensor depends on the 

sensor type. The two common types of temperature sensors in nuclear systems are resistance 

temperature detectors (RTDs) and thermocouples. Typical RTDs have an accuracy of around 

0.3o C while thermocouples have a lower accuracy of up to 2.2o C  or 0.75% . Flowrate and 

pressure readings are provided by pressure transmitters typically with an accuracy of 0.25%  for 

high precision sensors and up to 1.25%  for others [100]. Sensors can be sampled every second 

or minute. 

For the current application, we are interested in faults of slow-degradation type and thus, only 

need to run diagnostics on a longer timescale, e.g. once every hour or day. In that case, it is not 

necessary to process every data point as collected from the sensors. The general practice would 

be to take the moving average of a certain number of sensor data points as one data point for the 

diagnostic tool. Doing so would effectively reduce the measurement uncertainty in each data 

point. For this demonstration, we will assume an effective standard deviation of 0.1o C  for 

each temperature reading and 0.1%  for pressure and flowrate readings. It should be noted that 
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some sensors may have measurement errors in forms of bias, as opposed to white noise, which 

do not get canceled or reduced by averaging. We will be assuming all sensors have been 

calibrated initially such that the biases are negligible. The increasing of sensor bias over time 

will be recognized as a sensor fault. 

The distribution parameters of each residual computed from 500 fault-free data points are listed 

in Table 7-5. 

Table 7-5. Mean and standard deviation of each residual when the system is fault-free 

Residual Mean Std. Dev. 

1r  58.5 10  32.63 10  

2r  44.7 10  37.35 10  

3r  62.5 10  31.99 10  

4r  51.6 10  31.94 10  

5r  41.6 10  31.82 10  

6r  41.0 10  21.28 10  

7r  43.4 10  21.27 10  

8r  43.2 10  21.41 10  

9r  45.4 10  21.37 10  

 

The mean values of all nine residuals are close to zero when the system is fault-free. Notice that 

the standard deviations of the four FWH performance residuals 6r  to 9r  are significantly higher 

than the other five residuals. That is expected since the calculation of those residuals involve 

more sensors. 

For the case of fouling in FWH 1A, from the results in Section 7.4.1, we expect the two residuals 

6r  and 8r  to be affected. In the presence of uncertainty, the plots of 6r  and 8r  are shown in 

Figure 7-9. Measurement uncertainty from the involved sensors combined in the uncertainty of 

each residual.  

To detect non-zero residual, we will be using the GLR-D change detection tool whose decision 

function was provided in Eqn. (4.2). The decision functions for all nine residuals in this case are 

shown in Figure 7-10. The detection threshold was set to 8.3h   for a false positive rate of 

0.1% . 
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Figure 7-9. The two noisy non-zero residuals under the effect fouling in FWH 1A 

 

Figure 7-10. GLR-D decision functions for residual evaluation in the case of fouling in FWH 1A 

It is clear that after both 6r  and 8r  can be observed to be non-zero given enough wait-time while 

the other residuals are observed to be zero. For this set of observed fault symptoms, the 

diagnostic result by the Deterministc II approach was discussed in the last section and 

summarized in Table 7-3. The two possibilities are fouling in FWH 1A and pressure sensor fault 

at the inlet of FWH 1A. 

For the case of a sensor fault at E2.T as discussed in the last section, plots of the residuals 

affected by the fault are shown in Figure 7-11. 
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Figure 7-11. The four residuals affected by the temperature sensor fault at the feedwater inlet of FWH 1B 

It can be observed from Figure 7-11 that the sensitivity of residual 7r  to the sensor fault is 

significantly lower compared to the other three residuals. The GLR-D decision functions for this 

case are plotted in Figure 7-12.  

 

Figure 7-12. GLR-D decision functions in residual evaluation for the case of sensor fault at E2.T 

Note that the sensor drift starts at time step 500. From Figure 7-12, 2r  can be observed to be non-

zero starting at time step 520, 6r and 9r  starting at step 540 while the change in residual 7r  goes 

undetected until around time step 650. Prior to timestep 650, because of the lower sensitivity of 
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7r  to the fault, the change detection tool fails to detect the non-zero residual – a scenario we 

referred to as a false negative. 

In the Deterministic II, the FDI reasoning framework is applied using the observations of non-

zero and zero residuals from the change detection tool. The change detection results and the 

corresponding diagnostic results are summarized in Table 7-6. 

Table 7-6. Change detection and diagnostic outputs for the case of a sensor fault at E2.T 

Time Step 
Change Detection 

Output 
Diagnostic Output 

520t   No non-zero residual No fault. 

35 0 42 5t   2r  No valid diagnosis. 

75 3 44 6t   2r , 6r , 9r  No valid diagnosis. 

