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ABSTRACT

In modern psychological and biomedical research with diagnostic purposes, scien-

tists often formulate the key task as inferring the fine-grained latent information under

structural constraints. These structural constraints usually come from the domain ex-

perts’ prior knowledge or insight. The emerging family of Structured Latent Attribute

Models (SLAMs) accommodate these modeling needs and have received substantial

attention in psychology, education, and epidemiology. SLAMs bring exciting oppor-

tunities and unique challenges. In particular, with high-dimensional discrete latent

attributes and structural constraints encoded by a structural matrix, one needs to

balance the gain in the model’s explanatory power and interpretability, against the

difficulty of understanding and handling the complex model structure.

This dissertation studies such a family of structured latent attribute models from

theoretical, methodological, and computational perspectives. On the theoretical

front, we present identifiability results that advance the theoretical knowledge of

how the structural matrix influences the estimability of SLAMs. The new identifia-

bility conditions guide real-world practices of designing diagnostic tests and also lay

the foundation for drawing valid statistical conclusions. On the methodology side,

we propose a statistically consistent penalized likelihood approach to selecting sig-

nificant latent patterns in the population in high dimensions. Computationally, we

develop scalable algorithms to simultaneously recover both the structural matrix and

the dependence structure of the latent attributes in ultrahigh dimensional scenarios.

These developments explore an exponentially large model space involving many dis-

xiii



crete latent variables, and they address the estimation and computation challenges

of high-dimensional SLAMs arising from large-scale scientific measurements. The

application of the proposed methodology to the data from international educational

assessments reveals meaningful knowledge structures of the student population.

xiv



CHAPTER I

Introduction

In the era of data science, latent variable models have witnessed a tremendous

surge of interest from a wide range of scientific applications and machine learning

problems. On one hand, latent variable models have always played an important role

in social and behavioral sciences to model constructs that are not directly measurable,

such as extrovert personality or public opinion. On the other hand, latent variables

are useful tools for dimension reduction in machine learning, and they hold huge

representational and predictive power in deep neural networks.

The entire family of latent variable models can be categorized into four general

types according to the nature of the observed and the latent variables. With the

observed and latent variables both being continuous, the traditional factor analysis

and probabilistic principal component analysis (Anderson and Rubin, 1956; Tipping

and Bishop, 1999) can be used in modeling. To model continuous observed data using

discrete latent variables, researchers have employed mixture models of continuous

distributions, such as the Gaussian mixture model (Reynolds et al., 2000; Bishop,

2006), for explaining data heterogeneity and clustering subjects. When it comes

to discrete observations, the item response theory models (Weiss and Yoes, 1991;

Embretson and Reise, 2013) has been traditionally used in the field of psychometrics

to draw continuous latent information from categorical data. Finally, when both
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the observed variables and the latent constructs of interest are discrete, the latent

class model has been a popular modeling tool since decades ago (Lazarsfeld, 1959;

Goodman, 1974).

In particular, in many areas of modern social and biomedical research, the key

task can be formulated as inferring the fine-grained latent information from noisy

measurements. Especially in many applications, formalizing the latent constructs

as being discrete, instead of being continuous, allow for more interpretability and

also naturally enables subsequent clustering of subjects. Further, in many real-world

problems it is critical to incorporate structural information into the latent variable

modeling process. Such discrete latent variable models with structural constraints

have received a lot of attention in various fields, including psychology, epidemiology,

and medicine. We term such models as Structured Latent Attribute Models (SLAMs),

which generally fall into the last category of using discrete latent variables to explain

discrete outcomes as described in the previous paragraph. However, SLAMs have

the following key features distinct from the traditional latent class model: the first is

that in a SLAM the latent variable per subject is characterized by a configuration of

multiple fine-grained attributes; and the second is that the aforementioned structural

constraints play an important role in describing the data generation process. There-

fore, SLAMs can also be viewed as restricted latent class models (Xu, 2017; Gu and

Xu, 2020a). These key features pose many interesting and challenging questions, re-

quiring balancing the additional gain in the model’s explanatory power and scientific

interpretability, against the additional difficulty of understanding and handling the

complex model structure.

This dissertation studies such a modern family of structured latent attribute mod-

els from theoretical, methodological, and computational perspectives. In the remain-

ing part of this chapter, we first introduce the setup of SLAMs in Section 1.1. Then

we review some popular model examples in Section 1.2 and some real-world designs

2



in Section 1.3. Later in Section 1.4, we point out the unique challenges brought by

SLAMs, summarize our contributions, and outline the structure of this dissertation.

1.1 Setup of Structured Latent Attribute Models

SLAMs offer a framework to achieve fine-grained inference on individuals’ multiple

latent attributes. This further provides the basis for clustering the population into

subgroups based on the inferred attribute patterns. These models are central to a

wide scope of applications, including the following examples.

(1) Cognitive diagnosis in educational assessment. Structured latent attribute mod-

els play a key role in cognitive diagnosis modeling in educational and psychologi-

cal assessment. Cognitive diagnosis aims to make a classification-based decision

on an individual’s latent attributes, based on his or her observed responses to

a set of designed diagnostic items (questions). The structural constraints usu-

ally come from the design matrix that specifies what latent attributes each item

measures (e.g., Junker and Sijtsma, 2001; Henson et al., 2009; Rupp et al., 2010;

de la Torre, 2011). See Section 1.3 for several data examples, including the Test

of English as a Foreign Language (TOEFL) (e.g., von Davier, 2008) and Trends

in International Mathematics and Science Study.

(2) Psychiatric evaluation in clinical settings. Structured latent attribute models

have also been used in psychiatric evaluation. Here the responses are manifested

symptoms and the latent patterns represent the profiles of presence/absence

of a set of underlying psychological or psychiatric disorders. The structural

constraints result from the fact that each symptom may be shared by multiple

disorders, which are specified by psychiatric diagnosis guidelines. See examples

in Templin and Henson (2006), Jaeger et al. (2006), and de la Torre et al. (2018).

(3) Disease etiology detection in epidemiology. Another application of structured
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latent attribute models is the diagnosis of disease etiology in epidemiology (Wu

et al., 2016, 2017; Deloria Knoll et al., 2017; O’Brien et al., 2019). Here the ob-

served responses are imperfect laboratory measurements of subjects’ biological

samples, and the latent attribute patterns are the configurations of existence

or absence of a set of pathogens underlying some disease. The structural con-

straints naturally arise from the fact that each measurement may only target

certain pathogens.

In these applications, either the study design or the prior knowledge dictates that

the observed variables depend on the latent ones in a highly structured fashion. For

example, each test item in an educational assessment, by design, may only measure

a particular subset of the skills, while in disease etiology research each laboratory

measurement may target a specific set of pathogens. SLAMs incorporate these sci-

entifically interpretable constraints through a key structure: a Q-matrix of binary

entries. In a scenario with J observed measurements per subject that target K unob-

served latent attributes, the Q-matrix has size J ×K. The concept of the Q-matrix

was first proposed in Tatsuoka (1983) and later gained popularity in many cognitive

diagnostic models, as will be reviewed in Section 1.2. Figure 1.1 illustrates the bi-

partite graph representation of a Q-matrix. The directed edges from the K latent

attributes (in circles) to the J observed responses (in rectangles) represent the struc-

tured statistical dependence; these directed edges can be equivalently expressed as

nonzero entries in a J×K binary matrix Q = (qj,k)J×K . On the latent side, arbitrary

dependencies are allowed among the attributes, as indicated by the dotted edges in

Figure 1.1. When qj,k = 1, there exists statistical dependence of outcome j on latent

attribute k, there is a directed edge from latent attribute k to observed item response

j. We say attribute k is a parent attribute of item j if qj,k = 1. Further, denote the

the set of parent attributes of each item j by Kqj = {k ∈ {1, . . . , K} : qj,k = 1}.
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Figure 1.1: Visualizing Q-matrix as a bipartite graph

The most important statistical property of the family of SLAMs is characterized

by the Q-matrix, or equivalently, by the bipartite graph between the latent attributes

and the observed responses. Specifically, the following key property is shared by all

the SLAMs considered in this dissertation.

Property 1. The distribution of the observed response Rj to the jth item depends

only on the parent attributes of item j (that is, those in Kqj), as specified by the

entries of the Q-matrix.

In most real-world applications of SLAMs in psychological and educational mea-

surement, the Q-matrix is pre-specified by practitioners and summarizes the informa-

tion of the study design. This process is subjective and misspecification might exist,

therefore in practice, sometimes researchers are interested in the identification and

estimation of the Q-matrix itself. This dissertation will investigate both scenarios:

both with a known Q-matrix and with an unknown Q-matrix.

SLAMs have close connections with many other statistical models. First, each

possible configuration of K attributes forms a pattern defining a latent subpopula-

tion. Therefore the model can be viewed as a structured mixture model (McLachlan

and Peel, 2004) and also provides a framework for model-based clustering (Fraley and

Raftery, 2002) of categorical data. Second, the probability distribution of a SLAM can
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be written as a mixture of higher-order tensors, relating the framework to tensor de-

compositions (Anandkumar et al., 2014). Third, SLAMs also connect with the mixed

membership model for multivariate categorical data Erosheva et al. (2007) through

a reformulation. Fourth, SLAMs share a similar spirit to the restricted/deep Boltz-

mann machines and deep belief networks in the deep learning literature (Goodfellow

et al., 2016). This is because all of them assume both latent and observed variables

are multivariate binary and that there are complex dependencies in between.

We now summarize the general model setup of SLAMs. A latent attribute pattern

is denoted by a K-dimensional vector α = (α1, . . . , αK) of binary entries, where

αk ∈ {0, 1} denotes the presence or absence of the kth attribute. Conditional on a

subject’s latent attribute pattern α ∈ {0, 1}K , his/her responses to the J items are

assumed to be independent Bernoulli random variables with parameters θ1,α, . . . , θJ,α.

Specifically, θj,α = P(Rj = 1 | α) denotes the positive response probability, and is also

called an item parameter of item j. We collect all the item parameters in the matrix

Θ = (θj,α), which has size J × 2K with rows indexed by the J items and columns

by the 2K attribute patterns. For pattern α ∈ {0, 1}K , we denote its corresponding

column vector in Θ by Θ·,α.

Corresponding to Property 1, the key assumption in a SLAM is that for a latent

attribute pattern α = (α1, . . . , αK) and item j, the parameter θj,α is only determined

by whetherα possesses the attributes in the setKj = {k ∈ {1, . . . , K} : qj,k = 1}; that

is, those attributes related to item j as specified in the Q-matrix. We will sometimes

call the attributes in Kj the required attributes of item j. Under this assumption, all

latent attribute patterns in the set

Cj = {α ∈ {0, 1}K : α � qj} (1.1)
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share the same value of θj,α; namely,

max
α∈Cj

θj,α = min
α∈Cj

θj,α for any j ∈ {1, . . . , J}. (1.2)

We will call the set Cj a constraint set. Thus, the Q-matrix puts constraints on Θ

by forcing certain entries of it to be the same. Different SLAMs model the depen-

dence of θj,α on the parent attributes in Kqj differently to encode different scientific

assumptions; please see Examples I.1–I.3.

In addition to (1.2), another key assumption in SLAMs is the monotonicity as-

sumption that

θj,α > θj,α′ for any α ∈ Cj, α′ 6∈ Cj. (1.3)

Constraint (1.3) is commonly used in our motivating applications of cognitive diagno-

sis in educational assessments, where (1.3) indicates subjects mastering all required

attributes of an item are more “capable” of giving a positive response to it (i.e., with

a larger Bernoulli parameter θj,α), than those who lack some required attributes.

Nonetheless, our theoretical results of model identifiability in the following chapters

also apply if (1.3) is relaxed to θj,α 6= θj,α′ for any α ∈ Cj, α′ 6∈ Cj. This allows more

flexibility in the model assumptions of SLAMs used in other applications.

Under the introduced notations, the probability mass function of a subject’s re-

sponse vector R = (R1, . . . , RJ)> can be written as

P(R = r | Θ, p) =
∑

α∈{0,1}K
pα

J∏
j=1

θ
rj
j,α(1− θj,α)1−rj , (1.4)
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for r ∈ {0, 1}J . Alternatively, the responses can be viewed as a J-th order tensor and

the probability mass function of R can be written as a probability tensor as follows.

P(R | Θ, p) =
2K∑
l=1

pαl

 θ1,αl

1− θ1,αl

 ◦
 θ2,αl

1− θ2,αl

 ◦ · · · ◦
 θJ,αl

1− θJ,αl

 , (1.5)

where “◦” denotes the tensor outer product and θj,α’s are constrained by (1.2) and

(1.3).

1.2 Model Examples: in Cognitive Diagnostic Modeling and

in Machine Learning

The structured latent attribute models have recently gained great interests in

cognitive diagnosis with applications in educational assessment, psychiatric evaluation

and many other disciplines (e.g., Rupp et al., 2010; de la Torre, 2011; Culpepper, 2015;

Wang et al., 2018; Chen et al., 2018b). Cognitive diagnosis is the process of arriving

at a classification-based decision about an individual’s latent attributes, based on the

observed surrogate responses to a set of items. Such diagnostic information plays an

important role in constructing efficient, focused remedial strategies for improvement

in individual performance.

The structured latent attribute models are important statistical tools in cogni-

tive diagnosis to detect the presence or absence of multiple fine-grained attributes.

Cognitive diagnosis models in the psychometrics literature mostly consist of binary

attributes, while general diagnostic models with categorical attributes were also con-

sidered in von Davier (2008). This dissertation focuses on the case of binary at-

tributes.

In the following, we review some popular cognitive diagnosis models and illustrate

how they fall into the family of structured latent attribute models. We first introduce
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some notation. For two vectors a = (a1, . . . , aK), b = (b1, . . . , bK) of the same

dimensionK, we write a � b if ai ≥ bi for all i = 1, . . . , K; and a � b if a � b and a 6=

b. Denote a−b = (a1−b1, . . . , aK−bK) and a∨b = (max{a1, b1}, . . . ,max{aK , bK}).

We also denote the all-zero and all-one vectors by 0 and 1, respectively.

Example I.1 (Conjunctive DINA and Disjunctive DINO). The Deterministic Input

Noisy output “And” gate (DINA) model proposed in Junker and Sijtsma (2001)

and the Deterministic Input Noisy output “Or” gate (DINO) model proposed in

Templin and Henson (2006) are popular and basic diagnostic models, which adopt

the conjunctive and disjunctive assumptions, respectively. Specifically, under DINA,

a subject needs to master all the required attributes of an item to be “capable” of it,

and mastering the attributes not required by the item will not compensate for the lack

of the required ones. That is, the required attributes of an item act “conjunctively”

to define two knowledge states, with the following positive response probability

θDINAj,α =

 1− sj, if α � qj,

gj, otherwise.

where sj is the slipping parameter, which denotes the probability that a capable

subject slips the positive response, and gj is the guessing parameter, which denotes

the probability that a non-capable subject coincidentally gives the positive response

by guessing. Under DINO, a subject only needs to master one of the required at-

tributes to be “capable” of an item. That is, the required attributes of an item act

“disjunctively” and

θDINOj,α =

 1− sj, if ∃k s.t. αk = qj,k = 1,

gj, otherwise.

where sj and gj are the slipping and guessing parameters. Both the DINA and DINO
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models assume 1− sj > gj for all j.

Example I.2 (Main-Effect Cognitive Diagnosis Models). An important family of

cognitive diagnosis models assume that the θj,α depends on the main effects of those

attributes required by item j, but not their interactions. The main-effect models

assume the main effects of the required attributes in Kqj play a role in distinguishing

the item parameters, which can be written as

θmain-eff
j,α = f

(
βj,0 +

∑
k∈Kqj

βj,kαk

)
(1.6)

= f
(
βj,0 +

K∑
k=1

qj,kβj,kαk

)
,

where f(·) is a link function. Note that not all β-coefficients in the second equivalent

definition in the above equation are included in the model. For an attribute k ∈

{1, . . . , K}, βj,k 6= 0 only if qj,k = 1. We interpret this as f(βj,0) denoting the

probability of a positive response when none of the required attributes are present

in α; when qj,k = 1, βj,{k} is included in the model, representing the change in

the positive response probability resulting from the mastery of a single attribute

k. Different link functions f(·) lead to different models. Specifically, the popular

reduced Reparameterized Unified Model (reduced-RUM; DiBello et al., 1995) has

f(·) being the exponential function θRUMj,α = θ+
j

∏K
k=1r

qj,k(1−αk)

j,k , where θ+
j = P (Rj =

1 | α � qj) represents the positive response probability of a capable subject of

j, and rj,k ∈ (0, 1) is the parameter penalizing not possessing attribute k required

by item j. Equivalently, the item parameter in reduced-RUM can be written as

log θRUMj,α = βj,0 +
∑K

k=1 βj,k(qj,kαk), where βj,k ≥ 0 for qj,k = 1. The Linear Logistic

Model (LLM; Maris, 1999) has f(·) being the sigmoid function with text(θ LLMj,α ) =

βj,0 +
∑K

k=1βj,k(qj,kαk). And the Additive Cognitive Diagnosis Model (ACDM; de la

Torre, 2011) with f(·) the identity function.
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Example I.3 (All-Effect Cognitive Diagnosis Models). Another type of multi-parameter

SLAMs are the all-effect models. These models assume that the positive response

probability depends on the main effects and the interaction effects of the parent at-

tributes of the item. The item parameter of an all-effect model can be written as

θall-eff
j,α = f

(∑
S⊆Kqj

βj,S
∏

k∈S
αk

)
(1.7)

= f
(
βj,∅ +

K∑
k=1

qj,kβj,{k}αk +
∑

1≤k 6=k′≤K

qj,kqj,k′βj,{k,k′}αkαk′ + · · ·

βj,{1,2,··· ,K}

K∏
k=1

(qj,kαk)
)
.

Still note that not all β-coefficients in the second equivalent definition in the above

equation are modeled. For a subset S of the K attributes {1, . . . , K}, βj,S 6= 0 only if∏
k∈S qj,k = 1. When qj,k = 1, βj,{k} is included in the model, representing the change

in the positive response probability resulting from the mastery of a single attribute k;

when qj,k = qj,k′ = 1, βj,{k,k′} is included in the model, representing the change in the

positive response probability resulting from the interaction effect of mastering both

k and k′, etc. When the link function f(·) is the identity, (1.7) gives the Generalized

DINA (GDINA) model proposed by de la Torre (2011). Note that the DINA model

is a submodel of the GDINA model by setting all the βj, S coefficients in (1.7), other

than βj,∅ and βj,Kqj , to zero. Similar to the GDINA model, the LCDM adopts the

logistic link function and assumes that logit(θ LCDMj,α ) =
∑

S⊆Kqj
βj, S

∏
k∈Sαk. When

the link function f(·) is the sigmoid function, (1.7) gives the Log-linear Cognitive

Diagnosis Models (LCDMs) proposed by Henson et al. (2009); see also the General

Diagnostic Models (GDMs) proposed in von Davier (2008).

All the cognitive diagnosis models reviewed in Examples I.1–I.3 are structured

latent attribute models. Other than these examples in the psychometrics literature,

the following is another example of SLAM in the deep learning literature.
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Example I.4 (Deep Boltzmann Machines). The Restricted Boltzmann Machine

(RBM) (Smolensky, 1986; Goodfellow et al., 2016) is a popular neural network model.

RBM is an undirected probabilistic graphical model, with one layer of latent (hidden)

binary variables, one layer of observed (visible) binary variables, and a bipartite graph

structure between the two layers. We denote variables in the observed layer by R and

variables in the latent layer by α, with lengths J and K, respectively. Under an RBM,

the probability mass function ofR andα is P(R,α) ∝ exp(−R>WQα−f>R−b>α),

where f , b, and WQ = (wj,k) are the parameters. The binary Q-matrix then specifies

the sparsity structure in WQ, by constraining wj,k 6= 0 only if qj,k 6= 0. The Deep

Boltzmann Machine (DBM) is a generalization of RBM by allowing multiple latent

layers. Consider a DBM with two latent layers α(1) and α(2) of length K1 and K2,

respectively. The probability mass function of (R,α(1),α(2)) in this DBM can be

written as

P(R,α(1),α(2)) ∝ exp
(
−R>WQα(1) − (α(1))>Uα(2) − f>R− b>1 α(1) − b>2 α(2)

)
,

(1.8)

where f ∈ RJ , bi ∈ RKi for i = 1, 2, and WQ = (wj,k) ∈ RJ×K1 , U ∈ RK1×K2 are

model parameters; Figure 3.1 gives an example of a DBM with a 5 × 4 Q-matrix.

For f = (f1, . . . , fJ)> and α(1) = (α
(1)
1 , . . . , α

(1)
K1

), the conditional distribution of an

observed variable Rj given the latent variables is

P(Rj = 1 | α(1),α(2), · · · ) = P(Rj = 1 | α(1)) =
exp

(∑K1

k=1 wj,kα
(1)
k + fj

)
1 + exp

(∑K1

k=1wj,kα
(1)
k + fj

) ,
(1.9)

where “ · · · ” represents deeper latent layers that potentially exist in a DBM. More-

over, from (1.8) we have P(R | α(1)) =
∏J

j=1 P(Rj | α(1)), so a DBM satisfies the
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local independence assumption that the Rj’s are conditionally independent given the

α(1). Therefore, a DBM can be viewed as a multi-parameter main-effect SLAM in

(1.6) with a sigmoid link function. Viewing a DBM in this way, (B.73) gives the

item parameter θj,α(1) , and the constraint set of each item j also takes the form

Cj = {α(1) ∈ {0, 1}K1 : α(1) � qj}.

Q =


1 0 1 0
1 1 0 0
0 1 1 0
0 0 1 1
0 1 0 1

 ;

R1 R2 R3 R4 R5 R ∈ {0, 1}5

α
(1)
1 α

(1)
2 α

(1)
3 α

(1)
4 α(1) ∈ {0, 1}4

WQ ∈ R5×4

w
1,

1

w
5,4

α
(2)
1 α

(2)
2 α

(2)
3 α

(2)
4 α(2) ∈ {0, 1}4

Figure 1.2: Deep Boltzmann Machine

1.3 Real Data Examples: in Designing Practice

To further illustrate the structural constraints induced by the Q-matrix, we next

present several real-world applications that utilize SLAMs as cognitive diagnosis mod-

eling tools.

Example I.5 (TOEFL Internet-based Testing Data). TOEFL, short for Test of En-

glish as a Foreign Language, is a standardized test to measure English language ability

of non-native speakers. Restricted latent class models have been used to analyze the

TOEFL data by researchers at Educational Testing Service (ETS; e.g., von Davier,

2005, 2008). For instance, von Davier (2008) proposed a general diagnostic model

(GDM), which was used to analyze the TOEFL reading section of two parallel forms,

A and B, with their Q-matrices analyzed and specified by content experts. In par-

ticular, the forms A and B contain 39 and 40 items with four latent attributes: α1:

word meaning, α2: specific information, α3: connect information, and α4: synthesize

and organize. Table 1.1 gives the summary of the two Q-matrices by presenting each
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q-vector’s frequencies in them. For instance, the first line in Table 1.1 reads (1, 0, 0,

0) for the row q-vector and (9, 9) for the frequencies. This means that there are nine

items with q-vector (1, 0, 0, 0) in form A and nine in form B, respectively. Under

the restrictions induced by the Q-matrices, the diagnostic models used to analyze the

TOEFL data fall in the family of restricted latent class models.

Table 1.1: Q-matrix entry frequencies, TOEFL iBT field test, Reading Forms A & B

Q-matrix row q-vectors q-vector frequency

α1 α2 α3 α4

Form A Form Bword
meaning

specific
information

connect
information

synthesize
& organize

1 0 0 0 9 9
0 1 0 0 8 11
1 1 0 0 1 1
0 0 1 0 10 10
1 0 1 0 0 1
0 1 1 0 2 0
0 1 0 1 1 0
0 0 1 1 7 8
1 0 1 1 1 0

Example I.6 (Trends in International Mathematics and Science Study). Trends in

International Mathematics and Science Study (TIMSS) is a large scale cross-country

assessment, administered by the International Association for the Evaluation of Ed-

ucational Achievement. TIMSS evaluates the mathematics and science abilities of

fourth and eighth graders every four years since 1995 and covers more than 40 coun-

tries. The TIMSS data allows one to analyze trends in student progress that can

provide feedback for future improvement in areas needing further instruction (Lee

et al., 2011). Researchers have used the cognitive diagnosis models to analyze the

TIMSS data (e.g., Lee et al., 2011; Choi et al., 2015; Yamaguchi and Okada, 2018). For

instance, a 43× 12 Q-matrix constructed by mathematics educators and researchers

was specified for the TIMSS 2003 eighth grade mathematics assessment (Choi et al.,
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2015). A total number of 12 fine-grained attributes are identified, which fall in five

big categories of skill domains measured by the eighth grade exam, Number, Alge-

bra, Geometry, Measurement, and Data. The Q-matrix is presented in Table 1 in

the Supplementary Material. Choi et al. (2015) used DINA model to fit the dataset

containing responses sampled from 8912 U.S. and 5309 Korean students. Main-Effect

and All-Effect diagnostic models have also been applied to analyze the TIMSS data

(e.g., Yamaguchi and Okada, 2018).

Example I.7 (Fraction Subtraction Data). The fraction subtraction dataset is widely

analyzed in the psychometrics literature (de la Torre and Douglas, 2004a; DeCarlo,

2011; Henson et al., 2009; de la Torre, 2011). The dataset contains 536 middle school

students’ binary responses to 20 fraction subtraction items that were designed for

diagnostic assessment. Table 1.3 presents the Q-matrix specified in de la Torre and

Douglas (2004a), which corresponds to the K = 8 skill attributes regarding doing

fraction and subtraction. The eight attributes are (α1) Convert a whole number

to a fraction; (α2) Separate a whole number from a fraction; (α3) Simplify before

subtracting; (α4) Find a common denominator; (α5) Borrow from whole number

part; (α6) Column borrow to subtract the second numerator from the first; (α7)

Subtract numerators; (α8) Reduce answers to simplest form. Many researchers have

used various structured latent attribute models models to fit this dataset (e.g., de la

Torre and Douglas, 2004b; DeCarlo, 2011; Henson et al., 2009; de la Torre, 2011).

1.4 Unique Challenges of SLAMs and Our Contributions

The family of SLAMs bring advantages both in representational power and in sci-

entific interpretability. As mentioned earlier, multiple latent attributes can represent

various meaningful real-world constructs, and also the structural matrix Q can encode

the information of study design or scientific prior knowledge. However, despite the
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popularity and advantages of SLAMs, this family of models also bring several unique

challenges and yield important open problems.

The first challenge is the fundamental identifiability issue associated with SLAMs.

Indeed, this has long been recognized as a problem, as pointed out by practitioners

and researchers in the literature. The following are quotes from researchers in the

educational and psychological measurements, just to name a few:

(a) Maris and Bechger (2009): “Identifiability of the parameters from the observa-

tions remains problematic for most diagnostic classification models [SLAMs].

[For these models] the problem is much harder and much less trivial.”

(b) Huebner (2010): “Identification of parameters is increasingly difficult with in-

creasing numbers of skills in the model”

(c) von Davier (2014): “The literature on assessing identifiability of diagnostic mod-

els [SLAMs] is sparse at best... There is little [study] to be found.”

Model identifiability is the first and foremost prerequisite for drawing any valid sta-

tistical inference. In statistical terms, a model is identifiable if all the parameters

can be uniquely determined by the distribution of the observed data. For SLAMs,

identifiability issues are challenging to address, due to (1) the discreteness nature of

all the random variables, (2) the existence of many latent attributes, and (3) the

complex constraints imposed by the Q-matrix.

As previously mentioned, SLAMs can be viewed as restricted latent class models.

The study of identifiability of latent class models dates back to decades ago (McHugh,

1956; Teicher, 1967; Goodman, 1974). For unrestricted latent class models, Gyllen-

berg et al. (1994) showed the model is not identifiable in the sense that, there always

exists some set of parameters, such that one can construct a different set of parame-

ters which lead to the same distribution of the responses. Such nonidentifiablity has

likely impeded statisticians from looking further into this problem (Allman et al.,
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2009). Due to the difficulty of establishing strict identifiability in such scenarios, El-

more et al. (2005) and Allman et al. (2009) studied the generic identifiability of these

models. The idea of generic identifiability is closely related to concepts in algebraic

geometry and implies that the model parameters are identifiable almost everywhere

in the parameter space, excluding only a Lebesgue measure zero set. Allman et al.

(2009) established generic identifiability results for various latent variable models,

including the unrestricted latent class models. The complex constraints of SLAMs

pose additional challenge to the study of model identifiability. The existing results

of generic identifiability in Allman et al. (2009) do not apply to SLAMs, because the

restrictions imposed by the structural matrix Q already constrain the model param-

eters of a SLAM into a measure-zero (and hence potentially unidentifiable) subset of

the parameter space of an unrestricted latent class model.

Another type of challenges accompanying the application of SLAMs is the esti-

mation and computation difficulty in high dimensions. Since the latent attributes

are modeled as multivariate categorical, given a moderate to large number of discrete

attributes K, the size of the latent pattern space grows exponentially with K. This

poses big challenges to both estimation and computation methodology. In real-world

applications of SLAMs, the number of potential latent classes can be much larger

than the sample size. For instance, the Trends in International Mathematics and Sci-

ence Study (TIMSS) is an international educational assessment that provides reliable

and timely data on the mathematics and science achievement of middle school stu-

dents. In a TIMSS dataset with eighth-graders, the number of attributes of interest

is K = 15, leading to 215 = 32768 configurations of binary latent patterns; while the

available sample size is only hundreds. For interpretability, it is often assumed that

only a small subset of attribute patterns exist. In these high-dimensional settings

with such “sparsity” structure, existing estimation methods tend to over-select too

many latent classes, and also incur excessive computational cost. Therefore, valid
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statistical methods and scalable computational algorithms to attack combinatorial

estimation problems in high-dimensional settings are severely called for.

This dissertation addresses these research questions and has several contributions

outlined as follows. On the theory of identifiability, Chapter II1 fully answers the

question that under what conditions the popular and basic DINA model (Junker and

Sijtsma, 2001) is identifiable, by providing the necessary and sufficient conditions for

strict identifiability. Chapter III2 develops practical partial and generic identifiability

theory for a general family of SLAMs, motivated by real-world needs of designing

cognitive diagnostic tests with minimal restrictions. The new theory is applied to

give the affirmative answer of identifiability to models with several aforementioned

real world designs, for the first time in the literature. Chapter IV3 addresses a further

question, which goes beyond merely identifying the model parameters. Rather, here

the main goal is to identify the key latent structure, that is, the Q-matrix itself. This

chapter includes various results of identifying the Q-matrix, which is a technically

much more challenging than establishing identifiability given a known Q-matrix.

On the methodological and computational side, Chapter V4 deals with the chal-

lenge in modern applications of SLAMs is the high-dimensional latent attribute pat-

terns. The methodological contribution in this chapter is a penalized likelihood

method to select significant latent patterns in the high-dimensional scenario. The

computational contribution includes a scalable screening algorithm as a preprocess-

ing step that drastically reduces the computational cost of the method. Going a step

further from learning general sparse latent patterns, Chapter VI addresses the identifi-

cation and estimation problem of hierarchical latent attribute models. These models

incorporate an additional ingredient on top of SLAMS: hierarchical constraints on

which configurations of the attributes are allowed. This chapter addresses the ques-

1mainly corresponding to Gu and Xu (2019b), Psychometrika.
2mainly corresponding to Gu and Xu (2020a), accepted by the Annals of Statistics.
3mainly corresponding to Gu and Xu (2020b), accepted by Statistica Sinica.
4mainly corresponding to Gu and Xu (2019a), Journal of Machine Learning Research.
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tion of identifiability under arbitrary attribute hierarchies, and further proposes a

scalable algorithm for estimating both the latent structural matrix and the attribute

hierarchy from the noisy data. Each chapter from Chapter II to Chapter VI has a

corresponding appendix containing all the technical proofs and additional numerical

results. All the appendices come after the main chapters.
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Table 1.2: Q-matrix, TIMSS 2003 8th Grade Data

Item ID α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12

1 1 0 1 1 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0
3 1 0 1 0 0 0 0 0 0 1 0 0
4 0 1 1 0 0 0 0 0 0 1 0 0
5 0 0 0 0 0 0 1 0 0 0 1 0
6 0 0 0 0 0 0 1 0 0 1 1 0
7 0 0 0 0 0 0 1 0 0 0 1 0
8 0 1 0 1 0 0 0 0 0 0 0 0
9 0 0 0 1 0 0 1 0 0 0 0 0
10 0 0 0 1 1 1 0 0 0 0 0 0
11 0 0 0 1 1 1 0 0 0 0 0 0
12 1 0 0 0 1 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 1 1 0 0 0
14 0 0 0 0 0 0 0 1 1 0 0 0
15 0 0 0 0 0 0 0 1 0 0 0 0
16 0 0 0 1 1 0 0 0 0 0 0 0
17 1 0 0 0 0 0 0 0 0 1 0 0
18 1 1 1 0 0 0 0 0 0 1 0 0
19 0 0 0 1 0 0 0 0 0 0 0 1
20 1 0 0 0 0 0 1 0 0 0 0 0
21 1 1 0 0 0 0 0 0 0 0 0 0
22 0 0 1 1 1 0 0 0 0 0 0 0
23 1 0 0 0 0 0 0 0 0 1 0 0
24 0 0 0 0 0 0 0 0 1 1 0 0
25 0 0 0 0 0 0 1 0 0 0 0 0
26 1 0 0 0 0 0 0 0 0 0 0 1
27 1 0 0 0 0 0 0 0 0 0 0 0
28 1 1 0 0 0 0 0 0 0 0 0 0
29 1 1 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 1 1 0
31 0 0 1 0 0 0 1 0 0 0 1 0
32 1 0 0 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 1 1 0 0 0 0
34 0 1 0 0 1 0 0 0 0 0 0 0
35 0 0 0 0 0 0 1 0 0 1 0 0
36 0 0 0 0 1 0 0 1 1 0 0 0
37 0 0 0 0 0 0 1 0 0 0 0 0
38 0 0 0 0 1 1 0 0 0 0 0 0
39 1 0 0 0 0 0 0 0 0 0 0 0
40 1 1 1 0 0 0 0 0 0 0 0 0
41 1 0 0 0 0 0 0 0 0 0 0 0
42 1 1 0 1 0 0 0 0 0 0 0 0
43 1 0 0 0 0 0 0 0 0 0 0 1
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Table 1.3: Q-matrix, Fraction Data

Item ID Content
K = 8 attributes

α1 α2 α3 α4 α5 α6 α7 α8

1 5
3
− 3

4
0 0 0 1 0 1 1 0

2 3
4
− 3

8
0 0 0 1 0 0 1 0

3 5
6
− 1

9
0 0 0 1 0 0 1 0

4 31
2
− 23

2
0 1 1 0 1 0 1 0

5 43
5
− 3 4

10
0 1 0 1 0 0 1 1

6 6
7
− 4

7
0 0 0 0 0 0 1 0

7 3− 21
5

1 1 0 0 0 0 1 0

8 2
3
− 2

3
0 0 0 0 0 0 1 0

9 37
8
− 2 0 1 0 0 0 0 0 0

10 4 4
12
− 2 7

12
0 1 0 0 1 0 1 1

11 41
3
− 24

3
0 1 0 0 1 0 1 0

12 11
8
− 1

8
0 0 0 0 0 0 1 1

13 33
8
− 25

6
0 1 0 1 1 0 1 0

14 34
5
− 32

5
0 1 0 0 0 0 1 0

15 2− 1
3

1 0 0 0 0 0 1 0

16 45
7
− 14

7
0 1 0 0 0 0 1 0

17 73
5
− 4

5
0 1 0 0 1 0 1 0

18 4 1
10
− 2 8

10
0 1 0 0 1 1 1 0

19 4− 14
3

1 1 1 0 1 0 1 0

20 41
3
− 15

3
0 1 1 0 1 0 1 0
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CHAPTER II

Necessary and Sufficient Condition for the

Identifiability of the DINA Model

The DINA model introduced in Example I.1 is a very popular and basic Cognitive

Diagnostic Model (CDM). It also serves as a submodel for some general structured

latent attribute models, such as the GDINA model introduced in Example I.3. Re-

cently there have been several studies on the identifiability of the CDMs, including

the DINA model (e.g., Xu and Zhang, 2016). However, the existing works mostly fo-

cus on developing sufficient conditions for identifiability, which might impose stronger

than needed or sometimes even impractical constraints on designing identifiable cog-

nitive diagnostic tests. It remains an open problem in the literature what would be

the minimal requirement, i.e., the necessary and sufficient conditions, for the models

to be identifiable. In particular, for the DINA model, Xu and Zhang (2016) proposed

a set of sufficient conditions and a set of necessary conditions for the identifiability

of the slipping, guessing and population proportion parameters. However, as pointed

out by the authors, there is a gap between the two sets of conditions; see Xu and

Zhang (2016) for examples and discussions.

This chapter addresses this open problem by developing the necessary and suf-

This chapter contains the main part of Gu and Xu (2019b), Psychometrika.
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ficient condition for the identifiability of the DINA model. Furthermore, we show

that the identifiability condition ensures the statistical consistency of the maximum

likelihood estimators of the model parameters. The proposed condition not only guar-

antees identifiability, but also gives the minimal requirement that the DINA model

needs to meet in order to be identifiable. The identifiability result can be directly

applied to the DINO model (Templin and Henson, 2006) through the duality of the

DINA and DINO models (Chen et al., 2015). For general CDMs such as the LCDM

and GDINA models, since the DINA model can be considered as a submodel of

them, the proposed condition also serves as a necessary requirement. From a practi-

cal perspective, the necessary and sufficient condition only depends on the Q-matrix

structure and hence is easily checkable. Such condition would provide a practical

guideline for designing statistically valid and estimable cognitive tests.

The rest of this chapter is organized as follows. Section 2.1 states the main result

and includes several illustrating examples. Section 2.2 gives a brief discussion. The

proofs of the main results are included in Appendix A.

2.1 Main Theorem of Necessity and Sufficiency

We first introduce the important concept of the “completeness” of a Q-matrix,

which was first introduced in Chiu et al. (2009). A Q-matrix is said to be complete if

it can differentiate all latent attribute profiles, in the sense that under the Q-matrix,

different attribute profiles have different response distributions. In this study of the

DINA model, completeness of the Q-matrix means that {e>k : k = 1, . . . , K} ⊆

{qj : j = 1, . . . , J}, equivalently, for each attribute there is some item which requires

that and solely requires that attribute. Up to some row permutation, a complete

Q-matrix under the DINA model contains a K×K identity matrix. Under the DINA

model, completeness of the Q-matrix is necessary for identifiability of the population

proportion parameters p (Xu and Zhang, 2016).
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Besides the completeness, an additional necessary condition for identifiability was

also specified in Xu and Zhang (2016) that each attribute needs to be related with

at least three items. For ease of discussion, the set of necessary conditions in Xu and

Zhang (2016) are summarized as follows.

Condition II.1. The Q-matrix is complete under the DINA model and without loss

of generality, we assume the Q-matrix takes the following form:

Q =

IK
Q?


J×K

, (2.1)

where IK denotes the K ×K identity matrix and Q? is a (J −K)×K submatrix of

Q.

Condition II.2. Each of the K attributes is required by at least 3 items.

Though necessary, Xu and Zhang (2016) recognized that Condition 1 is not suffi-

cient. To establish identifiability, the authors also proposed a set of sufficient condi-

tions, which however is not necessary. For instance, the Q-matrix in (2.2), which is

given on page 633 in Xu and Zhang (2016), does not satisfy their sufficient condition

but still gives an identifiable model.

Q =


I4

1 1 1 0
1 1 0 1
1 0 1 1
0 0 0 1

 (2.2)

In particular, their sufficient condition C4 requires that for each k ∈ {1, . . . , K}, there

exist two subsets S+
k and S−k of the items (not necessarily nonempty or disjoint) in Q?

such that S+
k and S−k have attribute requirements that are identical except in the kth

attribute, which is required by an item in S+
k but not by any item in S−k . However,

the first attribute in (2.2) does not satisfy this condition. Examples of this kind of
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Q-matrices not satisfying their C4 but still identifiable are not rare and can be easily

constructed as shown below in (2.3).

Q =


I3

1 1 0
1 0 1
1 1 1
1 1 1

 , Q =


I3

1 0 0
1 1 0
1 1 1
0 0 1

 , Q =


I3

1 0 0
1 1 0
1 1 1
1 1 1

 , Q =


I4

1 1 1 0
1 1 0 1
1 0 1 1
0 1 0 1

 .

(2.3)

It has been an open problem in the literature what would be the minimal re-

quirement of the Q-matrix for the model to be identifiable. This chapter solves this

problem and shows shat Condition 1 together with the following Condition 2 are

sufficient and necessary for the identifiability of the DINA model parameters.

Condition II.3. Any two different columns of the sub-matrix Q? in (2.1) are distinct.

We have the following identifiability result.

Theorem II.1 (Sufficient and Necessary Condition). Conditions II.1, II.2, II.3 are

sufficient and necessary for the identifiability of all the DINA model parameters.

Remark II.1. From the model construction, when there are some items that re-

quire none of the attributes, all the DINA model parameters are (s,p) and g− =

(gj : ∀j such that qj 6= 0)>. Theorem II.1 also applies to this special case that

the proposed conditions still remain sufficient and necessary for the identifiability of

(s, g−,p), under a Q-matrix containing some all-zero q-vectors. See Proposition A.2

in the Appendix for more details.

Conditions II.1, II.2, and II.3 are easy to verify. Equivalently, these conditions

can be written as three topological properties A, B and C of the bipartite graph

corresponding to the Q-matrix, as shown in the example in Figure 2.1. Based on

Theorem II.1, it is recommended in practice to design the Q-matrix such that it is
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r1 r2 r3 r4 r5 r6

α1 α2 α3

A. a perfect matching: orange edges

B. each attribute has ≥ 3 children

C. removing the perfect matching, the
K attributes has distinct children sets:

– red, blue, and green edges point to
different sets of rj’s

1

Figure 2.1: illustrating necessary and sufficient conditions on the Q-matrix in an
example

complete, has each attribute required by at least 3 items, and has K distinct columns

in the sub-matrix Q?. Otherwise, the model parameters would suffer from the non-

identifiability issue. We use the following examples to illustrate the theoretical result.

Example II.1. From Theorem II.1, the Q-matrices in (2.2) and (2.3) satisfy both

Conditions II.1, II.2, II.3 and therefore give identifiable models, while the results in

Xu and Zhang (2016) cannot be applied since their condition C4 does not hold. On

the other hand, the Q-matrices below in (2.4) satisfy the necessary conditions in Xu

and Zhang (2016), but they do not satisfy our Condition 2, so the corresponding

models are not identifiable.

Q =


I3

1 1 1
1 1 1
1 1 1
1 1 1

 , Q =


I3

1 1 0
1 1 0
0 0 1
0 0 1

 , Q =


I3

1 1 0
1 1 1
0 0 1
0 0 1

 , Q =


I4

1 1 1 0
1 1 1 1
1 0 1 1
0 1 0 1

 .

(2.4)

Example II.2. To illustrate the necessity of Condition II.3, we consider a simple

case when K = 2. If Conditions II.1 and II.2 are satisfied but Condition II.3 does not

hold, the Q-matrix can only have the following form up to some row permutations,
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Q =



I2

0 0
...

...
0 0
1 1
...

...
1 1


J×2

, (2.5)

where the first two items give an identity matrix while the next J0 items require none

of the attributes and the last J − 2 − J0 items require both attributes. Under the

Q-matrix in (2.5), we next show the model parameters (s, g,p) are not identifiable by

constructing a set of parameters (s̄, ḡ, p̄) 6= (s, g,p) which satisfy (5.9). Recall from

the model setup in Section 2 that for any item j ∈ {3, . . . , J0 +2} that has qj = 0, the

guessing parameter is not needed by the DINA model and for notational convenience,

we set gj ≡ ḡj ≡ 0. We take s̄ = s, ḡj = gj for j = J0 + 3, . . . , J , and p̄(11) = p(11).

Next we show the remaining parameters (g1, g2, p(00), p(10), p(01)) are not identifiable.

From Definition 1, the non-identifiability occurs if the following equations hold (see

the Supplementary Material for the computational details): P
(
(R1, R2) = (r1, r2) |

Q, s̄, ḡ, p̄
)

= P
(
(R1, R2) = (r1, r2) | Q, s, g,p

)
for all (r1, r2) ∈ {0, 1}2, where (R1, R2)

are the first two entries of the random response vector R. These equations can be

further expressed as the following equations in (2.6):

(r1, r2) =



(0, 0) : p̄(00) + p̄(10) + p̄(01) + p(11) = p(00) + p(10) + p(01) + p(11);

(1, 0) : ḡ1[p̄(00) + p̄(01)] + (1− s1)[p̄(10) + p(11)]

= g1[p(00) + p(01)] + (1− s1)[p(10) + p(11)];

(0, 1) : ḡ2[p̄(00) + p̄(10)] + (1− s2)[p̄(01) + p(11)]

= g2[p(00) + p(10)] + (1− s2)[p(01) + p(11)];

(1, 1) : ḡ1ḡ2p̄(00) + ḡ1(1− s2)p̄(01) + (1− s2)ḡ2p̄(10) + (1− s1)(1− s2)p(11)

= g1g2p̄(00) + g1(1− s2)p(01) + (1− s2)g2p(10) + (1− s1)(1− s2)p(11).

(2.6)

For any (s, g,p), there are 4 constraints in (2.6) but 5 parameters (ḡ1, ḡ2, p̄(00), p̄(10), p̄(01))
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to solve. Therefore there are infinitely many solutions and (s, g,p) are non-identifiable.

Example II.3. We provide a numerical illustration of Example 2. Without loss of

generality, we take J0 = 0, since whether there exist zero q-vector items makes no

impact on the nonidentifiability phenomenon as illustrated in (2.6). We take J = 10

and set the true parameters to be (p(00), p(10), p(01), p(11)) = (0.1, 0.3, 0.4, 0.2) and

sj = gj = 0.2 for j ∈ {1, . . . , 10}. We first generate a random sample of size N = 200.

From the data, we obtain one set of maximum likelihood estimators as follows:

(p̂(00), p̂(10), p̂(01), p̂(11)) = (0.22346, 0.26298, 0.32847, 0.18509);

ŝ = (0.1269, 0.1541, 0.0000, 0.2015, 0.1549, 0.2638, 0.3551, 0.1903, 0.1843, 0.1468);

ĝ = (0.1678, 0.2011, 0.2330, 0.1990, 0.2007, 0.2316, 0.2155, 0.1720, 0.2197, 0.1805).

Based on (2.6), we can construct infinitely many sets of (s̄, ḡ, p̄) that are also max-

imum likelihood estimators. For instance, we take s̄ = ŝ, ḡj = ĝj for j = 3, . . . , 10,

p̄(11) = p̂(11), and p̄(00) = 0.998 · p̂(00). Then solve (2.6) for the remaining parameters

p̄(10), p̄(01), ḡ1 and ḡ2 to get

p̄(00) = 0.22301, p̄(01) = 0.33306, p̄(10) = 0.25884, ḡ1 = 0.2561, ḡ2 = 0.1073.

The two different sets of values (ŝ, ĝ, p̂) and (s̄, ḡ, p̄) both give the identical log-

likelihood value -1132.1264, which confirms the non-identifiablility.

To further illustrate the above argument does not depend on the sample size, we

generate a random sample of size N = 105 and obtain the following estimators:

(p̂(00), p̂(10), p̂(01), p̂(11)) = (0.10436, 0.29933, 0.39845, 0.19786);

ŝ = (0.1968, 0.1932, 0.2007, 0.2065, 0.2015, 0.2000, 0.2001, 0.1949, 0.1985, 0.2036);

ĝ = (0.1993, 0.2006, 0.1995, 0.2010, 0.1971, 0.1983, 0.1995, 0.2022, 0.1989, 0.1988).
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Similarly, we set s̄ = ŝ, ḡj = ĝj for j = 3, . . . , 10, p̄(11) = p̂(11), and p̄(00) = 0.998 · p̂(00).

Solving (2.6) gives

p̄(00) = 0.10415, p̄(01) = 0.40161, p̄(10) = 0.29638, ḡ1 = 0.3212, ḡ2 = 0.0458.

where the two different sets of values (ŝ, ĝ, p̂) and (s̄, ḡ, p̄) both lead to the identical

log-likelihood value -571659.1708. This illustrates that the non-identifiability issue

depends on the model setting instead of the sample size. In practice, as long as

Conditions 1 and 2 do not hold, we may suffer from similar non-identifiability issues

no matter how large the sample size is.

Identifiability is the prerequisite and a necessary condition for consistent estima-

tion. Here we say a parameter is consistently estimable if we can construct a con-

sistent estimator for the parameter. That is, for parameter β, there exists β̂N such

that β̂N − β → 0 in probability as the sample size N →∞. When the identifiability

conditions are satisfied, we show that the maximum likelihood estimators (MLEs) of

the DINA model parameters (s, g,p) are statistically consistent as N →∞. For the

observed responses {Ri : i = 1, . . . , N}, we can write their likelihood function as

LN(s, g,p; R1, . . . ,RN) =
N∏
i=1

P (R = Ri | Q, s, g,p), (2.7)

where P (R = Ri | Q, s, g,p) is as defined in (1.4), with Θ there replaced by the

slipping and guessing parameters s and g in the DINA model. Let (ŝ, ĝ, p̂) be the

corresponding MLEs based on (2.7). We have the following corollary.

Corollary II.1. When Conditions II.1, II.2, and II.3 are satisfied, the MLEs (ŝ, ĝ, p̂)

are consistent as N →∞.

The results in Theorem II.1 and Corollary V.1 can be directly applied to the

DINO model through the duality of the DINA and DINO models (see Proposition 1
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in Chen et al., 2015). Specifically, when Conditions II.1, II.2, and II.3 are satisfied,

the guessing, slipping, and population proportion parameters in the DINO model are

identifiable and can also be consistently estimated as N →∞.

Moreover, the proof of Corollary V.1 can be directly generalized to the other

CDMs that the MLEs of the model parameters, including the item parameters and

population proportion parameters, are consistent as N →∞ if they are identifiable.

Therefore under the sufficient conditions for identifiability of general CDMs devel-

oped in the literature such as Xu (2017), the model parameters are also consistently

estimable. Although the minimal requirement for identifiability and estimability of

general CDMs are still unknown, the proposed Conditions II.1, II.2, and II.3 are nec-

essary since the DINA model is a submodel of them. For instance, Xu (2017) requires

two identity matrices in the Q-matrix to obtain identifiability, which automatically

satisfies Conditions II.1, II.2, and II.3 in this chapter.

We next present an example to illustrate that when the proposed conditions are

satisfied, the MLEs of the DINA model parameters are consistent.

Example II.4. We perform a simulation study with the following Q-matrix that

satisfies the proposed sufficient and necessary conditions. The true parameters are

set to be pα = 0.125 for all α ∈ {0, 1}3, and sj = gj = 0.2 for j = 1, . . . , 6.

Q =


1 0 0
0 1 0
0 0 1
0 1 1
1 0 1
1 1 0

 ,

For each sample size N = 200 · i where i = 1, . . . , 10, we generate 1000 independent

datasets, and use the EM algorithm with random initializations to obtain the MLEs

of model parameters for each dataset. The mean squared errors (MSEs) of the pa-

rameters s, g, p computed from the 1000 runs are shown in Table 2.1 and Figure 2.2.

One can see that the MSEs keep decreasing as the sample size N increases, matching
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the theoretical result in Corollary V.1.

N 400 800 1200 1600 2000

p 0.0272 0.0137 0.0087 0.0065 0.0051
s 0.0613 0.0335 0.0221 0.0174 0.0131
g 0.0411 0.0224 0.0149 0.0109 0.0082

Table 2.1: MSEs of DINA Model Parameters

(a) MSEs of p (b) MSEs of s (c) MSEs of g

Figure 2.2: MSE of DINA Model Parameters versus Sample Size N

2.2 Discussion

This chapter presents the sufficient and necessary condition for identifiability of the

DINA and DINO model parameters and establishes the consistency of the maximum

likelihood estimators. As discussed in the previous section, the results would also

shed light on the study of the sufficient and necessary conditions for general CDMs.

This chapter treats the attribute profiles as random effects from a population

distribution. Under this setting, the identifiability conditions ensure the consistent

estimation of the model parameters. However, generally in statistics and psychomet-

rics, identifiability conditions are not always sufficient for consistent estimation. An

example of identifiable but not consistently estimable is the fixed effects CDMs, where
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the subjects’ attribute profiles are taken as model parameters. Consider a simple ex-

ample of the DINA model with nonzero but known slipping and guessing parameters.

Under the fixed effects setting, the model parameters include {αi, i = 1, . . . , N},

which are identifiable if the Q-matrix is complete (e.g., Chiu et al., 2009). But with

fixed number of items, even when the sample size N goes to infinity, the parame-

ters {αi, i = 1, . . . , N} cannot be consistently estimated. In this case, to have the

consistent estimation of each α, the number of items needs to go to infinity and the

number of identity sub-Q-matrices also needs to go to infinity (Wang and Douglas,

2015), equivalently, there are infinitely many sub-Q-matrices satisfying Conditions

II.1, II.2, and II.3.

When the identifiability conditions are not satisfied, we may expect to obtain

partial identification results that certain parameters are identifiable while others are

only identifiable up to some transformations. For instance, when Condition II.1 is

satisfied, the slipping parameters are all identifiable and guessing parameters of items

(K + 1, . . . , J) are also identifiable. It is also possible in practice that there exist

certain hierarchical structures among the latent attributes. For instance, an attribute

may be a prerequisite for some other attributes. In this case, some entries of p are

restricted to be 0. It would also be interesting to consider the identifiability conditions

under these restricted models. For these cases, weaker conditions are expected for

identifiability of the model parameters. In particular, completeness of the Q-matrix

may not be needed. Indeed, these problems are pursued in the following chapters
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CHAPTER III

Partial Identifiability of Structured Latent

Attribute Models

The necessary and sufficient conditions in the previous Chapter II sometimes can

be hard to satisfy in practice, especially the Condition II.1 about the existence of

an identity submatrix IK in the Q-matrix. For many popular designed Q-matrices

including the two from the TOEFL iBT tests in Example I.5, the Q-matrix from

the Trends in International Mathematics and Science Study in Example I.6, and the

Q-matrix from the fraction subtraction data in Example I.7, there does not exist an

identity submatrix in the Q and whether the models are identifiable remain open

problems. To address these questions, this chapter develops practical identifiability

theory for a general family of SLAMs including both DINA and other more compli-

cated models, motivated by real-world needs of designing cognitive diagnostic tests

with minimal restrictions.

As introduced in Chapter I, a SLAM is also a restricted latent class model, where

the Q-matrix imposes restrictions on the parameter space of a latent class model. So

from now on, we call the DINA and the DINO models the two-parameter Q-restricted

latent class models, since each item has exactly two item parameters, and we call the

This chapter consists of the main part of Gu and Xu (2020a), accpted by Annals of Statistics.
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main-effect and all-effect models as multiparameter Q-restricted latent class models.

In this chapter, we will use the term structured latent attribute model and the term

restricted latent class model interchangeably.

We now restate the definition of the constraint set Cj for each item j, as mentioned

earlier in Chapter I. For any item j, there exists an item-specific set of latent classes

Cj; and the classes in Cj share the same value of positive response probability (i.e.,

item parameter θj,α), which is higher than those of the other latent classes. In other

words, the set Cj also has the following equivalent definition,

Cj =
{
α ∈ A : θj,α = max

α?∈A
θj,α?

}
. (3.1)

The latent classes in Cj then correspond to those subjects who are “most capable” of

giving a positive response to item j, and for each j ∈ S,

max
α∈Cj

θj,α = min
α∈Cj

θj,α > θj,α′ , ∀α′ /∈ Cj. (3.2)

Additionally, it is assumed that there exists a universal “least capable” class α0 such

that θj,α ≥ θj,α0 for any α ∈ A and j ∈ S. Note that a latent class α′ satisfying

α′ /∈ Cj and θj,α′ > θj,α0 can be viewed as “partially capable”.

An attribute profile α also represents a latent class. Without loss of general-

ity, assume there are m latent classes existing in the population denoted by A =

{α0, . . . ,αm−1}, where m > 1 is assumed known in this chapter. For any α ∈ A,

pα = P (A = α) still denotes the proportion of subjects in the population that belong

to class α. Under this specification, we have pα ∈ (0, 1) and
∑
α∈A pα = 1. Specifi-

cally in a SLAM with K binary latent attributes, A = {α ∈ {0, 1}K : pα > 0}. So the

latent pattern space A is a subset of {0, 1}K . If A = {0, 1}K , we say A is saturated,

which means the population contain subjects with all the possible configurations of

attribute profiles. The universal least capable latent pattern α0 corresponds to the
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all-zero attribute profile, that is, α0 = (0, . . . , 0).

When the latent pattern space A is saturated with A = {0, 1}K , we have m =

|A| = 2K . In practice, however, this may not always hold. For instance, researchers

may assume there exist additional restrictions on the dependence structure among

the latent attributes, such as an attribute hierarchy with some attributes being the

prerequisite for some others (Leighton et al., 2004; Templin and Bradshaw, 2014). A

hierarchical structure among the K attributes would reduce the number of possible

attribute profiles from 2K to m (m < 2K), by excluding those not respecting the

hierarchy. For example, consider a diagnostic test with K = 2 attributes. If it

is scientifically reasonable to assume the first attribute is the prerequisite for the

second one, then the latent pattern space is reduced to A = {(0, 0), (1, 0), (1, 1)} with

m = |A| = 3, since the attribute profile (0, 1) does not respect this hierarchy. Note

that as shown in (von Davier and Haberman, 2014), a cognitive diagnosis model with

such a linear hierarchy can equivalently reduce to a located latent class model with

m < 2K classes.

In this chapter, we assume the latent pattern setA is prespecified and known. This

would be the case when practitioners have solid scientific reasons or prior knowledge

from exploratory data analysis to assume certain structure among attributes. This

chapter aims to answer the question that for an arbitrary A ⊆ {0, 1}K , what kind

of conditions would guarantee identifiability of Θ and p = (pα,α ∈ A). Later in

Chapter V, the latent pattern space A will not be assumed known and instead will

be learned from the data with its own identifiability guarantees there.

This chapter proposes a general framework of strict and partial identifiability for

restricted latent class models. Practical sufficient conditions for strict and partial

identifiability are proposed and their necessity is discussed. In particular, depending

on the two different types of algebraic structures of restricted latent class models,

we introduce and study two useful notions of partial identifiability, respectively (see
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Sections 3.2 and 3.3). The established identifiability results are widely applicable in

practice, by relaxing most of the constraints imposed on the design matrix. Moreover,

under correct model specification, all the identifiability conditions only depend on the

design matrix and are easily checkable by practitioners. We apply the new theory to

several existing designs and establish identifiability under them for the first time in

the literature.

The rest of this chapter is organized as follows. Section 3.1 summarizes the issues

with existing works on identifiability and discusses the open problems. Sections 3.2

and 3.3 present our main identifiability results. Section 3.4 includes extensions of the

new theory to some more complicated models. Section 3.5 gives a further discussion,

and proofs of the theoretical results are presented in the Appendix B.

3.1 Issues with Existing Works and Open Problems

Though widely used in various applications, the identifiability issue of SLAMs or

restricted latent class models remains largely unaddressed. We next introduce the

concept of identifiability and discuss the limitations of the exiting theory.

For a SLAM introduced in Chapter I, we restate the probability mass function of

the response pattern R:

P (R = r | Θ,p) =
∑
α∈A

pα

J∏
j=1

θ
rj
j,α(1− θj,α)1−rj , r ∈ {0, 1}J . (3.3)

Following the definition of identifiablity in the literature (e.g., Casella and Berger,

2002), the model parameters (Θ,p) of a SLAM are identifiable if for any (Θ,p) in

the parameter space T , there is no (Θ̄, p̄) 6= (Θ,p) such that

P(R = r | Θ,p) = P(R = r | Θ̄, p̄) for all r ∈ {0, 1}J . (3.4)
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In the following, we also say that the model parameters are strictly identifiable if the

above condition holds.

To establish model identifiability, a strong and often impractical assumption made

by previous works is that the Q-matrix must contain at least one K × K identity

submatrix IK up to some row permutation, that is, the Q-matrix must contain all

K distinct single-attribute q-vectors (Chen et al., 2015; Xu and Zhang, 2016; Xu,

2017; Gu and Xu, 2019b). A Q-matrix satisfying this requirement is also said to be

complete under the DINA model (Chiu et al., 2009). For general Q-restricted latent

class models including the multiparameter models, Xu (2017) requires at least two

disjoint K × K identity submatrices in Q to establish identifiability. However, in

practice, in the existence of a large number of fine-grained attributes and complex

cognitive process, a Q-matrix rarely satisfies such requirements. For the TOEFL data

in Example I.5, in both Q-matrices, there does not exist any item that solely requires

the fourth skill attribute. For the Q-matrix of the TIMSS data in Example I.6, only

three attributes (1, 7 and 8) out of twelve are measured by some single-attribute

items. For the Q-matrix in Example I.7, there are only two attributes (2 and 7) out

of eight measured by some single-attribute items. Many other examples can be found

in the literature (e.g., Jaeger et al., 2006; Henson et al., 2009; de la Torre, 2011; Lee

et al., 2011). Moreover, another strong assumption made in existing works Xu (2017);

Gu and Xu (2019b) is that A = {0, 1}K , that is, pα > 0 for any α ∈ {0, 1}K , which

fails when some attribute profiles are deemed impossible to exist.

Such identifiability issues of cognitive diagnosis models have long been recognized

(de la Torre and Douglas, 2004b; von Davier, 2008; Tatsuoka, 2009; DeCarlo, 2011;

Maris and Bechger, 2009; Zhang et al., 2013; von Davier, 2014). For instance, von

Davier (2008) pointed out in the study of the TOEFL data that larger numbers of

skills (i.e., K) very likely pose problems with identifiability, unless the number of items

per skill is “sufficiently” large. But given the complicated structure of constraints,
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how the number of items and the form of the design matrix influence identifiability

is still an open problem in the literature.

This chapter addresses this open problem by developing a general theoretical

framework based on a key technical tool, the indicator matrix Γ. Under an arbitrary

SLAM, we define Γ to be a J ×m matrix using the sets Cj’s. The Γ-matrix has the

same size as the matrix Θ, with rows indexed by items in S, and columns by latent

classes in A. The (j,α)th entry of Γ is

Γj,α = I(α ∈ Cj), j ∈ S, α ∈ A, (3.5)

which is a binary indicator of whether α is “most capable” to give a positive response

to j. For α ∈ A, denote the αth column vector of Γ by Γ·,α. The Γ-matrix defined

this way turns out to be a useful tool for developing the identifiability theory, and

it helps to relax many of the existing strong assumptions, as shown later in Sections

3.2.1 and 3.3.1. Indeed, most of our identifiability conditions can be represented

as requirements on the structure of Γ, since the information of which latent classes

achieve the highest level of θj,α of item j is what our theoretical derivations essentially

rely on.

The DINA and DINO models are restricted latent class models with appropriately

defined constraint sets Cj’s. Specifically, under the conjunctive DINA model, the Cj
defined in (3.1) takes the form of

CDINAj = {α ∈ A : α � qj}, j ∈ S; (3.6)

while under the disjunctive DINO model, the Cj defined in (3.1) becomes CDINOj =

{α ∈ A : if ∃k s.t. αk = qj,k = 1} for j ∈ S.

Depending on two different algebraic structures of the constrained parameter

spaces, we next consider two types of restricted latent class models and present their
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identifiability results in Sections 3.2 and 3.3, respectively.

3.2 Identifiability Results for Two-Parameter Models

This section considers two-parameter restricted latent class models where each

item j has two item parameters, that is, |{θj,α : α ∈ A}| = 2. Specifically, a

two-parameter model assumes that for each item j, the latent classes in Cj share

a same positive response probability, denoted by θ+
j , and the latent classes in the

complement set A \ Cj share another same positive response probability, denoted by

θ−j . We assume θ+
j > θ−j . Note that the unique item parameters in Θ reduce to

(θ+,θ−), where θ+ = (θ+
1 , . . . , θ

+
J )> and θ− = (θ−1 , . . . , θ

−
J )>. The motivation for

studying the two-parameter models comes from the popular DINA and DINO models

in cognitive diagnosis, as introduced in Example I.1. Moreover, the study of the two-

parameter models provides insight into understanding other restricted latent class

models, as they serve as submodels for many multiparameter models.

Under a two-parameter model, the Γ-matrix fully captures the model structure,

in the sense that θj,α = θ+
j if Γj,α = 1 and θj,α = θ−j if Γj,α = 0. So in this scenario,

if Γ contains two identical columns, then the corresponding latent classes have the

same item parameters across all items. Namely, if Γ·,α = Γ·,α′ , then Θ·,α = Θ·,α′ .
Thus from an identifiability perspective, these two latent classes are equivalent and

cannot be distinguished based on their observed responses. This implies that in order

to distinguish the latent classes, it is necessary that each latent class in A should

correspond to a distinct column vector of Γ. We shall call such a Γ-matrix separable.

Definition III.1. A Γ-matrix is said to be separable, if any two column vectors of

Γ are distinct. Otherwise, we say Γ is inseparable.

To see how the separability of the Γ-matrix influences model identifiability, we

start with an ideal case with all the item parameters (θ+,θ−) known. The following
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proposition characterizes the importance of Γ’s separability.

Proposition III.1. Consider a two-parameter restricted latent class model with

known (θ+,θ−). Then the proportion parameters p are identifiable if and only if

the Γ-matrix is separable.

We use the following example as an illustration.

Example III.1. Consider the Q-matrix in (3.7) with K = 2 attributes. Under the

DINA model with Cj in the form of (3.6), if A = {0, 1}2 = {α0 = (0, 0), α1 = (1, 0),

α2 = (0, 1), α3 = (1, 1)}, then Γ(1) in (3.7) represents the corresponding Γ-matrix,

which is inseparable. Specifically, we can see that Γ·,α0 = Γ·,α2 and the two classes

α0 and α2 have the same item parameters, Θ·,α0 = Θ·,α2 = θ−. Thus α0 and α2

are not distinguishable and equivalently, their proportion parameters pα0 and pα2 are

not identifiable.

Q =

1 0

1 1


DINA

======⇒
A={0,1}2

Γ(1) =


α0 α1 α2 α3

0 1 0 1

0 0 0 1

;

DINA
=========⇒
A={0,1}2\{0,1}

Γ(2) =


α0 α1 α3

0 1 1

0 0 1

.
(3.7)

On the other hand, if prior knowledge shows that the first attribute is the prerequisite

for the second, then A reduces to {0, 1}2\{(0, 1)} and the Γ-matrix becomes Γ(2) in

(3.7). The Γ(2) is separable, with each α having a distinct column vector in Γ and

Θ·,α0 6= Θ·,α1 6= Θ·,α3 . Therefore Proposition III.1 gives that p is identifiable in the

ideal case with known Θ.

An inseparable Γ-matrix violates the necessary condition for identifying p under

the two-parameter models. To study the “partial” identifiability of p when Γ is
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inseparable, we next define an equivalence relation “∼” of latent classes induced by

the column vectors of Γ. Specifically, we define α ∼ α′ if and only if Γ·,α = Γ·,α′ . Let

C be the number of distinct column vectors of Γ and A1, . . . ,AC be the C equivalence

classes under ∼. Let αAi be a representative of Ai and we write [αAi ] = Ai. We

define the grouped population proportion parameters to be

ν[αAi ]
:=

∑
α:α∈Ai

pα, for i = 1, . . . , C, (3.8)

and write ν = (ν[αA1
], . . . , ν[αAC ])

>. When Γ is separable, we have C = m, ν = p and

each α represents a unique equivalence class.

The following result shows that under an inseparable Γ-matrix, though p are not

identifiable, the parameters ν are identifiable.

Proposition III.2. Consider a two-parameter model with known (θ+,θ−). When

the Γ-matrix is inseparable, ν is identifiable. Moreover, the latent classes in the same

equivalence class cannot be distinguished in the sense that for any model parameters

p 6= p̄, if ν[αAi ]
= ν̄[αAi ]

, where ν̄[αAi ]
=
∑
α:α∈Ai p̄α for i = 1, . . . , C, then P(R |

Θ,p) = P(R | Θ, p̄).

When Γ is inseparable, Proposition III.2 implies that even in the ideal case with

known (θ+,θ−), the identification of ν is the strongest identifiability result one can

obtain for two-parameter restricted latent class models. This therefore motivates us

to introduce the following definition of the p-partial identifiability when both (θ+,θ−)

and p are unknown.

Definition III.2 (p-partial identifiability). For a two-parameter restricted latent

class model with a given Γ-matrix, the model parameters (θ+,θ−,p) are said to be

p-partially identifiable if (θ+,θ−,ν) are identifiable.

We point out that when the Γ-matrix is separable, the p-partial identifiability

exactly becomes the strict identifiability. When Γ is inseparable, the definition of
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p-partial identifiability here refers to partially identifying the proportion parameters

p, and strictly identifying all the item parameters. Such definition suits for the needs

of cognitive diagnosis applications, by ensuring the identification of the equivalent

attribute profiles of interest, and also ensuring the estimability of all item parameters

so that the quality of the items can be accurately evaluated and validated.

In the framework of p-partial identifiability, the following Section 3.2.1 presents

a general identifiability result, allowing A to be arbitrary and Γ to be inseparable.

Section 3.2.2 further focuses on the family of Q-restricted latent class models and dis-

cusses the necessity of the proposed conditions. Section 3.2.3 includes the applications

of the new theory.

Remark III.1. For the family of two-parameter Q-restricted latent class models, the Γ-

induced equivalence classes can be obtained as follows. We define two sets of attribute

profiles under the conjunctive DINA and disjunctive DINO assumptions, respectively:

RQ,conj = {α = ∨h∈S qh : S ⊆ S}, RQ,disj = {1−α : α ∈ RQ,conj}, (3.9)

where ∨h∈S qh = (maxh∈S{qh,1}, . . . ,maxh∈S{qh,K}), and ∨h∈∅ qh is defined to be

the all-zero vector. We claim that when A = {0, 1}K , the RQ,conj or RQ,disj is a

complete set of representatives of the conjunctive or disjunctive equivalence classes,

respectively; the proof of this result is given in Section B of the Supplementary

Material. Moreover, for any latent class space A ⊆ {0, 1}K , define a map f(·) :

A → RQ,conj (or RQ,disj) which sends each attribute pattern α ∈ A to the element in

RQ,conj (or RQ,disj) equivalent to α. Then f(A) forms a complete set of conjunctive

or disjunctive representatives. A similar grouping operation in the saturated and

conjunctive case was introduced in Zhang et al. (2013). Consider Example III.1 for an

illustration. If A = {0, 1}2, Γ(1) is inseparable. The equivalence class representatives

are RQ,conj = {(0, 0), (1, 0), (1, 1)} by (3.9) and ν = (ν[0,0], ν[1,0], ν[1,1]) with ν[0,0] =
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p(0,0) + p(0,1), ν[1,0] = p(1,0), ν[1,1] = p(1,1). On the other hand, Γ(2) is separable with

latent class spaceA = RQ,conj. This also illustrates that a separable Γ-matrix does not

necessarily correspond to a Q-matrix containing an identity submatrix IK . Therefore,

compared with existing theory, the Γ-matrix provides a more suitable tool than the

Q-matrix for studying identifiability of Q-restricted models.

3.2.1 Strict and Partial Identifiability

This subsection presents conditions depending on the Γ-matrix that lead to the

p-partial identifiability of a two-parameter restricted latent class model. We first

introduce some notation. Based on the constraint sets Cj’s, we categorize the entire

set of items S = {1, . . . , J} into two subsets, the set of nonbasis items Snon and that

of basis items Sbasis as follows,

Snon = {j : ∃h ∈ S \ {j}, s.t. Ch ⊇ Cj} and Sbasis = S \ Snon. (3.10)

By this definition, an item j is a nonbasis item if the capability of item j implies

capability of some other item, and a basis item otherwise. With a slight abuse of

notation, for any subset of items S ⊆ S, denote CS = ∩j∈S Cj. We introduce the next

definition of S-differentiable to describe the relation between an item and a set of

items.

Definition III.3. For an item j and a set of items S that does not contain j, item

j is said to be S-differentiable if there exist two subsets S+
j , S−j of S, which are not

necessarily nonempty or disjoint, such that

CS+
j
& CS−j and CS−j \ CS+

j
⊆ A \ Cj. (3.11)

When j is S-differentiable, the set S is said to be a separator set of item j. An item

j is S-differentiable indicates that the items in the separator set S can differentiate at
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least one incapable latent class of j (i.e., one latent class in A\Cj) from the universal

least capable class α0.

We need the following two conditions to establish identifiability.

(C1) Repeated measurement condition: For each item j, there exist two disjoint sets

of items S1
j , S

2
j ⊂ S\{j} such that Cj ⊇ CS1

j
and Cj ⊇ CS2

j
.

(C2) Sequentially differentiable condition: Start with the set Ssep = Snon. Expand

Ssep by including all items in S \ Ssep that are Ssep-differentiable, and repeat

the expanding procedure until no items can be added to Ssep. The sequentially

expanding procedure ends up with Ssep = S.

Before presenting the formal theorem, we first give a simple illustration of how con-

dition (C2) can be checked.

Example III.2. Consider the following 3× 4 Γ-matrix,

Γ =



α0 α1 α2 α3

0 0 1 1

0 0 0 1

0 1 0 0

,

then C1 = {α2,α3}, C2 = {α3} and C3 = {α1}. By (3.10), Snon = {2, 3} and Sbasis =

{1}. To check condition (C2), we start with the separator set Ssep = Snon = {2, 3}.

For basis item 1, we define S+
1 = ∅ and S−1 = {3}. Then CS+

1
= {α0,α1,α2,α3}

and CS−1 = {α0,α2,α3}, so CS+
1
\ CS−1 = {α1} ⊆ Cc1 = {α0,α1}, which means (3.11)

holds for j = 1. Besides, S+
1 ∪ S−1 ⊆ Snon. So by Definition III.3, item 1 is Snon-

differentiable. Now we can expand the separator set Ssep to be Snon ∪ {1} = S. So

the sequentially expanding procedure described in condition (C2) ends in one step

with Ssep = S, and (C2) is satisfied.

44



Theorem III.1. Under the two-parameter restricted latent class models, condition

(C1) is sufficient for identifiability of (θ+,θ−non), where θ−non = (θ−j , j ∈ Snon). More-

over, conditions (C1) and (C2) are sufficient for p-partial identifiability of the model

parameters (θ+,θ−,p).

Theorem III.1 presents a general identifiability result with strict identifiability be-

ing a special case. For instance, in the case of A = {0, 1}K , if the J × 2K Γ-matrix

is separable, then ν = p and the p-partial identifiability in Theorem III.1 exactly

ensures strict identifiability of all the parameters (θ+,θ−,p). Similarly, in the case of

A ⊂ {0, 1}K , if the J × |A| Γ-matrix is separable, the p-partial identifiability ensures

(θ+,θ−) and (pα, α ∈ A) are strictly identifiable. Conditions (C1) and (C2) only

depend on the structure of the Γ-matrix and are easily checkable. Condition (C1)

implies that at least one capable class of each item is repeatedly measured by other

items. Condition (C2) requires that for each basis item, at least one of its incapable

classes should be differentiated from the universal least capable class through a se-

quential procedure. From the proof of Theorem III.1, (C1) suffices for identifiability

of (θ+,θ−non); furthermore, the sequential procedure in condition (C2) ensures that as

Ssep sequentially expands its size, for any item h included in Ssep, the parameter θ−h

is identifiable. If (C2) holds, that is, the sequential procedure ends up with Ssep = S,

we have the entire θ− identifiable, which further leads to identifiability of ν. The

sequential statement of (C2) accurately characterizes the underlying structure of the

Γ-matrix needed for identifiability. In particular, if there are no basis items, that is,

S = Snon, then (C2) automatically holds with zero expanding step; while if there do

exist basis items and each basis item is Snon-differentiable, then (C2) holds with one

expanding step.

The next proposition further extends the result in Theorem III.1 to the case where

the Γ-matrix may not satisfy (C1) and (C2). For any subset of items S ⊆ S, define

the S-adjusted Γ-matrix Γ(S) as follows, which has the same size as the original Γ.
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Its jth row {Γ(S)}j,· equals 1>m − Γj,· if j ∈ S, and equals Γj,· if j /∈ S. Here 1>m

denotes an all-one row vector of length m.

Proposition III.3. Consider a two-parameter restricted latent class model associ-

ated with a Γ-matrix. If there exist a subset of items S ⊆ S such that the S-adjusted

Γ-matrix Γ(S) satisfies conditions (C1) and (C2), then the two-parameter model is

p-partially identifiable.

Proposition III.3 relaxes the conditions of Theorem III.1, by only requiring that

(C1) and (C2) can be satisfied after switching the zeros and ones for some rows

of in the Γ. The identifiability conditions in Theorem III.1 and Proposition III.3

allow for a nonsaturated latent class space A and inseparability of the Γ-matrix,

which relaxes the existing identifiability conditions in the literature. Moreover, the

proposed conditions (C1) and (C2) would become necessary and sufficient in certain

scenarios to be discussed in the following subsection.

3.2.2 Results for Q-restricted Latent Class Models

To further illustrate the result in Theorem III.1, we focus on the two-parameter

Q-restricted latent class model with a saturated latent class space A = {0, 1}K .

This includes the conjunctive DINA and disjunctive DINO models in Example I.1 as

special cases. Without loss of generality, we next only consider the two-parameter

conjunctive model. Nevertheless, all the p-partial identifiability results presented in

this subsection hold for both the conjunctive and the disjunctive models, due to the

duality between them (Chen et al., 2015).

We introduce the following definitions adapted from Section 3.2.1. Under the

conjunctive model assumption with Cj taking the form of (3.6), the non-basis and

basis items defined earlier in (3.10) can be equivalently expressed in terms of the
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q-vectors as follows

Snon = {j : ∃h ∈ S \ {j} s.t. qh � qj} and Sbasis = S \ Snon. (3.12)

Moreover, item j is set S-differentiable if there exist S+, S− ⊆ S such that

0 � ∨h∈S+qh − ∨h∈S−qh � qj. (3.13)

In addition, conditions (C1) and (C2) are equivalent to:

(C1∗) Repeated measurement condition: For each j ∈ S, there exist two disjoint item

sets S1
j , S

2
j ⊆ S \ {j} such that qj � ∨h∈S1

j
qh and qj � ∨h∈S2

j
qh.

(C2∗) Sequentially differentiable condition: The same as condition (C2), but using

definition (3.13) of S-differentiable regarding the q-vectors.

Following Theorem III.1, the next corollary shows that the derived conditions

on the Q-matrix suffice for the p-partial identifiability of both the conjunctive and

disjunctive two-parameter models.

Corollary III.1. Under the two-parameter Q-restricted latent class models, assuming

ν[α] > 0 for any equivalence class [α], (C1∗) and (C2∗) are sufficient for the p-partial

identifiability of (θ+,θ−,p).

We use the following example as an illustration of the identifiability result; see

also real data examples in Section 3.2.3.
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Example III.3. Under the DINA model, consider the following Q-matrix.

Q =



1 0 0

0 1 0

1 1 1

0 1 1

1 0 1


(3.14)

This Q-matrix lacks the single-attribute item (0, 0, 1), and the corresponding Γ-matrix

under A = {0, 1}3 is inseparable. In this case, we have the following 7 equivalence

classes {[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]}, with the equiva-

lence class [0, 0, 0] containing attribute profiles (0, 0, 0) and (0, 0, 1), while each of

the other equivalence classes contains one attribute profile. Following the definition

in (3.12), items 1 and 2 are basis items, and items 3, 4 and 5 are non-basis items.

For all the five items, condition (C1∗) is satisfied by taking (S1
1 , S

2
1) = ({3}, {5}),

(S1
2 , S

2
2) = ({3}, {4}), (S1

3 , S
2
3) = ({1, 4}, {2, 5}), (S1

4 , S
2
4) = ({3}, {2, 5}), and

(S1
5 , S

2
5) = ({3}, {1, 4}). In addition, condition (C2∗) is also satisfied since the ba-

sis items 1 and 2 are (S+
1 ∪ S−1 )- and (S+

2 ∪ S−2 )-differentiable, respectively, where

(S+
1 , S

−
1 ) = ({3}, {4}) and (S+

2 , S
−
2 ) = ({3}, {5}). By Corollary III.1, the DINA

model parameters are p-partially identifiable.

As shown above, conditions (C1∗) and (C2∗) are sufficient conditions to ensure

p-partial identifiability. In the following, we discuss the necessity of (C1∗) and (C2∗)

and further provide procedures to establish identifiability in certain cases when these

conditions fail to hold.

For a general Q-matrix, condition (C1∗) implies that each attribute is required

by at least three items. In the next theorem, we show that it is necessary for each

attribute to be required by at least two items; in particular, if some attribute is re-

quired by only two items, the identifiability conclusion would depend on the structure
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of the q-vectors of those two items.

Theorem III.2 (Discussion of C1∗). Consider a two-parameter Q-restricted latent

class model.

(a) If some attribute is required by only one item, then the model is not p-partially

identifiable.

(b) If some attribute is required by only two items, without loss of generality, suppose

the first attribute is required by the first two items and the Q-matrix takes the

following form

Q =


1 v>1

1 v>2

0 Q′


J×K

, (3.15)

where Q′ is a (J − 2) × (K − 1) sub-matrix of Q and v1, v2 are (K − 1)-

dimensional vectors.

(b.1) If v1 = 0 or v2 = 0, the model is not p-partially identifiable.

(b.2) If v1 6= 0 and v2 6= 0, the model is p-partially identifiable if the sub-matrix

Q′ satisfies conditions (C1∗) and (C2∗), and either (a) or (b) below holds

for i = 1 and 2: (a) There exists some j ≥ 3 such that qj, 2:K � vi; (b)

There does not exist any j ≥ 3 such that qj, 2:K � vi, and among the

attributes required by vi, there exists at least one attribute k that is not

required by every item j ∈ {3, . . . , J}.

Theorem III.2 characterizes the different situations when condition (C1∗) fails to

hold for some attribute, and provides sufficient conditions for identifiability when the

Q-matrix falls in the scenario (B). In addition, the result in Theorem III.2 can be

easily extended to the case where there are multiple attributes that are required by

only two items.

49



The next theorem discusses the necessity of Condition (C2∗) and states that if

there exists some basis item that does not have any separator set, then the model

parameters are not p-partially identifiable.

Theorem III.3 (Discussion of C2∗). Under the two-parameter Q-restricted models,

the condition that each basis item j is (S \ {j})-differentiable, is necessary for the

p-partial identifiability.

Furthermore, under the two-parameter Q-restricted models with a separable Γ-

matrix and a saturated latent class space A, the following theorem shows conditions

(C1∗) and (C2∗) are exactly the minimal requirement for strict identifiability of the

model.

Theorem III.4 (Result on the Necessary and Sufficient Condition). Under the two-

parameter Q-restricted models, if A is saturated and Γ is separable, then conditions

(C1∗) and (C2∗) are necessary and sufficient for the strict identifiability of (θ+,θ−,p).

Under the assumptions of Theorem III.4, conditions (C1∗) and (C2∗) are equiv-

alent to the following explicit conditions on the structure of the Q-matrix: (C1′)

Each attribute is required by at least three items; (C2′) With Q in the form Q =

(I>K , (Q
′)>)>, any two different columns of the submatrix Q′ are distinct. Please see

the proof of Theorem III.4 for details.

