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Abstract 
 

The guanine exchange factor Trio links Gαq/11-coupled seven-transmembrane receptors 

to the activation of small GTPases in the Rac and Rho subfamilies, thereby regulating 

the processes of cytoskeletal rearrangements and gene transcription. This signal 

transduction pathway underlies the development of uveal melanoma, a fatal malignancy. 

Trio is a feasible drug target for uveal melanoma; RNAi knockdown of Trio is efficacious 

in a xenograft model of metastatic uveal melanoma. Trio is also found overexpressed in 

a variety of cancers and thus may serve as a target in these.  Additionally, Trio is thought 

to primarily be involved in developmental processes and does not play many roles in 

adult humans. The path to targeting Trio for therapeutic development is not clear as we 

still do not understand the structural and functional roles of ~80% of the protein, and the 

portions we do understand are protein-protein interaction modules that interact with their 

targets using broad, relatively flat interfaces. My work has focused on determining 

structure-function relationships within Trio to lay groundwork for future inhibitor 

development. I have defined the autoregulatory mechanism employed by the C-terminal 

guanine exchange factor module of Trio (TrioC) by determining the crystal structure of 

TrioC in its basal state, which revealed how its pleckstrin homology domain and 

preceding linker region blocks the RhoA binding site on the Dbl homology domain. I 

demonstrated that missense and nonsense mutations found in cancer patients are able 

to hyperactivate TrioC, demonstrating how these mutations may be involved in cancer 



 xxii 

growth or development. My later work focused on determining structure/function 

relationships within larger fragments of Trio, because the full-length protein is expressed 

in cancer. I have biochemically characterized these larger fragments and shown that they 

have higher Rac1 GEF activity than Trio’s Rac1-selective GEF module alone. These 

constructs can be used to interrogate the function of additional Trio domains and I have 

begun characterizing these domains using electron microscopy and biochemical assays. 

Through my efforts, the materials and conditions necessary to determine the structure 

of a larger construct of Trio using electron microscopy have been assembled. My work 

has opened new avenues toward targeting Trio: inhibitor molecules could either stabilize 

the autoinhibited conformation of TrioC I report here or disrupt the region of Trio 

producing extra Rac1 GEF activity. 
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Chapter 1 Introduction 
1.1 Background and Introduction 

This dissertation concerns the structure and function of the RhoGEF Trio, a Gαq/11 target 

implicated in uveal melanoma. The following introductory Chapter will provide 

background in GPCR signaling and the link between Trio and uveal melanoma. Following 

that, a description of Trio homologs, splice variants, and information gained about Trio 

via genetic experiments are summarized. The Chapter ends with a domain by domain 

breakdown of what is known in the literature regarding the molecular determinants of 

Trio function and regulation. 

1.1.1 GPCR and G Protein Signaling 

G protein-coupled receptors (GPCRs) constitute the largest family of extracellular 

signaling receptors in eukaryotes. They are responsible for conveying signals from the 

extracellular milieu to the controlled intracellular environment and are hugely important 

for the physiological processes of sight, taste, smell, neurotransmission, and other 

processes induced by hormones, such as heart contractility. GPCRs are flexible 

membrane proteins that respond to extracellular inputs, such as a photon of light or the 

hormone epinephrine. The binding of these extracellular inputs changes GPCR 

conformation such that they can productively interact with intracellular heterotrimeric G 

proteins, which transmit these signals within the cell.1 Heterotrimeric G proteins are 

composed of an α subunit (~45 kD) which binds to guanine nucleotides, and a βγ 

heterodimer (~45 kD) which both regulates the α subunit and signals on its own. The 
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phosphorylation state of the bound nucleotide on α can change the conformation of the α 

subunit and allow this protein to bind to other proteins in the cell. G protein α subunits 

typically cycle between a guanosine diphosphate (GDP) bound state, in which they 

associate with the βγ dimer (and this complex can associate with the GPCR), and a 

guanosine triphosphate (GTP) bound state, in which the affinity for βγ dimer is decreased 

and the α subunit can interact with its downstream signaling partners. G protein α subunits 

(Gα) were classified first by their physiological effects and later by sequence homology 

and are outlined in Figure 1.1. There are four Gα classes, including the stimulatory (s) 

class, the inhibitory (i) class, the 12 class, and the q/11 class.2-4 

Gα subunits are regulated by other proteins which can cycle bound nucleotide into the 

“off” (GDP-bound) state or the “on” (GTP-bound) state. Gα subunits are typically found in 

the GDP-bound state in an animal cell and are cycled to a GTP-bound state through 

interaction with activated GPCRs. The receptor acts as a guanine nucleotide exchange 

Figure 1.1 Gα proteins are associated with various cancers and cancerous signaling likely occurs through their major 
effectors. Major Gα classes are shown, with class members listed below, followed by major effectors, and associated 
cancers. 

Gαs Gαi Gα12 Gαq

Gαs, Gαolf Gαi, Gαt, Gαo, Gαz, 
 Gαgust

Gα12, Gα13 Gαq, Gα11, Gα14, Gα16

Class

Members

Major 
Effectors

Adenylyl 
Cyclase (AC) 

Isoforms

AC Isoforms, 
cGMP-PDE*

 *cGMP-PDE: cyclic guanosine monophosphate-phosphodiesterase 
#RH: Regulator of G-protein Signaling Homology Domain

RH#-RhoGEFs PLCβ Isoforms 
TrioC RhoGEFs

Associated 
Cancers

Uveal Melanoma 
Other Melanomas

Thyroid/ 
Pituitary 
Tumors

Ovarian/ 
Adrenal 
Tumors

Burkitt’s Lymphoma 
Diffuse large-B-cell 

Lymphoma
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factor (GEF) in that it selectively binds to the nucleotide-free state of Gα, thereby forcing 

Gα to release the nucleotide it has bound. Eukaryotic cells maintain a higher intracellular 

concentration of GTP compared to GDP, and thus GTP enters Gα, triggering release from 

the GPCR and Gβγ. For its GTP-bound lifetime, the α subunit will interact with 

downstream effectors, proteins that carry out downstream signaling functions. α subunits 

have intrinsic GTPase activity that hydrolyzes the bound GTP to GDP, although this 

process does not occur at a relevant timescale to most signaling cascades, with the 

exception of Gαs.4,5 The GTPase activity of many α subunits can be enhanced by proteins 

called GTPase-activating proteins (GAPs). These proteins act by stabilizing the Gα 

catalytic site in a transition state conformation and thereby speeding up hydrolysis of the 

terminal phosphate of GTP. The largest family of GAP proteins for Gα subunits is the 

regulator of G protein signaling (RGS) family. Phospholipase Cβ enzymes also have a 

GAP domain selective for Gαq/11 proteins 6 7,8 The cycle of a heterotrimeric G protein is 

depicted in Figure 1.2. 

Figure 1.2 The life cycle of a heterotrimeric G protein is regulated by other proteins and the kinetics of this cycling 
determines the timescale and magnitude of signaling. The Gα subunit primarily associates with the βγ heterodimer 
until it is cycled to the GTP state by its cognate GEF molecule, usually an activated GPCR. GTP-bound Gα can freely 
associate with effector molecules to coordinate a series of downstream functions. Gα is cycled back to the GDP 
state by a GAP protein. G protein subunits are shown as cartoon ovals, with guanine nucleotides shown as a 
rectangles and phosphate groups as small purple circles. 
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1.1.2 Gαq/11 Mutations in Uveal Melanoma and Signaling Implications 

Recently it has been found that α subunits harboring mutations in their active site residues 

can lead to various malignancies due to their inability to return to the GDP-bound “off” 

state (Figure 1.1).9 Most commonly, a variant in the “catalytic” glutamine or arginine 

residues (Figure 1.3) leads to a large decrease in rate in the GTP hydrolysis reaction. In 

the transition state for hydrolysis, Arg183 (Gαq numbering) contacts the β and γ 

phosphates and a water molecule in the Mg2+ coordination sphere. Q209 also contacts 

the γ phosphate, and most importantly is in position to act as the base to deprotonate the 

nucleophilic water molecule. A mutation in either of these residues leads to inefficient 

Figure 1.3 Heterotrimeric G protein active site shown with GDP∙ALF4
- bound, showing the transition state for γ 

phosphate hydrolysis and highlighting the role of Arg183 and Gln209 in catalyzing hydrolysis reaction. Gαq is shown 
as blue cartoon representation, with key active site residues Arg183 and Glu209 shown as sticks. The GDP-ALF4

- 
conjugate is shown as sticks, where ALF4

- represents the transition state of γ phosphate hydrolysis. The Mg2+ ion and 
waters are shown as spheres. Polar contacts <3.5 Å are indicated as black dotted lines and show how phosphates 
are coordinated to align the active site for γ phosphate hydrolysis. 

Gαq

H2O

Mg2+

Arg183 Gln209

 Hydrolytic 
H2O

PDB 2RGN

GDP

H2O

Al·F4-



 5 
 

GTP hydrolysis even in the presence of a cognate GAP, which is the key cancer driving 

event that occurs in uveal melanoma (UM).10,11 

UM is the most common ocular cancer in the United States, with ~1500 new cases 

diagnosed per year and a high metastasis rate (~50 %). The disease is fatal in all but a 

few metastatic patients, and no efficacious treatments for metastatic UM exist. UM tumors 

originate in the pigmented cell types of the eye, and commonly spread to the liver. In UM, 

the Gαq/11 is mutated in ~90 % of cases, with the most common variations occurring in 

residues Q209 and R183. The Gαq/11 variation most often occurs early in disease 

progression and is considered the driving oncogene in most UM cases. There are also 

rare cases of mutations in upstream or downstream proteins in the Gαq/11 signaling 

pathway leading to UM, including the cysteinyl leukotriene receptor 2 and phospholipase 

Cβ4. The Q209 and R183 variations in Gαq/11 are hypothesized to lead to the constitutive 

activation of Gαq/11 effectors, including phospholipase Cβ-family enzymes (PLCβ) and the 

Rho-family GEFs (RhoGEFs) Trio, Kalirin, and p63RhoGEF.12-25 

Because Gαq/11 regulates a host of other physiological processes including platelet 

activation, cardiac contractility, and neurotransmission, it would be challenging to target 

the G protein systemically using a dosed drug molecule, although Gαq/11- selective probes 

such as FR900359 are currently being used to further dissect the progression of UM 

signaling events throughout the stages of tumor development.26-29 Given the difficulties in 

inhibiting Gαq/11, attention has largely focused around targeting downstream molecules. 

Early attempts to define UM signaling events centered around the study of the canonical 

Gαq/11 signaling pathway through PLCβ, which activates Ca2+-dependent signaling, 
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ultimately impinging on the mitogen-activated protein kinase (MAPK) pathway.10,30-32 

These studies led to clinical trials targeting MAPKs as potential targets for the treatment 

of UM, because well-defined roles for these kinases exist in cancer, and drugs targeting 

MAPKs already are on the market. The “Selumetinib Uveal Melanoma Investigator Trial” 

(SUMIT) dosed Selumetinib, an allosteric MEK1/2 inhibitor, to metastatic UM patients and 

advanced to a phase III clinical trial vs. the standard of care decarbazine, a cytotoxic 

DNA-alkylating drug. Selumetinib did not enhance progression-free survival vs. the 

control condition and also led to several adverse effects in patients.33-35 This in 

combination with other evidence from models of UM suggests that the aberrant signaling 

events in UM involve other pathways than the canonical downstream target of Gαq/11. 

Although PLCβ could still play a role in UM, it may be limited to the early stages of disease 

and dispensable in fully established UM. A comparison of Gαq/11-mutant UM cell lines to 

those in which Gαq/11 is not the causative oncogene shows no difference in MAPK 

activation between the two, suggesting that Gαq/11 signaling to MAPK is dispensable in 

UM, providing a potential explanation for the results of these clinical trials.36 The SUMIT 

clinical trial stands as the strongest evidence that targeting MAPKs alone is ineffective for 

UM treatment. 

In 2014, an RNA interference-based knockdown study performed using a model of UM in 

D. melanogaster cells identified the nucleotide exchange factor Trio as a potential target 

for UM. In a mouse xenograft model of metastatic Gαq-dependent UM, Trio knockdown 



 7 
 

reduced both the size and weight of grafted tumors.37 In-depth studies of Trio-mediated 

signaling revealed that Trio signaled to both the activator protein-1 (AP-1) and TEA 

domain (TEAD) transcription factors, both implicated in cancer.38-41 A simplified signaling 

diagram is shown in Figure 1.4, where Trio signals to AP-1 and TEAD depending on RhoA 

and Rac1 nucleotide exchange activity.42 Knockdown of Trio significantly reduces 

signaling to both AP-1 and TEAD in luciferase systems. Trio knockdown also reduces the 

mRNA levels of common genes regulated by TEAD in UM cell lines as measured by 

quantitative PCR. Knockdown of variant Gαq-Q209L (Gαq-QL), the variant most 

commonly found in UM, or the downstream GTPases RhoA or Rac1 replicate these 

transcriptional effects. Small molecule strategies for UM proposed include direct inhibition 

of Gαq using FR900359, inhibition of Focal Adhesion Kinase (downstream of Trio and 

Figure 1.4 Signaling events dependent on Gαq in uveal melanoma occur through the effector proteins PLCβ and Trio, 
involve several signaling proteins, and converge on two families of transcriptions factors. The diagram is incomplete 
due to steps in the pathway that are not yet defined. Proteins are shown as ovals, with arrows indicating activation. 
Dashed arrows represent multiple steps not shown. Inhibitor molecules are shown in the diagram pointing to the step 
they inhibit using blocking symbols.  
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RhoA) using VS-4718, and use of verteporfin to inhibit the yes-associated protein 

(YAP)/TEAD interaction. These avenues are still being explored for feasibility. 28,37,42,43 

1.1.3 Trio Domain Architecture and Implications for Cancer 

Trio is named for its three enzymatic domains, which are comprised of two closely related 

Dbl family GEF domains with different GTPase selectivity and a kinase domain (KD) with 

unknown activity. The N-terminal GEF module is termed TrioN and is specific to Rac1 

and RhoG, and the C-terminal GEF module is called TrioC and is specific to the GTPase 

RhoA. The Trio KD is of the calmodulin kinase family.44 Gαq directly binds to TrioC and 

stimulates nucleotide exchange on RhoA45,46. Gαq activation translocates Trio to the 

plasma membrane (PM)37, which may have additional signaling implications because the 

GTPase substrates of Trio’s GEF domains are also anchored at the plasma membrane 

through lipid modifications (Figure 1.5).47 In addition to increased RhoA activation, 

overexpression of Gαq-Q209L in 293 cells also stimulates Rac1 exchange in a Trio-

dependent manner.42 KD activity, in theory, would thus also be enhanced on PM-localized 

Figure 1.5 Trio signaling in uveal melanoma involves membrane translocation by Gαq-Q209L and results in the 
activation of small GTPases and possible kinase signaling. In the basal state (left), no signaling is expected to occur 
through Trio. In the UM state (right), Trio is recruited to the membrane by Gαq-Q209L and signaling can occur through 
Rac1, RhoA, and potentially the kinase domain. Proteins are shown as ovals, with arrows indicating activation. 
Serrated lines represent lipid modification.  
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substrates. Thus, in UM, Trio-dependent events through Gαq likely include Rac1 

activation, RhoA activation, and possible phosphorylation events. Although not the focus 

of this document, Trio is found upregulated or overexpressed in a variety of cancers 

including glioblastoma, cervical and head and neck carcinomas, and other melanomas. 

37,44 

1.1.4 Trio Homologs and Splice Forms 

Mammalian Trio is ubiquitously expressed and has two homologs, Kalirin and 

p63RhoGEF (Figure 1.6). Unless otherwise mentioned, this document refers to the 

largest isoform of human Trio (hTrio), isoform A in Figure 1.7. Kalirin is largely expressed 

in the nervous system and shares Trio’s overall domain architecture and 61% amino acid 

identity. Kalirin includes a fibronectin type III (FnIII) domain near the C-terminus which is 

not found in Trio. Trio knockout is embryonic lethal, wherein mice display large defects in 

skeletal muscle formation and minor defects in brain organization. 48 In contrast, Kalirin 

Figure 1.6 Domain architecture of Trio and its mammalian homologs highlight commonalities and differences between 
the proteins. Domain architecture is shown, with the backbone of the protein shown as a horizontal line and 
approximate domain boundaries shown as ovals. Approximate molecular masses are shown to the right of each 
protein. Lipid modifications are shown as serrated lines. The human versions of each protein were used to generate 
this diagram. C_T, Cral/Trio domain; S, Spectrin repeat; DH, Dbl homology; PH, Pleckstrin homology; SH3, Src 
homology 3; Ig, Immunoglobulin; Fn3, Fibronectin type 3; KD, Kinase domain. 
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knockout mice are viable, yet display reduced dendritic spine formation specifically in the 

cortex, and associated defects in working memory. Thus, although the two are highly 

related, Trio has developmental roles that Kalirin is unable to compensate for, likely in 

part due to its limited expression profile compared to Trio.44,49 Both Trio and Kalirin are 

involved in coordinating neurite outgrowth, the projection of a nerve outside of its main 

cell body typically used to take in signals from a neighboring neuron. This process is 

deeply tied with coordination of the actin cytoskeleton and is primarily dependent on the 

GEF modules of Trio and Kalirin. 

p63RhoGEF is a smaller RhoGEF involved in heart contractility and shares 65% identity 

to TrioC within its GEF module. 44,45 Outside of this GEF module, p63RhoGEF does not 

share Trio’s overall architecture. p63RhoGEF contains a 148-residue N-terminal 

extension with several N-terminal cysteines that are palmitoylated, and an 88-residue C-

terminal extension. Trio, when expressed as a fusion with green fluorescent protein (GFP) 

slowly recruits to the plasma membrane on the timescale of minutes in response to Gaq-

coupled receptor activation. 37 In contrast, a GFP fusion of p63RhoGEF is constitutively 

membrane localized, with Gαq playing a major role in allosterically activating the GEF 

module.50 Membrane localization of p63RhoGEF is dependent on palmitoylation, and 

deletion of the N-terminus or substitution of the modified cysteines to serines can shift the 

protein to the cytoplasm and blunt its RhoGEF activity as a result. Artificially tethering 

p63RhoGEF to the plasma membrane using a PH domain from another protein restores 

its normal localization and activity. Gαq is also palmitoylated, and as such can rescue 

p63RhoGEF’s ability to activate RhoA, but non-palmitoylated Gαq cannot replicate this 
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activity. p63RhoGEF is therefore optimized for fast signaling kinetics through RhoA in 

accordance with its role in mediating angiotensin-II receptor signals in heart contractility, 

in contrast to Trio’s slow and sustained kinetics, which are more relevant to development 

and cancer. It is possible that the immediate availability of p63RhoGEF at the membrane 

can act as a Gαq sponge and influence the kinetics of available Gαq to activating other 

effectors, including PLCβ isozymes. 51-53 

Trio and Kalirin are both large proteins whose genes an encode for a variety of proteins 

of variable length based on alternative splicing (Figure 1.7). Experiments profiling these 

splice variants found in developing rat brains indicate that both GEF modules of these 

proteins are required for development but come into play at different times. 

Earlier in mammalian development, isoforms of Kalirin encoding both GEF domains are 

present (A-C in Figure 1.7), giving way to an isoform containing only KalirinN later in 

development and throughout adulthood (D in Figure 1.7).54 Trio isoform expression is 

more complicated. Full length Trio (TrioFL, A in Figure 1.7) is highly expressed in skeletal 

Figure 1.7 Domain organization of major splice variants of Trio to highlight diversity of domains present in different 
splice variants. Splice variants are designated A-F and approximate molecular masses are listed on the right. Kalirin 
also expresses similar splice variants to A-E of Trio. Horizontal lines show protein backbone and approximate domain 
boundaries are shown above as ovals. C_T, Cral/Trio domain; S, Spectrin repeat; DH, Dbl homology; PH, Pleckstrin 
homology; SH3, Src homology 3; Ig, Immunoglobulin; Fn3, Fibronectin type 3; KD, Kinase domain. 
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muscle and expressed at a low level in the brain during development. Expression of 

TrioFL tapers to a low level both in the brain and skeletal muscle fractions in adulthood.55 

Compared to other isoforms, TrioFL uniquely contains the Ig and kinase domains and 

thus these domains may play a role in skeletal muscle development. Two isoforms of Trio 

which terminate at slightly different endpoints after TrioC (B, C in Figure 1.7) are found in 

the brain and are barely detectable in skeletal muscle. These isoforms show little change 

in expression level from development through to adulthood. An isoform (D in Figure 1.7) 

of Trio terminating after the first SH3 domain increases in expression through 

development, with highest expression levels occurring during adulthood. A splice form 

found in humans is named “Duet” (E in Figure 1.7) and both Trio and Kalirin express a 

version of this. This splice variant does not change in expression significantly throughout 

development and is expressed in the brain. Similar to Kalirin, Trio also produces a splice 

variant terminating closely after TrioN (D in Figure 1.7) which increases in expression 

through development. 

A final Trio splice variant (F in Figure 1.7) is a transforming gene in adult T-cell leukemia 

(Tgat). Tgat encodes the enzymatic portion of TrioC’s GEF module followed by a unique 

15 residue extension, not including the C-terminal pleckstrin homology domain normally 

present. Tgat is capable of transforming NIH 3T3 cells in culture, and these transformed 

cells have the ability to induce tumors when grafted into mice. The unique C-terminal 

extension on Tgat may play roles in membrane recruitment through its basic and 

hydrophobic character, and potential cysteine lipid modification sites. 56,57 
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1.1.5 Trio Throughout Evolution 

Human Trio was originally discovered in a screen to discover interactors with the LAR 

tyrosine phosphatase, and LAR was found to interact with a peptide encoding the Ig-KD 

domain tandem of Trio.58 Shortly afterwards, UNC-73 was identified as a Trio/Kalirin 

homolog (29% identity to hTrio) in Caenorhabditis elegans 59 and Drosophila 

melanogaster Trio (dTrio, 44% identity to hTrio) was also discovered. 60 These homologs 

have been used to study the effects of Trio knockout or mutation on conserved signaling 

pathways. Like mammalian Trio (Figure 1.7), these invertebrate Trios also are expressed 

as various splice forms starting from a similar N-terminus. A domain pileup of Trio 

throughout the animal kingdom (Figure 1.8) shows that the overall domain architecture is 

found in every phylum within the animal kingdom except bryozoa, rotifers, and sponges. 

Trio is not found outside of the animal kingdom. Chordates all contain a domain 

architecture similar to hTrio. In cnidarians, mollusks, and echinoderms all domains are 

found, and the protein contains a FnIII domain similar to that of Kalirin (Figure 1.8). 

Nematodes lack the kinase domain and also have an FnIII domain. Annelids, arthropods, 

Figure 1.8 Domain organization of Trio throughout the animal kingdom reveals a core conserved domain architecture 
with variable C-termini. Phyla are listed on the left with domain layout of Trio orthologs shown on the right. Horizontal 
lines show protein backbone and approximate domain boundaries are shown above as ovals. C_T, Cral/Trio domain; 
S, Spectrin repeat; DH, Dbl homology; PH, Pleckstrin homology; SH3, Src homology 3; Ig, Immunoglobulin; Fn3, 
Fibronectin type 3; KD, Kinase domain. 
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and Platyhelminthes terminate after TrioC’s pleckstrin homology domain. A core portion 

of Trio, containing the Cral_Trio lipid binding domain, spectrin repeats, both Dbl and 

pleckstrin homology domain tandems, and one SH3 domain is thus highly conserved 

within the animal kingdom. 

1.1.6 Dbl Family Overview 

Trio’s two GEF domains are part of the Dbl family, the largest family of RhoGEFs found 

in mammals. Both Dbl proteins and their substrates, the Rho GTPases, are conserved as 

far as the last eukaryotic common ancestor, underscoring their importance in regulating 

the actin cytoskeleton, cell growth, and migration.61 The Dbl family is named for the 

founding member Dbl, originally identified as an oncogene in diffuse B-cell lymphoma and 

the family includes at least 69 members in humans.62,63-65 The Dbl homology (DH) domain 

is a ~200 amino acid sequence and is the minimal region necessary for GEF activity. It is 

almost always followed by a regulatory pleckstrin homology (PH) domain of about ~150 

residues. The DH domain is responsible for catalyzing the nucleotide exchange reaction 

by selectively binding a nucleotide-free state of the substrate GTPase. This occurs 

through disruption of the Mg2+ binding site on the GTPase, as well as a change in 

conformation of certain residues interacting with the nucleotide. DH domains can range 

from being very specific to being promiscuous regarding the GTPases they bind to. The 

adjacent PH domain is typically involved in regulating the DH domain, either enhancing 

or inhibiting GEF activity on specific substrates by directing subcellular localization or 

through direct interactions or competition with the bound GTPase. PH domains exert 



 15 
 

these functions typically by binding the headgroups of phosphoinositides or to protein 

binding partners in the cell. 65 

1.1.7 Regulation of Dbl Family RhoGEFs by G Proteins 

Many Dbl family GEFs are regulated by G proteins, with examples of regulation by both 

heterotrimeric and small Ras-like G proteins.45 A subfamily of GEFs containing a domain 

with homology to the regulator of G protein signaling domain (RH) use this domain to bind 

to activated Gα12/13 subunits. These include leukemia-associated RhoGEF (LARG), PDZ-

RhoGEF, and p115RhoGEF. Binding of the Gα results in membrane localization of these 

GEFs and is speculated to also relieve intramolecular autoinhibition in the GEF protein 

through concurrent interaction with other domains. 45 Gαq/11 regulate a subfamily of 

RhoGEFs consisting of TrioC, p63RhoGEF, and KalirinC. Instead of an RH domain, 

Gaq/11 primarily bind to a uniquely conserved extension of the C-terminal helix of the PH 

domain but use additional contacts on the PH domain and the DH domain to bridge the 

domain tandem and confine the relative orientation of the two domains. This results in the 

relief of PH domain mediated autoinhibition, and possibly membrane localization in the 

case of Trio and Kalirin.37 Gβγ subunits regulate a subfamily of RhoGEFs including P-

Rex1, p114RhoGEF, Tim, and Clg. However, the molecular basis of how Gβγ interacts 

with and activates these proteins remains to be determined, although it likely involves 

membrane localization and is likely to be different in each case. Ras-like small G proteins 

have also been shown to regulate Dbl RhoGEFs. GTP-bound RhoA has been shown to 

directly interact with the PH domain of PDZ-RhoGEF and to the Ig domain of Trio. 66,67 

Because RhoA is localized to the plasma membrane, this provides a possible avenue for 
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feed-forward regulation of Dbl family members by stabilizing them at the membrane. GTP-

bound Ras has also been shown to stimulate nucleotide exchange on Rac1, and this 

activity occurs both directly through Tiam1 and indirectly through SOS. 68,69 

1.1.8 Structure/Function Relationships in the DH/PH Tandem 

The Dbl homology domain consists of a helical bundle comprised of 6 helical segments 

formed into a shape representing a chaise longue, with a concave face for the bound 

GTPase to “sit” in. DH domains were initially defined to have three highly conserved 

regions (CR). 70 CR1 and 3 come together to form a binding interface or “seat” for the 

GTPase, whereas CR2 is on the opposite face of the DH domain and is hypothesized to 

maintain the structural integrity of the domain. Residues from every helical segment 

except α2 contribute to the GTPase binding surface. (Figure 1.9).71,46,72-76.  