647t   2r , 6r , 7r , 9r  

[Leakage from the FWH 1B shell] or 

[Sensor fault E2.T] or 

[Sensor fault F2.T] or 

[Sensor fault G2.w] or 

[Sensor fault G2.T] 

 

Prior to time step 647, one or more affected residuals are undetected and the Deterministic II 

fails to find a valid diagnosis. It should be noted that in this case, as shown in Figure 7-7, the 

sensor bias increases over time, thus the effect in 7r  is eventually detected. For a small shift of 

the bias, the change in 7r  may not be detected because of its lower sensitivity to the fault. 

This example showed that the Deterministic II approach is susceptible to false detections, a 

limitation we also discussed in Section 4.4. The deterministic reasoning framework may fail to 

find a valid diagnosis in case of one or more false positive or false negative by the change 

detection tool. In the presence of uncertainty, some of the residuals with lower sensitivity may 

not be detected until the fault becomes sufficiently significant. This issue effectively limits the 

diagnostic sensitivity. In Chapter 5, the probabilistic reasoning framework was developed to deal 

with this difficulty, i.e. to account for the possibility of false positive and false negative. 
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To apply the probabilistic framework, as described in Chapter 5, the first step is to construct a 

Bayesian network to represent the dependency between faults and residuals. The Bayesian 

network for this case is shown in Figure 7-13. Each number on the first layer represents a distinct 

fault. The list of faults is provided in Appendix C. In particular, number 1 is fouling in FWH 1A 

and 15 is the sensor fault at E2.T. The residual for the head model of each drain pump, 3r , 4r , 

and 5r ,  is independent from the rest the of the system. Thus, each drain pump can be represented 

by a separated Bayesian network with four independent faults: a pump fault and three sensor 

faults. 

 

Figure 7-13. A Bayesian network for the high pressure feedwater system. 

To define the structure of the network, we need to provide the prior probability of each fault and 

the conditional probability tables for the residuals and change detection observations. We will 

assume a prior probability of 10%  for fouling, 1%  for leakage, 5%  blockage and 5%  for 

sensor faults. 

As with the example of the single-phase heat exchanger, to simplify the calculation, we will 

apply the same assumptions used for the notion of exoneration: each fault affects every residual 

it is involved in. The conditional probability ( | )P r F  is then simply given by: 
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 all parents node = 1) = 1.0( 0 |iP r   (7.21) 

 any parent node = 1) = 1.0( 1|iP r   (7.22) 

Suppose that the detection threshold has been chosen such that the false positive rate is 0.1% and 

the false negative rate is 1.0%, thus: 

 1| ) 0.001( 0i iP O r   (7.23) 

 10 | ) 0.0( 1i iOP r    (7.24) 

After the structure of the network has been defined, we can then compute the posterior 

probability of each fault given a set of observations. Prior to time step 520, all residuals are 

observed to be zero and no fault is detected.  

Between time step 520 and 543, only 2r  is observed to be non-zero. The posterior probability of 

every fault is approximately zero and no fault is detected. The non-zero value of 2r  is interpreted 

as a false positive by the change detection tool. 

Between time step 543 to 647, 2r , 6r , and 9r  are observed to be non-zero. Results of fault 

posterior probabilities for this case are listed in the third column of Table 7-7. Notice that the 

values found for fouling in FWH 1B (10.1% ) and sensor fault D2.P ( 5.0% ) are just the prior 

probability provided for the faults. The evidence, 2r , 6r , 9r  being non-zero, neither implicates 

nor exonerates these faults. The faults with significant posterior probability are the four sensors 

faults, in E2.T, F2.T, G2.T and G2.T, and leakage from the shell side of FWH 1B. This is the 

result found by the Deterministic II approach after time step 647 as listed in Table 7-6. The 

distinction between the sensor faults and the leakage is because of the difference in prior 

probability. The sensor faults are more likely than the leakage. Here, by using the probabilistic 

reasoning framework, we obtain the correct diagnostic result even when the change in residual 7r  

is undetected. 

After time step 647, 7r  is observed to be non-zero in addition to 2r , 6r , 9r . The results are listed 

in the fourth column in Table 7-7. The addition of 7r  to the evidence does not significantly 

change the posterior probabilities. The faults with significant posterior probability are the four 
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sensor faults and FWH 1B shell leakage, in agreement with the result in Table 7-4 for the ideal 

case of no uncertainty. One can conclude the sensor faults are more likely than the leakage but, 

because of the limitation of the current sensor set, cannot differentiate between the four sensor 

faults.  

