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ABSTRACT

This work presents the measurement of Higgs boson couplings through the Higgs boson to

diphoton decay (H → γγ) channel using pp collision data with a center-of-mass energy of
√
s = 13 TeV recorded by the ATLAS detector. In order to probe the coupling of the Higgs boson

to the fermions and vector bosons, the inclusive cross sections times the branching ratio of the

Higgs boson to two photons are measured for four primary production modes: gluon-gluon fusion

(ggF ), vector boson fusion (V BF ), vector boson associated production (V H), and top quark asso-

ciated production (ttH). The measurement of the ttH production mode was performed using the

full Run 2 dataset taken between 2015 and 2018, amounting to 139 fb−1 of pp collision data. Mea-

surements of the remaining production modes were performed with the subset of Run 2 data taken

between 2015 and 2017, amounting to 79.8 fb−1. Two significant sources of uncertainty in the

analysis are that relating to photon isolation and that from background modeling. A new method-

ology for calculating corrections to photon isolation in the Electromagnetic calorimeter from a high

statistics, low purity data sample is presented in detail. The method utilizes a multistep template

fit to remove fake photons from the data sample, which allows for a direct comparison of the isola-

tion shape in data and simulation. The background modeling uncertainty is found to be inflated in

many analysis categories due to insufficient simulation statistics. A novel technique using Gaus-

sian Processes to smooth out fluctuations in low statistics simulation samples is explored, along

with extensive validation studies. The technique shows significant promise in reducing the inflation

of the background modeling uncertainty due to statistical fluctuations in simulation samples. The

observed signal strength of the ttH production mode is µtt̄H = 1.38 +0.41
−0.36, which is compatible

with the Standard Model prediction. The observed signal strength of the ggF production mode

was found to be µggF = 0.97+0.17
−0.15, that of the V BF production mode µV BF = 1.4+0.44

−0.37, and that

xxvii



of the combined V H processes (W±H , qqZH , and ggZH) is measured to be µV H = 1.09+0.61
−0.55.

These results are all consistent with the Standard Model predictions, and so no direct evidence of

new physics is observed.
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CHAPTER 1

Introduction

The Higgs boson, discovered by the ATLAS [6] and CMS [32] collaborations in 2012 [33, 34],
is the most recently discovered fundamental particle. Since then, its properties have been studied
extensively by both collaborations. One such property is how strongly the Higgs boson interacts, or
couples, to other fundamental particles. In particular, studying the rates at which Higgs bosons are
produced through different mechanisms offers an essential channel through which to probe these
couplings, as they involve different fundamental particles and often leave unique experimental
signatures.

This work probes Higgs boson couplings through the measurement of the total cross section
of specific physical processes. The observed cross section of a physical process is proportional to
the couplings between the particles involved in that process. Translating between a coupling and
a cross section requires a complete knowledge of the theory describing process; some additional,
unknown process with identical initial and final states could also contribute to the observed cross
section.

The couplings between the Higgs boson and other fundamental particles are defined within
the Standard Model (SM), the current framework describing fundamental physics at the level of
subatomic particles. Assuming this theory is complete, it therefore offers a framework in which
to precisely determine the cross sections of Higgs boson processes. Measuring the inclusive cross
sections of various Higgs boson processes offers a pathway through which to experimentally test
the accuracy of the SM. If a significant deviation from the SM prediction of a cross section is
observed, it may indicate that the coupling strength differs from the SM value, or that some new
physics process is also contributing to the total cross section. These hypothetical new physics phe-
nomena could be connected to other grand questions regarding the nature of fundamental physics,
such as the nature of dark matter and energy.

One particularly interesting Higgs boson coupling to study is that to the top quark. This cou-
pling can be studied by measuring the cross section of Higgs boson production in association with
a top/anti-top quark pair. The top quark and its antiparticle partner leave unique signatures, which
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may be exploited identify events resulting from this process. However, this process is also very
rare compared to other ways of producing a Higgs boson. The top quark is predicted to interact
very strongly with the Higgs boson, however, and so any new physics interaction affecting this
process may be amplified.

This work presents the measurement of Higgs boson couplings through the Higgs boson to
diphoton decay (H → γγ) channel using pp collision data with a center-of-mass energy of

√
s =

13 TeV recorded by the ATLAS detector. Particular emphasis is placed on measuring the coupling
of the Higgs boson to the top quark through top-associated Higgs boson production (ttH). This
ttH portion of the analysis was completed after the remainder of the coupling measurements. It
utilizes the full Run 2 dataset taken between 2015 and 2018, amounting to 139 fb−1 of pp collision
data. The remaining couplings measurements were performed with the subset of Run 2 data taken
between 2015 and 2017, amounting to 79.8 fb−1.

The strategy of the analysis presented is to exploit the fact that the primary background, con-
tinuum diphoton production, creates a smooth, falling distribution as a function of the diphoton
invariant mass. Given sufficient statistics, this background shape can be sufficiently well-modeled
by certain analytic functions (those which roughly resemble a falling exponential distribution). The
Higgs boson signal, on the other hand, is a narrow resonance that produces a sharp peak on top of
the background invariant mass distribution. The narrow signal resonance can also be well-modeled
by an analytic function. In order to determine the number of background events underneath the
Higgs boson signal peak, a combined signal and background model (using the chosen analytic
functions) is fit to a large window in the invariant mass spectrum of the observed data. The mass
window includes “side-band” regions (regions on either side of the signal peak which contain neg-
ligible signal contamination), which normalize the background function. The number of events
fitted with the signal function is then the number of observed Higgs boson events.

The analysis method has the advantage of using a data-driven background estimation, which
eliminates the possibility of bias from mismodeling in simulating background processes. The ana-
lytic function modeling the background, however, is chosen using simulated background samples.
If these samples contain too few events, determining the optimal functional choice may become
challenging, and the uncertainty associated with the choice of background function may be inflated.
One possible solution to mitigate the statistical fluctuations in these simulated background sam-
ples is to apply a smoothing procedure. Such a technique using Gaussian Processes is discussed in
detail in this work.

The analysis includes many orthogonal categories, each of which are simultaneously fit with
the combined analytic signal and background model. Dedicated selections are applied to sort Higgs
boson-like events into the categories. The selections are designed to reduce the magnitude of the
continuum background, so that it does not obscure the Higgs boson signal peak. The selections
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also aim to separate different types of Higgs boson events, in order to study the properties of the
Higgs boson in finer granularity.

The structure of this work is as follows. First, the theoretical background is discussed in Chap-
ter 2. This chapter will detail the fundamental particles of the Standard Model, as well as the
nature of the Standard Model Higgs boson. This chapter will also discuss the main Higgs boson
production modes targeted by the analysis. Next, a detailed overview of the ATLAS detector and
its operational principles is presented in Chapter 3. The following chapter, Chapter 4, discusses
how the signals recorded by the ATLAS detector are reconstructed into more familiar physics ob-
jects. This chapter also extensively details one specific quantity of photons, that of isolation. The
dataset and simulation samples relevant to the analysis are presented in Chapter 5. Next, the selec-
tion criteria used in the analysis is discussed in Chapter 6. Chapter 7 explains the strategies used to
model both the Higgs boson signal and the non-resonant diphoton background. An experimental
method using Gaussian Processes to reduce the uncertainty associated with the background mod-
eling procedure is detailed in Chapter 8. Next, the statistical model used to process the observed
data is explained in Chapter 9. The systematic uncertainties included in the model are detailed in
Chapter 10, while the results obtained by the model are presented in Chapter 11. The results of the
analysis are discussed in the conclusions, in Chapter 12.
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CHAPTER 2

The Higgs Boson in the Standard Model

2.1 The Standard Model

The SM of particle physics describes the fundamental particles which make up the visible universe,
as well as how these particles interact with each other [35, 36, 37]. These particles fall into one
of two groups: fermions and bosons. The particles of the SM are presented schematically in
Figure 2.1. The general structure of these fundamental particles will be presented initially, and a
discussion of the underlying forces responsible for said structure will be presented after.

The fermions are defined as having a spin value of 1
2
, and they obey Fermi-Dirac statistics.

There exist two families of fermions, quarks and leptons, and within each of these families there are
three generations. Fermions from the three generations are very similar, with the main difference
being their mass. Those with the largest mass are defined as the third generation, while those with
the smallest are defined as the first generation. Within each generation, the quark sector contains
two families: the up-type quarks (the up, charm, and top quarks) and the down-type quarks (the
down, strange, and bottom quarks). The up-type quarks have an electric charge of +2

3
, while the

down-type quarks have an electric charge of −1
3
.

Each generation of the lepton sector contains two families. The first family contains the elec-
tron, the muon, and the tau particle. The second family consists of the neutrinos. Each neutrino is
paired with a member of the first family, and hence they are aptly named the electron neutrino, the
muon neutrino, and the tau neutrino. The electron, muon, and tau lepton carry an electric charge
of −1, and the neutrinos carry no electric charge. The neutrinos have very small (but non-zero)
masses, which have not yet been measured experimentally.

The bosons by definition have integer spin values, and so they obey Bose-Einstein statistics.
Two of these bosons, the photon and the gluon, are massless, while the others, the W , Z, and
Higgs bosons, are massive. The photon interacts with particles which carry electric charge, and the
gluon, the mediator of the strong force, interacts with those which carry color charge. The W and
Z bosons (also called the “gauge bosons”) mediate the weak force; they couple to all left-handed
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Figure 2.1: A schematic of the fundamental particles described by the Standard Model. Image
taken from Ref. [1].

fermions, as well as to each other. The Higgs boson couples to all charged fermions, as well as to
the W and Z bosons. This interaction with the Higgs boson is what gives the charged fermions
and gauge bosons their mass, as described below.

The Standard Model itself is an example of a quantum field theory. A quantum field theory is
a theory describing the behavior of quantized fields, where the fields evolve in time as governed
by the Klein-Gordon equation (explained below) while also obeying special relativity. Quantum
field theories, as with classical field theories, are often described by a Lagrangian. A Lagrangian
equation is often presented as:

L = T − V (2.1)

where T represents the kinetic energy of a system and V represents the potential energy. Recalling
the Lagrangian of classical mechanics, the kinetic term of a generic object of mass m is generally
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given as:

T =
1

2
mv2 =

1

2
m

(
dx

dt

)2

(2.2)

where v is the object’s velocity. The potential term depends upon the system being considered, and
it may depend not only on the object’s mass, but also on its position in spacetime. For example,
the classical theory potential for an object (not a field) attached to a spring is given as:

V (x) =
1

2
kx2 (2.3)

where k represents the “spring constant” (the strength of the spring) and x represents the objects
position (with the un-stretched spring position defined as the origin).

In order to move from a classical Lagrangian for a single particle to a quantum field theory, we
will first begin with the relativistic energy relationship:

E2 = p2c2 +m2c4 (2.4)

where E is the total energy of the particle, p is the particle’s spatial momentum, m is the parti-
cle’s mass, and c is the constant speed of light in a vacuum. We may now address the issue of
quantization by examining the quantum operator forms of E and p:

E = −i~ ∂
∂t

p = −i~∇

where ∇ is the spatial three-derivative. These operators may be applied to a quantum state, which
we will define as ψ(x). Substituting the operator forms into Equation 2.4 and applying to the state
ψ(x) yields: (

−i~ ∂
∂t

)2

ψ(x) = (−i~∇)2 ψ(x) +m2c4ψ(x)

−~2 ∂
2

∂t2
ψ(x) = −~2c2∇2ψ(x) +m2c4ψ(x)

0 = ~2c2

(
1

c2

∂2

∂t2
−∇2

)
ψ(x) +m2c4ψ(x)

(2.5)

The above equation may be simplified by defining the spacetime derivatives ∂µ and ∂µ:

∂µ =

(
+

1

c

∂

∂t
,∇
)

∂µ =

(
−1

c

∂

∂t
,∇
)
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where µ is the spacetime coordinate. Notable, the two may be multiplied to obtain the covariant

derivative, ∂2:

∂µ∂µ = ∂2 = −∇2 +
∂2

∂t2

Substituting the covariant derivative into Equation 2.5 gives:

~2c2∂2ψ(x) +m2c4ψ(x) = 0

An additional simplification may be obtained by moving to so-called natural units (c = ~ = 1),
yielding: (

∂2 +m2
)
ψ(x) = 0 (2.6)

Lastly, we will finally introduce the concept of a field. A field is defined as an output value
given some spacetime coordinate. The output may be a single value (a scalar), or it may be a set
of values (a vector or matrix). We will simply replace our wave function ψ(x) with a scalar field,
φ(x). This replacement is not trivial, but the details of doing so lie beyond the scope of this work.
After the substitution, Equation 2.6 becomes:

(∂2 +m2)φ(x) = 0, (2.7)

which is known as the Klein-Gordon equation. The Klein-Gordon equation describes the kinemat-
ics of a non-interacting scalar field.

As mentioned above, however, the fermions of the SM are not scalars. The fermions are con-
structed of so-called Weyl spinor fields (one form of irreducible vector field which behaves well
under Lorentz transforms). A massive, spin-1

2
fermion field, denoted as Ψ, can be constructed in

two fashions. The first is as two Weyl fields, called a Dirac fermion. One of the Weyl fields is
denoted the “left-handed” component, while the other is denoted the “right-handed” component.
Taking the conjugate transpose of a Dirac fermion yields another distinct Dirac fermion with op-
posite charge, which is called the “anti-particle” partner of the original Dirac fermion. The second
construction is as one neutral Weyl field, called a Majorana fermion. Given that there is only
one Weyl field, taking the conjugate transpose of a Majorana fermion yields the original fermion;
therefore, Majorana fermions are identical to their antiparticles (and hence cannot carry charge).
The quarks and charged leptons within the standard model are observed to have oppositely charged
antiparticle partners, and therefore they are Dirac fermions. Neutrinos are electrically neutral, but
it is currently unknown whether they are of the Dirac or Majorana type.

The kinematics of fermions (both Dirac and Majorana) are described by the Dirac equation:

(−iγµ∂µ +m)Ψ = (−i/∂ +m)Ψ = 0 (2.8)
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where γµ is a 4× 4 matrix (related to the Pauli matrices). The Dirac equation may be manipulated
by acting on it with (i/∂ +m), noting that /∂ /∂ = −∂2, giving:

0 = (i/∂ +m)(−i/∂ +m)Ψ = (/∂ /∂ +m2)Ψ = (−∂2 +m2)Ψ. (2.9)

This may be recognized as the Klein-Gordon equation from 2.7.
The Lagrangian for a free scalar field can be constructed directly from the Klein-Gordon equa-

tion, with a factor of −1
2

for convenience:

L = −1

2
∂µφ∂µφ−

1

2
m2φφ (2.10)

Very loosely comparing the above equation to Equation 2.2 above, one can observe that, again, m
represents the mass, and that the terms of Equation 2.10 again represent the kinetic energy of the
field. However, free fields are not of particular interest; experimentalists can only measure particles
which interact in some way with other particles. To this end, one may consider an example of an
additional term in the Lagrangian describing a potential:

V =
1

24
λφ4 (2.11)

In the above equation, the factor of 1
24

is simply a combinatoric factor for convenience. Comparing
(again, very loosely) to Equation 2.3, it becomes apparent that λ represents the interaction strength
described within the term, similar to how k in Equation 2.3 described the strength of a spring.
Unlike in the classical analogy, though, the term no longer describes simply the motion of one
particle, but rather the interaction between many. Each occurrence of a field in a term indicates its
presence in a given point interaction; for example, the φ4 term above indicates that four φ particles
may interact at a point. These point interactions are called vertices, and are often represented
pictorially via Feynman diagrams.

2.1.1 Symmetries and Gauge Fields

Consider a quantum field theory with a complex scalar field φ(x) (and its complex conjugate,
φ∗(x)), and a free-field Lagrangian as follows:

L = −1

2
∂µφµ∂µφ

∗µ − 1

2
m2φφ∗ (2.12)
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Next, we will introduce a constant phase to these two fields such that φ(x)→ eiαφ(x) and φ∗(x)→
e−iαφ∗(x), where α is a constant. The above equation now becomes:

L = −1

2
∂µ(e−iαφ)∂µ(e−iαφ∗)− 1

2
m2(e−iαφ)(e−iαφ∗)

= −1

2
(eiαe−iα)∂µφ∂µφ

∗ − 1

2
m2(eiαe−iα)φφ∗

= −1

2
∂µφ∂µφ

∗ − 1

2
m2φφ∗

(2.13)

One can observe that the Lagrangian is invariant under this symmetry. This symmetry is a global

symmetry, meaning that is does not depend on the spacetime coordinate x. The transformation
applied (eiα) is a single value, and hence a one-dimensional matrix. Its value lies along the unit
circle in the Real-Imaginary plane, meaning that this matrix is “unitary.” This type of symmetry is
defined as a U(1) transformation.

Another type of symmetry, the special-unitary or SU group, is especially relevant for describ-
ing the Standard Model. The SU(N) group contains N × N matrices which obey the relation
M † = M−1, where the † denotes the conjugate-transpose, and whose determinants are equal to 1
(the “special” part).

Many of the symmetries of the SM are not global symmetries (unlike in the example above) –
they are local symmetries. To understand the consequences of a local symmetry, one may again
consider the example of a complex scalar field φ(x) with a U(1) symmetry. However, the local

nature of the symmetry means that the complex phase introduced above will now depend on the
spacetime coordinate x: eiα → eiα(x). Inserting this transformation into the Lagrangian given in
Equation 2.12 yields:

L = −1

2
∂µ(eiα(x)φ)∂µ(e−iα(x)φ∗)− 1

2
m(eiα(x)φ)(e−iα(x)φ∗)

= −1

2
[eiα(x)∂µφ+ iφeiα(x)∂µα(x)][e−iα(x)∂µφ

∗ − iφ∗e−iα(x)∂µα(x)]− 1

2
mφφ∗

= −1

2
eiα(x)e−iα(x)[∂µ + i∂µα(x)]φ[∂µ − i∂µα(x)]φ∗ − 1

2
mφφ∗

= −1

2
[∂µ + i∂µα(x)]φ[∂µ − i∂µα(x)]φ∗ − 1

2
mφφ∗

(2.14)

Notably, the above equation does not match the original Lagrangian. The local U(1) symmetry
may be maintained, however, with the introduction of a gauge field Aµ(x). This new field will be
incorporated into a new quantity, the gauge covariant derivative, as:

Dµ = ∂µ + iqAµ (2.15)
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where q is a constant. The Aµ(x) field is required to transform under the local U(1) symmetry as:
Aµ(x) → Aµ(x) − 1

q
∂µα(x). Looking at the kinetic term of Equation 2.14 in terms of the new

covariant derivative yields:

Lkin = −1

2
DµφDµφ

∗

= −1

2
[∂µ + iqAµ]φ[∂µ − iqAµ]φ∗

(2.16)

Now, taking again a local U(1) transformation yields:

Lkin = −1

2
[∂µ + iq(Aµ − 1

q
∂µα)]eiαφ[∂µ − iq(Aµ −

1

q
∂µα)]e−iαφ∗

= −1

2
[eiα∂µφ+ ieiαφ∂µα + iqAµeiαφ− ieiαφ∂µα]

·[e−iα∂µφ∗ − ie−iαφ∗∂µα− iqAµe−iαφ∗ + ie−iαφ∗∂µα]

= −1

2
[∂µφ+ iqAµφ][∂µφ

∗ − iqAµφ∗]eiαe−iα

= −1

2
[∂µ + iqAµ]φ[∂µ − iqAµ]φ∗

= −1

2
DµφDµφ

∗

(2.17)

This example demonstrates how the introduction of a gauge field through a gauge covariant deriva-
tive may be used to maintain a local symmetry. The kinematics of a gauge field are described using
the quantity Fµν (called the “field strength tensor”):

Fµν = ∂µAν − ∂νAµ (2.18)

and the Lorentz-invariant kinetic term in the Lagrangian of such a theory is:

Lkin = −1

4
FµνF

µν (2.19)

which can similarly be shown to obey the local U(1) gauge symmetry. Notably, adding a mass
term to the gauge boson would violate the symmetry:

L = −1

2
m2(Aµ − 1

q
∂µα)(Aµ −

1

q
∂µα)

= −1

2
m2[AµAµ −

2

q
Aµ∂µα +

1

q2
∂µα∂µα]

6= −1

2
m2AµAµ

(2.20)
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Therefore, gauge bosons generally cannot have mass.
The SM is described in terms of local symmetry groups as:

SU(3)× SU(2)× U(1) (2.21)

SU(N) groups will result in n2 − 1 generators, and each generator corresponds to a gauge field
(boson) of that sector. The SU(3) portion describes the strong sector. The strong sector contains
eight types of massless gluons, corresponding to different color charge states (permutations of
three colors, red, blue, and green, and their anti-colors). The SU(2) × U(1) portion describes the
electroweak sector. The three bosons emerging from the SU(2) correspond to the W a

µ gauge field
(where a may be 1, 2, or 3) and the U(1) group gives the Bµ gauge field representing hypercharge.
Note that the W a

µ and Bµ fields do not directly correspond to the electroweak bosons described
above (the W±, Z, and γ).

2.1.2 Symmetry Breaking – An Introductory Example

The existence of the SM Higgs boson is a result of the spontaneous breaking of the SU(2)×U(1)

symmetry of the electroweak sector. To better understand the mechanism of spontaneous symmetry
breaking, one may return to the example given in Equation 2.13 involving a complex scalar field
with a global U(1) symmetry. However, the Lagrangian will now include a non-zero potential
term:

L = −1

2
∂µφ∂µφ

∗ − 1

2
ς2φφ∗ − 1

2
λ(φφ∗)2 (2.22)

where λ and ς are constants. This potential energy still obeys the global U(1) symmetry. In order
to obtain the equations of motion of a particle from the Lagrangian, one may apply the Eurler-
Lagrange equation:

∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

= 0 (2.23)

Substituting in the Lagrangian of Eqution 2.22 gives:

− 1

2
ς2φ∗ − λφ∗(φφ∗) = −1

2
∂µ∂

µφ∗ (2.24)

The left side of the above equation is the potential term, and minimizing it gives the “vacuum”
solution:

ς2φ∗ + 2λφ∗(φφ∗) = 0 (2.25)
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Examining the above equation reveals an obvious solution where φ = 0 and φ∗ = 0. However, the
above equation also results in the following relation:

√
φ∗φ =

√
− ς

2

2λ
(2.26)

In the case where ς2 < 0, there exists another minimum in the potential, lower than 0 (the minimum
of the φ∗ = 0 solution). The field values satisfying the above relation are φ = eiα

√
−ς2
2λ

and

φ∗ = e−iα
√
−ς2
2λ

. Notably, the minimum is not a point, but rather a circle in α. The value
√
− ς2

2λ

can be redefined as v, the vacuum potential. Although the minimum may be symmetric, there may
only be one true vacuum; a value of α must be chosen (for convenience, α = 0 will be used here).
This choice “spontaneously” breaks the theory’s symmetry in α.

Now that a vacuum has been chosen, the fields φ and φ∗ may be expanded about the new
vacuum as:

φ(x) =
1√
2

[v + ρ(x) + iβ(x)]

φ∗(x) =
1√
2

[v + ρ(x)− iβ(x)]
(2.27)

where ρ and β are both real. Expanding the Lagrangian in terms of the above fields yields:

L = −1

2
∂µρ∂

µρ− 1

2
∂µβ∂

µβ − λv2ρ2 − λvρ(ρ2 + β2)− 1

4
λ(ρ2 + β2)2 (2.28)

Analyzing the above terms shows that the β field is massless, while the ρ field has a non-zero mass
equal to:

m2
ρ = 2λv2 = 2λ(

−ς2

2λ
) = −ς2 (2.29)

The β field is called a Goldstone boson – a massless boson arising from the “flat” direction of a
spontaneously broken symmetry.

The resulting Lagrangian differs in a number of important ways from the original presented
in Equation 2.22. First, there is no longer an explicit U(1) symmetry in the resulting Lagrangian
– the symmetry has been broken. Secondly, the original φ field its complex conjugate have been
replaced by two fields ρ and β, which have distinctly different kinematics. The original theory did
not contain any three-particle vertices, which appear in the λvρ(ρ2 + β2) term above.
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2.1.3 The Standard Model Electroweak Sector

As previously stated, the W a
µ and Bµ fields (the SU(2) × U(1) generators), do not directly cor-

respond to the W±, Z, and γ bosons. The W±, Z, and γ bosons all emerge as a result of the
spontaneous breaking of the SU(2) × U(1) symmetry. Additionally, the existence of the SM
Higgs boson is predicted through this mechanism.

Before digging further into this spontaneous symmetry breaking in the SM, an overview re-
garding the nature of the electroweak sector should be considered. The electrons, muons, and taus
are Dirac fermions with left- and right-handed components, which can be respectively denoted as
eL and eR. The same is true of their antiparticle partners, denoted as ēL and ēR, respectively. Neu-
trinos, however, have only been observed as left-handed particles, denoted as νL. The left-handed
(non-neutrino) leptons and the left-handed neutrinos form a doublet L, while the right-handed
(non-neutrino) leptons form a singlet R:

L =

(
νL

eL

)
R = (eR) (2.30)

As demonstrated in Section 2.1.1, conserving a local U(1) symmetry in a theory requires a
gauge field. The gauge field introduced by the SMU(1) symmetry is theBµ field, which transforms
as:

Bµ → Bµ +
1

g′
∂µβ (2.31)

where g′ is the coupling to the weak hypercharge (similar to the magnitude of the electric charge,
ignoring its sign) and β is the phase applied as part of the symmetry (analogous to α(x) in Sec-
tion 2.1.1). The leptons will transform under the U(1) phase shift as (L,R) → e

iY β
2 (L,R). The

quantity Y is the weak hypercharge, which takes on a value of −1 for the components of the L
doublet and −2 for the component of the R singlet:

L =

(
νL

eL

)
→ e

−iβ
2

(
νL

eL

)
R = (eR)→ e−iβ(eR) (2.32)

The conservation of the SU(2) symmetry requires an additional gauge field, Wµ. The transfor-
mation of this field is somewhat more complicated than that of the Bµ field:

τ ·Wµ → τ ·Wµ +
1

g
τ · (∂µα)− τ · (α×Wµ) (2.33)

Here, the phase α is a 3× 3 matrix, and τ is a row vector of the three Pauli matrices. Similarly, the
fields themselves will transform under the symmetry as (L,R)→ eiIτ ·α(L,R), with I representing
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weak isospin. Interestingly, the weak isospin is 0 for the component ofR (it is 1
2

for the components
of L). Physically, this means that the SU(2) portion of the SM breaks chiral symmetry (it treats
left- and right-handed particles differently). Explicitly, L and R transform as:

L =

(
νL

eL

)
→ e

−i
2
τ ·α

(
νL

eL

)
R = (eR)→ (eR) (2.34)

As in the example from Section 2.1.1, a covariant derivative must be introduced along with the
gauge field:

∂µ → Dµ = ∂µ −
i

2
g′Y Bµ − igIτ ·Wµ (2.35)

Applying the covariant derivatives with the appropriate hypercharge and weak isospin values yields
the result:

L = Riγµ(∂µ + ig′Bµ)R + Liγµ(∂µ −
i

2
gτ ·Wµ +

i

2
g′Bµ)L− 1

4
G(W )
µν ·G(W )µν − 1

4
F (B)
µν F

(B)µν

= iRγµDµR + iLγµDµL−
1

4
G(W )
µν ·G(W )µν − 1

4
F (B)
µν F

(B)µν

(2.36)

where:
F (B)
µν = ∂µBν − ∂νBµ (2.37)

and
G(W )
µν = ∂µWν − ∂νWµ + gWµ ×Wν (2.38)

One notable quality of the above Lagrangian is that it does not allow for the fermions to have mass.
A mass term would take a form proportional tomΨΨ, which involves mixing of the left- and right-
handed components. For the electron, for example, the mass term expands to m(ēLeR + ēReL).
Such a term does not obey the SU(2) symmetry, because this symmetry would transform the two
components differently.

2.1.4 Symmetry Breaking in the Standard Model

The Lagrangian of Equation 2.36 above describes the kinematics of the electroweak sector before
the spontaneous breaking of the SU(2) × U(1) symmetry. The symmetry breaking of the SM is
similar to that shown in Section 2.1.2; a complex scalar field will “fall” into a non-zero vacuum
configuration. This complex scalar field will be donoted as φ, and it has a hypercharge of Y = +1

and I = +1
2
. The potential of this field will be the same as that in Section 2.1.2: -1

2
ς2φ†φ −

1
2
λ(φ†φ)2, and its kinematic term will be the covariant derivative above (with the appropriate Y

14



and I), Dµφ†Dµφ. The fermions will also be coupled to this scalar with the interaction form:

Ge(LφR +Rφ†L) (2.39)

where Ge is the coupling strength. As in the previous example, the minimum of the potential is
not at φ = 0, but rather at (φ†φ) =

(
− ς2

2λ

)
= v2. The φ field can be redefined through a gauge

transformation as:

φ =

(
0

v + 1√
2
h

)
(2.40)

Inserting the new broken symmetry representation of φ leads to a number of interesting conse-
quences. The covariant derivative portion can be expanded to:

Dµφ†Dµφ→
1

2
∂µh∂

µh+
1

4
g2v2(W 1

µ)2 +
1

4
g2v2(W 2

µ)2 +
1

4
v2[(gW 3

µ − g′Bµ)2] + ... (2.41)

A closer look at the above equation reveals that there appear to be two new mass terms for W 1
µ

and W 2
µ – these are new, massive particles (mW = 1

4
g2v2 for both). These particles are in fact

the positively charged and negatively charged W bosons which can be observed in our universe.
Before analyzing the 1

4
v2[(gW 3

µ − g′Bµ)2] term, it is useful to define the Weinberg angle, θW =

tan−1(g′/g). The two Bµ and W 3
µ fields may be simplified by defining two new fields, Zµ and Aµ,

which are proportional to Bµ and W 3
µ , as follows:(

Zµ

Aµ

)
=

(
cos(θW ) − sin(θW )

sin(θW ) cos(θW )

)(
W 3
µ

Bµ

)
(2.42)

With this redefinition, the last term of Equation 2.41 becomes:

1

4
v2[(gW 3

µ − g′Bµ)2]→ g2v2

4 cos2(θW )
ZµZ

µ (2.43)

The Zµ field is the Z boson, and its mass is mZ = mW/ cos(θW ).
Returning to the terms of Equation 2.39, one may observe that their expansion leads to the

following:

Ge(LφR +Rφ†L)→ −Ge(eLveR + eRveL)−Ge

(
eL

h√
2
eR + eR

h√
2
eL

)
(2.44)

The first term on the right hand side is a mass term – Gev is a constant, and it appears alongside
the field “squared.” The charged leptons therefore obtain their masses through the Higgs mecha-
nism. Additionally, there is an interaction term involving the Higgs boson and the charged leptons.
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The interaction strength and the particle’s mass are both proportional to the same constant (Ge),
which indicates that heavier particles couple more strongly with the Higgs boson. Although not
shown here explicitly, the quarks also obtain their mass through coupling to the Higgs boson. The
proportionality between the mass and coupling strength to the Higgs boson holds for the quarks,
too.

The redefinition of the Bµ and W 3
µ fields in terms of Zµ and Aµ can be continued into the Wµ,

Bµ, and fermion interaction terms as follows:

iRγµDµR + iLγµDµL→ ieγµ∂µe+ iνγµ∂µν − g sin(θW )eγµeAµ

+
g

cos(θW )
[sin2(θW )eRγ

µeR −
1

2
cos(2θW )eLγ

µeL +
1

2
νγµν]Zµ

+
g

2
[νγµeL(W (1)

µ − iW (2)
µ ) + eLγ

µν(W (1)
µ + iW (2)

µ )]

(2.45)

The above terms yield a number of insights. First, the charged leptons interact with the new Aµ

field, which has not picked up a mass from the symmetry breaking. This Aµ is the massless photon
of electromagnetism. Second, all of the leptons interact with the Z boson. Lastly, the W bosons
interact only with the left-handed leptons (as expected).