Figure 1.9 Conserved structural elements of the Dbl homology domain using p63RhoGEF as a model (PDB 2RGN). 
Conserved regions important in GTPase interaction are shown in green (CR1, 3), conserved region important for 
structural integrity of the domain in yellow (CR2), and selectivity region in red. Two views are shown for clarity. The 
DH domain of p63RhoGEF is shown in cartoon representation with secondary structure labeled.  
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Binding of a compatible GEF-GTPase pair produces a rearrangement of switches 1 and 

2 in the GTPase. A comparison of RhoA in its GTPγS form77,78 with its GEF-bound state46 

can be used to understand the structural implications of GEF binding (Figure 1.10). In 

switch 1, Thr37 (human RhoA numbering) is displaced from the site where it coordinates 

the Mg2+ ion. Val35 is placed about 2 Å from the 2’ hydroxyl of the ribose. Switch 1 

movement exposes the nucleotide binding pocket to solvent, most notably seen in the 

movement of Tyr34 away from its position as a “lid” and Phe30 from interacting with the 

nucleotide base, increasing the likelihood of nucleotides diffusing in and out of the pocket. 

In switch 2, major changes include Glu64 inserting into the nucleotide pocket ~2 Å from 

where the g-phosphate would sit, and insertion of Ala61 to about ~2 Å from the Mg2+ site. 

Figure 1.10 Comparison of GTP (left, PDB 1A2B) and GEF bound (PDB 2RGN with nucleotide modeled from 1A2B) 
states of RhoA to show structural elements which lead to nucleotide release in the GEF-bound state. On the left, RhoA 
in its GTPγS bound state is shown as a magenta cartoon with switch 1 region highlighted in blue and switch 2 in orange. 
Key residues are shown as sticks. On the right, the GEF-bound (nucleotide-free) state of RhoA is shown as a cyan 
cartoon with switch 1 shown in green and switch 2 shown in brown. GTPγS from the left structure is modeled in the 
nucleotide free state to show clashes, which are shown as black dotted lines with distance measurements shown. Mg2+ 
is shown as a sphere and polar contacts with the Mg2+ ion are shown as purple dotted lines. 
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On the GEF side, important residues include Glu1976 (human Trio numbering) which 

forms contacts with Thr37 and Tyr34, and Lys2106 which interacts with the backbone of 

Ala61. Both of these residues are highly conserved in the Dbl family. 63 

Substrate specificity for GEFs is determined by residues on both the enzyme and its 

substrate GTPase. On the GTPase side, a series of residues in the β2 and β3 strands 

usually dictate specificity for the given GEF.79 On the GEF side, residues in α4, α5 and 

the loop connecting them contribute to specificity. (Figure 1.9) Specificity for RhoA is 

dictated primarily by a Lys/Arg in the α4-α5 loop (Arg2090 in Trio) interacting with Asp45 

and Glu54 of RhoA.76,79 Trio has two highly related DH domains (39% identity) yet each 

domain has distinct GTPase specificity. TrioN prefers Rac1 and RhoG, and TrioC is 

selective for RhoA. The specificity determinants for the TrioN/Rac1 pair are unclear as 

the two regions described above do not contact each other in the crystal structure, and 

the above polar residues are instead neutrally charged Gln and Asn. 58,74,80 

The DH domain is linked to the PH domain by a helix of variable length termed the a6-

aN linker helix. Residues in α6 are formally considered part of the DH domain whereas 

residues in aN are considered part of the PH domain. Some GEFs have a βN secondary 

structure as opposed to αN.81 α6 contains key residues which contact switch II of the 

bound GTPase. In addition, the α6-αN linker helix plays an important role in confining the 

relative orientation of the DH and PH domains and can thereby play an important role in 

the regulation of DH domain activity given binding events that occur in the bracketing DH 

and PH domains. 
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PH domains consist of a series of seven antiparallel β strands which form a sandwich-

like structure (Figure 1.11). At one end of the sandwich, basic residues, if present, are 

thought to interact with the headgroups of phospholipids, sometimes in a highly specific 

manner.82 The other end of the β-sandwich is capped by an extended C-terminal helix 

which marks the end of the PH domain. This terminal helix can form contacts with 

upstream or downstream GTPases. The loops connecting the β-strands in the PH domain 

opposite to the C-terminal helix often form part of a phospholipid interaction site, whereas 

lateral (at the membrane) protein-protein contacts are formed by the sides of the 

sandwich.46,72-74,82 Low-affinity (and possibly non-specific) lipid binding may serve to 

Figure 1.11 Key structural elements of the Pleckstrin homology domain shown using the PH domain of p63RhoGEF 
(PDB 2RGN) as a model. Regions important for GTPase contact are shown in green, region for Gαq/11 interaction 
shown in red, and the head group of a phospholipid is modeled into the concave surface of the sandwich to show the 
putative phospholipid binding region. PH domain is shown in cartoon representation with secondary structure labeled. 
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orient the PH domain, and through α6-αN, the DH domain in order to facilitate productive 

substrate contact.45,61,64,67,75-81 

Several examples of PH domain mediated regulation exist in the Dbl family. The PH 

domains of TrioN and Dbs enhance nucleotide exchange activity of the DH domain. 

72,74,83,84 Specifically, residues from the β3-β4 loop in the PH domain orient residues in a6 

of the DH domain to optimize contacts with switch II of the GTPase. There are also 

contacts seen directly between the β3-β4 loops of these GEFs and the GTPase, but 

mutation of these contacts does not produce any effect in vitro. Structures of TrioN and 

Dbs show a similar DH/PH relative orientation either in the presence or absence of bound 

GTPase, indicating these GEF modules are prearranged for catalysis. These PH domains 

also may provide correct localization through the binding of lipids or protein 

partners.80,85,86  

The PH domains of the RH-RhoGEFs seem to play a similar role to those in TrioN and 

Dbs. Contacts between the PH domain proper and α6 of the DH domain contribute 

positively to nucleotide exchange. Structures of LARG and PDZ-RhoGEF in complex with 

RhoA show additional contacts formed between αC in the PH domain and RhoA, and 

mutations to these residues affect activity in LARG. 73 These same experiments have not 

been performed with PDZ-RhoGEF. 
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The PH domains in TrioC, KalirinC, and p63RhoGEF are autoinhibitory towards the 

RhoGEF activity of their DH domains, although the molecular basis of this autoinhibition 

is unknown.46,80,87,88 A uniquely conserved amphipathic helix-turn-helix extension of the 

PH domain on these GEFs has been shown to be the primary binding determinant of Gαq 

(αC, Figure 1.12). The structure of the Gαq·GDP·AlF4--p63RhoGEF-RhoA complex 

revealed a broad range of additional contacts and the first instance of a Gα subunit 

interacting with the DH domain. Gαq makes contacts with several loops on the PH domain 

and extensive contact with the back face of the DH domain, including CR2. This binding 

mode, bridging the two domains, specifically constrains their relative orientation to one 

compatible with binding of nucleotide-free RhoA. (Figure 1.12) The conformation of the 

DH/PH tandem in this subfamily in the basal state is not known, but extensive functional 

Figure 1.12 The structure of the Gαq·GDP·AlF4
--p63RhoGEF-RhoA complex highlights the unique structural 

interface Gαq uses to activate TrioC subfamily members, comprised of surfaces on both the DH and PH domains. 
Gαq·GDP·AlF4

- is shown using surface representation in red, and nucleotide-free RhoA (apo) is shown as a gray 
surface representation. The DH domain of p63RhoGEF is shown as a green cartoon, with αN shown as an orange 
cartoon, and the PH domain as a blue cartoon. 
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analysis of p63RhoGEF has localized the autoinhibitory constraint to the α6-αN region, 

yet the specific residues that mediate autoinhibition and the mechanism of autoinhibition 

remain unclear. The most likely candidates include residues in a6-aN present only in the 

Gαq-regulated subfamily, although mutation of these residues in p63RhoGEF, including 

Gly2149 (Trio numbering) and Arg2150, only confers a modest level of activation 

compared to the full PH domain deletion.88  

1.1.9 Cral_Trio Domain 

Trio’s N-terminal domain belongs to the CRAL_Trio (CT) family, named for its discovery 

in the cellular retinaldehyde binding protein (CRAL) and Trio. CT domains share 

homology with the Sec14 family of lipid transferases.89,90,91 Sec14 domains have the 

ability to extract a hydrophobic ligand from one membrane and transport it into another. 

Common Sec14 substrates are inositol phospholipids and other hydrophobic molecules 

such as vitamins A and E. Of the Dbl family, Trio, Kalirin, Dbl, and Dbl’s big sister (Dbs) 

contain N-terminal CT domains. Curiously, the CT domains found in Dbl proteins lack an 

N-terminal helical region present in most Sec14 domains. It has been speculated that the 

lack of this N-terminal region leads to a loss of lipid transferase activity while retaining 

lipid binding activity. As such, CT domains in Dbl proteins are hypothesized to have 

allosteric effects upon binding to their ligand.92 Alternatively, they may direct subcellular 

localization through binding a specific type of lipid. Ligands of Dbl family CT domains are 

unknown in vivo, although in vitro lipid dot blot experiments have shown that both the 

Kalirin and Dbs CT domains bind to phosphoinositides.93,94,95 Deletion of Kalirin’s CT 

domain has been attempted but results are inconclusive. 95,96,94 Dbs, when overexpressed 
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as a GFP fusion, localizes to the Golgi apparatus in 3T3 cells. However, when its CT 

domain is deleted (DbsΔCT), DbsΔCT is found at the plasma membrane, co-localizing 

with cytoskeletal structures not present when Dbs WT is transfected. DbsΔCT can 

transform 3T3 cells in vitro (Dbs WT does not) yet does not have altered GEF activity, 

leading to the hypothesis that the localization is Dbs is highly important in maintaining its 

normal cellular function. Dbl increases its transforming potential about ten-fold upon 

deletion of its CT domain.97 Finally, a single report has shown binding between the CT 

domains of Dbl, Dbs, and Kalirin with Gβg subunits.98 Thus, as seen with other signaling 

domains, it is possible that the CT domain which originally evolved to bind lipids has been 

co-opted to bind G proteins. Crystal structures of several Sec14 domain proteins have 

been solved. The overall domain consists of an N-terminal α-helical region, followed by a 

β-sheet enveloped by α-helices which form the deep lipid-binding cavity. Residues that 

contact the bind lipid typically are housed on the central β-strand and opposing helices. 

At one end of the cavity is a lid helix which is thought to open and close to allow ligand 

access in response to membrane association. 99 Trio does retain all these major structural 

features based on sequence conservation, but the physical consequence of the lid helix 

opening and closing in Trio remains an open question.  

1.1.10 Spectrin Repeats  

C-terminal to the CT domain, Trio contains a series of spectrin repeats. The spectrin 

repeat is a ~100 residue elongated 3-helix bundle of about 50Å in length found in many 

proteins associated with the actin cytoskeleton. There are typically >4 repeats per 

protein.100 Trio and Kalirin both contain 9 spectrin repeats, whereas Dbl and Dbs have 
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only one. One hypothesized function of spectrin is to maintain linear distance between 

the two domains on either end of the repeat region. The structure of a-actinin, a muscle 

protein which has 4 spectrin repeats, shows these repeats dimerizing in a linear 

antiparallel fashion in order to maintain distance between functional domains on either 

end of the dimer.101 Crystal structures of non-dimeric spectrin repeat regions are also 

linear, although these may be influenced by crystal packing.102-104 Assuming the spectrin 

repeat region in Trio is also linear, the N-terminal CT domain is kept at a maximum of 

about 5 nm away from the TrioN GEF module. Since this Rac1/RhoG-specific GEF 

module is heavily involved in regulating neurite outgrowth, this 5 nm distance may have 

an important physiological role. However, if Trio does not dimerize, these spectrin repeats 

may have more flexibility than actinin and thus mediate intramolecular interactions. 

Spectrin domains are also thought to act as scaffolding domains for signaling complexes. 

The myosin regulatory protein Supervillin has been reported to directly interact with the 

spectrin repeat region of Trio and Kalirin.105 Deletion of Kalirin’s spectrin repeat region 

and biophysical characterization has been attempted.94,95,106 

1.1.11 Src Homology 3 Domain 

Greater than 20 Dbl family members contain a Src homology 3 (SH3) domain in close 

proximity in primary sequence to their GEF module. Trio and Kalirin contain two SH3 

domains (SH3N, SH3C) found C-terminal to each GEF module.65 SH3 domains typically 

bind to polyproline motifs of the form PXXP, where X is typically a hydrophobic residue.107 

SH3 domains mediate protein-protein interactions, and as such they might bind to 

intramolecular sequences to mediate conformational change or steric occlusion, or they 
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might bind to other proteins. SH3 domains are small globular domains of about 50-60 

amino acids that form a series of two β-sheets connected by variable loops. Conserved 

hydrophobic residues in β2 and β3 and residues on the largest loop mediate substrate 

recognition and specificity. The peptide ligand must assume a left-handed polyproline 

helix 2 conformation, and two turns per helix sit in the SH3 binding pocket. A basic residue 

upstream of the prolines is also required to direct proper substrate orientation. SH3 

domains typically have low binding affinity and poor specificity for given substrates.108 

The two SH3 domains in Trio share 33% identity and they are found different distances 

from their upstream GEF modules. SH3N is 60 residues C-terminal to TrioN, and SH3C 

is 300 residues C-terminal to TrioC. SH3C is closer in primary sequence to the Ig domain 

following it in the primary sequence (60 residues). It is not known what the function of 

SH3 domains are in Dbl family proteins. Solution nuclear magnetic resonance (NMR) 

structures of rat Kalirin SH3N (68% identity to human Trio SH3N) and mouse Kalirin SH3C 

(61% identity to human trio SH3C) are deposited in the protein data bank (PDB). 

Intramolecular ligands of Kalirin SH3N have been proposed, with the isolated ligand 

having 0.5 mM affinity for isolated SH3N via NMR. The SH3-ligand interaction is 

hypothesized to be autoinhibitory towards KalirinN GEF activity.109  

1.1.12 Immunoglobulin Domain 

Immediately before the kinase domain, Trio has a 100 residue Immunoglobulin (Ig) 

domain of the C2 type, which refers to its similarity to the constant region of 

immunoglobulin.110 Ig domains are commonly thought to mediate protein-protein or 

protein-small molecule interactions, with a focus on the actin cytoskeleton. Trio’s Ig 
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domain is most similar to those in myosin light chain kinase (MLCK) (38% identity) and 

Titin (TTN) (37% identity) who also have calmodulin kinase domains. Ig domains in MLCK 

and TTN are involved in kinase domain substrate recognition in these molecules.111 Both 

of these proteins are involved in muscle development. Trio knockout mice have defects 

in muscle development, and as such Trio’s Ig domain may also play a role in recognizing 

kinase domain substrates. 48 The structure of the Ig domain is a conserved core of 4 b-

strands surrounded by 3-5 variable strands with at least one disulfide linkage.110 Apart 

from this general information, the molecular details of Ig domain structure-function are not 

understood. One report has demonstrated binding of the Ig domain of Trio to the 

prenylated form of RhoA-GTP. 67 In this model, RhoA-GTP generated through Trio-

dependent nucleotide exchange can anchor Trio to the plasma membrane where its 

substrate GTPases are located, thus feeding forward into further Trio activation. 

1.1.13 Calmodulin Kinase Domain 

At its C-terminus, Trio has a kinase domain (KD) that belongs to the calmodulin kinase 

(CaMK) family of about 250 residues. CaMK domains are serine/threonine specific kinase 

domains and are typically regulated by the calcium binding protein calmodulin (CaM). 

Trio’s KD shares highest homology to death-associated protein kinases (42% identity to 

death-associated protein kinase 1), myosin light chain kinase (40% identity), calmodulin-

dependent protein kinase (35% identity), and titin kinase (34% identity). These kinases 

all share the hallmark of a ~50 residue sequence C-terminal to the KD involved in CaM 

regulation. Typically, this C-terminal sequence binds to both the peptide binding region 

and the nucleotide binding site of the kinase domain to autoinhibit kinase activity. CaM 
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binding to this C-terminal sequence relieves autoinhibition and restores kinase activity. 

112-115 Trio shares this C-terminal regulatory sequence, and it is thus possible Trio is 

regulated in the same fashion. Trio’s KD substrate pool and biological function are not 

known, although as discussed above it may play a role in skeletal muscle development 

in line with the Trio knockout phenotype and data with Trio splice variants. 55 48  

1.1.14 Research Summary and Goals 

Trio proves a promising target for the treatment of uveal melanoma, yet drugging this 

protein is still challenging as many structure/function relationships within Trio remain 

unclear. I plan to determine the molecular basis for function in Trio’s domains in order to 

provide an avenue for inhibitor development. I had two major hypotheses when 

approaching this work; first that TrioC regulation is determined by residues in the linker 

region between DH and PH domains; second that domains outside of the two GEF 

modules of Trio regulate one or both of its GEF activities. In Chapter two, I describe my 

work in determining the molecular basis for autoinhibition in the TrioC GEF module 

through a combination of structural biology, biophysical, and biochemical techniques. 

This work defines the mode of regulation for the TrioC subfamily. In Chapter three, I 

summarize preliminary attempts to characterize the only known TrioC inhibitor and 

develop screening assays against TrioC. In Chapter four, I report on my attempts to 

purify and characterize individual uncharacterized domains of Trio. I have developed 

constructs for both SH3 domains and the Ig domain that can be used in future 

experiments to interrogate the function of these domains. I also detail my efforts in 

characterizing larger constructs of human Trio. I have developed constructs which could 

be used in future efforts to determine structures of larger fragments of Trio in complex 
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with binding partners. To this end, I have optimized purification and preliminary freezing 

conditions for a future cryoEM structure of a fragment of Trio hyperactive in Rac1 GEF 

activity in complex with Rac1.
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Chapter 2 TrioC Structure and Function 
2.1 Introduction 

The following Chapter concerns the molecular basis of TrioC autoinhibition, and the 

majority of this work has been published in Science Signaling. The figures represented 

here are modified from the open access version of the article.116 This work set out to test 

the hypothesis that TrioC autoinhibition is conferred primarily through residues in the αN 

region of the PH domain. A brief introduction to DH/PH structure and function and 

regulation of TrioC subfamily members by Gαq/11 precedes the methods and results 

sections of this Chapter concluding with a discussion and conclusion section 

summarizing my model for TrioC autoregulation. 

Rho guanine exchange factors (RhoGEFs) are signaling modules that activate Rho-family 

small molecular weight GTPases.65 These enzymes stabilize a nucleotide-free state of 

their cognate GTPases, thereby accelerating the process of nucleotide exchange. The 

C-terminal RhoGEF module of Trio (TrioC) regulates developmental and growth 

processes by influencing the actin cytoskeleton and gene transcription through 

activation of RhoA.87 TrioC and the related RhoGEF modules p63RhoGEF and KalirinC 

are downstream effectors of Gαq/11 and thereby give rise to a chain of phospholipase C-

β-independent events upon activation of Gαq/11-coupled GPCRs. 45,46 In >80% of cases, 

a constitutively active mutation in Gαq/11 drives the progression of uveal melanoma (UM) 

in a Trio-dependent fashion. 15,37,42 
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The prototypic RhoGEF module is composed of a Dbl homology (DH) and pleckstrin 

homology (PH) domain tandem linked by a flexible helix of variable length. 45,88 The DH 

domain is responsible for binding the nucleotide-free state of substrate GTPases, 

whereas the PH domain plays various roles ranging from enhancement of GEF activity, 

such as in Dbl’s big sister (Dbs) and the N-terminal DH/PH module of Trio (TrioN), to 

suppression of GEF activity as in the TrioC subfamily. Regulation mediated by the PH 

domain is known to occur by one of several mechanisms, including protein-protein or 

lipid-protein interactions. 72,73,82,83 46,74,88 

Structural and functional studies of p63RhoGEF, a close homolog of TrioC, show that 

Gαq/11·GTP binds to both the DH and PH domains and thereby constrains the DH/PH 

module in a manner that optimizes the RhoA binding site. However, the structural basis 

for how the PH domain mediates autoinhibition in the TrioC subfamily remains 

unclear.46,88 Such information would enable a better understanding of how Trio 

contributes to cancer progression and pave the way for future therapeutics that could 

stabilize the less active, basal form of TrioC. There are currently no effective approved 

therapies for the treatment of UM.35 

In this work, I used X-ray crystallography to show that the TrioC PH domain inhibits GEF 

activity by forming an interface with the DH domain that blocks the binding site for switch 

II of RhoA. Using biochemical assays, I have demonstrated the importance of residues 

unique to TrioC, as well as subfamily members p63RhoGEF and KalirinC, in the N-

terminal α-helix of the PH domain (αN) that contribute to the interface. Hydrogen-

deuterium exchange mass spectrometry (HDX-MS) supports a model wherein the RhoA 

binding site on the DH domain is occluded by the PH domain through contacts made by 
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the observed DH-PH interface. Furthermore, we demonstrated that mutations found in 

the TrioC αN region in cancer patients not only activate the TrioC fragment in GEF 

assays, but also full-length Trio in human cells, allowing for sustained signaling through 

RhoA. 117-119 

2.2 Methods 

2.2.1 TrioC Cloning and Site Directed Mutagenesis 

All residue numbering in this manuscript is with respect to human Trio isoform 1, which 

is 3097 amino acids in length (UniprotKB O75962). Human TrioC complimentary 

deoxyribonucleic acid (cDNA) (hTrio residues 1960-2290) was a gift from the Gutkind 

laboratory and was inserted into a modified pMAL expression vector (pMalC2H10T)73 

with restriction cloning using 5ʹ EcoRI and 3ʹ XbaI sites. “TrioC∆C” (hTrio 1960-2275) 

was also inserted into pMalC2H10T using the same restriction cloning scheme. TrioC∆C 

was designed based on the prediction that the conserved C-terminal extension of the 

PH domain (residues 2275-2290) is likely disordered in the absence of Gαq. 87 The RhoA 

construct was described previously and consists of human RhoA cDNA inserted into 

pMalC2H10T.73 Gαq∆N was used in the Gαq activation assays and corresponds to 

residues 35-359 of murine Gαq.
120 Site-directed mutants and deletions were generated 

on the TrioC vector described above using an inverse polymerase chain reaction (PCR) 

or the Quikchange protocol from Agilent. TrioC cDNA was set in an inverse PCR reaction 

with Q5 polymerase (New England Biolabs (NEB)), and the PCR reaction was digested 

with Dpn1 (NEB), phosphorylated with T4 polynucleotide kinase (NEB), and ligated with 

T4 DNA ligase (NEB). The ligated plasmid was then transformed into XL1-Blue cells 

(Agilent), and the mutation was confirmed using Sanger sequencing of plasmid DNA 
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purified using a Mini-prep kit (Qiagen). The Quikchange protocol was similar except the 

PCR reaction is DpnI digested and the resultant reaction was directly used to transform 

XL1-Blue cells. Sequencing was performed through the University of Michigan DNA 

sequencing core. (Below cloning performed by Nadia Arang - Gutkind Laboratory) To 

generate variants in TrioFL-pEGFP (containing Trio residues 61-3097), a 1000 base pair 

fragment was PCR amplified from TrioC mutant constructs in pMalC2H10T. Gibson 

assembly was used to join fragments to a fragment from TrioFL containing an additional 

restriction site. Final assembled fragments and TrioFL were then digested with SpeI and 

FseI and ligated to generate the full-length gene variants (reagents from NEB).  