Table 7-7. Fault posterior probabilities by the probabilistic reasoning framework for the case of a sensor 
fault at E2.T 

Fault ID Fault 
Symptoms 

2r , 6r , 9r  2r , 6r , 7r , 9r  

15 Sensor E2.T 25.7%  25.8%  

16 Sensor F2.T 25.7%  25.8%  

17 Sensor G2.w 25.7%  25.8%  

18 Sensor G2.T 25.7%  25.8%  

5 FWH 1B, Fouling 10.1%  10.1%  

7 FWH 1B, Shell leak. 5.1%  5.2%  

19 Sensor D2.P 5.0%  5.0%  

Other faults 0.1%  0.1%  
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8.1 Summary  

The study in this thesis focused on the application of diagnostic methods to the problem of 

monitoring equipment health and sensor calibration status in nuclear engineering systems. The 

research is motivated by the ongoing effort to utilize automation and operator support 

technologies for cost reduction in nuclear power plants. The task of detecting equipment 

performance degradation can be automated by a diagnostic framework which make use of 

measurement data from instruments that are already in place for system monitoring. Given the 

long-time scale over which component degradation typically proceeds, some of the system 

monitoring sensors may also inevitably degrade and become unreliable. The human resources 

required to detect and recalibrate faulty sensors contribute a significant fraction to the overall 

O&M cost.  

The objective of this thesis was the development of a diagnostic framework for thermal-

hydraulic systems in commercial nuclear power plants, capable of dealing with both equipment 

faults and instrument faults. The principal target application for the approach developed here is 

for immediate implementation in currently operating nuclear power plants, however the methods 

developed here also would potentially have application for the design and operation of advanced 

nuclear reactor systems. In order to detect slow performance degradation and sensor drift, a high 

detection sensitivity is needed while the plant may undergo changes in operating conditions and 

the sensor data are subject to noise and uncertainty. For that purpose, the diagnostic framework 

needs to be insensitive in changes of boundary conditions and the various sources of uncertainty. 

Other challenging issues for the research problem include the lack of sensors that can be used for 

the specific diagnostic purposes. 

Chapter 8  

Summary, Conclusions, and Future Work 
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The theoretical framework proposed in this thesis is a hybrid of quantitative model-based 

diagnosis, statistical change detection and probabilistic reasoning. Given the need for the 

diagnostic tool to be insensitive to operating condition changes under plant drifts, a physics-

based approach was developed. In the framework of model-based diagnosis, physics-based 

models are used to describe the fault-free behavior of T-H components. Quantitative model 

residuals can be generated from the analytical redundancy relations provided by the fault-free 

component models. Non-zero model residuals serve as fault symptoms for the reasoning process 

in the model-based diagnosis framework developed here.  

The presence of measurement and modeling uncertainty affects both the residual evaluation as 

well as the reasoning processes. A statistical change detection tool is necessary to detect whether 

a model residual is statistically zero or non-zero. Consequently, there is an associated false 

detection rate when each residual is detected to be zero or non-zero. If the false detection rates 

can be considered negligible, conventional deterministic reasoning frameworks can be applied to 

obtain possible fault diagnoses from a set observed fault symptoms. However, when false 

detection rates are significant, e.g. in the case of large modeling uncertainty, the deterministic 

reasoning frameworks may fail to produce valid diagnoses. The probabilistic reasoning 

framework using the method of Bayesian network was proposed to deal with such scenarios by 

considering the possibility of false observations in the reasoning process for fault diagnosis. 

The construction of physics-based models requires the decomposition of each T-H system into 

separate components of known generic types. Physics-based models are developed for each 

generic component type in the form of parametric models. Each model may contain some 

unknown parameters which are determined for each specific component during the model 

calibration process. A training data set from measurement data of the process variables on the 

boundary of the component is required for this process. Thus, each component model has a 

minimum sensor requirement for the calibration process that must be performed. For most T-H 

systems in currently operating nuclear power plants, the available sensor set is limited and 

insufficient for model construction of standalone components. In this thesis, the lack of sufficient 

sensors is mitigated by the introduction of the concept of virtual sensors. Relations between 

different components and sensors at the system level are utilized to solve for the missing 
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variables required for model construction. At the same time, the search for available models is 

expanded to cover multiple nearby components as allowed by the sensor set. 

The proposed diagnostic framework was automated in a Python test implementation. In Chapter 

8, the implementation was applied to a typical high-pressure feedwater system to demonstrate its 

capability. With the exception of a pressure head model for each drain pump, it was not possible 

to construct standalone component models for the major components in the system with the 

current sensor set.  Most notably this was the case for the feedwater heaters (FWH) and steam 

generator feed pumps. By utilizing system balance equations, the missing feedwater flowrate 

sensors for the two first-point FWHs were computed from the other available sensors. The 

solutions of the balance equations, which we referred to as virtual sensors, was used in the 

construction of two FWH models. Furthermore, various aggregate models for pressure loss, flow 

rate ratio were created as listed in Table 7-1. Residuals were then generated from the models. In 

order to perform diagnosis at the system level it was necessary to keep track of the dependency 

of each residual on the involved components, on the sensors and on underlying assumptions for 

the system balance equations. 