2.1.5 The Higgs Boson – An Experimentalist’s Perspective

As one may see, the SM gives a detailed picture of the behavior of the fundamental forces and par-
ticles which make up our universe. Thus far, the predictions of the SM have been overwhelmingly
confirmed by experiment. However, the SM does appear to have its shortfalls. For example, the
SM does not explain the observed expansion of the universe (there is no “dark energy” force), and
it does not contain any particle consistent with dark matter. These remaining questions suggest
that there exists some physics beyond the SM, but how its effects will manifest are still a mystery.

This work focuses on the measurement of the coupling strength of the SM Higgs boson to other
SM particles. The processes analyzed do not contain any inherent Beyond Standard Model (BSM)
effects. However, as the most recently-discovered fundamental particle, the behavior of the Higgs
boson has not been measured with a very high precision (compared to theoretical precision). New
physics could affect the Higgs boson couplings, causing their observed values to differ from the SM
prediction. Therefore, improving the precision of Higgs boson measurements may either constrain
or implicate the existence of new BSM physics.

To understand the behavior of the Higgs boson, one may study its couplings to other particles
by measuring the cross-sections of different production modes. There exist many ways to produce
a Higgs boson; the four ways most accessible to experimentalists are (in order of most common to
least common at a proton-proton collider): gluon-gluon fusion (ggF ), vector-boson fusion (V BF ),
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(a) Gluon-Gluon Fusion (b) Vector-Boson Fusion

(c) Vector-Boson Associated
(d) Top Associated

Figure 2.2: The four main production modes of the Higgs boson at a proton-proton collider: (a)
gluon-gluon fusion (ggF ), (b) vector-boson fusion (V BF ), (c) vector-boson associated production
(V H), and (d) top-associated production (ttH). These Feynman diagrams were generated using
the Feynman diagram maker tool, available from Ref. [2].

Figure 2.3: A pie chart of the decay channels of the Higgs boson, as well as their branching ratios.
Image from Ref. [3].
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(a) Top Quark Loop (b) W±W±γ Loop
(c) W±W±γγ Loop

Figure 2.4: The three dominant one-loop processes contributing to the diphoton decay mode of the
Higgs boson. Diagram (a) shows the Higgs boson decaying via a top quark loop, which radiates
two photons. Diagrams (b) and (c) show the Higgs boson decaying through a W± loop, emitting
two photons in either (b) two W±W±γ vertices or in (c) one W±W±γγ vertex. These Feynman
diagrams were generated using the Feynman diagram maker tool, available from Ref. [2].

vector-boson associated production (V H), and top associated production (ttH). The Feynman
diagrams of these four production modes are shown in Figure 2.2.

The ggF process involves a fermion loop. All of the fermions (quarks and massive leptons)
contribute to the loop, but due to the significantly larger coupling of the Higgs boson to the top
quark, the contribution from the top-quark dominates. The second and third production modes,
V BF and V H , involve the vertex with a Higgs boson and two W± or Z bosons. In the V BF
process, the two vector-bosons are radiated from quarks, and “fuse” to produce the Higgs boson.
In V H , the Higgs boson is radiated from a W± or Z boson, which also is a part of the final state.
The last production mode, ttH , is similar to the ggF process but with the fermion loop “opened
up” to produce a top/anti-top quark pair in the final state. Although the coupling of the Higgs
boson to the top quark is strong, this production mode is suppressed due to kinematic constraints;
producing a top/anti-top quark pair and a Higgs boson requires a significant amount of energy from
the incoming quarks.

The decay modes of the Higgs boson are also of interest, as they define the experimentalists’
approach to finding Higgs boson events. The primary decay channels are listed in Figure 2.3, along
with their branching ratios (the predicted fraction of Higgs bosons which will decay through each
mode). The most common decay mode of the Higgs boson is to a bb quark pair (note that the tt
decay is kinematically disallowed, since mH < mtt). Searches for H → bb in a proton-proton
collider are complicated by the difficulty in identifying and measuring the b-quark decay products
(jets, as discussed in more detail in Section 4.2) with sufficient accuracy and precision. Addition-
ally, many unrelated QCD processes produce bb pairs, which may be difficult to disentangle from
b-quarks originating from Higgs boson decays.

Two other decay channels of the Higgs boson, H → γγ and H → ZZ∗ → 4` (where ` is
an electron or muon), may be targeted for precision measurements, despite their small branching
ratios. The branching ratio for H → ZZ∗ is approximately 3%; this rate is further reduced due to
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the small branching ratio (< 7%) of an individual Z boson to an e+e− or µ+µ− pair [38]. However,
the ATLAS detector is capable of measuring with very high precision the energies of muons,
through a dedicated Muon Spectrometer, and electrons, through the electromagnetic calorimeter
(discussed in detail in Chapters 3 and 4).

The branching ratio of the H → γγ decay is only 0.227% [13]. The Higgs boson is neutral,
and so it does not directly couple to photons. This decay instead requires an additional loop of
charged particles, primarily the top quark and the W± boson, which emit two photons [39]. The
dominant loop processes of the diphoton decay mode are shown in Figure 2.4. As in the case of
the H → ZZ∗ → 4` mode, the two photons of the diphoton decay process can be identified with
high accuracy, and their energies can be measured with a high precision within a calorimeter. More
detailed information on the measurement and reconstruction of photons in the ATLAS detector is
provided in Chapters 3 and 4.

In addition to the advantage of precision measurement capabilities of the final state decay
products in the H → γγ decay mode, this process also benefits from having relatively well-
understood backgrounds. The primary background (continuum γγ evens produced through strong
and electromagnetic interactions) has a smooth, falling diphoton invariant mass spectrum. The
Higgs boson has a predicted width of only about 4 MeV [38], and so its decay products are expected
to have an invariant mass very close to the Higgs boson mass. This narrow width means that the
Higgs decay will appear as a narrow “bump” on top of a smooth, continuous background spectrum.
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CHAPTER 3

The ATLAS Detector

The Large Hadron Collider (LHC) [40] at CERN is currently the most powerful particle accelerator
in operation. With a circumference of about 27 km, it straddles the Swiss-French border and lies
approximately 100 m underground. As of the start of Run 2 in 2015, the LHC has reached a
center-of-mass proton-proton collision energy of

√
s = 13 TeV, with collisions occurring every

25 ns. The peak instantaneous luminosity (a measure of the number of expected collision events
per unit time per unit area) has varied significantly during Run 2, from 0.55 × 1034cm−1s−1 in
2015 to 1.9× 1034 cm−1s−1 in 2018 (the last year of Run 2) [41]. Notably, the peak instantaneous
luminosity reached roughly twice the design instantaneous luminosity of 1.0× 1034 cm−1s−1. By
of the conclusion of Run 2, the LHC has delivered an integrated luminosity of 156 fb−1 of collision
data to the ATLAS experiment, which in turn has recorded 147 fb−1.

Along the LHC ring sit four main experiments: the ATLAS [6] experiment; the Compact Muon
Solenoid (CMS) [32] experiment; A Large Ion Collider Experiment (ALICE) [42]; and the Large
Hadron Collider beauty (LHCb) [43] experiment.

The ATLAS detector is a general purpose detector which sits at Point 1 along the ring of
the LHC. The term “general purpose” refers to the fact that the ATLAS detector is capable of
recording a large variety of physics signatures, and therefore data taken by the detector can be
used to study many differing physics processes (such as studying the Higgs boson, or searching for
new particles not predicted by the SM). The detector is approximately 25 meters tall and 44 meters
long. It sits about 100 meters underground (in order to shield it from cosmic ray backgrounds). The
detector can be broken down roughly into four parts, moving from the collision point outwards:
the inner detector, which records the tracks of charged particles close to the interaction point with a
very fine granularity; the electromagnetic calorimeter, which measures the energy deposited from
showering photons and electrons; the hadronic calorimeter, which measures the energy deposited
by showering hadrons (composite particles made of two or more quarks); and the muon system,
which measures the tracks of muons. In addition, two magnets, one a solenoid and the other
a toroid, generate a strong magnetic field in the detector volume which causes the trajectories
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Figure 3.1: A cut-out illustration of the ATLAS detector. The cut out allows the various sections
of the detector to be seen.

of charged particles to bend. The magnitude and direction of bending may be used to infer the
momenta of charged particles. These sub-detector systems, their relevant technologies, and the
magnets are described in more detail the following sections.

The ATLAS detector is designed to be roughly cylindrically symmetric along the z-axis, which
corresponds to the line of the LHC beams. The beam collision point is located at the nominal
center of the cylinder, which is defined as z = 0. The y-axis has been designated the “upward”
direction, and the x-axis has been designated as the direction towards the center of the LHC ring.
This choice means that the positive z side of the detector is that which sits counterclockwise of the
collision point. This side is labeled as the “A” side, and the negative z side is labeled as the “C”
side. The detector is nominally forward-backward symmetric. A cut-out view of the detector can
be viewed in Figure 3.1.

3.0.1 Inner Detector

The ID consists of a number of tracking detectors which record the tracks (primarily central tracks,
with a pseudorapidity range of |η| < 2.5) of charged particles emitted from particle collisions.
A cutout view of the ID is presented in Figure 3.2. It is composed of Silicon Pixel and SCT
detectors. Silicon is a semiconductor, which allows it to be doped, meaning that impurities may be
introduced which hold a significant charge. Positively charged regions are denoted as p regions,
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Figure 3.2: A cut-out illustration of the ATLAS Inner Detector (ID). The cut out allows the
various sections of the ID to be seen. The “semiconductor tracker” labels refer to the Silicon
Microstrip (SCT) detectors.

which negatively charged ones are denoted as n regions. A junction is defined as the interface
between a p region and an n region. A large voltage bias can be applied across a junction, which
will push out any free charge-carriers in the material [38]. High-energy charged particles passing
through the material will release a number of charge carriers due to ionization. These free charges
can be collected and measured by electronics bonded to the silicon. One advantage of silicon
detectors are that they can be manufactured to be very thin, meaning that ionized charges travel to
the readout electronics very quickly (often on the order of around 10 ns). The small size also allows
for precision measurements of the position of the incoming particle. The ATLAS pixel detectors
are formed with small n+ (“extra” negative regions) implants within an n-type bulk [44], while the
SCTs are comprised of p-type strips on an n-type bulk [45].

Both the pixels and strips provide a precise measurement of the position where a charged track
has crossed. The pixel detectors offer a finer granularity due to their smaller size (50 × 400 µm2

in Rφ× z at minimum), and as such are placed closest to the expected interaction point. The SCT
detectors operate on the same principle as the pixels, but instead of having a square geometry, they
are 12 cm long rectangles (in the barrel) or wedges (in the endcaps) in order to cover more area
per channel. The longer dimension of the SCTs in the barrel region is close to that parallel to the
beamline, while in the endcaps, the longer dimension is close to that of the radial dimension. The
SCTs are offset by a stereo angle of 40 mrad, which allows for position measurements along the
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z axis. The ID contains three layers of pixels and four layers of SCTs in the barrel region, and in
the endcap region, it contains three layers of pixel detectors and nine layers of SCTs .

During the shutdown period between Run 1 and Run 2, significant upgrades were made to the
ID [46]. The Insertable B Layer (IBL) is a layer of silicon pixel detectors which sits 33.25 mm from
the beamline, providing a significant gain in tracking precision. Additionally, the Minimum Bias
Trigger Scintillators (MBTS) were added to the endcaps in order to improve triggering capabilities
for forward particles. The MBTS are made of doped plastic scintillating material, and they are
arranged in one ring of eight segments in φ within each endcap.

The pixel and SCT detectors of the ID are surrounded by the Transition Radiation Tracker
(TRT). The TRT measures transition radiation – the radiation emitted when relativistic charged
particles traverse across a material boundary in which there is a significant difference in the index
of refraction [38]. The amount of energy radiated as transition radiation is dependent upon how
relativistically a particle is traveling. Lighter particles (such as electrons) will therefore emit more
transition radiation than will heavier ones. The TRT also may discriminate photons from electrons,
as photons will not emit transition radiation.

The TRT consists of layers of Polyimide straw tubes, which are 4 mm in diameter, arranged
in planes. The 73 planes in the barrel region run parallel to the beam direction. The 160 planes
in the endcap regions are divided between two sets of wheels of radially-oriented straws on each
side. The inner set contains twelve wheels, and each wheel contains twelve layers of straws with
an inter-layer spacing of 8 mm. The outer set of wheels contains eight wheels of eight straw layers,
with an inter-layer distance of 15 mm.

3.0.2 Solenoid Magnet

The entirety of the ID is surrounded by a superconducting solenoid magnet, which is designed
to provide a magnetic field of 2 T within the volume of the ID [4]. The solenoid magnet sits in
front of the ATLAS calorimetry system, and as such is designed to provide a large magnetic field
while also being compact in size. The magnet uses an Al-stabilised NbTi conductor in a single
coil, with 1154 turns over the coil. The magnetic field provided by the solenoid will cause charged
particles in the ID to bend depending on their charge, mass, and momentum, and so the amount
and direction of bending may be used as an input for particle reconstruction. Because the magnetic
field provided by the solenoid runs along the z axis, the resulting deflection of charged particles
will be in the φ direction (the sign depending on the particle’s charge). A field map of the magnetic
field in the ATLAS detector is shown in Figure 3.3
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Figure 3.3: A mapping of the magnetic field strength within the ATLAS detector, as presented
in Ref. [4]. The left panel shows the field strength within a cross section of the barrel region of
the detector in the transverse plane, where the endcap toroid has been removed. The right panel
shows a longitudinal section of the detector, including the endcaps. The central area with a large
magnetic field is from the solenoid magnet, while the outer four areas of large field are from the
endcap toroid coils.

3.0.3 Electromagnetic Calorimeter

The Electromagnetic (EM) calorimeter, shown in Figure 3.4, is designed to measure the energy
deposited by electrons and photons through electromagnetic showers. It is a sampling calorimeter,
meaning that it has alternating layers of absorber material (designed to induce showering) and
active material (where measurements of deposited energy are made) [38]. Sampling calorimeters
suffer from larger uncertainties on the total energy deposited compared to calorimeters made of
entirely active (measuring) material. However, the absorber materials in sampling calorimeters
generally have much shorter radiation lengths (the characteristic length scale of a particle shower)
than do active materials. The presence of absorbing materials reduces the overall size of the EM
showers being measured, therefore reducing the necessary volume (and cost) of an EM calorimeter.
The ATLAS EM calorimeter uses Liquid Argon (LAr) sampling layers and lead absorbing layers.
The large number of protons in the lead nucleus means that the atom’s electron cloud is well
populated, greatly increasing the chances that an incoming high-energy electron or photon will
interact via electromagnetism.

The EM calorimeter is broken into six portions, and the total pseudorapidity range of the EM
calorimeter is |η| < 3.2. The barrel consists of two portions, which are separated by a gap of 4 mm
at z = 0. The two half-barrels each have a pseudorapidity coverage of up to |η| < 1.475. Each
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Figure 3.4: An illustration of one segment of the ATLAS EM Calorimeter, as presented in Ref. [5].
The jagged lines propagating outwards radially show the so-called accordion geometry of the de-
tector.

endcap contains an inner wheel and outer wheel portion, which respectively cover the pseudora-
pidity ranges of 1.375 < |η| < 2.5 and 2.5 < |η| < 3.2. The absorber and sampling layers are
arranged in an accordion fashion, with the folds in the barrel region resembling a compression in
the φ direction. In the endcap region, the folds resemble a compression in the z direction. The
accordion geometry allows for signals to be read out at the front or back of the calorimeter, which
allows the detector to remain azimuthally symmetric [47].

The barrel region of the EM calorimeter contains three layers in the central range of |η| < 1.35

and two layers in the slightly more forward range of 1.35 < |η| < 1.475. The endcap region
contains three layers in the region of 1.375 < |η| < 1.5 and two layers in the remainder of its
pseudorapidity range. A presampling layer is also positioned before the first layer of the EM
calorimeter in the range of |η| < 1.8. The primary goal of the presampler detector is to detect
electromagnetic radiation from interactions of electrons and photons which occur upstream of the
EM calorimeter, such as in the solenoid magnet.

3.0.4 Hadronic Calorimeter

Hadronic showers result from a combination of strong and electromagnetic interactions between
an incoming hadron (a composite state of two or more quarks) and the surrounding material [38].
Hadronic showers tend to have much larger characteristic length scales than do electromagnetic
showers, and due to the complex nature of low-energy strong force interactions, they are sig-
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Figure 3.5: An illustration of one wedge of the ATLAS Tile Calorimeter, as presented in Ref. [6].
A closeup of the layout of the scintillating material within the steel showering material is shown in
the oval to the right.

nificantly more difficult to model. The energy resolution of a hadronic calorimeter is therefore
typically worse than that of an electromagnetic calorimeter, as is the case for the ATLAS detector.

The Hadronic Calorimeter consists of three distinct subsystems: the Tile calorimeter, the LAr
Hadronic Endcap Calorimeter (HEC), and the LAr Forward Calorimeter (FCAL). It is designed to
measure the energy of showers from hadronic particles (such as protons and neutrons). Similar to
the EM calorimeter, all three hadronic calorimeter subsystems are sampling calorimeters.

The sampling layers of the Tile calorimeter are made of a scintillating material, polystyrene
doped with PTP and POPOP for their wavelength shifting properties. The showering material is
steel, which also provides structural support. It covers the inner region of |η| < 1.7 and is further
subdivided into three subsections, a central barrel and two extended barrels. Each barrel subsection
contains 64 modules (or wedges), with each wedge covering 5.625 degrees in φ. The scintillator
panels in each section are trapezoidal in shape in order to cover a constant range in φ across their
range in r. They are 3mm thick in the z direction and are placed in a staggered configuration among
the steel absorber plates (as shown in Figure 3.5). Two wavelength-shifting fibers are attached to
each scintillator tile in order to readout the scintillated photons from hadronic showers. The light
carried by each fibre is read out by two Photomultiplier Tubes (PMTs) on opposite sides of the
tile in order to provide redundancy in the measurement, as well as to provide an estimation of the
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Figure 3.6: Photos of (a) the barrel toroid magnet and (b) one of the endcap toroid magnets for the
ATLAS detector. Photos taken from Ref.s [7] and [8], respectively.

impact parameter of the shower.
The HEC uses liquid argon as its active material. The absorber material chosen is copper, and

it covers the pseudorapidity range of 1.5 < |η| < 3.2. It consists of two wheels in each endcap
(the “front wheel” and the “rear wheel”), and each wheel comprises two longitudinal subsections.
Both the front and rear wheels are divided into 32 wedges in the azimuthal direction.

The FCAL provides measurements of very forward electromagnetic and hadronic showers, in
the range of 3.1 < |η| < 4.9. The FCAL contains three modules in each endcap, labeled “FCAL1”
(the closest to the interaction point), “FCAL2,” and “FCAL3” (the furthest from the interaction
point). FCAL1 is designed to primarily measure electromagnetic showers, which FCAL2 and
FCAL3 are focused for hadronic showers. All three FCAL modules use LAr sampling material.
The sampling material is arranged in thin layers perpendicular to the beamline direction. Using thin
layers prevents excessive buildup of charged particles which may be induced due to the FCAL’s
forward position (and hence large particle flux). FCAL1 utilizes copper as an absorber, while
FCAL2 and FCAL3 use Tungsten as the primary absorber, along with a copper “shielding plug”
mounted behind the modules to reduce any energy leakage into the muon system. Read-out is
performed by evenly-spaced electrode rods made of copper (in FCAL1) or tungsten (in FCAL2
and FCAL3) running in the z-direction.

3.0.5 Toroid Magnet

A trio of superconducting toroid magnets, one in each endcap and one in the barrel region, provides
an additional magnetic field with strength of approximately 1 T [4] within the volume of the Muon
Spectrometer (MS) (described in Section 3.0.6). These magnets sit outside of the calorimeters, but
inside the muon subsystem. They are air-core toroids, and each contains eight coils running in the
z-direction (the plane made by each coil lies in the R− z plane, and hence the magnetic field lines
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run in the φ direction). The purpose of the toroid magnets is to bend the tracks of muons, which
allows for their momentum to be measured directly through their curvature. Unlike in the case of
the solenoid magnet, the deflection of tracks caused by the toroid magnet lies in the R − z plane,
perpendicular to the deflection caused by the solenoid magnet in the inner part of the detector. The
barrel and encap and toroid magnets can be seen in Firgure 3.6, and a map of the magnetic field in
the ATLAS detector is shown in Figure 3.3

3.0.6 Muon Spectrometer

The ATLAS MS sits on the outermost portion of the detector. It consists of four main types
of detectors: Monitor Drift Tubes (MDTs), Cathode Strip Chambers (CSCs), Thin Gap Cham-
bers (TGCs), and Resistive Plate Chambers (RPCs)). The first two types are used for precisely
measuring muon tracks, while the latter two are used for triggering.

Figure 3.7: A cross section of a MDT, used as part of the ATLAS MS. Image from Ref. [6]

The MDTs are used as the primary precision muon detector; a cross section of an MDT is
shown in Figure 3.7. They consist of an aluminum tube 2.997 cm in diameter with a wire running
along the center of the tube. A voltage difference of 3080 V is applied between the tube and the
wire, and the tube is filled with a gas mixture of 93% Argon and 7% Carbon Dioxide. Muons
passing through the tubes will ionize the contained gas, and the freed electrons will collect on the
wire. The drift time versus position of the electrons in the gas volume is calculable (and ranges up
to a maximum of about 700 ns), and so the time of arrival compared to that of the bunch crossing
can be used to determine the minimum distance between the muon track and the central wire.

Because multiple tube hits are needed to precisely reconstruct muon tracks, many MDTs are
arranged together in so-called chambers, the exact geometry of which depends on the location
within the detector. Almost all chambers consist of two “multilayer’s’ of MDTs separated by an
empty space of 6.5-317 mm, where each multilayer contains either three or four individual layers
of tubes. The chambers are arranged in sixteen segments in φ, alternating between so-called large
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φ = +1/12 π

φ = −1/12 π

Figure 3.8: The geometry of the MDT chambers (in blue), where (a) shows the segmentation in |η|
and (b) shows the segmentation in φ. Image taken from Ref. [9].

and small chambers. In both the barrel and endcap regions, chambers are placed such that a muon
will pass through three separate chambers, labeled the inner, medium, and outer chambers. MDT
coverage extends to |η| < 2.7, although this full range is only covered by the middle endcap layer.
A schematic of the MDT chamber placement is shown in Figure 3.8.

Due to the larger expected rate close to the beampipe, CSCs are used in place of MDTs to
provide coverage of the range of 2 < |η| < 2.7 in the inner endcap chambers. Similar to the MDT
chambers, the CSC chambers are divided into sixteen segments in φ, also with alternating large
and small sized chambers. The CSCs operate in a manner similar to the MDTs in that they rely on
the ionization of an Argon-CO2 gas. An electric field is applied across the gas volume, causing the
ionized electrons drift towards the four radially-oriented anode within each CSC chamber. Each
endcap contains two wheels of CSCs, and each wheel contains eight chambers in the azimuthal
direction (with evenly-spaced gaps between chambers). The chambers on the wheel closer to
the collision point contain “small” CSC chambers, while the outer wheels contain “large” CSC
chambers. The chambers overlap such that the small chambers cover the gaps between the large
chambers.

Each of the sixteen CSC chambers contain eight layers of cathode strips. Four of the layers are
finely segmented along the η direction, with 192 segments per layer, while the other four are finely
segmented in the φ direction, with 48 segments per layer [48]. Different levels of charge will be
induced on the anode strips, depending on their proximity to the muon track, which allows for the
precise determination of the muon’s track through the detector. In order to improve precision, the
detector is set with a pitch angling the face of the detector towards the interaction point. The pitch
is 5.31 mm in the large chambers and 5.56 mm in the small chambers.

Two different triggering detectors types are used in ATLAS: RPCs in the barrel (|η| < 1.05)
and TGCs in the endcaps. These two systems provide very fast but coarse track information to be
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Figure 3.9: The arrangement of the ATLAS MS trigger detectors. Image from Ref. [6]

used in the online trigger system, and as such their segmentation may be much larger than for the
MDTs and CSCs. The placement of the TGCs and RPCs is illustrated in Figure 3.9.

The RPCs are gaseous detectors, where the gas is contained within a thin volume (2mm wide)
between two sheets of resistive material [49]. The outer surface of each resistive plates is coated
in a thin layer of conductive graphite paint, which allows the plates to be held at a large voltage
differential. Muons passing through the plates will ionize gas particles in the thin volume, which
will induce a charge through capacitive coupling on copper strips arranged on the outside of the
resistive plate. The RPCs are segmented in φ in the same manner as the MDT chambers, and three
layers of RPCs are used for triggering. The first two layers are located on either side of the middle
MDT chambers, and the last layer is situated just outside the outer MDT chambers.

For the endcap region (1.05 < |η| < 2.4), TGCs are used for triggering due to increased
rate demands (the rate capability of the RPCs is lower than that of the TGCs, due to the large
area covered per plate in the RPCs). The TGCs are also used to better determine the azimuthal
coordinate of muon tracks in the endcaps, where the radial coordinate is more precisely measured
by the MDTs. Three chambers of TGCs are placed adjacent to the middle MDT chamber in the
endcap region to form the “Big Wheel.” One sits just inside the chamber, and two just outside,
with respect to the interaction point. An additional chamber of TGCs is placed just inside the
inner MDT chamber in the endcap. The TGCs are arranged in either a doublet (two layers of gas
volume) or triplet (three layers of gas volume). The inner of the Big Wheel TGC chambers is of
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Figure 3.10: A schematic of the ATLAS Trigger System. Image from Ref. [10]

the triplet type, while the others are doublets. Unlike the MDTs, the TGCs are subdivided into
twelve segments in φ in the Big Wheel.

3.0.7 Trigger System

In Run 2, the LHC collided proton bunches every 25 ns, giving a bunch crossing frequency of
40 MHz. The ATLAS trigger system [50, 10] is designed to buffer and filter events in real time in
order to reduce the event recording rate to approximately 200 Hz to conform to data storage and
writing limitations. The trigger system is designed as a three-tiered system, with large buffering
capabilities to hold events while the trigger algorithms are performed. As the trigger level in-
creases, the algorithms performed become more complex, and hence more costly in terms of time.
The lowest level is defined as L1, the second as L2, and the third as the Event Filter. The L1 trigger
system is a hardware-based system. Together, L2 and the Event Filter comprise the High Level
Trigger (HLT), and they are both software-based systems. The trigger system consists of many
individual “options” to indicate an event of interest; these options make up the “trigger menu.”
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The L1 trigger relies on coarse information from the various subdetector systems to assess
whether an event contains an object of interest. Possible high energy muons are identified using
the muon system trigger subdetectors discussed in Section 3.0.6, the RPCs and the TGCs. These
subsystems and their L1 menu comprise the “L1Muon” triggers. The “L1Calo” trigger uses in-
formation from the electromagnetic and hadronic calorimeters, though not at the full granularity
of either calorimeter. If either a high energy muon or calorimeter deposit matching the require-
ments outlined in the L1 trigger menu is found, then the trigger sector of that object is marked as
a Region of Interest (RoI). Information from L1Muon and L1Calo is combined with inputs from
a number of other subdetector systems (such as the MBTS, described in Section 3.0.1) at the L1
Central Trigger Processor (CTP). The CTP contains another L1 trigger menu, “L1Topo,” which
analyzes the combined information of the L1Muon and L1Calo triggers in order to identify more
global quantities of interest, such as missing transverse energy (Emiss

T ).
If an event passes the L1 trigger, it is then buffered before being sent to the HLT. In order to

avoid overfilling the event buffer, the CTP applies some preventative “dead time” - limits on the
number and frequency of L1 acceptances. This dead time takes on two forms: “simple” (an L1
acceptance cannot come within a given time of a previous L1 acceptance) and “complex” (only a
set number of L1 acceptances are allowed for a given number of bunch crossings).

In Run 1, the L2 and Event Filter were housed at separate computing farms. Prior to Run 2,
the two systems were merged into a single farm, meaning that the HLT functioned more as one
integrated unit. The L2 trigger analyzes the RoI marked by the L1 trigger in greater detail, using
the full granularity of the subdetector systems within that RoI. If the available information meets
one of the criteria of the L2 trigger menu, then the recorded data of the entire event (not just the
RoI) is passed to the Event Filter for further analysis. The full event reconstruction at the HLT
includes information from the ID, and online track reconstruction algorithms are applied to both
tracks in the ID and the MS. Online identification algorithms of physics objects, such as photons,
electrons, and b-tagged jets (jets originating from the decay of a high energy bottom quark) are
also applied at the HLT stage.

Finally, events which pass one of the options of the HLT menu are recorded. The menus may be
changed between runs to account for different data-taking conditions. Some triggers in the menus
are pre-scaled, meaning that only a subset of events passing that trigger menu criteria are saved.
Pre-scaling allows for the recording of certain event types for which the event rate would otherwise
be too high to record.

The triggers of particular relevance to this work are described in further detail in Section 5.1.
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CHAPTER 4

Object Reconstruction and Identification in ATLAS

Signals from the ATLAS detector do not generally translate directly into the physics objects, i.e.
photons, electrons, muons, and jets, used by physics analyses. They must be reconstructed from
the detector signals, usually from a combination of subdetector systems. An overview of object
reconstruction is provided below. A diagram summarizing basic particle identification is provided
in Figure 4.1.

4.1 Tracks and Vertices

Tracks are reconstructed from energy deposits in the silicone pixel and SCT detectors within the
ID [51]. The energy from a charged track is deposited across multiple pixels, and so individual
deposits are combined into clusters by grouping neighboring pixels with energy deposited above
a set threshold. Because of the alternating nature of the silicone strips, the energy deposits from
two layers of strips are combined to obtain the spatial coordinate, called the space-point, of the
track. An individual pixel is sufficient to obtain a track’s space point. Once a collection of space
points within the ID has been determined, three such points are combined to form track seeds.
An iterative combinatorial method determines the underlying tracks from the available track seeds
with high efficiency and good rejection of random combinatorial tracks.

Vertices are reconstructed by fitting the charged tracks [52]. At least two tracks must be as-
sociated with a vertex for it to be considered. Additionally, associated tracks must satisfy the
following cirteria: the track transverse momentum (pT) must be greater than 400 MeV; the track’s
absolute pseudorapidity (|η|) must be less than 2.5; and the track must have at least 9 (11) hits in
the silicone pixels and SCT detectors for |η| < 1.65 (|η| > 1.65), as well as at least one hit in the
IBL or B-Layer. Additional requirements on the track quality are applied, as well. The so-called
“primary vertex” (or vertex of interest) is defined nominally as that with the greatest

∑
(pT)2 of

the associated tracks. Note that a different definition of the primary vertex is used for diphoton
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Figure 4.1: The different combinations of detector signatures left by a variety of particles. Figure
taken from Ref. [11].

events, discussed in Section 6.1. Tracks originating from vertices other than the primary vertex are
considered to be pileup and are not considered for analysis purposes.

4.2 Jets

Jets are reconstructed from topological clusters [53] (also called topo-clusters) of energy deposited
in both the EM and hadronic calorimeters. Electrons and photons are similarly constructed from
topo-clusters; the construction of a topo-cluster from the energy deposited in individual calorimeter
cells is detailed extensively in Section 4.4 below. An individual topo-cluster may contain energy
deposited by multiple jet constituents, and sub-jet information such as the internal distribution of
energy may be relevant for physics analysis. Therefore, topo-clusters with multiple local maxima
satisfying certain criteria are split into two topo-clusters. To be split, a local maxima must have
at least 500 MeV of energy deposited in that cell, and it must have at least four neighboring cells
available for comparison. The separation of local maxima occurs in two steps. In the first step,
local maxima from only the second and third layers of the EM calorimeter and the first layer of the
forward calorimeter are considered. In the second step, additional maxima from the first layer of
the EM calorimeter, the hadronic calorimeter, and the remainder of the forward calorimeter. Once
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the topo-clusters have been defined and separated, they are then clustered into jet objects using the
anti-kt algorithm using a radius parameter of 0.4 [54, 55].