2.2.2 Protein Expression and Purification 

Plasmids encoding TrioC variants and RhoA were transformed into Rosetta (DE3) pLysS 

Escherichia coli (E. coli) cells (Novagen) and grown in Terrific Broth (EMD Millipore Sigma) 

with 100 μg/mL ampicillin or carbenicillin at 37  ̊C with 200 rpm shaking. Once a 600 nm 

optical density (OD600) of 0.6-0.8 was reached, expression of N-terminally tagged 

maltose binding protein (MBP) fusion proteins was induced using 1 mM isopropyl β-D-

1-thiogalactopyranoside and cells were further allowed to grow at 20  ̊C with 200 rpm 

shaking for 20 h. E. coli were then harvested at 5000 × g for 15 min and cell pellets were 

flash-frozen or prepared. Cell pellets were resuspended using a Dounce homogenizer in 

an ice-cold “lysis buffer” containing 20 mM (4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid) HEPES pH 8.0, 200 mM NaCl, 2 mM dithiothreitol (DTT), 

2 mM MgCl2, 5 % glycerol, 0.001 mM leupeptin, 1 mM lima bean trypsin inhibitor, and 

0.1 mM phenylmethylsulfonyl fluoride. Resuspended cell solution was then lysed using 

an EmulsiFlex C3 homogenizer (Avestin), and deoxyribonuclease I (DNase I) or 
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benzonase was added to hydrolyze excess nucleic acid. Lysate was centrifuged at 

32000 × g in an Avanti J-20 centrifuge (Beckman-Coulter) to remove insoluble material. 

The soluble fraction was then filtered through a glass fiber filter and loaded onto nickel- 

nitrilotriacetic acid (Ni-NTA) agarose resin (Qiagen) equilibrated with lysis buffer. Next, 

10 column volumes (CV) of lysis buffer were used to wash the column, followed by a 10 

CV wash of lysis buffer containing 20 mM imidazole and 500 mM NaCl. A final wash step 

consisted of 10 CV of lysis buffer plus 20 mM imidazole. The recombinant protein was 

then eluted using lysis buffer plus 200 mM imidazole. The elution fractions were then 

incubated with 5 % (w/w) tobacco etch virus protease in order to cleave the N-terminal 

MBP expression tag and the mixture was dialyzed against a buffer containing 20 mM 

HEPES pH 8.0, 200 mM NaCl, and 2 mM DTT in order to remove imidazole. MBP was 

then removed using another round of Ni-NTA purification, TEV protease reaction mixture 

was flowed over the Ni-NTA column, and the column was washed (20 mM imidazole) 

and eluted (200 mM imidazole) using 10CV each of dialysis buffer with imidazole to check 

for MBP and TEV protease removal. Proteins were then checked for purity using sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and pure fractions were 

concentrated in a 30kD cutoff Amicon Ultracel concentrator (Millipore), flash frozen in 

liquid nitrogen, and stored at −80  C̊. For DSF and GEF assays, protein was thawed from 

-80  C̊, 0.2 µm filtered, and used for experiments.  For crystallography and hydrogen 

deuterium exchange experiments, fractions containing TrioC were thawed from −80  ̊C 

on ice, and polished using gel filtration chromatography on a Superdex 75 10/300GL 

column (General Electric healthcare) in a buffer containing 20 mM HEPES pH 8.0, 100 

mM NaCl, and 2 mM DTT. Fractions containing TrioC were then concentrated using an 
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Amicon Ultracel concentrator before using. Human RhoA was purified in a similar manner 

to that described above with the addition of 3 mM MgCl2 and 10 μM GDP in all buffer 

solutions.73  Gαq∆N was purified as described previously120. Protein concentrations were 

evaluated using 280 nm absorbance (A280) on an ND-1000 (NanoDrop Technologies) and 

standardized using theoretical extinction coefficients generated by the ProtParam 

ExPASy webserver.121 

2.2.3 TrioC∆C Crystallization 

TrioC∆C fractions containing pure protein (~37 kD) were concentrated using a 30 kD 

cutoff centrifugal concentrator and sitting drop screening trays were set using 

commercial screens from Qiagen and Hampton Research: IndexHT, Protein Complex, 

Classics Lite, and JCSG+. 96 well plates from Hampton Research (HR3-185) were used 

and incubated in 20  ̊C and 4  ̊C rooms. Hits from original screens were optimized in 24-

well hanging drop VDX plates (Hampton Research) in order to optimize crystal size and 

quality. The final TrioC∆C crystal form was grown at 20  ̊C using hanging drop vapor 

diffusion. The drop contained 2 μL of 2 mg/mL protein mixed with 2 μL of well solution 

containing 100 mM HEPES pH 7.5 and 14% polyethylene glycol 3350 and 1 μL of double 

distilled H2O. Crystals grew over a course of 2 days and took the form of 3 dimensional 

plates of about 25×100×300 μm.  Crystals were harvested from the drop using nylon 

cryoloops and transferred into a solution of freshly prepared mother liquor plus various 

cryoprotectants: 20% glycerol, 20% ethylene glycol, 20% PEG 400, and no 

cryoprotectant. Crystals were then plunged into liquid N2 and shipped to the Advanced 

Photon Source for remote data collection. The crystal used for the final crystal structure 

was harvested from the drop it grew in and plunged directly into N2. 
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2.2.4 Data Collection and Processing 

Diffraction data were collected remotely at 110 K on the Life Sciences Collaborative 

Access Team beamline 21-ID-G at the Advanced Photon Source at Argonne National 

Laboratory and reduced, indexed, integrated, and scaled using the HKL2000 software 

package.122 Initial attempts to solve ~6 Å datasets of TrioC using various Dbl family 

members as models (DH/PH structures of p63RhoGEF, Dbl, Dbs, TrioN) with molecular 

replacement did not yield any solutions. Statistics for the final TrioC dataset are shown 

in Table 2.1. Initial phases for the dataset which yielded the final TrioC structure were 

provided by molecular replacement in Phaser123 with Chainsaw124 processed versions of 

the individual DH and PH domains of p63RhoGEF46 (PDB 2RGN) as sequential search 

models. Initial rounds of refinement consisted of manual model building and real space 

refinement in Coot125 alternating with reciprocal space refinement in the PHENIX 

software package126 using simulated annealing and torsional non-crystallographic 

symmetry (NCS) to restrain the three copies of TrioC in the asymmetric unit. Final rounds 

of refinement consisted of manual model building and real-space refinement in Coot, 

and refinement using REFMAC5127 with manual X-ray weighting and translation-libration-

screw refinement. NCS restraints were omitted in the final rounds to allow for minor 

variations between chains. Structure validation was performed using built in validation 

tools in Coot, the MolProbity server128, and the PDB_REDO webserver129. Refinement 

statistics are shown in Table 2.1. The TrioCΔC coordinates have been deposited into the 

PDB under accession code 6D8Z. 116 



 36 
 

2.2.5 Structural Comparisons 

Unless stated otherwise, Chain A of the TrioC structure was used for comparisons. Chain 

B of PDB entry 2RGN was used for models of p63RhoGEF. Chain A of PDB entry 1RJ2 

was used as a model for Dbs, and Chain A of PDB entry 1LB1 was used for RhoA-bound 

Dbs. Comparisons were made by visual inspection using the PyMOL Molecular Graphics 

System, Version 1.8.6.2, Schrodinger, LLC. The script Rotation_Axis.py was used to 

calculate angles of rotation. 

2.2.6 Differential Scanning Fluorimetry 

DSF experiments were performed first on a ThermoFluor plate reader (Johnson & 

Johnson) using 8-anilinonaphthalene-1-sulfonic acid as the fluorescent dye (WT TrioC 

Tm= 44.8 °C with a 95% CI of [44.4, 45.3], N=11 independent experiments in at least 

duplicate). Data were also collected on a 7900HT Fast Real-Time PCR system (Applied 

Biosystems) or a QuantStudio 6 Real-Time PCR system (Applied BioSystems) using 

Sypro Orange (SO) dye (ThermoFisher) (WT TrioC Tm= 49.4 °C with a 95% CI of [49.2, 

49.7], N=15 independent experiments in at least duplicate). Although the absolute Tm for 

WT TrioC was different for each dye, we tested TrioC WT and R2150E and found ΔTm 

for R2150E (Tm R2150E - Tm WT) was similar: +0.9 °C on the ThermoFluor instrument, 

and +0.6 °C on the PCR instruments (N=3 independent experiments performed in at 

least duplicate). Purified TrioC variants were incubated at 0.2 mg/mL in a buffer 

containing 20 mM HEPES pH 8.0, 200mM NaCl, and 2mM DTT with dye. Black 384 well 

PCR plates (Applied Biosystems) were used for the ThermoFlour instrument and wells 

were covered with silicon oil. For the QPCR instruments, white 384 well PCR plates 

(Applied Biosystems) were used and covered with sealing tape. These plates were 
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exposed to a temperature gradient of 20–60 °C. Fluorescence was monitored as a 

function of temperature, and the Tm was determined by fitting the fluorescence data to a 

sigmoidal curve and calculating the inflection point in GraphPad Prism.82,130 

2.2.7 Förster Resonance Energy Transfer (FRET) Nucleotide Exchange Assay 

FRET was used to assess the nucleotide exchange activity of TrioC variants. 131 73 First, 

3 μM RhoA·GDP was incubated with 500 nM TrioC variants for 5 min at room 

temperature in freshly prepared nucleotide exchange buffer: 20 mM HEPES pH 8.0, 100 

mM NaCl, 2 mM DTT, and 10 mM MgCl2. Immediately before measurement, 1 μM 2 ́/3 -́

O-(N-Methyl-anthraniloyl)-guanosine-5 ́-triphosphate (MANT-GTP) (Jena Biosciences), 

was injected to a final assay volume of 100 μL. The mixture was then excited at 280 nm, 

and fluorescence intensity at 450 nm was read in 2 s intervals on a Flexstation 3 plate 

reader until a plateau was reached (30 min). Fluorescence curves were fit to a one-phase 

exponential association model using GraphPad Prism to derive the observed kinetic 

constant kobs. The resulting kobs were then compared to that of matched TrioC WT rates 

with a representative rate constant of (0.004 ± 0.0006 s−1, N=3 independent experiments 

in triplicate). The 2152Δ and 2147Δ variants displayed an exchange rate too fast to be 

measured under the initial assay conditions. Thus, the exchange rate of these variants 

was measured using 50 nM GEF, and all relative rates are therefore reported as specific 

activities. Prior literature suggests that under our assay conditions the nucleotide 

exchange reaction rate is linear with respect to GEF concentration.46 For Gαq activation 

assays displayed in Table 2, TrioC WT and variants were added at 250 nM GEF 

concentration (in order to lower the observed basal rate and better capture activation), 
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Gαq at 550nM, and the assay was run with and without the addition of 30 μM AlCl3 and 

10 mM NaF in the reaction buffer to generate AlF4
− in solution. 

2.2.8 Hydrogen Deuterium Exchange Mass Spectrometry (HDX-MS) 

The following was performed by Sheng Li, Ph.D. at the University of California San Diego. 

First, 1 μL of 2.6 mg/ml TrioC in 20 mM HEPES pH 7.5, 50 mM NaCl, and 2 mM DTT 

was mixed with 15 μL of a buffer containing 8.3 mM tris(hydroxymethyl)aminomethane 

(Tris) and 50 mM NaCl at pH 7.2 at 0 °C, and 24 μL of ice cold quench buffers containing 

0.1 M glycine pH 2.4, 16.6 % (v/v) glycerol and various concentrations of guanidinium 

HCl (0.08, 0.8, 1.6 and 3.2 M) were then added. The quenched samples were then 

subjected to an immobilized pepsin column (16 μL bed volume) on ice at a flow rate of 

20 μL/min for inline digestion. Proteolytic products were collected on a trap column for 

desalting and liquid chromatography-mass spectrometry (LC-MS) analysis was 

performed using an Agilent Poroshell C18 column (EC-C18, 35×0.3 mm, 2.7 μm) with a 

linear acetonitrile gradient (6.4 %-38.4 % over 30 min). Both trap and C18 columns were 

kept at 0 °C. MS analysis was done using an OrbiTrap Elite Mass Spectrometer (Thermo 

Fisher Scientific), and MS/MS data were searched against TrioC sequence by Proteome 

Discoverer (Thermo Fisher Scientific). Coverage maps of identified peptides were 

compared with each other and the 1.6 M GuHCl quench buffer was selected. This 

enabled us to determine the proper quench buffer concentration for the HDX 

experiments. 

All exchange stock solutions were kept on ice and contained 1.0 mg/mL of each TrioC 

variant, 8.3 mM Tris pH 7.2 and 50 mM NaCl. HDX-MS experiments were initiated by 

adding 48 μL of exchange stock solutions to 144 μL of D2O buffer (8.3 mM Tris, 50 mM 
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NaCl, pD 7.2) and quenching the reaction at varied time points (10, 100, 1000, 10,000 

and 100,000 s) at 0 °C. At the indicated time, 16 μL of exchange reaction solution was 

taken out and mixed with 24 μL of ice-cold quench buffer (0.1 M glycine pH 2.4, 16.6 % 

(v/v) glycerol, 1.6 M GuHCl) and immediately frozen on dry ice. Non-deuterated and 

equilibrium deuterated control samples were also prepared for back exchange 

correction. All frozen samples were thawed at 4 °C and subjected to the above system 

for enzymatic digestion, LC separation and MS analysis. All the columns were kept at 0 

°C to minimize back exchange. The extent of deuterium incorporation of deuterated 

peptides was determined using HDXaminer (Sierra Analytics, LLC, Modesto, CA), which 

calculates centroid deuterium incorporation values for each peptide. Ribbon maps were 

generated with in-house Excel macro and MatLab scripts. 

2.2.9 Rhotekin Pulldown Assay 

Below experiments were performed by Nadia Arang in the Gutkind Lab at the University 

of California San Diego. HEK293 cells cultured in Dulbecco’s modified eagle medium 

plus 10 % fetal bovine serum (Sigma) in 15 cm dishes were cultured to 70% confluency 

and transfected with 15 μg deoxyribonucleic acid (DNA) encoding TrioFL wild type and 

variants using Turbofect transfection reagent (Thermo Fisher) at a 1:2 ratio of DNA to 

Turbofect. Active Rho levels were measured using the RhoA Pull-Down Activation Assay 

Biochem Kit (bead pull-down format) following manufacturer’s instructions 

(Cytoskeleton, Inc.). Briefly, 24 h after transfection, cells were serum starved for an 

additional 24 h and lysed using provided lysis buffer. Protein concentrations were 

quantified using DC Protein Assay (BioRad), samples were adjusted to the same 

concentration using provided lysis buffer and then snap frozen in liquid N2. Lysate with 
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600 μg of protein was added to 30 μL GST-tagged Rhotekin-RBD protein bound to 

sepharose beads. Samples were incubated while rocking at 4 °C for 1.5 h. Beads were 

then washed, eluted in Laemmli sample buffer, and analyzed by western blot using a 

mouse monoclonal anti-RhoA antibody (Cytoskeleton, Inc. Cat # ARH04) to measure the 

ratio of active to total RhoA. Bands were quantified using ImageJ software (NIH). 

2.2.10 Statistical Analysis 

DSF and FRET nucleotide exchange experiments described above were performed in 3 

experiments in at least duplicate. For DSF assays, average Tm values from each 

experiment for each variant were subtracted from compiled WT values obtained on the 

same instrument to obtain ΔTm. Statistical significance was assessed using a one-way 

analysis of variance (ANOVA) test with a post-hoc Dunnett’s test for multiple 

comparisons to compare N=3 experiments of each variant with N=11 WT experiments 

(J&J Thermofluor) or N=15 experiments (qPCR instruments). For FRET activity assays 

comparing TrioC variants to WT, kobs values for each variant were normalized to matched 

WT kobs for each experimental N to generate fold GEF activation values for each variant. 

To capture the statistical spread in WT measurements, each experimental WT kobs was 

normalized to the average WT kobs of the N=3 experiments. Statistical significance was 

assessed using a one-way ANOVA test with a post-hoc Dunnett’s test for multiple 

comparisons to compare N=3 experimental fold GEF activation values of each variant 

with N=51 WT fold GEF activation values. For Gαq·GDP·AlF4
− activation assays, kobs in 

the presence of Gαq·GDP·AlF4
− for each variant was normalized to kobs in the presence 

of Gαq·GDP to generate fold activation values. The fold Gαq·GDP·AlF4
− activation value 

for TrioC WT was compared to cancer variants using a one-way ANOVA test with a post-
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hoc Dunnett’s test for multiple comparisons. Errors are provided as 95% confidence 

intervals. Rhotekin assay data for Trio variants profiled in N=3 were normalized to the 

average of N=3 Trio WT values and then compared to the average Trio WT value using 

a one-way ANOVA test with a post-hoc Dunnett’s test. Analysis was performed using 

GraphPad Prism version 7.00. 

2.2.11 Small Angle X-ray Scattering (SAXS) 

SAXS was performed at BioCAT by Srinivas Chakravarthy (beamline 18ID at the 

Advanced Photon Source, Argonne National Lab) with in-line size exclusion 

chromatography (SEC-SAXS) to separate the sample from aggregates and other 

contaminants thus ensuring optimal sample quality. TrioC WT and R2150W at 3 mg/mL 

were loaded onto a Superdex 200 Increase 10/300 GL column, which was run at 1.0 mL/ 

min by an AKTA Pure FPLC (GE Healthcare Life Sciences, Chicago, IL) with a buffer 

containing 20 mM HEPES pH 8.0, 200 mM NaCl, and 2 mM DTT. The eluate was passed 

through a UV monitor and flown through the SAXS flow cell, which consists of a 1.5 mm 

ID quartz capillary with 10 μm walls. Scattering intensity was recorded using a Pilatus 3 

1M detector (Dectris, Baden-Dättwil, Switzerland) which was placed 3.5 m from the 

sample giving access to a q-range of 0.004 Å-1 to 0.4 Å-1. Exposures of 0.5 s were 

acquired every 2 s during elution and the data were reduced using BioXTAS RAW 1.4.0. 

132 Additional experimental parameters can be found in Table 2.3. Buffer blanks were 

created by averaging regions flanking the elution peak and subtracted from exposures 

selected from the elution peak to create the I(q) vs q curves used for subsequent 

analyses. The ATSAS software package was used to further process data and generate 

data plots.133 
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2.3 Results 

2.3.1 TrioC Protein Expression and Purification 

TrioC and TrioC∆C were expressed and purified as described in the methods section. 

Briefly, TrioC constructs were expressed in E. coli as MBP fusions. Proteins were purified 

using Ni-NTA resin and subjected to TEV protease cleavage overnight in tandem with 

dialysis to remove imidazole. Originally, a Source 15S column was used to remove MBP 

as TrioC sticks to the S column and MBP flows through. Complex formation with RhoA 

indicated that TrioC∆C was properly folded (Figure 2.1). After further optimization 

TrioC∆C was instead subjected to Ni-NTA resin twice to remove MBP for ease of use. 

Figure 2.1 Complex formation between TrioC∆C (37 kD) and RhoA (22 kD) via size exclusion chromatography 
suggests that TrioC purified from E. coli is properly folded. This experiment was run on a single 24 mL analytical 
Superdex 75 column, however the chromatogram was lost due to computer failure. A Coomassie stained 12 % gel 
of fractions from the SEC run is shown to illustrate complex formation and an excess of RhoA eluting after the 
complex. 
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This protein appeared homogenous on a gel and was used for biochemical assays. TrioC 

WT and variants were purified in the same manner (Figure 2.2). 

Figure 2.2 TrioC∆C Purification Scheme showing sequential steps starting from the top left and results in homogenous 
TrioC∆C. Top left, Coomassie stained 12 % gel showing initial Ni-NTA purification. Top middle, Coomassie stained 
12 % gel showing re-IMAC purification. Top right, Coomassie stained 12 % gel showing continued re-IMAC 
purification. Bottom, chromatogram showing A280 trace (blue line) from SEC run of TrioC∆C fractions on tandem 24 
mL analytical Superdex 75 columns. Coomassie stained 12 % gel showing sequential fractions from SEC trace. Black 
bars indicate fractions pooled to the next step, or for the last step, fractions pooled for crystallography or other 
experiments. 

Protein used for crystallography, SAXS, and HDX-MS was further polished using size 

exclusion chromatography. TrioC from SEC appeared as a monomer of ~37 kD (TrioC∆C 

expected MW 37.4 kD) and final yield was 25-100 mg of pure TrioC per liter of cell 

culture. Gels and chromatograms representing a typical TrioC purification using the final 

standardized protocol are shown in Figure 2.2. 
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2.3.2 TrioC Crystallization 

TrioC∆C was purified using the scheme described above in a buffer containing 20 mM 

HEPES pH 8.0, 200 mM NaCl, and 2 mM DTT. Protein was concentrated to 15, 30, and 

60 mg/mL in an attempt to reproduce the method used to crystallize TrioN. 81 Crystals 

formed after overnight incubation of TrioC∆C at 15 and 30 mg/mL at 20 ºC (Figure 2.3 

top left), however these crystals melted back into solution after 2 days and could not be 

reproduced. Screening trays were set in a 1 µL+1 µL sitting drop format using 

commercial screens: Classics Lite, Index HT, JCSG+, and ProComplex. Hits were 

obtained in Tris-HCl pH 8.5, 200 mM MgCl2, and polyethylene glycols (PEGs) 4000 and 

8000 at 13 and 16 mg/mL. Further optimization of protein concentration, PEG type, and 

Figure 2.3 Early TrioC∆C crystallization attempts resulted in two crystal forms which were intractable and one which 
could be optimized into large single crystals. Top left, crystals grown using TrioC∆C incubated in high concentration 
in buffer. Top middle, TrioC∆C crystal form consisting of stacks of inseparable plates. Top right, example diffraction 
from top middle crystals harvested using ethylene glycol as the cryoprotectant. Bottom left, TrioC∆C 3-dimensional 
single crystals grown using no salt in buffer. Bottom right, optimized TrioC∆C crystal ~200 µm in length. Crystallization 
conditions are provided in each case. 

0.2 M L-proline
0.1 M HEPES 7.5
10 % PEG 3350

3 mg/mL Protein
Protein in 0 mM NaCl
1 µL protein+1 µL well

0.1 M HEPES 7.5
10 % PEG 3350

2,3 mg/mL Protein
Protein in 100 mM NaCl
2 µL protein+2 µL well+

2 µL ddH2O

12 % PEG 3350
Tris-HCl pH 8.3
200 mM MgCl2

16 mg/mL Protein
Protein in 200 mM NaCl 

30 mg/mL TrioCΔC
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PEG concentration in hanging drop trays led to a crystal form which presented itself as 

inseparable stacks of plates and diffracted to a very low resolution (Figure 2.3 top middle 

and top right). Attempts to refine this crystal form using the additive screen (Hampton) 

led to two crystal forms which both turned out to be small molecule crystals: one dextran 

sulfate, another cesium chloride. Attempts to improve the stacked plate crystal form 

through micro and macroseeding did not yield any improvement. Next, lower NaCl 

concentration was used in the protein buffer to lower solubility and potentially slow down 

crystal growth. TrioC∆C was run on SEC in a buffer containing 20 mM HEPES pH 8.0 

and 2 mM DTT. Protein in this buffer had a lower retention volume on an S75 column 

and much of the sample was found in the void fraction of the column. Setting trays of 

TrioC∆C purified in this manner yielded several hits, some of which resembled the earlier 

stacks of plates seen. However, a new crystal form was seen in three different conditions 

which consisted of 3-dimensional non-birefringent single crystals (Figure 2.3 bottom 

left). Two hits contained a buffer pH ~7, 6-10 % PEG, and one of the two also had 200 

mM L-Proline. The third hit was 12.5 % ethylene glycol. These crystals were stained with 

Izit crystal dye (Hampton Research) and absorbed the blue stain, consistent with them 

being protein. Subsequent attempts focused on improving crystal size by varying protein 

concentration, well solution composition, and introducing NaCl back into the protein 

buffer. Shifting the equilibrium away from nucleation and towards crystal growth was 

necessary in order to improve crystal size. A series of SEC runs determined that 50mM 

was the lowest NaCl concentration in which TrioC∆C behaved as a monomer. Below 

50mM NaCl, TrioC∆C formed multimers and shifted towards the void volume of the S75 

column. Trays set using 50 mM NaCl in the SEC buffer yielded crystals of a similar size 
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to seen before. However, trays set at 100 mM NaCl yielded larger 3-dimensional crystals 

of about 200 µm in the longest dimension. (Figure 2.3 bottom right) Adding a layer of 200 

µL of silicon oil over the well solution and adding 1 equivalent of ddH2O into the drop 

solution (1 µL well solution + 1 µL protein solution + 1 µL ddH2O, or 2+2+2, etc.) were 

also attempted in order to further slow crystal growth. Several of these crystals of 100-

300 µm in the largest dimension were harvested in mother liquor including 20% ethylene 

glycol as a cryoprotectant. Data collection yielded diffraction that at best extended to 6 

Å spacings. This data was also streaky with poorly defined spots (Figure 2.4 top). The 6 

Å dataset could not be solved using molecular replacement with the DH/PH tandems of 

p63RhoGEF, TrioN, or Dbs, and as such, concern arose that a contaminant was in fact 

being crystallized. Crystals were washed and run on a gel to ensure that TrioC was in 

fact the major protein component in the gels (Figure 2.4 top right). Further optimization 

Figure 2.4 Optimization of diffraction resolution for final TrioC∆C crystal form resulted in data that extended to 2.65Å 
spacings. Top left, crystallization conditions. Top middle, crystal shown frozen in nylon loop and resultant diffraction 
pattern. Top right, washed TrioC∆C crystals were run on a 12% Coomassie stained gel to determine if these crystals 
consisted of TrioC∆C protein. Bottom left, crystallization conditions. Bottom middle, crystal shown frozen in nylon 
loop and resultant diffraction pattern. The green rings indicate diffraction extending to the designated resolution limit. 