Results for the case of feedwater heater fouling and for the case of a sensor fault were 

investigated and the results were shown in Section 7.4.1. Useful results were obtained for each 

scenario, however, due to the limitation of the available sensor set, there were multiple valid 

diagnoses for each case, and it was not possible to always identify a unique diagnosis. 

The effects of measurement uncertainty were demonstrated in Section 7.4.2. In the presence of 

measurement and modeling uncertainty, there is an inevitable delay in the time it takes for a non-

zero residual to be detected. Depending on the sensitivity of each residual to each fault, some of 

the mathematically affected residuals were not always detected. In Table 7-6, an example was 

shown of a case in which it was not possible to provide a valid diagnosis when the change 

detection tool failed to detect one of the non-zero residuals. Such issues limit the diagnostic 

sensitivity and reliability of deterministic approaches in the case of significant uncertainty. The 

limitation can be overcome by the use of probabilistic reasoning approaches and results using 

probabilistic reasoning based on a Bayesian network were shown in Table 7-7. The correct 

diagnostic result was obtained even when one of the affected residuals was undetected.  
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The most significant original contribution of this thesis to the field is the development of a 

physics-based probabilistic framework for fault diagnostics of T-H systems with limited 

instrumentation in nuclear power plants. The integration of model-based diagnosis with 

probabilistic reasoning at system level is possible due to the physics-based approach in model 

construction and residual generation. From the underlying analytical relations, each residual can 

be directly linked to various component and sensors faults at system level. The use of physics-

based models for quantitative model-based diagnosis allows the proposed framework to be less 

sensitive to possible changes of operating conditions and capable of dealing with both 

component faults and sensor faults. The relations between different system components, 

represented by conservation laws, are utilized through the concept of virtual sensors and 

aggregate models to effectively reduce the number of sensors required for each component and 

provide a more detailed diagnosis. Modeling and measurement uncertainty are robustly dealt 

with by statistical change detection and probabilistic reasoning.  

8.2 Future Work 

The focus of this thesis has been the development of a diagnostic framework applicable to 

complex engineering systems with a limited sensor set. Diagnostic results for each system were 

produced consistent with the best spatial resolution permitted by the available sensor set. The 

diagnostic benefit from each possible new sensor can be systematically analyzed from the effects 

of the addition to each step of the framework by using the model construction to residual 

generation and reasoning developed in this work. Thus, the physics-based framework as 

formulated provides a straightforward transition to the ‘inverse problem’ of determining optimal 

placement for new sensors for a given monitoring need. Solving the inverse problem considering 

both technical and economic aspects will be an important part of the future application of this 

work. 

The reliability of model-based diagnosis depends on the quality of the models being used. High 

modeling uncertainty may lead to unreliable or false diagnoses. The difficulty in developing 

models with tolerable uncertainty for complex technical processes is one of the limitations of 

model-based diagnosis. In this work, models of T-H components were constructed in a physics-

based approach and thus are less data-dependent.   The effects of uncertainty were robustly 

treated using a probabilistic framework. Nevertheless, the model construction process requires 
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simplifications of the underlying physics which inevitably lead to intrinsic modeling uncertainty. 

As possible direction for future work in the modeling aspect of the work here is to utilize the 

design parameters available for each component and investigate the use of high-fidelity 

simulation codes to construct simulation-based surrogate models. 

The proposed framework has been formulated to consist of separated steps and allow various 

methods in each step to be interchangeable. Specifically, for the reasoning process, one has the 

option to use one of the deterministic reasoning approaches or the probabilistic reasoning 

approach. Residuals are evaluated by statistical change detection tools whose outputs in the form 

of zero and non-zero residuals are usable by both deterministic reasoning and probabilistic 

reasoning approaches. In the presented probabilistic results for the heat exchanger example and 

the feedwater system, several assumptions were applied to simplify the estimation of the 

conditional probability tables. Such simplifications are justifiable for practical use if one is not 

particularly interested in the exact posterior probability of each fault but only needs rough 

estimation of the relative magnitude between faults. However, as discussed in Section 5.2, a  

more accurate estimation of the conditional probability tables can be obtained by sampling the 

underlying model. This will be part of the future work for the application of the probabilistic 

framework in predictive and preventative maintenance for nuclear systems.  