4.3 Muons

Muons are reconstructed primarily from information measured by the muon spectrometer by com-
bining segments (small pieces of a muon track measured by multiple hits within a chamber) of hits
from the four muon subdetector systems (MDTs, CSCs, RPCs and TGCs) [56]. Segments in the
MDTs are obtained by fitting a straight line to the hits recorded in the tubes from the multilayer
in each MDT chamber. These segments, along with corresponding hits from the nearby trigger
chambers, are then passed through a Hough transform [57], which translates the straight lines in
the x− y plane (that orthogonal to the bending induced by the toroid magnet) into points in Hough
r − φ space. Segments in the CSCs are constructed by passing hits from the multilayer to a com-
binatorial algorithm scanning the η − φ plane (that of the bending induced by that toroid magnet).
The hits measured by the trigger systems (the RPCs and TGCs) will give the coordinate in the
orthogonal direction to the bending.

Once the track segments from the different subdetector components have been determined, full
muon tracks are constructed by combining at least two segments (or one high-quality segment if
that segment lies in the barrel-endcap transition region). Initially, only track segments from the
middle layer of the MS are used as track seeds for a combinatorial algorithm; track segments
from the inner and outer layers are used after. A χ2 algorithm assigns individual hits to a track.
A dedicated overlap removal algorithm determines whether a track segment may be shared by
multiple muon tracks, which may occur in the case of close-by muons.

Once muon tracks have been reconstructed in the MS, they are matched to corresponding sig-
nals in the other subdetector components (the ID and the calorimeters). Depending on which sub-
detector systems provide relevant information for the muon, four different muon types are defined:
Combined Muon (CBM), Segment Tagged Muon (STM), Calorimeter Tagged Muon (CTM), and
Extrapolated Muon (ME). CBMs are those for which the track has been reconstructed in both the
ID and the MS. The tracks for one system are extrapolated to match a track in the other system
(normally, those from the MS are extrapolated to the ID, but the inverse may be utilized as well).
A global fit is performed on the combined track, which may result in the addition or subtraction
of MS hits in order to improve the overall track quality. STMs are those constructed from ID
tracks which are matched to one or more track segments in the MS, but not to a full MS track.
CTMs are constructed by matching ID tracks to calorimeter energy deposits consistent with those
of minimum ionizing particles, and hence they do not use inputs from the MS. This type of muon
is considered in order to increase muon efficiency in the region of |η| < 0.1, where the MS is not
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fully instrumented, and it is the least pure of the four types. The last type, MEs, are constructed
from MS tracks which are not matched to an ID track, but which are loosely compatible with the
primary vertex. This type mostly accounts for very forward muons in the range of 2.5 < |η| < 2.7,
whose tracks lie outside the acceptance of the ID.

4.4 Photons and Electrons

Photons and electrons are reconstructed from topological clusters of energy deposited in the EM
calorimeter [53, 58]. Topological clusters are seeded by calorimeter cells in the second and third
layers of the EM Calorimeter in which the energy deposited is greater than four standard deviations
above the expected noise level of that cell. Once seed cells are defined, neighboring cells from all
EM calorimeter layers (including the presampling layer) in which the energy deposited is greater
than two standard deviations above the expected noise level of that cell are iteratively added to the
cluster. Lastly, the neighboring cells surrounding the defined topo-clusters are included. Clusters
which have two local maxima are considered to be two separate topo-clusters, and all topo-clusters
must have at least 400 MeV of deposited energy. The splitting of local maxima into separate
topo-clusters is described in detail in Section 4.2.

Once topo-clusters have been defined within the EM calorimeter, they are matched to tracks
from the ID, with preference given to tracks in which the track seed falls within the RoI of the
topo-cluster. The candidate track is extrapolated to the EM calorimeter to asses its compatibility
with the topo-cluster. The extrapolation is done using two possible definitions of the particle’s
momentum: the first being the measured track momentum, and the second being scaled to match
the energy deposited in the topo-cluster. The latter option accounts for cases in which the particle
loses significant energy from Bremsstrahlung radiation, which would otherwise lead to a mismatch
of the momenta estimated from the track and the calorimeter. Once the track has been extrapolated,
it is defined as matched if it satisfies the following criteria:

|∆η| < 0.05

and
−0.10 < q × (φtrack − φcluster) < 0.05

where q is the charge of the candidate charged particle (essentially, the projected track must hit
close to the location of the energy deposit).

Prompt electrons and positrons will appear in the detector as an EM calorimeter deposit with
one associated track. Unconverted photons carry no charge, and so no track will be matched to the
EM calorimeter deposit. Converted photons are photons which have converted into an electron-
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positron pair in the detector volume (due to interactions with the detector material). They appear
as two clusters, each with an associated track, and generally have a reconstructable conversion
vertex. These converted photon candidates are required to have two oppositely-charged tracks,
which may be either in the silicon tracker or in the TRT, and the tracks must be compatible with
a conversion vertex from a massless particle. Converted photons may also be reconstructed from
a single track, where no hits in the innermost layers are present. In both cases, tracks must be
determined to be very likely from an electron by the TRT, in order to reduce the contamination
of other charged tracks. In cases where multiple conversion vertices appear consistent with the
converted photon candidate, those reconstructed from two silicone detector tracks are prioritized
over those formed from one or more TRT track or from only a single track. Preference is also given
to vertices consistent with a smaller radius of conversion.

In Run 2, the reconstruction of photons and electrons has been improved through the use of
superclusters, which allow energy from secondary showers (such as from a Bremsstrahlung pho-
ton) to be captured and factored into energy reconstruction. The topo-clusters discussed above
are used to seed superclusters. To be defined as a supercluster seed for an electron (photon), the
topo-cluster must have at least 1 GeV (1.5 GeV) of energy deposited. Candidate electron topo-
clusters must also satisfy basic tracking requirements: the track must have at least four hits in the
silicons pixels or strips. Additional topo-clusters are defined as satellites of a supercluster seed if
they fall within a window of ∆|η| × ∆φ = 0.075 × 0.125 of the seed. For electron candidates,
additional topo-clusters within a wider window of ∆|η|×∆φ = 0.125×0.300 may also be defined
as satellites if their matched track is the same as that of the seed supercluster. Converted photon
candidates may also be assigned additional satellite topo-clusters if their conversion vertices were
formed from tracks in the silicone detectors; the matched track of the satellite topo-cluster must
match the seed’s conversion vertex. Once all topo-clusters clusters have been assigned, the com-
bined seed and satellites are defined as a supercluster. The superclusters are limited to a maximum
size of ∆η < 0.075 (∆η < 0.125) in the barrel (endcap) in order to reduce the impact of pileup
topo-clusters being assigned to the supercluster.

An additional offline “identification” algorithm is applied to both photons and electrons; the
photon identification algorithm will be detailed extensively due to the importance of photons in the
analysis. The purpose of the identification algorithm is to reject “fake” photon candidates, which
are primarily charged jets mis-reconstructed as photons.

Three primary identification working points are defined: loose, medium, and tight. The loose

photon identification requirement is based on the leakage from the electromagnetic shower into the
hadronic portion of the calorimeter, as well as the shower shape observed in the second layer of
the EM calorimeter. The loose requirement uses the following shower shape variables:

• Rhad (the ratio of transverse energy deposited in all layers of the Hadronic calorimeter to that

37



deposited in the cluster in the EM calorimeter, for clusters in the pseudorapidity range of
0.8 < |η| < 1.37)

• Rhad1 (the ratio of transverse energy deposited in the first layer of the Hadronic calorimeter
to that deposited in the cluster in the EM calorimeter, for clusters outside the pseudorapidity
range of 0.8 < |η| < 1.37)

• Rη (the ratio of the energy deposited in a 3 × 7 (η × φ) cell rectangle to that deposited in a
7 × 7 cell rectangle, where both rectangles are centered on the cell with the most deposited
energy)

• wη2 (the lateral shower width
√∑

i Eiη
2
i∑

i Ei)
− (

∑
i Eiηi∑
i Ei

)2, whereEi is the energy deposited in cell
i and ηi is the pseudorapidity of cell i, calculated in a 3× 5 (η × φ) cell rectangle).

The medium requirement (used by the diphoton trigger, described in Section 5.1) uses the same
variables as described above, as well as an additional variable:

• Eratio (the ratio of the difference in energy deposited between the maximum deposit and the
second largest deposit within a cluster to the sum of the energy in those two deposits).

Both the loose and medium working points are optimized in bins of photon pseudorapidity, but
neither is optimized separately for converted and unconverted photons.

The tight selection includes the requirements of the loose working point, and it adds informa-
tion from the finely segmented strip layer of the calorimeter. The tight working point is separately
optimized for unconverted and converted photons, to account for the generally broader lateral
shower profile of the latter. As for the other two working points, it is also optimized in bins of
photon pseudorapidity.

For the portion of the analysis measuring the top-associated Higgs boson production mode,
the tight identification cut requirement was re-optimized in sub-ranges of the photon’s transverse
energy (ET), as the photon’s electromagnetic shower depends significantly on its energy. Using the
ET-dependent tight photon identification cuts, photons with pT > 25 GeV are expected to have a
reconstruction and identification efficiency of greater than 82%, comparable to that of the non-ET-
dependent definition. Overall, the new tight selection provides an increase in fake photon rejection,
while keeping the same identification efficiency.

Alternative loose-like identification criteria are also used within the analysis. These are des-
ignated as Loose’ working points. There are four Loose’ working points in total, numbered 2-5.
These criteria are stricter than the loose working point. Events must pass the loose cut, and they
must fail specific shower shape criteria used in the tight working point definition. The primary
Loose’ working point used in this work is the Loose’4 working point.
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4.5 Calorimetric Photon Isolation

Photon isolation is a variable which quantifies the amount of activity in the vicinity of a photon
candidate. The purpose of the isolation quantity is to help discriminate prompt photons (those
originating from the physics process of interest, at or near the primary vertex) from non-prompt
photons (those produced far from the primary vertex). A cartoon illustration of photon isolation
being used to discriminate between prompt and non-prompt photons is presented in Figure 4.2.
Essentially, non-isolated photons are defined as having large amounts of activity nearby, which is
often from a close-by jet. These photons are more likely to have been radiated by charged hadrons
in the jet, and they do not originate from the physics interaction being studied.

Figure 4.2: A cartoon illustration of photon isolation discriminating prompt and non-prompt pho-
tons. The grey star represents the physics interaction of interest at the primary vertex. The yellow
cone is a jet, which contains many charged hadrons. One of these charged hadrons has radiated
a non-prompt (not originating from the primary vertex) photon, denoted as γNP . An additional
prompt photon is also shown, denoted as γP . The dotted ovals surrounding the photons denote
the isolation radius; if significant energy is deposited within this radius, the photon is defined as
non-isolated. The part of the jet cone overlapping with the photon isolation radius will deposit
significant amounts of energy, causing γNP to be labeled as non-isolated. No objects in the cartoon
deposit energy around γP , so it is considered isolated. In this way, the isolation requirement may
be used to identify non-prompt photons, which are not usually of interest in physics analysis.

Photon isolation is calculated separately in both the ID (using the charged tracks within a
given radius of the projected photon track) and the calorimeter (using energy deposits within the
EM calorimeter). The calorimetric isolation variable is calculated by summing the energy from
topological clusters seeded within a given radius of the photon within the EM calorimeter. The
construction of topological clusters (also described in Section 4.4) is illustrated in Figure 4.3. First,
seed cells are defined, as shown by the black cell in Figure 4.3a. The energy deposited in the cell
must be more than four sigma greater than the expected noise in the cell. Seed cells must fall within
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(a) A seed cell, which falls within the de-
fined isolation radius (∆R < 0.2 or ∆R <
0.4) around the photon candidate. The pho-
ton candidate is within the white 5× 7 cell
“core”– cells within this rectangle are not
considered when building topoclusters.

(b) Neighbors of the seed cell in which the
energy deposited is more than two sigma
above the expected noise. These cells may
fall outside the isolation radius, but they
may not fall within the core.

(c) The final iteration of neighbors com-
pleting the cluster. These cells may fall
outside the isolation radius, but they may
not fall within the core.

Figure 4.3: The steps to construct a topocluster in the EM calorimeter. The first step (a) is to define
seed cells, shown in black, in which the energy deposited is greater than four sigma above the
expected noise. The second step (b) is to iteratively add neighboring cells, shown in dark blue, in
which the energy deposited is greater than two sigma above the expected noise. The last step (c) is
to add the neighboring cells surrounding the existing cluster, as shown by the light blue cells. The
central white 5× 7 cell is defined as the “core,” and it contains most of the energy deposited by the
photon candidate.
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the defined isolation radius (∆R < 0.2 or ∆R < 0.4) surrounding the photon candidate, and they
may not fall within the central 5 × 7 cell “core” (shown by the white rectangle in 4.3) containing
most of the energy deposited by the photon itself. Next, neighboring cells in which the deposited
energy is greater than two standard deviations above the expected noise level of that cell are added
to the cluster. This process is repeated iteratively until all connected cells satisfying the energy-to-
noise requirement are included in the cluster, as shown by the dark blue cells in Figure 4.3b. These
cells may fall outside the isolation radius, but they may not be within the 5 × 7 cell core. Finally,
all cells neighboring the existing cluster are added to the cluster, as shown by the light blue cells in
Figure 4.3c. These cells also may be outside the isolation radius, and they must not be within the
core.

At low energy (10 < Eγ
T < 100 GeV), the isolation quantity is studied using simulated “radia-

tive Z” events, which are those where a Z boson decays to a pair of electrons or muons, with one
of the leptons radiating a final state photon (Z → ``γ). This sample contains relatively few events
with “fake” photons (usually mis-reconstructed jets). For higher energies, however, the sample
lacks sufficient statistics to study the isolation quantity precisely.

For higher energies (25 < Eγ
T < 1000 GeV), an alternative “single photon” sample is used

instead. The single photon sample simulated using PYTHIA8, described in Section 5.2, is utilized
for the single photon calorimetric isolation studies presented here. The single photon data sample,
described in Section 5.1, consists of events passing one of the single photon triggers. Although
the data sample contains ample statistics, it also contains a significant fraction of fake photons.
The removal of the fake photons from the single photon data set is detailed below in Section 4.5.1.
For the studies presented here, all photons are required to pass the loose identification working
point [58], as described in Section 4.4.

Table 4.1: The definitions of the three standard photon isolation working points.

Working Point Calorimetric Isolation Requirement Track Isolation Requirement

FixedCutLoose Etopo-cone20
T − 0.065× EγT > 0.0 GeV pcone20

T − 0.05× EγT > 0.0 GeV
FixedCutTight Etopo-cone40

T − 0.02× EγT > 2.45 GeV pcone20
T − 0.05× EγT > 0.0 GeV

FixedCutTight(CaloOnly) Etopo-cone40
T − 0.02× EγT > 2.45 GeV –

Two calorimetric isolation variables are defined depending on the isolation radius consid-
ered: E topo-cone20

T (∆R = 0.2) and E topo-cone40
T (∆R = 0.4). Example of the calorimetric iso-

lation variables distribution in the single photon samples are presented in Figure 4.4. Using
these two variables, along with a track isolation variable pcone20

T (discussed in Ref. [58]), three
standardized isolation working point are defined: FixedCutLoose, FixedCutTight, and
FixedCutTightCaloOnly. Their definitions are presented in Table 4.1.
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Figure 4.4: Inclusive distributions of the calorimetric isolation variables in the single photon data
(shown in black points) and corresponding simulation sample (shown in red) from the 2017 data
taking period. The top row shows the distributions of the E topo-cone20

T variable, while the bottom
row shows those of the E topo-cone40

T variable. The left column contains converted photons, and the
right column contains unconverted photons.
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4.5.1 Corrections to Calorimetric Photon Isolation in Simulation

The efficiency of the photon calorimetric isolation requirements is obtained by fitting the shape of
the calorimetric isolation variable, E topo-cone20

T or E topo-cone40
T , minus the relevant ET fraction for the

targeted working point. From Table 4.1, this translates to fitting the following distributions:

• FixedCutTight(CaloOnly): E topo-cone40
T − 0.022× Eγ

T

• FixedCutLoose: E topo-cone20
T − 0.065× Eγ

T

An example distribution of this quantity targeting the FixedCutTight working point is shown
in Figure 4.5. The advantage of considering the combined E topo-cone20

T /E topo-cone40
T and ET quantity

is that events passing the working point criteria will fall to the left of a defined value when plotted.
In Figure 4.5, for example, events passing the working point criteria fall to the left of 2.45 GeV
(shown by a dashed green line in the plot). The efficiency can then be obtained by taking the
integral of the isolation shape to the left of the cut value, divided by the total integral of the isolation
shape.

Figure 4.5: An example of the distribution of the E topo-cone40
T variable minus the relevant frac-

tion of photon ET, shown by the black points (the blue shape is a fit to this distribution). The
FixedCutTight working point requires that the quantity E topo-cone40

T − 0.22 × ET be less than
2.45 GeV. In the plot, this means that all events to the left of the dashed green line will pass the
cut, while those to the right fail.

The efficiencies of the isolation cuts on photons from simulation and data have been found to
disagree. In order to correct for this discrepancy, a scale factor is applied to simulated photons
passing the isolation cut in physics analyses. The scale factor is defined as:

S =
εData

εSimu

where εData is the isolation efficiency of real photons in the data sample and εSimu is the efficiency
of simulated photons.
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Because simulated photons are real photons by definition, performing a proper comparison to
data requires that the data sample also contains only real photons. In order to isolate real photons,
the scale factor is calculated using photons in data and simulation which pass the tight identification
working point [58], as described in Section 4.4. Additionally, the cut on the track isolation variable
(see table 4.1) is applied at pre-selection level, except when targeting the FixedCutTight-
CaloOnly working point, in order to reduce additional fake photon contamination.

Still, the primary complication of the efficiency calculation is in determining the shape of
only the true photons in the data sample, since the single photon data sample is contaminated
by a significant number of fake photons which pass the strict tight identification requirements.
Subtracting the remaining fake photon shape involves a process of iterative fits, which is described
below in detail.

In order to better estimate the isolation shape of fake photons, a fake photon enriched region is
defined using the alternative Loose’4 identification criteria (discussed in Section 4.4). The Loose’4

is chosen instead of the nominal loose region because it has been observed to be somewhat less
correlated with photon isolation. Although background-enriched, the Loose’4 identification region
also contains some amount of true photons failing the tight identification requirement, defined as
“leakage” photons.

Scale factors are determined for fifteen bins in transverse momentum, which are chosen to
correspond with the single photon trigger thresholds. The scale factors are binned in six bins in the
absolute-value of pseudo-rapidity. The choice of |η| binning is based upon differences in detector
material, and it is the same as that used for the photon identification working point definitions. The
scale factors are provided separately for converted or unconverted photons, as well as separately
for the 2015-2016 and 2017 data-taking periods.

The sequence of fits, performed to remove the fake photon contamination from data, proceeds
as follows:

• An initial fit to simulated photons passing the tight identification requirement in is performed
using an Asymmetric Crystal Ball function [59]. An example of this fit can be seen in
Figure 4.6b.

• A fit to simulated photons passing the Loose’4 requirement is performed using a Crystal Ball
function. An example of this fit can be seen in Figure 4.6a.

• A naive two-component fit is performed to photons in data passing the Loose’4 requirement.
An unconstrained Crystal Ball function is used to fit the fake photon shape, and the Crystal
Ball fit to simulated photons in the Loose’4 region is used for the shape of the “leakage”
photons (real photons failing the tight requirement). An example of this two-component

44



(a) Loose’4 , Simulation (b) tight, Simulation

Figure 4.6: The (a) Crystal Ball fit to simulated photons in the Loose’4 region and the (b) Asym-
metric Crystal Ball fit to simulated photons in the tight region.

fit can be seen in Figure 4.7a, where the leakage component is shown in blue, the fake
component is shown in green, and the total fit is shown in red.

• A naive two-component fit is performed on the photons from the data sample passing the
tight requirement in order to estimate the number of real photons in this region,NTrue, tight Data.
The fake photon component of the sample is fitted with the background shape from the fit to
photons from data in the Loose’4 region (the red curve in Figure 4.7a), and the real photon
component is fitted with the shape obtained from the fit to simulated photons in the tight

region (the curve in Figure 4.6b). An example of this fit is shown in Figure 4.7b.

The relative fractions of real and fake photons in the naive two-component fits to photons in
data are not derived from the observed fractions in simulation. They are determined based on the
best fit of the real and fake photon shapes to the data in each region. However, a more precise
prediction for the number of leakage photons expected in the Loose’4 region of the data can be
obtained from the ratio of simulated tight to Loose’4 photons. This prediction can then be used to
constrain the magnitude of the leakage photon shape in the Loose’4 data region. If the number of
true photons in the tight region of the data sample is known, then the prediction for the number of
leakage photons in the Loose’4 region of the data is simply given by:

NLeak, Loose’4 Data = NTrue, tight Data ×
NLoose’4 Simulation

Ntight Simulation
(4.1)

where NTrue, tight Data is the number of true photons in data passing the tight criteria, NLoose’4 Simulation

is the number of simulated photons passing the Loose’4 criteria, and Ntight Simulation is the number
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(a) Loose’4 , Data (b) Tight, Data

Figure 4.7: The initial two-component fit to (a) photons from data in the Loose’4 region and (b)
photons from data in the tight region. In the fit to photons from data in the Loose’4 region (a), the
blue line shows the fit to the “leakage” photons (true photons failing the tight criteria) component,
and the green line shows the fit to the the fake photon component. The red line shows the total fit.
In the fit to photons from data in the tight region (b), the blue line shows the total fit (to both the
real and fake components), while the red line shows the fit to only the fake component. The shape
of the fake component is taken from the red curve in (a).

of simulated photons passing the tight criteria.
The total number of events in data passing the tight criteria (the integral of the blue curve in

Figure 4.7b) minus the fitted number of fake photons (the integral of the red curve in Figure 4.7b)
gives an estimate of the number of true photons in the tight region of the data. Because the total
background (red) shape includes real photons from leakage, though, this prediction will underesti-
mate NTrue, tight Data.

A second estimate of NTrue, tight Data can be obtained by assuming that the leakage shape fitted
to photons in data in the Loose’4 fit (the blue component in Figure 4.7a) contains entirely true
photons. NTrue, tight Data is then estimated by subtracting only the integral of the fake component of
the background shape (the green component in Figure 4.7a) from the total number of events. Due
to the consistent overestimation of the number of leakage events by the naive fit to photons in the
Loose’4 region of data, this second prediction will overestimate the value of NTrue, tight Data.

Since the two estimates of NTrue, tight Data are expected to err in opposite directions, an average
of the two is taken to give the final prediction of NTrue, tight Data. The difference between the final
NTrue, tight Data value and the two predictions is taken as the uncertainty. The number of leakage
events NLeak, Loose’4 Data can then be determined using the above formula, and the fitting procedure
with this updated leakage prediction continues as follows:

• The two-component fit to photons from data in the Loose’4 region is performed again, with
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the number of leakage events constrained to NLeak, Loose’4 Data with a Poisson constraint. This
second fit tends to show a decrease in the fraction of fitted leakage events, as shown in the
blue component of the example fit in Figure 4.8a. The red component shows the fit to fake
photon component of the Loose’4 Data, while the green component shows the total fit.

• The final two-component fit is performed on photons in the tight region of the data. The
signal shape is again taken from the fit to simulated photons passing the tight criteria (from
Figure 4.6b). The background shape is taken from the fake component of the second fit to
photons from data in the Loose’4 region (the red component in Figure 4.8a). An example
fit can be seen in Figure 4.8b, where the red component shows the predicted fake photon
component and the blue shows the total fit.

• The fake component (the red shape in Figure 4.8b) of the two-component fit is subtracted
from the shape of the photons in data passing the tight criteria. The remainder is the best
estimate for the shape of true photons in the tight region of the data.

The calorimetric isolation efficiency in the data can finally be obtained by integrating the
background-subtracted tight photon isolation shape up to the working point cutoff of 2.45 GeV
(FixedCutTight and FixedCutTightCaloOnly) or 0.0 GeV (FixedCutLoose), then
dividing by the total integral of the isolation shape. The simulation efficiency is similarly obtained
by taking the integral of the isolation shape in simulated photons in the tight region up to the
working point cutoff, then dividing by the total integral.

Three sources of systematic uncertainty are considered: the estimation of the number of leakage
photons in the Loose’4 region of data; the choice of the background-enriched identification region;
and errors resulting from mismodeling by the choice of fit function.

To determine the uncertainty from the estimate of the number of leakage events in the Loose’4

region of data, additional fits are performed using both the overestimate and underestimate of the
number of leakage events instead of the average of the two, as discussed above. The maximum
deviation between the Noverestimate and Nunderestimate scale factor from the nominal result is taken
as the leakage error.

To determine the uncertainty from the choice of the Loose’4 region as the background-enriched
region, the fitting process is re-performed using photons in the so-called Loose’3 and Loose’5

regions. The Loose’3 criteria is slightly stricter than Loose’4, while Loose’5 is closer to the loose

requirement. The maximum discrepancy between the Loose’3 and Loose’5 scale factors from the
nominal Loose’4 result is taken as the Loose’ error.

A binomial statistical error on the scale factors is also calculated. The contribution from the fit
quality is included as a scaling on the statistical error, and it is obtained from the

√
χ2/(Nbins − 1)
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(a) Loose’4 , Data (b) Tight, Data

Figure 4.8: The final two-component fit to (a) photons in the Loose’4 region of data and (b) photons
in the tight region of data. In the fit to Loose’4 photons (a), the blue line shows the fit to the leakage
photons (true photons failing the tight criteria), and the red line shows the fit to the the fake photon
component. The green line shows the total fit. In the fit to photons in the tight region of data (b),
the red line shows the fitted fake photon shape, taken from the red curve in (a), while the blue line
shows the total fit.
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Figure 4.9: The breakdown of the systematic errors for the FixedCutLoose scale factors for
unconverted photons, obtained using the 2017 subset of single photon data and corresponding
simulation sample. The error values versus photon ET are plotted separately for each bin in |η|.
The leakage error is shown in magenta, and the Loose′ error is shown in blue. The raw statistical
error is shown in red, and the the scaled statistical error (to account for the fit error) is shown in
green. The black line shows the total error.
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value of the fits. To obtain the total uncertainty, the two systematic (Loose’-ID choice and leak-
age estimate) components are added in quadrature with the scaled statistical component. An ex-
ample breakdown of the systematic uncertainty components can be found in Figures 4.9 for the
FixedCutLoose working point. Typically, the fit quality systematic is the dominant contribu-
tion.

The calorimetric isolation data efficiencies and scale factors from the single photon data set
in the innermost (|η| < 0.6) and outermost (1.81 < |η| < 2.37) pseudorapidity bins are shown
in Figure 4.10. The final photon isolation efficiency for each working point is determined by
combining the calorimetric isolation measurements from single photons (presented here) with track
isolation measurements from single photons and combined isolation measurements from the Z →
``γ sample.

In addition to the calorimetric isolation scale factors, another correction is also derived using
the single photon samples. This correction, known as a “data-driven shift,” addresses the fact that
the mean of the calorimetric isolation distribution in simulation is observed to be displaced from
that seen in data. The data-driven shift is then simply a constant value added to the simulated
isolation variable. The shifts are calculated using the same fitting procedure described above, but
with the fits performed directly to the isolation variables E topo-cone20

T and E topo-cone40
T (no fraction of

Eγ
T is subtracted). The shifts are extracted by taking the difference between the mean of the final

fitted shape of real photons in data passing the tight criteria and that of the fit to photons in the
tight region of the simulation sample.

Examples of the data-driven shifts measured using the 2017 subset of data and corresponding
simulation sample are presented in Figure 4.11. Shifts for both the E topo-cone20

T and E topo-cone40
T vari-

ables are shown, as well as for both converted and unconverted photons. The shifts are calculated
in the same six pseudorapidity bins as for the scale factors; the figure shows those in the innermost
(|η| < 0.6) and outermost (1.81 < |η| < 2.37) bins.
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Figure 4.10: Measurement using single photons, calo-only: the efficiencies as a function of
ET for the three working points, FixedCutLoose (black), FixedCutTight (red), and
FixedCutTightCaloOnly (green). The bottom panels of each subplot show the scale fac-
tors. The left plots are the results using converted photons, while the right plots are those using
unconverted photons. The top row shows the results in the inner pseudorapidity range of |η| < 0.6,
while the lower plots show the pseudorapidity range of 1.81 < |η| < 2.37.
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Figure 4.11: The data-driven shifts calculated for the (top) E topo-cone20
T and (bottom) E topo-cone40

T
variables, using the 2017 data taking period and corresponding simulated single photon samples.
The left plots show the shifts for unconverted photons, while the right show those for converted
photons. The black points show the shifts for the most central pseudorapidity bin (|ηγ| < 0.6),
while the maroon points show the shifts for the most forward pseudorapidity bin (1.81 < |ηγ| <
2.37).
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CHAPTER 5

Data and Simulation Samples

This chapter discusses the details of the dataset used by the analysis. The relevant samples of
simulated events, used to model specific physics processes, are discussed as well. The dataset was
collected by the ATLAS detector, as discussed in Chapter 3. The simulation of physics processes
includes the detector response.

5.1 Data Sample

The analysis presented includes proton-proton (pp) collision data taken at a center-of-mass energy
√
s = 13 TeV during Run 2 (2015-2018) of the LHC. The H(γγ) Couplings analysis uses the sub-

set of data taken between 2015 and 2017, amounting to a total integrated luminosity of 79.8 fb−1.
The portion of the analysis concerning ttH production contains the full Run 2 pp dataset, which
amounts to a total integrated luminosity of 139 fb−1. The mean number of interactions < µ > per
bunch crossing was 34 over the full Run 2 period. The average µ per bunch crossing was 23 during
the 2015-2016 data-taking period, and it increased to 37 during the 2017-2018 data-taking period.
Data events are required to pass a set of data-quality criteria, which requires that all subdetector
components are functioning properly.

The ATLAS trigger system is described in detail in Section 3.0.7. The analysis uses data
passing the following triggers: HLT g35 loose g25 loose (in the 2015-2016 data-taking pe-
riod) and HLT g35 medium g25 medium (in the 2017-2018 data-taking period). The diphoton
triggers are constructed from two primary single photon triggers, with one requiring a photon can-
didate with a transverse energy ET of at least 35 GeV and the other requiring a candidate with a
ET of at least 25 GeV. The loose and medium labels within the trigger names denote the photon
identification requirement used; these requirements are described in detail in Section 4.4. The trig-
ger identification requirement was tightened from loose to medium due to the increases in pileup
and instantaneous luminosity between 2016 and 2017 in order to preserve a manageable trigger
rate [58]. The efficiency of each of the primary single photon “legs” of the diphoton triggers has
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Figure 5.1: Normalized distributions of the number of leptons (y-axis) and the number of loose-
identified photons (x-axis) for a sample of the 2016 data (left) and a sample of the 2017 data
(right).

been measured to be about 95% or higher when the photons have a transverse energy at least 5 GeV
above the trigger thresholds (25 and 35 GeV) [60].

The tightening of the online photon identification requirement in the 2017 diphoton trigger
was expected to increase the fraction of recorded data events which would pass the requirement of
having two photons satisfying the offline loose identification criteria. However, the opposite was
observed; the efficiency of the “two loose photons” cut decreased in the 2017 data set compared to
the efficiency in the 2015-2016 data set. One theory to explain the decrease in efficiency was that
there was a larger contamination of electrons passing the 2017 trigger.

In order to test this theory, small subset of data were produced without the requirement of
two loose photons. A portion of run 301915 (2016) and run 330166 (2017) were analyzed, which
corresponded to 2735 events from 2016 and 1385 events from 2017. The relative fractions of
leptons and loose-identified photons were plotted in 2D histograms, as presented in Figure 5.1.
One can see that the 2017 data contains a relatively large fraction of events which have two leptons,
but no loose photons. The 2016 data, on the other hand, does not show this behavior, and most
events appear to have two loose photons. This discrepancy supports the theory that the 2017-2018
trigger selects a comparably higher fraction of electrons than the 2015-2016 trigger, despite the
nominal tightening of the identification requirement.

