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ABSTRACT

Each day, most of us interact with a myriad of networks: we search for information on

the web, connect with friends on social media platforms, and power our homes using the

electrical grid. Many of these interactions have improved our lives, but some have caused

new societal issues — social media facilitating the rise of fake news, for example. The goal

of this thesis is to advance our understanding of these systems, in hopes improving beneficial

interactions with networks while reducing the harm of detrimental ones.

Our primary contributions are threefold. First, we devise new algorithms for estimating

Personalized PageRank (PPR), a measure of similarity between nodes in a network used in

applications like web search and recommendation systems. In contrast to most existing PPR

estimators, our algorithms exploit local graph structure to reduce estimation complexity. We

show the analysis of such algorithms is tractable for certain random graph models, and that

the key insights obtained from these models hold empirically for real graphs.

Our second contribution is to apply ideas from the PPR literature to two other problems.

First, we show that PPR estimators can be adapted to the policy evaluation problem in

reinforcement learning. More specifically, we devise policy evaluation algorithms inspired

by existing PPR estimators that reduce the sample complexity of existing methods when

certain side information is available. Second, we use analytical ideas from the PPR literature

to show that convergence behavior and robustness are intimately related for a certain class

of Markov chains.

Finally, we study social learning over networks as a model for the spread of fake news. For

this model, we characterize the learning outcome in terms of a novel measure of the “density”

of users spreading fake news. Using this characterization, we devise optimal strategies for

seeding fake news spreaders so as to disrupt learning. These strategies empirically outperform

intuitive heuristics on real social networks (despite not being provably optimal for such

graphs) and thus provide new insights regarding vulnerabilities in social learning.

While the topics studied in this thesis are diverse, a unifying mathematical theme is that

of perturbed Markov chains. This includes perturbations that yield useful interpretations in

various applications, that provide algorithmic and analytical advantages, and that disrupt

some underlying system or process. Throughout the thesis, the perturbed Markov chain

theme guides our analysis and suggests more general methodologies.

ix



CHAPTER I

Introduction

1.1 Motivation

In today’s world, we constantly interact with networks, defined simply as sets of pairwise-

connected objects. Examples include the Internet (websites connected by hyperlinks), social

networks (users connected by friendships), and even the human brain (neurons connected

by synapses). Among these networks, those that have emerged recently have dramatically

disrupted how we interact with friends and colleagues, distribute and acquire information,

conduct business, and undergo countless other activities. While some of these changes have

been beneficial – the Internet facilitating access to information, for example – others have

been detrimental – social networks enabling the rise of fake news, for example. In both cases,

however, networks lie at the heart of important societal issues.

The primary goal of this thesis is to advance our understanding of networks, in hopes

of either improving the solutions they present or mitigating the problems they cause. At a

high level, our contributions are as follows. First, we develop algorithms that can help prac-

titioners better utilize network-related data, with motivating applications including Internet

search and recommendation systems. Second, we prove structural results that give new in-

sights regarding how networks are organized and how processes unfold over networks, with

search and recommendation again as motivation, and also with an eye toward fake news.

Developing such algorithms and proving such results is challenging for (at least) two rea-

sons. First, modern networks have complex interconnections. Owing to this, an algorithm

that works well for a given network may dramatically fail if the network’s topology changes

slightly, processes occurring over seemingly-similar networks can have strikingly different

evolutions, etc. Second, modern networks are massive; studying them manually is impos-

sible, while studying them algorithmically requires extensive computational power, clever

algorithmic implementation, or (as is often the case) a combination of the two. To combat

these challenges, we often abstract a network to a simplified mathematical model – namely,
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a random graph – and exploit the mathematical tractability of this model to obtain rigor-

ous insights into the behavior of an algorithm, process, or other phenomena. However, like

all models, these random graphs are crude representations of real-world networks. Thus,

throughout the thesis, we also validate our insights computationally on real networks.

In addition to these algorithms and structural results, a third contribution of the thesis is

to apply our insights to settings beyond the study of networks. These applications are both

practical and theoretical. On the practical side, we use network algorithms as inspiration for

a reinforcement learning algorithm. On the theoretical side, we use network analysis tools to

study the robustness and convergence behavior of certain stochastic models, and specifically

the relationship between robustness and convergence.

In short, this thesis studies a diverse set of topics involving network algorithms, network

organization, processes occurring over networks, reinforcement learning, and robustness of

stochastic models. A unifying mathematical theme appearing across our treatment of these

topics is that of perturbed Markov chains. At times, this involves perturbing some underlying

chain in a manner that yields a useful interpretation for a certain application, and/or that

provides desirable analytical or algorithmic properties. At other times, the perturbation

is generated adversarially and disrupts some underlying system or process, and we aim to

understand the deleterious effects of the perturbation.

To describe this through-line of perturbed Markov chains in more detail, and to more

precisely define the problems we address, we next discuss some technical preliminaries. We

then return to provide a brief overview of the thesis and a summary of our contributions.

1.2 Preliminaries

We begin by introducing the perturbed Markov chains studied most extensively in this

thesis, the PageRank chain and its generalization to Personalized PageRank. We then discuss

some applications of these Markov chains found in the literature. Finally, we describe several

important mathematical properties that will be exploited throughout the thesis.

1.2.1 PageRank

The PageRank chain is defined in terms of a given discrete-time, time-homogeneous,

finite-state Markov chain {Xt}t∈Z+ , where Z+ = {0, 1, . . .}. We assume for simplicity that

{Xt}t∈Z+ has state space [n] = {1, . . . , n}, and we denote its transition matrix by P , i.e.

P(Xt+1 = j|Xt = i) = P (i, j) ∀ i, j ∈ [n], t ∈ Z+.

Then for α ∈ (0, 1), the PageRank chain corresponding to P is the chain with transition

matrix (1 − α)P + α1n1T
n/n, where 1n is the length-n column vector of ones. Thus, we

2



obtain the PageRank chain by an α-bounded perturbation of the given transition matrix

P . This is one example of a perturbation that yields a desirable analytical property: since

(1− α)P + α1n1T
n/n is irreducible and aperiodic (without assumption on P ), the PageRank

chain has a unique stationary distribution, i.e. a unique nonnegative row vector π satisfying

π = π

(
(1− α)P +

α1n1T
n

n

)
,

n∑
i=1

π(i) = 1.

In the network science literature, {Xt}t∈Z+ is typically the simple random walk1 on some

underlying graph G = (V,E), where V is a set of n nodes and E is a set of directed

edges of the form i → j for i, j ∈ V . In this case, the PageRank chain has a particularly

simple interpretation: from the current state, flip a coin that lands heads with probability

1 − α; if heads, take a random walk step; if tails, “restart” the walk by choosing the next

state uniformly at random from V . This interpretation was proposed in [1] as a model for

web browsing called the random surfer model. Here V represents a set of web pages, and

i→ j ∈ E means page i ∈ V contains a hyperlink leading to page j ∈ V . Thus, the random

surfer navigates the web by either clicking a random hyperlink (i.e. taking a random walk

step) or typing a random page’s web address into the address bar (i.e. restarting the walk).

If i is a particularly popular web page, in the sense that many other pages link to it, the

random surfer frequently visits i, and π(i) is large. Owing to this, PageRank was first used

to identify popular web pages for ordering Internet search results. It has since been viewed

as a centrality measure for networks in diverse domains; we discuss some examples soon.

1.2.2 Personalized PageRank (PPR)

PPR is a natural generalization of PageRank. Given a distribution σ over [n] (viewed as a

column vector), the PPR vector πσ is the stationary distribution of the chain with transition

matrix (1−α)P +α1nσ
T. This corresponds to a random surfer who either chooses Xt+1 from

Xt’s neighbors (as in Section 1.2.1) or restarts at a state sampled from σ. Note the latter

case generalizes the uniform restart of the PageRank chain; put differently, the PageRank

vector is precisely the PPR vector in the special case σ = 1n/n, i.e. π = π1n/n. In the same

manner as PageRank, we view the PPR chain as a perturbation of the original chain.

An important special case is σ = ei, where ei the vector with 1 in the i-th coordinate and

zeroes elsewhere; to simplify notation, we write such PPR vectors as πi = πei . Note that

on the corresponding PPR chain, conditioned on restarting, the random surfer deterministi-

cally restarts at i. Conceptually, this leads to a simple inverse-distance interpretation: if j is

1By simple random walk, we mean Xt+1 is chosen uniformly at random from Xt’s outgoing neighbors in G,
i.e. from those j ∈ V with Xt → j ∈ E. In the PageRank literature, one typically adds a self-loop to states
with no outgoing neighbors; note {Xt}t∈Z+

is not irreducible in this case, but the PageRank chain still is.

3



“close” to i in the graph, the random surfer will often visit j between restarts at i, and thus

the PPR value πi(j) will be large. Moreover, many networks exhibit homophily, meaning

“similar” nodes tend to be connected – for example, social network users from nearby geo-

graphic areas and of similar ages are more likely to be friends. Thus, if i and j are similar,

they will be close in the graph (perhaps friends themselves, or sharing a mutual friend), and

πi(j) will be large by the inverse-distance viewpoint. For this reason, PPR values are often

interpreted as measures of similarity or relevance between nodes.

The case σ = ei is of particular interest owing to the linearity property derived in Section

1.2.4, which states that any PPR vector πσ can be written as a convex combination of {πi}ni=1.

Put differently, if we are given {πi}ni=1, we can compute any PPR vector πσ, including the

PageRank vector π. For this reason, one should view {πi}ni=1 as the primitive objects of our

study. Given the importance of these primitives, we use the notation Π for the matrix with

rows {πi}ni=1, and at times we call Π the PPR matrix.

1.2.3 Motivating applications

Having explained the centrality/influence interpretation of PageRank and the similarity/

relevance interpretation of PPR, we describe some applications that have exploited these

viewpoints. As already mentioned, PageRank was originally used to rank Internet search

results [1]. One downside to this approach is that it models all Internet users by the same

random surfer; namely, one that restarts at a uniformly random web page. More realistically,

each user has personal preferences that influence which pages they are likely to restart at.

These preferences are naturally encoded by a distribution σ over the set of pages; the PPR

vector πσ can then be used to rank search results while accounting for these preferences.

This idea of personalized web search was in fact the genesis of PPR [2].

Beyond web search, PageRank and PPR have been used in many other practical settings.

For example, Twitter has employed PPR to provide users with personalized recommendations

of who to follow [3]. Here nodes in the underlying graph represent Twitter users and edges

represent follower relationships. Thus, user i’s PPR vector πi can be used to identify similar

users j that i does not currently follow (those j for which πi(j) is large but i → j /∈ E),

and Twitter can recommend that i follow j. A similar idea was used for personalized video

recommendations on YouTube [4]. More broadly, PageRank and PPR have been used in

diverse fields such as bioinformatics [5, 6].

In addition to these practical examples, PageRank and PPR have proven useful in graph-

theoretic problems. For instance, PPR has been used to detect communities near a seed

node: the set of j for which πi(j) is large can be viewed as a community (i.e. a subset

of densely-connected nodes) surrounding i. This intuitive viewpoint can in fact be made

4



rigorous [7, 8, 9]; for instance, [7] shows that the resulting community has low conductance,

a traditional measure of how tightly interconnected a community is. As another example,

PPR has been used as a primitive to assess structural similarity between graphs [10].

The examples discussed in this section are far from exhaustive; we point the reader to [11]

for a survey of applications. Moving forward, we discuss specific applications infrequently, as

we will typically be concerned with abstract estimation problems and structural properties.

Nevertheless, it is worth noting the widespread utility of PageRank and PPR; they can

potentially be useful in any application where a graph arises.

1.2.4 Key properties

We next describe some key properties of PageRank and PPR used throughout the thesis.

The first property is a closed-form expression for PPR: to derive it, first observe

πσ = πσ
(
(1− α)P + α1nσ

T
)

= (1− α)πσP + ασT,

where the first equality holds by definition of πσ and the second holds since πσ1n = 1

(assuming we normalize πσ so it sums to 1). We then solve for πσ to obtain2

πσ = ασT(I − (1− α)P )−1 = ασT
∞∑
t=0

(1− α)tP t. (1.1)

Consequently, recalling from Section 1.2.2 that Π is the matrix with rows {πi}ni=1, we have

Π = α(I − (1− α)P )−1 = α
∞∑
t=0

(1− α)tP t. (1.2)

We refer to (1.1) and (1.2) as the power iteration, since the summations can be estimated by

iteratively computing certain powers. For example, in (1.2) we can compute the (t + 1)-th

summand from the t-th as (1− α)t+1P t+1 = (1− α)tP t × (1− α)P .

From (1.1), we derive a linearity property: given two distributions σ1, σ2 over [n] (viewed

as column vectors as in Section 1.2.2) and some λ ∈ (0, 1), (1.1) immediately implies

πλσ1+(1−λ)σ2 = λπσ1 + (1− λ)πσ2 . (1.3)

2One can argue (I−(1−α)P ) is invertible using the Perron-Frobenious theorem: if instead (I−(1−α)P )x = 0
for some x 6= 0, then Px = x/(1−α), but P cannot have eigenvalue 1/(1−α) > 1 since it is row stochastic.
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Note this extends to any finite mixture of distributions. In particular, we can write

π = π1n/n = π∑n
i=1 ei/n

=
1

n

n∑
i=1

πei =
1

n

n∑
i=1

πi,

i.e. the PageRank vector is the average of the PPR vectors.

The final property is a consequence of (1.1) and (1.3): if the initial state X0 is distributed

as σ, and if T is a Geometric(α) random variable independent of {Xt}t∈Z+ , we have

P(XT = j) =
n∑
i=1

∞∑
t=0

P(XT = j|T = t,X0 = i)P(T = t)P(X0 = i) (1.4)

=
n∑
i=1

∞∑
t=0

P t(i, j)× α(1− α)t × σ(i) =
n∑
i=1

σ(i)πi(j) = πσ(j).

In words, (1.4) says we can sample from the distribution πσ by simulating a Geometric(α)-

length trajectory beginning at a state drawn from σ; we call this the perfect sampling prop-

erty (chains exhibiting this property are more generally called Doeblin chains [12, 13]).

It is worth noting that (1.1), (1.3), and (1.4) are extremely special properties that need

not hold for general Markov chains. Thus, as alluded to in Section 1.1, we can view PageRank

and PPR as perturbations that yield desirable analytical properties. Moreover, as will be

discussed shortly, these properties lead to algorithmic advantages as well.

1.3 Overview of the thesis

Equipped with the definitions and key properties of PageRank and PPR, and having

presented motivating applications, we provide an overview of the thesis and our contributions.

Thematically, the thesis is organized into three parts, which we discuss in turn.

1.3.1 Part 1: Exploiting local structure in PPR estimation

The first part of thesis considers algorithms for estimating certain submatrices of Π, or

estimating Π itself. Such estimators are necessary because computing Π via the matrix

inversion in (1.2) is infeasible in many of the applications discussed in Section 1.2.3, since

this computation has O(n3) complexity and n may be on the order of 109 or greater. Before

discussing our contributions, we give a brief survey of the most relevant existing algorithms

so as to contextualize our work. We also note that Sections 2.2 and 3.5.2 contain more

thorough PPR literature reviews and more detailed comparisons to our algorithms.
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1.3.1.1 Existing algorithms and context of our work

Most PPR estimators are derived in some manner from the power iteration (1.2) and/or

the perfect sampling property (1.4). Indeed, we have already interpreted (1.2) algorithmically

in our discussion of the power iteration (see Section 1.2.4). Note in particular that for large

T , Π(·, i) (the i-th column of Π) can be estimated with complexity O(Tn2) using T matrix-

vector multiplications. Conceptually, this approach works backward from i to explore all

paths of length at most T leading to i in the underlying graph. Improving upon this idea, [8]

provides an algorithm called Approx-Contributions that estimates Π(·, i) by exploring only

“high-probability” paths at lower complexity. Analogously, [7] proposes an algorithm called

Approx-PageRank that estimates πi = Π(i, ·) by forward exploration of high-probability

paths. From a probablistic perspective, (1.4) immediately suggests estimating πi via Monte

Carlo, i.e. by sampling many Geometric(α)-length trajectories from i. Several variants of this

scheme were proposed in [14]. The ideas from [8] and [14] were later combined in [15] for an

algorithm called Bidirectional-PPR. As its name suggests, Bidirectional-PPR estimates

a single PPR value πs(t) = Π(s, t) in two stages: random walks are sampled forward from

source node s ∈ V and Approx-Contributions is run backward from target node t ∈ V .

The algorithms of [7, 8, 14, 15] all feature rigorous accuracy and complexity guarantees

but estimate only a subset of the entries of Π. Clearly, these algorithms can be run repeatedly

to estimate all entries of Π – e.g. one can use the algorithm of [8] to separately estimate each

column of Π – but this is intuitively wasteful as it ignores dependencies across entries arising

from the common underlying graph. For instance, if πi(j) and πj(k) are both large, the

inverse-distance interpretation from Section 1.2.2 suggests πi(k) will be large as well. Prior

work, such as [16, 17], has attempted to exploit these dependencies to reduce complexity,

but these works typically lack rigorous guarantees. The fundamental difficulty is that these

dependencies rely heavily on the local structure of the underlying graph G. In contrast, works

with rigorous-yet-tractable analyses typically ignore local structure and express complexity

in terms of macro-level graph parameters (number of nodes, number of edges, etc.)

A major contribution of this thesis is to bridge these approaches, i.e. to account for local

structure while still providing rigorous guarantees. This is made possible by the random

graph abstraction mentioned in Section 1.1: we consider random graphs with well-behaved

local structures, which makes it tractable to exploit dependencies while providing rigorous

guarantees. On the other hand, we consider models that preserve the key properties of real

graphs, and thus our insights hold empirically for real graphs as well. We next discuss two

settings in which we exploit local structure to accelerate PPR estimation in this fashion.
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1.3.1.2 Overview of Chapter II

In Chapter II, we consider estimating the sub-matrix of Π with rows S ⊂ V and columns

T ⊂ V , denoted Π(S, T ). For example, if S represents a set of users searching for friends on a

social network and T represents a set of users matching the search queries, estimating Π(S, T )

allows us to order the search results for each searching user. Our algorithms are based on the

aforementioned Bidirectional-PPR estimator. Clearly, we can use Bidirectional-PPR to

estimate Π(S, T ) by separately sampling random walks forward from each s ∈ S and sep-

arately running Approx-Contributions backward from each t ∈ T . However, this ignores

possible dependencies across the entries of Π(S, T ) that we can potentially exploit. Thus,

in Chapter II we propose two accelerations of this naive approach. First, we show that

random walks can be shared across S, reducing sample complexity. Second, we develop an

Approx-Contributions variant that runs jointly across T and eliminates wasteful compu-

tations that may occur if the algorithm is run separately for each t ∈ T .