3.2.3 Applications

One important implication of the established identifiability theory is the consis-

tent estimability of the model parameters. Consider a sample of size N and denote

the ith subject’s multivariate binary responses by Ri = (Ri,1, . . . , Ri,J)>. Assume

R1, . . . ,RN identically and independently follow the categorical distribution with the

probability mass function (3.3). The likelihood based on the sample can be written

as L(Θ,p | R1, . . . ,RN) =
∏N

i=1 P(R = Ri | Θ,p). We denote the true parameters
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by (Θ0,p0) and the maximum likelihood estimators (MLE) by (Θ̂, p̂), which may not

be unique. We further define the corresponding parameters ν0 and ν̂ as in (3.8). We

have the following conclusion on the estimability of a two-parameter model.

Proposition III.4. If a two-parameter model is p-partially identifiable, then (Θ̂, ν̂)→

(Θ0,ν0) almost surely as N → ∞. In addition, if Γ-matrix is also separable, then

(Θ̂, p̂) → (Θ0,p0) almost surely. On the other hand, if Γ-matrix is inseparable, p

cannot be consistently estimated.

With the consistency result, we can directly establish the asymptotic normality

of (Θ̂, ν̂) when the model is p-partially identifiable, following a standard argument

of asymptotic statistics Van der Vaart (2000).

We next apply the newly developed theory to the data examples introduced in

Section 1.3, and establish the p-partial identifiability of the two-parameter restricted

latent class model under the Q-matrices.

For the TOEFL iBT data introduced in Example I.5, the two-parameter restricted

latent class models associated with the Q-matrices corresponding to reading forms

A and B, denoted by QA and QB, respectively, are both p-partially identifiable.

Specifically, under the conjunctive DINA model, the QA and QB specified in Table

1.1 induce 14 and 12 equivalence classes of attribute profiles respectively, for which the

sets of representatives areRQA = {0, 1}4\{(0, 0, 0, 1), (1, 0, 0, 1)} andRQB = {0, 1}4\

{(0, 0, 0, 1), (1, 0, 0, 1), (0, 1, 0, 1), (1, 1, 0, 1)}. The RQA and RQB are calculated

following the procedure introduced in Remark III.1. It is straightforward to check

that for both QA and QB, condition (C1∗) holds and there is no basis item, which

further implies the satisfaction of condition (C2∗). Therefore Corollary III.1 gives the

p-partial identifiability of the two-parameter models associated with both QA and QB.

Furthermore, Proposition III.4 implies the consistent estimability of (θ+,θ−,ν). In

particular, the proportion parameters of the equivalence classes ν = (ν[α], α ∈ RQA)

can be consistently estimated, while for those attribute profiles in a same equivalent
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class, their proportions cannot be consistently estimated. For instance, under QA,

attribute patterns α? = (0, 0, 0, 1) and α?? = (0, 0, 0, 0) share the same equivalent

class; so pα? and pα?? are not estimable, and it is only possible and meaningful to

estimate ν[α?] = pα? + pα?? .

Other than the TOEFL data, our new results in Section 3.2.2 also guarantee the

p-partial identifiability of two-parameter models associated with the Q43×12 for the

TIMSS data, and the Q20×8 for the fraction subtraction data. The details of checking

our conditions for Q43×12 and Q20×8 are included in Section A of the Supplementary

Material.

3.3 Identifiability Results for Multiparameter Models

This section considers multiparameter restricted latent class models where each

item j allows for more than two item parameters, i.e., |{θj,α : α ∈ A}| ≥ 2. In a

multiparameter model, those latent classes in Cj still have the same level of positive

response probability, according to the definition of Cj in (3.1); however, the classes in

A \ Cj can have multiple levels of positive response probabilities, depending on the

extents of their “partial” capability of item j. Examples of multiparameter models

include the Main-Effect and the All-Effect models introduced in Examples I.2 and

I.3, respectively.

We would like to point out that the Γ-matrix defined in (3.5) still provides a useful

technical tool for studying identifiability of multiparameter models, despite the fact

that the entry Γj,α only indicates whether α belongs to the most-capable-set Cj and

it does not summarize all the structural assumptions in multiparameter models.

On the one hand, similar to the two-parameter case, under a multiparameter

model, the separability of the Γ-matrix is still necessary for the strict identifiability

of (Θ,p). This is because a two-parameter model, such as DINA, can be viewed as

a submodel of a multiparameter model, such as GDINA or GDM, by constraining
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certain parameters in the multiparameter model to zero. So in order to ensure identi-

fiability of all possible model parameters in the parameter space of a multiparameter

model, Proposition III.1 implies the Γ must be separable.

On the other hand, when the Γ-matrix is inseparable and contains identical

columns, the item parameter vectors in the matrix Θ may still be distinct. This

is because under the general constraints (1.2), when Γj,α = 0 under a multiparame-

ter model, α could be either least capable or partially capable of item j, and hence

the latent classes in the set A \ Cj = {α : Γj,α = 0} can still have different pos-

itive response probabilities, as shown in Examples I.2 and I.3. Such a difference

from the two-parameter models makes the p-partial identifiability theory developed

in Section 3.2 not applicable to multiparameter models. To study identifiability of

multiparameter models when Γ is inseparable, we therefore need an alternative par-

tial identifiability notion and technique. We use the next example to illustrate this

and show how the separable requirement of the Γ-matrix in Proposition III.1 could

be relaxed under multiparameter models.

Example III.4. Consider the Q-matrix in (3.7). Under a two-parameter conjunc-

tive restricted latent class model, we have shown attribute profiles α0 = (0, 0) and

α2 = (0, 1) are not distinguishable. However, a multiparameter model models the

main effect of each required attribute for an item. Consider the Main-Effect model

with the identity link function as introduced in Example I.2 (the ACDM), one has

Θ·,α0 = (β1,0, β2,0)> and Θ·,α2 = (β1,0, β2,0 + β2,2)>; then Θ·,α0 6= Θ·,α2 as long

as β2,2 6= 0. When this inequality constraint β2,2 6= 0 holds, Θ·,α0 6= Θ·,α2 de-

spite that Γ·,α0 = Γ·,α2 . In such scenarios, the grouping operation of the propor-

tion parameters introduced in Section 3.2 is not appropriate, and one needs to treat

these two latent classes α0 and α2 separately. Consider any possible Θ for which

the inequality constraint β2,2 6= 0 does not hold, then all such Θ indeed fall into a

subset of the parameter space T with smaller dimension than T , characterized by
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V = {(Θ,p) : β2,2 = 0}. This implies that for almost all valid model parameters

(Θ,p) in T , except a Lebesgue measure zero set V , the Θ satisfy Θ·,α0 6= Θ·,α1 .

This observation naturally leads to the following notion of generic identifiability.

Motivated by Example III.4, when the Γ-matrix is inseparable, we shall study

the generic identifiability of the restricted latent class model. Let T denote the

restricted parameter space of (Θ,p) under the general constraints (1.2), and let d

denote the number of free parameters in (Θ,p), so T is of full dimension in Rd.

Generic identifiability means that identifiability holds for almost all points except a

subset of T that has Lebesgue measure zero. Generic identifiability is closely related

to the concept of algebraic variety in algebraic geometry. Following the definition

in Allman et al. (2009), an algebraic variety V is defined as the simultaneous zero-

set of a finite collection of multivariate polynomials {fi}ni=1 ⊆ R[x1, x2, . . . , xd], V =

V(f1, . . . , fn) = {x ∈ Rd | fi(x) = 0, 1 ≤ i ≤ n.} An algebraic variety V is all of Rd

only when all the polynomials defining it are zero polynomials; otherwise, V is called

a proper subvariety and is of dimension less than d, hence necessarily of Lebesgue

measure zero in Rd. The same argument holds when Rd is replaced by the parameter

space T ⊆ Rd that has full dimension in Rd. We next present the definition of generic

identifiability for restricted latent class models.

Definition III.4 (Generic Identifiability). A restricted latent class model is said to

be generically identifiable on the parameter space T , if (Θ,p) are strictly identifiable

on T \ V where V is a proper algebraic subvariety of T .

Generic identifiability could be viewed as some “partial” identification of model

parameters in the sense that, the nonidentifiable parameters fall in a subset of the

parameter space that can be characterized as solutions to some nonzero polynomial

equations. As can be seen from the form of (1.2), the constraints on the parameter

space introduced by the Γ-matrix already force the parameters fall into a proper alge-

braic subvariety of the unrestricted parameter space, so previous results established
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in Allman et al. (2009) for unrestricted latent class models do not apply to the models

considered in this chapter.

Remark III.2. Under multiparameter models, it is still possible that two latent classes

α and α′ always have the same positive response probabilities, i.e., Θ·,α = Θ·,α′ and

α, α′ are not distinguishable even generically. In this case one could have p-partial

identifiability of the model. However, this happens only when Γ·,α = Γ·,α′ = 1;

moreover, under Q-restricted models, this happens only if the Q-matrix contains an

all-zero column, which is a trivial case with a redundant column in Q. Under such

a Q-matrix, we can simply remove these all-zero columns and study the (generic)

identifiability under the reduced Q-matrix. Therefore, without loss of generality, in

the following discussion we assume the Q-matrix does not contain any all-zero column

such that Θ·,α = Θ·,α′ would not happen.

Based on the above discussions, to study identifiability of multiparameter re-

stricted latent class models, we consider two situations in Section 3.3.1: first, when

the Γ-matrix is separable, we study the strict identifiability of model parameters; sec-

ond, when the Γ-matrix is inseparable, we study the generic identifiability of model

parameters. Furthermore, in Section 3.3.2 we present sufficient conditions for generic

identifiability of the family of Q-restricted latent class models, and discuss the neces-

sity of the proposed conditions.

3.3.1 Strict and Generic Identifiability

First consider the case where the Γ-matrix is separable. For a subset of items S,

denote the corresponding |S| ×m indicator matrix by ΓS = (Γj,α, j ∈ S, α ∈ A),

which is a submatrix of the previously defined Γ-matrix. We say α succeeds α′ with

respect to S and denote it by α �S α′, if Γj,α ≥ Γj,α′ for any j ∈ S; this means

α is at least as capable as α′ of items in set S. With this definition, any subset

of items S induces a partial order “�S” on the set of latent classes A. When two

55



sets S1 and S2 induce the same partial order on A, that is, for any α′ and α ∈ A,

α′ �S1 α if and only if α′ �S2 α, we write “ �S1 ” = “ �S2 ”. The following theorem

gives conditions that lead to strict identifiability of multiparameter restricted latent

class models.

Theorem III.5. For a multiparameter restricted latent class model, if the Γ-matrix

satisfies the following conditions, then the parameters (Θ,p) are strictly identifiable:

(C3) There exist two disjoint item sets S1 and S2, such that ΓSi is separable for

i = 1, 2 and “ �S1 ” = “ �S2 ”.

(C4) Γ
(S1∪S2)c·,α 6= Γ

(S1∪S2)c·,α′ for any α, α′ such that α′ �Si α for i = 1 or 2.

Condition (C3) implies the entire Γ-matrix is separable, and it requires two dis-

joint sets of items S1 and S2 to have enough information to distinguish the latent

classes, and it serves as a repeated measurement condition for the identifiability of

multiparameter restricted latent class models. Condition (C4) states that, for those

pairs of latent classes α and α′ such that α is more capable than α′ uniformly on

either S1 or S2, the remaining items in (S1 ∪ S2)c should differentiate α and α′ by

their column vectors in Γ(S1∪S2)c .

Strict identifiability can be achieved with a relaxation of condition (C4) together

with a stronger version of condition (C3). Before presenting this result, we define

a latent class α as a basis latent class under an item set S, if there does not exist

α′ ∈ A such that α′ �S α. Denote the set of all basis latent classes under S by BS.

Then “�S1 ” = “ �S2 ” implies BS1 = BS2 .

Proposition III.5. Under a multiparameter restricted latent class model, if the Γ-

matrix satisfies the following conditions, then (Θ,p) are identifiable.

(C3∗) There exist two disjoint item sets S1 and S2, such that ΓSi is separable for

i = 1, 2 and “ �S1 ” = “ �S2 ”. Moreover, for any j ∈ S1 ∪ S2, there exists

α ∈ BS1 such that Γj,α = 1.

56



(C4∗) Γ
(S1∪S2)c·,α 6= Γ

(S1∪S2)c·,α0
for any α ∈ BS1 and α 6= α0, where α0 is the universal

least capable class.

Remark III.3. Theorem III.5 and Proposition III.5 show the trade-off between the

conditions on the separable submatrices part of Γ and on the remaining part. They

establish identifiability for a wide range of restricted latent class models, with the

Γ-matrix ranging in the spectrum of different extents of inseparability. Specifically,

for a Q-restricted latent class model that lacks many single-attribute items, (C3) is

easier to satisfy than (C3∗) and Theorem III.5 would be more applicable; while for

a Q-restricted model that lacks few single-attribute items, Proposition III.5 would

become more applicable as (C4∗) imposes a weaker condition on the set (S1 ∪ S2)c.

Remark III.4. Theorem III.5 and Proposition III.5 extend the existing work Xu

(2017). Compared with the identifiability result in Xu (2017) that requires two

copies of the identity submatrix IK to be included in the Q-matrix, in the special

case with A = {0, 1}K , the proposed conditions (C3∗) and (C4∗) reduce to the con-

ditions in Xu (2017). Furthermore, in general cases of an unsaturated latent class

space with |A| < 2K , the conditions in Theorem III.5 and Proposition III.5 impose

much weaker requirements than those in Xu (2017), because a Q-matrix lacking some

single-attribute items may suffice for a separable Γ-matrix and further suffice for strict

identifiability under the conditions in this chapter.

Next, we consider the case where the multiparameter restricted latent class model

is associated with an inseparable Γ-matrix, which violates condition (C3). We study

the generic identifiability of the model parameters.

Theorem III.6. Consider a multiparameter restricted latent class model. If there

exist two disjoint item sets S1 and S2, such that altering some entries of zero to

one in ΓS1∪S2 can yield a Γ̃S1∪S2 that satisfies condition (C3); and that the Γ(S1∪S2)c

satisfies condition (C4), then the model parameters (Θ,p) under the original Γ-matrix

are generically identifiable.
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Theorem III.6 is established based on the theoretical development of Theorem

III.5. By relaxing the condition (C3) and allowing Γ to be inseparable, we may not

have strict identifiability, as discussed in Example III.4. We use the following example

to further illustrate the results of Theorems III.5–III.6.

Example III.5. For a multiparameter restricted latent class model, if Γ = ((Γsub)>,

(Γsub)>, (Γsub)>)> contains three copies of the following Γsub, then (C3) and (C4) are

satisfied and (Θ,p) under Γ are strictly identifiable.

Γsub =


0 1 1 1

0 0 1 1

0 0 0 1

 ; ΓS1 =


0 0 1 1

0 0 1 1

0 0 0 1

 , ΓS2 =


0 1 1 1

0 0 0 1

0 0 0 1

 .

Instead, consider Γnew = ((ΓS1)>, (ΓS2)>, (Γsub)>)> with two submatrices in the forms

of ΓS1 and ΓS2 above, then neither of ΓSi is separable. But by changing the (1, 2)th

entry of ΓS1 and (2, 3)th entry of ΓS2 from zero to one, the resulting Γ̃S1 and Γ̃S2 are

separable, so the conditions of Theorem III.6 are satisfied and (Θ,p) under Γnew are

generically identifiable.

3.3.2 Results for Q-restricted Latent Class Models

In this subsection we characterize how the Q-matrix impacts the identifiability of

multiparameter models. Similar to Section 3.2.2, we consider the case A = {0, 1}K .

For strict identifiability, the result of either Theorem III.5 or Proposition III.5 implies

the result of Theorem 1 in Xu (2017), as discussed in Remark III.4. Our next result

gives a flexible structural condition on Q that leads to generic identifiability.

Theorem III.7. Under a multiparameter Q-restricted latent class model, if the Q-

matrix satisfies the following conditions, then the model parameters are generically

identifiable, up to label swapping among those latent classes that have identical column

vectors in Γ.
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(C5) Q contains two K ×K submatrices Q1, Q2, such that for i = 1, 2,

Q =


Q1

Q2

Q′


J×K

; Qi =



1 ∗ . . . ∗

∗ 1 . . . ∗
...

...
. . .

...

∗ ∗ . . . 1


K×K

, i = 1, 2, (3.16)

where each ‘∗’ can be either zero or one.

(C6) With the Q-matrix taking the form of (5.5), in the submatrix Q′ each attribute

is required by at least one item.

The above identifiability result does not require the Q to contain an identity

submatrix IK and provides a flexible new condition for generic identifiability that

are satisfied by various Q-matrix structures; see examples in Section 3.3.3. Under a

multiparameter restricted latent class model with all entries of the Q-matrix being

ones, conditions (C5) and (C6) in Theorem III.7 equivalently reduce to J ≥ 2K + 1,

which is consistent with the result in Allman et al. (2009) for unrestricted latent class

models.

Next we discuss the necessity of the proposed sufficient conditions for generic

identifiability. Conditions (C5) and (C6) imply that each attribute is required by at

least three items. The next theorem shows that it is necessary for each attribute to

be required by at least two items.

Theorem III.8. Consider a multiparameter Q-restricted latent class model.

(a) If some attribute is required by only one item, then the model is not generically

identifiable.

(b) If some attribute is required by only two items, without loss of generality assume
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Q takes the following form

Q =


1 v>1

1 v>2

0 Q′

 , (3.17)

then as long as v1 ∨ v2 6= 1K−1 and the submatrix Q′ satisfies conditions (C5)

and (C6), then the model parameters (Θ,p) are generically identifiable, up to

label swapping among those latent classes that have identical column vectors in

Γ.

Remark III.5. As a notion of partial identification of model parameters, generic iden-

tifiability does not imply strict identifiability. For instance, if the Q-matrix is in the

form of (3.17) and vi = 0 for i = 1 and 2, then the model is not strictly identifiable,

but generic identifiability can still hold as stated in Theorem III.8. This is also an

analogue to the situations discussed in Theorem III.2 for two-parameter restricted

latent class models. Based on Theorems III.7 and III.8, we would recommend prac-

titioners in diagnostic test designs to ensure each attribute is measured by at least

three items.

3.3.3 Applications

Similar to the discussion in Section 3.2.3, our results of generic identifiability also

lead to the estimability of the model parameters.

Proposition III.6. Suppose a restricted latent class model is generically identifiable

on the parameter space T with a measure-zero nonidentifiable set V . If the true

parameters (Θ0,p0) ∈ T \ V , then (Θ̂, p̂)→ (Θ0,p0) almost surely as N →∞.

We apply the new theory of generic identifiability to the designs introduced in

Section 1.3, and establish generic identifiability of the multiparameter restricted la-

tent class models. Consider the TOEFL iBT data. Both Q-matrices corresponding
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to TOEFL reading forms A and B can be transformed into the form of (5.5) through

some row rearrangements, with the corresponding Q′ requiring each attribute at least

once. Therefore both Q-matrices satisfy conditions (C5) and (C6) and any multi-

parameter Q-restricted models associated with them are generically identifiable and

estimable. Our results in this section also guarantee the generic identifiability of mul-

tiparameter models associated with the Q43×12 for the TIMSS data, and the Q20×8

for the fraction subtraction data; please see Section A in the Supplementary Material

for details of checking the conditions.

3.4 Extensions to More Complex Models

In this section, we extend our identifiability theory to some more complicated

latent variable models.

3.4.1 Mixed-items Restricted Latent Class Models

Our identifiability theory based on Γ directly applies to the case of mixed types of

items, where the J items can conform to different models, including two-parameter

conjunctive, two-parameter disjunctive, or multiparameter.

First consider the two-parameter-mixed restricted latent class model, where each

item is either two-parameter conjunctive or disjunctive. Let I(·) denote the binary

indicator function. For any Q-matrix and latent class space A, denote the Γ-matrix

under the two-parameter conjunctive model by Γconj(Q,A) with the (j,α)th entry

being I(α � qj), and denote the Γ-matrix under the two-parameter disjunctive model

by Γdisj(Q,A) with the (j,α)th entry being I(∃k s.t. αk = qj,k = 1). The following

is a corollary of Theorem III.1.

Corollary III.2. Consider a two-parameter-mixed restricted latent class model with

Q = (Q>disj, Q
>
conj)

>, where Qdisj and Qconj correspond to disjunctive and conjunctive
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items, respectively. If the following condition (E1) holds, then (θ+,θ−,p) are p-

partially identifiable.

(E1) The J×|A| matrix Γ = (Γdisj(Qdisj,A)>, Γconj(Qconj,A)>)> satisfies conditions

(C1) and (C2) in Theorem III.1.

In particular, if A = {0, 1}K and the Γ defined in (E1) is separable, then (θ+,θ−,p)

are strictly identifiable.

One implication of Corollary III.2 is that when a diagnostic test contains both

conjunctive and disjunctive items, the underlying Q-matrix does not need to include

a submatrix IK for (θ+,θ−,p) to be strictly identifiable. This is in contrary to the

case of a purely conjunctive or purely disjunctive two-parameter model, where this

requirement is indeed necessary Xu and Zhang (2016); Gu and Xu (2019b). The

following application of Corollary III.2 illustrates this point.

Example III.6. Consider a diagnostic test with 4 conjunctive items and 2 disjunctive

items with the following Q-matrix

Q =

Qconj
4×2

Qdisj
2×2

 =



1 0

1 1

1 1

1 1

1 1

1 1


==⇒ Γ =

(0, 0) (0, 1) (1, 0) (1, 1)



0 0 1 1

0 0 0 1

0 0 0 1

0 0 0 1

0 1 1 1

0 1 1 1

.

Then if A = {0, 1}2, the corresponding Γ-matrix as shown above is separable, and

conditions (C1∗) and (C2∗) are satisfied. So θ+ = (θ+
1 , . . . , θ

+
6 )>, θ− = (θ−1 , . . . , θ

−
6 )>

and p = (p(0,0), p(0,1), p(1,0), p(1,1))
> are strictly identifiable, despite that Q does not

contain a submatrix I2.
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If there exist both two-parameter items and multiparameter items in the model,

we have the following identifiability result, the part (a) of which directly results from

Theorem III.5 and Proposition III.5. Please see Section D in the Supplementary

Material for details.

Corollary III.3. Assume Q = (Q>disj, Q
>
conj, Q

>
mult)

> where Qdisj, Qconj and Qmulti

correspond to the two-parameter disjunctive, two-parameter conjunctive, and multi-

parameter items, respectively.

(a) If Γ = (Γdisj(Qdisj,A)>, Γconj(Qconj,A)>, Γconj(Qmult,A)>)> satisfies condi-

tions (C3) and (C4) in Theorem III.5; or conditions (C3*) and (C4*) in Propo-

sition III.5, then (Θ,p) are strictly identifiable.

(b) If Γ satisfies condition (E2) in Section D of the Supplementary Material, then

(Θ,p) are generically identifiable.

3.4.2 Restricted Latent Class Models with Categorical Responses

We next study restricted latent class models with multiple levels of responses

per item, that is, categorical responses, instead of binary responses considered in

previous sections. These models have been considered in von Davier (2008), Ma and

de la Torre (2016) and Chen and de la Torre (2018). We consider the setting in Chen

and de la Torre (2018). Suppose for each item j out of the J items in a diagnostic test,

there are Lj categories of responses. For each item j and each category of response

l ∈ {0, . . . , Lj−1}, there are a set of positive response parameters of the latent classes

θ
(l)
j = {θ(l)

j,α : α ∈ A} with θ
(0)
j = 1−∑l>0 θ

(l)
j . Further, for each item j, the q-vector

qj constrains the vector θ
(l)
j based on (1.2) for each category l ∈ {1, . . . , Lj − 1}

independently, other than the basic level l = 0. Namely, for any j ∈ S,

max
α∈Cj

θ
(l)
j,α = min

α∈Cj
θ

(l)
j,α > θ

(l)
j,α′ , ∀l ∈ {1, . . . , Lj − 1} and ∀α′ /∈ Cj.
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We collect all the model parameters in (Θcat,p) with Θcat = {θ(l)
j : j = 1, . . . , J ; l =

0, . . . , Lj − 1}. Then we have the following identifiability result.

Proposition III.7. For a given Q-matrix, consider the following cases.

(a) If for any j ∈ S and l ∈ {1, . . . , Lj}, item parameters {θlj,α,α ∈ A} follow the

two-parameter assumption, and Q satisfies (C1*) and (C2*) in Corollary III.1,

then (Θcat,p) are p-partially identifiable.

(b) If for any j ∈ S and l ∈ {1, . . . , Lj}, item parameters {θlj,α,α ∈ A} follow

the multiparameter assumption, and Q satisfies conditions (C5) and (C6) in

Theorem III.7, then (Θcat,p) are generically identifiable.

3.4.3 Deep Restricted Boltzmann Machines

As mentioned in Example I.4 in Chapter I, structured latent attribute models share

great similarities with Restricted Boltzmann Machines (RBM) (Goodfellow et al.,

2016). Here we restate how the RBM architecture can be used as a special restricted

latent class model for cognitive diagnosis. The RBM on the right panel of Figure 3.1

consists of two latent layers α(1) and α(2) and one observed layer R. In a diagnostic

test, theR represents multivariate binary responses to test items, the first latent layer

α(1) represents the fine-grained binary skill attributes measured by the items, while

the second binary latent layer α(2) helps to model the dependence among α(1) and

may be interpreted as more general skill domains. Denote the lengths of vectors R,

α(1) and α(2) by J , K1 and K2. Under RBM assumptions, the probability distribution

of all the observed and latent variables is

P(R,α(1),α(2)) =
1

Z
exp

(
−R>WQα(1) − (α(1))>Uα(2)

)
, (3.18)

where Z is the normalization constant, and WQ, U are parameter matrices, of size

J×K1 and K1×K2, respectively. We drop the bias terms in the above energy function
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without loss of generality (Goodfellow et al., 2016). We can impose a Q-matrix of size

J×K1 to restrict the parameters WQ in (3.18). Specifically, Q specifies which entries

of WQ = (wj,k) are zero, that is, wj,k = 0 if qj,k = 0. The form of Q underlying the

WQ in Figure 3.1 is on the left panel of the figure.

Q =


1 0 1 0
1 1 0 0
0 1 1 0
0 0 1 1
0 1 0 1

 ;

R1 R2 R3 R4 R5 R ∈ {0, 1}5

α
(1)
1 α

(1)
2 α

(1)
3 α

(1)
4 α(1) ∈ {0, 1}4

WQ ∈ R5×4w
1,

1

w
5,4

α
(2)
1 α

(2)
2 α(2) ∈ {0, 1}2

Figure 3.1: (Deep) Restricted Boltzmann machine

We call WQ the item parameters of a RBM, since these parameters relate to the

observed responses to items; and call a RBM with a Q-matrix structure an item-

parameter-restricted RBM. Then an item-parameter-restricted RBM can be viewed

as a multiparameter main-effect restricted latent class model, with α(1) belonging to

the latent class space {0, 1}K1 . The next proposition establishes identifiability of the

item parameters WQ.

Proposition III.8. For a given Q-matrix, consider the following cases.

(a) If there is no sparsity structure in WQ (i.e., Q = 1J×K), then as long as

J ≥ 2K1 + 1, the item parameters WQ are generically identifiable.

(b) If the Q-matrix satisfies the sufficient conditions for strict or generic identifiabil-

ity in Section 3.3, then WQ are strictly or generically identifiable, respectively.

Proposition III.8 establishes identifiability of the item parameters WQ, which

provides the theoretical guarantee in the application of item calibration to assess the

quality of the items. It would also be interesting to further investigate identifiability of

other parameters besides the item parameters in a deep restricted Boltzmann machine,

which we leave for future study.
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3.5 Discussion

This chapter proposes a general framework of strict and partial identifiability of

restricted latent class models.

We provide a flowchart in Figure 3.2 to summarize our main theoretical results

in Sections 3.2 and 3.3. The flowchart illustrates how to apply the new theory in

cognitive diagnosis. Specifically, given the specification of the Q-matrix, the latent

class space A ⊆ {0, 1}K , and the diagnostic model assumptions, one can construct

the corresponding J × |A| Γ-matrix based on the Cj’s defined in (3.1). Then in the

case of a separable Γ-matrix, if the model is two-parameter, the p-partial identifia-

bility exactly reduces to strict identifiability and one can use results in Section 3.2

to establish strict identifiability; and if the model is multiparameter, one can use

results Theorem III.5 and Proposition III.5 in Section 3.3.1 for strict identifiability.

On the other hand, if the Γ-matrix is inseparable, depending on whether the model

is two-parameter or multiparameter, one can use the results in Section 3.2.2 or those

in Section 3.3 to check whether the model is p-partially identifiable or generically

identifiable, respectively. Note that in the special case of A = {0, 1}K , the Γ-matrix

with 2K columns is separable if and only if the Q-matrix contains an identity subma-

trix IK , a key condition assumed in previous works (e.g., Xu, 2017; Xu and Shang,

2018). Hence, this chapter not only largely relaxes these existing conditions for strict

identifiability by allowing more flexible attribute structures with an arbitrary A, but

also provides the first study on partial identifiability when the Q-matrix does not

include an IK (the Γ-matrix is inseparable). We give easily-checkable identifiability

conditions to ensure estimability of the model parameters, and these conditions serve

as practical guidelines for designing statistically valid diagnostic tests.

We point out that the strict identifiability results in Section 3.3.1 (Theorem III.5

and Proposition III.5) apply to the general family of restricted latent class models sat-

isfying constraints (1.2), including not only multiparameter but also two-parameter
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(a) Q-matrix QJ×K ;
(b) Latent class space A;
(c) Model specification.

Construct Γ of
size J × |A|

Strict identifiability

Strict identifiability
Theorems III.1–III.4

Proposition III.3
Corollary III.1

Strict identifiability
Theorem III.5

Proposition III.5

Partial identifiability

p-partial identifiability
Theorems III.1–III.3

Proposition III.3
Corollary III.1

Generic identifiability
Theorems III.6–III.8

Γ separable Γ inseparable

two-param. multi-param. two-param. multi-param.

Figure 3.2: Flowchart of the results in Sections 3.2 and 3.3

models; on the other hand, since these results are established under the general

constraints (1.2), their conditions are stronger than those in Section 3.2 under two-

parameter models. In contrast, the generic identifiability results in Sections 3.3.1 and

3.3.2 (Theorems III.6–III.8) only apply to multiparameter models. This is because

under generic identifiability, the nonidentifiable measure-zero subset of a multipa-

rameter model’s parameter space (such as GDINA), could still contain the parameter

space corresponding to a two-parameter submodel (such as DINA), making these

generic identifiability results not applicable to two-parameter models. Nevertheless,

generic identifiability is a general concept not just restricted to the multiparame-

ter models. An interesting future direction to study is the generic identifiability of

two-parameter models under the introduced p-partial identifiability framework; that

is, one can study what conditions lead to the generic identifiability of (θ+,θ−,ν).

We also point that a multiparameter model can also be p-partially identifiable, as

discussed in Remark III.2.

For the p-partial identifiability and generic identifiability results in Sections 3.2–

3.4, we assume that the model specification for each item, the design matrix and
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latent class space A are available as prior knowledge. In practice, there can be sce-

narios where not all of such information is available. As pointed out by one reviewer,

in applications of cognitive diagnostic modeling, both the advances in modeling ca-

pacity and computing flexibility, and the recent real-data examples provide ground

for adopting a model with mixed type of items, which are determined in a data-driven

way. To this end, our strict identifiability results in Section 3.3.1 and those in Section

3.4.1 for mixed-items models can be applied to assess identifiability a posteriori. In

practice, when deciding which model to adopt, one can use the response data to de-

termine the number of latent classes and determine which diagnostic model an item

conforms to. For instance, one may employ the popular information criteria such as

AIC and BIC to perform model selection; or one may first fit a general cognitive di-

agnostic model, such as GDINA or GDM, then use the Wald test to determine which

submodel an item follows de la Torre (2011). Alternatively, one may use a penalized

likelihood method Xu and Shang (2018) or Bayesian method Chen et al. (2018a) to

directly estimate the structure of the item parameters for each item; such structure

informs the model specification of the item. For the selected candidate models, we

would recommend further applying our identifiability theory to assess their identi-

fiability and validity. The general theoretical framework developed in this chapter

would be a useful tool to develop the identifiability and estimability conditions for

learning the item-level model structure and the population-level latent class space A.

This is an interesting and important direction that we plan to pursue in the future.
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CHAPTER IV

Necessary and Sufficient Conditions for the

Identifiability of the Q-matrix

The previous two chapters study the identifiability of model parameters of SLAMs

given a fixed and known Q-matrix. This chapter addresses a further question, which

goes beyond merely identifying the model parameters. Rather, the main goal here

is to identify the key latent structure, that is, the Q-matrix itself. In practice, the

Q-matrix, specified by scientific experts when constructing the diagnostic items, can

be misspecified. Moreover, in an exploratory analysis of newly designed items, much

or all of the Q-matrix may not be available. Here, a misspecification of the Q-matrix

could lead to a serious lack of fit for the model, and thus inaccurate inferences on

the latent attribute profiles of the individuals. Therefore, it is desirable to estimate

the Q-matrix and the model parameters jointly from the response data (e.g., de la

Torre, 2008; DeCarlo, 2012; Liu et al., 2012; de la Torre and Chiu, 2016; Chen et al.,

2018a). A reliable and valid estimation and inference on the Q-matrix requires that we

ensure the joint identifiability of the Q-matrix and the associated model parameters.

Such joint identifiability has been studied recently by Liu et al. (2013) and Chen

et al. (2015) under the DINA model, and by Xu and Shang (2018) under general

This chapter contains the main part of Gu and Xu (2020b), accepted by Statistica Sinica.
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RLCMs. Nevertheless, most of these works focus on developing sufficient conditions

for joint identifiability, and thus often impose stronger than needed constraints on

the experimental design of a cognitive diagnosis.

Therefore, the necessary and sufficient conditions (or minimal requirements) for

the joint identifiability of the Q-matrix and the model parameters remains an open

problem. This study addresses this problem, making the following contributions to

the literature.

First, under the DINA model, we derive the necessary and sufficient conditions for

the joint identifiability of the Q-matrix and the associated DINA model parameters.

Our necessary and sufficient conditions are succinctly and neatly written as three

algebraic properties of the Q-matrix, which we summarize as completeness (Condition

A), distinctness (Condition B), and repetition (Condition C); please see Theorem

IV.1 for details. These three conditions require that the binary Q-matrix is complete

by containing an identity submatrix, has all columns distinct other than the part

of the identity submatrix, and repeatedly contains at least three entries of one in

each column. In addition to guaranteeing identifiability, these conditions give the

minimal requirements for the Q-matrix and DINA model parameters to be estimable

from the observed responses. The identifiability result can be applied directly to the

deterministic input noisy output “Or” gate (DINO) model (Templin and Henson,

2006), owing to the duality of the DINA and DINO models (Chen et al., 2015).

The derived identifiability conditions also serve as necessary requirements for joint

identifiability under general RLCMs, which include the DINA model as a submodel.

Second, we propose sufficient and necessary conditions for a weaker notation of

identifiability, the so-called generic identifiability, under both the DINA model and

general RLCMs. Generic identifiability implies that those parameters for which iden-

tifiability does not hold live in a set of Lebesgue measure zero (Allman et al., 2009).

The motivation for studying generic identifiability is that the strict identifiability
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conditions are sometimes too restrictive in practice. For instance, it is known that

unrestricted latent class models are not strictly identifiable (Gyllenberg et al., 1994),

but are generically identifiable under certain conditions (Allman et al., 2009). In

RLCMs, the model parameters are forced by the Q-matrix-induced constraints to

fall in a measure-zero subset of the parameter space, and, thus, existing results for

unrestricted models cannot be applied directly. Moreover, the generic identifiabil-

ity conditions needed to jointly identify the Q-matrix and the model parameters are

unknown. Therefore, in this chapter, we propose sufficient and necessary conditions

for generic identifiability, and explicitly characterize the nonidentifiable measure-zero

subset. Our mild sufficient conditions for generic identifiability under general RLCMs

can be summarized as the following properties of the Q-matrix: double generic com-

pleteness (Condition D), and generic repetition (Condition E); see Theorem IV.4

for details. These two conditions require that the binary Q-matrix contains two

generically complete square submatrices with all diagonal elements equal to one, and

(repeatedly) contains at least one entry of “1” other than the part comprising these

two submatrices.

The rest of this chapter is organized as follows. Section 4.1 defines strict and

generic identifiability for RLCMs, and presents an illustrative example. Sections 4.2

and 4.3 contain our main theoretical results for strict and generic identifiability for

the DINA model and multiparameter RLCMs, respectively. Section 4.4 concludes

the chapter. The proofs of the theoretical results and additional simulation studies

that verify the developed theory are included in Appendix C. The Matlab code used to

check the proposed conditions is available at https://github.com/yuqigu/Identify_Q.
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4.1 Definitions and Examples of Strict and Generic Identifi-

ability

This section introduces the definitions of joint strict identifiability and joint generic

identifiability of (Q,Θ,p) for SLAMs, and gives an illustrative example.

Note that the monotonicity assumption stated in (1.2), is necessary for the iden-

tifiability of the Q-matrix, because, without it, Q 6= 1J×K with parameters (Θ,p)

is distinguished from Q̄ = 1J×K with the same parameters (Θ,p) under the multi-

parameter SLAM. The monotonicity constraints ensure that the constraints induced

by Q 6= 1J×K and Q̄ = 1J×K cannot be the same and, therefore, Q can be identified

under additional conditions; see Sections 4.2 and 4.3. In the following we assume the

monotonicity assumption introduced in Section 2 is satisfied.

Another common issue with the identifiability of the Q-matrix is label swapping.

In an RLCM setting, arbitrarily reordering the columns of a Q-matrix does not change

the distribution of the responses. As a result, it is only possible to identify Q up to

column permutation; thus, we write Q̄ ∼ Q if Q̄ and Q have an identical set of column

vectors, and write (Q̄, Θ̄, p̄) ∼ (Q,Θ,p) if Q̄ ∼ Q and (Θ̄, p̄) = (Θ,p).

We first define the identifiability of the Q-matrix and the model parameters (Θ,p).

We refer to this as joint strict identifiability.

Definition IV.1 (Joint Strict Identifiability). Under an RLCM, the design matrix

Q joint with the model parameters (Θ,p) are said to be strictly identifiable if for any

(Q,Θ,p), there is no (Q̄, Θ̄, p̄) � (Q,Θ,p) such that

P(R = r | Q,Θ,p) = P(R = r | Q̄, Θ̄, p̄) for all r ∈ {0, 1}J . (4.1)

In the following discussion, we write (5.9) simply as P(R | Q,Θ,p) = P(R | Q̄, Θ̄, p̄).

Despite being the most stringent criterion for identifiability, strict identifiability
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can be too restrictive, ruling out many cases where (Q,Θ,p) are “almost surely”

identifiable. In the literature on unrestricted latent class models, Allman et al. (2009)

proposed and studied the so-called generic identifiability of such models. Here, we

introduce the concept of generic identifiability for RLCMs as follows.

Definition IV.2 (Joint Generic Identifiability). Consider an RLCM with parameter

space ϑQ, which is of full dimension in Rm, with m corresponding to the number of

free parameters in the model. The matrix Q joint with the model parameters (Θ,p)

are said to be generically identifiable if the following set has Lebesgue measure zero

in Rm: ϑnon = {(Θ,p) : ∃(Q̄, Θ̄, p̄) � (Q,Θ,p), such that P(R | Q,Θ,p) = P(R |

Q̄, Θ̄, p̄)}.

4.1.1 Example of the Generic Identifiability Phenomenon with Q4×2

Here, we use an example to explain the difference between generic identifiability

and strict identifiability. Consider the Q-matrix Q4×2 in (5.2). Under the DINA

model, we prove that this Q-matrix, joint with the associated model parameters

(s, g,p), is generically identifiable (by part (b.2) of Theorem IV.2), but not strictly

identifiable (by Theorem IV.1).

Q4×2 =



1 0

0 1

1 0

0 1


. (4.2)

In particular, as long as the true proportions p = (p(00), p(01), p(10), p(11)) satisfy the

following inequality constraint, (Q4×2, s, g,p) is identifiable (see the proof of Theorem

IV.2 (b.2)):

p(01)p(10) 6= p(00)p(11). (4.3)

73



On the other hand, when p(01)p(10) = p(00)p(11), the model parameters are not identifi-

able, and there exist infinitely many sets of parameters that provide the same distri-

bution of the observed response vector. Here, the parameter space ϑQ = {(s, g,p) :

1− s � g, p � 0,
∑
α pα = 1} is of full dimension in R11, where the nonidentifiable

subset ϑnon = {(s, g,p) : p(01)p(10) = p(00)p(11)} has Lebesgue measure zero in R11.

We use a simulation study to illustrate the generic identifiability phenomenon. Under

the Q4×2 in (5.2), consider the following two simulation scenarios:

(a) the true model parameters are set as gj = sj = 0.2 for j = 1, 2, 3, 4, and

p(00) = p(01) = p(10) = p(11) = 0.25, which violates (4.3);

(b) the true model parameters are generated randomly, which almost always satis-

fies (4.3). Specifically, we randomly generate 100 true parameter sets (s, g,p)

using the following generating mechanism: sj ∼ U(0.1, 0.3), gj ∼ U(0.1, 0.3)

for j = 1, 2, 3, 4, and p ∼ Dirichlet(3, 3, 3, 3). Here U(0.1, 0.3) denotes the

uniform distribution on [0.1, 0.3], and Dirichlet(3, 3, 3, 3) denotes the Dirichlet

distribution with parameter vector (3, 3, 3, 3).

We show numerically that in scenario (a), there exist multiple sets of valid DINA pa-

rameters that give the same distribution ofR; in scenario (b), the model (Q, s, g,p) is

almost surely identifiable and estimable. In particular, corresponding to scenario (a),

Figure 4.1 (a) plots the true model parameters and the other two sets of valid DINA

model parameters (constructed based on the derivations in the proof of Theorem IV.2

(b.2)), and Figure 4.1 (b) plots the marginal probabilities of all 24 = 16 response pat-

terns under the three sets of model parameters. We can see that despite these three

sets of parameters being quite different, they give the identical distribution of the

four-dimensional binary response vector.

Corresponding to scenario (b), we randomly generate B = 100 sets of true pa-

rameters (si, gi,pi), for i = 1, . . . , 100. Then, for each (si, gi,pi), we generate 200
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(a) (b)

Figure 4.1: Illustration of nonidentifiability under Q4×2 in scenario (a).

independent data sets of size N , with N = 102, 103, 104, and 105, and then compute

the mean square errors (MSEs) of the maximum likelihood estimators (MLEs) of the

slipping, guessing and proportion parameters. To compute the MLEs of the model

parameters for each simulated data set, we run the EM algorithm with 10 random

initializations, and choose the estimators that achieve the largest log-likelihood value

of the 10 runs. Figure 4.2 shows the box plots of MSEs associated with the B = 100

true parameter sets for each sample size N . As N increases, we observe that the MSEs

decrease to zero, indicating the (generic) identifiability of these randomly generated

parameters.

(a) MSE of p (b) MSE of s (c) MSE of g

Figure 4.2: Illustration of generic identifiability under Q4×2, which corresponds to
simulation scenario (b).
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On the other hand, Figure 4.2 also shows that several parameter sets have MSEs

that are “outliers” that converge to zero more slowly than others do as N increases.

This happens because these sets of parameters fall near the nonidentifiability set

Vnon = {(s, g,p) : p(01)p(10) − p(00)p(11) = 0}, making it more difficult to identify

them. To illustrate this point, consider the scenario corresponding to the rightmost

box plot in Figure 4.2(a), with sample size N = 105. For each of the 100 sets of

true parameters (si, gi,pi), we plot pi(00) · pi(11) and pi(01) · pi(01) as the x-axis and y-axis

coordinates, respectively (see Figure 4.3). Then, each point represents one set of true

parameters used to generate the data. Specifically, we plot these parameter sets using

a red “∗” if their corresponding MSEs are the 20% largest outliers in the rightmost

box plot in Figure 4.2(a); we plot the remaining 80% of the parameter sets using

a blue “+”. One can clearly see that as the true parameters become closer to the

nonidentifiability set Vnon = {(s, g,p) : p(01)p(10)−p(00)p(11) = 0} (represented by the

straight reference line drawn from (0, 0) to (0.17, 0.17)), the MSEs increase, and the

MSEs converge more slowly. Thus, under generic identifiability, when the true model

is close to the nonidentifiable set, the convergence of their MLEs becomes slow.

Interestingly, the generic identifiability constraint (4.3) is equivalent to the state-

ment that the two latent attributes are not independent of each other. To see this,

view each subject’s two-dimensional attribute profile as a random vector taking val-

ues in a 2 × 2 contingency table. Then, (4.3) states that the 2 × 2 matrix of joint

probabilities of attributes mastery,

p(00) p(01)

p(10) p(11)

 ,

has full rank, with nonzero determinant p(00)p(11)−p(01)p(10). Therefore, one row (resp.

column) of the matrix cannot be a multiple of the other row (resp. column), and hence

the two binary attributes can not be independent. Intuitively, this implies that the
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Figure 4.3: The effect of the generic identifiability constraint (4.3). Red “∗”s represent
parameter sets with the 20% largest MSEs in Figure 4.2(a), with N = 105; blue “+”s
represent the remaining parameter sets.

DINA model essentially requires that each attribute is measured at least three times

for identifiability (as shown in Condition B in Theorem IV.1). In particular, consider

those attributes that are measured by only two items in the Q-matrix. If these

attributes are independent, then, intuitively, they provide an independent source of

information in which case the model is not identifiable. However, if these attributes

are dependent, then the dependency instead helps to identify the model structure.

=⇒

(a) measure-zero nonidentifiable
subset, independent attributes

(b) parameter space for the
proportion parameters p

Figure 4.4: geometry of generic identifiability with Q4×2 = (I2; I2).
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Before stating the strict and generic identifiability results on (Q,Θ,p), we show

in the next proposition that any all-zero row vector in the Q-matrix can be dropped

without affecting the identifiability conclusion.

Proposition IV.1. Suppose theQ-matrix of size J×K takes the formQ = ((Q′)>,0>)>,

where Q′ is a J ′ × K submatrix containing J ′ nonzero q-vectors, and 0 denotes a

(J − J ′) × K submatrix containing these zero q-vectors. Let Θ′ be the submatrix

of Θ containing its first J ′ rows. Then, for any SLAM, (Q,Θ,p) are jointly strictly

(generically) identifiable if and only if (Q′,Θ′,p) are jointly strictly (generically) iden-

tifiable.

Therefore, without loss of generality, from now on, we only consider Q-matrices

without any zero q-vectors when discussing joint identifiability. We examine various

SLAMs that are popular in cognitive diagnosis assessment. In particular, in Section

4.2, we present the sufficient and necessary conditions for the strict and generic iden-

tifiability of (Q,Θ,p) under the basic DINA model. These identifiability results can

also be applied to the DINO model (Templin and Henson, 2006), owing to the duality

between the two models (Chen et al., 2015). Section 4.3 presents the sufficient and

necessary conditions for the generic identifiability of (Q,Θ,p) under multiparameter

SLAMs, which include the popular GDINA and LCDM models.

4.2 Identifiability of (Q,Θ,p) under the DINA Model

Under the DINA model, Liu et al. (2013) first studied the identifiability of the

Q-matrix under the assumption that the guessing parameters g are known. Chen

et al. (2015) and Xu and Shang (2018) proposed a further set of sufficient conditions

without needing to assume known item parameters. An important requirement in

these identifiability studies is the completeness of the Q-matrix (Chiu et al., 2009).

Under the DINA model, the Q-matrix is said to be complete if it contains a K ×

78



K identity submatrix IK up to column permutation. Chen et al. (2015) and Xu

and Shang (2018) require Q to contain at least two complete submatrices IK for

identifiability.

However, determining the minimal requirements on the Q-matrix for identifiability

remains an open problem. In the next theorem, we solve this problem by providing

the necessary and sufficient condition for the identifiability of (Q, s, g,p) under the

earlier assumption that pα > 0, for all α ∈ {0, 1}K (Xu and Zhang, 2016; Gu and

Xu, 2019b).

Theorem IV.1. Under the DINA model, the combination of Conditions A, B, and

C is necessary and sufficient for the strict identifiability of (Q, s, g,p):

A. The true Q-matrix is complete. Without loss of generality, assume the Q-matrix

takes the following form:

Q =

 IK

Q?

 . (4.4)

B. The column vectors of the submatrix Q? in (4.4) are distinct.

C. Each column in Q contains at least three entries equal to one.

In the Supplementary Material, we provide simulations that verify Theorem IV.1.

In particular, see simulation study I for the sufficiency of Conditions A, B, and C

for joint identifiability; also see simulation studies III and IV for the necessity of the

proposed conditions. Next, we compare our Theorem 1 with several existing results.

First, although the same set of conditions is proposed in Gu and Xu (2019b), they

assumed a known Q when examining the identifiability of the parameters (s, g,p).

In contrast, Theorem 1 studies the joint identifiability of (Q, s, g,p), which is the-

oretically much more challenging, owing to the unknown Q-matrix, and therefore

provides a much stronger result than that in Chapter II (Gu and Xu, 2019b). In

terms of estimation, Theorem IV.1 implies that we can consistently estimate both Q
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and (s, g,p), without worrying that an incorrect Q-matrix is indistinguishable from

the true Q. Second, Theorem IV.1 has much weaker requirements than those of the

well-known identifiability conditions resulting from a three-way tensor decomposition

(Kruskal, 1977; Allman et al., 2009). Specifically, these classical results require that

the number of items J ≥ 2K + 1 for (generic) identifiability. In contrast, the con-

ditions in Theorem IV.1 imply that we need the number of items J to be at least

K + dlog2(K)e + 1 under the DINA model. This is because, other than the identity

submatrix IK , in order to satisfy Condition B of distinctness, the Q-matrix needs

only contain a further log2(K) items whose K-dimensional q-vectors form a matrix

with K distinct columns. For example, for K = 8, the conditions in Allman et al.

(2009) require at least 2K+1 = 17 items, whereas our Theorem IV.1 guarantees that

the following Q with K + log2(K) + 1 = 12 items suffices for the strict identifiability

of (Q, s, g,p) under DINA:

Q =



I8

0 0 1 1 1 0 1 1

0 1 0 1 0 1 1 1

1 0 0 0 1 1 1 1

1 1 1 1 1 1 0 1


.

Conditions A, B, and C are the minimal requirements for joint strict identifia-

bility. When the true Q fails to satisfy one or more of these, Theorem 1 implies

that there must exist (Q, s, g,p) � (Q̄, s̄, ḡ, p̄) such that (5.9) holds. In this scenario,

there are still cases where the model is “almost surely” identifiable, though not strictly

identifiable, as illustrated by the example under Q4×2 in (5.2). On the other hand,

there are also cases where the entire model is never identifiable, as shown in simula-

tion studies III and IV in the Supplementary Material. Therefore, it is desirable to

determine which conditions guarantee the generic identifiability of (Q, s, g,p).
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In the following, we discuss the necessity of Conditions A, B, and C under the

weaker notion of generic identifiability. First, Condition A is necessary for the joint

generic identifiability of (Q,Θ,p). If the true Q-matrix does not satisfy Condition A,

then under the DINA model, certain latent classes would be equivalent given Q, and

their separate proportion parameters can never be identified, not even generically (Gu

and Xu, 2020a). In certain scenarios where Condition A fails, one can find a different

Q̄ that is not distinguishable from Q. Simulation study IV in the Supplementary

Material illustrates the necessity of Condition A.

Second, Condition B is also difficult to relax, and serves as a necessary condition

for generic identifiability when K = 2. Specifically, as shown in Gu and Xu (2019b),

when K = 2, the only possible structure of the Q-matrix that violates Condition B

while satisfying Conditions A and C is

Q =



1 0

0 1

1 1

...
...

1 1


.

In addition, in Chapter II we prove that for any valid DINA parameters associated

with this Q, there exist infinitely many different sets of DINA parameters that lead

to the same distribution of the responses. Therefore, the model is not generically

identifiable.

Third, in contrast to Conditions A and B, for generic identifiability, Condition C

can be relaxed to a certain extent. The next theorem characterizes how the Q-matrix

structure in this case affects generic identifiability. For an empirical verification of

Theorem IV.2, see simulation study II in the Supplementary Material.

Theorem IV.2. Under the DINA model, (Q, s, g,p) is not generically identifiable if
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some attribute is required by only one item.

If some attribute is required by only two items, suppose the Q-matrix takes the fol-

lowing form, after some column and row permutations:

Q =


1 0>

1 v>

0 Q?

 , (4.5)

where v is a vector of length K − 1, and Q? is a (J − 2)× (K − 1) submatrix.

(a) If v = 1, (Q, s, g,p) is not locally generically identifiable.

(b) If v = 0, (Q, s, g,p) is globally generically identifiable if either

(b.1) the submatrix Q? satisfies Conditions A, B, and C in Theorem IV.1; or

(b.2) the submatrix Q? has two submatrices IK−1.

(c) If v 6= 0,1, (Q, s, g,p) is locally generically identifiable if Q? satisfies Condi-

tions A, B, and C in Theorem IV.1.

Remark IV.1. We say (Q, s, g,p) is locally identifiable if, in a neighborhood of the

true parameters, there does not exist a different set of parameters that gives the

same distribution of the responses. Local generic identifiability is a weaker notion

than (global) generic identifiability. Therefore, the statement in part (a) of Theorem

IV.2 also implies that (Q, s, g,p) is not globally generically identifiable.

Remark IV.2. In scenario (b.1) of Theorem IV.2, the identifiable subset of the parame-

ter space is
{

(s, g,p) : ∃α1 = (0, α1
2, . . . , α

1
K),α2 = (0, α2

2, . . . , α
2
K) ∈ {0}×{0, 1}K−1,

such that pα1pα2+e1 6= pα2pα1+e1

}
, where ej is a J-dimensional unit vector, with

the jth element equal to one and all the others zero. In scenario (b.2) of Theorem

IV.2, we can write Q = (IK , IK , (Q
??)>)>, in which case, the identifiable subset is{

(s, g,p) : ∀k ∈ {1, . . . , K}, ∃αk,1,αk,2 ∈ {0, 1}k−1 × {0} × {0, 1}K−k−1, such that

82



pαk,1pαk,2+ek 6= pαk,2pαk,1+ek

}
. The complements of these identifiable subsets in the

parameter space give the nonidentifiable subsets, which are both of measure zero in

the DINA model parameter space.

Next we discuss the generic identifiability of the DINA model in the special case

of K = 2. We have the following proposition.

Proposition IV.2. Under the DINA model with K = 2 attributes, (Q, s, g,p) is

generically identifiable if and only if the conditions in Theorem IV.1 or IV.2(b) hold.

Proposition IV.2 gives a full characterization of joint generic identifiability when

K = 2, showing that the proposed generic identifiability conditions are necessary and

sufficient in this case. The following example discusses all possible Q-matrices with

K = 2, such that (Q, s, g,p) is not strictly identifiable, which proves Proposition IV.2

automatically.

Example IV.1. When K = 2, the discussions on Conditions A and B before Theo-

rem IV.2 show that (Q, s, g,p) is not generically identifiable when A or B is violated.

Therefore, we need only focus on cases where Condition C is violated and Conditions

A and B are satisfied. Specifically, when J ≤ 5, the Q-matrix can only take the

following forms up to column and row permutations:

Q1 =



1 0

0 1

1 1

0 1


, Q2 =



1 0

0 1

1 0

0 1


, Q3 =



1 0

0 1

1 0

0 1

0 1


.

By Theorem IV.2, Q1 falls in scenario (a); therefore, (Q1, s, g,p) is not locally gener-

ically identifiable; that is, even in a small neighborhood of the true parameters, there

exist infinitely many different sets of parameters that give the same distribution of
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the responses. On the other hand, Q2 falls in scenario (b.2) and Q3 falls in scenario

(b.1). Therefore, (Q2, s, g,p) and (Q3, s, g,p) are both generically identifiable. In

the case of J > 5, any Q satisfying A and B while violating C must contain one of

the above Qi as a submatrix and include additional row vectors of (0, 1). By Theorem

IV.2, any such Q extended from Q1 is still not locally generically identifiable, and

any such Q extended from Q2 or Q3 is globally generically identifiable.

4.3 Identifiability of (Q,Θ,p) under General SLAMs

Because the DINA model is a submodel of multiparameter SLAMs, Conditions A, B,

and C in Theorem IV.1 are also necessary for the strict identifiability of multiparam-

eter SLAMs. For instance, our proposed Conditions A, B, and C are weaker than the

sufficient conditions proposed by Xu and Shang (2018) for the strict identifiability

of (Q,Θ,p) under multiparameter SLAMs; and if their conditions are satisfied, the

current conditions A, B, and C are also satisfied. However, these necessary require-

ments may be strong in practice, and cannot be applied to identify any Q that lacks

some single-attribute items (i.e., lacks some unit vector as a row vector). A natural

question is whether Conditions A, B, and C can be relaxed under the weaker notation

of of generic identifiability. This section addresses this question.

Under multiparameter SLAMs, the next theorem shows that Condition C (each

attribute is required by at least three items) is necessary for the generic identifiability

of (Q,Θ,p), contrary to the results for the DINA model, where Conditions A and

B cannot be relaxed, but Condition C can. Simulation studies VI and VII in the

Supplementary Material verify Theorem IV.3.

Theorem IV.3. Under a multiparameter SLAM, Condition C in Theorem 1 is nec-

essary for the generic identifiability of (Q,Θ,p). Specifically, when the true Q-matrix

violates C, for any model parameters (Θ,p) associated with Q, there exist infinitely
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many sets of (Q̄, Θ̄, p̄) � (Q,Θ,p) such that equation (5.9) holds. Thus, (Q,Θ,p) is

not generically identifiable.

Whereas Condition C is necessary, we next show that the other two conditions, A

and B, can be relaxed further for the generic identifiability of multiparameter SLAMs.

Before stating the result, we first introduce a new concept about the Q-matrix, called

generic completeness.

Definition IV.3 (Generic Completeness). A Q-matrix with K attributes is said to

be generically complete if, after some column and row permutations, it has a K ×K

submatrix with all diagonal entries equal to one.

Generic completeness is a relaxation of the concept of completeness. In particular,

a Q-matrix is generically complete if, up to column and row permutations, it contains

a submatrix as follows: 

1 ∗ . . . ∗

∗ 1 . . . ∗
...

...
. . .

...

∗ ∗ . . . 1


,

where the off-diagonal entries “∗” are left unspecified. Note that any complete Q-

matrix is also generically complete, whereas a generically complete Q-matrix may not

have any single-attribute items.

Using the concept of generic completeness, the next theorem gives sufficient con-

ditions for joint generic identifiability, and shows that under multiparameter SLAMs,

the necessary conditions A and B for strict identifiability are no longer necessary in

the current setting.

Theorem IV.4. Under a general SLAM, if the true Q-matrix satisfies the following

Conditions D and E, then (Q,Θ,p) is generically identifiable.
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D. The Q-matrix has two nonoverlapping generically complete K ×K submatrices

Q1 and Q2. Without loss of generality, assume the Q-matrix is in the following

form:

Q =


Q1

Q2

Q?


J×K

. (4.6)

E. Each column of the submatrix Q? in (5.5) contains at least one entry of one.

Remark IV.3. Under Theorem IV.4, the identifiable subset of the parameter space

is {(Θ,p) : det(T (Q1,ΘQ1)) 6= 0, det(T (Q2,ΘQ2)) 6= 0, and T (Q?,ΘQ?) · Diag(p)

has distinct column vectors}. Its complement is the nonidentifiable subset, and it has

measure zero in the parameter space ϑQ when Q satisfies Conditions D and E. Please

see the supplementary materials for the definition of the T -matrices (T (Q1,ΘQ1),

etc.).

Remark IV.4. The proof of Theorem IV.4 is based on the proof of Theorem 7 in Gu

and Xu (2020a), who proposed the same Conditions D and E as sufficient conditions

for the generic identifiability of model parameters, given a known Q. We point out

that though D and E serve as sufficient conditions for generic identifiability, both

when Q is known and when Q is unknown, the generic identifiability results in these

two scenarios are different. In particular, Theorem 8 in Gu and Xu (2020a) shows

that when Q is known, some attribute can be required by only two items for generic

identifiability to hold (i.e., Condition C can be relaxed); in contrast, our current

Theorem IV.3 shows that when Q is unknown, Condition C indeed becomes necessary.

The proposed sufficient Conditions D and E weaken the strong requirement of

Conditions A and B, especially the identity submatrix requirement that may be

difficult to satisfy in practice. Simulation study V in the Supplementary Material

verifies Theorem IV.4. Note that Conditions D and E imply the necessary Condition

C that each attribute is required by at least three items.
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We next discuss the necessity of Conditions D and E. As shown in Section 3.2,

under DINA, the completeness of Q is necessary for the joint strict identifiability of

(Q, s, g,p). For multiparameter SLAMs, we have an analogous conclusion that the

generic completeness of Q, which is part of Condition D, is necessary for the joint

generic identifiability of (Q,Θ,p). This is stated in the next theorem.

Theorem IV.5. Under a general SLAM, generic completeness of the Q-matrix is

necessary for the joint generic identifiability of (Q,Θ,p).

Furthermore, we show that Conditions D and E themselves are in fact necessary

when K = 2, indicating the difficulty of relaxing these further.

Proposition IV.3. For a general SLAM with K = 2, Conditions D and E are

necessary and sufficient for the generic identifiability of (Q,Θ,p).

We use the following example to illustrate the result of Proposition IV.3, which

also gives a natural proof of the proposition.

Example IV.2. When K = 2, a Q-matrix that satisfies the necessary Condition C,

but not Conditions D or E, can only take the following form Q1 or Q2, up to row

permutations:

Q1 =


1 1

1 1

1 1

 , Q2 =



1 ∗

∗ 1

1 1

1 1


; Q̄2 =



1 1

1 1

1 1

1 1


.

The “∗”s in Q2 are unspecified values, and can be either zero or one. For Q1 with

J = 3, K = 2, and any parameters (Θ,p), there are 2J = 8 constraints in (5.9) for

solving (Θ̄, p̄) under Q1 itself, whereas the number of free parameters of (Θ̄, p̄) is

|{pα : α ∈ {0, 1}2} ∪ {θj,α : j ∈ {1, 2},α ∈ {0, 1}2}| = 2K + 2K × J = 16 > 8. For
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Q2 with J = 4, K = 2, and any associated (Θ,p), there are 2J = 16 constraints in

(5.9) for solving (Θ̄, p̄), whereas the number of free parameters of (Θ̄, p̄) under the

alternative Q̄2 is 2K + J × 2K = 20 > 2J = 16. In both cases, there are infinitely

many sets of solutions of (5.9) as alternative model parameters. Therefore, neither

(Q1,Θ,p) nor (Q2,Θ,p) are generically identifiable.

4.4 Discussion

In this chapter, we study the identifiability issue of SLAMs with unknown Q-

matrices. For the basic DINA model, we derive the necessary and sufficient conditions

for the strict joint identifiability of the Q-matrix and the associated model parameters.

We also study a slightly weaker identifiability notion, called generic identifiability,

and propose sufficient and necessary conditions for it under the DINA model and

multiparameter SLAMs.

Statistical consequences of identifiability. In the setting of SLAMs, identifi-

ability naturally leads to estimability, in different senses, under strict and generic

identifiability. If the Q-matrix and the associated model parameters are strictly iden-

tifiable, then Q and the model parameters can consistently be jointly estimated from

the data. If the Q-matrix and the model parameters are generically identifiable, then

for true parameters ranging almost everywhere in the parameter space with respect

to the Lebesgue measure, the Q-matrix and the model parameters can consistently

be jointly estimated from the data.

As pointed out by one reviewer, the analysis of identifiability is under an ideal

situation with an infinite sample size. Indeed, general identification problems assume

the hypothetical exact knowledge of the distribution of the observed variables, and

ask under what conditions one can recover the underlying parameters (Allman et al.,

2009). Next, we discuss the finite-sample estimation issue under the proposed iden-
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tifiability conditions for strict identifiability, following a similar argument to that in

Proposition 1 in Xu and Shang (2018). Denote the true Q-matrix and model param-

eters by Q0 and η0 = (Θ0,p0), respectively. Consider a sample with N independent

and identically distributed (i.i.d.) response vectors R1,R2, . . . ,RN , and denote the

log-likelihood of the sample by `(Θ,p) =
∑N

i=1 logP(Ri | Q,Θ,p). Under a spec-

ified SLAM, a Q-matrix determines the structure of the item parameter matrix Θ

by specifying which entries are equal. For a given Θ, we can define an equivalent

formulation of it, a sparse matrix B, with the same size as Θ, as follows. Under a

general SLAM, such as the GDINA model in Example I.3, the item parameters can

be parameterized as θj,α =
∑
S⊆{1,...,K} βj,S

∏
k∈S αk. Based on this, we define the

jth row of B as a 2K-dimensional vector collecting all of these β-coefficients; that

is, Bj = (βj,0, βj,1, . . . , βj,K , . . . , βj,12···K). Then, as long as the q-vector qj 6= 1K ,

the vector Bj and the matrix B are both “sparse”. For the true Q0, we denote the

corresponding B-matrix by B0. Under a specified SLAM (e.g., DINA or GDINA),

the identification of Q0 is then implied by the identification of the indices of nonzero

elements of B0. Denote the support of the true B0 and any candidate B by S0

and S, respectively. Define Cmin(η0) = inf{S 6=S0, |S|≤|S0|}(|S0 \ S|)−1h2(η0,η), where

h2(η0,η) denotes the Hellinger distance between the two distributions of R, indexed

by parameters η0 under the true B0, and by η under the candidate B. Denote the

Q-matrix and the model parameters that maximize the log-likelihood `(Θ,p) subject

to the L0 constraint |S| ≤ |S0| by η̂ = (Θ̂, p̂), and denote the “oracle” MLEs of

the model parameters obtained, assuming Q0 is known, by η̂0 = (Θ̂
0
, p̂0). Then, we

have the following finite-sample error bound for the estimated Q-matrix and model

parameters.

Proposition IV.4. Suppose Q0 satisfies the proposed sufficient conditions for joint

strict identifiability; then, Cmin(Θ0,p0) ≥ c0, for some positive constant c0. Further-
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more,

P(Q̂ 6∼ Q0) ≤ P(η̂ 6= η̂0) ≤ c2 exp{−c1NCmin(Θ0,p0)}, (4.7)

where c1, c2 > 0 are some constants. That is, when the joint strict identifiability

conditions hold, the finite-sample estimation error has an exponential bound.

Proposition IV.4 shows that the estimation error decreases exponentially in N

if the model is identifiable. On the other hand, when the identifiability conditions

fail to hold, there exist alternative models that are close to the true model in terms

of the Hellinger distance. This would make the Cmin(Θ0,p0) in (4.7) equal to zero,

instead of being bounded away from zero, as shown in Proposition IV.4. Therefore,

the finite-sample error bound in (4.7) becomes O(1) in this nonidentifiable scenario.

In particular, when the generic identifiability conditions are satisfied, Cmin(Θ0,p0)

depends on the distance between the true parameters and the nonidentifiable measure-

zero subset of the parameter space; as the true parameters become closer to this

measure-zero set, Cmin(Θ0,p0) decreases to zero, and a larger sample size may be

needed to achieve a prespecified level of estimation accuracy.

Potential extensions to other latent variable models. We briefly discuss po-

tential extensions of the proposed theory to other latent variable models, such as

SLAMs with ordinal polytomous attributes (von Davier, 2008; Ma and de la Torre,

2016; Chen and de la Torre, 2018), and multidimensional latent trait models (Em-

bretson, 1991). First, an SLAM with ordinal polytomous attributes can be viewed

as an SLAM with binary attributes and a constrained relationship among the binary

attributes. For instance, consider an ordinal attribute γ that can take C different

values {0, 1, . . . , C−1}; then, γ can be equivalently viewed as a collection of C−1 bi-

nary random variables αγ := (α1, . . . , αC−1) with the following constraints. If αi = 0

for some i < C − 1, then αj = 0, for all j = i + 1, . . . , C − 1. In other words, any

pattern αγ with αi = 0 and αj = 1, for some i < j is “forbidden” and constrained
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to have proportion zero. The vector of polytomous attributes can be augmented to

a longer vector of binary attributes using constraints in this fashion. Then, we can

consider the SLAM with the augmented proportion parameters by constraining the

proportions of the “forbidden” binary attribute patterns to zero. In this scenario, it

might be possible to extend the current theory and develop identifiability conditions

for the case of polytomous attributes.

Second, if a multidimensional latent trait model includes both continuous and

discrete latent traits, then the techniques used to establish the identifiability of the

latent class models in this study would also be useful when treating discrete latent

variables. For continuous latent variables, the techniques developed in Bai and Li

(2012) for the identifiability of the factor analysis model and those developed for

traditional multivariate analyses (Anderson, 2009) would be helpful.

In practice, the proposed identifiability theory can serve as a foundation for de-

signing statistically guaranteed estimation procedures. Specifically, consider the set

of all Q-matrices that satisfy our identifiability conditions (A, B, and C under the

DINA model, or D and E under multiparameter SLAMs), and call it the “identifiable

Q-set.” Then, we can use likelihood-based approaches, such as that in Xu and Shang

(2018), to jointly estimate Q and the model parameters by constraining Q to the

identifiable Q-set; alternatively we can use Bayesian approaches to estimate Q, as

in Chen et al. (2018a). Additionally, if under the DINA model, the Q-matrix does

not contain a submatrix IK , then according to Chapter III, certain attribute profiles

would be equivalent and the strongest possible identifiability argument therein is the

so-called p-partial identifiability. In this scenario, it would be interesting to study the

identifiability of the incomplete Q-matrix under the notion of p-partial identifiability.

We leave this to future research.
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CHAPTER V

Learning Attribute Patterns in High-Dimensional

Structured Latent Attribute Models

The previous Chapters II–IV on the identifiability theory provide easily checkable

conditions that guarantee the identifiability and estimability of model parameters and

latent structures. These lay the solid foundation for performing subsequent estimation

tasks of SLAMs. In the modern data science era, data exhibits an increasingly large

volume and complex structure. To rise to these challenges, the remaining part of this

dissertation is devoted to developing novel statistical methods and efficient algorithms

to tackle combinatorial estimation problems of SLAMs in high-dimensional settings.

One challenge in modern applications of SLAMs is that the number of discrete

latent attributes could be large, leading to a high-dimensional space for all the possible

configurations of the attributes, i.e., a high-dimensional space for latent attribute

patterns. In many applications, the number of potential patterns is much larger

than the sample size. For scientific interpretability and practical use, it is often

assumed that not all the possible attribute patterns exist in the population. Examples

with a large number of potential latent patterns and a moderate sample size can be

found in educational assessments (Lee et al., 2011; Choi et al., 2015; Yamaguchi and

This chapter contains the main part of Gu and Xu (2019a), accepted by Journal of Machine
Learning Research.
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Okada, 2018) and the epidemiological diagnosis of disease etiology (Wu et al., 2016,

2017; O’Brien et al., 2019). For instance, a dataset from Trends in International

Mathematics and Science Study (TIMSS), which has 13 binary latent attributes (i.e.,

213 = 8192 possible latent attribute patterns) while only 757 students’ responses are

observed; see Example V.1 in Section 5.1 for details. In cognitive diagnosis, it is of

interest to select the significant attribute patterns among these 213 = 8192 ones. In

such high-dimensional scenarios, existing estimation methods often tend to over select

the number of latent patterns, and may not scale to datasets with a huge number

of patterns. Moreover, theoretical questions remain open on whether and when the

“sparse” latent attribute patterns are identifiable and can be consistently learned

from data.

In terms of estimation, learning sparse attribute patterns from a high-dimensional

space is related to learning the significant mixture components in a highly overfitted

mixture model. Researchers have shown that the estimation of the mixing distri-

butions in overfitted mixture models is technically challenging and it usually leads

to nonstandard convergence rate (e.g., Chen, 1995; Ho and Nguyen, 2016; Heinrich

and Kahn, 2018). Estimating the number of components in the mixture model goes

beyond only estimating the parameters of a mixture, by learning at least the order of

the mixing distribution (Heinrich and Kahn, 2018). This problem was also studied in

Rousseau and Mengersen (2011) from a Bayesian perspective; however, the Bayesian

estimator in Rousseau and Mengersen (2011) may not guarantee the frequentist se-

lection consistency, as to be shown in Section 3. In the setting of SLAMs with the

structural constraints and a large number (larger than sample size) of potential latent

attribute patterns, it is not clear how to consistently select the significant patterns.

Our contributions in this chapter contain the following aspects. First, we char-

acterize the identifiability requirement needed for a SLAM with an arbitrary subset

of attribute patterns to be learnable, and establish mild identifiability conditions.
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Our new identifiability conditions significantly extends the results of previous works

(Xu, 2017; Xu and Shang, 2018) to more general and practical settings. Second, we

propose a statistically consistent method to perform attribute pattern selection. In

particular, we establish theoretical guarantee for selection consistency in the setting

of high dimensional latent patterns, where both the sample size and the number of

latent patterns can go to infinity. Our analysis also shows that imposing the popu-

lar Dirichlet prior on the population proportions would fail to select the true model

consistently, when the convergence rate of the SLAM is slower than the usual root-N

rate. As for computation, we develop two approximation algorithms to maximize

the penalized likelihood for pattern selection. In addition, we propose a fast screen-

ing strategy for SLAMs as a preprocessing step that can scale to a huge number of

potential patterns, and establish its sure screening property.

The rest of the chapter is organized as follows. Section 5.1 investigates the learn-

ability requirement and proposes mild sufficient conditions for learnability. Section

5.3 proposes the estimation methodology and establishes theoretical guarantee for the

proposed methods. Section 5.4 and Section 5.5 include simulations and real data anal-

ysis, respectively. The proofs of all the theoretical results and additional experimental

results are included in Appendix D.

5.1 Motivation for Latent Pattern Selection

One challenge in modern applications of SLAMs is that the number of potential

latent attribute patterns 2K increases exponentially with K and could be much larger

than the sample size N . It is often assumed that a relatively small portion of attribute

patterns exist in the population. We give a specific example as follows.

Example V.1. Trends in International Mathematics and Science Study (TIMSS)

is a large scale cross-country educational assessment. TIMSS evaluates the mathe-
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matics and science abilities of fourth and eighth graders every four years since 1995.

Researchers have used SLAMs to analyze the TIMSS data (e.g., Lee et al., 2011;

Choi et al., 2015; Yamaguchi and Okada, 2018). For example, a 23 × 13 Q-matrix

constructed by mathematics educators was specified for the TIMSS 2003 eighth grade

mathematics assessment (Su et al., 2013). Table 5.1 presents the Q-matrix.

Table 5.1: Q-matrix in Su et al. (2013) for TIMSS 2003 8th Grade Data

Item ID α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13

1 1 0 0 0 0 0 0 0 0 0 1 0 1
2 0 0 0 0 0 1 0 0 0 0 0 0 0
3 0 1 0 0 0 0 1 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 1 0 0 0 0
5 0 0 0 0 0 1 0 0 0 1 0 1 0
6 0 0 0 0 0 1 1 0 0 0 0 0 0
7 1 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 1 0 0 0 1 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 1 0 0
10 0 0 0 0 0 1 0 0 0 0 0 0 0
11 0 1 0 0 0 0 0 1 0 0 0 0 0
12 0 0 1 0 0 0 0 0 0 0 0 0 1
13 0 0 0 0 1 0 0 0 0 0 0 0 0
14 0 0 0 0 0 1 0 0 0 0 0 0 0
15 0 1 0 0 0 0 0 0 0 0 0 1 0
16 0 0 0 0 1 0 0 0 0 0 0 0 0
17 0 0 0 1 0 0 0 0 0 0 0 0 0
18 0 0 1 0 0 0 0 0 1 0 1 0 1
19 0 1 0 0 0 0 0 0 0 0 0 0 0
20 1 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 1 0 0 0 0 0 0 0 0
22 0 1 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 1 0 0 0 0 1 0 0 0 0

Example V.1 has 2K = 213 = 8192 different configurations of attribute patterns;

for the limited sample size 757 there, it is desirable to learn the potentially small set

of significant attribute patterns from data.

Another motivation for assuming a small number of attribute patterns exist in

the population results from the possible hierarchical structure among the targeted
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attributes. For instance, in an educational assessment of a set of underlying latent skill

attributes, some attributes often serve as prerequisites for some others (Leighton et al.,

2004; Templin and Bradshaw, 2014). Specifically, the prerequisite relationship depicts

the different level of difficulty of the skill attributes, and also reveals the order in which

these skills are learned in the population of students. For instance, if attribute α1 is

a prerequisite for attribute α2, then the attribute pattern (α1 = 0, α2 = 1) does not

exist in the population, naturally resulting in a sparsity structure of the existence

of attribute patterns. When the number of attributes is large and the underlying

hierarchy structure is complex and unknown, it is desirable to learn the hierarchy of

attributes directly from data. In such cases with attribute hierarchy, the number of

patterns respecting the hierarchy could be far fewer than 2K .

The problem of interest is that, given a moderate sample size, how to consistently

estimate the small set of latent attribute patterns among all the possible 2K ones. As

discussed in the introduction, in the high-dimensional case when the total number of

attribute patterns is large or even larger than the sample size, the questions of when

the true model with the significant latent patterns are learnable from data, and how

to perform consistent pattern selection, remain open in the literature.

This problem is equivalent to selecting the nonzero elements of the population

proportion parameters p = (pα : α ∈ {0, 1}K), where pα denotes the proportion of

the subjects with latent pattern α in the population. The p satisfies pα ∈ [0, 1] for

all α ∈ {0, 1}K and
∑
α∈{0,1}K pα = 1. In this work, we will treat the latent attribute

patterns α as random variables (random effects). For any subject, his/her attribute

pattern is a random vector A ∈ {0, 1}K that (marginally) follows a categorical dis-

tribution with population proportion parameters p = (pα : α ∈ {0, 1}K). One main

reason for this random effect assumption is that, when the number of observed vari-

ables per subject (i.e., J) does not increase with the sample size N asymptotically,

the counterpart fixed effect model can not consistently estimate the model parame-
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ters. As a consequence, the fixed effect approach can not give consistent selection of

significant attribute patterns. This scenario with relatively small J but larger N and

2K is commonly seen in the motivating applications in educational and psychological

assessments.

We would like to point out that we give the joint distribution of the attributes

full flexibility by modeling it as a categorical distribution with 2K − 1 free proportion

parameters pα’s. Modeling in this way allows those “sparse” significant attribute

patterns to have arbitrary structures among the 2K possibilities. On the contrary,

any simpler parametric model of the distribution of α with fewer parameters would

fail to capture all the possibilities of the attributes’ dependency.

In the following sections, we first investigate the learnability requirement of learn-

ing a SLAM with an arbitrary set of true latent patterns, and provide identifiability

conditions in Section 5.2. Then in Section 5.3, we propose a penalized likelihood

method to select the latent attribute patterns, and establish theoretical guarantee for

the proposed method.

5.2 Learnability Requirement and Conditions

To facilitate the discussion on identifiability of SLAMs, we need to introduce a

new notation, the Γ-matrix. We first introduce the J×2K constraint matrix Γall that

is entirely determined by the Q-matrix. The rows of Γall are indexed by the J items,

and columns by the 2K latent attribute patterns in {0, 1}K . The (j,α)th entry of

Γall
j,α is defined as

Γall
j,α = I(α � qj) = I(α ∈ Cj), j ∈ {1, . . . , J}, α ∈ {0, 1}K , (5.1)

which is a binary indicator of whether attribute pattern α possess all the required

attributes of item j. We will also call Γall the constraint matrix, since its entries
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indicate what latent patterns are constrained to have the highest level of Bernoulli

parameters for each item. For example, consider the 2× 2 Q-matrix in the following

(5.2). Then its corresponding Γ-matrix Γall with a saturated set of attribute patterns

takes the following form.

Q =

0 1

1 1

 =⇒ Γall =

α1 α2 α3 α4

(0, 0) (0, 1) (1, 0) (1, 1) 0 1 0 1

0 0 0 1

. (5.2)

More generally, we generalize the definition of the constraint matrix Γall in (5.1) to an

arbitrary subset of latent patterns A ⊆ {0, 1}K , and an arbitrary set of items S ⊆ [J ].

For S ⊆ [J ] and A ⊆ {0, 1}K , we simply denote by Γ(S,A) the |S| × |A| submatrix

of Γall with row indices from S and column indices from A. When S = {1, . . . , J},

we will sometimes just denote Γ(S,A) by ΓA for simplicity. Then ΓA itself can be

viewed as the constraint matrix for a SLAM with attribute pattern space A, and ΓA

directly characterizes how the items constrain the positive response probabilities of

latent attribute patterns in A.

Given the Q-matrix, we denote by A0 ⊆ {0, 1}K the set of true attribute pat-

terns existing in the population, i.e., A0 = {α ∈ {0, 1}K : pα > 0}. In knowledge

space theory (Düntsch and Gediga, 1995), the set A0 of patterns corresponds to the

knowledge structure of the population. We further denote by ΘA0 the item parameter

matrix respecting the constraints imposed by ΓA0 ; specifically, ΘA0 = (θj,α) has the

same size as ΓA0 , with rows and columns indexed by the J items and the attribute

patterns in A0, respectively. For any positive integer k ≤ 2K , we let T k−1 be the

k-dimensional simplex, i.e., T k−1 = {(x1, x2, . . . , xk) : xi ≥ 0,
∑k

i=1 xk = 1}. We de-

note the true proportion parameters by pA0 = (pα,α ∈ A0) ∈ T |A0|−1, then pA0 � 0

by the definition of A0.
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The following toy example illustrates why we need to establish identifiability guar-

antee for pattern selection.

Example V.2. Consider the 2 × 2 Q-matrix together with its corresponding 2 × 4

Γ-matrix in Equation (5.2). Consider two attribute pattern sets, the true set A0 =

{α1 = (0, 0),α2 = (0, 1)} and an alternative set A1 = {α2 = (0, 1),α3 = (1, 0)}.

Under the two-parameter SLAM, for any valid item parameters Θ restricted by Γ

and any proportion parameters p = (pα1 , pα2 , pα3 , pα4) such that pα1 = pα3 , we have

P(R = r | ΘA0 , (pα1 , pα2)) = P(R = r | ΘA1 , (pα3 , pα2)). This is because ΓA0 = ΓA1

from (5.2) and hence ΘA0 = ΘA1 ; and also (pα1 , pα2) = (pα3 , pα2) by our construction

that pα1 = pα3 . This implies even if one knows exactly there are two latent attribute

patterns in the population, one can never tell which two patterns those are based

on the likelihood function. In this sense, A0 is not identifiable, due to the fact that

ΓA0 and ΓA1 do not lead to distinguishable distributions of responses under the two-

parameter SLAM.

From the above example, to make sure the set of true attribute patterns A0 is

learnable from the observed multivariate responses, we need the ΓA0-matrix to have

certain structures. We state the formal definition of (strict) learnability of A0.

