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Abstract

We establish exponential decay of correlations of all orders for locally G-accessible isometric

extensions of transitive Anosov flows, under the assumption that the strong stable and strong unstable

distributions of the base Anosov flow are C1. This is accomplished by translating accessibility

properties of the extension into local non-integrability estimates measured by infinitesimal transitivity

groups used by Dolgopyat, from which we obtain contraction properties for a class of ‘twisted’

symbolic transfer operators.
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Chapter 1. Introduction

Dynamics is the broad study of the asymptotic properties of a system as it evolves. Typical cases

of interest include the iteration of endomorphisms on measure spaces, manifolds, metric spaces or

topological spaces; somewhat surprisingly, a great deal can be said about the structure of orbits

even in fairly general settings. Perhaps the most general result is the Poincaré recurrence theorem,

which states that almost every point in a conservative system of finite measure is recurrent.

Theorem (Poincaré). Let (X,µ) be a probability space, and suppose that f :X → X is a measurable

map that preserves µ. Then for any E ⊂ X, µ-almost every point p ∈ E returns to E infinitely

often under f .

In more specialized settings, the Poincaré recurrence theorem can be significantly improved, yielding

dramatically finer information on the large-scale, asymptotic properties of orbits. For so-called

ergodic systems, points do not simply recur: almost every point will visit a given region with

frequency proportional to the region’s size.

Theorem (Birkhoff). Let (X,µ) be a probability space, and suppose that f :X → X is a measurable

map that preserves µ, but only leaves invariant subsets of full or null measure. Then for any E ⊂ X,

µ-almost every point x ∈ X visits E with frequency

lim
n→∞

1
n

n−1∑
i=1

χE(f i(x)) = µ(E)

where χE is the characteristic function of the set E.

Alternatively phrased, the Birkhoff ergodic theorem precludes ergodic systems from having sizeable

regions with predictable orbits. The ergodic hypothesis – that the only invariant subsets have full

or null measure – has its original formulation in Boltzmann’s work in classical statistical mechanics,

and has proven tremendously significant.
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Ergodicity is one of the primary characteristics of chaotic behaviour in the study of dynamical

systems, and the verification of ergodicity for particular systems is naturally of considerable interest.

In many cases, general arguments for ergodicity exploit hyperbolicity: the presence of directions

along which the system contracts or expands. One of the simplest examples is the doubling map

f(z) = z2 on the unit circle in the complex plane, where ergodicity can be verified as an immediate

consequence of the system’s uniform expansivity.

In higher dimensions, a classical argument due to Hopf establishes ergodicity – with respect to a

large class of measures – for Anosov diffeomorphisms: discrete-time systems which are exclusively

and uniformly hyperbolic. For most purposes, Anosov diffeomorphisms present the most tractable

class of systems to study, and the lack of even ‘slow’ hyperbolic directions makes them particularly

amenable to analysis.

On the other hand, systems with non-uniform or partial hyperbolicity present difficulties. Otaining

ergodicity often requires significant additional hypotheses and careful analysis; there has, nevertheless,

been considerable progress. Clasically, Anosov was able to adapt Hopf’s argument to show that

Anosov flows – continuous-time systems where there is only a single, non-hyperbolic, flow direction –

are ergodic. And in recent years, many results have been obtained on the stability and genericity

(or lack thereof) of ergodicity in various settings.

Beyond ergodicity, even stronger asymptotic results can be obtained quite generally. In an

equivalent formulation, the Birkhoff ergodic theorem states that, for an ergodic system, the sequence

of random variables ϕ,ϕ ◦ f, . . . , ϕ ◦ fn, . . . satisfies the strong law of large numbers. From this

perspective, it is natural to characterize chaotic behaviour for f in terms of how closely such a

sequence resembles a sequence of independent and identically distributed random variables.

One precise quantification of the ‘independence’ of such a sequence can be obtained from analyzing

the rate of decay of the autocorrelations

∫
X

(ϕ ◦ fk) · (ϕ ◦ fk+n) dµ

as n increases. Other immediate questions include the verification of a central limit theorem, Berry-

Esséen theorem or other limit laws for such a sequence. Among the strongest such characteristics of

chaotic behaviour is the exponential decay of correlations.
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Definition 1.1. A map f :M → M is said to enjoy exponential decay of correlations or to be

exponentially mixing if there are uniform constants C > 0 and r < 1 so that∣∣∣∣∫
M

ϕ(x)ψ(fn(x)) dµ(x)
∣∣∣∣ ≤ Crn‖ϕ‖Cα‖ψ‖Cα

for any α > 0, n > 0 and all α-Hölder functions ϕ,ψ ∈ Cα(M,R) with
∫
M ϕdµ =

∫
M ψ dµ = 0. For

a flow gt:M →M , we instead require∣∣∣∣∫
M

ϕ(x)ψ(gt(x)) dµ(x)
∣∣∣∣ ≤ Crt‖ϕ‖Cα‖ψ‖Cα

for all t > 0.

Besides being of intrinsic interest, exponential correlation decay is typically accompanied by

other strong statistical properties for sufficiently regular random variables. Unfortunately, obtaining

quantitative estimates on the rate of correlation decay in many settings has proven remarkably

difficult. In certain concrete situations, this can be done by a direct calculation: two examples are

discussed in the Appendix. It is also true that Anosov diffeomorphisms are exponentially mixing, as

a consequence of the existence of Markov partitions and the Ruelle-Perron-Frobenius theorem.

Beyond uniformly hyperbolic systems, however, exponential mixing results can hinge on extremely

subtle analysis. Bowen and Ruelle conjectured in [BR75] that all Anosov flows enjoy exponential

decay of correlations, except for certain trivial counterexamples. Perhaps the most significant progress

towards answering this was due to Dolgopyat, who obtained exponential decay of correlations for

such flows, but required additional, nongeneric regularity hypotheses on the stable of unstable

distributions. Liverani was able to obtain the same result for Anosov flows without this regularity

hypothesis, but required the flow to leave invariant a contact form.

While even Anosov flows are not completely understood, there has been progress on establishing

exponential mixing in certain partially hyperbolic settings. In particular, Dolgopyat showed in

[Dol02] that accessible compact group extensions of discrete-time expanding maps are exponentially

mixing, and Winter adapted these techniques in [Win16] to establish exponential mixing for frame

flows over convex cocompact hyperbolic manifolds.

This is largely the setting we will be working: we will consider isometric compact group extensions

of Anosov flows, and give criteria for these flows to be exponentially mixing. Specifically, we will

prove the following:
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Theorem A. Let M,N and F be closed Riemannian manifolds, where π:M → N is a fiber bundle

with fibers isometric to F . Suppose that gt:N → N is a smooth, transitive Anosov flow preserving

an equilibrium measure ν with a Hölder potential ς:N → R. Moreover, suppose that the strong

stable and strong unstable foliations are C1, and that ν has unstable conditional measures νu that

are diametrically regular.

Let G be a closed, connected, normal subgroup of the isometry group Isom(F ) that acts transitively

on F , and equip F with the pushforward ω of the normalized Haar measure on G. Let ft:M →M

be a G-extension of gt. If ft is locally G-accessible, then it enjoys exponential decay of correlations

of all orders for the (locally defined) product measure ν × ω.

Our approach broadly follows the strategy Winter used in [Win16] to establish exponential mixing

for frame flows over convex cocompact hyperbolic manifolds. We begin by constructing a symbolic

model for the extension flow, establishing uniform local non-integrability estimates for this symbolic

model and using arguments employed by Dolgopyat in both [Dol98] and [Dol02] to obtain bounds

for the spectrum of certain ‘twisted’ transfer operators. Our main technical result is the following

bound:

Theorem B. Fix notation as in Theorem A, and suppose that the potential ς is C1. Then there

are constants C > 0 and r < 1 so that we have

‖Lnz,ρϕ‖L2(νu)≤ C‖ϕ‖C1rn

for all ϕ ∈ C1(U, V ρ), all nontrivial irreducible representations ρ of G, and any z ∈ C with

|<(z)− P (ς)|< 1.

The principal novelty here, and our main point of divergence with [Win16], is that we use the

local G-accessibility (see Definition 2.5) of the extension flow ft to obtain the necessary local

non-integrability estimates. As in [Win16], we measure the local non-integrability of the extension

using Dolgopyat’s infinitesimal transitivity group.

While we rely heavily on the techniques used in [Dol02], translating these into our setting presents

several difficulties. Most notably, the non-integrability of the strong stable and unstable foliations

of the base flow gt and the nontriviality of the fiber bundle π:M → N require some additional care

to properly deal with, though we are ultimately able to adapt many of the same arguments.
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In the specific case of the frame flow, Theorem A can be stated more succinctly.

Corollary C. Let N be the unit tangent bundle of a closed n-manifold of quarter-pinched negative

curvature equipped with an invariant Riemannian volume ν, and let M be the oriented full frame

bundle over N equipped with the (locally defined) natural extension ν × ω by the Haar measure on

SO(n− 1). If the frame flow ft is locally accessible, then it enjoys exponential decay of correlations

of all orders.
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Chapter 2. Preliminaries

We fix some notation that we will use throughout this paper: N will be a closed Riemannian

manifold equipped with a probability measure ν and gt:N → N a C∞ Anosov flow preserving ν.

Let M be a compact Riemannian fiber bundle π:M → N whose fibers π−1(x) are each isometric

to a fixed compact, Riemannian manifold F , and let ft:M → M be an extension of gt satisfying

π ◦ ft = gt ◦ π. We equip M with the product measure µ of ν and a probability measure on F .

The motivating example for everything that follows is when N is the unit tangent bundle for

a closed n-manifold of quarter-pinched negative curvature, M is the oriented orthonormal frame

bundle, gt is the geodesic flow and ft is the frame flow. The natural choice for ν in this case is the

Liouville measure on N , and µ is then locally a product of the Liouville measure and the normalized

Haar measure on SO(n− 1,R).

2.1 Dynamical preliminaries. Our goal is to show that, with appropriate hypotheses, ft enjoys

exponential decay of correlations or, equivalently, is exponentially mixing.

Definition 2.1. A flow ft is said to be exponentially mixing of order k for Cα functions if there

are constants C > 0 and r < 1 so that∣∣∣∣∫
M

ϕ0 · (ϕ1 ◦ ft1) · . . . · (ϕk ◦ ftk) dν −
(∫

M

ϕi dν

)
· . . . ·

(∫
M

ϕk dν

)∣∣∣∣ < Crmin
i 6=j
|ti−tj | · ‖ϕ0‖Cα · . . . · ‖ϕk‖Cα

for all ϕi ∈ Cα(M,C). Here, ‖·‖Cα denotes the usual α-Hölder norm

‖ϕ‖Cα := sup
x
|ϕ(x)|+ sup

x 6=y

|ϕ(x)− ϕ(y)|
|x− y|α

on the space Cα(M,C) of α-Hölder complex-valued functions.

Actually, we will prove that there are constants C > 0 and r < so that∣∣∣∣∫
M

ϕ0 · (ϕ1 ◦ ft1) · . . . · (ϕk ◦ ftk) dν
∣∣∣∣ < Crmax ti · ‖ϕ0‖Cα · . . . · ‖ϕk‖Cα
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for all ϕi ∈ Cα(M,C) with
∫
M ϕi dν = 0. It is an elementary exercise to show that this is equivalent

to Definition 2.1.

While having some degree of regularity is critical, exponential mixing for Hölder functions and

exponential mixing for more regular functions are equivalent in our case by a standard approximation

argument. We provide a brief outline of this argument in the simplest case, to justify our later

attention to C1 (rather than Hölder) functions.

Lemma 2.2. Suppose ft is exponentially mixing of order k for C1 functions. Then, ft is exponen-

tially mixing of order k for Cα functions, for any α > 0.

Proof. We perform the argument in the case k = 1. The general case can be obtained by repeating

this inductively.

By [GS14, Lemma 2.4], we can find smooth approximations ϕε to ϕ with
∫
M ϕε dµ = 0 satisfying

‖ϕε − ϕ‖C0≤ εα‖ϕ‖Cα and ‖ϕε‖C1≤ ε− dim(M)−1‖ϕ‖C0

for all ε > 0. Since ft is exponentially mixing (at rate, say, rt) for C1 functions by hypothesis, we

can write ∣∣∣∣∫
M

ϕ · (ψ ◦ ft) dµ
∣∣∣∣ ≤ ∣∣∣∣∫

M

ϕ · (ψ ◦ ft) dµ−
∫
M

ϕε · (ψ ◦ ft) dµ
∣∣∣∣+
∣∣∣∣∫
M

ϕε · (ψ ◦ ft) dµ
∣∣∣∣

≤
∣∣∣∣∫
M

(ϕ− ϕε) · (ψ ◦ ft) dµ
∣∣∣∣+ Crt‖ϕε‖C1‖ψ‖C1

≤ ‖ϕ− ϕε‖C0‖ψ‖C0+Crtε−(dim(M)+1)‖ϕ‖C0‖ψ‖C1

≤ εα‖ϕ‖Cα‖ψ‖C0+Crtε−(dim(M)+1)‖ϕ‖Cα‖ψ‖C1

=
(
εα + Crtε−(dim(M)+1)

)
‖ϕ‖Cα‖ψ‖C1

for any fixed t > 0. Note that the last line does not involve ϕε, so we can simply set ε = rkt with

k = 1
2(dim(M)+1) . This leaves us with the inequality

∣∣∣∣∫
M

ϕ · (ψ ◦ ft) dµ
∣∣∣∣ ≤ (rα(dim(M)+1)−1t + Crtr−0.5t

)
‖ϕ‖Cα‖ψ‖C1

≤ (1 + C)
(
rmin(0.5,α(dim(M)+1)−1)

)t
‖ϕ‖Cα‖ψ‖C1

and, noting that the base of the exponential term is at most 1, we see that ft is exponentially mixing

for any ϕ ∈ Cα(M) and ψ ∈ C1(M). Now, set D := C + 1 and s := rmin(0.5,α(dim(M)+1)−1) and
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consider ϕ, ξ ∈ Cα(M). Once again, we can find a smooth approximation ξε to ξ with
∫
M ξ dµ = 0

satisfying

‖ξε − ξ‖C0≤ εα‖ξ‖Cα and ‖ξε‖C1≤ ε− dim(M)−1‖ξ‖C0

for all ε > 0. By what we have just shown, we can now write∣∣∣∣∫
M

ϕ · (ξ ◦ ft) dµ
∣∣∣∣ ≤ ∣∣∣∣∫

M

ϕ · (ξ ◦ ft) dµ−
∫
M

ϕ · (ξε ◦ ft) dµ
∣∣∣∣+
∣∣∣∣∫
M

ϕ · (ξε ◦ ft) dµ
∣∣∣∣

≤
∣∣∣∣∫
M

ϕ · ((ξ − ξε) ◦ ft) dµ
∣∣∣∣+Dst‖ϕ‖Cα‖ξε‖C1

≤ ‖ξ − ξε‖C0‖ϕ‖C0+Dstε−(dim(M)+1)‖ϕ‖Cα‖ξ‖C0

≤ εα‖ξ‖Cα‖ϕ‖Cα+Dstε−(dim(M)+1)‖ϕ‖Cα‖ξ‖Cα

≤
(
εα +Dstε−(dim(M)+1)

)
‖ϕ‖Cα‖ξ‖Cα

for any fixed t > 0. Once again, we can set ε = skt with k = 1
2(dim(M)+1) , leaving us with the bound

∣∣∣∣∫
M

ϕ · (ξ ◦ ft) dµ
∣∣∣∣ ≤ (sα(dim(M)+1)−1t +Dsts−0.5t

)
‖ϕ‖Cα‖ξ‖Cα

≤ (1 +D)
(
smin(0.5,α(dim(M)+1)−1)

)t
‖ϕ‖Cα‖ξ‖Cα

which is independent of ε. Once again, we note that the base of the exponential term is at most 1

and does not depend on ϕ or ξ, completing our proof. �

Of course, whether a system is exponentially mixing depends on the measure under consideration.

We will be interested in equilibrium measures for Hölder potentials.

Definition 2.3. For a continuous function ς:N → R, we call a measure ν an equilibrium state for

gt with potential ς if ν maximizes ∫
N

ς dν + hν(g1)

among all gt-invariant probability measures on N . To emphasize the potential, we will write νς for

the equilibrium state corresponding to ς when it exists and is unique.

Of particular importance to us is the fact that equilibrium states admit a local product structure

with respect to the strong stable and unstable foliations, and that they are invariant under the

appropriate transfer operators; we will expand on both of these properties in due course.

8



When gt is an Anosov flow on a compact manifold, it is a classical result of Bowen and Ruelle

[BR75] that equilibrium states for Hölder potentials exist and are unique. Of course, the measure of

maximal entropy is always an equilibrium state for the trivial potential ς = 0. In the case of the

geodesic flow in negative curvature, the Liouville measure is the equilibrium state for the geometric

potential

ς(x) = − d

dt

∣∣∣∣
t=0

(
log
∥∥∥dgt|Wu(x)

∥∥∥)
on the unit tangent bundle.

We are interested in extensions of Anosov flows that act fiberwise by isometries.

Definition 2.4. We call a smooth flow ft: (M,µ)→ (M,µ) on a closed Riemannian manifold M a

G-extension of gt: (N, ν)→ (N, ν) if π:M → N is a smooth fiber bundle where

• the fibers π−1(x), with the induced metric, are all isometric to a closed Riemannian manifold

F ,

• G is a closed, connected normal subgroup of the isometry group Isom(F ),

• G acts transitively on F and has no proper transitive normal subgroups,

• π ◦ ft = gt ◦ π,

• there is an atlas of trivializations of π:M → N for which all transition functions lie in G,

• with respect to these trivializations, the isometries of F induced by the flow ft all lie in G,

• ft preserves a measure µ satisfying π∗(µ) = ν, and

• the fiberwise disintegration of µ along the fibers of π:M → N is the pushforward of the

normalized Haar measure on G to each fiber.

The primary driver of exponential mixing in our case will be a stronger variant of local accessibility.

Definition 2.5. Let ft:M →M be a G-extension of gt:N → N . We call ft locally G-accessible if,

for every ε > 0, any trivialization φ:π−1(Bε(x))→ Bε(x)× F defined near x ∈ N and any isometry

h ∈ G, there is a sequence of points x0, . . . , xk ∈ N for which

• x0 = xk = x,

• x0, . . . , xk ∈ Bε(x),

• we either have xi+1 ∈W su
gt (xi) or xi+1 ∈W ss

gt (xi) for each i, and

• we have h = h0
k ◦ . . . ◦ h1

0, where hi+1
i :F → F is given (via φ) by the isometry π−1(xi) →

π−1(xi+1) induced by leaves of the strong stable or strong unstable foliation of ft.