Finally, from a statistical point of view, potential conflicts arise in the factorization of the 

uncertainty treatment into two separated steps, a change detection step using the GLR test and a 

probabilistic reasoning step using Bayesian network. The former is a frequentist approach using 

likelihood ratio test while the latter is a Bayesian approach. As discussed, such separation is 

necessary to allow the reasoning approaches to be interchangeable. However, there are several 

Bayesian change detection methods available with comparable performance to the GLR tests 

[101, 102] and for future work, methods can be investigated to combine both steps of the change 

detection and reasoning into a dynamic Bayesian network to treat the effects of uncertainty in 

diagnosis.   
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As described in Chapter 3, physics-based models can be developed for each generic type of T-H 

components in form of parametric models. Each parametric model may contain several unknown 

parameters to be determined for each specific component in a process we referred to as model 

calibration. Details of the model calibration process are discussed in this appendix. 

Each of the parametric models as formulated can be expressed as a linear model: 

 0
1

p

j
j jy X 



   (A.1) 

where y  is the model output; 0  and j  are the model parameters; jX  are the input variables 

for the model; and p  is the number of distinct input variables. Each jX  could be from a 

different physical quantity or just a different power of the same physical variable. For example, 

for the model of the overall heat transfer coefficient in Eqn. (3.21), the jX ’s are 0.8
cw  and 0.8

hw . 

The objective of the model calibration process is to determine the model parameters using a 

training data set.  

Each data point of the training set provides a value of y  for certain measured input jX . Let y  

be the column vector containing N  output from the training set; X  denotes the ( 1)N p   input 

matrix with each row representing the p  input variables for each training data point and a 1 in 

the first position. The model can be written in linear form as: 

 ˆ y X  (A.2) 

Appendix A  

Regression Methods for Model Calibration 
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where 0 1, , ,( ... )T
p     is the parameter vector and ŷ  is the model prediction for the N  

training data points. We need to estimate the parameter vector   by fitting the model prediction 

ŷ  against the measured output y . The most common estimation method is least squares, in 

which the parameters are selected to minimize the sum of squares of the differences between ŷ  

and y , known as the residual sum of squares [86]: 
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To minimize the residual sum of squares, we can now take the derivative w.r.t   and set it to 

zero to obtain a least square estimation of the model parameters: 

   1ˆ T T


 X X X y  (A.4) 

Under the assumption that the observations iy  are uncorrelated and have a constant variance 2 , 

the variance-covariance matrix of the estimated parameters is given by: 

   1 2ˆVar( ) T 


 X X  (A.5) 

where the variance 2  can be estimated from the observations by: 
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̂  is known as the residual standard error (RSE). The residual standard error could be used as an 

indicator for the accuracy of the model. However, as it is estimated from training data, the RSE 

could underestimate the model prediction uncertainty. The standard practice when there are 

sufficient data is to split a data set into three parts: a training set used to fit the models; a 

validation set used to estimate prediction error for model selection; and a test set used to access 

the prediction error of the final chosen model [86]. In the current application, a physics-based 

approach is used for model selection, thus, a validation set is not required but a test set is still 

preferred to estimate the prediction uncertainty. 
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As an example, consider the calibration process for a pressure head model for a pump. We will 

use the quadratic form from Eqn. (3.12): 

 2
head 0 1 2P ww      (A.7) 

A set of real plant startup data for a feedwater pump is shown in Figure A-1 for the measured 

flowrate and Figure A-2 for the pressure head. 

 

Figure A-1. Flowrate for a feedwater pump during startup 

 

Figure A-2. Pressure head by the feedwater pump during startup 

The startup data set is split in to two data sets: a training set with 70% of the data and a test set 

from the rest. By fitting the model in Eqn. (A.7) against the training set, the estimated model 

parameters are listed in Table A-1. 
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Table A-8-1. Least squares estimation of the pressure head model parameters 

Model parameters Estimated Std. Err. 

95% confidence interval 

Lower 
limit 

Upper 
limit 

( )P w  

0  1068.0   31.1  1007.1 1129.0  

1  0.025  1.019  1.974  2.025  

2  0.059  0.008  0.075  0.042  

 

The standard prediction error can be estimated from the test data set to be 1.30  (psi). A plot of 

the fitted model is shown in Figure A-3. 

 

Figure A-3. Fitted pressure head model for the feedwater pump 
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In the presence of noise and uncertainty, a statistical treatment is needed to evaluate the residuals 

in order to determine if a residual has become non-zero. In this appendix, statistical change point 

detection methods are discussed, and the most suitable method is selected for the current 

application. 

In the problem of statistical change point detection (CPD), one aims to detect whether a process 

or a random variable has deviated from its normal behavior, i.e. if there is a change in the 

underlying distribution. Based on the conditions of the target application, we will assume 

distribution parameters of a process variable in its normal state (in control) are known or can be 

estimated but the distribution after a change (out of control) is unknown. 