4

10 % PEG 3350
100 mM HEPES pH 7.5

TrioC @ 3 mg/mL
0.2 M L-Proline

Drop: 1 µL well+1 µL protein
200 µL silicon oil over well
Cryoprotectants: PEG 400, 
glycerol, ethylene glycol 

6.5 Å

14 % PEG 3350
100 mM HEPES pH 7.5

TrioC @ 2 mg/mL
Drop: 2 µL well+2 µL 
protein+1 µL ddH2O
No Cryoprotectant

2.5 Å

37 kD

50 kD

75 kD

25 kD
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trials focused on improving resolution by screening cryoprotectants. Addition of 25 % 

ethylene glycol, glycerol, or PEG 400 to the mother liquor did not improve resolution. 

Lack of cryoprotectant improved diffraction from 6 Å to 2.7 Å (Figure 2.4 bottom). Two 

datasets were collected at this improved resolution, with one second exposures and a 

two second exposure set, which improved resolution to 2.65 Å. This two second 

exposure set of frames was used to solve the final TrioC structure. 

2.3.3 TrioC∆C Structure Solution, Processing, Model Building, and Refinement 

Final diffraction data collected with 2.65 Å spacings were indexed, integrated, and 

scaled using the HKL 2000 software package. 122 The presence of systematic absences 

in diffraction maxima in all three dimensions allowed confident assignment of the P212121 

space group. The data was integrated and scaled in P212121 and initial phases were 

determined using molecular replacement with the Phaser program within the 

Collaborative Computational Project No. 4 (CCP4) software package. 123,134 Input models 

included the DH/PH tandems of TrioN, p63RhoGEF, and Dbs, all which have >30 % 

sequence identity to TrioC. None of these models yielded any solutions of high quality. 

Solution was then attempted using DH and PH domains of p63RhoGEF with the linker 

region deleted as sequential search models. These input models were processed using 

the CHAINSAW package within CCP4 in order to remove side chains. 124 This method of 

structure solution yielded a solution with high log likelihood gain and translation function 

Z-score values, markers of a likely correct solution. Structure solution inserted the bulk 

of the DH and PH domains into density. Three copies of the TrioC DH/PH tandem were 

found in the asymmetric unit. Initial rounds of structure building included manual model 

building and real space refinement in Coot and simulated annealing and refinement with 
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torsional NCS restraints in PHENIX.refine.125,126 Once refinement statistics stopped 

improving, REFMAC5 in CCP4 was used, in combination with translation-libation-screw 

(TLS) refinement and manual X-ray weighting, with non-crystallographic symmetry 

turned off. 127  Six TLS groups were predicted using the TLS motion determination server 

and corresponded to the DH and PH domains in each of the three chains in the ASU.135,136 

These changes accounted for the medium resolution of the structure and allowed for 

refinement against ideal bond lengths and angles, in addition to taking into account 

differences between the 3 protein copies within the asymmetric unit. Final considerations 

for structure building incorporated changes suggested by Molprobity128, PDBRedo129, 

and Coot validation metrics for rotamers, geometry, and Ramachandran restraints. 

Statistics for processed data and the final model are shown in Table 2.1. 
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                                                                                     TrioC∆C (human Trio 1960-2275) 
Data collection statistics   
Synchrotron source 
 
Wavelength (Å) 
Resolution range (Å) 
Space group 
Unit cell (a, b, c) (Å) 
Unique reflections 
Multiplicity 
Completeness (%) 
Mean I/σI 
CC1/2 
Rsym 

 
Refinement statistics 
Resolution limits (Å) 
Number of test reflections 
Rwork 
Rfree 

Number of nonhydrogen atoms 
Macromolecule  
Ligand      
Water 

Protein Residues 
RMS bonds (Å) 
RMS angles (°) 
Ramachandran favored (%) 
Ramachandran outliers (%) 
Clashscore calculated from MolProbity 
Average B-factor 
 Macromolecule 
 Ligand 
 Water 

 
LS-CAT beamline 21-ID-G, Advanced 

Photon Source 
0.97856 

50-2.65 (2.70-2.65) 
P212121 

59.2, 85.8, 182.4 
30511 (1371) 

5.0 (3.8) 
98.7 (90.1) 
18.9 (1.2) 

ND (0.699) 
0.085 (0.746) 

 
 

15-2.65 (2.70-2.65) 
28787 (1862) 
0.23 (0.34) 
0.27 (0.37) 

7525 
7499 

0 
26 
907 

0.008 
1.2 

97.8 
0 

1.33 
76.0 
76.0 
N/A 
48.0 

 
Table 2.1 Data collection and refinement statistics for the TrioC∆C crystal structure. Parentheses indicate values for 
highest resolution shell. ND, not determined. 
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2.3.4 Structural Comparison to other Dbl Family GEF Modules 

As in previously determined Dbl family DH/PH structures, the TrioC module begins with 

an α-helical DH domain, consisting of 6 helical spans (α1-α6; A in Figure 2.5). The α6 

helix is continuous with the short first helix of the PH domain, αN, and their junction 

serves as a flexible hinge between the DH and PH domains. The remainder of the PH 

domain is composed of a seven-stranded (designated β1-β7) antiparallel β-sandwich 

capped on one end by a C-terminal helix (αC). Three copies of the TrioC module are 

found in each asymmetric unit (A in Figure 2.6). They are similar in overall conformation 

with a root mean square deviation (RMSD) of 0.8 Å for Cα atoms (B in Figure 2.6), with 

minor differences arising from unique crystal contacts. The only other reported structure 

of a TrioC subfamily RhoGEF module is that of p63RhoGEF (65% sequence identity) in 

complex with Gαq bound to guanosine diphosphate and aluminum tetrafluoride 

(Gαq·GDP·AlF4
−) and nucleotide-free RhoA [Protein Data Bank (PDB) entry 2RGN], 

representing a TrioC subfamily member in its activated, signal competent state. In Dbs, 

a closely related RhoGEF with a PH domain that positively contributes to nucleotide 

exchange, the DH and PH domains adopt a conformation more similar to activated 

p63RhoGEF than to autoinhibited TrioC (B and C in Figure 2.5). The region 
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encompassing the α6/αN junction (Trio residues 2139-2150) in the TrioC structure 

Figure 2.5 Comparison of the TrioC structure (A) with that of Gαq·GDP·AlF4
− activated p63RhoGEF (B) and Dbs (C). 

Proteins are shown in cartoon representation with secondary structure elements labeled. DH domains are colored 
green, αN helices are orange, PH domains are blue, and β3-β4 loops are magenta. Gαq·GDP·AlF4

− is shown as a gray 
surface representation. On the right sides of each structure are close-up images of the interaction region between DH 
and PH domains, with key residues shown as sticks and hydrophilic contacts shown as black dotted lines. Glycine 
residues are depicted as black spheres. 
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adopts a less bent α-helical conformation, with the αN helix forming the bulk of the 

Figure 2.6 Details within the TrioC crystal structure. Three copies of TrioC are found in the asymmetric unit and are 
depicted in cartoon representation (A). Alignment of the three TrioC copies within the asymmetric unit using LSQ 
superpose command in Coot. RMSD of Cα atoms between chains are shown (B). Crystal packing likely explains the 
position of the β3-β4 loop within the autoinhibited interface (C). Side chains involved in packing between the DH 
domain of chain B and the β3-β4 loop of Chain A are shown as sticks. Bottom, multiple sequence alignments showing 
conservation in αN and β3-β4 regions among related RhoGEF modules. 
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interactions with α3 in the DH domain (A in Figure 2.5). The analogous αN elements in 

activated p63RhoGEF (B in Figure 2.5) and Dbs (C in Figure 2.5) are instead displaced 

from the DH domain, leaving space for switch II of RhoA to bind. 

In TrioC, Gly2149 (Ile816 in Dbs, see Figure 2.5) packs against the side chain of Pro2066 

in α3 of the DH domain, allowing for closer approach of the TrioC DH and PH domains 

(Figure 2.5). Meanwhile, TrioC-Arg2150 forms an interdomain salt bridge with Glu2069 

in α3, which is not possible with the analogous Dbs-Ala817. The side chain of Met2146 

also bridges the DH and PH domains by forming a hydrogen bond with the side chain of 

Arg2150 and hydrophobic contacts with the DH domain. These interactions are broken 

upon the binding of Gαq, as seen in the active p63RhoGEF structure (Figure 2.5). 

Glu2069, Gly2149, and Arg2150 are all invariant in the TrioC subfamily, and are not 

conserved in Dbs or the related N-terminal DH/PH modules of Trio and Kalirin (See αN; 

bottom of Figure 2.6). Met2146, however, is conserved as a hydrophobic residue in most 

RhoGEFs and instead forms direct contacts with Switch II of bound GTPases in activated 

structures of p63RhoGEF and Dbs. Although not well conserved among TrioC subfamily 

members (See β3-β4; bottom of Figure 2.6), residues 2204-2212 in the β3-β4 loop of the 

PH domain bury the Arg2150-Glu2069 salt bridge and form additional interactions with 

α3 in the DH domain; the hydroxyl of Ser2208 forms a hydrogen bond with Glu2069. In 
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the active p63RhoGEF structure, β3-β4 is disordered (Figure 2.5). In Dbs, the equivalent 

loop is disordered without bound GTPase (Figure 2.5). 

Aligning the core of the DH domain of TrioC (Trio residues 1967-2136, Chain A) with 

activated p63RhoGEF revealed a 60˚ relative rotation of their PH domains around the 

axis of the α6-αN hinge (A in Figure 2.7). This leads to the formation of an interface 

between the DH and PH domains of TrioC which directly overlaps with the RhoA binding 

Figure 2.7 Conformational changes in the α6-αN region in RhoGEF structures. The autoinhibited TrioC structure and 
activated p63RhoGEF structure are shown as cartoons and aligned by their DH domains to highlight conformational 
change in α6-αN and the PH domains (A). The difference in relative orientation of the PH domain is highlighted with a 
curved arrow. TrioC is shown with the DH domain green, the PH domain cyan, and the linker region orange, and 
p63RhoGEF is colored gray. RhoA is shown in red as a surface representation. Key autoinhibitory residues are shown 
as sticks and spheres to orient the reader. Regions of TrioC which overlap with the RhoA binding site (based on the 
p63RhoGEF structure) are demarcated with asterisks (inset). DH domains, including α6-αN linker regions, of GTPase 
free and bound structures are shown as cartoons, with key residues in the autoinhibited interface shown as sticks. 
Dbs in its GTPase free state is colored tan and in its RhoA bound state is colored yellow. Changes in the conformation 
of the linker helix are outlined using two lines and a curved arrow to indicate the angle formed between their principal 
axes. 
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face of the DH domain, providing a likely mechanism for autoinhibition (A inset in Figure 

2.7). In particular, the more extended conformation of αN in autoinhibited TrioC occupies 

the RhoA Switch II binding site of the DH domain, and Glu2069 and Met2146, which 

interact directly with RhoA in the p63RhoGEF structure, are instead directly engaged 

with Arg2150.  

Comparison of the α6-αN hinge regions suggests that TrioC undergoes a 30˚ rotation in 

this region when transitioning from inactive to active states (B in Figure 2.7). Whether in 

GTPase bound or free states, the hinge region in Dbs adopts a conformation most similar 

to that of activated p63RhoGEF (B in Figure 2.7). Thus, the Dbs DH/PH tandem is 

prearranged for competent nucleotide exchange, whereas TrioC is found in the 

autoinhibited conformation until Gαq·GTP binds and changes the helical track of α6-αN 

to that seen in the active p63RhoGEF structure.  

2.3.5 Site Directed Mutations in the DH-PH Interface Destabilize and Activate 

TrioC 

To test the inhibitory role of the observed interface, we altered positions in α6-αN, the 

β3-β4 loop, and α3 using site-directed mutagenesis. We hypothesized that variants 

which disrupted important contacts in the DH-PH interface would be more sensitive to 

thermal denaturation (lower melting temperature (Tm) relative to wild type (WT)), as 

measured by differential scanning fluorimetry (DSF), and display increased GEF activity. 

E2069A, M2146A, and S2208A exhibited 3-7 ˚C lower melting points, whereas R2150A 

and F2207A (β3-β4 loop) were similar to WT TrioC (Table 2.2). Most of the alanine 

variants had a similar exchange rate to WT TrioC, with the exception of R2150A, and 
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S2208A, which were ~1.5-fold more active than WT, a slightly elevated but not 

significantly 
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Variant ∆Tm 

(°C)  
95% CI 
for ∆Tm 

GEF 
activation 
(Fold/WT) 

95% CI 
for GEF 

activation 

Fold activation 
by 

Gαq·GDP·AlF4
-
  

95% CI for Fold 
activation by 

Gαq·GDP·AlF4
- 

WT 0.0 [-0.5,0.5]# 1.0 [0.9, 1.1] 3.1 [0.4, 5.9] 
E2069A -6.0*** [-7.3, -4.7] 0.7 [0.1, 1.3] ND ND 
M2146A -3*** [-3.6, -2.4] 0.8 [-0.5, 2.2] ND ND 
S2208A -3.2*** [-4.8, -1.7] 1.4 [0.1, 2.7] ND ND 
R2150A 0.9* [-0.2, 1.9] 0.9 [0.03, 1.8] ND ND 
F2207A 1.1 [-0.6, 2.8] 0.7 [-0.1, 1.6] ND ND 

∆2204-2208 -0.4 [-1.1, 0.2] 1.5 [0.2, 2.8] ND ND 
∆2203-2209 -0.5 [-0.9, -0.1] 1.0 [-0.5, 2.7] ND ND 

G2149I -6.3*** [-6.7, -5.9] 1.9 [-0.7, 4.6] ND ND 
E2069R/R2150E -7.9*** [-14, -2.2] 3.2** [1.6, 4.7] ND ND 

R2150E 0.9 [0.7, 1.1]  1.0 [-0.4, 2.4] ND ND 
2153∆ ND ND 3.0* [0.7, 5.3] ND ND 
2152∆ ND ND 11*** [4.5, 18] ND ND 
2147∆ ND ND 14*** [4.8, 22] ND ND 
2143∆ ND ND 0.2 [-0.2, 0.6] ND ND 

G2149W -3.6*** [-3.9, -3.3] 4.3*** [2.4, 6.4] 1.5* [0.7, 2.3] 
R2150Q -1.6*** [-3.3, 0.2] 4.5*** [2.1, 6.9] 2.2 [1.2, 3.1] 
R2150W -3.1*** [-5.1, -1.2] 9.3*** [-0.4, 18] 0.9** [0.7, 1.0] 

Table 2.2 Table depicting DSF and GEF activity data for TrioC variants. ΔTm= Tm(variant)-Tm(WT). Fold GEF 
activation=average kobs(variant)/kobs(WT). Fold activation by Gαq·GDP·AlF4

-=average kobs(variant+Gαq·GDP·AlF4
-

)/kobs(variant+Gαq·GDP). Each variant was profiled in N=3 experiments performed in at least duplicate. ND, not 
determined. A one-way ANOVA with post Dunnett’s test was used to test for significance for ΔTm, Fold GEF activation, 
and Gαq·GDP·AlF4

- activation for each variant in comparison to WT. * refers to p<0.05, ** to p<0.01, *** to p<0.005. #, 
DSF data was collected using two experimental setups, the larger 95% CI was chosen here. See methods section for 
further explanation of methods/statistics used in this table. 

different rate (Table 2.2). β3-β4 loop deletions ∆2204-2208 and ∆2203-2209 were 4 and 

1 °C destabilized relative to wild type, although neither was more active than wild type. 

A larger loop deletion, ∆2201-2211, yielded insoluble protein and could not be assayed. 

The G2149I variant, replacing the position with the cognate residue in Dbs, reduced the 

Tm over 7 ˚C and displayed 2-fold higher exchange relative to WT. The E2069R/R2150E 

double mutant, designed to test the importance of the salt bridge, destabilized protein 9 

°C and enhanced GEF activity 4-fold. Thus, the electrostatic complementarity of these 

residues is not as important as their contributions to the local structure. The single 

R2150E mutant was not significantly different from WT in nucleotide exchange activity, 

whereas E2069R yielded insoluble protein and thus could not be assayed. Thus, the 
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E2069R substitution is most likely responsible for the activation exhibited by the 

E2069R/R2150E double variant protein is only stable in the context of a salt bridge swap. 

Ultimately, mutations which disrupted contacts made in the closed interface (G2149I and 

E2069R/R2150E), as opposed to mutations that removed contacts (such as R2150A) 

had the greatest ability to destabilize and activate the DH/PH module. 

2.3.6 Mutations Found in Cancer Patients also Destabilize and Activate the 

TrioC Module  

Analysis of the cBioPortal database revealed that truncations 2152∆ and 2153∆ occur in 

cancer patients. 137 The 2153∆ variant removes the bulk of the PH domain yet leaves αN 

intact. This variant activated the DH/PH module 3-fold relative to wild type TrioC (Table 

2.2). The 2152∆ variant activated the module 12-fold over WT. To assess the 

consequences of further truncation, we profiled 2147∆, which removes all of αN and 

found this variant 16-fold hyperactive. A final truncation, 2143∆, which also removes a 

portion of α6, had 5-fold lower GEF activity than WT, likely due to loss of RhoA binding 

residues. The cBioPortal database also contains the G2149W, R2150Q, and R2150W 

variations, which we hypothesized would be activating due to steric or electrostatic 

disruption of the autoinhibited DH-PH interface. Indeed, we found that all had lower Tm 

values and were >4-fold more active than WT (Table 2.2), consistent with a model 

wherein the PH domain must be dislodged from the DH domain in order to facilitate 

RhoA binding. We also found that TrioC WT, G2149W, and R2150Q were activated by 

Gαq in an AlF4
--dependent manner in the same assay format, although the G2149W and 

R2150Q variants were activated to a lesser extent (~1.5 fold) than TrioC WT (~3-fold). 

Our most active TrioC variant, R2150W, was not activated by Gαq·GDP·AlF4
- (Table 2.2). 
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2.3.7 HDX-MS Shows Higher Dynamic Behavior in the DH-PH Interface in 

Constitutively Activated TrioC 

We subjected R2150W and WT TrioC to HDX-MS experiments to study activated and 

basal forms of the enzyme in solution. The exchange maps for each variant agreed with 

relative levels of solvent exposure seen in the crystal structure, with buried residues 

exchanging much more slowly than residues found on the exterior of the protein. By 

examining a difference map between R2150W and WT, we hoped to understand the 

conformational changes taking place upon activation of TrioC. In the HDX-MS difference 

map R2150W-WT (Figures 2.8 and 2.9), the α6 region in close proximity to the R2150W  

Figure 2.8  Difference HDX-MS values for TrioC (R2150W minus WT) plotted onto the TrioC crystal structure. 
Difference hydrogen-deuterium exchange values (R2150W-WT) plotted onto the TrioC structure shown as a cartoon 
with secondary structure elements labeled. Data shown represents an average of N=2 experiments from separate 
protein preparations. Darker red indicates higher exchange rates in R2150W, and off-white represents no change in 
R2150W vs. WT. A scale bar at the top left indicates relative exchange rates. Key residues involved in the 
autoinhibitory interface are shown as sticks and spheres to orient the reader. Experiments performed by Sheng Li, 
Ph.D. 
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mutation is more solvent accessible compared to WT and residues in α3 also display a 

marked increase in solvent exposure, supporting the notion that these two regions 

directly interact in the autoinhibited, basal state. Thus, in the R2150W variant, residues 

from both α3 and α6 are more solvent exposed and more available for interaction with 

RhoA. We hypothesize that this occurs by breaking the interactions between these two 

regions seen in the autoinhibited crystal structure. The β3-β4 loop exhibits no difference 

in exchange dynamics between the two states, and in conjunction with our biochemical 

data we believe the position of this poorly conserved loop as a part of the DH-PH 

interface is likely due to crystal contacts. The HDX-MS difference map comparing the 

truncation 2152∆ to WT TrioC also showed deprotection in the α6-αN region and in α3 

(Figure 2.10). These results are consistent with α6-αN losing helicity in the context of 

2152∆ and thus explains its hyperactivity. 

2.3.8 DH-PH Interfacial Mutants Activate Full-Length Trio in Mammalian Cells 

Full-length Trio is the primary splice variant transcribed, and thus likely the predominant 

variant expressed, in UM cell lines. 37 Thus we compared the activity of the cancer-

associated variants, G2149W, R2150Q, and R2150W, to WT in the context of human 

Trio (residues 61-3097) under serum starved conditions to detect inherent Trio activity. 

Proteins were expressed as C-terminal enhanced green fluorescent protein (eGFP) 

fusions using transient transfection in human embryonic kidney 293 (HEK293) cells. 

Figure 2.9 (Previous page) Primary HDX-MS data corresponding to the Figure 2.8. The TrioC primary sequence is 
shown left to right with starting and ending residues on each line numbered. Above the sequence the secondary 
structure is shown as cylinders (alpha helices) or arrows (beta strands). Below the primary sequence the HDX-MS 
values are plotted over various time points shown on the left. Blue indicates low exchange and red indicates high 
exchange, see scale bars at bottom right of each section for detail. TrioC R2150W is shown in (A), TrioC WT in (B), 
and the difference map (R2150W-WT) in (C). This data is the average of N=2 experiments performed by Sheng Li, 
Ph.D. 
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Because 2152∆ was the most active cancer truncation variant in vitro, it was also 
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profiled. A pulldown assay using the Rho-binding domain of the RhoA effector Rhotekin 

(Cytoskeleton, Inc.) 37 was employed to determine the relative ratio of active Rho 

(RhoA·GTP) to total RhoA content in response to expression of WT and mutant Trio. 

Expression of R2150W, R2150Q, G2149W, and G2152∆ Trio mutants all led to a >2-fold 

increase in levels of RhoA·GTP as compared to WT Trio (Figure 2.11). All Trio variants 

expressed to a similar level (C in Figure 2.11). 

Figure 2.11 Rhotekin pulldown assay for pEGFP-TrioFL variants in 293 cells. Performed by Nadia Arang in the Gutkind 
Laboratory at UCSD. The quantified results of N=3 experiments normalized to WT (A). Fold change in RhoA∙GTP 
content normalized to the Trio WT condition shown on Y axis and different variants shown on the X axis. 
Representative western blot of the experiments used to derive panel A (B). On top is RhoA∙GTP blot, below is the blot 
for total RhoA, below that the GFP blot for Trio variant expression, and finally a β-Actin blot is used as a loading control 
for the GFP blot. A quantification of N=3 blots for Trio variant expression is shown in (C). 

2.3.9 Small Angle X-ray Scattering on TrioC WT and R2150W 

Size exclusion chromatography-coupled small angle x-ray scattering (SEC-SAXS) 

experiments were performed by Srinivas Chakravarthy, a beamline scientist at the 

biological collaborative access team at the advanced photon source. SAXS data 

collection parameters are detailed in Table 2.3. TrioC WT and R2150W proteins were  

Figure 2.10 (Previous page) Primary HDX-MS data for TrioC 2152∆ and matched WT data. The TrioC primary 
sequence is shown left to right with starting and ending residues on each line numbered. Above the sequence the 
secondary structure is shown as cylinders (alpha helices) or arrows (beta strands). Below the primary sequence the 
HDX-MS values are plotted over various time points shown on the left. Blue indicates low exchange and red indicates 
high exchange, see scale bars at bottom right of each section for detail. TrioC 2152∆ is shown in (A), TrioC WT in (B), 
and the difference map (2152∆-WT) in (C). This data is the result of N=1 experiment performed by Sheng Li, Ph.D. 
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Table 2.3 SAXS data collection parameters and data reduction method used by Srinivas Chakravarthy to collect and 
process SAXS data at BIO-CAT 18-ID-D. 

shipped to Argonne national laboratories and run on the SEC-SAXS setup. Scattering 

profiles were collected and normalized to buffer and blank controls and then used to 

SAXS data collection parameters 

Instrument BioCAT facility at the Advanced Photon Source 

beamline 18ID with Pilatus3 1M (Dectris) detector 

Wavelength (Å) 1.033 

Beam size (µm2) 150 (h) x 25 (v) 

Camera length (m) 3.5 

q-measurement range (Å-1) 0.004-0.4 

Absolute scaling method N/A 

Basis for normalization to constant counts To incident intensity, by ion chamber counter 

Method for monitoring radiation damage Automated frame-by-frame comparison of 

relevant regions 

Exposure time, number of exposures  0.5 s exposure time with a 2 s total exposure 

period (0.5 s on, 1.5 s off) of entire SEC elution 

Sample configuration SEC-SAXS. Size separation by an AKTA Pure 

with a Superdex 200 Increase 10/300 GL column. 

SAXS data measured in a 1.5 mm ID quartz 

capillary. 

Sample temperature (ºC) 20 

Software employed for SAXS data reduction, analysis and interpretation 

SAXS data reduction Radial averaging; frame comparison, averaging, 

and subtraction done using BioXTAS RAW 1.4.0 

Basic analysis: Guinier, P(r) Guinier fit and P(r) using ATSAS 
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derive paired distance distribution functions (P(r)) in order to determine the radius of 

gyration (Rg), maximum paired distance vector (Dmax), and Porod volume (Table 2.4).  

 

Table 2.4 SEC-SAXS data displayed for TrioC WT and R2150W variant reveals no major differences between them. 
Zero angle intensity [I(0)], radius of gyration (Rg), and quality of fit/Pearson correlation coefficient derived from Guinier 
and Pairwise-distance distribution function [P(r)] analyses are displayed. The maximum particle size Dmax was 
determined from the largest radius present in the P(r) plot. 

TrioC WT had a Rg of 26.4 Å, a Dmax of 90 Å, and a Porod volume of 50735 Å3. The 

R2150W variant had a Rg of 27.2 Å, a Dmax of 94 Å, and a Porod volume of 52625 Å3. 