9



2.2 Symbolic dynamics. In this section, we will build a discrete, symbolic model for ft – we

follow [Win16], and accomplish this by artificially extending a standard Markov partition for the

base flow. The results of [Bow73; Rat73] on the existence of Markov partitions for hyperbolic

dynamical systems are classical and well-understood; as such, we will recall some of the important

points but refrain from delving into the details.

Theorem 2.6 (Bowen, Ratner). If gt is Anosov, then gt has a Markov partition of size ε for any

sufficiently small ε > 0.

Specifically, Bowen and Ratner construct a Markov partition by taking local strong stable and

unstable segments and forming a Markov rectangle.

Definition 2.7. Given x ∈ N and ε > 0, consider the local strong and weak stable and unstable

manifolds of size ε through x given by

W ss
ε (x) := (W ss(x) ∩Bε(x))◦

Wws
ε (x) := (Wws(x) ∩Bε(x))◦

W su
ε (x) := (W su(x) ∩Bε(x))◦

Wwu
ε (x) := (Wwu(x) ∩Bε(x))◦

where in each case we have taken the connected component through x. For u ∈ W su
ε (x) and

s ∈W ss
ε (x), we define the bracket of u and s to be the point of intersection

[u, s] = W ss
ε (u) ∩Wwu

ε (s)

which is necessarily unique when ε > 0 is sufficiently small. We define the Markov rectangle

[W su
ε (x),W ss

ε (x)] to be the set

[W su
ε (x),W ss

ε (x)] := {[u, s] | u ∈W su
ε (x) and s ∈W ss

ε (x)}

assuming ε > 0 is sufficiently small.

For now, fix ε > 0 chosen to be small enough that a Markov partition exists; we will likely need

to adjust our choice of ε as we proceed. We let R = {R1, . . . , Rk} be a Markov partition of size ε

for gt, where each rectangle Ri := [Ui, Si] is generated by local strong stable and unstable manifolds

Si := W ss
ε (zi) and Ui := W su

ε (zi) through points zi ∈ N . Set R :=
⋃
Ri, U :=

⋃
Ui and S :=

⋃
Si,

and let P:R∗ → R∗ be the Poincaré return map defined on the appropriate full-measure residual

subset R∗ ⊂ R with return time τ :R∗ → R.
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Remark 2.8. Since we assumed that the strong stable and unstable foliations for gt were C1, each

Ri is naturally an open C1 submanifold of N . It is important to note that both the Poincaré return

map P and the return time map τ defined above are the restrictions of locally C1 functions on R,

but neither P nor τ is even continuous on R. Indeed, the points of discontinuity for P, τ and their

iterates are exactly what is removed in passing from R to R∗.

A more extensive discussion of this can be found in [Che02, p. 380-382]. We will write (Σ,P) for

the Markov shift corresponding to the partition R.

Definition 2.9. The suspension of (Σ,P) with roof function τ is the flow g′t: Σ× R/∼→ Σ× R/∼

defined by g′t(x, s) = (x, s+ t), where we have declared (x, τ(x)) ∼ (P(x), 0).

Theorem 2.6 says exactly that the natural inclusion of R into N induces a Hölder-continuous

semi-conjugacy between gt and g′t – this is precisely the result we wish to extend to ft.

Fix a finite cover {Vi} that trivializes the fiber bundle π:M → N , with isometries φi:π−1(Vi)→

Vi × F . At this point, we may need to revisit our choice of ε: let us assume that we have taken ε to

be smaller than the Lebesgue number of the cover {Vi}. By definition, this means that each Rj lies

entirely in some Vk(j), and hence φk(j) induces an isometry π−1(Rj)→ Rj × F . We can put these

together to form an isometry φ:π−1(R)→ R× F .

It is worth noting that we have considerable freedom in our choice of isometries φi, and this is

something we will want to exploit to simplify our arguments in §4. Since the center-stable foliation

of ft is C1, we can modify a given φi so that it is constant along the (local) leaves of this foliation.

Specifically, we will assume that the projection of each φi:π−1(Vi)→ Vi × F onto F is constant on

each connected component
(
W su
ft

(x) ∩ π−1(Vi)
)◦

for each x ∈ Vi.

We will realize ft as a suspension flow on Σ× F with roof function τ . To do this, we will need

information on the fiberwise action of gt.

Definition 2.10. For x ∈ Rj1 with P(x) ∈ Rj2 , we define the temporal holonomy Hol(x) at x to be

the isometry between φk(j1)(π−1(x)) and φk(j2)(π−1(P(x))) induced by ft. This defines a function

Hol:R∗ → G.

We will often write Hol(n)(x) for Hol(Pn−1(x)) ◦ . . . ◦Hol(x). Note that function composition is

the multiplication operation in G.
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Given the temporal holonomy function Hol:R∗ → G, we can of course recover ft as a suspension

flow on (Σ× F,P ×Hol) with roof function τ . However, we will push this a step further.

We can define a projection along the leaves of the strong stable foliation projS :R→ U by setting

projS([u, s]) = u. This allows us to construct a uniformly expanding model U for gt, where the

Poincaré return map descends to a map σ:U∗ → U∗ given by σ := projS ◦P.

Remark 2.11. By construction, the return time map τ and the temporal holonomy function Hol

are both constant along the leaves of the strong stable foliation of gt, and hence descend to functions

τ :U → R and Hol:U → G.

Set Uτ := U∗ × R/∼ and Uτ,Hol := U∗ × R × F/∼, where we declare (u, τ(u)) ∼ (P(u), 0) and

(u, τ(u), k) ∼ (P(u), 0, (Hol(u))(k)) respectively. We write f ′t for the suspension flow f ′t(u, s, k) =

(u, s+ t, k) on Uτ,Hol. It is not too difficult to show that the exponential mixing of ft is equivalent

to exponential mixing for f ′t , though we must first fix a measure on Uτ,Hol to make sense of this.

Remark 2.12. Since ν is an equilibrium state for a Hölder potential φ, there are measures νsi and

νui on each of the strong stable and unstable segments Si and Ui so that ν is absolutely continuous

with respect to the product νui × νsi × dt. Moreover, these measures can be chosen so that the

Radon-Nikodym derivative of ν with respect to the product νui × νsi ×dt is uniformly bounded above

by a constant K > 1 and below by K−1 < 1. We will write νu and νs for the corresponding measures

on U and S respectively, and suppose that they have been normalized so that νU (U) = νS(S) = 1.

Remark 2.13. Up to replacing φ with a cohomologous function on (Σ,P), we can assume that φ

is the extension of a Hölder potential φU on U . As a consequence, we may as well assume that νu is

in fact an equilibrium state for a Hölder potential φU on (U, σ).

These are classical results in thermodynamic formalism – we refer the reader to [Lep00] and

[Mar04, p. 87-91] respectively for more details. We will in addition require the conditional measure

νu to have a doubling property later on, in order to control the spectrum of our transfer operators

using Dolgopyat’s methods.

Definition 2.14. We say that a measure νu has the doubling or Federer property, or is diametrically

regular, if for any k > 1 there is a uniform constant C > 0 so that

νu(Bkr(x)) < Cνu(Br(x))

12



for all x ∈ U and r > 0.

With the following lemma, we are reduced to establishing exponential mixing for the suspension

flow f ′t on the expanding model Uτ,Hol.

Lemma 2.15. If f ′t is exponentially mixing of order k for functions in C1(Uτ,Hol,C), then ft is

exponentially mixing of order k for functions in C1(M,C).

Proof. Once again, we will perform the argument in the case k = 1. The general case can be

obtained by repeating this inductively. Given ϕ,ψ ∈ C1(M,C) with
∫
M ϕdµ =

∫
M ψ dµ = 0 and a

fixed k ∈ F , we consider corresponding functions ϕt, ψt ∈ C1(Uτ,Hol,C) given by

ϕt(u, h, r) :=
∫
S

ϕ
(
ft+r

(
φ−1 ([u, s], h(k))

))
dνs

ψt(u, h, r) :=
∫
S

ψ
(
ft+r

(
φ−1 ([u, s], h(k))

))
dνs

for each t. Let C0q
t be the rate of contraction of S under gt. Since ϕ is C1,

∣∣ϕ (ft+r(φ−1([u, s], h(k))
)
− ϕ

(
ft+r(φ−1([u, s0], h(k))

)∣∣ < C0q
t‖ϕ‖C1

for any s0 ∈ S. Of course, this yields∣∣∣∣∫
S

ϕ
(
ft+r(φ−1([u, s], h(k))

)
dνs −

∫
S

ϕ
(
ft+r(φ−1([u, s0], h(k))

)
dνs
∣∣∣∣ < C0q

t‖ϕ‖C1νs(S)

after simply integrating both sides with respect to s. This can be rewritten as∣∣∣∣∫
S

ϕ
(
ft+r(φ−1([u, s], h(k))

)
dνs − ϕ

(
ft+r(φ−1([u, s0], h(k))

)
· νs(S)

∣∣∣∣ < C0q
t‖ϕ‖C1νs(S)

since s0 is fixed. We then see quickly that the difference in the integrals

∫
Uτ,Hol

(∫
S

ϕ
(
ft+r

(
φ−1 ([u, s], h(k))

))
dνs(s)

)(∫
S

ψ
(
fr
(
φ−1 ([u, s′], h(k))

))
dνs(s′)

)
dω dr dνu (2.15.1)

and

νs(S)
∫
Uτ,Hol

∫
S

ϕ
(
ft+r

(
φ−1 ([u, s0], h(k))

))
· ψ
(
fr
(
φ−1 ([u, s′], h(k))

))
dνs(s′) dω dr dνu (2.15.2)

is at most C1q
t‖ϕ‖C1‖ψ‖C0 . But now, the same argument shows that

ϕ
(
ft+r

(
φ−1 ([u, s0], h(k))

))
· ψ
(
fr
(
φ−1 ([u, s′], h(k))

))

13



and

ϕ
(
ft+r

(
φ−1 ([u, s′], h(k))

))
· ψ
(
fr
(
φ−1 ([u, s′], h(k))

))
must be within C2q

t‖ϕ‖C1‖ψ‖C0 of each other. Hence,

νs(S)
∫
Uτ,Hol

∫
S

ϕ
(
ft+r

(
φ−1 ([u, s′], h(k))

))
· ψ
(
fr
(
φ−1 ([u, s′], h(k))

))
dνs(s′) dω dr dνu

is within C3q
t‖ϕ‖C1‖ψ‖C0 of (2.15.2). From the local product structure of ν, we see that this is

within a constant multiplicative factor of K of the integral

∫
M

ϕ(ft(x)) · ψ(x) dµ (2.15.3)

for any ϕ and ψ. To conclude, we simply observe that if
∫
M ϕdµ =

∫
M ψ dµ = 0, then we must have

∫
Uτ,Hol

ϕt(u, h, r) dω dr dνu =
∫
Uτ,Hol

ψt(u, h, r) dω dr dνu = 0

for any t ∈ R. Moreover, the regularity of ϕt and ψt is determined by the regularity of the bracket

operation [·, ·] – since we assumed that the foliations were C1, we see that ϕt and ψt must also be C1.

Hence, if f ′t is exponentially mixing for functions in C1(Uτ,Hol,C), (2.15.1) must decay exponentially

in t, from which we conclude that (2.15.3) must also decay exponentially. �

2.3 Representation theory. In this section, we recall some classical results from the representa-

tion theory and harmonic analysis of compact Lie groups; our primary references are [Sug71] and

[App14].

Following [Win16, §3.6], our strategy is to decompose functions on Uτ,Hol into components

corresponding to irreducible representations of G. A function ϕ ∈ C1(Uτ,Hol,C) can be viewed as a

C1 function ϕ̃:Uτ → L2(G) by setting ϕ̃(u, r) := ϕ(u, ·, r).

Since G is a compact, connected Lie group, we can decompose ϕ̃(u, r) ∈ L2(G) into isotypic

components corresponding to irreducible representations of G – this is, of course, the classical

Peter-Weyl theorem.

Theorem 2.16 (Peter-Weyl). If G is a compact, connected Lie group, then there is a decomposition

L2(G) =
⊕
ρ

(V ρ)⊕ dim ρ

14



where the sum is taken over pairwise non-isomorphic irreducible representations of G, and the

(V ρ)⊕dim ρ associated to non-isomorphic irreducible representations are pairwise orthogonal with

respect to the standard inner product on L2(G).

We fix such a decomposition and write ϕ̃(u, r) =
∑
ρ ϕ̃

ρ(u, r) for the decomposition of ϕ̃(u, r)

obtained by projecting onto each (V ρ)⊕dim ρ. Abusing notation, we will use ϕ to refer interchange-

ably to a function Uτ → L2(G) or to the function Uτ,Hol → C – there should be little ambiguity in

either case.

For our later analysis, it will be helpful to consider the derived representation dρ of the Lie

algebra g of G acting on L2(G), induced by the representation ρ of G on L2(G) – see [App14, §2.5.1]

for details. We will always assume that we have a fixed Ad-invariant norm ‖·‖g on g.

Definition 2.17. Given an irreducible representation ρ:G→ GL(V ρ) of G (where we view V ρ ⊂

L2(G)), we define the norm ‖ρ‖ of ρ to be the supremum

‖ρ‖:= sup
‖X‖g=1

‖dρ(X)‖L2(G)

where ‖dρ(X)‖L2(G) is the operator norm of dρ(X) viewed as an automorphism of L2(G).

It is a classical fact that ‖ρ‖ is finite, and can be bounded in terms of the highest weight associated

to ρ.

Proposition 2.18. Let ρ be a nontrivial irreducible representation, and let λ be its highest weight.

There are uniform constants C > 0 and m > 0 so that

‖ρ‖≤ Cλm

for all X ∈ g with ‖X‖g= 1.

Proof. See [App14, Theorem 3.4.1]; note that the Hilbert-Schmidt norm is an upper bound for the

operator norm. �

We will also require some particular results on the growth rate of ‖ρ‖.

Proposition 2.19. There is a constant N > 0 so that
∑
ρ‖ρ‖−n converges for any n ≥ N .

Proof. This is a combination of [Sug71, Lemma 1.3] and Proposition 2.18. �
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And more generally, we can obtain decay estimates for the Fourier coefficients ϕρ associated to

irreducible representations ρ.

Theorem 2.20. There are constants C,N > 0 so that

‖ρ‖n‖ϕρ‖L2(G)≤ C‖ϕ‖Cn

for all irreducible ρ, any n > N and all ϕ ∈ Cn(Uτ , L2(G)).

Proof. This is contained in the proof of [Sug71, Theorem 1]. �
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Chapter 3. Twisted Transfer Operators

In this section, we will define Dolgopyat’s ‘twisted’ transfer operators, and show how the spectral

bounds we intend to obtain for these operators lead to correlation decay estimates for the expanding

suspension semi-flow f ′t constructed in the previous section.

Recall that we can view a smooth function ψ ∈ C1(Uτ,Hol,C) as a function ψ ∈ C1(Uτ , L2(G)).

We can integrate out the time variable to get

ψ̃(u) :=
∫ τ(u)

0
ψ(u, r) dr

in C1(U,L2(G)); this is the space on which we would like to define our operators. The advantages

of working with smooth (as opposed to Hölder) functions will become clear in §5, but we will need

to assume that ς is C1 for most of our arguments. We will explain how to modify our proof to deal

with the general case where ς is Hölder in Corollary 5.8, using a standard approximation argument.

Let ρ be an irreducible representation of G acting on an isotypic component V ρ ⊂ L2(G), and fix

z ∈ C. We define the transfer operator L̃z,ρ:C1(U, V ρ)→ C1(U, V ρ) by

(
L̃z,ρϕ

)
(u) :=

∑
σ(u′)=u

eςz(u′) (ρ(Hol(u′)) · ϕ(u′))

where ςz is the potential on the one-sided Markov model (Σ+, σ) obtained as the restriction of the

potential ∫ τ(u)

0
(ς ◦ p)(u, s, t) dt− z · τ(u, s)

defined on (Σ,P). Note that ςz is well-defined in light of Remark 2.13, where we assumed that both

α and τ are constant in s. It is also worth remarking that both τ and p are C1, since we assumed

that the strong stable and unstable foliations of gt were C1. As a consequence, ςz and hence L̃z,ρϕ

are both C1, since we have restricted ourselves to the case where ς is smooth.

Let us recall some classical results of thermodynamic formalism; for a slightly more detailed

treatment, we refer the reader to [Mar04, p. 87-91]. Let P (ς) be the topological pressure of ς for
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the map g1. By the Ruelle-Perron-Frobenius theorem, the operator L̃P (ς),0 associated to the trivial

representation ρ = 0 has a unique positive eigenvector ϕς ∈ C1(U,R) with eigenvalue eP (ς).

Recall that νu is an equilibrium measure for the restriction of the potential ς to (Σ+, σ), which

by construction has the same topological pressure P (ς). By the Lanford-Ruelle variational principle,

this means that

eP (ς)
∫
U

ϕdνu =
∫
U

L̃P (ς),0ϕdν
u

for all ϕ ∈ C1(U, V ρ). It will be convenient to renormalize L̃P (ς),0ϕ so that it preserves the measure

νu: let Lz,ρ be the operator defined by

(Lz,ρϕ) (u) := ϕς(u)
(
L̃z,ρ(ϕ · ϕ−1

ς )
)

(u)
eP (ς)

for all ϕ ∈ C1(U, V ρ).

Remark 3.1. With the renormalizations above, we have

∫
U

ϕdνu =
∫
U

LP (ς),0ϕdν
u

for all ϕ ∈ C1(U,R).

We can alternatively write

(Lz,ρϕ) (u) =
∑

σ(u′)=u

eαz(u′)(ρ(Hol(u′)) · ϕ(u′))

where we set

αz(u) :=
∫ τ(u)

0
(ς ◦ p)(u, s, t) dt− z · τ(u, s)− log(ϕς(u)) + log(ϕς(σ(u)))− logP (ς)

for all u ∈ U – note that the positivity of ϕς is required to ensure that log(ϕς(u)) is well-defined. It

will be helpful to have a similar formulation for the iterates

(
Lnz,ρϕ

)
(u) =

∑
σn(u′)=u

eα
(n)
z (u′)(ρ(Hol(n)(u′)) · ϕ(u′))

with

α(n)
z (u) :=

∫ τ(n)(u)

0
(ς ◦ p)(u, s, t) dt− z · τ (n)(u, s)− log(ϕ(n)

ς (u)) + log(ϕ(n)
ς (σ(u)))− n logP (ς)
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for all u ∈ U . Here, we write

ϕ(n)
ς (u) :=

n−1∏
i=0

ϕς
(
ςi(u)

)
for the nth ergodic product along σ.