We are interested in detecting a change of mean value. The variance or standard deviation is 

assumed to remain the same. In general, a change in process mean can occur in two ways: 

 Shift: At the changepoint, the process mean abruptly shifts to a different value and stays 

there after the change. 

 Drift: At the changepoint, the process mean starts drifting gradually from the original 

value. For the problem of on-line change detection, one aims to minimize the detection 

delay, i.e. the time between the changepoint and detection point. In that period, it will be 

assumed that the drift is linear. 

The two change modes are illustrated in Figure B-1. The primary objective for applying a CPD 

method is to detect a change as soon as possible, i.e. minimizing the delay between change time 

and detection time. A secondary objective, which may or may not be possible depending on the 

method, is to estimate the time and amplitude of the change. 

Appendix B  

Statistical Change Detection Methods 
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Figure B-1. A shift in process mean (left) and a drift in process mean (right) 

 

B. 1 Overview 

Since the distribution parameters after a change are unknown, some of the most well-developed 

CPD methods, including the CUSUM method, are not applicable [15]. Some of the possible 

options are: 

 Shewhart control chart 

 Exponentially weighted moving average (EWMA) control chart 

 Generalized likelihood ratio (GLR) tests 

The Shewhart control chart [89, 88] is a statistical process control tool designed to determine if a 

process has gone out of control, i.e. has deviated from its expected behavior. It is formulated as a 

limit-checking detector: a process is considered out of control when its deviation from the 

expected mean value exceeds the limits set based on the expected standard deviation. The 

Shewhart control chart is easier to implement and useful for detection of large shift in mean 

value but it offers no way of estimating the change magnitude or locating the change point. Also, 

it has proved to be less effective for detecting small shift or drift. 

In a similar manner, the EWMA control chart operates by setting upper and lower limits based 

on the standard deviation but like the name suggested, it use exponentially weighted moving 

average values of the process instead of directly measured values in the limit checking process. 

Recent observations have higher weights in the considerations. The EWMA method can be used 

to detect both shift and drift changes in mean value [90]. 
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Another method which can be formulated specifically for the detection of both shift and drift 

changes is the GLR tests. Furthermore, it also provides estimations of the change magnitude and 

change time. Previous studies have shown that the GLR method when set up properly can 

provide the best overall performance in term of detection delay and parameter estimations, i.e. 

change time and change magnitude [89, 91]. The methodology of the GLR method will be 

summarized in the remaining of this section. 

Consider a statistical process, i.e. a series of sequentially sampled data, which is expected to 

have constant mean and standard deviation values under normal behavior (in-control). For each 

time step when a new data point is sampled, we are interested in detecting whether the mean 

value of the process has changed. We assume the process can be described by a normal 

(Gaussian) distribution whose mean and standard deviation are known or can be estimated. 

Under this assumption, the distribution for a new data point is given by: 
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Given a sequence of observed data and a statistical model of the distribution, the likelihood 

function represents the plausibility of the model. In other words, the higher the likelihood 

function, the more likely that the statistical model is correct. Given two hypotheses, or two 

different models, of a distribution, the ratio of the likelihood functions can be used to decide on 

which hypothesis is more likely to be true. For a sequence of independently observed data, the 

likelihood function is the product of the likelihood on each data point. For the Gaussian 

distribution, the likelihood function given each data point is: 

 
 2

22

1
( , | ) exp

22

y
l y


 



 
  

 
 

 (B.2) 

B.2 Generalized Likelihood Ratio Test (GLRT) 

Consider a series of sequentially sampled data  ky . For each time step when a new data point is 

sampled, a decision rule is computed to test between two hypotheses:  
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 0H : There has been no change. The distribution parameter is given by defined by 

0 0 0 )( ,    

 1H : There was a change point happened at some time step j , after the change point, 

distribution parameter has changed to 1  

 
We have assumed that the model parameters 0 0( , )   for the null hypothesis 0H , i.e the 

distribution before any change occurs, are known. If the parameter after change, 1 , is also 

known, the decision can be made based on the likelihood ratio between the two distributions. 

If the parameter after change is unknown, however, the ratio test cannot be performed. One 

solution as proposed by Wald [19,20] is to replace the unknown parameter 1  by its maximum 

likelihood estimate. The likelihood ratio test is then based on the ratio of likelihoods defined by: 
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If  ˆ 1N  , the likelihood of the null hypothesis 0H  is larger than the maximum likelihood of the 

hypothesis 1H  and therefore one can select 0H  and conclude that there has been no change. 

Otherwise, a change can be reported with its location determined by the maximum of the 

likelihood of 1H . 