The photon isolation studies, described in Section 4.5.1, utilize the so-called “single photon”
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data set. This data set includes all proton-proton collision events passing one of the single photon
triggers (the lowest threshold of which is 25 GeV) and also passing the basic data-quality require-
ments described above. The single photon triggers use the loose online identification requirement.
Due to their high rates, they are pre-scaled (meaning only a fraction of events passing a given
trigger are recorded). The isolation studies only consider data taken between 2015 and 2017.

5.2 Simulation Samples

The analysis uses simulated samples of Higgs boson events decaying to two photons. The simu-
lated production modes include: gluon-guon fusion (ggF ) [61]; vector boson fusion (V BF ) [62];
vector-boson associated production (V H) [63, 64], split into W± and Z associated production
(W+H , W−H , and ZH); top-associated production (ttH); and single-top production (tH), split
into tHjb and tWH . The most prevalent of these modes are discussed in Section 2.1.5. Addition-
ally, the rare production modes ggZH and bbH are simulated, as well. Most of the signal samples
are simulated using the POWHEG generator [65, 66, 67], using the PDF4LHC15 [68] Parton Dis-
tribution Function (PDF) set. Subsequent parton showering and hadronization are modeled with
PYTHIA8 [69] using either the AZNLO parameter set [70] tuned to data, or, for the case of ttH and
bbH , the A14 parameter set [71]. The exceptional signal samples are tHjb and tWH . The tHjb
sample is generated with MADGRAPH [72] using the CT10 PDF set [73], interfaced to PYTHIA8
with the A14 tune for showering and hadronization modeling. The tWH sample is generated
with MADGRAPH5 aMC@NLO using the CT10 PDF set, interfaced to Herwig++ [74, 75, 76] for
showering and hadronization using the the UEEE5 parameter set.

The simulated Higgs boson samples are normalized to their expected SM cross sections (as
reported in Refs. [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]) times
the expected SM branching ratio to two photons (as reported in Refs. [13, 77, 78, 79, 80, 81]) at
a center-of-mass energy of 13 TeV and with a Higgs boson mass of 125.09 GeV. The inclusive
cross section values per Higgs boson production mode are presented in Table 5.1. The inclusive
ggF cross section is calculated at the next-next-next-leading-order (N3LO) for QCD processes and
next-leading-order (NLO) for Electroweak processes. The inclusive V BF , W±H , and ZH QCD

cross sections are calculated at the NNLO for QCD processes and NLO for Electroweak processes.
The inclusive ttH cross section is calculated at the NLO for QCD and NLO for Electroweak
processes. The inclusive tHjb and tWH cross sections are calculated using the 5FS at NLO
QCD accuracy (no NLO Electroweak corrections are included). The inclusive bbH cross section
is calculated using a combination of the five-flavor-scheme (5FS) NNLO and four-favor-scheme
(4FS) NLO for QCD processes; no NLO Electroweak corrections are included.

The analysis uses simulated events from the continuum γγ, ttγγ, and V γγ background pro-
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Table 5.1: The predicted SM cross sections of the Higgs boson production modes, as reported in
Refs. [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31].

Production Mode Cross Section [pb]
ggF 4.852× 101

V BF 3.779
W±H 1.369
ZH 8.824× 10−1

ttH 5.065× 10−1

tHjb 7.426× 10−2

tWH 1.517× 10−2

bbH 4.863× 10−1

cesses. The γγ and V γγ samples are generated with SHERPA 2.2.4 [82] using the CT10 PDF
set. SHERPA parton showering and hadronization is also used, with the ME+PS@NLO prescrip-
tion [83, 84] and dedicated parton showering tune developed by the authors of SHERPA [85]. The
ttγγ sample is generated with MADGRAPH5 aMC@NLO using the PDF4LHC15 PDF set and is
interfaced to PYTHIA8 with the A14 parameter set. Additionally, a small set of events containing
one prompt photon and one prompt jet (γj) are produced for studying backgrounds in which a jet
is mis-reconstructed as a photon. These samples are produced, showered, and hadronized with
SHERPA, using the CT10 PDF set and the same prescription as for the γγ samples.

The photon isolation (detailed in Section 4.5.1) studies utilize dedicated single photon simu-
lation samples generated using PYTHIA8; showering and hadronization in these samples is also
modeled using PYTHIA8. These samples contain one prompt photon and one prompt jet (addi-
tional radiated photons and jets may be present in the events) resulting from the qq̄ → γg and
qg → qγ processes. The A14 parameter set is used, along with the PDF4LHC15 PDF set.

All generated Higgs boson events are passed through a full simulation of the ATLAS detec-
tor response [86] using GEANT4 [87]. The continuum γγ and ttγγ background samples are
processed with a fast GEANT4 simulation, which uses a parameterization of the calorimeter re-
sponse in place of full simulation of the calorimeter [88]. The single photon samples are produced
using both the full and fast detector simulations in order to study isolation mismodeling introduced
through the use of the parameterized calorimeter response. The generation of the simulated event
samples includes the effect of pileup (multiple pp interactions per bunch crossing), as well as the
effect on the detector response due to interactions from bunch crossings before or after the one
containing the hard interaction. Due to the significant difference in the pileup profile seen across
Run 2, three separate subsamples of simulated events were generated. One set (“mc16a”) contains
a pileup profile similar to that in the 2015-2016 data subset. The remaining two, “mc16d” and
“mc16e,” contain pileup profiles similar to those of the 2017 and 2018 data subsets, respectively.
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CHAPTER 6

Analysis Selection

The analysis selection is designed to select the targeted signal events, while the rejecting back-
ground events from other physics processes. A general diphoton preselection is applied to isolate
events consistent with a Higgs boson decay to two photons. A finer selection is then used to sepa-
rate events into one of 29 analysis categories. Broadly, these categories target specific production
modes of the Higgs boson. On a finer level, they may target different areas of phase space within a
production mode. Particular attention is paid to the selection of events consistent with originating
from the ttH process.

The physics objects utilized in the analysis presented here are reconstructed from detector
signatures as described in Chapter 4.

6.1 Diphoton Preselection

The photons used in the analysis are reconstructed from topological clusters of energy deposits in
the electromagnetic calorimeter, as detailed in Chapter 4. Photon candidates are required to pass
a loose identification requirement [58], designed to reduce the number of energy deposits from
jets misidentified as photons. The photon identification requirement is based on properties of the
energy shower observed in the EM and Hadronic calorimeters, as detailed in Section 4.4

Events are required to pass the diphoton trigger (the trigger requirement of the analysis is
discussed in Section 5.1). Within each triggered event, the leading photon candidate is required to
have a ET of at least 35 GeV, while the subleading candidate’s ET must be greater than 25 GeV.
The photon candidates must fall within the pseudorapidity range of |η| < 2.37; additionally, they
must not fall within the “crack” region (the transition between the barrel and endcap regions of the
calorimeter), corresponding to 1.37 < |η| < 1.52.

Once all of the loose photon candidates have been identified, the two with the greatest trans-
verse momentum (pT) are selected as the potential decay products of the Higgs boson. The pointing
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direction (the z position most compatible with the shower shapes in the calorimeter) of these pho-
ton candidates is fed into a neural network [89]. The neural net is also given the scalar sum of
the transverse momentum (

∑
pT) and the sum of the squared transverse momentum (

∑
p2

T) of
the tracks originating from all reconstructed vertices in the event, as well as the azimuthal angle
between the vector sum of the pT from the available vertices and the pT of the diphoton system
(∆φ(tracks, γγ)). The neural network is trained using simulated ggF (H → γγ) events to select
the vertex corresponding to the hard scatter event in which the Higgs boson is produced. When
tested using simulated ggF events in Run 1, the network was found to choose a vertex within
0.3 mm of the true interaction point with around an 85% accuracy [89]. The use of a dedicated
diphoton vertex algorithm is motivated by the fact that a significant fraction of Higgs boson inter-
actions (especially those from the ggF production mode) do not result from the hardest vertex (the
default vertex choice) in an event.

After the diphoton primary vertex has been identified, the stricter tight identification require-
ment is applied. The tight selection, also described in detail in Section 4.4, includes the require-
ments of the loose working point, as well as additional information to further reduce the contami-
nation of fake photons.

In addition to identification requirements on the photon EM calorimeter showers, isolation re-
quirements are imposed on photon candidates in order to suppress jets misidentified as photons.
The isolation requirement can be broken into two parts: the first part is a condition on the EM
calorimeter information and the second part is a condition on information from the inner tracker.
The EM calorimeter condition demands that the transverse energy deposited in clusters within a
cone of ∆R < 0.2 (with ∆R defined as

√
∆φ2 + ∆η2) surrounding the photon candidate in the

EM calorimeter does not exceed 6.5% of the photon’s transverse energy – this working point is de-
fined as FixedCutLoose. Note that the deposited transverse energy is corrected for the average
pileup transverse energy, and the transverse energy from the photon candidate is subtracted. The
tracking-related condition demands that the scalar sum of the transverse momenta of tracks within
a cone of ∆R < 0.2 surrounding the photon be less than 5% of the photon candidate’s pT. Only
tracks with pT > 1 GeV and consistent with the reconstructed primary vertex are considered. The
use of the photon isolation cut helps reduce the contribution from “non-prompt” photons (those not
originating from the inetraction of interest). The systematic uncertainties associated with photon
isolation were recalculated for the ttH portion of the analysis. Extensive detail on photon isolation
is presented in Section 4.5.1.

After the application of the tight identification and FixedCutLoose isolation requirements,
kinematic cuts are imposed such that the pT of the (sub)leading photon is >0.35 (0.25) times the
the diphoton invariant mass, mγγ . Assuming the Higgs boson is a spin-0 particle (as predicted
by the SM), the two decay photons will have an isotropic distribution in the reference frame of
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the Higgs boson. Background diphoton processes, on the other hand, are more likely to produce
forward photons, which are preferentially cut by the pT requirements.

Lastly, the diphoton invariant mass is required to fall within a window of 105 < mγγ <

160 GeV. This window contains the SM Higgs mass, as well as a sufficient range both above and
below the Higgs mass used for validating the background model (discussed in Section 7.3). Events
which satisfy these criteria (two tight-identified, isolated photons with satisfactory kinematic prop-
erties) are delineated as those passing the so-called diphoton selection.

6.2 Other Object Selection

The physics objects (electrons, muons, and jets) utilized in the analysis are reconstructed as de-
tailed in Chapter 4. Reconstructed jets are required to have a transverse momentum pT > 25 GeV
to be considered in the ttH categories, and pT > 30 GeV to be considered for the remaining
analysis categories. In all categories, jets must have a pseudorapidity |η| < 4.4. Of these jets,
those with |η| < 2.5 and containing b-hadrons are identified using the MV2c10 b-tagging algo-
rithm [90, 91, 92] with the b-tagging average efficiency of 77%, corresponding to a light flavor
mistagging rate of approximately 1%. In addition, jets with pT < 120 GeV and |η| < 2.4 which
originate from pileup collisions are identified and removed via a jet vertex tagger multivariate
discriminant [93].

Electron candidates are identified using a likelihood disciminant, which takes into account the
candidate’s shower shape in the EM calorimeter and the matched track information. The Medium

LH identification requirement (as outlined in Ref. [94]) is used in this analysis. Electron candidates
in the analysis are required to have pT > 15 GeV and fall within the region of |η| < 2.47 (as
well as fall outside of the transition region between the central and endcap EM calorimeters), and
have |z0 sin θ| < 0.5 mm (where z0 is the longitudinal impact parameter along the beamline) in
order to ensure consistency with the diphoton vertex. The electron candidate’s transverse impact
parameter d0 (the transverse distance from the beamline) divided by its uncertainty σd0 must be less
than 5, also to ensure track and diphoton vertex compatibility. As with photons, isolation criteria
derived from track and calorimeter information are applied to electron candidates in order to reject
fake electron candidates. The Fix (Loose) (as outlined in Ref. [94]) criteria is chosen, for which
the efficiency of real electrons considered in the analysis is greater than 95% for the range of pT

> 15 GeV and |η| < 2.47.
Muon candidates in the analysis are required to have both pT > 15 GeV and |η| < 2.7. In

addition, an identification requirement with the medium defined working point [95] is used to select
real muons. As with electrons, additional constraints on the longitudinal and transverse impact
parameters (|z0 sin θ| < 0.5 mm and |d0|/σd0 < 3) are imposed in order to ensure consistency

58



between the muon candidate’s track and the reconstructed diphoton vertex. Also as with electrons,
isolation criteria derived from track and calorimeter information are imposed. These criteria were
chosen such that the efficiency of real muons is greater than 95% for the range of pT > 15 GeV
and |η| < 2.7.

The missing transverse momentum, Emiss
T , is defined as the negative vector sum of the trans-

verse momenta of all objects associated with the reconstructed primary diphoton vertex. This
includes photons, electrons, muons, jets, and any additional unidentified low-pT tracks [96]. In
order to remove double-counted objects, overlap removal criteria based on the distance apart ∆R

of two objects in the detector is utilized, with cuts applied in the following sequence:

1. Remove electrons and jets overlapping (∆R < 0.4) with the two selected photons

2. Remove jets overlapping (∆R < 0.2) with the remaining electrons

3. Remove electrons overlapping (∆R < 0.4) with the remaining jets

4. Remove muons overlapping (∆R < 0.4) with the two selected photons

5. Remove muons overlapping (∆R < 0.4) with the remaining jets

6.3 Analysis Categorization

The H(γγ) Couplings Analysis is designed to measure the cross-section of the four leading pro-
duction modes (ggF , V BF , V H and ttH) of the Higgs Boson at the LHC, using the diphoton
decay channel. These production modes, as well as the diphoton decay channel of the Higgs Bo-
son, are described in Section 2.1.5.

The analysis utilizes 29 orthogonal categories in order to improve final sensitivity and to fit into
the Simplified Template Cross Section (STXS) [13] framework. The STXS framework is designed
to separate Higgs boson events into so-called “truth bins,” which represent different portions of
kinematic phase space within the production modes. By separating into the truth bins, the analysis
results may be easier to compare with theoretical BSM predictions. The STXS scheme in the
different production modes is presented in Figure 6.1. Due to statistical limitations, the analysis
categories do not capture the full granularity of the STXS truth bins. Categories with insufficient
statistics are merged together, indicated by a “+” sign in Figure 6.1. Additionally, events from the
ttH and tH production modes are merged into the single “Top” category in the STXS scheme.

The analysis categorization is mostly unchanged with respect to the previous iteration, using
36 fb−1 and presented in Ref. [97]. The qqH BSM category now includes an additional require-
ment that at least two jets are present in the events in order to reduce contamination from ggF
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limited statistics.

60



events. Additionally, the ttH categorization was altered significantly. Two dedicated Boosted De-
cision Trees (BDTs) are used, resulting in seven orthogonal analysis categories. The dedicated ttH
selection is detailed below in Section 6.4.
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Figure 6.2: The fraction of Higgs boson events in each of the 29 analysis categories, broken down
by production mode. The fractions reflect the prediction of the Higgs boson simulation samples.

The ggF and V H categories are entirely cut-based. A dedicated BDT is used to select V BF
events. The input variables used by this BDT are:

• The invariant mass of the leading two jets, mjj

• The separation in pseudorapidity of the leading two jets, ∆η(jj)

• The azimuthal separation between the dijet system and diphoton system, ∆φ(jj, γγ)

• The transverse momentum of the diphoton system, projected perpendicular to the diphoton
thrust axis, pTt

• The minimum ∆R between one of the two leading photons and one of the two leading jets,
∆Rmin

γ,j
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• The Zeppenfeld pseudorapidity [98], defined as ηZeppenfeld = ηγγ − 0.5(ηj1 + ηj2)
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Figure 6.3: The fraction of Higgs boson events in each of the 29 analysis categories, broken down
by production mode. The fractions reflect the prediction of the Higgs boson simulation samples.

The full list of categories, along with their selections, is provided in Table 6.1. Additionally, a
breakdown of fraction of Higgs boson events from each production mode populating the analysis
categories is presented in Figure 6.3, and a breakdown of the fraction of events in each analysis
category originating from the STXS truth bins is provided in Figure 6.2. Note that events are sorted
into the categories corresponding to the rarest production modes first (ttH , then V H , then V BF ,
and finally ggF ). In both Table 6.1 and Figure 6.3, the categories are listed in this corresponding
order of priority. In order to preserve the orthogonality of the categories, events which are selected
for one category will not be included in any other categories.
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Index Category Selection
33 ttH Lep 1 Nlep ≥ 1, Nb-jets ≥ 1 (pjet

T > 25 GeV, 77% WP), BDT > 0.987

32 ttH Lep 2 Nlep ≥ 1, Nb-jets ≥ 1 (pjet
T > 25 GeV, 77% WP), BDT > 0.942

31 ttH Lep 3 Nlep ≥ 1, Nb-jets ≥ 1 (pjet
T > 25 GeV, 77% WP), BDT > 0.705

30 ttH Had 1 Nlep = 0, Njets ≥ 3, Nb-jets ≥ 1 (pjet
T > 25 GeV, 77% WP), BDT > 0.996

29 ttH Had 1 Nlep = 0, Njets ≥ 3, Nb-jets ≥ 1 (pjet
T > 25 GeV, 77% WP), BDT > 0.991

28 ttH Had 1 Nlep = 0, Njets ≥ 3, Nb-jets ≥ 1 (pjet
T > 25 GeV, 77% WP), BDT > 0.971

27 ttH Had 1 Nlep = 0, Njets ≥ 3, Nb-jets ≥ 1 (pjet
T > 25 GeV, 77% WP), BDT > 0.911

24 V H Dilep Nlep ≥ 2, 70 ≤ m`` ≤ 110 GeV

23 V H Lep High Nlep = 1, |meγ − 89| > 5 GeV, p`+E
miss
T

T > 150 GeV

22 V H Lep Low Nlep = 1, |meγ−89| > 5 GeV, p`+E
miss
T

T < 150 GeV,Emiss
T significance > 1

21 V H MET High 150 < Emiss
T < 250 GeV Emiss

T significance > 9 or Emiss
T > 250 GeV

19 V H MET Low 80 < Emiss
T < 150 GeV Emiss

T significance > 8

18 qqH BSM Njets ≥ 2 (pjet
T > 30 GeV), pjet1

T > 200 GeV
16 V H Had Tight 60 < mjj < 120 GeV, BDT Score > 0.78
15 V H Had Loose 60 < mjj < 120 GeV, 0.35 < BDT Score < 0.78

14 V BF Tight, High pHjjT ∆ηjj > 2, ηZeppenfeld < 5, pHjjT > 25 GeV, BDT > 0.48

13 V BF Loose, High pHjjT ∆ηjj > 2, ηZeppenfeld < 5, pHjjT > 25 GeV, −0.5 < BDT < 0.48

12 V BF Tight, Low pHjjT ∆ηjj > 2, ηZeppenfeld < 5, pHjjT < 25 GeV, BDT > 0.87

11 V BF Loose, Low pHjjT ∆ηjj > 2, ηZeppenfeld < 5, pHjjT < 25 GeV, −0.39 < BDT < 0.87

10 ggF 2J BSM Njets ≥ 2 (pjet
T > 30 GeV), pγγT ≥ 200 GeV

9 ggF 2J HIGH Njets ≥ 2 (pjet
T > 30 GeV), 120 < pγγT < 200] GeV

8 ggF 2J MED Njets ≥ 2 (pjet
T > 30 GeV), 60 < pT γγ < 120 GeV

7 ggF 2J LOW Njets ≥ 2 (pjet
T > 30 GeV), pγγT < 60 GeV

6 ggF 1J BSM Njets = 1 (pjet
T > 30 GeV), pγγT ≥ 200 GeV

5 ggF 1J HIGH Njets = 1 (pjet
T > 30 GeV), 120 < pγγT < 200] GeV

4 ggF 1J MED Njets = 1 (pjet
T > 30 GeV), 60 < pT γγ < 120 GeV

3 ggF 1J LOW Njets = 1 (pjet
T > 30 GeV),pγγT < 60 GeV

2 ggF 0J FWD Njets = 0 (pjet
T > 30 GeV), One Photon with |η| > 0.95

1 ggF 0J CEN Njets = 0 (pjet
T > 30 GeV), Both Photons with |η| ≤ 0.95

Table 6.1: Summary of analysis category definitions. The skipped numbers in the category in-
dex column reflect merged categories (17 and 20) and the old tH categories (25-26) which were
removed from this iteration of the analysis.
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6.4 Dedicated ttH Selection

Due to the rarity of the ttH process, a dedicated categorization must be carefully constructed
in order to observe the process with any significance. The categorization may target the decay
products of the top quark pair, as these particles are not a direct decay product of any of the other
main Higgs boson production modes. The top quark is the heaviest fundamental particle, and as
such it rapidly decays before hadronization (unlike the light quarks). Its decay is governed by the
Cabibbo-Kobayashi-Maskawa matrix [99, 100]. This matrix (although not strictly a probability a
matrix) implies that the top quark decays to a bottom quark through the weak interaction the vast
majority of the time [38].

The dedicated ttH selection targets the b quarks from the top quark decays by requiring a b-
tagged jet. Although two b-jets are produced in each ttH event, the efficiency with which a jet
may be identified as coming from a b decay is non-trivially far from 100%. Additionally, jets may
be lost due to falling outside of the active detector region. Therefore, requiring both b-jets would
result in too low an efficiency for ttH signal events.

The decay of the top quark into a b quark also produces a W boson, which then itself decays
into either multiple high energy quarks (resulting in jets) or into a lepton and a neutrino. The ttH
signal region is then divided into two separate preselection regions, each targeting one of these
cases. The first is the so-called “hadronic” region, which targets events in which the W boson
decays to jets. This region also targets most events where the W decays into a τ lepton and τ
neutrino, since the τ particle decays into quarks approximately 65% of the time [38]. The ttH
hadronic region is defined as events containing at least three jets, where at least one of the jets is
tagged as a b-jet.

The second region is the “leptonic” region, which targets events in which the W boson decays
into either an electron or muon, along with a neutrino. The W boson only decays in these modes
about 20% of the time [38], so this region is expected to have fewer events than the hadronic
region. However, the precision afforded by the EM Calorimeter and MS of the ATLAS detector,
along with the relatively high accuracy in identifying electrons and muons, mean that this channel
may be comparatively pure. The ttH leptonic region is defined as events which contain at least
one electron or muon, along with at least one b-tagged jet.

Events in both the hadronic and leptonic preselection regions must also pass the diphoton pres-
election criteria, defined in Section 6.1. Notably, the transverse momentum requirement of the jets
considered for the ttH selection is 25 GeV (jets from events in non-ttH categories must have a pT

of at least 30 GeV).
After the definition of the two preselection regions, the analysis selection is further refined

through the use of a dedicated BDT in each region. Both BDTs were constructed using the XG-
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Boost package [101], and they use mostly “low-level” quantities (primarily object four-vector in-
formation) as inputs. Both BDTs are trained and evaluated using simulated ttH events as signal
and “non-tight, non-isolated” (NTI) data events (those in which one or both photons fails the iden-
tification and/or isolation requirements) as a background sample. The details of each BDT are
described below in Sections 6.4.2 (hadronic) and 6.4.3 (leptonic).

The strategy behind the BDT-based selection is to sort events by the continuous output score
of the BDT. Here, events deemed “signal-like” will have a score closer to 1, while events deemed
more “background-like” will have a score closer to 0. A cut may be placed on the BDT score of
an event in order to preferentially select signal-like events. The optimal value of the BDT score
cut is based on two competing phenomena. First, the tighter (closer to 1) the BDT score cut, the
more pure the category. However, for an imperfect BDT, a tighter cut will also lead to fewer signal
statistics. Additionally, multiple BDT-based categories may be defined. Because each category
is orthogonal (an event has one BDT score, so it may only fall within one BDT-score category),
the significances of each category may be added in quadrature. Therefore, defining multiple BDT
categories may increase the sensitivity of the analysis. The gains of adding additional BDT cate-
gories diminish as the BDT score decreases, however, and so using only a few categories in each
preselection region may achieve near-optimal sensitivity while avoiding any over-complication of
the analysis.

Table 6.2: The breakdown of the signal (simulated ttH events) and background (non-tight, non-
isolated data events) subsamples used for training, validation (hyper-parameter/variable optimiza-
tion and categorization), and testing of the BDTs. The approximate number of events in each
subsample is given in parentheses after the percent value. The non-tight, non-isolated data is de-
noted as “NTI Data.”

ttH Hadronic Sample-Breakdown
Sample Training Hyper-Parameter/ Categorization Testing

Variable Optimization
ttH Signal 60% (605k) 20% (202k) 20% (202k)
NTI Data 60% (56k) 20% (19k) 20% (19k)

ttH Leptonic Sample-Breakdown
Sample Training Hyper-Parameter/ Categorization Testing

Variable Optimization
ttH Signal 60% (271K) 20% (90k) 20% (90k)

0 b-jet NTI Data 75% (91k) 25% (3.0k) – –
≥1 b-jet NTI Data – – 50% (0.6k) 50% (0.6k)
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ttH Hadronic Preselection
Sample pγT Cuts Mass Window Njets pjet

T Nb−jets b-tag WP
[GeV] [GeV]

Training
Flat

105 < mγγ < 160 ≥ 3 > 25 ≥ 1 77%
Hyper-Par/

Var Opt
Categorization

Relative
Testing

ttH Leptonic Preselection
Sample Relative Mass Window Njets pjet

T Nb−jets b-tag WP
pγT Cuts [GeV] [GeV]

Training
Flat 80 < mγγ < 250 ≥ 1

> 25

= 0 (NTI Data)

77%
Hyper-Par/

Var Opt ≥ 1 (MC)
Categorization

Relative 105 < mγγ < 160 ≥ 1 ≥ 1
Testing

Table 6.3: A summary of the different preselections applied for the different subsamples used in
the BDT construction (training, hyperparameter/variable optimization, categorization, and testing).
The selection listed under the “Testing” category reflects that used for the final analysis event
selection.

6.4.1 Sensitivity Metrics Used to Evaluate BDT Performance

Two different metrics of sensitivity evaluation were used in order optimize the ttH BDTs. These
metrics are estimations of the final analysis sensitivity, but they are somewhat simpler and faster
than the full analysis framework (the unbinned fits to the invariant mass distribution in all analysis
categories, as described in Chapter 9). These estimations were used in order to more efficiently
optimize the BDTs. The metrics use two different data samples for various purposes:

• “TI” data events (events in which both photons pass both the isolation and identification
criteria)

• “NTI” data events (events in which one or both photons fail either the isolation and/or iden-
tification criteria)

The two metrics are:

• Number-counting of TI data side-band events (where the side-bands are defined as 105 <

mγγ < 120 GeV and 130 < mγγ < 160 GeV)

• Number-counting of NTI data events
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In both methods of significance estimation, the number of “signal” events Ns is equal to the
number of TI events from the simulated ttH signal sample within the signal window (defined as the
diphoton invariant mass window of 123 < mγγ < 127 GeV). However, the method of calculating
the number of background events differs. Generally, backgrounds in the signal region can be
classified into either non-ttH Higgs events (Higgs events coming from production modes other
than ttH or tH), or continuum background events (all other events). The predicted non-ttH Higgs
background component is equal to the number of TI events in the signal window, obtained from
the simulation samples. The expected number of continuum background events can be determined
using one of the two methods listed above.

The method of TI number-counting estimates the number of continuum background events in
the signal window based on the number of TI events in the side-bands. First, the number of TI data
side-band events is counted, then the number is scaled by the ratio of the number of NTI events in
the signal window to the number of NTI events in the side-bands:

NTI, sw = NTI, sb ×
NNTI, sw

NNTI, sb

where “sb” denotes events in the side-bands and “sw” denotes events in the signal window.
The method of NTI number-counting on the other hand, begins by counting the number of NTI

events in the side-bands. This yield is then scaled by the ratio of NTI events in the signal window
to that in the side-bands. Due to limited statistics, this scaling factor relating the signal window
to side-band yield is taken using only the diphoton preselection (and not specific ttH category)
yields. In equation form, this can be expressed as:

NNTI, sw = NNTI, sb ×
N presel

NTI, sw

N presel
NTI, sb

where, again, “sb” denotes side-band events and “sw” denotes signal-window events. The “presel”
label indicates that the yield was calculated using only the preselection cuts, not the full ttH
category cuts.

Once the number of continuum background events, NTI, sw or NNTI, sw has been determined, it
must be added to the number of TI, non-ttH Higgs boson events in the signal window in order to
obtain the total background estimation, Nb. The significance is then calculated using the following
approximation:

Z =

√
2

[
(Ns +Nb) ln

(
1 +

Ns

Nb

)
−Ns

]
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6.4.2 Hadronic ttH BDT

The hadronic BDT is used to analyzes events falling within the so-called “hadronic” ttH pres-
election region. Events in this region are required to pass the diphoton preselection, contain no
reconstructed electrons or muons, and contain at least three jets, at least one of which is tagged as
originating from a b-quark. The full list of input variables utilized in the BDT is as follows:

• The four-vector information (pT/mγγ , η, φ, E/mγγ) of the leading and subleading photons,
with pT and energy scaled by the event mγγ

• The four-vector information (pT, η, φ, E) of the first six jets, ordered by jet pT

• The b-tagging status (using the 77% b-tagging working point) of the first six jets, ordered by
jet pT

• The magnitude and φ of the Emiss
T

The pT and energy of the photons are scaled by mγγ in order to prevent the BDT from learning the
invariant mass. If the BDT were to learn the mass, it would preferentially select events, including
from background processes, in the signal window. This would cause the continuum background
distribution to no longer be smooth, and the interpolation of the background form the side-bands to
the signal window would no longer be valid. Examples of some of the input variable distributions
used in the ttH Hadronic BDT are presented in Figure 6.4.

The granularity at which a BDT can select on different input variables is dependent upon the
statistics of the training sample. Ideally, the BDT will be trained on as many events as possible.
However, subsets of the signal (simulated ttH events) and background (NTI data events) samples
must be set aside to test and optimize the BDT. A subset consisting of 20% of the events in each
sample are used to optimize the hyper-parameters of the BDT (such as the number of trees and
the tree depth) and optimize the choice of input variables. This subset is also used to define the
BDT-score boundaries of the analysis categories. Another 20% of the samples is used for testing
(to prevent overtraining the BDT) and assessing the expected sensitivity. This leaves 60% of the
samples remaining for training the BDT. The breakdown of input samples used for the hadronic
BDT is summarized in Table 6.2

In order to increase the available training statistics, the relative kinematic cuts on the lead-
ing and subleading photon are replaced with flat pT cuts of 35 GeV and 25 GeV, respectively.
These loosened kinematic cuts are also used within the training and hyper-parameter optimiza-
tion subsamples. The preselections of the different subsamples used within the hadronic BDT are
summarized in Table 6.3.
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Figure 6.4: Example distributions of the simulated ttH signal (red) and NTI data background
(black) for some of the hadronic BDT input variables: (a) the pT of the leading photon (scaled by
mγγ), (b) the magnitude of the Emiss

T , (c) the pT of the leading jet, and (d) the η of the leading jet.
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Table 6.4: The BDT score boundaries of the four hadronic ttH categories.

Category BDT Score Boundaries
Had BDT1 > 0.996
Had BDT2 > 0.991
Had BDT3 > 0.971
Had BDT4 > 0.911

Using the validation sample, four orthogonal categories are defined using cuts on the BDT
score. Defining more than four categories was found to have a negligible effect on the projected
analysis sensitivity. The determination of the category boundaries was performed by iteratively
scanning the categorization subsample for the four BDT score regions with the largest NTI number-
counting significance. In the scan, all BDT categories were required to have at least 0.8 TI con-
tinuum background events in the signal mass window (123 < mγγ < 127 GeV) in order to ensure
that the side-bands contain enough events to perform a successful background fit. The final BDT
score boundaries are listed in Table 6.4.

After the categorization is determined, the NTI number counting significance of the test sample
is calculated to cross-check against over-training. The hadronic BDT response for the simulated
ttH signal sample, NTI data, and TI side-band data are shown in Figure 6.5.