Definition V.1 (strict learnability of A0). Given Q, the set A0 is said to be (strictly)

learnable, if for any constraint matrix ΓA of size J×|A| with |A| ≤ |A0|, any valid item

parameters ΘA respecting constraints given by ΓA, and any proportion parameters

pA ∈ T |A|−1, pA � 0, the following equality

P(R | ΘA0 , pA0) = P(R | ΘA, pA) (5.3)

implies A = A0. Moreover, if (5.3) implies (ΘA, pA) = (ΘA0 , pA0), then we say the

model parameters (ΘA0 , pA0) are (strictly) identifiable.
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Next we further introduce some notations and definitions about the constraint

matrix Γ and then present the needed identifiability result. Consider an arbitrary

subset of items S ⊆ {1, . . . , J}. For α,α′ ∈ A, we denote α �S α′ under ΓA, if for

each j ∈ S there is ΓAj,α ≥ ΓAj,α′ . If viewing Γj,α = 1 as α being “capable” of item j,

then α �S α′ would mean α is at least as capable as α′ of items in set S. Then under

Γ, any subset of items S defines a partial order “�S” on the set of latent attribute

patterns A. For two item sets S1 and S2, we say “ �S1 ” = “ �S2 ” under ΓA, if

for any α′, α ∈ A, there is α �S1 α
′ under ΓA if and only if α �S2 α

′ under ΓA.

The next theorem gives conditions that ensure the constraint matrix Γ as well as the

Γ-constrained model parameters are jointly identifiable.

Theorem V.1 (conditions for strict learnability). Consider a SLAM with an ar-

bitrary set of true attribute patterns A0 ⊆ {0, 1}K, and a corresponding constraint

matrix ΓA0. If this true ΓA0 satisfies the following conditions, then A0 is identifiable.

A. There exist two disjoint item sets S1 and S2, such that Γ(Si,A0) has distinct

column vectors for i = 1, 2 and “�S1=�S2” under ΓA0.

B. For any α, α′ ∈ A0 where α′ �Si α under ΓA0 for i = 1 or 2, there exists some

j ∈ (S1 ∪ S2)c such that ΓA0
j,α 6= ΓA0

j,α′.

C. Any column vector of ΓA0 is different from any column vector of ΓA
c
0, where

Ac0 = {0, 1}K \ A0.

Recall that each column in the Γ-matrix corresponds to a latent attribute pattern,

then Conditions A and B help ensure the Γ-matrix of the true patterns ΓA0 contains

enough information to distinguish between these true patterns. Specifically, Condition

A requires ΓA0 to contain two vertically stacked submatrices corresponding to item

sets S1 and S2, each having distinct columns, i.e., each being able to distinguish

between the true patterns; and Condition B requires the remaining submatrix of ΓA0
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to distinguish those pairs of true patterns that have some order (α′ �Si α) based on

the first two item sets S1 or S2. Condition C is necessary for identifiability of A0 by

ensuring that any true pattern would have a different column vector in Γall from that

of any false pattern. Condition C is satisfied for any A0 ⊆ {0, 1}K if the Q-matrix

contains an identity submatrix IK , because such a Q-matrix will give a Γall that has

all the 2K columns distinct.

We would like to point out that our identifiability conditions in Theorem V.1 do

not depend on the unknown parameters (e.g., Θ and p), but only rely on the structure

of the constraint matrix Γ. The Γ-matrix with respect to the true set of patterns A0

is the key quantity that defines the latent structure of a SLAM. Generally, it is hard

to establish identifiability conditions that only depend on the cardinality of A0 but

not on ΓA0 . For instance, in Example V.2, the two sets A0 and A1 have the same

cardinality but can not be distinguished under the conditions there; indeed further

conditions on Q (and the resulting Γ) are needed to guarantee identifiability.

The developed identifiability conditions generally apply to any SLAM satisfying

the constraints (1.2) and (1.3) introduced in Chapter I. If one makes further assump-

tions on Θ, such as assuming each item j ∈ [J ] has exactly two item parameters to

make it a two-parameter model, then the conditions in Theorem V.1 may be further

relaxed. For example, in the saturated case with A0 = {0, 1}K , the sufficient identi-

fiability conditions developed in Xu (2017) for a general SLAM require Q to contain

two copies of IK as submatrices, while the necessary and sufficient conditions estab-

lished in Gu and Xu (2019b) for the two-parameter SLAM require Q to have just one

submatrix IK . We expect that in the current case with an arbitrary A0 ⊆ {0, 1}K ,

the conditions in Theorem V.1 can also be relaxed under the two-parameter model in

a technically nontrivial way. For the reason of generality, we focus on SLAMs under

the general constraints (1.2) and (1.3) in this work.

When the conditions in Theorem V.1 are satisfied, A0 is identifiable; and from
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Theorem 4.1 in Gu and Xu (2020a), the model parameters (ΘA0 ,pA0) associated with

A0 are also identifiable.

Corollary V.1. Under the conditions in Theorem V.1, the model parameters (ΘA0 ,pA0)

associated with A0 are identifiable.

Note that the result of Theorem V.1 differs from the existing works Xu (2017), Xu

and Shang (2018) and Gu and Xu (2020a) in that those works assume A0 is known

a priori and study the identifiability of (ΘA0 ,pA0), while in the current work A0 is

unknown and we focus on the identifiability of A0 itself. This is crucially needed in

order to guarantee that we can learn the set of true attribute patterns.

Remark V.1. The identifiability results in Theorem V.1 and Corollary V.1 are related

to the uniqueness of tensor decomposition. As shown in (1.5), the probability mass

function of the multivariate responses of each subject can be viewed as a higher

order tensor with constraints on entries of the tensor, and unique decomposition of

the tensor correspond to identification of the constraint matrix as well as the model

parameters. The identifiability conditions in Theorem V.1 are weaker than the general

conditions for uniqueness of three-way tensor decomposition in Kruskal (1977), which

is a celebrated result in the literature. Kruskal’s conditions require the tensor can

be decomposed as a Khatri-Rao product of three matrices, two having full-rank and

the other having Kruskal rank at least two (Kruskal rank of a matrix is the largest

number T such that every set of T columns of it are linearly independent). Consider an

example with J = 5, K = 2, A0 = {α2 = (0, 1), α3 = (1, 0)}, and the corresponding

ΓA0 in the form of (5.4). Then we can set S1 = {1, 2}, S2 = {3, 4} and Condition A in

Theorem V.1 is satisfied. Further, Condition B is also satisfied since α2 �Si α3 and

α3 �Si α2 under ΓA0 . Therefore, Theorem 1 guarantees the set A0 is identifiable,

and further guarantees the parameters (ΘA0 ,pA0) are identifiable. On the contrary,

results based on Kruskal’s conditions for unique three-way tensor decomposition can

not guarantee identifiability, because other than two full rank structures given by the
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items in S1 and S2, the remaining item 5 in (S1∪S2)c corresponds to a structure with

Kruskal rank only one.

Q =





1 0

0 1

1 0

0 1

1 1

=⇒ ΓA0 =

α2 α3

(0, 1) (1, 0)



1 0

0 1

1 0

0 1

0 0

. (5.4)

We next discuss two extensions of the developed identifiability theory. First, The-

orem V.1 guarantees the strict learnability of A0. Under a multi-parameter SLAM,

these conditions can be relaxed if the aim is to obtain the so-called generic joint

identifiability of A0, which means that A0 is learnable with the true model parame-

ters ranging almost everywhere in the constrained parameter space except a set with

Lebesgue measure zero. Specifically, we have the following definition.

Definition V.2 (generic learnability of the true model). Denote the parameter space

of (ΘA0 ,pA0) constrained by ΓA0 by Ω. We say A0 is generically identifiable, if

there exists a subset V of Ω that has Lebesgue measure zero, such that for any

(ΘA0 ,pA0) ∈ Ω\V , Equation (5.3) implies A = A0. Moreover, if for any (ΘA0 ,pA0) ∈

Ω \ V , Equation (5.3) implies (ΘA, pA) = (ΘA0 , pA0), we say the model parameters

(ΘA0 , pA0) are generically identifiable.

The generic learnability result is presented in the next theorem.

Theorem V.2 (conditions for generic learnability). Consider a multi-parameter SLAM

with the set of true attribute patterns A0 and the J × |A0| constraint matrix ΓA0. If
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ΓA0 satisfies Condition C and also the following conditions, then A0 is generically

identifiable.

A?. There exist two disjoint item sets S1 and S2, such that altering some entries

from 0 to 1 in Γ(S1∪S2,A0) can yield a Γ̃(S1∪S2,A0) satisfying Condition A. That

is, Γ̃(Si,A0) has distinct columns for i = 1, 2 and “ �S1 ” = “ �S2 ” under

Γ̃(S1∪S2,A0).

B?. For any α, α′ ∈ A0 where α′ �Si α under Γ̃(S1∪S2,A0) for i = 1 or 2, there

exists some j ∈ (S1 ∪ S2)c such that ΓA0
j,α 6= ΓA0

j,α′.

We also have the following corollary, where the identifiability requirements are

directly characterized by the structure of the Q-matrix, instead of Γ.

Corollary V.2. If the Q-matrix satisfies the following conditions, then for any true

set of attribute patterns A0 ⊆ {0, 1}K such that ΓA0 satisfies Condition C, the set A0

is generically identifiable.

(A??) The Q contains two K ×K sub-matrices Q1, Q2, such that for i = 1, 2,

Q =


Q1

Q2

Q′


J×K

; Qi =



1 ∗ . . . ∗

∗ 1 . . . ∗
...

...
. . .

...

∗ ∗ . . . 1


K×K

, i = 1, 2, (5.5)

where each ‘∗’ can be either zero or one.

(B??) With Q in the form of (5.5), there is
∑J

j=2K+1 qj,k ≥ 1 for each k ∈ {1, . . . , K}.

Remark V.2. When the conditions in Theorem V.2 are satisfied, A0 is generically

identifiable and from Theorem 4.3 in Gu and Xu (2020a), the model parameters
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(ΘA0 ,pA0) are also generically identifiable. Corollary V.2 differs from Theorem 4.3

in Gu and Xu (2020a) in that, here we allow the true set of attribute patterns A0

to be unknown and arbitrary, and study its identifiability, while Gu and Xu (2020a)

assumes A0 is pre-specified and studies the identifiability of the model parameters

(ΘA0 ,pA0).

Remark V.3. Under the conditions for generic identifiability in Theorem V.2 or Corol-

lary V.2, we can obtain the explicit forms of the measure zero set V (V ⊆ Ω) where

the non-identifiability may occur. Under either Theorem V.2 or Corollary V.2, the

set V is characterized by the zero set of certain polynomials about the parameters

(Θ,p) (see the proofs for details). The zero set of these polynomials indeed defines

a lower-dimensional manifold in the parameter space. Therefore, Theorem V.2 and

Corollary V.2 supplement Theorem V.1 by relaxing the original conditions and es-

tablishing identifiability when (Θ,p) satisfy certain shape constraints, i.e., (Θ,p) do

not fall on that manifold V in the parameter space.

The above generic identifiability results of A0 ensure that nonidentifiability hap-

pens only in a measure zero set in the parameter space. Next, we develop a second

extension of Theorem V.1 for scenarios where nonidentifiability cases occupy a posi-

tive measure set in the parameter space. This situation happens when certain latent

attribute patterns always have the same item parameters across all the items, i.e.,

Θ·,α = Θ·,α′ for some α 6= α′. We define α and α′ to be in the same equivalence

class if Θ·,α = Θ·,α′ . For instance, still consider the following 2× 2 Q-matrix under

the two-parameter SLAM introduced in Example I.1,

Q =

0 1

1 1

 , (5.6)

then attribute patterns α1 = (0, 0) and α3 = (1, 0) are equivalent under the two-

parameter SLAM, as can be seen from the Γall in (5.2). Therefore the two latent
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patterns α1 and α3 are not identifiable, no matter which values the true model

parameters take.

In this case where both strict and generic identifiability do not hold, we study

the p-partial identifiability, a concept introduced in Gu and Xu (2020a). Specifi-

cally, when some attribute patterns have the same item parameters across all items,

we define the set of these attribute patterns as an equivalence class, and aim to

identify the proportion of this equivalence class, instead of the separate proportions

of these equivalent patterns, in the population. For instance, in the above exam-

ple in (5.6), because α1 and α3 are equivalent, there are three equivalence classes:

{α1 = (0, 0),α3 = (1, 0)}, {α2 = (0, 1)}, and {α4 = (1, 1)}. We denote these three

equivalence classes by [α1] (or [α3], since [α1] = [α3]), [α2] and [α4], since α1, α2

and α4 form a complete set of representatives of the equivalence classes. For any Q,

we denote the induced set of equivalence classes by Aequiv = {[α1], . . . , [αC ]}, where

α1, . . . ,αC form a complete set of representatives of the equivalence classes. In this

case, the pattern selection problem of interest is to learn which equivalence classes in

Aequiv are significant.

For the two-parameter SLAM introduced in Example I.1, two attribute patterns

α1,α2 are in the same equivalence class if and only if ΓA·,α1
= ΓA·,α2

. This is because

under the two-parameter SLAM, the Γ-matrix determined by the Q-matrix with

Γj,α = I(α � qj) fully captures the model structure in the sense that θj,α = θ+
j Γj,α+

θ−j (1− Γj,α). Therefore under a two-parameter SLAM, we can obtain a complete set

of representatives of the equivalence classes directly from the q-vectors, which are

AQ = {∨j∈S qj : S ⊆ {1, . . . , J}}, (5.7)

where ∨j∈S qj = (maxj∈S qj,1, . . . ,maxj∈S qj,K). For S = ∅, we define the vector

∨j∈S qj to be 0K , the all-zero attribute pattern. The reasons for AQ being a complete
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set of representatives are that, first, ΓAQ has distinct columns and contains all the

unique column vectors in Γall; and second, for any other pattern not in AQ, there

is some pattern in AQ such that the two patterns have identical column vectors in

Γall. It is not hard to see that AQ = {0, 1}K if and only if the Q-matrix contains a

submatrix IK .

For multi-parameter SLAMs introduced in Example I.3, two attribute patterns

α1,α2 are in the same equivalence class if Γ·,α1 = Γ·,α2 = 1. This can be seen by

considering Γ·,α1 = Γ·,α1 6= 1, i.e., Γj,α1 = Γj,α2 = 0 for some item j. Then different

from the two-parameter SLAMs, for such item j, the θj,α1 and θj,α2 are not always

the same by the modeling assumptions of multi-parameter SLAMs. Indeed, under

a multi-parameter SLAM, for item j, patterns in the set A0 \ Cj can have multiple

levels of item parameters.

We have the following corollary of Theorem V.1 on identifiability, when certain

attribute patterns are not distinguishable. Denote the set of significant equiva-

lence classes by Aequiv
0 = {[α`1 ], . . . , [α`m ]}, which is a subset of the saturated set

Aequiv = {[α1], . . . , [αC ]}. Denote the set of representative patterns of the significant

equivalence classes by {α`1 , . . . ,α`m} = Arep.

Corollary V.3. If the matrix ΓA
rep

satisfies Conditions A, B and C, Aequiv
0 is iden-

tifiable.

Remark V.4. Under the two-parameter SLAM with Aequiv = {[α1], . . . , [αC ]}, the

Γ-matrix Γ{α1,...,αC} by definition would have distinct column vectors. Therefore any

column vector of ΓA
rep

in Corollary V.3 must be different form any column vector of

Γ{α1,...,αC}\Arep
. In this case, Condition C is automatically satisfied. And in order to

identify Aequiv
0 , one only needs to check if ΓA

rep
satisfies Conditions A and B.
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5.3 Penalized Likelihood Approach to Pattern Selection

In this section, we first present the method of shrinkage estimation, and then

describe a screening approach as a preprocessing step.

5.3.1 Shrinkage Estimation

The developed identifiability conditions guarantee that the true set of patterns

can be distinguished from any alternative set that has not more than |A0| patterns,

since they would lead to different probability mass functions of the responses. As

A0 = {α ∈ {0, 1}K : pα > 0}, we know that learning the significant attribute

patterns is equivalent to selecting the nonzero elements of the population proportion

vector p. In practice, if we directly overfit the data with all the 2K possible attribute

patterns, the corresponding maximum likelihood estimator (MLE) can not correctly

recover the sparsity structure of the vector p. In this case, we propose to impose

some regularization on the proportion parameters p, and perform pattern selection

through maximizing a penalized likelihood function.

In general, we denote by Ainput the set of candidate attribute patterns given to

the shrinkage estimation method as input. If the saturated space of all the possible

attribute patterns are considered, then Ainput = {0, 1}K and it contains all the 2K

possible configurations of attributes. When 2K � N, we propose to use a preprocess-

ing step that returns a proper subset Ainput of the saturated set {0, 1}K as candidate

attribute patterns, and then perform the shrinkage estimation (please see Section

5.3.2 for the preprocessing procedure).

We first introduce the general data likelihood of a structured latent attribute

model. Given a sample of size N , we denote the ith subject’s response by Ri =

(Ri,1, . . . , Ri,J)>, i = 1, . . . , N . We further use R to denote the N × J data matrix
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(R>1 , . . . ,R
>
N)>. The marginal likelihood can be written as

L(Θ,p | R) =
N∏
i=1

[ ∑
α∈Ainput

pα

J∏
j=1

θ
Ri,j
j,α (1− θj,α)1−Ri,j

]
, (5.8)

where the constraints on Θ imposed by Q are made implicit. We denote the corre-

sponding log likelihood by `(Θ,p) = logL(Θ,p | R).

As the proportion parameters p belongs to a simplex, in order to encourage spar-

sity of p, we propose to use a log-type penalty with a tuning parameter λ < 0.

Specifically, we use the following penalized likelihood as the objective function,

`λ(Θ,p) = `(Θ,p) + λ
∑

α∈Ainput

logρN (pα), λ ∈ (−∞, 0), (5.9)

where logρN (pα) = log(pα) · I(pα > ρN) + log(ρN) · I(pα ≤ ρN) and ρN is a small

threshold parameter that is introduced to circumvent the singularity issue of the log

function at zero. Specifically, we take

ρN � N−d (5.10)

for some constant d ≥ 1, where for two sequences {aN} and {bN}, we denote aN . bN

if aN = O(bN) and aN � bN if aN . bN and bN . aN . Any attribute pattern α

whose estimated pα < ρN will be considered as 0, and hence not selected. The tuning

parameter λ ∈ (−∞, 0) controls the sparsity level of the estimated proportion vector

p, and a smaller λ leads to a sparser solution (with more estimated proportion pα

falling below ρN). Given a λ ∈ (−∞, 0), we denote the estimated set of patterns by

Âλ = {α ∈ Ainput : p̂α > ρN , (Θ̂, p̂) = arg maxΘ,p `
λ(Θ,p)}.

Remark V.5. In the literature, Chen et al. (2001) and Chen et al. (2004) used a similar

form of penalty as the summation term in our (5.9), but instead imposed λ > 0 to

avoid sparse solutions of the proportion parameters. These works used that penalty
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in order to avoid singularity when performing restricted likelihood ratio test. While

our goal here is to encourage sparsity of p so that significant attribute patterns can

be selected.

The formulation of (5.9) can also be interpreted in a Bayesian way, where the

penalty term regarding the proportions p is the logarithm of the Dirichlet prior density

with hyperparameter β = λ+ 1 over the proportions. But note that when β < 0, the

penalty term is not a proper prior density. Our later Proposition V.1 reveals that,

under nonstandard convergence rate of the mixture model, the traditional Bayesian

way of imposing a proper Dirichlet prior over proportions is not sufficient for selecting

significant attribute patterns consistently. Instead, this classical procedure will yield

too many false patterns being selected. Therefore, our novelty of allowing λ in (5.9)

to be negative with arbitrarily large magnitude is crucial to selection consistency.

Other than the nice connection to the Dirichlet prior density in the Bayesian

literature, the log-type penalty in (5.9) also facilitates the computation based on

modified EM and variational EM algorithms, as shown in our Algorithms 1 and 2.

For such reasons, this work uses the log-type penalty. There are also alternative ways

of imposing penalty on the proportion parameters p that would lead to selection

consistency, such as the truncated L1 penalty used in Shen et al. (2012a) for high-

dimensional feature selection.

We denote the MLE obtained from directly maximizing L(Θ,p | R) in (5.8) by Θ̂

and p̂, and denote the “oracle” MLE of the parameters obtained by maximizing the

likelihood constrained to the true set of attribute patterns by (Θ̂
A0
, p̂A0). We denote

the rate of convergence of `(Θ̂, p̂) to `(Θ̂
A0
, p̂A0) by δ ∈ (0, 1], that is,

[
`(Θ̂, p̂)− `(Θ̂A0

, p̂A0)
]
/N = OP (N−δ). (5.11)

When δ = 1, (5.11) implies `(Θ̂, p̂) converges with the usual root-N rate, and δ < 1
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would imply a slower convergence rate. In the literature, Ho and Nguyen (2016) and

Heinrich and Kahn (2018) have studied the technically involved problem of conver-

gence rate of the mixing distribution of certain mixture models, and showed these

models may not have the standard root-N rate. As implied by these works, for com-

plicated models like SLAMs, the convergence rate of the mixing distribution is likely

to be slower than root-N , so as the convergence rate of `(Θ̂, p̂).

For a set A, denote its cardinality by |A|. We have the following theorem.

Theorem V.3 (selection consistency). Suppose the true constraint matrix ΓA0 asso-

ciated with A0 satisfies conditions A, B and C in Theorem V.1. The true parameters

satisfy

min
α∈A0

pα > c0; θj,α? − max
α: Γj,α=0

θj,α ≥ c1, ∀ j = 1, . . . , J and α? ∈ Cj, (5.12)

where c0, c1 > 0 are some constants. Assume log |Ainput| = o(N) and |Ainput| ·

ρN = O(N−δ). Then there exist a sequence of tuning parameters {λN} satisfying

N1−δ/| log ρN | . −λN . N/| log ρN | such that P(ÂλN = A0)→ 1 as N →∞.

Remark V.6. Together with our identifiability result in Theorem V.1, the assumption

(5.12) helps distinguish the true patterns from any alternative set of patterns with

no larger cardinality, and further helps establish selection consistency. It is possible

to further extend the current result and relax the constant lower bound assumption,

though identifiability conditions would need to be adapted carefully to the case with a

growing number of significant patterns and a shrinking magnitude of the proportions;

we leave this for future work.

The proof of Theorem V.3 also reveals that if the convergence rate of UN are slower

than
√
N with δ < 1 in (5.11), then the tuning parameter λ in (5.9) has to satisfy

λ < −1 in order to have pattern selection consistency; otherwise the issue of over

selecting exists. Under the Bayesian interpretation as discussed in Remark V.5, this
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result implies that imposing the popular Dirichlet prior with a proper hyperparameter

β = λ + 1 ∈ (0, 1) is not sufficient for consistent selection of the significant mixture

components (i.e., latent attribute patterns). Therefore, the approach proposed by

Rousseau and Mengersen (2011) would not yield frequentist selection consistency in

this considered scenario. We state this in the following proposition.

Proposition V.1 (selection inconsistency of Dirichlet prior). Suppose δ < 1 in (5.11),

i.e., the rate of convergence of `(Θ̂, p̂) is slower than the usual
√
N -rate. Then there

does not exist a sequence of {λN , N = 1, 2, ...} ⊆ [−1, 0) such that P(ÂλN = A0)→ 1

as N →∞.

Example V.3. To visualize how the numbers of selected patterns differ for our

proposed method based on maximizing (5.9) with β = λ + 1 ∈ (−∞, 1), and the

variational EM algorithm resulting from imposing a proper Dirichlet prior over the

proportions, we conduct a simulation study. In a simulation setting of K = 10 and

J = 30, for each sample size N = 500 and 1000, we carry out 200 independent runs

and in each run record the number of selected attribute patterns given by the pro-

posed method, and that by the variational EM algorithm. We plot the histogram

corresponding to the proposed method (FP-VEM, see Section 4 for details), together

with that corresponding to Variational EM (VEM) with a small Dirichlet parameter

β = 0.01. For both algorithms, we use the same threshold ρN = 1/(2N) for selecting

attribute patterns in the end of the algorithm, by only keeping patterns whose poste-

rior means exceeds ρN . Here we did not plot the results corresponding to VEM with

β smaller than 0.01, because we found the VEM algorithm with smaller β values can

have convergence issues and in many cases it fails to converge but just jumps between

several solutions. One can see from Figure 5.1 that the proposed method selects 10

patterns for most of datasets, which are indeed the 10 true patterns; while VEM over

selects the patterns.

We next propose two algorithms to perform pattern selection, one being a modifi-
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(a) K = 10, N = 500 (b) K = 10, N = 1000

Figure 5.1: Histograms of estimated number of latent attribute patterns. VEM rep-
resents Variational EM with β = λ+ 1 = 0.01, and FP-VEM represents the proposed
Algorithm 2 in Section 4. The true number of latent attribute patterns is |A0| = 10.

cation of an EM algorithm, and the other being a variational EM algorithm resulting

from an alternative formulation of the problem.

5.3.1.1 Modified EM algorithm.

We first consider using an EM algorithm with a slight modification in the E step

to maximize (5.9). For each subject i = 1, . . . , N , denote his/her latent attribute

pattern by Ai = (Ai,1, . . . , Ai,K), then Ai ∈ {0, 1}K . The complete log likelihood

corresponding to (5.9) is

`λcomp(Θ,p | R,A) =
∑

αl∈Ainput

(∑
i

I(Ai = αl) + λ
)

logρN (pαl) (5.13)

+
∑

αl∈Ainput

∑
i

I(Ai = αl)
∑
j

[
Ri,j log(θj,αl) + (1−Ri,j) log(1− θj,αl)

]
,

where I(·) denotes the binary indicator function. Following the standard formulation

of the EM algorithm (Dempster et al., 1977), in the E step of the (t+ 1)-th iteration,

conditional expectations of `λcomp(Θ,p | R,A) is evaluated with respect to the poste-

rior distribution of latent variables Ai’s given the current iterates of parameters Θ(t)
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and p(t). Specifically, in the E step we replace the indicator I(Ai = αl) in (5.13) by

the probability ϕi,l = P(Ai = αl | Θ(t),p(t)); and this is equivalent to updating

Q(Θ,p | Θ(t),p(t)) := E
[
`λcomp(Θ,p | R,A)

∣∣∣ Θ(t),p(t)
]
.

In the M step, we update (Θ(t+1),p(t+1)) = arg maxQ(Θ,p | Θ(t),p(t)). Note that

directly using a negative λ in the EM algorithm may yield an invalid E step, due

to potentially negative updates for some proportion parameters (e.g., pα’s). When

this happens, we do a thresholding in the E step as an approximation by replacing

the probably negative class potential (∆l in Algorithm 1) with a pre-specified small

constant c > 0. In practice, Algorithm 1’s performance appears not sensitive to small

values of c, and we take c = 0.01 in our numerical experiments; see Appendix B for

a sensitivity study of the parameter c.

Algorithm 1: PEM: Penalized EM for log-penalty with λ ∈ (−∞, 0)

Data: Q, responses R, and candidate attribute patterns Ainput.

Initialize ∆ = (∆
(0)
1 , . . . ,∆

(0)
|Ainput|).

while not converged do
In the (t+ 1)th iteration,
for (i, l) ∈ [N ]× [|Ainput|] do

ϕ
(t+1)
i,αl

=
∆

(t)
l · exp

{∑
j

[
Ri,j log(θ

(t)
j,αl

) + (1−Ri,j) log(1− θ(t)
j,αl

)
]}

∑
m ∆

(t)
m · exp

{∑
j

[
Ri,j log(θ

(t)
j,αm

) + (1−Ri,j) log(1− θ(t)
j,αm

)
]} ;

for l ∈ [|Ainput|] do

∆
(t+1)
l = max{c, λ+

∑N
i=1 ϕ

(t+1)
i,αl
}; (c > 0 is pre-specified);

p(t+1) ←∆(t+1)/(
∑

l ∆
(t+1)
l );

for j ∈ [J ] do

Θ(t+1) =
arg maxΘ

{∑
αl

∑
i ϕ

(t+1)
i,αl

∑
j

[
Ri,j log(θj,αl) + (1−Ri,j) log(1− θj,αl)

]}
;

After the total T iterations,
Output: {αl ∈ Ainput : p

(T )
αl > ρN}.
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Remark V.7. Under the two-parameter SLAM, the DINA model in Example I.1, or

the identity-link multi-parameter all-effect SLAM, the GDINA model in Example

I.3, the M-step of updating the item parameters {θj,α}’s in Algorithm 1 has closed

forms. Specifically, under DINA, for any item j the update for the unique parameters

(θ+
j , θ

−
j ) takes the form

(θ+
j )(t+1) =

∑
i

∑
αRi,jΓj,αϕ

(t+1)
i,α∑

i

∑
α Γj,αϕ

(t+1)
i,α

, (θ−j )(t+1) =

∑
i

∑
αRi,j(1− Γj,α)ϕ

(t+1)
i,α∑

i

∑
α(1− Γj,α)ϕ

(t+1)
i,α

.

Under GDINA, for item j, the update for the unique parameters θj,{k1,...,kl} with

{k1, . . . , kl} ⊆ Kj takes the following form,

θ
(t+1)
j, {k1,...,kl} =

∑
i

∑
α I({k ∈ Kj : αk = 1} = {k1, . . . , kl})Ri,jϕ

(t+1)
i,α∑

i

∑
α I({k ∈ Kj : αk = 1} = {k1, . . . , kl)}ϕ(t+1)

i,α

.

In addition, when certain latent patterns are not distinguishable as discussed earlier

in Corollary V.3, we can easily modify Algorithm 1 from selecting attribute patterns

to selecting equivalence classes of attribute patterns. For instance, under a two-

parameter SLAM, given the row vectors {qj, j ∈ [J ]} of Q, we first obtain the rep-

resentatives of the Q-induced equivalence classes: AQ = {∨j∈S qj : S ⊆ {1, . . . , J}},

then get the ideal response matrix of AQ, namely Γ(·,AQ) = (γj,l)J×|AQ| where

γj,l = I(αl � qj) for αl ∈ AQ and j ∈ [J ]. After initializing ∆ = (∆1, . . . ,∆|AQ|), we

just follow the same iterative procedure as that of Algorithm 1 for the two-parameter

SLAM. In the end of the algorithm, after calculating ν[αl] = ∆l/(
∑

m ∆m), we select

those [αl] with proportion ν[αl] above a pre-specified threshold. From the selected

equivalence classes of attribute profiles, we can go back to obtain their representatives

which are combinations of the q-vectors from AQ defined in Equation (5.7).

In practice when applying the PEM algorithm, we recommend using a sequential

procedure with a range of λ values λ1 > λ2 > · · · > λB, where λ1 > −1 is close to 0

and λB should be less than −1. Specifically, we start with the relatively large λ1 and
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use the estimated parameters from PEM with λ1 as initial values for the next round

of PEM with λ2. We do this sequentially with estimates from PEM with λb serving

as initializations for PEM with λb+1. When this sequential procedure ends, we choose

the final model from the total number of B estimated ones using certain information

criterion.

Given the large model space, we propose to use the Extended Bayesian Infor-

mation Criterion (EBIC) introduced in Chen and Chen (2008) to select the tuning

parameter. Recall that we denote by Aλ the selected set of attribute patterns ob-

tained by maximizing the penalized likelihood function (5.9) with the specific tuning

parameter λ. And we denote the item parameters and proportion parameters de-

fined on this Aλ by ΘA
λ

and pA
λ
, respectively. The EBIC family have the following

information criterion

BICγ(Aλ) = −2`(ΘA
λ

,pA
λ

) + |Aλ| logN + 2γ log

(|Ainput|
|Aλ|

)
,

with the EBIC parameter γ ∈ [0, 1]. A smaller EBIC value implies a more favorable

model. Selection consistency of the EBIC for high-dimensional model is established in

Theorem 1 of Chen and Chen (2008) for γ greater than a certain threshold. When γ =

0, EBIC becomes the the classical BIC. Generally, larger γ yields a more parsimonious

model. Here we choose γ = 1, for which the condition in Theorem 1 for selection

consistency in Chen and Chen (2008) is satisfied.

Example V.4. Figure 5.2 presents an illustration of the solution paths of the esti-

mated proportions versus λ based on a simulated dataset with N = 150, K = 10,
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and J = 30. The Q-matrix Q = (Q>1 , Q
>
2 , Q

>
3 )> with Qi in the following form,

Q1 =



1 0

. . .

. . .

0 1


, Q2 =



1 1 0

. . .
. . .

. . . 1

0 1


, Q3 =



1 1 0

1
. . .

. . .

. . .
. . . 1

0 1 1


. (5.14)

When generating the data, 10 attribute patterns are randomly selected from the

210 = 1024 possible ones as true patterns, and the proportion of each of them is set

to be 0.1. The item parameters are set to 1− θ+
j = θ−j = 0.2 for each j under a two-

parameter SLAM. In the current setting with K = 10, we take the set of patterns as

input to the PEM algorithm to be Ainput = {0, 1}K . Figure 5.2(a) plots the solution

paths of the estimated proportions of all the 210 = 1024 attribute patterns as λ

varies in {−0.2,−0.4, · · · ,−4.8,−5.0}. The 10 true attribute patterns are plotted

with colored lines with circles while the remaining 210 − 10 attribute patterns are

plotted with black solid lines. Figure 5.2(b) plots the estimated support size of p

versus λ, and the EBIC value versus λ. We observe that when λ ∈ [−4.4,−1.4],

Algorithm 1 selects the correct model with 10 true attribute patterns. This interval

of λ corresponds to a “stable window” of the estimation algorithm that gives the

correct selection and also has the smallest EBIC value. For this specific dataset,

the proposed method along with EBIC succeeds in selecting the true model. Please

see Section 5.4 for more simulation results which show that the proposed methods

combined with EBIC indeed have good performance in general.

5.3.1.2 Variational EM algorithm from an alternative formulation.

In the following, we discuss an alternative formulation of the objective function

(5.9) and propose a variational EM algorithm for estimation, by treating the propor-

tion parameters p as latent random variables. As discussed in Remark V.5, for the
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(a) solution paths versus λ (b) EBIC values and support sizes versus λ

Figure 5.2: PEM solution paths and EBIC values in one trial, N = 150.

objective function (5.9) with λ ∈ (−∞,−1], the penalty term
∏2K

l=1 p
λ
αl

does not cor-

respond to a proper Dirichlet distribution density. However, for any arbitrarily small

λ value, the objective function (5.9) can be replaced by the following alternative

formulation:

`λ,Υpseudo(Θ,p) = Υ · `(Θ,p) + (β − 1)
∑

α∈Ainput

logρN (pα) for β ∈ (0, 1), Υ ∈ (0, 1].

(5.15)

where we introduce a new parameter Υ ∈ (0, 1] and replace λ with β − 1 to respect

the convectional notation of a Dirichlet distribution with hyperparameter β ∈ (0, 1)

to encourage sparsity. With β ∈ (0, 1) and Υ ∈ (0, 1], the ratio (1 − β)/Υ can be

arbitrarily large when Υ is arbitrarily close to zero, therefore making (5.15) equivalent

to (5.9).

In the new objective function (5.15), the penalty term
∏2K

l=1 p
β−1
αl

, β ∈ (0, 1), can

be viewed as a well-defined Dirichlet density function for the latent variables p. In

(5.15), the first term is the logarithm of the likelihood function raised to a fractional

power Υ ∈ (0, 1]. One intuition behind (5.15) is that given a moderate sample size and

a large number of potential latent patterns, one needs to downweight the influence of
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the data likelihood and magnify the prior information encoded by the Dirichlet prior,

in order to have the sufficient extent of shrinkage. The fractional-powered likelihood

multiplied by the Dirichlet density can then be treated as a loss function to minimize.

The idea of assigning a fractional power to the likelihood was also used in the Bayesian

literature, such as Bissiri et al. (2016) and Holmes and Walker (2017) for Bayesian

learning under model misspecification, and Yang et al. (2018) and Chérief-Abdellatif

and Alquier (2018) for variational Bayesian inference. Different from these works,

here we use the alternative formulation (5.15) of the original objective function (5.9)

in order to consistently select the significant latent attribute patterns.

The formulation (5.15) allows for a variational EM algorithm for obtaining the

item parameters Θ and the posterior means of the latent variables p. Here we treat

Θ still as model parameters, then we follow the general derivation of variational algo-

rithms in Blei et al. (2017) to derive Algorithm 2. We denote the digamma function

by Ψ(x) = d
dx

log Γ(x) for x ∈ (0,∞). In particular, the complete log likelihood is

`λ,Υcomp(Θ | R,A,p) =
∑

α∈Ainput

{
Υ ·
[∑

i

I(Ai = α)
]

+ β − 1
}

logρN (pα) (5.16)

+ Υ ·
{ ∑
α∈Ainput

∑
i

I(Ai = α)
∑
j

[
Ri,j log(θj,α) + (1−Ri,j) log(1− θj,α)

]}
.

In the variational E step, we first obtain the conditional probability of I(Ai = αl) for

each individual i and each input attribute pattern αl, which we denote by ϕi,αl . In

updating this ϕi,αl , the variational posterior distribution of the pα’s are used, which

is still a Dirichlet distribution with mean parameters (∆1, . . . ,∆|Ainput|) updated in

the previous E step (or from initializations if in the first iteration). Then we update

the mean parameters for the variational posterior distribution of pαl ’s based on the

obtained ϕi,αl , following the conventional derivation in variational inference. After

finishing this E step, in the M step we maximize the complete likelihood with respect

to Θ, by substituting the I(Ai = αl)’s with ϕi,αl ’s. Note that taking the derivatives
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of (5.16) with respect to θj,αl ’s does not involve either terms of pαl or terms of Υ

and β, so only ϕi,αl are used in the M step for updating Θ. Indeed, the M step of

updating Θ in the current Algorithm 2 takes the same form as that of Algorithm 1.

Algorithm 2: FP-VEM: Fractional Power Variational EM for Υ ∈ (0, 1]

Data: Q, R, and candidate attribute patterns Ainput.

Initialize ∆ = (∆
(0)
1 , . . . ,∆

(0)
|Ainput|) = (β, . . . , β).

while not converged do
In the (t+ 1)th iteration,
for (i, l) ∈ [N ]× [|Ainput|] do

ϕ
(t+1)
i,αl

=

exp
{

Ψ(∆
(t)
l ) + Υ ·∑j

[
Ri,j log(θ

(t)
j,αl

) + (1−Ri,j) log(1− θ(t)
j,αl

)
]}

∑
m exp

{
Ψ(∆

(t)
m ) + Υ ·∑j

[
Ri,j log(θ

(t)
j,αm

) + (1−Ri,j) log(1− θ(t)
j,αm

)
]} ;

for l ∈ [|Ainput|] do

∆
(t+1)
l ← β + Υ×∑N

i=1 ϕ
(t+1)
i,l ;

for j ∈ [J ] do

Θ(t+1) =
arg maxΘ

{∑
αl

∑
i ϕ

(t+1)
i,αl

∑
j

[
Ri,j log(θj,αl) + (1−Ri,j) log(1− θj,αl)

]}
After the total T iterations,
for αl ∈ Ainput do

pαl ← ∆
(T )
l /(

∑
m ∆

(T )
m ).

output: {αl ∈ Ainput : pαl > ρN}.

Similar to Algorithm 1, in the practical use of Algorithm 2 for pattern selection,

we recommend using a sequential fitting procedure. For a small fixed β > 0, we choose

a sequence of Υ values 1 > Υ1 > Υ2 > · · · > ΥB > 0 where Υ1 should be close to 1

and ΥB should be relatively small. In our simulation studies, we found a ΥB = 0.3

is sufficient in most of cases. Then we sequentially run Algorithm 2 for B times

with fractional powers Υ1, . . . ,ΥB respectively and use estimated parameters from

FP-VEM with Υb as initial values for FP-VEM with Υb+1. In the end, we also use

EBIC to select the best Υ. Since β and Υ can be viewed as acting together through

the term (1− β)/Υ, in terms of practical parameter tuning, we recommend fixing β
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to a relatively small value, say β = 0.01, and let the fractional power Υ ∈ (0, 1] vary

to control the sparsity level of the proportion parameters.

5.3.2 Screening as a Preprocessing Step When 2K � N

In many applications of SLAMs, the number of attribute patterns 2K could be

much larger than N . This is especially the case in the application of SLAMs in

epidemiological and medical diagnosis (Wu et al., 2017, 2018). In such scenarios,

given a sample with size of several thousands or hundreds, it is desirable to develop

an efficient screening procedure to bring down the number of candidate attribute

patterns, and then perform the shrinkage estimation.

We next describe our screening approach. Recall that for each subject i =

1, . . . , N , we denote his/her latent attribute pattern by Ai = (Ai,1, . . . , Ai,K) ∈

{0, 1}K . In the screening stage we jointly estimate the item parameters Θ and the

{Ai, i ∈ [N ]} to get a rough estimation of each subject i’s attribute pattern, and

gather all the N estimated attribute profiles as candidate patterns. The estimation

of p is postponed to the estimation stage. Under the basic two-parameter SLAM, the

complete log likelihood involving the latent variables {Ai, i ∈ [N ]} takes the form

`complete(Θ,A) =
N∑
i=1

J∑
j=1

[
Ri,j

(∏
k

A
qj,k
i,k log θ+

j + (1−
∏
k

A
qj,k
i,k ) log θ−j

)]
+ (1−Ri,j)

(∏
k

A
qj,k
i,k log(1− θ+

j ) + (1−
∏
k

A
qj,k
i,k ) log(1− θ−j )

)]
.

We next derive an algorithm with a stochastic EM flavor to estimate the posterior

mean of each latent variable Ai,k, denoted by a matrix (âi,k) of size N × K, where

âi,k = E[Ai,k | ·]. In the end of the algorithm, we obtain the binary matrix W

containing the candidate attribute patterns by defining W = (wi,k)N×K with wi,k =

I(âi,k > 1/2). In such a screening procedure, we first use the dependency among the

K attributes in iterative updates, then partly ignore the dependency in the last step
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through applying Bayes’ rule to each subject i’s each single attribute k. This results

in fast and valid screening of attribute patterns. Viewing the ith row vector of W

as the estimated attribute pattern of subject i, the unique row vectors in W are the

roughly selected attribute patterns output by the screening stage. We denote this set

of candidate patterns by Âscreen. As long as the screening has the nice property of

“no false exclusion”, meaning the rows in W contain all the true attribute patterns,

then the screening stage is considered successful. The selected candidate patterns are

passed along to the shrinkage estimation stage as input patterns.

We say the screening procedure has the sure screening property if as N goes to

infinity, the probability of all the true attribute patterns included in Âscreen goes

to one. The next theorem establishes the sure screening property of the proposed

screening procedure.

Theorem V.4 (sure screening property). Suppose the identifiability conditions in

Theorem V.1 and the constraints (5.12) are satisfied. The screening procedure applied

to a SLAM that covers the two-parameter SLAM as a submodel has the sure screening

property. Specifically, there exists a constant βmin > 0 such that P(Âscreen ⊇ A0) ≥

1− |A0| exp(−Nβmin)→ 1 as N →∞.

Theorem V.4 shows that the probability of the screening procedure failing to

include all true patterns has an exponential decay with the sample size N . We point

out that despite having the nice property of sure screening, the screening procedure

does not guarantee consistency in selecting exactly the set A0 of true patterns, if the

number of observed variables per subject J is not large enough. Generally speaking, as

N goes large but J does not, the set Âscreen will include many false attribute patterns,

although it will contain the true set A0 with probability tending to one. Therefore the

shrinkage estimation approach in Section 5.3.1 is still essential to performing pattern

selection.

In Algorithm 3, we present the proposed screening algorithm with stochastic ap-
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proximations based on a number of Meff Gibbs samples of A in the E step. Alter-

natively, we can also use an even faster screening procedure by just updating the

conditional probability of each subject possessing each attribute (i.e., the conditional

posterior mean of each Ai,k) in each E step, conditioning on everything else; we term

this alternative procedure the variational screening procedure. As stated before, the

screening algorithm is derived based on the log-likelihood of the two-parameter SLAM,

but can be applied to a multi-parameter SLAM that covers the two-parameter SLAM

as a submodel. After the screening stage, the set of attribute patterns as input to

the shrinkage Algorithms 1 or 2 is taken as Ainput = Âscreen. Screening drastically

lowers down the computational cost of the subsequent shrinkage estimation, and the

number of candidate patterns fed to the shrinkage stage is kept at the order of N ,

even if the original number of possible configurations 2K � N .

Algorithm 3: Stochastic Approximation Gibbs Screening

Data: Q, R
Result: Candidate attribute patterns Âscreen.
Initialize latent attribute patterns A = (Ai,k)N×K ∈ {0, 1}N×K , and θ+ and θ−.
Set t = 1, Aave = 0, Iave = 0.
while not converged do
As ← 0, Is ← 0, Meff ← 0.
for r ∈ [Mmax] do

for (i, k) ∈ [N ]× [K] do

Draw Ai,k ∼ Bernoulli
(

logit−1
(∑

j qj,k
∏

m 6=k A
qj,m
i,m

[
Ri,j log

θ+j

θ−j
+ (1−

Ri,j) log
1−θ+j
1−θ−j

]))
.

if r ≥Mmax −Meff then

As ← As +A, Is ← Is +
(∏

k A
qj,k
i,k

)
N×J

.

Aave ← 1
t
As/Meff +

(
1− 1

t

)
Aave, Iave ← 1

t
Is/Meff +

(
1− 1

t

)
Iave, t = t+ 1.

for j ∈ [J ] do
θ+
j ← (

∑
iRi,jI

ave
i,j )/(

∑
i I

ave
i,j ), θ−j ← (

∑
iRi,j(1−Iave

i,j ))(
∑

i(1−Iave
i,j )).

for (i, k) ∈ [N ]× [K] do
wi,k ← I(Aave

i,k >
1
2
).

Output: include all the unique row vectors of W in the set Âscreen.
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Remark V.8. The screening algorithm can be modified to be more conservative in

order to reduce the risk of excluding true patterns. In particular, after each stochastic

E step in the screening algorithm, based on the current iterate of Aave we can obtain

a N ×K binary matrix with the (i, k)th entry being I(Aave
i,k ) > 1/2. The unique row

vectors of this intermidiate binary matrix can be viewed as the current candidate

latent patterns. To make the screening procedure more conservative, we recommend

saving this set of candidate patterns after every M stochastic EM iterations (M is a

positive integer), and take the union of these saved sets in the end of the algorithm

to form Âscreen as the output. We call this strategy “screening enhanced by Gibbs

exploration”, since it takes advantage of the latent patterns that the Gibbs sampling

explores along the stochastic EM iterations.

In Figure 5.3, we present an estimation pipeline summarizing the proposed screen-

ing and shrinkage procedures. In practice, when the number of potential latent pat-

terns 2K is of too high dimensions, we recommend to first perform screening by using

Algorithm 4 or “screening enhanced by Gibbs exploration” to bring down the number

of candidate patterns. The cardinality of the set of candidate patterns is usually at

the order of the sample size N . Then over a set of O(N) number of candidate latent

patterns, one can proceed to apply the shrinkage estimation methods Algorithm 1 or

2 to select the final set of latent attribute patterns.

5.4 Simulation Studies

We next present simulation results with the two-parameter SLAM and the multi-

parameter all-effect SLAM, respectively.

Two-parameter SLAM (DINA Model). Consider the two-parameter SLAM

with a 3K×K Q-matrix Q = (Q>1 , Q
>
2 , Q

>
3 )>, where the three submatrices Q1, Q2 and

Q3 are specified in (5.14). We consider three dimensions of possible attribute patterns
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O(N) =)Screening

|A0|2K

Figure 5.3: Estimation pipeline combining the proposed screening and shrinkage pro-
cedures.

with 2K = 210, 215, and 220, three sample sizes with N = 150, 500 and 1000, and two

different signal levels with true item parameters: {θ+
j = 0.8, θ−j = 0.2; j ∈ [J ]},

the relatively weak signals; and {θ+
j = 0.9, θ−j = 0.1; j ∈ [J ]}, the relatively strong

signals. We randomly generate the set of true attribute patterns A0 ⊆ {0, 1}K with

cardinality |A0| = 10 and set pα = 0.1 for all α ∈ A0. In the simulations, for K = 10

the Ainput is taken to be {0, 1}K ; while for K = 15 and 20, the Ainput is taken to be

Âscreen, i.e., the set of candidate patterns output by the screening method.

In each scenario we perform 200 independent replications. For shrinkage estima-

tion, we apply the proposed Algorithm 1 “Penalized EM (PEM)” and Algorithm 2

“Fractional Power Variational EM (FP-VEM)”, and also apply the plain EM algo-

rithm with thresholding for comparison. When running PEM we compute a solution

path by varying λ in the range of λ ∈ {−0.2, −0.4, . . . , −3.8, −4.0}, and select the

λ that gives the smallest EBIC. When running FP-VEM we fix β = λ + 1 = 0.01

and compute a solution path by varying Υ in {1.0, 0.9, . . . , 0.4, 0.3} and also select Υ

using EBIC. We use the threshold value ρN = 1/(2N) for the estimated proportions

in the last step for all three shrinkage algorithms to select patterns (other smaller ρN
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values give similar results).

signal strength 2K N
1−FDR TPR

EM Algo. 1 Algo. 2 EM Algo. 1 Algo. 2

θ+
j = 0.8,

θ−j = 0.2.

210

150 0.139 0.883 0.896 0.930 0.885 0.895
500 0.115 0.995 0.992 1.000 1.000 0.999
1000 0.100 1.000 0.996 1.000 1.000 1.000

215

150 0.049 0.523 0.544 0.539 0.530 0.543
500 0.089 0.924 0.928 0.934 0.930 0.932
1000 0.078 0.984 0.988 0.991 0.991 0.991

220

150 0.019 0.213 0.264 0.270 0.255 0.271
500 0.019 0.609 0.633 0.636 0.641 0.642
1000 0.038 0.816 0.848 0.864 0.864 0.863

θ+
j = 0.9,

θ−j = 0.1.

210

150 0.323 0.909 1.000 1.000 1.000 1.000
500 0.208 1.000 1.000 1.000 1.000 1.000
1000 0.167 1.000 1.000 1.000 1.000 1.000

215

150 0.317 0.989 0.974 0.993 0.991 0.992
500 0.220 1.000 0.995 1.000 1.000 1.000
1000 0.205 1.000 0.994 1.000 1.000 1.000

220

150 0.232 0.968 0.941 0.972 0.971 0.970
500 0.159 1.000 0.999 1.000 1.000 1.000
1000 0.146 1.000 0.997 1.000 1.000 1.000

Table 5.2: Pattern selection accuracies for two-parameter SLAM. Tuning pa-
rameter λ ∈ {−0.2, −0.4, . . . , −3.8, −4.0} in PEM (Algorithm 1) and Υ ∈
{1.0, 0.9, . . . , 0.4, 0.3} in FP-VEM (Algorithm 2) are selected based on EBIC.

The simulation results on selection accuracies are presented in Table 5.2. The

“TPR” stands for True Positive Rate, which denotes the proportion of true patterns

that are selected. The “1-FDR” stands for “1−False Discovery Rate (FDR)”, which

denotes the proportion of selected patterns that are true patterns. Table 5.2 shows

the proposed PEM and FP-VEM yield good selection results in various scenarios,

while the EM algorithm with direct thresholding at ρN suffers from high FDR, i.e.,

selecting too many non-existing attribute patterns. We would like to point out that

the plain VEM as presented in Example V.3 is a special case of the proposed FP-

VEM, by just taking the fractional power Υ to be Υ = 1. So in each simulation run,
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the result given by VEM is included in the solution path given by FP-VEM with

Υ ∈ {1.0, 0.9, . . . , 0.4, 0.3}, and in the final step EBIC selects the best Υ from the

entire solution path. Indeed, in all our simulations about FP-VEM, the result given

by Υ = 1 is never selected by EBIC, which means the selection result given by plain

VEM is never favored over the proposed FP-VEM. We also remark here that the

proposed methods are computationally efficient. All the algorithms are implemented

in Matlab. In particular, in the case of relatively strong signal with 1−θ+
j = θ−j = 0.10,

screening and computing an entire solution path for (2K , N) = (220, 1000) takes < 2

minutes on average on a laptop with a 2.8 GHz processor, and yields almost perfect

pattern selection results, as shown in the last row of Table 5.2.

We give some discussions on the comparison of the PEM and the FP-VEM al-

gorithms. The estimation accuracies presented in Table 5.2 generally show the two

algorithms have comparable performance on pattern selection. In terms of select-

ing the tuning parameter, the FP-VEM can be easier to tune because the fractional

power Υ is always between 0 and 1, while the PEM algorithm has a negative tuning

parameter λ ∈ (−∞, 0) that can have an arbitrarily large magnitude. Specifically,

the scenario of an increasing sparsity corresponds to Υ→ 0 and λ→ −∞, and when

extremal sparsity exists, the FP-VEM needs to choose Υ close to zero with a small

magnitude and the PEM needs to choose λ with a large magnitude. Therefore, in

such cases the tuning of PEM may take more time, since λ < 0 needs to be searched

over a relatively large interval; an exponential grid search might be of help in this

case, while further investigation into how to best specify the grid for searching tuning

parameters would be needed. Meanwhile, we find in simulation studies that choosing

a small Υ in FP-VEM too close to zero may result in the algorithm to be less stable

in some cases. In practice, if the computation time is not a primary concern, we

recommend first considering the PEM algorithm for the better stability.

We further conduct a simulation study to investigate how the threshold value
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ρN for the estimated proportions impact the pattern selection results of different

methods. In the setting with 1 − θ+
j = θ−j = 0.2 and N = 150 (the same setting

as the first line in Table 5.2), we simulate 200 independent datasets, and apply the

proposed PEM (Algorithm 1), FP-VEM (Algorithm 2) and the usual EM algorithm

with various thresholds ρN ∈ {1/(50N)} ∪ {i/(2N), i = 1, 3, 5, . . . , 15}. Figure 5.4

plots the average “TPR” and average “1−FDR” versus the threshold values. It can

be seen that directly thresholding the MLE of the proportions (corresponding to the

thresholding after EM) does not yield good selection results. For a small threshold

ρN = 1/(2N), the FDR of thresholded EM is quite high. When further decreasing the

threshold ρN from 1/(2N) to 1/(50N), the FDR of thresholded EM becomes worse

while the proposed methods have stable performance. On the other hand, as the

threshold ρN increases from 1/(2N) to larger values, the TPR of EM quickly decreases.

In contrast, the proposed methods PEM and FP-VEM give reasonably good selection

results across all the threshold values, and have slightly better performance for smaller

thresholds. Even the best selection result given by thresholding EM corresponding

to the threshold ρN = 7/(2N) is not comparable to those given by the proposed

methods.

We next evaluate the performance of the screening procedure. We find that the

screening procedure drastically reduces the computational cost in the subsequent

shrinkage estimation stage. For instance, in the setting (N,K) = (150, 15) when noise

rate is 1 − θ+
j = θ−j = 20%, based on 200 runs, the variational screening procedure

takes 1.55 seconds on average, and the subsequent PEM algorithm takes 6.42 seconds

on average; while if no screening is performed, the PEM algorithm takes 7.96 × 103

seconds on average.

As described earlier, the screening is considered successful if all true patterns are

included in the candidate set Âscreen. Under each simulation scenario in Table 5.2

corresponding to K = 15 or K = 20, we record the coverage probabilities of the
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Figure 5.4: Selection accuracies versus thresholds for the two-parameter SLAM with
1− θ+

j = θ−j = 0.2 and N = 150. For each method, “acc1” denotes the True Positive
Rate (TPR), the proportion of true patterns that are selected; and “acc2” denotes
“1−False Discovery Rate (FDR)”, the proportion of selected patterns that are true.

true patterns for each of 200 runs, where in each run
∑
α∈A0

I(α ∈ Âscreen)/|A0| is

recorded as the coverage probability. The boxplots of coverage probabilities under

these scenarios are presented in Figure 5.5(a), (c) and Figure 5.6(a), (c). We also

record the size of Âscreen, i.e., the number of candidate patterns given by the screening

procedure in each run, and present their boxplots in Figure 5.5(b), (d) and Figure

5.6(b), (d). The screening procedure generally has good performance. On the other

hand, Figure 5.6(e) and (g) show that for the relatively large noise rate and small

sample size, the screening accuracy is not very high.

To improve the performance of screening, we apply the strategy of screening en-

hanced by Gibbs exploration described in Remark V.8 and take M = 3. That is, along

the stochastic EM iterations of the screening algorithm, after every three iterations

we add the current set of latent patterns to the candidate set Âscreen. The resulting

screening accuracies and sizes of Âscreen are presented in Figure 5.7. Compared to

Figure 5.6, one can clearly see that the enhancing procedure improves the screening
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(a) K = 15, noise rate 10%;
screening accuracy

(b) K = 15, noise rate 10%;
size of Âscreen

(c) K = 20, noise rate 10%;
screening accuracy

(d) K = 20, noise rate 10%;
size of Âscreen

Figure 5.5: Screening under noise rate 10%: plots (a), (c) are coverage probabilities
of the true patterns, from the screening procedure under the two-parameter SLAM;
plots (b), (d) are sizes of Âscreen. The “noise rate” refers to the value of 1− θ+

j = θ−j .

accuracy significantly, while the size of Ascreen also increases but still remains quite

manageable. Under the noise rate 1 − θ+
j = θ−j = 20%, the size of Ascreen is always

below N for screening without enhancing, while for screening with enhancing, the size

of Ascreen is around 2N for K = 15 and around 3N for K = 20. The enhancing by

Gibbs exploration would not sacrifice the efficiency of the screening procedure itself,
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(e) K = 15, noise rate 20%;
screening accuracy

(f) K = 15, noise rate 20%;
size of Âscreen

(g) K = 20, noise rate 20%;
screening accuracy

(h) K = 20, noise rate 20%;
size of Âscreen

Figure 5.6: Screening under noise rate 20%: plots (a), (c) are coverage probabilities
of the true patterns, from the screening procedure under the two-parameter SLAM;
plots (b), (d) are sizes of Âscreen. The “noise rate” refers to the value of 1− θ+

j = θ−j .

though it results in a larger set of Âscreen which incurs higher computational cost in

the shrinkage stage. In practice, one should leverage this tradeoff according to the

sample size. Specifically, when sample size N is small, choosing a more conservative

screening procedure (with a smaller integer M) is recommended, because this would

increase the screening accuracy without causing much computational burden for the
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(a) K = 15, noise rate 20%;
screening accuracy

(b) K = 15, noise rate 20%;
size of Âscreen

(c) K = 20, noise rate 20%;
screening accuracy

(d) K = 20, noise rate 20%;
size of Âscreen

Figure 5.7: Screening enhanced by Gibbs exploration: screening accuracy and size of
Âscreen. Noise rate is 1− θ+

j = θ−j = 20%.

shrinkage algorithm. With the enhanced screening procedure, in the relatively weak

signal case 1 − θ+
j = θ−j = 0.2 and under (K,N) = (15, 150), the two accuracy mea-

sures 1−FDR and TPR for the PEM algorithm, become (0.850, 0.860) (previously

it was (0.523, 0.530) in Table 5.2), and those under the FP-VEM algorithm become

(0.839, 0.853) (previously (0.544, 0.543) in Table 5.2). Under (K,N) = (20, 150), the

two accuracy measures for the PEM become (0.608, 0.648) (previously (0.213, 0.255) in
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Table 5.2) and those for the FP-VEM become (0.620, 0.634) (previously (0.264, 0.271)

in Table 5.2).

Multi-parameter all-effect SLAM (GDINA Model). We next consider the

multi-parameter all-effect SLAM introduced in Example I.3 with an identity link func-

tion f(·), that is, the GDINA model proposed in de la Torre (2011). Let the Q-matrix

be in the form Q = (Q>1 , Q
>
2 , Q

>
2 ) with Q1 and Q2 specified in (5.14). Similar to the

two-parameter simulation study, we consider three dimensions of possible attribute

patterns with 2K = 210, 215, and 220, and three sample sizes with N = 150, 500 and

1000. For each item, we set the baseline probability, the positive response probability

of the all-zero attribute pattern α = 0K , to 0.2 (i.e., θj,0K = 0.2), and the positive

response probability of α = 1K to 0.8 (i.e., θj,1K = 0.8). And we set all the main

effects and interaction effects parameters of the item to be equal (i.e., βj,S1 = βj,S2 for

any ∅ 6= S1, S2 ⊂ Kj for the β-coefficients in (I.3)). We randomly generate the set of

true attribute patterns, A0 ⊆ {0, 1}K with cardinality |A0| = 10 and set pα = 0.1 for

all α ∈ A0.

2K N
1−FDR TPR

EM Algo. 1 Algo. 2 EM Algo. 1 Algo. 2

210

150 0.277 0.983 0.953 0.996 0.980 0.974
500 0.214 0.988 0.976 1.000 1.000 1.000
1000 0.193 0.992 0.986 1.000 1.000 1.000

215

150 0.198 0.900 0.893 0.904 0.902 0.902
500 0.166 0.999 0.997 1.000 1.000 1.000
1000 0.134 1.000 0.996 1.000 1.000 1.000

220

150 0.109 0.723 0.741 0.739 0.734 0.743
500 0.129 0.980 0.981 0.980 0.982 0.983
1000 0.104 1.000 0.998 1.000 1.000 1.000

Table 5.3: Pattern selection accuracies for multi-parameter all-effect SLAM. Tuning
parameter λ ∈ {−0.2,−0.4, . . . ,−4.0} in PEM (Algorithm 1) and Υ ∈ {1.0, 0.9, . . . ,
0.3} in FP-VEM (Algorithm 2) are selected using EBIC. Signal strengths are θj,0K =
0.1, θj,1K = 0.9.
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Similar to the observations in Table 5.2, Table 5.3 shows that the proposed meth-

ods also have good pattern selection performance for the more complicated multi-

parameter all-effect model. The approximate screening algorithm based on the like-

lihood of the two-parameter submodel is quite effective here for obtaining candidate

patterns under the multi-parameter model. And similarly to the two-parameter case,

the EM algorithm tends to severely overselects the attribute patterns. Please see

Appendix B for additional results on the performance of the screening procedure.

5.5 Data Analysis

In this section, we apply the proposed methodology to two real world datasets in

educational assessments to uncover the knowledge structure of the student population.

Analysis of Fraction Subtraction Data. As introduced in Chapter I, the fraction

subtraction dataset contains N = 536 middle school students’ binary (correct or

wrong) responses to 20 questions that were designed for the diagnostic assessment of

8 skill attributes related to fraction and subtraction. See Table 1.3 in Chapter I for

the Q-matrix specified in de la Torre and Douglas (2004a).

7

2 8

1 3 5

6

4

(a) EBIC values and support sizes vs. Υ (b) attribute structure selected by EBIC

Figure 5.8: Results of Fraction Subtraction Data analyzed using two-parameter
SLAM.
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(a) Υ = 0.90,
16 patterns

(b) Υ = 0.86,
15 patterns

(c) Υ ∈ [0.82, 0.84],
11 patterns

(d) Υ ∈ [0.66, 0.80],
9 patterns

(e) Υ = 0.90,
8 groups of attributes

(f) Υ = 0.86,
7 groups of attributes

(g) Υ ∈ [0.82, 0.84],
7 groups of attributes

(h) Υ ∈ [0.66, 0.80],
5 groups of attributes

Figure 5.9: Fraction Subtraction Data: different sets of estimated patterns (a)–(d)
(black for “0” and white for “1”) and the corresponding attribute structures (e)–(h)
under various Υ’s in Algorithm 2. Plot (h) here is equivalent to Figure 5.8(b).

Many studies in the literature use the two-parameter SLAM to fit the dataset,

mostly due to that it is reasonable to assume the required attributes of each item act

together to form a “capable” knowledge state and an “incapable” knowledge state.

This results in two levels of item parameters for each item. We first use the two-

parameter model to analyze the data. Given this 20 × 8 Q-matrix, the number of

equivalence classes induced by the Q-matrix Q20×8 under the two-parameter model

is |{∨j∈Sqj : S ⊆ {1, . . . , J}}| = 58. We apply Algorithm 2, the FP-VEM algorithm

with a sequence of fractional power values Υ ∈ {0.90, 0.89, · · · , 0.60} and use EBIC to

select the tuning parameter Υ while keeping the Dirichlet hyperparameter β = 0.01.

Figure 5.8(a) plots the EBIC values and the support sizes of p, both against the Υ

values. It can be seen that Υ = 0.8 yields the smallest EBIC value 8.98× 103, and it

is the largest Υ value in the flat window of [0.66, 0.8] that gives 9 equivalence classes

of attribute patterns. We also use the multi-parameter all-effect model (GDINA
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model) introduced in Example I.3 to fit the dataset. For a range of values of the

tuning parameters Υ, the smallest EBIC value is above 1.02 × 104, which is much

higher than the smallest EBIC 8.98 × 103 given by the two-parameter model. This

also aligns with the results in the literature that the two-parameter model fits the

fraction subtraction dataset better than other models (DeCarlo, 2011; de la Torre and

Douglas, 2004a). Therefore next we only present and discuss the results given by the

two-parameter model.

Figure 5.8(b) plots the attribute structure corresponding to the 9 equivalence

classes of attribute patterns selected by EBIC. We obtain this attribute structure

using the following procedure. First, we obtain the representatives of these 9 equiva-

lence classes and construct a 9× 8 matrix of selected attribute patterns. We denote

this 9×8 matrix by Â, with each row of Â a 8-dimensional binary vector denoting one

selected knowledge state (i.e., attribute pattern). We next examine the partial orders

among the columns of this matrix to determine the relationships among attributes.

In particular, if Â(·, k1) � Â(·, k2), then attribute k1 is considered as a prerequisite

for attribute k2. Examining these 9 selected knowledge states, we find that the total

number of 8 attributes are separated into 5 groups G1 = {7}, G2 = {2, 8}, G3 = {6}

and G4 = {4} and G5 = {1, 3, 5}, such that the attributes in the same group play

the same role in clustering the students population into the 9 knowledge states. In

particular, based on the observed data, attributes 2 and 8 are equivalent in distin-

guishing the students population’s knowledge states; and so are attributes 1, 3, 5.

The estimated prerequisite relationship among these 5 groups is depicted in Figure

5.8(b). Figure 5.8(b) implies that attribute (α7) Subtract numerators, is a quite basic

skill attribute and serves as prerequisite for all the remaining attributes. This suits

the common sense that in the problems about fraction and subtraction, the ability of

subtracting integers should be the most basic. Figure 5.8 also shows that attributes

(α2), (α6), (α8) are middle level skills that only has one prerequisite attribute (α7),
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and serve as prerequisites for multiple other skills. Finally, the remaining attributes

(α4), (α1), (α3) and (α5) are high level skills in the hierarchical structure. We would

like to point out that the directed edges in the attribute hierarchy in Figure 5.8(b)

(and also in the later Figure 5.10 for the TIMSS dataset) do not necessarily corre-

spond to causal relations between the skill attributes. Instead, the attribute hierarchy

results from the learned subset of attribute patterns, and it just reflects the estimated

cognitive structure of the students being measured.

For the Fraction Subtraction data, in addition to the attribute structure chosen

by EBIC shown in Figure 5.8(b), we also present those sets of attribute patterns

selected by different Υ’s in the solution path. The four sets of patterns and their

corresponding attribute structures are presented in Figure 5.9. As shown in Figure

5.9(a)–(d), the latent patterns selected by a smaller Υ always form a subset of those

patterns selected by a larger Υ. Also, the attribute structures selected by different Υ’s

share some commonalities. Among the second row of Figure 5.9, plot (h) is equivalent

to the attribute structure in Figure 5.8(b).

Analysis of TIMSS Data. We also apply the proposed method to the TIMSS

2003 8th grade data. The dataset contains N = 757 students’ responses to J = 23

test items, and the Q-matrix is of size 23× 13. Under the two-parameter SLAM, the

Q-matrix gives |{∨j∈Sqj : S ⊆ {1, . . . , J}}| = 1625 equivalence classes. Figure 5.10

shows the results of fitting the two-parameter SLAM with β = 0.01. The fractional

power Υ selected by EBIC is 0.84 and the corresponding number of equivalence classes

is 5. The smallest EBIC value in Figure 5.10(a) is 1.96 × 104. We remark that we

also fit the general multi-parameter all-effect SLAM to the dataset, while the smallest

EBIC given by the multi-parameter model is 7.38 × 104, which is much larger than

the best EBIC given by the two-parameter SLAM. So we next focus on the results

given by the two-parameter SLAM.

137



4

1 2 8

6 7 10 125 9

3 11 13

(a) EBIC values and support sizes vs. Υ (b) attribute structure selected by EBIC

Figure 5.10: Results of TIMSS 2003 8th Grade Data analyzed using two-parameter
SLAM.

Figure 5.10(b) plots the attribute structure given by the selected 5 knowledge

states. The 13 attributes are separated into five groups G1 = {3, 11, 13}, G2 = {5, 9},

G3 = {6, 7, 10, 12} and G4 = {1, 2, 8} and G5 = {4}, such that the attributes in

the same group play the same role in clustering the student population into the

five knowledge states. The prerequisite relationships among groups of attributes

is also shown in Figure 5.10(b). Attribute (α3) compute fluently with multi-digit

numbers and find common factors and multiples, attribute (α11) compare two fractions

with different numerators and different denominators, attribute (α13) use equivalent

fraction as a strategy to add and subtract fractions, are the most basic skills in the

attribute hierarchy and serve as the prerequisites for all the remaining attributes.

Indeed, these three are basic algorithmic operations needed to solve the mathematical

problems in the TIMSS test. In addition to the structure selected by EBIC presented

in Figure 5.10(b), other attribute structures corresponding to different Υ ∈ [0.7, 0.9]

are presented in Figure D.5 in Appendix B.

Existing works in the literature analyzing the fraction subtraction data and the

TIMSS data either make the assumption that all possible configurations of latent

attribute patterns exist in the population or pre-specify the attribute structure based
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on domain experts’ judgements (Su et al., 2013). To our knowledge, there has not

been a systematic approach to selecting a potentially small set of latent patterns from

a high-dimensional space. For the two real datasets, we also find that the EBIC values

of the existing EM algorithm are much larger than the proposed method, as indicated

in Figures 5.8 and 5.10 when Υ close to 1; thus the proposed method provides a better

fit of the two datasets.

5.6 Discussion

In this chapter we propose a penalized likelihood method to learn the attribute

patterns in the structured latent attribute models, a special family of discrete latent

variable models. We allow the number of latent patterns to go to infinity and perform

pattern selection by penalizing the proportion parameters of the latent attribute

patterns. The theory of pattern selection consistency is established for the proposed

regularized MLE. The nice form of the penalty term facilitates the computation. Two

algorithms are developed to solve the optimization problem, one being a modification

of the EM algorithm, and the other being a variational EM algorithm that results

from an alternative Bayesian formulation of the objective function. The simulation

study and real data analysis show the proposed methods have good pattern selection

performance.

This work assumes the design matrix Q is prespecified and correct. In practice,

if there is reason to suspect that the Q-matrix could be misspecified, then one needs

to simultaneously estimate the Q-matrix and learn the attribute patterns from data.

Given fixed number of attribute patterns, previous works including Xu and Shang

(2018) and Chen et al. (2018a) used the likelihood based methods and the Bayesian

methods, respectively, to estimate Q. It is also desirable to develop methods to

jointly estimate Q and learn attribute patterns with the existence of large number

of attributes. We would like to point out that the identifiability results developed
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in this work (in Section 5.2) directly apply to this case, and can guarantee both the

design matrix Q and the set of significant attribute patterns are learnable from data.

The learnability theory developed in this chapter guarantees one can reliably learn

a SLAM with an arbitrary set of attribute patterns from data. As mentioned earlier,

SLAMs can be expressed as higher-order probability tensors with special structures.

Also, SLAMs share similarities with the restricted Boltzmann machines and the deep

Boltzmann machines in terms of the bipartite graph structure among the latent and

observed multivariate binary variables. Current techniques for proving identifiability

of SLAMs could be adapted to develop theory for uniqueness of structured tensor

decompositions and learnability of some more complicated latent variable models.

We leave these directions for future study.
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CHAPTER VI

Identification and Estimation of Hierarchical

Latent Attribute Models

As briefly mentioned in the introduction chapter, Hierarchical Latent Attribute

Models (HLAMs) build upon SLAMs by incorporating an additional ingredient: the

hierarchical constraints on which configurations of the latent attributes are allowed.

HLAMs have connections to other multivariate discrete latent variable models in

the machine learning literature, including latent tree graphical models (Choi et al.,

2011; Anandkumar et al., 2011; Hsu et al., 2012; Mourad et al., 2013), restricted

Boltzmann machines (Hinton, 2002; Hinton and Salakhutdinov, 2006; Salakhutdinov

et al., 2007; Larochelle and Bengio, 2008) and restricted Boltzmann forests (RB-

Forests) (Larochelle et al., 2010), latent feature models (Ghahramani and Griffiths,

2006; Bernardo et al., 2007; Miller et al., 2009; Yen et al., 2017), sum-product networks

(Poon and Domingos, 2011), Probabilistic Sentential Decision Diagrams (PSDD)

(Kisa et al., 2014), and cutset networks (Rahman et al., 2014). All these models

and HLAMs allow for tractable inference on high-dimensional discrete variables and

are closely related. However, HLAMs have two key differences from these models.

Other than the structural matrix Q which is unique to the structured latent attribute

models, HLAMs additionally incorporate the hierarchical structure among the latent

attributes into the model. For instance, in cognitive diagnosis, the possession of cer-
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tain attributes are often assumed to be the prerequisite for possessing some others

(Leighton et al., 2004; Templin and Bradshaw, 2014). Such hierarchical structures

differ from the latent tree models in that, the latter use a probabilistic graphical

model to model the hierarchical tree structure among latent variables, while in an

HLAM the hierarchy is a directed acyclic graph (DAG) encoding hard constraints

on allowable configurations of latent attributes. This type of hierarchical constraints

in HLAMs have a similar flavor as those of RBForests proposed in Larochelle et al.

(2010), though the DAG-structure constraints in an HLAM are more flexible than a

forest-structure (i.e., group of trees) one in an RBForest (see Example VI.1).

One major issue in the applications of HLAMs is that, the structural matrix and

the attribute hierarchy often suffer from potential misspecification by domain experts

in confirmatory-type applications, or even entirely unknown in exploratory-type appli-

cations. A key question is then how to efficiently learn both the structural Q-matrix

and the attribute hierarchy from noisy observations. More fundamentally, it is an

important yet open question whether and when the latent structural Q-matrix and

the attribute hierarchy are identifiable. Identifiability of HLAMs has a close con-

nection to the uniqueness of tensor decompositions as the probability distribution

of an HLAM can be written as a mixture of higher-order tensors. However, related

works on identifiability of latent class models and uniqueness of tensor decomposi-

tions, such as Allman et al. (2009); Anandkumar et al. (2014, 2015); Bhaskara et al.

(2014), cannot be directly applied to HLAMs due to the constraints induced by the

structural Q-matrix. To tackle identifiability under such structural constraints, Xu

(2017); Xu and Shang (2018); Gu and Xu (2019b, 2020a, 2019a) recently proposed

identifiability conditions for latent attribute models. However, Xu (2017); Xu and

Shang (2018); Gu and Xu (2019b) considered latent attribute models without any at-

tribute hierarchy; Gu and Xu (2020a) assumed both the structural Q-matrix and true

configurations of attribute patterns are known a priori ; Gu and Xu (2019a) consid-
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ered the problem of learning the set of truly existing attribute patterns but assumed

the structural Q-matrix is correctly specified beforehand. Establishing identifiability

without assuming any knowledge of the structural Q-matrix and the attribute hier-

archy is a technically much more challenging task and still remains unaddressed in

the literature. Moreover, computationally, the existing methods for learning latent

attribute models Chen et al. (2015); Xu and Shang (2018); Gu and Xu (2019a) could

not simultaneously estimate the structural Q-matrix and the attribute hierarchy.

This chapter has two main contributions. First, we address the challenging iden-

tifiability issue of HLAMs. We develop sufficient and almost necessary conditions for

identifying the attribute hierarchy, the structural Q-matrix, and the related model

parameters in an HLAM. Second, we develop a scalable algorithm to estimate the

latent structure and attribute hierarchy of an HLAM. Specifically, we propose a novel

approach to simultaneously estimating the structural Q-matrix and performing di-

mension reduction of attribute patterns. The superior performance of the proposed

algorithm is demonstrated in various settings of synthetic data and an application to

an educational assessment dataset. The proof of the main theorem and additional

numerical results are included in Appendix E.

6.1 Hierarchical Latent Attribute Models

This section introduces the model setup of HLAMs in details. An HLAM con-

sists of two types of subject-specific binary variables, the observed responses r =

(r1, . . . , rJ) ∈ {0, 1}J to J items; and the latent attribute pattern α = (α1, . . . , αK) ∈

{0, 1}K . First consider the latent attributes. Attribute αk is said to be the prerequi-

site of α` and denoted by αk → α` (or k → `), if any α with αk = 0 and α` = 1 is

“forbidden” to exist. This is a common assumption in applications such as cognitive

diagnosis (Leighton et al., 2004; Templin and Bradshaw, 2014). A subject’s latent

pattern a is assumed to follow a categorical distribution of population proportion pa-
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rameters (pα, α ∈ {0, 1}K), with pα ≥ 0 and
∑
α pα = 1. In particular, any pattern

α not respecting the hierarchy is deemed impossible to exist with population propor-

tion pα = 0. An attribute hierarchy is a set of prerequisite relations between the K

attributes, which we denote by E = {k → ` : attribute k is a prerequisite for `}. Any

hierarchy E would induce a set of allowable configurations of attribute patterns, which

we denote by A. The set A is a proper subset of {0, 1}K if E 6= ∅. So an attribute

hierarchy determines the sparsity pattern of the vector of proportion parameters p.

Example VI.1. Figure 6.1 presents several hierarchies with the size of the associated

A, where a dotted arrow from αk to α` indicates k → `. The attribute hierarchy in an

HLAM is a DAG generally. In the literature, the RBForests proposed in Larochelle

et al. (2010) also introduce hard constraints on allowable configurations of the binary

hidden (latent) variables in a restricted Boltzmann machine (RBM). The modeling

goal of RBForests is to make computing the probability mass function of observed

variables tractable, while not having to limit the number of latent variables. Specifi-

cally, in an RBForest, latent variables are grouped in several full and complete binary

trees of a certain depth, with variables in a tree respecting the following constraints:

if a latent variable takes value zero with αi = 0, then all latent variables in its left

subtree must take value dl; while if αi = 1, all latent variables in its right subtree

must take value dr (dl = dr = 0 in the paper Larochelle et al. (2010)). The attribute

hierarchy model in an HLAM has a similar spirit to RBForests, and actually includes

the RBForests as a special case. For instance, the hierarchy in Figure 6.1(d) is equiv-

alent to a tree of depth 3 in an RBForest with dl = 1 − dr = 0. HLAMs allow for

more general attribute hierarchies to encourage better interpretability. Another key

difference between HLAMs and RBForests is the different joint model of the observed

variables and the latent ones. An RBForest is an extension of an RBM, and they

both use the same energy function, while HLAMs model the distribution differently,

as to be specified below.
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α2 α3

α4 α5 α6 α7

(a) |A1| = 6 (b) |A2| = 8

(c) |A3| = 9 (d) RBForest with |A| = 16

Figure 6.1: Different attribute hierarchies among binary attributes, the first three
for K = 4 (where |{0, 1}4| = 16) and the last for K = 7 (where |{0, 1}7| =
128). E.g., the set of allowed attribute patterns under hierarchy (a) is A1 =
{(0000), (1000), (1100), (1001), (1101), (1111)}.

Q6×3 :=


q1

q2

q3

q4

q5

q6

 :=


1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 0 1

 ;
r1 r2 r3 r4 r5 r6 r ∈ {0, 1}6

α1 α2 α3 α ∈ {0, 1}3

q1 q2 q3 q4 q5 q6

(a) binary structural Q-matrix
(b) graphical model along with attribute
hierarchy

Figure 6.2: A binary structural Q-matrix and the corresponding graphical model with
directed edges from the latent to the observed variables representing dependencies.
Below the observed variables in (b) are the row vectors of Q6×3, i.e., the item loading
vectors. There is E = {1→ 2, 1→ 3}.

On top of the model of the latent attributes, an HLAM uses a J × K binary

matrix Q = (qj,k) to encode the structural relationship between the J items and the

K attributes. In cognitive diagnostic assessments, the matrix Q is often specified

by domain experts to summarize which cognitive abilities each test item targets on

(Junker and Sijtsma, 2001; von Davier, 2008; George and Robitzsch, 2015). Specifi-

cally, qj,k = 1 if and only if the response rj to the jth item has statistical dependence

on latent variable αk. The distribution of rj, i.e., θj,α := P(rj = 1 | α), only depends
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on its “parent” latent attributes αk’s that are connected to rj, i.e., {αk : qj,k = 1}.

The structural matrix Q naturally induces a bipartite graph connecting the latent and

the observed variables, with edges corresponding to entries of “1” in Q = (qj,k). Fig-

ure 6.2 presents an example of a structural matrix Q and its corresponding directed

graphical model between the K = 3 latent attributes and J = 6 observed variables.

The solid edges from the latent attributes to the observed variables are specified by

Q6×3. As also can be seen from the graphical model, the observed responses to the J

items are conditionally independent given the latent attribute pattern.

In the psychometrics literature, various HLAMs adopting the Q-matrix concept

have been proposed with the goal of diagnosing targeted attributes (Junker and Si-

jtsma, 2001; Templin and Henson, 2006; von Davier, 2008; Henson et al., 2009; de la

Torre, 2011). They are often called the cognitive diagnosis models. The general fam-

ily of latent attribute models are also widely used in other scientific areas including

psychiatric evaluation (Templin and Henson, 2006; Jaeger et al., 2006; de la Torre

et al., 2018) with the goal of diagnosing patients mental disorders, and epidemiolog-

ical diagnosis of disease etiology (Wu et al., 2017, 2018; Deloria Knoll et al., 2017;

O’Brien et al., 2019). These applications share the common key interest in identifying

the multivariate discrete latent attributes.

In this chapter, we focus on two popular and basic types of modeling assumptions

under such a framework; as to be revealed soon, these two types of assumptions also

have close connections to Boolean matrix decomposition (Ravanbakhsh et al., 2016;

Rukat et al., 2017). We would like to point out that this chapter has generalizability

beyond these two models. For other more general model assumptions like those con-

sidered in Gu and Xu (2019a), our proposed two-stage procedure in Section 6.3 can be

easily applied based on their specific likelihood functions (i.e., first reducing dimen-

sion and estimating Q by the proposed Alternating Direction Gibbs EM algorithm,

and then further shrinking latent patterns; see Section 6.3 for details). Specifically,
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the HLAMs considered in this paper assume a logical ideal response Γqj ,α given an at-

tribute pattern α and an item loading vector qj in the noiseless case. Then item-level

noise parameters are further introduced to account for uncertainty of observations.

The following are two popular ways to define the ideal response.

The first is the AND-Model (DINA model in Example I.1) that assumes a conjunc-

tive “and” relationship among the binary attributes. The ideal response of attribute

pattern α to item j is

(AND-model) Γqj ,α =
K∏
k=1

α
qj,k
k . (6.1)

To interpret, Γqj ,α in (6.1) indicates whether a pattern α possesses all the attributes

specified by the item loading vector qj. This conjunctive relationship is often assumed

for diagnosis of students’ mastery or deficiency of skill attributes in educational assess-

ments, and Γqj ,α naturally indicates whether a student with α has mastered all the

attributes required by the test item j. With Γqj ,α, the uncertainty of the responses

is further modeled by the item-specific Bernoulli parameters

θ+
j = 1− P(rj = 0 | Γqj ,α = 1), (6.2)

θ−j = P(rj = 1 | Γqj ,α = 0),

where θ+
j > θ−j is assumed for identifiability. For each item j, the ideal response Γqj ,·,

if viewed as a function of attribute patterns, divides the patterns into two latent

classes {α : Γqj ,α = 1} and {α : Γqj ,α = 0}; and for these two latent classes,

respectively, the item parameters quantify the noise levels of the response to item

j that deviates from the ideal response. Note that the θj,α equals either θ+
j or θ−j .