Our analysis in Chapter II shows that the complexity reduction resulting from these

accelerations is most significant when S and/or T are clustered, i.e. when most s ∈ S

and/or most t ∈ T are close in the graph. As a concrete example, we study our walk-sharing

scheme on the stochastic block model (SBM), a common model for graphs with this clustering

property. For the SBM, our method requires as few as O(log n/ log log n) random walks when

|S| =
√
n, whereas the naive approach requires Ω(

√
n). Moreover, empirical results show

that our algorithms significantly reduce the runtime of the naive approach when S, T are

clustered on real-world graphs (and moderately reduce runtime when S, T are not clustered).

As an application of these results, we propose a distributed PPR estimation scheme that

simultaneously samples walks and partitions S so as to reduce runtime, without using a

separate (and likely costly) partitioning scheme. In short, we exploit the local structural

property of clustering to accelerate PPR estimation in Chapter II.

1.3.1.3 Overview of Chapter III

The connection between clustering and complexity explored in Chapter II hints at deeper

structural properties, which we address in Chapter III. Here the specific property of interest

is dimensionality and arises from the following (apparent) paradox: the entires of Π have a

naturally transitive structure (see Section 1.3.1.1), yet is Π is full rank for any underlying

graph G (see Section 1.2.4). Put differently, rank is too coarse to capture the intuitively

small dimension of Π. Hence, in Chapter III we consider a different dimensionality measure;

roughly, the minimal rank among a certain set of matrices ε-close to Π (in the l∞ operator

norm, which is natural for row stochastic matrices like Π). This quantity is difficult to analyze

for a fixed graph, so we restrict attention to a sequence of random graphs {Gn = ([n], En)}n∈N

8



generated via the directed configuration model (DCM) [18], a means of randomly constructing

a graph with a pre-specified degree distribution.

Our analysis shows that under certain assumptions, this dimensionality measure scales

as O(nc1), c1 ∈ (0, 1), resolving the aforementioned paradox. Our key assumption is that the

in-degree distribution is sparse but heavy-tailed; for example, this roughly occurs on Twitter,

where typical users follow a tiny subset of all other users and celebrities have a great number

of followers. Furthermore, we show that this dimensionality measure dictates the complexity

of estimating Π: since only O(nc1) rows of Π are truly independent, one can estimate only

these rows, then recover the remaining rows as linear combinations. This allows us to show Π

can be estimated with complexity O(nc2), c2 ∈ (1, 2), improving upon all existing algorithms

(when our assumptions hold). We note the algorithm in Chapter III is conceptually similar

to those from the aforementioned [16, 17], which account for dependencies across Π but lack

rigorous guarantees. Thus, as in Chapter II, abstracting to a random graph allows us to

exploit structural properties and (rigorously) accelerate PPR estimation.

1.3.2 Part 2: Applications of PPR algorithms and analysis

The second part of the thesis applies algorithmic and analytical ideas from the PPR

literature to two problems beyond networks. We discuss each in turn.

1.3.2.1 Overview of Chapter IV

In Chapter IV, we adapt PPR algorithms to the policy evaluation problem in reinforce-

ment learning (RL). The basic object of study is a finite, discrete-time Markov decision

process (S,A, Q, c): S is a set of S ∈ N states, A is a set of A ∈ N actions, and, given

state-action pair (s, a) ∈ S × A, we incur instantaneous cost c(s, a) ∈ R+ and transition

to s′ ∈ S with probability Q(s′|s, a). Mappings π : S → A are called policies and dictate

the action taken at each state3. Thus, each policy π induces an instantaneous cost vector

cπ(s) = c(s, π(s)) and a transition matrix Qπ(s, ·) = Q(·|s, π(s)) and that depend only on s.

The discounted cost incurred when using policy π and starting from state s is then

vπ(s) = E

[
(1− α)

∞∑
t=0

αtcπ(Sπt )

∣∣∣∣∣Sπ0 = s

]
= (1− α)eTs

∞∑
t=0

αtQt
πcπ, (1.5)

where α is a discount factor that reflects a trade-off between short- and long-term costs, and

where {Sπt }t∈Z+ is an S-valued Markov chain with transition matrix Qπ. Policy evaluation

then refers to estimating the vector vπ = {vπ(s)}s∈S for a fixed policy π.

Policy evaluation has a clear connection to PageRank and PPR: by (1.2) and (1.5), vπ(s)

3In Chapter IV, we use π to denote a policy for consistency with the RL literature; this is not to be confused
with the PageRank vector π used in other chapters.
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is the expected cost of a random state sampled from s’s PPR vector on Qπ
4. However, a

key distinction in the RL setting is that we do not know Qπ explicitly and can only sample

from it; more precisely, for any s ∈ S, we can sample a random state distributed as Qπ(s, ·)
(the s-th row of Qπ, a distribution over S). Thus, the problem considered in Chapter IV is

to accurately estimate (1.5) with as few samples as possible.

In this setting, the existing approach from [19] estimates vπ(s) by simulating many tra-

jectories on the Qπ chain beginning at s; repeating this for each s ∈ S yields an estimate of

vπ. Conceptually, this existing approach is analogous to separately estimating each primitive

PPR vector. But when Qπ is known and cπ = es∗ for some s∗ ∈ S, estimating vπ amounts

to estimating the s∗-th column of the PPR matrix, and the PPR literature suggests it is

more efficient to use Approx-Contributions or its bidirectional variant (see Section 1.3.1.1).

Motivated by this observation, our goal in Chapter IV is to extend these PPR algorithms to

the setting where Qπ is not explicitly known and cπ is a general cost vector.

There is, however, a fundamental issue with our approach: Approx-Contributions is

based on the idea of backward exploration and thus requires us to understand columns of

Qπ, but we are only allowed to sample from rows of Qπ. To overcome this issue, we assume

additional side information is provided; namely, a graph whose edges are a superset of those

in the graph induced by Qπ. We call this the supergraph and argue in Chapter IV that such

side information is likely available in many applications of interest.

Equipped with the supergraph, we devise an analogue of Approx-Contributions for the

policy evaluation problem. We prove that its sample complexity is asymptotically equiva-

lent to that of the existing approach in the worst case, and in the average case it can be

significantly better. For instance, if the supergraph and cost vector are maximally sparse (in

certain senses), the average-case sample complexity of our approach is O(logS), compared

to O(S logS) for the existing approach. We also devise an analogue of Bidirectional-PPR,

which we argue has lower sample complexity than other approaches if a highly-accurate esti-

mate is desired. Finally, we discuss several other settings where our analysis could potentially

be recycled to extend PPR estimators and related algorithms to other RL problems.

1.3.2.2 Overview of Chapter V

In Chapter V, we apply analytical ideas from the PPR literature to study the robustness

of Markov models. More precisely, given a Markov chain with transition matrix Pn and state

space [n], a distribution σn over [n], and some αn ∈ (0, 1), we study the PPR-like perturbation

Pαn,σn = (1 − αn)Pn + αn1nσ
T
n . We refer to such perturbations as restart perturbations in

Chapter V, and we view them as part of a larger class of perturbations which change each

4The roles of α and 1− α are reversed compared to other chapters for consistency with RL conventions.
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row of Pn by at most αn in total variation distance. Our main goal is to understand how

this perturbation of the transition matrix affects the long-run behavior of the chain. Thus,

mathematically, we study the relationship between the perturbation magnitude αn and the

error magnitude ‖πn−παn,σn‖TV , where πn and παn,σn are the stationary distributions of the

original and perturbed chains, and where ‖ · ‖TV denotes total variation distance.

We prove two main results in Chapter V. The first shows that for a certain class of chains,

the asymptotics of ‖πn − παn,σn‖TV are fully characterized by the relative asymptotics of

αn and the mixing time t
(n)
mix(ε) of the Pn chain (roughly, the number of steps before the

distribution of the Pn chain is ε-close to πn). More precisely, we show the following:

• If αnt
(n)
mix(ε)→ 0, ‖πn − παn,σn‖TV → 0 for any sequence of distributions {σn}n∈N.

• If αnt
(n)
mix(ε)→∞, ‖πn − παn,σn‖TV → 1 for some sequence of distributions {σn}n∈N.

• If αnt
(n)
mix(ε) → c ∈ (0,∞), lim supn→∞ ‖πn − παn,σn‖TV ≤ 1 − e−c for any sequence of

distributions {σn}n∈N, and some such sequence attains the bound.

This “trichotomy” of cases echoes the results of [20, 21], along with a connection between

PPR dimensionality and mixing times discussed in Section 3.7.4, which similarly show that

some property of the original chain is unaffected when αnt
(n)
mix(ε)→ 0, is changed maximally

when αnt
(n)
mix(ε) → ∞, and exhibits an intermediate behavior when αnt

(n)
mix(ε) → (0,∞).

However, [20, 21] and Section 3.7.4 consider generative models for the underlying chain, all

of which have cutoff, meaning

lim
n→∞

t
(n)
mix(ε)/t

(n)
mix(1− ε) = 1 ∀ ε ∈ (0, 1/2). (1.6)

In contrast, our result applies to all chains with cutoff, provided these chains are irreducible,

lazy, and reversible. In other words, we show the “trichotomy” phenomena is more general

than suggested by [20, 21] and Section 3.7.4. We also note parts of our analysis – in particular,

our upper bounds – apply to larger classes of chains; see Chapter V for details.

Our assumptions of irreducibility, laziness, and reversibility are common restrictions in

the mixing times literature; in contrast, the assumption of cutoff is quite strong. Our second

result addresses whether such an assumption is necessary. We partially answer this by

showing that the weaker notion of pre-cutoff (which only requires the ratios in (1.6) to be

uniformly bounded as n→∞) is equivalent to certain notion of “sensitivity to perturbation”

(meaning ‖πn− παn,σn‖TV → 1 for certain αn, σn). Intuitively, cutoff and pre-cutoff describe

a sharp or sudden convergence to stationarity, and thus our second result suggests this

sharp convergence is intimately related to perturbation sensitivity. This second result also

complements the main result of [22], which shows that (1.6) is equivalent to a certain notion

of “hitting time cutoff”. The utility of these results is that, while different notions of cutoff
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have been established for many different chains, there is at present a lack of general theory.

1.3.3 Part 3: Social learning and fake news

The third and final part of the thesis is unique in that PageRank and PPR do not appear

in our analysis. Instead, Chapter VI considers a model for the spread of fake news over social

networks. The model includes n agents attempting to learn an underlying true state of the

world in an iterative fashion (modeling, for example, social network users debating a pair

of candidates running for office). At each iteration, these agents update their beliefs about

the state based on noisy observations (modeling news articles) and the beliefs of a subset of

other agents (modeling discussions on social networks). These subsets may include a special

type of agent we call bots, who attempt to convince others of an erroneous true state, rather

than learn (modeling users spreading fake news). The precise form of the belief update is

taken from the recent empirical work [23] and bears resemblance to the non-Bayesian social

learning model of [24].

Under this model, two competing forces emerge as the learning horizon (i.e. the number of

iterations) grows: agents receive more observations of the true state (beneficial to learning),

but the influence of bots gradually propagates through the system (detrimental to learning).

Hence, while the learning horizon has a clear effect on the learning outcome, the nature

of this effect is unclear. Moreover, this effect has often been ignored in the literature; for

instance, [25, 26, 24] all study models similar to ours but only consider infinite horizons.

We (partially) address this gap by considering a horizon Tn that is finite for each finite

n but grows to infinity with n. Assuming the underlying graph is generated via the directed

configuration model (see Section 1.3.1.3), our analysis details three potential learning out-

comes: agents may learn the true state, mistake the erroneous state promoted by the bots as

true, or believe the state falls between the true and erroneous ones. Which outcome occurs

depends on the relative asymptotics of Tn and a quantity pn that describes the “density”

of bots in the network. This leads to several interesting consequences; for example, agents

initially learn the true state but later “forget” it and believe the erroneous state to be true.

In Chapter VI, we also adopt an adversarial viewpoint and consider the problem of seeding

bots so as to maximally disrupt learning. We leverage our analysis of the learning outcome

to formulate the adversary’s problem as an integer program in terms of the bot density pn.

While this problem can be solved exactly, we also propose an approximate solution that

can be obtained at lower computational complexity. The form of this approximate solution

suggests that successful adversaries carefully balance agents’ influence and susceptibility to

influence. For a social network like Twitter, this means targeting users with many followers

(i.e. influential users) who follow very few users themselves (so that fake news tweeted by
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bots will appear prominently in the targeted users’ Twitter feeds). Moreover, the precise

form of the approximate solution is non-obvious and empirically outperforms more intuitive

heuristics on real social networks. In short, we believe our analysis provides new insights

into vulnerabilities of news sharing platforms and social learning models.

Though PageRank does not appear in Chapter VI, it bears much in common with the

rest of the thesis. It is conceptually related because a perturbed Markov chain appears: we

show analyzing beliefs amounts to analyzing a certain random walk that bots perturb to

prevent learning (see end of Section 6.1). Methodologically, it follows a random graph-based

analysis similar to Chapter III; we discuss this connection more in Section 7.1.2.

1.4 Summary of contributions

In summary, the major contributions of this thesis are as follows:

• With random graphs as a key tool, we devise PPR estimators that exploit local

graph structure but still admit reasonably tractable analyses. This allows us to ob-

tain stronger theoretical guarantees than existing algorithms that similarly exploit

structure, while also empirically accelerating existing algorithms that ignore structure.

Along the way, we resolve an apparent paradox regarding PPR dimensionality.

• We adapt backward exploration-based PPR estimation algorithms to the problem of

policy evaluation in reinforcement learning. In the worst case, our algorithm has similar

performance to the existing approach; in the average case, it can offer dramatically

better performance, reducing sample complexity from O(S logS) to as low as O(logS)

if the supergraph and cost vector are sparse in certain senses.

• Viewing the PPR Markov chain as an adversarial perturbation of a given chain, we

show the relationship between perturbation magnitude and mixing time dictates the

asymptotic change in stationary distribution for a certain class of chains. We also

prove that perturbation sensitivity is intimately related to a certain notion of cutoff.

• Motivated by the increasingly-prominent issue of fake news, we study a model of social

learning in the presence of malicious agents. Using our random graph-based analysis of

the learning outcome, we devise strategies for seeding malicious agents that empirically

outperform intuitive heuristics on real graphs. These strategies also give novel insights

regarding vulnerabilities in social learning.

Important note: Notation varies across chapters but each is self-contained, i.e. any notation

used in a chapter is defined in that chapter. Appendices use the same notation as their

corresponding chapter, e.g. Appendix A uses the same notation as Chapter II.
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CHAPTER II

On the Role of Clustering in Personalized PageRank

Estimation1

2.1 Introduction

Motivated by the widespread applications (see Section 1.2.3) of Personalized PageRank

(PPR) and the need for efficient estimation algorithms (see Section 1.3.1), we consider the

following problem in this chapter. We are given a directed graph G = (V,E), a set of source

nodes or sources S ⊂ V , and a set of target nodes or targets T ⊂ V . Our goal is to estimate

Π(S, T ) = {πs(t)}s∈S,t∈T , where Π is the PPR matrix and πs is the PPR vector defined in

Section 1.2.2. For instance, S could represent a set of users searching for friends on Twitter,

T could represent those users matching the search queries, and estimating Π(S, T ) would

provide a means of ranking search results for each searching user.

Throughout this chapter, we devise several algorithms for this task and show that their

complexity decreases with increased clustering among the given sources and targets. To

demonstrate the consequences of our findings, we also consider a distributed setting in which

this relationship between complexity and clustering can be leveraged to design more efficient

algorithms. More specifically, our contributions in this chapter are as follows:

1. In Section 2.3, we propose a variant of Bidirectional-PPR [15], the state-of-the-art

PPR estimator for a single source/target pair (i.e. for the case |S| = |T | = 1). As

the name suggests, Bidirectional-PPR estimates PPR in two stages: random walks

forward from the source node and dynamic programming (DP) backward from the

target node. Our algorithm, called FW-BW-MCMC, adds a DP stage forward from the

source that allows it to serve as a primitive in the many pair setting. In Appendix A.1,

we establish similar guarantees to those for Bidirectional-PPR.

2. In Section 2.4, we use FW-BW-MCMC as a primitive to estimate PPR for many pairs,

1This chapter is adapted from [27]. A preliminary version appeared in the abstract [28].
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(a) Across a diverse set of real graphs, our algorithms accelerate baseline methods; these accelerations
are most significant when the sources and targets are clustered (experiment details in Section 2.5.2).

(b) The source/target stage complexities of our methods scale with
quantities that describe clustering of sources/targets, and that
behave like conductance (experiment details in Section 2.5.1.1).

(c) Our findings can be used to iden-
tify clustering at runtime and acceler-
ate PPR estimation (see Section 2.6).

Figure 2.1: Summary of empirical results.

proposing methods that accelerate the naive scheme of separately sampling walks for

each source and separately running DP for each target. For the sources, we show the

forward DP allows walks to be shared, decreasing the number of walks required. For

the targets, we define a new iterative update for the backward DP, which eliminates

repeated computations that may occur when treating each target separately. Using

these ideas, we devise algorithms with accuracy guarantees on each scalar estimate

and on the matrix containing all estimates. Across a diverse set of real-world graphs,

our methods are roughly 1.1 to 9.3 times faster than baseline methods (Fig. 2.1a).

3. We show analytically in Section 2.4 and empirically in Section 2.5 that the accelera-

tions offered by our algorithms are most significant when the sources and targets are

each clustered together in the graph, i.e. PPR estimation is “easier” when clustering

occurs. For example, our algorithms typically accelerate baseline methods by factors

of 3-4 when clustering occurs (Fig. 2.1a). More specifically, we prove the number of

random walks for the sources and the number of DP iterations for the targets scale

with quantities that describe clustering among the sources and targets, respectively;

we also find empirically that these clustering quantities scale with a more traditional

clustering quantity, conductance (Fig. 2.1b). Also, while these clustering quantities are
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difficult to analyze for a fixed graph, we provide analytical results for the stochastic

block model, the prototypical model for networks with community structure.