Our overarching goal is to establish spectral bounds for these operators; in §5, we will ultimately

prove:

Theorem 3.2. There are constants C > 0 and r < 1 so that

‖Lnz,ρϕ‖L2(νu)≤ C‖ϕ‖C1rn

for all ϕ ∈ C1(U, V ρ), all nontrivial irreducible representations ρ of G, and any z ∈ C with

|<(z)− P (ς)|< 1.

The remainder of this section will be devoted to showing how we obtain Theorem A from Theorem

3.2.

Given ϕ0, . . . , ϕk ∈ C1(Uτ,Hol,C) with
∫
Uτ,Hol

ϕi dν
u dω dr = 0, let

βk(t1, . . . , tk) :=
∫
U

∫ τ(u)

0

∫
G

ϕ0(u, h, r)
(

k∏
i=1

ϕi(u, h, r + ti)
)
dω dr dνu

be the kth correlation function βk:Rk+ → R. In order to show that βk decays exponentially in

t1, . . . , tk, we will show that the integral defining its Laplace transform β̂(ξ1, . . . , ξk) converges

absolutely for some fixed values of ξ1, . . . , ξk. The following lemma expresses the Laplace transform

in terms to the transfer operators we have just defined, the proof of which consists almost entirely

of elementary integral manipulations.

We will be somewhat cavalier in interchanging sums and integrals, though this is eventually

justified as the final expression we obtain is absolutely convergent.

Lemma 3.3. Given ϕ0, . . . , ϕk ∈ C1(Uτ,Hol,C) as above with
∫
Uτ,Hol

ϕi dν
u dω dr = 0, we can bound

the Laplace transform of the kth-order correlation by

∣∣∣β̂k(ξ1, . . . , ξk)
∣∣∣ ≤∑

ρ

∞∑
n1,...,nk=1

∫
U

(
Lmaxnj
ρ,P (ς)+ξ

∣∣∣ϕ̂ρ0,−ξ∣∣∣) (u)
(

k∏
i=1
‖ϕ̂i,ξi‖C0

)
dνu
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for <(ξ1), . . . ,<(ξk) < 0. Here, we use ϕ̂i,ξi to denote the function

ϕ̂i,ξi(u, h) :=
∫ τ(u)

0
ϕi(u, h, ti)e−ξiti dti

and β̂k to denote the Laplace transform

β̂k(ξ1, . . . , ξk) :=
∫ ∞

0
· · ·
∫ ∞

0
βk(t1, . . . , tk)e−(ξ1t1+...+ξktk) dt1 . . . dtk

for ξi ∈ R.

Proof. By definition, the Laplace transform β̂k(ξ1, . . . , ξk) of βk(t1, . . . , tk) is given by

∫ ∞
0
· · ·
∫ ∞

0

∫
U

∫ τ(u)

max(0,τ(u)−ti)

∫
G

ϕ0(u, h, r)
(

k∏
i=1

ϕi(u, h, r + ti)e−ξiti
)
dω dr dνu dt1 · · · dtk (3.3.1)

for ξ1, . . . , ξk ∈ C. Since the systems of inequalities



0 < r < τ(u)

τ(u)− ti < r

0 < ti


and



0 < r < τ(u)

τ(u) < r + ti

0 < ti


are obviously equivalent, we can rewrite (3.3.1) as

∫
U

∫
G

∫ τ(u)

0

∫ ∞
τ(u)
· · ·
∫ ∞
τ(u)

ϕ0(u, h, r)
(

k∏
i=1

ϕi(u, h, ti)e−ξi(ti−r)
)
dt1 · · · dtk dr dω dνu

by reparametrizing the domain of integration. Let us focus on the k innermost integrals for now,

where we can break up

∫ ∞
τ(u)
· · ·
∫ ∞
τ(u)

ϕ0(u, h, r)
(

k∏
i=1

ϕi(u, h, ti)e−ξi(ti−r)
)
dt1 · · · dtk

into a sum of integrals

∞∑
n1,...,nk=1

∫ τ(n1+1)(u)

τ(n1)(u)
· · ·
∫ τ(nk+1)(u)

τ(nk)(u)
ϕ0(u, h, r)

(
k∏
i=1

ϕi(u, h, ti)e−ξi(ti−r)
)
dt1 · · · dtk

over intervals of the form [τ (n)(u), τ (n+1)(u)]. Of course, we can rewrite this as

∞∑
n1,...,nk=1

∫ τ(σn1 (u))

0
· · ·
∫ τ(σnk (u))

0
ϕ0(u, h, r)

(
k∏
i=1

ϕi(u, h, ti + τ (ni)(u))e−ξi(ti−r+τ
(ni)(u))

)
dt1 · · · dtk
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by changing variables, replacing ti with ti + τ (ni)(u). Now, note that we can rewrite the integrand

ϕ0(u, h, r)
(

k∏
i=1

ϕi

(
u, h, ti + τ (ni)(u)

)
e−ξi(ti−r+τ

(ni)(u))

)

as

ϕ0(u, h, r)
(

k∏
i=1

ϕi

(
σni(u),

(
Hol(ni)(u)

)−1
◦ h, ti

)
e−ξi(ti−r+τ

(ni)(u))

)
(3.3.2)

using the identifications we made in constructing Uτ,Hol. If we integrate (3.3.2) with respect to t1

through tk, it becomes

ϕ0(u, h, r)erξ
(

k∏
i=1

ϕ̂i,ξi

(
σni(u),

(
Hol(ni)(u)

)−1
◦ h
)
e−ξiτ

(ni)(u)

)
(3.3.3)

where we set ξ :=
k∑
i=1
ξi. Similarly, integrating (3.3.3) with respect to r yields

ϕ̂0,−ξ(u, h)
(

k∏
i=1

ϕ̂i,ξi

(
σni(u),

(
Hol(ni)(u)

)−1
◦ h
)
e−ξiτ

(ni)(u)

)

and so (3.3.1) becomes

∞∑
n1,...,nk=1

∫
U

∫
G

ϕ̂0,−ξ(u, h)
(

k∏
i=1

ϕ̂i,ξi

(
σni(u),

(
Hol(ni)(u)

)−1
◦ h
)
e−ξiτ

(ni)(u)

)
dω dνu (3.3.4)

after interchanging the order of integration and summation.

Since ω is bi-invariant, we can replace h with
(
Hol(maxnj)(u)

)
◦h. Of course, we have the identity(

Hol(ni)(u)
)−1
◦Hol(maxnj)(u) = Hol(ni−(maxnj))(σni(u)), and (3.3.4) becomes

∞∑
n1,...,nk=1

∫
U

∫
G

ϕ̂0,−ξ

(
u,Hol(maxnj)(u) ◦ h

)( k∏
i=1

ϕ̂i,ξi

(
σni(u),Hol(ni−(maxnj))(u) ◦ h

)
e−ξiτ

(ni)(u)

)
dω dνu

with this change of variables. Once again, this becomes

∞∑
n1,...,nk=1

∫
G

∫
U

ϕ̂0,−ξ

(
u,Hol(maxnj)(u) ◦ h

)( k∏
i=1

ϕ̂i,ξi

(
σni(u),Hol(ni−(maxnj))(u) ◦ h

)
e−ξiτ

(ni)(u)

)
dνu dω

by simply reversing the order of integration. Let us focus on the innermost integral

∫
U

ϕ̂0,−ξ

(
u,Hol(maxnj)(u) ◦ h

)( k∏
i=1

ϕ̂i,ξi

(
σni(u),Hol(ni−(maxnj))(u) ◦ h

)
e−ξiτ

(ni)(u)

)
dνu (3.3.5)
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for the time being. Applying LP (ς),0 to the integrand in (3.3.5) a total of max nj times yields

∑
σmaxnj (u′)=u

ϕ̂0,−ξ

(
u′,Hol(maxnj)(u′) ◦ h

)( k∏
i=1

ϕ̂i,ξi

(
σni(u′),Hol(ni−(maxnj))(u′) ◦ h

)
e−ξiτ

(ni)(u′)

)
e
α

(maxnj)
P (ς) (u′)

for any given values of n1, . . . , nk ∈ N. Now, observe that e−<(ξi)τ (ni)(u) is at most e−<(ξi)τ (maxnj)(u)

so long as each <(ξi) is negative. Hence, we can bound the magnitude of the integrand in (3.3.5)

above by

∑
σmaxnj (u′)=u

∣∣∣ϕ̂0,−ξ

(
u′,Hol(maxnj)(u′) ◦ h

)∣∣∣( k∏
i=1
‖ϕ̂i,ξi‖C0

)
e
−<(ξ)τ(maxnj)(u′)+α

(maxnj)
P (ς) (u′)

using the triangle inequality. Rearranging this expression, we see that the magnitude of the integrand

in (3.3.5) is bounded above by

(
k∏
i=1
‖ϕ̂i,ξi‖C0

) ∑
σmaxnj (u′)=u

∣∣∣ϕ̂0,−ξ

(
u′,Hol(maxnj)(u′) ◦ h

)∣∣∣ e−<(ξ)τ(maxnj)(u′)+α
(maxnj)
P (ς) (u′)

 (3.3.6)

which should be reminiscent of the expression defining the transfer operator. To make this concrete,

recall that we have an L2(G)-invariant decomposition of the function ϕ̂0,−ξ ∈ C1(U,L2(G)) in terms

of its isotypic components

ϕ̂0,−ξ

(
u′,Hol(maxnj)(u′) ◦ h

)
=
∑
ρ

ϕ̂ρ0,−ξ

(
u′,Hol(maxnj)(u′) ◦ h

)
where the sum is taken over irreducible representations ρ of G – including the trivial representation.

Once again, by the triangle inequality, we can bound (3.3.6) above by

(
k∏
i=1
‖ϕ̂i,ξi‖C0

)∑
ρ

∑
σmaxnj (u′)=u

∣∣∣ϕ̂ρ0,−ξ (u′,Hol(maxnj)(u′) ◦ h
)∣∣∣ e−ξτ(maxnj)(u′)+α

(maxnj)
P (ς) (u′)


where we quickly recognize the transfer operator Lmaxnj

ρ,P (ς)+<(ξ) applied to
∣∣∣ϕ̂ρ0,−ξ∣∣∣, noting of course

that ∣∣∣ϕ̂ρ0,−ξ (u′,Hol(maxnj)(u′) ◦ h
)∣∣∣ =

∣∣∣ρ(Hol(maxnj)(u′)
)
· ϕ̂ρ0,−ξ (u′, h)

∣∣∣
for each ρ. Putting this back together, we see that (3.3.1) is bounded above by

∑
ρ

∞∑
n1,...,nk=1

∫
U

∫
G

(
Lmaxnj
ρ,P (ς)+<(ξ)

∣∣∣ϕ̂ρ0,−ξ∣∣∣) (u, h)
(

k∏
i=1
‖ϕ̂i,ξi‖C0

)
dω dνu

in magnitude, as desired. �
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We now simply use the bounds in Theorem 3.2 to conclude that the Laplace transform β̂ in

Lemma 3.3 converges.

Theorem 3.4. With conditions as above, there are uniform constants C > 0 and r < 1 so that∣∣∣∣∣
∫
Uτ,Hol

ϕ0(u, h, r)
(

k∏
i=1

ϕi(u, h, r + ti)
)
dνu dω dr

∣∣∣∣∣ ≤ Crmax tj (‖ϕ0‖C1 · . . . · ‖ϕk‖C1)

for all ϕ0, . . . , ϕk ∈ C1(Uτ,Hol,C) with
∫
Uτ,Hol

ϕi dν
u dω dr = 0.

Proof. We assume that Theorem 3.2 holds, and so we have

‖Lnz,ρϕ‖L2(νu)≤ C‖ϕ‖C1rn (3.4.1)

for all non-trivial irreducible ρ, all ϕ ∈ C1(U, V ρ) and for each z ∈ C with |<(z)− P (ς)|< 1. Up to

choosing larger values of C and r, we can also assume that the same inequality holds when ρ is

trivial – this is precisely the main result in [Dol98]. We will show that the expression bounding

β̂(ξ1, . . . , ξk) in Lemma 3.3 converges whenever the real parts of ξi simultaneously lie in the interval

− 1
k < <(ξi) < 0. The decay desired will follow immediately from applying the inverse Laplace

transform with the specific bounds we obtain.

Fix ξ1, . . . , ξk with − 1
k < <(ξi) < 0. As before, we consider the function

ϕ̂i,ξi(u, h) =
∫ τ(u)

0
ϕi(u, h, t)e−ξiti dti

and decompose ϕ̂0,−ξ into its isotypic components

ϕ̂0,−ξ =
∑
ρ

ϕ̂ρ0,−ξ

where ξ = ξ1 + . . .+ ξk as before, noting that the decomposition of L2(G) into irreducible subspaces

commutes with the Laplace transform. By (3.4.1), whenever − 1
k < <(ξi) < 0, we have

∫
U

∫
G

(
Lmaxnj
ρ,P (ς)+<(ξ)

∣∣∣ϕ̂ρ0,−ξ∣∣∣) (u, h) dω dνu ≤
∥∥∥(Lmaxnj

ρ,P (ς)+<(ξ)

∣∣∣ϕ̂ρ0,−ξ∣∣∣)∥∥∥
L2(νu)

≤ C‖ϕ̂ρ0,−ξ‖C1rmaxnj
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for each ρ. Combining this with Lemma 3.3, we are reduced to ensuring that

∑
ρ

∞∑
n1,...,nk=1

C‖ϕ̂ρ0,−ξ‖C1rmaxnj

(
k∏
i=1
‖ϕ̂i,ξi‖C0

)
<
∑
ρ

∞∑
n=1

k!nk−1C‖ϕ̂ρ0,−ξ‖C1rn

(
k∏
i=1
‖ϕ̂i,ξi‖C0

)
(3.4.2)

converges. While this appears promising, note that we can only bound

‖ϕ̂ρ0,−ξ‖C1≤ D‖ρ‖
(

sup
u∈U
‖ϕ̂ρ0,−ξ(u, ·)‖L2(G)

)

for some constant D > 0. To salvage this, we will assume for the moment that we have chosen

ϕ0 ∈ C3(Uτ,Hol,R) so that we can invoke Theorem 2.20 to bound

‖ρ‖‖ϕ̂ρ0,−ξ(u, ·)‖L2(G)≤
D′‖ϕ̂0,−ξ(u, ·)‖CN+1

‖ρ‖N

pointwise with a fixed constant D′ > 0, where N > 0 is the constant guaranteed by Proposition 2.19.

With this, it is clear that the expression on the right side of (3.4.2) converges absolutely, which says

immediately that βk must decay exponentially fast in t1, . . . , tk; this is almost what we wanted to

show, but we need an explicit bound on β̂k in order to obtain uniform estimates with the desired

constants.

Integrating the defining expression for ϕ̂i,ξi(u, h) by parts, we have

ϕ̂i,ξi(u, h) = ϕi(u, h, ti)e−ξiti
−ξi

∣∣∣∣τ(u)

0
+ 1
ξi

∫ τ(u)

0

(
∂

∂ti
ϕi(u, h, ti)

)
e−ξiti dti

for each u and h. Assuming that we choose ϕi ∈ C2(Uτ,Hol,R), we can crudely bound

‖ϕ̂i,ξi‖C1≤ D′′‖ϕi‖C2

1 + |=(ξi)|

for some constant D′′ that depends only on ‖τ‖C1 – note that it is essential here that <(ξi) is

confined to a bounded interval. We can similarly bound

‖ϕ̂0,−ξ‖CN+1 ≤
D′′‖ϕ0‖CN+2

1 + |=(ξ)|

by choosing a larger value for D′′ if necessary. Putting this all together, we have

|β̂k(ξ1, . . . , ξk)|≤ C ′‖ϕ0‖CN+2

1 + |=(ξ)|

(
k∏
i=1

‖ϕi‖C2

1 + |=(ξi)|

)
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for all ξi ∈ C with − 1
k < <(ξi) < 0. Now, we simply take the inverse Laplace transform in the

variables ξ1 through ξk in succession to get

|βk(t1, . . . , tk)|≤ e<(ξ1)t1+...+<(ξk)tk

(2π)k

∫ ∞
−∞
· · ·
∫ ∞
−∞

‖ϕ0‖CN+2

1 + |s1 + . . .+ sk|

(
k∏
i=1

‖ϕi‖C2

1 + |si|

)
ds1 . . . dsk

where si is to be interpreted as the imaginary part of ξi. To complete our decay estimate, we simply

need to show that the integral

∫ ∞
−∞
· · ·
∫ ∞
−∞

1
1 + |s1 + . . .+ sk|

(
k∏
i=1

1
1 + |si|

)
ds1 . . . dsk

converges. Unfortunately, this is somewhat involved, so we postpone our remarks on the proof for

the moment. Once the convergence of this integral has been established, we will have shown that

|βk(t1, . . . , tk)|< Crmax tj‖ϕ0‖CN+2

(
k∏
i=1
‖ϕi‖C2

)

for all ϕ0 ∈ CN+2(Uτ,Hol,R) and ϕi ∈ C2(Uτ,Hol,R). An identical argument to the one given in

Lemma 2.2 extends this to C1 functions, using [GS14, Lemma 2.4] once again. �

We now indicate how to establish the convergence of the integral encountered in the preceding

proof; we have included this for the sake of completeness, but the details are not relevant to the rest

of our argument and can be safely skipped.

Lemma 3.5. The integral

∫ ∞
−∞
· · ·
∫ ∞
−∞

1
1 + |s1 + . . .+ sk|

(
k∏
i=1

1
1 + |si|

)
ds1 . . . dsk

converges.