Denote the item parameter vectors by θ+ = (θ+
1 , . . . , θ

+
J )> and θ− = (θ−1 , . . . , θ

−
J )>.

The second model is the OR-model (DINO model in Example I.1) that assumes

147



the following ideal response

(OR-model) (6.3)

Γqj ,α = I(qj,k = αk = 1 for at least one k ∈ [K]),

Such a disjunctive relationship is often assumed in psychiatric measurement. In the

Boolean matrix factorization literature, a similar model was proposed by Ravan-

bakhsh et al. (2016); Rukat et al. (2017). Adapted to the terminology here, Rukat

et al. (2017) assumes the ideal response takes the form

Γqj ,α = 1−
K∏
k=1

(1− αkqj,k),

which is equivalent to (6.3), while Rukat et al. (2017) constrains all the item-level

noise parameters to be the same.

The last equivalent formulation of the OR-model reveals that its ideal response is

symmetric about the two vectors α and qj; while for the AND-model this is not the

case. There is an interesting duality (Chen et al., 2015) between the AND-model and

the OR-model with ΓOR
qj ,α

= 1 − ΓAND
qj ,1−α. Due to this duality, we next will focus on

the asymmetric AND-model without loss of generality.

Due to the duality between the AND-model and the OR-model, we next will focus

on the asymmetric AND-model without loss of generality.

6.2 Joint Identifiability of Q-matrix and Attribute Hierarchy

This section presents the main theoretical result on model identifiability. Denote

the J×|A| ideal response matrix by Γ(Q,A). The Γ(Q,A) has rows indexed by the J

items and columns by attribute patterns in A, and its (j,α)th entry is defined to be

the ideal response Γj,α in (6.1). Given an attribute hierarchy E and the resulting A,

148



two matrices Q1 and Q2 are equivalent if Γ(Q1,A) = Γ(Q2,A). We also equivalently

write it as Q1
E∼ Q2 (or Q1

A∼ Q2). The following example illustrates how an attribute

hierarchy determines a set of equivalent Q-matrices.

Example VI.2. Consider the attribute hierarchy E = {1 → 2, 1 → 3} in Figure

6.2, which results in A = {(000), (100), (110), (101), (111)}. The identity matrix I3 is

equivalent to the following matrices under E ,

Q =


1 0 0

0 1 0

0 0 1

 E∼


1 0 0

1 1 0

1 0 1

 E∼


1 0 0

∗ 1 0

∗ 0 1

 , (6.4)

where the “∗”’s in the third matrix above indicate unspecified values, any of which can

be either 0 or 1. This equivalence is due to that attribute α1 serves as the prerequisite

for both α2 and α3, and any item loading vector measuring α2 or α3 is equivalent to

a modified one that also measures α1, in terms of classifying the patterns in A into

two categories {α : Γqj ,α = 1} and {α : Γqj ,α = 0}.

The following main theorem establishes identifiability for an HLAM. See Supple-

ment A for its proof.

Theorem VI.1. Consider an HLAM under the AND-model assumption with a Q

and a hierarchy E.

(i) (Γ(Q,A), θ+, θ−, p) are jointly identifiable if the true Q satisfies the following

conditions.

A. The Q contains a K ×K submatrix Q0; and setting Q0
j,k to “0” for any k → h

and Q0
j,h = 1 results a matrix equal to IK up to column permutation.

(Assume first K rows of Q form Q0, and denote the remaining submatrix of Q

by Q?.)
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B. For any item j > K, qj,h = 1 and any k → h, we set qj,k to “1” and obtain a

modified Q?,B. The Q?,B contains K distinct column vectors.

C. For any item j > K, qj,k = 1 and any k → h, we set qj,h to “0” and obtain a

modified Q?,C, with entries qcj,k. The Q?,C satisfies that
∑J−K

j=1 qcj,k ≥ 2 for all

k ∈ [K].

To identify (Γ(Q,A), θ+, θ−, p), Condition A is necessary; moreover, Conditions A,

B and C are necessary and sufficient when there exists no hierarchy with pα > 0 for

all α ∈ {0, 1}K.

(ii) In addition to Conditions A–C, if Q is constrained to contain an IK, then

(A,θ+, θ−, p) are identifiable, and Q can be identified up to the equivalence class

under the true A. On the other hand, it is indeed necessary for Q to contain an IK

to ensure an arbitrary A identifiable.

When estimating an HLAM with the goal of recovering the ideal response structure

Γ(Q,A) and the model parameters, Theorem VI.1(i) guarantees that Conditions A, B

and C suffice and are close to being necessary. While the goal is to uniquely determine

the attribute hierarchy from the identified Γ(Q,A), the additional condition that Q

contains an IK becomes necessary. This phenomenon can be better understood if one

relates it to the identification criteria for the factor loading matrix in factor analysis

(Anderson, 2009; Bai and Li, 2012); the loading matrix there is often required to

include an identity submatrix or satisfy certain rank constraints, since otherwise the

loading matrix can be identifiable only up to a matrix transformation. We point out

that developing identifiability theory for HLAMs that can have arbitrarily complex

hierarchies is more difficult than the case without hierarchy, and hence Theorem VI.1

is a significant technical advancement over previous works (Gu and Xu, 2019a). We

next present an example as an illustration of Theorem VI.1.

150



Example VI.3. Consider the attribute hierarchy {α1 → α2, α1 → α3} among K = 3

attributes as in Figure 6.2. The following 7×3 structural matrix Q satisfies Conditions

A, B and C in Theorem VI.1. In particular, the first 3 rows of Q serves as Q0

in Condition A. We call the two types of modifications of matrix Q described in

Conditions B and C by the name “Operation” B and C, respectively. In the following

equation, the matrix entries modified by Operations B and C are highlighted, and

the resulting QB and QC indeed satisfies the requirements in Conditions B and C.

So the HLAM associated with Q is identifiable.

Q =



I3

1 1 0

0 1 1

0 1 1

1 0 1


Operation B

=⇒ QB =



I3

1 1 0

1 1 1

1 1 1

1 0 1


;

Q
Operation C

=⇒ QC =



I3

1 0 0

0 1 1

0 1 1

1 0 0


.

6.3 A Scalable Algorithm for Estimating HLAMs

This section presents an efficient two-step algorithm for structure learning of

HLAMs. The EM algorithm is popular for estimating latent variable models; however

for HLAMs, it needs to evaluate subjects’ and items’ probabilities of all configura-

tions of K-dimensional patterns in each E step, so it is computationally intractable

for moderate to large K with complexity O((N + J)2K). In this chapter, we propose

a scalable two-step algorithm which is able to simultaneously learn the structural
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matrix Q and latent patterns. Our new first step jointly estimates Q and performs

dimension reduction of the latent patterns in a scalable way, with computational com-

plexity O((N + J)K). Then based on the estimated Q and candidate patterns, our

second step imposes further regularization on proportions of patterns to extract the

set of truly existing patterns and the corresponding attribute hierarchy.

For a sample of size N , denote by R = (ri,j) the N × J matrix containing the

N subjects’ response vectors as rows, and denote by A = (ai,k) the N × K matrix

containing subjects’ latent attribute patterns as rows. Our first step treats (Q,A) as

random effect variables with noninformative marginal distributions and Θ = (θ+,θ−)

as fixed effect parameters. The log-likelihood of the complete data, R = (ri,j)N×J

and (Q,A), is as follows under the AND-model,

`1st(Θ; Q, A, R) =
N∑
i=1

J∑
j=1

[
ri,j

(∏
k

a
qj,k
i,k log θ+

j + (6.5)

(1−
∏
k

a
qj,k
i,k ) log θ−j

)]
+ (1− ri,j)

(∏
k

a
qj,k
i,k log(1− θ+

j ) + (1−
∏
k

a
qj,k
i,k ) log(1− θ−j )

)]
.

We develop a stochastic EM algorithm for structure learning. In particular, in the E

step, we use M Gibbs samples of (Q,A) to stochastically approximate their target

posterior expectation; then in the M step we update the estimates of the item pa-

rameters Θ. We call the algorithm EM with Alternating Direction Gibbs (ADG-EM)

as each E step iteratively draws Gibbs samples of A (along the direction of updating

attribute patterns) and Q (along the direction of updating item loadings). The details

of ADG-EM are presented in Algorithm 4. In practice we draw 2M samples of (Q,A)

with the first M as burn-in in each E step; we find usually a small number M suffices

for good performance and M = 3 is taken in the experiments. Algorithm 4 has a

desirable property of performing dimension reduction to obtain a set of candidate

patterns, as can be seen from its last step of including all the unique row vectors of

the matrix I(Aave > 1/2) in the Acandi. This is because the matrix Aave has size
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N×K, which means the number of selected candidate patterns can be at most N , no

matter how large 2K might be. Indeed, in the experimental setting with K = 15 in

Section 6.4, the 2K = 32768� N = 1200, while the proposed algorithm successfully

reduces |Acandi| to several hundreds (see Table 6.1), and then estimates true latent

structure with good accuracy and scalability.

After using Algorithm 4 to obtain the estimated structural matrix Q̂ and a set

of candidate latent patterns Acandi, we further impose penalty on the proportion

parameters of these candidate patterns p = (pα : α ∈ Acandi) for sparse estimation.

Denote Θ = (θj,α : j ∈ [J ], α ∈ Acandi). Motivated by Gu and Xu (2019a), the

second stage maximizes the following objective,

`2nd
λ (p, Θ; R, Q̂) = λ

∑
α∈Acandi

logρ(pα) +
N∑
i=1

log
{ ∑
α∈Acandi

pα

J∏
j=1

θ
ri,j
j,α(1− θj,α)1−ri,j

}
(6.6)

where λ ∈ (−∞, 0) is a tuning parameter encouraging sparsity of (pα, α ∈ Acandi),

and ρ � N−d for some d ≥ 1 is used to avoid the singularity issue of the log function at

zero. Note that the Q̂ estimated by Algorithm 4 implicitly appears in the above (6.6),

because it determines the ideal response of patterns to items and further determines

whether a θj,α should equal θ+
j or θ−j . To maximize (6.6), we apply the Penalized

EM (PEM) algorithm proposed in Gu and Xu (2019a) to obtain the set of selected

latent patterns Afinal. The PEM algorithm has complexity O(N |Acandi|) in each E

step, thanks to the dimension reduction of ADG-EM algorithm in the first stage.

We also use the Extended Bayesian Information Criterion (EBIC) (Chen and Chen,

2008) to select the tuning parameter λ and obtain the best set of attribute patterns

Afinal. Then finally, the attribute hierarchy Ê can be determined by examining the

order between columns of the |Afinal| × K binary matrix D containing the selected

patterns. Denote the columns of the matrix D by D·,k’s where k ∈ [K]. Specifically,
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if D·,k � D·,`, then {k → `} should be included in Ê . Combined with the proposed

Algorithm 4, the final output is (Q̂,Afinal, Ê), including the structural matrix Q, latent

patterns, and attribute hierarchy.

We make several remarks about the proposed algorithm. First, in terms of com-

putational complexity, Algorithm 4 has O((N + J)K) complexity in each iterative

step, in contrast to the O((N + J)2K) complexity of the regularized EM algorithm

that evaluates the probabilities of all the 2K configurations of the binary attribute

patterns (Chen et al., 2015; Xu and Shang, 2018). This reduction to linear complexity

in K is remarkable in the literature of estimating latent attribute models. Second,

our algorithm is indeed the first in the literature to simultaneously estimate both

Q and the attribute hierarchy, which itself is a methodological advancement since

both quantities are of interest to practitioners; while that in Chapter V (Gu and Xu,

2019a) estimates the latent attribute patterns assuming Q is known as input.

We also remark that it is straightforward to handle missing data in an HLAM and

still perform structure learning. Indeed, it suffices to replace the objective functions

(6.5) and (6.6) that are over the {ri,j : (i, j) ∈ [N ] × [J ]} by functions over {ri,j :

(i, j) ∈ Ω}, where Ω ⊆ [N ] × [J ] is the set of indices in R corresponding to those

observed entries. Supplement B contains more details on computation.

6.4 Simulations and Real Data Analysis

Simulations. We perform simulations in two different settings, the first having

relatively small J with (N, J) = (1200, 120) and the second having relatively large J

with (N, J) = (1200, 1200). Two different numbers of attributes K = 8 and K = 15

are considered. We next specify the structural matrices Q120×K and Q1200×K used to

generate the synthetic data. Let Q1 = (q1
k,`) be a K×K matrix with q1

k,` = 1 if ` = k or

` = k+1 and zero otherwise; then let Qblock = (IK , Q
>
1 , Q

>
1 )> be a 3K×K matrix that

consists of one submatrix IK and two copies of Q1. Under J = 120 or 1200, the QJ×K
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Algorithm 4: ADG-EM: Alternating Direction Gibbs EM for Q estimation and
dimension reduction

Data: Binary response matrix R = (ri,j)N×J .
Initialize A = (ai,k)N×K ∈ {0, 1}N×K and Q = (qj,k)J×K ∈ {0, 1}J×K .
Initialize parameters θ+ and θ−. Set t = 1, Aave = 0.
while not converged do

for (i, j) ∈ [N ]× [J ] do
ψi,j ← ri,j log[θ+

j /θ
−
j ] + (1− ri,j) log[(1− θ+

j )/(1− θ−j )] ;
As ← 0, Qs ← 0.
for r ∈ [2M ] do

for (i, k) ∈ [N ]× [K] do Draw

ai,k ∼ Bernoulli
(
σ
(∑

j qj,k
∏

m6=k a
qj,m
i,m ψi,j

))
;

if r > M then As ← As + A ;

Aave ← 1
t
As/M +

(
1− 1

t

)
Aave; t← t+ 1.

for r ∈ [2M ] do
for (j, k) ∈ [J ]× [K] do Draw

qj,k ∼ Bernoulli
(
− σ

(∑
i(1− ai,k)

∏
m6=k a

qj,m
i,m ψi,j

))
;

if r > M then Qs ← Qs +Q ;

Q = I(Qs/M > 1
2
) element-wisely; Iave =

(∏
k{aave

i,k }qj,k
)
N×J

;

for j ∈ [J ] do θ+
j ← (

∑
i ri,jI

ave
i,j )/(

∑
i I

ave
i,j ),

θ−j ← (
∑

i ri,j(1− Iave
i,j ))/(

∑
i(1− Iave

i,j )) ;

Â = I(Aave > 1
2
) element-wisely.

Output: Acandi containing the unique row vectors of Â, and binary structural
matrix Q̂.

Then (Q̂,Acandi) are fed to the Penalized EM algorithm in Gu and Xu (2019a)
to maximize (6.6) and obtain Afinal.

vertically stacks an appropriate number of Qblock. The algorithm is implemented in

Matlab. For all the scenarios, 200 independent runs are carried out. The second step

PEM algorithm is always run over a range of λ ∈ {−0.2×i : i = 1, . . . , 20}, from which

EBIC selects the best. Figure 6.3 presents two particular hierarchies among K = 8

attributes, the diamond and the tree, together with the hierarchy estimation results.

More extensive simulation results are presented in Table 6.1. In the table, the column

“acc[Q]A” records the average accuracy of estimating the structural Q-matrix up to

the equivalence class under A, as illustrated in Example VI.2; the “TPR” denotes
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True Positive Rate, the average proportion of true patterns that are selected in Afinal;

and “1−FDR” denotes “1−False Discovery Rate (FDR)”, the average proportion of

selected patterns in Afinal that are true. In terms of running time, in scenarios of

Table 1, with 2K = 28 or 215, J = 120 and noise rate 20%, the proposed algorithm

takes < 30 seconds on average; even for challenging cases with (2K , J) = (215, 1200),

the running time is around 1 minute. In contrast, algorithms in previous works (Chen

et al., 2015; Xu and Shang, 2018) with exponential complexity in K usually take > 10

minutes even for (2K , J) = (25, 30).

Results in Table 6.1 not only demonstrate the algorithm’s excellent performance,

but also provide interesting insight into the differences between the two settings,

(I) (N, J) = (1200, 120) and (II) (N, J) = (1200, 1200). In setting (I), the first

stage ADG-EM algorithm tends to produce a relatively large number of candidate

patterns |Acandi| (though definitely below sample size N , even for 2K = 215), and the

second stage PEM algorithm significantly reduces the number of patterns, usually

yielding |Afinal| = |A0|. In contrast, in setting (II), Algorithm 4 itself usually can

successfully reduce the number of candidate patterns, giving |Acandi| close to |A0|,

and the PEM algorithm does not seem to improve the selection results very much

in such scenarios. One explanation for this phenomenon is that in the small J case,

there are not enough items “measuring” subjects’ latent attributes, so the ADG-EM

algorithm is not very sure about which false attribute patterns to exclude (very nicely,

ADG-EM does not tend to exclude truly existing patterns), and further regularization

of patterns in the PEM algorithm is very necessary and helpful; while in the large

J case, there exists enough information about the subjects extracted by the large

number of items, and hence the ADG-EM can be more confident about discarding

those non-existing patterns in the data. Inspired by this observation, we also apply

the ADG-EM algorithm to the task of factorization and reconstruction of large and

noisy binary matrices. Supplement C contains some interesting simulations.
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Figure 6.3: Among K = 8 attributes, on the upper-left is a diamond shape hierarchy,
resulting in 15 patterns; and on the bottom-left is a tree shape hierarchy resulting
in 10 patterns. The upper-right and bottom-right plots show how many times out of
the 200 runs each true prerequisite relation is successfully recovered. The setting is
(N, J) = (1200, 1200) and 1− θ+

j = θ−j = 20%.

Table 6.1: Accuracy of learning the structural Q-matrix and the attribute hierarchy.
The “noise” in the table refers to the value of 1 − θ+

j = θ−j . Numbers in the col-
umn “size” record the median values of the cardinality of |Afinal| (and |Acandi| in the
parenthesis), based on 200 runs in each scenario.

2K |A0| noise
(N, J) = (1200, 120)

acc[Q]A TPR 1-FDR size

28

10
20% 1.00 1.00 0.96 10 (113)
30% 1.00 1.00 0.96 10 (166)

15
20% 1.00 1.00 0.95 15 (120)
30% 1.00 0.99 0.94 16 (179)

215

10
20% 0.98 0.91 0.90 10 (272)
30% 0.99 1.00 0.88 10 (851)

15
20% 0.99 0.96 0.95 15 (309)
30% 0.99 0.99 0.89 15 (894)

2K |A0| noise
(N, J) = (1200, 1200)

acc[Q]A TPR 1-FDR size

28

10
20% 1.00 1.00 1.00 10 (10)
30% 1.00 1.00 0.68 15 (16)

15
20% 1.00 1.00 1.00 15 (15)
30% 1.00 1.00 0.80 19 (20)

215

10
20% 0.99 0.99 0.97 10 (11)
30% 0.97 0.94 0.62 15 (28)

15
20% 1.00 1.00 0.99 15 (16)
30% 0.99 0.98 0.71 21 (41)
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Real data analysis. We use the proposed method to analyze real data from a large-

scale educational assessment, the Trends in International Mathematics and Science

Study (TIMSS). This dataset is part of the TIMSS 2011 Austrian data, which was also

used in (George and Robitzsch, 2015) to analyze students’ abilities in mathematical

sub-competences and can be found in the R package CDM. For this real dataset, there

seems no widely-accepted domain knowledge regarding the attribute hierarchy, and

our study here provides an exploratory analysis. It includes responses of N = 1010

Austrian fourth grade students and J = 47 items. A number of K = 9 attributes

is pre-specified in George and Robitzsch (2015), together with a tentative Q-matrix.

One structure specific to such large scale assessments is that only a subset of all items

in the entire study is presented to each of students (George and Robitzsch, 2015). This

results in many missing values in the N × J data matrix, and the considered dataset

has a missing rate 51.73%. After running the ADG-EM algorithm with missing data

firstly, there is |Acandi| = 384, out of the 2K = 512 possible patterns. Figure 6.4(a)

presents the results of the second stage PEM algorithm. The smallest EBIC value is

achieved when λ ∈ [−2.8,−1.8], with 10 estimated latent patterns in Afinal presented

in Figure 6.4(b). The hierarchy corresponding to Afinal in Figure 6.4(c) reveals that

attribute αGR “Geometry & Reasoning” has the largest number of prerequisites. And

in general, attributes related to either “reasoning” or “geometry” seem to be higher

level skills in the hierarchy.

6.5 Discussion

In this chapter, we have proposed transparent conditions on the structural matrix

Q for identifying an HLAM and developed a scalable algorithm for estimating an

HLAM. The algorithm has great empirical performance on both small- and large-

scale structure learning tasks. We next make a remark about the comparison between

the new ADG-EM algorithm and the screening algorithm in Gu and Xu (2019a),
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which takes a known Q as input. Some additional experiments reveal that, (a) when

Q is correctly specified as input to the algorithm in Gu and Xu (2019a), the new

ADG-EM has as high accuracy of estimating latent patterns as that in Gu and Xu

(2019a), in addition to also giving an accurately estimated Q̂; in this case the ADG-

EM takes a little longer due to the additional estimation of Q; (b) while if Q is

misspecified, the algorithm in Gu and Xu (2019a) often has convergence issues due to

the misspecification of the latent structural matrix Q; in contrast, the new ADG-EM

algorithm is able to take a misspecified Q as an initial value and then iterates towards

convergence to the correct Q and attribute hierarchy with high accuracy. As about

algorithmic robustness, our proposed algorithm is not limited to an identifiable model

and can generally be applied to any HLAM where both Q and attribute patterns

are unknown. If, however, the model does not satisfy the proposed identifiability

conditions, then the strongest possible identification argument for any estimation

method would be partial identifiability (Gu and Xu, 2020a). In this case, the proposed

algorithm can still be applied to estimate those parameters up to partial identifiability.

This chapter focuses on basic types of HLAMs that have two item-specific param-

eters per item, i.e., two-parameter models. It would be interesting to generalize the

theory and algorithm to other latent attribute models. More broadly, this chapter

makes an attempt to bridge the two fields of psychometrics and machine learning. In

psychometrics, various latent attribute models have been recently proposed, which

carry good scientific interpretability in the underlying latent structure; while in ma-

chine learning, relevant latent variable models including RBM and its extensions are

popular, which enjoy computational efficiency. This chapter sheds light on further

research that can combine strengths from both fields to analyze large and complex

datasets from educational and psychological assessments.
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(a) #patterns and EBIC (b) yellow for 1, blue for 0

(c) attribute hierarchy of Afinal

Figure 6.4: Results of Austrian TIMSS 2011 data.
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APPENDIX A

Appendix of Chapter II

This is the appendix to Chapter II and it is organized as follows. Section A.1

presents the proof of the main result Theorem II.1. Appendix A.2 gives the derivation

of Equation (2.6) in Example II.2. Appendix A.3 presents the proof of Corollary V.1.

Appendix A.4 presents the proof of Proof of Proposition A.2. Appendix A.5 presents

the proof of Lemma A.1.

A.1 Proof of Theorem II.1

To study model identifiability, directly working with (5.9) is technically challeng-

ing. To facilitate the proof of the theorem, we introduce a key technical quantity

following that of Xu (2017), the marginal probability matrix called the T -matrix.

We first introduce two new notations, θ+ = 1 − s and θ− = g. The T -matrix

T (θ+,θ−), is a defined as a 2J × 2K matrix, where the entries are indexed by row in-

dex r ∈ {0, 1}J and column index α. Suppose that the columns of T (θ+,θ−) indexed

162



by (α1, . . . ,α2K ) are arranged in the following order of {0, 1}K

α1 = 0, α2 = e1, . . . , α
K+1 = eK , α

K+2 = e1 + e2, α
K+3 = e1 + e3, . . . ,

α2K =
K∑
k=1

ek = 1,

where 0 denotes the column vector of zeros, 1 denotes the column vector of ones, and

ek denotes a standard basis vector, whose kth element is one and the rest are zero; to

simplify notation, we omit the dimension indices of 0,1 and ek’s. Similarly, suppose

that the rows of T (θ+,θ−) indexed by (r1, . . . , r2J ) are arranged in the following

order

r1 = 0, r2 = e1, . . . , r
J+1 = eJ , r

J+2 = e1 + e2, r
J+3 = e1 + e3, . . . ,

r2J =
J∑
j=1

ej = 1.

The r = (r1, . . . , rJ)th row and αth column element of T (θ+,θ−), denoted by

tr,α(θ+,θ−), is the probability that a subject with attribute profile α answers all

items in the subset {j : rj = 1} positively, that is, tr,α(θ+,θ−) = P (R � r |

Q,θ+,θ−,α). When r = 0, t0,α(θ+,θ−) = P (r � 0) = 1 for any α. When r = ej,

for 1 ≤ j ≤ J , tej ,α(θ+,θ−) = P (Rj = 1 | Q,θ+,θ−,α). Let Tr,·(θ+,θ−) be the

row vector in the T -matrix corresponding to r. Then for any r 6= 0, we can write

Tr,·(θ+,θ−) =
⊙

j:rj=1 Tej ,·(θ+,θ−), where � is the element-wise product of the row

vectors.

By definition, multiplying the T -matrix by the distribution of attribute profiles p

results in a vector, T (θ+,θ−)p, containing the marginal probabilities of successfully
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responding to each subset of items positively. The rth entry of this vector is

Tr,·(θ+,θ−)p =
∑

α∈{0,1}K
tr,α(θ+,θ−)pα =

∑
α∈{0,1}K

P (R � r | Q,θ+,θ−,α)pα

=P (R � r | Q,θ+,θ−,p).

We can see that there is a one-to-one mapping between the two 2J -dimensional vec-

tors T (θ+,θ−)p and
(
P (R = r | Q,θ+,θ−,p) : r ∈ {0, 1}J

)
. Therefore, Definition

1 directly implies the following proposition.

Proposition A.1. The parameters (θ+,θ−,p) are identifiable if and only if for any

(θ̄
+
, θ̄
−
, p̄) 6= (θ+,θ−,p), there exists r ∈ {0, 1}J such that

Tr,·(θ+,θ−)p 6= Tr,·(θ̄+
, θ̄
−

)p̄. (A.1)

Proposition 1 shows that to establish the identifiability of (θ+,θ−,p), we only

need to focus on the T -matrix structure.

The following proposition characterizes the equivalence between the identifiability

of the DINA model associated with a Q-matrix with some zero q-vectors and that

associated with the submatrix of Q containing all of those nonzero q-vectors. The

proof of Proposition A.2 is given in the Supplementary Material.

Proposition A.2. Suppose the Q-matrix of size J ×K takes the form

Q =

Q′
0

 ,

where Q′ denotes a J ′ ×K submatrix containing the J ′ nonzero q-vectors of Q, and

0 denotes a (J − J ′) × K submatrix containing those zero q-vectors of Q. Then

the DINA model associated with Q is identifiable if and only if the DINA model

associated with Q′ is identifiable.
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By Proposition A.2, without loss of generality, in the following we assume the

Q-matrix does not contain any zero q-vectors and prove the necessity and sufficiency

of the proposed Conditions 1 and 2.

Proof of Necessity The necessity of Condition 1 comes from Theorem 3 in Xu

and Zhang (2016). Now suppose Condition 1 holds but Condition 2 is not satisfied.

Without loss of generality, suppose the first two columns in Q∗ are the same and the

Q takes the following form

Q =

 IK

v v
...

...
...


J×K

, (A.2)

where v is any binary vector of length J −K. To show the necessity of Condition 2,

from Proposition 1, we only need to find two different sets of parameters (θ+,θ−,p) 6=

(s̄, ḡ, p̄) such that for any r ∈ {0, 1}J , the following equation holds

Tr,·(θ
+,θ−)p = Tr,·(θ̄

+
, θ̄
−

)p̄. (A.3)

We next construct such (θ+,θ−,p) and (θ̄
+
, θ̄
−
, p̄). We assume in the following that

θ̄
+

= θ+ and θ̄−j = θ−j for any j > 2, and focus on the construction of (θ̄−1 , θ̄
−
2 , p̄) 6=

(θ−1 , θ
−
2 ,p) satisfying (C.22) for any r ∈ {0, 1}J . For notational convenience, we write

the positive response probability for item j and attribute profile α in the following

general form θj,α := (θ+
j )ξj,α(θ−j )1−ξj,α . So based on our construction, for any j > 2,

θj,α = θ̄j,α.

We define two subsets of items S0 and S1 to be

S0 = {j : qj,1 = qj,2 = 0} and S1 = {j : qj,1 = qj,2 = 1},

where S0 includes those items not requiring any of the first two attributes, and S1
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includes those items requiring both of the first two attributes. Then since Condition

2 is not satisfied, we must have S0∪S1 = {3, 4, . . . , J}, i.e., all but the first two items

either fall in S0 or S1. Now consider any α∗ ∈ {0, 1}K−2, for any item j ∈ S0, the four

attribute profiles (0, 0,α∗), (0, 1,α∗), (1, 0,α∗) and (1, 1,α∗) always have the same

positive response probabilities to j, and for any j ∈ S1, the three attribute profiles

(0, 0,α∗), (1, 0,α∗), (0, 1,α∗) always have the same positive response probabilities to

j. In summary,


θj, (0,0,α∗) = θj, (0,1,α∗) = θj, (1,0,α∗) = θj, (1,1,α∗) for j ∈ S0;

θj, (0,0,α∗) = θj, (0,1,α∗) = θj, (1,0,α∗) ≤ θj, (1,1,α∗) for j ∈ S1.

(A.4)

For any response vector r ∈ {0, 1}J such that rS1 := (rj : j ∈ S1) 6= 0, namely

rj = 1 for some item j requiring both of the first two attributes, we discuss the

following four cases.

(a) For any r such that (r1, r2) = (0, 0) and rS1 6= 0, from (A.4) and the definition

of the T -matrix, (C.22) is equivalent to

∑
α∗

{[ ∏
j>2: rj=1

θj, (0,0,α∗)

][
p(0,0,α∗) + p(0,1,α∗) + p(1,0,α∗)

]
+

[ ∏
j>2: rj=1

θj, (1,1,α∗)

]
p(1,1,α∗)

}
=
∑
α∗

{[ ∏
j>2: rj=1

θ̄j, (0,0,α∗)

][
p̄(0,0,α∗) + p̄(0,1,α∗) + p̄(1,0,α∗)

]
+
[ ∏
j>2: rj=1

θ̄j, (1,1,α∗)

]
p̄(1,1,α∗)

}
=
∑
α∗

{[ ∏
j>2: rj=1

θj, (0,0,α∗)

][
p̄(0,0,α∗) + p̄(0,1,α∗) + p̄(1,0,α∗)

]
+
[ ∏
j>2: rj=1

θj, (1,1,α∗)

]
p̄(1,1,α∗)

}
,
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where the last equality above follows from θj,α = θ̄j,α for any j > 2. To ensure

the above equations hold, it suffices to have the following equations satisfied for

any α∗ ∈ {0, 1}K−2


p(1,1,α∗) = p̄(1,1,α∗);

p(0,0,α∗) + p(1,0,α∗) + p(0,1,α∗) = p̄(0,0,α∗) + p̄(1,0,α∗) + p̄(0,1,α∗).

(A.5)

(b) For any r such that (r1, r2) = (1, 0) and rS1 6= 0, from (A.4) and the definition

of the T -matrix, (C.22) can be equivalently written as

∑
α∗

{[ ∏
j>2: rj=1

θj, (0,0,α∗)

][
g1(p(0,0,α∗) + p(0,1,α∗)) + (1− s1)p(1,0,α∗)

]
+
[ ∏
j>2: rj=1

θj, (1,1,α∗)

]
(1− s1)p(1,1,α∗)

}
=
∑
α∗

{[ ∏
j>2: rj=1

θj, (0,0,α∗)

][
ḡ1(p̄(0,0,α∗) + p̄(0,1,α∗)) + (1− s1)p̄(1,0,α∗)

]
+
[ ∏
j>2: rj=1

θj, (1,1,α∗)

]
(1− s1)p̄(1,1,α∗)

}
.

To ensure the above equation holds, it suffices to have the following equations

satisfied for any α∗ ∈ {0, 1}K−2


p(1,1,α∗) = p̄(1,1,α∗);

g1[p(0,0,α∗) + p(0,1,α∗)] + (1− s1)p(1,0,α∗) =

ḡ1[p̄(0,0,α∗) + p̄(0,1,α∗)] + (1− s1)p̄(1,0,α∗).

(A.6)

(c) For any r such that (r1, r2) = (0, 1) and rS1 6= 0, by symmetry to the previ-

ous case of (r1, r2) = (1, 0), when the following equations hold for any α∗ ∈
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{0, 1}K−2, equation (C.22) is guaranteed to hold


p(1,1,α∗) = p̄(1,1,α∗);

g2[p(0,0,α∗) + p(1,0,α∗)] + (1− s2)p(0,1,α∗) =

ḡ2[p̄(0,0,α∗) + p̄(1,0,α∗)] + (1− s2)p̄(0,1,α∗).

(A.7)

(d) For any r such that (r1, r2) = (1, 1) and rS1 6= 0, similarly to the previous cases,

equation (C.22) can be equivalently written as

∑
α∗

{[ ∏
j>2: rj=1

θj, (0,0,α∗)

][
g1g2p(0,0,α∗) + (1− s1)g2p(1,0,α∗) + g1(1− s2)p(0,1,α∗)

]
+
[ ∏
j>2: rj=1

θj, (1,1,α∗)

]
(1− s1)(1− s2)p(1,1,α∗)

}
=
∑
α∗

{[ ∏
j>2: rj=1

θj, (0,0,α∗)

][
ḡ1ḡ2p̄(0,0,α∗) + (1− s1)ḡ2p̄(1,0,α∗) + ḡ1(1− s2)p̄(0,1,α∗)

]
+
[ ∏
j>2: rj=1

θj, (1,1,α∗)

]
(1− s1)(1− s2)p̄(1,1,α∗)

}
.

To ensure the above equation hold, it suffices to have the following equations

hold for any α∗ ∈ {0, 1}K−2


p(1,1,α∗) = p̄(1,1,α∗);

g1g2p(0,0,α∗) + (1− s1)g2p(1,0,α∗) + g1(1− s2)p(0,1,α∗)

= ḡ1ḡ2p̄(0,0,α∗) + (1− s1)ḡ2p̄(1,0,α∗) + ḡ1(1− s2)p̄(0,1,α∗).

(A.8)

We further consider those response vectors with rS1 = 0. A similar argument

gives that, to ensure (C.22) holds for any r with rS1 = 0, it suffices to have equations

(A.5)–(A.8) hold. Together with the results in cases (a)–(d) discussed above, we

know that equations (A.5)–(A.8) are a set of sufficient conditions for (C.22) to hold

for any r ∈ {0, 1}J . Therefore, to show the necessity of Condition 2, we only need
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to construct (ḡ1, ḡ2, p̄) 6= (g1, g2,p) satisfying (A.5)–(A.8), which can be equivalently

written as, for any α∗ ∈ {0, 1}K−2, p(1,1,α∗) = p̄(1,1,α∗) and



p(0,0,α∗) + p(1,0,α∗) + p(0,1,α∗) = p̄(0,0,α∗) + p̄(1,0,α∗) + p̄(0,1,α∗);

g1[p(0,0,α∗) + p(0,1,α∗)] + (1− s1)p(1,0,α∗)

= ḡ1[p̄(0,0,α∗) + p̄(0,1,α∗)] + (1− s1)p̄(1,0,α∗);

g2[p(0,0,α∗) + p(1,0,α∗)] + (1− s2)p(0,1,α∗)

= ḡ2[p̄(0,0,α∗) + p̄(1,0,α∗)] + (1− s2)p̄(0,1,α∗);

g1g2p(0,0,α∗) + (1− s1)g2p(1,0,α∗) + g1(1− s2)p(0,1,α∗)

= ḡ1ḡ2p̄(0,0,α∗) + (1− s1)ḡ2p̄(1,0,α∗) + ḡ1(1− s2)p̄(0,1,α∗).

(A.9)

To construct (ḡ1, ḡ2, p̄) 6= (g1, g2,p), we focus on the family of parameters (θ+,θ−,p)

such that for any α∗ ∈ {0, 1}K−2,

p(0,1,α∗)

p(0,0,α∗)
= u and

p(1,0,α∗)

p(0,0,α∗)
= v,

where u and v are some positive constants. Next we choose p̄ such that for any

α∗ ∈ {0, 1}K−2

p(1,1,α∗) = p̄(1,1,α∗), p̄(0,0,α∗) = ρ̄ · p(0,0,α∗),
p̄(0,1,α∗)

p̄(0,0,α∗)
= ū, and

p̄(1,0,α∗)

p̄(0,0,α∗)
= v̄,

for some positive constants ρ̄, ū and v̄ to be determined. In particular, we choose ρ̄

169



close enough to 1 and then (A.9) is equivalent to



(1 + u+ v) = ρ̄(1 + ū+ v̄);

g1(1 + u) + (1− s1)v = ρ̄ [ ḡ1(1 + ū) + (1− s1)v̄ ];

g2(1 + v) + (1− s2)u = ρ̄ [ ḡ2(1 + v̄) + (1− s2)ū ];

g1g2 + g1(1− s2)u+ (1− s1)g2v = ρ̄ [ ḡ1ḡ2 + ḡ1(1− s2)ū+ (1− s1)ḡ2v̄ ].

(A.10)

For any g1, g2, s1, s2, u and v, the above system of equations contain 5 free parameters

ρ̄, ū, v̄, ḡ1 and ḡ2, while only have 4 constraints, so there are infinitely many sets of

solutions of (ρ̄, ū, v̄, ḡ1, ḡ2) to (A.10). This gives the non-identifiability of (g1, g2,p)

and hence justifies the necessity of Condition 2.

Proof of Sufficiency It suffices to show that if T (θ+,θ−)p = T (θ̄
+
, θ̄
−

)p̄, then

(θ+,θ−,p) = (θ̄
+
, θ̄
−
, p̄). Under Condition 1, Theorem 4 in Xu and Zhang (2016)

gives that s = s̄ and gj = ḡj for j ∈ {K + 1, . . . , J}. It remains to show gj = ḡj

for j ∈ {1, . . . , K}. To facilitate the proof, we introduce the following lemma, whose

proof is given in the Supplementary Material.

Lemma A.1. Suppose Condition 1 is satisfied. For an item set S, define ∨h∈S qh
to be the vector of the element-wise maximum of the q-vectors in the set S. For any

k ∈ {1, . . . , K}, if there exist two item sets, denoted by S−k and S+
k , which are not

necessarily nonempty or disjoint, such that

gh = ḡh for any h ∈ S−k ∪ S+
k , and ∨h∈S+

k
qh − ∨h∈S−k qh = e>k = (0, 1︸︷︷︸

column k

,0),

(A.11)

then gk = ḡk.

Suppose the Q-matrix takes the form of (2.1), then under Condition 2, any two

different columns of the (J −K)×K sub-matrix Q∗ as specified in (2.1) are distinct.
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Before proceeding with the proof, we first introduce the concept of the “lexicographic

order”. We denote the lexicographic order on {0, 1}J−K , the space of all (J − K)-

dimensional binary vectors, by “≺lex”. Specifically, for any A = (a1, . . . , aJ−K)>,

b = (b1, . . . , bJ−K)> ∈ {0, 1}J−K , we write A ≺lex b if either a1 < b1; or there exists

some i ∈ {2, . . . , J − K} such that ai < bi and aj = bj for all j < i. For instance,

the following four vectors A1,A2,A3,A4 in {0, 1}2 are sorted in an increasing lexico-

graphic order:

A1 =

0

0

 ≺lex A2 =

0

1

 ≺lex A3 =

1

0

 ≺lex A4 =

1

1

 .

It is not hard to see that if the K column vectors of the submatrix Q∗ are mutually

distinct, then there exists a unique way to sort them in an increasing lexicographic

order. Thus under Condition 2, there exists a unique permutation (k1, k2, . . . , kK)

of (1, 2, . . . , K) such that column k1 has the smallest lexicographic order among the

K columns of Q∗, column k2 has the second smallest lexicographic order, and so on,

i.e., Q∗·,k1 ≺lex Q∗·,k2 ≺lex . . . ≺lex Q∗·,kK . As an illustration, consider the leftmost

Q-matrix presented in Example 1, Equation (2.4):

Q =



I3

1 1 0

1 0 1

1 1 1

1 1 1


,

then the permutation is (k1, k2, k3) = (3, 2, 1), since the third column of Q∗ has the

smallest lexicographic order while the first column has the largest. Recall that we

denote A � b if ai > bi for all i, and denote A � b otherwise. Then by definition,
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if A ≺lex b, then A � b must hold. Therefore for any 1 ≤ i < j ≤ K, since

Q·,ki ≺lex Q·,kj , we must have Q·,ki � Q·,kj . This fact will be useful in the following

proof.

Equipped with the permutation (k1, . . . , kK), we first prove gk1 = ḡk1 . Define a

subset of items

S−k1 = {j > K : qj,k1 = 0},

which includes those items from {K + 1, . . . , J} that do not require attribute k1.

Since Q∗·,k1 is of the smallest lexicographic order among column vectors of Q∗, for any

k ∈ {1, . . . , K}\{k1}, we must have Q∗·,k � Q∗·,k1 . Thus, for any k ∈ {1, . . . , K}\{k1}

there must exist some item jk ∈ {K + 1, . . . , J} such that qjk,k = 1 > 0 = qjk,k1 ,

which indicates that the union of the attributes required by items in S−k1 include all

the attributes other than k1, i.e

∨h∈S−k1qh = (1, 0︸︷︷︸
column k1

,1).

We further define S+
k1

= {K + 1, . . . , J}. Since S−k1 and S+
k1

satisfy conditions (A.11)

in Lemma A.1 for attribute k1, we have gk1 = ḡk1 .

Next we use the induction method to prove that for l = 2, . . . , K, we also have

gkl = ḡkl . In particular, suppose for any 1 ≤ m ≤ l − 1, we already have gkm = ḡkm .

Note that each kl is an integer in {1, . . . , K} that can be viewed as either the index

of the klth attribute or the index of the klth item. Define a set of items

S−kl = {j > K : qj,kl = 0} ∪ {km : 1 ≤ m ≤ l − 1}, (A.12)

where the set {j > K : qj,kl = 0} contains those items, among the last J −K items,

which do not require attribute kl; while the set {km : 1 ≤ m ≤ l − 1} contains

those items for which we have already established the identifiability of the guessing
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parameter in steps m = 1, 2, . . . , l − 1 of the induction method, i.e., gkm = ḡkm for

m = 1, . . . , l − 1. Thus for any item j ∈ S−kl , we have gj = ḡj. Namely, S−kl includes

the items whose guessing parameters have already been identified prior to step l of

the induction method. Moreover, we claim

∨h∈S−kl qh = (1, 0︸︷︷︸
column kl

,1). (A.13)

This is because for any 1 ≤ m ≤ l−1, the item km, whose q-vector is e>km , is included

in the set S−kl and hence attribute km is required by the set S−kl ; on the other hand, for

any h ∈ {l+ 1, . . . , K}, the column vector Q∗·,kh is of greater lexicographic order than

Q∗·,kl and hence there must exist some item in S−kl that does not require attribute kl

but requires attribute kh. We further define S+
kl

= {K + 1, . . . , J}. The chosen S−kl

and S+
kl

satisfy the conditions (A.11) in Lemma A.1 and therefore gkl = ḡkl .

Now that all the slipping and guessing parameters have been identified, T (θ+,θ−)p =

T (θ̄
+
, θ̄
−

)p̄ = T (θ+,θ−)p̄. Then the fact that T (θ+,θ−) has full column rank, which

is shown in the Proof of Theorem 1 in Xu and Zhang (2016), implies p = p̄. This

completes the proof.

A.2 Derivation of Equation (2.6) in Example II.2

In Example 2, we claimed that, given the Q-matrix in the following form where

there are J0 items with q-vectors being (0, 0) and J − 2 − J0 items with q-vectors

being (1, 1),
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Q =



I2

0 0

...
...

0 0

1 1

...
...

1 1


J×2

,

to construct (θ̄
+
, θ̄
−
, p̄) 6= (θ+,θ−,p) satisfying Equation (5.9) where s̄ = s, ḡj = gj

for all j = 3, . . . , J , and p̄(1,1) = p(1,1), it suffices to ensure the Equations (2.6) hold.

Now we prove this argument. Following the proof of the necessity of Conditions

C1 and C2 in the Appendix, we can obtain the following equations in (A.14) from

Equations (A.9) in the main text by replacing (α1, α2,α
∗) in (A.9) with (α1, α2) here,

since in this case there are only two attributes. And similarly we have the conclusion

that Equation (5.9) holds as long as Equations (A.14) hold,



p(0,0) + p(1,0) + p(0,1) = p̄(0,0) + p̄(1,0) + p̄(0,1);

g1[p(0,0) + p(0,1)] + (1− s1)p(1,0) = ḡ1[p̄(0,0) + p̄(0,1)] + (1− s1)p̄(1,0);

g2[p(0,0) + p(1,0)] + (1− s2)p(0,1) = ḡ2[p̄(0,0) + p̄(1,0)] + (1− s2)p̄(0,1);

g1g2p(0,0) + (1− s1)g2p(1,0) + g1(1− s2)p(0,1)

= ḡ1ḡ2p̄(0,0) + (1− s1)ḡ2p̄(1,0) + ḡ1(1− s2)p̄(0,1).

(A.14)

Adding p(1,1) to both hand sides of the first equation in (A.14), adding (1− s1)p(1,1)

to the second equation, adding (1 − s2)p(1,1) to the third equation and adding (1 −

s1)(1− s2)p(1,1) to the last equation, we exactly obtain (2.6) in Example 2.

174



A.3 Proof of Corollary V.1

When the identifiability conditions are satisfied, the maximum likelihood estima-

tors of θ̄
+
, θ̄
−

, and p̂ are consistent as the sample size N → ∞. Specifically, we

introduce a 2J -dimensional empirical response vector

γ =

{
1, N−1

N∑
i=1

I(ri � e1), · · · , N−1

N∑
i=1

I(ri � eJ),

N−1

N∑
i=1

I(ri � e1 + e2), · · · , N−1

N∑
i=1

I(ri � 1)

}>
,

where elements of γ are indexed by response vectors arranged in the same order as

the rows of the T -matrix. From the definition of the T -matrix and the law of large

numbers, we know γ → T (θ+,θ−)p almost surely as N → ∞. On the other hand,

the maximum likelihood estimators θ̄
+
, θ̄
−

, and p̂ satisfy ‖γ − T (θ̄
+
, θ̄
−

)p̂‖ → 0,

where ‖ · ‖ is the L2 norm. Therefore,

‖T (θ+,θ−)p− T (θ̄
+
, θ̄
−

)p̂‖ → 0

almost surely. Then from the proof of Theorem II.1, we can obtain the consistency

result that (θ̂
+
, θ̂
−
, p̂)→ (θ+,θ−,p) almost surely as N →∞.

A.4 Proof of Proposition A.2

Consider a Q-matrix of size J ×K in the form

Q =

Q′
0

 , (A.15)

where Q′ is of size J ′×K and contains those nonzero q-vectors of Q. Recall from the

model setup in Section 2 of the main text, for any item j ∈ {J ′+ 1, . . . , J} which has
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qj = 0, the guessing parameter is not needed by the DINA model and for notational

convenience, we set gj ≡ ḡj ≡ 0, so the slipping parameter sj is the only unknown

item parameter associated with such j. Taking the response pattern r = ej for any

item j ∈ {J ′ + 1, . . . , J} in Equation (C.22) gives

Tej ,·(θ+,θ−)p = (1− sj)
∑

α∈{0,1}K
pα = (1− s̄j)

∑
α∈{0,1}K

p̄α = Tej ,·(θ̄+
, θ̄
−

)p̄,

then since
∑
α∈{0,1}K pα =

∑
α∈{0,1}K p̄α = 1, we have sj = s̄j for any j ∈ {J ′ +

1, . . . , J}.

Now denote s′ = (s1, . . . , sJ ′), g
′ = (g1, . . . , gJ ′) and similarly denote s̄′, ḡ′. De-

note the 2J
′ × 2K T -matrix associated with matrix Q′ by T ′(s′, g′). For any re-

sponse pattern r = (r1, . . . , rJ ′ , rJ ′+1, . . . , rJ) ∈ {0, 1}J , denote r′ = (r1, . . . , rJ ′) and

(r′,0) = (r1, . . . , rJ ′ , 0, . . . , 0) of length J ; then we have

Tr,·(θ+,θ−)p =
{
T(r′,0),·(θ+,θ−)p

} ∏
j>J ′

(1− sj)rj =
{
T ′r′,·(θ+′, g′)p

} ∏
j>J ′

(1− sj)rj ,

Tr,·(θ̄+, ḡ)p̄ =
{
T(r′,0),·(θ̄+

, θ̄
−

)p̄
} ∏
j>J ′

(1− sj)rj =
{
T ′r′,·(θ̄+′, ḡ′)p

} ∏
j>J ′

(1− sj)rj .

Using the above equalities, by Proposition A.1, we have the following equivalent

arguments,

(θ+,θ−,p) associated with Q are identifiable,

⇐⇒ ∀(θ̄+
, θ̄
−
, p̄) 6= (θ+,θ−,p), ∃r ∈ {0, 1}J such that Tr,·(θ+,θ−)p 6= Tr,·(θ̄+

, θ̄
−

)p̄,

⇐⇒ ∀(θ̄+
, θ̄
−
, p̄) 6= (θ+,θ−,p), ∃r′ ∈ {0, 1}J ′ such that T ′r′,·(θ+′, g′)p 6= T ′r′,·(θ̄+′, ḡ′)p̄,

⇐⇒ (θ+′, g′,p) associated with Q′ are identifiable.

Therefore we have shown identifiability of DINA associated with Q in the form of

(A.15) is equivalent to that of DINA associated with submatrix Q′ in (A.15) and the

proof of the proposition is complete.
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A.5 Proof of Lemma A.1

To facilitate the proof of the lemma, we introduce the following proposition, which

is from Proposition 3 in Xu and Zhang (2016). We first generalize the definition of

the T -matrix. For any x = (x1, . . . , xJ)> ∈ RJ and y = (y1, . . . , yJ)> ∈ RJ , we still

define the T -matrix T (x,y) to be a 2J × 2K matrix, where the entries are indexed

by row index r ∈ {0, 1}J and column index α. For any row indexed by ej with

j = 1, . . . , J , we let tej ,α(x,y) = (1 − xj)ξj,αy1−ξj,α
j ; for any r 6= 0, let the rth row

vector of T (x,y) be Tr,·(x,y) =
⊙

j:rj=1 Tej ,·(x,y).

Proposition A.3. If T (θ+,θ−)p = T (θ̄
+
, θ̄
−

)p̄, then for any θ ∈ RJ , T (θ+−θ,θ−−

θ)p = T (θ̄
+ − θ, θ̄− − θ)p̄.

Let G be the set of items whose guessing parameters have been identified in the

sense that gj = ḡj, for any j ∈ G. Let Gc := {1, . . . , J}\G be the complement of G.

Note that {K + 1, . . . , J} ∪ S−k ∪ S+
k ⊆ G. Define

θ =
∑
j∈Gc

(1− sj)ej +
∑
j∈G

gjej. (A.16)

Denote T := T (θ+ = 1, g = 0) and denote the (r,α)-entry of T by tr,α, then by

definition,

tr,α =
∏
j: rj=1

1I(α�qj)01−I(α�qj) = I(α � qj ∀j s.t. rj = 1), (A.17)

where I(·) denotes the indicator function. Proposition B.2 implies that Tr,·(θ+ +

θ, g − θ) = Tr,·(θ+ + θ, θ̄
− − θ)p̄ for θ defined in (A.16). We use θj,α to denote the

positive response probability of attribute profile α to item j, i.e., θj,α = 1− sj for α

such that α � qj, and θj,α = gj for α such that α � qj. For any response pattern r
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such that rj = 0 for all j ∈ Gc,

Tr,·(θ+ − θ,θ− − θ)p =
∑

α∈{0,1}K
pα
∏
j∈G

[θj,α − gj]rj
∏
j∈Gc

[θj,α − (1− sj)]rj

=
∑

α∈{0,1}K
pα
∏
j∈G

(θj,α − gj)rj ,
(A.18)

where in the above summation over α ∈ {0, 1}K , one can see that the product term∏
j∈G(θj,α − gj)rj is nonzero only for those α such that θj,α = 1 − sj > gj for all j

where rj = 1; and when the product term is nonzero, it equals
∏

j∈G(1 − sj − gj)rj .

Further examining those α that make the product term nonzero in (A.18), one can

find it is exactly those α such that tr,α = 1 according to (E.3). Noting that tr,α can

either be 1 or 0, (A.18) can be further written as

Tr,·(θ+ − θ,θ− − θ)p =
∑

α: tr,α=1

pα
∏
j∈G

(1− sj − gj)rj

=
∑

α∈{0,1}K
tr,αpα

∏
j∈G

(1− sj − gj)rj .
(A.19)

Following the same argument, we also have

Tr,·(s+ θ, ḡ − θ)p̄ =
∑

α∈{0,1}K
tr,αp̄α

∏
j∈G

(1− sj − gj)rj ,

then Proposition B.2 implies

∑
α∈{0,1}K

tr,αpα =
∑

α∈{0,1}K
tr,αp̄α, for any r such that rj = 0 for all j ∈ Gc. (A.20)

We then define a response vector r∗ = (r∗1, . . . , r
∗
J)> to be r∗ =

∑
j∈G(1−qj,k)ej, that

is, r∗ has correct responses to and only to those items among the set G that do not

require the kth attribute. Let Sr∗ denote the set of items that r∗ has correct responses

to, i.e., Sr∗ = {j : r∗j = 1}. Since S−k ⊆ G and qj,k = 0 for any j ∈ S−k , we know Sr∗ is
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nonempty. Now consider the row vector in the transformed T -matrix T (s+ θ, g− θ)

corresponding to response vector r∗+ek, then we have that Tr∗+ek,α(s+θ, g−θ) 6= 0

if and only if

α � qj for any item j ∈ Sr∗ , and αk = 0.

In other words, Tr∗+ek,α(s + θ, g − θ) 6= 0 if and only if α satisfies tr∗,α = 1 and

tr∗+ek,α = 0. This implies that

Tr∗+ek,·(θ+ − θ,θ− − θ)p

= (gk + sk − 1)
∏
j∈Sr∗

(1− sj − gj)
∑

α∈{0,1}K
(tr∗,α − tr∗+ek,α)pα

(A.21)

and

Tr∗+ek,·(Q,θ+ − θ, θ̄− − θ) · p̄

= (ḡk + sk − 1)
∏
j∈Sr∗

(1− sj − gj)
∑

α∈{0,1}K
(tr∗,α − tr∗+ek,α)p̄α.

(A.22)

Note that (A.21) = (A.22) by Proposition 2.

We next show that the summation terms in (A.21) and (A.22) satisfy

∑
α∈{0,1}K

(tr∗,α − tr∗+ek,α)pα =
∑

α∈{0,1}K
(tr∗,α − tr∗+ek,α)p̄α 6= 0. (A.23)

Note r∗ satisfies the condition in (D.1) that r∗j = 0 for all j ∈ Gc. Therefore,

∑
α∈{0,1}K

tr∗,αpα =
∑

α∈{0,1}K
tr∗,αp̄α. (A.24)

We further consider the response vector r∗ + ek. Under the conditions of Lemma 1,

there exists some item h ∈ G such that

qh,k = 1 and {l : qh,l = 1, l 6= k} ⊆
⋃
j∈Sr∗

{l : qj,l = 1}.
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That is, the item h requires the kth attribute and h’s any other required attribute

is also required by some item in the set Sr∗ . Therefore we have Tr∗+ek,· = Tr∗∨r#,·,
where r# :=

∑
h∈S+

j \S
−
j
eh; in addition, since the response vector r∗ ∨ r# satisfies the

condition in (D.1) that its jth element (r∗ ∨ r#)j = 0 for any j ∈ Gc, we have

∑
α∈{0,1}K

tr∗+ek,α · pα =
∑

α∈{0,1}K
tr∗∨r#,α · pα

=
∑

α∈{0,1}K
tr∗∨r#,α · p̄α =

∑
α∈{0,1}K

tr∗+ek,α · p̄α.
(A.25)

The first equation in (A.23) then follows from (A.24) and (A.25). The inequality in

(A.23) also holds since tr∗,α ≥ tr∗+ek,α for any α and tr∗,α > tr∗+ek,α for those α

with αk = 0 and α � qj for any item j ∈ Sr∗ .

With the results in (A.23), we have gk = ḡk from the equality of (A.21) and (A.22).

This completes the proof.
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APPENDIX B

Appendix of Chapter III

This is the appendix to Chapter III and it is organized as follows. Appendix B.1

presents the details of establishing model identifiability under Q-matrices associated

with real data. Appendices B.2 and B.3 provide the proofs of the main theoretical

results for the two-parameter and multi-parameter restricted latent class models in

Sections 3.2 and 3.3 of the main text, respectively. Appendix B.4 gives the proofs of

the results in Section 3.4 in the main text. Appendix B.5 gives the proofs of some

technical lemmas.

B.1 Identifiability under Q-matrices associated with real data

B.1.1 TIMSS Data Q-matrix and its identifiability.

Table 1.2 presents the full 43 × 12 Q-matrix Q43×12 for the TIMSS data, which

is introduced in Example I.6 of the main text. The Q-matrix was constructed by

mathematics educators and researchers and its form was specified in Choi et al. (2015).

Please refer to Choi et al. (2015) for more details about the test items and fine-

grained attributes. We next show how our theoretical results guarantee p-partial

identifiability of two-parameter models and generic identifiability of multi-parameter

181



models under this Q43×12.

p-partial identifiability. We show that the Q43×12 satisfies conditions (C1∗) and

(C2∗). The Q43×12 in Table 1.2 contains 9 basis items Sbasis = {4, 8, 15, 16, 19, 24, 30,

34, 38} and the remaining 34 non-basis items. We can check that each basis item is

Snon-differentiable and conditions (C1∗) and (C2∗) hold. Thus Corollary III.1 implies

p-partial identifiability of the two-parameter restricted latent class models, and also

guarantees estimability of (θ+,θ−,ν).

Generic identifiability. We show that the Q43×12 satisfies conditions (C5) and

(C6). In particular, let S1 = {1, 3, 4, 5, 7, 8, 12, 13, 15, 17, 19, 38} and S2 = {2, 11,

16, 20, 22, 23, 24, 26, 30, 31, 33, 34}, then items in each of S1 and S2 can be arranged

in a way such that the sub-Q-matrices Q1 and Q2 take the form of (5.5), which

implies condition (C5). In addition, each attribute is required by at least one item

in (S1 ∪ S2)c and thus condition (C6) is also satisfied. Theorem III.7 then gives the

generic identifiability of any multi-parameter model associated with this Q-matrix.

B.1.2 Identifiability with the Fraction Subtraction Data Q-matrix.

We next show how our theoretical results guarantee p-partial identifiability of

two-parameter models and generic identifiability of multi-parameter models under

the Q20×8 associated with the Fraction Subtraction Data.

p-partial identifiability. We apply Theorem III.2 since attribute k = 6 is only

required by two items {1, 18} and condition (C1∗) is violated. Specifically, we trans-

form the original Q-matrix to the form of (3.15) with v1 = (0, 0, 0, 1, 0, 1, 0),

v2 = (0, 1, 0, 0, 1, 1, 0) and submatrix Q′ as specified in (1.3), by first exchang-

ing the second and the eighteenth rows and then exchanging the first and the sixth

columns. The transformed Q-matrix falls into the case (a) of (B.1) in Theorem III.2,
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and it suffices to show that the Q′-matrix in (1.3) satisfy condition (C1∗) and (C2∗).

We can check that (C1∗) holds for Q′ that attributes required by each q-vector in

Q′ are repeatedly measured by at least two disjoint sets of other items. In addition,

(C2∗) is satisfied because Q′ only has one basis item Sbasis(Q
′) = {9} and the item

j = 9 is Snon-differentiable.

Q′ =

α1 α2 α3 α4 α5 α7 α8



2 0 0 0 1 0 1 0

3 0 0 0 1 0 1 0

4 0 1 1 0 1 1 0

5 0 1 0 1 0 1 1

6 0 0 0 0 0 1 0

7 1 1 0 0 0 1 0

8 0 0 0 0 0 1 0

9 0 1 0 0 0 0 0

10 0 1 0 0 1 1 1

11 0 1 0 0 1 1 0

12 0 0 0 0 0 1 1

13 0 1 0 1 1 1 0

14 0 1 0 0 0 1 0

15 1 0 0 0 0 1 0

16 0 1 0 0 0 1 0

17 0 1 0 0 1 1 0

19 1 1 1 0 1 1 0

20 0 1 1 0 1 1 0

� q3, q5

� q2, q5

� q9, q20

� q3 ∨ q4 ∨ q10, q12 ∨ q13

� q2, q8;

� q14 ∨ q15, q19

� q2, q6

� q4, q5;

� q4 ∨ q5, q7 ∨ q12 ∨ q13

� q4 ∨ q5, q7 ∨ q12 ∨ q13

� q4 ∨ q5, q7 ∨ q12 ∨ q13

� q4 ∨ q5, q13

� q4, q5

� q14 ∨ q15, q19

� q4, q5

� q13, q18

� q4 ∨ q7, q15 ∨ q19

� q4 ∨ q5, q13

(B.1)

Theorem III.2 therefore gives the p-partial identifiability of the two-parameter models.
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Generic identifiability. We apply Theorem III.8 since attribute 6 is required by

only two items, item 6 and item 18. Rearranging the columns and rows of this Q-

matrix to the form of (3.17) with v1 = (0, 0, 0, 1, 0, 1, 0) and v2 = (0, 1, 0, 0, 1, 1, 0),

we have v1∨v2 6= 1K−1 and the sub-matrix Q′ part satisfies conditions (C5) and (C6),

so Theorem III.8 gives the generic identifiability of multi-parameter Q-restricted la-

tent class models.

B.2 Proof of Main Results in Section 3.2

In this section we first introduce some technical quantities and their properties

which will be useful in later proofs, then present the proofs of the main results in

Section 3.2 for two-parameter restricted latent class models.

To facilitate the study of parameter identifiability of restricted latent class models,

we consider a marginal probability matrix T (Θ) of size 2J × m as follows, where

J = |S| denotes the number of items andm = |A| denotes the number of classes. Rows

of T (Θ) are indexed by the 2J possible response patterns r = (r1, . . . , rJ)> ∈ {0, 1}J

and columns of T (Θ) are indexed by latent classes α ∈ A, while the (r,α)th entry

of T (Θ), denoted by Tr,α(Θ), represents the marginal probability that subjects in

latent class α provide positive responses to the set of items {j : rj = 1}, namely

Tr,α(Θ) = P (R � r | Θ,α) =
J∏
j=1

θ
rj
j,α.

Denote the αth column vector and the rth row vector of the T -matrix by T·,α(Θ)

and Tr,·(Θ) respectively. Let ej denote the J-dimensional unit vector with the jth

element being one and all the other elements being zero, then any response pattern r

can be written as a sum of some e-vectors, namely r =
∑

j:rj=1 ej. The rth element
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of the 2J -dimensional vector T (Θ)p is

{T (Θ)p}r = Tr,·(Θ)p =
∑
α∈A

Tr,α(Θ)pα = P (R � r | Θ).

Based on the T -matrix, we have the following definition of identifiability for model

parameters (Θ,p), equivalent to definition (5.9) in Section 2.3 of the main text. The

equivalence of the two definitions comes from that two sets of model parameters lead

to the same marginal distribution of responses {P (R � r | Θ),∀r ∈ {0, 1}J} if and

only if they lead to the same distribution of the responses {P (R = r | Θ),∀r ∈

{0, 1}J}.

Proposition B.1. Under a restricted latent class model, the model parameters are

identifiable if and only if for any (Θ, p) and (Θ̄, p̄),

T (Θ)p = T (Θ̄)p̄ (B.2)

implies (Θ,p) = (Θ̄, p̄).

Together with this equivalent definition, the following proposition, which was

introduced in Xu (2017), describes an important algebraic property of the T -matrix

and will be used in our proofs.

Proposition B.2. For any θ∗ = (θ1, . . . , θJ)> ∈ RJ , there exists an invertible lower

triangular matrix D(θ∗) depending solely on θ∗, such that the diagonal elements of

D(θ∗) are all 1, and

T (Θ− θ∗1>) = D(θ∗)T (Θ).

Another useful property of the T -matrix is given by the following lemma, whose proof

is given in Section B.4.

Lemma B.1. Denote the T -matrix corresponding to a subset of items S by T (ΘS),

where ΘS = (θj,α, j ∈ S, α ∈ A). If for an item set S, the Γ-matrix ΓS of size
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|S| ×m is separable, then the corresponding T -matrix T (ΘS) of size 2|S|×m has full

column rank m.

Equipped with the above developments, now we are ready to prove the main

results.

Proof of Proposition III.1 and Proposition III.2. When Θ is known, by Proposition

(B.1), we only need to show that if T (Θ)p = T (Θ)p̄, then p = p̄. This directly

follows from the result in Lemma B.1 that when Γ is separable, the T -matrix T (Θ)

has full column rank m.

We next prove the necessity part of Proposition III.1 that the separability of the

Γ-matrix is necessary for identifiability of p. Suppose Γ is inseparable and consider

the representatives αA1 , . . . ,αAC from the C equivalence classes, respectively. It

suffices to show that for any p 6= p̄, if ν = ν̄, where ν̄ = (ν̄[αAi ]
, i = 1, . . . , C)

and ν̄[αAi ]
=
∑
α:α∈Ai p̄α, then T (Θ)p = T (Θ)p̄. Note that under the two-parameter

restricted latent class models, any two equivalence latent classes α
Γ∼ α′ have identical

item parameter vectors, i.e. θ·,α = θ·,α′ . This further implies T·,α(Θ) = T·,α′(Θ)

by the definition of the T -matrix. Let Γeq be the J ×C submatrix of Γ that consists

of the column vectors indexed by αAi , i = 1, . . . , C, and T eq(Θ) be the corresponding

2J × C submatrix of T (Θ). Then if ν = ν̄,

T (Θ)p̄ =
C∑
i=1

∑
α∈Ai

T·,α(Θ)p̄α =
C∑
i=1

T·,αAi (Θ)ν̄Ai

= T eq(Θ)ν̄ = T eq(Θ)ν

=
C∑
i=1

T·,αAi (Θ)νAi =
C∑
i=1

∑
α∈Ai

T·,α(Θ)pα = T (Θ)p,

This proves that given an inseparable Γ-matrix, p is not identifiable.

Lastly, we prove Proposition III.2 that when the Γ-matrix is inseparable, the

grouped proportion parameters ν is identifiable. By Proposition B.1, we only need
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to show that if T (Θ)p = T (Θ)p̄, then ν = ν̄. From the calculation in the previous

paragraph, we know T (Θ)p = T eq(Θ)ν and T (Θ)p̄ = T eq(Θ)ν̄. Since Γeq is separable

by its construction, Lemma B.1 gives that T eq(Θ) has full column rank C. Therefore,

T (Θ)p = T (Θ)p̄ implies ν = ν̄ and ν is identifiable. This completes the proof.

Proof of Equation (3.9) in Remark III.1. We introduce a notation first. For any set

of items S ⊂ {1, . . . , J}, we denote qS = ∨h∈S qh. To prove the first part of (3.9), it

suffices to show that under the conjunctive DINA model, (i) for any α1,α2 ∈ RQ,conj

and α1 6= α2, we have Γ·,α1 6= Γ·,α2 ; and (ii) for any α ∈ {0, 1}K , there exists

α′ ∈ RQ,conj such that Γ·,α = Γ·,α′ .
For any α1,α2 ∈ RQ,conj, without loss of generality, we can denote α1 = ∨h∈S1qh

and α2 = ∨h∈S2qh where S1, S2 ⊂ {1, . . . , J} are two different sets of items. Then by

definition, in the vector Γ·,α1 , the entry Γj,α1 = 1 if and only if j ∈ S1; and similarly

in the vector Γ·,α2 , the entry Γj,α2 = 1 if and only if j ∈ S2. Since S1 6= S2, we must

have the two vectors different, i.e., Γ·,α1 6= Γ·,α2 . This proves (i). Next, for any α ∈

{0, 1}K , we collect the items that α is capable of in the set Sα = {j ∈ S : α � qj},

and just define α′ = qSα . then clearly α′ ∈ RQ,conj. Additionally, the set of items

that α′ is capable of is also Sα, so Γ·,α = Γ·,α′ . This proves (ii). So the first part of

(3.9) holds.

To prove the second part of (9), it suffices to show that under the disjunctive

DINO model, (iii) for any α1,α2 ∈ RQ,comp and α1 6= α2, we have Γdisj·,α1
6= Γdisj·,α2

;

and (iv) for any α ∈ {0, 1}K , there exists α′ ∈ RQ,disj such that Γdisj·,α = Γdisj·,α′ .
First, for α1,α2 ∈ RQ,disj and α1 6= α2, they can be written as α1 = 1>K − qS1

and

α2 = 1>K − qS2
where S1, S2 are two different item sets. Then

Γdisjj,α1
= I(α1 ⊀ qj) = I(1>K − qS1

⊀ qj) (B.3)

= I(∃k s.t. qj,k = 1, qS1,k = 0) = I(j 6∈ S1),
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and similarly Γdisjj,α2
= I(j 6∈ S2). Since S1 6= S2, we have the inequalities of the two

column vectors Γdisj·,α1
6= Γdisj·,α2

. This proves (iii). Next, for any α ∈ {0, 1}K , we define

S?α = {j ∈ S : α ≺ qj}, which is the set of items α is not capable of under the

disjunctive model. Define

α′ = 1>K − qS?α ,

then clearly α′ ∈ RQ,disj. Further, similar to the derivation in (B.3), we have

Γdisjj,α′ = I(j 6∈ S?α),

which implies the set of items α′ is not capable of is also S?α. This means Γdisj·,α = Γdisj·,α′
and proves (iv).

In the following proofs of the results for two-parameter restricted latent class

models, for any latent class α, we use [α] to denote the Γ-induced equivalence class

containing α. Then by definition, with j ranging in the set of all items and [α]

ranging in the set of all equivalence classes, (θj,[α]) give all the item parameters of

interest while (ν[α]) give all the grouped proportion parameters of interest, under the

framework of p-partial identifiability. In the following, when there is no ambiguity,

we write the item parameters as Θ = (θj,[α]); and write T eq(Θ̄)ν̄ = T eq(Θ)ν as

T (Θ̄)ν̄ = T (Θ)ν, for Θ = (θj,[α]), ν = (ν[α]), and Θ̄ = (θ̄j,[α]), ν̄ = (ν̄[α]).

Proof of Theorem III.1. To show the p-partial identifiability, Proposition B.1 implies

that we only need to show for any (Θ, ν) and (Θ̄, ν̄), T (Θ)ν = T (Θ̄)ν̄ implies

(Θ,ν) = (Θ̄, ν̄). We prove this in two steps: in Step 1, we show the Repeated

Measurement Condition (C1) ensures identifiability of (θ+,θ−non); in Step 2, we show

the Sequentially Differentiable Condition (C2) additionally ensures identifiability of

the remaining parameters (θ−basis,ν), where θ−basis = (θ−j , j ∈ Sbasis). In both steps,

we frequently use the following lemma, whose proof is postponed to Section B.4.
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Lemma B.2. Under the two-parameter restricted latent class models, Equation (C.1)

implies that θ+
j 6= θ̄−j and θ−j 6= θ̄+

j for any item j.

Step 1. To show identifiability of (θ+,θ−non) under (C1), we start with two identi-

fiability results in the following two cases (a) and (b).

(a) If for item j, there exist two disjoint sets of items S1 and S2, both not containing

j, such that

Cj ⊇ CS1 , Cj ⊇ CS2 , (B.4)

then we have the identifiability of θ+
j , as proved in the following.

Define

θ∗ =
∑
h∈S1

θ−h eh +
∑
m∈S2

θ̄−mem;

then consider the two row vectors corresponding to response pattern r∗ =∑
h∈S1∪S2

eh in the transformed T -matrices T (Θ − θ∗1>) and T (Θ̄ − θ∗1>),

respectively, and we have the following expressions:

Tr∗,[α](Θ− θ∗1>) = Tr∗,[α](θ
+ − θ∗,θ− − θ∗)

=


∏

h∈S1
(θ+
h − θ−h )

∏
m∈S2

(θ+
m − θ̄−m), for [α] ∈ CS1 ∩ CS2 ;

0, otherwise.

Tr∗,[α](Θ̄− θ∗1>) = Tr∗,[α](θ̄
+ − θ∗, θ̄− − θ∗)

=


∏

h∈S1
(θ̄+
h − θ−h )

∏
m∈S2

(θ̄+
m − θ̄−m), for [α] ∈ CS1 ∩ CS2 ;

0, otherwise.

(B.5)
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Since θ+
h 6= θ̄−h and θ̄+

h 6= θ−h for all h by Lemma B.2, we have

Tr∗,·(θ+ − θ,θ− − θ)ν

=
( ∑

[α]∈CS1∩CS2

ν[α]

) ∏
h∈S1

(θ̄+
h − θ−h )

∏
m∈S2

(θ̄+
m − θ̄−m) 6= 0,

and similarly Tr∗,·(θ̄+−θ, θ̄−−θ)ν̄ 6= 0. Therefore, CS1 ⊆ Cj, CS2 ⊆ Cj together

with Equation (C.1) indicates

θ+
j =

Tr∗+ej ,·(θ+ − θ,θ− − θ)ν

Tr∗,·(θ+ − θ,θ− − θ)ν

=
Tr∗+ej ,·(θ̄+ − θ, θ̄− − θ)ν̄

Tr∗,·(θ̄+ − θ, θ̄− − θ)ν̄
= θ̄+

j . (B.6)

(b) If for item j, there exist another item h and an item set S2 not containing j or

h, such that

Ch ⊇ Cj ⊇ CS2 , (B.7)

then we have the identifiability of θ−j , as proved in the following.

From the proof of (a) we can obtain the identifiability of θ+
h , i.e., θ+

h = θ̄+
h .

Define θ∗ = θ+
h eh. Consider the two row vectors corresponding to response

pattern r∗ = eh in the transformed T -matrices T (Θ−θ∗1>) and T (Θ̄−θ∗1>),

respectively, and we have

Teh,[α](θ
+ − θ∗,θ− − θ∗) =


θ−h − θ+

h , for [α] ∈ Cch;

0, otherwise.

Teh,[α](θ̄
+ − θ∗, θ̄− − θ∗) =


θ̄−h − θ+

h , for [α] ∈ Cch;

0, otherwise.

(B.8)

190



Moreover, we have

Teh,·(θ+ − θ∗,θ− − θ∗)ν = Teh,·(θ̄+ − θ∗, θ̄− − θ∗)ν̄ 6= 0.

Since Cch ⊆ Ccj , Equation (C.1) indicates

θ−j =
Teh+ej ,·(θ+ − θ,θ− − θ)ν

Teh,·(θ+ − θ,θ− − θ)ν

=
Teh+ej ,·(θ̄+ − θ, θ̄− − θ)ν̄

Teh,·(θ̄+ − θ, θ̄− − θ)ν̄
= θ̄−j . (B.9)

With the above results in cases (a) and (b), we show that (C1) ensures the identifi-

ability of (θ+,θ−non). Specifically, if condition (C1) is satisfied, then for each item j,

there exist two item sets S1 and S2 satisfying (B.4). Thus the result for case (a) im-

plies that the items parameters θ+ are identifiable. Moreover, for any non-basis item

j, by definition there must exist an item h such that Ch ⊇ Cj; condition (C1) further

guarantees that there exists another set S2 not containing j such that {h} ∩ S2 = ∅

and Cj ⊇ CS2 . Therefore, (B.7) is satisfied and the result for case (b) implies that θ−j

is identifiable for all j ∈ Snon.

Step 2. This step proves that when (C2) additionally holds, the parameter θ−j of

each basis item j is identifiable. Following the definition of the sequentially expanding

procedure in (C2), we first prove that in each expanding step, θ−j = θ̄−j for all j ∈ Ssep,

namely, every item j included into the separator set through the expanding procedure

has its lower level parameter θ−j identifiable. To show this, it suffices to prove the

result that if an item j is set S-differentiable and θ−h = θ̄−h , θ+
h = θ̄+

h for any h ∈ S,

then θ−j = θ̄−j .

If j is S-differentiable, by definition there exist two item sets S+
j , S−j ⊆ S that
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are not necessarily disjoint such that CS−j \CS+
j
⊆ Ccj . Define

θ∗ =
∑

h∈S+
j ∪S

−
j

θ−h eh,

and define response patterns

r+ =
∑
h∈S+

j

eh, r− =
∑
h∈S−j

eh.

Note that the nonzero entries of the row vectors Tr+,·(θ+−θ∗,θ−−θ∗) and Tr−,·(θ+−

θ∗,θ−−θ∗) correspond to the capable classes of S+
j and S−j , respectively. Specifically,

Tr+,[α](θ
+ − θ∗,θ− − θ∗) =


∏

j∈S+
j

(θ+
j − θ−j ), [α] ∈ CS+

j
;

0, [α] /∈ CS+
j
.

Tr−,[α](θ
+ − θ∗,θ− − θ∗) =


∏

j∈S−j
(θ+
j − θ−j ), [α] ∈ CS−j ;

0, [α] /∈ CS−j .

We define a linear transformation of the above vectors Tr+,·(θ+ − θ∗,θ− − θ∗) and

Tr−,·(θ+ − θ∗,θ− − θ∗) as

T(r−+k·r+),·(θ+−θ∗,θ−−θ∗) := Tr−,·(θ+−θ∗,θ−−θ∗) + k ·Tr+,·(θ+−θ∗,θ−−θ∗)

where

k = −
∏

j∈S−j
(θ+
j − θ−j )∏

j∈S+
j

(θ+
j − θ−j )

6= 0.
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Since the capable classes of S+
j must also be capable classes of S−j , we have

T(r−+k·r+),[α](θ
+ − θ∗,θ− − θ∗) =


∏

j∈S−j
(θ+
j − θ−j ), [α] ∈ CS−j \ CS+

j
;

0, otherwise.

Under the assumption that θ−h = θ̄−h , θ+
h = θ̄+

h for any h ∈ S, we also have

T(r−+k·r+),[α](θ̄
+ − θ∗, θ̄− − θ∗) =


∏

j∈S−j
(θ+
j − θ−j ), [α] ∈ CS−j \ CS+

j
;

0, otherwise.

Note that the condition CS−j \CS+
j
⊆ Ccj implies for any [α] ∈ CS−j \CS+

j
, one must have

[α] ∈ Ccj . Since

T(r−+k·r+),·(θ+ − θ∗,θ− − θ∗)ν = T(r−+k·r+),·(θ̄+ − θ∗, θ̄− − θ∗)ν̄ 6= 0,

Since j /∈ (S−j ∪ S+
j ), Equation (C.1) implies

θ−j =
{Tej ,·(θ+ − θ∗,θ− − θ∗)� T(r−+k·r+),·(θ+ − θ∗,θ− − θ∗)}ν

T(r−+k·r+),·(θ+ − θ∗,θ− − θ∗)ν

=
{Tej ,·(θ̄+ − θ∗, θ̄− − θ∗)� T(r−+k·r+),·(θ̄+ − θ∗, θ̄− − θ∗)}ν̄

T(r−+k·r+),·(θ̄+ − θ∗, θ̄− − θ∗)ν̄

= θ̄−j ,

where � denotes the element-wise product of two vectors. This proves the claim that

if item j is set S-differentiable and θ−h = θ̄−h , θ+
h = θ̄+

h for any h ∈ S, then θ−j = θ̄−j .

Together with the result in Step 1 and the definition of the sequentially expanding

procedure in (C2), we therefore have the identifiability of (θ+,θ−).

With (θ+,θ−) = (θ̄
+
, θ̄
−

), Equation (C.1) simplifies to T (θ+,θ−)p = T (θ+,θ−)p̄ =

0. The last part of the proof of Propositions 1 and 4 then gives the identifiability of

ν. This completes the proof of the theorem.
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Proof of Proposition III.3. For ease of discussion, in this proof we use T (θ+,θ− |

Γ(S)) to denote the T -matrix associated with any S-adjusted design matrix Γ(S)

and item parameters (θ+,θ−).

For any S-adjusted Γ(S)-matrix, we define another set of item parameters θ̃
+

=

(θ̃+
1 , . . . , θ̃

+
J ) and θ̃

−
= (θ̃−1 , . . . , θ̃

−
J ), where θ̃−j = θ+

j , θ̃+
j = θ−j for all j ∈ S, and

θ̃−j = θ−j , θ̃+
j = θ+

j for all j /∈ S. We first show that the T -matrix T (θ̃
+
, θ̃
− | Γ(S)) can

be viewed as the T -matrix associated with the original Γ-matrix with item parameters

(θ+,θ−), i.e.,

Tr,α(θ̃
+
, θ̃
− | Γ(S)) = Tr,α(θ+,θ− | Γ). (B.10)

To show this, note that for any response pattern r ∈ {0, 1}J , we have

Tr,α(θ+,θ− | Γ) =
∏
j:rj=1

[
Γj,αθ

+
j + (1− Γj,α)θ−j

]

and

Tr,α(θ̃
+
, θ̃
− | Γ(S))

=
∏
j:rj=1

[
{Γ(S)}j,αθ̃+

j + (1− {Γ(S)}j,α)θ̃−j

]
=

∏
j∈S:rj=1

[
(1− Γj,α)θ̃+

j + Γj,αθ̃
−
j

]
×

∏
j /∈S:rj=1

[
Γj,αθ̃

+
j + (1− Γj,α)θ̃−j

]
=

∏
j∈S:rj=1

[
(1− Γj,α)θ−j + Γj,αθ

+
j

]
×

∏
j /∈S:rj=1

[
Γj,αθ

+
j + (1− Γj,α)θ−j

]
=
∏
j:rj=1

[
Γj,αθ

+
j + (1− Γj,α)θ−j

]
= Tr,α(θ+,θ− | Γ).

With the result in (B.10), to prove Proposition III.3, it suffices to show that the

identifiability argument in Theorem III.1 still holds if the Γ-induced restrictions of

the item parameters, θ+
j > θ−j for all j = 1, . . . , J , are replaced by the constraints

that θ+
j < θ−j for any j ∈ S and θ+

j > θ−j for any j /∈ S.
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We next prove this claim. If θ+
j < θ−j for some items j, the conclusion in Lemma

B.2 still holds. In particular, following the proof of Lemma B.2, if θ+
j < θ−j , then

θ+
j =

∑
α∈A

θ+
j pα ≤

∑
α∈A

θj,αpα =
∑
α∈A

θ̄j,αp̄α ≤
∑
α∈A

θ̄−j p̄α = θ̄−j ,

where among the two “≤” there is at least a strict “<”. This implies θ+
j 6= θ̄−j for all

j = 1, . . . , J , and a similar argument gives θ−j 6= θ̄+
j for all j = 1, . . . , J . With these

results, we can check that all the needed inequalities in the proof of Theorem III.1

still hold and all the proof steps proceed with no changes. This proves the conclusion

of the proposition.

Next we prove the identifiability results for the two-parameterQ-restricted models.

We say a Q-matrix of size J × K is complete for the two-parameter model, if after

some row permutation it contains an identity submatrix IK . Under the conjunctive

model assumption, let

RQ = RQ,conj = {0>K} ∪ {α = ∨h∈S qh : ∀S ⊂ S} (B.11)

be defined as in Remark 1 of the main text. Since elements of RQ are K-dimensional

binary vectors, they can be viewed as attribute profiles and RQ ⊆ {0, 1}K . When

Q is complete, clearly RQ = {0, 1}K . The row-union space RQ has the following

two properties. First, every two attribute profiles in RQ have different ideal response

vectors, i.e.