4. Finally, in Section 2.6, we demonstrate an application of our results, showing that

our findings can be used to devise efficient PPR estimators in a distributed setting.

Specifically, we show that quantities computed during the forward DP can be used to

predict the random walk sampling time for different assignments of tasks to machines,

and we propose a heuristic method to compute an assignment that (locally) minimizes

this time. At a high level, our method “learns” the clustering present at runtime;

empirically, this learning is quite successful, in the sense that our method performs

nearly as well as an oracle method that knows the clustering a priori (Fig. 2.1c).

The remainder of the chapter is organized as follows. We begin by discussing related work

in Section 2.2. Sections 2.3-2.6 follow the outline above. We close in Section 2.7.

Notational conventions for the chapter: Throughout the chapter, G = (V,E) is a directed

graph with n = |V | nodes and m = |E| edges. For v ∈ V , let Nout(v) = {u ∈ V : v → u ∈ E}
denote v’s outgoing neighbors, and let dout(v) = |Nout(v)| denote the out-degree of v. For

simplicity, we assume dout(v) > 0 ∀ v ∈ V . Similarly define Nin(v) and din(v) as v’s incoming

neighbors and in-degree. We let A denote the adjacency matrix of G and let D be the

diagonal matrix with D(v, v) = dout(v). Thus, P = D−1A is the transition matrix for the

simple random walk on G; from P , we define PageRank and PPR as in Section 1.2. In

addition to these conventions, other notation will be introduced as needed.

2.2 Related work

Before proceeding, we discuss some existing PPR estimators. Broadly speaking, these can

be organized hierarchically: first, those that estimate the entire PPR matrix {πs(t)}s∈V,t∈V ;

second, those that estimate a single row {πs(t)}t∈V or column {πs(t)}s∈V of this matrix, or

its column sums (i.e. global PageRank); and third, those that estimate a single entry πs(t).

At the first level, several algorithms have been proposed to accelerate the power iteration

or matrix inversion in (1.2). To accelerate the power iteration, [16] provides a decomposition

that allows a single row of the PPR matrix to be estimated using previously-estimated rows.

Hence, this yields a procedure of first computing a small number of rows and then using these

to estimate other rows; we discuss this algorithm more in Chapter III. To obtain less costly

matrix inversions, several works, e.g. [29, 30], have leveraged structural assumptions of the

graph at hand. For example, Tong et al. in [29] propose a decomposition of P into a block

diagonal matrix P1 and P2 := P − P1; for graphs like social networks, P2 can be extremely

sparse. From the probabilistic viewpoint (1.4), [31] gives an algorithm to estimate any entry

of the PPR matrix at runtime using a precomputed database of random walk samples.
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At the second level, algorithms include the dynamic programming methods in [7] and [32]

that estimate a row and a column of the PPR matrix, respectively; both can be viewed as

localized versions of the power iteration in (1.2). The algorithm in [7] yields l1 and l∞ error

guarantees on the row estimate with complexity O(m), while [32] gives an l∞ guarantee

on the column estimate with complexity O(m). We make use of these algorithms in our

methods and will discuss them in more detail in Section 2.3. We also note the approach in

[7, 32] is closely related to work by Lee and co-authors [33, 34, 35] that focuses on estimation

of the stationary distribution of countable state-space Markov chains, as well as estimation

in the context of general linear systems. From the probabilistic viewpoint, an important

work is [14], which analyzes Monte Carlo methods for global PageRank estimation, based

on both the final step of sampled random walks (as given by (1.4)) and the number of visits

along the entire walk (appealing to renewal theory in the latter case). In [14], it is shown

that a single walk from each node (i.e. n walks total) suffices to obtain estimates with small

relative error for nodes with high global PageRank. Another work in this category is [36],

which uses random walk-based methods to detect all nodes with global PageRank exceeding

n−δ, δ ∈ (0, 1) with complexity sublinear in n. [36] also contains an algorithm to estimate

a row of the PPR matrix with each estimate satisfying a multiplicative plus additive error

guarantee; the complexity is linear in n (if the error tolerance is set to match [15]). Several

papers have also studied distributed estimation of global PageRank; for example, [37, 38, 39]

adopt a stochastic approximation viewpoint, [40] features an algorithm similar to those in

the aforementioned [7, 32, 33, 34, 35], and [41] uses Monte Carlo methods.

At the third level, the aforementioned Bidirectional-PPR algorithm from [15] combines

existing dynamic programming and Monte Carlo methods to estimate a single PPR value

with worst-case and average-case complexity O(n) and O(
√
m), respectively. From an ac-

curacy perspective, this algorithm achieves a relative error bound for PPR values exceeding

1/n, and an absolute error bound otherwise. We discuss in more detail in Section 2.3.

In the context of this body of work, we will consider estimation of a small set of PPR

values, {πs(t)}s∈S,t∈T for some S, T ⊂ V . While we do not precisely quantify “small”, we

implicitly assume |S| ≈ |T | = o(
√
m). In this setting, the existing methods described above

can be applied in two ways. First, using methods such as the power iteration or the dynamic

programming schemes (i.e. the first two levels of the above hierarchy), one can estimate

entire rows and/or columns of the PPR matrix and then discard unwanted estimates. Such

approaches typically have complexity O(|S|m) or O(|T |m). Second, one can run the single

pair estimator Bidirectional-PPR separately for each pair (s, t) ∈ S×T . This approach has

typical complexity O(|S||T |
√
m). When |S| ≈ |T | = o(

√
m), the second approach is more

efficient. Hence, we will treat this approach as a baseline for comparison to our methods.
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Figure 2.2: Depiction of our algorithm FW-BW-MCMC. Blue and red nodes/edges show forward
and backward DP, respectively; black edges show random walks.

2.3 Single pair estimation

We begin by proposing a variant – in fact, a generalization – of Bidirectional-PPR

[15]; we will introduce our algorithm and then describe Bidirectional-PPR as a special

case. As mentioned in Section 2.2, the idea behind these estimators is to combine dynamic

programming (DP) and Markov chain Monte Carlo (MCMC) to estimate πs(t) for some

s, t ∈ V . Our algorithm uses two DP stages and one MCMC stage. We will refer to these

stages as the forward DP, backward DP, and MCMC stages; hence, we call our estimator

FW-BW-MCMC. It is depicted pictorially in Fig. 2.2 and defined formally in Algorithm 2.3.

Before proceeding, we briefly describe each stage.

The forward DP stage is Algorithm 2.1. This is nearly identical to the Approximate-

PageRank algorithm of [7], so we use the same name here; however, we change the termination

criteria from ‖D−1rs‖∞ ≤ rsmax to ‖rs‖1 ≤ rsmax, where rsmax ∈ (0, 1) is an input to the

algorithm (we describe our motivation for this shortly). The algorithm takes as input s ∈ V
and produces ps, rs ∈ Rn

+, shown in [7] to satisfy the invariant (2.1) at each iteration.

πs(u) = ps(u) +
∑
w∈V

rs(w)πw(u) ∀ u ∈ V. (2.1)

As mentioned Section 2.2, Algorithm 2.1 can be viewed as a “localized” power iteration. At

a high level, it computes elements of the matrices in (1.2) corresponding to high probability

paths from s to u (the ps(u) term) while tracking the error from “uncomputed” paths (the∑
w∈V r

s(w)πw(u) term). These high probability paths are shown as blue edges in Fig. 2.2.

The backward DP stage is Approximate-Contributions (Algorithm 2.2, from [32]),

which is the “dual” of Algorithm 2.1: while Algorithm 2.1 works along outgoing edges,

Algorithm 2.2 works along incoming edges. In [32], it is shown that Algorithm 2.2 maintains

invariant (2.2), which is interpreted similarly to (2.1). This stage is shown in red in Fig. 2.2.

πv(t) = pt(v) +
∑
w∈V

πv(w)rt(w) ∀ v ∈ V. (2.2)
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To motivate the MCMC stage, we combine (2.1) and (2.2) with u = t and v = s to obtain

πs(t) = pt(s) + 〈ps, rt〉+
∑

w,w′∈V

rs(w)πw(w′)rt(w′), (2.3)

and so, after running the DP, only the third term in (2.3) is unknown. The goal of the

MCMC is to estimate this term. Towards this end, let σs = rs/‖rs‖1 and use (1.3) to write

‖rs‖1

∑
w′∈V

∑
w∈V

σs(w)πw(w′)rt(w′) = ‖rs‖1

∑
w′∈V

πσs(w
′)rt(w′) = ‖rs‖1EU∼πσs

[
rt(U)

]
.

Leveraging the perfect sampling property (1.4), we can then estimate this term via random

walks. More specifically, we first sample a starting node from σs (blue nodes in Fig. 2.2),

and we then sample a random walk beginning at the starting node (black edges in Fig. 2.2).

This process of sampling random walks is the MCMC stage of our algorithm.

Algorithm 2.1: (ps, rs) = Approximate-PageRank(G, s, α, rsmax)

1 Initialize ps = 0, rs = es
2 while ‖rs‖1 > rsmax do
3 Let v∗ ∈ arg maxv∈V r

s(v)/dout(v)
4 Set rs(u)← rs(u) + (1− α)rs(v∗)/dout(v

∗) ∀ u ∈ Nout(v
∗),

ps(v∗)← ps(v∗) + αrs(v∗), rs(v∗) = 0

Algorithm 2.2: (pt, rt) = Approximate-Contributions(G, t, α, rtmax)

1 Initialize pt = 0, rt = et
2 while ‖rt‖∞ > rtmax do
3 Let v∗ ∈ arg maxv∈V r

t(v)
4 Set rt(u)← rt(u) + (1− α)rt(v∗)/dout(u) ∀ u ∈ Nin(v∗),

pt(v∗)← pt(v∗) + αrt(v∗), rt(v∗) = 0

Algorithm 2.3: π̂s(t) = FW-BW-MCMC(G, s, t, α, rsmax, r
t
max, w)

1 Let (ps, rs) = Approximate-PageRank(G, s, α, rsmax) (Algorithm 2.1); set σs = rs

‖rs‖1
2 Let (pt, rt) = Approximate-Contributions(G, t, α, rtmax) (Algorithm 2.2)
3 for i = 1 to w do
4 Sample random walk starting at ν ∼ σs of length ∼ geom(α); let Xi = rt(Ui),

where Ui is endpoint of walk

5 Let π̂s(t) = pt(s) + 〈ps, rt〉+ ‖rs‖1
w

∑w
i=1Xi

As mentioned above, the forward DP stage terminates when ‖rs‖1 ≤ rsmax instead of when

‖D−1rs‖∞ ≤ rsmax (as in [7]). This is because we require a uniform bound on {‖rs‖1}s∈S
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when proving results for a set sources S in later sections. However, this bound is not needed

in practice, where we can instead use ‖D−1rs‖∞ ≤ rsmax. We call this variant of our algorithm

FW-BW-MCMC-Practical; see Algorithm A.2 in Appendix A.2 for a formal definition.

Having defined FW-BW-MCMC, we describe the existing algorithm Bidirectional-PPR,

which operates as follows: run the backward DP from t, take v = s in (2.2), and estimate

the unknown term EU∼πs [rt(U)] via random walks from s. We observe this is a special case of

FW-BW-MCMC; naemly, the case rsmax = 1. We emphasize that walks are sampled from ν ∼ σs

in FW-BW-MCMC and from s in Bidirectional-PPR, which will be a key distinction later.

Moving forward, we will propose many pair estimators that use either Bidirectional-

PPR or our variant as a primitive. We will show that using our variant offers runtime accel-

erations not possible when using Bidirectional-PPR. Implicit in this discussion will be an

understanding that using either primitive yields similar performance when these accelera-

tions are ignored (so that using our variant offers better performance when the accelerations

are accounted for). In particular, we can prove the following results (as single pair estimation

is not our focus, we defer formal statements and proofs to Appendix A.1):

1. FW-BW-MCMC, FW-BW-MCMC-Practical, and Bidirectional-PPR offer the same accu-

racy guarantee (except for mild differences in assumptions)

2. FW-BW-MCMC and Bidirectional-PPR have O(n) worst-case complexity

3. FW-BW-MCMC-Practical and Bidirectional-PPR have O(
√
m) average-case complex-

ity (where by average case we mean averaging over uniformly random t ∈ V )

2.4 Many pair estimation

In this section, we consider the problem of estimating PPR for many node pairs, namely

the set {πs(t)}s∈S,t∈T for some S, T ⊂ V . We consider two variants of this problem. First, in

Section 2.4.1, we view {πs(t)}s∈S,t∈T as a set of scalars, each of which we aim to accurately

estimate. Second, in Section 2.4.2, we view {πs(t)}s∈S,t∈T as a matrix, which we aim to

approximate accurately in the operator norm. For both variants, we propose algorithms

that accelerate existing approaches, and we show the accelerations scale with quantities that

can be interpreted as clustering measures of S and T . In addition to these algorithms, we

briefly discuss variants that use precomputation in Section 2.4.3.

2.4.1 Scalar estimation viewpoint

A natural approach to estimate {πs(t)}s∈S,t∈T is to use single pair estimators from Section

2.3 as primitives. In particular, we could use either of the following approaches:

• Run forward DP and sample random walks from ν ∼ σs for each s ∈ S. Run backward

DP from each t ∈ T . Compute estimates as in FW-BW-MCMC.

• Sample random walks from each s ∈ S. Run backward DP from each t ∈ T . Compute
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(a) Source side: walks are sampled from blue nodes
for s1 and from red nodes for s2; walks from blue and
red nodes are shared between s1 and s2.

(b) Target side: red paths are computed via Extend

during t2 DP; blue paths can be computed via Merge

during t2 DP, rather than recomputed via Extend.

Figure 2.3: Many-pair accelerations of FW-BW-MCMC when |S| = |T | = 2.

estimates as in Bidirectional-PPR.

As discussed above, the primitives FW-BW-MCMC and Bidirectional-PPR are roughly equiv-

alent in terms of complexity and accuracy; hence, both approaches have similar complexity.

However, in Section 2.4.1.1, we show the source stage of the first approach (forward DP and

random walks) can be accelerated in a way not possible for the second approach. Further, in

Section 2.4.1.2, we show the target stage (backward DP) can be accelerated as well. Hence,

using primitive method FW-BW-MCMC and the accelerations of Sections 2.4.1.1-2.4.1.2, we can

more efficiently estimate {πs(t)}s∈S,t∈T .

2.4.1.1 Source stage acceleration

To accelerate the source stage, we define a unified MCMC stage for a set of sources S. At

a high level, this scheme allows us to share walks across multiple s ∈ S, thereby decreasing

the total number of walks required. We motivate the scheme pictorially in Fig. 2.3a, for

the simple case S = {s1, s2}. Here blue and red depict σs1 and σs2 values, i.e. blue and red

nodes are the starting nodes of random walks used in the πs1 and πs2 estimates, respectively.

Observe several nodes have nonzero σs1 and σs2 values. The unified MCMC stage allows us

to use random walks sampled from such nodes towards both estimates (πs1 and πs2).

To define the unified MCMC stage, we first define an equivalent MCMC stage for a

single source. Recall that in Algorithm 2.3 we sample each of w random walks in two

stages: first, we sample starting node νs ∼ σs, and second, we sample a walk starting at

νs. Equivalently, we can first sample starting nodes {ν(i)
s }wi=1 i.i.d. from σs, and then sample

X
(w)
s (v) :=

∑w
i=1 1(ν

(i)
s = v) walks starting at v, for each v ∈ V . With this in mind, the

unified MCMC stage proceeds as follows. First, for each s ∈ S we sample starting nodes

{ν(i)
s }wi=1 i.i.d. from σs (as in the single source case), and we define X

(w)
s (v) as above. Next,

we sample X(w)(v) := maxs∈S X
(w)
s (v) walks starting at each v ∈ V . Letting U v

i denote the
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endpoint of the i-th walk from v, we then estimate πs(t) as

π̂s(t) = pt(s) + 〈ps, rt〉+
‖rs‖1

w

∑
v∈V :X

(w)
s (v)>0

X
(w)
s (v)∑
i=1

rt(U v
i ). (2.4)

The final term in (2.4) is an unbiased estimate of EU∼πσs [r
t(U)] using

∑
v∈V X

(w)
s (v) = w

random walks, so the accuracy guarantee of Algorithm 2.3 holds. To analyze the complexity

of this scheme, we bound the total number of walks
∑

v∈V X
(w)(v) in Theorem 2.1.

Theorem 2.1. Fix ε, pfail ∈ (0, 1). Assume

w >
3 log(2

∑
s∈S,v∈V 1(σs(v) > 0)/pfail)

ε2 mins∈S,v∈V :σs(v)>0 σs(v)
. (2.5)

Then with probability at least 1− pfail, the total number of walks
∑

v∈V X
(w)(v) satisfies∣∣∣∣∣∑

v∈V

X(w)(v)− w
∑
v∈V

max
s∈S

σs(v)

∣∣∣∣∣ ≤ εw
∑
v∈V

max
s∈S

σs(v). (2.6)

Proof. See Appendix A.3.

Before proceeding, we offer several remarks on this result:

• A lower bound on w is given by (A.1) in Theorem A.1 to guarantee an accurate

estimate. Thus, if w exceeds both (2.5) and (A.1), guarantees for scalar accuracy and

walk complexity both hold. (In general, it is unclear which of (2.5) and (A.1) is larger.)

• In the worst case, the denominator on the right side of (2.5) may be quite small, so the

assumption on w in Theorem 2.1 may be restrictive. However, this only means that the

concentration in (2.6) may not provably occur, not that the scheme will necessarily have

poor performance. We do find that this concentration essentially occurs for practical

values of w, see e.g. leftmost plot in Fig. 2.5 and left two plots in Fig. 2.8.