Proof. We will in fact show that the function defined by the integral

f(x) :=
∫ ∞
−∞

1
(1 + |x+ y|)0.5−ε

(
1

1 + |y|

)
dy (3.5.1)

decays at a rate of

|f(x)|≤ C

(1 + |x|)0.5−2ε

for all sufficiently small ε > 0; the statement of the lemma follows immediately by direct successive

integration. We will work in the case when x > 0, and split the domain of integration in (3.5.1) into
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regions where x + y, y < 0, where x + y > 0 but y < 0 and where x + y, y > 0. In the first case,

where x+ y and y are both negative, we evaluate

∫ −x
−∞

1
(1− (x+ y))0.5−ε

(
1

1− y

)
dy

for a fixed x > 0. One can verify that the antiderivative of this expression is given by(
1−(x+y)

1−y

)0.5−ε
2F1(0.5− ε, 0.5− ε; 1.5− ε; x

1−y )

(0.5− ε)(1− (x+ y))0.5−ε

where 2F1(·, ·; ·; ·) is (the principal branch of the analytic continuation of) the Gaussian hypergeo-

metric function. Hence, the integral evaluates to

∫ −x
−∞

1
(1− (x+ y))0.5−ε

(
1

1− y

)
dy = 2F1(0.5− ε, 0.5− ε; 1.5− ε; x

1+x )
(0.5− ε)(1 + x)0.5−ε

which can be bounded above by C
(1+x)0.5−ε for an appropriate choice of constant C > 0, since by

[AS64, 15.1.1] the defining series for 2F1(a, b; c; z) converges on the unit disk in the complex plane

when c− (a+ b) > 0. Similarly, on the region where x+ y is positive and y is negative, we evaluate

∫ 0

−x

1
(1 + (x+ y))0.5−ε

(
1

1− y

)
dy =

(
(1 + (x+ y))0.5+ε

2F1(0.5 + ε, 1; 1.5 + ε; 1+(x+y)
2+x )

(0.5 + ε)(2 + x)

)∣∣∣∣∣
y=0

y=−x

=
(1 + x)0.5+ε

2F1(0.5 + ε, 1; 1.5 + ε; 1+x
2+x )

(0.5 + ε)(2 + x) − 2F1(0.5 + ε, 1; 1.5 + ε; 1
2+x )

(0.5 + ε)(2 + x)

which can once again be bounded above by C
(1+x)0.5−ε for the same reasons, though with a possibly

larger choice of C > 0. Finally, when both x+ y and y are positive, we evaluate

∫ ∞
0

1
(1 + (x+ y))0.5−ε

(
1

1 + y

)
dy =


(

1+(x+y)
1+y

)0.5−ε
2F1(0.5− ε, 0.5− ε; 1.5− ε; −x1+y )

(0.5− ε)(1 + (x+ y))0.5−ε


∣∣∣∣∣∣∣
y=∞

y=0

= − 2F1(0.5− ε, 0.5− ε; 1.5− ε;−x)
0.5− ε

and we simply need to understand the asymptotics of 2F1(0.5− ε, 0.5− ε; 1.5− ε;−x) as x→∞.

By [AS64, 15.3.1], we have an integral representation given by

2F1(0.5− ε, 0.5− ε; 1.5− ε;−x) = Γ(1.5− ε)
Γ(0.5− ε)Γ(1)

∫ 1

0

1
t0.5+ε(1 + tx)0.5−ε dt (3.5.2)
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for x > 1. Setting u = tx, we can rewrite

∫ 1

0

1
t0.5+ε(1 + tx)0.5−ε dt = 1

x0.5−ε

∫ x

0

1
u0.5+ε(1 + u)0.5−ε du

= 1
x0.5−ε

(∫ 1

0

1
u0.5+ε(1 + u)0.5−ε du+

∫ x

1

1
u0.5+ε(1 + u)0.5−ε du

)

at which point we note that the expression in parentheses can be bounded above by C(1 + log x).

Hence, (3.5.2) can be bounded above by C
(1+x)0.5−2ε with a possibly larger choice of C, as desired.

The proof in the case when x < 0 is identical. �
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Chapter 4. Uniform Local Non-integrability Estimates

In this section, we will use the local accessibility of ft to establish the uniform local non-integrability

estimates necessary to prove Theorem 3.2, drawing on techniques introduced by Dolgopyat in [Dol02]

for group extensions of expanding maps. These arguments require some additional care to adapt

to our setting, with the principal difficulties stemming from the nontriviality of the fiber bundle

π:M → N and the non-integrability of the strong stable and unstable foliations of gt.

We want to translate the local accessibility of ft into an infinitesimal statement on the Markov

model we constructed in §2; we will accomplish this in two main steps. The first step is to define

a subalgebra of the Lie algebra g of G that measures the ‘non-integrability’ of the fiber bundle

over the weak stable and strong unstable foliations; this will be accomplished before making any

reference to our symbolic model. The second step is to translate this into the symbolic model.

For most of what follows, we will need to be careful to specify which chart V∗ of the trivialization

we are working with at any given point. This is a necessary complication to many of our arguments,

since many of the objects we are working with are highly sensitive to the choice of trivialization.

Fortunately, however, this will also afford us the flexibility later on to work with trivializations that

are specially adapted to our needs.

To start, we want to measure and relate three different holonomies associated to ft: namely, the

holonomies induced by the leaves of the strong stable foliation, the leaves of the strong unstable

foliation and the flow.

Definition 4.1. Fix x, y ∈ N with y ∈W su
gt (x), along with trivializations φx, φy of π:M → N at x

and y corresponding to subsets Vx, Vy ⊂ N respectively. We define the unstable holonomy

Θ+
Vx,Vy

(x, y):F → F

between x and y to be the isometry induced by the map π−1(x)→ π−1(y) that takes a ∈ π−1(x) to

the (necessarily unique) point b ∈ π−1(y)∩W su
ft

(a). The identifications of π−1(x) and π−1(y) with F
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•x

•
y

•
gt1(x)

•
gt1(y)

•
gt2(x)

•
gt2(y)

(
Holφ0,x

φ1,x
(gt1(x), x)

)−1

(
Holφ1,x

φ2,x
(gt2(x), gt1(x))

)−1

Holφ1,y
φ2,y

(gt2(y), gt1(y))
Holφ0,y

φ1,y
(gt1(y), y)

V0V1V2

Figure 1. Measuring the unstable holonomy between x and y along a sequence of
times 0 > t1 > t2 > . . . with respect to trivializations (φn,x) and (φn,y) defined over
charts Vn, illustrated in the case when the trivializations for x and y coincide. As
the unstable leaf through x and y contracts under gtn , the remaining contribution to
the unstable holonomy decreases.

are obtained via the trivializations φx, φy. The stable holonomy Θ−Vx,Vy(x, y) is defined analogously

for y ∈W ss
gt (x).

Definition 4.2. Fix x, y ∈ N with gt(x) = y, along with trivializations φx, φy of π:M → N at x

and y corresponding to subsets Vx, Vy ⊂ N respectively. We define the temporal holonomy

Holφyφx(x, y, t):F → F

between x and y to be the isometry induced by the map π−1(x)→ π−1(y) that takes a ∈ π−1(x) to

ft(a) ∈ π−1(y). The identifications of π−1(x) and π−1(y) with F are obtained via the trivializations

φx, φy.

By the end of this section, we will only need to work with a fixed, finite collection of trivializations

that cover N . At this stage, however, the flexibility in these definitions will be crucial. Our first

observation is that the unstable holonomy can be expressed in terms of the temporal holonomies

induced by the flow; this is made precise in the following proposition, whose proof is largely

summarized in Figure 1.
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Proposition 4.3. Fix x, y ∈ N with y ∈W su
gt (x), along with trivializations φ0,x and φ0,y defined at

x and y respectively. Let T = (tn) be a monotonic sequence of times with tn = 0 and tn → −∞, and

let Ix = (φn,x) and Iy = (φn,y) be sequences of trivializations for which φk,x = φk,y for all k ≥ N .

Then we can write

Θ+
φ0,x,φ0,y

(x, y) = lim
n→∞

Hol(n)
Iy,T

(y)
(

Hol(n)
Ix,T

(x)
)−1

(4.3.1)

where

Hol(n)
I∗,T

(∗) := Holφn−1,∗
φn,∗

(gtn(∗), gtn−1(∗), tn−1 − tn) ◦ . . . ◦Holφ0,∗
φ1,∗

(gt1(∗), ∗,−t1)

is the n-step temporal holonomy measured with respect to the trivializations I· at times given by T .

Proof. The convergence of the limit is simply a consequence of the fact that d(gtn(x), gtn(y))→ 0

as n→∞. More precisely, we can rewrite

Hol(n+1)
Iy,T

(y)
(

Hol(n+1)
Ix,T

(x)
)−1

as

Holφn,yφn+1,y
(gtn+1(y), gtn(y), tn−tn+1)◦

(
Hol(n)

Iy,T
(y)
(

Hol(n)
Ix,T

(x)
)−1

)
◦
(

Holφn,xφn+1,x
(gtn+1(x), gtn(x), tn − tn+1)

)−1

and since ft is C1, we see that Holφn,xφn+1,x
(gtn+1(x), gtn(x)) must also be locally C1 in gtn+1(x). Since

dN (gtn+1(y), gtn+1(x)) decay exponentially fast as n→∞ and the trivializations Ix and Iy eventually

agree, we see that

dG

(
Holφn,yφn+1,y

(gtn+1(y), gtn(y), tn − tn+1),Holφn,xφn+1,x
(gtn+1(x), gtn(x), tn − tn+1)

)
must also decay exponentially fast. In particular, for any h ∈ G, this means that

dG

(
Holφn,yφn+1,y

(gtn+1(y), gtn(y), tn − tn+1) ◦ h ◦
(

Holφn,xφn+1,x
(gtn+1(x), gtn(x), tn − tn+1)

)−1
, h

)

decays exponentially fast and hence

dG

(
Hol(n+1)

Iy,T
(y)
(

Hol(n+1)
Ix,T

(x)
)−1

,Hol(n)
Iy,T

(y)
(

Hol(n)
Ix,T

(x)
)−1

)

decays exponentially fast as n→∞. Since G is complete, the limit must exist. A similar argument

shows that this limit is in fact equal to Θ+
φ0,x,φ0,y

(x, y): since the unstable foliation of ft is invariant
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under the flow, we can rewrite

Θ+
φ0,x,φ0,y

(x, y)

as

Hol(n)
Iy,T

(y) ◦Θ+
φn,x,φn,y

(gtn(x), gtn(y)) ◦
(

Hol(n)
Ix,T

(x)
)−1

(4.3.2)

for any n > 0 and any sequences Ix, Iy and T as above. As tn → −∞, dN (gtn(x), gtn(y)) decreases

exponentially fast, and so Θ+
φn,x,φn,y

(gtn(x), gtn(y)) converges to the identity in G. Of course, this

means that, as n→∞, (4.3.2) converges to the limit in (4.3.1). Since the expression in (4.3.2) is

constant at Θ+
φ0,x,φ0,y

(x, y), this proves the proposition. �

We need to understand the infinitesimal behaviour of the stable and unstable foliations - rather

than working with the unstable holonomy as defined, we will instead consider its derivative along a

leaf of the unstable foliation.

Proposition 4.4. The unstable holonomy Θ+
φ1,φ2

(x, y) is simultaneously C1 in x and y, as x and y

vary in a fixed leaf of the strong unstable foliation of gt, and within charts associated to fixed C1

trivializations φ1 and φ2.

Proof. This follows immediately from the fact that the leaves of the strong unstable foliation of ft

are C1. �

Definition 4.5. Fix x ∈ N , a trivialization φ defined near x and a vector w ∈ T 1
xW

su
gt (x). We

define the infinitesimal holonomy at x in the direction of w to be the element

Xφ
w(x) :=

(
d

du

∣∣∣∣
u=x

(
Θ+
Vx,Vx

(x, u)
))

(w)

of the Lie algebra g of G. Let ε > 0 be small enough that φ is defined over Bε(x). The ε-infinitesimal

transitivity group at x is defined to be the linear span

hφε (x) := span
y,w

(Xw′(y)−Xw(x))

taken over all y ∈W ss
ε (x) and w ∈ T 1

xW
su
gt (x). Here, w′ denotes the pushforward of w to T 1

yW
su
gt (y)

along the leaves of the center stable foliation of gt.

We will soon verify that hφ(x) is largely independent of the choice of trivialization φ, but it is

worth making a few comments first.
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Remark 4.6. Under our hypotheses, the foliation Wws
gt is C1, and so the holonomy it induces

between the leaves of the foliaton W su
gt is also C1. This is necessary for the pushforward of

w ∈ T 1
yW

su
gt (y) in Definition 4.5 to make sense.

Remark 4.7. It is necessary to consider the relative infinitesimal holonomy, as we did in Definition

4.5. As we will see in the course of proving Proposition 4.9, the vector Xφ
w(x) in Definition 4.5 is

extremely sensitive to the choice of trivialization φ. For instance, it is certainly possible for Xφ
w(x)

to be 0 for all w ∈ T 1
xW

su
gt (x) if the trivialization φ is built to be constant along the leaves of the

strong unstable foliation, and the existence of such trivializations will be extremely helpful in the

course of proving Theorem 4.14.

Remark 4.8. The vectors Xφ
w(x) and Xφ

w′(y) vary continuously in x and w, by Proposition 4.4.

However, since hε(x) is defined as the linear span of continuously varying vectors, it is only lower

semi-continuous. In particular, there can be singular sets where the dimension of hε(x) jumps down.

It turns out that hφε (x) is not particularly sensitive to ε, though we will not prove this directly.

We will show instead that, if ft is locally G-accessible, then hε(x) is generically equal to g. For most

of what follows, we will treat ε > 0 as a fixed constant with no particular restrictions. Our first

important calculation is that the conjugacy class of hφε (x) does not depend on the trivialization φ, if

the trivializations are chosen appropriately.

Proposition 4.9. Fix ε > 0, x ∈ N and trivializations φi:π−1(Vi) → Vi × F for i = 1, 2. If

Bε(x) ⊂ Vi, then

hφ2
ε (x) = Adidφ2

φ1
(x)
(
hφ1
ε (x)

)
so long as φ1 and φ2 have constant projection to F along each leaf of the strong stable foliation of

ft and each flowline of ft.

Here, idφ2
φ1

(x):F → F is used to denote the isometry induced by the identity map π−1(x)→ π−1(x)

with the domain and target identified with F via φ1 and φ2 respectively.

Proof. We can relate the unstable holonomies between x and u ∈W su
gt (x) with respect to φ1 and φ2

by

Θ+
φ2,φ2

(x, u) = idφ2
φ1

(u) ◦Θ+
φ1,φ1

(x, u) ◦
(

idφ2
φ1

(x)
)−1

(4.9.1)
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by definition. We now simply take the derivative of each side of (4.9.1) with respect to u at u = x;

in the notation of Definition 4.5, this becomes

Xφ2
w (x) = Adidφ2

φ1
(x)

(
Xφ1
w

(x)
)

+
(

(dR)(
idφ2
φ1

(x)
)−1 ◦ d

(
idφ2
φ1

)
x

)
(w) (4.9.2)

for any w ∈ T 1
xW

su
gt (x), where dR denotes the derivative of right multiplication in G. Given any

y ∈W ss
ε (x) and w′ corresponding to w as in Definition 4.5, exactly the same calculation yields

Xφ2
w′ (y) = Adidφ2

φ1
(y)

(
Xφ1
w′ (y)

)
+
(

(dR)(
idφ2
φ1

(y)
)−1 ◦ d

(
idφ2
φ1

)
y

)
(w′) (4.9.3)

assuming, of course, that y is sufficiently close to x that we are able to use the same trivializations

φ1, φ2. Since both trivializations are constant along the strong stable foliation of ft and we chose

y ∈W ss
ε (x), we clearly have idφ2

φ1
(x) = idφ2

φ1
(y) and hence

(dR)(
idφ2
φ1

(x)
)−1 = (dR)(

idφ2
φ1

(y)
)−1

as functions T 1G→ T 1G. Moreover, since the trivializations are also constant along the flowlines of

ft, we see that idφ2
φ1

must be constant along the leaves of the center stable foliation of gt. Hence, we

must have (
d
(

idφ2
φ1

)
x

)
(w) =

(
d
(

idφ2
φ1

)
y

)
(w′)

for all w ∈ T 1
xW

su
gt (x). Subtracting (4.9.2) from (4.9.3) and using the fact that idφ2

φ1
(x) = idφ2

φ1
(y),

we then get

Xφ2
w′ (y)−Xφ2

w (x) = Adidφ2
φ1

(y)

(
Xφ1
w′ (y)

)
−Adidφ2

φ1
(x)

(
Xφ1
w

(x)
)

as desired. �

There is an analogous relation between the ε-infinitesimal transitivity groups at points along a

flowline of gt, though the expansion of the unstable leaves prevent us from obtain an equality in

this case.

Proposition 4.10. Fix ε > 0, x ∈ N and t > 0. Let φx and φgt(x) be trivializations near x and

gt(x) for which Bε(x) ⊂ Vx and Bε(gt(x)) ⊂ Vgt(x), and write h for the temporal holonomy

h(x) := Holφgt(x)
φx

(x, gt(x), t)
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measured with respect to φx and φgt(x). We then have

Adh(x)
(
hφxε (x)

)
⊂ h

φgt(x)
ε (gt(x))

so long as φx and φgt(x) have constant projection to F along each leaf of the strong stable foliation

of ft and each flowline of ft.

Proof. By Proposition 4.3, we have

Θ+
φ2,φ2

(gt(x), gt(u)) = h(u) ◦Θ+
φ1,φ1

(x, u) ◦ (h(x))−1

so long as u is sufficiently close to x. Noting the resemblance to (4.9.1), simply repeating our

calculations in Proposition 4.9 yields

X
φgt(x)
w′ (gt(y))−Xφgt(x)

w (gt(x)) = Adh(x)

(
Xφx
w′ (y)

)
−Adh(x)

(
Xφx
w

(x)
)

for all y ∈ W ss
ε (x) and all w ∈ T 1

xW
su
gt (x). This completes the proof; note that we do not obtain

equality this time since the strong stable leaves for gt contract, and there will be y′ ∈W ss
ε (gt(x))

that are not of the form gt(y) for y ∈W ss
ε (x). �

Note that Proposition 4.10 only yields an inclusion of the ε-infinitesimal transitivity groups, and

only in forward time. Our goal is to show that hφε (x) is exactly g at every x ∈ N ; unfortunately,

the proof of Proposition 4.10 suggests that even the dimension of hε(x) may fail to be constant in

general. Fortunately, given the topological transitivity of gt, what we have proven so far is enough

to show that the dimension is constant on a large set.

In light of Proposition 4.9, we can be somewhat cavalier in specifying the trivialization φ used

in defining hφε (x), if we are solely concerned with the dimension and restrict our attention to

trivializations that satisfy the hypotheses of the proposition. We will henceforth always assume that

every trivialization we work with has constant projection to F along the strong stable leaves and

flowlines of ft.

Corollary 4.11. Fix a collection of trivializations φ1, . . . , φk defined over a cover V1, . . . , Vk of N ,

and let ε > 0 be the Lebesgue number of this cover. Then dim h∗ε (·) attains its maximum value on an

open, dense subset of full measure.
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Proof. Let x ∈ N be a point at which h∗ε (x) has maximal dimension. Since h∗ε (·) is lower semi-

continuous, it has maximal dimension on an open neighborhood W containing x. By Proposition

4.10, h∗ε (·) therefore has maximal dimension on an open set containing the forward orbit of gt. This

is a dense set if gt is topologically transitive.

Since gt is ergodic and dim h∗ε (·) is measurable, it must be constant almost everywhere. The

measure ν is an equilibrium measure with a Hölder potential and therefore has full support; hence,

the open and dense set on which dim h∗ε (·) has maximal dimension must also have full measure. �

Our next objective is to relate the ε-infinitesimal transitivity groups between points along a leaf

of the strong unstable foliation of gt. If we indeed had equality in Proposition 4.10, this would

be a relatively straightforward application of Proposition 4.3. The lack of equality makes such an

approach impossible, but we can still argue as in Corollary 4.11.