∀α1,α2 ∈ RQ, α1 6= α2, Γ·,α1 = Γ·,α2 . (B.12)

Second, when Q is incomplete, for any attribute profile α ∈ {0, 1}K , there must exist

some α′ ∈ RQ that has the same ideal response vector as α, i.e.

∀α ∈ {0, 1}K , ∃α′ ∈ RQ such that α � α′ and Γ·,α = Γ·,α′ . (B.13)
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Based on the above two properties, when A is saturated, RQ is a complete set

of representatives of the conjunctive equivalence classes. Similarly, we can show

RQ,comp = {1>K − α : α ∈ RQ} gives a complete set of representatives of the com-

pensatory equivalence classes. Therefore, this proves the claims in Remark 1 of the

main text. In the following proofs of Corollary III.1, Theorem III.2, Theorem III.3

and Theorem III.4 for the two-parameter Q-restricted models, when there is no am-

biguity, we will exchangeably say an equivalence class [α] is induced by the Γ-matrix

or is induced by the corresponding Q-matrix.

Proof of Corollary III.1. With definitions of non-basis and basis items introduced in

(3.12) and definition of S-differentiable item introduced in (3.13), conditions (C1) and

(C2) exactly reduce to the new conditions (C1∗) and (C2∗) regarding the Q-matrix for

the two-parameter conjunctive model, therefore by Theorem III.1, (C1∗) and (C2∗)

are sufficient for the p-partial identifiability of the conjunctive models.

On the other hand, for the two-parameter compensatory model, if the Q-matrix

satisfies the new conditions (C1∗) and (C2∗), then we have that Γconj satisfies the

original conditions (C1) and (C2). Given an arbitrary Q-matrix, by the definition

of the conjunctive Γconj and compensatory Γcomp, for any item j and any attribute

profile α ∈ {0, 1}K , we can obtain

Γcompj,α = 1− Γconjj,1−α = I(αk = 1 for some k s.t. qj,k = 1), (B.14)

where 1−α = (1−α1, . . . , 1−αK). This means the two matrices Γconj and 1J×C−Γcomp

only differ by a column permutation. Noting that conditions (C1) and (C2) do not

depend on the order of the column vectors, so if Γconj satisfies (C1) and (C2), then

1J×C − Γcomp also satisfies (C1) and (C2). Then Proposition III.3 implies the two

parameter compensatory model with design matrix Γcomp is p-partially identifiable.
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Proof of Theorem III.2. Without loss of generality, we focus on the proof of the con-

clusion for the two-parameter conjunctive model, and all the arguments also hold for

the two-parameter disjunctive model, following the similar argument in the proof of

Proposition III.3. In the following, we first present the proof of part (a), then that of

part (b.2), and finally that of part (b.1).

Proof of part (a). Without loss of generality, assume the Q-matrix takes the

following form

Q =

 1 v1

0 Q′

 ,

where Q′ is a submatrix of size (J − 1) × (K − 1) and v1 is a (K − 1)-dimensional

vector. For any attribute profile α = (0,α2:K), denote α + e1 = (1,α2:K); and for

any α = (1,α2:K), denote α − e1 = (0,α2:K). Consider any valid set of parameters

(θ+,θ−,ν). To prove the conclusion in (A), we next construct another set of param-

eters (θ̄
+
, θ̄
−
, ν̄) 6= (θ+,θ−,ν) but T (θ+,θ−)ν = T (θ̄

+
,θ−)ν̄. In particular, we set

θ̄
−

= θ−, θ̄+
j = θ+

j for j = 2, . . . , J , and choose θ̄+
1 close enough but not equal to θ+

1 .

Define

R0 = {α ∈ RQ : α1 = 0,α � (0,v1)},

R1 = {α ∈ RQ : α1 = 1,α � (0,v1)},

then we can see that the two sets R0 and R1 are disjoint and their elements are paired

in the sense that for any α ∈ R0, one has α+ e1 ∈ R1 and for any α ∈ R1, one has

α− e1 ∈ R0. To construct the proportion parameters ν̄, we set


ν̄[α] = ν[α] +

(
1− θ+1 −θ

−
1

θ̄+1 −θ
−
1

)
ν[α+e1], ∀α ∈ R0;

ν̄[α] =
θ+1 −θ

−
1

θ̄+1 −θ
−
1

ν[α], ∀α ∈ R1;

ν̄[α] = ν[α], ∀α ∈ RQ \ (R0 ∪R1).

(B.15)

For notational simplicity, denote Rc = RQ \ (R0∪R1). Next we show that under the
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two different sets of parameters (θ+,θ−,ν) and (θ̄
+
,θ−, ν̄), for any response pattern

r ∈ {0, 1}J ,

Tr,·(θ̄+ − θ−,0)ν̄ = Tr,·(θ+ − θ−,0)ν̄, (B.16)

which will complete the proof. To this end, we consider two types of response patterns

r = (r1, . . . , rJ) respectively in the following: (a) r1 = 0; and (b) r1 = 1.

(a) Firstly, for any r ∈ {0, 1}J such that r1 = 0, Tr,·(θ+−θ−,0) = Tr,·(θ̄+−θ−,0),

so by our construction,

Tr,·(θ̄+ − θ−,0)ν̄ = Tr,·(θ+ − θ−,0)ν̄

=
∑
α∈RQ

Tr,[α](θ
+ − θ−,0)ν̄[α]

=
∑
α∈R0

Tr,[α](θ
+ − θ−,0)ν̄[α] +

∑
α∈R1

Tr,[α](θ
+ − θ−,0)ν̄[α]

+
∑
α∈Rc

Tr,[α](θ
+ − θ−,0)ν̄[α]

=
∑
α∈R0

Tr,[α](θ
+ − θ−,0)

(
ν[α] +

(
1− θ+

1 − θ−1
θ̄+

1 − θ−1

)
ν[α+e1]

)
+
∑
α∈R1

Tr,[α](θ
+ − θ−,0)

(
θ+

1 − θ−1
θ̄+

1 − θ−1
ν[α]

)
+
∑
α∈Rc

Tr,[α](θ
+ − θ−,0)ν[α]

:=I0 + I1 + Ic.

Note that the elements in R0 and R1 are paired, and moreover, for any pair of

attribute profiles (α,α+ e1) where α ∈ R0 and α+ e1 ∈ R1, we have

Tr,[α](θ
+ − θ−,0) = Tr,[α+e1](θ

+ − θ−,0) =
∏
j:rj=1

(θj,[α] − θ−j ) (B.17)

for any type-(a) response pattern r, namely r ∈ {0, 1}J such that r1 = 0.
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Equation (B.17) leads to

I1 =
∑
α∈R0

Tr,[α+e1](θ
+ − θ−,0)

(
θ+

1 − θ−1
θ̄+

1 − θ−1
ν[α+e1]

)
=
∑
α∈R0

Tr,[α](θ
+ − θ−,0)

(
θ+

1 − θ−1
θ̄+

1 − θ−1
ν[α+e1]

)
.

Therefore we have

I0 + I1

=
∑
α∈R0

Tr,[α](θ
+ − θ−,0)

(
ν[α] +

(
1− θ+

1 − θ−1
θ̄+

1 − θ−1

)
ν[α+e1] +

θ+
1 − θ−1
θ̄+

1 − θ−1
ν[α+e1]

)
=
∑
α∈R0

Tr,[α](θ
+ − θ−,0)

(
ν[α] + ν[α+e1]

)
=
∑
α∈R0

Tr,[α](θ
+ − θ−,0)ν[α] +

∑
α∈R1

Tr,[α](θ
+ − θ−,0)ν[α],

where the last equality also results from (B.17). This further results in

I0 + I1 + Ic =
∑
α∈RQ

Tr,[α](θ
+ − θ−,0)ν[α] = Tr,·(θ+ − θ−,0)ν.

This proves that for any r such that r1 = 0, Equation (B.16) holds.

(b) Secondly, consider the type-(b) response pattern, namely those r = (1, r2,

. . . , rJ). For such r, denote r − e1 = (0, r2, . . . , rJ), then

Tr,[α](θ̄
+ − θ−,0) =


(θ̄+

1 − θ−1 ) · Tr−e1,[α](θ
+ − θ−,0), α � (1,v1);

0, α � (1,v1),

which indicates Tr,[α](θ̄
+ − θ−,0) = 0 for all α ∈ R0 ∪Rc. This is because for

α ∈ R0, α1 = 0 � 1; and for α ∈ Rc, (α2, . . . , αK) � v1 by our definitions.
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Therefore,

Tr,·(θ̄+ − θ−,0)ν̄ =
∑
α∈RQ

Tr,[α](θ̄
+ − θ−,0)ν̄[α]

=
∑
α∈RQ
α�(1,v1)

Tr−e1,[α](θ
+ − θ−,0)(θ̄+

1 − θ−1 )ν̄[α]

=
∑
α∈R1

Tr−e1,[α](θ
+ − θ−,0)(θ̄+

1 − θ−1 )ν̄[α]

=
∑
α∈R1

Tr−e1,[α](θ
+ − θ−,0)(θ+

1 − θ−1 )ν[α]

=Tr,·(θ+ − θ−,0)ν,

where our previous construction (θ̄+
1 −θ−1 )ν̄[α] = (θ+

1 −θ−1 )ν[α] for α ∈ R1 defined

in (B.15) is used to obtain the last but second equality. This proves that for

any r such that r1 = 1, Equation (B.16) holds.

Now that we have proved Equation (B.16) holds for any r ∈ {0, 1}J , we have

found two different sets of parameters (θ+,ν) 6= (θ̄
+
, ν̄) that give T (θ+,θ−)ν =

T (θ̄
+
,θ−)ν̄. This shows the non-identifiability of the parameters (θ+,θ−,ν), and

concludes the proof of part (A).

Proof of Part (b.2). Equation (C.1) is equivalent to

Tr,·(Θ)ν = Tr,·(Θ̄)ν̄ for all r = (r1, . . . , rJ)> ∈ {0, 1}J . (B.18)

The detailed form of (C.22) can be written as follows, for any r ∈ {0, 1}J ,

∑
α∈RQ

∏
rj=1

θj, [α] · ν[α] =
∑
α∈RQ

∏
rj=1

θ̄j, [α] · ν̄[α], (B.19)

where RQ denotes the row-union space of the Q-matrix Q as in (B.11). For any

attribute profile α ∈ {0, 1}K , [α] denotes the equivalence class containing α that is
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induced by Q. Let α2:K denote the vector containing last K − 1 elements of α, so

α can be written as α = (α1,α2:K) and [α1,α2:K ] represents the equivalence class α

belongs to. Recall that we use R = (R1, . . . , RJ) to denote a random response vector

ranging in {0, 1}J , and use A = (A1, . . . , AK) to denote a random attribute profile

ranging in the latent class space A ⊆ {0, 1}K . Denote A2:K := (A2, . . . , AK).

Under the assumptions of part (B), the Q-matrix takes the following form

Q =


1 v>1

1 v>2

0 Q′

 .

For any two different equivalence classes [0,α2:K ] and [1,α2:K ] whereα2:K ∈ {0, 1}K−1,

their corresponding item parameters to any item j > 2 are the same, i.e., for any j > 2

and any α2:K ∈ {0, 1}K−1,

P(Rj = 1 | A = (1,α2:K)) = P(Rj = 1 | A = (0,α2:K)) (B.20)

= θj,[0,α2:K ].

Therefore for any response pattern in the form r = (0, 0, r3, . . . , rJ), (B.19) for such

r can be equivalently written as

∑
α2:K∈RQ′

∏
j>2
rj=1

θj, [0,α2:K ] · (ν[0,α2:K ] + ν[1,α2:K ]) (B.21)

=
∑

α2:K∈RQ′

∏
j>2
rj=1

θ̄j, [0,α2:K ] · (ν̄[0,α2:K ] + ν̄[1,α2:K ]),

where RQ′ is the row-union space of Q′, i.e.,

RQ′ = {0>K−1} ∪ {α = ∨h∈S q′h : ∀S ⊆ {3, . . . , J}}.
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(B.21) involves 2J−2 equations with (r3, . . . , rj) freely ranging in {0, 1}J−2, which

indicates that θj, [0,α2:K ] and (ν[0,α2:K ] + ν[1,α2:K ]) can be viewed as item parameter and

proportion parameter associated with the model under the (J − 2) × (K − 1) sub-

matrix Q′. Since the sub-matrix Q′ satisfies conditions (C1∗) and (C2∗), Theorem

III.1 and the set of equations (B.21) lead to

∀j ≥ 3, θj, [0,α2:K ] = θ̄j, [0,α2:K ], ν[0,α2:K ] + ν[1,α2:K ] = ν̄[0,α2:K ] + ν̄[1,α2:K ].

This implies for any item j ≥ 3, the item parameters θ+
j and θ−j associated with the

original Q-matrix are identifiable.

Now consider an arbitrary response pattern r = (r1, r2, r3, . . . , rJ). We claim that

(B.19) for r can be equivalently written as

∑
α2:K∈RQ′

∏
j>2
rj=1

θj, [0,α2:K ] · P(R1 ≥ r1, R2 ≥ r2, A2:K = α2:K) (B.22)

=
∑

α2:K∈RQ′

∏
j>2
rj=1

θ̄j, [0,α2:K ] · P(R1 ≥ r1, R2 ≥ r2, A2:K = α2:K),

where P(R1 ≥ r1, R2 ≥ r2, A2:K = α2:K) represents the probability of {R1 ≥

r1, R2 ≥ r2} and the attribute profile A has its last K − 1 entries being α2:K under

the set of model parameters (θ+,θ−,ν), while P(R1 ≥ r1, R2 ≥ r2, A2:K = α2:K)

represents that under model parameters (θ̄
+
, θ̄
−
, ν̄). The reason (B.19) can be equiv-

alently written as (C.32) is that, given any α2:K ∈ RQ′ and any item j ∈ {3, . . . , J},

the positive response probability of [α1,α2:K ] to item j only depends on α∗ part,

regardless of the value of α1, as shown in (B.20). Therefore the terms in T (Θ)r,·ν
can be grouped in such a way that it becomes the summation over all the α2:K ∈ RQ′ ,

exactly as presented in Equation (C.32).

A key observation is that, taking (r1, r2) to be (0, 1), (1, 0), (1, 1) in (C.22)

respectively, we obtain another three sets of equations expressed in the form of
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(C.32), which are exactly in the same form as (B.21) by just replacing ν[0,α2:K ]

by P(R1 ≥ r1, R2 ≥ r2,A2:K = α2:K). Actually, taking (r1, r2) = (0, 0) gives

P(R1 ≥ 0, R2 ≥ 0,A2:K = α2:K) = ν[0,α2:K ]. By Theorem III.1, this key observa-

tion results in that, for any (r1, r2) ∈ {0, 1}2 and any α2:K ∈ RQ′ ,

P(R1 ≥ r1, R2 ≥ r2, A2:K = α2:K)

= P(R1 ≥ r1, R2 ≥ r2, A2:K = α2:K).

(B.23)

We will rely on (C.32) and the above equality (B.23) to proceed with the proof. Now

consider two types of combinations of row vectors of Q′, categorized based on their

relationships with v1 and v2. In the following proof, write R1 ≥ r1, R2 ≥ r2 succinctly

as R1:2 � r1:2. We consider the following cases (a∗) and (b∗).

(a∗) In this case, there exists two row vectors v0 and v′0 of Q′ s.t. v0 � v1, v0 � v2,

and v′0 � v1, v′0 � v2.

Consider A2:K = v0, then v0 � v1, v0 � v2 imply that

P(R1:2 � r1:2, A2:K = v0)

=



ν[0,v0] + ν[1,v0], (r1, r2) = (0, 0);

θ−1 · ν[0,v0] + θ+
1 · ν[1,v0], (r1, r2) = (1, 0);

θ−2 · (ν[0,v0] + ν[1,v0]), (r1, r2) = (0, 1);

θ−2 · (θ−1 · ν[0,v0] + θ+
1 · ν[1,v0]), (r1, r2) = (1, 1).

Note that P(R1:2 � r1:2,A2:K = α2:K) takes the similar form as P(R1:2 �

r1:2,A2:K = α2:K), so in order to ensure (B.23) the following equations must
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hold 

ν[0,v0] + ν[1,v0] = ν̄[0,v0] + ν̄[1,v0];

θ−1 · ν[0,v0] + θ+
1 · ν[1,v0] = θ̄−1 · ν̄[0,v0] + θ̄+

1 · ν̄[1,v0];

θ−2 · (ν[0,v0] + ν[1,v0]) = θ̄−2 · (ν̄[0,v0] + ν̄[1,v0]);

θ−2 · (θ−1 ν[0,v0] + θ+
1 ν[1,v0]) = θ̄−2 · (θ̄−1 ν̄[0,v0] + θ̄+

1 ν̄[1,v0]).

(B.24)

Taking the ratio of the third and the first equation above gives θ−2 = θ̄−2 . Sim-

ilarly, v′0 � v1, v′0 � v2 also imply θ−1 = θ̄−1 . Plugging θ−1 = θ̄−1 back to the

second equation in (B.24) gives θ+
1 = θ̄+

1 , and similarly θ+
2 = θ̄+

2 .

(b∗) In case (b∗), there exist two row vectors v0, v′0 of Q′ such that v0 � v1, v0 � v2,

and v′0 � v1, v′0 � v2.

Consider A2:K = v0, then v0 � v1, v0 � v2 imply that the attribute profiles

(1,v0), (0,v0) both belong to the same equivalence class [1,v0] induced by Q,

and hence

P(R1:2 � r1:2, A2:K = v0) =



ν[0,v0], (r1, r2) = (0, 0);

θ−1 · ν[0,v0], (r1, r2) = (1, 0);

θ−2 · ν[0,v0], (r1, r2) = (0, 1);

θ−1 θ
−
2 · ν[0,v0], (r1, r2) = (1, 1).

With f(r1,r2),v0 taking the above form, (B.23) implies θ−1 = θ̄−1 and θ−2 = θ̄−2 .
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Then consider A2:K = v′0, then v′0 � v1 and v′0 � v2 imply that

P(R1:2 � r1:2, A2:K = v′0)

=



ν[0,v0] + ν[1,v0], (r1, r2) = (0, 0);

θ−1 · ν[0,v0] + θ+
1 · ν[1,v0], (r1, r2) = (1, 0);

θ−2 · ν[0,v0] + θ+
2 · ν[1,v0], (r1, r2) = (0, 1);

θ−1 θ
−
2 · ν[0,v0] + θ+

1 θ
+
2 · ν[1,v0], (r1, r2) = (1, 1).

With the above form of P(R1:2 � r1:2, A2:K = v′0), (B.23) gives that



ν[0,v0] + ν[1,v0] = ν̄[0,v0] + ν̄[1,v0];

θ−1 · ν[0,v0] + θ+
1 · ν[1,v0] = θ−1 · ν̄[0,v0] + θ̄+

1 · ν̄[1,v0];

θ−2 · ν[0,v0] + θ+
2 · ν[1,v0] = θ−2 · ν̄[0,v0] + θ̄+

2 · ν̄[1,v0];

θ−1 θ
−
2 · ν[0,v0] + θ+

1 θ
+
2 · ν[1,v0] = θ−1 θ

−
2 · ν[0,v0] + θ̄+

1 θ̄
+
2 · ν[1,v0].

where θ−1 = θ̄−1 and θ−2 = θ̄−2 are used. Solving the above equations gives

θ+
1 = θ̄+

1 and θ+
2 = θ̄+

2 .

Based on the above discussion, if Q′ contains either of the type-(a∗) or type-(b∗)

combinations of row vectors v0 and v′0, then we have θ−1 = θ̄−1 , θ−2 = θ̄−2 , θ+
1 = θ̄+

1 and

θ+
2 = θ̄+

2 , and hence by Proposition III.1, the grouped proportion parameters ν are

identifiable.

Note that the arguments in (a∗) and (b∗) above do not depend on the assumption

that v0 or v′0 are single row vectors of Q′. Actually, if there exist two disjoint sets of

items S1, S2 ⊆ {3, . . . , J} such that

v0 = ∨h∈S1 q
′
h, v′0 = ∨h∈S2 q

′
h,
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and the pair (v0,v
′
0) satisfy either the type-(a∗) or the type-(b∗) constraint (namely

Either v0 � v1, v0 � v2 and v′0 � v1, v′0 � v2; Or v0 � v1, v0 � v2 and v′0 � v1,

v′0 � v2), then the arguments in (a*), (b*) still hold, and the conclusion of partial

identifiability follows. Next we show such pair (v0,v
′
0) must exist. The item set

{3, . . . , J} can be decomposed as {3, . . . , J} := S00 ∪ S10 ∪ S02 ∪ S12 where

S00 = {3 ≤ j ≤ J : q′j � v1, q
′
j � v2},

S10 = {3 ≤ j ≤ J : q′j � v1, q
′
j � v2},

S02 = {3 ≤ j ≤ J : q′j � v1, q
′
j � v2},

S12 = {3, . . . , J} \ (S00 ∪ S10 ∪ S02).

The assumption that Q′ satisfies condition (C1∗), implies that there exists v′0 ∈ RQ′

such that v′0 � v1, v′0 � v2. So if for i = 1, 2, (a) is satisfied, then the type-

(b∗) combinations of row vectors exist in Q′. While if (a) is not satisfied and (b)

is satisfied, then we claim that S10 6= ∅ and S02 6= ∅. This is because if S10 = ∅,

then together with the fact that S00 = ∅ implied by the failure of (a), we will have

{3, . . . , J} = S02 ∪ S12. But this means for any item j ≥ 3, q′j � v2, contradictory to

the assumption of case (b). So S10 6= ∅ must hold, and similarly S02 6= ∅ must hold.

This ensures the type-(b∗) combinations of row vectors exist in Q′. In either scenarios,

Q′ contains at least one of type-(a∗) or type-(b∗) combinations of row vectors, so we

obtain the identifiability of all the item parameters. Applying Proposition III.1 gives

the identifiability of the grouped proportion parameters ν, which completes the proof

of part (B.2).

Proof of Part (b.1). Under the assumptions in part (B.1), the Q-matrix takes the
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following form

Q =


1 0>

1 v>

0 Q′

 . (B.25)

Since there exists a single-attribute item with q-vector being (1,0>), for any α2:K ∈

RQ′ we have [0,α2:K ] 6= [1,α2:K ], where the equivalence class notation [·] represents

that induced by the J ×K Q-matrix Q. Then following the similar arguments as in

the proof of part (B.2), Equation (C.22) hold as long as the following set of equations

hold 

ν[0,α2:K ] + ν[1,α2:K ] = ν̄[0,α2:K ] + ν̄[1,α2:K ], ∀α2:K ∈ RQ′ ;

θ−1 · ν[0,α2:K ] + θ+
1 · ν[1,α2:K ]

= θ−1 · ν̄[0,α2:K ] + θ̄+
1 · ν̄[1,α2:K ], ∀α2:K ∈ RQ′ ;

θ−2 · ν[0,α2:K ] + θ+
2 · ν[1,α2:K ]

= θ−2 · ν̄[0,α2:K ] + θ̄+
2 · ν̄[1,α2:K ], ∀α2:K � v, α2:K ∈ RQ′ ;

θ−1 θ
−
2 · ν[0,α2:K ] + θ+

1 θ
+
2 · ν[1,α2:K ]

= θ−1 θ
−
2 · ν[0,α2:K ] + θ̄+

1 θ̄
+
2 · ν[1,α2:K ], ∀α2:K � v, α2:K ∈ RQ′ .

(B.26)

Now consider a set of parameters (θ+,θ−,ν) such that ν[0,α2:K ] = ρ · ν[1,α2:K ] for any

α2:K ∈ RQ′ , where ρ is a positive constant. Setting θ+
1 = θ̄+

1 , θ−2 = θ̄−2 , θ+
j = θ̄+

j and

θ−j = θ̄−j for j = 3, . . . , J and freely choosing any valid θ̄−1 which is not equal to θ−1 ,

we construct the remaining parameters (θ̄+
2 , ν̄) as follows. Let

θ̄+
2 =

(θ+
1 − θ̄−1 )(θ+

2 − θ−2 )

(θ+
1 − θ̄−1 ) + ρ(θ−1 − θ̄−1 )

+ θ̄−2 ,
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and for any α2:K ∈ RQ′ let

ν̄[1,α2:K ] =
(θ+

1 − θ̄−1 ) + ρ(θ−1 − θ̄−1 )

θ+
1 − θ̄−1

ν[1,α2:K ],

ν̄[0,α2:K ] = ν[0,α2:K ] + ν[1,α2:K ] − ν̄[1,α2:K ],

then by direct calculations one can check (B.26) hold. Therefore, we have found an-

other set of parameters (θ̄
+
, θ̄
−
, ν̄) such that (θ̄

+
, θ̄
−
, ν̄) 6= (θ+,θ−,ν) and T (θ+,θ−)ν =

T (θ̄
+
, θ̄
−

)ν̄, which shows the non-identifiability of the model parameters under the

Q in the form of (B.25). This completes the proof of part (B.1).

Proof of Theorem III.3. Without loss of generality, we again focus on the proof of

the conclusion for the two-parameter conjunctive models since all the arguments also

hold for the compensatory models, following the similar argument in the proof of

Proposition III.3. Suppose condition (C1∗) holds. Without loss of generality, suppose

condition (C2∗∗) does not hold for some basis item j, and suppose that the first K1

entries of the row vector qj in the Q-matrix corresponding to this basis item are 1’s

and the remaining K −K1 entries of q are 0’s, i.e.

qj = ( 1, . . . , 1,︸ ︷︷ ︸
columns 1, . . . ,K1

0, . . . , 0).

Denote S−j = {1, . . . , J} \ {j}. Since j is a basis item, any item in S−j requires some

attribute not required by j, i.e.

∀h ∈ S−j, qh,k = 1 for some k ∈ {K1 + 1, . . . , K}.

We claim, the assumption that (C2∗∗) does not hold for item h, implies that row

vectors of items in S−j can be arranged in a way {u1, . . . ,uJ−1} such that for any

2 ≤ i ≤ J − 1, ui requires at least one more attribute in {K1 + 1, . . . , K} that is not
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required by ∪1≤s≤i−1{us}. This claim is true since otherwise for some h ∈ S−j and

S0 ⊆ S−j\{h}, the difference of attributes required by {h} and S0 are only among

{1, . . . , K1}, then taking S−j = S0 and S+
j = S0 ∪ {h} makes (C2∗∗) hold for item j.

In other words, for some 1 ≤ k1 < k2 < . . . < kJ−1 ≤ K −K1 we have that

w1 = vk1 , w2 = vk2 , . . . , wJ−1 = vkJ−1
,

where v1,v2, . . . ,vm takes the form as follows

qj : 1 · · · 1 0 0 · · · · · · 0

v1 : ∗ · · · ∗ 1 0 · · · · · · 0

v2 : ∗ · · · ∗ ∗ 1 · · · · · · 0

...
...

...
...

...
...

...
...

...

vK−K1−1 : ∗ · · · ∗ ∗ ∗ ∗ 1 0

vK−K1 : ∗ · · · ∗ ∗ ∗ ∗ ∗ 1

, (B.27)

Now we are ready to construct two different sets of parameters (θ+,θ−,ν) 6= (θ̄
+
, θ̄
−
, ν̄)

that give (C.1), i.e.

T (θ+,θ−)ν = T (θ̄
+
, θ̄
−

)ν̄.

Given (θ+,θ−,ν), condition (C1∗) guarantees θ+ = θ̄
+

and θ−j = θ̄−j for j ∈ Snon.

Equation (C.1) holds if for another set of parameters (θ̄
+
, θ̄
−
, ν̄), the following equa-

tions hold for any wi such that wi
Γ� wi ∨ qj


ν[wi] + ν[qj∨wi] = ν̄[wi] + ν̄[qj∨wi];

θ−j · ν[wi] + θ+
j · ν[qj∨wi] = θ̄−j · ν[wi] + θ+

j · ν[qj∨wi],

(B.28)

with any other parameter not specified in (B.28) equal to its counterpart in the

original set of parameters (θ+,θ−,ν). Denote the cardinality of the set W = {wi :
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wi
Γ� wi ∨ qj} by |W|. The set W is nonempty since 0

Γ� qj and 0 ∈ W , where Γ

is the Γ-matrix corresponding to the saturated latent class space A = {0, 1}K . Note

that (B.28) involve 2|W| + 1 free parameters {θ̄−j } ∪ {ν̄[wi], ν̄[wi∨q] : wi ∈ W} while

only contain 2|W| equations, so there are infinitely many solutions to (B.28). This

proves the non-identifiability of the model parameters.

Proof of Theorem III.4. First prove the claim that conditions (C1∗) and (C2∗) are

equivalent to conditions (C1′) and (C2′) under the assumption that the Q-matrix

is complete and pα > 0 for any α ∈ {0, 1}K . Theorem 1 in Gu and Xu (2019b)

established that if Q is complete and pα > 0 for any α ∈ {0, 1}K , then conditions

(C1′) and (C2′) combined is sufficient and necessary for the identifiability of the

DINA model parameters (θ+,θ−,p). Since (C1∗) and (C2∗) are sufficient conditions

for identifiability, they must imply the necessary conditions (C1′) and (C2′). In the

following we prove the other direction, i.e., conditions (C1′) and (C2′) imply conditions

(C1∗) and (C2∗).

When Q is complete, if condition (C1′) holds that attribute k is required by at

least three items in the Q-matrix, then for each unit vector ek as the q-vector, there

must exist two other items j1
k and j2

k that also measure attribute k. Let Sik = {jik},

i = 1, 2, then S1
k and S2

k are the two disjoint item sets that satisfy condition (C1∗)

that ek = qk � ∨h∈Sikqh = qjik for i = 1 and 2. This shows (C1′) implies (C1∗).

Assume without loss of generality that Q takes the form

Q =

 IK
Q′

 . (B.29)

If condition (C2′) is satisfied, we next explicitly construct a procedure that sequen-

tially expands the separator set Ssep until Ssep = S finally, which by Theorem III.1

would establish identifiability of all the model parameters. The existence of such
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sequential procedure would ensure the Sequentially Differentiable Condition (C2∗)

holds. Theorem III.1 has already established that condition (C1∗) suffices for the

identifiability of all the slipping parameters, and that of the guessing parameters of

the non-basis items. Specifically for the complete Q-matrix in the form of (B.29), this

conclusion implies θ+
j = θ̄+

j for all j = 1, . . . , J and θ−j = θ̄−j for all j = K + 1, . . . , J ,

because any item j > K must be a non-basis item in the sense that there always exists

some item k ∈ {1, . . . , K} such that qk = ek � qj. It remains to show the guessing

parameters of the first K items are identifiable, i.e., θ−k = θ̄−k for k = 1, . . . , K. For

any binary vectors a = (a1, . . . , aL), b = (b1, . . . , bL) of the same length, we say a is

lexicographically smaller than b, denoted by a ≺lex b, if either a1 < b1; or there exists

some 2 ≤ i ≤ l such that ai < bi and aj = bj for all j < i. Now that the K column

vectors of Q′ are mutually distinct, there is a unique permutation (m1,m2, . . . ,mK) of

(1, 2, . . . , K) such that Q′·,m1
≺lex Q

′·,m2
≺lex . . . ≺lex Q

′·,mK . For any 1 ≤ i < j ≤ K,

since Q′·,mi ≺lex Q
′·,mj , we must have Q′·,mi � Q′·,mj . This fact will be useful in the

following proof.

We start with the initial separator set Ssep := S0 = {K + 1, . . . , J}. Note that

at this starting stage Ssep ⊆ Snon. We next argue that item m1 is S0-differentiable,

and further, mi is (S0 ∪ {m1, . . . ,mi−1})-differentiable for all i = 2, . . . , K. Noting

that Q·,m1 is of the smallest lexicographic order among all the column vectors of the

submatrix Q′, define

S−m1
= {j ∈ S0 : qj,m1 = 0},

then ∨h∈S0qh equals the all-one vector under condition (C1′) while ∨h∈S−m1
qh equals

the vector that is zero in the m1th entry and one otherwise, i.e.,

∨h∈S0qh = (1, . . . , 1),

∨h∈S−m1
qh = (1, . . . , 1, 0︸︷︷︸

column m1

, 1, . . . , 1),
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so ∨h∈S0qh − ∨h∈S−m1
qh = e>m1

= qm1
. By definition of S-differentiable, this means

item m1 is S0-differentiable. Then expand the separator set by including item m1 in

it, i.e. let Ssep := S0 ∪ {m1}. Now further define S−m2
= {j ∈ S0 : Qj,m2 = 0} ∪ {m1},

then S−m2
⊆ Ssep. Similarly it is easy to check

∨h∈Ssepqh = (1, . . . , 1),

∨h∈S−m2
qh = (1, . . . , 1, 0︸︷︷︸

column m2

, 1, . . . , 1),

and this implies item m2 is Ssep-differentiable. The similar argument would give

that mi is (S0 ∪ {m1, . . . ,mi−1})-differentiable for all i = 2, . . . , K, so the sequential

expanding procedure ends up with Ssep = {1, . . . , J} = S. Note that we start with

an initial separator set S0 that is a subset of Snon and in each expanding step we

included exactly one more item into Ssep even if we might have included more (all the

items that are Ssep-differentiable could be included, which can be more than one), the

fact that in our procedure Ssep finally equals S actually proves a stronger conclusion

than the existence of a sequential procedure described in condition (C2∗), so the

Sequentially Differentiable Condition (C2∗) holds. By now we have shown conditions

(C1′) and (C2′) also imply conditions (C1∗) and (C2∗).

Since (C1′) and (C2′) combined is necessary, (C1∗) and (C2∗) combined is also

necessary. This completes the proof of the theorem that (C1∗) and (C2∗) are sufficient

and necessary for strict identifiability of the two-parameter model when the Q-matrix

is complete and pα > 0 for all α ∈ {0, 1}K .

B.3 Proof of Main Results in Section 3.3

We introduce a useful lemma before proving Theorem III.5 and Theorem III.7,

the results of strict identifiability of multi-parameter restricted latent class models.
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The proof of the following lemma is given in Section B.4. For notational simplicity,

we denote θj,1 := maxα:Γj,α=1 θj,α = minα:Γj,α=1 θj,α in the following discussion.

Lemma B.3. For an arbitrary restricted latent class model satisfying constraints

(3.2), if Equation (C.1) holds, then for any j ∈ S1∪S2 and any α such that Γj,α = 0,

θej ,α 6= θ̄ej ,1, θej ,1 6= θ̄ej ,α.

To prove Theorem III.5, we also need the following lemma, whose proof is given

in Section B.4.

Lemma B.4. Under the assumptions of Theorem III.5, for any α there exists vectors

uα and vα such that

{v>α · T (ΘS2)}α 6= 0; {v>α · T (ΘS2)}α′ = 0, ∀α′ �S1 α.

{u>α · T (Θ̄S1)}α 6= 0; {u>α · T (Θ̄S1)}α′ = 0, ∀α′ �S2 α.

(B.30)

Proof of Theorem III.5. Equipped with Lemmas B.3 and D.1, we prove Theorem III.5

in the following three steps. Without loss of generality, assume S1 = {1, . . . ,M1} and

S2 = {M1 + 1, . . . ,M1 + M2}, namely item set S1 contains the first M1 items and

item set S2 contains the next M2 items.

Step 1: θej ,α0 = θ̄ej ,α0 for j > M1 +M2.

Step 2: θej ,α = θ̄ej ,α for j > M1 +M2 and any α.

Step 3: θej ,α = θ̄ej ,α and pα = p̄α for 1 ≤ j ≤M1 +M2 and any α.

Now we start the proof of the result step by step.

Step 1. Define θ∗ ∈ RJ to be

θ∗ = (θ̄e1,1, . . . , θ̄eM1
,1, θeM1+1,1, . . . , θeM1+M2

,1,0J−M1−M2)
>,
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and consider the row vector of the transformed T -matrix T (Θ−θ∗1>) corresponding

to r =
∑M1+M2

k=1 ek is

T∑M1+M2
k=1 ek,·

(Θ− θ∗1>) =

M1+M2⊙
k=1

Tek,·(Θ− θ∗1>)

=

(
M1∏
k=1

(θek,α0 − θ̄ek,1)

M2∏
k=1

(θeM1+k
,α0 − θeM1+k

,1),0>M

)
,

where the last M elements of this row vector are all zero. By Lemma B.3, the first

element is nonzero, i.e.,

M1∏
k=1

(θek,α0 − θ̄ek,1)

M2∏
k=1

(θeM1+k
,α0 − θeM1+k

,1) 6= 0.

Then similarly for parameters (Θ̄, p̄) we have

T∑M1+M2
k=1 ek

(Θ̄− θ∗1>)

=

( M1∏
k=1

(θ̄ek,α0 − θ̄ek,1)

M2∏
k=1

(θ̄eM1+k
,α0 − θeM1+k

,1),0>M

)

and
M1∏
k=1

(θ̄ek,α0 − θ̄ek,1)

M2∏
k=1

(θ̄eM1+k
,α0 − θeM1+k

,1) 6= 0.

Now consider θej ,α0 for any j > M1 + M2. The row vectors of T (Θ − θ∗1>) and

T (Θ̄− θ∗1>) corresponding to the response pattern r =
∑M1+M2

k=1 ek + ej are

T∑2M
k=1 ek+ej ,·(Θ− θ

∗1>)

=

(
θej ,α0

M1∏
k=1

(θek,α0 − θ̄ek,1)

M2∏
k=1

(θeM1+k
,α0 − θeM1+k

,1),0>M

)
,
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and

T∑2M
k=1 ek+ej ,·(Θ̄− θ

∗1>)

=

(
θ̄ej ,α0

M1∏
k=1

(θ̄ek,α0 − θ̄ek,1)

M2∏
k=1

(θ̄eM1+k
,α0 − θeM1+k

,1),0>M

)
,

respectively. Note Equation (C.1) implies that

θej ,α0 =
T∑M1+M2

k=1 ek+ej ,·
(Θ− θ∗1>)p

T∑M1+M2
k=1 ek,·

(Θ− θ∗1>)p

=
T∑M1+M2

k=1 ek+ej ,·
(Θ̄− θ∗1>)p̄

T∑M1+M2
k=1 ek,·

(Θ̄− θ∗1>)p̄
= θ̄ej ,α0 .

Step 2. First consider any j ∈ (S1 ∪ S2)c. For any α, define

θα =
∑

h∈S1:Γh,α=0

θeh,1eh +
∑

h∈S2:Γh,α=0

θ̄eh,1eh,

and consider the row vector corresponding to response pattern r =
∑

h∈S1
eh in the

transformed T -matrix, then we have

T∑
h∈S1

eh,α′(Θ− θα1>) 6= 0 iff α′ �S1 α,

T∑
h∈S2

eh,α′(Θ̄− θα1>) 6= 0 iff α′ �S2 α.

We only prove the first inequality above and the second is just similar. Note

T∑
h∈S1

eh,α′(Θ− θα1>) =
∏

h∈S1:Γh,α=0

(θeh,α′ − θeh,1), (B.31)

and if α′ � α, then there exists some h such that Γh,α′ = 1, Γh,α = 0 and hence

θeh,α′−θeh,1 = 0, which makes the product in (B.31) equal to 0; while if α′ � α, then

for all h ∈ S1 such that Γh,α = 0, we have Γh,α′ ≤ Γh,α = 0 and hence θeh,α′−θeh,1 6= 0,

so the product in (B.31) is nonzero.
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Then we use the properties of uα and vα to continue with the proof. First note

that the existence of uα and vα satisfying (B.30) only rely on the full-column-rank

property of T (ΘSi) and T (Θ̄Si), so for some full-rank linear transformation matrix A

there still exists some uα and vα such that

v>α · A · T (Θ̄S2) = (0, 1︸︷︷︸
column α

,0),

u>α · A · T (ΘS1) = (0, 1︸︷︷︸
column α

,0),

and

{v>α · A · T (ΘS2)}α 6= 0; {v>α · A · T (ΘS2)}α′ = 0, ∀α′ �S1 α; (B.32)

{u>α · A · T (Θ̄S1)}α 6= 0; {u>α · A · T (Θ̄S1)}α′ = 0, ∀α′ �S2 α.

Now note that T∑
h∈S2

eh,·(Θ−θα1>) can just be expressed as D(θα)·T (ΘS2) indicated

by Proposition B.2, so we have

{u>α · T∑h∈S1
eh,·(Θ− θα1>)} � {v>α · T∑h∈S2

eh,·(Θ− θα1>)} (B.33)

= (0, xα︸︷︷︸
column α

,0), with xα 6= 0,

{u>α · T∑h∈S1
eh,·(Θ̄− θα1>)} � {v>α · T∑h∈S2

eh,·(Θ̄− θα1>)} (B.34)

= (0, ȳα︸︷︷︸
column α

,0), with ȳα 6= 0.

Note that the left hand sides of equations (B.33) and (B.34) are both row transfor-

mations of the T -matrix, namely there exists a matrix M1 such that

(B.33) = M1 · T (Θ), (B.34) = M1 · T (Θ̄),
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so by Equation (C.1), we have (B.33) · p = (B.34) · p̄ 6= 0. Now consider any item

j ∈ (S1∪S2)c, since (B.33) and (B.34) involve rows of the T -matrices only with respect

to items included in S1∪S2, Equation (C.1) further implies {Tej ,α(Θ)� (B.33)} ·p =

{Tej ,α(Θ̄)� (B.34)} · p̄, therefore we have the equality

{Tej ,α(Θ)� (B.33)} · p
(B.33) · p =

{Tej ,α(Θ̄)� (B.34)} · p̄
(B.34) · p̄ . (B.35)

Note that the left and right hand sides of the above equation can be written as

LHS of (B.35) =
θej ,α · (B.33) · p̄

(B.33) · p̄ = θj,α,

RHS of (B.35) =
θ̄ej ,α · (B.34) · p̄

(B.34) · p̄ = θ̄j,α,

so θj,α = θ̄j,α.

Step 3. First we prove θej ,1 = θ̄ej ,1 for any j ∈ S1 ∪ S2. Given α, define

θ∗ =
∑

h∈S1:Γh,α=0

θeh,1eh.

Note that if for some α, Γh,α = 1 for all h ∈ S1, then θ∗ is defined to be the

zero vector. With θ∗, the row vector corresponding to r∗ =
∑

h∈S1:Γh,α=0 eh in the

transformed T -matrix takes the following form

Tr∗,·(Θ− θ∗1>)

=
( ∏
h∈S1:Γh,α=0

(θeh,α0 − θeh,1), ∗, . . . , ∗,
∏

h∈S1:Γh,α=0

(θeh,α − θeh,1), 0, . . . , 0
)
,

and satisfies that

Tr∗,α(Θ− θ∗1>) 6= 0; Tr∗,α′(Θ− θ∗1>) = 0, ∀α′ �S1 α.
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From previous constructions we have

v>α · T (Θ̄S2) = (0, 1︸︷︷︸
column α

,0)>,

and denote the value in column α of v>α ·T (ΘS2) by bv,α. Consider any j ∈ S1∪S2 such

that Γj,α = 1, then obviously ej is not included in the sum in the previously defined

response pattern r∗, because r∗ only contains those items that α is not capable of.

So we have

Tr∗,·(Θ− θ∗1>)� {v>α · T (ΘS2)}

=
(
0>, bv,α ·

∏
h∈S1:Γh,αk=0

(θeh,α − θeh,1)

︸ ︷︷ ︸
column α

,0>
)
, (B.36)

Tr∗+ej ,·(Θ− θ∗1>)� {v>α · T (ΘS2)}

=
(
0>, θej ,1 · bv,α ·

∏
h∈S1:Γh,α=0

(θeh,α − θeh,1)

︸ ︷︷ ︸
column α

,0>
)
. (B.37)

Similarly for (Θ̄, p̄) we have

Tr∗,·(Θ̄− θ∗1>)� {v>α · T (Θ̄S2)}

=
(
0>,

∏
h∈S1:Γh,α=0

(θ̄eh,α − θeh,1)

︸ ︷︷ ︸
column α

,0>
)
, (B.38)

Tr∗+ej ,·(Θ̄− θ∗1>)� {v>α · T (Θ̄S2)}

=
(
0>, θ̄ej ,1 ·

∏
h∈S1:Γh,α=0

(θ̄eh,α − θeh,1)

︸ ︷︷ ︸
column α

,0>
)
. (B.39)

Equation (C.1) implies (D.8) · p = (D.10) · p̄, and since (D.10) · p̄ 6= 0, we must also

have (D.8) · p̄ 6= 0, which indicates bv,α 6= 0. The above four equations along with
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(C.1) give that

θej ,1 = θej ,α =
(D.9) · p
(D.8) · p =

(D.11) · p̄
(D.10) · p̄ = θ̄ej ,α = θ̄ej ,1, ∀j ∈ S2.

Note that the above equality θej ,1 = θ̄ej ,1 holds for any α and any item j such that

Γj,α = 1. Therefore we have shown θej ,1 = θ̄ej ,1 holds for any j ∈ S1 ∪ S2. Similarly

we also have θej ,α0 = θ̄ej ,α0 . In summary,

θej ,α0 = θ̄ej ,α0 , θej ,1 = θ̄ej ,1, ∀j ∈ S1 ∪ S2.

For α = α0 define

θ∗ =
∑
h∈S1

θeh,1eh,

then T∑
h∈S1

eh(Θ− θ∗1>)p = T∑
h∈S1

eh(Θ̄− θ∗1>)p̄ gives

∏
h∈S1

(θeh,α0 − θeh,1)pα0 =
∏
h∈S1

(θeh,α0 − θeh,1)p̄α0 ,

so pα0 = p̄α0 .

Next we show θej ,α = θ̄ej ,α for any α and j ∈ S1 ∪ S2, where Γj,α = 0. We use

the induction method to show that for any α ∈ C,

∀j ∈ S1 ∪ S2, θj,α = θ̄j,α, pα = p̄α. (B.40)

Firstly, we prove (D.12) hold for α = α1, where α1 denotes the latent class with the

smallest lexicographical order among C \ {α0}. For α = α1, define

θ∗ =
∑

h∈S1:Γh,α1
=0

θeh,1eh +
∑

h∈S1:Γh,α1
=1

θeh,α0eh, (B.41)

then the row vectors of r∗ =
∑

h∈S1
eh in the transformed T -matrices only contain
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one nonzero element corresponding to column α1 as follows

Tr∗,·(Θ− θ∗1>) (B.42)

=

(
0>,

∏
h∈S1:Γh,α1

=0

(θeh,α1 − θeh,1)
∏

h∈S1:Γh,α1
=1

(θeh,α1 − θeh,α0),0
>
)
,

Tr∗,·(Θ̄− θ∗1>) (B.43)

=

(
0>,

∏
h∈S1:Γh,α1

=0

(θ̄eh,α1 − θeh,1)
∏

h∈S1:Γh,α1
=1

(θ̄eh,α1 − θeh,α0),0
>
)
,

and this is because for any other latent class α′ 6= α1, the α′ is capable of at least

one item in S1 that α1 is not capable of. Now consider the row vector corresponding

to response pattern r + ej for j ∈ S2 in the transformed T -matrices, and we have

Tr∗+ej ,·(Θ− θ∗1>)

=
(
0>, θej ,α ·

∏
h∈S1:Γh,α1

=0

(θeh,α1 − θeh,1)
∏

h∈S1:Γh,α1
=1

(θeh,α1 − θeh,α0),0
>
)
,

and

Tr∗+ej ,·(Θ̄− θ∗1>)

=
(
0>, θ̄ej ,α1 ·

∏
h∈S1:Γh,α1

=0

(θ̄eh,α1 − θeh,1)
∏

h∈S1:Γh,α1
=1

(θ̄eh,α1 − θeh,α0),0
>
)
.

The above four equations along with Equation (C.1) indicate for j ∈ S2 we have

θej ,α1 = θ̄ej ,α1 .

Similarly for j ∈ S1 we also have θej ,α1 = θ̄ej ,α1 . Plugging θej ,α1 = θ̄ej ,α1 into the
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equation (B.42)p = (B.43)p̄ gives

pα1 = p̄α1 .

So now we have shown (D.12) holds for α = α1.

Then as the induction assumption, suppose for any given α ∈ C, we have

∀α′ s.t. α′ �S1 α, ∀j ∈ S1 ∪ S2, θej ,α′ = θ̄ej ,α′ , pα′ = p̄α′ .

Recall that α′ �S1 α if and only if α′ �S2 α. Define θ∗ as

θ∗ =
∑

h∈S1:Γh,α=0

θeh,1eh +
∑

h∈S1:Γh,α=1

θeh,α0eh,

then for r∗ :=
∑

h∈S1
eh we have

Tr∗,·(Θ− θ∗1>)p =
∑

α′�S1α

tr∗,α′ · pα′

+
∏

h∈S1:Γh,α=0

(θeh,α − θeh,1)
∏

h∈S1:Γh,α=1

(θeh,α − θeh,α0) · pα, (B.44)

Tr∗,·(Θ̄− θ∗1>)p̄ =
∑

α′�S1α

t̄r∗,α′ · p̄α′

+
∏

h∈S1:Γh,α=0

(θ̄eh,α − θeh,1)
∏

h∈S1:Γh,α=1

(θ̄eh,α − θeh,α0) · p̄α, (B.45)
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where the notations tr∗,α′ and t̄r∗,α′ are defined as

tr∗,α′ =
∏

h∈S1:Γh,α=0

(θeh,α′ − θeh,1)
∏

h∈S1:Γh,α=1

(θeh,α − θeh,α0),

t̄r∗,α′ =
∏

h∈S1:Γh,α=0

(θ̄eh,α′ − θeh,1)
∏

h∈S1:Γh,α=1

(θ̄eh,α − θeh,α0).

Note that by induction assumption we have θeh,α = θ̄eh,α for any α′ such that α′ �S1

α. This implies tr∗,α′ = t̄r∗,α′ and further implies

∑
α′�S1α

tr∗,α′ · pα′ =
∑

α′�S1α

t̄r∗,α′ · p̄α′ .

So (D.18) = (D.19) gives

∏
h∈S1:Γh,α=0

(θeh,α − θeh,1)
∏

h∈S1:Γh,α=1

(θeh,α − θeh,α0) · pα

=
∏

h∈S1:Γh,α=0

(θ̄eh,α − θeh,1)
∏

h∈S1:Γh,α=1

(θ̄eh,α − θeh,α0) · p̄α,
(B.46)

and the two terms on both hand sides of the above equation are nonzero. Now

consider any j /∈ S1 and similarly Tr∗+ej ,·(Θ− θ∗1>)p = Tr∗+ej ,·(Θ̄− θ∗1>)p̄ yields

θej ,α ·
∏

h∈S1:Γh,α=0

(θeh,α − θeh,1)
∏

h∈S1:Γh,α=1

(θeh,α − θeh,α0) · pα

= θ̄ej ,α ·
∏

h∈S1:Γh,α=0

(θ̄eh,α − θeh,1)
∏

h∈S1:Γh,α=1

(θ̄eh,α − θeh,α0) · p̄α.
(B.47)

Taking the ratio of the above two equations (D.21) and (D.20) gives

θej ,α = θ̄ej ,α, ∀j /∈ S1.

Redefining r∗ :=
∑

h∈S2
eh similarly as above we have θej ,α = θ̄ej ,α for any j ∈ S1.
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Plug θej ,α = θ̄ej ,α for all j ∈ S1 into (D.20), then we have pα = p̄α. Now we have

shown (D.12) hold for this particular α. Then the induction argument gives

∀α ∈ C, ∀j ∈ S1 ∪ S2, θej ,α = θ̄ej ,α, pα = p̄α.

Combined with the results in Step 1 and 2, all the model parameters (Θ,p) are

identifiable and the proof of Theorem III.5 is complete.

Proof of Proposition III.5. Without loss of generality, assume S1 = {1, . . . ,M1} and

S2 = {M1 + 1, . . . ,M1 + M2}. Recall that BS1 = BS2 under condition (C3*). The

outline of the proof is as follows.

Step 1: θej ,α0 = θ̄ej ,α0 for j > M1 +M2.

Step 2: θej ,α = θ̄ej ,α for j > M1 +M2 and α ∈ BS1 .

Step 3: θej ,α = θ̄ej ,α and pα = p̄α for 1 ≤ j ≤M1 +M2, α = α0 or α ∈ BS1 .

Step 4: θej ,α = θ̄ej ,α and pα = p̄α for 1 ≤ j ≤ J and for all α.

Next we start the proof of the theorem.

Step 1. The proof is exactly the same as Step 1 of Theorem III.5.

Step 2. First consider basis latent classes α under both S1 and S2. For α ∈ BS1 ,

define

θ∗ =
∑

j∈S1:Γj,α=1

θ̄ej ,α0ej +
∑

j∈S1:Γj,α=0

θ̄ej ,1ej

+
∑

j∈S2:Γj,α=1

θej ,α0ej +
∑

j∈S2:Γj,α=0

θej ,1ej,

then the row vectors r∗ =
∑M1+M2

j=1 ej in the transformed T -matrices only contain
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one potentially nonzero element, corresponding to α, as follows

Tr∗,·(Θ− θ∗1>)

=
(
0>,

∏
j∈S1:Γj,α=1

(θej ,α − θ̄ej ,α0)
∏

j∈S1:Γj,α=0

(θej ,α − θ̄ej ,1)

×
∏

j∈S2:Γj,α=1

(θej ,α − θej ,α0)
∏

j∈S2:Γj,α=0

(θej ,α − θej ,1), 0>
)
, (B.48)

and

Tr∗,·(Θ− θ∗1>)

=
(
0>,

∏
j∈S1:Γj,α=1

(θ̄ej ,α − θ̄ej ,α0)
∏

j∈S1:Γj,α=0

(θ̄ej ,α − θ̄ej ,1)

×
∏

j∈S2:Γj,α=1

(θ̄ej ,α − θej ,α0)
∏

j∈S2:Γj,α=0

(θ̄ej ,α − θej ,1), 0>
)
. (B.49)

Lemma B.3 implies the product elements in (B.48) and (B.49) are both nonzero.

Then consider any j > M1 + M2, the row vector corresponding to the response

pattern r∗ + ej in the transformed T -matrices are

Tr∗+ej ,·(Θ− θ∗1>)

=
(
0>, θej ,α ·

∏
h∈S1:Γh,α=1

(θeh,α − θ̄eh,α0)
∏

h∈S1:Γh,α=0

(θeh,α − θ̄eh,1)

×
∏

h∈S2:Γh,α=1

(θeh,α − θeh,α0)
∏

h∈S2:Γh,α=0

(θeh,α − θeh,1), 0>
)
, (B.50)
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and

Tr∗+ej ,·(Θ− θ∗1>)

=
(
0>, θ̄ej ,α ·

∏
h∈S1:Γh,α=1

(θ̄eh,α − θ̄eh,α0)
∏

h∈S1:Γh,α=0

(θ̄eh,α − θ̄eh,1)

×
∏

h∈S2:Γh,α=1

(θ̄eh,α − θeh,α0)
∏

h∈S2:Γh,α=0

(θ̄eh,α − θeh,1), 0>
)
. (B.51)

So we have

θej ,α =
(B.50) · p
(B.48) · p =

(B.51) · p̄
(B.49) · p̄ = θ̄ej ,α, ∀α ∈ BS1 , ∀j > M1 +M2.

Step 3. We first prove θej ,1 = θ̄ej ,1 for any j ∈ S1 ∪ S2. Given α ∈ BS1 , define

θ∗ =
∑

h∈S1:Γh,α=0

θeh,1eh,

then the row vector corresponding to r∗ =
∑

h∈S1:Γh,α=0 eh in the transformed T -

matrix takes the following form

Tr∗,·(Θ− θ∗1>)

=
( ∏
h∈S1:Γh,α=0

(θeh,α0 − θeh,1), ∗, . . . , ∗,
∏

h∈S1:Γh,α=0

(θeh,α − θeh,1), 0, . . . , 0
)
.

Condition (C4*) implies that (θj,α, j ∈ (S1∪S2)c) 6= (θj,α0 , j ∈ (S1∪S2)c) for any basis

latent class α ∈ BS1 . So there exist a C-dimensional vector m such that the element

in m> · T (Θ(M1+M2+1):J) corresponding to α0 is 0 and the element corresponding to

α is 1, i.e.,

m> · T (Θ(M1+M2+1):J) = (0, ∗, . . . , ∗, 1︸︷︷︸
column α

, ∗, . . . , ∗),
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and based on the conclusions of Step 2, we also have

m> · T (Θ̄(M1+M2+1):J) = (0, ∗, . . . , ∗, 1︸︷︷︸
column α

, ∗, . . . , ∗).

By Lemma B.1 T (Θ̄S2) has full column rank C, hence there exists a vector v such

that

v> · T (Θ̄S2) = (0, 1︸︷︷︸
column α

,0)>,

and denote the value in column α of v>·T (ΘS2) by bv,α. Consider any j ∈ S1∪S2 such

that Γj,α = 1, then obviously ej is not included in the sum in the previously defined

response pattern r∗, because r∗ only contains those items that α is not capable of.

So we have

Tr∗,·(Θ− θ∗1>)� {m> · T (Θ(M1+M2+1):J)} � {v> · T (ΘS2)}

=
(
0>, bv,α ·

∏
h∈S1:Γh,αk=0

(θeh,α − θeh,1)

︸ ︷︷ ︸
column α

,0>
)
, (B.52)

Tr∗+ej ,·(Θ− θ∗1>)� {m> · T (Θ(M1+M2+1):J)} � {v> · T (ΘS2)}

=
(
0>, θej ,1 · bv,α ·

∏
h∈S1:Γh,α=0

(θeh,α − θeh,1)

︸ ︷︷ ︸
column α

,0>
)
. (B.53)

Similarly for (Θ̄, p̄) we have

Tr∗,·(Θ̄− θ∗1>)� {m> · T (Θ̄(M1+M2+1):J)} � {v> · T (Θ̄S2)}

=
(
0>,

∏
h∈S1:Γh,α=0

(θ̄eh,α − θeh,1)

︸ ︷︷ ︸
column α

,0>
)
, (B.54)
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Tr∗+ej ,·(Θ̄− θ∗1>)� {m> · T (Θ̄(M1+M2+1):J)} � {v> · T (Θ̄S2)}

=
(
0>, θ̄ej ,1 ·

∏
h∈S1:Γh,α=0

(θ̄eh,α − θeh,1)

︸ ︷︷ ︸
column α

,0>
)
. (B.55)

Equation (C.1) implies (D.8) · p = (D.10) · p̄, and since (D.10) · p̄ 6= 0, we must also

have (D.8) · p̄ 6= 0, which indicates bv,α 6= 0. The above four equations along with

(C.1) give that

θej ,1 = θej ,α =
(D.9) · p
(D.8) · p =

(D.11) · p̄
(D.10) · p̄ = θ̄ej ,α = θ̄ej ,1, ∀j ∈ S2.

Note that the above equality θej ,1 = θ̄ej ,1 holds for any α and any item j such that

Γj,α = 1. Therefore we have shown θej ,1 = θ̄ej ,1 holds for any j ∈ S1 ∪ S2. Similarly

we also have θej ,α0 = θ̄ej ,α0 . In summary,

θej ,α0 = θ̄ej ,α0 , θej ,1 = θ̄ej ,1, ∀j ∈ S1 ∪ S2.

For α = α0 define

θ∗ =
∑
h∈S1

θeh,1eh,

then T∑
h∈S1

eh(Θ− θ∗1>)p = T∑
h∈S1

eh(Θ̄− θ∗1>)p̄ gives

∏
h∈S1

(θeh,α0 − θeh,1)pα0 =
∏
h∈S1

(θeh,α0 − θeh,1)p̄α0 ,

so we also have pα0 = p̄α0 .

Next we show θej ,α = θ̄ej ,α for any α ∈ BS1 and j ∈ S1 ∪ S2, where Γj,α = 0.

Given α, define

θ∗ =
∑

h∈S1:Γh,α=0

θeh,1eh +
∑

h∈S1:Γh,α=1

θeh,α0eh, (B.56)
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then the row vectors of r∗ =
∑

h∈S1
eh in the transformed T -matrices only contain

one nonzero element corresponding to column α as follows

Tr∗,·(Θ− θ∗1>) =

(
0>,

∏
h∈S1:Γh,α=0

(θeh,α − θeh,1)
∏

h∈S1:Γh,α=1

(θeh,α − θeh,α0),0
>
)
,

Tr∗,·(Θ̄− θ∗1>) =

(
0>,

∏
h∈S1:Γh,α=0

(θ̄eh,α − θeh,1)
∏

h∈S1:Γh,α=1

(θ̄eh,α − θeh,α0),0
>
)
.

Now consider the row vectors of r + ej for j ∈ S2 in the transformed T -matrices, we

have

Tr∗+ej ,·(Θ− θ∗1>)

=
(
0>, θej ,α ·

∏
h∈S1:Γh,α=0

(θeh,α − θeh,1)
∏

h∈S1:Γh,α=1

(θeh,α − θeh,α0), 0>
)
,

and

Tr∗+ej ,·(Θ̄− θ∗1>)

=
(
0>, θ̄ej ,α ·

∏
h∈S1:Γh,α=0

(θ̄eh,α − θeh,1)
∏

h∈S1:Γh,α=1

(θ̄eh,α − θeh,α0), 0>
)
.

The above four equations along with Equation (C.1) indicate for j ∈ S2 we have

θej ,α = θ̄ej ,α.

Similarly for α ∈ BS1 , j ∈ S1 we also have θej ,α = θ̄ej ,α. In summary, we have

θej ,α = θ̄ej ,α, ∀α ∈ BS1 , ∀j ∈ S1 ∪ S2.

Now for α ∈ BS1 define

θ∗ =
∑

h∈S1:Γh,α=0

θeh,1eh,
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then T∑
h∈S1

eh(Θ− θ∗1>)p = T∑
h∈S1

eh(Θ̄− θ∗1>)p̄ gives

∏
h∈S1

(θeh,α0 − θeh,1)pα0 +
∏
h∈S1

(θeh,α − θeh,1)pα

=
∏
h∈S1

(θeh,α0 − θeh,1)pα0 +
∏
h∈S1

(θeh,α − θeh,1)p̄α,

which implies pα = p̄α. This completes the proof of Step 3.

Step 4. We use the induction method to prove the conclusions for those α /∈ BS1 .

In previous steps we already established

pα0 = p̄α0 , θej ,α0 = θ̄ej ,α0 , ∀j ∈ {1, . . . , J},

and

pα = p̄α, θej ,α = θ̄ej ,α, ∀α ∈ BS1 , ∀j ∈ {1, . . . , J}.

So as the induction assumption, suppose for any given α /∈ BS1 , we have

pα′ = p̄α′ , θej ,α′ = θ̄ej ,α′ , ∀α′ s.t. α′ �S1 α ∀j ∈ {1, . . . , J}.

Recall that α′ �S1 α if and only if α′ �S2 α. Define θ∗ as that in (B.56)

θ∗ =
∑

h∈S1:Γh,α=0

θeh,1eh +
∑

h∈S1:Γh,α=1

θeh,α0eh,

then the row vector corresponding to r∗ =
∑

h∈S1
eh in the transformed T -matrix

takes the form

Tr∗+ej ,·(Θ− θ∗1>)p =
∑

α′�S1α

tr∗,α′ · pα′ (B.57)

+
∏

h∈S1:Γh,α=0

(θeh,α − θeh,1)
∏

h∈S1:Γh,α=1

(θeh,α − θeh,α0) · pα,
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Tr∗+ej ,·(Θ̄− θ∗1>)p̄ =
∑

α′�S1α

t̄r∗,α′ · p̄α′ (B.58)

+
∏

h∈S1:Γh,α=0

(θ̄eh,α − θeh,1)
∏

h∈S1:Γh,α=1

(θ̄eh,α − θeh,α0) · p̄α,

where the notations tr∗,α′ and t̄r∗,α′ are defined as

tr∗,α′ =
∏

h∈S1:Γh,α=0

(θeh,α′ − θeh,1)
∏

h∈S1:Γh,α=1

(θeh,α − θeh,α0),

t̄r∗,α′ =
∏

h∈S1:Γh,α=0

(θ̄eh,α′ − θeh,1)
∏

h∈S1:Γh,α=1

(θ̄eh,α − θeh,α0).

Note that by induction assumption we have θeh,α = θ̄eh,α for any α′ such that α′ �S1

α. This implies tr∗,α′ = t̄r∗,α′ and further implies

∑
α′�S1α

tr∗,α′ · pα′ =
∑

α′�S1α

t̄r∗,α′ · p̄α′ .

So (E.12) = (B.58) gives

∏
h∈S1:Γh,α=0

(θeh,α − θeh,1)
∏

h∈S1:Γh,α=1

(θeh,α − θeh,α0) · pα

=
∏

h∈S1:Γh,α=0

(θ̄eh,α − θeh,1)
∏

h∈S1:Γh,α=1

(θ̄eh,α − θeh,α0) · p̄α.
(B.59)

Consider any j /∈ S1 and similarly we have

θej ,α ·
∏

h∈S1:Γh,α=0

(θeh,α − θeh,1)
∏

h∈S1:Γh,α=1

(θeh,α − θeh,α0) · pα

=θ̄ej ,α ·
∏

h∈S1:Γh,α=0

(θ̄eh,α − θeh,1)
∏

h∈S1:Γh,α=1

(θ̄eh,α − θeh,α0) · p̄α.
(B.60)

Taking the ratio of the above two equations gives

θej ,α = θ̄ej ,α, ∀j /∈ S1.
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Similarly we have θej ,α = θ̄ej ,α for any j ∈ S1. Plug in θej ,α = θ̄ej ,α for all j ∈ S1

into (B.59), then we have

pα = p̄α.

This completes the proof of Proposition III.5.

Proof of Theorem III.6. Without loss of generality, we show the generic identifiability

statement holds on the parameter space T

T =
{

(Θ,p) : ∀ j, max
α:Γj,α=1

θj,α = min
α:Γj,α=1

θj,α > θj,α′ ≥ θj,α0 , ∀ Γj,α′ = 0
}
.

On T , altering some entries of zero to one in the Γ-matrix is equivalently imposing

more affine constraints on the parameters and force them to be in a subset T ∗ of T .

Since Condition (C3) holds for model parameters belonging to the space T ∗, the proof

of Theorem III.5 gives that the matrix T (ΘSi) has full column rank C for i = 1, 2 for

(ΘSi ,p) ∈ T ∗. Note that saying the 2|Si| × C matrix T (ΘSi) has full column rank is

equivalently saying the map sending T (ΘSi) to all its
(

2|Si|

C

)
possible C × C minors

Ai1, A
i
2, . . . , A

i
2|Si|

yields at least one nonzero minor, where Ai1, A
i
2, . . . , A

i
2|Si|

are all

polynomials of the item parameters ΘSi . Define

V =
⋃
i=1,2

{ 2|Si|⋂
l=1

{(Θ,p) ∈ T : Ail(ΘSi) = 0}
}
,

then V is a algebraic variety defined by polynomials of the model parameters. More-

over, V is a proper subvariety of T , since the fact T (ΘSi) has full column rank C for

i = 1, 2 for one particular set of (Θ,p) ∈ T ∗ ensures that there exists one particular

set of model parameters that give nonzero values when plugged into the polynomials

defining V , which indicates that the polynomials defining V are not all zero polyno-

mials.
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This implies for generic choices of (Θ,p) in the space T , T (ΘSi) has full column

rank for i = 1, 2. Together with the assumption that (C4) holds for Γ, we obtain

generic identifiability of the model parameters. This completes the proof of Theorem

III.6.

Proof of Theorem III.7. In the following, we say some statement “generically” holds,

if the subset of the parameter space where the statement does not hold is of Lebesgue

measure zero. Without loss of generality, assume Q takes the form

Q =


Q1

Q2

Q′

 ,

where under the assumptions of Theorem III.7, Q1 and Q2 are K×K square matrices

with diagonal elements all equal to 1. With a slight abuse of notation, for a Ji ×K

submatrix Qi of Q, let T (Qi,ΘQi) denote the 2Ji × 2K T -matrix. We consider the

saturated model where all the main effect and interaction effect terms are included in

modeling the item parameters, namely the positive response probability for attribute

profile α and item j takes the form

θj,α =f
(
βj,0 +

K∑
k=1

βj,kqjkαk +
K∑

k′=k+1

K−1∑
k=1

βj,kk′(qjkαk)(qjk′αk′) (B.61)

+ · · ·+ βj,12···K
∏
k

(qjkαk)
)
,

where f(·) is the link function, which can be the identify link, log link, or the logistic

link. Note that taking those β-coefficients of the interaction terms to be zero, one

is left with a main-effect model. Since the following arguments only rely on the

main effect coefficients, the conclusion of the theorem applies to any multi-parameter

restricted latent class model.
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First prove that under condition (C5), the T -matrices T (Q1,ΘQ1) and T (Q2,ΘQ2)

corresponding to Q1 and Q2 are both generically of full rank 2K . To show generic

identifiability, it suffices to find one specific set of item parameters Θ satisfying the

constraints imposed by the Q-matrix that make the T -matrices T (Q1,ΘQ1) and

T (Q2,ΘQ2) have full rank. In the following we focus on T (Q1,ΘQ1) only. For

k = 1, . . . , K, set the k’th main effect parameter of the k’th item to be 1, i.e.,

set βk,k = 1, and all the other main effect and interaction effect parameters to be

zero, then the T -matrix T (Q1,ΘQ1) now becomes exactly the same as the T -matrix

T (IK , Θ̃IK ) under the identity Q-matrix IK with the item parameters being

θ̃ek,0 = βk,0 and θ̃ek,ek = θ̃ek,1 = βk,0 + βk,k for k ∈ {1, . . . , K}.

Moreover, defining θ̃
∗

= (θ̃e1,1, . . . , θ̃eK ,1)T and following a similar argument as in the

proof of Lemma B.1, we have that T (IK , Θ̃− θ̃
∗
1>) takes an botomn-left triangular

form with nonzero diagonal entries, thus Proposition B.2 gives that T (IK , Θ̃IK ) is

full-rank. Therefore T (Q1,ΘQ1) is generically full-rank. Similarly T (Q2,ΘQ2) is also

generically full-rank.

We next show that if condition (C6) additionally holds, then any two different

columns indexed by attribute profiles α and α′ of T (Q′,ΘQ′) are generically distinct.

For distinct α, α′ ∈ {0, 1}K , they at least differ in one attribute k. Without loss of

generality, assume αk = 1 > 0 = α′k. Condition (C6) ensures that there exists some

item j > 2K such that qj,k = 1. Under the model considered here with θj,α in the

form of (B.61), this implies θj,α 6= θj,α′ generically.

Next we introduce a result of uniqueness of three-way tensor decomposition to

facilitate our proof. Following Kruskal (1977), the Kruskal rank of a matrix is the

the largest number I such that every I columns of the matrix are independent. For

a matrix M , let rankK(M) denote its Kruskal rank. From Kruskal (1977), Rhodes
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(2010) has the following result.

Lemma B.5 (Rhodes, 2010). For a matrix Mi, denote the jth column of it by mi
j.

Given matrices Mi of size si × c, let the matrix triple product [M1,M2,M3] be an

s1 × s2 × s3 tensor defined as a sum of r rank-1 tensors by

[M1,M2,M3] =
c∑
j=1

m1
j ⊗m2

j ⊗m3
j .

Suppose rankK(M1) = rankK(M2) = c and rankK(M3) ≥ 2; N1, N2, N3 are matrices

with c columns and [M1,M2,M3] = [N1, N2, N3]. Then there exists some permutation

matrix P and invertible diagonal matrices Di with D1D2D3 = Ic such that Ni =

MiDiP .

Now we consider three T -matrices, T (Q1,ΘQ1), T (Q2,ΘQ2) and T (Q′,ΘQ′), which

are of size 2K × 2K , 2K × 2K and 2J−2K × 2K . The rows of the three matrices

are indexed by possible item combinations in the three item sets {1, . . . , K}, {K +

1, . . . , 2K} and {2K + 1, . . . , J} respectively. We use Diag(p) to denote a diagonal

matrix with the diagonal entries being elements of p, then it is not hard to see that

T (Θ)p is given by the matrix triple product [T (Q1,ΘQ1), T (Q2,ΘQ2), T (Q′,ΘQ′) ·

Diag(p)], namely the matrix triple product of the three matrices exactly characterizes

the distribution of the response vector R. Clearly if a matrix has full column rank,

then its Kruskal rank equals its rank, thus our previous arguments already established

that rankK{T (Q1,ΘQ1)} = rankK{T (Q2,ΘQ2)} = 2K and rankK{T (Q′,ΘQ′)} ≥ 2

hold generically. Moreover, we claim rankK{T (Q′,ΘQ′) · Diag(p)} ≥ 2 also holds

generically. This is because if all the entries of p are positive, which is a generic

requirement, then multiplying the invertible diagonal matrix Diag(p) by the matrix

T (Q′,ΘQ′) would not change the Kruskcal rank of the latter. Now apply Lemma B.5

and follow a similar argument as the proof of Theorem 4 in Allman et al. (2009), we

have the conclusion that the model is generically identifiable up to label swapping.
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Specifically, the label swapping would happen only between those latent classes which

have identical ideal response vectors, namely the labels of α1 and α2 could possibly

be swapped only if Γ·,α1 = Γ·,α2 . This is because otherwise, the constraints (2.1)

introduced by the Γ-matrix would fail to hold.

Proof of Theorem III.8. We first prove the conclusion of the part (a), then that of

the part (b).

Proof of (a): Without loss of generality assume the Q-matrix takes the following

form

Q =

 1 v

0 Q∗

 , (B.62)

then given any set of valid parameters (Θ,p), one can construct another set of model

parameters (Θ̄, p̄) as follows. First set all the item parameters associated items j ≥ 2

to be the same as the true parameters for this second set of parameters. For any

α′ := α2:K ∈ {0, 1}K−1, choose θ̄1,(1,α′) 6= θ1,(1,α′) to be any reasonable value in a

small neighborhood of θ1,(1,α′). Set θ̄1,(0,α′) = θ1,(0,α′) and


p̄(0,α′) = p(0,α′) +

(
1− θ1,(1,α′)

θ̄1,(1,α′)

)
p(1,α′);

p̄(1,α′) =
θ1,(1,α′)
θ̄1,(1,α′)

p(1,α′),

then we have
p̄(0,α′) + p̄(1,α′) = p(0,α′) + p(1,α′);

θ̄1,(0,α′)p̄(0,α′) + θ̄1,(1,α′)p̄(1,α′) = θ1,(0,α′)p(0,α′) + θ1,(1,α′)p(1,α′).
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With these two equations, for any r ∈ {0, 1}J

Tr,·(Θ̄)p̄

=
∑

α′∈{0,1}K−1

∏
j>1:rj=1

θ̄
rj
j,(0,α′)

[
θ̄r11,(0,α′)p̄(0,α′) + θ̄r11,(1,α′)p̄(1,α′)

]

=
∑

α′∈{0,1}K−1

∏
j>1:rj=1

θ
rj
j,(0,α′)·


[
p̄(0,α′) + p̄(1,α′)

]
if r1 = 0;[

θ̄1,(0,α′)p̄(0,α′) + θ̄1,(1,α′)p̄(1,α′)

]
if r1 = 1,

= Tr,·(Θ)p.

This proves the model associated with Q in the form of (B.62) is not generically iden-

tifiable, since for any valid set of true parameters there exist another set of parameters

resulting in the same distribution of the observed responses R.

Proof of (b): Part of the proof idea is similar to that of Theorem III.2. Since the

(J − 2) × (K − 1) sub-matrix Q′ satisfies conditions (C5) and (C6), Theorem III.7

gives that, for generic choice of true parameters (Θ,p) in the parameter space, if

another set of parameters (Θ̄, p̄) satisfy T (Θ)p = T (Θ̄)p̄, then

∀j ≥ 3, θj, (0,α2:K) = θ̄j, (0,α2:K), p(0,α2:K) + p(1,α2:K) = p̄(0,α2:K) + p̄(1,α2:K).

For any response pattern r = (r1, r2, r3, . . . , rj) ∈ {0, 1}J , (C.22) for r can be equiv-

alently written as

∑
α2:K∈{0,1}K−1

∏
j>2: rj=1

θj, (0,α2:K) · P(R1 ≥ r1, R2 ≥ r2, A2:K = α2:K) (B.63)

=
∑

α2:K∈{0,1}K−1

∏
j>2: rj=1

θ̄j, (0,α2:K) · P(R1 ≥ r1, R2 ≥ r2, A2:K = α2:K).

Note that the difference of (B.63) and (C.32) is that RQ′ is replaced by {0, 1}K−1,

which is because when considering generic identifiability of multi-parameterQ-restricted
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models, all the 2K−1 possible proportion parameters resulting from the Q′ part are

generically identifiable under conditions (C5) and (C6).

Following the same reasoning as in the proof of Theorem III.2, part (B.2), we have

P(R1 ≥ r1, R2 ≥ r2, A2:K = α2:K) (B.64)

= P(R1 ≥ r1, R2 ≥ r2, A2:K = α2:K),

and this yields that for any α′ := α2:K ∈ {0, 1}K−1,



p(0,α′) + p(1,α′) = p̄(0,α′) + p̄(1,α′);

θ1,(0,α′) · p(0,α′) + θ1,(1,α′) · p(1,α′) = θ̄1,(0,α′) · p̄(0,α′) + θ̄1,(1,α′) · p̄(1,α′);

θ2,(0,α′) · p(0,α′) + θ2,(1,α′) · p(1,α′) = θ̄2,(0,α′) · p̄(0,α′) + θ̄2,(1,α′) · p̄(1,α′);

θ1,(0,α′)θ2,(0,α′) · p(0,α′) + θ1,(1,α′)θ2,(1,α′) · p(1,α′)

= θ̄1,(0,α′)θ̄2,(0,α′) · p̄(0,α′) + θ̄1,(1,α′)θ̄2,(1,α′) · p̄(1,α′).

(B.65)

First we show that if there exist α′1, α′2 ∈ {0, 1}K−1, α′1 6= α′2 such that


θj,(α1,α′1) = θj,(α1,α′2) and θ̄j,(α1,α′1) = θ̄j,(α1,α′2), ∀j = 1, 2, ∀α1 = 0, 1;

p(1,α′1)

p(0,α′1)
:= s1 6= s2 =:

p(1,α′2)

p(0,α′2)
.

(B.66)

then one must have

θj,(α1,α′1) = θ̄j,(α1,α′1), ∀j = 1, 2, ∀α1 = 0, 1. (B.67)
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After some transformations, the system of equations (C.40) yields



(θ1,(0,α′) − θ1,(1,α′)) · (θ2,(0,α′) − θ̄2,(1,α′)) · p(0,α′)

= (θ̄1,(0,α′) − θ1,(1,α′)) · (θ̄2,(0,α′) − θ̄2,(1,α′)) · p̄(0,α′);

(θ2,(0,α′) − θ̄2,(1,α′)) · p(0,α′) + (θ2,(1,α′) − θ̄2,(1,α′)) · p̄(1,α′)

= (θ̄2,(0,α′) − θ̄2,(1,α′)) · p̄(0,α′).

Under a multi-parameter model, q1,1 = q2,1 = 1 yields that for generic parameters,

θi,(0,α′) 6= θ̄i,(1,α′), i = 1, 2, so the left (right) hand side of the first equation above is

nonzero. And obviously the right hand side of the second equation above is nonzero.

Taking the ratio of the above two equations gives

(θ1,(0,α′) − θ1,(1,α′)) · (θ2,(0,α′) − θ̄2,(1,α′))

(θ2,(0,α′) − θ̄2,(1,α′)) + (θ2,(1,α′) − θ̄2,(1,α′)) · p(1,α′)/p(0,α′)

= (θ̄1,(0,α′) − θ1,(1,α′)) := f(α′).

The right hand side of the above equation does not involve any proportion parameter

p or p̄. So for α′1, α′2 satisfying (C.35), f(α′α′1) = f(α′2). Note that the left hand

side of the above equation involves a ratio p(1,α′)/p(0,α′) depending on α′. Equality

f(α′1) = f(α′2) along with (C.35) imply

(θ2,(1,α′1) − θ̄2,(1,α′1)) ·
p(1,α′1)

p(0,α′1)

= (θ2,(1,α′2) − θ̄2,(1,α′2)) ·
p(1,α′2)

p(0,α′2)

= (θ2,(1,α′1) − θ̄2,(1,α′1)) ·
p(1,α′2)

p(0,α′2)

,

and

(θ2,(1,α′1) − θ̄2,(1,α′1)) ·
(
p(1,α′1)

p(0,α′1)

− p(1,α′2)

p(0,α′2)

)
= 0,
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then since p(1,α′1)/p(0,α′1) = s1 6= s2 = p(1,α′2)/p(0,α′2), by assumption (C.35), we have

θ2,(1,α′1) − θ̄2,(1,α′1) = 0.

By symmetry of the four item parameters θ1,(0,α′), θ1,(1,α′), θ2,(0,α′) and θ2,(1,α′) in

(C.40), equalities (C.36) therefore hold following a similar argument.

Next we show that under the condition of the theorem, the conclusions obtained so

far give the generic identifiability of all the item parameters associated with the first

two items, and hence proved the generic identifiability of all the model parameters.

Since v1 ∨ v2 6= 1, there must exist some attribute k, k 6= 1, that is not required

by the first two items. Then for any item parameter θj,α corresponding to item j,

j = 1, 2 and attribute profile α = (α1, α2, . . . , αK), define α′1 = (α2, . . . , αK), and

α′2 = (α′2, . . . , α
′
K), α′l = αl for any l 6= k and α′k = 1− αk, then

θj,(α1,α1) = θj,(α1,α′2) and θ̄j,(α1,α′1) = θ̄j,(α1,α′2), ∀j = 1, 2, ∀α1 = 0, 1.

This means we have found α′1 6= α′2 that satisfy the first equation in (C.35), then as

long as p(1,α′1)/p(0,α′1) 6= p(1,α′2)/p(0,α′2) then θj,α = θ̄j,α follows for j = 1, 2. Since this

inequality constraint of the true parameters is a generic constraint, i.e. the parameters

not satisfying this constraint falls in a Lebesgue measure zero set of the parameter

space, the generic identifiability of all the item parameters holds. Considering the

fact θj,(0,α′) 6= θj,(1,α′) generically, identifiability of the item parameters combined with

(C.40) further gives the generic identifiability of the proportion parameters p. This

completes the proof of part (b).

Proof of Proposition III.4 and Proposition III.6. To prove Proposition III.6, suppose

the identifiability conditions for p-partial identifiability are satisfied. We introduce a
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2J -dimensional empirical response vector

γ =

{
1, N−1

N∑
i=1

I(Ri � e1), · · · , N−1

N∑
i=1

I(Ri � eJ),

N−1

N∑
i=1

I(Ri � e1 + e2), · · · , N−1

N∑
i=1

I(Ri �
J∑
j=1

ej)

}>
,

where elements of γ are indexed by all the |{0, 1}J | = 2J possible response patterns

and they are in the same order as that of the columns of the T -matrix. First, by the

definition of the T -matrix and the strong law of large numbers, we have γ → T (Θ0)p0

almost surely as N →∞. Second, the maximum likelihood estimators Θ̂ and p̂ satisfy

‖γ − T (Θ̂)ν̂‖ → 0, where ‖ · ‖ denotes the L2 norm. Therefore, combining these two

gives

‖T (Θ0)ν0 − T (Θ̂)ν̂‖ → 0

almost surely as N → ∞. Then since the identifiability conditions are satisfied, we

have that T (Θ0)ν0 = T (Θ̂)ν̂ indicates (Θ0,ν0) = (Θ̂, ν̂). Therefore we obtain the

consistency result that (Θ̂, ν̂) → (Θ0,ν0) almost surely as N → ∞. This proves

Proposition III.4.