6.4.3 Leptonic ttH BDT

The leptonic BDT is used to analyze events falling within the so-called “leptonic” ttH preselection
region. Events in this region are required to contain at least one electron or muon, pass the diphoton
preselection, and contain at least one jet tagged as originating from a b-quark. The full list of input
variables utilized in the BDT is as follows:

• The four-vector information (pT/mγγ , η, φ, E/mγγ) of the leading and subleading photons,
with pT and energy scaled by the event mγγ

• The four-vector information (pT, η, φ, E) of the first four jets, ordered by jet pT

• The four-vector information (pT, η, φ, E) of the first two leptons, ordered by lepton pT

• The magnitude and φ of the Emiss
T

Again, the pT and energy of the photons are scaled by mγγ in order to prevent the BDT from
learning the invariant mass. Examples of some of the input variable distributions used in the ttH
Leptonic BDT are presented in Figure 6.6.

70



BDT Output

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

ct
io

n 
of

 E
ve

nt
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Cont. Bkg.
NTI Control Region

Htt
H HiggstNon-t

ATLAS  Preliminary
-1 = 13 TeV, 139 fbs

Had region

(a) “Had” BDT Response

BDT Output

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

ct
io

n 
of

 E
ve

nt
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.7 0.75 0.8 0.85 0.9 0.95 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cont. Bkg.
NTI Control Region

Htt
H HiggstNon-t

ATLAS  Preliminary
-1 = 13 TeV, 139 fbs

Lep region

(b) “Lep” BDT Response

Figure 6.5: The normalized fraction of events in bins of BDT score in the (a) “Hadronic” and (b)
“Leptonic” regions of: simulated ttH signal events (red); simulated non-tt̄H Higgs boson events
(blue); “Not Tight/Isolated” (NTI) data events used as the background sample in testing the BDTs
(open stars); and data side-band events (filled black circles). The “Not Tight/Isolated” data events
shown are those used in testing the BDTs, and, as such, they are required to pass all cuts in the
diphoton and tt̄H preselections, other than the identification and isolation criteria. The dashed
lines on the x-axis denote the BDT-score cut of the loosest category in each region. The insets
provide a zoomed-in picture of the BDT score distribution for events which are selected for the
BDT categories. The dashed lines in the insets denote the category boundaries.
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Figure 6.6: Example distributions of the simulated ttH signal (red) and NTI data background
(black) for some of the leptonic BDT input variables: (a) the pT of the leading photon (scaled by
mγγ), (b) the magnitude of the Emiss

T , (c) the pT of the leading lepton, and (d) the η of the leading
lepton.
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Table 6.5: The BDT score boundaries of the three leptonic ttH categories.

Category BDT Score Boundary
Lep BDT1 > 0.987
Lep BDT2 > 0.942
Lep BDT3 > 0.705

Orthogonal subsamples of the signal (simulated ttH events) and background (NTI data events)
samples are defined for the purposes of training; hyper-parameter and variable optimization; cat-
egorization; and testing. In order to increase the available statistics for the training and hyper-
paramater/variable optimization, certain cuts are loosened for these two subsamples. First, the
requirement on the diphoton invariant mass is loosened to 80 < mγγ < 250 GeV. Again, in as for
the hadronic BDT, the flat 35 (25) GeV pT cut on the (sub)leading photon is used to replace the
tighter relative pT cuts. Lastly, events in these two subsamples are required to have no b-tagged
jets, but have at least one jet. The preselections of the different subsamples used within the leptonic
BDT is summarized in Table 6.3.

A subset containing 75% of the “zero b-tagged” NTI sample is used for training, and 25% is
used for hyper-parameter and variable optimization. Of the “nominal” NTI events (containing at
least one b-tagged jet), 50% are used for categorization, and the remaining 50% are used for testing.
The breakdown of training, validation, and testing events is shown in Table 6.2.

Using the validation sample, three orthogonal categories are defined scanning the possible
BDT score cuts for the maximum significance, as calculated using the NTI number counting sig-
nificance of the categorization subsample. The BDT score boundaries of these categories are listed
in Table 6.5. The leptonic BDT response for the simulated ttH sample, the NTI data, and the TI
side-band data are shown in Figure 6.5.

6.4.4 Performance Studies of the ttH BDT

The dedicated ttH BDTs utilize primarily “low-level” kinematic variables as inputs. The distribu-
tions of some of these variables in both the simulated ttH signal sample and the NTI data back-
ground sample are shown in Figures 6.4 (for the hadronic BDT) and 6.6 (for the leptonic BDT).
Significant differences may be observed between the signal and background distributions of many
of these variables, which contribute to the BDTs’ ability to separate signal and background events
effectively.

However, some of the BDT performance could be explained by the BDT learning so called
“high-level” variables, which may have additional discrimination power between signal and back-
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Figure 6.7: The distributions of two of the “high-level” variables in the BDT categories: (a) pγγT in
the hadronic BDT categories, (b) pγγT in the leptonic BDT categories, and (c) p`+MET

T in the leptonic
BDT categories. The sculpting of these variables between the BDT categories indicates that the
BDT is at least partially selecting on that variable. The category numbers in the legends correspond
with those provided in Table 6.1. Category 33 corresponds to the tightest leptonic BDT category,
and category 30 corresponds to the tightest hadronic BDT category.
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ground events. In order to determine what high-level variables the BDTs were learning, the distri-
butions of variables were compared across analysis categories. Distributions which appear strongly
sculpted by the BDT cuts indicate that the variable is being “learned” in some way by the BDT.

One of the most striking distributions is that of pγγT (the transverse momentum of the diphoton
system, equivalent to the Higgs boson pT in signal events), shown in Figures 6.7a (in the hadronic
BDT categories) and 6.7b (in the leptonic BDT categories). The importance of pγγT is reasonable,
given that Higgs boson events tend to be more central than background events. Additionally, the
sculpting of this variable indicates the separation power obtained through the use of the photon
kinematic information in the BDT.

Another highly-sculpted distribution is that of p`+MET
T (the transverse momentum of the lepton

and Emiss
T system), shown in Figure 6.7c (note that this variable is only relevant to the leptonic

BDT categories). The sculpting of this distribution may help explain some of the performance
increase obtained by using the lepton four-vector and Emiss

T information. The lepton and Emiss
T

system effectively reflects the kinematics of theW boson in ttH decays. Therefore, it is reasonable
that the BDT would be able to use these variables to roughly discriminate between events where
the Emiss

T and lepton originated from a W boson or from some other source.
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CHAPTER 7

Signal and Background Modeling

Both the signal and background shapes in the analysis are modeled using analytic functions. The
width of the Higgs boson decay is approximately 4 MeV, leading to a very narrow resonance in the
diphoton invariant mass. Due to limitations of the EM calorimeter resolution, the observed signal
shape is significantly wider (on the order of about 1 GeV), and its features are dominated by the
detector response. The analytic Double-Sided Crystal Ball (DSCB) [59, 102] shape has been found
to model the Higgs boson simulation shape with minimum bias. The primary advantage of using an
analytic parameterization of the signal shape is in the calculation of systematic uncertainties. These
uncertainties may be accounted for by varying specific parameters of the analytic signal function
within the signal and background fits (described in Chapter 10). For example, uncertainties in the
Higgs boson mass may be measured by varying the mean of the DSCB function.

The dominant background process, continuum diphoton production, produces a smooth, falling
spectrum in the diphoton invariant mass. The raw spectrum is a falling exponential distribution,
but effects such as trigger thresholds induce additional features in the spectrum. Because the back-
ground spectrum is smooth, including underneath the narrow Higgs boson peak, the background
contribution directly underneath the signal peak can be interpolated from the regions on either
side of the peak in the invariant mass, named the “side-bands.” The advantage of interpolating the
background contribution from the sidebands is that the background contribution is derived from
data instead of simulation. Additionally, the background shape itself then lacks narrow statistical
fluctuations.

7.1 Signal Model

The Higgs boson signal shape is modeled with an analytic DSCB [59, 102] shape in each analysis
category. The DSCB function models the central portion of the signal as a Gaussian peak and the
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outer tails of the signal as power-law curves, with the following functional form:

fDSCB(mγγ) = N ×


e−t

2/2 if − αlow ≤ t ≤ αhigh

e−
1
2α

2
low[

1
Rlow

(Rlow−αlow−t)
]nlow if t < −αlow

e
−1
2α

2
high[

1
Rhigh

(Rhigh−αhigh+t)
]nhigh if t > αhigh

(7.1)

where µCB defines the peak position of the Gaussian portion, σCB describes the Gaussian width,
αlow/high describes the transition between the Gaussian center and power law tails, and nlow/high
describe the power of the tails.

In past H(γγ) couplings measurements, multiple analytic functions, including the Crystal Ball
(CB) function [59], the DSCB function [102], and a CB function with an additional Gaussian core,
were tested to fit the simulated signal shape. The DSCB function was found to best model the
signal shape.

The analytic function is fit to the combined shape of all simulated Higgs boson samples de-
scribed in Section 5.2 in a given category, including processes which are not targeted specifically
by the category. The yields of the different processes are taken from the simulation prediction. The
expected signal resolutions (defined as the width in GeV of the smallest window containing either
68% or 90% of the inclusive Higgs boson signal events) in each of the analysis categories are pre-
sented in Table 7.1. Examples of the DSCB fits to two of the ttH analysis categories are presented
in Figure 7.1. The DSCB fits to the simulated signal samples in all of the analysis categories are
presented in Appendix A. Overall, the agreement between the fitted shape and the simulated events
appears to be good.

7.2 Background Decomposition

In order to better understand and model the analysis backgrounds, effort was taken to decompose

the background events into different sub-processes. The first form of decomposition is to separate
background events by whether they contain real or “fake” photons. Fake photons are primarily jets
which deposit a significant portion of energy into the EM calorimeter, which are then misidentified
as photons by both the event reconstruction and offline photon identification algorithms. Events
are categorized into three groups: those containing two real photons (γγ), those containing one
real photon and one jet misidentified as a photon (γj and jγ, depending on whether the jet is
misidentified as the leading or subleading photon, respectively), and those containing two jets
misidentified as photons (jj). The fraction of γγ events in the background sample is defined as the
purity. This decomposition will be discussed in Section 7.2.1.
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Table 7.1: The Higgs boson signal resolution, defined as the width in GeV of the smallest window
containing 68% (σ68) and 90% (σ90) of the inclusive Higgs boson signal events, in each of the
analysis categories. The ttH categories are ordered such that the category with the highest signal
purity in each of the “Hadronic” and “Leptonic” regions is labeled as category 1, while that with
the lowest signal purity is labeled with the largest number. Note that these are the expected values
extracted from the simulation samples at mH = 125 GeV. The ttH shapes are normalized to an
expected 139 fb−1 of data, while the non-ttH shapes are normalized to an expected 79.8 fb−1 of
data.

Index Category σ68 (GeV) σ90 (GeV)
33 ttH “Lep” 1 1.56 2.80
32 ttH ‘Lep” 2 1.75 3.13
31 ttH “Lep” 3 1.85 3.30
30 ttH “Had” 1 1.39 2.48
29 ttH “Had” 2 1.58 2.84
28 ttH “Had” 3 1.65 2.96
27 ttH “Had” 4 1.67 3.00
24 V H Dilep 1.7 3.2
23 V H Lep High 1.5 3.0
22 V H Lep Low 1.9 3.4
21 V H MET High 1.6 3.0
19 V H MET Low 1.9 3.6
18 qqH BSM 1.5 2.8
16 V H had tight 1.6 2.9
15 V H had loose 1.8 3.2
14 V BF Tight, High pHjjT 1.7 3.2
13 V BF Loose, High pHjjT 1.8 3.5
12 V BF Tight, Low pHjjT 1.7 3.1
11 V BF Loose, Low pHjjT 1.9 3.5
10 ggF 2J BSM 1.5 2.8
9 ggF 2J HIGH 1.7 3.1
8 ggF 2J MED 1.9 3.4
7 ggF 2J LOW 2.0 3.6
6 ggF 1J BSM 1.4 2.7
5 ggF 1J HIGH 1.7 3.1
4 ggF 1J MED 1.8 3.4
3 ggF 1J LOW 1.9 3.6
2 ggF 0J FWD 2.1 3.8
1 ggF 0J CEN 1.7 3.0

78



115 120 125 130 135 140

 [GeV]γγm

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

 / 
0.

5 
G

eV
γγ

m
1/

N
 d

N
/d

 Simulation PreliminaryATLAS
-1 = 13 TeV, 139 fbs

 = 125 GeV
H

, mγγ→H

Had 1
MC
Signal Model

Lep 3
MC
Signal Model

Figure 7.1: Examples of the DSCB fit (solid lines) to the simulated Higgs boson signal shapes
(points) in two of the ttH analysis categories: ttH Had 1 (the tightest ttH hadronic category) in
red, and ttH Lep 3 (the loosest ttH leptonic category) in blue. The ttH Had 1 category has the
narrowest resolution of the ttH categories, while ttH Lep 3 has the widest.

The decomposition in terms of γγ, γj/jγ, and jj events is motivated by the difference in the
invariant mass distribution observed between the subsamples. Effectively, the mass distribution
of real diphoton events differs from that of events containing one or more fake photons. The
discrepancy is due to effects such as the energy dependence of photon identification and isolation
efficiencies.

The second decomposition specifically targets the ttH categories: separating background events
which contain a top quark from those which do not. Measuring this fraction may motivate the
treatment of the ttH background modeling in terms of relevant simulation samples. Additionally,
calculating a significant percentage of events containing top quarks helps validate that the event
selection successfully targets the top quark decay products. This decomposition will be discussed
in Section 7.2.2.

7.2.1 Background Purity

The purity of the data set is defined as the fraction of background events which contain two real

photons. The purity within the analysis categories was determined using a so-called 2×2D ABCD
side-band method [103, 33]. The method utilizes two (mostly) uncorrelated variables, photon iden-
tification and isolation. An “ABCD” grid of regions is constructed based on these variables: (A)
the signal region, containing events which pass the tight identification and the isolation require-
ment; (B) a control region containing events which pass the tight identification but fail the isolation
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Figure 7.2: An illustration of the ABCD grid, based on the photon isolation and identification
variables. The blue box contains the signal region, in which events pass both the photon identifi-
cation and isolation criteria. The yellow boxes contain orthogonal control regions, in which events
fail either the identification, isolation, or both criteria. The green arrows represent the efficiency
of the isolation cut, while the red arrows represent the efficiency of the identification cut. In the
case where photon isolation and identification are completely uncorrelated, the efficiencies of each
color arrow are the same.

requirement; (C) a control region containing events which fail the tight identification and fail the
isolation requirement; and (D) a control region containing events which fail the tight identification
but pass the isolation requirement. The Loose’4 identification criteria, described in Section 4.4, is
applied to photons failing the tight criteria. Importantly, the control regions are assumed to contain
a very small fraction of real photon events. A cartoon representation of the 2× 2 grid is presented
in Figure 7.2.

If the two variables are indeed completely uncorrelated, then the efficiency of the tight identi-
fication cut will be the same for both isolated and non-isolated photon candidates. Similarly, the
efficiency of the isolation cut will be the same for both tight and Loose’4 photon candidates. If the
control regions contain only fake photon events, then the relationships between the control regions
and the signal regions can be manipulated to obtain the number of fake photons in the signal region,
A. Therefore, the number of fake photon events in the signal region, NA, fake, is equal to:

NA, fake = εTND = εINB = εT εINC
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where NB, NC , and ND are the number of events in control regions B, C, and D, respectively; εT
is the tight identification efficiency; and εI is the isolation efficiency.

The above ABCD grid applies to a single photon in an event. If the behavior of the two photons
in a diphoton event is completely uncorrelated, then a second, independent ABCD grid may be
constructed for the second photon (hence the “2 × 2D” portion of the method name). However,
for this analysis, there exist non-trivial correlations between the leading and subleading photons.
Additionally, there also exist non-negligible correlations between the photon identification and
isolation variables. As a result, the full 2 × 2D ABCD method involves sixteen input equations
with nineteen variables. Of these variables, four are fixed based on the simulated diphoton sample:

• (εT2) εT1, the tight-identification efficiency of the (sub)leading photon

• (εI2) εI1, the tight-isolation efficiency of the (sub)leading photon

In addition, two variables are fixed to 1.0, then allowed to vary in the range of ±0.01 in order to
quantify systematic impacts:

• (ξj2) ξj1, the correlation between the identification and isolation fake rate for the (sub)leading
jet

The remaining variables are allowed to float in a fit to the best describe the number of measured
events in each of the ABCD regions of the leading and subleading photon grids.

The inclusive purities for both the 2015-2016 and 2017 data taking periods are presented in
Figure 7.3, along with the extracted identification and isolation efficiencies for the leading and
subleading photons.The changes in the trigger used and the pileup conditions of the data were ex-
pected to have a non-negligible impact on the data purity, which can be observed in the figure. The
purity was also calculated within most of the individual analysis categories, again separately for
the 2015-2016 and 2017 data taking periods. The purities of the non-ttH categories are presented
in Figure 7.4. The individual V H MET and V H Lep categories are combined when calculating
the purity, again due to limited simulation statistics.

In addition, the relative γγ, γj, and jj fractions in the 2015-2016 and 2017 data taking periods
were estimated using the 2 × 2D ABCD method within the ttH analysis preselection regions,
described in Section 6.4. The 2018 data taking period is assumed to be similar to 2017 period
(both periods use the same trigger and have similar pileup profiles), although this compatibility was
not explicitly tested here. The relative purities in the ttH regions are shown in Figures 7.5. The
simulated diphoton sample contains few events passing the ttH hadronic or leptonic preselection
requirements. Therefore, the purity estimations contain large statistical errors and should only be
considered as a rough estimation.
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(a) 2015-2016 Data (b) 2017 Data

Figure 7.3: The inclusive γγ, γj, and jj purities in bins of mγγ for the (left) 2015-2016 and (right)
2017 data taking periods, as obtained by the 2×2D ABDC Sideband method. Below are presented
the identification and isolation efficiencies of both the leading and subleading photons as obtained
from simulated diphoton events.
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(a) 2015-2016 Data
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Figure 7.4: The γγ, γj, and jj purities within a selection of the analysis categories for the (a)
2015-2016 and (b) 2017 data taking periods, as obtained by the 2× 2D ABDC Sideband method.
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(c) 2015-2016 ttH Lep Preselection Region
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Figure 7.5: The γγ, γj, and jj purities in bins of mγγ for the 2015-2016 and 2017 data taking
periods within the ttH preselection regions, as obtained by the 2x2D ABCD side-band Sideband
method. The left plots show the 2015-2016 data taking period, while the right plots show the 2017
data taking period. The top row shows the hadronic ttH preselection region, while the bottom row
shows the leptonic preselection region.
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7.2.2 Events Containing Top Quarks in the Hadronic ttH-Enriched Region

A method for estimating the background composition, called the “cluster template method,” was
explored for the ttH portion of the analysis. This method uses a Machine Learning Clustering
technique to obtain a simplified template based on a multidimensional space and then performs a
template fit. This Cluster Template method was used to roughly estimate the relative fraction of
so-called “real-top” (ttγγ events) and “non-top” backgrounds (continuum diphoton events) in the
ttH hadronic preselection region.

This method relies on a machine learning Agglomerative Clustering algorithm in the Python
Scikit-Learn library [104]. It is a hierarchical clustering algorithm which begins by defining each
event as a unique cluster. Pairs of clusters are then merged in such a way that the total variance
within each cluster is minimized. This merging is performed until the desired final number of
clusters is reached.

The cluster template method was tested using the data subsample taken in 2016, along with the
subset of simulated continuum diphoton (γγ), single photon (γj), ttγγ, ttγj (ttγγ with a jet faking
a photon), and ttH Higgs boson events. The following input variables are used by the clustering
algorithm:

• mT, the transverse mass of the event

• p`,MET
T , the transverse momentum of the lepton and Emiss

T system

• Njet, the jet multiplicity (for jets with pjet
T > 25 GeV)

• Njet, c, the central jet multiplicity (“central” defined as −2.5 < ηjet < 2.5) (for jets with
pjet

T > 25 GeV)

• Nb−jet, the b-tagged jet multiplicity (for b-tagged jets with pjet
T > 25 GeV, using the 77%

working point)

• The b-tagging status of the leading two jets, ordered by pjet
T

The input variables are normalized such that the range of all input values for each variable
is equal to one. This prevents the scale of each variable from having an effect on how much it
contributes to the total variance within the clusters. A loose pre-selection requirement of Njets > 1

is applied on the data and simulation samples.
The agglomerative clustering algorithm is first performed using the data events in order to

define clusters. Once the clusters are defined, the Monte Carlo events are assigned a cluster label
using the Scikit-Learn NearestNeighbors algorithm [104]. This algorithm assigns an event to a
cluster by taking a vote of the nearest Nneighbors data points in the multidimensional normalized
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input space. The value ofNneighbors is set to 25, but it generally does not affect performance strongly
so long as Nneighbors � Nevents. The clustering of the TI data (events where both photons pass the
identification and isolation criteria); the NTI data (events where both photons fail the identification
and isolation criteria); and the γγ and ttγ and ttγγ simulation samples can be seen in Figure 7.6.

Once the data and simulated events have been assigned into clusters, the relative fraction of
events from each sample within each cluster is calculated. This relative distribution within the
clusters is defined as the cluster template. Statistical errors are assigned for each sample as 1/

√
Ni

for a cluster i with Ni events.
Assuming all relevant background types are included in the simulation cluster template, the

data cluster template is by definition equal to a weighted sum of the simulation sample cluster
templates. The weights then represent the fraction of each background type present within the
data. This relationship can be expressed in equation form as:

Cdata = Σ
Nsimulation samples
isample=1 wisample × Cisample

where C denotes the vector (of length NClusters) of relative composition in each cluster for either
data or a simulation sample. A binned fit is then performed where the data and simulation cluster
templates, Cdata and the Csimulation samples, are fixed, and the weights wisample are left free. The fitted
values of wisample then give the final estimate of the amount of each background sample found in the
data.

The resulting cluster templates are shown in Figure 7.7. Here, nine clusters are used; the value
of each bin represents the fraction of events in a sample which belong to that cluster. The method
predicts that in the hadronic ttH preselection region, the non-tight, non-isolated data contains
91.8% ± 12.3% non-top (γγ and γj) backgrounds and 8.2% ± 1.8% top (ttγγ and ttγj) back-
grounds. The tight, isolated data is predicted to contain 90.9%± 20.4% non-top backgrounds and
9.0% ± 16.1% top backgrounds. The limited statistics of the tight, isolated data lead to large sta-
tistical errors on the results. However, the background composition estimates for the non-tight,
non-isolated and the tight, isolated data are compatible.

7.3 Background Modeling

Because the continuum diphoton background produces a smooth, falling shape in in the dipho-
ton invariant mass, an analytic function is used in order to describe the background shape. The
Higgs boson signal, on the other hand, is narrow, and so signal events are confined to a small win-
dow about the Higgs boson mass in the invariant mass spectrum. The continuum background is
smooth over a large mass range, including underneath the signal peak. Therefore, the number of
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(a) NTI Data Clusters (b) TI Data Clusters

(c) Simulation Clusters

Figure 7.6: The clusters, in principle component analysis space, of the (a) non-tight, non-isolated
(“NTI”) data, (b) tight, isolated (“TI”) data (top right), and simulated background samples (bot-
tom). Each color represents a different cluster, and each marker shape in the simulation cluster plot
represents a different simulated sample. The axes of all three plots are equivalent, and are derived
from a Principle Component Analysis (PCA). Note that the PCA axes are used solely for plotting
purposes.
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Figure 7.7: The Cluster Templates of the simulated γγ and γj samples (red), ttγj and ttγγ MC
(blue), the tight, isolated (“TI”) data (black), and non-tight, non-isolated (“NTI”) data (brown).

background events underneath the Higgs boson signal peak can be estimated by interpolating the
smooth background from the background-pure side-band regions.

Continuum diphoton events are expected to have a falling exponential shape. However, exper-
imental effects, such as trigger thresholds and the energy-dependence of the photon identification
efficiency, induce additional features in the spectrum. Therefore, a number of “exponential-like”
functions are tested to model the background. The choices for the analytic function that have been
considered are:

• Exponential Function: f(mγγ) = ec·mγγ

• Exponential Function of 2nd Order Polynomial: f(mγγ) = ec1·m
2
γγ+c2·mγγ

• Exponential Function of 3nd Order Polynomial: f(mγγ) = ec1·m
3
γγ+c2·m2

γγ+c3·mγγ

• Bernstein polynomial of order N (3 ≤ N ≤ 5): BN(mγγ) =
∑N

i=0 ci · bi,N with bi,N =(
N

i

)
mi
γγ(1−mγγ)

N−i

• First-Order Power Law Function: f(mγγ) = mc
γγ

Typically, the experimental features in the spectrum are relatively small, and they may be hidden by
statistical uncertainties. Therefore, categories with small statistics are usually sufficiently modeled
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Figure 7.8: A cartoon illustration of the spurious signal test. The “true” shape of the continuum
background is shown in blue. An analytic signal and background model, shown in red, is fit to
the observed background. Due to the mismodeling of the real shape by the analytic background
function, a non-zero signal is fit as well, in order to improve the overall fit quality. In this manner,
the background mismodeling is parameterized in terms of a signal yield.

using analytic functions with fewer parameters. In categories with very high statistics, these effects
may become more pronounced compared to the statistical uncertainties, and so more degrees of
freedom are needed to adequately describe the background spectrum.

The optimal functional form for each category is chosen using the spurious signal test. This
test in essence determines the analytic function which best models the continuum background
spectrum, and it parameterizes the mismodeling in terms of a number of fake signal events induced
by that mismodeling. To perform the spurious signal test, the full analytic signal plus background
model is fitted to a background-only template in each individual analysis category. Because the
sample contains only background events by definition, the fitted signal is actually just a relic of
the discrepancy between the analytic function and the real background shape (hence the use of the
term “spurious” signal). The number of fitted spurious signal events as a function of the Higgs
mass is scanned in intervals of 1 GeV within the range of 121 ≤ mγγ ≤ 129 GeV. The number
of spurious signal events Nsp is then defined as the maximum of the absolute value of the fitted
number of signal events within the signal mass sub-range (note that Nsp is allowed to be negative).
A cartoon illustration of the test at a single mass point is presented in Figure 7.8.

The choice of analytic function is made such that the function satisfies at least one of two
specific criteria relating to the real Higgs boson signal in each category. The first criteria requires
that the fitted spurious signal must be less than 10% of the expected number of real signal events
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Figure 7.9: A cartoon illustration of the relaxed spurious signal quantity, ζsp.

in a category. The second criteria requires that it must be less than 20% of the statistical error on
the expected number of real signal events in a category.

The background-only simulation samples of some of the categories (especially those measuring
the V H and ttH processes) are statistically limited. The resulting large statistical fluctuations may
cause all tested functions to fail the two criteria of the spurious signal test. In order to address these
cases, a relaxed spurious signal criteria is used, using the variable ζsp:

ζsp =


Nsp + 2∆Bkg whenNsp + 2∆Bkg < 0

Nsp − 2∆Bkg whenNsp − 2∆Bkg > 0

0 otherwise

where the ∆Bkg variable represents the statistical uncertainty on the background-only template.
The behavior of ζsp is demonstrated in Figure 7.9. The new ζsp quantity is then required to pass
one of the two criteria outlined above, instead of the raw Nsp value.

It is possible that multiple functions may pass the spurious signal test. In this case, the function
with the fewest parameters is preferred. If two functions with the same number of parameters pass
the test, then the one with the least resulting spurious signal is chosen. Once the analytic back-
ground function has been chosen for a category, the value of Nsp taken as a systematic uncertainty
on the measured signal yield of that category.

For the ggF , V BF , and V H Had categories, the background-only templates used for the
spurious signal test are obtained from the simulated continuum diphoton sample, described in
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(a) ggF 0J CEN (2015-2016)
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(b) ggF 0J CEN (2017)

Figure 7.10: The 2015-2016 (left) and 2017 (right) background templates, along with the data
side-band events in black, for the ggF 0J Cen category. The green shows the γγ events, the blue
shows the γj events, and the red shows the jj events. The bottom panel of each plot shows the
pull between the template and the data sideband events (the difference between the two, quantified
in terms of the statistical error of the side-bands).

Section 5.2 (the number of events from this sample in the V H MET, V H Lep, and ttH categories
is insufficient to successfully perform the test). The relative fractions of γγ, γj (where one photon
is faked by a jet), and jj (where both photons are faked by a jet) events are obtained using the
2 × 2D ABCD method, described in detail in Section 7.2.1. The approximate shape of the γj
component is estimated by looking at the data shape in the case where one of the photons fails the
tight identification requirement, but passes the Loose’4 photon identification criteria (as described
in Section 4.4). Similarly, the jj shape is estimated from events where both photons fail the
tight identification requirement, but pass the Loose’4 requirement. The simulated diphoton events
passing the category selection are then re-weighted by a linear factor to correct the simulated shape
to that obtained from the γj or jj data shape. The γγ, γj, and jj shapes are then added together,
with each component weighted by the relative fraction estimated in the tight, isolated data region.

Examples of the background templates obtained for the 2015-2016 and 2017 periods in the
ggF 0J CEN category are presented in Figure 7.10. The remaining ggF , V BF , and V H Had
background templates are presented in Appendix B. The agreement between the templates and the
data side-bands is satisfactory, and as such it validates the use of the templates in describing the
background shape in the region underneath the Higgs boson signal peak.

Due to limited statistics in the simulated diphoton samples, the background templates in the
V H MET and V H Lep categories were constructed from the simulated V + γγ events. No break-
down of the γγ, γj, and jj sub-fractions was attempted. The background templates for the V H
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(a) ttH Had 1 (2015-2018) (b) ttH Lep 3 (2015-2018)

Figure 7.11: The full Run 2 background-only templates (using the data control region events fail-
ing the identification and/or isolation requirement, without the b-jet requirement) for the (a) ttH
Had 1 and (b) ttH Lep 3 categories, shown in blue. The data side-band events are shown as black
dots. The red shape shows an alternative template obtained using only the data control region
events which do pass the b-jet requirement applied to the nominal analysis categories. The appar-
ent compatibility between the nominal (blue) and tighter alternative (red) templates confirms the
validity of using the loosened sample. The bottom panel shows the fractional difference between
the two templates and the data side-bands.

MET and Lep categories are presented in Appendix B. As for the ggF , V BF , and V H Had
categories, the agreement between the background templates and the data side-bands appears ac-
ceptable, especially given the limited data statistics of the V H MET and V H Lep categories.

The ttH categories contain also too few simulated continuum diphoton events to provide useful
background templates for the spurious signal test. The background templates for the ttH Had
categories are instead constructed using the a data control region in which one or both both photons
fail the tight identification or isolation requirement. The ttH Had preselection is loosened for the
background template, as well – events are not required to contain a b-tagged jet. In the ttH Lep
categories, simulated ttγγ events are used. In order to gain statistics in the background templates,
the simulated ttγγ events are not required to pass the photon identification or isolation criteria, and
the event weights are not applied. Due to the limited number of data events in the ttH categories,
only the exponential and power law functions were tested to model the continuum background.

Examples of the background templates used for two of the ttH categories (ttH Had 1 and ttH
Lep 3) are presented in Figure 7.11. The figure also includes “alternative” background templates
used to validate the loosened constraints (applied in order to increase statistics) discussed above.
The alternative background templates in the ttH hadronic categories were obtained by imposing
the b-jet cut (Nb−jets ≥ 1) on the data control region events. The alternative background templates
in the ttH leptonic categories were obtained by using the event weights provided in the simulated
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ttγγ sample. The agreement between the nominal and alternative background templates appears
satisfactory. Combined with the reduced statistical power observed in the alternative templates,
the agreement helps motivate the use of the looser, higher-statistics template options. Both the
nominal and alternative background templates constructed in all of the ttH categories are presented
in Appendix B. The nominal and alternative background templates appear to acceptably agree with
the data side-bands in all categories, although the limited statistics of many ttH categories make a
direct comparison challenging.