Lemma 4.12. Fix ε > 0, x ∈ N and y ∈W su
gt (x), along with trivializations φx and φy for which we

have B2ε(x) ⊂ Vx and Bε(y) ⊂ Vy. If x is backwards-recurrent under gt and dim h∗ε (x) is maximal,

then

hφyε (y) = AdΘ+
φx,φy

(x,y)
(
hφxε (x)

)
and, in particular, dim h∗ε (·) is constant on W su

gt (x).

Proof. Since dim h∗ε (·) is lower semi-continuous, there is an open set W ⊂ Bε(x) on which it is

maximal. Because x is backwards recurrent, we can find a monotonic sequence of times T = {tn}

with tn → −∞ for which gtn(x) ∈ W for each n > 0. Moreover, we can suppose that t1 is large

enough that we also have gtn(y) ∈W for each n > 0. Now, write

h(n)(x) := Holφxφx(gtn(x), gtn−1(x), tn−1 − tn) ◦ . . . ◦Holφxφx (gt1(x), x,−t1)

and

h(n)(y) := Holφxφx(gtn(y), gtn−1(y), tn−1 − tn) ◦ . . . ◦Holφyφx (gt1(y), y,−t1)

for the n-step holonomies at gtn(x) and gtn(y). Since we have gtn(x), gtn(y) ∈W by construction,

we have

Adh(n)(x)
(
hφxε (gtn(x))

)
= hφxε (x)

and

Adh(n)(y)
(
hφxε (gtn(y))

)
= hφyε (y)
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by Proposition 4.10 – note that we have implicitly used the fact that B2ε(x) ⊂ Vx in writing

hφxε (gtn(x)) and hφxε (gtn(y)), where Vx is the chart over which φx is defined. By rearranging these

equations, we then have

dGr(dim h∗ε (x),g)

(
hφyε (y),Ad

h(n)(y)(h(n)(x))−1
(
hφxε (x)

))
= dGr(dim h∗ε (x),g)

(
hφxε (gtn(y)) , hφxε (gtn(x))

)
where distances are measured in the standard metric on the Grassmannian of (dim h∗ε (x))-dimensional

subspaces of g. Since hφxε (·) is lower semi-continuous and has maximal dimension on W , it must be

continuous on W . Up to passage to the interior of a compact subset of W , we can assume that hε(·)

is uniformly continuous on W . Since dN (gtn(y), gtn(x))→ 0 as n→∞, we must then have

dGr(dim h∗ε (x),g)
(
hφxε (gtn(y)) , hφxε (gtn(x))

)
as n→∞. This yields

hφyε (y) = lim
n→∞

Ad
h(n)(y)(h(n)(x))−1

(
hφxε (x)

)
at which point we simply observe that Adg(·) is continuous in g and that h(n)(y)

(
h(n)(x)

)−1

converges to Θ+
φx,φy

(x, y) by Proposition 4.3. �

In addition to the preceding lemma, we will require its analogue for the stable holonomies. The

proof is identical, and we will not repeat it.

Lemma 4.13. Fix ε > 0, x ∈ N and y ∈ W ss
gt (x), along with trivializations φx and φy for which

we have B2ε(x) ⊂ Vx and Bε(y) ⊂ Vy. If x is forwards-recurrent under gt and dim h∗ε (x) is maximal,

then

hφyε (y) = AdΘ−
φx,φy

(x,y)
(
hφxε (x)

)
and, in particular, dim h∗ε (·) is constant on W ss

gt (x).

Now that we have Lemma 4.12 and Lemma 4.13 to connect the ε-infinitesimal transitivity groups

to the unstable and stable holonomies respectively, we can achieve the first major goal of this section:

translating the local accessibility of ft into a statement about h∗ε (·). To begin, we will show that if

ft is G-accessible, then hφε (x) must be AdG-invariant for any bi-recurrent x ∈ N .

Theorem 4.14. Fix ε > 0, x ∈ N and a trivialization φx for which Bε(x) ⊂ Vx. Suppose that 2ε

is smaller than the Lebesgue number of a finite cover {Vi} of N corresponding to trivializations
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{φi}. If x is bi-recurrent under gt, dim hφxε (x) is maximal and ft is G-accessible, then hφxε (x) is

AdG-invariant.

Proof. Suppose that x is bi-reccurent. Fix an isometry g ∈ G and consider a stable-unstable

sequence x0, x1, . . . , xk, xk+1 = x0 in N with x0 = x and whose total holonomy is g, where xi+1 is

either on the strong stable or strong unstable leaf through xi for gt. For the total holonomy to be g,

we want

idφx0
φxk

(x0) ◦Θ±φxk ,φxk (xk, x0) ◦ . . . idφx2
φx1

(x2) ◦Θ±φx1 ,φx1
(x1, x2) ◦ idφx1

φx0
(x1) ◦Θ±φx0 ,φx0

(x0, x1) = g

where we can freely assume that each consecutive pair xi, xi+1 has a common trivialization φxi for

which Bε(xi), Bε(xi+1) ⊂ Vxi – this is true up to refining the sequence. Suppose, moreover, that we

have chosen φx0 = φx.

We would like to now invoke Proposition 4.9, Lemma 4.12 and Lemma 4.13 to show that hφxε (x)

is Adg-invariant for the g corresponding to the total holonomy along this sequence. The xi we have

chosen, however, may fail to be forwards- or backwards-recurrent as necessary. However, note that

idφxi+1
φxi

(·), Θ+
φxi ,φxi

(·, ·) and Θ−φxi ,φxi (·, ·) are all locally continuous in all of their arguments. Since

bi-recurrent points are dense in N , given any δ > 0, we can find a sequence of bi-recurrent points

x′0, x
′
1, . . . , x

′
k, x
′
k+1 = x′0 near x0, x1, . . . , xk, xk+1 = x0 with x′0 = x and

idφx0
φxk

(x′0) ◦Θ±φxk ,φxk (x′k, x′0) ◦ . . . ◦ idφx2
φx1

(x′2) ◦Θ±φx1 ,φx1
(x′1, x′2) ◦ idφx1

φx0
(x′1) ◦Θ±φx0 ,φx0

(x′0, x′1) = g′

so that we have dG(g′, g) < δ. Since each x′i is bi-recurrent, successive applications of Proposition

4.9, Lemma 4.12 and Lemma 4.13 show that we have

hφxε (x) = Adg′
(
hφxε (x)

)
for g′ arbitrarily close to G. Since Adg′ is continuous in g′, we then obtain

hφxε (x) = Adg
(
hφxε (x)

)
as desired. �

It is worth remarking that, under our standing assumption that trivializations must have constant

projection to F along strong stable leaves of ft, the stable holonomies Θ−φxi ,φxi (xi, xi+1) that appeared

in the preceding proof must have all be trivial.
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We want to show that h∗ε (·) is typically equal to the full Lie algebra g, though it seems unlikely

that this should be true if we merely assume that ft is globally G-accessible. With Theorem 4.14,

however, we can show that having hφε (x) = g at any point is (typically) equivalent to ft being locally

G-accessible at that point.

Theorem 4.15. Fix ε > 0, x ∈ N and a trivialization φx defined over Vx ⊂ N for which we have

B3ε(x) ⊂ Vx. Moreover, suppose that hφxε (·) is continuous and has maximal dimension on B3ε(x),

and that the forwards orbit of x under gt is dense in B2ε(x). If ft is locally G-accessible at x, then

hφxε (x) = g.

Proof. Without loss of generality, suppose that we have chosen φx so that Θ+
φx,φx

(x, u) is trivial for

all u ∈
(
W su
gt (x) ∩B2ε(x)

)◦
, and so that Θ−φx,φx(s1, s2) is trivial whenever s1 and s2 lie on the same

(local) leaf of the strong stable foliation of gt in B2ε(x).

We will write h := hφxε (x) and suppose for the sake of contradiction that h ( g is a proper

subalgebra. By Proposition 4.12 and our choice of φx, we must have hφxε (u) = h for all u ∈ Bε(x)

lying on the local leaf through x of the strong unstable foliation of gt. Hence, for any u1 ∈ Bε(x),

each vector Xφx
w′ (u1) used in the definition of hφxε (u) must lie in the Lie algebra h. Integrating this,

we see that the unstable holonomies Θ+
φx,φx

(u1, u2) are constrained to exp(h) for all u1, u2 ∈ Bε(x)

that lie on the same local leaf of the strong unstable foliation of gt.

Now, consider H := exp(h) and consider an element g ∈ G \H that lies in the complement. By

our construction of φx, all unstable holonomies are constrained to H and all stable holonomies are

trivial – hence, no local sequence of stable and unstable holonomies along a sequence of points

x, x1, x2, . . . xk, x lying in Bε(x) can result in a total holonomy of g. Moreover, since h is an ideal

by Theorem 4.14, H is a normal subgroup of G; hence, we cannot obtain a total holonomy of g for

any choice of trivialization. Since ft is locally G-accessible at x, this is a contradiction. �

Theorem 4.15 gives us the infinitesimal analogue of local accessibility that we sought, and all that

we need to do now is verify that this translates properly into the symbolic model we are working

with. In principle, the difficulty is that unstable leaves for the discrete dynamical system (R,P) are

typically not unstable leaves for gt – fortunately, our choice of trivializations will circumvent almost

all of these problems.
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Recall that (R,P) is a Markov partition associated to gt, which descends to a C1 expanding

model (U, σ) by projecting along leaves of the strong stable foliation of gt. We want to define

unstable holonomies entirely within the symbolic model; a natural candidate for a definition comes

from Proposition 4.3. For everything that follows, we will assume that each Ri ⊂ N has been

assigned a fixed trivialization φi defined on a neighborhood Bε(Ri), with the property that φi has

constant projection to F along each leaf of the strong stable foliation of ft and each flowline of ft.

By choosing and fixing trivializations at each point in R, we will no longer need to specify which

trivialization we are using, at least when dealing with the symbolic model.

Definition 4.16. Fix x ∈ R and y ∈ W su
P (x). The symbolic unstable holonomy Θ+

symb(x, y) is

defined to be the limit

Θ+
symb(x, y) := lim

n→∞
Hol(n) (P−n(y)

) (
Hol(n) (P−n(x)

))−1

where we write

Hol(n)(u) := Hol
(
Pn−1(u)

)
◦ . . . ◦Hol (u)

for the nth holonomy under the Poincaré return map.

It is straightforward to verify that this limit exists. Moreover, our choice of trivializations

ensures that the symbolic unstable holonomies agree with the appropriate (non-symbolic) unstable

holonomies.

Proposition 4.17. Fix x ∈ R and y ∈ W su
P (x). There is a (possibly negative) t so that gt(y) ∈

W su
gt (x) for which we have

Θ+
symb(x, y) = Θ+

φx,φy
(x, gt(y))

assuming x and y are sufficiently close, where φx, φy are trivializations corresponding to the respective

parts of the Markov partition.

Proof. The existence of such a t satisfying |t|< τ(y), τ
(
P−1(y)

)
follows immediately from the

construction of the Markov partition (R,P). We then clearly have

Θ+
symb(x, y) = Holφyφy (gt(y), y,−t) ◦Θ+

φx,φy
(x, gt(y))
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by Proposition 4.3 and Definition 4.16. By our choice of trivialization and the fact that t does not

exceed the return time of y, Holφyφy(gt(y), y,−t) is the identity in G, as desired. �

And now, we can analogously define the symbolic infinitesimal transitivity group:

Definition 4.18. Fix x ∈ Ui and a vector w ∈ T 1
xUi. We define the symbolic infinitesimal holonomy

at x in the direction of w to be the element

Xsymb
w (x) :=

(
d

du

∣∣∣∣
u=x

(
Θ+

symb (x, u)
))

(w)

of the Lie algebra g of G. The symbolic infinitesimal transitivity group at x is defined to be th linear

span

hsymb(x) := span
s,s′,w

(Xw′([x, s′])−Xw([x, s])

where we take the span over s, s′ ∈ Si, w ∈ T 1
xUi and let w′ be the projection of w to [x, s′] via

center-stable leaves followed by the flow.

With very little work, we can now prove

Theorem 4.19. Fix a bi-recurrent x ∈ Ui at which dim hε(x) is maximal, and suppose that ft is

G-accessible. Then hsymb(x) = g.

Proof. By Proposition 4.17, the unstable holonomies used in Definition 4.5 and Definition 4.18 are

the same. Hence, the regular and symbolic transitivity groups agree, and so by Theorem 4.14, we

have hsymb(x) = g. �

This is almost the result we want, but we need to use some Lie theory to extract the explicit

estimates that we will use in the next section. We will want to phrase this in terms of σ, which

means minor notational changes in the preceding theorems. Recall that σ:U → U is not actually

invertible; to make sense of the inverse, we must choose branches of σ−n locally.

Definition 4.20. A consistent past for u ∈ Ui is a sequence of maps {v(n):Ui → Uj(n) | n ≥ 0}

where v(0) = id|Ui and σ ◦ v(n) = v(n−1).

Remark 4.21. A consistent past for u ∈ Ui corresponds exactly to a choice of stable element s ∈ Si

– we can recover the maps
{
v(n)

}
by projecting the Poincaré return map P(−n) along leaves of the

strong stable foliation.
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Finally, we can establish the main estimate.

Theorem 4.22. Let ρ be an isotypic component of the representation of G on L2(G). There is an

open subset Ulni ⊂ U and constants ε, δ, n0 > 0 so that, for any x ∈ Ulni and any ϕ ∈ C1(U, V ρ),

there are consistent pasts v1 =
{
v

(n)
1

}
and v2 =

{
v

(n)
2

}
defined near x and a C1 vector field

w:Ulni → T 1Ulni satisfying

∥∥∥(dρ(Xsymb
w(u),v1

(u)−Xsymb
w(u),v2

(u)
))

(ϕ(u))
∥∥∥
L2(G)

≥ ε‖ρ‖

for all u ∈ Bδ(x).

Proof. By definition, we have

Xsymb
w,vi (x) = d

du

∣∣∣∣
u=x

(
lim
n→∞

Hol(n)
(
v

(n)
i (u)

)(
Hol(n)(v(n)

i (x)
)−1

)

for all u ∈ Bδ(x). The derivatives of the terms in the sequence converge exponentially fast in n, so

we can interchange the limit and the derivative to get

Xsymb
w,vi (x) = lim

n→∞

(
d

du

∣∣∣∣
u=x

(
Hol(n)(v(n)

i (y))
(

Hol(n)
(
v

(n)
i (x)

))−1
))

for any consistent past vi. Since the Xsymb
w(u),vi −X

symb
w(u),vj taken over pasts vi, vj and vectors w form a

basis of g, there is a finite n0 so that the approximations

Xsymb
w,v

(n0)
i

(x) := d

du

∣∣∣∣
u=x

(
Hol(n0)(v(n0)

i (y))
(

Hol(n0)
(
v

(n0)
i (x)

))−1
)

can also be used to form a basis Xsymb
w(u),v(n0)

i

(x) −Xsymb
w(u),v(n0)

j

(x), taken again over pasts vi, vj and

vectors w. Hence, we have a Casimir

Ω =
∑

(gij)−1
(
Xsymb
w,v

(n0)
i

(x)−Xsymb
w,v

(n0)
j

(x)
)(

Xsymb
w,v

(n0)
i

(x)−Xsymb
w,v

(n0)
j

(x)
)

for some finite collection of pasts vi, vj and a given vector w. This acts on V ρ by scalar multiplication

by ‖ρ‖2, and so we get

dρ

(∑
(gij)−1

(
Xsymb
w,v

(n0)
i

(x)−Xsymb
w,v

(n0)
j

(x)
)2
)

(ϕ(x)) = ‖ρ‖2ϕ(x)
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for this collection of pasts, and the same vector w. Now, there is a uniform constant ε > 0 –

depending only on the gij and g – so that∥∥∥∥dρ(Xsymb
w,v

(n0)
i

(x)−Xsymb
w,v

(n0)
j

(x)
)

(ϕ(x))
∥∥∥∥
L2(G)

≥ ε‖ρ‖ϕ(x)

for some choice of vi, vj and w. SinceXsymb
w,v (u) varies continuously in w and u, there is a neighborhood

Bδ(x) of x in U and a C1 vector field w:Bδ(x)→ T 1Bδ(x) for which∥∥∥∥dρ(Xsymb
w(u),v(n0)

i

(u)−Xsymb
w(u),v(n0)

j

(u)
)

(ϕ(u))
∥∥∥∥
L2(G)

≥ ε

2‖ρ‖ϕ(u)

holds for all u ∈ Bδ(x), as desired. �
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Chapter 5. Spectral Bounds for Lnz,ρ

In this section, we establish bounds for the twisted transfer operators Lnz,ρ acting on C1(U, V ρ)

with respect to the L2(νu)-norm. The key ingredients are the local non-integrability estimate in

Theorem 4.22, the diametric regularity of the measure νu and the C1 regularity of αz from the

definition of the transfer operators.

The strategy adopted in this section is by now classical, dating back to Dolgopyat in [Dol98] and

[Dol02]; an account of this almost completely adapted to our setting was also given by Winter in

[Win16]. The reader already familiar with these arguments should find no surprises in this section,

but we feel it necessary to include them given their delicate nature and the minor differences in our

contexts.

We begin by recalling the definition of the twisted transfer operator

(
Lnz,ρϕ

)
(u) :=

∑
σn(u′)=u

eα
(n)
z (u′)ρ

(
Hol(n)(u′)

)
ϕ(u′)

associated to an irreducible representation ρ of G on V ρ ⊂ L2(G). In principle, the difficulty in

obtaining contraction for
∥∥∥Lnz,ρϕ∥∥∥

L2(νu)
as n→∞ lies in the possibility that the rotation introduced

by the action of ρ may cause resonances between the vectors ϕ(u′) ∈ V ρ, and this may happen on a

set of large measure.

The local non-integrability estimate provided by Theorem 4.22, however, suggests that we should

typically be able to find u′1, u
′
2 with σn(u′1) = σn(u′2) ∈ Ulni so that

ρ
(

Hol(n)(u′1)
)
ϕ(u′1) and ρ

(
Hol(n)(u′2)

)
ϕ(u′2)

are ‘uniformly’ non-parallel. The main argument in the section boils down to verifying that this can

be accomplished on an adequately large set, with explicit uniformity estimates.

Throughout this section, we will work with a fixed isotypic component V ρ of the regular repre-

sentation of G on L2(G). However, it is worth noting that most of the intermediate constants will
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fundamentally depend on ρ, and keeping track of these dependencies is essential to obtaining a final

bound in Theorem 5.7 that is independent of ρ.