To prove Proposition III.6, suppose the identifiability conditions for generic iden-

tifiability are satisfied. Then according to Definition IV.2 of generic identifiability,

there exists a proper algebraic subvariety V of T , such that (Θ,p) are strictly identi-

fiable on T \ V , and subvariety V has Lebesgue measure zero in the parameter space.

If the true parameters (Θ0,p0) belong to T \V , then for any other valid set of param-

eters (Θ̄, p̄), the equalities T (Θ0)p0 = T (Θ̄)p̄ indicate (Θ0,p0) = (Θ̄, p̄). Similarly

to the proof of Proposition III.4 in the last paragraph, we have

‖T (Θ0)p0 − T (Θ̂)p̂‖ → 0
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almost surely as N →∞. And the identifiability of (Θ0,p0) ∈ T \V guarantees that

(Θ̂, p̂)→ (Θ0,p0) almost surely as N →∞. This proves Proposition III.6.

B.4 Proof of Results in Section 3.4

Proof of Corollary III.2. If the Γ-matrix constructed as in the corollary is separable

and contains distinct columns, then each attribute pattern α ∈ A corresponds to

a unique equivalence class and ν = p, where ν represents the grouped proportion

parameters of Γ-matrix-induced equivalence classes introduced in Section 3.2. Fur-

ther, the general constraints (3.2) are satisfied for each item j. Note that the proof

of Theorem 1 only use the information that each item j has two levels of item pa-

rameters θ+
j , θ−j which satisfy (3.2), and that proof does not depend on whether each

item is specified as conjunctive (DINA) or disjunctive (DINO). Therefore Theorem

1 can be directly applied here. Given that Γ is separable, conditions (C1) and (C2)

lead to strict identifiability of the model parameters (θ+,θ−,p). This concludes the

proof.

Proof of Corollary III.3 (a). To prove part (a), we first point out that the Γ-matrix

defined in part (a) ensures the model parameters (Θ,p) satisfy the general constraints

(3.2) for each item j ∈ S. The constraint set Cj is just defined as Cj = {α ∈ A :

Γj,α = 1}. Then because the proofs of Theorem III.5 and Proposition III.5 do not

depend on the specific model assumption of each item, but only use the information

that the constraints (3.2) are satisfied for each j, the conclusions of Theorem III.5

and Proposition III.5 still hold in the currently considered scenario. This proves part

(a).

Statement and Proof of Corollary III.3 (b). We first introduce the condition (E2) needed

in part (b). For a binary vector a, we say another binary vector b of the same length
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is a unit-shrinkage of a, if b � a and b = ek for some k. Further, for a binary matrix

Q, we say another binary matrix Q̃ of the same size is a unit-shrinkage of Q, if for

each j, the jth row vector of Q̃ is either equal to, or a unit-shrinkage of, the jth row

vector of Q. The following condition (E2) ensures the generic identifiability of (Θ,p).

(E2) There exists a decomposition of Qmult = (Q>mult,1, Q
>
mult,2)> such that the sub-

matrices Qmult,1 and Qmult,2 satisfy the following conditions.

(E2.a) There exists a “unit-shrinkage” Q̃mult,1 of Qmult,1 such that the matrix

Γ̃ = (Γdisj(Qdisj,A)>, Γconj(Qconj,A)>, Γconj(Q̃mult,1,A)>) contains two

disjoint separable submatrices Γ1 and Γ2.

(E2.b) Each attribute is required by at least one item in Qmult,2.

Before proving Corollary III.3 (b), we use an example to illustrate how to check

its conditions (E2).

Example B.1. Consider the following Q-matrix with items 1, 4 being two-parameter

conjunctive, items 2, 5 being two-parameter disjunctive, and items 3, 6, 7 being multi-

parameter.

Q =





conj 1 0

disj 1 1

mult 1 1

conj 1 0

disj 1 1

mult 1 1

mult 1 1

⇒ Q̃ =





1 0

1 1

0 1

1 0

1 1

0 1

1 1

⇒ Γ̃ =

(0, 0) (0, 1) (1, 0) (1, 1)



0 0 1 1

0 1 1 1

0 1 0 1

0 0 1 1

0 1 1 1

0 1 0 1

0 0 0 1

.

Then Q̃ is a unit-shrinkage of Q, and Γ̃ corresponds to Q̃. We can see that in Q̃ items
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1, 2, 3 give a separable Γ1; items 4, 5, 6 give a separable Γ2; and item 7 alone forms

Qmulti,2 which requires both attributes. So (E2.a) and (E2.b) are satisfied and (Θ,p)

are generically identifiable.

Proof of Corollary III.3 (b). First consider those multi-parameter items in

the model. If item j conforms to a multi-parameter model, then by our definition

in the end of Section 1.2, it could be a main-effect model or an all-effect model.

Whichever multi-parameter model item j follows, the item parameters θj,α depend

on the main effects of those required attributes of item j, so θj,α can be written in the

form of (B.61) with some link function f . Now under condition (E2.a), since Q̃multi,1

is a unit-shrinkage of Qmulti,1, we denote

Su = {j ∈ S : j belongs to the Q̃multi,1 part;

q̃j in Q̃multi,1 is a unit-shrinkage of qj}.

Then for each j ∈ Su, there exists some kj ∈ {1, . . . , K} such that q̃j,kj = qj,kj = ekj .

We claim that the J × |A| matrix Θ̃ = (θ̃j,α) defined as follows actually give item

parameters that form a submodel of the original model being considered.

θ̃j,α =


f(βj,0 +

∑K
k=1 βj,k q̃j,k αk) = f(βj,0 + βj,kj αkj), j ∈ Su, α ∈ A;

θj,α, j 6∈ Su, α ∈ A.
(B.68)

In other words, (Θ̃,p) are a valid set of parameters under the original Q-matrix

and original model assumption. This is because setting all the interaction-effect

coefficients and all the main-effect coefficients in (B.61) other than {βj,kj : j ∈ Su}

to zero gives (C.2). Note that for each item j with q-vector q̃j = ekj , (C.2) actually

defines a two-parameter conjunctive model for item j, with the two levels of item

parameters being θ̃+
j = f(βj,0 + βj,kj) and θ̃−j = f(βj,0). Now we claim that given the
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Θ̃ constructed in (C.2), and given the two separable matrices Γ1 and Γ2 described in

(E2.a), Θ̃Γ1 and Θ̃Γ2 both have full column rank.

In summary, the above reasoning from (E2.a) indicates that the two T -matrices

T (ΘΓ1) and T (ΘΓ2) are both generically full-column-rank. Combining condition

(E2.b) that each column contains at least one entry of “1” in the submatrix Qmulti,2,

a similar argument as that in the proof of Theorem III.7 gives that the entire model

is generically identifiable.

Proof of Proposition III.7. We introduce a useful lemma before proving the proposi-

tion.

Lemma B.6. Under a restricted latent class model with categorial responses R ∈∏J
j=1{0, 1, . . . , Lj − 1}, if two sets of parameters (Θcat,p) and (Θ̄

cat
, p̄) satisfy

P(R | Θcat,p) = P(R | Θ̄cat
, p̄), (B.69)

then for any response pattern rH = (rH1 , . . . , r
H
J ) ∈∏J

j=1{1, . . . , Lj − 1} that consists

of higher-level responses (higher than the basic level-0) to all the items, we have the

following 2J equalities

∑
α∈A

pα
∏

j: rj=rHj

θ
(rHj )

j,α =
∑
α∈A

p̄α
∏

j: rj=rHj

θ̄
(rHj )

j,α , ∀r ∈
J∏
j=1

{0, rHj }. (B.70)

We now continue with the proof of Proposition III.7. Given any higher-level

response pattern rH , we can define a generalized T -matrix T r
H

of size 2J ×m, with

the (r,α)th entry being

{T rH (Θcat)}r,α =
∑
α∈A

pα
∏

j: rj=rHj

θ
(rHj )

j,α , r ∈
J∏
j=1

{0, rHj }.
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Then (B.70) in Lemma B.6 can be rewritten as

T r
H

(Θcat)p = T r
H

(Θ̄
cat

)p̄. (B.71)

which has the same form as (C.1), T (Θ)p = T (Θ̄)p̄. Now consider all the proposed

sufficient conditions for strict (or p-partial, generic) identifiability in Sections 3.2

and 3.3. In those proofs, we always start with assuming (C.1) holds and then show

(Θ,p) = (Θ̄, p̄) under those sufficient conditions. In the current case of categorical

responses, under the same set of sufficient conditions as those in Sections 3.2 and 3.3,

assuming (B.71) holds leads to p = p̄ and

θ
(rHj )

j,α = θ̄
(rHj )

j,α , ∀α ∈ A, j ∈ {1, . . . , J},

for the specific rH . Since rH is arbitrary, we obtain

θ
(rj)
j,α = θ̄

(rj)
j,α , ∀α ∈ A, j ∈ {1, . . . , J}, rj ∈ {1, . . . , Lj − 1}.

This further gives θ
(0)
j,α = 1−∑l>0 θ

(l)
j,α = 1−∑l>0 θ̄

(l)
j,α = θ̄

(0)
j,α for any item j. By far

we have shown if (B.69) holds and the previously proposed sufficient identifiability

conditions are satisfied, then (Θcat,p) = (Θ̄
cat
, p̄) hold. This concludes the proof of

the proposition.

Proof of Proposition III.8. We rewrite the probability distribution function of a RBM

as

P(R,α(1), · · · ) =
1

Z
exp

(
−R>WQα(1) − (α(1))>Uα(2) − · · ·

)
, (B.72)

where the “· · · ” part denote deeper latent layers α(2), α(3), etc. The conditional
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distribution of Rj given α(1) can be written as

P(Rj = 1 | α(1)) =
exp

(
WQ
j,·α(1) + aj

)
1 + exp

(
WQ
j,·α(1) + aj

) (B.73)

= σ
(
WQ
j,·α(1) + aj

)
,

where σ(x) = ex/(1 + ex) denotes the sigmoid function. Denote the length of α(1)

by K1. Since α(1) ∈ {0, 1}K1 can be viewed as a latent attribute pattern, we denote

α(1) = (α
(1)
1 , . . . , α

(1)
K1

) and further write (B.73) as

θj,α(1) = σ
( ∑
k:WQ

j,k 6=0

WQ
j,kα

(1)
k

)
.

Now it is clear from the above display that the RBM defined in (B.72) can be viewed

as a multi-parameter main-effect restricted latent class model with J items and K1

latent attributes, with a Q-matrix resulting from the sparse bipartite structure WQ.

Therefore, part (a) of the theorem follows from the generic identifiability result of

the unrestricted latent class models (Allman et al., 2009) that J ≥ 2K1 + 1 suffices

for generic identifiability of the item parameters Θ, and hence WQ. Also, part (b)

of the theorem holds because when Q satisfies the sufficient conditions for strict or

generic identifiability under a multi-parameter restricted latent class model, the item

parameters Θ = (θj,α) are strictly or generically identifiable. This completes the

proof of the theorem.

B.5 Proof of Technical Lemmas in Chapter III

Proof of Lemma B.1 (on page 185, Section B.2). Without loss of generality, assume

ΓS is separable with the item set S = {1, . . . , J}. Define θ∗ =
∑

j∈S θej ,1. The aim
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is to find response patterns r1, . . . , rm−1 such that the corresponding row vectors

of r0 := 0, r1, . . . , rm−1 in the transformed T (Θ − θ∗1>) form a m × m lower

triangular matrix with nonzero diagonal elements, which will prove the conclusion

that T (Θ) has full column rank m.

Since ΓS is separable and every two different column vectors of it are distinct,

without loss of generality, assume the m column vectors in the ideal response matrix

ΓS are arranged in a lexicographic order, where the first column is an all-zero column

corresponding to the universal least capable class α0. In other words, for any 0 ≤

k < h ≤ m− 1, ΓS·,αk is of smaller lexicographical order than ΓS·,αh . In the following

proof denote Γ := ΓS to simplify notations. Define response patterns r1, . . . , rm−1 to

be

rk =
∑

j: Γj,αk=0

ej, k = 1, . . . , C − 1,

and define a sub-matrix T sub of T (Θ) whose m rows corresponding to response pat-

terns r0, r1, . . . , rm−1 andm columns corresponding to class profilesα0,α1, . . . ,αm−1.

We claim that T sub(Θ−θ∗1>) is a lower triangular square matrix of full rank m. This

is because for any 0 ≤ k ≤ m−1, the row vector corresponding to rk in T sub(Θ−θ∗1>)

is

T subrk,·(Θ− θ∗1>) =
⊙

j: Γj,αk=0

Tej ,·
(

Θ−
( J∑
j=1

θej ,1ej

)
1>
)
. (B.74)

For any h > k, there must exist an item j such that Γj,αk = 0 and Γj,αh = 1.

Existence of such j means that αh is capable of at least one item not mastered by

αk, and guarantees that the αh-entry of the above row vector (B.74) is zero. We have

shown T subrk,αh
(Θ− θ∗1>) = 0 for arbitrary 0 ≤ k < h ≤ m− 1, so T sub(Θ− θ∗1>) is

a lower triangular square matrix. Moreover, the diagonal entries are

T subrk,αk
(Θ− θ∗1>) =

∏
j: Γj,αk=0

(θej ,αk − θej ,1) 6= 0,
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so T sub(Θ− θ∗1>) is of rank m, with the shape

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∏
j∈Sα0

(θej ,α0 − θej ,1) 0 · · · 0

∏
j∈Sα1

(θej ,α0 − θej ,1)
∏

j∈Sα1

(θej ,α1 − θej ,1) · · · 0

...
...

. . .
...∏

j∈Sαm−1

(θej ,α0 − θej ,1) ∗ · · · ∏
j∈Sαm−1

(θej ,αm−1 − θej ,1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where Sαi := {j : Γj,αi = 0} for i = 0, 1, . . . ,m − 1. The proof of Lemma B.1 is

complete.

Proof of Lemma B.2 (on page 188, Section B.2). Since θ+
j > θ−j for each item j from

the definition constraints of restricted latent class models, Tej ,·(Θ)p = Tej ,·(Θ̄)p̄

indicates

θ+
j =

∑
α∈A

θ+
j pα ≥

∑
α∈A

θj,αpα =
∑
α∈A

θ̄j,αp̄α ≥
∑
α∈A

θ̄−j p̄α = θ̄−j ,

where among the two “≥” there is at least a strict “>”. This is because the first “≥”

is an equality sign only if all the latent classes are capable of item j, namely Γj,α = 1

for all α ∈ A, and in this case,
∑
α∈A θ̄j,αp̄α = θ̄+

j > θ̄−j and therefore the second

“≥” must be a strict “>”. Similarly, the second “≥” is an equality sign only if all

the latent classes are incapable of item j, and in this case, θ+
j > θ−j =

∑
α∈A θj,αpα

and therefore the first “≥” must be a strict “>”. This proves that θ+
j > θ̄−j for all j,

and similarly we have θ−j < θ̄+
j for all j.

Proof of Lemma B.3 (on page 213, Section B.3). Since the sub-matrix T (ΘS1) has

full column rank m, there exists a vector mα such that

m>α · T (ΘS1) = (0, 1︸︷︷︸
column α

,0),
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On the other hand, Equation (C.1) implies m>α · T (ΘS1)p = m>α · T (Θ̄S1)p̄, which

further indicates the row vectorm>α·T (Θ̄S1) also contains at least one nonzero element

in some column. Denote such a column by α∗ and the nonzero value by x̄α∗ . Since

the sub-matrix T (Θ̄S2) also has full column rank, there exists another vector nα∗

such that

n>α∗ · T (Θ̄S2) = (0, 1︸︷︷︸
column α∗

,0),

Again from Equation (C.1) we have that the α-th entry of the row vector n>α∗T (ΘS2)

is also nonzero. We denote this nonzero value by yα. Then we have

{m>α · T (ΘS1)} � {n>α∗ · T (ΘS2)} = (0, yα︸︷︷︸
column α

,0),

{m>α · T (Θ̄S1)} � {n>α∗ · T (Θ̄S2)} = (0, x̄α∗︸︷︷︸
column α∗

,0).

Now consider one more row ej for an arbitrary j > M1 + M2 in the T -matrix, we

have

Tej ,·(Θ)� {m>α · T (ΘS1)} � {n>α∗ · T (ΘS2)} = (0, θej ,α · yα︸ ︷︷ ︸
column α

,0),

Tej ,·(Θ̄)� {m>α · T (Θ̄S1)} � {n>α∗ · T (Θ̄S2)} = (0, θ̄ej ,α∗ · x̄α∗︸ ︷︷ ︸
column α∗

,0).

The above four equations along with Equation (C.1) imply

θej ,α = θ̄ej ,α∗ , ∀j > M1 +M2. (B.75)

Now that (θej ,α, j > M1 + M2) = (θ̄ej ,α∗ , j > M1 + M2), condition (C4) implies that

there exists a vector sα such that

s>α · T (Θ(M1+M2+1):J) = (0, ∗, . . . , ∗, 1︸︷︷︸
column α

, ∗, . . . , ∗),

s>α · T (Θ̄(M1+M2+1):J) = (0, ∗, . . . , ∗, 1︸︷︷︸
column α∗

, ∗, . . . , ∗).
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Next redefine

θ∗ =
∑

h∈S1:Γh,α=0

θeh,1eh and r∗ =
∑

h∈S1:Γh,α=0

eh,

then we have

{s>α · T (Θ(M1+M2+1):J)} � {n>α∗ · T (ΘS2)} � {Tr∗,·(ΘS1 − θ∗1>)}

=
(
0, yα

∏
h∈S1:Γh,α=0

(θeh,α − θej ,1)

︸ ︷︷ ︸
column α

,0
)
, (B.76)

and

{s>α · T (Θ̄(M1+M2+1):J)} � {n>α∗ · T (Θ̄S2)} � {Tr∗,·(Θ̄S1 − θ∗1>)}

=
(
0,

∏
h∈S1:Γh,α=0

(θ̄eh,α − θej ,1)

︸ ︷︷ ︸
column α∗

,0
)
. (B.77)

Since the α-entry of (B.76) is nonzero, the α∗-entry of (B.77) must also be nonzero

since by (C.1) we have (B.76) · p = (B.77) · p̄. Further consider row j ∈ S1 such that

Γj,α = 1. Obviously ej does not appear in the summation of the previously defined

r∗, so we have

{s>α · T (Θ(M1+M2+1):J)} � {n>α∗ · T (ΘS2)} � {Tr∗+ej ,·(ΘS1 − θ∗1>)}

=
(
0, θej ,αyα

∏
h∈S1:Γh,α=0

(θeh,α − θej ,1)

︸ ︷︷ ︸
column α

,0
)
, (B.78)
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and

{s>α · T (Θ̄(M1+M2+1):J)} � {n>α∗ · T (Θ̄S2)} � {Tr∗+ej ,·(Θ̄S1 − θ∗1>)}

=
(
0, θ̄ej ,α∗

∏
h∈S1:Γh,α=0

(θ̄eh,α − θej ,1)

︸ ︷︷ ︸
column α∗

,0
)
, (B.79)

and therefore

θej ,1 = θej ,α =
(B.78) · p
(B.76) · p =

(B.79) · p̄
(B.77) · p̄ = θ̄ej ,α∗ , ∀j ∈ S1 s.t. Γj,α = 1.

Therefore for any j ∈ S1 and any α′ such that Γj,α′ = 0, as long as there exists some

α such that Γj,α = 1, we have θej ,1 = θ̄ej ,α∗ from the above proof. Then the following

inequality holds

∀j ∈ S1, ∀α′, s.t. Γj,α′=0, θej ,α′ < θej ,α = θej ,1 = θ̄ej ,α∗ ≤ θ̄ej ,1.

Similarly we also have θej ,α′ < θ̄ej ,1 for any j ∈ S2 and Γj,α′ = 0; and θej ,1 > θ̄ej ,α′

for any j ∈ S1 ∪ S2 and Γj,α′ = 0. The proof of Lemma B.3 is complete.

Proof of Lemma D.1 (on page 323, Section B.3). We focus on T (ΘS2) first. As shown

in the proof of Lemma B.3, for any α there exists some α∗, which depends on α,

such that

m>α · T (ΘS1) = (0, 1︸︷︷︸
column α

,0),

n>α∗ · T (Θ̄S2) = (0, 1︸︷︷︸
column α∗

,0),

{m>α · T (ΘS1)} � {n>α∗ · T (ΘS2)} = (0, yα︸︷︷︸
column α

,0), yα 6= 0

{m>α · T (Θ̄S1)} � {n>α∗ · T (Θ̄S2)} = (0, x̄α∗︸︷︷︸
column α∗

,0), x̄α∗ 6= 0
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for some vectors mα and nα∗ . And based on these constructions we proved

θej ,α = θ̄ej ,α∗ , ∀j > M1 +M2.

Clearly from the constructions we have

{n>α∗ · T (ΘS2)}α 6= 0,

then we furthermore claim that under condition (C4*), nα∗ also has the following

property

{n>α∗ · T (ΘS2)}α′ = 0, ∀α′ �S1 α. (B.80)

Since otherwise if {n>α∗ · T (ΘS2)}α′ = 0 for some α′ �S1 α, we would have

{m>α′ · T (ΘS1)} � {n>α∗ · T (ΘS2)} = (0, sα′︸︷︷︸
column α′

,0), sα′ 6= 0, (B.81)

{m>α′ · T (Θ̄S1)} � {n>α∗ · T (Θ̄S2)} = (0, t̄α∗︸︷︷︸
column α∗

,0), t̄α∗ 6= 0, (B.82)

then using similar argument as that in Lemma B.3, for any j ∈ (S1 ∪ S2)c we would

have

θej ,α′ =
θej ,α′ · (B.81) · p

(B.81) · p =
θ̄ej ,α′ · (B.82) · p̄

(B.82) · p̄ = θ̄ej ,α∗ = θej ,α,

which contradicts Condition (C4) that Γ
(S1∪S2)c·,α = Γ

(S1∪S2)c·,α′ for any α′ �S1 α, since

(C4) naturally leads to (θj,α, j ∈ (S1∪S2)c) 6= (θj,α′ , j ∈ (S1∪S2)c) for any α′ �S1 α.

So the claim (B.80) must hold. By far we have found vα := nα∗ that satisfies the first

equation in (B.30) for each α. By symmetry between (Θ,p) and (Θ̄, p̄), using exactly

the same techniques will lead to uα for each α that satisfies the second equation in

(B.30).

Proof of Lemma B.6 (on page 244, Section B.4). Equation (B.70) for R = r can be
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written as

∑
α∈A

pα
∏

j: rj=rHj

θ
(rHj )

j,α

∏
j: rj 6=rHj

θ
(rj)
j,α =

∑
α∈A

p̄α
∏

j: rj=rHj

θ̄
(rHj )

j,α

∏
j: rj 6=rHj

θ̄
(rj)
j,α . (B.83)

We denote {0, . . . , Lj − 1} by [Lj] for simplicity. Now consider an arbitrary item set

S ⊆ S, and we write rS = rHS if rj = rHj for any j ∈ S. For this S, we sum (B.83) over

all response patterns r for which rj = rHj if and only if j ∈ S (i.e., r satisfies rS = rHS

and rSc ∈
∏

j /∈S[Lj] \ [rHj ]), then the left hand side (LHS) of the new equation is

∑
r: rS=rH

S
,

rSc∈
∏
j 6=S [Lj ]\[rHj ]

(∑
α∈A

pα
∏

j: rj=rHj

θ
(rHj )

j,α

∏
j: rj 6=rHj

θ
(rj)
j,α

)

=
∑
α∈A

pα
∏
j∈S

θ
(rHj )

j,α

∑
r: rS=rH

S
,

rSc∈
∏
j 6=S [Lj ]\[rHj ]

∏
j /∈S

θ
(rj)
j,α

=
∑
α∈A

pα
∏
j∈S

θ
(rHj )

j,α

∏
j /∈S

( ∑
rj 6=rHj

θ
(rj)
j,α

)
=
∑
α∈A

pα
∏
j∈S

θ
(rHj )

j,α

∏
j /∈S

(
1− θ(rHj )

j,α

)
,

so from (B.83) we have

∑
α∈A

pα
∏
j∈S

θ
(rHj )

j,α

∏
j /∈S

(
1− θ(rHj )

j,α

)
=
∑
α∈A

p̄α
∏
j∈S

θ̄
(rHj )

j,α

∏
j /∈S

(
1− θ̄(rHj )

j,α

)
(B.84)

holds for any S ⊆ S. By far we have shown the system of 2J equations (B.84)

hold for any rH . Note that (B.84) can be viewed as probability of a response pattern

consisting of binary responses, where for each item j and each latent class α, there are

two possible responses with probabilities θ
(rHj )

j,α and 1−θ(rHj )

j,α respectively. Then similar

to the proof of Proposition III.1 which establishes equivalence between equality of

probability mass functions and equality of marginal probabilities, (B.84) is equivalent

to (B.70) in the lemma. This completes the proof of Lemma B.6.
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APPENDIX C

Appendix of Chapter IV

This is the appendix to Chapter IV and it is organized as follows. Appendix C.1

gives the proof of Proposition IV.1. Appendix C.2 presents the proof of Theorem IV.1,

one of the main results of this Chapter IV. Appendix C.3 gives the proof of Theorem

IV.2. Appendix C.4 gives the proof of Theorem IV.3. Appendix C.5 presents the

proof of Theorem IV.4. Appendix C.6 gives the proof of Theorem IV.5. Appendix

C.7 gives the proof of Proposition IV.4. Appendix C.8 presents various simulation

studies for Chapter IV.

We introduce some additional notations. For a submatrix Q1 of Q that has size

J1 × K, we denote the item parameter matrix corresponding to these J1 items by

ΘQ1 , then ΘQ1 is a J1 × K submatrix of Θ. Denote Q1’s corresponding T -matrix

by T (Q1,ΘQ1), then T (Q1,ΘQ1) has size 2J1 × 2K . For notational simplicity, in the

following we denote θ+ ≡ 1−s under the DINA model, then Θ = (1−s, g) = (θ+, g)

under DINA. The following useful lemma is in the same spirit as Proposition B.1 and

Proposition B.2 and its proof is omitted.

Lemma C.1. Under a restricted latent class model, (Q,Θ,p) are identifiable if and

254



only if for any (Q,Θ,p) and (Q̄, Θ̄, p̄),

T (Q,Θ)p = T (Q̄, Θ̄)p̄ (C.1)

implies (Q,Θ,p) = (Q̄, Θ̄, p̄). For any θ∗ = (θ1, . . . , θJ)> ∈ RJ , there exists an

invertible matrix D(θ∗) depending only on θ∗, such that

T (Q,Θ− θ∗1>) = D(θ∗)T (Q,Θ). (C.2)

We add some remarks on Lemma C.1. First, Equation (C.1) can be written as

that, for any response pattern r ∈ {0, 1}J , Tr,·(Q,Θ)p = Tr,·(Q̄, Θ̄)p̄. Second,

thanks to (C.2), for any θ∗ = (θ1, . . . , θJ)> ∈ RJ , equality (C.1) leads to

T (Q,Θ− θ∗1>)p = T (Q̄, Θ̄− θ∗1>)p̄,

and further Tr,·(Q,Θ−θ∗1>)p = Tr,·(Q̄, Θ̄−θ∗1>)p̄ for any r ∈ {0, 1}J . Besides, If

(C.1) holds, then for any submatrix Q1 of Q, equality T (Q1,ΘQ1)p = T (Q̄1, Θ̄Q̄1
)p̄

also holds.

C.1 Proof of Proposition IV.1

Consider a Q-matrix of size J ×K in the form

Q =

Q′
0

 ,

where Q′ is of size J ′ ×K and contains those nonzero q-vectors of Q. For any item

j ∈ {J ′ + 1, . . . , J} which has qj = 0, all the attribute profiles α satisfy α � qj, so

there is only one item parameter associated with j under Q, and we denote it by θj.
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Denote the first J ′ rows of Θ by Θ′. Denote the 2J
′ × 2K T -matrix associated with

matrix Q′ by T ′(Q′,Θ′).

First consider the case where (Q′,Θ′,p) are strictly (or generically) identifiable,

and we will show (Q,Θ,p) are also strictly (or generically) identifiable. Assume

there is a J ×K matrix Q̄ and associated parameters (Θ̄, p̄) such that (C.1) holds.

Denote the submatrix of Q̄ containing its first J ′ rows by Q̄′, and the submatrix of

Θ̄ containing its first J ′ rows by Θ̄
′
. Then (C.1) implies T (Q′,Θ′)p′ = T (Q̄′, Θ̄

′
)p̄′,

and the strict (or generic) joint identifiability of (Q′,Θ′,p) gives that Q̄′ ∼ Q′ and

(Θ̄
′
, p̄) = (Θ′,p). For an arbitrary RLCM, the strict (or generic) identifiability of

(Q′,Θ′,p) implies that T (Q′,Θ′) has full rank 2K strictly (or generically).

This is because if not so, then the proportion parameters p can not be strictly (or

generically) identifiable, in the sense that there exist multiple different p such that

T (Q′,Θ′)p are all equal. This would contradict the assumption that (Q′,Θ′,p) are

strictly (or generically) identifiable. Therefore T (Q′,Θ′) is strictly (or generically)

full-rank. Then for each α ∈ {0, 1}K there must exist a 2K-dimensional vector vα

such that

v>α·T (Q′,Θ′) = v>α·T (Q̄′, Θ̄
′
) = (0, xα︸︷︷︸

column α

,0), xα 6= 0,

and v>α·T (Q′,Θ′)p = v>α·T (Q̄′, Θ̄
′
)p̄ = xαpα 6= 0. Then again use the property (C.2)

and we have the following equality for any j ∈ {J ′ + 1, . . . , J},

θj,α =
{Tej ,·(Q,Θ)� [v>α· T (Q′,Θ′)] }p

v>α· T (Q′,Θ′)p

=
{Tej ,·(Q,Θ)� [v>α· T (Q̄′, Θ̄

′
)] }p̄

v>α· T (Q̄′, Θ̄
′
)p̄

= θ̄j,α,

where “�” represents the element-wise product of two vectors. This proves Θ = Θ̄

and Q ∼ Q̄. So (Q,Θ,p) are strictly (or generically) identifiable.
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Next consider the case where (Q′,Θ′,p) are not strictly (or generically) identi-

fiable, so there exist (Q̄′, Θ̄
′
, p̄) � (Q′,Θ′,p) such that T ′(Q̄′, Θ̄

′
)p̄ = T ′(Q′,Θ′)p.

Now extend Q̄′ to Q̄ of size J ×K by adding J − J ′ all-zero q-vectors, i.e.,

Q̄ =

Q̄′
0

 ,

and set θ̄j = θj for j ∈ {J ′ + 1, . . . , J}. Then for any r = (r1, . . . , rJ ′ , rJ ′+1, . . . , rJ) ∈

{0, 1}J and the corresponding r′ = (r1, . . . , rJ ′),

Tr,·(Q,Θ)p =
{
T ′r′,·(Q′,Θ′)p

} ∏
j>J ′

θ
rj
j ;

Tr,·(Q̄, Θ̄)p̄ =
{
T ′r′,·(Q̄′, Θ̄′)p

} ∏
j>J ′

θ
rj
j .

Now that T (Q,Θ)p = T (Q̄, Θ̄)p̄ but (Q̄, Θ̄, p̄) � (Q,Θ,p), we obtain that (Q,Θ,p)

are not strictly (or generically) identifiable. The proof of the proposition is complete.

C.2 Proof of Theorem IV.1

We first prove the sufficiency, and then show the necessity of the conditions. Under

DINA, (C.1) can be equivalently written as that for any r ∈ {0, 1}J ,

Tr,·(Q,θ+, g)p = Tr,·(Q̄, θ̄+
, ḡ)p̄. (C.3)

We first introduce some notations. In the following discussion, for an integer M ,

we denote [M ] = {1, . . . ,M}. For an item set S ⊆ [J ], denote qS = ∨j∈Sqj =

(maxj∈S qj,1,maxj∈S qj,2, . . . ,maxj∈S qj,K), then qS is also a K-dimensional binary vec-
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tor, and we denote its k element by qS,k. Recall

Q =

IK
Q?

 ,

and we denote the submatrix of Q̄ consisting of its first K row vectors by Q̄1:K,·. We

next show in five steps that if (C.3) holds, then Q̄ ∼ Q, and also θ+ = θ̄
+

, ḡ = g,

p̄ = p.

Step 1. After some column rearrangement, Q̄1:K,· is an upper-triangular matrix with

all the diagonal elements being ones.

Step 2. c̄j = cj for all j ∈ {K + 1, . . . , J}.

Step 3. ḡk = gk for all k ∈ {1, . . . , K}.

Step 4. Q̄1:K,· ∼ IK

Step 5. Q̄ ∼ Q, θ+ = θ̄
+

, ḡ = g, p̄ = p.

For any item set S ⊆ {1, . . . , J}, denote θ+
S =

∑
j∈S cjej, and denote gS, θ̄

+
S , and

ḡS similarly. Consider the response pattern r? =
∑

j∈S ej and any θ? =
∑

j∈S θ
?
jej,

then Equation (C.3) together with Lemma C.1 imply that

Tr?,·(Q,θ+
S − θ?, gS − θ?)p = Tr?,·(Q̄, θ̄+

S − θ?, ḡS − θ?)p̄. (C.4)

We will frequently use (E.3) in the following proof. And when the item set S and

response pattern r? are clearly implied by the definition of θ?, we will omit the

subscript S in the above (E.3). We also frequently use the fact that when (E.3)

holds, cj 6= ḡj and gj 6= c̄j for any item j. This is true because if cj = ḡj, we would
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have

Tej ,·(Q,θ+, g)p = cj(
∑
α�qj

pα) + gj(
∑
α�qj

pα) < cj = ḡj

≤c̄j(
∑
α�qj

p̄α) + ḡj(
∑
α�qj

p̄α) = Tej ,·(Q̄, θ̄+
, ḡ)p̄,

which contradicts (C.3). So cj 6= ḡj and similarly gj 6= c̄j for each j. As stated in the

main text, we assume without loss of generality that there is no all-zero row vector

in true Q-matrix. If, however, the jth row vector of Q̄ equals 0, then c̄j would equal

ḡj, and we denote this value by θ̄j. Equation (C.3) gives

θ̄j = cj

( ∑
α:α�qj

pα

)
+ gj

( ∑
α:α�qj

pα

)
,

and hence gj < θ̄j < cj holds for this j.

Step 1. In this step we prove that Q̄1:K,· must take the following form after some

column rearrangement,

Q̄1:K,· ∼



1 ∗ . . . ∗

0 1 . . . ∗
...

...
. . .

...

0 0 . . . 1


. (C.5)

Namely, after properly rearranging the columns of Q̄1:K,·, we have Q̄k,k = 1 and

Q̄k,h = 0 for any k > h.

We first introduce the following useful lemma.

Lemma C.2. Suppose the true Q satisfies Condition A that Q1:K = IK. If there

exists an item set S ⊆ {K + 1, . . . , J} such that

max
m∈S

qm,h = 0, max
m∈S

qm,j = 1 ∀j ∈ J
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for some attributes h ∈ [K] and a set of attributes J ⊆ [K] \ {h}, then

∨j∈J q̄j � q̄h.

Proof of Lemma C.2. We prove by contradiction. Assume there exist attribute

h ∈ [K] and a set of attributes J ⊆ [K]\{h}, such that ∨j∈J q̄j � q̄h; and that there

exists S ⊆ {K + 1, . . . , J} such that maxm∈S qm,h = 0 and maxm∈S qm,j = 1. Define

θ? = c̄heh +
∑
j∈J

ḡjej +
J∑

m=K+1

gmem, r? = eh +
∑
j∈J

ej +
J∑

m=K+1

em,

and we claim that Tr?,·(Q̄, θ̄+ − θ?, ḡ − θ?) is an all-zero vector. This is because for

any α ∈ {0, 1}K , the corresponding element in Tr?,α(Q̄, θ̄
+ − θ?, ḡ − θ?) contains a

factor Fα = (θ̄h,α − c̄h)
∏

j∈J (θ̄j,α − ḡj). While this factor Fα 6= 0 only if θ̄h,α = ḡh

and θ̄j,α = c̄j for all j ∈ J , which happens if and only if α � q̄h and α � q̄j for all

j ∈ J , which is impossible because ∨j∈J q̄j � q̄h by our assumption. So the claim

Tr?,·(Q̄, θ̄+ − θ?, ḡ − θ?) = 0 is proved, and further Tr?,·(Q̄, θ̄+ − θ?, ḡ − θ?)p̄ = 0.

Equality (E.3) becomes Tr?,·(Q,θ+ − θ?, g − θ?)p̄ = Tr?,·(Q̄, θ̄+ − θ?, ḡ − θ?)p̄ = 0,

which leads to

0 = Tr?,·(Q,θ+ − θ?, g − θ?)p = p1(ch − c̄h)
∏
j∈J

(cj − ḡj)
∏
m>K

(cm − gm),

which is because for any α 6= 1, we must have α � qm for some m > K under

Condition C, and hence the element Tr?,α(Q,θ+−θ?, g−θ?) contains a factor (gm−

gm) = 0. Since cm − gm > 0 for m > K and cj − ḡj 6= 0, we obtain ch = c̄h.

We remark here that ch = c̄h also implies q̄h 6= 0, because otherwise we would

have θ̄h = c̄h = ch, which contradicts the gh < θ̄h < ch proved before the current

Step 1. This indicates the Q̄1:K,· can not contain any all-zero row vector, because

otherwise q̄j � q̄h for the all-zero row vector q̄h, which we showed is impossible.
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Consider the item set S in the lemma that satisfies S ⊆ {K + 1, . . . , J} such that

maxm∈S qm,h = 0 and maxm∈S qm,j = 1 for all j ∈ J . Define

θ? = c̄heh +
∑
j∈J

ḡjej +
∑
m∈S

gmem.

Note that ch = c̄h. The RHS of (E.3) is zero, and so is the LHS of it. The row vector

Tr?,·(Q,θ+ − θ?, g − θ?) has the following property

Tr?,α(Q,θ+ − θ?, g − θ?)

=


(gh − c̄h)

∏
j∈J (cj − ḡj)

∏
m∈S(cm − gm), α � qh, α � qJ , α � qS;

0, otherwise.

An important observation is that {α ∈ {0, 1}K : α � qh, α � qJ , α � qS} = A 6=

∅. This is because qS,h = 0 and qS,j = 1 for all j ∈ J hold, and we can just choose

α for which αh = 0 and αk = 1 for all qS,k = 1, then such α belongs to the set A.

Therefore we have

Tr?,·(Q,θ+ − θ?, g − θ?)p

= (gh − c̄h)
∏
j∈J

(cj − ḡj)
∏
m∈S

(cm − gm)
(∑
α∈A

pα

)
= 0,

which leads to a contradiction since gh − c̄h 6= 0, cj − ḡj 6= 0, cm − gm 6= 0 and∑
α∈A pα > 0, i.e., every factor in the above product is nonzero. This completes the

proof of Lemma C.2.

We now proceed with the proof of Step 1 using an induction argument. We first

introduce the definition of lexicographic order between two binary vectors of the same

length. Specifically, for two binary vectors a = (a1, . . . , aL)> and b = (b1, . . . , bL)>

both of length L, we say a is of smaller lexicographic order than b and denote a ≺lex b,
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if either a1 < b1, or there exists a integer l ∈ {2, . . . , L} such that al < bl and

am = bm for all m = 1, . . . , l − 1. It is not hard to see when Condition B that Q?

contains K distinct column vectors is satisfied, the K columns of Q? can be arranged

in an increasing lexicographic order. Namely, under Condition B, there exists a

permutation map σ(·) : [K]→ [K] such that

Q?
,σ(1) ≺lex Q

?
,σ(2) ≺lex · · · ≺lex Q

?
,σ(K). (C.6)

Without loss of generality, next we consider the case where σ(·) is the identity map,

i.e., σ(k) = k for all k ∈ [K].

We first consider attribute 1. Since Q?
,1 has the smallest lexicographic order among

the columns of Q?, we have the conclusion that there must exist an item set S ⊆

{K + 1, . . . , J} such that

qS,1 = 0, qS,` = 1 ∀` = 2, . . . , K.

We apply Lemma C.2 to obtain ∨`∈{2,...,K}q̄` � q̄1, which means

( max
m∈{2,...,K}

q̄`,1, max
m∈{2,...,K}

q̄`,2, . . . , max
m∈{2,...,K}

q̄`,K)

� (q̄1,1, . . . , q̄1,K).

This implies there must exist an attribute m1 ∈ [K] such that

max
k∈[K]\{1}

q̄k,m1 = 0, q̄1,m1 = 1, (C.7)

which exactly says the m1-th column vector of Q̄1:K,· must equal the basis vector

( 1︸︷︷︸
column 1

,0)> = e1, i.e., we have Q̄1:K,m1 = e1.

Now we assume as the inductive hypothesis that for h ∈ [K] and h > 1, we have a
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distinct set of attributes {m1, . . . ,mh−1} ⊆ [K] such that their corresponding column

vectors in Q̄1:K,· satisfy

∀i = 1, . . . , h− 1, Q̄1:K,mi = (∗, . . . , ∗, 1︸︷︷︸
column i

, 0, . . . , 0)>. (C.8)

Now we focus on attribute h. By (E.5), the column vector Q?
,h has the smallest

lexicographic order among the K−h− 1 columns in {Q?·,h, Q?·,h+1, . . . , Q
?·,K}, there-

fore similar to the argument in the previous paragraph, there must exist an item set

S ⊆ {K + 1, . . . , J} such that

qS,h = 0, qS,` = 1 ∀` = h+ 1, . . . , K. (C.9)

Therefore Lemma C.2 implies ∨`∈{h+1,...,K}q̄` � q̄1, and further leads to

max
`∈{h+1,...,K}

q̄`,mh = 0, q̄h,mh = 1. (C.10)

We point out that mh 6∈ {m1, . . . ,mh−1}, because by the induction hypothesis (E.6)

we have q̄h,mi = 0 for i = 1, . . . , h − 1. So {m1, . . . ,mh−1,mh} contains h distinct

attributes. Furthermore, (E.8) gives that Q̄·,mh = (∗, . . . , ∗, 1︸︷︷︸
column h

, 0, . . . , 0)>, which

generalizes (E.6) by extending h − 1 there to h. Therefore, we use the induction

argument to obtain

∀k ∈ {1, . . . , K − 1}, Q̄1:K,mk = (∗, . . . , ∗, 1︸︷︷︸
column k

, 0, . . . , 0)>.

Furthermore, when considering the last attribute K, the Kth item must have q-

vector taking the form of q̄K = (0, . . . , 0, ∗︸︷︷︸
column mK

, 0, . . . , 0), where the “∗” in q̄K

is the only element unspecified. Since previously we have shown in the proof of

Lemma C.2 that q̄j = 0 can not happen for any item j, there must be q̄K =
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(0, . . . , 0, 1︸︷︷︸
column mK

, 0, . . . , 0). Now we have essentially obtained

Q̄1:K, (m1,...,mK) =



1 ∗ . . . ∗

0 1 . . . ∗
...

...
. . .

...

0 0 . . . 1


, (C.11)

and the conclusion of Step 1 in (C.5) is proved.

Step 2. In this step we prove cj = c̄j for j = K + 1, . . . , J . For an arbitrary item

j ∈ {K + 1, . . . , J}, define a response vector r∗ =
∑

h:h6=j ej and

θ∗ =
K∑
h=1

ḡheh +
∑

h>K, h6=j

gheh.

We claim that Tr∗,·(Q̄, θ̄+ − θ∗, ḡ − θ∗) contains only one nonzero element corre-

sponding to the all-one attribute pattern α = 1. The reasoning is as follows. Under

the conclusion of Step 1, Q̄1:K,· takes the form of (C.5), which means each attribute

is required by at least one item in {q̄1, . . . , q̄K}. Then for any α 6= 1, there must

exist some attribute k ∈ [K] such that α � q̄k, which implies for this particular

α the element Tr∗,α(Q̄, θ̄
+ − θ∗, ḡ − θ∗) contains a factor (ḡh − ḡh) = 0. Therefore

Tr∗,α(Q̄, θ̄
+−θ∗, ḡ−θ∗) 6= 0 only ifα = 1. Next consider Tr∗,α(Q,θ+−θ∗, g−θ∗). Un-

der Condition A, in the true Q each attribute is required by at least three items, so the

row vector corresponding to response pattern r∗ in T (Q,θ+−θ∗, g−θ∗) only contains

one nonzero element, in column α = 1>K , representing the attribute profile mastering

all the K attributes. This is because for any other attribute profile α′ that lacks at

least one attribute k, there must be some item h > K, h 6= j requiring attribute k so

that α′ � qh; and this results in θeh,α′ = gh and Tr∗,α′(Q,θ
+ − θ∗, g − θ∗) = 0. In
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summary,

Tr∗,α(Q,θ+ − θ∗, g − θ∗) =
K∏
h=1

(θh,α − ḡh)
∏
h>K:
h 6=j

(θh,α − gh) 6= 0 iff α = 1;

Tr∗,α(Q̄, θ̄
+ − θ∗, ḡ − θ∗) =

K∏
h=1

(θ̄h,α − ḡh)
∏
h>K:
h 6=j

(θ̄h,α − gh) 6= 0 iff α = 1.

Now further consider item j. Since 1>K � qj and 1>K � q̄j, one must have θj,1>K = cj

and θ̄j,1>K = c̄j. Since we assume pα > 0 for each α, we have Tr∗,·(Q,θ+ − θ∗, g −

θ∗)p = Tr∗,1>K (Q,θ+ − θ∗, g − θ∗)p1>K
6= 0. So (C.2) in Lemma C.1 implies that

cj =
Tr∗+ej ,·(Q,θ+ − θ∗, g − θ∗)p
Tr∗,·(Q,θ+ − θ∗, g − θ∗)p =

Tr∗+ej ,·(Q̄, θ̄+ − θ∗, ḡ − θ∗)p̄
Tr∗,·(Q̄, θ̄+ − θ∗, ḡ − θ∗)p̄

= c̄j.

In the above argument j is arbitrary, so cj = c̄j for any j = K + 1, . . . , J .

Step 3. In this step we prove gk = ḡk for k = 1, . . . , K. Recall that in Step 1 we

showed that (E.5) about the lexicographic order holds and assumed σ(k) = k for

k ∈ [K] without loss of generality. We now prove g1 = ḡ1. Define

θ∗ =
K∑
h=1

ḡheh +
∑
h>K:
qh,1=0

gheh +
∑
h>K:
qh,1=1

cheh, (C.12)

then

T∑
h eh,α

(Q,θ+ − θ∗, g − θ∗) =
K∏
h=1

(θh,α − ḡh)
∏
h>K:
qh,1=0

(θh,α − gh)
∏
h>K:
qh,1=1

(θh,α − ch);

T∑
h eh,α

(Q̄, θ̄
+ − θ∗, ḡ − θ∗) =

K∏
h=1

(θ̄h,α − ḡh)
∏
h>K:
qh,1=0

(θ̄h,α − gh)
∏
h>K:
qh,1=1

(θ̄h,α − ch).

First, the row vector T∑J
h=1 eh,·(Q̄, θ̄+ − θ∗, ḡ − θ∗) equals the zero vector. This is
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because Q̄1:K,· takes the form in (C.5) by Step 1, and any attribute profile α 6= 1>K

would have θ̄h,α = ḡh for some h ∈ {1, . . . , K}, which makes the corresponding

element in the above row vector zero. Furthermore, T∑J
h=1 eh,1

>
K

(Q̄, θ̄
+−θ∗, ḡ−θ∗) is

also zero, because θ̄h,α = c̄h = ch for those h > K such that qh,1 = 1. Since Q?·,1 has

the smallest lexicographic order among the columns of Q?, for any k ∈ {2, . . . , K},

there must exist some item h ∈ {K + 1, . . . , J} that requires attribute 1, as a result

∨h>K: qh,1=0 qh = (0, 1, . . . , 1).

This ensures T∑J
h=1 eh,α

(Q,θ+ − θ∗, g − θ∗) would equal zero if α lacks any attribute

other than the first one. So the nonzero elements in the row vector T∑J
h=1 eh,·(Q,θ+−

θ∗, g − θ∗) can only correspond to columns α1 = (0, 1, . . . , 1) or α2 = 1>K . Further,

we claim T∑J
h=1 eh,α

2(Q,θ
+ − θ∗, g − θ∗) = 0, this is because θh,α = ch for those h

such that qh,1 = 1. So the row vector T∑J
h=1 eh,·(Q,θ+−θ∗, g−θ∗) only contains one

potentially nonzero element in column α1 = (0, 1, . . . , 1) as follows

T∑J
h=1 eh,α1

(Q,θ+ − θ∗, g − θ∗) = (g1 − ḡ1)
K∏
h=2

(ch − ḡh)
∏
h>K:
qh,1=0

(ch − gh)
∏
h>K:
qh,1=1

(gh − ch).

(C.13)

Using the fact T∑J
h=1 eh,·(Q̄, θ̄+ − θ∗, ḡ − θ∗) = 02K , the equality

T∑J
h=1 eh,α

1(Q,θ
+ − θ∗, g − θ∗)p = T∑J

h=1 eh,α
1(Q̄, θ̄

+ − θ∗, ḡ − θ∗)p̄ = 0

implies the element in (E.11) must also be zero. As shown earlier, ch− ḡh 6= 0 for any

h, so g1 = ḡ1 must hold.

Next we use an induction argument to prove that for k = 2, . . . , K, gk = ḡk. In
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particular, suppose for any 1 ≤ m ≤ k − 1, we already have gm = ḡm. Define

θ∗ =
K∑
h=1

ḡheh +
∑

h>K: qh,k=0

gheh +
∑

h>K: qh,k=1

cheh. (C.14)

For the similar reason as stated before, T∑J
h=1 eh,·(Q̄, θ̄+− θ∗, ḡ− θ∗) equals the zero

vector. We claim that the row vector T∑J
h=1 eh,·(Q,θ+−θ∗, g−θ∗) only contains one

potentially nonzero element in column α′ := (1, . . . , 1, 0︸︷︷︸
column k

, 1, . . . , 1). The reason

is as follows. On the one hand, for any attribute profile α that lacks some attribute

l ∈ {k + 1, . . . , K}, due to the assumption in (E.5) that Q∗·,k ≺lex Q
∗·,l, there must

exist some item h > K such that qh,k = 0, qh,l = 1. So for this particular α we have

α � qh, θh,α = gh, which makes T∑J
h=1 eh,α

(Q,θ+ − θ∗, g − θ∗) = 0. On the other

hand, for any attribute profile α′ that lacks some attribute m ∈ {1, . . . , k − 1}, one

has α′ � qm = em and θm,α′ = gm = ḡm, where the last equality gm = ḡm comes

from the induction assumption. This results in T∑J
h=1 eh,α

′(Q,θ
+ − θ∗, g − θ∗) = 0

for all such α′. In conclusion, the nonzero elements in this transformed row vector

can only be in columns α′ or α2 = 1>K . For similar reason as in proving g1 = ḡ1,

T∑J
h=1 eh,α2

(Q,θ+− θ∗, g− θ∗) = 0. So the transformed row vector only contains one

potentially nonzero entry corresponding to α′:

T∑
h eh,α

′(Q,θ+ − θ∗, g − θ∗)

= (gk − ḡk)
∏

1≤h≤K:
h 6=k

(ch − ḡh)
∏
h>K:
qh,k=0

(ch − gh)
∏
h>K:
qh,k=1

(gh − ch).

The same argument after (E.11) gives gk = ḡk. In conclusion, the induction method

yields gk = ḡk for k = 1, . . . , K.

Step 4. In this step we show that Q̄1:K,· ∼ IK . Recall that in Step 1 we already

obtained (E.9), and now we aim to show that the Q̄1:K, (m1,...,mK) in (E.9) can be
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further written as

Q̄1:K, (m1,...,mK) =



1 0 . . . 0

0 1 . . . 0

...
...

. . .
...

0 0 . . . 1


.

We now claim that q̄j � q̄h for any 1 ≤ j < h ≤ K. If this claim is true, then

Q̄1:K, (m1,...,mK) = IK must hold and the conclusion Q̄1:K,· ∼ IK is reached. We next

prove that claim by contradiction. If there exist some 1 ≤ j < h ≤ K such that

q̄j � q̄h, then define

θ? = c̄heh + ḡjej +
J∑

m=K+1

gmem,

we have

0 = Tr?,·(Q̄, θ̄+ − θ?, ḡ − θ?)p̄

= Tr?,·(Q,θ+ − θ?, g − θ?)p

= p1(ch − c̄h)(cj − ḡj)
J∏

m=K+1

(cm − gm),

which implies ch = c̄h. Note that we have obtained gj = ḡj in Step 3, and we next

define θ? = c̄heh + ḡjej. The equality Tr?,·(Q̄, θ̄+ − θ?, ḡ − θ?)p̄ = 0 still holds and

(E.3) gives

0 = Tr?,·(Q,θ+ − θ?, g − θ?)p (C.15)

= (gh − c̄h)(cj − ḡj)
( ∑
α:α�qh,α�qj

pα

)
= (gh − ch)(cj − gj)

( ∑
α:α�qh,α�qj

pα

)
.

Since Q1:K,· = IK , we have that qj and qh in the true Q are distinct basis vectors,

therefore
(∑

α:α�qh,α�qj
pα

)
> 0. Therefore (C.15) leads to a contradiction, and we
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have proved the claim that q̄j � q̄h for any 1 ≤ j < h ≤ K. As stated earlier, this

claim naturally leads to the conclusion of Step 3 that Q̄1:K,· ∼ IK .

Step 5. In this step we prove that after reordering the columns in Q̄ such that

Q̄1:K = IK , we must have qj = q̄j for j = K + 1, . . . , J . In the following two parts,

we first prove q̄j � qj for all j ∈ {K + 1, . . . , J} in part (a); and then prove q̄j = qj

for all j ∈ {K + 1, . . . , J} in part (b).

(a) We next show q̄j � qj for all j ∈ {K+1, . . . , J}. We use proof by contradiction,

and assume q̄j � qj for some j ∈ {K + 1, . . . , J}. Then {α : α � q̄j, α �

qj} = A 6= ∅ and
∑
α∈A pα 6= 0. Define

θ∗ =
∑

k∈[K]: q̄j,k=1

gkek + cjej, (C.16)

then Tr∗,·(Q̄, θ̄+−θ∗, ḡ−θ∗) = 0 and Tr∗,·(Q̄, θ̄+−θ∗, ḡ−θ∗)p̄ = 0. However,

for any α ∈ A, one has θj,α = gj and θk,α = ck for any k s.t. q̄j,k = 1, so for

any α ∈ A we have

Tr∗,α(Q,θ+ − θ∗, g − θ∗) =
∏

1≤k≤K:
qj,k=1

(θk,α − gk)(θj,α − cj)

=
∏

1≤k≤K:
qj,k=1

(ck − gk)(gj − cj) 6= 0,

and hence

Tr∗,·(Q,θ+ − θ∗, g − θ∗)p =
∏

1≤k≤K:
qj,k=1

(ck − gk)(gj − cj)
∑
α∈A

pα

6= 0 = Tr∗,·(Q̄, θ̄+ − θ∗, ḡ − θ∗)p̄,

which contradicts (C.3).

(b) Based on (a), we next show q̄j = qj for all j ∈ {K + 1, . . . , J} using proof by
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contradiction. Since part (a) gives q̄j � qj, if q̄j 6= qj, then there must exist

some attribute k ∈ [K] such that q̄j,k = 1 and qj,k = 0. This implies q̄j � q̄k.

Define

θ? = c̄kek + ḡjej +
∑

m>K:m 6=j

gmem,

then Tr?,·(Q̄, θ̄+ − θ?, ḡ − θ?)p̄ = 0. Since Condition C holds, each attribute

is required by at least one item in the set {m > K : m 6= j}, which implies

Tr?,α(Q,θ+ − θ?, g − θ?) 6= 0 only if α = 1. Therefore (E.3) gives that

0 = Tr?,·(Q,θ+ − θ?, g − θ?)p

= (ck − c̄k)(cj − ḡj)
∏

m>K:m 6=j

(cm − gm)p1,

so ck = c̄k. Now we further define

θ? = c̄kek + ḡjej +
∑

h∈[K]\{k}

gmem,

then Tr?,·(Q̄, θ̄+ − θ?, ḡ − θ?)p̄ = 0. However, qj � qk under the true Q, and

(E.3) gives

Tr?,·(Q,θ+ − θ?, g − θ?)p = (gk − c̄k)
∏

h∈[K]\{k}

(ch − gh)(cj − ḡj)pα−ek ,

where α−ek = (1, 0︸︷︷︸
column k

,1), so the above display is nonzero. This contradicts

(E.3), and this means q̄j 6= qj can not happen. So we have q̄j = qj for

j ∈ {K + 1, . . . , J}.

Now we have proved Q ∼ Q̄. Now that Q ∼ Q̄, Theorem 1 in Gu and Xu (2019b)

(Chapter II) gives that Conditions A and B ensure the identifiability of the model

parameters (s := 1 − θ+, g,p). This concludes the proof of the sufficiency of the

conditions.
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In the end we show the necessity of the conditions. By Theorem 1 in Gu and Xu

(2019b), Conditions A and B are necessary for identifiability of the model parameters

(s, g,p) given a known Q, so they are also necessary for identifiability of (Q, s, g,p).

C.3 Proof of Theorem IV.2

Proof of the necessity of each attribute required by ≥ 2 items. Suppose Q

takes the form of

Q =

1 0>

0 Q?

 ,

then for any valid (θ+, g,p) associated with Q, we next construct (θ̄
+
, ḡ, p̄) 6=

(θ+, g,p) such that T (Q,θ+, g)p = T (Q, θ̄
+
, ḡ)p̄ holds. In particular, we arbitrarily

choose c̄1 that is not equal to c1 = 1− s1 and set

p̄α =


(c1/c̄1)pα, if α1 = 1,

pα + (1− c1/c̄1)pα+e1 , if α1 = 0.

Then set ḡ1 = g1, and c̄j = cj, ḡj = gj for j = 2, . . . J . Then it is not hard to check

that T (Q,θ+, g)p = T (Q, θ̄
+
, ḡ)p̄. Since (θ+, g,p) are arbitrary, we have shown

the non-identifiability set spans the entire parameter space and (Q,θ+, g,p) are not

generically identifiable. Therefore, this proves that (Q,θ+, g,p) are not generically

identifiable if some attribute is required by only one item.

In the following we prove part (a), (b), and (c) when some attribute is required

by only two items.
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Proof of Part (a). Under the assumption of part (a), Q takes the form

Q =


1 0>

1 1>

0 Q?

 .

Given arbitrary DINA model parameters (θ+, g,p) under this Q, we next construct

another different set of DINA parameters (θ̄
+
, ḡ, p̄) 6= (θ+, g,p) also associated with

this Q, such that

T (Q,θ+, g)p = T (Q, θ̄
+
, ḡ)p̄. (C.17)

In particular, we set c̄j = cj and ḡj = gj for all j = 3, . . . , J . Under this construc-

tion, (C.17) simplifies to the following two sets of equations

∀α′ ∈ {0, 1}K−1, α′ 6= 1,



p(0,α′) + p(1,α′) = p̄(0,α′) + p̄(1,α′),

g1p(0,α′) + c1p(1,α′) = ḡ1p̄(0,α′) + c̄1p̄(1,α′),

g2[p(0,α′) + p(1,α′)] = ḡ2[p̄(0,α′) + p̄(1,α′)],

g2[g1p(0,α′) + c2p(1,α′)] = ḡ2[ḡ1p̄(0,α′) + c̄1p̄(1,α′)];

(C.18)

and for α′ = 1,



p(0,1) + p(1,1) = p̄(0,1) + p̄(1,1),

g1p(0,1) + c1p(1,1) = ḡ1p̄(0,1) + c̄1p̄(1,1),

g2p(0,1) + c2p(1,1) = ḡ2p̄(0,1) + c̄2p̄(1,1),

g1g2p(0,1) + c1c2p(1,1) = ḡ1ḡ2p̄(0,1) + c̄1c̄2p̄(1,1).

(C.19)

The above (C.18) obviously leads to ḡ2 = g2, and the last two equations of (C.18)
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are automatically satisfied if the first two of (C.18) are satisfied. Then the last two

equations of (C.19) can be transformed to


(c2 − g2)p(1,1) = (c̄2 − g2)p̄(1,1),

c1(c2 − g2)p(1,1) = c̄1(c̄2 − g2)p̄(1,1);

which gives c̄1 = c1. Additionally, when c̄1 = c1, we also have that the last equality

of (C.19) holds as long as the first three equalities of (C.19) hold. In summary, now

there are 2K+2 parameters to be determined, which are {ḡ1, c̄2}∪{p̄α : α ∈ {0, 1}K},

while they only have to satisfy the following 2× (2K−1− 1) + 3 = 2K + 1 constraints,

∀α′ ∈ {0, 1}K−1, for α′ 6= 1,


p(0,α′) + p(1,α′) = p̄(0,α′) + p̄(1,α′),

g1p(0,α′) + c1p(1,α′) = ḡ1p̄(0,α′) + c1p̄(1,α′);

and for α′ = 1,


p(0,1) + p(1,1) = p̄(0,1) + p̄(1,1),

g1p(0,1) + c1p(1,1) = ḡ1p̄(0,1) + c1p̄(1,1),

g2p(0,1) + c2p(1,1) = g2p̄(0,1) + c̄2p̄(1,1).

Since the number of free variables 2K + 2 is greater than the number of constraints

2K+1, there exist infinitely many different solutions to the above system of equations.

This means that the (Q, s, g,p) are not generically identifiable. In particular, one

can arbitrarily choose ḡ1 close to but not equal to g1, then solve for the remaining
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parameters {p̄α, α ∈ {0, 1}K} and c̄2 as follows,

∀α′ ∈ {0, 1}K−1,


p̄(0,α′) = p(0,α′)(g1 − c1)/(ḡ1 − c1),

p̄(1,α′) = p(0,α′) + p(1,α′) − p̄(0,α′);

c̄2 =
g2[p(0,1) − p̄(0,1)] + c2p(1,1)

p̄(1,1)

.

This concludes the proof of part (a) of the theorem.

Next we first prove (b.2), i.e. when Q? has two submatrices IK−1. In this case,

the Q contains a submatrix of the form (IK , IK)>. The proof of (b.1), i.e. when Q?

satisfies Conditions A, B and C, is combined with the proof of part (c) later.

Proof of Part (b.2). We first give the proof when Q only consists of two IK ’s,

namely Q = (IK , IK)>. In this case, we first prove that Q̄ ∼ Q must hold, using an

argument similar to Step 1 of the proof of Theorem IV.1. Suppose T (Q,θ+, g)p =

T (Q̄, θ̄
+
, ḡ)p̄. Since Q(K+1):(2K),· = IK , we have that for each attribute h ∈ [K], there

is

max
m∈{K+1,...,2K},

m 6=K+h

qm,h = 0, max
m∈{K+1,...,2K}

qm,k = 1 ∀k ∈ [K] \ {h}.

Therefore we can apply Lemma C.2 with S = {K + 1, . . . , 2K} \ {K + h} and J =

[K] \ {h} to obtain

max
k∈J

q̄k � q̄h.

This essentially implies that for an arbitrary h ∈ [K], there must be a mh ∈ [K]

such that q̄h,mh = 0 and q̄k,mh = 0 for all k ∈ [K] \ {h}. Moreover, the K integers

m1,m2, . . . ,mK must all be distinct, otherwise it is easy to see maxk∈J q̄k � q̄h would

fail to hold for some h ∈ [K]. So (m1,m2, . . . ,mK) is a permutation of (1, 2, . . . , K).

Now we have obtained that Q̄1:K,(m1,...,mK) must be an identity matrix, i.e., Q̄1:K,· ∼
Q1:K,·. Reasoning in exactly the same way gives Q̄(K+1):(2K),· ∼ Q(K+1):(2K),·, and we
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have Q̄ ∼ Q. Now for an arbitrary α = (α1, α2, . . . , αK) ≡ (α1,α
′), define

θ∗ =ḡ1e1 + c̄K+1eK+1 +
∑

k>1:αk=1

gkek +
∑

k>1:αk=0

ckek

≡ḡ1e1 + c̄K+1eK+1 + θα

then Te1+eK+1
(Q, s̄− θ∗, ḡ − θ∗) = 0, so

0 =Te1+eK+1
(Q, s̄− θ∗, ḡ − θ∗)p̄ = Te1+eK+1

(Q, s− θ∗, g − θ∗)p

=
∏

k>1:αk=1

(ck − gk)×
∏

k>1:αk=0

(gk − ck)×

[
(g1 − ḡ1)(gK+1 − c̄K+1)p(0,α2,...,αK) + (c1 − ḡ1)(cK+1 − c̄K+1)p(1,α2,...,αK)

]
.

This implies that for any α′ = (α2, . . . , αK) ∈ {0, 1}K−1, we have

(g1 − ḡ1)(gK+1 − c̄K+1)p(0,α2,...,αK) + (c1 − ḡ1)(cK+1 − c̄K+1)p(1,α2,...,αK) = 0.

Since gK+1 − c̄K+1 6= 0, we have that

g1 − ḡ1 =
(c1 − ḡ1)(cK+1 − c̄K+1)p(1,α′)

(c̄K+1 − gK+1)p(0,α′)
, for any α′ ∈ {0, 1}K−1.

This equality indicates that if there exists α′1 6= α′2 such that

p(1,α′1)

p(0,α′1)

6= p(1,α′2)

p(0,α′2)

, (C.20)

then one must have

cK+1 − c̄K=1 = 0, g1 − ḡ1 = 0.

Redefine θ∗ = c̄1e1 + ḡK+1eK+1 + θα, then following the same procedure as above

one gets that if p satisfy (C.20), then gK+1 − ḡK=1 = 0 and c1 − c̄1 = 0.
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Similarly as the above procedure for k = 1, we have that if for any attribute k ∈

{1, . . . , K}, there exist two attribute profiles αk,1,αk,2 ∈ {0, 1}k−1×{0}×{0, 1}K−k−1

such that

pαk,1+ek

pαk,1
6= pαk,2+ek

pαk,2
, (C.21)

then

ḡk = gk, c̄k = ck , ḡK+k = gK+k, c̄K+k = cK+k for every k ∈ {1, . . . , K}.

Now that all the item parameters are identified under (C.21), Equation (C.22) gives

p̄ = p. Therefore other than the measure zero set of the parameter space specified by

constraints (C.21), (Q, s, g,p) are identifiable. This means (Q, s, g,p) are generically

identifiable.

In particular, if Q takes form of the Q2×4 in (5.2),

Q2×4 =



1 0

0 1

1 0

0 1


,

then constraints (C.21) just simplify to

p(10)

p(00)

6= p(11)

p(01)

and
p(01)

p(00)

6= p(11)

p(10)

,

which can be equivalently written as inequality (4.3) that p(01)p(10) 6= p(00)p(11) in the

main text.

Next we prove the conclusion when Q contains other rows besides the two identity

submatrices, namely Q = (IK , IK , (Q
?)>)>. Using exactly the same arguments as

previously we have that generically, all the item parameters of the first 2K items
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as well as all the proportion parameters are satisfied. Now for any J > 2K and

α ∈ {0, 1}K define r∗ =
∑K

k=1 ej and

θ∗ =
∑

1≤k≤K:α�qj

gjej +
∑

1≤k≤K:α�qj

cjej,

then (C.2) implies that

θj,α =
Tr∗+ej(Q,θ

+ − θ∗, g − θ∗)p
Tr∗(Q,θ

+ − θ∗, g − θ∗)p =
Tr∗+ej(Q̄, θ̄

+ − θ∗, ḡ − θ∗)p̄
Tr∗(Q̄, θ̄

+ − θ∗, ḡ − θ∗)p̄
= θ̄j,α.

This proves that any slipping or guessing parameter associated with item j > 2K is

identifiable under the generic constraints (C.21), and this completes the proof of part

(b.2) of the theorem.

Next we prove (b.1) and (c) in Theorem 2 in four steps.

Proof of Part (b.1) and Part (c).

Step 1. In this step, we aim to show that if

Tr,·(Q, s, g)p = Tr,·(Q̄, s̄, ḡ)p̄ for every r ∈ {0, 1}J , (C.22)

then Q̄ must take the following form up to column permutation

Q̄ =


1 0

ū v̄

0 Q?

 . (C.23)

Here (ū, v̄) is a K dimensional binary vector. The structure of (ū, v̄) will be studied

in Steps 2 and 3.

Since the submatrix Q? of Q satisfies Conditions A, B and C, the matrix Q can
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be written as

Q =



1 0>

1 v>

0 IK−1

0 Q??


,

then follow the same procedure as Step 1 in the proof of Theorem IV.1 one has that,

up to some column permutation, Q̄ takes the form

Q̄ =



1 0>

ū v̄>

0 IK−1

b̄ Q̄??


.

For notational convenience and without loss of generality, in the following proof we

rearrange the order of the row vectors of Q (and Q̄) and rewrite them as follows

Q =



1 0>

0 IK−1

1 v>

0 Q??


, Q̄ =



1 0>

0 IK−1

ū v̄>

b̄ Q̄??


. (C.24)

Now that each column of Q?? contains at least two entries of “1” from the assumption

of scenarios (b.1) and (c), following the same procedure as Step 2 in the proof of

Theorem IV.1 we can obtain

cj = c̄j, for j = K + 2, . . . , J.

Note that slightly different from Step 2 in the proof of Theorem IV.1, here we do

not have cK+1 = c̄K+1 due to the fact that the first attribute is required by only two
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items.

Now denote the (J −K) × (K − 1) bottom-right submatrix of Q by Qs and the

(J −K)×K bottom submatrix of Q by Ql, i.e.,

Qs =

v>
Q??

 , Ql =

1 v>

0 Q??


and assume without loss of generality that the K − 1 column vectors of Qs are

arranged in the lexicographic order. Specifically, for any 1 ≤ k1 < k2 ≤ K − 1,

assume Qs·,k1 ≺lex Q
s·,k2 . This implies that the vector v can be written as

v = (0, . . . , 0, 1, . . . , 1)

Note that in scenario (b.1), v = 0 and k0 = K−1. where its first k0 elements are zero

and the remain K − 1 − k0 elements are one. So q2 = (1,v) = (1, 0, . . . , 0, 1, . . . , 1).

We now use an induction method to prove that

gk = ḡk, ∀k = 2, . . . , 1 + k0. (C.25)

A key observation is that if considering the order of the columns of the larger subma-

trix Ql instead of Qs, then the first column of Ql, i.e. Ql·,1 is of larger lexicographic

order of Ql·,k for any k = 2, . . . , 1 + k0. This indicates that we can follow a similar

induction argument as Step 3 in the proof of Theorem IV.1 by defining θ∗k as (the

same form as (C.14))

θ∗k =
K∑
h=1

ḡheh +
∑

h>K: qh,k=0

gheh +
∑

h>K: qh,k=1

cheh, (C.26)

for k = 2, . . . , 1 + k0 one after another, to obtain (E.23).

We emphasize here that if v = 0, i.e. in scenario (b.1) of the theorem, then
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k0 = K − 1 and by far we have already obtained ḡk = gk for all k = 2, . . . , K. So we

can directly go to the next step, Step 2 of the proof, without the local condition to

appear in (C.29) later. That is why in scenario (b.1) of the theorem, we have global

generic identifiability of (Q, s, g,p).

Next we consider the case v 6= 0, i.e. in scenario (c) of the theorem, then k0 <

K−1. We will use another induction argument to show ḡk = gk for k = k0 +2, . . . , K,

under an additional local condition. First we consider ḡk and gk for k = k0 + 2.

Note that Q·,k �lex Q·,1, and Q·,k ≺lex Q·,m for any m = k + 1, . . . , K. Define

θ∗k the same as in (C.26), then Tr∗,·(Q̄, θ̄+ − θ∗k, ḡ − θ∗k) = 0 and Tr∗,·(Q̄, θ̄+ −

θ∗k, ḡ − θ∗k)p̄ = 0, so Tr∗,·(Q,θ+ − θ∗k, g − θ∗k)p = 0. We claim that in the the

vector Tr∗,·(Q,θ+−θ∗k, g−θ∗k), denoted by Tr∗,· afterwards for notational simplicity,

only contains two potentially nonzero elements corresponding to attribute profiles

α1k =
∑K

m=1 em − ek = (1, . . . , 1, αk = 0, 1, . . . , 1) and α0k = α1 − e1 = (α1 =

0, 1, . . . , 1, αk = 0, 1, . . . , 1). This is because on the one hand, for any attribute

profile α that lacks some attribute m ∈ {k + 1, . . . , K}, θh,α = gh for some item

h > K with qh,k = 0, which makes Tr∗,α = 0; and on the other hand, for any

attribute profile that lacks some attribute m ∈ {2, . . . , k − 1}, since we already have

(E.23), θh,m = gh = ḡh for some h ∈ {2, . . . , K}, which makes Tr∗,α = 0. Now

Tr∗,α 6= 0 would only happen if α = (α1, 1, . . . , 1, αk, 1, . . . , 1). However, if αk = 1

and α = (α1, 1, . . . , 1), then θh,α = ch for some item h > K with qh,k = 1, which also

makes Tr∗,α = 0. Now we have proven the claim that Tr∗,· has only two potentially

nonzero elements corresponding to α1k and α0k. Therefore we have for k = k0 + 2,

0 =Tr∗,·(Q,θ+ − θ∗k, g − θ∗k)p

=
K∏
h=2

(ch − ḡh)
∏
h>K:
qh,k=0

(ch − gh)
∏
h>K:
qh,k=1

(gh − ch)

×
[
(g1 − ḡ1)pα0k

+ (c1 − ḡ1)pα1k

]
(gk − ḡk),
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which further gives

[
(g1 − ḡ1)pα0k

+ (c1 − ḡ1)pα1k

]
(gk − ḡk) = 0 for k = k0 + 2. (C.27)

Note that if ḡ1 = g1, then the part in the bracket in the above display becomes

(c1 − g1)pα1 , which is nonzero. Therefore, when ḡ1 is sufficiently close to the true

parameter g1, the part in the bracket in (C.27) would be nonzero. We formally write

it as

for k = k0 + 2, ∀ḡ1 ∈ Nk, (g1 − ḡ1)pα0k
+ (c1 − ḡ1)pα1k

6= 0, (C.28)

where Nk = {x : 0 < x <
g1pα0k

+ c1pα1k

pα0k
+ pα1k

}.

This indicates that in the neighborhoodNk of g1, (C.27) leads to gk = ḡk for k = k0+2.

Then we use induction to prove gk = ḡk for all k = k0 + 3, . . . , K. As the

induction assumption, assume that when ḡ1 ∈
⋂k−1
m=k0+2Nm holds, we have gm = ḡm

for all m = 2, . . . , k − 1. Then define θ∗ the same as in (C.26), and deduce in the

same way as in proving gk0+2 = ḡk0+2, we have

[
(g1 − ḡ1)pα0k

+ (c1 − ḡ1)pα1k

]
(gk − ḡk) = 0,

and further for any ḡ1 ∈ Nk (more accurately any ḡ1 ∈
[
∩k−1
m=k0+2Nm

]
∩Nk), we must

have ḡk = gk. Here Nk takes the same form as that in (C.28). Now by induction, we

have that if

ḡ1 ∈
K⋂

m=k0+2

Nm, (C.29)

then gk = ḡk for k = k0 + 2, . . . , K. Combined with the previous results shown in

(E.23), now we have proven that in scenario (c) of the theorem, if the local condition

(C.29) is satisfied, then ḡk = gk for k = 2, . . . , K.
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In summary, we have shown ḡk = gk for k = 2, . . . , K (under (C.29) if in scenario

(c)) and c̄j = cj for j = K + 2, . . . , J . Based on these, following similar procedures

as in Step 5 of the proof of Theorem IV.1, we obtain that

q̄j = qj, ∀j = K + 2, . . . , J.

Step 2. In this step we show ū = 1 in (C.23). If ū = 0, set

θ∗ = c1e1 + c̄2e2 +
K+3∑
j=3

gkek, r∗ =
K+3∑
j=1

ej,

then

Tr∗,·(Q̄, θ̄+ − θ∗, ḡ − θ∗)p̄ = 0> · p̄ = 0,

Tr∗,·(Q,θ+ − θ∗, g − θ∗)p = (g1 − c1)(g2 − c̄2)
K+3∏
j=3

(cj − gj)p(0,1,...,1) 6= 0,

which contradicts Equation (C.3). So ū = 1. Now we have obtained

Q =



1 0>

0 IK−1

1 v>

0 Q??


, Q̄ =



1 0>

0 IK−1

1 v̄>

0 Q??


. (C.30)

Step 3. In this step we show v̄ = v. For notational simplicity in the following proof,

we rearrange the order of the row vectors in Q and Q̄ in (C.30) again to the following
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forms

Q =



1 0>

1 v>

0 IK−1

0 Q??


, Q̄ =



1 0>

ū v̄>

0 IK−1

0 Q??


, (C.31)

and our conclusions proved so far are ḡk = gk for k = 3, . . . , K + 1 and c̄j = cj for

j = K + 2, . . . , J (under the local condition (C.29) if in scenario (b.1)). Given that

the last J − 2 rows of Q and Q̄ are equal, we claim that (C.22) for response pattern

r can be equivalently written as

∑
α′∈

{0,1}K−1

∏
j>2
rj=1

θj, (0,α′) · P(R1 ≥ r1, R2 ≥ r2, A2:K = α′ | Q,Θ,p) (C.32)

=
∑
α′∈

{0,1}K−1

∏
j>2
rj=1

θ̄j, (0,α′) · P(R1 ≥ r1, R2 ≥ r2, A2:K = α′ | Q̄, Θ̄, p̄).

Here A = (A1, . . . , AK) denotes a random attribute profile following a categorical

distribution with proportion parameters p, and A2:K denotes the vector consisting of

the last K − 1 elements of A. The reason for the equivalence of (C.32) and (C.22)

is stated as follows. Since all items other than the first two do not require the first

attribute, we have that for any α′ ∈ {0, 1}K−1, the two attribute profiles (0,α′) and

(1,α′) always have the same response probability θj,(0,α′) to any item j > 2. This

indicates that the left hand side of (C.22) can be written as

Tr,·(Q, s, g)p =
∑
α′∈

{0,1}K−1

∏
j>2
rj=1

θj, (0,α′) · P(R1 ≥ r1, R2 ≥ r2, A2:K = α′ | Q,Θ,p),

and this further leads to the equivalence between (C.22) and (C.32). In particular,

when (r1, r2) = (0, 0), we have P(R1 ≥ r1, R2 ≥ r2, A2:K = α′ | Q,Θ,p) = p(0,α′) +

p(1,α′). Now for any J-dimensional response pattern r with (r1, r2) = (0, 0), then the
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constraint Tr,·(Q,θ+, g)p = Tr,·(Q̄, θ̄+
, ḡ)p̄ simply becomes

∑
α′∈

{0,1}K−1

∏
j>2
rj=1

θj, (0,α′) · (p(0,α′) + p(1,α′)) =
∑
α′∈

{0,1}K−1

∏
j>2
rj=1

θ̄j, (0,α′) · (p̄(0,α′) + p̄(1,α′)).

Since the above equality holds for any (r3, r4, . . . , rJ) ∈ {0, 1}J−2, we claim that,

parameters θj,(0,α′) and θ̄j,(0,α′) for j = 3, . . . , J can be equivalently viewed as all

the item parameters (slipping or guessing) associated with the submatrix Q?, while

grouped proportion parameters p(0,α′) + p(1,α′) and p̄(0,α′) + p̄(1,α′) can be viewed as

all the “proportion parameters” associated with Q?. Since Q? satisfy the sufficient

conditions A, B, C in Theorem IV.1 for identifiability, by Theorem IV.1 we conclude

that θj,(0,α′) = θ̄j,(0,α′) for any j ∈ {3, . . . , J} and any α′ ∈ {0, 1}K−1. This indicates

c̄k = ck for k = 3, . . . , K + 1 and ḡj = gj for j = K + 2, . . . , J .

Then an important observation is that, fix any particular pair of (r1, r2) ∈ {0, 1}2,

quantities in (C.32) can be viewed parameters associated with the (J − 2)× (K − 1)

matrix Q?, just similar to the argument in the previous paragraph. Specifically,

θj,(0,α′) and θ̄j,(0,α′) for j = 3, . . . , J are item parameters (slipping or guessing) as-

sociated with the Q?, and P(R1 ≥ r1, R2 ≥ r2, A2:K = α′ | Q,Θ,p) and P(R1 ≥

r1, R2 ≥ r2, A2:K = α′ | Q̄, Θ̄, p̄) for each α′ ∈ {0, 1}K−1 can be viewed as the

“proportion parameters” associated with Q?. Now because the submatrix Q? satisfy

the identifiability conditions A, B, C; and Q̄3:J,· = Q3:J,· = Q? and c̄j = cj, ḡj = gj

for j = 3, . . . , J , we must have

∀α′ ∈ {0, 1}K−1, P(R1 ≥ r1, R2 ≥ r2, A2:K = α′ | Q,Θ,p) (C.33)

= P(R1 ≥ r1, R2 ≥ r2, A2:K = α′ | Q̄, Θ̄, p̄).

Now take (r1, r2) to be (0, 0), (0, 1), (1, 0), (1, 1) in the above (C.33) respectively, we
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obtain

p(0,α′) + p(1,α′) = p̄(0,α′) + p̄(1,α′);

θ1, (0,α′) · p(0,α′) + θ1, (1,α′) · p(1,α′) = θ̄1, (0,α′) · p̄(0,α′) + θ̄1, (1,α′) · p̄(1,α′);

θ2, (0,α′) · p(0,α′) + θ2, (1,α′) · p(1,α′) = θ̄2, (0,α′) · p̄(0,α′) + θ̄2, (1,α′) · p̄(1,α′);

θ1, (0,α′)θ2, (0,α′) · p(0,α′) + θ1, (1,α′)θ2, (1,α′) · p(1,α′)

= θ̄1, (0,α′)θ̄2, (0,α′) · p̄(0,α′) + θ̄1, (1,α′)θ̄2, (1,α′) · p̄(1,α′).

(C.34)

Next we show v = v̄. (C.34) implies that,

∀α′ ≥ v, α′ � v̄,



p(0,α′) + p(1,α′) = p̄(0,α′) + p̄(1,α′)

g1p(0,α′) + c1p(1,α′) = ḡ1p̄(0,α′) + c̄1p̄(1,α′)

g2p(0,α′) + c2p(1,α′) = ḡ2[p̄(0,α′) + p̄(1,α′)]

g1g2p(0,α′) + c1c2p(1,α′) = ḡ2[ḡ1p̄(0,α′) + c̄1p̄(1,α′)]

If v̄ � v, then taking α′ = v in the above equation and doing some transformation

gives


(g2 − ḡ2)p(0,α′) + (c2 − ḡ2)p(1,α′) = 0,

(g1 − c1)(g2 − ḡ2)p(0,α′) = 0.

Since g1 6= c1, we have g2 − ḡ2 = 0, which further gives c2 − ḡ2 = 0. This contradicts

ch > ḡh for any item h, so v̄ � v can not happen. Similarly v̄ � v also can not

happen, so v̄ = v.

Step 4. In the final step we show c1, c2, g1, g2 and p are generically identifiable if
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v 6= 1. First we show that if there exist α′1, α′2 ∈ {0, 1}K−1, α′1 6= α′2 such that

p(1,α′1)p(0,α′2) 6= p(1,α′2)p(0,α′1), (C.35)

then one must have

ci = c̄i, gi = ḡi, i = 1, 2. (C.36)

After some transformations, the system of equations (C.40) yields


(g1 − c1) · (g2 − c̄2) · p(0,α′) = (ḡ1 − c1) · (ḡ2 − c̄2) · p̄(0,α′),

(g2 − c̄2) · p(0,α′) + (c2 − c̄2) · p̄(1,α′) = (ḡ2 − c̄2) · p̄(0,α′).