• Moving forward, we will denote the matrix with rows {σs}s∈S by Σ (or by ΣS, if we

wish to emphasize the sources S at hand) and will write the bound in (2.6) as

‖Σ‖∞,1 =
∑
v∈V

max
s∈S

σs(v) (2.7)

Here we have used the notation of the Lp,q matrix norm, defined for a matrix A as

‖A‖p,q =
(∑

j (
∑

i |A(i, j)|p)q/p
)1/q

. (2.8)
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From Theorem 2.1, we expect to sample approximately w‖Σ‖∞,1 walks. It is easy to verify

‖Σ‖∞,1 ∈ [1, |S|], so our approach requires w|S| random walks in the worst case, but only

w in the best case. In contrast, if we use Bidirectional-PPR as a primitive for many pair

estimation, the unified MCMC stage is not possible (all walks used to estimate πs begin at s,

so sharing walks is not possible), and w|S| walks are always required. In short, FW-BW-MCMC

with the unified MCMC stage may accelerate the source stage of our many pair estimation

approach. Unfortunately, it is difficult to quantify the degree of this acceleration in general,

because ‖ΣS‖∞,1 depends on the forward DP, which itself is difficult to analyze. However,

in Section 2.5, we offer empirical evidence that ‖ΣS‖∞,1 scales with the conductance of S, a

common measure of the clustering of S in the underlying graph (see (2.18)). Furthermore, as

will be discussed next, this quantity provably scales with clustering for the stochastic block

model (SBM), a common model for networks with community structure. In short, when S

is clustered, ‖ΣS‖∞,1 is typically small, and estimating PPR for many sources is easier.

We now turn to our result for the SBM. We consider the special case for which n is a

perfect square and the graph is composed of
√
n communities, each containing

√
n nodes.

(This allows us to compare the extremes of choosing
√
n sources from the same community

or from distinct communities; however, the analysis can be modified for other cases.) More

specifically, we define Vn,i = {1 + (i − 1)
√
n, . . . , i

√
n} and set Vn = ∪

√
n

i=1Vn,i; we will view

each Vn,i as a community. For v ∈ Vn, we denote by i(v) the unique i ∈ {1, . . . ,
√
n}

satisfying v ∈ Vn,i, i.e. i(v) is the community that v belongs to. We then construct a graph

Gn = (Vn, En) as follows: for any u, v ∈ Vn s.t. u 6= v, edge u→ v is present with probability

pn if i(u) = i(v) (i.e. if u, v are in the same community), and is present with probability qn if

i(u) 6= i(v) (i.e. if u, v are in different communities), independent of other edges. We define

dout(v) = |{u ∈ Vn : v → u ∈ En}|, d−out(v) = |{u ∈ Vn\Vn,i(v) : v → u ∈ En}| ∀ v ∈ Vn.

In words, dout(v) is v’s out-degree (as before, though here it is a random variable), and

d−out(v) is the number of edges pointing from v to other communities.

Our analysis will assume pn = p is a constant and qn = o(1/
√
n). In this case, E[dout(v)] =

Θ(
√
n) (i.e. the graph is dense) and E[d−out(v)] = o(

√
n) (i.e. nodes prefer to connect to their

own community). Also, we assume the forward DP is run for at most o(
√
n) iterations.

Since all nodes have out-degree Θ(
√
n) with high probability (see proof of Theorem 2.2),

this means we dedicate at most o(n) complexity to the forward DP. This is consistent with

the fact that our algorithm has average-case complexity O(
√
m), since

√
m = n3/4 when all

out-degrees are Θ(
√
n). Hence, this assumption on the number of iterations is minor. Under

these assumptions, we can prove the following bounds on ‖Σ‖∞,1.
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Theorem 2.2. Let {Gn = (Vn, En)}n∈N:
√
n∈N be the sequence of SBMs described above,

with pn = p for some constant p ∈ (0, 1) and qn = o(1/
√
n). Assume we run the forward DP

for at least one iteration, but at most o(
√
n) iterations. Then the following hold:

• Let Sn = Vn,i for some i (i.e. all sources belong to the same community). If qn =

Ω(log n/n) (i.e. cross-community connections are dense), then for some constant C > 0,

lim
n→∞

P (‖ΣSn‖∞,1 ≤ Cqnn) = 1,

i.e. ‖ΣSn‖∞,1 = O(qnn) = o(
√
n) with high probability. If instead qn = Θ(1/n) (i.e.

cross-community connections are sparse), then for some constant C > 0,

lim
n→∞

P (‖ΣSn‖∞,1 ≤ C log n/ log log n) = 1,

i.e. ‖ΣSn‖∞,1 = O(log n/ log log n) with high probability.

• Let Sn ⊂ Vn with |Sn| =
√
n and i(s) 6= i(s′) ∀ s, s′ ∈ Sn s.t. s 6= s′ (i.e. each source

belongs to a distinct community). Then for any constant δ ∈ (0, 1),

lim
n→∞

P
(
‖ΣSn‖∞,1 ≥ (1− δ)

√
n
)

= 1,

i.e. ‖ΣSn‖∞,1 ∈ [(1− δ)
√
n,
√
n] with high probability.

Proof. See Appendix A.4.

2.4.1.2 Target stage acceleration

Our next goal is to accelerate the target stage of the many pair estimation approach.

We motivate our approach in the simple case T = {t1, t2}. Assume that pt1 , rt1 have been

computed by Algorithm 2.2, and that pt2 , rt2 are currently being computed. If rt2(t1) > rtmax

at some iteration, we can use the alternate update rule

pt2 ← pt2 + rt2(t1)pt1 , rt2 ← rt2 + rt2(t1)(rt1 − et1). (2.9)

When pt2 , rt2 are updated via (2.9), the invariant (2.2) is maintained. Indeed, for any s ∈ V ,

pt2(s) + rt2(t1)pt1(s) +
∑
u∈V

πs(u)(rt2(u) + rt2(t1)(rt1(u)− et1(u)))

= pt2(s) +
∑
u∈V

πs(u)rt2(u) + rt2(t1)((pt1(s) +
∑
u∈V

πs(u)rt1(u))− πs(t1))) (2.10)

= πs(t2) + rt2(t1)(πs(t1)− πs(t1)) = πs(t2), (2.11)
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where in (2.10) we rearranged terms and in (2.11) we assume pt1 , rt1 and pt2 , rt2 satisfy (2.2).

We can interpret (2.9) as follows. As discussed in Section 2.3, we view Algorithm 2.2

as a method of traversing paths to t and computing the probability of these paths. For the

update in Algorithm 2.2, specific paths are extended by a single step at each iteration; we

call this update Extend. In contrast, (2.9) extends paths by (potentially) many steps in an

iteration; specifically, by appending paths to t1, with paths from t1 to t2, to obtain paths to

t2. We call this update Merge to highlight the fact that paths are merged in this manner.

The utility of Merge is that the probability of paths to t2 through t1 need not be recom-

puted one step at a time via Extend. This is depicted in Fig. 2.3b: red paths are computed

via Extend during t2 DP; blue paths, having already been computed via Extend during t1 DP,

are used to compute longer paths in a single iteration via Merge during t2 DP. In contrast,

blue paths would be recomputed one step at a time via Extend during t2 DP, if separate DP

was used. In short, Merge may allow Algorithm 2.2 to terminate in fewer iterations. This is

made more specific in Proposition 2.1.

Proposition 2.1. Suppose T = {t1, t2} and πt1(t2) > rtmax. If we run Algorithm 2.2 for

t2 and use Merge whenever v∗ = t1, the algorithm terminates in at most nπ(t2)
αrtmax

− (‖pt1‖1−α)
α

iterations. If Merge is not used, the algorithm terminates in at most nπ(t2)
αrtmax

iterations.

Proof. See Appendix A.5.

From Algorithm 2.2, ‖pt1‖1 ≥ α. Hence, Proposition 2.1 allows us to tighten the iteration

bound by (‖pt1‖1−α)
α

≥ 0 (with equality if and only if the algorithm terminates in a single

iteration for t1). More generally, the iterations we save roughly scales with the quantity

cT =

|T |∑
i=1

∣∣{j ∈ {1, 2, ..., i− 1} : πtj(ti) > rtmax

}∣∣ , (2.12)

assuming the nodes in T are chosen in order {t1, t2, . . . , t|T |}. We note the choice of this

order has a clear impact on performance, but optimizing it at runtime is difficult; we discuss

this more in Appendix A.7. See Algorithm 2.4 for our many target algorithm.

We next offer a clustering interpretation of the quantity cT . For this, note πtj(ti) > rtmax

is a notion of “closeness” between ti and tj; hence, cT is a notion of clustering of the set

T , and our analysis suggests estimating PPR for many targets is easier when the targets

are clustered. Note that, while the source clustering quantity ‖Σ‖∞,1 from Section 2.4.1.1

is smaller when clustering among sources is more significant, the target clustering quantity

cT is larger when clustering among targets is more significant; in Section 2.5, we show −cT
scales with the conductance of T in practice.
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Algorithm 2.4: {(pt, rt)}t∈T = Approx-Cont-Many-Targets(G, T, α, rtmax)

1 for i = 1 to |T | do
2 pti = 0, rti = eti
3 while ‖rti‖∞ > rtmax do
4 v∗ ∈ arg maxv∈V r

ti(v)
5 if v∗ ∈ {t1, . . . , ti−1} then
6 pti ← pti + rti(v∗)pv

∗
, rti ← rti + rti(v∗)(rv

∗ − ev∗) (i.e. use (2.9))
7 else

8 rti(u)← rti(u) + (1− α) r
ti (v∗)
dout(u)

∀ u ∈ Nin(v∗),

pti(v∗)← pti(v∗) + αrti(v∗), rti(v∗) = 0

2.4.2 Matrix approximation viewpoint

For the second variant of the many pair estimation problem, we view {πs(t)}s∈S,t∈T as a

matrix that we aim to accurately approximate. For simplicity, we assume |S| = |T | = l, and

we denote these sets S = {si}li=1, T = {ti}li=1. We also assume V = {1, 2, ..., n}, and we let

Π denote the matrix of dimension n × n whose (i, j)-th element is πi(j). In this notation,

we seek an estimate Π̂(S, T ) of Π(S, T ) that minimizes ‖Π̂(S, T ) − Π(S, T )‖2, where for a

matrix A, A(I, J) denotes the submatrix of A containing rows I and columns J , and where

‖A‖2 = max‖x‖2=1 ‖Ax‖2 is the operator norm.

Before proceeding, we introduce additional notation used in this section. Similar to the

A(I, J) notation, A(I, :) and A(:, J) are the submatrices with rows I and all columns, and all

rows and columns J , respectively. For a vector x, x(I) is the vector with elements I; when

x has nonzero entries, diag(x) and diag(1/x) are the diagonal matrices whose i-th diagonal

elements are x(i) and 1/x(i), respectively. Finally, we will encounter stable rank, which for

a matrix A is defined as srank(A) = (‖A‖F/‖A‖2)2, where ‖ · ‖F = ‖ · ‖2,2 is the Frobenius

norm, with ‖ · ‖2,2 defined as in (2.8). It is straightforward to verify 1 ≤ srank(A) ≤ rank(A)

by writing ‖A‖2
F and ‖A‖2

2 in terms the singular values of A (see e.g. [42, Section 2.1.15]).

With this notation in mind, we define the following matrices:

PS ∈ Rn×l s.t. PS(i, j) = psj(i), RS ∈ Rn×l s.t. RS(i, j) = rsj(i), (2.13)

PT ∈ Rn×l s.t. PT (i, j) = ptj(i), RT ∈ Rn×l s.t. RT (i, j) = rtj(i). (2.14)

Here psj , rsj and ptj , rtj are computed via Algorithms 2.1 and 2.4, respectively. We may then

collect the invariant (2.3) for each (si, tj) pair in matrix form as

Π(S, T ) = PT (S, :) + PT
S RT +RT

SΠRT . (2.15)
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Observe only RT
SΠRT is unknown in (2.15). Hence, we consider estimation of this term. To

this end, let σ be any n-length vector satisfying σ(i) > 0 ∀ i ∈ {1, 2, ..., n} and
∑n

i=1 σ(i) = 1;

note we may view σ as a distribution on V . We then rewrite the unknown term in (2.15) as

RT
SΠRT = RT

Sdiag(1/σ)diag(σ)ΠRT . (2.16)

Using (2.16), we can obtain unbiased estimates of RT
SΠRT as follows. Let {µi}wi=1 be i.i.d.

samples from σ. For i ∈ {1, 2, ..., w}, let νi ∼ πµi independently (where we sample from

πµi using a random walk, as given by (1.4)), and let Xi = RT
Sdiag(1/σ)eµie

T
νi
RT . It is

straightforward to see E[eµie
T
νi

] = diag(σ)Π; hence, E[Xi] = RT
SΠRT . We may then estimate

Π(S, T ) as Π̂(S, T ) = PT (S, :) + PT
S RT + 1

w

∑w
i=1Xi.

We will consider two forms of σ for this approach. Specifically, let us define

σavg(i) =
1

l

∑
s∈S

σs(i), σmax(i) =
1

‖Σ‖∞,1
max
s∈S

σs(i), (2.17)

where σs = rs/‖rs‖1 as before. Observe that when σ ∈ {σavg, σmax}, the assumption∑n
i=1 σ(i) = 1 is satisfied. Furthermore, we argue that the assumption σ(i) > 0 is with-

out loss of generality in these cases. Indeed, suppose σ(j) = 0 for some j and σ(i) > 0 for

i 6= j. Then P[µi = j] = 0 by definition, and by (2.17), rs(j) = 0 ∀ s ∈ S. It is then readily

verified that RS(V \ {j}, :)Tdiag(1/σ(V \ {j}))eµieTνiRT is an unbiased estimate of RT
SΠRT .

Given this simple fix, we assume σ(i) > 0 moving forward.

Algorithm 2.5: Π̂(S, T ) = FW-BW-MCMC-Many-Pair(G,S, T, α, rtmax, r
s
max, w)

1 for i = 1 to l do
2 (psi , rsi) = Approximate-PageRank(G, si, α, r

s
max) (Algorithm 2.1)

3 {(pt, rt)}t∈T = Approx-Cont-Many-Targets(G, T, α, rtmax) (Algorithm 2.4)
4 Construct PS, RS, PT , RT via (2.13), (2.14); compute σ = σavg or σ = σmax via (2.17)
5 for i = 1 to w do
6 Let Xi = RT

Sdiag(1/σ)eµie
T
νi
RT , where νi is endpoint of walk starting at µi ∼ σ

of length ∼ geom(α)

7 Let Π̂(S, T ) = PT (S, :) + PT
S RT + 1

w

∑w
i=1Xi

To summarize, we have proposed the matrix approximation scheme formally defined in

Algorithm 2.5. Theorem 2.3 provides a guarantee for the accuracy of this scheme.

Theorem 2.3. Fix ε > 0. If σ = σavg in Algorithm 2.5, assume

w ≥ l2
√

srank(Π(S, T )) log(2l/pfail)r
s
maxr

t
max(6 + 4ε)/(3ε2).
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If instead σ = σmax in Algorithm 2.5, assume

w ≥ l3/2‖Σ‖∞,1 log(2l/pfail)r
s
maxr

t
max(6 + 4ε)/(3ε2).

Then for both choices of σ, and with probability at least 1− pfail, Algorithm 2.5 returns an

estimate Π̂(S, T ) satisfying ‖Π(S, T )− Π̂(S, T )‖2 ≤ εmax{‖Π(S, T )‖2, 1}.

Proof. See Appendix A.6

Neglecting common factors, Theorem 2.3 states w scales with l2 and l3/2 in the best case

for σavg and σmax, respectively; in the worst case, w scales with l5/2 for both approaches.

In the next section, we compare
√
l srank(Π(S, T )) with ‖Σ‖∞,1 empirically to compare

the “typical” case. We also observe Theorem 2.3 shows that, as in the scalar estimation

viewpoint of Section 2.4.1, PPR matrix approximation is easier when clustering occurs.

This is because, when σ = σmax, complexity scales with ‖Σ‖∞,1 (which we have argued is

measure of clustering of S); when σ = σavg, complexity scales with srank(Π(S, T )), a measure

of matrix dimensionality. Additionally, stable rank is unique from the clustering quantities

introduced thus far in that it takes into account both S and T (unlike ‖Σ‖∞,1, which only

accounts for S, or cT , which only accounts for T ). Finally, we comment on a difference

for the choices of σ. In particular, when σ = σmax, one can set w proportional to ‖Σ‖∞,1
before sampling random walks, leveraging clustering at runtime to increase efficiency. In

contrast, when σ = σavg, the scaling factor in the w lower bound is the unknown quantity

srank(Π(S, T )). However, we propose using srank(PT (S, :) + PT
S RT ) (known at runtime) as

a surrogate for srank(Π(S, T )). In Section 2.5, we show empirically that using this surrogate

yields performance similar to using srank(Π(S, T )).

2.4.3 Precomputation variants

While we have thus far assumed all computations are done online, one can also consider

variants for which some computations are done offline, with the results stored for later use.

In fact, in Section 4 of [15], the authors propose several such algorithms for the case of one

source s ∈ V and many targets T ⊂ V , using Bidirectional-PPR as a primitive. Each

of these variants proceeds as follows. For the offline stage, Approx-Contributions is run

for every t ∈ V , and the vectors {pt, rt}t∈V are stored. For the online stage, random walks

are sampled from s, and {πs(t)}t∈T are estimated using the endpoints of these walks and

{pt, rt}t∈T . As mentioned, several such algorithms are proposed; these only differ in how

the vectors are stored and how the walks and vectors are combined to generate estimates.

In particular, the basic framework of running Approx-Contributions offline and sampling

walks from s online is used in all of the precomputation algorithms from [15].

28



Analogous to our extension of Bidirectional-PPR from single to many pairs, we can

extend these precomputation algorithms from the single source case to the many sources

case. Specifically, we can modify each of these algorithms in two ways (but otherwise leave

them unchanged). First, we can modify the offline stage by also precomputing and storing

{ps, rs}s∈V via Approx-PageRank. Second, we can modify the online stage by sampling walks

using the precomputed vectors {rs}s∈S and the walk sharing scheme from Section 2.4.1.1.

To assess the performance of this approach, we compare against the naive extension

of [15]’s precomputation algorithms to the case |S| > 1; namely, leaving the offline stage

unchanged and sampling walks separately from each s ∈ S online. Clearly, our approach

requires more storage (due to running Approx-PageRank offline); however, this storage will

be roughly double that of the naive extension and thus will not increase the order of the

space complexity. On the other hand, our approach will accelerate the online stage of this

naive extension, since fewer random walks will typically be sampled. Specifically, per Section

2.4.1.1, we expect to sample w‖Σ‖∞,1 walks instead of w|S| walks; as discussed previously,

the former quantity can be much smaller if S is clustered.

We also note that Algorithm 2.4 can be used to compute {pt, rt}t∈V offline, though

this is a minor point, since offline computational complexity is generally not a concern.