The chosen analytic background function, as well as the resulting value of the spurious signal
systematic uncertainty, for each analysis category is presented in Table 7.2.
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Category Function Nsp

ggF 0J CEN ExpPoly2 -48.3
ggF 0J FWD ExpPoly2 -228
ggF 1J LOW ExpPoly2 45.9
ggF 1J MED ExpPoly2 40.7
ggF 1J HIGH PowerLaw1 -9.79
ggF 1J BSM Exponential -2.63
ggF 2J LOW ExpPoly2 -38.1
ggF 2J MED ExpPoly2 21.7
ggF 2J HIGH PowerLaw1 7.42
ggF 2J BSM Exponential 0.426
V BF Loose, Low pHjjT PowerLaw1 10.3
V BF Tight, Low pHjjT Exponential 5.16
V BF Loose, High pHjjT PowerLaw1 -12.2
V BF Tight, High pHjjT PowerLaw1 -17.4
V H Had Loose PowerLaw1 6.45
V H Had Tight Exponential -1.81
qqH BSM Exponential -11.7
V H MET Low Exponential 2.45
V H MET High PowerLaw1 1.94
V H Lep Low Exponential -4.67
V H Lep High Exponential -0.598
V H Dilep PowerLaw1 1
ttH Had 4 PowerLaw 1.07
ttH Had 3 PowerLaw 0.658
ttH Had 2 PowerLaw 0.756
ttH Had 1 Exponential 0.316
ttH Lep 3 Exponential 0.165
ttH Lep 2 Exponential 0.430
ttH Lep 1 Exponential 0.241

Table 7.2: Background modeling functions selected for all of the analysis categories, as well as the
value of the spurious signal systematic uncertainty.
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CHAPTER 8

Reducing Background Modeling Systematics Using
Gaussian Processes

The signal and background shapes used in the fit to data in each of the analysis categories are
derived from analytic functions, as described in Sections 7.1 and 7.3. However, the true distribu-
tion of the continuum background events may not be perfectly modeled by the choice of analytic
function. In this case, background mismodeling may induce a so-called “spurious” signal, or
background events fitted as signal incorrectly in order to improve the quality of the signal and
background fit. The spurious signal uncertainty is described in detail in Section 7.3.

Because of the limited statistics of the simulation samples used in the calculation, the value
of the spurious signal systematic uncertainty is subject to significant statistical fluctuations within
many of the analysis categories. Statistical fluctuations in the background-only sample may cause
signal-like bumps, which are then fit as spurious signal events. These statistical fluctuations do
not capture the shape mismodeling from the analytic function, and they often drastically inflate the
value of the systematic. An illustration of a statistical fluctuation inflating the value of the spurious
signal uncertainty is presented in Figure 8.1a.

Although simply producing additional simulation samples would alleviate the issue of statis-
tical fluctuations fitted as spurious signal, producing more simulated events is computationally
expensive. Additionally, producing events which fall into specific phase spaces (such as diphoton
events with a large amount of missing transverse energy) is often highly inefficient. Therefore, an
alternative solution using the available simulation samples is preferred. Given that the spurious
signal systematic uncertainty is one of the largest sources of experimental error in the analysis, a
technique to reduce these fluctuations may significantly improve the precision of the analysis.

8.1 Gaussian Processes

A Gaussian Process (GP) is defined as a set of random processes, where all finite subsets of these
processes have a multivariate normal distribution [105]. A multivariate distribution can be de-
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Figure 8.1: Example signal and background fits to a toy background template generated from an
exponential probability density function. The black points show the toy events in each bin. The
left plot shows the fit in green to the raw template. (The dark green shows the background only
fit, while the light green shows the complete signal and background fit). The right plot shows the
fit in red to the smoothed background template, shown by the blue points. (The dark red shows
the background only fit, while the light red shows the complete signal and background fit). The
background function used in the fits is an exponential function, the same as used to generate the
background templates. Therefore, the analytic function can perfectly model the background tem-
plate, aside from statistical fluctuations, and no real shape mismodeling is present. The expected
value of the spurious signal uncertainty is then zero.

scribed using two quantities: the mean and the covariance.
An example of a two-dimensional multivariate normal distribution is presented in Figure 8.2,

along with the two one-dimensional Gaussian components (one labeled the x-component, in blue,
and the other the y-component, in red). In the given example, the mean is [ 0

0 ]. Both the x- and
y-component Gaussian distributions are centered at 0, and so the center of the 2D multivariate
distribution is simply the origin. The covariance matrix is

[
1 3/5

3/5 2

]
. The width of the 1D Gaussian

along the x-axis (1) is given by the first diagonal element of the covariance matrix, while the width
of that along the y-axis (2) is given by the second diagonal element. The off-diagonal elements
indicate the correlation between the two 1D Gaussian distributions. The positive value (3/5) leads
to a diagonal skew in the 2D distribution. Essentially, events which are positive in x are more
likely to also be positive in y.

Given a finite dataset – such as the bin contents of a smooth histogram – with corresponding
mean and covariance matrices, a Gaussian Process may be defined. The “correct” mean and the
covariance, however, are not necessarily well defined, as they encode specific assumptions about
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Figure 8.2: An example of a two-dimensional multivariate normal distribution, shown via a density
in the 2D plane. The corresponding one-dimensional Gaussian distributions are shown by the
blue and red curves. The green ellipse shows the 3 sigma band of the 2D multivariate normal
distribution. The mean of the 2D multivariate normal distribution shown is [0, 0] – the distribution
is centered at the origin. The width of the 1D Gaussian along the x-axis (1) is given by the first
diagonal element of the covariance matrix, while the width of that along the y-axis (2) is given by
the second diagonal element. The off-diagonal elements indicate the correlation between the two
1D Gaussian distributions. The positive value (3/5) leads to a diagonal skew in the 2D distribution.
Figure taken from Ref. [12].

the underlying dataset. In practice, the two quantities are fit to a finite dataset using a minimization
algorithm. In the case of a one-dimensional histogram with a finite number of bins, the mean can
be interpreted as a “rough” description of the underlying shape. The diagonal elements of the
matrix represent the error of each bin. The off-diagonal elements of the covariance matrix specify
how “similar” the bin content of two different bins should be.

The covariance matrix can be simplified through the introduction of a kernel, which analytically
determines the level of correlation between two distinct points. One commonly used kernel is the
Radial Basis Function (RBF) kernel. The RBF kernel is defined as follows:

k(xi, xj) = e−
1
2
d(xi/l,xj/l)

2
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where d is the Euclidian distance and l is a hyper-parameter defining the characteristic length
scale [104]. In the case of a one-dimensional histogram, the quantities xi and xj may be interpreted
as the center of each bin. If the distance between the bin centers is much larger than the length scale
l, then the content of the two bins will be uncorrelated. If the bin centers are of order l or closer
together, then the contents will be highly correlated. The value of l can be interpreted loosely as a
measure of the minimum feature size of the distribution. A useful kernel for the case of smoothly
falling distributions is the Gibbs kernel [106, 107]. The Gibbs kernel is similar to the RBF kernel,
except that the length scale l is allowed to increase linearly as a function of x.

As stated above, the uncertainties on data points may be accounted for by a term in the diagonal
of the covariance matrix. The diagonal elements may be passed as fixed values, or they may be
included as a part of the kernel. One approach to including uncertainties on points within the kernel
itself is to add a white kernel, which is simply an N × N identity matrix (where N is the number
of data points) multiplied by a constant value. The constant value is a hyper-parameter, which is
fit during minimization.

For the case of a histogram with a smoothly falling distribution, the bins at a higher value of x
will contain fewer events. Because the error on the content of each bin follows Poisson statistics
(for the case of unweighted counts), bins at higher x values will have smaller absolute errors
associated with their content. To approximate this effect, a custom linear error kernel is used. The
linear error kernel is similar to the white noise kernel in that it is a diagonal matrix. However,
the diagonal elements decrease linearly as a function of x. The initial value (the magnitude of the
uncertainty on the left-most bin) and the slope are both hyper-parameters, which are constrained
by the data points.

For this work, the process of fitting a GP to a finite data set is performed using the Scikit-
Learn [104] machine learning package.

8.2 Smoothing Background Templates with Gaussian Processes

The background templates used in the spurious signal test for the analysis categories are all smooth,
roughly exponentially falling distributions with statistical fluctuations. Fitting a background tem-
plate using Gaussian Process Regression (using the Gibbs kernel with the linear error component
discussed above) offers a consistent method of estimating the underlying smooth shape of the
template, without the problematic fluctuations. The power of such smoothing is illustrated in Fig-
ure 8.1: after smoothing, the measured spurious signal obtained from the toy template is reduced
from 28.1 (in Figure 8.1a) to 0.6 (in Figure 8.1b). Notably, the GP smoothing technique makes no
assumption on the underlying distribution other than that it is smooth and falling, hence the choice
of functional form from the spurious signal test will not be biased.
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In order to obtain a reasonable understanding of the underlying shape of the template, the
hyper-parameters of the fit must be chosen carefully. A dedicated script was written to optimize
the hyper-parameters of the Gibbs kernel. The script first fits the provided template with a range
of analytic functions (the same as those used in the spurious signal test, listed in Section 7.3) and
takes that where the χ2 value is closest to 1. Another testing template is produced based on this
analytic function, which, unlike the original template, will not contain any statistical fluctuations.
Two different narrow features are added to the smooth template shape, then fit individually. The
first is a narrow CB shape, where the width is defined as half the bin width of the input template.
This narrow feature is designed to replicate a statistical fluctuation. The second is designed to be a
signal-like feature; a CB shape with width equal to the expected signal width is used.

The two testing templates (one with the narrow feature and one with a wider feature) are then
fit using GPs with a wide range of the two Gibbs kernel hyper-parameters, the length scale and the
slope. Ideally, the narrow feature will be mostly smoothed out (since this feature is more similar to
the statistical noise the method is designed to mitigate). The Gibbs length scale will therefore be
greater than the width of this narrow feature. The wider feature is designed to mimic the size of a
real feature in the background template, and so it should not be smoothed out in the fit. Therefore,
the length scale should not be too much larger than this width. A set of hyper-parameters is deemed
acceptable if the magnitude of the narrow feature is reduced by at least 67% at its mean value, and
if the magnitude of the wider feature is reduced by less than 75% at its mean value. Once the scan
is complete, a rectangle of good hyper-parameter values is constructed. In cases where the good
hyper-parameter space is not rectangular, a rectangular subset is chosen such that the range of the
length scale parameter is maximized.

Once the optimal hyper-parameter ranges have been set, a GP is fit to the original (noisy) back-
ground template in each category. The GP mean in the fits is defined as an exponential function,
the parameters of which are obtained by a fit to the original background template. The exponential
shape has been observed to be a sufficiently close guess for the categories used by the analysis.
However, in cases where the input template has very few statistics (less than about ten events per
bin on average), the resulting GP fit may be nearly identical to the mean exponential shape. This
issue occurs when the statistical uncertainties of the original template are so large that the tem-
plate is fully compatible with the preliminary exponential shape. Although the exponential shape
is technically an adequate descriptor of the template shape, the choice of the exponential mean
does bias the functional choice of the spurious signal test in this case. Therefore, a check has been
added to re-perform the GP fit using a flat mean in cases where the resulting GP shape and the
mean exponential shape differ by less than 0.01%.

The resulting smoothed shape obtained from the GP fit is then saved as a new histogram. This
smoothed histogram is passed as the background template to the spurious signal test, which then
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Figure 8.3: Example full Run 2 background templates for two of the analysis categories, (a)
ggF 1J HIGH, which contains a medium-level of statistics, and (b) ggF 2J BSM, which contains
few statistics. The red shape shows the original background template, the blue shape shows the
smoothed background template, and the black points show the data sidebands (for reference). The
bottom panel shows the fractional difference between the smoothed- and un-smoothed templates
and the data sidebands.

determines the background functional form and spurious signal systematic uncertainty as described
in Section 7.3.

The technique was tested using the non-ttH analysis categories (the spurious signal systematic
uncertainty does not affect the ttH sensitivity as much as that of the other production modes).
Examples of the smoothed templates are presented in Figure 8.3 for a category with a medium
level of statistics (Figure 8.3a) and for a category with a very low level of statistics (Figure 8.3b).
The original templates are shown as well, for comparison. The data sidebands are also shown for
validation, although the GP smoothing technique does not take into account the data sidebands.
The remaining templates are presented in Appendix C. Note that the presented templates include
the full Run 2 data set (2015-2018).

A comparison of the measured spurious signal systematic uncertainty in the analysis categories
(other than the ttH-enriched categories) is presented in Table 8.1. After performing the smoothing,
a significant reduction in the magnitude of the spurious signal uncertainty was observed for most
of the analysis categories. The largest reductions are seen in the categories with lower statistics
(as expected). The few categories which see an increase in the magnitude of the systematic (ggF
0J FWD, ggF 2J LOW, and ggF 2J MED) are all well-populated categories, and so no significant
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Index Category Spurious Signal Functional Form Spurious Signal Functional Form
(GP-Smoothed) (GP-Smoothed)

1 ggF 0J CEN ExpPoly2 -97.1 ExpPoly2 -88.3
2 ggF 0J FWD Bern3 -592 ExpPoly2 -653
3 ggF 1J LOW ExpPoly2 -112 ExpPoly2 -70.7
4 ggF 1J MED ExpPoly2 -72.9 ExpPoly2 -63.4
5 ggF 1J HIGH Power Law -13.3 Power Law 3.55
6 ggF 1J BSM Exponential -3.23 Exponential -0.724
7 ggF 2J LOW ExpPoly2 -81.6 ExpPoly2 -85.3
8 ggF 2J MED ExpPoly2 -30.1 ExpPoly2 -33.2
9 ggF 2J HIGH Exponential -22.4 Exponential -13.4

10 ggF 2J BSM Exponential -5.84 Exponential -1.82
11 V BF Loose, Low pHjjT Exponential -8.19 Exponential -5.01
12 V BF Tight, Low pHjjT Exponential 4.37 Exponential 2.9
13 V BF Loose, High pHjjT Exponential -19.5 Exponential -8.25
14 V BF Tight, High pHjjT Exponential -4.67 Exponential 0.276
15 V H Had Loose Exponential -14.9 Exponential -4.68
16 V H Had Tight Power Law -7.7 Exponential 0.406
18 qqH BSM Exponential -17.1 Exponential -13.2
19 V H MET Low Exponential 2.7 Exponential 0.731
21 V H MET High Exponential 1.87 Exponential 0.221
22 V H Lep Low Exponential -6.84 Exponential -2.04
22 V H Lep High Power Law -1.13 Power Law -0.647
22 V H Dilep Exponential 1.27 Power Law -0.302

Table 8.1: Summary of the magnitude of the spurious signal systematic and the associated func-
tional form chosen by the spurious signal test, both before and after the GP smoothing technique
is applied.

impact from statistical fluctuations in the value of the systematic is expected.
Extensive validation tests were performed with the GP smoothing technique in order to ensure

that the smoothing itself does not introduce a bias. These tests primarily use “toy” templates –
randomly-generated background templates constructed from either simulated diphoton events or
from the probability distribution function of a known analytic function. These studies are presented
in detail in Appendix D. No significant bias was found in the quality of the GP fits to the toy
templates. Alternative choices for the GP mean (a decreasing linear function and a flat line) were
tested; no significant difference was found in the fit quality as a result of the mean. Additionally, a
spurious signal test was performed on many toys (both from analytic functions and from simulated
events) to determine whether the GP smoothing affected the spurious signal measurement. No
significant bias in the measured spurious signal was found, both in cases where the background
function can successfully describe the background and where there exists real mismodeling by the
analytic background function.

The technique has not yet been utilized for a public result of the analysis presented here. How-
ever, the technique has been used in the analysis of the Higgs boson differential cross sections
in the diphoton decay channel, presented in Ref. [108]. In the differential cross sections anay-
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sis, the use of the GP smoothing technique reduced the spurious signal uncertainty by an average
of approximately 20% across the analysis categories. As expected, the greatest gains came from
categories with low statistics. The total impact of the spurious signal systematic uncertainty was
calculated to be 6.4% in the full Run 2 iteration of the analysis. This represents an absolute gain
of almost one percent over the previous iteration of the analysis (with a total spurious signal sys-
tematic impact of 7.3%), which did not use the smoothing technique. Notable, the true impact of
the smoothing technique is greater than the absolute reduction of the systematic shown here, since
the spurious signal systematic would have increased with the addition of the 2018 dataset.

The GP smoothing approach represents a novel and simple method to mitigating the impact of
statistical fluctuations in calculating the spurious signal uncertainty. Although the results presented
in this work do not take advantage of this technique, it is a promising approach to be utilized for
the full Run 2 measurement of Higgs boson couplings in the diphoton decay channel.
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CHAPTER 9

Statistical Method

The statistical model used by the analysis is that of a fit to the diphoton invariant mass spectrum in
data, using analytic signal and background shapes. The determination of the analytic signal shape
is presented in Section 7.1. The determination of the background shape, along with the systematic
uncertainty associated with the choice of analytic function, is described in Section 7.3.

The analysis aims to provide a measurement of the inclusive cross section σ times the Higgs
to diphoton branching ratio (BRγγ) for the four targeted production modes, ggF , V BF , V H ,
and ttH . Additionally, a measurement is made of the cross section times branching ratio for the
STXS bins which are statistically accessible. Due to the low statistics in the ttH categories of the
analysis, no attempt is made to separate the ttH and tH events into further STXS bins.

9.1 Signal Model

The analysis categories are broadly designed to target a specific production mode, ggF , V BF ,
V H , or ttH . However, no categorization can be perfect – each category includes Higgs boson
events from all Higgs boson production modes (the predicted fractions of events from each produc-
tion mode within each analysis category can be found in Figure 6.3). This includes rarer production
modes not targeted by the analysis, such as bbH production. As discussed in Section 7.1, the ana-
lytic signal shape in each category includes the contribution from all SM Higgs boson production
modes, not just the targeted mode.

The finer level of categorization within the production modes (such as the ten orthogonal cate-
gories targeting ggF production) is designed to target the STXS framework, as described in Sec-
tion 6.3. However, events produced from one STXS bin, defined as the “truth bin,” may migrate
into another bin during reconstruction, defined as the “reconstruction bin.” For example, a ggF
event produced with two associated jets will ideally fall within one of the ggF 2J bins. If one of
the jets is mis-reconstructed as another object, however, it may migrate into one of the ggF 1J
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bins. The estimated fractions of Higgs boson events from each STXS truth bin populating each
reconstruction bin are presented in Figure 6.2.

When measuring the STXS σ × BRγγ , the expected signal yield in a given reconstructed
analysis category is given by the following equation:

Nr = Σtσ
γγ
t εtrL (9.1)

where: r is the index of the reconstructed analysis category; t is the index of the STXS truth
bin; σγγt is the cross-section times branching ration σt × BRγγ for a given STXS truth bin; εtr is
the probability (efficiency) of an event from STXS truth bin t being reconstructed into the analysis
category r; and L is the integrated luminosity of the analyzed dataset. The efficiency εtr is obtained
using the simulated Higgs boson samples.

When measuring the σ × BRγγ for a given production mode instead of an individual STXS
bin, the expected number of events for a given production mode Np is defined similarly, but with
the index t being replaces by an index p denoting each mode.

Additionally, the measurement of the production mode cross sections may be provided in terms
of a signal strength µ, rather than as a σ × BRγγ . The signal strength of a given production mode
p is defined as:

µp =
σγγp
σγγp,SM

(9.2)

where σγγp,SM is the SM prediction of the cross section times diphoton branching ratio. This de-
scription has the advantage of cancelling out a number of systematics.

Note that for the ttH production mode measurement, the σ × BRγγ values for the other pro-
duction modes were fixed the their SM predictions.

9.2 Statistical Framework

The parameters of interest (µ and σ × BRγγ , for the STXS truth bins and production modes) are
extracted through a simultaneous, unbinned fit performed to all the relevant analysis categories.
The non-ttH Parameters of Interest (PoIs) are extracted from a fit to the 2015-2017 subset of data,
and the ttH categories are included in the fit. The ttH PoIs are extracted from a fit performed only
on the ttH analysis categories; the other production modes are kept fixed to the SM prediction.
The ttH fit also includes the 2018 data.

The fitting procedure is discussed in detail in Ref.s [109, 110]. The procedure is based upon the
notion of the likelihood [38], simply the probability of the observed data ~x, given some Nuisance
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Parameter (NP) set ~θ:
L = P (~x|~θ)

In the case of independent and identically distributed values [38] of ~x obeying Poisson statistics
(as is a particle physics experiment), the likelihood may be expressed as a factorization:

L =
mn

n!
e−µΠn

i=1f(~xi; ~θ)

where m represents the mean of the Poisson distribution. The above function is referred to as the
extended likelihood.

In the analysis presented here, the extended likelihood is constructed in each analysis category
considered using the diphoton invariant mass, mγγ , in the range of 105 < mγγ| < 160 GeV. The
likelihood includes the contribution of the systematic uncertainties discussed in Chapter 10. Each
systematic uncertainty corresponds to one or more NPs, which are modeled as either Gaussian or
Log-Normal NPs.

This likelihood can be maximized for a fixed value of the PoI, denoted as µ, and floating

NP vector ~θ. This gives the conditional maximum likelihood, denoted as L(µ,
ˆ̂
~θ). Here, the

ˆ̂
~θ

vector contains the values of the NP which maximize the likelihood for some given value of µ.
The likelihood may also be maximized when floating both the PoI µ and ~θ. This gives the true
maximum likelihood, denoted as L(µ̂, ~̂θ)). Here, the statistic µ̂ and the NPs in the ~̂θ vector are all
at the values which maximize the likelihood. The maximum likelihood ratio is then:

λ(µ) =
L(µ,

ˆ̂
~θ)

L(µ̂, ~̂θ)

This ratio can be calculated for a PoI of µ = 0 or σγγ = 0 (the background only hypothesis)
and for µ = 1 or σγγ = σγγSM (the nominal SM signal hypothesis). A value of λ(µ/σγγ) closer
to one for a given PoI (µ/σγγ) indicates greater agreement of the corresponding hypothesis with
the observed data. The main benefit of the maximum likelihood statistical approach is that the
maximum likelihood ratio is independent of the NPs [111].

An important related quantity is the Negative Log Likelihood (NLL); it is defined as −2 lnλ

[111]. The NLL takes a parabola-like shape, and, due to the negative sign, it can be minimized
numerically with relative ease to find the maximum of λ and hence extract the best-fit PoI value.

In practice, determining the compatibility between a given value of a PoI and a hypothesis
is difficult. For the analysis presented here, the Asymptotics approximation [112] is used to de-
termine the level of agreement. The Asymptotics approximation makes use of a representative
“Asimov” dataset. Two different constructions of the Asimov may be used. The first is the “pre-
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fit” Asimov. This construction involves a fit to the data side-bands in each analysis category using
the analytic function defined in Section 7.3. The fit to the side-bands is used to interpolate the
background shape to the signal region, 120 < mγγ < 130 GeV. The fitted DSCB signal shape,
defined in Section 7.1, in each category is added to the background function, and its magnitude is
set to the SM prediction. The second contruction is the “post-fit” Asimov, which instead involves
a fit to the observed data in the full mass region in each category, again using the analytic signal
and background shapes chosen in Sections 7.1 and 7.3, respectively. The PoI is profiled, and all
NPs are allowed to float. This fit will set the post-fit nuisance parameter values, as well as the
normalization of the background. As for the pre-fit construction, the fitted DSCB signal shape,
normalized to the SM prediction, is added to the fitted background shape. Some of the results pre-
sented in this work may be compared to so-called “expected” values – these are calculated using
the post-fit Asimov dataset.

Because of the fact that the ttH portion of the analysis uses the full Run 2 data set, while the
remainder of the analysis uses only the 2015-2017 portion of the Run 2 data set, separate extended
likelihoods are used for the ttH and non-ttH fits.
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CHAPTER 10

Systematic Uncertainties

The sources of uncertainty in the analysis come from both experimental and theoretical sources.
The experimental sources include those relating to the detection, reconstruction, and identification
of the physics objects used in the analysis, as well as the measurement of their kinematic properties.
Additionally experimental uncertainties are those associated with the analysis techniques, such as
that due to the choice of analytic function used to model the continuum diphoton background. The
theoretical sources include those relating to the simulation of different physics processes, as well as
uncertainties on the calculations of the cross sections to which the signal samples are normalized.

The theoretical source of uncertainty relevant to the analysis are discussed in Section 10.1,
while the experimental sources are discussed in Section 10.2. The impact of each the various
uncertainties is evaluated in the final likelihood fit (discussed in Chapter 9), and so their effects on
the measurement are presented along with the fit results in Chapter 11.

10.1 Theoretical Sources of Systematic Uncertainty

Theoretical sources of uncertainty considered in the analysis include uncertainties on: Higgs boson
branching ratio into the diphoton decay channel (BRγγ); the Quantum Chromodynamics (QCD)
coupling constant αs; the PDF; the parton showering, underlying event, and hadronization model
(UEPS); and lack of knowledge of higher-order QCD corrections from perturbative calculations
(QCD). An additional uncertainty on the rates of gluons splitting to heavy-flavor jets and heavy-
flavor jets radiated in Higgs boson events from ggF , V H , and V BF production (Heavy Flavor) is
included in the ttH portion of the analysis, as well.

The QCD uncertainties in the V BF , V H , and ttH signals are estimated by independently
varying both the renormalization and factorization scales (µR and µF ) by factors of 1

2
and 2. The

total QCD uncertainty in the ggF signal is calculated in a more complex manor, as the uncer-
tainty may become larger than the value calculated from the µR/µF variations in certain kinematic
regions. The ggF QCD uncertainty is broken into nine individual nuisance parameters:
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• Four parameters covering the uncertainty in modeling the jet multiplicities of ggF events [13,
113, 114, 115]

• Three parameters covering the uncertainty in modeling the Higgs boson pT spectrum

• Two parameters to account for the uncertainty in the fraction of ggF events which are recon-
structed in the V BF analysis categories [116, 117].

The uncertainty of the Higgs boson branching ratio is calculated using HDECAY [77, 118,
78, 119] and PROPHECY4F [79, 80, 81] (as described in Refs. [77, 78, 79, 80, 81, 13]), and the
value of the uncertainty is found to be +2.90%/−2.84%. The total BRγγ uncertainty includes a
“theoretical” portion, which is primarily due to missing higher order corrections. It also accounts
for uncertainties on the top, bottom, and charm quark masses, as well as on the value of αS , since
these values serve as input parameters in calculating the branching ratio [13].

The effects of uncertainties on αs and the PDF are estimated based on the recommendations
in Ref. [120]. The central value of the αS parameter is set to αS(mZ) = 0.118 ± 0.0015 (where
mZ indicates the reference mass scale from renormalization, in this case that of the Z boson). The
percentage values of the cross section uncertainty for the Higgs boson production modes due to
the combined PDF and αS uncertainties are presented in Table 10.2, while those due to the QCD
uncertainty are presented in Table 10.1. The QCD, PDF, and αS uncertainties are combined for
the bbH process; the error on the cross section is +20.1%, −23.9%.

In order to evaluate the effects of incomplete knowledge of parton showering, hadronization
processes, and the underlying event, the signal yields and kinematic distributions from alterna-
tive simulated signal samples with the same generator and different parton showering algorithms
(HERWIG++ and PYTHIA8) are compared. For the ggF signal, an additional uncertainty is derived
by combining the effects resulting from different AZNLO eigenvector tunes.

Lastly, in the ttH categories, the yields of Higgs boson events from the ggF , V H , and V BF
production modes with extra heavy-flavor jets are assigned an additional conservative 100% un-
certainty (Heavy Flavor), which is correlated between the seven analysis categories.

Uncertainties on the tt̄H cross section and the Higgs boson to diphoton branching ratio are in-
cluded in the signal strength (µtt̄H) measurement, as µtt̄H is scaled by the SM cross section predic-
tion. However, the tt̄H cross section and the Higgs boson to diphoton branching ratio uncertainties
are not included in the tt̄H cross section times branching ratio (σtt̄H ×BRγγ) measurement.

Uncertainties on the inclusive Higgs boson event yield from non-tt̄H processes are included in
the tt̄H cross section times branching ratio (σtt̄H ×BRγγ) and the signal strength (µtt̄H) measure-
ments, as all other Higgs boson production processes are assumed to obey their SM predictions.
Both the µtt̄H and σtt̄H × BRγγ measurements take into account uncertainties which may cause
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event migration between (or out of) BDT categories. These include missing higher-order QCD
effects and UEPS uncertainties.

Table 10.1: The theoretical uncertainties on the Higgs boson production mode (other than bbH)
cross sections due to the QCD uncertainty. The 3.9% value associated with the ggF production
mode is that obtained from the variation of the renormalization and factorization scales, and hence
it is smaller than that obtained by the 9 nuisance parameter method. This value is derived at the
N3LO in QCD and NLO in Electroweak, as described in Ref. [15].

Production Mode QCD Uncertainty
+ [%] − [%]

ggF 3.9 3.9
V BF 0.4 0.3
W±H 0.5 0.7
ZH 3.8 3.0
ttH 5.8 9.2
tHjb 6.5 14.7
tWH 4.9 6.7

Table 10.2: The theoretical uncertainties on the Higgs boson production mode cross sections (other
than bbH) due to the combined PDF and αS uncertainties.

Production Mode PDF and αS Uncertainty
±[%]

ggF 3.2
V BF 2.1
W±H 1.9
ZH 1.6
ttH 3.6
tHjb 3.7
tWH 6.3

10.2 Experimental Sources of Systematic Uncertainty

The sources of experimental uncertainty in the analysis can be roughly separated into two groups:
those which primarily impact the signal acceptance or yield and those which primarily impact the
signal mass shape.

The systematic uncertainties affecting the signal mass shape are Photon Energy Resolution
(PER) and Photon Energy Scale (PES) [5] . These two systematics are implemented in the fit as
changes to the mean and width (resolution) of the DSCB signal shape. The magnitude of the PES
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uncertainty is calculated as a ratio of the mean m of the DSCB shape when varying the PES by
one sigma, as follows:

δm±1σ
DSCB =

〈
m±1σ
γγ

〉〈
mNominal
γγ

〉 − 1

The ±1σ variations above are taken from Ref.s [5] (for the ttH portion of the analysis) and [121]
(for the remainder of the analysis). It was observed that δm+1σ

DSCB ≈ δm−1σ
DSCB, and so the corre-

sponding nuisance parameter in the fit is implemented with a Gaussian constraint, with width of
δm+1σ

DSCB. The PER uncertainty is treated similarly, but as a ratio of the width. The width is quanti-
fied as the inter-quantile Q, defined as: Q = CDF−1(0.75)− CDF−1(0.25). The CDF function
is the cumulative distribution function, which determines the upper value of mγγ for which some
given percent of the DSCB shape is contained. The variation of the nuisance parameter is then
calculated as:

δσ±1σ
DSCB =

〈σ±1σ〉
〈σNominal〉

− 1

The ±1σ variations in the resolution are taken from the same sources as provided for the PES
uncertainty. Unlike the PES uncertainty, the variations of the PER uncertainty are not symmetric;
the product of two asymmetric constraints is used to model the nuisance parameter in the fit. The
experimental error on the Higgs boson mass, assigned as 0.24 GeV based on the Run 1 Higgs
boson mass measurement [122], also provides an uncertainty on the location of the signal peak.

Dominant systematic uncertainties affecting mainly the signal yield include: the integrated
luminosity; the efficiency of the diphoton triggers; and pileup modeling. The uncertainty in the
combined 2015–2017 integrated luminosity, used by the non-ttH portion of the analysis, is 2.0%,
while in the combined 2015–2018 integrated luminosity, used by the ttH portion of the analysis,
it is 1.7%. It is derived following a methodology similar to that detailed in Ref. [123], using
the LUCID-2 detector for the baseline luminosity measurements [124], from calibration of the
luminosity scale using x-y beam-separation scans. The uncertainty associated with the diphoton
trigger contributes to a 0.4% uncertainty on the yield, as described in Ref. [10].