Since we have ḡ1 6= c1, the left hand side of the first equation above is nonzero. And

obviously the right hand side of the second equation above is nonzero. Taking the

ratio of the above two equations gives

(g1 − c1) · (g2 − c̄2)

(g2 − c̄2) + (c2 − c̄2) · p(1,α′)/p(0,α′)
= (ḡ1 − c1) ≡ f(α′).

The right hand side of the above display does not involve any proportion parameter

p or p̄. So for α′1, α′2 satisfying (C.35), f(α′1) = f(α′2). Note that the left hand

side of the above equation involves a ratio p(1,α′)/p(0,α′) depending on α′. Equality

f(α′1) = f(α′2) along with (C.35) imply

(c2 − c̄2) · p(1,α′1)

p(0,α′1)

= (c2 − c̄2) · p(1,α′2)

p(0,α′2)

(c2 − c̄2) ·
(
p(1,α′1)

p(0,α′1)

− p(1,α′2)

p(0,α′2)

)
= 0

then since p(1,α′1)p(0,α′2) 6= p(1,α′2)p(0,α′1) by assumption (C.35), one must have c2 = c̄2.

By symmetry of the four item parameters g1, c1, g2 and c2 in (C.40), equalities (C.36)
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hold as claimed following similar arguments. Now that all the item parameters are

identified, p = p̄. This completes the proof of part (b.1) and part (c) of the theorem.

The proof of Theorem IV.2 is now complete.

C.4 Proof of Theorem IV.3

When Condition C fails and some attribute is required by less than three items,

there are two possible scenarios: some attribute is required by only one item, or only

two items. We consider them separately, and in both cases prove that (Q,Θ,p) are

not generically identifiable.

(a) If some attribute is required by only one item. Then Q must take the following

form in (C.37) up to column and row permutations, where v1 is a binary vector

of length K − 1.

Q =

1 v>1

0 Q?

 ; Q̄ =

1 1>

0 Q?

 . (C.37)

Now for arbitrary model parameters (Θ,p) associated with Q, we also construct

(Θ̄, p̄) associated with the Q̄ in (C.37), such that (C.1) holds. Firstly, for any

item j ≥ 2, set θ̄j,α = θj,α for all α ∈ {0, 1}K , then following a similar argument

as in Step 3 of the proof of Theorem IV.2 (b.1) and (c), we have that (C.1) hold

as long as the following constraints are satisfied: for any α′ ∈ {0, 1}K−1,


p(0,α′) + p(1,α′) = p̄(0,α′) + p̄(1,α′);

θ1, (0,α′) · p(0,α′) + θ1, (1,α′) · p(1,α′) = θ̄1, (0,α′) · p̄(0,α′) + θ̄1, (1,α′) · p̄(1,α′).

(C.38)

For each α′ ∈ {0, 1}K−1, we now still arbitrarily set the value of θ̄1, (0,α′) and
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θ̄1, (1,α′), and set the proportions parameters to be

p̄(1,α′) =
(θ1, (0,α′) − θ̄1, (0,α′))p(0,α′) + (θ1, (1,α′) − θ̄1, (0,α′))p(1,α′)

θ̄1, (1,α′) − θ̄1, (0,α′)

p̄(0,α′) = p(0,α′) + p(1,α′) − p̄(1,α′),

for each α′ ∈ {0, 1}K−1. Then (C.38) holds and further (C.1) holds. Since the

choice of the 2K item parameters {θ1, (0,α′), θ1, (1,α′) : α′ ∈ {0, 1}K−1} are arbi-

trary, the original Q and associated parameters are not generically identifiable.

(b) If some attribute is required by only two items, then Q takes the form in (C.39)

up to column/row permutations, where v1 and v2 are vectors of length K − 1

and Q? is a submatrix of size (J − 2)× (K − 1).

Q =


1 v>1

1 v>2

0 Q?

 ; Q̄ =


1 1>

1 1>

0 Q?

 , (C.39)

Then for arbitrary model parameters (Θ,p) associated with Q, we next carefully

construct (Θ̄, p̄) associated with the Q̄ in (C.39), such that (C.1) holds. This

would prove the conclusion that joint generic identifiability fails. Firstly, for any

item j ≥ 3, set θ̄j,α = θj,α for all α ∈ {0, 1}K , then following the same argument

as in Step 3 of the proof of Theorem IV.2 (b.1) and (c), we have that (C.1) hold
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as long as the following constraints are satisfied for every α′ ∈ {0, 1}K−1,



p(0,α′) + p(1,α′) = p̄(0,α′) + p̄(1,α′);

θ1, (0,α′) · p(0,α′) + θ1, (1,α′) · p(1,α′) = θ̄1, (0,α′) · p̄(0,α′) + θ̄1, (1,α′) · p̄(1,α′);

θ2, (0,α′) · p(0,α′) + θ2, (1,α′) · p(1,α′) = θ̄2, (0,α′) · p̄(0,α′) + θ̄2, (1,α′) · p̄(1,α′);

θ1, (0,α′)θ2, (0,α′) · p(0,α′) + θ1, (1,α′)θ2, (1,α′) · p(1,α′)

= θ̄1, (0,α′)θ̄2, (0,α′) · p̄(0,α′) + θ̄1, (1,α′)θ̄2, (1,α′) · p̄(1,α′).

(C.40)

For each α′ ∈ {0, 1}K−1, arbitrarily choose θ̄1, (0,α′) and θ̄2, (0,α′) from the neigh-

borhood of the true parameter values θ1,(0,α′) and θ2,(1,α′) respectively. Then

set

θ̄1, (1,α′) = θ1,(0,α′) +
([θ1, (1,α′)−θ1, (0,α′)][θ2, (1,α′)−θ̄2, (0,α′)]p(1,α′)

[θ2, (0,α′)−θ̄2, (0,α′)]p(0,α′)+[θ2, (1,α′)−θ̄2, (0,α′)]p(1,α′)
,

θ̄2, (1,α′) = θ2,(0,α′) +
[θ2, (1,α′)−θ2, (0,α′)][θ1, (1,α′)−θ̄1, (0,α′)]p(1,α′)

[θ1, (0,α′)−θ̄1, (0,α′)]p(0,α′)+[θ1, (1,α′)−θ̄1, (0,α′)]p(1,α′)
,

p̄(1,α′) =
[θ2, (0,α′)−θ̄2, (0,α′)]p(0,α′)+[θ2, (1,α′)−θ̄2, (0,α′)]p(1,α′)

θ̄2, (1,α′)−θ̄2, (0,α′)
,

p̄(0,α′) = p(0,α′) + p(1,α′) − p̄(1,α′).

(C.41)

Then one can check that (C.40) holds and further (C.1) holds. Since in the

above construction the choice of the 2K item parameters {θ1, (0,α′), θ2, (0,α′) :

α′ ∈ {0, 1}K−1} are arbitrary, we have proved that the Q and associated model

parameters are not generically identifiable.

C.5 Proof of Theorem IV.4

We prove this theorem following a similar argument as the proof of Theorem 7 in

Gu and Xu (2020a). Assume Q takes the form Q = (Q>1 , Q
>
2 , (Q

?)>)>, where Q1 and
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Q2 have all diagonal elements being 1. Assume

θj,α =f
(
βj,0 +

K∑
k=1

βj,kqj,kαk +
K∑

k′=k+1

K−1∑
k=1

βj,kk′(qj,kαk)(qj,k′αk′) + · · ·

+ βj,12···K
∏
k

(qj,kαk)
)
,

where f(·) is some link function and when f(·) is the identify function, the model

is the GDINA model. We first show that under Condition D, the 2K × 2K matrices

T (Q1,ΘQ1) and T (Q2,ΘQ2) both have full rank 2K generically. It suffices to find

some valid Θ (i.e., ΘQ) that gives

det(T (Q1,ΘQ1)) 6= 0, det(T (Q2,ΘQ2)) 6= 0. (C.42)

The reason is as follows. (C.42) would imply the polynomials defining the two matrix

determinants are not zero polynomials in the Q-restricted parameter space. Therefore

for almost all parameters, T (Q1,ΘQ1) and T (Q2,ΘQ2) would have full rank. Next

we only focus on T (Q1,ΘQ1). For every item k = 1, . . . , K, we set βk,k = 1, βk,k′ = 0

for any k′ 6= k, and set all the interaction effects to zero. Then T (Q1,ΘQ1) becomes

identical to T (IK , Θ̂IK ) under a Q-matrix IK with associated item parameters Θ̂IK

defined as follows: θ̂ek,0 = βk,0, and θ̂ek,ek = θ̂ek,1 = βk,0+βk,k for k ∈ {1, . . . , K}. It is

not hard to see that T (IK , Θ̂IK ) can be viewed as a T -matrix under the DINA model

with the Q-matrix equal to IK , and guessing parameters βk,0, slipping parameters

1−βk,0−βk,k for k = 1, . . . , K. Therefore T (IK , Θ̂IK ) has full rank as argued in Step

1 of the proof of Theorem IV.1. So T (Q1,ΘQ1) has full rank generically.

We next prove that if Condition E holds in addition, then any two different

columns of T (Q?,ΘQ?) are distinct generically. For α, α′ ∈ {0, 1}K and α 6= α′, they

at least differ in one element. Assume without loss of generality that αk = 1 > 0 = α′k.

Then Condition E ensures that there is some item j > 2K with qj,k = 1. Under the
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general RLCM, this implies θj,α 6= θj,α′ generically. By Kruskal (1977), a matrix’s

Kruskal rank is the largest number I such that every set of I columns of the matrix

are independent. When a matrix has full rank, its Kruskal rank equals its rank. By

this definition, T (Q?, ΘQ?) has Kruskal rank at least 2 generically, and T (Q1,ΘQ1),

T (Q2,ΘQ2) have Kruskal rank 2K generically. Then for generic ΘQ, we have

rankK{T (Q1,ΘQ1)}+ rankK{T (Q2,ΘQ2)}+ rankK{T (Q?,ΘQ?)} ≥ 2× 2K + 2.

(C.43)

Applying Corollary 2 of Rhodes (2010) to this 2K-class latent class model, we get

T (Q,Θ) = T (Q, Θ̄) and p = p̄ up to column permutation. This proves generic

identifiability of (Q,Θ,p) in the model. Moreover, we also have the following form

of the identifiable set

ϑQ \ ϑnon = {(ΘQ,p) : det(T (Q1,ΘQ1)) 6= 0, det(T (Q2,ΘQ2)) 6= 0,

T (Q?,ΘQ?) ·Diag(p) has column vectors different from each other}.

This is because when (ΘQ,p) ∈ ϑQ \ϑnon, the rank condition (C.43) is satisfied and

joint identifiability of (Q,ΘQ,p) follows.

C.6 Proof of Theorem IV.5.

We prove the theorem in two steps. In the first step, we show that if Q is not

generically complete, than it must take the following form (up to column/row per-

mutations) for some k > m,
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Q =



q1,1 · · · q1,k ∗ · · · ∗
...

...
...

...
...

...

qm,1 · · · qm,k ∗ · · · ∗

0 · · · 0 ∗ · · · ∗
...

...
...

...
...

...

0 · · · 0 ∗ · · · ∗


=

 Q11 Q12

Q21 Q22

 =

 Q1

Q2

 . (C.44)

The bottom-left submatrix Q21 = 0(J−m)×k. Any entry not in Q21 can be either 0

or 1. We introduce some definitions first. Given a Q-matrix Q, define a family SQ

of K finite sets SQ = {A1,A1, . . . ,AK}, where Ak = {1 ≤ j ≤ J : qj,k = 1} for

each k. Then Ak denotes the set of items that require attribute k. For the family

SQ, a transversal is a system of distinct representatives from each of its elements

A1, . . . ,AK . For example, for

Q =


1 1 0

0 1 1

1 0 1

 ,

we have SQ = {A1 = {1, 3}, A2 = {1, 2}, A3 = {2, 3}}. Then (1, 2, 3) is a valid

transversal of SQ, and so as (3, 1, 2); but (1, 1, 2) is not a transversal. Now it is not

hard to see that, the assumption that Q is not generically complete is equivalent to

the following statement H?,

H?. Given Q, the family SQ does not have a valid transversal.

Then by Hall’s Marriage Theorem (Hall, 1967), the nonexistence of a transversal

indicates the failure of the marriage condition. So there must exist a subfamily

W ⊆ SQ such that |W | > |⋃A∈W A|. More specifically, this means there exist some
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l1, l2, . . . , lk ∈ {1, . . . , K} and W = {Al1 , . . . ,Alk} such that

|W | = k > |Al1 ∪ · · · ∪ Alk |
def
= m.

In other words, we have shown that there exist some attributes, the number of which

(e.g., k) exceeds the number of items that require any of these attributes (e.g., m).

This is exactly saying that Q has to take the form of (C.44) with k > m after some

column/row permutation.

In the second step, we show that if Q takes the form of (C.44) with k > m,

then (Q,Θ,p) under general RLCMs are not generically identifiable. Now we define

another potentially different Q̄ as

Q̄ =

 Q11 Q̄12

Q21 Q22

 =

 Q̄1

Q2

 , where Q̄12 = 1m×(K−k).

Then given arbitrary (Θ,p) associated with Q, we set θ̄j,α = θj,α for every j =

m + 1, . . . , J and every α ∈ {0, 1}K . Because Q21 is a (J −m) × k zero matrix, we

claim that under the current construction, the original 2J constraints in (C.1) are

satisfied as long as the following constraints are satisfied

∀α′ = (αk+1, . . . , αK) ∈ {0, 1}K−k, ∀r′ = (r1, . . . , rm) ∈ {0, 1}m,∑
α?∈{0,1}k

Tr′, (α?,α′)(Q1,ΘQ1) · p(α?,α′) =
∑

α?∈{0,1}k
Tr′, (α?,α′)(Q̄1, Θ̄Q̄1

) · p̄(α?,α′).

This claim can be shown following a similar argument as that in Step 3 of the proof of

Theorem IV.2 (b.1) and (c). Then the above system of equations contain 2K−k × 2m

constraints, while under the general RLCMs the number of free variables in (Θ̄, p̄)
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involved is

∣∣∣{p̄α : α ∈ {0, 1}K}
⋃
{θ̄j,α : j ∈ {1, . . . ,m},α ∈ {0, 1}K}

∣∣∣
= 2K + 2K−k ×

( m∑
j=1

2qj,1+···+qj,k
)
≥ 2K + 2K−k ×m.

Under the assumption m < k, we have that the number of constraints 2K−k × 2m is

smaller than the number of variables to solve (which is lower bounded by 2K−k×(2k+

m)), because 2m < 2k +m. So there exist infinitely many different sets of solutions of

(Θ̄, p̄) associated with Q̄ such that T (Q,Θ)p = T (Q̄, Θ̄)p̄. Therefore (Q,Θ,p) are

not generically identifiable and the proof of the theorem is complete.

C.7 Proof of Proposition IV.4

We show the conclusion following a similar argument as the proof of Proposition

1 in Xu and Shang (2018). To establish the bound (4.7) in the proposition, we

check the technical conditions in Theorem 1 in Shen et al. (2012b). We first define

some notations. For a family of probability mass functions F , define H(·,F) to

be the bracketing Hellinger metric entropy of F . We call a finite set of function

pairs S(ε, n) = {(f l1, fu1 ), . . . , (f ln, f
u
n )} a Hellinger ε-bracketing of F if the L2 norm∥∥∥√f li −

√
fui

∥∥∥ ≤ ε for all i = 1, . . . , n; and further fur any f ∈ F , there is an i

such that f li ≤ f ≤ fui . The bracketing Hellinger metric entropy is defined to be

the logarithm of the cardinality of the ε-bracketing with the smallest size, namely

H(·,F) = log min{n : S(ε, n)}. We next argue that the size of the parameter space

of (Θ,p) is well controlled under the Hellinger metric. Recall S is defined in the

main text before Proposition IV.4, and we define BS = FS ∩ {h(η,η0) ≤ 2ε} as

the local parameter space with η = (B,p) denoting general model parameters and

η0 = (B0,p0) denoting the true model parameters. According to the argument in the
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proof of Proposition 1 in Xu and Shang (2018), in the considered scenario with fixed J

and K, for any ε < 1 and any t ∈ (ε/24, ε), there is H(t,BS) ≤ c log(J2K)|S| log(2ε/t);

indeed, there is H(t,BS) = O(log(2ε/t)) uniformly for any S, ε and t.

With this upper bound on the Hellinger bracketing entropy, we can apply Theorem

1 in Shen et al. (2012b) to obtain

P(Q̂ 6= Q0) ≤ P(η̂ 6= η̂0) ≤ c2 exp{−c1NCmin(Θ0,p0)},

where Cmin(Θ0,p0) := infη: |S|≤m,S 6=S0 h
2(η,η0). The above display is the desired (4.7)

in the proposition.

Next we show that when the proposed sufficient conditions for joint strict iden-

tifiability hold, the Cmin(Θ0,p0) in (4.7) is bounded away from zero by some pos-

itive constant. When the proposed conditions for joint strict identifiability (such

as Conditions A, B and C under DINA model are satisfied), the (B0,p0) here are

strictly identifiable. The consequence is that there exists a constant δ > 0 such that

h2(η,η0) ≥ δ, where the m denotes the number of free parameters under the Q0 and

the RLCM specification. Therefore,

Cmin(Θ0,p0) ≥ inf
η: |S|≤m,S 6=S0

h2(η,η0)

2m
≥ δ

2m
> 0,

so Cmin(Θ0,p0) ≥ c0 for some positive constant c0 holds. This proves the conclusion

that under the proposed strict identifiability conditions, the finite sample error bound

P(Q̂ 6= Q0) has an exponential rate. This completes the proof of the proposition.

C.8 Simulation Studies for Chapter IV

In this section, we provide more simulation results to verify the developed identi-

fiability theory. In Section C.8.1, we perform simulation studies to verify Theorems
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1 and 2 for the DINA model. In Section C.8.2, we perform simulation studies to

verify Theorems 3 and 4 for the GDINA model. The Matlab code for performing the

simulation studies are available at https://github.com/yuqigu/Identify_Q.

To better illustrate the identifiability or non-identifiability phenomena ofQ-matrix,

in some of the following simulation studies, we conduct exhaustive search of all pos-

sible Q-matrices of a certain size 5× 2. Specifically, consider the set of all the 5× 2

binary Q-matrices other than those containing some all-zero row vectors. If treating

two Q-matrices that are identical up to permuting the two columns as equivalent (be-

cause they are indeed equivalent in terms of model identifiability), then there are in

total 121 types of Q-matrices. We denote such a set of Q-matrices by Exhaus(Q5×2),

and denote its elements by Q1, Q2, . . . , Q121. For example, the first three and the last

three Q-matrices in Exhaus(Q5×2) are

Q1 =


0 1
0 1
0 1
0 1
0 1

 ; Q2 =


0 1
1 0
0 1
0 1
0 1

 ; Q3 =


0 1
1 1
0 1
0 1
0 1

 ; · · · · · ·

Q119 =


1 1
1 1
1 1
0 1
1 0

 ; Q120 =


1 1
1 1
1 1
0 1
1 1

 ; Q121 =


1 1
1 1
1 1
1 1
1 1

 .

The complete list of the 121 Q-matrices in the set Exhaus(Q5×2) is available in the

Matlab file Q_aa.mat at https://github.com/yuqigu/Identify_Q.

In the exhaustive-search scenario, to illustrate the identifiability/non-identifiability

phenomenon, we will generate data using some particular Q-matrix, and fit the

dataset using all the 121 candidate Q-matrices in Exhaus(Q5×2) and plot the log-

likelihood values corresponding to all these 121 Q-matrices. Investigating whether

the true data-generating Q-matrix achieves the maximum of the likelihood would
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help gain insight into whether this true Q-matrix is identifiable in the considered

practical setting. We will see from these simulations how the developed identifiability

theory matches the practice.

C.8.1 Two-Parameter SLAM: DINA Model

In this section, we carry out four simulation studies.

Study I: When Q-matrix satisfies the necessary and sufficient conditions

A, B and C for strict identifiability.

In this simulation study, we choose those Q-matrices from Exhaus(Q5×2) that

satisfies the proposed necessary and sufficient identifiability conditions A, B and C in

Theorem IV.1 in Chapter IV. In particular, after rearranging rows, there are exactly

two forms the 5 × 2 Q-matrix that satisfies A, B and C. Their representatives are

Q18 and Q15 as follows,

Q18 =


0 1
1 1
1 1
1 0
0 1

 ; Q15 =


0 1
1 1
1 0
1 0
0 1

 .

Note that Q18 contains only on identity submatrix I2, while Q15 contains two copies

of submatrix I2. As introduced prior to this section C.8.1, we generate datasets with

sample size N = 105 with true Q-matrix being Q18 and Q15, respectively; and for

each case, we run EM algorithm with several random initializations to fit the dataset

with all the 121 Q-matrixes in Exhaus(Q5×2) and obtain their log-likelihood values.

Figure C.1a and C.1b present the log-likelihood plots, with x-axis denoting the

indices of the 121 candidate Q-matrices in Exhaus(Q5×2), and y-axis denoting the

log-likelihood values. Each blue triangle denotes a candidate Q-matrix; the red star

denotes the true data-generating Q-matrix, and the purple square denotes the Q-

matrix that achieves the largest likelihood.
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We can see from these two plots in Figure C.1 that when the true data-generating

Q-matrix (Q15 and Q18) satisfies our proposed conditions A, B and C, it indeed

achieves the largest likelihood compared to all other possible candidate Q-matrices.

Therefore for any algorithm seeking the maximum likelihood estimator of (Q,θ+, g,p),

the true Q-matrix can be identified and any other Q-matrix will not be confused with

the true Q. Another observation from Figure C.1a and C.1b is that, for Q15 that

contains one more identity submatrix I2 than Q18, the true Q can be relatively better

distinguished from the other Q’s due to the larger gap in the likelihood values. This

phenomenon might imply that the more identity submatrices the true data-generating

Q-matrix contain, the easier the estimation for the true structure would be.

Figure C.1: DINA: exhaustive search in the set of 5 × 2 Q-matrices with a true
Q-matrix satisfying Conditions A, B and C in Theorem 1.

(a) true Q containing one I2: Q18 =

(
0 1 1 1 0
1 1 1 0 1

)>
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(b) true Q containing two I2’s: Q15 =

(
0 1 1 1 0
1 1 0 0 1

)>

Study II: When Q-matrix does not satisfy all of Conditions A, B, C but

satisfies conditions in Theorem 2 for generic identifiability.

In this simulation study, we take the data-generating Q-matrix from Exhaus(Q5×2)

that do NOT satisfy some of Conditions A, B and C, but satisfy the conditions

in Theorem 2 for joint generic identifiability of (Q,θ+, g,p). In particular, for the

considered case of K = 2, the only possibility for (global) generic identifiability

is scenario (b.2) described in Theorem 2, where Condition C is violated and some

column of Q contains only two entries of “1”. After rearranging the rows of Q, it is

not hard to see that there is only one possible case of the form of Q leading to generic

identifiability, and the following Q5 is a representative,

Q5 =


0 1
1 0
1 0
0 1
0 1

 . (C.45)

The log-likelihood value plot is presented in Figure C.2. One can see in this generically

identifiable scenario, with randomly generated true parameters, the true Q-matrix

Q5 achieves the largest likelihood and hence can be identified from data. We point
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out that although only the result of one simulated dataset is presented here, the

generically identifiable Q-matrix (as the true Q-matrix) generally can achieve the

largest likelihood among all the candidate Q-matrices, based on our experience in

various simulations.

Figure C.2: DINA: exhaustive search in 5× 2 Q-matrices with a true Q-matrix Q5 in
(C.45) generically identifiable, corresponding to scenario (b.2) in Theorem 2.

Study III: When Q-matrix does not even lead to local identifiability.

In this simulation study, we take the data-generating Q-matrix from Exhaus(Q5×2)

that do not even lead to local identifiability. That is, under such true Q-matrix, even

in a small neighborhood of the true parameters, there exist infinitely many different

alternative parameters that are not distinguishable from the true one.

Consider the following three different forms ofQ-matrices from the set Exhaus(Q5×2),

Q10 =


0 1
0 1
0 1
1 0
0 1

 ; Q21 =


0 1
1 1
0 1
1 1
0 1

 ; Q55 =


0 1
0 1
0 1
0 1
0 1

 ,

where Q10 contains only one entry of “1” in one column, Q21 is incomplete (i.e., lacks

I2), and Q55 contains an all-zero column. Their corresponding log-likelihood plots in
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the exhaustive-search scenario are presented in Figure C.3a, C.3b and C.3c. One can

see from these plots that in these no even locally identifiable settings, the true data-

generating Q-matrix does not achieve the maximum of the likelihood. Instead, many

other alternative Q-matrices would have larger likelihood, and a wrong Q-matrix will

be selected as the maximum likelihood estimator.

Figure C.3: DINA: exhaustive search in 5 × 2 Q-matrices with a true Q-matrix not
even locally identifiable, corresponding to scenario (b.1) in Theorem 2.

(a) true Q not even locally identifiable: Q10 =

(
0 0 0 1 0
1 1 1 0 1

)>

(b) true Q not even locally identifiable: Q21 =

(
0 1 0 1 0
1 1 1 1 1

)>
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(c) true Q not even locally identifiable: Q55 =

(
0 0 0 0 1
1 1 1 1 1

)>

Study IV: Verifying necessity of Condition A “completeness”.

We verify the necessity of Condition A “completeness” of the Q-matrix for iden-

tifiability. Consider two settings of incomplete Q-matrices, Q1 with (K, J) = (3, 20)

and Q2 with (K, J) = (5, 20). For i = 1, 2, for the matrix Q = Qi and arbitrary

DINA model parameters (θ+, g,p), we follow our theoretical derivations to construct

two alternative Q-matrices Q′ = Q′i and Q′′ = Q′′i and corresponding parameters

(θ+
′
, g
′
,p
′
) and (θ+

′′
, g
′′
,p
′′
). Then we compute the marginal probabilities for all the

possible 220 ≈ 106 response patterns under each of the Q, Q′ and Q′′, which charac-

terize the distribution of the 20-dimensional binary vector R. We give visualization

plots to show how these different Q-matrices and different model parameters lead to

exactly the same distribution of the observed responses R.
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Q1 =



1 0 0
0 1 0
1 1 1
1 0 0
1 1 0
1 1 1
1 0 0
1 1 0
1 1 1
1 0 0
1 1 0
1 1 1
1 0 0
1 1 0
1 1 1
1 0 0
1 1 0
1 1 1
1 1 1
1 1 1


20×3

Q′1 =



1 0 0
0 1 0
0 1 1
1 0 0
1 1 0
0 1 1
1 0 0
1 1 0
0 1 1
1 0 0
1 1 0
0 1 1
1 0 0
1 1 0
0 1 1
1 0 0
1 1 0
0 1 1
1 1 1
1 1 1


20×3

Q′′1 =



1 0 0
0 1 0
0 0 1
1 0 0
1 1 0
0 0 1
1 0 0
1 1 0
0 0 1
1 0 0
1 1 0
0 0 1
1 0 0
1 1 0
0 0 1
1 0 0
1 1 0
0 0 1
1 1 1
1 1 1


20×3

(C.46)

Q2 =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 1 1 1 1
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1


20×5

Q′2 =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 1 1
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
0 0 1 1 1
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1


20×5

Q′′2 =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
0 0 0 0 1
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1


20×5

(C.47)

First, consider the following Q1 with (K, J) = (3, 20) in (C.46), which is incom-

plete because its row vectors does not contain the unit vector (0, 0, 1). For arbitrarily

generated parameters (θ+, g,p), we set θ+
′′

= θ+
′
= θ+ and g

′′
= g

′
= g and set the
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proportion parameters as follows,


p′(011) = 0,

p′(010) = p(010) + p(011),

p′α = pα, ∀α 6= (011), (010);



p′′(001) = p′′(011) = p′′(111) = 0,

p′′(000) = p(000) + p(001),

p′′(010) = p(010) + p(011),

p′′(110) = p(110) + p(111),

p′′α = pα, ∀α = (100), (101).

(C.48)

We define a notation Γ(Q) to briefly explain the rationale behind the above con-

structions. The Γ(Q) is a J × 2K binary matrix defined based on Q. The columns

and rows of Γ(Q) are indexed by the J items and the 2K possible attribute patterns,

respectively; and the (j,α)th entry of it is defined to be Γj,α(Q) = I(α � qj). An

important observation is that, due to the forms of Q, Q′ and Q′′, the unique col-

umn vectors in Γ(Q) form a subset of those of Γ(Q′); and further the unique column

vectors of Γ(Q′) form a subset of those of Γ(Q′′). Therefore, to construct p′ such

that (Q,θ+, g,p) and (Q′,θ+, g,p′) that are non-distinguishable, we only need to set

p′α = 0 for those α whose corresponding column vector in Γ(Q′) does not appear as

the column vector of Γ(Q); and let the proportions (in vector p′) of other attribute

patterns to absorb the proportions of these α’s in the vector p′. The proportions p′′

under Q′′ are constructed similarly. This is exactly how Equation (C.48) are derived.

For the Q2, Q′2 and Q′′2 defined in (C.47), we construct the proportion parameters p′

under Q′2 and p′′ under Q′′2 following the same rationale; the details of defining them

are omitted but their values are later revealed in Figure C.5(c).

In Figure C.4, we visualize the non-identifiability phenomenon of Q1. In Figure

C.4(a), we plot the differences of proportions parameters under the alternative models

and the true model with Q1. The red dotted line with “×” plots the values p′ − p =

(p′000 − p000, p
′
001 − p001, p

′
010 − p010, p

′
011 − p011, p

′
100 − p100, p

′
101 − p101, p

′
110 −
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p110, p
′
111− p111) correspondent to the 8 attribute patterns; and the green dotted line

with “+” plots p′′−p. Despite these three sets of parameters are quite different, the

220-dimensional vector of marginal probabilities of R are exactly the same, as shown

in plots (b) and (c) of Figure C.4. In particular, in plot (b), the x-axis presents

the indices of the response patterns in r ∈ {0, 1}J , the y-axis presents the values of

P(R = r | Q,θ+, g,p), where the blue circles denote those under (Q1,p), red “×”

for (Q′1,p
′), and green “+” for (Q′′1,p

′′). Plot (c) of Figure C.4 is a zoomed-in version

of plot (b), by only showing those marginal probabilities in [0.2 × 10−4, 2 × 10−4],

which contains around 7 × 103 response patterns. One can roughly see from both

plots (b) and (c) that the three underlying parameters yield identical distribution of

the response vector. Indeed, the computation carried out using Matlab yields

max
r∈{0,1}20

∣∣P(R = r | Q1,θ
+, g,p)− P(R = r | Q′1,θ+, g,p′)

∣∣ = 2.17× 10−19,

max
r∈{0,1}20

∣∣P(R = r | Q1,θ
+, g,p)− P(R = r | Q′′1,θ+, g,p′′)

∣∣ = 4.34× 10−19,

which are both smaller than the machine epsilon (machine error) of Matlab 2.22 ×

10−16. This confirms that Q1 defined in (C.46) is not identifiable.

Figure C.5 shows the analogous results for Q2 of size 20 × 5. Plot (a) in Figure

C.5 shows the difference of the 25 = 32-dimensional proportion parameters under

alternative and true Q-matrices, and plots (b) and (c) give marginal probabilities of

R. The computation using Matlab gives

max
r∈{0,1}20

∣∣P(R = r | Q2,θ
+, g,p)− P(R = r | Q′2,θ+, g,p′)

∣∣ = 2.17× 10−19,

max
r∈{0,1}20

∣∣P(R = r | Q2,θ
+, g,p)− P(R = r | Q′′2,θ+, g,p′′)

∣∣ = 6.51× 10−19,

which are also both smaller than the machine error 2.22 × 10−16 of Matlab. This

verifies the non-identifiability of Q2 defined in (C.47).
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(a) K = 3 and J = 20, three sets of parameters

(b) K = 3 and J = 20, |{0, 1}20| = 220 response probabili-
ties

(c) K = 3 and J = 20, response probabilities zoomed in

Figure C.4: DINA: true Q-matrix of size 20 × 3 is not complete and hence not
identifiable.
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(a) K = 5 and J = 20, three sets of parameters

(b) K = 5 and J = 20, |{0, 1}20| = 220 response probabili-
ties

(c) K = 5 and J = 20, response probabilities zoomed in

Figure C.5: DINA: true Q-matrix of size 20 × 5 is not complete and hence not
identifiable.
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C.8.2 General SLAM: GDINA Model

In this section, we design simulation studies to verify the proposed identifiability

conditions under the GDINA model introduced in Example I.3. In Study V, we

use exhaustive search within 5 × 2 Q-matrices to verify the sufficient conditions in

Theorem IV.4. In Study VI and Study VII, we verify the necessary conditions in

Theorem IV.3.

Study V: When Q-matrix satisfies Conditions D, E for generic identifia-

bility.

Within the set of 5 × 2 Q-matrices Exhaus(Q5×2), if Q satisfies the sufficient

conditions D and E for generic identifiability under the GDINA model, then other

than the all-one Q-matrix Q121 which corresponds to the unrestricted latent class

model, Q can take the forms of Q15, Q18, Q27, Q54, and Q81 (up to rearrangement

of rows and columns). When using some Q-matrix to generate data, we also set

the sample size to N = 105 and randomly set the true parameters which satisfy the

monotonicity constraint (1.3) in the main text. In plots (a), (b), (c), (d) and (e) in

Figure C.6, we present the exhaustive search results when the true data-generating

Q-matrix is Q15, Q18, Q27, Q54, or Q81. We point out that for GDINA model, in each

scenario, we did not plot all the 121 Q-matrices’ log-likelihood values, although we fit

all the 121 ones to the simulated data. Instead, we only plot those Q-matrices under

which the estimated parameters satisfies the stringent monotonicity constraint

θj,α > θj,α′ if α� qj � α′ � qj. (C.49)

This constraint is stronger than requiring merely (1.3), and it is often imposed in

practice when fitting the general RLCM that models the main and interaction effects

of the latent attributes; for example, see the LCDM proposed in Henson et al. (2009).

So each blue triangle in each plot of Figure C.6 corresponds to a Q-matrix with
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estimated Θ satisfying (C.49). We can see from the five plots in Figure C.6 that when

the generic identifiability conditions D and E are satisfied, the true data-generating

Q-matrix achieves the maximum of the data likelihood compared to all the candidate

Q-matrices of the same size.

Figure C.6: GDINA: exhaustive search in 5× 2 Q-matrices with a true Q satisfying
Conditions D and E.

(a) GDINA: generically identifiable: Q15 =

(
0 1 1 1 0
1 1 0 0 1

)>

(b) GDINA: generically identifiable: Q18 =

(
0 1 1 1 0
1 1 1 0 1

)>
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(c) GDINA: generically identifiable: Q27 =

(
0 1 1 1 0
1 1 1 1 1

)>

(d) GDINA: generically identifiable: Q54 =

(
0 1 1 1 1
1 1 1 1 0

)>
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(e) GDINA: generically identifiable: Q81 =

(
0 1 1 1 1
1 1 1 1 1

)>

Study VI: When Q-matrix does not even lead to local generic identifiability.

We now use the not even locally generically identifiable Q-matrices Q1, Q2, or Q3

to generate the data, and perform the exhaustive search among Exhaus(Q5×2). The

log-likelihood plots along with the forms of the data generating matrices Q1, Q2, Q3

are presented in Figure C.7. Similar to the previous Study V, here in each scenario

we only plot those Q-matrix whose estimated Θ parameters satisfy the stringent

monotonicity constraint (C.49). One can see from the plots in Figure C.7 that these

Q1, Q2, Q3 do not maximize the data likelihood, implying severe non-identifiability.

Note that for Figure C.7(b) corresponding to Q2, there are only two Q-matrices

satisfying the constraint (C.49) among the 121 Q-matrices fitted to the data; these

two Q-matrices are the true Q-matrix Q2 and another Q-matrix Q56,

Q2 =


0 1
1 0
0 1
0 1
0 1

 , Q56 =


0 1
1 0
0 1
0 1
1 1

 .

Note that even there are only two Q-matrices satisfying the monotonicity constraint

(C.49), the true Q2 used to generate the data is not the one that has the larger
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likelihood, according to Figure C.7(b). This illustrates the non-identifiability of Q2.

Figure C.7: GDINA: exhaustive search in 5 × 2 Q-matrices with a true Q-matrix
which leads to a not even locally generically identifiable model.

(a) GDINA: true Q not even locally identifiable: Q1 =

(
0 0 0 0 0
1 1 1 1 1

)>

(b) GDINA: true Q not even locally identifiable: Q2 =

(
0 1 0 0 0
1 0 1 1 1

)>
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(c) GDINA: true Q not even locally identifiable: Q3 =

(
0 1 0 0 0
1 1 1 1 1

)>

Study VII: Construction of many alternative sets of parameters when true

Q-matrix violates the necessary condition for generic identifiability.

In this study, we verify Theorem IV.3, i.e., verify the necessity of Condition C

that each attribute is required by at least two items in the Q-matrix for joint generic

identifiability. We consider two cases with (K, J) = (3, 20) and (K, J) = (5, 20).

First, for (K, J) = (3, 20), consider the following Q-matrix Q3 and an alternative
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Q̄3.

Q3 =



1 1 0
1 0 1
0 1 0
0 0 1
0 1 1
0 1 0
0 0 1
0 1 1
0 1 0
0 0 1
0 1 1
0 1 0
0 0 1
0 1 1
0 1 0
0 0 1
0 1 1
0 1 0
0 0 1
0 1 1


20×3

Q̄3 =



1 1 1
1 1 1
0 1 0
0 0 1
0 1 1
0 1 0
0 0 1
0 1 1
0 1 0
0 0 1
0 1 1
0 1 0
0 0 1
0 1 1
0 1 0
0 0 1
0 1 1
0 1 0
0 0 1
0 1 1


20×3

(C.50)

We first construct true parameters (Θ,p) under Q3. For each attribute pattern α,

we set its population proportion pα to be 1/2K . For each item, set the baseline

probability, the positive response probability of the all-zero attribute profile α = 0>,

to be 0.2 and the positive response probability of α = 1> to be 0.8. And we take all

the main effects and interaction effects parameters to be equal.

For the defined true parameters (Θ,p) under Q3, we next construct 70 alternative

sets of parameters (Θ̄
`
, p̄`) for ` = 1, 2, . . . , 70, all under the alternative Q-matrix

Q̄3, that are non-distinguishable from the true parameters. Following the proof of

Theorem IV.3, we first set θ̄j,α = θj,α for any j > 2 and any α. Then we randomly

generate the values of the Θ̄1:2, 1:4 (the first four elements of the first two rows of Θ̄)

from the neighborhood of their true values, and enforce the monotonicity constraint

(1.3). Specifically, for each alternative set (the `-th set) of parameters, there is

Θ̄
`
i,j = Θi,j + U(−0.1, 0.1), i = 1, 2; j = 1, 2, 3, 4; ` = 1, 2, . . . , 70.

where U(−0.1, 0.1) denotes a uniformly distributed random variable between −0.1
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and 0.1. Next we just use Equation (C.41) to get the remaining item parameters

Θ̄
`
1:2, 5:8 and p̄`.

Figure C.8 presents the constructed 70 other parameters sets (Θ̄
`
, p̄`) under the

alternative Q̄3, by plotting the values of difference between the alternative param-

eters and the true parameters. In particular, In Figure C.8(a), the black solid line

with dots is the reference line at zero, and each of the 70 colored dotted line with

“+”’s represents one particular set of alternative parameters. For each colored line

corresponding to the `th set of parameters, the following 16-dimensional vector of

parameter difference is plotted,

(θ̄`1, 000 − θ1, 000, θ̄
`
1, 001 − θ1, 010, θ̄

`
1, 010 − θ1, 010, θ̄

`
1, 011 − θ1, 011,

θ̄`1, 100 − θ1, 100, θ̄
`
1, 101 − θ1, 110, θ̄

`
1, 110 − θ1, 110, θ̄

`
1, 111 − θ1, 111,

θ̄`2, 000 − θ2, 000, θ̄
`
2, 001 − θ2, 010, θ̄

`
2, 010 − θ2, 010, θ̄

`
2, 011 − θ2, 011,

θ̄`2, 100 − θ2, 100, θ̄
`
2, 101 − θ2, 110, θ̄

`
2, 110 − θ2, 110, θ̄

`
2, 111 − θ2, 111).

Similarly, in Figure C.8(b), for each colored line corresponding to the `th set of

parameters, the following 8-dimensional vector of parameter difference is plotted,

(p̄`000 − p000, p̄
`
001 − p010, p̄

`
010 − p010, p̄

`
011 − p011, p̄

`
100 − p100, p̄

`
101 − p110, p̄

`
110 −

p110, p̄
`
111− p111). In summary, a total number of 70 colored lines corresponding to 70

alternative sets of parameters are plotted in Figure C.8.

The (Θ,p) and all the (Θ̄
`
, p̄`), ` = 1, . . . , 70 give the identical distribution of R.

Specifically, from the computation in Matlab, we have

max
1≤`≤70

max
r∈{0,1}20

∣∣P(R = r | Q3,Θ,p)− P(R = r | Q̄3,Θ
`,p`)

∣∣ = 1.30× 10−18,

which is smaller than the Matlab machine error 2.22×10−16. This verifies that despite

the underlying parameters are different from the truth, they all lead to the identical

315



distribution of responses. So (Q3,Θ,p) are not identifiable. We emphasize that under

this Q3, for any true parameters, one can similarly construct arbitrarily many such

alternative parameter sets under Q̄3.

(a) K = 3 and J = 20, 70 alternative sets of parameters

(b) K = 3 and J = 20, 70 sets of parameters

Figure C.8: GDINA: true Q is Q3 with (K, J) = (3, 20); each of the 70 colored line cor-
responds to one set of alternative parameters under Q̄3; all sets non-distinguishable.
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For (K, J) = (5, 20), consider the following Q4 and an alternative Q̄4,

Q4 =



1 1 0 0 0
1 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1
0 0 1 1 0
0 0 1 0 1
0 0 0 1 1


20×5

Q̄4 =



1 1 1 1 1
1 1 1 1 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1
0 0 1 1 0
0 0 1 0 1
0 0 0 1 1


20×5

. (C.51)

We set the true parameters under Q4 similarly as those under Q3, and also use (C.41)

in the proof of Theorem IV.3 to randomly construct 70 sets of parameters under

the Q̄4. Figure C.9 (a) and (b) plot the values of difference between alternative and

true item parameters (of the first two items), and that between alternative and true

proportion parameters, respectively. Despite the differences in parameter values, our

computation in Matlab shows the maximum difference between marginal response

probabilities is

max
1≤`≤70

max
r∈{0,1}20

∣∣P(R = r | Q4,Θ,p)− P(R = r | Q̄4,Θ
`,p`)

∣∣ = 5.42× 10−19,

also smaller than the Matlab machine error 2.22 × 10−16. This illustrates the non-

identifiability of Q4.
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(a) K = 5 and J = 20, 70 alternative sets of parameters

(b) K = 5 and J = 20, 70 alternative sets of parameters

Figure C.9: GDINA: true Q is Q4 with (K, J) = (5, 20); each of the 70 colored line cor-
responds to one set of alternative parameters under Q̄4; all sets non-distinguishable.
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APPENDIX D

Appendix of Chapter V

This is the appendix to Chapter V and it is organized as follows. Appendix D.1

presents the proof of Theorem V.1 and Corollary V.1. Appendix D.2 presents the

proof of Theorem V.2 and Corollary V.2. Appendix D.3 gives the proof of Corollary

V.3. Appendix D.4 presents the proof of Theorem V.3 and Proposition V.1. Appendix

D.5 presents the proof of Theorem V.4. Appendix D.6 presents some additional

numerical results.

D.1 Proof of Theorem V.1 and Corollary V.1.

We aim to prove that if Γ := ΓA0 of size J × L0 (L0 = |A0|) satisfies Conditions

A and B, then for any binary matrix Γ̄ also of size J × L0, which can be viewed

as a constraint matrix imposing restrictions on the parameter space of the J × L0

item parameter matrix Θ̄, and for any L0-dimensional vector p̄ := (p̄1, . . . , p̄L0) with

p̄l ≥ 0 and
∑L0

l=1 p̄l = 1, which can be viewed as a population proportion vector giving

proportions of the L0 latent classes, if

T (Γ,Θ)p = T (Γ̄, Θ̄)p̄ (D.1)
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holds, then (Γ,Θ,p) = (Γ̄, Θ̄, p̄) up to a label swapping of the latent classes. If this

is proved, then combining Condition C that any column vector of ΓA0 is different

from any column vector of ΓA
c
0 , we would have the conclusion that the identified ΓA0

uniquely maps to the true set of attribute patterns A0.

We add a remark here that given (D.1), the columns of the Γ̄ do not necessarily

have the interpretation of representing some K-dimensional binary attribute patterns;

instead, these columns just correspond to L0 latent classes. And after we obtain

(Γ,Θ,p) = (Γ̄, Θ̄, p̄) up to a label swapping, we would have the conclusion that Γ̄

equals Γ up to column permutation; Then with Condition C, the Γ̄ would have the

interpretation of being the constraint matrix for the attribute patterns in A0. Because

of this, in the following proof, we sometimes will also ignore the interpretation of the

columns of the true ΓA0 , and simply denote the columns of it by the column index

integer l, i.e., ΓA0 has columns ΓA0·,l for l = 1, . . . , L0.

For notational simplicity, we denote Γ(Si,A0) by Γi for i = 1, 2 and Γ((S1∪S2)c,A0)

by Γ3. We also denote item parameter matrix Θ(S1,A0), Θ(S2,A0) and Θ((S1∪S2)c,A0)

by Θ1, Θ2 and Θ3, respectively. So each Θi has the same size as Γi and respects

the constraints specified by Γi. Without loss of generality, suppose Γ takes the form

Γ> = [(Γ1)>, (Γ2)>, (Γ3)>], where each Γi is of size Ji×L0 and J1 + J2 + J3 = J . For

any item j, by the definition of SLAM we have all those α with ΓA0
j,α = 1 have the

same highest value of item parameter. For simplicity, we denote this value of the item

parameter by θj,H , where “H” stands for “highest” level item parameter for item j.

We first show T (Γ̄1, Θ̄
1
) and T (Γ̄2, Θ̄

2
) both have full column rank L0, and that

p̄l > 0 for all l ∈ {1, . . . , L0}. By Proposition 3 in Gu and Xu (2020a), Condition

A ensures that T (Γ1,Θ1) of size 2J1 and T (Γ2,Θ2) of size 2J2 both have full col-

umn rank L0, since Γ1 and Γ2 are both separable. Moreover, in the proof of that

conclusion, an invertible square matrix W1 of size 2J1 × 2J1 as well as L0 response

patterns r1, . . . , rL0 ∈ {0, 1}L were constructed such that the row vectors in the
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transformed W1 · T (Γ1,Θ1), which are indexed by the chosen r1, . . . , rL0 , form a

L0 × L0 lower triangular matrix with nonzero diagonal elements. In other words, in

the 2J1 × L0 rectangular matrix W1T (Γ1,Θ1), there is a L0 × L0 submatrix that is

lower triangular and full-rank. For notational simplicity, we denote this submatrix by

{W1T (Γ1,Θ1)}r1:L0
. Similarly, there exists W2 and r′1, . . . , r

′
L0
∈ {0, 1}L0 such that

there is a L×L full-rank submatrix of W2T (Γ2,Θ2) with rows indexed by r′1, . . . , r
′
L0

,

which we denote by {W2T (Γ2,Θ2)}r′1:L0
.

Based on the above constructions, there exist two invertible square matrices U1

and U2 such that U1 · {W1T (Γ1,Θ1)}r1:L0
= IL0 and U2 · {W2T (Γ2,Θ2)}r′1:L0

= IL0 .

Denote the C row vectors of U1 by {u>l , l ∈ [L0]}, then we have that for any l ∈ [L0],

u>l · {W1T (Γ1,Θ1)}r1:L0
= (0, 1︸︷︷︸

column l

,0). (D.2)

Next we prove by contradiction that {W1T (Γ̄1, Θ̄
1
)}r1:L0

and {W2T (Γ̄2, Θ̄
2
)}r′1:L0

must

also be invertible. We focus on {W2T (Γ̄2, Θ̄
2
)}r′1:L0

and conclusion for the other is

the same. If {W2T (Γ̄2, Θ̄
2
)}r′1:L0

does not have full rank, then U2 ·{W2T (Γ̄2, Θ̄
2
)}r′1:L0

also does not have full rank, so there exists a nonzero vector x = (x1, . . . , xL0) such

that

x> · U2 · {W2T (Γ̄2, Θ̄
2
)}r′1:L0

= 0.

Note that x> · U2 · {W2T (Γ̄2, Θ̄
2
)}r′1:L0

= x from the previous construction of W2.

Since x 6= 0, suppose without loss of generality that xl 6= 0 for some l, then we have

[u>α · {W1T (Γ1,Θ1)}r1:L0
]� [x> · U2 · {W2T (Γ2,Θ2)}r′1:L0

] · p = xlpl 6= 0,

[u>α · {W1T (Γ̄1, Θ̄
1
)}r1:L0

]� [x> · U2 · {W2T (Γ̄2, Θ̄
2
)}r′1:L0

] · p̄ = 0,

which contradicts (D.1). Here a� b denotes the elementwise product of two vectors

a and b of the same length. Therefore {W2T (Γ̄2, Θ̄
2
)}r′1:L0

must have full rank C,
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and so as {W1T (Γ̄1, Θ̄
1
)}r1:L0

.

Based on the above conclusion, we next show that p̄l > 0 for any l ∈ [L0]. Suppose

this is not true and p̄l = 0 for some l, then there exists a nonzero vector y =

(y1, . . . , yL0)
> such that

y> · {W2T (Γ̄2, Θ̄
2
)}r′1:L0

= (0, 1︸︷︷︸
column l

,0).

Since {W2T (Γ2,Θ2)}r′1:L0
has full rank and y 6= 0, we have y> ·{W2T (Γ2,Θ2)}r′1:L0

6=

0. Without loss of generality, suppose the l?-th column of this product vector is

nonzero and denote the nonzero value by bl? , then using the u-vectors constructed

previously in (D.2), we have

[u>α? · {W1T (Γ1,Θ1)}r1:L0
]� [y> · {W2T (Γ2,Θ2)}r′1:L0

] · p = bl?pl? 6= 0,

[u>α? · {W1T (Γ̄1, Θ̄
1
)}r1:L0

]� [y> · {W2T (Γ̄2, Θ̄
2
)}r′1:L0

] · p̄ = 0,

which contradicts (D.1). This shows that p̄l > 0 must hold for all l ∈ [L0].

We next show that for any j ∈ (S1 ∪ S2)c and any l ∈ {1, . . . , L0}, θj,l = θj,σ(l),

where σ(·) is a permutation map from {1, . . . , L0} to {1, . . . , L0}. There must exist a

permutation map σ : {1, . . . , L} → {1, . . . , L} such that for each l ∈ [L0],

f̄σ(l) := [u>l · {W1T (Γ̄1, Θ̄
1
)}r1:L0

]σ(l) 6= 0.

This is because otherwise there would exist l ∈ [L0] such that {U1 ·T (Γ̄1, Θ̄
1
)}·,l equals

the zero vector, which contradicts the fact that both U1 and {W1T (Γ̄1, Θ̄
1
)}r1:L0

are

invertible matrices. Given the permutation σ, there exists a L0×L0 invertible matrix
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V with row vectors denoted by {vl, l ∈ [L0]} such that for each α ∈ A,

v>l · {W2T (Γ̄2, Θ̄
2
)}r′1:L0

= (0, 1︸︷︷︸
column σ(l)

,0). (D.3)

Then we have

[u>l · {W1T (Γ1,Θ1)}r1:L0
]� [v>l · {W2T (Γ2,Θ2)}r′1:L0

] · p = flpl, (D.4)

[u>l · {W1T (Γ̄1, Θ̄
1
)}r1:L0

]� [v>l · {W2T (Γ̄2, Θ̄
2
)}r′1:L0

] · p̄ = f̄σ(l)p̄σ(l) 6= 0, (D.5)

where fl = [v>l ·{W2T (Γ2,Θ2)}r′1:L0
]l. Now we have flpl = f̄σ(l)p̄σ(l) 6= 0. Next further

consider an arbitrary item j ∈ (S1 ∪ S2)c. Equation (D.1) indicates that

θj,l =
Tej ,·(Γ,Θ)� (D.4)

(D.4)
=
Tej ,·(Γ̄, Θ̄)� (D.5)

(D.5)
= θ̄j,σ(l).

We next show that for any j ∈ S1 ∪S2 and any l ∈ {1, . . . , L0} such that Γj,l = 1,

θj,l = θj,H = θ̄j,σ(l) = θ̄j,H . We introduce a lemma before proceeding with the proof.

Lemma D.1. Under the assumptions of Theorem V.1, the vectors {vl, l ∈ A0}

constructed in (D.3) satisfy that

{v>l · {W2T (Γ2,Θ2)}r′1:L0
}l′ = 0, ∀αl′ �S1 αl under ΓA0 .

Proof of Lemma D.1 If {v>l · {W2T (Γ2,Θ2)}r′1:L0
}l′ = zl′ 6= 0, then similar to

(D.4) and (D.5) we have

[u>l′ · {W1T (Γ1,Θ1)}r1:L0
]� [v>l · {W2T (Γ2,Θ2)}r′1:L0

] · p = zl′pl′ 6= 0,

[u>l′ · {W1T (Γ̄1, Θ̄
1
)}r1:L0

]� [v>α · {W2T (Γ̄2, Θ̄
2
)}r′1:L0

] · p̄ = f̄σ(l)p̄σ(l),
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and further we have θj,l′ = θ̄j,σ(l) = θj,l for j ∈ (S1 ∪S2)c, which contradicts condition

(C2). This completes the proof of the lemma.

We proceed with the proof. For any l ∈ [L0], define θ∗ =
∑

h∈S1: Γh,l=1 θh,1eh.

With θ∗, the row vector corresponding to r∗ =
∑

h∈S1:Γh,l=0 eh in the transformed

T -matrix satisfies that

bl := Tr∗,l(Γ
1,Θ1 − θ∗1>) 6= 0; (D.6)

Tr∗,l′(Γ
1,Θ1 − θ∗1>) = 0, ∀αl′ �S1 αl under ΓA0 .

The proof of Step 2 as well as Lemma D.1 ensures

fl =[v>l · {W2T (Γ2,Θ2)}r′1:L0
]l 6= 0; (D.7)

[v>l · {W2T (Γ2,Θ2)}r′1:L0
]l′ = 0, ∀αl′ �S1 αl under ΓA0 .

Consider any j ∈ S1 ∪ S2 such that Γj,l = 1, then obviously ej is not included in the

sum in the previously defined response pattern r∗, because r∗ only contains those

items that αl is not capable of, i.e., those j s.t. ΓA0
j,l = 0. The above two equations

(D.6) and (D.7) indicate

Tr∗,·(Γ
1,Θ1 − θ∗1>)� [v>l · {W2T (Γ2,Θ2)}] =

(
0>, bl · fl︸ ︷︷ ︸

column l

,0>
)
, (D.8)

Tr∗+ej ,·(Γ
1,Θ1 − θ∗1>)� [v>l · {W2T (Γ2,Θ2)}] =

(
0>, θj,H · bl · fl︸ ︷︷ ︸

column l

,0>
)
. (D.9)

Similarly for (Θ̄, p̄) we have

Tr∗,·(Θ̄− θ∗1>)� {v>l · T (Θ̄
2
)} =

(
0>,

∏
h∈S1:Γh,l=0

(θ̄h,σ(l) − θh,H)

︸ ︷︷ ︸
column σ(l)

,0>
)
, (D.10)
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Tr∗+ej ,·(Θ̄− θ∗1>)� {v>l · T (Θ̄
2
)} =

(
0>, θ̄j,H ·

∏
h∈S1:Γh,l=0

(θ̄h,σ(l) − θh,H)

︸ ︷︷ ︸
column σ(l)

,0>
)
.

(D.11)

Equation (D.1) implies (D.8) ·p = (D.10) · p̄. By (D.1), the above four equations give

that

θj,H = θj,l =
(D.9) · p
(D.8) · p =

(D.11) · p̄
(D.10) · p̄ = θ̄j,σ(l) = θ̄j,H , ∀j ∈ S2.

Note that the above equality θj,H = θ̄j,H holds for any l and any item j such that

Γj,l = 1. Therefore we have shown θj,H = θ̄j,H holds for any j ∈ S1 ∪ S2.

We next show that for any j ∈ S1 ∪S2 and any l ∈ {1, . . . , L0} such that Γj,l = 0,

θj,l = θ̄j,σ(l), and show pl = p̄σ(l) for any l ∈ {1, . . . , L0}. We use an induction method

to show for any l ∈ [L0],

∀j ∈ S1 ∪ S2, θj,l = θ̄j,σ(l), pl = p̄σ(l). (D.12)

We first introduce the lexicographic order between two binary vectors of the same

length. For two vectors a = (a1, . . . , aL) and b = (b1, . . . , bL), we say a has smaller

lexicographic order than b and denote by a ≺lex b, if either a1 < b1, or al < bl for

some integer l ≤ L and am = bm for all m = 1, . . . , l − 1. By Condition A, Γ(Si,A0)

has distinct column vectors for i = 1, 2, so without loss of generality, we can assume

the columns of it are sorted in an increasing lexicographic order, i.e.,

Γ
(S1,A0)·,1 ≺lex · · · ≺lex Γ

(S1,A0)·,L0
. (D.13)

Firstly, we prove (D.12) hold for l = 1, where from (D.13) we have Γ
(S1,A0)·,1 has the

smallest lexicographical order among the column vectors of Γ(S1,A0). We claim that

Γ
(S2,A0)·,1 has the smallest lexicographical order among the column vectors of Γ(S2,A0),
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because otherwise “ �S1=�S2” under A0 will not hold. For l = 1 we define

θ∗ =
∑

h∈S1:Γh,1=0

θh,Heh,

and consider the row vector of the transformed T -matrix T (Θ−θ∗1>) corresponding

to r =
∑

h∈S1:Γh,1=0 eh has only one potentially nonzero element in the first column,

i.e.,

Tr,·(Γ,Θ− θ∗1>) =

( ∏
h∈S1:Γh,1=0

(θh,1 − θh,H), 0, . . . , 0

)

Then similarly for parameters (Θ̄, p̄) we have

Tr,·(Γ̄, Θ̄− θ∗1>) =

(
0, . . . , 0,

∏
h∈S1:Γh,1=0

(θ̄h,σ(1) − θh,H)

︸ ︷︷ ︸
column σ(1)

, 0, . . . , 0

)

and ∏
h∈S1:Γh,1=0

(θh,1 − θ̄h,H) 6= 0,
∏

h∈S1:Γh,1=0

(θ̄h,1 − θh,H) 6= 0.

Now consider θj,1 for any j ∈ S2 and Γj,1 = 0. The row vectors of T (Γ,Θ− θ∗1>)

and T (Γ̄, Θ̄− θ∗1>) corresponding to the response pattern r + ej are

Tr+ej ,·(Γ,Θ− θ∗1>) =
( ∏
h∈S1:Γh,1=0

(θh,1 − θh,H) · θj,1, 0, . . . , 0
)
, (D.14)

and

Tr+ej ,·(Γ̄, Θ̄− θ∗1>) =
(

0, . . . , 0,
∏

h∈S1:Γh,1=0

(θ̄h,σ(1) − θh,H) · θ̄j,σ(1)︸ ︷︷ ︸
column σ(1)

, 0, . . . , 0
)
,

(D.15)

respectively. The only potentially nonzero term in the first column of (D.14) is indeed
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nonzero, because we have θh,1 < θh,H for h ∈ S1, Γh,1 = 0. Now Equation (C.1) implies

that

θj,1 =
Tr+ej ,·(Γ,Θ− θ∗1>)p

Tr,·(Γ,Θ− θ∗1>)p
=
Tr+ej ,·(Γ̄, Θ̄− θ∗1>)p̄

Tr,·(Γ̄, Θ̄− θ∗1>)p̄
= θ̄j,σ(1),

for any j ∈ S2 and Γj,1 = 0. Similarly we can obtain θj,1 = θ̄j,σ(1) for any j ∈ S1 and

Γj,σ(1) = 0.

After obtaining these θ̄j,σ(1) = θj,1 for j ∈ (S1 ∪ S2) and Γj,1 = 0, the previous

equations (D.14) and (D.15) just become the following,

Tr+ej ,·(Γ,Θ− θ∗1>) =
( ∏
h∈S1:Γh,1=0

(θh,1 − θh,H) · θj,1, 0, . . . , 0
)
, (D.16)

Tr+ej ,·(Γ̄, Θ̄− θ∗1>) =
(

0, . . . , 0,
∏

h∈S1:Γh,1=0

(θh,σ(1) − θh,H) · θj,σ(1)︸ ︷︷ ︸
column σ(1)

, 0, . . . , 0
)
.

(D.17)

Therefore (D.16) · p = (D.17) · p̄ just gives p1 = p̄σ(1).

Now as the inductive hypothesis, we assume for an l ∈ [L0],

∀αl′ s.t. αl′ �S1 αl, ∀j ∈ S1 ∪ S2, θj,l′ = θ̄j,σ(l′), pl′ = p̄σ(l′).

Recall that αl′ �S1 αl if and only if αl′ �S2 αl under A0. Define θ∗ as

θ∗ =
∑

h∈S1:Γh,l=0

θh,Heh +
∑

h∈S1:Γh,l=1

θh,leh,
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then for r∗ :=
∑

h∈S1
eh we have

Tr∗,·(Γ,Θ− θ∗1>)p =
∑

αl′�S1αl

tr∗,l′ · pl′ (D.18)

+
∏

h∈S1:Γh,l=0

(θh,l − θh,H)
∏

h∈S1:Γh,l=1

(θh,l − θh,1) · pl,

Tr∗,·(Γ̄, Θ̄− θ∗1>)p̄ =
∑

αl′�S1αl

t̄r∗,σ(l′) · p̄σ(l′) (D.19)

+
∏

h∈S1:Γh,l=0

(θ̄h,σ(l) − θh,H)
∏

h∈S1:Γh,l=1

(θ̄h,σ(l) − θh,1) · p̄σ(l),

where the notations tr∗,l′ and t̄r∗,l′ are defined as

tr∗,l′ =
∏

h∈S1:Γh,l=0

(θh,l′ − θh,H)
∏

h∈S1:Γh,l=1

(θh,l − θh,1),

t̄r∗,l′ =
∏

h∈S1:Γh,l=0

(θ̄h,σ(l′) − θh,H)
∏

h∈S1:Γh,l=1

(θ̄h,σ(l) − θh,1).

Note that by induction assumption we have θh,l′ = θ̄h,σ(l′) for any l′ such that αl′ �S1

αl under A0. This implies tr∗,l′ = t̄r∗,σ(l′) and further implies

∑
αl′�S1αl

tr∗,l′ · pl′ =
∑

αl′�S1αl

t̄r∗,σ(l′) · p̄σ(l′).

So (D.18) = (D.19) gives

∏
h∈S1:Γh,l=0

(θh,l − θh,H)
∏

h∈S1:Γh,l=1

(θh,l − θh,1) · pl (D.20)

=
∏

h∈S1:Γh,l=0

(θ̄h,σ(l) − θh,H)
∏

h∈S1:Γh,l=1

(θ̄h,σ(l) − θh,1) · p̄σ(l),

and the two terms on both hand sides of the above equation are nonzero. Now

consider any j /∈ S1 and similarly Tr∗+ej ,·(Γ,Θ − θ∗1>)p = Tr∗+ej ,·(Γ̄, Θ̄ − θ∗1>)p̄
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yields

θj,l ·
∏

h∈S1:Γh,l=0

(θh,l − θh,H)
∏

h∈S1:Γh,l=1

(θh,α − θh,1) · pl (D.21)

= θ̄j,σ(l) ·
∏

h∈S1:Γh,l=0

(θ̄h,σ(l) − θh,H)
∏

h∈S1:Γh,l=1

(θ̄h,σ(l) − θh,1) · p̄σ(l).

Taking the ratio of the above two equations (D.21) and (D.20) gives θj,l = θ̄j,σ(l), ∀j /∈

S1. Redefining r∗ :=
∑

h∈S2
eh similarly as above we have θj,l = θ̄j,σ(l) for any j ∈ S1.

Plug θj,l = θ̄j,σ(l) for all j ∈ S1 into (D.20), then we have pl = p̄σ(l). Now we have

shown (D.12) hold for this particular l. Then the induction argument gives

∀l ∈ [L0], ∀j ∈ S1 ∪ S2, θj,l = θ̄j,σ(l), pl = p̄σ(l).

Now we have shown for any item j and latent class index l, θj,l = θ̄j,σ(l), which we

denote by Θ̄ = σ(Θ). We claim that this result also indicates that the permutation

σ is unique. This is because U1 · {W1T (Γ1,Θ1)}r1:L0
= IL implies that

U1 · {W1T (Γ̄1, Θ̄
1
)}r1:L0

= U1 · {W1T (Γ1,Θ1)}r1:L0
· σ(IL) = σ(IL),

which means given U1 constructed from (Γ,Θ), the form of U1 · {W1T (Γ̄1, Θ̄
1
)}r1:L0

explicitly and uniquely determines σ. Now we have shown Γ̄ = Γ = ΓA0 and (Θ̄, p̄) =

(Θ,p) must hold up to the column permutation σ.

As stated in the beginning of the proof, combining Condition C that any column

in ΓA0 is different from any column in ΓA
c
0 , the identification of ΓA0 uniquely identifies

the set of true patterns A0. The proof of both Theorem V.1 and Corollary V.1 is

complete.
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D.2 Proof of Theorem V.2 and Corollary V.2.

The following proofs of Theorem V.2 and Corollary V.2 use a similar proof idea

as that of Allman et al. (2009); see also proofs of Theorems 4.2 and 4.3 in Gu and

Xu (2020a).

Proof of Theorem V.2. We need to introduce the definition of algebraic variety, a

concept in algebraic geometry. An algebraic variety V is defined as the simulateneous

zero-set of a finite collection of multivariate polynomials {fi}ni=1 ⊆ R[x1, x2, . . . , xd],

V = V(f1, . . . , fn) = {x ∈ Rd | fi(x) = 0, 1 ≤ i ≤ n.} An algebraic variety V is

all of Rd only when all the polynomials defining it are zero polynomials; otherwise,

V is called a proper subvariety and is of dimension less than d, hence necessarily of

Lebesgue measure zero in Rd. The same argument holds when Rd is replaced by the

parameter space Ω ⊆ Rd that has full dimension in Rd. For the structured latent

attribute model, we consider the following parameter space,

Ω =
{

(Θ,p) : ∀ j, max
α:Γj,α=1

θj,α = min
α:Γj,α=1

θj,α > θj,α′ , ∀ Γj,α′ = 0
}
.

On Ω, altering some entries of zero to one in the Γ-matrix is equivalent to impose

more affine constraints on the parameters and force them to be in a subset Ω∗ of

Ω. Condition A? guarantees that, there exists a Ω∗ such that Condition A holds for

model parameters belonging to this Ω∗, the proof of Theorem V.1 gives that the matrix

T (Γ(Si,A0),Θ(Si,A0)) has full column rank C for i = 1, 2 for (Θ(Si,A0),pA0) ∈ Ω∗. Note

that the statement that 2|Si| × C matrix T (Γ(Si,A0),Θ(Si,A0)) has full column rank is

equivalent to the statement that the map sending T (Γ(Si,A0),Θ(Si,A0)) to all its
(

2|Si|

C

)
possible C × C minors Ai1, A

i
2, . . . , A

i
2|Si|

yields at least one nonzero minor, where
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Ai1, A
i
2, . . . , A

i
2|Si|

are all polynomials of the item parameters ΘSi . Define

V =
⋃
i=1,2

{ 2|Si|⋂
l=1

{(Θ,p) ∈ Ω : Ail(Θ
(Si,A0)) = 0}

}
,

then V is a algebraic variety defined by polynomials of the model parameters. More-

over, V is a proper subvariety of Ω, since the fact T (Γ(Si,A0),Θ(Si,A0)) has full column

rank C for i = 1, 2 for one particular set of (Θ,p) ∈ Ω∗ ensures that there exists

one particular set of model parameters that give nonzero values when plugged into

the polynomials defining V . This indicates that the polynomials defining V are not

all zero polynomials on Ω. Then restricting parameters to Ω∗ and proceeding in the

same steps as the proof of Theorem V.1 proves the conclusion of the proposition.

Proof of Corollary V.2. Consider a Q-matrix in the form of (5.5). We denote S1 =

{1, . . . , K}, S2 = {K+1, . . . , 2K} and S3 = {2K+1, . . . , J}, which are item sets corre-

sponding to Q1, Q2 and Q′, respectively. According to the proof of Theorem 4.3 in Gu

and Xu (2020a), since the two submatrices Q1 and Q2 have all the diagonal elements

equal to one, the 2K × 2K T -matrices T (Γ(S1,all),Θ(S1,all)) and T (Γ(S2,all),Θ(S2,all))

are generically full-rank. Furthermore, the matrix T (Γ(S3,all),Θ(S3,all)) ·Diag(pall) has

Kruskal rank at least two. This means generically, any two columns of T (Γ(S3,all),Θ(S3,all))·

Diag(pall) are linearly independent.

Now consider an arbitrary set of attribute patterns A0 ⊆ {0, 1}, we have the

conclusion that T (Γ(S1,A0),Θ(S1,A0)) and T (Γ(S2,A0),Θ(S2,A0)) have full column rank

generically. This is because for i = 1, 2, the T (Γ(Si,A0),Θ(Si,A0)) is just a submatrix of

T (Γ(Si,all),Θ(Si,all)) whose columns are a subset of different column vectors of the lat-

ter matrix. Therefore columns of T (Γ(Si,A0),Θ(Si,A0)) must be linearly independent,

and hence the matrix must have full column rank generically. Also, the columns of

T (Γ(S3,A0),Θ(S3,A0))·Diag(pA0) can also be considered as a subset of different columns

of T (Γ(S3,all),Θ(S3,all)) ·Diag(pall) up to a resealing of the columns. Therefore the for-
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mer matrix must have any two different columns linearly independent generically and

hence has Kruskal rank at least two. Now by Kruskal’s conditions for unique tensor

decomposition, a probability distribution of R with T (Γ(Si,A0),Θ(Si,A0)), i = 1, 2, 3

having the above properties uniquely determines T (Γ(Si,A0),Θ(Si,A0)) and also pA0

generically. Therefore (ΓA0 ,ΘA0 ,pA0) are generically identifiable. Then combined

with Condition C, we have the conclusion that A0 is generically identifiable. This

completes the proof of the corollary.

D.3 Proof of Corollary V.3.

Under our definition of Arep and also Condition C, this matrix must have distinct

column vectors, and each of its column corresponds to an equivalence class. We

define Θrep to be item parameters corresponding to the representative patterns in

Arep. We further define the proportion parameters of the equivalence classes νrep =

(ν[α`1 ], . . . , ν[α`m ]), where ν[α`i ]
> 0 and

∑m
i=1 ν[α`i ]

= 1. Note that each ν[α`i ]
is a sum

of population proportions of the attribute patterns that are in the same equivalence

class of α`i . Since ΓA
rep

also satisfies Conditions A and B by the assumption of the

corollary. So Theorem V.1 gives that Arep is identifiable.

D.4 Proof of Theorem V.3 and Proposition V.1.

We use L = |Ainput| to denote the number of attribute patterns as input given

to the penalized likelihood method, then L = 2K if there is no screening stage as

preprocessing. We denote the true proportion parameters by p = (pα : α ∈ Ainput),

where pα ≥ 0 for α ∈ Ainput and
∑
α∈Ainput

pα = 1. Denote the number of true

attribute patterns by |A0|. We now consider the following log likelihood with penalty
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parameter λN for some γ > 0,

`λN (p,Θ) =
1

N

N∑
i=1

log
{ ∑
α∈Ainput

pα

J∏
j=1

θ
Ri,j
j,α (1− θj,α)1−Ri,j

}
+
λN
N

∑
α∈Ainput

[
log pα · I(pα > ρN) + log ρN · I(pα ≤ ρN)

]
︸ ︷︷ ︸

logρN
(p)

.

For a given λN , denote the estimated support of the proportion parameters p̂ by Â,

namely Â = {1 ≤ l ≤ L : p̂αl > ρN}. We denote the true and the estimated |Ainput|-

dimensional proportions by pA0
full = (pα,α ∈ Ainput : pα > 0 if and only if α ∈ A0)

and p̂Âfull = (p̂α,α ∈ Ainput : p̂α > ρN if and only if α ∈ Â ). Denote the oracle

MLE obtained assuming A0 is known by Θ̂
0

:= Θ̂
A0

and p̂0 := p̂A0 , and denote

η̂0 = (Θ̂
0
, p̂0). Note that for Â 6= A0 the event {`λN (η̂Â) > `λN (η̂0)} implies the

following event

1

N

N∑
i=1

log

[ ∑
α∈Ainput

p̂α
∏

j θ̂
Ri,j
j,α (1− θ̂j,α)1−Ri,j∑

α∈A0
p̂0
α

∏
j(θ̂

0
j,α)Ri,j(1− θ̂0

j,α)1−Ri,j

]
(D.22)

>
|λN |
N

{
logρN (p̂Âfull)− logρN (p̂A0

full)
}
.

In the case of |Â | > |A0| (which we call the overfitted case), the right hand side (RHS)

of (D.22) regarding the difference between the penalty terms has order O(N−1|λN | ·

|A0| · | log ρN |). In this overfitted case, we now consider the left hand side (LHS) of

(D.22),

LHS of (D.22) =
1

N

N∑
i=1

log

 ∑
α∈Ainput

p̂α
∏
j

θ̂
Ri,j
j,α (1− θ̂j,α)1−Ri,j


− 1

N

N∑
i=1

log

[∑
α∈A0

p̂0
α

∏
j

(θ̂0
j,α)Ri,j(1− θ̂0

j,α)1−Ri,j

]
≡ I1 − I0,
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where the I1 part can be written as

I1 =
1

N

N∑
i=1

log
[ ∑
α∈Ainput,

p̂α>ρN

p̂α
∏
j

θ̂
Ri,j
j,α (1− θ̂j,α)1−Ri,j

]
+O(|Ainput|ρN)

=
1

N

N∑
i=1

log
[ ∑
α∈Ainput,

p̂α>ρN

p̂α
∏
j

θ̂
Ri,j
j,α (1− θ̂j,α)1−Ri,j

]
+O(N−δ), (D.23)

where the last equality follows from the assumption |Ainput| · ρN = O(N−δ) in the

theorem. So we further have the LHS of (D.22) equal to

I1 − I0 =
1

N

N∑
i=1

log
[ ∑
α∈Ainput,

p̂α>ρN

p̂α
∏
j

θ̂
Ri,j
j,α (1− θ̂j,α)1−Ri,j

]

− 1

N

N∑
i=1

log
[∑
α∈A0

p̂0
α

∏
j

(θ̂0
j,α)Ri,j(1− θ̂0

j,α)1−Ri,j
]

+O(N−δ).

Note that other than the last term O(N−δ) in the above display, the difference of the

first two terms also has order Op(N
−δ) from assumption (5.11), so LHS of (D.22)=

I1 − I0 = Op(N
−δ). In order to have selection consistency in the overfitted case, we

need the event described in (D.22) to happen with probability tending to zero, so the

|λN | needs to be sufficiently large such that

N−δ . O
(
N−1|λN | · | log ρN |

)
. (D.24)

Note that by (5.10), we have ρN � N−d for some d > 0. So if δ < 1, i.e., if the

convergence rate is slower than the
√
N rate, then λN must go to negative infinity as

N goes to infinity since δ < 1. Specifically, we obtain the following lower bound of

the magnitude of the penalty parameter λN ,

|λN | & N1−δ/| log ρN |
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would suffice for (D.24) to hold.

We now prove the conclusion of Proposition V.1. A further implication of the

above discussion is that, with ρN � N−d as assumed in (5.10), just imposing a proper

Dirichlet prior with a positive hyperparameter would fail to select the true model

consistently. In particular, with a proper Dirichlet prior density with hyperparameter

β = λN + 1 ∈ (0, 1), Equation (D.24) instead becomes N1−δ = o(logN). However,

when 0 < δ < 1, N1−δ/ logN → ∞. So (D.24) fails to hold, and one can not have

consistent selection in the overfitted case. So if we denote the set of attribute patterns

estimated by maximizing (5.9) by Âλ. Then for any {λN} ⊆ [−1, 0), P(Âλ = A0) 6→ 1

as N →∞. This proves Proposition V.1.

Now we consider the random set {α ∈ Ainput : p̂α > ρN} =: Â appearing in I1

in (D.23). With probability tending to one, the cardinality of this set is smaller than

|A0|. This is because if |Â| > |A0|, the log-penalty term corresponding to Â would

be smaller than that corresponding to A0 by N−1|λN | · | log ρN | which has order at

least N−δ. Recall that the right hand side of (D.22) has order OP (N−δ), which means

when |Â| > |A0| the extent that the log-penalty part favors the a smaller model A0

would dominate the extent that the likelihood part favors a larger model Â in the

proposed penalized likelihood. Therefore any larger model Â with |Â| ≥ |A0| would

be favored over A0 with probability tending to zero. Therefore we have the conclusion

that P(Â 6= A0) 6→ 0 could only happen for |Â| ≤ |A0|. So in the following discussion

we will focus on the case where |Â| ≤ |A0| and prove consistency in this case. Namely,

we aim to bound

P
(

sup
|Â|≤|A0|, Â6=A0

[`λN (ηÂ)− `λN (ηA0)] > 0
)
. (D.25)

Next, we consider the upper bound of the magnitude of the penalty term. In order

to have selection consistency in the case of |Â| ≤ |A0| and Â 6= A0, the log-penalty
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term can not be too large such that the extent that the penalty part favors a smaller

model does not dominate the extent that the likelihood part favors the true model.

We follow a similar argument to Shen et al. (2012a). Specifically, considering the

term −ε2N → 0 in the large deviation inequality (D.28) below; for a small constant

t > εN , we need that the difference of the penalty part of the true and any alternative

smaller model to be less than t2, i.e.,

|λN | · | log ρN |/N . t2, (D.26)

Equation (D.26) would hold if

|λN | = o(N/| log ρN |). (D.27)

We next show that such λN can guarantee selection consistency. So we have a sample-

size dependent λN that penalizes the overfitted mixture and constrains the support

size of the proportion parameters to be less than the true support size |A0|. As said,

with such λN it suffices to consider the case |Â| ≤ |A0|.

In order to bound this mis-selection probability, we need to introduce the notion

of bracketing Hellinger metric entropy H(t,BA). Let h(ηA,ηA0) denote the Hellinger

distance between the probability mass functions of R indexed by ηA and ηA0 , i.e.,

h(ηA,ηA0) =
( ∑
r∈{0,1}J

[
P(R = r | ΘA,pA)

1
2 − P(R = r | ΘA0 ,pA0)

1
2

]) 1
2
.

Consider the local parameter space BA = {ηA = (ΘA,pA) : |A| ≤ |A0|, h2(ηA,ηA0) ≤

2ε2N}, the H(t,BA) is defined as the logarithm of the cardinality of the t-bracketing

of BA of the smallest size. More specifically, following the definition in Shen et al.

(2012a), consider a bracket covering S(t,m) = {f l1, fu1 , . . . , f lm, fum} satisfying that

max1≤j≤m
∥∥fuj − f lj∥∥2

≤ t and for any f ∈ BA there is some j such that f lj ≤ f ≤ fuj
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almost surely. Then H(t,BA) is log(min{m : S(t,m)}). The H(t,BA) measures the

complexity of the local parameter space. The next lemma gives an upper bound for

the bracketing Hellinger metric entropy H(t,BA) for |A| ≤ |A0|.

Lemma D.2. Denote N[](t,BA) = exp(H(t,BA)). For the considered structured la-

tent attribute model, denote the item parameter space of the `-th attribute pattern by

F`. For |A| ≤ |A0| and any 2−4ε < t < ε, there is H(t,BA) . |A0| log |Ainput| log(2ε/t).

By the assumption of the theorem there is log |Ainput|/N → 0, so if we take

εN =
√

1/N |A0| log |Ainput|,

there is εN = o(1). We next verify the entropy integral condition in Theorem 1 of

Wong and Shen (1995) is satisfied with this εN , in order to obtain a large deviation

inequality to bound the mis-selection probability. With Lemma D.2, the integral of

bracketing Hellinger metric entropy in the interval [2−8ε2N ,
√

2εN ] satisfies the follow-

ing inequality

√
2εN∫

2−8ε2N

H1/2(t,BA)dt ≤

√
2εN∫

2−8ε2N

√
|A0| log |Ainput| log(2εN/t)dt

=
√
|A0| log |Ainput|

√
log 29

εN∫
√

log
√

2

4εNu
2e−u

2

du

=
√
|A0| log |Ainput| · 2εN

log 29

εN∫
log
√

2

√
ue−udu

︸ ︷︷ ︸
bounded as εN→0

.
√
Nε2N .

So the entropy integral condition in Theorem 1 in Wong and Shen (1995) is satisfied
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and the large deviation inequality there holds. In particular, we have

P
(

sup
h2(η̂Â,ηA0 )≥ε2

N

[ 1

N
`(η̂Â)− 1

N
`(η̂A0)

]
> −ε2N

)
≤ P

(
sup

h2(η̂Â,ηA0 )≥ε2N

[ 1

N
`(η̂Â)− 1

N
`(ηA0)

]
> −ε2N

)
≤ exp(−Nε2N). (D.28)

where ηA0 = (ΘA0 ,pA0) denote the true parameters. Indeed, Theorem 1 in Wong

and Shen (1995) guarantees the inequality (D.28) holds with εN replaced by any

t > εN =
√
|A0| log |Ainput|/N . This large deviation inequality will be used later to

bound the mis-selection probability in the case of |A| ≤ |A0|.

We next further look at the Hellinger distance between η0 := ηA0 and ηA for

|A| ≤ |A0|, and investigate how the distance between a set of true patterns A0 and

an alternative set relate to identifiability of A0.

h2(ηA,ηA0)

max(|A0 \ A|, 1)

� [max(|A0 \ A|, 1)]−1
∑

r∈{0,1}J

[(∑
α∈A

P(R = r | ΘA,A = α)pAα

)1/2

−

( ∑
α∈A0

P(R = r | ΘA0 ,A = α)pA0
α

)1/2]2

� [max(|A0 \ A|, 1)]−1
∑

r∈{0,1}J

(∑
α∈A

Tr,α(ΘA) pAα −
∑
α∈A0

Tr,α(ΘA0) pA0
α

)2

= [max(|A0 \ A|, 1)]−1
∥∥T (ΓA,ΘA)pA − T (ΓA0 ,ΘA0)pA0

∥∥2

2

To proceed with the proof, we need to use Theorem V.1 to establish an identifiability

argument. Theorem V.1 and Corollary V.1 state that if the true constraint matrix ΓA0

satisfies conditions A, B and C, then (ΓA0 , ΘA0 , pA0) are jointly identifiable. This

implies that given the set of true attribute patterns A0, for any other set A 6= A0,

|A| ≤ |A0|, and model parameters defined by A must lead to different T (ΘA)pA

that is different from T (ΘA0)pA0 . Moreover, consider the parameter space B =
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{(ΘA,pA) : |A| ≤ |A0|, pα > ρN ∀α ∈ A}. Then (ΘA0 ,pA0) ∈ B and for any

(ΘA,pA) ∈ B with A 6= A0, either some elements in ΘA differs from those in

ΘA0 by a nonzero constant, or some elements in pA differs from those in pA0 by a

nonzero constant. Since TA(Θ)pA is a continuous vector-valued function of the model

parameters, we must have [max(|A0 \ A|, 1)]−1
∥∥TA(Θ)pA − TA0(Θ)pA0

∥∥2

2
≥ C0 for

some C0 > 0. By the conditions of the theorem ε2N = o(1), so we have obtained for

some small constant t > εN ,

Cmin(η0) ≡ inf
ηA:A6=A0,|A|≤|A0|

{
h2(ηA,ηA0)

max(|A0 \ A|, 1)

}
≥ C0 & t2 > ε2N . (D.29)

Finally, with the λN of the previously specified order, we use the large deviation

inequality (D.28) and also the (D.29) to bound the false selection probability (D.25).