However, this raises another point. When precomputation is not allowed, our source and

target accelerations are both used at runtime; when precomputation is allowed, only our

source acceleration is used at runtime. Hence, the runtime savings of our schemes may be

less significant in the precomputation setting. In spite of this, we believe the savings will still

be considerable in general. This belief follows from the fact that, in our experiments, the

source acceleration is generally at least as significant as the target acceleration. For example,

Fig. 2.4 shows that the number of random walks sampled grows more slowly in |S| than the

number of DP iterations grows in |T |. Additionally, Fig. 2.7 shows that for fixed |S|, |T |,
walk savings and DP iteration savings are comparable across a wide range of graphs.

2.5 Experiments

In this section, we demonstrate the empirical performance of our algorithms and the role

of clustering in their performance. We conduct experiments using both synthetic and real

graphs. On the synthetic side, we use a directed Erdős-Rényi graph and directed stochastic

block model (referred to hereafter as Direct-ER and Direct-SBM, respectively), each with

n = 2 × 103 and E[m] = 2 × 104. For the real datasets, we use a set of graphs from the

Stanford Network Analysis Platform [43] including social networks (Slashdot, Wiki-Talk),

partial web crawls (web-BerkStan, web-Google), co-purchasing and co-authoring graphs

(com-amazon, com-dblp), and a road network (roadNet-PA). In addition to the diverse
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domains of these datasets, they differ in terms of sparsity (in order of magnitude, each

has 106 edges, but the number of nodes ranges from 104 to 106), so we believe our empirical

results are robust. We also note that error bars depict standard deviation across experimental

trials, while for scatter plots without error bars, each dot represents a single trial. For further

experimental documentation, we point the reader to Appendix A.8. In particular, Table A.2

in Appendix A.8 documents algorithmic parameters used. We chose these parameters so the

primitive algorithms FW-BW-MCMC and Bidirectional-PPR yield similar accuracy (≈ 10%

relative error) while balancing runtime between the DP and MCMC stages of the algorithm

in the single pair case. Note the analysis in Appendix A.1 shows that balancing runtime in

this manner minimizes overall complexity; hence, for both algorithms, our chosen parameters

optimize runtime subject to an accuracy constraint, providing a fair comparison. Finally,

our experimental code is available at https://github.com/danielvial/clusteringPpr.

2.5.1 Synthetic data

2.5.1.1 Scalar estimation

We first compare FW-BW-MCMC with Bidirectional-PPR when computing πs(t) ∀ (s, t) ∈
S × T as |S| and |T | grow on Direct-ER. More specifically, for FW-BW-MCMC we use the

‖D−1rs‖∞ ≤ rsmax forward DP scheme as in FW-BW-MCMC-Practical, sample walks using the

scheme from Section 2.4.1.1, and use Algorithm 2.4 for backward DP; for Bidirectional-

PPR, we sample walks separately from each s ∈ S and run backward DP separately for each

t ∈ T . Results are shown in Fig. 2.4. Note the number of random walks sampled and number

of backward DP iterations grow more slowly with |S| = |T | using FW-BW-MCMC, due to the ac-

celerations proposed in Sections 2.4.1.1 and 2.4.1.2, respectively. As a result, runtime grows

more slowly using FW-BW-MCMC. In Fig. 2.4, we also show the clustering quantities (2.7) and

(2.12). We observe the source clustering quantity ‖Σ‖∞,1 has a concave shape, which cor-

responds to the apparent sublinear growth of random walks as |S| grows. Additionally, the

target clustering quantity cT has a convex shape; since backward DP iteration savings scale

with cT , we expect DP iterations to correspondingly “flatten”, which indeed occurs. These

observations empirically validate the key insights of Section 2.4.1: namely, that the estima-

tion schemes proposed have complexities that scale with the identified clustering quantities

‖Σ‖∞,1 and cT . We also plot srank(Π(S, T )) on the runtime plot; note it appears to flatten

along with runtime as |S|, |T | grow. Finally, these plots remain similar as n grows, though

the improvement of our scheme over the existing one increases; see Appendix A.8.

Next, to further examine the effect of clustering, we use Direct-SBM. We fix |S| = |T | =
100 and sample S and T from decreasingly clustered sets via the following scheme: we first

sample S, T from a single community, we then sample S, T from two communities, etc., until
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Figure 2.4: On Direct-ER, random walks, backward DP iterations, and runtime scale more
slowly in |S|, |T | for our method FW-BW-MCMC when compared to the existing
method Bidirectional-PPR.

Figure 2.5: When clustering is significant, fewer random walks and backward DP iterations
yield faster runtime for our method on Direct-SBM; additionally, our clustering
measures roughly scale with conductance.

we sample S, T from the entire graph, allowing us to observe a wide range of clustering.

As in the previous experiment, we are interested in how algorithmic performance relates to

‖Σ‖∞,1 and cT . Here, we also compare these quantities to a clustering measure commonly

used in the graph theory literature (see e.g. [7]), conductance, defined for U ⊂ V as

Φ(U) =

∑
i∈U,j /∈U Aij

min{
∑

u∈U dout(u),
∑

u/∈U dout(u)}
. (2.18)

In Fig. 2.5, we observe fewer random walks are sampled when Φ(S) is small (when S is

significantly clustered); similarly, the backward DP converges in fewer iterations when Φ(T )

is small (when T is significantly clustered). Also, Fig. 2.5 shows that ‖Σ‖∞,1 grows with

Φ(S) and −cT grows with Φ(T ). In short, our identified clustering quantities behave similar

to conductance. In the runtime plot, we again show srank(Π(S, T )) as a measure of overall

complexity; this quantity (roughly) grows with 1
2
(Φ(S) + Φ(T )), as does runtime.
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Figure 2.6: On Direct-SBM, our matrix approximation schemes are most efficient when clus-
tering is significant; additionally, the surrogate srank(PT (S, :)+PT

S RT )) performs
similar to srank(Π(S, T )).

2.5.1.2 Matrix approximation

We now document performance of our matrix approximation scheme (Algorithm 2.5)

using Direct-SBM and the S, T sampling strategy from the previous experiment. We com-

pare three cases: σ = σmax with w ∝ ‖Σ‖∞,1, σ = σavg with w ∝
√
l srank(Π(S, T )),

and σ = σavg with w ∝
√
l srank(PT (S, :) + PT

S RT ). These cases are motivated by The-

orem 2.3, which states that the sample requirements for σ = σmax and σ = σavg are

‖Σ‖∞,1 and
√
l srank(Π(S, T )), respectively (neglecting common factors); additionally, since

srank(Π(S, T )) is unknown in practice, we proposed using srank(PT (S, :)+PT
S RT ) as a surro-

gate in the discussion following the theorem. Results are shown in Fig. 2.6. Observe that for

all three cases, fewer walks are sampled when S and T are clustered (i.e. when 1
2
(Φ(S)+Φ(T ))

is small; nevertheless, error remains roughly constant (in fact, when clustering is present,

error is somewhat lower despite fewer walks being sampled). Further, we observe σmax and

σavg have similar performance, in terms of complexity and accuracy. Finally, we note the

results for the srank(Π(S, T )) and srank(PT (S, :)+PT
S RT ) cases are quite similar, suggesting

that srank(PT (S, :) + PT
S RT ) is an appropriate surrogate for srank(Π(S, T )).

2.5.2 Real data

2.5.2.1 Scalar estimation

We next compare FW-BW-MCMC with Bidirectional-PPR as in Section 2.5.1.1, but here

using real datasets. We fix |S| = |T | = 1000 and randomly sample S, T using two different

schemes: sampling uniformly among all nodes and using an algorithm described in Appendix

A.8 to build clustered subsets of nodes; we find these schemes typically give conductance

values ≈ 0.99 and ≈ 0.5, respectively, allowing us to observe two degrees of clustering. In

Fig. 2.7, we show random walk count, DP iteration count, and runtime for our method

relative to the corresponding values using Bidirectional-PPR. Averaging across the diverse
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Figure 2.7: On real graphs, our scalar methods are typically 1.4 and 2.9 times faster than
existing methods when S, T are chosen uniformly and clustered, respectively, due
to fewer random walks and DP iterations.

Figure 2.8: On real graphs, random walks and Merge updates scale with clustering quantities
‖Σ‖∞,1 and cT , empirically validating the analysis of Section 2.4.1.

set of graphs considered, our method is approximately 1.4 times faster in the uniform case

and 2.9 times faster in the clustered case, highlighting the efficiency of our algorithms and

the impact of clustering on their performance. Additionally, we note our method is at least

twice as fast for all datasets in the clustered case. For the same experiment, we also show

random walk count (normalized to w) and the number of Merge updates (i.e. the number

of DP iterations saved when compared to existing methods) in Fig. 2.8. From Theorem 2.1

and Proposition 2.1, we expect these quantities to scale linearly with the identified clustering

quantities ‖Σ‖∞,1 and cT , respectively; from Fig. 2.8, we observe this scaling roughly occurs.

2.5.2.2 Matrix approximation

Finally, we test our matrix approximation scheme (Algorithm 2.5) on real graphs. Here

we also compare to a baseline method that does not leverage clustering among targets and

sources. In particular, we run backward DP separately for each target, rather than using the

accelerated scheme as in Algorithm 2.5. Additionally, the baseline method uses no forward

DP, i.e. we set rsmax = 1 in Algorithm 2.5, so that ps = 0, rs = es ∀ s ∈ S. Note that, in

this case, both the σmax and σavg schemes reduce to sampling µi ∼ S uniformly, sampling

νi ∼ πνi using a random walk, and estimating Π(S, T ) as Π̂(S, T ) = PT (S, :) + 1
w

∑w
i=1Xi,
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Figure 2.9: On real graphs, our matrix approximation schemes are significantly faster than
the baseline method (which uses no forward DP) with comparable accuracy; this
is most notable when S, T are clustered.

where Xi = [es1 es2 · · · esl ]TeµieTνiRT is an unbiased estimate of Π(S, :)RT . We reemphasize

that walks are not shared among sources for this baseline scheme, i.e. clustering among

sources is not leveraged to improve performance. For the baseline scheme, we set w ∝ l, and

we compare performance to the σmax scheme with w ∝ ‖Σ‖∞,1 and the σavg scheme with

w ∝
√
l srank(PT (S, :) + PT

S RT ). Results are shown in Fig. 2.9, with quantities shown for

the σmax and σavg schemes relative to the baseline scheme. Averaging across datasets, the

σmax and σavg schemes are over twice as fast as the baseline scheme when S, T are chosen

uniformly and 3.4 times faster when S, T are clustered; additionally, the accuracy of both

schemes is comparable to the baseline (and slightly better on average). We also note both

our schemes are at least twice as fast as the baseline for all graphs in the clustered case.

2.6 Application: distributed random walk sampling

Thus far, our main finding has been that PPR estimation complexity scales with quanti-

ties that describe clustering among sources and/or targets. In this section, we demonstrate

one application of these findings; namely, that these findings can be used to efficiently

estimate {πs}s∈S online when several machines are available and when offline storage is

permitted. More specifically, we consider the following distributed computational setting:

• k machines are available for parallel computation and a central machine is available to

facilitate the parallel computation (for simplicity, we assume k ∈ {|S|, |S|/2, |S|/3, . . .})
• {pt, rt}t∈V have been precomputed via Algorithm 2.2 and are stored offline

Using the existing method as a primitive, a baseline strategy for this estimation task is as

follows: arbitrarily partition S into k subsets of size |S|/k, use the i-th machine to sample

random walks from each source s belonging to the i-th subset, and estimate πs using the

endpoints of walks from s and {pt, rt}t∈V (as in the primitive method Bidirectional-PPR).

We propose the following alternative (using FW-BW-MCMC as a primitive). First, we arbi-

trarily partition S into k subsets of size |S|/k, and we use the i-th machine to run forward

34



DP (Algorithm 2.1) for each source s belonging to the i-th subset. Second, we use the central

machine to construct another partition {Si}ki=1 of S, in a manner we discuss shortly. Third,

we use the i-th machine to run the accelerated source stage from Section 2.4.1.1 for the

subset of sources Si. Finally, we estimate πs as in the primitive method FW-BW-MCMC.

It remains to specify how to construct the partition {Si}ki=1. For this, we turn to Theorem

2.1 and the results of Section 2.5, which indicate that the number of random walks sampled

on the i-th machine scales with ‖ΣSi‖∞,1, where ΣSi is the matrix with rows {σs}s∈Si . Hence,

as the random walk stage in our approach runs in parallel across i, its runtime scales with

max
i∈{1,...,k}

‖ΣSi‖∞,1. (2.19)

Our goal is thus to construct the partition {Si}ki=1 so as to minimize (2.19). However, as this

is a combinatorial optimization problem, we devise an approximate heuristic. To simplify

the discussion of this method, we introduce some notation. For S ′ ⊂ S, let σS′ be s.t.

σS′(v) = maxs′∈S′ σs′(v) ∀ v ∈ V ; note ‖ΣS′‖∞,1 = ‖σS′‖1. For S ′ ⊂ S and s ∈ S \ S ′, let

d(s, S ′) =
∑
v∈V

max {σs(v)− σS′(v), 0} . (2.20)

It is easy to derive (2.21), i.e. (2.20) gives the increase in ‖σS′‖1 if we add s to S ′.

d(s, S ′) = ‖σS′∪{s}‖1 − ‖σS′‖1. (2.21)

With this notation in place, we may restate the objective function (2.19) as

max
i∈{1,...,k}

‖σSi‖1. (2.22)

Our heuristic to approximate the minimizer of (2.22) proceeds as follows. First, we assign

one node to each Si, i ∈ {1, . . . , k}, using an initialization method similar to k-means++

[44]: we choose the i-th of these nodes with probability proportional to its distance from the

first (i − 1) of them, in hopes of choosing initial nodes with σs vectors far apart. Next, we

iteratively assign the remaining nodes to some Sj, choosing j such that d(s, Sj) + ‖σSj‖1 is

minimal; by (2.21), we thus minimize the increase in the objective function (2.22) incurred

by assigning s to some Sj. This heuristic method is formally defined in Algorithm 2.6.

We now empirically compare our approach with the baseline scheme. For this experiment,

we set S = {S̃i}ki=1, where each S̃i is a clustered subset of nodes constructed as in Section 2.5

(with k = 10, |S̃i| = 100 ∀ i). This yields a set of sources S that is not highly clustered itself,

but that contains k subsets that are densely connected internally and sparsely connected to
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Algorithm 2.6: {Si}ki=1 = Source-Partition ({σs}s∈S, k)

1 Draw s ∼ S uniformly, set S1 = {s}, σS1 = σs; set Si = ∅ ∀ i ∈ {2, . . . , k}
2 for i = 2 to k do
3 Draw s ∼ S with probability proportional to minj∈{1,...,i−1} ‖σs − σSj‖1; set

Si = {s}, σSi = σs
4 for i = k + 1 to |S| do
5 Choose any s ∈ S \ (∪kj=1Sj) (any s not yet assigned); compute

d(s, Sj) ∀ j ∈ {1, . . . , k}
6 Let j∗ ∈ arg minj d(s, Sj) + ‖σSj‖1 , σSj∗ (v) = max{σSj∗ (v), σs(v)} ∀ v ∈ V ,

Sj∗ = Sj∗ ∪ {s}

other subsets. In addition to comparing to the baseline, we also test the performance of an

“oracle” scheme, which knows the clustering information of the input set S. More specifically,

the oracle scheme proceeds in the same manner as our scheme, except instead of using

Algorithm 2.6 to construct the partition {Si}ki=1, it simply sets Si = S̃i ∀ i ∈ {1, 2, . . . , k}.
Put differently, while the heuristic scheme attempts to learn an assignment of sources to

machines for which each machine is assigned a clustered set of sources (in the sense that

(2.22) is minimal), the oracle scheme knows such an assignment a priori.

Results for this experiment are shown in Fig. 2.10, using the set of real graphs from

Section 2.5. Averaging across graphs, the oracle and heuristic methods are roughly 1.8 and

2.2 faster than the baseline scheme, respectively (left). (Here total runtime is computed as

maximum walk sampling time across machines for the baseline; sum of maximum forward

DP time and maximum walk time for the oracle; and sum of maximum forward DP time,

maximum walk time, and time to run Algorithm 2.6 for the heuristic.) Additionally, both

methods sample approximately 1
4

of the random walks sampled by the baseline scheme, across

graphs (middle). Finally, the heuristic method typically produces a partition {Si}ki=1 of S

with objective function value (2.22) similar to that produced by the oracle method (right).

Interestingly, the heuristic outperforms the oracle for several datasets. This suggests that the

cluster information known by the oracle does not necessarily produce an optimal assignment

of sources to machines; rather, the source clustering quantity ‖σSi‖1 identified in Section

2.4.1.1 may be what truly dictates performance.

Before closing, we offer several remarks. First, while we focused on the scalar estimation

scheme from Section 2.4.1.1, the framework extends to the σmax matrix approximation scheme

from Section 2.4.2. In particular, using the latter scheme in this setting would also involve

construction of a partition so as to minimize (2.22), per Theorem 2.3. For this reason, we

expect the performance of this scheme to be similar to Fig. 2.10. Second, we note that using

the σavg matrix approximation scheme in this setting requires a partition that minimizes a
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Figure 2.10: In the distributed setting, our heuristic method is typically 1.8 times faster than
the baseline, samples 1

4
of the walks, and produces a low objective function

value, with performance similar to an oracle method.

different objective function. In Appendix A.9, we present an algorithm to construct such

a partition and empirical results describing performance (in short, our scheme performs

similarly to the oracle and noticeably outperforms the baseline, as in Fig. 2.10). Third,

we find in practice that our heuristic partitioning schemes naturally balance the number

of sources assigned to each machine (see Appendix A.9). Such balance is crucial in the

performance of our scheme. This is because we require ‖σSi‖1 = O(|S|/k) ∀ i to perform as

well as the baseline, which may in turn require an extreme degree of clustering if the partition

is unbalanced (for example, if |Si| = O(|S|) for some i). It is worth noting that we also tried

to partition {σs}s∈S using k-means++, but this led to highly unbalanced assignments and

poor performance. Finally, we note one limitation of our scheme is that, if |S|, |T | = Θ(n),

Algorithm 2.6 essentially partitions the entire graph and thus may be slower than directly

estimating PPR. However, recall from Section 2.2 that our focus is |S|, |T | = o(
√
m) = o(n),

so this is not a concern. Indeed, for the Fig. 2.10 experiment, Algorithm 2.6 accounted for

only 12% of runtime (averaged across graphs).