Other systematic uncertainties that have an impact on the signal acceptance are described as fol-
lows. Photon-related systematic uncertainties include photon identification efficiency and isolation
efficiency uncertainties [5, 58]. The photon isolation systematic is described in more detail in Sec-
tion 4.5.1. Jet related systematic uncertainties include the efficiency of the jet-vertex tagger [125]
and the jet energy scale and resolution [126]. In addition, systematic uncertainties arising from the
reconstruction and identification efficiency of the b-tagging algorithm [127, 92] (Flavor tagging)
used are included, as well. Both electrons [5, 58] and muons [95] contribute with uncertainties
associated to the reconstruction, identification efficiency, isolation efficiency, and their respective
energy/momentum scales and resolutions. The uncertainty on Emiss

T [128] from charged tracks
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resulting from objects other than the aforementioned high-pT objects is taken into account, as well.
Lastly, the uncertainty on the signal yield related to potential background mis-modeling due

to the choice of analytic function is accounted for with the spurious signal, calculated for each
analysis category, as described in Section 7.3. Since no systematic trends were observed between
categories in spurious signal studies, the spurious signal uncertainty is left uncorrelated between
the analysis categories.
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CHAPTER 11

Results

The results for the ttH portion of the analysis are presented using the full Run 2 data set of pp
collisions, corresponding to 139 fb−1, collected at

√
s = 13 TeV with the ATLAS detector. The

results of the remaining portion of the analysis are presented using the 2015-2017 subset of the
√
s = 13 TeV Run 2 pp data set, amounting to 79.8 fb−1 of data, collected by the ATLAS detector.

11.1 ttH Results

The combined signal and background fit to all of the ttH analysis categories is shown in Fig-
ure 11.1; for illustration purposes, events are weighted by ln(1 + S90/B90), where S90 (B90) for
each BDT bin is the expected signal (background) in the smallest mγγ window containing 90%
of the expected signal. The results of the combined fit within each of the individual ttH analysis
categories are shown in Figures 11.2 (ttH hadronic categories) and 11.3 (ttH leptonic categories).
The fitted yields of the ttH signal, non-ttH Higgs boson, and continuum background events are
presented in Table 11.1.

The top associated Higgs boson production process in the diphoton decay channel is observed
with a significance of 4.9σ; the expected significance is 4.2σ. The expected significance is evalu-
ated using the post-fit construction of the Asimov dataset, as described in Chapter 9. The signal is
normalized to the SM prediction, while the values of the nuisance parameters and the normalization
of the background are taken from the nominal fit to the data. Within the post-fit Asimov, the values
of the energy scale and resolution nuisance parameters were found to be somewhat pulled. When
fixing these two parameters to their nominal values, the expected significance increases slightly to
4.5σ, closer to the observed significance.

The observed signal strength of the ttH process is

µtt̄H = 1.38 +0.41
−0.36 = 1.38 +0.33

−0.31 (stat.) +0.13
−0.11 (exp.) +0.22

−0.14 (theo.).
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Figure 11.1: Weighted diphoton invariant mass spectrum for the sum of all seven ttH BDT cat-
egories observed in 139 fb−1 of 13 TeV data. Events are weighted by ln(1 + S90/B90), where
S90 (B90) for each BDT category is the expected signal (background) in the smallest mγγ win-
dow containing 90% of the expected signal. The error bars represent 68% confidence intervals
of the weighted sums. The solid red curve shows the fitted signal-plus-background model with
the Higgs boson mass constrained to 125.09 ± 0.24 GeV. The non-resonant and total background
components of the fit are shown with the dotted blue curve and dashed green curve. Both the
signal-plus-background and background-only curves shown here are obtained from the weighted
sum of the individual curves in each BDT category.

The statistical, experimental, and theoretical uncertainties are determined from the difference
(in quadrature) of the uncertainty obtained from the unconditional fit and that obtained when the
relevant nuisance parameters are fixed to their best fit values.

The observed cross section times branching ratio σtt̄H × BRγγ is measured using the same
formalism as above, except that the theoretical uncertainties from the total ttH → γγ production
cross section and the H → γγ branching ratio are omitted. The effects of these uncertainties on
the kinematic distributions are included, as these may lead to the migration of events between the
ttH BDT categories or a change in the efficiency of the ttH selection.

The measured cross section times branching ratio is:

σtt̄H ×BRγγ = 1.59+0.43
−0.39 fb = 1.59+0.38

−0.36 (stat.) +0.15
−0.12 (exp.) +0.15

−0.11 (theo.) fb.

The above ttH results were calculated with the Higgs boson mass fixed to 125.09± 0.24 GeV,
the value measured by the ATLAS and CMS Collaborations [122]. As a cross check, the signif-
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icance, µ, and σtt̄H × Bγγ were remeasured with the Higgs boson mass and the signal resolution
allowed to be determined directly from data; the results were found to be compatible with the
nominal fit.

For reference, the SM prediction of the σtt̄H×BRγγ for the ttH process in the diphoton channel
is 1.15+0.09

−0.12 fb. The measured σtt̄H ×BRγγ value is higher than the SM prediction, but the tension
is not great enough to strongly suggest the existence of some BSM physics. Therefore, the results
presented here do not indicate any significant deviation from the SM at this time.
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Figure 11.2: The fitted signal and background shapes for each of the four “Had” region BDT
categories. The category with the greatest purity is shown in (a), the second-greatest purity in (b),
the third-greatest purity in (c), and the lowest purity in (d). The red line shows the result of the
signal plus background unbinned fit to the data, while the data points are shown as black dots. The
dotted blue line shows the continuum background component of the fit, and the dashed green line
shows the total background (including non-tt̄H Higgs events). The fit results are derived from the
combined signal plus background fit to all seven BDT categories.

The uncertainties associated with the measurement are significantly larger than those associated
with the SM prediction. The breakdown of the contributions to the measurement from each group
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Figure 11.3: The fitted signal and background shapes for each of the three “Lep” region BDT
categories, with (a) showing the category with the greatest signal purity and (c) showing that with
the lowest. The category with intermediate purity is shown in (b). The red line shows the result of
the signal plus background unbinned fit to the data, while the data points are shown as black dots.
The dotted blue line shows the continuum background component of the fit, and the dashed green
line shows the total background (including non-tt̄H Higgs events). The fit results are derived from
the combined signal plus background fit to all seven BDT categories.
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of uncertainties (as described in Chapter 10) is shown in Table 11.2. The dominant uncertainty
in the measurement is currently the statistical uncertainty. The upcoming Run 3 of the LHC is
expected to approximately double the existing pp dataset; this additional data will help significantly
reduce the statistical errors.

The impacts from the experimental and theoretical uncertainties are comparable. On the the-
oretical side, the uncertainties due to the underlying event and parton showering are dominant.
Reducing these uncertainties will require dedicated improvements to current simulation and par-
ton showering algorithms. The modeling of heavy flavor jets in non-ttH Higgs boson (Heavy

Flavor) processes also contributes significantly to the total uncertainty. This Heavy Flavor un-
certainty is currently conservatively estimated by the analysis. Dedicated efforts to constrain this
uncertainty through differential measurements of heavy flavor jets in Higgs boson events may bet-
ter constrain this uncertainty in the future. However, such measurements are challenging, and
comparisons to simulation are complicated by the large discrepancies between the predictions of
different algorithms.

Table 11.1: Observed number of events in the different categories for the cross section times
branching ratio measurement, using 13 TeV data corresponding to an integrated luminosity of
139 fb−1 (“Data”). The observed yields are compared with the sum of expected tt̄H signal, back-
ground from non-tt̄H Higgs boson production, and other background sources. The numbers are
counted in the smallest mγγ window containing 90% of the expected signal. The background yield
is extracted from the fit with freely floating signal. The BDT bins are labeled such that the cate-
gory with the highest signal purity in each of the “Had” and “Lep” regions is labeled as category
1, while that with the lowest signal purity is labeled with the largest number.

Category tt̄H Signal non-tt̄H Higgs Continuum Background Total (Expected) Data
tt̄H “Lep” Category 1 7.9 ± 1.5 0.42 ± 0.12 4.6 ± 0.9 12.9 ± 1.8 15
tt̄H “Lep” Category 2 3.9 ± 0.6 0.43 ± 0.15 7.5 ± 1.2 11.8 ± 1.3 11
tt̄H “Lep” Category 3 1.45 ± 0.24 0.49 ± 0.19 7.5 ± 1.2 9.5 ± 1.2 6
tt̄H “Had” Category 1 6.9 ± 1.6 0.8 ± 0.5 4.5 ± 0.9 12.2 ± 1.9 15
tt̄H “Had” Category 2 5.6 ± 1.0 1.1 ± 0.8 16.5 ± 1.7 23.2 ± 2.3 31
tt̄H “Had” Category 3 7.7 ± 1.3 3.1 ± 2.2 56.0 ± 3.0 67 ± 4 82
tt̄H “Had” Category 4 4.9 ± 0.8 5 ± 4 101 ± 4 111 ± 6 105

On the experimental side, the dominant systematic uncertainty is that from the PER. The
PES contributes significantly, as well. These two uncertainties are pulled somewhat in the fit (as
mentioned above); this is likely due to the large number of events with a diphoton invariant mass
slightly above the expected Higgs mass of 125 GeV. Pulling the PER and PES nuisance parameters
allows the signal shape of the fit to encompass these events, since the mass of the Higgs boson is
fixed to 125.09 GeV. Barring significant changes to the EM calorimeter, reducing the PER and
PES uncertainties will require novel improvements to the existing photon calibration process. The
jet related systematic uncertainties also contribute significantly to the total uncertainty, which is
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reasonable considering the large number of jets included in the ttH selection.

Table 11.2: The contribution of groups of systematic uncertainties to the total error on the observed
cross section times branching ratio of the ttH process. This is shown as the uncertainty due to each
group of systematic uncertainties (∆σ), as a fraction of the total observed cross section (σ). For
each group of uncertainties, asymmetric errors are assigned. Here ∆σhigh (∆σlow) shows the effect
of systematic variations that increase (decrease) σ.

Uncertainty source ∆σlow/σ [%] ∆σhigh/σ [%]
Theory uncertainties 6.6 9.7

Underlying Event and Parton Shower (UEPS) 5.0 7.2
Modeling of Heavy Flavor Jets in non-tt̄H Processes 4.0 3.4
Higher-Order QCD Terms (QCD) 3.3 4.7
Parton Distribution Function and αS Scale (PDF+αS) 0.3 0.5
Non-tt̄H Cross Section and Branching Ratio to γγ (BR) 0.4 0.3

Experimental uncertainties 7.8 9.1
Photon Energy Resolution (PER) 5.5 6.2
Photon Energy Scale (PES) 2.8 2.7
Jet/Emiss

T 2.3 2.7
Photon Efficiency 1.9 2.7
Background Modeling 2.1 2.0
Flavor Tagging 0.9 1.1
Leptons 0.4 0.6
Pileup 1.0 1.5
Luminosity and Trigger 1.6 2.3
Higgs Boson Mass 1.6 1.5

11.2 Remaining Results

As stated in Chapter 9, the non-ttH portion of the analysis uses a separate extended likelihood and
fit than used for the above ttH results. However, the extended likelihood used for the following
results does include the ttH and tH processes through the inclusion of the seven ttH categories.
Only the 2015-2017 portion of the data in these categories is used for this fit.

The result of the combined signal and background fit to all 29 analysis categories using the
2015-2017 subset of Run 2 data is presented in Figure 11.4. The results of the fit for the combined
categories targeting the ggF , V H , and V BF production modes are presented in Figure 11.5. The
same ln(1 + S90/B90) weighting prescription detailed in the previous section is used for these
figures.

A measurement of the global Higgs boson signal strength is derived, under the assumption that
the ratios of the different Higgs boson production modes agree with the SM predictions (within
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Figure 11.4: The weighted diphoton invariant mass spectrum of all the analysis categories (only the
2015-2017 subset of ttH events is included). Events are weighted by ln(1 + S90/B90), where S90

(B90) for each category is the expected signal (background) in the smallest mγγ window contain-
ing 90% of the expected signal. The error bars represent 68% confidence intervals of the weighted
sums. The solid red curve shows the fitted signal-plus-background model with the Higgs boson
mass constrained to 125.09± 0.24 GeV. The dotted blue curve shows the continuum background,
while the dashed green curve shows the combined continuum and non-targeted Higgs boson back-
grounds. The lower panel shows the difference between the observed data and the fitted continuum
background.

theoretical uncertainties). This measured value is:

µ = 1.06 +0.14
−0.12 = 1.06 ± 0.08 (stat.) +0.08

−0.07 (exp.) +0.07
−0.06 (theo.)

This result is compatible with the SM prediction.
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(a) ggF
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(b) V BF
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(c) V H

Figure 11.5: The weighted diphoton invariant mass spectrum in the analysis categories, grouped
by the targeted production mode: (a) ggF , (b) V BF , and (c) V H . Events are weighted by ln(1 +
S90/B90), where S90 (B90) for each category is the expected signal (background) in the smallest
mγγ window containing 90% of the expected signal. The error bars represent 68% confidence
intervals of the weighted sums. The solid red curve shows the fitted signal-plus-background model
with the Higgs boson mass constrained to 125.09 ± 0.24 GeV. The dotted blue curve shows the
continuum background, while the dashed green curve shows the combined continuum and non-
targeted Higgs boson backgrounds. The lower panel shows the difference between the observed
data and the fitted continuum background.
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The signal strengths of the primary non-ttH production modes were found to be:

µggF = 0.97+0.17
−0.15 = 0.97+0.11

−0.11 (stat.) +0.09
−0.08 (exp.) +0.08

−0.06 (theo.)

µV BF = 1.4+0.44
−0.37 = 1.4+0.32

−0.31 (stat.) +0.21
−0.16 (exp.) +0.21

−0.14 (theo.)

µV H = 1.09+0.61
−0.55 = 1.09+0.53

−0.50 (stat.) +0.23
−0.23 (exp.) +0.210

−0.12 (theo.)

These signal strengths individually are compatible with the SM prediction.
The observed significance of the ggF production mode is 7.6 σ, compared to an expected sig-

nificance of 7.9σ. This production mode is beyond the “discovery” stage, and so future work on the
analysis should focus on improving the precision of the measurement. The observed significance
of the V BF production mode is 4.7σ, compared to an expected significance of 3.6σ. Although this
larger observed significance does represent an upward fluctuation compared to the SM prediction,
it is smaller than that observed in the previous iteration of the analysis (performed using approxi-
mately 36 fb−1 of data). The V BF significance may hit the single-channel “discovery” threshold
of 5σ with the addition of more data in the future. Lastly, the significance of the V H process is
observed at 2.0σ, compared to an expectation of 1.9σ.

The measured cross sections times the diphoton branching ratio of the primary non-ttH produc-
tion modes are presented in Table 11.3. The SM predictions (taken from Ref. [13]) are presented
as well for comparison. The inclusive V H cross section includes the W± and qqZH (previously
referred to simply as “ZH”) processes, as well as the much rarer ggZH process. The ratios of
these different processes are assumed to be those predicted by the SM. Additionally, the inclusive
ggF cross section includes a small contribution from the bbH process, which is also assumed to
contribute at the ratio predicted by the SM.

The results do not show any significant deviations from the SM predictions. Additionally, the
measured cross sections times the diphoton branching ratio for the strong-merging scheme of the
STXS framework are presented in Figure 11.6. The strong-merging scheme represents the merging
of low-statistics categories. The ttH and tH processes are merged into the “top” bin; the 2018 data
subset is not included in this result. Again, no significant deviations from the SM prediction are
measured.

The theoretical and experimental uncertainties now outweigh the statistical uncertainties asso-
ciated with the ggF and V BF measurements. This means that future measurements of these two
channels will not strongly benefit from additional data. Significant work in reducing the experi-
mental uncertainties will be critical to any near-term improvements in the analysis. The uncertainty
on the V H measurements, on the other hand, is still dominated by statistical error.

The main systematics affecting the non-ttH measurements are those relating to the background
modeling and the experimental measurement of photons. The background modeling (spurious
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Table 11.3: Best-fit values and uncertainties of the non-ttH production mode cross sections times
the Higgs to diphoton branching ratio. The SM predictions (taken from Ref. [13]) are shown for
each production process. The central values and uncertainties are rounded.

Process Result Uncertainty SM prediction
[fb] Total [fb] Stat. [fb] Exp. [fb] Theo. [fb] [fb]

ggF 98 +15
−14 ±11 +9

−8
+4
−3 102+5

−7

V BF 11.2 +3.4
−3.0

+2.6
−2.4

+1.3
−1.2

+1.9
−1.1 8.0 ±0.2

V H 4.9 +2.7
−2.5

+2.4
−2.2

+1.0
−0.9

+0.6
−0.5 4.5 ±0.2

2− 1− 0 1 2 3 4 5

SM
 x B)σ x B) / (σ(

Total Stat. Syst. SM PreliminaryATLAS
−1 = 13 TeV, 79.8 fbs

| < 2.5
H

, |yγγ→H    (      )           Total       Stat.     Syst.

Top    )− 0.19
+ 0.23

− 0.34
+ 0.37   (   − 0.38

+ 0.44  1.13   

VH, leptonic    )− 0.25
+ 0.29

− 0.59
+ 0.65   (   − 0.64

+ 0.71  1.38   

Hqq, BSM−like→ggF + qq  0.23  )±− 0.43
+ 0.45   (   − 0.49

+ 0.50  0.76   

<200 GeVj

T
Hqq, 0<p→qq    )− 0.21

+ 0.30
− 0.34
+ 0.36   (   − 0.40

+ 0.47  1.40   

ggF, >= 2j    )− 0.21
+ 0.29 0.47    ±   ( − 0.52

+ 0.56  0.65   

<200 GeVH

T
ggF, 1j, 120<p    )− 0.35

+ 0.49
− 0.68
+ 0.70   (   − 0.76

+ 0.85  1.51   

<120 GeVH

T
ggF, 1j, 60<p    )− 0.21

+ 0.27
− 0.42
+ 0.43   (   − 0.47

+ 0.50  0.89   

<60 GeVH

T
ggF, 1j, 0<p    )− 0.31

+ 0.43 0.52    ±   ( − 0.61
+ 0.68  1.23   

ggF, 0j    )− 0.14
+ 0.16 0.17    ±   ( − 0.22

+ 0.23  0.92   

Figure 11.6: Summary plot of the measured cross sections times the Higgs to diphoton branching
ratio in the strong merging scheme of the STXS framework. For illustration purposes the central
values and uncertainties have been divided by their SM expectations. The uncertainties in the
predicted SM cross sections are shown in gray bands in the plot. The “Top” contribution does not
include the 2018 subset of data.

120



signal) systematic uncertainty relates to the choice of analytic background function used to model
the continuum diphoton distribution; it is described in detail in Section 7.3. This uncertainty may
be mitigated in the future through the use of the Gaussian Process smoothing technique, discussed
in Chapter 8. The tests presented demonstrate the potential of the method to significantly reduce
the impact of this uncertainty in future iterations of the analysis.

The uncertainty on the photon isolation efficiency also contributes significantly to the uncer-
tainty on the measurement. The calorimetric isolation measurements from single photons (detailed
in Section 4.5.1) were initially observed to disagree significantly with separate measurements from
a sample of Z → ``γ events. Therefore, an additional uncertainty on the total photon isolation
efficiency was added to cover the discrepancy (totaling about 5%). Later studies have pinpointed
the main source of the disagreement to differences in truth-level requirements imposed on the sim-
ulated photons (for example, the Z → ``γ studies excluded photons form fragmentation, which
were included in the single photon studies). The additional uncertainty component accounting for
the single photon/Z → ``γ disagreement has since been removed, significantly reducing the pho-
ton isolation uncertainty. Therefore, future iterations of the analysis will no longer be as strongly
impacted by the photon isolation uncertainty.
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CHAPTER 12

Conclusions

This work presents the analysis of the couplings of the Higgs boson through the measurement of
the ttH , ggF , V BF , and inclusive V H production mode cross sections and signal strengths in the
diphoton decay channel. The results are also presented in the context of the STXS framework. The
ttH portion of the analysis uses the full Run 2 data set of proton-proton collisions collected by the
ATLAS detector between 2015 and 2018, amounting to a total integrated luminosity of 139 fb−1.
The remainder of the analysis uses the 2015-2017 portion of the Run 2 data set, amounting to
78.9 fb−1.

The measurement has very nearly achieved single channel observation (an observed 5σ sig-
nificance in one decay channel alone) of the ttH and V BF processes within the diphoton decay
mode. These achievements reflect the culmination of years of dedicated study of the Higgs boson
and unlock new fronts through which to probe Higgs boson properties. Future studies of these
production modes in the diphoton channel will shift from “discovery”-based analyses to more
precision-focused analyses. As of now, however, no significant disagreement has been observed
with the predictions of the SM in any of the presented results. Therefore, the measurements do not
implicate any BSM physics.

Recalling the inclusive cross section measurements of the ggF production mode, which has the
least associated uncertainty, indicates that the precision of the diphoton channel measurements is
roughly 15%. Although this level of precision may disfavor BSM models with order-of-magnitude
effects on the ggF cross section, there still exists ample room for some smaller BSM effects. These
effects may be expected to scale very roughly as 1/Λ, where Λ refers to the energy scale of the
new physics. Therefore, the precision of the analysis is not yet strong enough to probe BSM effects
multiple orders of magnitude above the Electroweak scale.

The measurements of the V H and ttH processes at this point suffer from large statistical uncer-
tainties. Therefore, these channels will benefit from the additional Run 3 data due to be collected
by the ATLAS detector in the coming years. However, the theoretical uncertainties associated with
these channels are significant. Extensive theoretical work may be needed in order to improve the
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precision of these measurements in the future. This work would likely focus on improving the
modeling of the V H and ttH signal processes themselves. The ttH channel in particular may
possibly benefit from the addition of higher-order corrections in the calculation of the inclusive
cross-section, given that it currently includes only next-leading-order terms.

The ttH measurement might also benefit especially from a dedicated measurement of the rate
of heavy flavor jet production in association with ggF events. This measurement would likely be
best performed in the diphoton or four lepton decay channels of the Higgs boson, due to the fact
that they do not contain additional b-jets from the Higgs boson decay. Further theoretical work
would also allow for a dedicated comparison of the experimental measurements.

With additional statistics, the ttH region specifically could be exploited in order to search for
BSM effects with a finer granularity. One option would be to perform a differential measurement
of the Higgs boson pT in these categories, since this spectrum could be sensitive to BSM effects.
However, the current BDT-based selection would likely need to be reconsidered, since the output
score of the BDTs are heavily correlated with the Higgs boson pT. Another potential avenue of
study would be to probe the CP (Charge-Parity) nature of the Higgs boson coupling to the top
quark. This coupling is predicted to be CP-even by the SM, but some BSM models indicate
the possibility of a CP-odd component to the coupling. A high-precision measurement of this
coupling could be achieved by selecting ttH events which decay dileptonically (both W± bosons
decay to leptons and neutrinos) and measuring the angular distributions constructed from the two
leptons and the diphoton system. This channel has the advantage that there are no ambiguities
between the decay products of the top quarks and the Higgs boson, unlike in other channels (such as
ttH → ZZ∗ → 4`, where both the Higgs boson and top quarks produce leptons as part of the decay
chain). However, the current analysis has only observed a handful (of order 10) dileptonic events,
and so such an analysis will likely not be feasible until late into Run 3 of the LHC. Additionally,
the BDT-based selection used by the current analysis may need to be reconsidered for such a
measurement, since the leptonic ttH BDT cuts on the angular variables of the leptons in an event.

Significantly improving the ggF and V BF measurements will require immediate action, given
that these results are not dominated by statistical uncertainties. As mentioned previously, one of the
dominant experimental uncertainties on these measurements is that of the background modeling.
For the low- and medium-statistics categories targeting this production mode, the GP smoothing
technique may offer a significant reduction in the spurious signal and hence drastically reduce the
uncertainty. However, the smoothing technique (by design) will not eliminate real features in the
background spectrum that may be difficult to fit using an analytic function. Therefore, it may be
worth questioning the analysis strategy. One option would be to attempt to model the background
spectrum directly using a GP. A GP is not constricted to any particular functional form, and it is
flexible enough to fit the many features of the background spectrum. Work would be needed to
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determine a procedure to extract the signal from the GP fit to the data.
Moving forward, the diphoton channel will continue to be an appealing experimental channel

through which to study the properties of the Higgs boson. As more data is collected, sufficient
statistics of this rare decay mode will allow for finer granularity probes of the SM. However,
extensive theoretical and experimental work will be needed moving forward in order to extract
extremely high precision measurements of Higgs boson couplings in the future.
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APPENDIX A

Signal Parameterizations

The Double-Sided Crystal Ball (DSCB) fits to the simulated signal samples in each of the ttH
categories are presented in Figures A.1-A.2, while the signal shapes of the non-ttH categories are
presented in Figures A.3-A.9. The construction of the signal models is discussed in Section 7.1.

125



110 115 120 125 130 135 140

Ev
en

ts
/0

.5
00

00
0 

G
eV

0

0.2

0.4

0.6

0.8

1

1.2
ATLAS Simulation Internal

-1Ldt = 140.46 fb∫ = 13 TeV: s
ttHLep_XGBoost1

  = 125.12
CB
µ

  = 1.44CBσ

  = 1.67CBLoα

  = 1.44CBHiα

  = 4.98CBLon
  = 13.57CBHin

Yield  = 9.33

110 115 120 125 130 135 140

M
C

 / 
Fi

t

0
0.5

1
1.5

2

(a) ttH Lep 1

110 115 120 125 130 135 140

Ev
en

ts
/0

.5
00

00
0 

G
eV

0

0.1

0.2

0.3

0.4

0.5

0.6 ATLAS Simulation Internal
-1Ldt = 140.46 fb∫ = 13 TeV: s

ttHLep_XGBoost2

  = 125.13
CB
µ

  = 1.62CBσ

  = 1.73CBLoα

  = 1.40CBHiα

  = 4.56CBLon
  = 21.65CBHin

Yield  = 4.89

110 115 120 125 130 135 140

M
C

 / 
Fi

t

0
0.5

1
1.5

2

(b) ttH Lep 2
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Figure A.1: The signal parameterizations, using simulates signal events, of the ttH leptonic cate-
gories: (a) ttH Lep 1, (b) ttH Lep 2, and (c) ttH Lep 3.
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(d) ttH Had 4

Figure A.2: The signal parameterizations, using simulates signal events, of the ttH hadronic cate-
gories: (a) ttH Had 1, (b) ttH Had 2, (c) ttH Had 3, and (d) ttH Had 4.
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(a) V H Lep Low
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(b) V H Lep High

110 115 120 125 130 135 140

Ev
en

ts
/1

 G
eV

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45 ATLAS Simulation Internal
-1Ldt = 79.88 fb∫ = 13 TeV: s

VHdilep

  = 125.11
CB
µ

  = 1.59CBσ

  = 1.71CBLoα

  = 1.78CBHiα

  = 4.16CBLon
  = 6.01CBHin

Yield  = 1.81

110 115 120 125 130 135 140

M
C

 / 
Fi

t

0
0.5

1
1.5

2

(c) V H Dilep

Figure A.3: The signal parameterizations, using simulates signal events, of the V H leptonic cate-
gories: (a) V H Lep Low, (b) V H Lep High, and (c) V H Dilep.
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Figure A.4: The signal parameterizations, using simulates signal events, of the V H MET cate-
gories: (a) V H MET Low and (b) V H MET High.
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Figure A.5: The signal parameterizations, using simulates signal events, of the V H leptonic cate-
gories: (a) V H Had Loose, (b) V H Had Tight, and (c) qqH BSM.
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Figure A.6: The signal parameterizations, using simulates signal events, of the V BF categories:
(a) V BF Loose, Low pHjjT , (b) V BF Tight, Low pHjjT , (c) V BF Loose, High pHjjT , and (d) V BF
Tight, High pHjjT .
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(b) ggH 2J Med
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(d) ggH 2J BSM

Figure A.7: The signal parameterizations, using simulates signal events, of the ggF 2J categories:
(a) ggH 2J Low, (b) ggH 2J Med, (c) ggH 2J High, and (d) ggH 2J BSM.
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(b) ggH 1J Med
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(d) ggH 1J BSM

Figure A.8: The signal parameterizations, using simulates signal events, of the ggF 1J categories:
(a) ggH 1J Low, (b) ggH 1J Med, (c) ggH 1J High, and (d) ggH 1J BSM.
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Figure A.9: The signal parameterizations, using simulates signal events, of the ggF 0J categories:
(a) ggH 0J CEN and (b) ggH 0J FWD.
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APPENDIX B

Background Templates

The background templates for the non-ttH analysis categories are presented in Figures B.1-B.7.
Due to the distinction of the simulation samples modeling the pileup profile of the 2015-2016
data taking period and that of the 2017 data-taking period, the templates for the two periods are
presented side-by-side. The exception is for the presentation of the V BF templates, where only the
combined 2015-2017 templates are presented due to a statistical fluctuation in the 2017 subsample
of simulated continuum diphoton events. The data events in the sideband region (defined asmγγ <

120 or mγγ > 130 GeV) are presented as well. The construction of the background templates is
presented in Section 7.3.

The background templates used for the ttH categories are shown in Figures B.8-B.9. The
data sideband events are also shown in order to evaluate the compatibility of the background-only
template and the true background shape. Additionally, the “alternative” background templates,
constructed to validate the loosened criteria used to improve the template statistics, are presented.
The construction of the nominal and alternative ttH background templates is presented in Sec-
tion 7.3.
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(b) ggF 0J CEN (2017)
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(c) ggF 0J FWD (2015-2016)
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Figure B.1: The 2015-2016 (left) and 2017 (right) background templates, along with the data side-
band events in black, for the (top row) ggF 0J Cen and (bottom row) ggF 0J Fwd categories. The
green shows the γγ events, the blue shows the γj events, and the red shows the jj events.
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(a) ggF 1J Low (2015-2016)
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(b) ggF 1J Low (2017)
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(c) ggF 1J Med (2015-2016)
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(d) ggF 1J Med (2017)
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(e) ggF 1J High (2015-2016)
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(f) ggF 1J High (2017)
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(g) ggF 1J BSM (2015-2016)
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(h) ggF 1J BSM (2017)

Figure B.2: The 2015-2016 (left) and 2017 (right) background templates, along with the data side-
band events in black, for the (top row) ggF 1J LOW, (second row) ggF 1J Med, (third row) ggF 1J
High, and (bottom row) ggF 1J BSM categories. The green shows the γγ events, the blue shows
the γj events, and the red shows the jj events.
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(a) ggF 2J Low (2015-2016)
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(b) ggF 2J Low (2017)
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(c) ggF 2J Med (2015-2016)
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(d) ggF 2J Med (2017)
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(e) ggF 2J High (2015-2016)
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(f) ggF 2J High (2017)
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(g) ggF 2J BSM (2015-2016)
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(h) ggF 2J BSM (2017)

Figure B.3: The 2015-2016 (left) and 2017 (right) background templates, along with the data side-
band events in black, for the (top row) ggF 2J LOW, (second row) ggF 2J Med, (third row) ggF 2J
High, and (bottom row) ggF 2J BSM categories. The green shows the γγ events, the blue shows
the γj events, and the red shows the jj events.

138



110 120 130 140 150 160

en
tri

es

0
10
20
30
40
50
60
70
80
90

Internal ATLAS
1−Ldt = 79.9 fb∫ = 13 TeV, s

VBF_HjjLOW_loose

jj jγ 
γγ SM 

Data 

 [GeV]γγm
110 120 130 140 150 160

pu
ll

2−
0
2
4

(a) V BF Loose, Low pHjjT (2015-2017)
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(b) V BF Tight, Low pHjjT (2015-2017)
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(c) V BF Loose, High pHjjT (2015-2017)
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Figure B.4: The 2015-2017 background templates, along with the data side-band events in black,
for the (top row) V BF Loose, Low pHjjT , (second row) V BF Tight, Low pHjjT , (third row) V BF
Loose, High pHjjT , and (bottom row) V BF Tight, High pHjjT categories. The green shows the γγ
events, the blue shows the γj events, and the red shows the jj events.
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(a) V H Had Loose (2015-2016)
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(c) V H Had Tight (2015-2016)
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(d) V H Had Tight (2017)
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(f) qqH BSM (2017)

Figure B.5: The 2015-2016 (left) and 2017 (right) background templates, along with the data side-
band events in black, for the (top row) V H Had Loose, (middle row) V H Had Tight, and (bottom
row) qqH BSM categories. The green shows the γγ events, the blue shows the γj events, and the
red shows the jj events.