Though we need to deal with Lnz,ρϕ for any ϕ ∈ C1(U, V ρ), it will be helpful to work instead with

slightly more regular real-valued functions Φ ∈ C1(U,R+) with bounded logarithmic derivative; in

other words,we will require

sup
w∈T 1

uU

|(dΦ)u (w)| < CΦ(u)

for all u ∈ U . We will use KC to denote the class of such functions

KC :=
{

Φ ∈ C1(U,R+) | log Φ is C-Lipschitz
}

for any constant C > 0.

Since gt is Anosov, the expansion rates of gt on U are bounded away from 1. Since the return

times τ :R→ R are bounded away from 0, the slowest expansion rates of dσn on U are therefore

also bounded away from 1. For what follows, let fκn and bKn with 1 < κ < K be the slowest and

fastest expansion rate of any unit vector in T 1U under dσn.

We are interested in functions Φ ∈ KC with bounded logarithmic derivative because they can be

used to control less regular functions ϕ ∈ C1(U,R). The following lemma makes this precise.

Lemma 5.1. Fix C > 0, ϕ ∈ C1(U, V ρ) and Φ ∈ KC . There is a δ > 0 so that, if

‖ϕ(u)‖L2(G) < Φ(u)

sup
w∈T 1

uU

‖(dϕ)u (w)‖
L2(G) < CΦ(u)

for all u ∈ U , then for any u0 ∈ U ,

∥∥∥ϕ(v(n)(u)
)∥∥∥

L2(G)
≤ 3

4Φ
(
v(n)(u)

)
or

∥∥∥ϕ(v(n)(u)
)∥∥∥

L2(G)
≥ 1

4Φ
(
v(n)(u)

)
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for all u ∈ Bδ(u0), each n > 0 and each consistent past v =
{
v(n)

}
defined near u0. Moreover, for

any u0 ∈ U ,

Φ
(
v(n)(y)

)
≤ 2Φ

(
v(n)(x)

)
for all x, y ∈ Bδ(u0). The choice of constant δ > 0 can be made so that we have δC = A for some

uniform constant A, which does not depend on ρ, Φ, ϕ, u0, v or n.

Proof. Since we chose Φ ∈ KC , log Φ is C-Lipschitz and we therefore have

∣∣∣log
(

Φ
(
v(n)(y)

))
− log

(
Φ
(
v(n)(x)

))∣∣∣ ≤ C

fκn
d(x, y)

≤ C

f
d(x, y)

for any x, y ∈ U . Exponentiating both sides, this means

Φ
(
v(n)(y)

)
≤ e

C
f d(x,y)Φ

(
v(n)(x)

)
(5.1.1)

for any x, y ∈ U . Now, suppose that d(x, y) ≤ 2δ for some δ > 0, and fix a unit speed path

γ: [0, 2δ]→ U0 with γ(0) = y and γ(2δ) = x. We then have∣∣∣∣∥∥∥ϕ(v(n)(x)
)∣∣∣
L2(G)

−
∥∥∥ϕ(v(n)(y)

)∥∥∥
L2(G)

∣∣∣∣ ≤ ∫ 2δ

0

∣∣∣〈grad
(
ϕ ◦ v(n)

)
(γ(t)), γ′(t)

〉
T 1N

∣∣∣ dt
≤ C

fκn

∫ 2δ

0

(
Φ ◦ v(n)

)
(γ(t)) dt

≤ C

fκn
2δe

C
fκn d(x,y)Φ

(
v(n)(y)

)
≤ C

f
δe

C
f 2δΦ

(
v(n)(y)

)
by the fundamental theorem of calculus and our bounds on ϕ. Fix δ small enough to ensure

C

f
2δe

C
f 2δ ≤ 1

8

and

e
C
f 2δ ≤ 2

hold simultaneously – note that we really only require that Cδ is sufficiently small, and so δ can be

chosen inversely proportional to C. We therefore have

Φ
(
v(n)(y)

)
≤ 2Φ

(
v(n)(x)

)
(5.1.2)
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and ∥∥∥ϕ(v(n)(x)
)∥∥∥

L2(G)
≤
∥∥∥ϕ(v(n)(y)

)∥∥∥
L2(G)

+ 1
8Φ
(
v(n)(y)

)
(5.1.3)

whenever d(x, y) < 2δ. To conclude, suppose that we had

∥∥∥ϕ(v(n)(y)
)∥∥∥

L2(G)
≤ 1

4Φ
(
v(n)(y)

)
at some y ∈ Bδ(u0), for a given u0 ∈ U and n. Then by (5.1.3) and (5.1.2), we must have

∥∥∥ϕ(v(n)(x)
)∥∥∥

L2(G)
≤ 1

4Φ
(
v(n)(y)

)
+ 1

8Φ
(
v(n)(y)

)
≤ 2

4Φ
(
v(n)(x)

)
+ 2

8Φ
(
v(n)(x)

)
≤ 3

4Φ
(
v(n)(x)

)
for any x ∈ Bδ(u0), as desired. �

Lemma 5.2. Fix C > 0, ϕ ∈ C1(U, V ρ) and Φ ∈ KC . Take δ > 0 as in Lemma 5.1 and suppose

that we have

‖ϕ(u)‖L2(G) < Φ(u)

sup
w∈T 1

uU

‖(dϕ)u (w)‖ < CΦ(u)

for all u ∈ U . If v(n) is a past defined on Bδ(u0) satisfying

∥∥∥ϕ(v(n)(u)
)∥∥∥

L2(G)
≥ 1

4Φ
(
v(n)(u)

)
for all u ∈ Bδ(u0), and some given u0 ∈ U , then we have

sup
w∈T 1

uBδ(u0)

∥∥∥∥∥
(
d

(
ϕ ◦ v(n)∥∥ϕ ◦ v(n)

∥∥
L2(G)

))
u

(w)

∥∥∥∥∥
L2(G)

≤ 8C
fκn

for all u ∈ Bδ(u0).

Proof. Differentiating the fraction, we see that we need to bound

sup
w∈T 1

uBδ(u0)

∥∥∥∥∥∥
(
d
(
ϕ ◦ v(n)))

u
(w)

∥∥ϕ (v(n)(u)
)∥∥
L2(G) − ϕ

(
v(n)(u)

) (
d
(∥∥ϕ ◦ v(n)

∥∥
L2(G)

))
u

(w)∥∥ϕ (v(n)(u)
)∥∥
L2(G)

∥∥∥∥∥∥
L2(G)

(5.2.1)
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for any u ∈ U . Note that we always have
(
d

(∥∥∥ϕ ◦ v(n)
∥∥∥
L2(G)

))
u

(w) ≤
∥∥∥(d(ϕ ◦ v(n)

))
u

(w)
∥∥∥
L2(G)

and so (5.2.1) is at most

sup
w∈T 1

uBδ(u0)

2
∥∥ϕ (v(n)(u)

)∥∥
L2(G)

∥∥(d (ϕ ◦ v(n)))
u

(w)
∥∥
L2(G)∥∥ϕ (v(n)(u)

)∥∥2
L2(G)

(5.2.2)

by the triangle inequality. Cancelling terms, we can reduce (5.2.2) to

sup
w∈T 1

uBδ(u0)

2
∥∥(d (ϕ ◦ v(n)))

u
(w)
∥∥
L2(G)∥∥ϕ (v(n)(u)

)∥∥
L2(G)

which is at most

sup
w∈T 1

uBδ(u0)
w′∈T 1

v(n)(u)
Bδ(u0)

2
∥∥∥(d (ϕ))v(n)(u) (w′)

∥∥∥
L2(G)

∥∥(dv(n))
u

(w)
∥∥
T 1N∥∥ϕ (v(n)(u)

)∥∥
L2(G)

(5.2.3)

by the chain rule. Since fκn is the slowest expansion rate of any vector in T 1U under dσn, we can

bound

sup
w∈T 1

uU

∥∥∥(dv(n)
)
u

(w)
∥∥∥
T 1N

≤ 1
fκn

for all u ∈ U . By hypothesis, we also have

sup
w′∈T 1

v(n)(u)
U

∥∥∥(dϕ)v(n)(u) (w′)
∥∥∥
L2(G)

≤ CΦ
(
v(n)(u)

)

for all u ∈ U , and so (5.2.3) can be bounded above by

2CΦ
(
v(n)(u)

)
fκn

∥∥ϕ (v(n)(u)
)∥∥
L2(G)

which is in turn at most
8CΦ

(
v(n)(u)

)
fκnΦ

(
v(n)(u)

)
by hypothesis. Cancelling Φ, we obtain the result desired. �

Before proceeding to the main argument of the section, we need an elementary linear algebra

result.
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Proposition 5.3. Let (V, ·) be an inner product space, and suppose that we have

‖v̂ − ŵ‖≥ ε

for v, w ∈ V , where v̂, ŵ denote the unit vectors in the directions of v and w respectively. If

‖v‖≤ ‖w‖, then

‖v + w‖≤
(

1− ε2

4

)
‖v‖+‖w‖

Proof. We expand using the polarization identity, obtaining

‖v + w‖2 = ‖v‖2+‖w‖2+2‖v‖‖w‖(v̂ · ŵ)

= ‖v‖2+‖w‖2+‖v‖‖w‖(‖v̂‖2+‖ŵ‖2−‖v̂ − ŵ‖2)

≤ ‖v‖2+‖w‖2+(2− ε2)‖v‖‖w‖

which we claim is bounded by ((
1− ε2

4

)
‖v‖+‖w‖

)2

(5.3.1)

from above. To see this, observe that we can expand (5.3.1) as
(

1− 2ε
2

4 + ε4

16

)
‖v‖2+‖w‖2+2

(
1− ε2

4

)
‖v‖‖w‖

and we are reduced to showing that
(

2ε
2

4 −
ε4

16

)
‖v‖2≤

(
ε2 − 2ε

2

4

)
‖v‖‖w‖

after some elementary algebraic manipulations. We now observe that it suffices to prove that
(

2ε
2

4 −
ε4

16

)
‖v‖2≤

(
ε2 − 2ε

2

4

)
‖v‖2

since ‖v‖≤ ‖w‖ by hypothesis, and this inequality is evident if ε ≤ 1. �

We might be tempted to argue that, if ϕ ∈ C1(U, V ρ) is controlled by Φ ∈ KC as in Lemma 5.1,

then we can similarly bound
∥∥∥(Lnz,ρϕ) (u)

∥∥∥
L2(G)

by
(
Ln<(z),0Φ

)
(u) pointwise – however, while this
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turns out to be true, it is unhelpful since LnP (ς),0Φ fails to contract as n→∞. Indeed, since Φ is

strictly positive by definition, LnP (ς),0Φ will converge to
∫
U Φ dνu > 0.

The solution is to artificially introduce contraction into the transfer operators, and Theorem 4.22

is precisely what ensures that we can do this while maintaining a pointwise bound. In the next

lemma, we will show that we can uniformly and explicitly bound
∥∥∥(Lnz,ρϕ) (u)

∥∥∥
L2(G)

away from(
Ln<(z),0Φ

)
(u) on a measurable portion of any sufficiently small set.

Lemma 5.4. Fix C > 0, ϕ ∈ C1(U, V ρ) and Φ ∈ KC with

‖ϕ(u)‖L2(G) < Φ(u)

sup
w∈T 1

uU

‖(dϕ)u (w)‖
L2(G) < CΦ(u)

for all u ∈ U . Let Ulni ⊂ U be the open subset given by Theorem 4.22 and let δ > 0 be the constant

given by Lemma 5.1. There are constants n0 > 0, ε > 0 and s < 1 so that, for any x ∈ Ulni with

Bδ(x) ⊂ Ulni, we can find

• a point y ∈ Ulni with Bsδ(y) ⊂ Bδ(x) and

• a pair of pasts v(n0)
1 , v

(n0)
2 defined on Bδ(x)

for which we can bound∥∥∥∥eα(n0)
z

(
v

(n0)
1 (u)

)
ρ
(

Hol(n0)
(
v

(n0)
1 (u)

))
ϕ
(
v

(n0)
1 (u)

)
+e

α
(n0)
z

(
v

(n0)
2 (u)

)
ρ
(

Hol(n0)
(
v

(n0)
2 (u)

))
ϕ
(
v

(n0)
2 (u)

)∥∥∥∥
L2(G)

above by (
1− (εδ(1 + |=(z)|)‖ρ‖)2

4096

)
e
α

(n0)
<(z)

(
v

(n0)
1 (u)

)
Φ
(
v

(n0)
1 (u)

)
+ e

α
(n0)
<(z)

(
v

(n0)
2 (u)

)
Φ
(
v

(n0)
2 (u)

)
for all u ∈ Bsδ(y) and all z ∈ C with |<(z)− P (ς)| < 1. The constant ε can be chosen independently

of ρ and C, while n0 depends only on C
‖ρ‖ . The constant s can be chosen uniformly in C and ρ.

Proof. We will deal with a fixed n > 0 throughout the proof, and specify how large n needs to

be as we proceed – it is important to note that we cannot deal with arbitrarily large n without

foregoing the uniformity of the bounds we wish to obtain. We proceed in cases depending on which
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alternative of Lemma 5.1 holds. For any pasts v(n)
1 and v

(n)
2 , if we have

∥∥∥ϕ(v(n)
1 (u)

)∥∥∥
L2(G)

≤ 3
4Φ
(
v

(n)
1 (u)

)

for all u ∈ Bδ(x), then since ρ is unitary we can clearly bound∥∥∥∥eα(n)
z

(
v

(n)
1 (u)

)
ρ
(

Hol(n)
(
v

(n)
1 (u)

))
ϕ
(
v

(n)
1 (u)

)
+ e

α(n)
z

(
v

(n)
2 (u)

)
ρ
(

Hol(n)
(
v

(n)
2 (u)

))
ϕ
(
v

(n)
2 (u)

)∥∥∥∥
L2(G)

above by
3
4

(
e
α

(n)
<(z)

(
v

(n)
1 (u)

)
Φ
(
v

(n)
1 (u)

)
+ e

α
(n)
<(z)

(
v

(n)
2 (u)

)
Φ
(
v

(n)
2 (u)

))

for all u ∈ Bδ(x). In this case, we are done by simply setting y := x. Similarly, if we had

∥∥∥ϕ(v(n)
2 (u)

)∥∥∥
L2(G)

≤ 3
4Φ
(
v

(n)
2 (u)

)
for all u ∈ Bδ(x), then we are again done by setting y := x, up to interchanging our choice of v1

and v2. So we may as well assume that the second alternative of Lemma 5.1 holds for both v(n)
1 and

v
(n)
2 , and that we therefore have

∥∥∥ϕ(v(n)
` (u)

)∥∥∥
L2(G)

≥ 1
4Φ
(
v

(n)
` (u)

)
(5.4.1)

for all u ∈ Bδ(x). We will temporarily abbreviate

g`(u) := Hol(n)
(
v

(n)
` (u)

)
ϕ̂`(u) :=

ϕ
(
v

(n)
` (u)

)
∥∥∥ϕ(v(n)

` (u)
)∥∥∥

L2(G)

and

ψ̂`(u) := e
=(z)τ(n)

(
v

(n)
`

(u)
)
i
ϕ
(
v

(n)
` (u)

)
∥∥∥ϕ(v(n)

` (u)
)∥∥∥

L2(G)

for the sake of clarity. Note that ϕ̂` and ψ̂` are well-defined on Bδ(x) as an immediate consequence

of (5.4.1). Now, by reverse the triangle inequality,

∥∥∥ρ (g1(x)) ψ̂1(x)− ρ (g2(x)) ψ̂2(x)
∥∥∥
L2(G)

(5.4.2)
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is at least ∥∥∥ρ (g1(x)) ψ̂1 (y)− ρ (g2(x)) ψ̂2 (y)
∥∥∥
L2(G)

−
∥∥∥ρ (g1(x)) ψ̂1 (y)− ρ (g1(x)) ψ̂1 (x)

∥∥∥
L2(G)

−
∥∥∥ρ (g2(x)) ψ̂2 (x)− ρ (g2(x)) ψ̂2 (y)

∥∥∥
L2(G)

(5.4.3)

for any y ∈ Bδ(x). Since group elements act by isometries with respect to the L2(G) norm, (5.4.3)

is equal to

∥∥∥ρ (g2(y)g−1
2 (x)g1(x)

)
ψ̂1 (y)− ρ (g2(y)) ψ̂2 (y)

∥∥∥
L2(G)

−
∥∥∥ψ̂1 (y)− ψ̂1 (x)

∥∥∥
L2(G)

−
∥∥∥ψ̂2 (x)− ψ̂2 (y)

∥∥∥
L2(G)

which we can bound below by∥∥∥ρ (g2(y)g−1
2 (x)g1(x)

)
ψ̂1 (y)− ρ (g1(y)) ψ̂1 (y)

∥∥∥
L2(G)

−
∥∥∥ψ̂1 (y)− ψ̂1 (x)

∥∥∥
L2(G)

−
∥∥∥ψ̂2 (x)− ψ̂2 (y)

∥∥∥
L2(G)

−
∥∥∥ρ (g2(y)) ψ̂2(y)− ρ (g1(y)) ψ̂1(y)

∥∥∥
L2(G)

(5.4.4)

using the reverse triangle inequality once again. We can rewrite (5.4.4) as∥∥∥ρ (g1(x)g−1
1 (y)g1(y)

)
ψ̂1 (y)− ρ

(
g2(x)g−1

2 (y)g1(y)
)
ψ̂1 (y)

∥∥∥
L2(G)

−
∥∥∥ψ̂1 (y)− ψ̂1 (x)

∥∥∥
L2(G)

−
∥∥∥ψ̂2 (x)− ψ̂2 (y)

∥∥∥
L2(G)

−
∥∥∥ρ (g2(y)) ψ̂2(y)− ρ (g1(y)) ψ̂1(y)

∥∥∥
L2(G)

(5.4.5)

by replacing ψ̂1(y) with g−1
1 (y)g1(y)ψ̂1(y) in the first term of the first line, and multiplying both

terms on the first line by g2(x)g−1
2 (y). Hence, (5.4.2) is bounded below by (5.4.5), and we see that

∥∥∥ρ (g1(x)) ψ̂1(x)− ρ (g2(x)) ψ̂2(x)
∥∥∥
L2(G)

+
∥∥∥ρ (g2(y)) ψ̂2(y)− ρ (g1(y)) ψ̂1(y)

∥∥∥
L2(G)

is at least ∥∥∥ρ (g1(x)g−1
1 (y)g1(y)

)
ψ̂1 (y)− ρ

(
g2(x)g−1

2 (y)g1(y)
)
ψ̂1 (y)

∥∥∥
L2(G)

−
∥∥∥ψ̂1 (y)− ψ̂1 (x)

∥∥∥
L2(G)

−
∥∥∥ψ̂2 (x)− ψ̂2 (y)