2.7 Conclusions and future directions

In this chapter, we analyzed the relationship between PPR estimation complexity and

clustering by devising estimation algorithms for many node pairs and showing the complexity

of these methods scales with quantities interpretable as clustering measures. To demonstrate

the utility of these findings, we considered a distributed setting for which the clustering

quantities computed in situ could be leveraged to reduce computation time. We believe this

setting and the algorithms we designed for it are just one example of how our findings can

be used; hence, an avenue for future work would be to further explore applications.
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CHAPTER III

Personalized PageRank Dimensionality and

Algorithmic Implications1

3.1 Introduction

In Chapter II, we devised algorithms to estimate submatrices of the Personalized PageR-

ank (PPR) matrix Π while exploiting clustering in the underlying graph. In this chapter, we

take a deeper and more holistic view and consider the structure of Π itself, and subsequent

algorithmic implications. Our specific contributions are as follows:

1. In Section 3.4, we prove the dimensionality of Π scales sublinearly in n with high prob-

ability, for a certain class of random graphs and for a notion of dimensionality similar

to rank (Theorem 3.1). Put differently, we argue that the effective dimension of this

matrix is much less than n; this occurs despite the fact that Π is full rank (see Section

1.3.1.3). This class of graphs can be roughly described as the directed configuration

model with sparse but heavy-tailed in-degrees. The notion of dimensionality we study

is the smallest number of “hub” nodes such that the PPR vectors of all other nodes

are close to linear combinations of the hub PPR vectors.

2. In Section 3.5, we show this notion of dimensionality relates closely to the complexity of

estimating Π. Specifically, we use our dimensionality result to show that this matrix can

be accurately estimated (in terms of the maximum l1 error across rows) with complexity

O(nc̄) for some c̄ < 2 for the same class of graphs (Theorem 3.2). Conceptually, this

scheme leverages the low dimension of Π in a manner analogous to low-rank matrix

approximation. To the best of our knowledge, our scheme improves upon all existing

complexity bounds for this task, the most competitive of which are O(n2 log n) in

our setting. We also note that maximum l1 error across rows is a natural accuracy

objective, since each row of Π (i.e. each PPR vector) is a distribution over the nodes.

1This chapter is adapted from [45].
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3. The estimation scheme we analyze is similar to those that were proposed (but not

analyzed) by Jeh and Widom in [16] and Berkhin in [17]. Hence, we offer theoretical

evidence for the empirical success of these algorithms.

4. While Theorems 3.1 and 3.2 apply to a class of random graphs, we show empirically

in Section 3.6 that our dimensionality measure is small relative to n for real graphs.

Hence, we argue that the dimension of Π is small more generally. This also suggests

that the complexity of estimating Π becomes much smaller when one accounts for the

dependencies among its rows that arise from the common underlying graph.

5. Additionally, we believe the class of random graphs considered contains realistic models

of real-world networks. As an example, in Section 3.7.3 we provide a model for a graph

like Twitter, which contains a few nodes with huge in-degrees – modeling celebrities

with millions of Twitter followers – and many nodes with moderate in-degrees – model-

ing “normal” users with dozens or hundreds of followers. We also discuss various other

aspects of our analysis throughout Section 3.7, including a geometric interpretation of

our dimensionality result and a connection to Markov chain mixing times.

The chapter is organized as follows. We begin in Sections 3.2 and 3.3 with preliminaries and

related work. Sections 3.4-3.7 follow the outline above. We close in Section 3.8.

3.2 Preliminaries

We begin by defining the main ingredients of the chapter. Most notation is standard or

defined as needed, but we note the following is often used: for x ∈ Rn and J ⊂ {1, 2, . . . , n},
we set x(J) =

∑
j∈J x(j), we let eJ ∈ {0, 1}n satisfy eJ(j) = 1(j ∈ J) (where 1(·) is the

indicator function), and we write ej = e{j} for simplicity.

3.2.1 Directed configuration model (DCM)

We consider a random graph model called the directed configuration model (DCM). For

the DCM, we are given realizations of random sequences Nn = {Nv}v∈Vn and Dn = {Dv}v∈Vn
satisfying Nv, Dv ∈ N ∀ v ∈ Vn and

∑
v∈Vn Nv =

∑
v∈Vn Dv , Ln (here Vn = {1, 2, . . . , n}).2

We will refer to (Nn,Dn) as the given degree sequence. Our goal is to construct a directed

graph Gn = (Vn, En), such that v ∈ Vn has in- and out-degree Nv and Dv, respectively.

Toward this end, we first assign Nv incoming half-edges and Dv outgoing half-edges to each

v ∈ Vn; we call these half-edges instubs and outstubs, respectively. We then randomly pair

half-edges to form edges in a breadth-first search fashion that proceeds as follows:

• Let s ∼ Vn uniformly. For each of the Ds outstubs assigned to s, sample an instub

2For example, in Section 3.7.3, we let Nn ∼ fin i.i.d. for a given distribution fin; we then realize Dn conditional
on
∑
v∈Vn

Nv in a manner that guarantees
∑
v∈Vn

Dv =
∑
v∈Vn

Nv. Alternatively, [18] proposes letting Nn ∼
fin i.i.d., Dn ∼ fout i.i.d. for some fin, fout, then to modify Nn,Dn to guarantee

∑
v∈Vn

Dv =
∑
v∈Vn

Nv.
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uniformly from the set of all instubs (resampling if the sampled instub has already

been paired), and pair the outstub and instub to form an edge out of s.

• Let A1 = {v ∈ Vn \ {s} : an outstub of s was paired with an instub of v}. For each

v ∈ A1, pair the Dv outstubs of v in the same manner s’s outstubs were paired.

• Continue iteratively until all half-edges have been paired. Namely, during the (m+ 1)-

th iteration we pair the outstubs of all v ∈ Am, where Am is the set of nodes at distance

m from s (those v ∈ Vn for which the shortest path from s to v has length m).

We define this procedure more formally in Appendix B.1.2. For now, the important points

to remember are that the initial node s is chosen uniformly at random from Vn, and that, at

the end of the m-th iteration, the m-step neighborhood out of s has been constructed. We

emphasize the resulting graph will be a multi-graph in general, i.e. it will contain self-loops

(edges v → v for v ∈ Vn) and multi-edges (more than one edge from v ∈ Vn to w ∈ Vn).3

3.2.2 Personalized PageRank (PPR)

In this chapter, we use PPR notation similar to that used in Chapters I-II; however, there

are a few key differences we mention here. First, we denote the adjacency matrix of Gn by

M , i.e. M(i, j) ∈ {0, . . . , Di} is the number of directed edges from i to j, for each i, j ∈ Vn.

From M , we define a row stochastic matrix P by P (i, j) = M(i, j)/Di ∀ i, j ∈ Vn. Note

P describes the random walk on Gn for which we follow a uniform outgoing edge at each

step (i.e. we account for the fact that Gn may be a multi-graph). For v ∈ Vn, we define the

(primitive) PPR vector πv as the stationary distribution of the chain with transition matrix

Pv = (1− αn)P + αn1ne
T
v (as in Section 3.2.2). We treat each πv as a row vector and define

the PPR matrix Πn as the matrix with rows {πv}v∈Vn (again, as in Section 3.2.2). Thus, we

explicitly denote the number of nodes n as a subscript of Πn in this chapter.

As suggested by the notation above, we allow the restart probability αn to vary with n

in this chapter; in particular, we will let αn = Θ(1/ log n). We argue in Section 3.4.2 that

this is appropriate when considering the asymptotic behavior of PPR on the DCM. We note

a line of work by Boldi et al. [46, 47] analyzed the limit of PPR as α→ 0 for a fixed graph

G; in contrast, we fix a value of αn for each Gn. Finally, we further motivate our choice of

αn in Section 3.7.4 in terms of the mixing time of the random walk discussed above.

3.2.3 Dimensionality measure

Our main focus is the dimensionality of the PPR matrix Πn. A standard measure of

this dimension is rank(Πn); however, rank(Πn) = n ∀ n ∈ N (see Section 1.3.1.1), so we will

consider a different notion of dimensionality. This notion is motivated by the following obser-

3In [18], the authors provide conditions under which a simple graph results with positive probability as n→∞,
but these are stronger than the conditions we require, so we will instead assume Gn is a multi-graph.
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vation: the rank of the matrix with rows {xi}i∈I (where I is some finite set) can be bounded

by |X ′∪X ′′|, where X ′ ⊂ {xi}i∈I and X ′′ = {xi /∈ X ′ : xi is not a linear combination of X ′}.
We will relax this slightly, by only including in X ′′ those xi /∈ X ′ that are not “close” to a

linear combination of X ′. Specifically, for ε > 0 we define

min
Kn⊂Vn

∆(Kn, ε) = |Kn|+ |{v ∈ Vn \Kn : Bv(Kn, ε) holds}|, (3.1)

where Bv(Kn, ε) is the event{
inf

{βv(k)}k∈Kn⊂R

∥∥∥∥∥πv −
(∑
k∈Kn

βv(k)πk + αne
T
v

)∥∥∥∥∥
1

≥ ε

}
. (3.2)

We offer several remarks on this definition. First, as will be discussed in Section 3.5,

(3.1) suggests an algorithm for estimating the PPR matrix: we first estimate πv for each

v ∈ Kn and v /∈ Kn such that Bv(Kn, ε) holds; we then approximate πv for other v as a

linear combination of the {πk}k∈Kn estimates. Under this scheme, (3.1) is the number of

PPR vectors estimated directly (i.e., not as linear combinations); we will argue this direct

estimation dominates the scheme’s complexity, and thus the scheme’s complexity scales with

(3.1). Second, we note (3.1) differs slightly from the quantity |X ′ ∪ X ′′| defined in the

previous paragraph, since in (3.2) the estimate of πv is a linear combination plus the term

αne
T
v . This latter term is included because it is a known component of πv, independent

of the graph structure encoded by P (by the power iteration (1.1)). Third, we note l1

distance is a reasonable choice in (3.2) because PPR vectors are distributions over Vn, l1

distance is twice total variation distance, and total variation is a standard distance for

comparing distributions. Finally, we note (3.1) bears some resemblance to low-rank matrix

approximation and nonnegative matrix factorization (NMF); we discuss this in Section 3.5.2.

Our dimensionality result (Theorem 3.1) provides conditions on the given degree sequence

(Nn,Dn) and the choice of Kn under which ∆(Kn, ε) scales sublinearly in n; hence, under

these conditions, minKn⊂Vn ∆(Kn, ε) is also sublinear. (Clearly, |Kn| being sublinear is one

such condition; proving that |{v ∈ Vn \ Kn : Bv(Kn, ε) holds}| is also sublinear is highly

nontrivial.) We note that we currently lack a matching lower bound for (3.1).

For analytical tractability moving forward, we will set Kn = {v ∈ Vn : Uv = 0}, where

Un = {Uv}v∈Vn is a random length-n binary sequence that may be correlated with the

given degree sequence (Nn,Dn). Additionally, we will assume the entire tuple (Nn,Dn,Un)

is realized before the graph is constructed. In light of this, we emphasize that ∆(Kn, ε)

is a random variable that depends on two sources of randomness: the random sequence

(Nn,Dn,Un), and the random graph construction. Towards proving our dimensionality
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result, intermediate results will be established with (Nn,Dn,Un) held fixed, after which

expectation with respect to (Nn,Dn,Un) will be taken. This motivates the following defi-

nitions: we let En[·] = E[·|Nn,Dn,Un] and Pn[·] = P[·|Nn,Dn,Un] denote expectation and

probability with the only source of randomness being the graph construction.

3.3 Related work

Before proceeding, we comment on relationships to prior work. We focus on [16], [17],

and [48], the papers most closely related to this chapter. We will also return to discuss more

related work – in particular, other PPR estimation schemes – in Section 3.5.2.

In [16], Jeh and Widom propose a scheme for estimating the PPR matrix. The scheme

relies crucially on the Hubs Theorem in [16], which states that the PPR vector πv, v ∈ Vn\Kn,

can be written as a linear combination of {πk}k∈Kn and another vector. The Hubs Theorem

is central to our results as well; an alternative formulation appears as Lemma B.1 here.

Improving upon [16], Berkhin in [17] proposed a similar algorithm that uses sparse estimates

of PPR vectors. We discuss these algorithms in more detail in Section 3.5.2.

Unfortunately, the authors of [16] and [17] present no complexity analysis. Namely, it is

unclear how Kn should be chosen and how large it must be to guarantee accurate estimation.

This chapter addresses this shortcoming. Specifically, as discussed briefly in the introduction,

our dimensionality measure (3.1) relates to the complexity of a similar estimation scheme.

In [48], Chen, Litvak, and Olvera-Cravioto consider the limiting value of πσn (the PPR

vector with restart distribution σn, as in Section 1.2.2) as σn weakly converges to a probability

distribution σ. Specifically, they show that the PPR value of a uniformly chosen node is given

by the solution of a recursive distributional equation (RDE) [49]. They also show (roughly)

that PPR values follow a power law when in-degrees follow a power law, establishing the

“power law hypothesis” that had long been observed empirically. Similar results were proven

for other graph families in [50]. On the other hand, [48] was preceded by [51], where the

power law hypothesis was established for global PageRank; further back, the hypothesis was

studied under more restrictive assumptions in [52, 53, 54].

While [51, 48, 50, 52, 53, 54] share a goal of understanding the power law behavior of PPR

on random graphs, our goal is to instead understand the dimensionality of Πn. As alluded

to above, dimensionality carries with it algorithmic implications, so the current chapter

is perhaps more useful from a practical perspective when compared to this body of work.

However, the analytical approaches of these works will be useful to us. Specifically, we will

use a modified version of Lemma 5.4 from [48]; see Appendix B.1.3.

In short, this chapter combines the strengths of [16, 17], which are entirely algorithmic,

and [48], which is entirely analytical. Specifically, we leverage certain aspects of the analysis
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from [48] to obtain guarantees on an algorithm similar to those proposed in [16, 17].

More broadly, other work studying PPR on random graphs includes [55], where it is

shown that πσn can be well-approximated as a convex combination of σn and the degree

distribution for certain random graphs. The DCM was proposed and analyzed in [18, 56]

as an extension of the (undirected) configuration model, the development of which began

in [57, 58, 59]. The configuration model (and variants) have been studied in detail; for

example, [60] considers graph diameter in this model, while [61] studies the emergence of a

giant component.

3.4 Dimensionality result

We next turn to our dimensionality result. We define our assumptions and our choice of

αn in Sections 3.4.1 and 3.4.2, respectively, and then state the result in Section 3.4.3.

3.4.1 Assumptions

Our dimensionality result is a consequence of a key lemma, the proof of which requires

Assumption 3.1. This assumption states that certain moments of (Nn,Dn,Un) exist with

high probability, and furthermore, converge to limits at a certain rate.

Assumption 3.1. We have P[ΩC
n ] = O(n−δ) for some δ ∈ (0, 1), where Ωn = ∩6

i=1Ωn,i and

for some constants γ, p ∈ (0, 1) and ηi, ζ
∗, λ∗ ∈ (0,∞), all independent of n,

Ωn,1 =

{∣∣∣∣∑n
h=1Nh

n
− η1

∣∣∣∣ ≤ n−γ
}
,

Ωn,2 =

{∣∣∣∣∑n
h=1 NhDh

n
− η2

∣∣∣∣ ≤ n−γ
}
,

Ωn,3 =

{∣∣∣∣∑n
h=1 UhN

2
h

n
− η3

∣∣∣∣ ≤ n−γ
}
,

Ωn,4 =

{∣∣∣∣∑n
h=1 UhDh∑n
h=1 Uh

− ζ∗
∣∣∣∣ ≤ n−γ

}
,

Ωn,5 =

{∣∣∣∣∑n
h=1 UhNh∑n
h=1 Uh

− λ∗
∣∣∣∣ ≤ n−γ

}
,

Ωn,6 =

{∣∣∣∣∑n
h=1 UhNh∑n
h=1Nh

− p
∣∣∣∣ ≤ n−γ

}
.

We also have ζ , η2/η1 > 1 and define λ = η3/η1.

We note that the constants ζ and p appearing in Assumption 3.1 also appear in our

dimensionality result, and both have simple interpretations: if vn satisfies P[vn = v] ∝
Nv ∀ v ∈ Vn, n ∈ N, then limn→∞ E[Dvn|Ωn] = ζ and limn→∞ E[Uvn|Ωn] = p, i.e. ζ and p

give the limiting expected out-degree and the limiting probability of belonging to Vn \Kn,

respectively, for a node sampled with probability proportional to in-degree. (The other

constants in Assumption 3.1 will not appear in our dimensionality result but have similar

interpretations.) We also remark that ζ > 1 in Assumption 3.1 is not necessary to establish

our results but, given this interpretation, is the more interesting case; this also simplifies the

statements and proofs of certain results (which otherwise would have to address the cases
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ζ > 1, ζ = 1, and ζ < 1 separately).

Our dimensionality result requires Assumption 3.2, which strengthens Assumption 3.1

by requiring |Kn| to be sublinear (an obvious requirement for sublinearity of (3.1)).

Assumption 3.2. ∃ κ ∈ (0, 1) independent of n s.t. E[|Kn|] = E[
∑n

h=1(1 − Uh)] = O(nκ)

and Assumption 3.1 holds.

While Assumption 3.2 may appear limiting, we provide an example (Nn,Dn,Un) in

Section 3.7.3 that satisfies it, and that we believe is a reasonable model for certain graphs

arising in the motivating applications of Section 1.2.3 (namely, Twitter). Additionally, we

argue in Section 3.7.2 that several events Ωn,i appearing in Assumption 3.1 are essentially

implied by others, and are therefore not restrictive. Finally, we believe the most important

condition for sublinearity of ∆(Kn, ε) is that Kn contains a vanishing fraction of nodes but

a non-vanishing fraction of edges (i.e. E[|Kn|] = O(nκ) and Ωn,6 holds in Assumption 3.1).

We discuss this further in Section 3.7.2 and provide empirical evidence that this holds when

{Nv}v∈Vn follow a power law, a common model for real-world graphs.

3.4.2 Choice of restart probability

As mentioned in Section 3.2.2, we take αn = Θ(1/ log n) in this chapter. Having defined

Assumption 3.1, we choose a specific value of αn. This choice is motivated by the following

proposition, which states that s’s PPR concentrates in a small neighborhood surrounding s,

and bounds the size of this neighborhood, for two choices of αn.