Although the R2150W variant displays larger values in each individual measure, it 

remains unclear whether these differences are meaningful without more experimental 

replicates. The low Guinier Pearson CC also indicates these samples need further 

optimization before further analysis. Envelopes generated using the DAMAVER software 

suite showed no visible differences for WT vs. R2150W. 138 

 

 TrioC WT TrioC R2150W 

Concentration (mg/mL) 3.0 3.0 

Guinier I(0) 14.9 12.3 

Guinier Rg (Å) 25.3 24.5 

Guinier Pearson CC 0.69 0.56 

P(r) I(0) 15.0 12.7 

P(r) Rg (Å) 26.4 27.2 

P(r) Quality of Fit 0.91 0.85 

Dmax (Å) 90.0 94 

Porod Volume (Å3) 50735.0 52624.8 
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2.4 Discussion 

The definition of the molecular events underpinning carcinogenic signaling in UM has 

showcased the role of Trio in transmitting signals from constitutively active Gαq/11 

subunits to the nucleus. 37,42 Gαq/11·GTP activates Trio by relieving an autoinhibitory 

constraint on TrioC, which leads directly to nucleotide exchange of RhoA into its GTP-

bound form. In this work, we have defined the structural basis of this autoinhibitory 

constraint using X-ray crystallography accompanied by HDX-MS and validated our 

model with biochemical and cell-based assays. The crystal structure of the TrioC module 

revealed the structure of a DH/PH tandem in a conformation incapable of binding 

GTPase. All three copies of the protein in the asymmetric unit adopt a highly similar 

conformation, supporting that the observed configuration of the DH and PH domains is 

not an artifact of crystal packing (Figure 1.7). In other published crystal structures of Dbl 

family members, the DH and PH domains exhibit distinct relative orientations73,82,84, 

consistent with the α6-αN connecting region serving as a hinge. The crux of our structure 

is a novel interface formed between the α6-αN hinge region and the DH domain, wherein 

the most important contacts are made by residues in αN. It showed that Gly2149 and 

Arg2150 both make extensive contacts with the DH domain, with Gly2149 enabling 

closer proximity of αN to the DH domain than in other DH/PH modules, and Arg2150 

sequestering DH domain residues Glu2069 and Met2146, which both make contact with 

RhoA in the bound state. These residues are conserved among TrioC homologs, but not 

in other RhoGEF modules including the N-terminal modules of Trio and Kalirin. The 

presence of Gly2149 and Arg2150 is likely a prerequisite for αN to follow a standard 

helical track at the end of α6 in order to block the switch II binding site of RhoA on the 



 67 
 

DH domain. Accordingly, mutations of Gly2149 and Arg2150 were generally activating. 

Mutation of the analogous residues in p63RhoGEF (Gly340 and Arg341) were also 

activating88, and we predict this trend would hold true for the KalirinC module. In 

contrast, the closely related PH domains of Dbs/TrioN instead enhance GEF activity by 

positioning residues in the α6-αN hinge region to form beneficial interactions with the 

GTPase substrate. 74,83 To the best of our knowledge, Sos1 is the only other example of 

a Dbl family structure in which the PH domain directly binds to the DH domain. In Sos1, 

the DH-PH interface involves the GTPase binding site of the DH domain and the αC helix 

of the PH domain. Given the poor conservation of the residues involved across the Dbl 

family, this interaction surface is likely unique to Sos1. 68,139 

The TrioC 2153Δ, 2152Δ, and 2147Δ truncations were all activated relative to WT TrioC 

(Table 2.2). Thus, the basal activity of the DH domain is highly sensitive to whether the 

PH domain is present. The bulk of the PH domain, and in particular its extended C-

terminal helical region, is also required for binding and activation by Gαq-GTP. 88 

Activation by truncation is a likely explanation for the transforming activity of Tgat, a 

splice variant of Trio encoding Trio residues 1921-2160 followed by a unique 15 residue 

extension. 56 Although the α6-αN region in Tgat is entirely present, the lack of the core 

PH domain fold in this variant could mean that the αN helix is disordered and thus cannot 

confer full autoinhibition as we hypothesize for the 2153Δ and 2152Δ variants. 

Alternatively, the 15-residue extension could drive an activated conformation of the α6-

αN hinge region by making unique contacts within the protein, with other signaling 

partners, or with the cell membrane. 57,140,141 
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Alanine scanning mutations throughout the DH-PH interface did not affect TrioC activity. 

In contrast, substitutions that introduced bulk into the interface such as G2149I/W, 

E2069R/ R2150E, and R2150W were able to activate TrioC >2-fold. These data suggest 

that in the absence of the interactions formed by one side chain, as in the R2150A 

variant, the remaining residues in the DH-PH interface can still contact each other and 

stabilize the autoinhibited conformation. In contrast, variants which insert steric bulk into 

the interface will disrupt the majority of DH-PH interfacial contacts from forming. 

Although the β3-β4 loop is resolved as part of the closed DH-PH interface in our crystal 

structure, this poorly conserved loop likely plays little to no role in the autoinhibition of 

TrioC family members. Its removal did not affect TrioC activity or thermostability, and 

our HDX-MS profiling of the active mutant R2150W showed no difference in exchange 

rates in the β3-β4 loop, which we would expect to see if this loop formed a part of the 

DH-PH interface. Instead, the crystal contacts that β3-β4 makes with neighboring TrioC 

monomers are likely responsible for its ordered conformation in the crystal structure. 

(Figure 2.7). Truncation of the analogous loop in p63RhoGEF (Δ397-402) has no effect 

on activity. 88 The β3-β4 loops in structures of TrioN and Dbs make contacts with the 

bound GTPase, but mutation of the loop has no effect in vitro. 74,83 

Our data support a model wherein TrioC exists in an equilibrium of autoinhibited and 

active conformations (Figure 2.16). The existence of an equilibrium is supported by the 

measurable basal GEF activity of TrioC and full-length Trio. The basal autoinhibited state 

is represented by the crystal structure we have reported here (Figure 2.16, top left 

quadrant). TrioC can sample a conformation which is active in the absence of Gαq·GTP, 

and the cancer point variants we profiled are able to shift the equilibrium towards this 
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state (Figure 2.16, bottom left quadrant). This is accomplished through displacement of 

αN from its contacts with α3 (confirmed by HDX-MS). Gαq·GTP binds primarily to an 

extension of αC in the PH domain (Figure 2.16, top right quadrant) yet does not activate 

TrioC until it binds to both DH and PH domains and displaces αN from α3 (Figure 2.16, 

bottom right quadrant, represented by PDB entry 2RGN). Our SAXS results hint that 

activated TrioC may occupy a larger size in solution, although this is a small change that 

could be due to the inherent limitations of the SAXS method itself. Our results suggest 

that because the cancer-associated point variants favor a conformation similar to that 

produced by Gαq·GTP binding, they synergistically enhanced Gαq·GTP binding and a 

maximum activation rate. The exception is R2150W, whose activity was not further 

enhanced by saturating Gαq·GDP·AlF4
−. This variant may be present in a fully activated 

conformation without need for Gαq·GDP·AlF4
−. 

We posit that activation of TrioC by Gαq·GTP, by point mutation, and by truncation all 

depend on the same biophysical mechanism: displacement of αN from the contacts 

made with α3 seen in our crystal structure. As is seen in our cell based RhoA activation 

assay, this paradigm held true in an overexpression model of full-length Trio in human 

cells. Thus, in human cancer, Trio has the potential to bypass regulation by Gαq/11 by 

truncation or point variation, which would lead to the activation of RhoA and downstream 

proliferative signaling through the AP-1 and YAP-TEAD axes. 38,42 A small molecule 

stabilizer of the autoinhibited TrioC conformation reported here could prove fruitful in 

halting proliferative signaling through Trio. In combination with therapies targeting the 

other arms of Gαq signaling, a TrioC inhibitor could be an effective part of a combination 

therapy for UM. 
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2.5 Conclusions and Future Directions 

Within this Chapter, I set out to evaluate the hypothesis that TrioC autoregulation is 

mediated by residues in the αN region of the PH domain. Through X-ray crystallography 

and a panel of biochemical and biophysical techniques, I have shown that the primary 

determinants of TrioC autoinhibition do indeed reside within αN, namely Gly 2149 and 

Arg2150, thereby defining the mode of regulation for this subfamily. In the R2150W 

variant, which is found in human cancer, I have demonstrated that a TrioC point variant 

can represent a fully activated conformation of TrioC. My structural model for TrioC 

regulation is supported by both crystallographic and solution-based data (HDX-MS), and 

this model seems to hold true for full-length Trio. Thus, I have demonstrated the 

molecular basis of TrioC subfamily autoinhibition conferred by αN. Future work in this 

project will evaluate the biological consequences of TrioC activation through use of the 

point variant R2150W. Experiments to be performed include the evaluation of 

downstream signaling cascades, including the evaluation of RhoA-dependent 

transcriptional activity. Phenotypes driven by the R2150W variant could also be profiled 

using focus formation assays, migration assays, transcriptomics, and xenograft 

experiments.



 71 
 

  



 72 
 

Chapter 3 Structure and Function of Understudied Trio domains 
3.1 Introduction 

The following Chapter describes my efforts to understand structure/function 

relationships in understudied domains in Trio. Only the two GEF modules of Trio are 

characterized and thus ~80% of the protein is still unexplored. My hypothesis going into 

this work were that nonenzymatic portions of Trio regulate its GEF activities through 

allostery. I also considered the hypothesis that Gαq functions as a master regulator of 

Trio by inducing global conformational change, based on the fact that Gαq stimulates 

not only RhoA exchange through Trio but also Rac1 exchange in cells.  I start with 

purification and crystallization trials of individual domains of Trio, including the CT 

domain, SH3 domains, Ig domain, and kinase domain, and test a hypothesis from the 

literature that the Ig domain interacts with GTP-bound RhoA. I then shift to my efforts to 

purify full-length Trio from mammalian cells. I close with characterization of various 

constructs of Trio using EM and biochemical assays. I have generated constructs and 

laid the groundwork for future work in studying Trio function using larger portions of the 

molecule using electron microscopy. 

3.2 Methods 

3.2.1 Cloning 

hTrioFL (hTrio residues 61-3097) cDNA inserted into peGFP and Drosophila 

melanogaster Trio (dTrio) cDNA in pRmHA-3 were gifts from the Gutkind Laboratory at 

UCSD. The hTrioFL construct was mutagenized via inverse PCR using Q5 DNA 
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polymerase in order to install an N-terminal 10xHis tag followed by a TEV protease 

cleavage sequence (N-10xHis-TEV-eGFP-hTrioFL-C). Construct was then DpnI 

digested, subjected to a PCR cleanup kit, phosphorylated, ligated, and transformed into 

XL-1 Blue E. coli cells. Other Trio constructs were amplified out of the hTrio plasmid 

using PCR with ligation-independent cloning (LIC) handles. 142 For shorter constructs, 

Q5 DNA polymerase was used. For longer constructs, KOD polymerase was necessary 

in order to get productive and high-fidelity amplification and was used. PCR reactions 

were run on agarose gels to confirm the presence and correct size of amplicons. 

Reactions were then DpnI digested, subjected to a PCR cleanup kit (Qiagen 28106), and 

processed with T4 DNA polymerase to generate sticky ends. T4 processed inserts were 

mixed with linearized and T4 processed vectors for E. coli, insect, or mammalian 

expression from the University of Michigan high-throughput protein production core, and 

reconstituted plasmids were transformed into DH5⍺ or XL1-Blue E. coli cells. Constructs 

were screened for the presence of the insert in the correct reading frame using Sanger 

sequencing at the University of Michigan DNA sequencing core facility. Primers were 

directed reading towards the 3’ direction starting prior to the LIC site and reading 

towards 5ʹ immediately following the LIC insertion site. Longer Trio constructs were 

sequenced using primers directed at the internal Trio sequence itself. Vectors used 

included those with MBP and Glutathione-S-transferase (GST), and all contained 6xHis 

sequences N-terminal to the fusion tag (N-6xHis-MBP/GST/-TEV-hTrio-C). 

3.2.2 Protein Expression and Purification 

RhoA expression and purification is described in Chapter two. Rac1 was expressed and 

purified using the same protocol as used for RhoA. Plasmids encoding Trio constructs 
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were transformed into Rosetta (DE3) pLysS Escherichia coli (E. coli) cells (Novagen) and 

grown in Terrific Broth (EMD Millipore Sigma) with 100 μg/mL ampicillin or carbenicillin 

plus 50 μg/mL chloramphenicol at 37  ̊C with 200 rpm shaking. Once a 600 nm optical 

density (OD600) of 0.6-0.8 was reached, expression of N-terminally tagged fusion proteins 

was induced using 0.5 mM isopropyl β-D-1-thiogalactopyranoside and cells were further 

allowed to grow at 20  C̊ with 200 rpm shaking for 20-24 h. E. coli were then harvested 

at 5000 × g for 15 min and cell pellets were flash-frozen or prepared. Cell pellets were 

vortexed and resuspended using a Dounce homogenizer in an ice-cold “lysis buffer” 

containing 20 mM (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) HEPES pH 8.0, 

200 mM NaCl, 2 mM dithiothreitol (DTT), 1 mM MgCl2, 5 % glycerol, 0.001 mM leupeptin, 

1 mM lima bean trypsin inhibitor, and 0.1 mM phenylmethylsulfonyl fluoride. Individual 

Trio domain construct purifications also included 10 mM imidazole. Longer Trio 

constructs included 5mM EDTA in the lysis buffer and no MgCl2. Resuspended cell 

solution was then lysed using a handheld VirSonic 100 sonicator (Boston Laboratory 

Equipment) for five 30-second pulses at 18 watts on ice. Lysate was then centrifuged at 

40000 rpm in a Beckman Optima L-90K ultracentrifuge (Beckman-Coulter) to remove 

insoluble material. The soluble fraction was then filtered through a 0.45 µm filter and 

loaded onto nickel- nitrilotriacetic acid (Ni-NTA) agarose resin (Qiagen) equilibrated with 

lysis buffer. Larger Trio constructs were prepared using Roche cOmplete His-tag resin 

(Roche 5893682001) equilibrated with lysis buffer. Two aliquots of 10 column volumes 

(CV) of lysis buffer containing 20 mM imidazole were used to wash the column (10 mM 

for cOmplete resin). The recombinant protein was then eluted using lysis buffer plus 200 

mM imidazole. The elution fractions containing desired protein were then incubated with 
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5 % (w/w) tobacco etch virus protease in order to cleave the N-terminal expression tag 

and the mixture was dialyzed against a buffer containing 20 mM HEPES pH 8.0, 200 mM 

NaCl, and 2 mM DTT in order to remove imidazole. The fusion tag was then removed 

using another round of Ni-NTA purification for individual domain constructs. Proteins 

were then checked for purity using sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis and pure fractions were concentrated in an Amicon Ultracel 

concentrator (Millipore), flash frozen in liquid nitrogen, and stored at −80  ̊C. For GEF 

assays, protein was thawed from -80 ̊ C on ice, 0.2 µm filtered, and used for experiments. 

For crystallography, fractions were thawed from −80  C̊ on ice, and polished using gel 

filtration chromatography on a Superdex 75 or 200 10/300GL column (General Electric 

healthcare) in a buffer containing 20 mM HEPES pH 8.0, 200 mM NaCl, and 2 mM DTT.  

After purification using cOmplete resin, larger Trio constructs were dialyzed against 20 

mM HEPES pH 8.0, 10 mM NaCl, and 2 mM DTT with 1 % (w/w) TEV protease overnight 

at 4 ºC. These solutions were subjected to anion exchange chromatography using a 5 

mL HiTrap Q HP column (GE 17115401) using a buffer of 20 mM HEPES pH 8.0 and 2 

mM DTT with a gradient of 10 mM to 1000 mM NaCl over 100 mL. Desired fractions 

were concentrated in a 30 or 50 kD cutoff concentrator and loaded on either a 24 mL 

Superose 6 or Superdex 200 column (GE) equilibrated with 20 mM HEPES pH 8.0, 200 

mM NaCl, and 2 mM DTT. Desired fractions from SEC were concentrated to 1-2 mg/mL 

and flash frozen. Protein aliquots for biophysical experiments were concentrated further 

and frozen as required. For GTPase complex formation, Trio constructs were mixed with 

>2-fold molar excess of GTPase in a buffer containing 0.1 mM EDTA to drive complex 

formation. Complexes were incubated at 4 ºC for >30 minutes and loaded on an S200 
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column equilibrated with 20 mM HEPES pH 8.0, 200 mM NaCl, and 2 mM DTT and 0.1 

mM EDTA. Fractions containing complex were used for biophysical experiments. 

Human Embryonic Kidney 293 Freestyle cells (293F-ThermoFisher) were cultured in 

suspension in Freestyle 293 expression media (ThermoFisher) and transfected with a 1:3 

(w/w) mixture of hTrioFL-pEGFP DNA:Polyethylenimine (see eukaryotic cell culture). 

After 48 hours, cells were harvested and pelleted at 4 ºC at 500 x g for 10 minutes and 

either flash frozen or carried forward for preparation. A mixture of 2.5 mL/50 mL cell 

culture Cell-Lytic M (Sigma C2978) was supplemented with 200 mM NaCl, 2 mM DTT, 5 

% glycerol, 10 mM EDTA, and one protease inhibitor cocktail tablet (Sigma S8830) and 

added to cells. The cell pellet was gently rocked in lysis buffer at 4 ºC for 15 minutes in 

order to resuspend the 293F pellet. The cell suspension was brought up to 80 mL in a 

lysis buffer containing 20 mM HEPES pH 8.0, 200 mM NaCl, 2 mM DTT, 10 mM EDTA, 

and 2.5 % glycerol and subjected to ultracentrifugation at 40000 rpm for 45 minutes. 

Supernatant was run through a 0.4 µm filter and loaded onto cOmplete His-tag 

purification resin (Roche 5893682001) equilibrated with “wash buffer”: 20 mM HEPES 

pH 8.0, 200 mM NaCl, 2 mM DTT, 5 % glycerol, 10 mM EDTA. Column was washed 

twice with 5 CV of wash buffer including 10mM Imidazole, and protein was eluted using 

5 x 1 mL aliquots of wash buffer + 200 mM imidazole. Samples from the purification were 

run on a 4-15 % gradient SDS-PAGE gel (Bio-Rad) and imaged on a Typhoon (GE 

Healthcare) to measure eGFP fluorescence (488 nm excitation, 532 nm emission) before 

being stained using Coomassie (Bio-Rad). Purification on HiTrap Q HP and Superose 6 

columns was attempted similarly to described above. 
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Rac1/RhoA affinity columns were generated using Affi-Gel 10 and further purification of 

hTrioFL was attempted (Bio-Rad). One mL of Affi-Gel 10 slurry was washed with 10 CV 

of water and 10 CV of 20 mM HEPES pH 7.5, 200 mM NaCl, 2 mM DTT, and 1 mM 

MgCl2. GTPase, fresh from an SEC purification, was incubated with the Affi-Gel resin at 

4 ºC for four hours. Flowthrough and three 10 CV washes were collected and then the 

loaded resin was used for hTrioFL purification attempts. For purification, the column was 

equilibrated with 20 mM HEPES pH 8.0, 200 mM NaCl, 2 mM DTT, and 5 % glycerol. 

Elutions from the His-tag purification were added to the column and rocked for 15 

minutes at 4 ºC. Ten mM EDTA was added into the reaction mixture, encouraging 

complex formation. Column was washed four times with 10 CV of 20 mM HEPES pH 

8.0, 200 mM NaCl, 2 mM DTT, and 5 % glycerol with 10 mM EDTA. The complex was 

then eluted with 5 x 0.5 mL of 20 mM HEPES pH 8.0, 200 mM NaCl, 2 mM DTT, and 5 

% glycerol with 1 mM MgCl2 and 20 µM GDP. Samples were judged for purity using a 

fluorescence scan of the SDS-PAGE gel and Coomassie stain for total protein. 

3.2.3 Crystallography 

Sitting drop screening trays were set using commercial screens from Qiagen and 

Hampton Research: IndexHT, Protein Complex, Classics Lite, and JCSG+. Ninety-six 

well plates (Art Robbins Instruments 102-0001-03) were set using a Gryphon Crystal 

Robot (Art Robbins Instruments) and incubated at 20  ̊C. Hits from original screens were 

optimized in 24-well hanging drop VDX plates (Hampton Research) in order to optimize 

crystal size and quality.  
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3.2.4 GEF assays 

FRET was used to assess the nucleotide exchange activity of Trio variants in a Corning 

Black 384 well low-volume round bottom micro plate (Corning 4514). 131 73 First, 2 μM 

RhoA·GDP (or Rac1) was incubated with 50 nM GEF for 5 min at room temperature in 

freshly prepared nucleotide exchange buffer: 20 mM HEPES pH 8.0, 200 mM NaCl, 2 

mM DTT, and 10 mM MgCl2. Immediately before measurement, 1 μM 2 ́/3 ́-O-(N-Methyl-

anthraniloyl)-guanosine-5 ́- triphosphate (MANT-GTP) (Jena Biosciences), was added to 

a final assay volume of 20 μL. The mixture was then excited at 280 nm, and fluorescence 

intensity at 450 nm was read in 5 s intervals on a SpectraMax M5 plate reader (Molecular 

Devices) for 5-10 min. Fluorescence curves were fit to a linear regression model using 

GraphPad Prism to derive the observed kinetic constant kobs. The resulting kobs of the 

experimental condition was then compared to that of matched rates of GTPase alone 

and GTPase + control GEF (TrioN or TrioC). For Gαq activation assays, Gαq was added 

at 200nM, and the assay was run with and without the addition of 30 μM AlCl3 and 10 

mM NaF in the reaction buffer to generate AlF4
− in solution. 

3.2.5 Kinase Assays 

Radiometric 32P assays were run in 96-well PCR plates (Fisherbrand 14230237) at 10 µL 

reaction volumes. Reaction mixtures were set up with 50 nM kinase enzyme, 500 nM 

substrate, and 100 µM ATP (2-5% g-32P ATP- PerkinElmer NEG502H250UC) in a reaction 

buffer containing 20 mM HEPES, pH 8.0, 2 mM DTT, and 10 mM MgCl2. To test activation 

of Trio kinase constructs by Ca2+∙CaM, 1 µM of CaM and/or 1 mM Ca2+ were used.  

Control kinases used were GRK5 and TBK1 and were purified as described.143,144 

Substrates used were bovine brain Tubulin (Cytoskeleton, Inc. HTS02), bovine Myelin 
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Basic Protein (Sigma-Aldrich M1891) and recombinant human Myosin light chain 2 

(Novus Biologicals NBC1-18536). The ADP-Glo assay was also used (Promega V6930) 

in a 384-well white polystyrene assay plate (Corning 3572) to a final volume of 20 µL 

using the same reaction conditions as above. An ADP dilution curve was used to show 

that the kit reagents were functioning properly and could achieve a S/B value of ~6 with 

an ADP concentration of 100 nM. At the end of the kinase reaction, 10 µL of the ADP-

Glo reagent was added to the reaction mixture and incubated for 40 minutes at room 

temperature. 20 µL of kinase detection reagent was then added and luminescence was 

measured on the Spectramax M5 plate reader after a 30-minute incubation at room 

temperature. 

3.2.6 SEC-MALS 

Proteins were run on a SEC-MALS system configured with an AKTAmicro system (GE) 

with a UV detector, a Protein-KW804 Silica column (Shodex), a Dawn Heleos II Multi-

Angle Laser Light Scattering (Wyatt), and an Optilab T-rEX differential refractometer 

(Wyatt). Superose 6 (GE) and WTC-050S5 (Wyatt) columns were also tried in Trio-G⍺q 

complexing experiments. The system was equilibrated in a base buffer of 20 mM HEPES 

pH 8.0, 200 mM NaCl, and 2 mM DTT with the addition of MgCl2, AlF4, and guanosine 

nucleotides as needed. The system was first standardized using a control injection of 

100 µg bovine serum albumin (BSA) (Sigma) dissolved in water. Following the correct 

determination of both the BSA monomer and dimer molecular masses, 50-100 µg of 

proteins were injected, and their scattering and absorbance profiles were analyzed to 

determine their molecular weight in solution. The output signals were imported into Astra 

6 software (Wyatt Technology Corporation). 
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3.2.7 Isothermal Titration Calorimetry 

ITC experiments were performed by Krishnapriya Chinnaswamy in the University of 

Michigan Center for Structural Biology. Ig domain and RhoA were dialyzed against the 

same buffer containing 20 mM HEPES pH 8.0, 200 mM NaCl, and 1 mM MgCl2. ITC 

experiments were performed in the Nano-ITC Low volume (TA Instruments). 400 µL of 

RhoA in the above buffer was added to the cell and 50 µL of Ig domain in above buffer 

was drawn into the syringe. The experiments were performed at 25 C with 33 x 1.5 µL of 

binding partner injected into RhoA every 250 seconds with stirring speed of 250 rpm. 

Buffer alone was used as a blank. The Ka and ∆H of the reactions were calculated using 

the Launch NanoAnalyze software (TA Instruments).  

3.2.8 Differential Scanning Fluorimetry 

Data were collected on a QuantStudio 6 Real-Time PCR system (Applied BioSystems) 

using Sypro Orange (SO) dye (ThermoFisher). Purified Trio constructs were incubated at 

1-5 µM in a buffer containing 20 mM HEPES pH 8.0, 200 mM NaCl, and 2 mM DTT with 

1x dye. White 384 well PCR plates (Applied Biosystems) were used and covered with 

sealing tape. These plates were exposed to a temperature gradient of 20–60 °C. 

Fluorescence was monitored as a function of temperature, and the Tm was determined 

by fitting the fluorescence data to a sigmoidal curve and calculating the inflection point 

in GraphPad Prism. 