The following argument uses a similar proof idea as that of Theorem 1 in Shen

et al. (2012a) which establishes finite sample mis-selection error bound of the L0-

constrained maximum likelihood estimation. Consider |Â ∩ A0| = m ≤ |A0| − 1, by

(D.29) we have h2(ηA,ηA0) ≥ (|A0| −m)Cmin(η0). So

P
(

sup
|Â|≤|A0|, Â6=A0

[ 1

N
`λN (ηÂ)− 1

N
`λN (η0)

]
> 0
)

≤
|A0|−1∑
m=0

|A0|−m∑
j=1

P
(

sup
h2(ηA,ηA0 )≥

(|A0|−m)Cmin(η0)

1

N

[
`(ηÂ)− `(η0)

]
> −|λN | · |A0| · | log ρN |

N

)

≤
|A0|−1∑
m=0

|A0|−m∑
j=1

P
(

sup
|Â∩A0|=m

1

N

[
`(ηÂ)− `(η0)

]
> −t2

)
(by (D.27))

≤
|A0|−1∑
m=0

|A0|−m∑
j=1

P
(

sup
|Â∩A0|=m

1

N

[
`(ηÂ)− `(η0)

]
> −(|A0| −m)Cmin(η0)

)
(by (D.29))

≤
|A0|−1∑
m=0

(|A0|
m

)
exp

(
− c2N(|A0| −m)Cmin(η0)

) |A0|−m∑
j=1

(|Ainput| − |A0|
j

)
(by (D.28))

≤ c3 exp
(
− c2NCmin(η0) + 2 log(|Ainput|+ 1)

)
,
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where the last but one line above uses the large deviation inequality in (D.28), and

c2, c3 are some constants. And the last line follows from the calculations in the proof

of Theorem 1 in Shen et al. (2012a) using some basic inequalities about binomial

coefficients. Since Cmin(η0) ≥ C0, and log |Ainput| = o(N) by the assumption of the

theorem, the right hand side of the above display goes to zero as N →∞. Therefore

P(ÂλN 6= A0, |ÂλN | ≤ |A0|) → 0 as N → ∞. Combined with the previously shown

result P(ÂλN 6= A0) 6→ 0 could potentially happen only for |ÂλN | ≤ |A0|, we have the

conclusion P(ÂλN 6= A0)→ 0 as N →∞. The proof of the theorem is complete.

D.5 Proof of Theorem V.4.

Denote θ+
j = θj,H and θ−j = maxα�qj θj,α for each j. Since the screening algorithm

is developed for the two-parameter SLAM introduced in Example I.1, for each item

j there are exactly two estimated item parameters, and we denote them by θ̂+
j and

θ̂−j . We claim that it suffices to prove that for any α ∈ A0, there exists a response

pattern rα ∈ {0, 1}J such that as K →∞,

P(R = rα, A = α | Θ) > P(R = rα, A = α̃ | Θ), ∀α̃ 6= α. (D.30)

For α ∈ A0, define rα = (rα1 , . . . , r
α
J ) to be rαj = I(α � qj) =

∏
k α

qj,k
k . For a general

structured latent attribute model, consider the joint distribution of observed response

vector R and latent attribute pattern vector A is

P(R = r, A = α | Θ) = exp
{ J∑

j=1

[
rj

(∏
k

α
qj,k
k log θ+

j + (1−
∏
k

α
qj,k
k ) log θ−j,α

)
+

(1− rj)
(∏

k

α
qj,k
k log(1− θ+

j ) + (1−
∏
k

α
qj,k
k ) log(1− θ−j,α)

)]}
.
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Therefore

P(R = rα, A = α̃ | Θ) = exp
{ J∑

j=1

[∏
k

α
qj,k
k

(∏
k

α̃
qj,k
k log θ+

j + (1−
∏
k

α̃
qj,k
k ) log θ−j,α̃

)
+

(1−
∏
k

α
qj,k
k )
(∏

k

α̃
qj,k
k log(1− θ+

j ) + (1−
∏
k

α̃
qj,k
k ) log(1− θ−j,α̃)

)]}
.

P(R = rα, A = α | Θ) = exp
{ J∑

j=1

[∏
k

α
qj,k
k log θ+

j + (1−
∏
k

α
qj,k
k ) log(1− θ−j,α)

]}
.

Then for any α̃ 6= α,

logP(R = rα, A = α | Θ)− logP(R = rα, A = α̃ | Θ) (D.31)

≥ min
j=1,...,J

{log θ+
j − log θ−j,α̃, log(1− θ+

j,α)− log(1− θ+
j )} ≥ d > 0.

That the above probability is bounded away from zero follows from the second part

of assumption (5.12). So the claim (D.30) is proved. We next bound the probabil-

ity of failure of including all the true patterns in the screening stage. First, since

A1, . . . ,AN i.i.d.∼ Multinomial(N, (pα,α ∈ A0)), then |{i ∈ [N ] : Ai = α}| denotes

the number of subjects in the random sample whose attribute pattern is α. By the

concentration inequality of the multinomial distribution, for any α ∈ A0,

P
(∣∣∣{i ∈ [N ] : Ai = α}

∣∣∣ ≥ Npα − 2
√
Nt
)
≥ 1− 2|A0| exp(−2t2), ∀t > 0.

Because of (5.12), we have Npα ≥ Nc0 →∞ for all α ∈ A0. Assume that θ̂+
j − θ̂−j >

δ > 0 for each j ∈ [J ]. This constraint can be incorporated into the screening

procedure or checked a posteiriori after screening. So with probability at least 1 −
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2|A0| exp(−2t2) for a suitable t,

P(Âscreen + A0) ≤
∑
α∈A0

P(Âi 6= α ∀i ∈ [N ] s.t. Ai = α)

≤
∑
α∈A0

[
P
(
Ri = rα, ∃α̃ 6= α,

P̂(R = rα,A = α) > P̂(R = rα,A = α̃)
∣∣∣Ai = α

)]N(pα−2t/
√
N
)
→ 0,

as N →∞. Here P̂ refers to the probability measure of R and A given the estimated

item parameters θ̂
+

and θ̂
−

. This is because the probability inside the bracket in the

above expression is strictly less than 1 due to (D.31); we denote this quantity by Cδ

since it depends on δ. Therefore there is

P(Âscreen + A0) ≤
∑
α∈A0

C
N(pα+o(1))
δ =

∑
α∈A0

exp[−N(pα + o(1)) log(1/Cδ)]

≤ |A0| exp(−Nβmin),

where βmin is a positive constant which can be taken as c0/2 log(1/Cδ). The last

inequality above results from pα ≥ c0 for α ∈ A0 in (5.12) and that Cδ < 1. Now

we have obtained P(Âscreen ⊇ A0) ≥ 1 − |A0| exp(−Nβmin), so the sure screening

property holds and the proof is complete.

Proof of Lemma D.2. Following the proof of Theorem 2 in Genovese and Wasser-

man (2000), the overall bracketing entropy of the mixture distribution over |A| mix-

ture components (latent attribute patterns) can be bounded by the entropy of the

|A| − 1 dimensional simplex multiplied by the product of the entropy of the item pa-

rameter space for each mixture component. Since there are a total number of
(|Ainput|
|A|

)
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possibilities of choosing |A| components from |Ainput| ones, we have

N[](t,BA) ≤
(|Ainput|
|A|

)
N[](t, T |A|−1)

|A|∏
l=1

N[](t/3,Fl).

Next, Lemma 2 in Genovese and Wasserman (2000) gives the following bracketing

entropy bound for the simplex, N[](t, T |A|−1) ≤ |A|(2πe)|A|/2/t|A|−1. Since we consider

the local parameter space around the true parameters (with squared Hellinger distance

between the alternative model and the true model not greater than 2ε2), the 1/t in the

above display can be replaced by ε/t. Also, N[](t/3,Fl) ≤ C0ε/t since the Hellinger

distance is bounded by the L2 distance and the t-bracketing number under the L2

norm is bounded by O(ε/t). Therefore we have

H(t,BA) ≤ log
{(|Ainput|

|A|

) |A|(2πe)|A|/2(ε)|A|−1

t|A|−1

(ε
t

)|A|}
. |A| log |Ainput|+ log |A|+ |A| log(ε/t)

. |A0| log |Ainput| log(ε/t).

where |A| ≤ |A0| and an elementary inequality
(
a
b

)
≤ ab are used.

D.6 Additional Experimental Results for Chapter V

Impact of the value of the pre-specified c in Algorithm 1. In Algorithm

1, there is a pre-specified constant c > 0 when updating the ∆l’s. This constant c

should be small, ideally close to zero. In all of our experiments in Section 6.4, we

take c = 0.01. Next we examine how the value of c impacts the selection result of

Algorithm 1. Since the performance of Algorithm 1 is the focus here, we choose the

simulation setting with K = 10 such that screening can be omitted. Under sample

sizes N = 150 and N = 500, the plots of the two accuracy measures versus c are

presented in Figure D.1. We observe that the results of Algorithm 1 are generally

343



not that sensitive to the choice of c, though smaller c gives slightly better results

for both accuracy measures under a small sample size N = 150. For N as large as

500, for all the values of c ∈ {0.001, 0.005} ∪ {0.01 × i : i = 1, 2, . . . , 10}, the two

accuracy measures are very close to one and do not have much variation. In practice,

we recommend fixing c to a value no greater than 0.01.

(a) TPR versus c in Algo. 1, N = 150 (b) 1−FDR versus c in Algo. 1, N = 150

(c) TPR versus c in Algo. 1, N = 500 (d) 1−FDR versus c in Algo. 1, N = 500

Figure D.1: Performance of Algorithm 1 across various values for threshold c. Setting
is K = 10 and 1− θ+

j = θ−j = 0.2. In each scenario 200 runs are carried out, and the
error bar is within one standard deviation of the mean accuracy.

Algorithm 1’s performance on estimating the actual proportions of pat-

terns. Other than the two accuracy measures for pattern selection presented in

Table 5.2, we also evaluate how well the algorithms perform on estimating the actual
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proportions of the latent patterns. We use the simulation setting of the two-parameter

SLAM with K = 10, |A0| = 10, Q = (Q>1 , Q
>
2 , Q

>
3 )>, with parameters pα = 0.1 for

α ∈ A and 1 − θ+
j = θ−j = 0.2. This is the same setting as that of Example V.4.

We vary the sample size N ∈ {150, 300, 600, 900, 1200} and compute the Root Mean

Square Errors (RMSEs) of estimating the true proportions of latent patterns. The

randomly generated 10 true patterns in A0 are presented in Figure D.2(a), where

each row represents a K-dimensional binary pattern. For each N , the RMSE of each

proportion pα, α ∈ A0 is computed based on 200 runs; and in each run, we first

perform pattern selection by using EBIC to choose λ ∈ {−0.2 × i : i = 1, 2, . . . , 20}

in Algorithm 1 and then estimate the proportions based on the selected set of pat-

terns. The results of RMSEs are presented in Figure D.2(b). As can be seen from

the figure, under a small sample size N = 150, the RMSEs of patterns are rela-

tively diverse. In particular, the largest RMSE is around 0.06 and corresponds to

pattern 10, α10 = (0010000010), which is the pattern consisting of most “0”s; while

the smallest RMSE is less than half of the largest and corresponds to pattern 3,

α3 = (1110011111), which is the pattern consisting of most “1”s. Interestingly, this

observation implies for a very small sample size and a sparse Q-matrix (each row hav-

ing at most three entries of “1”s), those attribute patterns possessing fewer attributes

are harder to estimate while those possessing more attributes are easier to estimate.

While as N increases, the RMSEs of all the proportions decrease and their difference

become not discernible. For N = 1200, all the RMSEs are around 0.01.

Evaluating the screening procedure under the multi-parameter SLAM.

In the multi-parameter setting, we also evaluate the performance of the approximate

screening procedure that is developed based on the likelihood of the two-parameter

model. The results of the coverage probabilities are presented in Figure D.3. The fig-

ure shows that despite being an approximate procedure, the screening Algorithm 4 has
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(a) patterns in A0: white for 1, black
for 0 (b) RMSE of {pα : α ∈ A0} versus N

Figure D.2: Root Mean Square Errors (RMSEs) for estimating the true proportions
of patterns decrease as sample size N increases. Results are based on 200 runs for
each N .

excellent performance for the multi-parameter SLAM that covers the two-parameter

model as a submodel. Specifically, Figure D.3 shows that for both K = 15 and

K = 20, the approximate screening procedure almost always has a 100% coverage

probability for N = 500 and N = 1000.

(a) K = 15, multi-parameter SLAM (b) K = 20, multi-parameter SLAM

Figure D.3: Coverage probabilities of the true patterns, from the approximate screen-
ing procedure under the multi-parameter SLAM. Boxplots are from 200 runs in each
scenario.
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Sizes of the set of finally selected patterns under scenarios in Table 5.2.

We present the results of the number of patterns that are finally selected by the pro-

posed methods, corresponding to simulation scenarios in Table 5.2. Denote the set

of patterns selected by the PEM algorithm and that selected by the FP-VEM algo-

rithm by ÂPEM and ÂFP-VEM, respectively. As shown in Figure D.4, in the relatively

strong signal setting with 1− θ+
j = θ−j = 10%, the sizes of ÂPEM and ÂFP-VEM almost

always equal 10, the number of true patterns. Combined with the accuracy measures

presented in Table 5.2 in the main text, in most cases these selected 10 patterns are

indeed exactly the true ones in A0. And in the relatively weak signal setting with

1− θ+
j = θ−j = 20%, the sizes of ÂPEM and ÂFP-VEM can be slightly larger than |A0|

but still close to it.

(a) K = 15, noise
20%; PEM

(b) K = 15, noise
10%; PEM

(c) K = 20, noise
20%; PEM

(d) K = 20, noise
10%; PEM

(e) K = 15, noise
20%; FP-VEM

(f) K = 15, noise
10%; FP-VEM

(g) K = 20, noise
20%; FP-VEM

(h) K = 20, noise
10%; FP-VEM

Figure D.4: Sizes of the finally selected patterns ÂPEM and ÂFP-VEM under the two-
parameter SLAM. The “noise” refers to the value of 1 − θ+

j = θ−j . The number of
true patterns is |A0| = 10.

TIMSS Data: Attribute structures corresponding to different Υ’s. For the

TIMSS data, we obtain those different attribute structures corresponding to different
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Υ’s in the FP-VEM algorithm. The results are presented in Figure D.5. Apart

from the five structures shown in Figure D.5(a)–(e), the two patterns selected when

Υ ∈ [0.70, 0.74] are the all-zero and the all-one patterns, which do not result in

any structure among the 13 attributes. Note that the structure in Figure D.5(d) is

equivalent to the structure selected by EBIC in Figure 5.10(b).

(a) Υ = 0.90 (b) Υ = 0.88 (c) Υ = 0.86 (d)
Υ ∈ [0.80, 0.84]

(e) Υ ∈ [0.76, 0.78]

Figure D.5: Different attribute structures corresponding to various Υ’s in Algorithm
2. Plot (d) here is equivalent to Figure 5.10(b), the attribute structure selected by
EBIC.
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APPENDIX E

Appendix of Chapter VI

This is the appendix to Chapter VI and it is organized as follows. Section E.1

presents the proof of the main theorem, Theorem VI.1. Section E.2 includes some

further details on computation, with details of EBIC in Appendix E.2.1, algorithms

handling missing data in Appendix E.2.2, and details on the experiments in Section 6.4

of the main text in Appendix E.2.3. Appendix E.3 includes simulation results on large

noisy binary matrix factorization/reconstruction and structural matrix estimation.

The Matlab codes for implementing the algorithms and reproducing the experimental

results are included in another zip archive.

E.1 Proof of Theorem VI.1

There is one basic fact about any attribute hierarchy E and the resulting A: the

all-zero and all-one attribute patterns 0K and 1K always belong to A that is induced

by an arbitrary E . This is because any prerequisite relation among attributes would

not rule out the existence of the pattern possessing no attributes or the pattern

possessing all attributes.

The proofs of part (i) and part (ii) are presented as follows.
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Proof of part (i). We first show the sufficiency of Conditions A, B and C for

identifiability of (Γ(Q,A), θ+, θ−, p). Since Condition A is satisfied, from now on

we assume without loss of generality that

Q =

Q0

Q?

 , Γ(Q0,A) = Γ(IK ,A). (E.1)

We next show that if for any r ∈ {0, 1}J ,

Tr,·(Q,θ+,θ−)p = Tr,·(Q̄, θ̄+
, θ̄
−

)p̄, (E.2)

then Γ(Q̄,A) = Γ(Q,A) and (θ̄
+
, θ̄
−
, p̄) = (θ+,θ−,p). We denote the submatrix of

Q̄ consisting of its first K row vectors by Q̄0, and the remaining submatrix by Q̄?, so

Q̄ = ((Q̄0)>, (Q̄?)>)>.

For any item set S ⊆ {1, . . . , J}, denote θ+
S =

∑
j∈S θ

+
j ej, and denote θ−S , θ̄

+
S , and

θ̄
−
S similarly. Consider the response pattern r? =

∑
j∈S ej and any θ? =

∑
j∈S θ

?
jej,

then

Tr?,·(Q,θ+
S − θ?,θ−S − θ?)p = Tr?,·(Q̄, θ̄+

S − θ?, θ̄
−
S − θ?)p̄. (E.3)

When there is no ambiguity, we sometimes will denote Tr?,·(Q,θ+
S − θ?,θ−S − θ?) =

Tr?,· for notational simplicity.

We prove the theorem in 6 steps as follows.

Step 1. In this step we show if (E.2) holds, the Q̄0 must also take the following

upper-triangular form with all-one diagonal elements, up to column permutation.

Q̄0 =



1 ∗ . . . ∗

0 1 . . . ∗
...

...
. . .

...

0 0 . . . 1


. (E.4)
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We need the following useful lemmas.

Lemma E.1. The following statements about Q, Q?,B and Q?,C hold.

(a) If Q satisfies Conditions A with the first K rows forming the Q0, then for any

k, h ∈ [K] and k 6= h, qk � qh happens only if k → h.

(b) If Q satisfies Condition B, then any row vector of the modified Q?,B defined in

Condition B represents an attribute pattern that respects the attribute hierarchy.

Namely, for any j ∈ {K + 1, . . . , J}, there is qBj ∈ A. Similarly, if Q satisfies

Condition C, any row vector qCj in the modified Q?,C respects the attribute

hierarchy.

(c) Suppose Q satisfies Condition B. If k → h under the attribute hierarchy, then

the Q?,B defined in Condition B must satisfy Q?,B·,k � Q?,B·,h .

Proof of Lemma E.1. For part (a), we call the type of modification of Q described

in Condition A by “Operation” A, which sets every qj,k to zero if qj,h = 1 and k → h.

Denote the resulting matrix by QA. If there exists some qk � qh for some k 6→ h,

then Operation A would not set qk,h to zero, and the first rows of QA would not be

an IK . So qk � qh happens only if k → h. The proof of part (b) is straightforward; it

is true by the definition of the attribute hierarchy. For part (c), if k → h, then under

Operation B there is Q?,B
·,k � Q?,B

·,h . Since Condition B states that Q?,B has distinct

columns, there must be Q?,B
·,k � Q?,B

·,h .

Lemma E.2. Suppose the true Q satisfies Conditions A and B under the attribute

hierarchy. If there exists an item set S ⊆ {K + 1, . . . , J} such that

max
m∈S

qm,h = 0, max
m∈S

qm,j = 1 ∀j ∈ J
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for some attribute h ∈ [K] and a set of attributes J ⊆ [K] \ {h}, then

∨j∈J q̄j � q̄h.

Proof of Lemma E.2. We use proof by contradiction. Assume there exist attribute

h ∈ [K] and a set of attributes J ⊆ [K]\{h}, such that ∨j∈J q̄j � q̄h; and that there

exists S ⊆ {K + 1, . . . , J} such that maxm∈S qm,h = 0 and maxm∈S qm,j = 1. Define

θ? = θ̄+
h eh +

∑
j∈J

θ̄−j ej +
J∑

m=K+1

θ−mem, r? = eh +
∑
j∈J

ej +
J∑

m=K+1

em,

and we claim that Tr?,·(Q̄, θ̄+−θ?, θ̄−−θ?) is an all-zero vector. This is because for

any α ∈ {0, 1}K , the corresponding element in Tr?,α(Q̄, θ̄
+ − θ?, θ̄− − θ?) contains a

factor Fα = (θ̄h,α − θ̄+
h )
∏

j∈J (θ̄j,α − θ̄−j ). While this factor Fα 6= 0 only if θ̄h,α = θ̄−h

and θ̄j,α = θ̄+
j for all j ∈ J , which happens if and only if α � q̄h and α � q̄j for all

j ∈ J , which is impossible because ∨j∈J q̄j � q̄h by our assumption. So the claim

Tr?,·(Q̄, θ̄+−θ?, θ̄−−θ?) = 0 is proved, and further Tr?,·(Q̄, θ̄+−θ?, θ̄−−θ?)p̄ = 0.

Equality (E.3) becomes Tr?,·(Q,θ+−θ?,θ−−θ?)p̄ = Tr?,·(Q̄, θ̄+−θ?, θ̄−−θ?)p̄ = 0,

which leads to

0 = Tr?,·(Q,θ+ − θ?,θ− − θ?)p = p1(θ+
h − θ̄+

h )
∏
j∈J

(θ+
j − θ̄−j )

∏
m>K

(θ+
m − θ−m),

which is because for any α 6= 1, we must have α � qm for some m > K under

Condition C, and hence the element Tr?,α(Q,θ+ − θ?,θ− − θ?) contains a factor

(θ−m − θ−m) = 0. Since θ+
m − θ−m > 0 for m > K and θ+

j − θ̄−j 6= 0, we obtain θ+
h = θ̄+

h .

We remark here that θ+
h = θ̄+

h also implies q̄h 6= 0, because otherwise we would

have θ̄h = θ̄+
h = θ+

h , which contradicts the θ−h < θ̄h < θ+
h proved before the current

Step 1. This indicates the Q̄1:K,· can not contain any all-zero row vector, because

otherwise q̄j � q̄h for the all-zero row vector q̄h, which we showed is impossible.
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Consider the item set S in the lemma that satisfies S ⊆ {K + 1, . . . , J} such that

maxm∈S qm,h = 0 and maxm∈S qm,j = 1 for all j ∈ J . Define

θ? = θ̄+
h eh +

∑
j∈J

θ̄−j ej +
∑
m∈S

θ−mem.

Note that θ+
h = θ̄+

h . The RHS of (E.3) is zero, and so is the LHS of it. The row vector

Tr?,·(Q,θ+ − θ?,θ− − θ?) has the following property

Tr?,α(Q,θ+ − θ?,θ− − θ?)

=


(θ−h − θ̄+

h )
∏

j∈J (θ+
j − θ̄−j )

∏
m∈S(θ+

m − θ−m), α � qh, α � qJ , α � qS;

0, otherwise.

Note that {α ∈ {0, 1}K : α � q̃h, α � q̃J , α � q̃S} = {α : α � q̃h, α �

q̃S} = A1 6= ∅, because qS,` = 0 and qS,k = 1 hold. Furthermore, we claim that∑
α∈A1

pα > 0 under the specified attribute hierarchy. This is because Lemma E.1

ensures q̃m ∈ A for the considered m > K, and hence the attribute pattern α? = q̃m

belongs to the set A1 and also belongs to the set A. This ensures pα? > 0 and∑
α∈A1

pα ≥ pα? > 0. Therefore we have

Tr?,·(Q,θ+ − θ?,θ− − θ?)p

= (θ−` − θ̄+
` )(θ+

k − θ̄−k )(θ+
m − θ−m)

( ∑
α∈A1

pα

)
= 0,

which leads to a contradiction since θ−` − θ̄+
` 6= 0, θ+

k − θ̄−k 6= 0, θ+
m − θ−m 6= 0 and∑

α∈A1
pα > 0, i.e., every factor in the above product is nonzero. This completes the

proof of Lemma E.2.

We now proceed with the proof of Step 1. We first introduce the lexicographic order

between two vectors of the same length. For two binary vectors a = (a1, . . . , aL)>
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and b = (b1, . . . , bL)> both of length L, we say a is of smaller lexicographic order

than b and denote a ≺lex b, if either a1 < b1, or there exists some l ∈ {2, . . . , L}

such that al < bl and am = bm for all m = 1, . . . , l − 1. Since Q̃? contains K distinct

column vectors, the K columns of Q? can be arranged in an increasing lexicographic

order. Without loss of generality, we assume that

Q?
,1 ≺lex Q

?
,2 ≺lex · · · ≺lex Q

?
,K . (E.5)

We use an induction method to prove the conclusion. First consider attribute 1.

Since Q?
,1 has the smallest lexicographic order among the columns of Q?, there must

exist an item set S ⊆ {K + 1, . . . , J} such that

qS,1 = 0, qS,` = 1 ∀` = 2, . . . , K.

Based on the above display, we apply Lemma E.2 to obtain

∨K`=2q̄` � q̄1.

This means there exists b1 ∈ [K] such that the b1-th column vector of Q̄0 must equal

the basis vector

( 1︸︷︷︸
column 1

,0)> = e1,

i.e., we have Q̄0·,b1 = e1.

Now we assume as the inductive hypothesis that for h ∈ [K] and h > 1, we have a

distinct set of attributes {m1, . . . ,mh−1} ⊆ [K] such that their corresponding column

vectors in Q̄1:K,· satisfy

∀i = 1, . . . , h− 1, Q̄1:K,bi = (∗, . . . , ∗, 1︸︷︷︸
column i

, 0, . . . , 0)>. (E.6)
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Now we consider attribute h. By (E.5), the column vector Q?
,h has the smallest lexi-

cographic order among the K − h− 1 columns in {Q?·,h, Q?·,h+1, . . . , Q
?·,K}, therefore

similar to the argument in the previous paragraph, there must exist an item set

S ⊆ {K + 1, . . . , J} such that

qS,h = 0, qS,` = 1 ∀` = h+ 1, . . . , K. (E.7)

Therefore Lemma E.2 gives

∨K`=h+1q̄` � q̄h,

which further implies there exists an attribute bh such that

max
`∈{h+1,...,K}

q̄`,bh = 0, q̄h,bh = 1. (E.8)

We point out that bh 6∈ {b1, . . . , bh−1}, because by the induction hypothesis (E.6) we

have q̄h,bi = 0 for i = 1, . . . , h− 1. So {b1, . . . , bh−1, bh} contains h distinct attributes.

Furthermore, (E.8) gives that

Q̄0·,bh = (∗, . . . , ∗, 1︸︷︷︸
column h

, 0, . . . , 0)>,

which generalizes (E.6) by extending h−1 there to h. Therefore, we use the induction

argument to obtain

∀k ∈ [K], Q̄0·,bk = (∗, . . . , ∗, 1︸︷︷︸
column k

, 0, . . . , 0)>,
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which essentially means

Q̄0·, (b1,...,bK) =



1 ∗ . . . ∗

0 1 . . . ∗
...

...
. . .

...

0 0 . . . 1


, (E.9)

and the conclusion of Step 1 in (E.4) is proved.

Step 2. In this step we prove θ̄+
j = θ+

j for all j ∈ {K + 1, . . . , J} in the same way as

Step 2 of the proof of Theorem 1 in Gu and Xu (2020b). The fact p1 > 0 under any

attribute hierarchy is used.

Step 3. In this step we prove θ̄−k = θ−k for all k ∈ {1, . . . , K} and Q̄1:K,· E∼ IK . We

use an induction method here.

Step 3.1. First consider those attribute k for which there does not exist another

attribute h such that Q̃?·,h ≺ Q̃?·,k; and we first aim to show θ̄−k = θ−k for such k. By

part (c) of Lemma E.1, we have that k 6→ h for any attribute h 6= k. For this k,

define

θ? =
K∑
j=1

θ̄−j ej +
∑
j>K:
qj,k=0

θ−j ej +
∑
j>K:
qj,k=1

θ+
j ej, (E.10)

then Tr?,·(Q̄, θ̄+ − θ?, θ̄− − θ?) = 0. Further, we claim Tr?,·(Q,θ+ − θ?,θ− − θ?)

would equal zero for any α 6= (1, . . . , 1, 0︸︷︷︸
column k

, 1, . . . , 1) =: α?, so the only potentially

nonzero element in Tr?,· is Tr?,α? . More specifically,

Tr?,α(Q,θ+ − θ?,θ− − θ?) (E.11)

=


(θ−k − θ̄−k )

∏
j≤K:
j 6=k

(θ+
j − θ̄−j )

∏
j>K:
qj,k=0

(θ+
j − θ−j )

∏
j>K:
qj,k=1

(θ−j − θ+
j ), α = α?;

0, α 6= α?.
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The reasoning behind (E.11) is as follows. Consider any other attribute pattern

α 6= α? with αh = 0 for some h 6= k. Since for k we have Q̃?·,k � Q̃?·,h for any h 6= k,

there must exist some item j > K s.t. qj,k = 0 and qj,h = 1. For this particular

item j, we have Tr?,α contains a factor of (θj,α − θ−j ) = (θ−j − θ−j ) = 0, so Tr?,α = 0.

This shows that Tr?,α 6= 0 only if αh = 1 for all h 6= k. Further more, we claim that

Tr?,1K = 0 also holds; this is because there exists j > K s.t. qj,k = 1, and for this

particular item j we have θj,1K = θ+
j so Tr?,1K contains a factor of (θ+

j − θ+
j ) = 0.

Now we have shown (E.11) holds. Equation (E.3) leads to

0 =
∑
α∈A0

Tr?,αpα = Tr?,α?pα? (E.12)

= (θ−k − θ̄−k )
∏
j≤K:
j 6=k

(θ+
j − θ̄−j )

∏
j>K:
qj,k=0

(θ+
j − θ−j )

∏
j>K:
qj,k=1

(θ−j − θ+
j )pα? .

We claim that α? respects the attribute hierarchy so pα? > 0. This is true because we

have shown earlier k 6→ h for any attribute h 6= k. Therefore in (E.12) the only factor

that could potentially be zero is (θ−k − θ̄−k ), and we obtain θ̄−k = θ−k . This completes

the first step of the induction.

Step 3.2. Now as the inductive hypothesis, we consider attribute k and assume

that for any other attribute h s.t. Q̃?·,h ≺ Q̃?·,k, we already have θ̄−h = θ−h . Recall

Hk = {h ∈ [K] \ {k} : k → h} denotes all the attributes that have higher level in

the attribute hierarchy than attribute k. By part (c) of Lemma E.1, this implies for

any h ∈ Hk, we have θ̄−h = θ−h . Also, by Condition C in the theorem, there exist two

items j1, j2 > K s.t. qji,k = 1 and qji,h = 0 for all h ∈ Hk, for i = 1, 2.

Before proceeding with the proof of θ̄−k = θ−k , we need to introduce a useful lemma.

Lemma E.3. Under the conditions of theorem, if ∨h∈K q̄h � q̄m for some K ⊆ [J ],

some m ∈ [J ] \ K and #[(K ∪ {m}) ∩ {K + 1, . . . , J}] ≤ 1, then θ̄+
m = θ+

m.
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Proof of Lemma E.3. Define

θ∗ =
∑
h∈K

θ̄−h eh + θ̄+
mem +

∑
l>K:

l 6∈K∪{m}

θ−l el,

then T r∗,α contains a factor f̄α :=
∏

h∈K(θ̄h,α− θ̄−h )(θ̄m,α− θ̄+
m) because of the first two

terms in the above display. The f̄α 6= 0 only if α � ∨h∈K q̄h and α � q̄m. However,

since ∨h∈K q̄h � q̄m, such α does not exist and f̄α = 0 for all α ∈ {0, 1}K . Therefore

T r∗,· = 0 and T r∗,·p̄ = 0, so the RHS of (E.3) is zero. Hence the LHS of (E.3) is

also zero. Condition C implies
∑J

j=K+1 qj,k ≥ 2 for all attribute k. Under Condition

C and the condition #[(K ∪ {m}) ∩ {K + 1, . . . , J}] ≤ 1, the attributes required by

the items in the set {l > K : l 6∈ K ∪ {m}} must cover all the K attributes. because

of the term
∑

l>K:
l 6∈K∪{m}

θ−l el in the defined θ∗, we have Tr∗,α 6= 0 only if α = 1K . So

0 = RHS of (E.3) = LHS of (E.3)

=
∏
h∈K

(θ+
h − θ̄−h )(θ+

m − θ̄+
m)

∏
l>K:

l 6∈K∪{m}

(θ+
l − θ−l )p1K ,

which implies θ+
m − θ̄+

m = 0 since any other factor in the above display is nonzero.

This completes the proof of the lemma.

Note that by Condition C, there exist two different items j1, j2 > K s.t. qji,k = 1

and qji,h = 0 for all h ∈ Hk for i = 1, 2. We next aim to show that in Q̄, we must

also have q̄ji,h = 0 for all h ∈ Hk for i = 1, 2. We prove this in two steps.

Step 3.2 Part I. First, we use proof by contradiction to show the q̄h satisfies that,

for any attribute m 6→ h the following holds,

max( max
`∈[K],

Q?·,`⊀Q?·,m
q̄`, q̄h) � q̄m, (E.13)

358



where the max operator applied to vectors of the same length means taking the

element-wise maximum of the vectors and obtaining a new vector of that same length.

Suppose (E.13) does not hold, then applying Lemma E.3 we obtain θ̄+
m = θ+

m. Note

that we also have θ̄−h = θ−h by the inductive hypothesis. Define

θ∗ = θ̄−h eh +
∑
`≤K:

Q?·,`⊀Q?·,m
θ̄−` e` + θ̄+

mem +
∑
j>K:
qj,m=0

θ−j ej, (E.14)

then with this θ∗, we claim that the RHS of (E.3) is zero, T r∗,·p̄ = 0. This claim is

true because T r∗,α contains a factor fα of the following form

fα = (θ̄h,α − θ̄−h )
∏

l:Q?·,`⊀Q?·,m
(θ̄`,α − θ̄−` )(θ̄m,α − θ̄+

m) 6= 0 only if

α � max( max
`∈[K],

Q?·,`⊀Q?·,m
q̄`, q̄h) and α � q̄m,

which is impossible because of (E.13), so fα = 0 and T r∗,α = 0 for all α. Therefore

by (E.3) we have Tr∗,·p = T r∗,·p̄ = 0. Note that θ̄−h = θ−h and θ̄+
m = θ+

m, and now we

consider the term Tr∗,α. Then due to the last term in θ∗ defined in (E.14), we have

Tr∗,α 6= 0 only if α � qj for all j > K s.t. qj,m = 0. We claim that such α must also

satisfy α � q` for any ` ≤ K s.t. Q?·,` ⊀ Q?·,m. This is because for any ` ≤ K s.t.

Q?·,` ⊀ Q?·,m, there must exist an item j > K such that qj,m = 0 and qj,` = 1, then

the fact that α � qj for this j ensures α` = 1 and α � q` (recall q`
E∼ ek). Therefore

we have

Tr∗,α =


(θ+
h − θ̄−h )

∏
`≤K:

Q?·,`⊀Q?·,m
(θ+
` − θ̄−` )(θ−m − θ̄+

m)
∏

j>K:
qj,m=0

(θ+
j − θ−j ), if α ∈ A1;

0, otherwise.

(E.15)
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where

A1 = {α ∈ A : α � qj s.t. qj,m = 0; α � qh; α � qm}

= {α ∈ A : α` = 1 for all ` s.t. Q?·,` ⊀ Q?·,m; αh = 1; αm = 0}.

We claim that there exists some attribute pattern in A1 that respects the attribute

hierarchy, i.e., there exists α? ∈ A1 with pα? > 0. This can be seen by noting the

following two facts: first, the assumption m 6→ h in the beginning of the current Step

3.2.1 yields that anα with αm = 0 and αh = 1 does not violate the attribute hierarchy;

second, an α satisfying α` = 1 for all ` s.t. Q?·,` ⊀ Q?·,m also does not contradict

αm = 0 under the hierarchy, because by part (c) of Lemma E.1, if Q?·,` ⊀ Q?·,m then

m 6→ h. Now we have proven the claim there exists α? ∈ A1 with pα? > 0. Combined

with (E.15), we obtain

(θ+
h − θ̄−h )

∏
`≤K:

Q?·,`⊀Q?·,m
(θ+
` − θ̄−` )(θ−m − θ̄+

m)
∏
j>K:
qj,m=0

(θ+
j − θ−j )

( ∑
α∈A1

pα

)
= 0;

and
∑
α∈A1

pα � pα? > 0. This gives a contradiction because each factor in the above

display is nonzero. Now we have reached the goal of Step 3.2.1 of proving (E.13).

We remark here that (E.13) has some nice consequences. Considering the K ×K

matrix Q̄0·,(b1,...,bK) in (E.4) shown in Step 1 and the particular attribute h, we actually

have obtained that for any m 6→ h, the m-th column of Q̄0·,(b1,...,bK) not only has the

last (K −m) entries equal to zero, but also has Q̄0
h,bm

= 0. Equivalently, considering

the columns of Q̄ are arranged just in the order (b1, . . . , bK) without loss of generality,

we have

q̄h,m = 0 for any attribute m 6→ h. (E.16)

Step 3.2 Part II. In this step we use proof by contradiction to show that for i = 1
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and 2 there is

max
(

max
`≤K: `→h

q̄`, q̄ji

)
� q̄h. (E.17)

Suppose (E.17) does not hold for i = 1, i.e., max(max`≤K: `→h q̄`, q̄j1) � q̄h. Then by

Lemma E.3 we have θ̄+
h = θ+

h . We define

θ∗ = θ̄+
h eh +

∑
`≤K:
`→h

θ̄−` e` + θ̄−j1ej1 +
∑

j>K: j 6=j1,
qj,h=0

θ−j ej, (E.18)

and note that the item j2 is included in the last term of summation above since

qj2,h = 0. With θ∗ defined as in (E.18), we have T r∗,α = 0 for all α because of the

first three terms in (E.18) and the assumption that max(max`≤K: `→h q̄`, q̄j1) � q̄h.

So (E.3) gives Tr∗,·p = T r∗,·p̄ = 0. Consider Tr∗,α, then Tr∗,α 6= 0 only if α � qh

and α � qj2 because of the terms θ̄+
h eh and θ−j2ej2 included in θ∗ defined in (E.18).

Further, because of the last term in θ∗ defined in (E.18), we have Tr∗,α 6= 0 only if α

satisfies αk = 1, αh = 0, and

αm = 1 ∀m s.t. ∃j > K, j 6= j1, qj,h = 0, qj,m = 1,

or equivalently,

αm = 1 ∀m s.t. Q?
−j1,m ⊀ Q?

−j1,h. (E.19)

We claim that any such α satisfying αk = 1, αh = 0, and (E.19) also satisfies α � qj1 ,

because of the reasoning as follows. We next show αb ≥ qj1,b for all attribute b. Define

θ∗∗ = θ∗ in (E.18) +
∑

b≤K: k 6→b,
Q?−j1,b

≺Q?−j1,h

θ−b eb, (E.20)

and with this θ∗∗ and its corresponding response pattern r∗∗, we still have T r∗∗,·p̄ = 0
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and hence Tr∗∗,·p = 0. The Tr∗∗,α 6= 0 only if α satisfies


αk = 1, αh = 0,

αm = 1 ∀m s.t. Q?
−j1,m ⊀ Q?

−j1,h,

αb = 1 ∀b s.t. Q?
−j1,b ≺ Q?

−j1,h and k 6→ b.

(E.21)

We denote the set of attribute patterns having the above properties by A2 = {α ∈

{0, 1}K : α satisfies (E.21)}. Note the following two things: (i) first, Q?
−j1,m ⊀ Q?

−j1,h

implies m 6→ h, because otherwise by Lemma E.1 there is Q?·,m ≺ Q?·,h and hence

Q?
−j1,m ≺ Q?

−j1,h; (ii) second, k 6→ b implies h 6→ b, since otherwise h→ b and k → h

would imply k → b. And we have the conclusion that there exists some α? ∈ A2 that

respects the attribute hierarchy with pα? > 0, because αh = 0 does not contradict

any α` = 1 as specified in (E.21) according to (i) and (ii). We next show that for

α ∈ A2, αb ≥ qj1,b for any b must hold. To show this we only need to consider those b

such that qj1,b = 1 and show any α ∈ A2 must have αb = 1 for such b. By Condition

C, qj1,b = 1 implies b 6∈ Hk (i.e., k 6→ b). Then for such b, if Q?
−j1,b ⊀ Q?

−j1,h, then

by (E.21) we have αb = 1; and if Q?
−j1,b ≺ Q?

−j1,h, combining the fact that k 6→ h, by

(E.21) we also have αb = 1. So the conclusion that α ∈ A2, αb ≥ qj1,b for any b is

reached.

Now we have obtained for α ∈ A2 there is α � qj1 . This results in α � qj for

any j > K s.t. qj,h = 0, i.e, α � maxj>K: qj,h=0 qj. We further claim that for any

α ∈ A2, the α � q` for all ` → h must hold. This is because by Condition C, for

any ` → h there exists j > K such that qj,h = 0 and qj,` = 1. And combining with

the previously obtained α � maxj>K:qj,h=0 qj, we have the conclusion that α` = 1

and α � q`. Therefore α � q` for all ` → h. Considering the Tr∗∗,·p = 0 with θ∗∗
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defined in (E.20), we have

(θ−h − θ̄+
h )
∏
`≤K:
`→h

(θ+
` − θ̄−` )(θ+

j1
− θ̄−j1)

∏
j>K: j 6=j1,
qj,h=0

(θ+
j − θ−j )

( ∑
α∈A2

pα

)
= 0.

This leads to a contradiction, since every factor in the above display is nonzero. Now

we have reached the goal of Step 3.2.2 of proving (E.17) for i = 1, and using the

exactly same argument gives (E.17) for i = 2.

Combining the results of Step 3.2.1 (in (E.13)) and Step 3.2.2 (in (E.17)), we

obtain an important observation that

q̄ji,h = 0 ∀ h ∈ Hk, i = 1, 2. (E.22)

This is true because Step 3.2.1 reveals q̄h,` can potentially equal one only for those

` that is the prerequisite of attribute h (i.e., q̄h,` = 1 only if ` → h); and further,

Step 3.2.2 establishes that taking the element-wise maximum of the vector maxl→h q̄`

and the vector q̄ji still does not give a vector that requires all the attributes covered

by q̄h. Therefore q̄ji,h must equal zero. Precisely, (E.13) in Step 3.2.1 implies q̄h −

max`≤K: `→h q̄` = (0, . . . , 0, 1︸︷︷︸
column h

, 0, . . . , 0). And Step 3.2.2 further implies q̄ji,h = 0,

since otherwise max
(

max`≤K: `→h q̄`, q̄ji

)
� q̄h would happen, contradicting (E.17).

Step 3.2 Part III. In this step we prove θ̄−k = θ−k based on (E.22). Define

θ∗ = θ̄−k +
∑

m≤K:m 6=k
m 6∈Hk

θ̄−mem +
∑

j>K: qj,k=1

θ+
j ej +

∑
j>K: qj,k=0

θ−j ej, (E.23)

and we claim that T r∗,·p̄ = 0 with this θ∗ defined above, because of the following

reasoning. First, due to the first two terms in (E.23), T r∗,α 6= 0 only if α satisfies

αk = 1 and αm = 1 for any attribute m 6∈ {k}∪Hk. Note that in Step 2 we obtained

θ̄+
j = θ+

j for all j > K, then T r∗,α 6= 0 only if α ∈ {α : α � q̄j ∀ j > K s.t. qj,k =
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1} =: A3. However considering the item j1 with the property qj1,k = 1 and qj1,h = 0

for all h ∈ Hk, then such item j1 must be included in the third term in (E.23) (i.e.,∑
j>K: qj,k=1 θ

+
j ej), and we have shown (E.22) in Step 3.2.1 and 3.2.2 that q̄ji,h = 1

only if h 6∈ Hk. This implies that for all α ∈ A3, there must be α � q̄ji and θ̄ji,α = θ̄+
ji

.

So we have shown that for any α ∈ {0, 1}K , there must be T r∗,α = 0, and the claim

that T r∗,·p̄ = 0 is proved. And we have Tr∗,·p = 0.

Next, we consider Tr∗,α. Due to the last two terms in (E.23), Tr∗,α 6= 0 only if

α ∈ A4 with A4 defined as

A4 = {α : α � qj ∀ j > K s.t. qj,k = 0; α � qj ∀ j > K s.t. qj,k = 1}.

We claim that for any α ∈ A4, there is α � qm for all m 6∈ Hk. This claim is true

because α ∈ A4 implies αm = 1 for all attribute m such that Q?·,m ⊀ Q?·,k. Recall our

inductive hypothesis made in Step 3.1 that θ̄−m = θ−m for all attribute m that satisfies

Q?·,m ≺ Q?·,k, then we have Tr∗,α 6= 0 only if α further belongs to the following set

A5,

A5 = {α : αm = 1 ∀m ∈ [K] s.t. Q?·,m ⊀ Q?·,k (due to the last two terms in (E.23));

αm = 1 ∀m ∈ [K] s.t. Q?·,m ≺ Q?·,k and m 6∈ Hk

(due to the 2nd term in (E.23))}

= {α : αm = 1 ∀m ∈ [K] s.t. m 6∈ Hk},

where the last equality uses Lemma E.1 that Q?·,m ⊀ Q?·,k implies k 6→ m. From

Tr∗,α 6= 0 only if α ∈ A5, we have that for all α ∈ A5, there is α � qm for any

attribute m 6∈ Hk, and hence θm,α = θ+
m.

Furthermore, we claim that if Tr∗,α 6= 0 (which implies α ∈ A5), we have α � qk

for the following reason. For α ∈ A5, there is αm = 1 for all m 6∈ Hk. Consider the
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item j1 with qj1,k = 1 and qj1,h = 0 for all h ∈ Hk, and for this j1, there is

α � qj1 − (0, . . . , 0, 1︸︷︷︸
column k

, 0, . . . , 0). (E.24)

Then since θ+
j1
ej1 is included in (E.23), in order to have Tr∗,α 6= 0 we must have

α � qj1 . Combined with the above (E.24), we obtain αk = 0 and θk,α = θ−k . Denote

A6 = A5 ∩ {α : αk = 0}, and we have Tr∗,α 6= 0 only if α ∈ A6. Importantly, any

α in A6 does not violate the attribute hierarchy since αk = 0 does not contradict

αm = 1 for m 6∈ Hk as specified in A5. Therefore pα > 0 for all α ∈ A6 under the

attribute hierarchy.

Finally, with (E.23), we conclude that

Tr∗,α =
(θ−k − θ̄−k )

∏
m≤K:m 6=k
m 6∈Hk

(θ+
m − θ̄−m)

∏
j>K: qj,k=1(θ−j − θ+

j )
∏

j>K: qj,k=0(θ+
j − θ−j ), α ∈ A6;

0, otherwise.

and further

0 = Tr∗,·p
= (θ−k − θ̄−k )

∏
m≤K:m 6=k
m 6∈Hk

(θ+
m − θ̄−m)

∏
j>K: qj,k=1

(θ−j − θ+
j )

∏
j>K: qj,k=0

(θ+
j − θ−j )

( ∑
α∈A6

pα

)
.

Then since in the last paragraph we have shown
∑
α∈A6

pα > 0, the only potentially

zero factor in the above display could only be (θ−k − θ̄−k ). Now we have obtained

θ̄−k = θ−k , and the proof of Step 3.2.3 is complete.

Step 3.3. Now we complete the inductive argument in the current Step 3 and

conclude θ̄−k = θ−k for all attribute k ∈ [K]. By completing the induction, we have

obtained one more useful byproduct in the proof of Step 3, which is (E.16) that
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q̄h,m = 0 for any attribute m 6→ h. This exactly means under the true attribute

hierarchy and the induced attribute pattern set A, the first K items of Q̄ is equivalent

to the identity matrix IK . Namely, we obtain

Q̄1:K,· E∼ IK . (E.25)

Step 4. In this step we prove Q̄
E∼ Q. Without loss of generality, we assume the

columns of Q̄ is arranged in the order (b1, b2, . . . , bK). Recall thatA ⊆ {0, 1}K denotes

the set of attribute patterns that respect the specified attribute hierarchy. For each

j ∈ {K + 1, . . . , J}, in the following two parts (i) and (ii), we first prove

A∗ := {α ∈ A : α � q̄j, α � qj} = ∅

in (i); and then prove

A∗∗ := {α ∈ A : α � q̄j, α � qj} = ∅

in (ii). Together, these two conclusions would imply q̄j
E∼ qj.

(i) We use proof by contradiction and suppose A∗ = {α ∈ A : α � q̄j, α � qj} 6=

∅ for some j ∈ {K + 1, . . . , J}. Then
∑
α∈A∗ pα > 0. Define

θ∗ =
∑

k≤K: q̄j,k=1

θ−k ek + θ+
j ej, (E.26)

then T r∗,α = 0 for all α ∈ {0, 1}K and hence T r∗,·p̄ = 0. Based on Step 2 and

3, we have θ̄+
j = θ+

j and θ̄−k = θ−k for the j and any k with q̄j,k = 1 used in

(E.26). Therefore, due to the first summation term in (E.26), Tr∗,α 6= 0 only if

α satisfies αk = 1 for all k s.t. q̄j,k = 1 (i.e., α � q̄j); and due to the second

term θ+
j ej in (E.26), Tr∗,α 6= 0 only if θj,α = θ−j (i.e., α � qj). In summary,
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Tr∗,α 6= 0 only if α ∈ A∗, so

Tr∗,·p =
∏

k≤K: qj,k=1

(θ+
k − θ−k )(θ−j − θ+

j )
( ∑
α∈A∗

pα

)
6= 0,

which contradicts Tr∗,·p̄ = 0. This contradiction means A∗ = ∅ must hold.

(ii) We also use proof by contradiction and suppose A∗∗ = {α ∈ A : α � q̄j, α �

qj} 6= ∅ for some j ∈ {K + 1, . . . , J}. Then there exists α ∈ A with α � qj
but α � q̄j, which implies there exists some attribute k ∈ [K] s.t. q̄j,k = 1 and

qj,k = 0. Based on the above relation, we apply Lemma E.3 to obtain θ̄+
k = θ+

k .

Define

θ∗ = θ̄−j ej + θ̄+
k ek +

∑
m≤K:
k 6→m

θ−mem, (E.27)

then based on the first two terms in (E.27), we have T r∗,α = 0 for all α ∈

{0, 1}K . So T r∗,·p̄ = 0 and further Tr∗,·p = 0. Now consider Tr∗,α, then

Tr∗,α 6= 0 only if α belongs to the set A7 defined as

A7 = {α ∈ A : αk = 0; αm = 1 ∀ k 6→ m}, (E.28)

then this A7 6= ∅ because the α∗ = (α∗1, . . . , α
∗
K) defined as follows belongs to

A7. The α∗ takes the form α∗k = 0, α∗` = 0 for all k → `, and α∗m = 1 for all

k 6→ m. The α∗ also satisfies α∗ � qj for the following reason. Since qj,k = 0,

then under the attribute hierarchy this qj is equivalent to a q̂j with q̂j,k = 0

and q̂j,` = 0 for all ` s.t. k → `. Therefore for the defined α∗ ∈ A that respects

the attribute hierarchy, there must be α∗ � q̂j Since Lemma E.1 establishes

that we can consider without loss of generality the case where each row vector

of Q respects the attribute hierarchy, we have the conclusion that equivalently,
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α∗ � qj. And further there is
∑
α∈A7

pα ≥ pα∗ > 0. Now we have

0 = Tr∗,·p = (θ+
j − θ̄−j )(θ−k − θ̄+

k )
∏
m≤K:
k 6→m

(θ+
m − θ−m)

( ∑
α∈A7

pα

)
,

which leads to a contradiction since each factor in the above term is nonzero.

So we have proved the A∗∗ defined earlier must also be an empty set.

As stated before, based on the (i) and (ii) shown above, we obtain q̄j
E∼ qj for

every item j ∈ {K + 1, . . . , J}.

In summary, by far we have obtained θ̄−k = θ−k for all k ∈ [K], θ̄+
j = θ+

j for all

j ∈ {K + 1, . . . , J}, and Q̄
E∼ Q.

Step 5. We next show θ̄+
k = θ+

k for all k ∈ [K] and θ̄−j = θ−j for all j ∈ {K+1, . . . , J},

and p̄ = p.

Step 5.1. In this step, we show θ̄+
k = θ+

k for all k ∈ [K]. By Condition C, there

exists some item j > K s.t. qj,k = 1, and we denote this item by jk. Define

θ∗ =
∑
h≤K:
h 6=k

θ̄−h eh + θ̄−jkejk +
∑
j>K:
j 6=jk

θ−j ej, (E.29)

then Tr∗,α 6= 0 if and only if α = 1K . This is because considering the the last term of

summation in (E.29), we have Tr∗,α 6= 0 only if α � qJ where J := {K + 1, . . . , J} \

{jk}; and by Condition C there is qJ = 1K . Specifically,

Tr∗,1K =
∏
h≤K:
h 6=k

(θ+
h − θ̄−h )(θ+

jk
− θ−jk)

∏
j>K:
j 6=jk

(θ+
j − θ−j ),

and there is Tr∗,·p = Tr∗,1Kp1K 6= 0. So by (E.3) we have T r∗,·p̄ 6= 0. Further,

the element T̄r∗,α could be potentially nonzero only if α = 1K . This is because

considering the first two terms (
∑

h≤K:
h 6=k

θ̄−h eh and θ̄−jkejk) in θ∗ defined in (E.29), there
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is T r∗,α 6= 0 only if α � max(maxh≤K:
h 6=k

q̄h, q̄jk); and since q̄jk,k = 1 there must be

max(maxh≤K:
h 6=k

q̄h, q̄jk) = 1K . Therefore we have

θ̄+
k =

T r∗+ek,·p̄
T r∗,·p̄ =

Tr∗+ek,·p
Tr∗,·p = θ+

k .

Step 5.2. In this step we show θ̄−j = θ−j for all j ∈ {K + 1, . . . , J}. Consider an

arbitrary j > K, then there exists an attribute k such that qj,k = 1. Define θ∗ = θ+
k ek,

and note that in Step 5.1 we obtained θ̄+
k = θ+

k and in Step 3 we obtained θ̄−k = θ−k .

Then with this θ∗, there is

0 6= (θ−k − θ+
k )
( ∑
α∈A:α�qk

pα

)
= Tr∗,·p = T r∗,·p̄ = (θ−k − θ+

k )
( ∑
α∈A:α�qk

p̄α

)
,

and note that for any α 6= qk, there must be α 6= qj since qj,k = 1. Now consider the

item j, we have

θ̄−j =
T r∗+ej ,·p̄
T r∗,·p̄ =

T r∗+ej ,·p
T r∗,·p = θ−j .

Since j is arbitrary from {K + 1, . . . , J}, we have obtained θ̄−j = θ−j for all j ∈

{K + 1, . . . , J}.

Step 6. In this step we show that for Γ(Q,A) and the alternative Γ-matrix Γ (also

denoted by Γ(Q̄, Ā) where Ā is the set corresponding to those columns in Γ with

nonzero proportion parameters in p̄), the column vectors in Γ(Q̄, Ā) that correspond

to p̄α > 0 are identical to Γ(Q,A); furthermore, p̄π(α) = pα for α ∈ A, where

π : A → Ā is a one-to-one map. For an arbitrary α ∈ A, define

θ∗ =
∑
k≤K:
α�qk

θ−k ek +
∑
m≤K:

α�qm

θ+
mem. (E.30)

Then for any α∗ ∈ A, the Tr∗,α∗ 6= 0 (equivalently, T r∗,α∗ 6= 0) if and only if α∗ = α,
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because Q0 = Q1:K,· E∼ IK . Then Tr∗,·p = T r∗,·p̄ gives

∏
k≤K:
αk=1

(θ+
k − θ−k )

∏
m≤K:
αm=0

(θ−m − θ+
m)pα =

∏
k≤K:
αk=1

(θ+
k − θ−k )

∏
m≤K:
αm=0

(θ−m − θ+
m)p̄π(α),

and we obtain p̄π(α) = pα, Since
∑
α∈{0,1}K p̄α =

∑
α∈A pα = 1, the equality p̄α = pα

for any α ∈ A also implies p̄α = 0 for all α ∈ {0, 1}K \ A. So Γ(Q̄, Ā) = Γ(Q,A)

also holds. This completes the proof of Step 6.

Now we have shown Γ(Q,A) = Γ(Q̄, Ā), θ̄
+

= θ+, ḡ = g, p̄ = p. This completes

the proof of the sufficiency of Conditions A, B and C.

We next show that Condition A is necessary for identifying (Γ(Q,A), θ+, θ−, p).

We use proof by contradiction and assume that Condition A does not hold. Recall

that the type of modification of Q described in Condition A is “Operation” A, which

sets every qj,k to zero if qj,h = 1 and k → h. Denote the resulting matrix by QA.

If Condition A fails to hold, then QA lacks an identity submatrix IK . Without loss

of generality, suppose QA does not contain any row vector in the form eh for some

h ∈ [K]. Combined with the definition of Operation A, this means for any q-vector

with qj,h = 1, in the original Q there must be qj,` = 1 for some ` 6→ h. Then the

following two attribute patterns in A will lead to the same column vectors in Γ(Q,A):

α1 := 0K and α2 := (α2,1, . . . , α2,K) where α2,h = 1, α2,k = 1 for all k → h, and

α2,` = 0 for all ` 6→ h. The fact that Γ:,α1 = Γ:,α2 directly results in that pα1 and pα2

can be at best identified up to their sum, even if all the item parameters θ+ and θ−

are identified and known. This proves the necessity of Condition A.

As for the last claim in part (i) that Conditions A, B and C are necessary and

sufficient for identifiability of (Q,p,θ+,θ−) where there is no hierarchy (i.e., pα > 0

for all α ∈ {0, 1}K), it directly follows from the result in Theorem 1 in Gu and Xu

(2020b).
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Proof of part (ii). We first show that if Q contains a submatrix IK other than

satisfying A, B and C, then (A,θ+,θ−,p) are jointly identifiable. Based on the con-

clusion of part (i), it suffices to show that if Q contains an IK , then A are identifiable

from Γ(Q,A). That is, we will show that if Γ(Q,A) = Γ(Q̄, Ā) with both Q and

Q̄ containing a submatrix IK , then A = Ā. Note that when Q contains an IK , the

J × 2K matrix Γ(Q, {0, 1}K) has 2K distinct column vectors Gu and Xu (2020a).

Without loss of generality, suppose the first K rows of Q and Q̄ are both IK . Then

Γ1:K,:(Q,A) = Γ1:K,:(Q̄, Ā) exactly implies A = Ā, due to this distinctiveness of the

2K ideal response vectors of the 2K latent patterns under an identity matrix.

We next show that in order to identify an arbitrary A, it is necessary for Q to

contain an IK. Suppose Q does not contain an IK , then based on the concept of p-

partial identifiability in Gu and Xu (2020a), certain patterns would become equivalent

in that they lead to the same column vectors in Γ(Q, {0, 1}K), hence there must exist

some A that is not identifiable.

E.2 Computational details for Chapter VI

E.2.1 Details of Extended Bayesian Information Criterion (EBIC)

Consider the objective function (6.6). For a λ ∈ (−∞, 0), denote the estimated

set of patterns by Aλ = {α ∈ Acandi : p̂α > ρN , (Θ̂, p̂) = arg maxΘ,p `
2nd
λ (Θ,p)}.

Here ρN > 0 is the threshold for selecting latent patterns, and we take a sample size

dependent ρN = 1/(2N) in all the experiments. The EBIC proposed in Chen and

Chen (2008) has the form

BICγ(Aλ) = −2`(pAλ ,ΘAλ) + |Aλ| logN + 2γ log

(|Acandi|
|Aλ|

)
,

where a larger EBIC parameter γ ∈ [0, 1] would encourage a more parsimonious

model (i.e., fewer selected latent patterns). We take γ = 1 for the greatest amount
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of parsimony. Then Afinal is taken to be the particular Aλ that achieves the smallest

EBIC value.

E.2.2 Structure learning with missing data and binary matrix completion

When there exists missing data in a HLAM, what is observed is not a complete

N × J binary matrix R; instead, it is R with missing entries. Denote by Ω ⊆

[N ]×[J ] the set of indices of the observed entries. Then the original objective functions

presented in (6.5) and (6.6) should be replaced by the following two objective functions

`1st,Ω and `2nd,Ω
λ , respectively:

`1st,Ω(Q, A, Θ | R) =
∑

(i,j)∈Ω

[
ri,j

(∏
k

a
qj,k
i,k log θ+

j + (1−
∏
k

a
qj,k
i,k ) log θ−j

)]
+ (1− ri,j)

(∏
k

a
qj,k
i,k log(1− θ+

j ) + (1−
∏
k

a
qj,k
i,k ) log(1− θ−j )

)]
;

`2nd,Ω
λ (p, Θ | R, Q̂) =

N∑
i=1

log
{ ∑
α∈Acandi

pα
∏

j: (i,j)∈Ω

θ
ri,j
j,α(1− θj,α)1−ri,j

}
+

λ
∑

α∈Acandi

logρ(pα). (E.31)

With missing values in R, the ADG-EM Algorithm 4 and the PEM algorithm in

Gu and Xu (2019a) should be replaced by the following Algorithm 5 and Algorithm

6.

The algorithms for structure learning with missing data can be also used for binary

matrix completion. Note that even if not all entries ofR are observed, the entireN×K

matrix A and the entire J ×K matrix Q can be estimated from Algorithms 5-6, as

long as there are at least some observed entries in each row and each column of R.

Then naturally, based on the estimated A and Q, a complete N×J matrix R̂ = (r̂i,j)
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Algorithm 5: ADG-EM with missing data: Q estimation and dimension re-
duction

Data: Responses R with the set of indices of observed entries Ω ⊆ [N ]× [J ].
Initialize attribute patterns (ai,k)N×K ∈ {0, 1}N×K ; and structural matrix
(qj,k)J×K ∈ {0, 1}J×K .
Initialize parameters θ+ and θ−. Set t = 1, Aave = 0.
while not converged do

for (i, j) ∈ Ω do ψi,j ← ri,j log[θ+
j /θ

−
j ] + (1− ri,j) log[(1− θ+

j )/(1− θ−j )] ;
As ← 0, Qs ← 0.
for r ∈ [2M ] do

for (i, k) ∈ [N ]× [K] do

Draw ai,k ∼ Bernoulli
(
σ
(∑

j: (i,j)∈Ω qj,k
∏

m6=k a
qj,m
i,m ψi,j

))
;

if r > M then As ← As + A ;

Aave ← 1
t
As/M +

(
1− 1

t

)
Aave; t← t+ 1.

for r ∈ [2M ] do
for (j, k) ∈ [J ]× [K] do

Draw qj,k ∼ Bernoulli
(
σ
(
−∑i: (i,j)∈Ω(1− ai,k)

∏
m 6=k a

qj,m
i,m ψi,j

))
;

if r > M then Qs ← Qs +Q ;

Q = I(Qs/M > 1
2
) element-wisely; Iave =

(∏
k{aave

i,k }qj,k
)
N×J

;

for j ∈ [J ] do

θ+
j ←

∑
i: (i,j)∈Ω ri,jI

ave
i,j∑

i: (i,j)∈Ω I
ave
i,j

, θ−j ←
∑

i: (i,j)∈Ω ri,j(1− Iave
i,j )∑

i: (i,j)∈Ω(1− Iave
i,j )

;

Â = I(Aave > 1
2
) element-wisely.

Output: Acandi, which includes the unique row vectors of Â, and binary
structural matrix Q̂.

Then (Q̂,Acandi) are fed to the PEM with missing data to maximize (6.6) and
obtain Afinal.

with no missing entries can be reconstructed, by setting r̂i,j equal to

r̂i,j := I

(
θ̂+
j · Γq̂j ,âi + θ̂−j · (1− Γq̂j ,âi) >

1

2

)
, (i, j) ∈ [N ]× [J ]. (E.32)

which is the integer (0 or 1) nearest to the posterior mean of (i, j)th entry of R.
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Algorithm 6: PEM with missing data: Penalized EM for log-penalty with
λ ∈ (−∞, 0)

Data: Responses R with the set of indices of observed entries Ω ∈ [N ]× [J ],
and candidate attribute patterns Acandi.

Initialize ∆ = (∆
(0)
1 , . . . ,∆

(0)
|Acandi|).

while not converged do
for (i, l) ∈ [N ]× [|Acandi|] do

ϕi,αl =
∆l · exp

{∑
j: (i,j)∈Ω

[
Ri,j log(θj,αl) + (1−Ri,j) log(1− θj,αl)

]}
∑

m ∆m · exp
{∑

j: (i,j)∈Ω

[
Ri,j log(θj,αm) + (1−Ri,j) log(1− θj,αm)

]} ;

for l ∈ [|Acandi|] do ∆l = max{c, λ+
∑N

i=1 ϕi,αl}; (c > 0 is pre-specified) ;
p←∆/(

∑
l ∆l);

for j ∈ [J ] do

θ+
j =

∑
i: (i,j)∈Ω

∑
αl
Ri,jΓqj ,αlϕi,αl∑

i: (i,j)∈Ω

∑
αl

Γqj ,αlϕi,αl
, θ−j =

∑
i: (i,j)∈Ω

∑
αl
Ri,j(1− Γqj ,αl)ϕi,α∑

i: (i,j)∈Ω

∑
αl

(1− Γqj ,αl)ϕi,αl
.

Output: {αl ∈ Acandi : pαl > ρ}.

E.2.3 More details on the experiments in Section 5 of the main text

Denote the output of the ADG-EM Algorithm 4 by (Q̂,Acandi). The definition of

acc[Q]A in Table 6.1 is

acc[Q]A =
1

J |A|
∑

(j,α)∈[J ]×A

I(Γq̂j ,α 6= Γqj ,α). (E.33)

That is, since anA gives an equivalence class ofQ-matrices, the accuracy of estimating

Q should be evaluated by the accuracy of estimating the ideal response structure

{Γqj ,α : α ∈ A} under the true A. More specifically, as long as the J × |A| ideal

response matrix is estimated accurately, the Q is already identified in the correct

equivalence class.

We next present the statistical variations of the results in Table 6.1 of the main

text. We choose to present the inter quartile range (i.e., difference between the 75th
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and the 25th percentiles) as a measure of variation as it is more robust to outliers.

See Table E.1 for details.

Table E.1: Statistical variations of results presented in Table 6.1 in the main text. The
“IQR” stands for the inter quartile range of the three accuracy measures: acc[Q]A,
TPR, and 1−FDR and that of the size of Afinal. All results are based on 200 runs.
In each scenario, the IQR is presented below the original number of the accuracy or
the size of Afinal in parenthesis.

2K |A0| noise
(N, J) = (1200, 120) (N, J) = (1200, 1200)

acc[Q]A TPR 1-FDR |Afinal| acc[Q]A TPR 1-FDR |Afinal|

28

10

20% 1.00 1.00 0.96 10 1.00 1.00 1.00 10
IQR (0.000) (0.000) (0.091) (1) (0.000) (0.000) (0.000) (0)
30% 1.00 1.00 0.96 10 1.00 1.00 0.68 15
IQR (0.000) (0.000) (0.091) (1) (0.000) (0.000) (0.089) (2)

15

20% 1.00 1.00 0.95 15 1.00 1.00 1.00 15
IQR (0.000) (0.000) (0.063) (1) (0.000) (0.000) (0.000) (0)
30% 1.00 0.99 0.94 16 1.00 1.00 0.80 19
IQR (0.003) (0.000) (0.118) (2) (0.001) (0.000) (0.132) (3)

215

10

20% 0.98 0.91 0.90 10 0.99 0.99 0.97 10
IQR (0.002) (0.000) (0.000) (0) (0.000) (0.000) (0.000) (0)
30% 0.99 1.00 0.88 10 0.97 0.94 0.62 15
IQR (0.007) (0.000) (0.000) (0) (0.000) (0.000) (0.126) (2)

15

20% 0.99 0.96 0.95 15 1.00 1.00 0.99 15
IQR (0.001) (0.000) (0.000) (0) (0.001) (0.000) (0.000) (0)
30% 0.99 0.99 0.89 15 0.99 0.98 0.71 21
IQR (0.006) (0.000) (0.063) (1) (0.000) (0.000) (0.123) (3.5)

As illustrated in Example VI.2, a set of allowed patterns A ⊆ {0, 1}K would give

an equivalence class of Q-matrices, each of which would lead to identical Γ(Q,A).

More generally, the structural matrix Q and the attribute pattern matrix A are cou-

pled together, such that fixing one of them would allow identifying the other up to

an equivalence class. However, there is indeed a way to uniquely determine an A

from Γ(Q,A) if we impose one constraint on the structural matrix Q: to require Q to

contain a submatrix IK . This fact is shown in the part (ii) of Theorem VI.1. In partic-

ular, if for instance we constrain Q1:K, = IK , then A is uniquely determined from the

K × |A| ideal response matrix Γ(Q1:K,,A). As discussed in the main text after The-

orem VI.1, this phenomenon is analogous to the identification criteria for the factor
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loading matrix in factor analysis models, where the loading matrix is often required to

include an identity submatrix or satisfy certain rank constraints (Anderson, 2009; Bai

and Li, 2012). Therefore at least theoretically, in estimation, one needs to enforce the

constraint that Q contains a submatrix IK to uniquely determine A and the attribute

hierarchy. In particular, in the simulation scenario (N, J,K) = (1200, 120, 8) in Table

6.1, we enforce such a constraint after running the ADG-EM algorithm, and then

use the Acandi and the constrained Q̂ as input to the second stage PEM algorithm.

Interestingly, we observe that practically, this constraint is not needed when estimat-

ing more large-scale problems. For instance, for all the other simulation scenarios

in Table 6.1 and Figure 6.3 with (N, J) = (1200, 1200) or K = 15, we directly run

PEM without such a constraint and the structure learning results presented there are

indeed accurate.

For the experiment with the Austrian TIMSS 2011 real data that has (N, J,K) =

(1010, 47, 9), a tentative Q-matrix is provided in the R package CDM. This tentative

Q has all the row vectors being unit vectors, i.e., for each j ∈ {1, . . . , 47}, there is

qj = ek for some k ∈ [K]. To learn the attribute hierarchy from this dataset, we run

Algorithm 5 and Algorithm 6 presented in Section B.2 of this supplementary material

to handle the missing entries in R. In particular, we use the tentative Q provided in

the R package as the initial value for Algorithm 5 and enforce Q̂ to contain an identify

matrix after running Algorithm 5 to obtain Q̂ and Acandi. Finally, with the Acandi

and the enforced Q̂ as input, we run Algorithm 6 and obtain the results presented in

Figure 6.4 in the main text.

E.3 Large noisy binary matrix factorization/reconstruction

A nice byproduct of the proposed ADG-EM Algorithm 4 is a scalable algorithm

for large-scale noisy binary matrix factorization/reconstruction and latent structure

estimation. As discussed in the previous section, if there exists attribute hierarchy, the
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Q-matrix can be identified up to the equivalence class determined byA. The emphasis

of the experiments in the main text is to estimate A; while in the current experiments,

we focus on the estimation of the structural matrix Q, and the reconstruction of the

ideal response matrix based on the estimated Q.

We use Algorithm 4 to decompose the N×J large noisy binary matrixR generated

under the AND-model. Specifically, R ≈ A ◦Q>, where the “◦” denotes the “AND”

logical operation between each pair of ai = (ai,1, . . . , ai,K) and qj = (qj,1, . . . , qj,K), as

introduced in (6.1); while the “≈” allows for item level noises as quantified by 1− θ+
j

and θ−j in (6.2). In matrix form, we have


r1,1 · · · · · · r1,J

...
...

...
...

...
...

...
...

rN,1 · · · · · · rN,J

 ≈


a1,1
... a1,K

...
...

...

...
...

...

aN,1
... aN,K


◦


q1,1 · · · · · · qJ,1

· · · · · · · · · · · ·

q1,K · · · · · · qJ,K

 . (E.34)

We perform simulations in the scenario (N, J,K) = (1000, 1000, 7), where the

true Q vertically stacks J/(2K) copies of submatrix IK and the remaining J/2 rows

of Q vertically stacks an appropriate number of another K ×K submatrix Q2 in the

following form,

Q2 =



1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 1 0

0 0 0 0 0 1 1

1 0 0 0 0 0 1


7×7

. (E.35)

The ground truth 1000× 7 matrix Q is visualized in the bottom-right plot in Figure

E.2, with color yellow representing value “1” and color blue representing value “0”.
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Then under this structural matrix Q, we generate response dataR using noise param-

eters 1− θ+
j = θ−j = 30%, and proportion parameters pα = 1/128 for all α ∈ {0, 1}7.

In the current scenario we would like to keep track of the estimation accuracy of Q

itself, so we set A = {0, 1}K to be saturated such that [Q]A contains only one ele-

ment: Q itself. For each of 200 simulated datasets, we apply our ADG-EM Algorithm

4 alone to estimate Q and reconstruct the ideal case R using expression (E.32). The

initializations {Qini}’s are obtained from randomly perturbing about one third entries

in the true Q in each run. Instead of specifying a stopping criterion based on the con-

vergence of the objective function, in the current experiment we just run exactly 10

stochastic EM iterations in Algorithm 4; we record the number of entry-differences

between the estimated Q and the true Qtrue along each EM iteration, and present

the corresponding boxplot in Figure E.1(b). In addition, we record the number of

entry-differences between Qtrue and the initial value Qini, which is given as input to

the algorithm, and present the boxplot based on 200 runs in Figure E.1(a).

The two boxplots in Figure E.1 show the superior convergence performance of

the proposed ADG-EM algorithm. For each boxplot, the central mark denotes the

median, and the bottom and top edges of the box are the 25th and 75th percentiles,

respectively. The whiskers extend to the most extreme data points that are not

considered outliers, and the outliers are plotted with the ‘+’. Out of the 1000× 7 =

7000 entries in the structural matrix, although the initialization of Q differs from the

true one by more than 2000 entries on average, after just one stochastic EM iteration,

the number of entry-differences between Qiter. 1 and Qtrue decreases to less than 300

entries in most cases. After just 3 stochastic EM iterations, for a vast majority of

the 200 datasets, the Qtrue is perfectly recovered and remains unchanged in further

iterations of the algorithm. Indeed, after 10 iterations, for each of the 200 datasets,

the Qtrue is exactly recovered! Considering the relatively high noise rate 30% in R

(i.e., 30% of the entries in the ideal response matrix are randomly flipped to form the
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observed R) and the suboptimal initializations, such performance on latent structure

estimation is impressive.

(a) # entry-differences
between Qini and Qtrue (b) # entry-differences between Qiter and Qtrue

Figure E.1: Boxplots of entry-differences between estimated Qiter (or Qini) and the
true structural matrix Qtrue, with size 1000×7. Results are based on 200 independent
runs.

To obtain a better understanding of the performance of the ADG-EM algorithm,

we next present two specific examples that visualize the intermediate results of the

algorithm. Still in the setting described above, we simulate a 1000× 1000 matrix R

with noise rate 30% = θ−j = 1− θ+
j . In the first example, we use randomly perturbed

initialization for (Q,A), which is the same setting as the 200 runs behind Figure E.1.

We present the results of Algorithm 4 together with its intermediate results along the

first 4 iterations of the stochastic EM steps in Figure E.2. The 6 plots in the first row of

Figure E.2 show the reconstruction of the data matrixR, and the 6 plots in the second

row of Figure E.2 show the estimation of the structural matrix Q. Specifically, after

the t-th iteration, based on the Q̂iter. t, the R̂iter. t is reconstructed following Equation

(E.32). The ground truth forR is just the N×J ideal response matrix in the noiseless

case Rtrue = (rtrue
i,j ), where rtrue

i,j = Γqj ,ai =
∏K

k=1 a
qj,k
i,k . Along the first 3 stochastic EM

iterations, the matrix Q change 2246, 275, 11 entries, respectively. Then from the

4th iteration to the 14th iteration when the stopping criterion is reached, we observe

that all the entries of Q remain the same during the sampling in the E step. In the
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last several iterations the item parameters (θ+,θ−) continued to change slightly and

converge. Let (robserve
i,j ) and (rrecons

i,j ) denote the observed noisy data matrix and the

reconstructed data matrix in the end of the algorithm, respectively. Corresponding

to the trial in Figure E.2, there is

1

NJ

∑
(i,j)∈[N ]×[J ]

I(rtrue
i,j 6= robserve

i,j ) = 0.2995,

1

NJ

∑
(i,j)∈[N ]×[J ]

I(rtrue
i,j 6= rrecons

i,j ) = 5.21× 10−5.

In the above display, the 0.2995 reflects the noise rate in the observed data matrix

corresponding to 1−θ+
j = θ−j = 0.3 for each j ∈ [J ]; and the 5.21×10−5 represents the

error rate of reconstructing the N×J ideal response matrix, which is far smaller than

the initial noise rate by several magnitudes. Indeed, there is no discernible difference

between Riter. 4 and Rtrue based on the two rightmost plots in the first row of Figure

E.2.

2246 entries cha
ng

e 275
entries cha

ng
e 11

entries cha
ng

e 0
entry chang

e
exactly recove

re
d!

Figure E.2: Noisy binary matrix factorization and reconstruction with randomly per-
turbed initialization. Color yellow represents value “1” and color blue represents value
“0”. Only 3 stochastic EM iterations suffice for perfect estimation of the structural
matrix Q.

In the second visualization example, we use entirely random initialization to ob-

tain the (Qini,Aini) as input to Algorithm 4. The results of Algorithm 4 together
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2312 entries cha
ng

e 1746 entries cha
ng

e 400
entries cha

ng
e 141

entries cha
ng

e exactly recove
re

d!

Figure E.3: Noisy binary matrix factorization and reconstruction with entirely ran-
dom initialization. Color yellow represents value “1” and color blue represents value
“0”. Only 4 stochastic EM iterations of the proposed ADG-EM Algorithm 4 suf-
fice for almost perfect decomposition and reconstruction. The stochastic Q after 4
iterations is identical to the true Q after column permutation.

with its intermediate results along the first 4 iterations of the stochastic EM steps

are presented in Figure E.3. Along the first 4 stochastic EM iterations, the matrix

Q changed 2312, 1746, 400, 141 entries, respectively. Then from the 5th iteration to

the 18th iteration when the stopping criterion is reached, all the entries of Q remain

the same during the sampling in the E step. With this entirely random initialization

mechanism, we observe that the ADG-EM algorithm is not trapped in some sub-

optimal local optimum; instead, the finally obtained Q̂ only differs from Qtrue by a

column permutation. This column permutation is the inevitable and trivial ambigu-

ity associated with a latent attribute model with a structural matrix (Chen et al.,

2015). The proposed ADG-EM algorithm also succeeds in this scenario. For Figure

E.3, the reconstruction result for the data matrix R with noise rate 0.3 is

1

NJ

∑
(i,j)∈[N ]×[J ]

I(rtrue
i,j 6= rrecons

i,j ) = 7.20× 10−5.

One can also see from the above high reconstruction accuracy that estimating Q up

to a column permutation does not compromise the reconstruction of R at all and
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that the reconstruction error is still at the magnitude of 10−5.

382



BIBLIOGRAPHY

383



BIBLIOGRAPHY

Allman, E. S., Matias, C., and Rhodes, J. A. (2009). Identifiability of parameters in
latent structure models with many observed variables. The Annals of Statistics,
37:3099–3132.

Anandkumar, A., Chaudhuri, K., Hsu, D., Kakade, S. M., Song, L., and Zhang,
T. (2011). Spectral methods for learning multivariate latent tree structure. In
Advances in Neural Information Processing Systems, pages 2025–2033.

Anandkumar, A., Ge, R., Hsu, D., Kakade, S. M., and Telgarsky, M. (2014). Tensor
decompositions for learning latent variable models. Journal of Machine Learning
Research, 15(1):2773–2832.

Anandkumar, A., Hsu, D., Janzamin, M., and Kakade, S. (2015). When are overcom-
plete topic models identifiable? Uniqueness of tensor tucker decompositions with
structured sparsity. Journal of Machine Learning Research, 16:2643–2694.

Anderson, T. (2009). An introduction to multivariate statistical analysis, 3rd Ed.
Wiley India Pvt. Limited.

Anderson, T. W. and Rubin, H. (1956). Statistical inference in factor analysis. In Pro-
ceedings of the third Berkeley symposium on mathematical statistics and probability,
volume 5, pages 111–150.

Bai, J. and Li, K. (2012). Statistical analysis of factor models of high dimension. The
Annals of Statistics, 40(1):436–465.

Bernardo, J., Bayarri, M., Berger, J., Dawid, A., Heckerman, D., Smith, A., and West,
M. (2007). Bayesian nonparametric latent feature models. Bayesian Statistics, 8:1–
25.

Bhaskara, A., Charikar, M., and Vijayaraghavan, A. (2014). Uniqueness of tensor
decompositions with applications to polynomial identifiability. In Conference on
Learning Theory, pages 742–778.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Bissiri, P. G., Holmes, C. C., and Walker, S. G. (2016). A general framework for
updating belief distributions. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 78(5):1103–1130.

384



Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational infer-
ence: A review for statisticians. Journal of the American Statistical Association,
112(518):859–877.

Casella, G. and Berger, R. L. (2002). Statistical inference, volume 2. Duxbury Pacific
Grove, CA.

Chen, H., Chen, J., and Kalbfleisch, J. D. (2001). A modified likelihood ratio test
for homogeneity in finite mixture models. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 63(1):19–29.

Chen, H., Chen, J., and Kalbfleisch, J. D. (2004). Testing for a finite mixture model
with two components. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 66(1):95–115.

Chen, J. (1995). Optimal rate of convergence for finite mixture models. The Annals
of Statistics, 23:221–233.

Chen, J. and Chen, Z. (2008). Extended Bayesian information criteria for model
selection with large model spaces. Biometrika, 95(3):759–771.

Chen, J. and de la Torre, J. (2018). Introducing the general polytomous diagnosis
modeling framework. Frontiers in psychology, 9:1474.

Chen, Y., Culpepper, S. A., Chen, Y., and Douglas, J. (2018a). Bayesian estimation
of the DINA Q-matrix. Psychometrika, 83(1):89–108.

Chen, Y., Culpepper, S. A., Wang, S., and Douglas, J. (2018b). A hidden markov
model for learning trajectories in cognitive diagnosis with application to spatial
rotation skills. Applied Psychological Measurement, 42(1):5–23.

Chen, Y., Liu, J., Xu, G., and Ying, Z. (2015). Statistical analysis of Q-matrix based
diagnostic classification models. Journal of the American Statistical Association,
110(510):850–866.
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