Proposition 3.1. Let τ ∈ (0, 1) and ρ > 1 be constants, and let s ∼ Vn \Kn uniformly. For

l ∈ N, let Vn,s(l) denote the l-step neighborhood out of s. Then the following hold:

• If αn = ρ log(1/τ) log(ζ)/ log(n) = Θ(1/ log n) and l = dlog(1/τ)/αne,

lim inf
n→∞

πs (Vn,s (l)) ≥ 1− τ a.s., E [|Vn,s (l)||Ωn] = O
(
n1/ρ

)
.

• If αn = α is a constant and l = dlog(τ)/ log(1− α)e,

lim inf
n→∞

πs (Vn,s (l)) ≥ 1− τ a.s., E [|Vn,s (l)||Ωn] = O(1).

Proof. See Appendix B.5.

Loosely speaking, Proposition 3.1 states that, for both choices of αn, all but τ of s’s PPR

concentrates on a small neighborhood surrounding s, for any τ > 0. The difference is the size

of this neighborhood: when αn = Θ(1/ log n), the neighborhood grows with the graph; when

αn is constant, the neighborhood has constant size. From the PPR interpretation of Section

1.2.2, this suggests that the number of nodes that are “similar” to s grows in the former
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case but remains fixed in the latter case. We believe the former case is more appropriate.

Additionally, the growth of this similar set of nodes remains sublinear in n in the former

case; intuitively, this says that a vanishing fraction of all nodes are important to s, i.e. the

PPR vector remains “personalized” to s. Later, we will further motivate this choice in terms

of the mixing time of the simple random walk on Gn (see Section 3.7.4). We also remark

that, since PPR concentrates on a small neighborhood for this choice of αn, PPR vectors

can be well-approximated by sparse estimates (with the sparsity precisely controlled by τ

and ρ), which has implications in terms of both time and space complexity for algorithms

we discuss in Section 3.5.1. We reiterate that for the remainder of the chapter, we set

αn =
ρ log(1/τ) log(ζ)

log n
= Θ

(
1

log n

)
. (3.3)

3.4.3 Dimensionality result

Before presenting our dimensionality result, we state a tail bound for the event Bs(Kn, ε)

(recall this event, defined in (3.2), states that πs is more than ε from a linear combination of

{πk}k∈Kn). Our dimensionality result will follow almost immediately from this lemma. The

bound is n−min{c1,c2ε2} for constants ci depending only on the degree sequence and the choice

of αn; hence, ε only affects the bound when it is sufficiently small.

Lemma 3.1. Given Assumption 3.1, for s ∼ Vn uniformly and ε > 0 independent of n,

P [Bs(Kn, ε)|Us = 1] = O
(
n−c(ε)

)
,

where, with δ, p, ζ from Assumption 3.1, and with ρ, τ from (3.3),

c(ε) , min

{
δ,

log(1/p)

2 log(ζ/p)
,

((1− p)ε)2

2ρ log(1/τ) log ζ

}
> 0.

The proof of Lemma 3.1 is lengthy and occupies Appendices B.1 and B.2. For now, we

note that the proof broadly requires four steps:

1. Show that, for a certain {βs(k)}k∈Kn , the error term ‖πs−(αne
T
s +
∑

k∈Kn βs(k)πk)‖1 in

Bs(Kn, ε) can be bounded by only examining the m-step neighborhood out of s. (Here

the choice of {βs(k)}k∈Kn arises from an alternate form of the Hubs Theorem from [16],

which requires a new proof; the error bound is new, to the best of our knowledge.)

2. Argue that, conditioned on certain events not occurring during the first m steps of

the graph construction, this error bound follows the same distribution as a quantity

defined in terms of the first m generations of a branching process. (Here we essentially

argue that, before these events occur, a bijection exists between the subgraph that
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determines the error bound and the tree resulting from the branching process.)

3. Bound the probability of these events occurring during the first m iterations. (Here we

use a modification of Lemma 5.4 from [48]. Our modification weakens the assumptions

of [48], allowing us to apply it to a wider class of degree sequences; see Section 3.7.3.)

4. Bound the probability of Bs(Kn, ε), conditioned on these events not occurring, by

analyzing the branching process quantity. (Here our analysis leverages the fact that

the branching process quantity has a martingale-like structure.)

Before proceeding, we pause to state the choice of {βs(k)}k∈Kn from Step 1, which will

be used in Section 3.5. First, for any realization of the DCM and for v ∈ Vn \Kn, we define

P̃ (i, j) = UiP (i, j), P̃v = (1− αn)P̃ + (αneVn\Kn + eKn)eTv , . (3.4)

Note P̃v corresponds to a Markov chain for which the random surfer from Section 1.2.2

restarts at v with probability 1 upon reaching Kn (instead of αn). Letting π̃v denote the

stationary distribution of this chain, one can show (see Appendix B.1.1)

πv(w) =
αnUwπ̃v(w) +

∑
k∈Kn π̃v(k)πk(w)

αn + (1− αn)π̃v(Kn)
∀ w ∈ Vn. (3.5)

With (3.5) in mind, we define

βv(k) =
π̃v(k)

αn + (1− αn)π̃v(Kn)
∀ k ∈ Kn, (3.6)

and we take {βs(k)}k∈Kn as in (3.6) in Step 1 above.

We now turn to the dimensionality result, Theorem 3.1. Together with Assumption 3.2,

it essentially states the following: when certain moments of the degree sequence exist, and

when a sublinear number of nodes contains a constant fraction of instubs, the dimension of

the PPR matrix scales sublinearly in n (with high probability).

Theorem 3.1. Given Assumption 3.2, for any ε > 0 independent of n,

E[∆(Kn, ε)] = O
(
nmax{κ,1−c(ε)}) ,

where c(ε) is from Lemma 3.1. Hence, ∀ c̄ ∈ (max{κ, 1− c(ε)}, 1), C > 0 independent of n,

P
[
∆(Kn, ε) ≥ Cnc̄

]
= O

(
nmax{κ,1−c(ε)}−c̄) −−−→

n→∞
0.

Proof. See Appendix B.3.
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3.5 Algorithmic implications

Having stated Theorem 3.1, we next consider its algorithmic consequences. Broadly

speaking, the main consequence is that only ∆(Kn, ε) PPR vectors – those corresponding

to Kn and {v ∈ Vn \Kn : Bv(Kn, ε) holds} – need be computed, after which the others can

be estimated as linear combinations of {πk}k∈Kn using the weights {π̃v(k)}k∈Kn . Because

∆(Kn, ε) scales sublinearly per Theorem 3.1, this may yield an order reduction when com-

pared to the naive scheme of computing all n PPR vectors. However, computing ∆(Kn, ε)

vectors and n − ∆(Kn, ε) sets of weights {π̃v(k)}k∈Kn remains too costly, so each of these

quantities will be estimated. This introduces a nontrivial challenge: the errors incurred by

estimating {πk}k∈Kn and {π̃v(k)}k∈Kn will propagate through to the estimate of πv, poten-

tially rendering it highly inaccurate. In this section, we devise an algorithm that overcomes

this challenge. We then discuss compare this algorithm to existing PPR estimators.

3.5.1 Algorithm to estimate the PPR matrix

At a high level, our algorithm proceeds as follows. First, estimate {πk}k∈Kn as {π̂k}k∈Kn .

Next, for v ∈ Vn \Kn, estimate πv as

αne
T
v +

∑
k∈Kn

ˆ̃πv(k)π̂k

αn + (1− αn)ˆ̃πv(Kn)
, (3.7)

where ˆ̃πv(k) is an estimate of π̃v(k). The basic idea behind this scheme is that, by (3.5),

the estimate shown in (3.7) may be close to πv. Throughout this section, we make this idea

rigorous, developing an algorithm based on this idea and using Theorem 3.1 to analyze it.

The first step of our scheme is to estimate {πk}k∈Kn . Here we use a modified version of the

Approx-PageRank algorithm [7] from Section 2.3. Our modification accounts for the fact that

the DCM may be a multi-graph; we define it in Algorithm 3.2 and include a modified analysis

in Appendix B.4. Specifically, in Appendix B.4 we show that for any realization of Gn and

any v ∈ Vn, Approx-PageRank(v, ε1) has complexity O(n log n/ε1), assuming Ln = O(n) (as

in Assumption 3.1) and αn = Θ(1/ log n). Hence, running Approx-PageRank(k, ε1) ∀ k ∈ Kn

will yield estimates of {πk}k∈Kn with error guarantees in the l1 norm.

We next consider estimation of {π̃v(k)}v∈Vn\Kn,k∈Kn ; here we desire an l∞ error guarantee

that, paired with the l1 guarantee on π̂k, will yield an l1 guarantee on (3.7). A natural algo-

rithm to use is the Approx-Contributions algorithm [32] from Section 2.3. However, since

we seek estimates of {π̃v(k)}v∈Vn\Kn , not {πv(k)}v∈Vn\Kn , the existing algorithm does not

directly apply. For this reason, we consider a modified version of Approx-Contributions.
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This is based on our analysis in Appendix B.2.2, which shows (see (B.34))

π̃v(k) =
αnµv(k)

1− (1− αn)µv(Kn)
∀ v ∈ Vn \Kn, k ∈ Kn,

where µv(k) is the k-th element of µv = eTv (I − (1−αn)P̃ )−1 (here P̃ , defined in (3.4), is the

row-normalized adjacency matrix with rows corresponding to Kn set to zero). Note that µv

has nearly the same form as πv, by (1.1); in particular, µv is a scaled PPR vector defined

on a modified graph. Hence, we will use a modified version of Approx-Contributions to

estimate {µv(k)}v∈Vn for each k ∈ Kn, after which we may estimate {π̃v(k)}v∈Vn\Kn as

ˆ̃πv(k) =
αnµ̂v(k)

1− (1− αn)µ̂v(Kn)
∀ v ∈ Vn \Kn, k ∈ Kn.

This modification is necessary to account for the different scaling between πv and µv, as well

as the fact that our DCM may be a multi-graph. With this in mind, we define a modified

version of Approx-Contributions in Algorithm 3.3; we include an analysis in Appendix

B.4, based on [32], which includes our desired bound on |π̃v(k)− ˆ̃πv(k)|.
After computing {π̂k}k∈Kn and {ˆ̃πv(k)}v∈Vn\Kn,k∈Kn via Algorithms 3.2 and 3.3, we could

immediately compute (3.7) and return this as our estimate of πv for v ∈ Vn \ Kn. There

are two drawbacks to this approach, both of which our algorithm will address. The first

drawback is that, while Lemma 3.1 guarantees πv is close to

αne
T
v +

∑
k∈Kn π̃v(k)πk

αn + (1− αn)π̃v(Kn)
(3.8)

for most v (namely, all but a sublinear number), it could be far from (3.8) for some v; hence,

the estimate given by (3.7) may be inaccurate for some v as well. The second drawback is

that computing (3.7) for every v ∈ Vn \Kn, k ∈ Kn requires matrix multiplication that has

complexity O(n2+κ) when |Kn| = O(nκ); as we discuss in Section 3.5.2, existing methods can

estimate {πv}v∈Vn in our setting with complexity O(n2 log n) and with the same accuracy

guarantee we will provide. Hence, we next address each of these drawbacks.

First, to address the accuracy concern, we show in Appendix B.4 that ˆ̃πv(Kn) can be

used at runtime to determine whether (3.7) will be sufficiently accurate, without actually

computing (3.7) or knowing πv itself. Specifically, we show that if ˆ̃πv(Kn) exceeds

gn(ε1) =
αn(1− (ε1 + αn))

ε1 + αn(2− (ε1 + αn))
,

then (3.7) will be close to πv in l1. Note ˆ̃πv(Kn) ≥ gn(ε1) intuitively states that Kn is “close”
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to v in the graph; hence, (3.7) is a good estimate of πv whenever Kn is close to v.

Second, to address the matrix multiplication concern, we will “sparsify” the matrix

{π̂k}k∈Kn , i.e. set certain elements of this matrix to zero. We will do so in a manner that

ensures (1) enough elements are set to zero to guarantee the resulting multiplication has

complexity o(n2), and (2) not enough elements are set to zero to significantly alter the accu-

racy of the resulting estimates. In particular, we will set π̂k(u) to zero whenever u /∈ Vn,k(l),
where l is an input to our algorithm and Vn,k(l) is the l-step neighborhood out of k (as in

Proposition 3.1). Using an argument similar to the proof of Proposition 3.1, we will show

that |Vn,k(l)| scales sublinearly in n (which will address point (1) above) and that π̂k(u) is

small whenever u /∈ Vn,k(l) (which will address point (2) above).

Algorithm 3.1: {π̂v}v∈Vn = Estimate-All-PPR(ε1, ε2, l)

1 for k ∈ Kn do
2 π̂k = {π̂k(u)}u∈Vn = Approx-PageRank(k, ε1) (Algorithm 3.2)
3 π̂lk(u) = π̂k(u)1(u ∈ Vn,k(l)) ∀ u ∈ Vn
4 {µ̂u(k)}u∈Vn = Approx-Contributions(k, ε2) (Algorithm 3.3)

5 for v ∈ Vn \Kn do

6 ˆ̃πv(k) = αnµ̂v(k)/(1− (1− αn)µ̂v(Kn)) ∀ k ∈ Kn

7 if ˆ̃πv(Kn) < gn(ε1) then π̂v = {π̂v(u)}u∈Vn = Approx-PageRank(v, ε1)

8 else π̂v = αne
T
v +

∑
k∈Kn

ˆ̃πv(k)π̂lk/(αn + (1− αn)ˆ̃πv(Kn))

Algorithm 3.2: π̂v = {π̂v(u)}u∈Vn = Approx-PageRank(v, ε1)

1 π̂v(u) = 0, rv(u) = 1(u = v) ∀ u ∈ Vn
2 while maxu∈Vn rv(u)/Du > ε1/Ln do
3 v∗ ∈ arg maxu∈Vn rv(u)/Du

4 rv(u)← rv(u) + (1− αn)rv(v
∗)P (v∗, u) ∀ u 6= v∗

5 π̂v(v
∗)← π̂v(v

∗) + αnrv(v
∗)

6 rv(v
∗)← (1− αn)rv(v

∗)P (v∗, v∗)

Algorithm 3.3: {µ̂u(v)}u∈Vn = Approx-Contributions(v, ε2)

1 µ̂u(v) = 0, rv(u) = 1(u = v) ∀ u ∈ Vn
2 while maxu∈Vn rv(u) > ε2 do
3 v∗ ∈ arg maxu∈Vn rv(u)

4 rv(u)← rv(u) + (1− αn)rv(v
∗)P̃ (u, v∗) ∀ u 6= v∗

5 µ̂v∗(v)← µ̂v∗(v) + rv(v
∗)

6 rv(v
∗)← (1− αn)rv(v

∗)P̃ (v∗, v∗)
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Having described each step of our scheme, we provide a formal definition in Algorithm

3.1. Theorem 3.2 provides two guarantees for Algorithm 3.1, stated informally as follows:

1. For certain choices of τ in the definition of αn, each estimate π̂v is accurate in the l1

norm a.s. In fact, this guarantee holds for any underlying graph Gn.

2. For certain choices of ρ in the definition of αn, the complexity is o(n2) with high

probability, assuming Assumption 3.2 holds and each k ∈ Kn has O(1) out-degree.

(Note this strengthens the previous assumption of O(1) average out-degree.)

We reemphasize that Algorithm 3.1 generates estimates accurate in the l1 norm for any

graph Gn. We also note this is a natural objective, since bounding l1 distance is equivalent

to bounding total variation distance, total variation is a standard distance for comparing

distributions, and PPR vectors are distributions over Vn. Additionally, while the complexity

guarantee pertains to a class of graphs, we suspect the algorithm will perform well for a

wider class of graphs. For example, we believe that graphs with in-degrees following a power

law satisfy the most crucial of our assumptions (see Section 3.7.2). Hence, while the entirety

of Theorem 3.2 applies to a class of graphs, we believe Algorithm 3.1 is of wider value.

Theorem 3.2. Let ε ∈ (0, 1) be a constant, and set ε1 = ε/4, ε2 = α2
ngn(ε/4)/(2|Kn|), and

l = dlog(1/τ)/αne in Algorithm 3.1. Then the following hold:

• (Accuracy) Assume τ ≤ ε/4 in the definition of αn. Then for an arbitrary graph Gn,

‖π̂v − πv‖1 < ε ∀ v ∈ Vn a.s.

• (Complexity) Assume Gn is the DCM, Assumption 3.2 holds, ρ > 1
1−κ in the definition

of αn (with κ from Assumption 3.2), and ∃ constants δ′ > κ and Dmax > 0 s.t.

P
[

max
k∈Kn

Dk > Dmax

∣∣∣∣Ωn

]
= O

(
n−δ

′
)
.

Then, letting CAlg3.1 denote the complexity of Algorithm 3.1,

E [CAlg3.1|Ωn] = O
(

max
{
E[∆(Kn, ε/14)]n(log n)3, nmax{1+κ+1/ρ,2+κ−δ′}

})
.

Consequently, ∃ c̄ < 2 such that

lim
n→∞

P [CAlg3.1 ≥ nc̄|Ωn] = 0.

Proof. See Appendix B.4.

50



We note that the E[∆(Kn, ε/14)n(log n)3] term4 in the complexity guarantee accounts for

all but Line 8 of Algorithm 3.1. Roughly, the proof shows that Approx-PageRank need only

be run ∆(Kn, ε/14) times, once for each node in Kn or {v ∈ Vn \Kn : Bv(Kn, ε/14) holds};
for other nodes v, πv can be well-approximated as a linear combination of {π̂k}k∈Kn . The

proof also shows that each run of Approx-PageRank has complexity linear in n; hence, if

instead ∆(Kn, ε/14) scaled linearly in n, Algorithm 3.1 would have n2 complexity. Because of

this, Theorem 3.2 should be viewed as a consequence of Theorem 3.1. On the other hand, the

nmax{1+κ+1/ρ,2+κ−δ′} term in the complexity guarantee accounts for the matrix multiplication

in Line 8 and requires the additional assumptions stated in Theorem 3.2.