3.2.9 Negative Stain Electron Microscopy 

 Negative staining of Trio samples was done as previously described.145 Purified protein 

samples were applied to a glow discharged formvar coated copper grid (Electron 

Microscopy Sciences FCF400-Cu-50) for 1 minute. Grids were blotted against filter 
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paper and dipped in ddH2O quickly and again blotted. Grids were again dipped in ddH2O 

and again blotted. Grids were then quickly dipped into a 0.75 % Uranyl Formate (UF) 

solution made in ddH2O and then blotted. Finally, grids were dipped into another drop 

of UF solution and soaked for 1 minute. Afterwards, grids were blotted dry and then 

dried using a vacuum line. Stained grids were evaluated for stain quality, contrast, 

particle quality, and particle spread using the Morgagni 100 kV transmission electron 

microscope (TEM) (FEI). Grids which displayed high stain quality, high contrast, well 

spread and well defined particles were taken for further imaging on the Tecnai T12 120 

kV transmission electron microscope (FEI) operated using the Leginon automated data 

collection system.146 Particles were picked and 2-dimensional class averaging was done 

using the cisTEM software suite 147. 

3.2.10 Cryogenic Electron Microscopy 

The following was done with extensive help from Jennifer Cash, Ph.D. Protein samples 

were frozen using the Vitrobot automated grid freezing system (FEI) on Quantifoil 300 

mesh Copper grids (Electron Microscopy Sciences Q3100-CR1.3). Liquid ethane was 

prepared, 4 µL of protein sample was added onto the grid, the sample was blotted using 

filter paper to remove excess liquid, and the grid was flash plunged into liquid ethane. 

Grids were clipped using C-clips (Electron Microscopy Sciences) and samples were 

loaded into the 200 kV Talos Artcica TEM for sample screening using Leginon. Segments 

of the grid containing thin ice with good particle contrast and spread were collected and 

motion corrected using the MotionCor2 software package within Leginon. 148 Motion-

corrected micrographs were used to generate preliminary 2D class averages using 

cisTEM. 
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3.2.11 Eukaryotic Cell Culture and Transfection Procedure 

HEK293F Freestyle (ThermoFisher R79007) cells were maintained in suspension culture 

at a 25 mL volume in Freestyle expression media (ThermoFisher 12338-026) at 110 rpm 

shaking in 5 % CO2 at 37 ˚C in a Multitron incubator (INFORS HT). Cells were cultured 

between 0.3x106 and 5x106 cells/mL as determined by trypan blue (Sigma) counting with 

a hemocytometer. DNA for transfection was transformed into E. coli DH5⍺ and prepared 

using a Midiprep kit (Qiagen). Prior to transfection, cells were expanded to 50 mL or 

larger as needed. At ~1x106 cells/mL, cells were transfected with a 1:3 w/w mixture of 

prepared DNA:PEI using the Opti-MEM transfection reagent, warmed to 37 ºC 

(Thermofisher 31985062). Transfection cultures were returned to the shaking incubator 

for ~48 hours before cells were harvested and frozen or freshly prepared.  

3.3 Results 

3.3.1 Cral_Trio (CT) Domain 

Constructs encoding the Trio CT domain with different domain boundaries were 

designed using a combination of manual comparison to homolog structures and the 

XtalPred prediction server.149 These inserts were cloned into pMCSG9 using the LIC 

protocol and transformed into Rosetta E. coli cells. Constructs were expressed as MBP 

fusions at 20 ºC using 0.5 mM IPTG and purified using Ni-NTA resin, processed with TEV 

protease, and run on Ni-NTA resin once more to remove MBP. Proteins purified this way 

were pure by SDS-PAGE with the exception of a minor contaminant at ~70 kD. CT 

constructs displayed abnormal behavior on SEC, running as an extremely broad peak. 

(Figure 3.1) Samples from this preparation were subjected to the lab suite of four crystal 

screens at 10 mg/mL, but no hits were obtained. Because the CT domains bind to lipid 
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molecules, detergent extraction of potential bound lipids was attempted using Triton X-

100 as described for a homolog.99 CT samples were washed with 0.01 % Triton X-100 

(critical micellar concentration ~0.02 %) while immobilized to the nickel column, and then 

eluted in buffer with no Triton. This seemed to slightly reduce the presence of larger 

species, but the protein still eluted over a broad curve. (Figure 3.2 top vs. bottom) Next, 

in addition to the steps described above, 0.01 % Triton was included in the SEC buffer 

to try to eliminate protein aggregation. This SEC run produced a much narrower peak, 

however the interpretation of this result is not simple as Triton has significant A280. This 

Figure 3.1 Purification of the Trio CT domain shows aberrant SEC behavior. Top left, Coomassie stained 12 % 
polyacrylamide gel showing Ni-NTA purification of CT domain before and after TEV cleavage. Top right, Coomassie 
stained 12 % polyacrylamide gel of fractions from below SEC trace. Black lines indicate fractions taken to the next 
step or fractions concentrated and used for crystallography. Bottom, A280 trace (blue line) from single analytical 24 mL 
Superdex 200 run of CT domain. 
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narrow peak had a significantly higher absorbance at peak height ~0.5 AU compared to 

that seen with broader peaks ~0.06 AU even though similar protein amounts were loaded 

(by A280). This was far more absorbance than could be accounted for by the peak 

narrowing. Thus, we hypothesized this new narrower peak was not actually a protein 

peak, but rather a micelle of concentrated Triton. This is supported by a Coomassie 

stained gel showing extremely small amounts of protein present. (Figure 3.3) The small 

amount of protein remaining did elute at the right elution volume for a 22 kD monomer. 

Control

0.01% w/v TX-100 wash

22kD should run ~15/16mL

Figure 3.2 A280 traces (blue line) from single analytical 24 mL Superdex 200 run of CT domains show that CT domain 
behavior is not improved by TX-100 washing. Control conditions (top), or a 0.01 % (w/v) Triton X-100 wash while CT 
domain is immobilized to the Ni-NTA column. A protein monomer of 22 kD is expected to elute at 15 mL based on 
protein standards run in the same buffer. 
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Remaining protein may have been denatured by the Triton and removed during one of 

several purification steps. The incubation of protein samples with bio-beads (Bio-Rad) 

to remove Triton before SEC was also attempted. Samples purified this way also ran as 

an extremely broad peak on SEC. CT domain samples co-expressed with GroEL/ES or 

DNAJ/K did not fare any better.  

3.3.2 SH3_N Domain 

A construct encoding Trio’s SH3_N domain was designed based on the rat Kalirin SH3_N 

NMR structure (PDB: 1U3O)109, which has 68% sequence identity to the human Trio 

sequence. The XtalPred server was also used to slightly change domain boundaries 

without extending into regions of predicted disorder. This construct was expressed as 
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Figure 3.3 Single Superdex 200 SEC run using 0.01 % Triton X-100 in all purification steps and the SEC buffer likely 
leads to formation of triton micelles which complicates interpretation of purification results. Top, A280 trace of SEC 
run (blue line). Bottom, Coomassie stained 12 % gel of fractions from SEC trace. Extremely faint bands are visible in 
fractions 4-6B. 
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an MBP fusion in Rosetta E. coli cells and purified using Ni-NTA resin, TEV cleavage, 

reverse IMAC, and a final preparative grade S200 SEC run. (Figures 3.4 and 3.5) 

Screening trays were set with SH3_N at 9.2 mg/mL, yet they yielded no hits and the 

drops in the tray remained largely clear. Further studies  

of this domain are hindered due to the lack of information about what ligands it interacts 

with. 
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Figure 3.5 SEC purification of SH3_N shows homogenous monomeric protein. A280 trace (blue line) from preparative 
120 mL Superdex 200 run of SH3_N and Coomassie stained 4-15 % gradient gel of fractions from SEC showing pure 
SH3_N.  

Figure 3.4 Ni-NTA purification of SH3_N and SH3_C as MBP fusions show that both SH3 domains express and purify 
well. Left, Coomassie stained 12 % gel showing Ni-NTA purification of SH3_N as an MBP fusion. Middle, Coomassie 
stained 12 % gel showing Ni-NTA purification of SH3_C as an MBP fusion. Following TEV cleavage, both constructs 
were subjected to reverse IMAC (Right) and resultant fractions are shown on a Coomassie stained 12 % gel. Horizontal 
black lines indicate fractions that were taken on to the next steps. 
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3.3.3 SH3_C Domain 

A construct encoding Trio’s SH3_C domain was designed based on the mouse Kalirin 

SH3_C NMR structure (PDB: 1WFW), which has 61% identity. The XtalPred server was 

also used to slightly change domain boundaries without extending into regions of 

predicted disorder. This construct was expressed as an MBP fusion in Rosetta E. coli 

cells and purified using Ni-NTA resin, TEV cleavage, reverse IMAC, and a final 

preparative grade S200 SEC run. (Figures 3.4, 3.6) Crystal screens were set with SH3_C 

at 10 mg/mL: JCSG+, Classics Lite, Index HT, and ProComplex. A preliminary crystal 

form was obtained and manifested as sprays of fine needles around a central nucleation 

point. This crystal form, grown against a grid centered around 3 M NaCl including either 

0.1 M HEPES pH 7.5 or 0.1 M Tris pH 8.5, reproduced in a 24-well hanging drop tray. 

Similar crystals were observed in a condition with 0.2 M ammonium acetate, 0.1 M Bis-

Tris pH 5.5, and 45 % methylpentanediol. Some wells contained fewer nucleation points, 

however the crystals had similar morphology. (Figure 3.6) Further optimization in hanging 

Figure 3.6 SEC purification of SH3_C shows homogenous monomeric protein and a preliminary crystal form is shown. 
A280 trace from preparative 120 mL Superdex 200 run of SH3_C and Coomassie stained 4-15 % gradient gel of 
fractions from SEC showing pure SH3_C. Left, crystal form obtained for SH3_C in the following conditions: 0.1 M 
HEPES pH 7.5, 3.0 M Sodium chloride or 0.1 M Tris pH 8.5, 3.0 M Sodium chloride and 0.2 M Ammonium acetate, 
0.1 M bis-Tris pH 5.5, 45 % MPD . 
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drop trays, screening protein, precipitant, and additives, will be required to improve this 

form into a single crystal, or a new crystal form will need to be found. Seeding could also 

be employed. Similar to the SH3_N domain, studies of this domain in isolation will be 

enhanced by definition of its ligand or ligands, if any, which remain unknown.  

3.3.4 Ig Domain 

A construct encoding Trio’s Ig domain was designed using a combination of manual 

comparison to homolog structures and the XtalPred prediction server. This construct 

was expressed as an MBP fusion in Rosetta E. coli cells and purified using Ni-NTA resin, 

TEV cleavage, reverse IMAC, and a final preparative grade S200 SEC run. (Figure 3.7) 

This construct was set in screening trays using JCSG+, Classics Lite, Index HT, and 

ProComplex @ 9.75 mg/mL, no crystalline hits were obtained. This protein was also used 

to evaluate the hypothesized interaction between the Ig domain and the GTP-bound 

conformation of RhoA. 

Figure 3.7 Ig domain purification using Ni-NTA and SEC yields homogenous monomeric protein. Left, Coomassie 
stained 4-15 % gradient gel showing Ni-NTA purification of Ig domain as MBP fusion. Middle, Coomassie stained 4-
15 % gradient gel showing reverse IMAC purification and fractions from 120 mL preparative grade Superdex 200 
column. Back, A280 trace (blue) from SEC. 
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A prior report suggested that the Ig domain interacts with the GTP-bound conformation 

of RhoA. 67 GTP-bound RhoA was prepared by incubating 90 µM RhoA with 10 mM EDTA 

and 5 mM GMP-PNP in the following buffer: 20 mM HEPES pH 8.0, 200 mM NaCl, 2 mM 

DTT, 3 mM MgCl2, and 10 µM GMP-PNP. This exchange reaction was left overnight at 

4 ºC similar to that previously described.73 The next morning, Ig domain was added to 

the exchange reaction to a final concentration of 180 µM, excess EDTA was removed 

using a desalting column and the complex was loaded onto SEC-MALS. This complex 

was then subjected to SEC-MALS analysis in comparison to either protein alone run in 

the same buffer using GMP-PNP. The two proteins run separately on SEC-MALS and do 

not appear to form a complex (Figure 3.8). These two proteins were then subjected to 

ITC in order to determine whether there was potential for weak affinity interactions. No 

interaction was seen using either the GDP or GMP-PNP bound states of RhoA, where 

Figure 3.8 SEC-MALS data for the Ig∙RhoA complex indicates lack of complex formation under tested conditions. 
Annotated UV traces show A280 on the bottom portion of the Y axis and calculated molecular weight on the top part 
of the Y-axis. Dotted lines indicate where molecular weight lines for 20 kD and 10 kD would run. Complex formation 
attempted in the presence of GMP-PNP and control samples of Ig and RhoA∙GMP-PNP run alone on the same curve. 
The green molecular weight trace decays along the peak from 22 to 11 kD indicating that RhoA and Ig co-elute rather 
than forming a complex. 
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RhoA was added to the cell and excess Ig domain was injected using the syringe. (Figure 

3.9)  

3.3.5 Kinase Domain 

Trio’s kinase domain contains a putative C-terminal autoregulatory sequence, and as 

such constructs were designed containing different truncations at the C-terminal end. 

This construct was expressed as an MBP fusion in Rosetta E. coli cells and purified using 

Ni-NTA resin and subjected to TEV cleavage. Further attempts at removing excess MBP 

via reverse IMAC, ion exchange, or SEC were unsuccessful. In each case, the small 

amount of kinase domain present co-migrated with MBP on these resins. These 

constructs were abandoned.  

Figure 3.9 ITC analysis of the RhoA-Ig domain interaction shows no interaction between the two proteins in either 
nucleotide state of RhoA. Graphs of ΔH over time are shown on the top panel and fits of the heat per molar ratio are 
shown on the bottom panel. Left, ITC data using GDP loaded RhoA. Right, ITC data using GMP-PNP loaded RhoA. 
Experiments performed by Krishnapriya Chinnaswamy . 

RhoA∙GDP + Ig RhoA∙GMP-PNP + Ig
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3.3.6 hTrioFL 293F Expression and Purification 

hTrioFL (hTrio residues 61-3097) were mutagenized via inverse PCR to include an N-

terminal 10x Histidine tag followed by a TEV protease cleavage site. This construct was 

prepared via a midiprep kit and transfected into HEK 293F cells grown in suspension at 

a 1:3 ratio of DNA:PEI (w/w). 50 ug of DNA was transfected for a 50 mL 293F culture. 

After a transfection time of 48 hours, cells were spun down and lysed using detergent, 

resuspended in lysis buffer containing 10 mM EDTA, and purified using Roche cOmplete 

His-tag resin. A panel of detergents and buffer systems were screened below their 

critical micellar concentrations (CMC) to see if they would help solubilize hTrioFL. 

However, none of the detergents tested produced a better result than using no detergent 

and a HEPES pH 8.0 based buffer system. The cOmplete resin’s nickel coupling 

chemistry gives it the unique ability to stand high EDTA concentration. Sans EDTA, 

protein isolated in this manner ran as a smear on a gel of degradation products from a 

top band of estimated size 370 kD. After initial nickel purification in the presence of 

EDTA, samples did not seem to degrade further at 4 ºC. Presence of eGFP-tagged Trio 

was determined by running a fluorescence scan on SDS-PAGE gels with an excitation 
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of 488 nm and emission of 532 nm (Figure 3.10). Figure Samples from nickel affinity 

purification were not very pure, and ion exchange, size exclusion, and a Rac1 affinity 

column were generated to try to purify hTrioFL further. Both anion exchange and size 

exclusion, attempted via FPLC, resulted in miniscule amounts of hTrioFL seen on 

resulting SDS-PAGE gels. Trio products are seen in the gel accompanying analytical 
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Figure 3.10 Ni purification of hTrioFL from 293F cells using Roche cOmplete resin shows that protein expresses 
and partially purifies on nickel resin. Left, 4-15 % Coomassie stained gradient gel showing his-tag purification and 
concentration using a 100 kD centrifugal concentrator. Right, Fluorescence scan of the same gel showing eGFP 
specific bands. hTrioFL at 380kD was difficult to visualize via Coomassie but could easily be seen by fluorescence 
scanning. 

Figure 11: eGFP-hTrioFL SEC
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25mL Superose 6S columnHave since repeated, running more fractions, still can not visualize sample

Extremely faint 
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Figure 3.11 SEC purification of hTrioFL from 293F cells reveals little protein remaining after the run. The A280 trace 
(blue line) of protein loaded onto a single 24 mL analytical Superose 6 column and fluorescence scan of 4-15 % 
gradient gel of fractions from SEC run. Extremely faint bands ~250 kD and ~175 kD are visible in fractions 4B-9B and 
likely represent Trio degradation products. Coomassie stained gel not shown as it is blank, no bands. 
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SEC, however they are extremely faint and run over about 4-5 mL on the sizing column, 

not indicative of a well-behaved protein (Figure 3.11). This behavior is similar to that seen 

for another full-length RhoGEF in our laboratory, P-Rex1.150 It may be that the protein 

aggregated on one of the FPLC’s inline filters or the column’s pre-filter itself. Another 

possibility is that the protein interacts with the resin such that it does not run as a discrete 

peak. A Rac1 affinity column was generated similar to that previously described150, 

however Rac1 did not couple to the column in my attempts. 
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3.3.7 Larger Trio Construct Screening  

Initial constructs encoding hTrioFL, hTrioΔ2290, and dTrioFL were cloned into E. coli 

expression vectors for expression as MBP fusions in Rosetta cells, and GST fusion 

vectors for trial expression in insect and 293F cell lines. Baculovirus generation failed 

Figure 3.12 Purification and Characterization of hTrio Δ1594 shows folded, active protein which was characterized 
using negative stain EM. Top left, his-tag purification of Δ1594 with corresponding fractions run on Coomassie stained 
4-15 % gradient gel. Top, A280 trace (blue line) from analytical 24 mL Superose 6 run of Δ1594. Right, corresponding 
fractions from SEC are run on a Coomassie stained 4-15 % gradient gel. Middle left, control nucleotide exchange 
experiment showing that Δ1594 is capable of catalyzing Rac1exchange. Error shown is the standard deviation 
between three experimental replicates. Red shows condition including enzyme and blue shows Rac1 exchange rate 
alone. Middle right, negative stain TEM micrograph showing single particles of Δ1594 with a single particle highlighted 
in a box and outlined in red to show particle structure. Bottom, Trio domain architecture with black bar showing 
domain boundaries. 
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and was abandoned due to the long time required for virus generation. 293F expression 

of hTrioFL and hTrioΔ2290 were tested as 6xHis-GST fusions at a 48 hour time point in 

a 50 mL 293F culture using 50 µg:150 µg DNA/PEI mixture, but no protein was seen 

using a nickel pulldown. hTrioFL, hTrioΔ2290, and dTrioFL were also tried as MBP fusion 

constructs in Rosetta E. coli cells. These constructs yielded smears upon nickel 

purification using the Roche resin and EDTA, but the smears contained a sharp band at 

~220 kD. The buildup of this 220 kD product may be due to degradation or early 

termination of translation. Based on approximate annotated Trio domain boundaries two 

further constructs were designed to mimic this 220 kD product, hTrioΔ1718 and 

hTrioΔ1594, both ending at the residue indicated. hTrioFL was also tried using 

coexpression of GroEL/ES and DNAJ/K but with no reduction in truncation products. 

3.3.8 Characterization of hTrioΔ1594 

hTrioΔ1718 and hTrioΔ1594 both expressed in Rosetta E. coli cells and were purified 

using Roche nickel resin and size exclusion chromatography. TEV cleavage was 

attempted but samples aggregated after TEV cleavage. Δ1594 was used for following 

experiments as it displayed a lesser degree of degradation than the longer construct. 

Δ1594 was assayed using the GEF assay and found to have nucleotide exchange activity 

on Rac1, indicating the construct was likely folded properly. This construct was then 

subjected to negative stain electron microscopy screening. Micrographs taken using 1 

% uranyl formate stain using the Morgagni 100 kV TEM revealed an extended particle 

~50 nm in length at maximum (Figure 3.12). The Δ1594 particle (Inset, Middle right of 

Figure 3.12) has a globular head, likely representing the MBP fusion partner and perhaps 

the CT domain which is also predicted to be globular. The globular head is linked to an 
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extended tail region which is thin and somewhat linear. This tail region is likely the 

spectrin repeat domains of Trio, linear 3-helical bundles arranged in tandem, with the 

overall region similar in length (50 nm) with an estimate based on the solution structure 

of the spectrin repeat (PDB 1AJ3) with a length of ~60 Å (0.6 nm x 9 repeats = 54 nm). 

151 These particles were not all found in an extended conformation, with the tail in various 

states from those shaped like an “S” to those more like a “C” where the tail curves back 

towards the head of the particle. This prevents further data processing as particles need 

to be in a highly similar conformation for averaging to work. In addition, linear particles 

are challenging to tackle using particle picking software as most are trained to search 

for globular particles. As such, the size of the picking radius would have to be inflated to 

take this into account. Because no binding partners of the CT/spectrin repeat region of 

Trio are known, and there was no obvious path forward to improving this sample for 

structural analysis, the sample was de-prioritized. 
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3.3.9 Characterization of hTrio 1284-2638 

Since the N-terminus of Trio was extended and not globular on negative stain EM, we 

hypothesized that the remainder of the protein might prove easier to work with. A series 

of constructs starting with the TrioN GEF module (residue 1284) and ending at different 

portions of the kinase domain C-terminal extension (3053, 3063, 3072, 3097) were 

inserted into pMCSG9 and purification experiments were performed using Roche Ni 

resin. The “1284-3072” construct expressed well and was further pursued as it included 

all three of Trio’s enzymatic domains (TrioN/TrioC/Kinase) as well as the three protein-

protein interaction domains (SH3_N/SH3_C/Ig). This construct was purified initially using 

IMAC, TEV cleavage, and SEC. “1284-3072” was active in the GEF experiment on both 

Rac1 and RhoA, indicating it was likely folded. Initial negative stain experiments showed 

globular particles (Figure 3.13). Finally, this construct showed complex formation with 

Figure 3.13 Characterization of hTrio1284-2638 shows folded, active protein and was characterized using negative 
stain EM. Left, Coomassie stained 4-15 % gradient gel showing pure protein. Middle, control Rac1 and RhoA 
nucleotide exchange experiments showing that the construct is active on both GTPases. Red, plus GEF. Blue, GTPase 
alone. Right, negative stain TEM micrograph showing single particles with a single particle highlighted in a box and 
outlined in red to show particle structure. Bottom, Trio domain architecture with black bar showing domain 
boundaries. 
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Gαq, further indication it was likely folded properly. Following control experiments, the 

purification protocol was modified to include IMAC, TEV cleavage, anion exchange, and 

a final SEC step. Curiously, although this Trio sample was estimated to be 197 kD, a 

large amount flowed through a 100 kD cutoff spin concentrator, and a 50 kD 

concentrator had to be used to capture all protein. I faced this same problem with all 

Trio constructs with similar or smaller domain boundaries. Radiometric kinase assays 

were attempted with this construct on three model substrates, tubulin, myelin basic 

protein, and myosin light chain, with no detectable kinase activity. Mass spec coverage 

data from our collaborator (Sheng Li, UCSD) combined with DNA sequencing confirmed 

that this construct actually ended at residue 2638 (1284-2638), shortly after the C-

terminus of SH3_C, due to an unintended nonsense mutation present in the construct. 

Therefore, the kinase reactions were run without the kinase domain present. SEC-MALS 

was attempted with this construct with the intent of determining whether the binding of 

Gαq results in a global conformational change in Trio. The 1284-2638 construct did not 

yield a usable scattering profile on SEC-MALS. The UV absorbance peak did not match 

with the elution volume of the peaks from the light scattering and refractive index 
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detectors. Several columns were tried to see if this was a unique effect of the sample 

with the KW-804 column. Neither the Wyatt WTC-0305S or the Superose 6 columns 

yielded usable scattering profiles from this Trio construct. It is unclear what the problem 

with SEC-MALS is because all similar Trio constructs (starting with 1284) purified run as 

sharp peaks of expected elution volume on analytical 24 mL Superose 6 or Superdex 

200 columns. Finally, the relative GEF activity of the 1284-2638 construct was tested 

Figure 15: control GEF 
experiments

Error shown as SD 
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 Adapted from Gene. 2005 Feb 28;347(1):125-35.

Figure 3.14 Control experiments showing that each Trio GEF module is selective for its given GTPase. Box and whisker 
plots of GEF assays normalized to rate of GTPase alone, N=3 experiments in at least duplicate. Fold activation is 
shown on the Y axis and conditions on the X axis. Error is represented as standard deviation. 
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Figure 3.15 Basal nucleotide exchange activities of hTrio 1284-2638 reveals enhanced Rac1 exchanged rate. Left, 
RhoA nucleotide exchange assay. Right, Rac1 nucleotide exchange assay. Box and whisker plots of GEF assays 
normalized to rate of GTPase alone, N=3 experiments in at least duplicate. Fold activation is shown on the Y axis 
and conditions on the X axis. Error is represented as standard deviation 
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relative to each of TrioN and TrioC constructs alone. First controls were run to show 

TrioN and TrioC had activity on only their cognate substrates of about 3-4 fold rate 

enhancement at concentrations tested (Figure 3.14). 1284-2638 had similar GEF activity 

on RhoA as TrioC did, yet basal activity of Rac1 exchange by the larger construct was 

3-fold higher than TrioN alone (3.15). RhoA exchange by 1284-2638 was activated by 

Gαq∙AlF4
- to the same extent as TrioC, ~2.5-fold. Rac1 GEF activity of 1284-2638 was 

not affected by Gαq∙AlF4
- addition (Figure 3.16).  