∥∥∥
L2(G)

(5.4.6)
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after rearranging. By Theorem 4.22, there is an N > 0, ε > 0, a choice of pasts v(n)
1 and v(n)

2 , and a

y with d(x, y) = δ
2 for which we have

∥∥∥ρ (g1(x)g−1
1 (y)g1(y)

)
ψ̂1 (y)− ρ

(
g2(x)g−1

2 (y)g1(y)
)
ψ̂1 (y)

∥∥∥
L2(G)

≥ ε(1 + |=(z)|)‖ρ‖δ2 (5.4.7)

for all n ≥ N – note that we have applied the theorem to

e=(z)τ(n)(u)iρ
(

Hol(n)(u)
) ϕ(u)
‖ϕ(u)‖L2(G)

which is certainly a smooth function in C1(U, V ρ). On the other hand, by Lemma 5.2, ϕ̂`(u) is at

worst 8C
fκn -Lipschitz in u on Bδ(x), and we can estimate

∣∣∣∣(d(e=(z)
(
τ(n)◦v(n)

`

)
i

))
u

(w)
∣∣∣∣
L2(G)

=
(∣∣∣∣=(z)e=(z)

(
τ(n)◦v(n)

`

)
i

∣∣∣∣)
∣∣∣∣∣
n∑
i=1

(
d
(
τ ◦ vi`

))
v

(n)
`

(u) (w′)

∣∣∣∣∣
≤ |=(z)|

(
n∑
i=1

‖τ‖C1

fκi

)

≤ |=(z)| ‖τ‖C
1

f(κ− 1)

for all u ∈ U , w ∈ T 1
uBδ(x) and w′ ∈ T 1

v`(u)Bδ(x). Hence, we can bound

∥∥∥ψ̂`(x)− ψ̂`(y)
∥∥∥ ≤ ( 8C

fκn
+ |=(z)| ‖τ‖C

1

f(κ− 1)

)
d(x, y)

since we chose y ∈ Bδ(x). Suppose that n and ‖ρ‖ are large enough so that we have
(

8C
fκn

+ |=(z)| ‖τ‖C
1

f(κ− 1)

)
<
ε

8(1 + |=(z)|)‖ρ‖

for some constant K > 0. Note that we can make this choice of n so that it depends only on C
‖ρ‖

and not ‖ρ‖ directly; moreover, the requirement that ‖ρ‖ be sufficiently large can be made absolute,

and in particular is independent of z. This ensures

∥∥∥ψ̂`(x)− ψ̂`(y)
∥∥∥
L2(G)

≤ ε

8 (1 + |=(z)|) ‖ρ‖δ (5.4.8)
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since d(x, y) ≤ δ. Note that our choice of n here depends only on C
‖ρ‖ . Plugging (5.4.7) and (5.4.8)

into (5.4.6), we conclude that

∥∥∥ρ(g1(x))ψ̂1(x)−ρ(g2(x))ψ̂2(x)
∥∥∥
L2(G)

+
∥∥∥ρ(g1(y))ψ̂1(y)−ρ(g2(y))ψ̂2(y)

∥∥∥
L2(G)

≥ ε

4δ(1+ |=(z)|)‖ρ‖

and so ∥∥∥ρ(g1(x))ψ̂1(x)− ρ (g2(x)) ψ̂2(x)
∥∥∥
L2(G)

>
ε

8δ(1 + |=(z)|)‖ρ‖ (5.4.9)

or ∥∥∥ρ(g1(y))ψ̂1(y)− ρ (g2(y)) ψ̂2(y)
∥∥∥
L2(G)

>
ε

8δ(1 + |=(z)|)‖ρ‖ (5.4.10)

must hold. Without loss of generality, suppose (5.4.10) holds. Using the Lipschitz estimate on ϕ̂`,

we can bound

sup
w∈T 1

uBδ(x)

∥∥∥(d(ρ (g`) ψ̂`
))

u
(w)
∥∥∥
L2(G)

by

sup
w∈T 1

uBδ(x)

∥∥∥(((dρ)g`(u) ◦ (dg`)u
)

(w)
)
ψ̂`(u) + ρ (g`(u))

(
dψ̂`

)
u

(w)
∥∥∥
L2(G)

(5.4.11)

for all u ∈ Bδ(x). A straightforward calculation shows that

sup
w∈T 1

uBδ(x)
‖(dg`)u (w)‖ ≤ sup

w∈T 1
uBδ(x)

n∑
i=1

∥∥∥(d(Hol ◦v(i)
))

u
(w)
∥∥∥
T 1G

≤
n∑
i=1

‖Hol‖C1

fκi

≤ ‖Hol‖C1

f (κ− 1)

and we have

sup
w′∈T 1

g`(u)G

∥∥∥(dρ)g`(u) (w′)
∥∥∥
L2(G)

≤ ‖ρ‖

by Definition 2.17; note that since ρ is a homomorphism, the operator norm of dρ at g`(u) is

equivalent to the norm at the identity. Hence, (5.4.11) is at most

‖ρ‖ ‖Hol‖C1

f (κ− 1) + ε

8(1 + |=(z)|)‖ρ‖
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by our choice of δ, since ρ acts by L2(G)-isometries. We can make a uniform choice of s < 1 so that

s

(
‖ρ‖ ‖Hol‖C1

f (κ− 1) + ε

8(1 + |=(z)|)‖ρ‖
)
<

ε

32(1 + |=(z)|)‖ρ‖ (5.4.12)

and we then have

∥∥∥ρ (g1(y)) ψ̂1(y)− ρ (g1(u)) ψ̂1(u)
∥∥∥
L2(G)

<
ε

32δ(1 + |=(z)|)‖ρ‖ (5.4.13)

and ∥∥∥ρ (g2(y)) ψ̂2(y)− ρ (g2(u)) ψ̂2(u)
∥∥∥
L2(G)

<
ε

32δ(1 + |=(z)|)‖ρ‖ (5.4.14)

for all u ∈ Bsδ(y). Combining (5.4.13) and (5.4.14) with (5.4.9), we now have

∥∥∥ρ (g1(u)) ψ̂1(u)− ρ (g2(u)) ψ̂2(u)
∥∥∥
L2(G)

>
ε

16δ(1 + |=(z)|)‖ρ‖

for all u ∈ Bsδ(y). Now, fix u ∈ Bsδ(y). By Proposition 5.3, we can then bound∥∥∥∥eα(n)
z

(
v

(n)
1 (u)

)
ρ
(

Hol(n)
(
v

(n)
1 (u)

))
ϕ
(
v

(n)
1 (u)

)
+ e

α(n)
z

(
v

(n)
2 (u)

)
ρ
(

Hol(n)
(
v

(n)
2 (u)

))
ϕ
(
v

(n)
2 (u)

)∥∥∥∥
L2(G)

above by
(

1− (εδ(1 + |=(z)|)‖ρ‖‖)2

1024

)
e
α

(n)
<(z)

(
v

(n)
1 (u)

)
Φ
(
v

(n)
1 (u)

)
+ e

α
(n)
<(z)

(
v

(n)
2 (u)

)
Φ
(
v

(n)
2 (u)

)
(5.4.15)

assuming without loss of generality that∥∥∥∥eα(n)
<(z)

(
v

(n)
1 (u)

)
ϕ
(
v

(n)
1 (u)

)∥∥∥∥
L2(G)

≤
∥∥∥∥eα(n)

<(z)

(
v

(n)
2 (u)

)
ϕ
(
v

(n)
2 (u)

)∥∥∥∥
L2(G)

(5.4.16)

held for this particular u – this is true up to interchanging v(n)
1 and v(n)

2 . It simply remains to ensure

that a similar inequality extends to Bsδ(y) for this particular choice of v(n)
1 and v

(n)
2 – this is not

immediate since (5.4.16) could certainly fail to hold on the entire ball Bsδ(y). This will take some
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extra work. Note that we have

sup
w∈T 1

uU

∥∥∥∥(d(eα(n)
<(z)Φ

))
u

(w)
∥∥∥∥
L2(G)

≤ sup
w∈T 1

uU

∣∣∣∣(deα(n)
<(z)

)
u

(w)
∣∣∣∣ ‖Φ(u)‖L2(G) + e

α
(n)
<(z)(u)‖(dΦ)u (w)‖

L2(G)

≤
∥∥∥α(n)
<(z)

∥∥∥
C1
e
α

(n)
<(z)(u) ‖Φ(u)‖L2(G) + Ce

α
(n)
<(z)(u)Φ(u)

≤

(
n∑
i=1

bKi
∥∥α<(z)

∥∥
C1

)
e
α

(n)
<(z)(u) ‖Φ(u)‖L2(G) + Ce

α
(n)
<(z)(u)Φ(u)

≤
(
b
∥∥α<(z)

∥∥
C1

Kn+1 −K
K − 1 + C

)
e
α

(n)
<(z)(u)‖Φ(u)‖L2(G)

for all u ∈ U . By making s smaller if necessary, we can ensure that, in addition to (5.4.12), we also

have

sδ

(
b
∥∥α<(z)

∥∥
C1

Kn+1 −K
K − 1 + C

)
< δC = A

where A is the uniform constant guaranteed by Lemma 5.1. Note that this can be accomplished by a

uniform choice of s, since n is fixed and z is required to satisfy |<(z)− P (ς)| < 1. As a consequence,

we see by Lemma 5.1 that

1
2e

α
(n)
<(z)

(
v

(n)
`

(u′)
)
Φ
(
v

(n)
` (u′)

)
≤ eα

(n)
<(z)

(
v

(n)
`

(u)
)
Φ
(
v

(n)
` (u)

)
≤ 2eα

(n)
<(z)

(
v

(n)
`

(u′)
)
Φ
(
v

(n)
` (u′)

)
(5.4.17)

for all u, u′ ∈ Bsδ(y). Now, suppose that∥∥∥∥eα(n)
z

(
v

(n)
1 (u′)

)
ρ
(

Hol(n)
(
v

(n)
1 (u′)

))
ϕ
(
v

(n)
1 (u′)

)
+ e

α(n)
z

(
v

(n)
2 (u′)

)
ρ
(

Hol(n)
(
v

(n)
2 (u′)

))
ϕ
(
v

(n)
2 (u′)

)∥∥∥∥
L2(G)

were bounded above by

e
α

(n)
<(z)

(
v

(n)
1 (u′)

)
Φ
(
v

(n)
1 (u′)

)
+
(

1− (εδ(1 + |=(z)|)‖ρ‖)2

1024

)
e
α

(n)
<(z)

(
v

(n)
2 (u′)

)
Φ
(
v

(n)
2 (u′)

)
(5.4.18)

for some u′ ∈ Bsδ(y) – this is in contrast to the bound by (5.4.15) that we have at u ∈ Bsδ(y). If

we had

e
α

(n)
<(z)

(
v

(n)
2 (u′)

)
Φ
(
v

(n)
2 (u′)

)
≤ eα

(n)
<(z)

(
v

(n)
1 (u′)

)
Φ
(
v

(n)
1 (u′)

)
then (5.4.18) is in turn bounded above by

(
1− (εδ(1 + |=(z)|)‖ρ‖)2

1024

)
e
α

(n)
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(
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)
+ e

α
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(
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Φ
(
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2 (u′)

)
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which is consistent with (5.4.15). If, on the other hand, we had

e
α

(n)
<(z)

(
v

(n)
1 (u′)

)
Φ
(
v

(n)
1 (u′)

)
≤ eα

(n)
<(z)

(
v

(n)
2 (u′)

)
Φ
(
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(n)
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)
then we can invoke (5.4.17) twice to see that

e
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(
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Φ
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1 (u)

)
≤ 2eα

(n)
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(
v
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1 (u′)
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Φ
(
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1 (u′)

)
≤ 2eα

(n)
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(
v

(n)
2 (u′)

)
Φ
(
v

(n)
2 (u′)

)
≤ 4eα

(n)
<(z)

(
v

(n)
2 (u)

)
Φ
(
v

(n)
2 (u)

)
for any other u ∈ Bsδ(y). Hence, (5.4.15) is at most

e
α

(n)
<(z)

(
v

(n)
1 (u)

)
Φ
(
v

(n)
1 (u)

)
+
(

1− (εδ(1 + |=(z)|)‖ρ‖)2

4096

)
e
α

(n)
<(z)

(
v

(n)
2 (u)

)
Φ
(
v

(n)
2 (u)

)
and so we can make a consistent choice of v(n)

1 , v
(n)
2 on the entire ball Bsδ(y). Note that if (5.4.9)

held instead, everything that followed would have been identical, with Bsδ(x) instead of Bsδ(y). �

The point of Lemma 5.4 is that, in any ball Bδ(x) of radius δ, we can always find a uniformly

smaller ball Bsδ(y) ⊂ Bδ(x) on which Lnz,ρϕ is strictly and uniformly bounded away from Ln<(z),0 (Φ).

This means that we can ‘bump’ Φ down on any such ball B δ
4
(y) without affecting our inequality.

Moreover, using the diametric regularity of the measure νu, we can ensure that we are able to do

this on a set of uniformly large measure.

Lemma 5.5. Fix C > 0, ϕ ∈ C1(U, V ρ) and Φ ∈ KC . Suppose we have

‖ϕ(u)‖L2(G) < Φ(u)

sup
w∈T 1

uU

‖(dϕ)u (w)‖
L2(G) < CΦ(u)

for all u ∈ U , and let δ > 0 be the constant guaranteed by Lemma 5.1 and n0 > 0, ε > 0 and s < 1

be the constants guaranteed by Lemma 5.4. For a given ρ and z ∈ C with |<(z)− P (ς)|< 1, we can

find a function β ∈ C1(U,R) for which we have

∥∥(Ln0
z,ρϕ

)
(u)
∥∥
L2(G) ≤

(
Ln0
<(z),0 (βΦ)

)
(u)
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for all u ∈ U , as well as

∥∥∥Ln0
P (ς),0 (βΦ)

∥∥∥
L2(νu)

≤
(

1− r (εδ(1 + |=(z)|)‖ρ‖)2

4096 νu (Ulni)
)
‖Φ‖L2(νu)

for some uniform constant r < 1. The constant r depends on n0 and C, but not on ρ, z, ϕ or Φ;

the function β may depend on all of these.

Proof. By the Vitali covering lemma, we can find a finite collection of points x1, . . . , xk ∈ Ulni

so that the balls Bδ(x1), . . . , Bδ(xk) ⊂ Ulni of radius δ are pairwise disjoint, while the balls

B3δ(x1), . . . , B3δ(xk) of radius 3δ cover Ulni. By Lemma 5.4, for each i we can find a ball Bsδ(yi) ⊂

Bδ(xi) and pasts v(n0)
1,i , v

(n0)
2,i so that∥∥∥∥eα(n0)
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(
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is bounded above by
(

1− (εδ(1 + |=(z)|)‖ρ‖)2

4096

)
e
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)
Φ
(
v

(n0)
1,i (u)

)
+ e

α
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<(z)

(
v

(n0)
2,i (u)

)
Φ
(
v

(n0)
2,i (u)

)

for all u ∈ Bsδ(yi). For each i, define a C1 radially-decreasing bump function ηi centered at v(n0)
1,i (yi)

by

ηi

(
v

(n0)
1 (u)

)
=



(εδ(1+|=(z)|)‖ρ‖)2

4096 if d(u, yi) ≤ sδ
2

(εδ(1+|=(z)|)‖ρ‖)2

4096 exp
(

1 + 1
( 1
sδ d(u,yi)− 1

2 )2−1

)
if sδ

2 < d(u, yi) < sδ

0 if sδ ≤ d(u, yi)

for all u ∈ Bδ(xi). We can smoothly extend ηi to all of U by setting ηi = 0 outside v(n0)
1 (u) (Bδ(xi)).

To define β, we simply set

β(u) := 1−
∑
i

ηi(u)

and by Lemma 5.4 we clearly have

∥∥(Ln0
z,ρϕ

)
(u)
∥∥
L2(G) ≤

(
Ln0
<(z),0 (βΦ)

)
(u)

for all u ∈ U . It simply remains to estimate
∥∥∥Ln0

P (ς),0 (βΦ)
∥∥∥
L2(νu)

.

In principle, we have only introduced contraction into a single term in Ln0
P (ς),0(βΦ) at any given

point; we need to argue that this was significant enough for our purposes. The regularity of Φ will
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be essential here. As in (5.1.1), note that the ratio between Φ
(
v

(n0)
a (u)

)
and Φ

(
v

(n0)
b (u)

)
cannot
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Φ
(
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(n0)
a (u)

)
Φ
(
v

(n0)
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) ≤ eCf diam(N)

for any pair of pasts va, vb. As a consequence, we must have
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4096 Φ
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1,i (u)

)
(5.5.1)

where `0 is the number of pasts v(n0)
a of length n0, and the sum is taken over all such pasts. Of

course, we can find a uniform D > 0 so that D−1 ≤ e
α

(n0)
<(z)

(
v

(n0)
a (u)

)
≤ D for all pasts and all u ∈ U ;

note that D can be chosen independently of z so long as we require |<(z)− P (ς)|< 1. From this,

we can bound

(εδ(1 + |=(z)|)‖ρ‖)2

4096D2
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C
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following (5.5.1). From this, we immediately obtain the pointwise bound

(
Ln0
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)
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for all u ∈
⋃
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2
(yi) by construction. On the other hand, from the monotonicity of Ln0

P (ς),0 we of

course have (
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)
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)
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for all u ∈ U −
⋃
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2
(yi). Taken together, these inequalities mean that we can bound
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from above by
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for our particular choice of ρ and z. Since the operator Ln0
P (ς),0 preserves the measure νu (by our

renormalization), this is exactly

‖Φ‖L2(νu)

1− (εδ(1 + |=(z)|)‖ρ‖)2

4096D2
(
`0e

C
f diam(N)

)νu (⋃B sδ
2

(yi)
)

By the diametric regularity of the measure νu, there is a uniform constant r < 1 for which

νu
(
B sδ

2
(yi)

)
≥ rνu (B3δ(yi))

for all i. Hence, we have

νu
(⋃

B sδ
2

(yi)
)
≥ rνu

(⋃
B3δ(yi)

)
≥ rνu (Ulni)

completing the proof. �

It is important to recognize that many of the estimates so far do in fact depend on ρ, =(z) or

C – this will be problematic for the spectral bounds we want to obtain. To isolate some of these

dependencies, we will restrict our attention to control functions Φ ∈ KC(1+|=(z)|)‖ρ‖, where we hope

to be able to make a uniform choice of an appropriate C. In particular, we want to find a C so that

KC(1+|=(z)|)‖ρ‖ is invariant under Lnz,ρ, at least for z with <(z) sufficently close to P (ς).