In 1H , we assume a change point happened at time index j  after which the model parameter 

changed to 1 . For time index 1 to 1j  , both 0H  and 1H  assume the same model parameter ( 0

) and thus the likelihood ratio during this period cancels out. The log-likelihood ratio given 

observations from time index up to time index k j  is therefore given by: 
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The log likelihood ratio, 1)(k
jS  , is a function of two variables: the change time j  and the model 

parameter value after change to 1 . These two parameters are selected to maximize the log 

likelihood ratio. The maximum log-likelihood ratio is defined by: 
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The maximum log-likelihood ratio kg  is used as the decision function for the GLR test at time 

step k . Hypothesis 1H , with optimal parameters ˆ
kj  and 1,

ˆ
k  to maximize 1)(k

jS  , is accepted if 

the decision function kg  exceeds a pre-defined threshold h . Otherwise, 0H  is accepted and no 

change is reported. 

For detection of changes in process mean, the GLR test has been commonly used to detect 

sustained shift [89]. For better estimations of the change point and change magnitude, the GLR 

test can be formulated specifically for each change model, i.e. sustained shift and linear drift. 

GLR change detection formulation for linear drifts were presented by Fahmy and Elsayed [92] 

and Wang et al. [93]. 

B.2.1 GLR Test for Sustained Shift in Process Mean (GLR-S) 

For a Gaussian process, the model parameters are mean value μ and standard deviation σ. We 

will assume the standard deviation to remain the same even after a shift in process mean. The 

distribution before change is given by: 
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After a shift in process mean 1 1 )( ,    , the distribution is given by: 
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The log-likelihood ratio for observations up to time k  after a changepoint at j  is: 
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Take derivative with respect to 1  and set it to zero to obtain the optimal value of 1  that 

maximizes the likelihood ratio: 
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Substitute into Eqn. (B.8) and (B.5), the decision function for a shift in process mean is given by: 
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A change is detected when decision function kg  exceeds a pre-defined threshold h . The process 

mean after the change can then be estimated using Eqn. (B.9) with the change point j  

determined by maximizing Eqn. (B.10). 

B.2.2 GLR Test for Linear Drift in Process Mean (GLR-D) 

For the case with a drift in process mean, we assume that the change starts exactly at the end a 

time step. Wang et al. [93] considered a more general case in which the change could occur 

during a time step but the difference in performance was shown to be negligible. With the 

change in process mean modeled by a linear drift of rate   per time step, starting at time index 

j , the process mean and the probability density at time index i j  are given by: 
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The log-likelihood ratio at time step k  after a drift starting at j : 
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Maximize the right-hand side of Eqn. (B.13) with respect to   to obtain: 
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Substitute this result into Eqn. (B.13) and (B.5), the decision function for GLR-D is given by: 
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A change is detected when decision function kg  exceeds a pre-defined threshold h . The drift 

rate can then be estimated using Eqn. (B.14) with the change point j  determined by maximizing 

Eqn. (B.15). 

B.2.3 Examples 

The GLR-S and GLR-D tests are formulated specifically for the detection and estimation of 

changes by shift and drift in process mean, respectively. Previous studies have shown that both 

tests perform equally well in term of detection delay when applied to either type of change in 

process mean [93]. The advantage of specializing a test for each type of change is realized in 

change magnitude estimation. It should be expected that the GLR-S, formulated for predicting 

shift change, will not perform well in estimating the drift change and vice versa. To demonstrate 

the difference between the two formulations, consider an example with a series of observations 

which can be described by a Gaussian distribution with standard deviation 0 . Starting at 

500t s , the process mean is subjected to a shift of 0  . The decision functions for the 

GLR-S and GLR-D tests are plotted in Figure B-2 with the decision threshold selected albitrary 

at 7.5h  . It can be observed from Figure B-22 that both tests have similar performance in 

terms of detection delay. 
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Figure B-2. Decision function by GLR-S and GLR-D for a shift in process mean of     

 

After a change is detected, that is when the decision function exceeds the threshold, the GLR 

tests can also provide estimated values for the change point location and the change magnitude. 

The estimations of change point location by GLR-S and GLR-D for the case above are plotted in 

Figure B-3. Note that the change point estimation is to be disregarded until a change is reported 

when the decision function reaches its threshold. Figure B-3 shows that for the case of a shift in 

mean value, the GLR-S can provide a good estimation of the change point location while the 

GLR-D test cannot, which is expected. 

 

Figure B-3. Estimation of change point location by GLR tests for a shift of     
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B.2.4 Decision threshold 

The decision threshold h  for the change detection algorithm can be set based on a pre-defined 

false alarm rate, i.e the probability for the change detection algorithm to incorrectly detect a 

change even though the process variable is still in its normal distribution 

For a given threshold for the decision function, the false alarm rate can be estimated by the 

inverse of the average run length (ARL). When the process variable is still in control, the average 

run length is defined as the average number of samples evaluated (the number of times the 

decision function is checked against the detection threshold) before a change is detected, which 

count as a false alarm since the variable is still in the distribution for its normal behavior. 