Figure 3.16 Gαq activation assays on hTrio 1284-2638 in comparison to each isolated GEF module shows that Gαq 
activates RhoA exchange but not Rac1 exchange. Left two plots depict Rac1 exchange experiments and right two 
plots depict RhoA exchange experiments. Box and whisker plots of GEF assays normalized to rate of GTPase + 
GEF + Gαq, No AlF4

- , N=3 experiments in at least duplicate. Fold activation is shown on the Y axis and conditions 
on the X axis. Error is represented as standard deviation. 
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3.3.10 Production of Truncation Constructs and GEF Activity Assays 

In order to determine the source of the observed extra Rac1 activation, a series of 

truncation constructs were designed in order to determine the domain or region 

responsible for this activation. Each construct started with 1284 at the N-terminus of the 

TrioN GEF module and ended at 1718 (including through SH3_N), 1959 (through 200 

residue conserved linker region), 2290 (through the TrioC GEF module), 2616 (through 

SH3_C), and 2780 (through Ig domain). All of these constructs expressed in Rosetta E. 

coli, although shorter constructs expressed to a much higher extent and did not include 

Figure 17: Purification of 
truncation constructs
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Figure 3.17 Purification of Trio Truncation constructs yields homogenous protein outside of a minor 50 kD 
contaminant. Purification of Trio 1284-1959 depicted above. Top left, his-tag purification with corresponding fractions 
run on Coomassie stained 4-15 % gradient gel. Top, A280 trace (blue line) from HiTrap Q anion exchange column with 
corresponding fractions run on a Coomassie stained 4-15 % gradient gel. Bottom, analytical 24 mL Superdex 200 
run. Bottom right, corresponding fractions from SEC are run on a Coomassie stained 4-15 % gradient gel. In each 
case, fractions taken to the next step or pooled to aliquot protein are indicated by horizontal black bars. 
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as many truncation products. All were purified using IMAC followed by TEV cleavage, 

anion exchange, and a final SEC step (Figure 3.17). 

Each construct was tested for activity vs. both TrioN and TrioC in paired experiments. 

All of the constructs including the TrioC GEF domain had similar activity on RhoA to 

TrioC. These included all listed above except for 1718 and 1959, which did not include 

the TrioC GEF module and had no RhoA GEF activity. Constructs including 1959 and 

larger displayed an extra 3-6 fold exchange activity on Rac1 over TrioN, similar to the 

higher rate observed previously (Figure 3.18). We hypothesize that the 200-residue 

region between SH3_N and TrioC (1718-1959), which has >90% sequence identity 

conserved across representative species from the animal kingdom, likely contributes this 

extra activation, or perhaps stabilizes SH3_N so that the SH3 domain can enhance 

Figure 3.18 Summarized GEF activity assay data for Trio truncation constructs shows no effect of additional domains 
on RhoA activity, and enhancement of Rac1 activity by additional domains. Left plot depicts Rac1 exchange 
experiments and right plot depicts RhoA exchange experiments. Box and whisker plots of GEF assays normalized to 
rate of GTPase alone, N=3 experiments in at least duplicate. Fold activation is shown on the Y axis and conditions on 
the X axis. Error is represented as standard deviation. Below, Domain layout of hTrio showing approximate domain 
boundaries corresponding to each truncation construct. 
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activity on Rac1. I isolated the 1284-1959 construct in complex with Rac1 in order to 

determine the molecular basis of this activation (Figure 3.19). 

3.3.11 Negative Stain Electron Microscopy of Trio Truncation Constructs 

Negative stain EM was used to visualize the truncation constructs described in the 

previous section. All constructs were poorly behaved on micrographs and it was difficult 

to obtain micrographs with well spread particles with high contrast. All of the samples 

tested had low contrast relative to literature samples. Only the preliminary construct 

described, 1284-2638 in its less pure form was observed well-spread and discrete on 

micrographs. Averaging of this particle produced a globular image of about the right 

assumed size but yielded no discernible features (Figure 3.20). The 1284-1959∙Rac1 

complex, separated from excess Rac1 using SEC, yielded well dispersed, higher 

contrast, and better ordered particles than seen before (Figure 3.21). Averaging of 

~15000 particles yielded globular averages of about the correct size, yet features were 

still not yet discernable. Improvements suggested by EM site staff included using darker, 

thicker stain, and using more careful focusing technique. The current negative stain data 

Figure 3.19 Isolation of the Trio 1284-1959∙Rac1 complex via SEC yields homogenous complex with a minor 
contaminant at 50 kD. Analytical 24 mL Superdex 200 Increase run. Right, corresponding fractions from SEC are 
run on a Coomassie stained 4-15 % gradient gel. Fractions pooled to aliquot complex are indicated by horizontal 
black bars. A minor contaminant is present at ~50 kD. 
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collection procedure collects one image for focus, and then collects a series of desired 

exposures (5-10 in this case), which may have slightly different focus points. Therefore, 

the data could be improved by collecting frames one at a time, with one focus point 

Figure 20: Negative Stain EM 
Averages of 1284-2638 alone

Figure 3.20 Negative stain EM averaging on hTrio 1284-2638 using cisTEM shows a globular particle with no 
discernible features. Top left, raw micrograph of particles with one particle highlighted in the insert. Top right, 
the result of 2D classification with classification parameters listed on the bottom portion of figure. 

Figure 21: 1284-1959 Rac1 
Complex 2D averages

Figure 3.21 Negative stain EM averaging on Trio 1284-1959∙Rac1 complex using cisTEM shows an ordered particle. 
Top left, raw micrograph of particles with one particle highlighted in the insert. Top right, the result of 2D 
classification with classification parameters listed on the bottom portion of figure. 
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taken near the desired one exposure frame, although this method is more time-

consuming. The 1284-1959∙Rac1 complex sample itself may not stain well or respond 

poorly to the stain environment and is also at the lower end of molecular weight range 

for samples imaged by negative stain at 97 kD.  

3.3.12 Cryogenic Electron Microscopy on Trio Truncation Constructs 

First, Trio 1284-2638 was subjected to cryoEM trials. Using concentrations of 3-4 µM 

protein with 0.08 mM dodecylmaltoside (DDM) produced visible particles in both carbon  

Figure 3.22 CryoEM screening of larger Trio constructs with raw micrographs shown reveals that the Rac1 complex 
is more suited to averaging and data processing. Left, raw micrograph of Trio 1284-2638 shows dark particles, but 
they do not have a discrete shape. Right, raw micrograph of the 1284-1959∙Rac1 complex shows discrete particles 
that can be used for averaging. Data collected with Jennifer Cash, Ph.D. 

and gold grids. However, it remained very difficult to see what a discrete particle looked 

like even when good ice was found, and thus this sample was abandoned. Perhaps the 

protein samples a lot of conformations in solution and is thus low contrast on an EM 

grid, similar to that seen in negative stain (Figure 3.22). A complex of 1284-1959 with 

Rac1 was subjected to cryoEM trials in carbon grids using 2-4 µM protein with 0.08 mM 

DDM. Particles were well-resolved in this instance indicating that complex formation 

leads to the formation of a more discrete Trio particle. Preliminary 2D averages 

Figure 22: CryoEM 
Micrographs

3uM hTrio1284-2638, gold grids 3uM hTrio1284-1959 Rac1 complex, 
 Carbon grids
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generated using cisTEM are presented in Figure 3.23. The averages represented in 

classes 13 and 17 (highlighted in orange, Figure 3.23) show 4 discrete domains 

(accounting for DH, PH, SH3_N in Trio, and Rac1) and this sample thus is promising to 

pursue to high resolution. Averages in classes 6, 9, and 11 may represent different 

orientations of the particle. Due to limited microscope time, I was unable to collect a 

large dataset and these averages are the result of ~5000 particles. More data needs to 

be collected before this sample can yield higher resolution structural information.  

3.3.13 Kinase Assays using hTrio 1284-3053 

I also was able to produce a construct encoding residues 1284-3053, confirmed both by 

sequencing and via Coomassie gel, where it runs larger than 1284-2780. This construct 

was used to perform the ADP-GLO assay on 3 different kinase substrates in an attempt 

Figure 3.23 Preliminary class averages of the 1284-1959∙Rac1 complex processed using cisTEM reveals an ordered 
particle with four observed domains. Bottom, 2D averaging parameters. Classes that show 4 discrete domains are 
highlighted using orange circles. Data collected and processed with Jennifer Cash, Ph.D. 
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to recover kinase activity. The ADP-GLO assay was checked using concentrations of 

ADP to show that it did have a measurable signal/background as low as 100 nM ADP, 

to show the reagents in the kit were working. Although TBK1 was able to phosphorylate 

all control substrates, Trio showed no activity against tubulin, myosin light chain, or 

myelin basic protein, even when the kinase reaction was allowed to proceed overnight. 

3.4 Discussion: 

A variety of structure/function studies on Trio were conducted in this section. Individual 

Trio domains were expressed as MBP fusions in E. coli to varying success. The CT 

domain displays a recurring aggregation problem that needs to be tackled before this 

domain can be crystallized or studied further. The addition of Triton X-100 throughout 

purification seemed to shift the protein towards monomeric state, yet the high A280 of 

Triton X-100 complicates interpretation of results as our FPLC systems only have the 

capability to read at 280 nm. This experiment should be retried using a detergent system 

that does not have A280. Both SH3 domains and the Ig domain were successfully 

expressed and purified. A potential interaction between the Ig domain and RhoA was 

explored, and the two proteins were not found to interact on SEC-MALS or ITC. The 

literature shows this interaction between RhoA and Ig domains requires prenylated 

RhoA, which was not used in my experiment. E. coli lacks the prenyltransferase required 

to lipidate small GTPases. It may be that the Ig domain interacts with some complicated 

epitope including this lipid modification including some protein contacts on RhoA. The 

kinase domain was expressed but did not behave well in solution and was thus 

deprioritized. Overall, the study of these domains is hindered by a lack of knowledge of 

binding partners or ligands that they bind to. Even if we were able to obtain diffracting 



 108 
 

crystals, these domains likely would look like any number of homologs available in the 

PDB. 

Larger constructs of Trio were explored. hTrioFL expressed well as an eGFP fusion in 

293F cells but could not be purified past the initial Ni-resin step. A C-terminal tag would 

make the biggest difference in this purification, and further downstream purification 

methods will need to be optimized in order to produce soluble, well behaved protein. A 

future protein production scheme could include his-tag purification, then a secondary 

purification via a C-terminal tag to ensure only the full-length protein was obtained, and 

one or two polishing steps done via affinity columns using Rac1 and RhoA.  

Constructs encoding the N-terminal half of hTrio were purified from E. coli and behaved 

reasonably well, although negative stain data show that this protein adopts many 

conformations. A binding partner or other method of conformational restriction will be 

needed in order to produce a protein that could yield a high-resolution structure of this 

region. Regardless, new information was obtained: the spectrin repeat region of Trio is 

extended in conformation. The extended structure of this region likely plays a role in its 

function, as this region is extremely conserved throughout evolution.  

Next, a series of constructs exploring Trio’s C-terminal region, with N-termini coinciding 

with the TrioN GEF module were produced and profiled using EM and GEF assays. 

Kinase activity was evaluated and not detected, although the number of substrates used 

was not exhaustive. The C-terminal region of Trio was found to be more globular in 

nature than the N-terminus, yet likely flexible in solution, as negative stain EM was not 

able to yield domain-level 2D information. Through GEF assays, several key pieces of 

information were obtained. Larger constructs of Trio (larger than 1284-1959) have up to 
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a 10-fold higher rate of Rac1 nucleotide exchange than that of TrioN alone. Thus, in the 

context of full-length Trio, additional domains may contact this GTPase or the DH/PH 

core to further assist nucleotide exchange. In addition, I showed that TrioC behaves and 

is regulated as if other domains are not present because basal and Gαq-enhanced RhoA 

nucleotide exchange in context of larger constructs is similar to that of TrioC. Finally, 

Gαq addition does not affect Rac1 nucleotide exchange, opposing the hypothesis that 

Gαq induces global conformational change to activate Trio. Efforts to study Gαq induced 

conformational change on Trio using SEC-MALS were hindered by technical difficulties.  

3.5 Conclusion and Future Directions 

Structure/function studies on the understudied parts of Trio were performed in order to 

determine the structure of these domains and how they may contribute to nucleotide 

exchange. I have developed several protein constructs for isolated Trio domains and 

larger constructs of Trio that in the future can be used to study this protein. I determined 

that the region immediately C-terminal to the TrioN GEF module enhances Rac1 

nucleotide exchange. The atomic details of this rate enhancement will be determined by 

the solution of the 1294-1959∙Rac1 complex via CryoEM, a structure for which I have 

laid the groundwork for by producing preliminary 2D averages. Perhaps the interface 

which assists in Rac1 rate enhancement can be targeted in the future by a small 

molecule in order to reduce Trio-dependent Rac1 GEF activity likely important for cell 

migration. Biochemical experiments hint that Gαq regulates TrioC independently of the 

rest of the protein. However, this is done in a soluble system and other factors could be 

in play when the membrane is included, along with GTPase lipid modifications. Whether 

Gαq induces conformational change in Trio will be explored in the future using CryoEM 
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and HDX-MS to study the Trio-Gαq complex which can be readily formed. Another loose 

end that will be followed in the future is the kinase domain. If characterized, Trio’s kinase 

domain represents the most canonically druggable portion of the molecule. However, its 

substrate scope and biological role remain unknown. Although I was unable to 

demonstrate kinase activity by Trio’s kinase domain, it seems unlikely that this domain 

is inactive. It contains almost all highly conserved serine/threonine kinase domain 

residues 58, and the presence of this domain is conserved throughout much of the animal 

kingdom. It may be that this domain requires eukaryotic folding or post-translational 

machinery in order to be produced properly. Future attempts should produce this protein 

in isolation and attempt to reconstitute activity. Alternatively, a cell-based chemical 

biology approach could be used to identify Trio KD substrates in cells. 152 This work has 

laid foundation for the study of uncharacterized portions of Trio and provides 

groundwork for CryoEM structures of larger constructs of Trio in complex with binding 

partners. 
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Chapter 4 Conclusions and Future Directions 
 

4.1 Conclusions 

This dissertation has primarily covered the structure and function of TrioC, with the 

primary result of defining the autoinhibitory mechanism of this GEF module. The TrioC 

DH/PH GEF module was expressed, purified, and crystallized and the structure 

compared to that of Gαq-bound p63RhoGEF, a close homolog. Upon comparison, the 

conformation of the α6-αN linker region was hypothesized to be the key determinant of 

the autoinhibited conformation. We attempted to break this autoinhibition by changing 

residues in the interface formed between DH and PH domains. Variation of residues in 

this region were initially difficult to interpret, as single point variation did not activate the 

protein over WT. However, the cancer-sourced TrioC variants in the α6-αN region, most 

notably R2150W, led to hyperactivation of TrioC. By inserting steric bulk into the 

autoinhibitory interface, we hypothesized that the contacts were not able to form 

efficiently, and the substrate binding face of the DH domain was free to interact with 

RhoA. Truncations of the PH domain were also able to accomplish this same task, 

perhaps by reducing order in α6-αN. This hypothesis was supported by HDX-MS data, 

which showed that the two helical regions contacting each other to form the 

autoinhibitory interface, α3 and α6-αN, were more solvent exposed in the active variant 

R2150W, whereas the rest of the protein surface remained relatively unchanged. The 

same was true for the truncation variant 2152∆. In addition, the R2150W variant was not 
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further activated by Gαq, suggesting we have generated a variant capable of fully 

escaping autoinhibition by the PH domain. We tested both our point variations and 

truncations in the context of full-length Trio an overexpression model and found that the 

model for PH domain mediated autoinhibition seems to hold. We have proposed a four-

phase conformational equilibrium model for how TrioC is regulated (Figure 4.1), wherein 

Figure 4.1 Model for TrioC activation. TrioC exists in a conformational equilibrium between inactive and active states 
that can be biased towards the active state by either active Gαq or mutations in the DH-PH interface. The thicker half-
arrows represent the favored direction in each equilibrium. The DH domain is represented by a green oval with its 
RhoA binding site highlighted in yellow. α6 is shown as a green rectangle that forms a continuous helix with αN, 
represented as a blue rectangle. The PH domain is represented as a blue circle, with its C-terminal αC helix as a black 
helix. Arg2150 is shown as a ball-and-stick model, and the β3-β4 loop as a red cartoon loop. Gαq is shown as a gold 
shape with its effector binding region in light yellow. Disorder is indicated with dashed lines and a blurring of Arg2150. 
The autoinhibited conformation in the top left quadrant is represented by PDB 6D8Z and the maximum activity state 
is represented by PDB 2RGN, where Gαq binds to both the PH and DH domains and constrains them in a more open 
configuration that features a bent α6-αN helix.  
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point mutation can lead to a partial activation in the module (bottom left, Figure 4.1) and 

Gαq binding to both DH and PH domains leads to full activation (bottom right, Figure 4.1). 

The TRIPα peptide was explored as a possible lead to inhibit Trio and was found to be 

both active and specific for TrioC even over its close homolog p63RhoGEF. Regrettably, 

this peptide proved difficult to work with. If the stability of TRIPα	could be improved, 

likely through removal of hydrophobics and cysteines by mutagenesis, it could be a 

valuable tool to use to discover new leads. Screening via FP and looking for 

displacement of labeled TRIPα	 would be a simple and effective manner to find 

compounds binding in the same region, and thus likely acting by the same mechanism. 

In addition, structural work using this peptide could define the molecular basis for how 

it induces RhoGEF inhibition, which remains unknown. The most likely mode of action 

would be binding to the face of the DH domain to block GTPase access. An inhibitor 

directed against TrioC could also act by stabilizing the closed interface and decreasing 

affinity for RhoA. If future crystallography attempts are not successful, this problem could 

be tackled through HDX-MS and site-directed mutagenesis. Since HDX-MS has the 

resolution to identify ~5 AA peptides which would presumably be protected from 

deuterium exchange by interaction with TRIPα, these regions could be mutagenized and 

resulting TRIPα variants could be profiled using DSF and the GEF activity assay.  

RhoGEF inhibition has been attempted for roughly two decades and no significant 

progress has been made. Most discovered molecules are directed against TrioN and 

LARG and have overtly toxic or reactive groups attached to them, and others have not 

progressed since the initial report.153,154 The best success story in GEF inhibition is the 

natural product Brefeldin A, an inhibitor for the ArfGEF domain family Sec7.155,156 



 114 
 

Brefeldin A is a complex heterocyclic natural product, and as such I hypothesize that an 

effective RhoGEF inhibitor will likely be a large complex molecule capable of mimicking 

the relatively flat yet nuanced surface in the RhoGEF∙GTPase interaction. Unfortunately, 

Brefeldin A is not bioavailable and as such has failed to progress through the 

development pipeline. I began optimization of a few methods in order to run a high-

throughput screening campaign against the TrioC GEF module. None of these presented 

promising screening statistics in early optimization attempts and were thus deprioritized. 

If TRIPα could be improved such that exhibits reproducible purification and activity, a 

displacement screen against TRIPα would be the strongest screening strategy to use as 

it is already selective for TrioC. Since that is currently not the case, I propose the best 

method to discover a TrioC inhibitor would be to screen using a complex scaffold such 

as a peptide, aptamer, or antibody, then try to understand the determinants of the 

interaction and ultimately convert this large molecule into a smaller molecule. A focus on 

natural products could discover a small molecule with enough complexity to bind 

specifically to the TrioC GEF module (or TrioN, for that matter). 

With the path to direct inhibition of GEF activity remaining unclear, basic science 

structure/function work on Trio is warranted to understand how other domains contribute 

to GEF activity and if they could instead be targeted for therapeutic benefit. The 

remainder of my dissertation consisted of structure/function work on isolated domains 

and larger fragments of Trio. Full length Trio purification was not successful; after loading 

detectable amounts of pEGFP-TrioFL into either size exclusion or anion exchange resin, 

the protein was not detectable by eGFP fluorescence in the elution fractions in each 

case, similar to that seen for another RhoGEF in our laboratory, P-Rex1. The protein may 
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be aggregating on the column or in the FPLC system. hTrioFL purification could be 

improved using a C-terminal tag, as the protein degrades even when overexpressed in 

293F cells. The Trio cDNA is difficult to work with due to length and high GC content and 

I was unable to clone such a tag. Affinity steps using sequential Rac1 and RhoA columns 

could also help isolate homogenous protein. If my preliminary electron microscopy 

imaging on Trio truncations is any guide, this full-length sample would likely be too 

flexible to conduct a high-resolution 3D reconstruction, so a GTPase complex would be 

most practical to pursue. For solving a structure of full-length Trio, multiple binding 

partners may need to be employed, such as the GTPases Rac1, RhoA, and Gαq. It is 

also possible that the full-length protein purified from mammalian cells adopts a wrapped 

up and ordered conformation due to PTM or folding assistance uniquely provided by this 

system or due to the presence of all domains. 

Figure 4.2 Model summarizing hypotheses for Trio function. From left to right, the CT domain may interact with specific 
lipids in endomembrane compartments and cooperate with the spectrin region to spatially regulate Rac1 signaling. 
The spectrin repeat region may serve as a docking site for other signaling proteins or complexes. The SH3-N and 
region following (bracketed) is hypothesized to interact with Rac1 or the TrioN GEF module to increase nucleotide 
exchange. Dotted lines show unstructured regions to the N- and C terminus of the TrioC DH/PH module. The Ig 
domain may interact with a complex epitope including the prenyl modification on RhoA and protein-protein contacts. 
Ca2+∙CaM binding to the C-terminal extension of the KD may be required for kinase activity. The plasma membrane 
is shown at the top as two horizontal lines. Trio domains are shown as ovals on a line representing the protein 
backbone. Other proteins are shown as ovals. Serrated lines represent lipid modifications and dotted lines represent 
putative unstructured regions. The CT and Ig domains are shown as transparent ovals with lipids inside of them to 
indicate they may interact with lipids. Question marks indicate hypothesized steps or mechanisms. 

 

Figure 4.2 Described RhoGEF inhibitors from the literature. TRIPα is shown as the primary peptide sequence with 
hydrophobic residues highlighted in blue, and cysteines highlighted in red. Regions deemed indispensable for activity 
of the peptide are underlined. Shown below in stick models are described GEF inhibitors listed next to their molecular 
targets and their inhibitory values against those targets.Figure 4.3 Model summarizing hypotheses for Trio function. 
The plasma membrane is shown at the top as two horizontal lines. Trio domains are shown as ovals on a line 
representing the protein backbone. Other proteins are shown as ovals. Serrated lines represent lipid modifications 
and dotted lines represent putative unstructured regions. The CT and Ig domains are shown as transparent ovals with 
lipids inside of them to indicate they may interact with lipids.  From left to right, the CT domain may interact with 
specific lipids in endomembrane compartments and cooperate with the spectrin region to spatially regulate Rac1 
signaling. The spectrin repeat region may serve as a docking site for other signaling proteins or complexes. The SH3-
N and region following is hypothesized to interact with Rac1 to increase nucleotide exchange. Dotted lines show 
unstructured regions to the N- and C terminus of the TrioC DH/PH module. The Ig domain may interact with a complex 
epitope including the phenyl modification on RhoA and protein-protein contacts. Ca2+∙CaM binding to the C-terminal 
extension of the KD may be required for kinase activity. 

 

Figure A.1 Described RhoGEF inhibitors from the literature. TRIPα is shown as the primary peptide sequence with 
hydrophobic residues highlighted in blue, and cysteines highlighted in red. Regions deemed indispensable for activity 
of the peptide are underlined. Shown below in stick models are described GEF inhibitors listed next to their molecular 
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Figure 4.2 accompanies the following paragraphs summarizing what has been learned 

from studying portions of Trio outside of the GEF modules. Nonenzymatic domains of 

Trio, including CT, both SH3 domains, and the Ig domain were purified and subjected to 

crystallization trials, to no major success. A preliminary crystal form for SH3_C was 

obtained and can be optimized in the future. It will likely be more relevant to identify 

binding partners or ligands of these domains before further structural studies are 

warranted, as apo crystal structures will not be very informative as to their underlying 

function. A possible interaction between the Ig domain of Trio and RhoA∙GTP was 

explored via SEC-MALS and ITC, however no interaction was found to occur. This 

interaction was previously found to depend on the prenylation status of RhoA, and as 

such this experiment can be repeated in the future with lipidated RhoA∙GTP. 67 

The N-terminal half of Trio was purified from E. coli and found active in Rac1 nucleotide 

exchange. This sample was characterized by negative stain EM and consisted primarily 

of an extended region likely corresponding to Trio’s nine spectrin repeats. Trio’s N-

terminal region thus consists of a putative lipid binding domain followed by these 

spectrin repeats before the TrioN GEF module. Most particles adopt an extended 

conformation and thus this region may be responsible for maintaining linear distance 

between the CT domain and the TrioN GEF module, perhaps to spatially regulate Rac1 

nucleotide exchange around the presence of a specific type of membrane lipid. 

Alternatively, the extended spectrin region could provide a docking surface for other 

proteins or complexes to assemble and perhaps be phosphorylated by Trio’s kinase 

domain. As this region of Trio is implicated in neural development, I posit that this 

specific domain architecture is key to this complex, spatially regulated process. 44 
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Trio’s C-terminal region, including its 2 GEF modules and the SH3_N, SH3_C, and Ig 

domains, seems to form a more globular structure as seen by electron microscopy, 

although averaging indicates that this structure is likely flexible in solution, with formation 

of the Rac1 complex leading to a more ordered particle. As seen in my biochemical 

experiments, this construct has elevated Rac1 activity over TrioN alone, and similar 

RhoA exchange activity, both basal and Gαq-stimulated. Through a series of truncation 

constructs, the determinant of additional Rac1 GEF activity was localized to the region 

C-terminal of the SH3_N domain, within residues 1718-1959. This region may wrap 

around to productively contact another surface of Rac1 or the GEF module itself in order 

to increase affinity or turnover rate for this GTPase. The Trio (1284-1959)-Rac1 complex 

forms a stable structure as determined by EM and as such would be a good target to try 

and capture more of Trio.  