140



110 120 130 140 150 160

en
tri

es

0
1
2
3
4
5
6
7 Internal ATLAS

1−Ldt = 79.9 fb∫ = 13 TeV, s
VHMET_LOW

γγV SM 

Data 

 [GeV]γγm
110 120 130 140 150 160

pu
ll

2−
0
2
4

(a) V H MET Low (2015-2016)
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(b) V H MET Low(2017)
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(c) V H MET High (2015-2016)
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(d) V H MET High (2017)

Figure B.6: The 2015-2016 (left) and 2017 (right) background templates, along with the data side-
band events in black, for the (top row) V H MET Low and (bottom row) V H MET High categories.
Only the V γγ simulated sample is used (shown in red).
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(a) V H Lep Low (2015-2016)
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(b) V H Lep Low(2017)
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(c) V H Lep High (2015-2016)
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(d) V H Lep High(2017)

110 120 130 140 150 160

en
tri

es

0

0.5

1

1.5

2

2.5

3 Internal ATLAS
1−Ldt = 79.9 fb∫ = 13 TeV, s

VHdilep

γγV SM 

Data 

 [GeV]γγm
110 120 130 140 150 160

pu
ll

2−
0
2
4

(e) V H Dilep (2015-2016)
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(f) V H Dilep (2017)

Figure B.7: The 2015-2016 (left) and 2017 (right) background templates, along with the data side-
band events in black, for the (top row) V H MET Low and (bottom row) V H MET High categories.
Only the V γγ simulated sample is used (shown in red).
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(a) ttH Had 4 (2015-2018) (b) ttH Had 3 (2015-2018)

(c) ttH Had 2 (2015-2018) (d) ttH Had 1 (2015-2018)

Figure B.8: The full Run 2 background-only templates (using the NTI data control region events,
without the b-jet requirement) for the ttH hadronic categories, shown in blue. The data sideband
events are shown as black dots. The red shape shows an alternative template obtained using only
the NTI data control region events which pass the b-jet requirement applied to the nominal analysis
categories. The apparent compatibility between the nominal (blue) and tighter alternative (red)
templates confirms the validity of using the loosened sample.
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(a) ttH Lep 3 (2015-2018) (b) ttH Lep 2 (2015-2018)

(c) ttH Lep 1 (2015-2018)

Figure B.9: The full Run 2 background-only templates (using the simulated ttγγ sample, without
the event weights applied) for the ttH leptonic categories, shown in blue. The data sideband events
are shown as black dots. The red shape shows an alternative template obtained using by applying
the event weights to the simulated ttγγ events. The apparent compatibility between the nominal
(blue) and tighter alternative (red) templates confirms the validity of using the loosened sample.
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APPENDIX C

Gaussian Process Smoothed Templates

The background templates of all of the (non-ttH) analysis categories, both before and after the
Gaussian Process (GP) smoothing, are presented in Figures C.1-C.7. The data sidebands are
shown for comparison, although the GP smoothing technique does not take into account the data
sidebands. The ttH categories were not tested using the technique, since the spurious signal sys-
tematic uncertainty does not affect the ttH sensitivity as much as that of the other production
modes. Note that the presented templates include the full Run 2 data set (2015-2018).
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(a) ggF 0J CEN
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(b) ggF 0J FWD

Figure C.1: The full Run 2 background templates of the ggF 0J analysis categories, (a) ggF
0J CEN and (b) ggF 0J FWD. The red shape shows the original background template, the blue
shape shows the smoothed background template, and the black points show the data sidebands
(for reference). The bottom panel shows the fractional difference between the smoothed- and un-
smoothed templates and the data sidebands.
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(a) ggF 1J LOW
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(c) ggF 1J HIGH
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(d) ggF 1J BSM

Figure C.2: The full Run 2 background templates of the ggF 1J analysis categories, (a) ggF 1J
LOW, (b) ggF 1J MED, (c) ggF 1J HIGH, and (d) ggF 1J BSM. The red shape shows the original
background template, the blue shape shows the smoothed background template, and the black
points show the data sidebands (for reference). The bottom panel shows the fractional difference
between the smoothed- and un-smoothed templates and the data sidebands.
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Figure C.3: The full Run 2 background templates of the ggF 2J analysis categories, (a) ggF 2J
LOW, (b) ggF 2J MED, (c) ggF 2J HIGH, and (d) ggF 2J BSM. The red shape shows the original
background template, the blue shape shows the smoothed background template, and the black
points show the data sidebands (for reference). The bottom panel shows the fractional difference
between the smoothed- and un-smoothed templates and the data sidebands.
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(c) V BF Loose, High pHjjT
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Figure C.4: The full Run 2 background templates of the V BF analysis categories, (a) V BF Loose,
Low pHjjT , (b) V BF Tight, Low pHjjT , (c) V BF Loose, High pHjjT , and (d) V BF Tight, High
pHjjT . The red shape shows the original background template, the blue shape shows the smoothed
background template, and the black points show the data sidebands (for reference). The bottom
panel shows the fractional difference between the smoothed- and un-smoothed templates and the
data sidebands.
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(b) V H Had Tight
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Figure C.5: The full Run 2 background templates of the hadronic V H and qqH BSM analysis
categories, (a) V H Had Loose, (b) V H Had Tight, and (c) qqH BSM. The red shape shows
the original background template, the blue shape shows the smoothed background template, and
the black points show the data sidebands (for reference). The bottom panel shows the fractional
difference between the smoothed- and un-smoothed templates and the data sidebands.
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(a) V H MET Low
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(b) V H MET High

Figure C.6: The full Run 2 background templates of the hadronic V H Emiss
T analysis categories, (a)

V H MET Low and (b) V H MET High. The red shape shows the original background template, the
blue shape shows the smoothed background template, and the black points show the data sidebands
(for reference). The bottom panel shows the fractional difference between the smoothed- and un-
smoothed templates and the data sidebands.
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(a) V H Lep Low
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(b) V H Lep High
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(c) V H Dilep

Figure C.7: The full Run 2 background templates of the hadronic V H leptonic analysis categories,
(a) V H Lep Low, (b) V H Lep High, and (c) V H Dilep. The red shape shows the original back-
ground template, the blue shape shows the smoothed background template, and the black points
show the data sidebands (for reference). The bottom panel shows the fractional difference between
the smoothed- and un-smoothed templates and the data sidebands.
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APPENDIX D

Validation of Gaussian Process Smoothing

Extensive testing was performed of the GP smoothing technique (detailed in Chapter 8) to ensure
that no bias was being introduced through the smoothing process. The tests are designed to mimic
the conditions of the analysis presented in this work. Hence, the background-like analytic functions
used in the tests are the same as those used in the spurious signal test (see Section 7.3), and the
mass range of the templates is the same as that of the analysis (105 < mγγ < 160 GeV).

The first of these tests involves calculating the average bias of many GP fits to “toy” templates.
The toy templates were constructed in two ways. The first is from the probability distributions of
known analytic functions, but containing random fluctuations. The percent differences between
the “true” shape (the analytic function) and the average of the many GP fits are presented in Fig-
ures D.1-D.7. Each figure shows the results using one of the analytic functions. The fits were
also performed with different statistics, ranging from 1000 events per template to one million. The
results consistently demonstrate that the fitting bias is less than about 2% for toy templates with
statistics greater than 10,000 events per template. For lower-statistics templates, the bias is also
confined to less than about 2% when ignoring within 5 GeV of the edge of the template. Notably,
a bias at the edges of the fit range is expected given the nature of the GP fit. The points less than
about one characteristic length scale away from the edge are not as highly constrained by the given
data points as those in the middle of the template, and so the choice of GP mean (discussed below)
begins to affect the fit in this range.

The second method of constructing toy templates for the average bias tests is using the sim-
ulated diphoton sample. A subsample consisting of randomly selected events was filled into a
histogram, and a GP fit was performed to each template. The average of the many GP fits was
compared to the full statistics simulation shape, which was defined as the “true” shape. The num-
ber of events ranged between 1000 and one million, again in order to check for any bias in different
statistics regimes. The simulation weights were applied to each event, and the events were required
to pass the diphoton preselection (defined in Section 6.1). As for the fit bias tests using the analytic
function based toys, the average fits to the simulation templates do not appear to show signifi-
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Figure D.1: The average bias of the GP fits to toy templates constructed from an analytic Power
Law function. The top left subplot shows the results using templates containing 1000 events, the
top middle shows the results using templates containing 5000 events, and the top right shows the
results using templates containing 10,000 events. The bottom left subplot shows the results using
templates containing 100,000 events, while the bottom middle shows the results using templates
containing one million events.

cant biases, other than at the template edges. Some fluctuations on the order of about 1% appear
for some individual bins in the templates. However, these features are consistent across the dif-
ferent levels of statistics tested. Therefore, these appear to be fluctuations already present in the
full-statistics simulation sample, and not an artifact of the GP fit.

The second group of tests was to evaluate the difference in GP fit bias when different functions
were used as the GP mean. The Exponential function, Linear function, and a flat line were all
tested. These tests were performed using toy templates constructed from Power Law (Fig. D.9),
ExpPoly2 (Fig. D.10), and Bernstein 5 (Fig. D.11) functions. Again, different levels of statistics in
the toy templates were tested. Overall, the choice of GP mean does not seem to affect the GP fit bias
significantly, other than for templates with less than 1000 events. In the lower statistics templates,
most of the differences in fitting bias are again confined to the extremities of the template range,
as expected. Therefore, the choice of mean does not appear to introduce a significant bias in the fit
result.

The third set of tests performed evaluated the impact of the GP smoothing technique on the
measured spurious signal. The tests again involve performing the GP smoothing on a large number
of toy templates. The spurious signal test (a signal plus background fit) is performed on both
the un-smoothed and smoothed templates. For these tests, a simplified Crystal Ball shape with
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Figure D.2: The average bias of the GP fits to toy templates constructed from an analytic Expo-
nential function. The top left subplot shows the results using templates containing 1000 events, the
top middle shows the results using templates containing 5000 events, and the top right shows the
results using templates containing 10,000 events. The bottom left subplot shows the results using
templates containing 100,000 events, while the bottom middle shows the results using templates
containing one million events.

a width of 2 GeV is used as the signal shape, and the full set of analytic functions described in
Section 7.3 (Power Law, Exponential, ExpPoly2, ExpPoly3, Bern3, Bern4, and Bern5) are tested
as background functions. The many spurious signal measurements are compiled into distributions,
such as those shown in Figures D.12-D.17. The distributions are expected to be roughly Gaussian
in nature.

The results shown in Figures D.12-D.17 are obtained using toy templates constructed from
simulated diphoton events. A set number of events passing the diphoton selection was randomly
chosen to construct each template. Each figure shows the results for a different number of events
in each template, ranging from 500 to one million. Each subplot within the figures shows the
results using the different choices of background functional forms when performing the signal and
background fit. The results may be compared between the smoothed (blue) and un-smoothed (red)
distributions. For the smoothed templates, the distribution of measured spurious signal values is
narrower, especially for those templates with fewer events. This narrowing reflects the reduction
of statistical fluctuations by the smoothing process. Additionally, the mean values of both the
smoothed and the un-smoothed distributions are compatible. The average value of the un-smoothed
distributions may be taken as the “true” spurious signal for a given choice of analytic background
function. The compatibility of the smoothed mean values indicates that the GP smoothing does
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Figure D.3: The average bias of the GP fits to toy templates constructed from an analytic ExpPoly2
function. The top left subplot shows the results using templates containing 1000 events, the top
middle shows the results using templates containing 5000 events, and the top right shows the
results using templates containing 10,000 events. The bottom left subplot shows the results using
templates containing 100,000 events, while the bottom middle shows the results using templates
containing one million events.

not appear to strongly bias the spurious signal measurement; it simply increases the measurement
precision. Additionally, the compatibility may be seen both in cases where the analytic background
function chosen can adequately model the background (cases where the average spurious signal is
zero) and in cases where it does produce nontrivial mismodeling (cases where the average spurious
signal is non-zero). The high-statistics simulation shape contains features which are not easily
modeled by the Power Law and Exponential functions, and so these functions in particular are
expected to result in a significant spurious signal.

The toy tests measuring the spurious signal are more compactly summarized in Figure D.18.
The results across the range of statistics are shown in a single plot by effectively “rotating” the
distributions on their side. The mean values of the scaled spurious signal distributions (based on
Gaussian fits the distributions) from both the raw and smoothed templates are plotted on the y-
axis as a function of template statistics in the x-axis. The shaded areas indicate the widths of
the distributions (defined as the width σ of the Gaussian fit to the distribution). Again, the blue
shape shows the results from the smoothed templates, while the red shows those from the un-
smoothed templates. The spurious signal has been observed to scale linearly with the number
of background events. Therefore, by scaling the spurious signal distributions by the number of
background events, the mean values of the distributions will converge to a constant value. The
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Figure D.4: The average bias of the GP fits to toy templates constructed from an analytic ExpPoly3
function. The top left subplot shows the results using templates containing 1000 events, the top
middle shows the results using templates containing 5000 events, and the top right shows the
results using templates containing 10,000 events. The bottom left subplot shows the results using
templates containing 100,000 events, while the bottom middle shows the results using templates
containing one million events.

level of “flatness” of the subplots in Figure D.18 then indicates whether any significant bias in the
spurious signal measurement is present (a flat line indicates no bias).

An examination of Figure D.18 indicates that the GP smoothing results in the same spurious
signal on average as when measured using the raw templates. The average spurious signal, scaled
by the number of background events, measured using both the smoothed and raw templates is a
constant value across the range of template statistics considered. Overall, no significant bias is
observed as a result of the smoothing. Additionally, the shaded area of the smoothed templates is
narrower than that of the raw templates, indicating that the distribution of spurious signal measured
is narrower when using the smoothing technique.

These spurious signal distribution tests were also be conducted using toy templates constructed
from analytic functions. The individual distributions of spurious signal measurements are not
shown; instead, only the summary plots are presented in Figures D.20-D.25. These plots are
similar to Figure D.18, in that they present the scaled spurious signal in the y-axis as a function of
the template statistics in the x-axis. As for the tests using simulated events, the average spurious
signal values measured using the smoothed and un-smoothed templates are compatible. The widths
of the smoothed distributions are also narrower than those of the un-smoothed, except for very
high statistics templates. Again, the GP smoothing does not appear to significantly shift the mean
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Figure D.5: The average bias of the GP fits to toy templates constructed from an analytic Bernstein
3 function. The top left subplot shows the results using templates containing 1000 events, the
top middle shows the results using templates containing 5000 events, and the top right shows the
results using templates containing 10,000 events. The bottom left subplot shows the results using
templates containing 100,000 events, while the bottom middle shows the results using templates
containing one million events.

spurious signal, even if it is non-zero. This implies that the GP smoothing successfully reduces
statistical fluctuations, without affecting the real underlying mismodeling which the spurious signal
test is designed to probe.

The combination of these validation tests, along with the measured impact to the spurious signal
uncertainty in the analysis presented here in Chapter 8 and that presented in Ref. [108], demonstrate
the power of using the Gaussian Process approach. By reducing problematic statistical fluctuations,
the spurious signal systematic may be reduced enough to significantly increase the precision of the
analysis in the future.
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Figure D.6: The average bias of the GP fits to toy templates constructed from an analytic Bernstein
4 function. The top left subplot shows the results using templates containing 1000 events, the
top middle shows the results using templates containing 5000 events, and the top right shows the
results using templates containing 10,000 events. The bottom left subplot shows the results using
templates containing 100,000 events, while the bottom middle shows the results using templates
containing one million events.
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Figure D.7: The average bias of the GP fits to toy templates constructed from an analytic Bernstein
5 function. The top left subplot shows the results using templates containing 1000 events, the
top middle shows the results using templates containing 5000 events, and the top right shows the
results using templates containing 10,000 events. The bottom left subplot shows the results using
templates containing 100,000 events, while the bottom middle shows the results using templates
containing one million events.
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Figure D.8: The average bias of the GP fits to toy templates constructed from randomly selected
simulated diphoton events. The top left subplot shows the results using templates containing 500
events, the top middle shows the results using templates containing 1000 events, and the top right
shows the results using templates containing 5000 events. The bottom left subplot shows the re-
sults using templates containing 10,000 events, the bottom middle shows the results using 100,000
events, and the bottom right shows the results using templates containing one million events.
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Figure D.9: Comparisons of the average bias induced by the choice of GP mean when fitting toy
templates constructed from the analytic Power Law function. The yellow shape shows the results
using the default Exponential mean, the blue shape shows the result using a flat line as the mean,
and the red shape shows the result using a linear fit as the mean. The top left subplot shows the
results using templates containing 1000 events, the top middle shows the results using templates
containing 5000 events, and the top right shows the results using templates containing 10,000
events. The bottom left subplot shows the results using templates containing 100,000 events, while
the bottom middle shows the results using templates containing one million events.
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Figure D.10: Comparisons of the average bias induced by the choice of GP mean when fitting toy
templates constructed from the analytic ExpPoly2 function. The yellow shape shows the results
using the default Exponential mean, the blue shape shows the result using a flat line as the mean,
and the red shape shows the result using a linear fit as the mean. The top left subplot shows the
results using templates containing 1000 events, the top middle shows the results using templates
containing 5000 events, and the top right shows the results using templates containing 10,000
events. The bottom left subplot shows the results using templates containing 100,000 events, while
the bottom middle shows the results using templates containing one million events.
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Figure D.11: Comparisons of the average bias induced by the choice of GP mean when fitting toy
templates constructed from the analytic Bernstein 5 function. The yellow shape shows the results
using the default Exponential mean, the blue shape shows the result using a flat line as the mean,
and the red shape shows the result using a linear fit as the mean. The top left subplot shows the
results using templates containing 1000 events, the top middle shows the results using templates
containing 5000 events, and the top right shows the results using templates containing 10,000
events. The bottom left subplot shows the results using templates containing 100,000 events, while
the bottom middle shows the results using templates containing one million events.
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Figure D.12: The distribution of spurious signal values obtained when performing the spurious
signal test on toy templates constructed from the continuum diphoton simulation sample. Each toy
contains 500 randomly-chosen events, which are required to pass the diphoton selection, detailed
in Chapter 6. The x-axis is normalized to the number of events contained in the template. The
subplots in the top row show the results when using the (left to right) Power Law, Exponential,
ExpPoly2, and ExpPoly3 functions as the background function in the spurious signal test fit. The
top row shows the results obtained using the (left to right) Bernstein 3, 4, and 5 functions in the
fit. The blue shape shows the distribution of spurious signal measurements when testing the GP
smoothed toy templates, while the red shows the measurements from the un-smoothed toys.
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Figure D.13: The distribution of spurious signal values obtained when performing the spurious
signal test on toy templates constructed from the continuum diphoton simulation sample. Each toy
contains 1000 randomly-chosen events, which are required to pass the diphoton selection, detailed
in Chapter 6. The x-axis is normalized to the number of events contained in the template. The
subplots in the top row show the results when using the (left to right) Power Law, Exponential,
ExpPoly2, and ExpPoly3 functions as the background function in the spurious signal test fit. The
top row shows the results obtained using the (left to right) Bernstein 3, 4, and 5 functions in the
fit. The blue shape shows the distribution of spurious signal measurements when testing the GP
smoothed toy templates, while ths red shows the measurements from the un-smoothed toys.
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Figure D.14: The distribution of spurious signal values obtained when performing the spurious
signal test on toy templates constructed from the continuum diphoton simulation sample. Each toy
contains 5000 randomly-chosen events, which are required to pass the diphoton selection, detailed
in Chapter 6. The x-axis is normalized to the number of events contained in the template. The
subplots in the top row show the results when using the (left to right) Power Law, Exponential,
ExpPoly2, and ExpPoly3 functions as the background function in the spurious signal test fit. The
top row shows the results obtained using the (left to right) Bernstein 3, 4, and 5 functions in the
fit. The blue shape shows the distribution of spurious signal measurements when testing the GP
smoothed toy templates, while ths red shows the measurements from the un-smoothed toys.
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Figure D.15: The distribution of spurious signal values obtained when performing the spurious
signal test on toy templates constructed from the continuum diphoton simulation sample. Each
toy contains 10,000 randomly-chosen events, which are required to pass the diphoton selection,
detailed in Chapter 6. The x-axis is normalized to the number of events contained in the template.
The subplots in the top row show the results when using the (left to right) Power Law, Exponential,
ExpPoly2, and ExpPoly3 functions as the background function in the spurious signal test fit. The
top row shows the results obtained using the (left to right) Bernstein 3, 4, and 5 functions in the
fit. The blue shape shows the distribution of spurious signal measurements when testing the GP
smoothed toy templates, while ths red shows the measurements from the un-smoothed toys.
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Figure D.16: The distribution of spurious signal values obtained when performing the spurious
signal test on toy templates constructed from the continuum diphoton simulation sample. Each
toy contains 100,000 randomly-chosen events, which are required to pass the diphoton selection,
detailed in Chapter 6. The x-axis is normalized to the number of events contained in the template.
The subplots in the top row show the results when using the (left to right) Power Law, Exponential,
ExpPoly2, and ExpPoly3 functions as the background function in the spurious signal test fit. The
top row shows the results obtained using the (left to right) Bernstein 3, 4, and 5 functions in the
fit. The blue shape shows the distribution of spurious signal measurements when testing the GP
smoothed toy templates, while ths red shows the measurements from the un-smoothed toys.
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Figure D.17: The distribution of spurious signal values obtained when performing the spurious
signal test on toy templates constructed from the continuum diphoton simulation sample. Each toy
contains one million randomly-chosen events, which are required to pass the diphoton selection,
detailed in Chapter 6. The x-axis is normalized to the number of events contained in the template.
The subplots in the top row show the results when using the (left to right) Power Law, Exponential,
ExpPoly2, and ExpPoly3 functions as the background function in the spurious signal test fit. The
top row shows the results obtained using the (left to right) Bernstein 3, 4, and 5 functions in the
fit. The blue shape shows the distribution of spurious signal measurements when testing the GP
smoothed toy templates, while ths red shows the measurements from the un-smoothed toys.
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Figure D.18: Summary of the mean value and width of the spurious signal distributions measured
from toy templates constructed with randomly selected simulated diphoton events. The x-axis
indicates the number of events in the background template, while the y-axis indicates the measured
spurious signal, scaled by the number of events in the background template. The top row shows
the results obtained when performing the signal and background fit using the (left to right) Power
Law, Exponential, ExpPoly2, and ExpPoly3 functions as the background shape in the fit. The
bottom row shows the results when using the (left to right) Bernstein 3, 4 and 5 functions as the
background shape. The blue shape shows the results obtained using the GP smoothing technique,
while the red shape shows the results obtained without the technique.
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Figure D.19: Summary of the mean value and width of the spurious signal distributions measured
from toy templates constructed with the analytic Exponential function. The x-axis indicates the
number of events in the background template, while the y-axis indicates the measured spurious
signal, scaled by the number of events in the background template. The top row shows the results
obtained when performing the signal and background fit using the (left to right) Power Law, Ex-
ponential, ExpPoly2, and ExpPoly3 functions as the background shape in the fit. The bottom row
shows the results when using the (left to right) Bernstein 3, 4 and 5 functions as the background
shape. The blue shape shows the results obtained using the GP smoothing technique, while the red
shape shows the results obtained without the technique.
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Figure D.20: Summary of the mean value and width of the spurious signal distributions measured
from toy templates constructed with the analytic Power Law function. The x-axis indicates the
number of events in the background template, while the y-axis indicates the measured spurious
signal, scaled by the number of events in the background template. The top row shows the results
obtained when performing the signal and background fit using the (left to right) Power Law, Ex-
ponential, ExpPoly2, and ExpPoly3 functions as the background shape in the fit. The bottom row
shows the results when using the (left to right) Bernstein 3, 4 and 5 functions as the background
shape. The blue shape shows the results obtained using the GP smoothing technique, while the red
shape shows the results obtained without the technique.
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Figure D.21: Summary of the mean value and width of the spurious signal distributions measured
from toy templates constructed with the analytic ExpPoly2 function. The x-axis indicates the num-
ber of events in the background template, while the y-axis indicates the measured spurious signal,
scaled by the number of events in the background template. The top row shows the results obtained
when performing the signal and background fit using the (left to right) Power Law, Exponential,
ExpPoly2, and ExpPoly3 functions as the background shape in the fit. The bottom row shows
the results when using the (left to right) Bernstein 3, 4 and 5 functions as the background shape.
The blue shape shows the results obtained using the GP smoothing technique, while the red shape
shows the results obtained without the technique.
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Figure D.22: Summary of the mean value and width of the spurious signal distributions measured
from toy templates constructed with the analytic ExpPoly3 function. The x-axis indicates the num-
ber of events in the background template, while the y-axis indicates the measured spurious signal,
scaled by the number of events in the background template. The top row shows the results obtained
when performing the signal and background fit using the (left to right) Power Law, Exponential,
ExpPoly2, and ExpPoly3 functions as the background shape in the fit. The bottom row shows
the results when using the (left to right) Bernstein 3, 4 and 5 functions as the background shape.
The blue shape shows the results obtained using the GP smoothing technique, while the red shape
shows the results obtained without the technique.
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Figure D.23: Summary of the mean value and width of the spurious signal distributions measured
from toy templates constructed with the analytic Bernstein 3 function. The x-axis indicates the
number of events in the background template, while the y-axis indicates the measured spurious
signal, scaled by the number of events in the background template. The top row shows the results
obtained when performing the signal and background fit using the (left to right) Power Law, Ex-
ponential, ExpPoly2, and ExpPoly3 functions as the background shape in the fit. The bottom row
shows the results when using the (left to right) Bernstein 3, 4 and 5 functions as the background
shape. The blue shape shows the results obtained using the GP smoothing technique, while the red
shape shows the results obtained without the technique.

176



410 510 610
 per Templateeff eventsN

0.005−

0

0.005

0.01

0.015

ef
f e

ve
nt

s
 / 

N
sp

ur
 s

ig
N

GPR Toy Tests

Fit Function: PowerLaw

410 510 610
 per Templateeff eventsN

0.01−

0.005−

0

0.005

0.01

ef
f e

ve
nt

s
 / 

N
sp

ur
 s

ig
N

Fit Function: Exponential

410 510 610
 per Templateeff eventsN

0.015−

0.01−

0.005−

0

0.005

0.01

ef
f e

ve
nt

s
 / 

N
sp

ur
 s

ig
N

Fit Function: ExpPoly2

410 510 610
 per Templateeff eventsN

0.015−

0.01−

0.005−

0

0.005

0.01

ef
f e

ve
nt

s
 / 

N
sp

ur
 s

ig
N

Raw Toy
GPR Toy

Fit Function: ExpPoly3

410 510 610
 per Templateeff eventsN

0.015−

0.01−

0.005−

0

0.005

0.01

ef
f e

ve
nt

s
 / 

N
sp

ur
 s

ig
N

Fit Function: Bern3

410 510 610
 per Templateeff eventsN

0.015−

0.01−

0.005−

0

0.005

0.01

ef
f e

ve
nt

s
 / 

N
sp

ur
 s

ig
N

Fit Function: Bern4

410 510 610
 per Templateeff eventsN

0.015−

0.01−

0.005−

0

0.005

0.01

0.015

ef
f e

ve
nt

s
 / 

N
sp

ur
 s

ig
N

Fit Function: Bern5

Figure D.24: Summary of the mean value and width of the spurious signal distributions measured
from toy templates constructed with the analytic Bernstein 4 function. The x-axis indicates the
number of events in the background template, while the y-axis indicates the measured spurious
signal, scaled by the number of events in the background template. The top row shows the results
obtained when performing the signal and background fit using the (left to right) Power Law, Ex-
ponential, ExpPoly2, and ExpPoly3 functions as the background shape in the fit. The bottom row
shows the results when using the (left to right) Bernstein 3, 4 and 5 functions as the background
shape. The blue shape shows the results obtained using the GP smoothing technique, while the red
shape shows the results obtained without the technique.
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Figure D.25: Summary of the mean value and width of the spurious signal distributions measured
from toy templates constructed with the analytic Bernstein 5 function. The x-axis indicates the
number of events in the background template, while the y-axis indicates the measured spurious
signal, scaled by the number of events in the background template. The top row shows the results
obtained when performing the signal and background fit using the (left to right) Power Law, Ex-
ponential, ExpPoly2, and ExpPoly3 functions as the background shape in the fit. The bottom row
shows the results when using the (left to right) Bernstein 3, 4 and 5 functions as the background
shape. The blue shape shows the results obtained using the GP smoothing technique, while the red
shape shows the results obtained without the technique.
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APPENDIX E

Nuisance Parameter Rankings

Some insight into impact of various systematic uncertainties on the measured result can be obtained
by examining the Nuisance Parameter (NP) rankings of the analysis. The rankings of the largest
NPs affecting the observed results in the non-ttH production modes are presented in Figure E.1.

One important point relating to the nuisance parameter plots is that one systematic uncertainty
source does not necessarily correspond directly to one nuisance parameter. Many systematic un-
certainties are comprised of multiple nuisance parameters, and so estimating the “total” effect
of one systematic uncertainty source is non-trivial from the NP ranking plots. For example, the
background modeling (“spurious signal”) uncertainty (discussed in Section 7.3) encompasses one
nuisance parameter per analysis category.

Additionally, the NP plots provide information about the nuisance parameters both “pre-fit”
and “post-fit.” Typically, the initial values of the nuisance parameters are calculated independently
of the analysis fitting framework; these methods are described in Chapter 10. These are the “pre-
fit” values. The “post-fit” values are those obtained in the post-fit Asimov. The NPs are allowed to
float in order to increase the agreement with the observed data. Details on the construction of the
post-fit Asimov and resulting NPs are provided in Chapter 9.

The NP ranking plots also provide a high density of information for a single plot. The upper x-
axis shows the relative impact of varying a single NP on the observed signal strength. The relative
impact is shown as the difference in the observed signal strength from the nominal signal strength,
∆µ̂, divided by the nominal signal strength, µ̂. The impacts of both the variations of the pre-fit (the
red shaded areas) and of the post-fit (the blue shaded areas) values of the NPs are shown.

The lower x-axis shows the pulls on the NPs. The points show the difference between the
central value of the post-fit NP and the initial (pre-fit) value of the NP, scaled by the error on the
NP. The red lines show the magnitude of the pre-fit errors on the NPs, while the black lines show
the magnitude of the post-fit errors. None of the NPs are very strongly pulled, which could possibly
indicate some modeling issue of the data. None of the NPs appear to be excessively constrained by
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the data. The JET JER NP, corresponding to the jet energy resolution, is the most strongly pulled
of the presented NPs. This pull is likely due to the excess observed in the V BF categories.

The dominant nuisance parameters affecting the observed results in the different production
modes are shown in Figure E.1.

The NPs with “spurious” in the name indicate those which result from the background model-
ing (spurious signal) uncertainty. This uncertainty is one of the largest in the non-ttH portion of
the analysis.

The PHOTON EFF ISO Uncertainty NP represented the uncertainty due to the photon
isolation efficiency. The EG RESOLUTION NPs relate to the PER.

The BR gamgam NP refers to the theoretical uncertainty on the Higgs boson to diphoton
branching ratio.

The QCDscale ggH NPs are part of the nine-NP scheme describing the higher-order QCD

uncertainty relating to the ggF process.
The lumi run2 NP refers to the uncertainty in the total luminosity collected by the ATLAS

detector in Run 2.
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Figure E.1: The ranking of the largest nuisance parameters affecting the observed results in the
main non-ttH production modes: (a) ggF , (b) V BF , and (c) V H .
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