For the GLR tests, it may be too computationally costly to use all the history data to compute the 

decision function. Instead, the algorithm can be run using only a number of m   most recent data 

points. The average run length, and the false alarm rate, depend slightly on m . 

The average run length or false alarm rate can be estimate by sampling the decision function  

using the normal behavior distribution of the process variable. Figure B-4 show the distribution 

of the decision function for the GLRS algorithm with 200m  , obtained by sampling 610  data 

points of a normalized normal distribution.  

 

Figure B-4. Probability density function of the GLRS decision function 
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From the probability density function of the decision function, the average run length and the 

false alarm rate can be estimated, which are plotted on Figures B-5 and B-6, respectively. For 

example, the ARL corresponding to a 0.1%  false alarm rate is 1000 and the threshold needed is 

approximately 8.36 . 

 

Figure B-5. ARL of the GLRS algorithm as a function of decision threshold. 

 

Figure B-6. GLRS false alarm rate as a function of decision threshold. 
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A list of faults for the high-pressure feedwater system considered in Chapter 7 and identified in 

Section 7.4.2 is provided in Table C-1. Note that here we have neglected the possibilities of 

piping leakage and blockage but the addition of such faults into the framework is 

straightforward.  

For the probabilistic reasoning results in Section 7.4.2, we have only considered the first 27 

faults that are relevant to the six residuals 1r , 2r , 6r , 7r , 8r , and 9r . The residuals computed from 

the pressure head models for the drain pumps, 7r , 8r , and 9r , are independent from those six 

residuals and only depend on the pump fault and sensor faults at the inlet and outlet of each 

pump. 

More specifically, since a standalone pressure 

head model can be constructed for each of the 

drain pumps, the residual for each drain pump is 

independent from the rest of the system. To 

perform probabilistic reasoning for each drain 

pump, we can construct a Bayesian network that 

consist of only the pump fault and three sensor 

faults around the pump. An example is shown in 

Figure C-1 for the drain pump 1A. 

 

 

 

Appendix C  

List of Faults for the HP Feedwater System 

Figure C-1. A Bayesian network for drain pump 1A 
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Table C-1. List of faults for the high-pressure feedwater system 

ID Comp. Label Comp. Type Fault 
1 1-FW-E-1A FWH Fouling 
2 1-FW-E-1A FWH Tube leak 
3 1-FW-E-1A FWH Shell leak 
4 1-FW-E-1A FWH Tube block 
5 1-FW-E-1B FWH Fouling 
6 1-FW-E-1B FWH Tube leak 
7 1-FW-E-1B FWH Shell leak 
8 1-FW-E-1B FWH Tube block 
9 FE-105 Flow sensor Sensor fault 

10 FW-TE-109A Temp. sensor Sensor fault 
11 FW-TE-110A Temp. sensor Sensor fault 
12 SD-FT-102A Flow sensor Sensor fault 
13 SD-TE-110A Temp. sensor Sensor fault 
14 ES-PT-100A Press. sensor Sensor fault 
15 FW-TE-109B Temp. sensor Sensor fault 
16 FW-TE-110B Temp. sensor Sensor fault 
17 SD-FT-102B Flow sensor Sensor fault 
18 SD-TE-110B Temp. sensor Sensor fault 
19 ES-PT-100B Press. sensor Sensor fault 
20 FW-PT-158 Press. sensor Sensor fault 
21 PT-100 Press. sensor Sensor fault 
22 1-FW-P-1A Feed pump Pump fault 
23 1-FW-P-1B Feed pump Pump fault 
24 MOV-150A Valve Leakage 
25 MOV-150A Valve Blockage 
26 MOV-150B Valve Leakage 
27 MOV-150B Valve Blockage 
28 1-SD-P-1A Drain pump Pump fault 
29 1-SD-PT-100A Press. sensor Sensor fault 
30 1-SD-FT-100A Flow sensor Sensor fault 
31 1-SD-PT-108A Press. sensor Sensor fault 
32 1-SD-P-1B Drain pump Pump fault 
33 1-SD-PT-100B Press. sensor Sensor fault 
34 1-SD-FT-100B Flow sensor Sensor fault 
35 1-SD-PT-108B Press. sensor Sensor fault 
36 1-SD-P-1C Drain pump Pump fault 
37 1-SD-PT-100C Press. sensor Sensor fault 
38 1-SD-FT-100C Flow sensor Sensor fault 
39 1-SD-PT-108C Press. sensor Sensor fault 
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