Using a construct encoding from TrioN through the putative kinase domain proper (1284-

3053), I ran kinase assays using the ADP-GLO protocol and found that Trio was inactive 

against 3 model substrates. It is possible that we have not identified a substrate that Trio 

will phosphorylate, or that this kinase domain needs to be produced in a eukaryotic 

system in order to be fully functional. Trio’s kinase domain contains a putative calmodulin 

regulatory sequence C-terminal to the kinase domain, so perhaps Ca2+∙CaM is required 

to bind to this region to change KD conformation to promote full kinase activity. The 

constructs I tested did not contain this regulatory region.  

4.2 Future Directions 

Trio has been defined as the focal point for the malevolent signaling leading to the 

development of uveal melanoma. This signaling is thought to depend on Trio’s dual GEF 
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activities, with prior experiments showing that elimination of either of Trio’s GEF activities 

reduces cancerous signaling.37 In addition, Trio has been found to be upregulated in 

several types of cancer including glioblastoma, carcinomas, and leukemias, and is also 

highly mutated in cancer. 37,44 Important biochemical events remain to be defined in the 

regulation of Trio, starting with how this highly complex molecule is translocated to the 

PM where its GTPase substrates are. Collaborators have shown that Trio is translocated 

to the membrane upon activation of Gαq-coupled receptors. Gαq directly binds to Trio 

and is palmitoylated and could thus translocate the complex to the membrane, but that 

has not been directly shown. The localization question becomes more complex with 

shorter isoforms of Trio that do not contain the Gαq binding site (Figure 1.7). There must 

be an alternative mechanism for these isoforms to become co-localized with their 

substrates at the cell surface or other intracellular compartment.  

Gαq is thought to be a master regulator of Trio, yet it is not known whether the binding of 

this protein to Trio results in a global conformational change, or if it simply regulates 

TrioC alone. My biochemical data suggests that Gαq regulates TrioC by activating RhoA 

exchange ~2.5-fold while being insensitive to the presence of other Trio domains. This 

hypothesis is strengthened by primary sequence analysis and secondary structure 

prediction. On either end of the TrioC module there are large unstructured regions, with 

a ~200 residue unstructured region N-terminal to this GEF module (~1718-1959), and a 

~30 residue glycine-rich region immediately C-terminal (~2290-2310). However, the 

answer to this question could be different in the context of the true full-length enzyme, 

which I was not able to purify. 
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Trio remains a hugely multifunctional molecule, with protein-protein binding effects.  The 

specific functional roles of the understudied Trio domains must be identified before 

future mechanistic study can be done. As of now, the cellular roles of the CT, SH3_N, 

SH3_C, Ig, and kinase domains remain ambiguous. Each domain has a putative role we 

can identify based on homology with their respective protein families, yet the cellular 

ligands or binding partners that make each role specific are not known. A lipid binding 

screen could be used to identify CT ligands, and it would be fortuitous to use a 

phosphoproteomic screen or other cell-based method to define Trio’s KD substrate 

profile. SH3 ligands are notoriously low affinity, and as such it could be difficult to define 

ligands. One method could be an NMR screen using labeled intramolecular Trio 

polyproline candidate sequences, as NMR can detect low affinity interactions. The Ig 

domain may bind to small molecules, lipids, or proteins, and as such a pulldown mass 

spectrometry approach might be best to identify binding partners. As stated before, this 

domain may even interact with a complicated epitope consisting of a prenyl group on 

RhoA including protein contacts. With the ultimate goal of inhibiting Trio GEF activity in 

cancers, primarily uveal melanoma, much more basic science is needed to determine 

the best strategy for effective modulation of Trio function. Efficacious Trio probes could 

further unravel the complex signaling networks this enzyme is at the core of, and provide 

valuable leads for cancer therapeutics.
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Appendix A: TrioC Inhibitor Discovery 
Introduction 

This Chapter covers preliminary inhibitor discovery efforts against TrioC. I hypothesized 

that the Trio inhibitory peptide α (TRIPα) peptide, the only known inhibitor of TrioC, would 

provide a valuable lead to characterize structurally, and to use as a tool to find new TrioC 

binders. The Chapter begins with a background on RhoGEF inhibition and TRIPα and 

continues to describe efforts made to purify TRIPα in order to discover the molecular 

basis of its function and use the peptide as a tool for inhibitor discovery in high-

throughput assays. I also attempted to optimize high-throughput assays to use in 

inhibitor discovery campaigns. The Chapter closes with a discussion on avenues to 

move forward with TrioC inhibitor discovery. 

The first RhoGEF inhibitor discovered was TRIPα and it was discovered using a yeast 

two-hybrid screen designed to discover molecules binding to TrioC.157 The original 

TRIPα peptide was part of a library of peptide fragments called aptamers displayed as a 

loop on the protein thioredoxin. This peptide was shown to have activity as an excised 

42-residue peptide using the in vitro GEF assay and was mutagenized to improve activity 

(TRIPα E32G shown in Figure A.1). 158 When overexpressed, this peptide is effective at 

reducing tumor volume and weight in a xenograft model of Tgat-dependent ATL. TRIPα 

is an especially valuable lead as it is selective for TrioC even over its close homolog 

p63RhoGEF. Thus, the structural basis of TRIPα inhibition will not only reveal the 

molecular mechanism of RhoGEF inhibition, but also how selectivity between related 
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RhoGEFs can be achieved, phenomena not yet defined. The large nature of TRIPα 

indicates it may have the complexity to productively interact with the relatively flat 

surface of the DH/PH module of TrioC. Determining the basis of this inhibition may allow 

“conversion” of TRIPα into a bioavailable molecule that captures enough complexity to 

be efficacious.  

Small molecule GEF inhibitors have also been described in the literature (Figure A.1). 

Brefeldin A is a natural product ArfGEF inhibitor and binds to the GEF∙GTPase∙GDP 

ternary complex in order to prevent productive nucleotide exchange. This is the only 

GEF inhibitor for which a crystal structure and thus the mechanism of action is known. 

Brefeldin A does not target a member of the Dbl family so conversion to Trio inhibition is 

not possible. 155,156 ITX3 is a described small molecule inhibitor of TrioN originally 

discovered through a yeast gene reporter assay. 159,160 This molecule reportedly inhibits 

TrioN GEF activity in vitro and in cells, although it is not very potent (IC50 = 76 µM for in 

Figure A.1 Described RhoGEF inhibitors from the literature show toxic motifs common to discovered RhoGEF 
inhibitors. TRIPα is shown as the primary peptide sequence with hydrophobic residues highlighted in blue, and 
cysteines highlighted in red. Regions deemed indispensable for activity of the peptide are underlined. Shown below 
in stick models are described GEF inhibitors listed next to their molecular targets and their inhibitory values against 
those targets. Michael acceptor regions are highlighted in red. 
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vitro GEF assay). A series of 5 compounds have been described which inhibit LARG GEF 

activity in both fluorescent and radiometric in vitro assays, some with ~5 µM IC50 

values.153 A competing group discovered the molecule Y16 using a virtual screen 

directed against the crystal structure of the DH/PH tandem of LARG.161 At micromolar 

amounts, Y16 effectively inhibits LARG and subfamily members p115RhoGEF and 

PDZRhoGEF. This compound inhibits growth and migration of breast cancer cells in 

vitro. However, all three of these described compounds and derivatives contain known 

toxic or pan-assay interference motifs (Figure A.1).154 For example, the above 

compounds contain Michael acceptor motifs (acrylamide groups) which could have off 

target effects. No follow-up reports of these compounds have been published.  

Brefeldin A is a natural product GEF inhibitor and the only one whose mechanism of 

action is understood (Figure A.1). This molecule inhibits several members of the Sec7 

family, GEFs for the Arf family of GTPases. Brefeldin A binds to the complex of the Sec7 

domain with the GDP-bound form of Arf, trapping this state and preventing nucleotide 

release.155,156 Brefeldin A is a complex heterocyclic natural product and interacts with the 

relatively flat interface between GEF and GTPase. I hypothesize a successful GEF 

inhibitor will also need to be similarly structurally complex and a relatively large molecule. 

In this Chapter, I describe purification of TRIPα from E. coli and preliminary 

characterization of its activity. I also describe preliminary assay optimization for high 

throughput screens directed against TrioC using TRIPα as a control for TrioC binding 

and inhibition. 
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Methods 

TRIPα Expression and Purification 

Codon-optimized TRIPα cDNA was ordered from GenScript and was inserted in 

pMCSG9 for bacterial expression. TRIPα was expressed and purified similarly to TrioC, 

as an MBP fusion in E. coli. After MBP cleavage by TEV protease, the reaction mixture 

was concentrated using a 30 kD cutoff Amicon Ultracel concentrator and the 

flowthrough was collected. Flowthrough from the 30 kD concentrator was concentrated 

in a 3kD cutoff concentrator to collect TRIPα at ~5 kD. Silver-staining of SDS-PAGE 

indicated the sample was pure. Coupled liquid chromatography-mass spectrometry 

(done by Finn Maloney, Ph.D.) confirmed the peptide mass as 5099.34 D (predicted mass 

of 5101.89 D, difference of 2.5 D). Since TRIPα contains several cysteines, 2 mM DTT 

was included in all buffer steps and the purification was performed at 4 ºC.  

GEF Activity Assays and DSF Assays 

These assays were performed as described in sections 2.2.6 and 2.2.7 with the addition 

of varying amounts of purified TRIPα in buffer. 

High-Throughput Screening Optimization 

Attempts were made to optimize a high-throughput screen against the TrioC DH/PH 

module. TRIPα peptide was tried as a positive control in order to optimize a high-

throughput DSF assay. DSF assays were performed as described above with the 

addition of varying amounts of TRIPα into the reaction mixture and varying the protein 

construct in order to improve signal to background ratio (S/B) where #/% = '(
')

 and the Zʹ 

assay statistic. Zʹ was calculated as previously described where *+ = 1 − .(0(10))
|'(4')|

.162 In 
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order to perform a fluorescence polarization (FP) assay using amine labeled TRIPα, 

amine labeling was attempted via lysine using a peptide mutagenized via to include a C-

terminal lysine-tryptophan. Alexafluor-488 (AF-488) was used as an N-

Hydroxysuccinimide ester (NHS ester) (A20000 ThermoFisher Scientific) in a 1:1 molar 

ratio to TRIPα. The reaction took place at ambient temperature for 1 hour in a buffer 

composed of 20 mM HEPES pH 8.0, 200 mM NaCl, and 2 mM DTT. The reaction mixture 

was buffer exchanged using a 3kD centrifugal concentrator thrice into the above buffer 

in order to remove excess labeling reagent. Peptide was assumed to be 100% labeled 

and concentration of the labeled peptide was estimated using A280. The concentration of 

AF-488-TRIPα and TrioC were varied in order to optimize the FP signal for the described 

parameters. An FP version of the nucleotide exchange activity assay described above 

was also attempted.153 In a buffer containing 20 mM HEPES pH 8.0, 200 mM NaCl, 2 

mM DTT, and 10 mM MgCl2, 100 nM TrioC was incubated with 1 µM RhoA and 1 µM 

BODIPY-FL-GTPgS (ThermoFisher G22183) and the reaction was monitored for 20 

minutes, and fluorescence polarization was measured over time using an excitation 

wavelength of 488 nm and an emission wavelength of 532 nm. 

Results 

TRIPα Purification and Characterization 

The TRIPα peptide is the only reported inhibitor of TrioC and was discovered in a yeast 

two-hybrid screen. TRIPα is a 42 amino acid peptide that was originally shown to bind 

to TrioC when inserted as a loop of a protein called thioredoxin. The TRIPα sequence 

itself was later shown to inhibit TrioC independently of thioredoxin and was mutagenized 

to improve potency to IC50 = 5 µM.163 This peptide specifically inhibits the DH domain of 
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TrioC, and inhibits TrioC and KalirinC, but not p63RhoGEF implying that residues 

conserved between the Trio and Kalirin DH domains are important for inhibition by 

TRIPα. The ultimate goal of this work was to determine the molecular basis of TRIPα 

inhibition in order to determine the basis for GEF inhibition and improve this peptide 

using rational design or screening. Codon-optimized TRIPα was cloned into an E. coli 

expression vector and expressed and purified as an N-terminal maltose binding protein 

(MBP) fusion, with the final sequence as N-MBP-TEV-TRIPα-C. The construct was 

purified using Ni-NTA resin and subjected to TEV protease cleavage. The resulting 

reaction was concentrated using a 30 kD cutoff centrifugal concentrator to retain MBP 

in the top of the filter and allow the peptide to flow through. Peptide was concentrated 

afterwards using a 3 kD cutoff filter and found to be relatively pure by SDS-PAGE with 
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Figure A.2 TRIPα purification scheme shows homogenous peptide confrmed by silver staining and mass 
spectrometry. Top left shows a Coomassie stained 4-15% gradient gel of an Ni-NTA purification of MBP-TRIPα. Top 
right shows a silver stained 4-15% gradient gel showing finishing steps of the TRIPα purification using centrifugal 
concentrators. Bottom panel shows a mass spectrometry scan of purified TRIPα. Black bars indicate samples pooled 
for the next step of the preparation, or samples pooled for final protein aliquots. Figure A.1 Described RhoGEF 
inhibitors from the literature. TRIPα is shown as the primary peptide sequence with hydrophobic residues highlighted 
in blue, and cysteines highlighted in red. Regions deemed indispensable for activity of the peptide are underlined. 
Shown below in stick models are described GEF inhibitors listed next to their molecular targets and their inhibitory 
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silver staining and ESI+ mass spectrometry (Figure A.2). This peptide inhibited TrioC 

when titrated into the GEF activity assay (IC50 = 7.4 ± 6 µM) and selectively 

thermostabilized TrioC 4 °C, yet not p63RhoGEF, in the DSF assay at 100-fold molar 

excess. TRIPα formed a complex with TrioC via SEC (Figure A.3). TRIPα was also used 

in the screening optimization described below. Attempts to progress in either screening 

or co-crystallization were hindered by poor reproducibility in the TRIPα purification 

procedure. Following attempts to purify TRIPα were not successful in separating the 

Figure A.3 Characterization of TRIPα peptide purified from E. coli shows it active, capable of thermostabilizing TrioC, 
and capable of complex formation with TrioC. Top left, titration of TRIPα against TrioC in the GEF activity assay with 
calculated IC50 shown. Data shown is the average of N=2 experiments in duplicate. Error shown is standard deviation. 
Top middle, DSF assay data plotted as average ΔTm values. Data shown is the average of N=3 experiments in triplicate. 
Error shown as standard deviation. Top right, silver stained 4-15 % gradient gel showing complex formation between 
TRIPα (5 kD) and TrioC (37 kD). Bottom, corresponding chromatogram showing A280 trace (blue line) over the single 
Superdex 75 column used for TRIPα-TrioC complex formation.Figure 0.1 TRIPα purification scheme. Top left shows a 
Coomassie stained 4-15% gradient gel of an Ni-NTA purification of MBP-TRIPα. Top right shows a silver stained 4-
15% gradient gel showing finishing steps of the TRIPα purification using centrifugal concentrators. Bottom panel shows 
a mass spectrometry scan of purified TRIPα. Black bars indicate samples pooled for the next step of the preparation, 
or samples pooled for final protein aliquots. 
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peptide from its MBP fusion partner after TEV cleavage using further Ni-NTA purification 

or anion exchange. A peptide synthesis company was contacted to synthesize this 

peptide, but they were unable to produce peptide more than 70 % pure and suggested 

we cancel the order. 

High Throughput Screening Optimization Attempts 

Optimization of several assays for high-throughput screening was attempted. A DSF 

assay, using TRIPα as a positive control, was attempted at a larger scale. The goal of 

this assay would be to find compounds that thermostabilize and therefore bind to TrioC. 

Compounds which thermostabilized would later be tested for inhibitory activity against 

TrioC. A preliminary result of Zʹ = 0.53 was obtained with S/B = 1.1 using TRIPα as a 

positive control and buffer as a negative control. Labeling of TRIPα was also attempted 

in order to use the peptide in a fluorescence polarization displacement assay similar to 

one previously used to discover GEF inhibitors.164 Labeled peptide could be used to 

discover small molecules which would bind to TrioC in a similar manner. A variant version 

of the TRIPα peptide was generated with a lysine-tryptophan dipeptide label appended 

to its C-terminus. This allowed for amine-directed labeling of the lysine and easier 

quantitation of peptide amount through either A280 or Coomassie staining. Labeling of 

TRIPα via the installed lysine was performed using the NHS-ester of AF-488. Incubation 

of TrioC with AF488-TRIPα yielded preliminary Zʹ = 0.53 and S/B of 1.7 using 250 nM 

AF488-TRIPα as a negative control and adding 50-fold molar equivalent of TrioC for a 

positive control. A large excess of TrioC is required to get these parameters and as such 

this assay would require a large quantity of TrioC to run. In addition, a fluorescence 

polarization version of the GEF activity assay employing BODIPY-FL-GTPgS was 
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attempted with preliminary Zʹ = 0.43 and S/B = 1.7 using no enzyme as a negative control 

and adding TrioC for a positive control. These assay statistics are suboptimal even though 

the background is artificially low by using no enzyme as opposed to using TrioC with 

TRIPα. 

Discussion 

Efforts to develop such an inhibitor using either rational design based on TRIPα or new 

scaffold discovery using high throughput screening were initiated. The TRIPα produced 

was active against TrioC in the GEF assay and thermostabilized TrioC by 4 ºC, confirming 

its potential for use in screening assays. The TRIPα peptide proved difficult to work with 

when recombinantly produced from E. coli, and this molecule was deemed too difficult to 

produce by a contracting synthesis group. This is likely due to the relatively large size of 

TRIPα, its hydrophobicity, and its high number of cysteine residues. This is unfortunate 

as this peptide is selective, inhibiting TrioC and KalirinC, yet not p63RhoGEF which 

shares 65% sequence identity. TRIPα also does not inhibit RhoA nucleotide exchange by 

Lbc, p115RhoGEF, and Dbl, or Rac1 nucleotide exchange by TrioN. Determination of the 

molecular basis of this selectivity would be important in understanding how a selective 

GEF inhibitor acts, as there are several possible modes of action for a TrioC subfamily 

inhibitor. TRIPα most likely acts by sterically disrupting the RhoA binding site on the DH 

domain of TrioC, as it has in vitro activity against Tgat and the TrioC DH domain. 

However, since TrioC subfamily members have an autoinhibitory PH domain, an inhibitor 

may also function by stabilizing this autoinhibited conformation and thereby reducing 

basal GEF activity. 
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Screening efforts using activity-based assays for TrioC will require further optimization 

before they can be used to screen large libraries of small molecule compounds. 

Screening assays using TRIPα are promising (DSF and displacement FP), but will require 

TRIPα in order to run. The screening statistics for the activity assay currently derived are 

suboptimal and will only worsen when applied across an entire screening plate. Because 

the interface between TrioC-subfamily members and RhoA is extensive and relatively flat, 

a small molecule interrupting this interaction will likely be large and complex in nature, 

resembling the TRIPα peptide in that regard.  

Conclusions and Future Directions 

The TRIPα peptide still remains a promising lead for inhibitor development as it has 

micromolar potency and selectivity, an important barrier to cross when developing lead 

compounds. However, the peptide cannot yet be purified reproducibly in sufficient 

quantity for biophysical characterization. The peptide could be used in the future as an 

uncleaved fusion product of MBP. Alternative purification methods for the peptide alone 

could still be attempted, using dual affinity tags or alternative fusion proteins, but the 

challenges reported by the peptide synthesis company suggest that the TRIPα sequence 

itself is problematic. 

 A mutagenesis campaign screening for active variants of TRIPα easier to purify may be 

fruitful. As stated by the contract peptide synthesis company, cysteine residues seem to 

be problematic and those should be prioritized to see if they can be removed while 

maintaining inhibitory activity. In order to improve the peptide’s stability, a series of 

TRIPα derivatives could be generated, mutating cysteines to serines and hydrophobic 
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residues to hydrophilic ones. These derivatives would be purified from E. coli and profiled 

for inhibitory activity using the GEF assay and the DSF assay. 

Two assay formats that depend on TRIPα have promising preliminary statistics yet will 

require the peptide at large scale in order to optimize and run the assay. Although the 

DSF high-throughput assay has a low S/B value of 1.1, the Zʹ=0.53 is acceptable and 

this assay could be used to find small molecules that thermostabilize TrioC. Counter 

screens using GEF activity assays would be run to ensure that discovered compounds 

bind specifically and do not induce the formation of soluble protein aggregates, an 

artificial way to increase Tm in the DSF assay. The displacement FP assay using AF-488 

labeled TRIPα also showed promising Zʹ=0.53 and S/B=1.7, yet currently requires a large 

excess of TrioC to obtain this signal. Thus the assay would likely need to be optimized 

in order to use less protein, perhaps by enhancing the labeling efficiency of TRIPα 

peptide or by using a different fluorophore. Future directions in this aim include 

optimizing expression and purification conditions for TRIPα and optimizing the DSF 

assay for use as a primary screening technique to find compounds which thermostabilize 

TrioC. The DSF assay is robust, requires small amounts of protein and peptide, shows 

selectivity, and is easily adaptable to HTS. A secondary screen would employ the GEF 

assay described in 2.2.7 to ensure that thermostabilizing compounds inhibit TrioC GEF 

activity. In parallel, crystallography and HDX-MS efforts will reveal the structural basis of 

TRIPα function.
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Appendix B: Table of DNA Vectors for TrioFL project 
All vectors in this table were cloned using ligation-independent cloning (LIC) with the 

exception of vectors annotated “source plasmid”. Ligation independent cloning results 

in an exogenous serine-asparagine-alanine tripeptide sequence at the N-terminus of 

the cleaved fusion product. 

Position Name Plasmid Insert (see isoform 1 of 
UniProtKB O75962) 

Purification 
Successful? 

Notes 

A1 SH3_N pMCSG9 1655-1724 Yes  
A2 SH3_C pMCSG9 2554-2616 Yes  
A3 Ig pMCSG9 2680-2780 Yes  
A4 CTS pMCSG9 61-213 No Does not 

behave when 
cleaved. 

A5 CTL pMCSG9 61-242 No Does not 
behave when 

cleaved. 
A6 2680-3053 pMCSG9 2680-3053 No Kinase; Does 

not behave 
when cleaved. 

A7 2680-3097 pMCSG9 2680-3097 No See A6 
A8 2788-3053 pMCSG9 2788-3053 No See A6 
A9 2788-3097 pMCSG9 2788-3097 No See A6 
B1 2680-3053 pMCSG7 2680-3053 No No Expression 
B2 2680-3097 pMCSG7 2680-3097 No No Expression 
B3 2788-3053 pMCSG7 2788-3053 No No Expression 
B4 2788-3097 pMCSG7 2788-3097 No No Expression 
B5 2680-3053 pCDNA7 2680-3053 No No Expression 
B6 2680-3097 pCDNA7 2680-3097 No No Expression 
B7 2788-3097 pCDNA7 2788-3097 No No Expression 
B8 dTrio 5319 pRmHA-3 dTrio 1-2263 (UniprotKB 

Q7KVD1) 
No Source 

Plasmid 
B9 dTrioFLG9 pMCSG9 dTrio 1-2263 No Smear on gel 
C1 dTrioFLG10 pMCSG10 dTrio 1-2263 No Smear on gel 
C2 dTrioFLH9 pH9pFB dTrio 1-2263 No No Expression 
C3 dTrioFLH10 pH10pFB dTrio 1-2263 No No Expression 
C4 dTrioFLAC5T pAC5T dTrio 1-2263 No D. Mel Exp. 
C5 hTrioFLpEGFP pEGFP 61-3097 No Source 

plasmid 
C6 hTrioFL-NHT pEGFP 61-3097 No N-10xHis-TEV 

Secondary 
purification 

failed. 
C7 hTrioFLpH9 pH9pFB 61-3097 No No Expression 
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C8 hTrioFLpH10 pH10pFB 61-3097 No No Expression 
C9 hTrioΔ2290pH9 pH9pFB 61-2290 No No Expression 
D1 hTrioΔ2290pH10 pH10pFB 61-2290 No No Expression 
D2 hTrioΔ2290pG9 pMCSG9 61-2290 No Smear on gel 
D3 hTrioΔ2290pC10 pCDNA10 61-2290 No No Expression 
D4 hTrioFLpG9 pMCSG9 61-3097 No Smear on gel 
D5 hTrioFLpG10 pMCSG10 61-3097 No Smear on gel 
D6 hTrioFLpAC5T pAC5T 61-3097 No D. Mel Exp. 
D7 hTrioΔ1594pG9 pMCSG9 61-1594 Yes  
D8 hTrioΔ1594pC10 pCDNA10 61-1594 No No Expression 
D9 hTrioΔ1594pAC5T pAC5T 61-1594 No No Expression 
E1 hTrioΔ1718pG9 pMCSG9 61-1718 Yes Smeary but ok 
E2 1284-2638G9 pMCSG9 1284-2638 Yes  
E3 1284-2638C10 pCDNA10 1284-2638 No No Expression 
E4 1284-1594G9 pMCSG9 1284-1594 Yes  
E5 1284-1718G9 pMCSG9 1284-1718 Yes  
E6 1284-1959G9 pMCSG9 1284-1959 Yes  
E7 1284-2147G9 pMCSG9 1284-2147 No Smear on gel 
E8 1284-2290G9 pMCSG9 1284-2290 Yes  
E9 1284-2616G9 pMCSG9 1284-2616 Yes  
F1 1284-2780G9 pMCSG9 1284-2780 Yes  
F2 1284-3053G9 pMCSG9 1284-3053 Yes Low exp. 
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