Proposition 5.6. There is a uniform choice of constant C > 0 so that, for all ϕ ∈ C1(U, V ρ) and

Φ ∈ KC(1+|=(z)|‖ρ‖, if we have

‖ϕ(u)‖L2(G) ≤ Φ(u)

sup
w∈T 1

uU

‖(dϕ)u(w)‖L2(G) ≤ C(1 + |=(z)|)Φ(u)

for all u ∈ U , then we can bound
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∥∥∥
L2(G)

≤ C(1 + |=(z)|)‖ρ‖
(
Ln<(z),0Φ

)
(u)

for all u ∈ U , and all n > 0.

Proof. Fix u ∈ U . By definition, the transfer operator can be expressed as the sum

(
Lnz,ρϕ

)
(u) =

∑
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e
α(n)
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(
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(n)
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(u)
)
ρ
(

Hol(n)
(
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ϕ
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)
(5.6.1)
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over pasts v(n)
i . We need to control

sup
w∈T 1

uU

∥∥∥d (Lnz,ρ(ϕ)
)
u

(w)
∥∥∥
L2(G)

which we will accomplish by differentiating (5.6.1) term-by-term. For a fixed i, the derivative
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can be bounded by the sum∥∥∥∥eα(n)
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(5.6.4)

for all w ∈ T 1
uU . We will bound each of these terms individually, beginning with (5.6.2). Observe

that

(
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i

))
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fκj
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f(κ− 1)

and so (5.6.2) is at most
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α
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i
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for all u ∈ U and w ∈ T 1
uU . Exactly the same calculations show us that

∥∥∥(d(Hol(n) ◦v(n)
i
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∥∥∥
T 1G
≤

n∑
j=1

∥∥∥(d(Hol ◦v(j)
i
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≤
n∑
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‖Hol‖C1

fκj

≤
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f(κ− 1)

and hence that (5.6.3) is at most
(
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)
e
α<(z)

(
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(n)
i

(u)
) ∥∥∥ϕ(v(n)

i (u)
)∥∥∥

L2(G)

by the definition of ‖ρ‖ and the chain rule. Finally, we can bound (5.6.4) by

C(1 + |=(z)|)‖ρ‖
fκn

e
α<(z)

(
v

(n)
i

(u)
)
Φ
(
v

(n)
i (u)

)
by hypothesis. Combining all of these with the pointwise bound on the norm of ϕ, we see that so

long as we have

‖αz‖C1

f(κ− 1) + ‖ρ‖ ‖Hol‖C1

f(κ− 1) + C(1 + |=(z)|)‖ρ‖
fκn

< C(1 + |=(z)|)‖ρ‖ (5.6.5)

we obtain the bounds desired. Note that ‖Hol‖C1 is a uniform constant and ‖αz‖C1 is at most

‖α<(z)‖C1(1 + |=(z)|). Since ‖α<(z)‖C1 is uniformly bounded when <(z) is confined to the bounded

interval |<(z)− P (ς)|< 1, we can clearly choose a C > 0 so that (5.6.5) holds for all n > 0. �

Theorem 5.7. Fix a nontrivial isotypic representation ρ > 0 and z ∈ C with |<(z) − P (ς)|< 1.

There are uniform constants D > 0 and r0 < 1 so that

∥∥Lnz,ρϕ∥∥L2(νu) ≤ Dr
n
0 ‖ϕ‖C1

for all ϕ ∈ C1(U, V ρ). Neither D nor r0 depends on ρ, ϕ or z.

Proof. Fix C > 0, N > 0 as in Lemma 5.6 and n0 > N as in Lemma 5.5. We begin by setting

ϕ0(u) := ϕ(u)

Φ0(u) := ‖ϕ‖C1
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for which we clearly have Φ0 ∈ KC(1+|=(z)|)‖ρ‖ as well as the bounds

‖ϕ0(u)‖L2(G) ≤ Φ0(u)

sup
w∈T 1

uU

‖(dϕ0)u (w)‖
L2(G) ≤ C(1 + |=(z)|)‖ρ‖Φ0(u)

assuming that C > 0 is large enough so that C‖ρ‖> 1 for all ρ. By Lemma 5.5, we can find a

function β0 ∈ C1(U,R) for which we have

∥∥(Ln0
z,ρϕ0

)
(u)
∥∥
L2(G) ≤

(
Ln0
<(z),0 (β0Φ0)

)
(u)

and ∥∥∥Ln0
<(z),0 (β0Φ0)

∥∥∥
L2(νu)

≤ r0‖Φ0‖L2(νu)

for a uniform choice of n0 > 0. Moreover, r0 and ‖β0‖C1 can be made uniform in ρ, ϕ and z by

choosing δ so that C(1 + |=(z)|)‖ρ‖·δ is constant, as in Lemma 5.1.

We want to iterate this, for which it will be crucial that we can find a uniform C0 so that we have

β0Φ0 ∈ KC0(1+|=(z)|)‖ρ‖ for all Φ0 ∈ KC0(1+|=(z)|)‖ρ‖. For any given Φ0 ∈ KC(1+|=(z)|)‖ρ‖, we have

sup
w∈T 1

uU

|(d(Φ0β0)u(w)| ≤ β0(u)
(

sup
w∈T 1

uU

|(dΦ0)u(w)|
)

+ Φ0(u)
(

sup
w∈T 1

uU

|(dβ0)u(w)|
)

≤ sup
w∈T 1

uU

Φ0(u) (C(1 + |=(z)|)‖ρ‖β0(u) + (dβ0)u(w))

for all u ∈ U . From the construction of β0, and by our earlier remarks on our choice of δ, it is clear

that we can choose a uniform C0 large enough so that

sup
w∈T 1

uU

C(1 + |=(z)|)‖ρ‖β0(u) + (dβ0)u(w) ≤ C0β0(u)

for any choice of β0 as in Lemma 5.5. We then clearly have β0Φ0 ∈ KC0(1+|=(z)|)‖ρ‖, and hence by

Lemma 5.6 we get

sup
w∈T 1

uU

∥∥(d(Ln0
z,ρϕ))u(w)

∥∥
L2(G) ≤ C0(1 + |=(z)|)‖ρ‖

(
Ln<(z),0Φ0

)
(u)

for all u ∈ U .
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Now, we can repeat what we have done so far and inductively choose βi−1 as in Lemma 5.5,

setting

ϕi(u) :=
(
Ln0
z,ρϕi−1

)
(u)

Φi(u) :=
(
Ln0
<(z),0(βi−1Φi−1)

)
(u)

for i ≥ 1. Note that we have just shown that Φ1 ∈ KC0(1+|=(z)|)‖ρ‖ and that we have

‖ϕ1(u)‖L2(G) ≤ Φ1(u)

sup
w∈T 1

uU

‖(dϕ1)u (w)‖
L2(G) ≤ C0(1 + |=(z)|)‖ρ‖Φ1(u)

for all u ∈ U . As before, we get

‖ϕi(u)‖L2(G) ≤ Φi(u)

sup
w∈T 1

uU

‖(dϕi)u (w)‖
L2(G) ≤ C0(1 + |=(z)|)‖ρ‖Φi(u)

inductively for all i ≥ 1, and moreover

‖Φi‖L2(νu) ≤ r0‖Φi−1‖L2(νu)

by construction. Chaining these inequalities together, we have

∥∥Li·n0
z,ρ ϕ

∥∥
L2(νu) ≤ r

i
0‖ϕ‖C1

which is almost what we need. To conclude, observe that we have

∥∥(Li·n0+k
z,ρ ϕ

)
(u)
∥∥
L2(νu) ≤ r

i
0‖ϕ‖C1‖Lkz,ρ‖L2(G)

where ‖Lkz,ρ‖L2(G) denotes the operator norm of Lkz,ρ. If k < n0 and |<(z)− P (ς)|< 1, then we can

find a uniform bound D > 0 so that ‖Lkz,ρ‖L2(G)≤ D, as desired. �

The differentiability of the potential ς was essential to much of what we have done so far in

this section; to extend our results to the case when ς is only Hölder, however, is a relatively

straightforward approximation argument, identical to the one given in [Dol98]. We sketch this

below.
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Corollary 5.8. With notation as in Theorem 5.7, we have

‖Ln<(z),ρϕ‖L2(νu)≤ Drn0 ‖ϕ‖C1

when the potential ς is only Hölder continuous.

Proof. Suppose that ς is Hölder continuous. As in [Dol98], we can find a sequence of smooth

potentials ς(=(z)) ∈ C1(U,R) indexed by =(z) for which we have

sup
u∈U

∣∣∣ς0(u)− ς(=(z))(u)
∣∣∣ ≤ ‖ς0‖Cα( 1

|=(z)|

)α
2

(5.8.1)

and ∥∥∥ς(=(z))
∥∥∥
C1

< C
√
|=(z)| (5.8.2)

for some uniform constant C > 0. We consider the alternatively-defined transfer operator

(
L̂z,ρϕ

)
(u) :=

∑
σ(u′)=u

eα̂z(u′)(ρ(Hol(u′)) · ϕ(u′))

where we set

α̂z(u) := ς(=(z))(u)−<(z) · τ(u, s)− log (ϕς(x)(u)) + log (ϕς(x)(σ(u)))− logP (ς(x))

for u ∈ U . By (5.8.1), α̂z converges uniformly to α<(z) as =(z)→∞, and hence L̂z,ρϕ must converge

to L<(z),ρϕ in the L2(νu) norm.

Now, we simply observe that the spectral bound in Theorem 5.7 holds for the operator L̂z,ρ,

since the main properties required of α̂z – namely that ‖α̂z‖C1≤ C(1 + |=(z)|) for large |=(z)| when

|<(z)− P (ς)|≤ 1 – are guaranteed by (5.8.2) and [Dol98, Lemma 1]. Moreover, note that all the

constants, and particularly those originating from Proposition 5.6, can be chosen uniformly in =(z).

Since the inequality in Theorem 5.7 holds with the same constants for L̂z,ρ for each =(z), it must

hold in the limit, as desired. �

64



Appendix

Examples

In this appendix, we will present two examples of direct calculations of the rate of mixing for

specific systems. In the first, we show that the doubling map on the unit circle is exponentially

mixing; in the second, we discuss a construction of Ruelle that a locally constant suspension flow

can mix arbitrarily slowly.

The calculation for the doubling map is an elementary exercise in Fourier analysis, but illustrates

an important point: the regularity of the functions under consideration is essential.

Example 5.9. The doubling map T (x) = 2x mod 1 on the unit circle [0, 1]/∼ is exponentially

mixing.

Proof. Fix functions ϕ,ψ ∈ Cα(S1,R) with
∫
ϕdx =

∫
ψ dx = 0 and consider their Fourier expan-

sions

ϕ(x) =
∑
n∈Z

ϕne
2πinx and ψ(x) =

∑
n∈Z

ψne
2πinx

where ϕ0 = ψ0 = 0 by hypothesis. Since
∫
e2πinx dx = 0 whenever n 6= 0, the correlation between

ϕ ◦ T k and ψ is simply

∫
(ϕ ◦ T k) · ψ dx =

∫ (∑
n∈Z

ϕne
2πi2knx

)(∑
n∈Z

ψne
2πinx

)
dx

=
∑
n∈Z

ϕnψ−2kn

which we can bound above by

≤

(∑
n∈Z
|ϕn|2

)(∑
n∈Z
|ψ−2kn |2

)
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by the Cauchy-Schwarz inequality. We then have

∑
n∈Z
|ϕn|2= ‖ϕ‖L2

by the Plancherel theorem and

|ψ−2kn|≤ C
‖ψ‖Cα
|−2kn|α

since Fourier coefficients for Hölder functions decay. This yields

|
∫

(ϕ ◦ T k) · ψ dx|≤ C(β)‖ϕ‖L2
‖ψ‖Cα
|−2kn|β

for any β < α and a uniform constant C(β) depending only on β.∣∣∣∣∫ (ϕ ◦ T k) · ψ dx
∣∣∣∣ ≤ C‖ϕ‖L2

‖ψ‖Cα
|−2kn|α

as desired. �

With the same calculation, it is easy to see that C0 functions can mix arbitrarily slowly.

Of course, even the simplest calculations in the non-uniformly or partially hyperbolic settings are

significantly more involved. It is worth noting that systems can fail to be exponentially mixing for

more subtle reasons – our next example is a construction of Ruelle given in [Rue83], giving Axiom

A flows which are mixing, but fail to mix exponentially fast.

Example 5.10 (Ruelle). Let (X,T ) be the two-sided shift on two symbols and consider the quotient

X × R/∼ obtained by identifying (x, τ(x)) ∼ (T (x), 0); here, the roof function τ is given by

τ ((xn)) =


1 if xn = 0

α if xn = 1

for all sequences (xn) ∈ X, with α > 1 irrational. Define the suspension flow ft:X×R/∼→ X×R/∼

by ft(x, s) = (x, s+ t).

Then ft is mixing, but not exponentially mixing.

Proof. It is a consequence of [Bow72] that ft is mixing. We will show that it cannot be exponentially

mixing. Consider functions ϕ,ψ:X×R/∼→ R and suppose that ϕ(x, s) and ψ(x, s) are independent
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of x, and supported on 0 ≤ s ≤ 1, and that

∫
X

∫ τ(x)

0
ϕ(x, s) ds dµ(x) =

∫
X

∫ τ(x)

0
ψ(x, s) ds dµ(x) = 0

We can write the correlation function as

ρ(t) =
∫
X

∫ τ(x)

0
ϕ(x, s+ t) · ψ(x, s) ds dµ(x)

which we can decompose as

ρ(t) =
∫
X

∫ max(0,τ(x)−t)

0
ϕ(x, s+ t) · ψ(x, s) ds dµ(x) +

∫
X

∫ τ(x)

max(0,τ(x)−t)
ϕ(x, s+ t) · ψ(x, s) ds dµ(x)

for any t > 0. We will analyze the domain of convergence of the Laplace transform ρ̂(ξ), from which

we will conclude that ρ(t) cannot decay exponentially fast. Note that the first expression on the

right hand side has compact support (as a function of t), and for the purposes of convergence of the

Laplace transform we can restrict our attention to the second term.

We can rewrite the Laplace transform as

ρ̂(ξ) =
∫ ∞

0

∫
X

∫ τ(x)

max(0,τ(x)−t)
ϕ(x, s+ t) · ψ(x, s)e−ξt ds dµ(x) dt

=
∫
X

∫ τ(x)

0

∫ ∞
τ(x)

ϕ(x, t) · ψ(x, s)e−ξ(t−s) dt ds dµ(x)

=
∫
X

(∫ τ(x)

0
ψ(x, s)eξs ds

)(∫ ∞
τ(x)

ϕ(x, t)e−ξt dt
)
dµ(x)
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and expand the second factor

∫ ∞
τ(x)

ϕ(x, t)e−ξt dt =
∞∑
n=1

∫ τ(n+1)(x)

τ(n)(x)
ϕ(x, t)e−ξt dt

=
∞∑
n=1

∫ τ(n+1)(x)−τ(n)(x)

0
ϕ(x, t+ τ (n)(x))e−ξ(t+τ

(n)(x)) dt

=
∞∑
n=1

∫ τ(n+1)(x)−τ(n)(x)

0
ϕ(T−nx, t)e−ξ(t+τ

(n)(x)) dt

=
∞∑
n=1

∫ τ(n+1)(x)−τ(n)(x)

0
ϕ(x, t)e−ξ(t+τ

(n)(x)) dt

=
∞∑
n=1

e−ξτ
(n)(x)

∫ τ(n+1)(x)−τ(n)(x)

0
ϕ(x, t)e−ξt dt

using the fact that ϕ is independent of x and so

ϕ(x, t) = ϕ(T−nx, t)

by construction. Returning to our original integral, we get

ρ̂(ξ) =
∞∑
n=1

∫
X

e−ξτ
(n)(x)

(∫ τ(x)

0
ψ(x, s)eξs ds

)(∫ τ(n+1)(x)−τ(n)(x)

0
ϕ(x, t)e−ξt dt

)
dµ(x)

and we can note that

ψ̂(ξ) :=
∫ τ(x)

0
ψ(x, s)eξs ds

is independent of x, since ψ(x, s) is independent of x, is supported on the interval 0 ≤ s ≤ 1 and we

have τ(x) ≥ 1 by construction. Similarly,

ϕ̂(ξ) :=
∫ τ(n+1)(x)−τ(n)(x)

0
ϕ(x, t)e−ξt dt

is independent of x and depends only ξ since τ (n+1)(x)− τ (n)(x) ≥ 1. Using δn(x) to denote the

value of xn for x = (xi) ∈ X, and δcn(x) := 1− δn(x), we can rewrite our integral as

ρ̂(ξ) =
(
ψ̂(ξ)

)(
ϕ̂(ξ)

)( ∞∑
n=1

∫
X

e−ξτ
(n)(x) dµ(x)

)

For a given n > 0, we have

τ (n)(x) = k + (n− k)α
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where k is the number of zeroes appearing in x0, . . . , xn−1 and (n− k) is the number of ones. Of

course, we can then write

∞∑
n=1

∫
X

e−ξτ
(n)(x) dµ(x) =

∞∑
n=1

2−n
n∑
k=0

(
n

k

)
e−ξke−ξα(n−k)

using the fact that µ is a product measure. By the binomial theorem, we have

ρ̂(ξ) = ψ̂(ξ)ϕ̂(ξ)
( ∞∑
n=1

(
e−ξ + e−ξα

2

)n)

We want to conclude now that ρ̂(ξ) cannot be analytic on any strip of the form <(ξ) > c for

c < 0, from which it will follow immediately that ρ(t) could not have decayed at a rate of ect for

any c < 0.

Note that we have Fourier expansions

ψ(x, s) =
∑
`∈Z

ψne
2πi`s and ϕ(x, s) =

∑
`∈Z

ϕne
2πi`s

so that we can evaluate

ψ̂(ξ) =
∫ 1

0
ψ(x, s)eξs ds

=
∑
`∈Z

ψn

∫ 1

0
e(2πi`+ξ)s ds

=
∑
`∈Z

ψn
e2πi`+ξ − 1

2πi`+ ξ

and similarly

ϕ̂(ξ) =
∑
`∈Z

ϕn
e2πi`−ξ − 1

2πi`− ξ

We see from this that ψ̂(ξ) and ϕ̂(ξ) are entire functions, whereas

∞∑
n=1

(
e−ξ + e−ξα

2

)n
= e−ξ + e−ξα

2− (e−ξ + e−ξα)

has a pole whenever e−ξ + e−ξα = 2. This occurs infinitely often in any strip c < <(ξ) ≤ 0, and we

can clearly choose ϕ and ψ so that the zeroes of ψ̂ and ϕ̂ do not coincide with these poles. This

shows that ρ̂(ξ) cannot be analytic on any strip <(ξ) > c for c < 0, as desired. �
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