One issue we have not addressed is how to optimally choose Kn; our analysis simply says

if an appropriate Kn exists, then the algorithm has subquadratic complexity. We believe

choosing nodes of highest in-degree asKn is a good choice; see Section 3.6 for empirical results

and Section 3.7.1 for some theoretical evidence. However, an important (though, we believe,

a very difficult) question for future work is as follows: given ε > 0, how can one optimally

choose Kn = Kn(ε) to ensure ε-accuracy while minimizing complexity in Algorithm 3.1?

Finally, we note Algorithm 3.1 can be easily modified to obtain a variant that uses

precomputation and that proceeds as follows:

• Offline stage: Run Lines 1-4 of Algorithm 3.1; store {π̂lk}k∈Kn and {µ̂k(k)}u∈Vn,k∈Kn .

• Online stage: When an estimate of πk, k ∈ Kn is needed, return π̂lk; when an estimate

of πv, v /∈ Kn is needed, run Lines 6-8 of Algorithm 3.1.

In Appendix B.4.3, we show that, under the assumptions of Theorem 3.2, the offline stage

requires O(n1+κ) storage, the estimate returned during the online stage has l1 error bounded

by ε, and for s ∼ Vn uniformly, the online stage has complexity

O
(

max
{

∆(Kn, ε/14) log n, nκ+max{1/ρ,1−δ′}
})

.

Note that this storage is subquadratic, strictly better than the n2 storage required the store

the PPR matrix itself. Additionally, with κ < max{δ′, 1 − 1/ρ} per the assumptions of

Theorem 3.2, the online stage has sublinear complexity, strictly better than the existing

approach of running Approx-PageRank for s ∼ Vn uniformly online (O(n log n) complexity).

3.5.2 Comparison to other algorithms

In the previous section, we showed Algorithm 3.1 estimates {πv}v∈Vn with constant

error in the l1 norm for each vector and has complexity o(n2) on the DCM (under ap-

propriate assumptions). To the best of our knowledge, this complexity bound is strictly

4∆(Kn, ε/14) appears because the if statement in Algorithm 3.1 relies on an estimate of π̃v(Kn); if π̃v(Kn)
were known, ∆(Kn, ε), a smaller quantity, would instead appear. The factor 14 has no particular significance.
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better than any in the literature. In fact, the best existing algorithm is to simply run

Approx-PageRank(v, ε) ∀ v ∈ Vn, which, by Lemma B.11 in Appendix B.4, guarantees con-

stant l1 error and has complexity O(n2 log n) when Ln = O(n), αn = Θ(1/ log n) (i.e. in

the setting of Theorem 3.2). Alternatively, the original version of Approx-Contributions

from [32] guarantees l∞ error bounded by εn with complexity O(Ln/(nαnεn)) for a uniformly

random node (see Theorem 2 in [62]). Hence, running this algorithm for all nodes, setting

εn = ε/n to obtain constant l1 error, and taking Ln = O(n), αn = Θ(1/ log n) as in our set-

ting, this complexity is also O(n2 log n). Similar complexity bounds are provided in [63] for

algorithms based on deterministic rounding and randomized sketching; namely, [63] shows all

PPR vectors can be estimated accurately in l∞ with O(n log n/εn) complexity, which again

is O(n2 log n) if we desire an l1 guarantee. We do concede that these O(n2 log n) bounds only

require Ln = O(n), while ours pertains to a class of random graphs; however, we believe this

class contains reasonable models for many graphs of interest (see Section 3.7.3).

We also note we conditioned on Ωn for the complexity guarantee of Theorem 3.2 because,

if instead ΩC
n holds, we could have ∆(Kn, ε/14) = O(n), Ln = O(n2), in which case Algorithm

3.1 will have complexityO(n3 log n), the same as the existing methods. However, if we assume

Ln = O(n) with probability 1, we can write

E [CAlg3.1] ≤ E [CAlg3.1|Ωn] +O(n2 log n)P
[
ΩC
n

]
= o(n2),

where the first term is o(n2) by Theorem 3.2 and the second is o(n2) since P[ΩC
n ] = O(n−δ) by

Assumption 3.1. Thus, when Ln = O(n) with probability 1, Algorithm 3.1 is subquadratic

and thus strictly better than existing methods without conditioning on Ωn.

Another line of work worth mentioning includes [64, 65, 66, 67]. For example, [64] provides

algorithms to estimate the solution of Ax = b in nearly-linear time, which in principle could

be run separately across nodes to estimate Π in nearly-quadratic time. However, it is unclear

how to exploit dependencies across rows of Π in this scheme, and thus unclear if this can

be improved to subquadratic time like our algorithm. Also, [64] bounds ‖x̂ − x‖A, where

x̂ is the estimated solution and ‖y‖A =
√
yTAy for a vector y; this accuracy guarantee is

somewhat unnatural for PPR vectors. In a related line of work, [68, 69] devise algorithms

to estimate graph-related primitives including PPR, stationary distributions, and commute

times in nearly-linear time; for PPR, l2 accuracy guarantees are provided.

As mentioned in Sections 3.1 and 3.3, our algorithm is similar to those proposed in [16, 17].

Jeh and Widom’s scheme from [16] follows the description from the beginning of Section

3.5.1: first, estimate the hub PPR vectors {πk}k∈Kn and the weights {π̃v(k)}v∈Vn\Kn,k∈Kn ;

second, for v /∈ Kn, approximate πv as a linear combination via (3.7). The estimation in
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the first step uses dynamic programming (DP) algorithms similar in spirit to the methods

Approx-PageRank and Approx-Contributions that we use. Berkhin in [17] similarly uses

hub PPR vectors as a basis for estimating other PPR vectors, with dynamic programming

algorithms again used for the primitive PPR estimation. The key difference is that Berkhin’s

scheme involves bookmark-coloring vectors (BCVs), which are essentially sparse estimates of

PPR vectors; it is shown empirically in [17] that controlling the sparsity of these BCVs

reduces the runtime of Jeh and Widom’s scheme. However, in the case of both papers, no

complexity analysis is provided for the primitive DP algorithms. Moreover, even if guarantees

did exist for these DP algorithms, non-trivial subtleties arise when using such guarantees

to analyze the overall estimation scheme, as was seen in Section 3.5.1; these subtleties were

not addressed in [16] or [17] either. In contrast, our algorithm and its analysis provide the

guarantees one would desire in practice: an accuracy guarantee for all estimates, a complexity

guarantee for certain choices of Kn, and evidence for why choosing Kn with high in-degree is

a good choice. It is also worth noting that Berkhin’s idea to improve runtime by controlling

sparsity is the same idea we use in this chapter; see Section 3.5.1.

Another relevant work is [36]. Here the authors provide an algorithm to estimate πv s.t.

(1− ε′)πv(u)− εn ≤ π̂v(u) ≤ (1 + ε′)πv(u) + εn ∀ u ∈ Vn.

The complexity of this scheme is O((log n)2 log(1/εn)/(εn(ε′)2)) per node. Hence, set-

ting εn = ε/n for some constant ε, setting ε′ small and independent of n, and running

this scheme for all nodes gives complexity O(n2(log n)3), similar to Approx-PageRank and

Approx-Contributions. However, the multiplicative error term ε′ cannot be avoided, so this

is not quite an l1 error guarantee. The analysis in [36] also shows via a tight lower bound

that the complexity bound is within a polylogarithmic factor of the optimal. Naively using

their lower bound independently for each node would lead to the erroneous claim that any

algorithm for estimating the PPR matrix should have complexity at least Ω(n2). Critically,

though, properly accounting for the dependence of the PPR vectors based on the common

underlying graph allows us to do better than this naive conjectured lower bound.

We also believe our analysis can used to tighten complexity bounds of other algorithms,

similar to the analysis we conducted here for a modified version of the algorithm from

[16]. For example, the algorithms from Chapter II and [15] estimate πv(u) with complexity

O(
√
n log n) when Ln = O(n), αn = Θ(1/ log n), and with accuracy guarantee

|π̂v(u)− πv(u)| ≤

επv(u), πv(u) ≥ 1/n

2e/n, πv(u) < 1/n
, (3.9)
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i.e. a relative error bound when πv(u) is large and an absolute error guarantee otherwise.

If one desires this accuracy guarantee for the entire matrix {πv(u)}v,u∈Vn , the scheme can

be run separately for every v, u pair at complexity O(n2.5 log n) (which is strictly better

than computing the matrix via the inverse in (1.2)). However, the basic approach we have

used here could also be used to reduce this complexity; namely, by first using the scheme to

estimate {πk}k∈Kn and {π̃v(k)}k∈Kn and then using (3.7) to estimate {πv(u)}v,u∈Vn\Kn . The

challenge of designing such an algorithm would be similar to the challenge we encountered

in this section. Specifically, we had to carefully design certain aspects of Algorithm 3.1

– “sparsifying” the matrix {π̂k}k∈Kn and checking if ˆ̃πv(Kn) exceeds gn(ε1) – to ensure

that estimation errors pertaining to {πk}k∈Kn and {π̃v(k)}k∈Kn did not propagate through

to estimates of {πv(u)}v,u∈Vn\Kn and render them highly inaccurate. Similarly, using our

framework to estimate the PPR matrix using the algorithm of [15] would require a careful

analysis of how the errors in (3.9) propagate through to later estimates. To summarize,

we believe our basic approach can be used to design modified versions of other existing

algorithms; however, we suspect this is nontrivial, suggesting an avenue for future work.

As mentioned in Section 3.2.3, our algorithm also bears resemblance to nonnegative

matrix factorization (NMF), which, given X ∈ Rn×m, seeks W ∈ Rn×r, H ∈ Rr×m such that

‖X−WH‖ is small (where typically r � m,n). This is directly analogous to our algorithm.

Indeed, Algorithm 3.2 generates W ∈ Rn×∆(Kn,ε/14), H ∈ R∆(Kn,ε/14)×n satisfying

‖(Πn − αnI)−WH‖∞ < ε,

where ‖A‖∞ = maxi ‖ai‖1 for a matrix A with rows {ai}. However, there are some key

differences between NMF and our scheme. First, NMF assumes X is known, while in our

algorithm Πn − αnI (which plays the role of X) is unknown. This means that standard

NMF algorithms, which compute gradients dependent on X to iteratively update W,H

(see e.g. [70]), do not apply. Additionally, computing these gradients requires the objective

function ‖X − WH‖ to be differentiable; in contrast, we use the non-differentiable norm

‖ · ‖∞, which further prohibits use of standard NMF algorithms. Finally, NMF chooses the

dimensions of W,H a priori, while our algorithm adjusts r at runtime so as to minimize

complexity (ultimately yielding r = ∆(Kn, ε/14) as above). In short, our algorithm can be

viewed as a variant of NMF, tailored to the PPR setting in a manner that guarantees high

accuracy and low complexity. We discuss this in more detail in Appendix B.8.1. We also that

NMF with an objective function similar to ours has been studied in the contextual bandits

literature. Namely, [71] analyzes a model for which Xi,j gives the mean reward of pulling

arm i given context j. The authors propose a regret-minimization algorithm to minimize
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‖X −WH‖∞,∞, where ‖A‖∞,∞ is the maximal element (in absolute value) of a matrix A.

However, [71] assumes a small dimensionality by assuming a particular generative model for

W,H; in contrast, this chapter develops conditions to prove a small dimensionality.

In light of this, we mention another matrix problem of relevance, low-rank approximation.

For low-rank approximation, we are given a matrix X ∈ Rn×m and aim to solve

inf
X̂∈Rn×m

‖X − X̂‖ s.t. rank(X̂) ≤ r,

for some r ∈ {1, . . . , n} (for example, when ‖ · ‖ is the spectral or Frobenius norm, the

minimizing X̂ is a truncated singular value decomposition , see e.g. Section 2.4 of [72]). A

related problem, which can be viewed as the dual of low-rank approximation, is

min
X̂∈Rn×m

rank(X̂) s.t. ‖X − X̂‖ < ε. (3.10)

Note our dimensionality measure (3.1) is a variant of (3.10) in which the minimum is taken

over a restricted class of matrices (those containing a subset of rows of the original matrix,

in addition to linear combinations of this subset). Hence, as in the above discussion of NMF,

our scheme can be viewed as a tailored version of low-rank approximation.

Finally, we note estimating the PPR matrix can be viewed as a special case of the

algorithm from [73], which studies representation learning on graphs. However, we believe

this algorithm offers worse performance than ours in the PPR setting; see Appendix B.8.2.

3.6 Experiments

In this section, we illustrate various aspects of our analysis with some empirical results.

Our goal is to demonstrate that our theoretical findings – namely, that πs can be well-

approximated as a linear combination of {πk}k∈Kn (Lemma 3.1) and that PPR dimensionality

is small (Theorem 3.1) – may still hold when our assumptions fail. To this end, we will

estimate our dimensionality measure for two real graphs, as well as showing that πs is indeed

well-approximated for a wider class of real graphs. Additionally, since our theoretical results

are asymptotic statements, we will investigate the relevant quantities as n grows for the

DCM. We note that, unless otherwise mentioned, we choose Kn as the nκ nodes of highest

in-degree, per the discussion of Section 3.7.1 (with κ specified for each experiment).

We first estimate ∆(Kn, ε) for a range of ε when κ = 0.8 (0.8 was chosen as we found

it roughly balanced the two summands in (3.1)). For this, we use two datasets from the

Stanford Network Analysis Platform (SNAP) [43] that align with the motivating applications

of Section 1.2.3: soc-Pokec, a social network, and web-Google, a partial web graph (see
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(a) Histograms of the error term (3.11) (b) ∆(Kn, ε) is a small fraction of n when ε = 1−αn

3
(ensuring estimation error is reduced by a factor of 3)

Figure 3.1: Dimensionality for social network soc-Pokec and partial web crawl web-Google.

Appendix B.7.1 for details). We set αn = 1/ log n, and, ∀ v /∈ Kn, compute a bound on∥∥∥∥πv − (αneTv +

∑
k∈Kn π̃v(k)πk

αn + (1− αn)π̃v(Kn)

)∥∥∥∥
1

(3.11)

using a power iteration scheme described in Appendix B.7.2. Adding n0.8 to the number of

v ∈ Vn \ Kn for which this bound exceeds ε then gives a bound on ∆(Kn, ε). Figure 3.1a

shows histograms of the error bound, while Figure 3.1b shows our dimensionality measure.

We highlight two points on Figure 3.1b, ((1−αn)/3, 0.09) for soc-Pokec and ((1−αn)/3, 0.15)

for web-Google. We believe (1−αn)/3 is a reasonable choice of ε because (as proven in (B.31))

(3.11) is bounded by 1 − αn; hence, this choice of ε reduces the worst-case error term by

a factor of 3. Note ∆(Kn, (1 − αn)/3) is small for both datasets – 9% and 15% of nodes,

respectively. This suggests that while Theorem 3.1 does not apply, the dimension of {πv}v∈Vn
appears small, and that while Theorem 3.2 does not apply, Algorithm 3.1 should be efficient.

We offer several other remarks on Figure 3.1. First, as proven in Appendix B.7.2, (3.11)

is zero for v with no outgoing neighbors in Vn \Kn, i.e. for any v ∈ Vn,0, where

Vn,0 = {v /∈ Kn : 6 ∃ (w,w′) ∈ En s.t. w = v, w′ /∈ Kn} . (3.12)

As a result, the “spikes” at ε = 0 in Figure 3.1a have height |Vn,0|/n, and ∆(Kn, 0) = n−|Vn,0|
in Figure 3.1b. Next, the aforementioned claim that (3.11) is bounded by 1 − αn explains

the spikes at right in Figure 3.1a and the “dips” at right in Figure 3.1b (both of which occur

at ε = 1 − αn). Finally, we observe that, between the spikes at ε = 0 and ε = 1 − αn, the

soc-Pokec histogram quickly decays beyond ε ≈ 0.3; this corresponds to the dimensionality

being nearly flat beyond ε ≈ 0.3 in Figure 3.1b.

Computing (3.11) for every v ∈ Vn \Kn requires significant computational time, but (as
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(a) Average error decreases as |Kn| grows for a variety
of social networks and web graphs.

(b) For s ∼ Vn \ Kn uniformly on the DCM with
power law in-degrees, error decreases as n grows.

Figure 3.2: Average error experiments for real and synthetic datasets.

described in Appendix B.7.2) we can also compute a bound on the average error

1

|Vn \Kn|
∑

v∈Vn\Kn

∥∥∥∥πv − (αneTv +

∑
k∈Kn π̃v(k)πk

αn + (1− αn)π̃v(Kn)

)∥∥∥∥
1

(3.13)

much more efficiently. Hence, we show this average error bound for a wider variety of graphs

in Figure 3.2a. Interestingly, the social networks soc-LiveJournal1 and soc-Pokec have similar

behavior, as do the web graphs web-BerkStan and web-Stanford (web-Google is somewhat

of an outlier; we believe this is in part because its |Vn,0| is largest).

We next replicate this average error experiment for two synthetic graphs, which allows us

to observe how the bound on (3.13) evolves as n grows. The first graph we consider is a DCM

with power law in-degrees with exponent 2, i.e. P[Nv = i] ∝ i−2 ∀ v ∈ Vn, i ∈ {1, 2, . . . , n},
and out-degrees generated as in Algorithm 3.4 from Section 3.7.3 (which, in expectation,

gives constant out-degree to each node). We note this in-degree model is a common one for

many graphs observed in practice (see Section 3.7.2 for details); however, Lemma 3.1 does

not apply, as the in-degree sequence does not satisfy all of our assumptions (for instance,

the expected in-degree does not converge). Nevertheless, Figure 3.2b shows that the average

error bound decays as n grows across all choices of κ. We suspect this is in part because,

while the degree sequence does not satisfy all of our assumptions, empirical results show that

it contains a vanishing fraction of nodes with a non-vanishing fraction of edges (see Section

3.7.2). We believe this to be the most important of our assumptions.

Finally, we replicate the average error experiment with the sequence (Nn,Dn,Un) gen-

erated via Algorithm 3.4 in Section 3.7.3; this sequence provably satisfies Assumption 3.2.

We note that Algorithm 3.4 chooses |Kn| in a manner that guarantees E[|Kn|] = nκ (unlike

previous experiments, for which |Kn| = nκ by design). Hence, in Figure 3.3a, we show the

average error bound for a variety of E[|Kn|] choices. For choices of κ at or above 0.5, the
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Figure 3.3: For s ∼ Vn \ Kn uniformly on the DCM with the degrees from Algorithm 3.4,
error decreases as n grows.

average error bound slightly decays as n grows (though less notably than in Figure 3.2b).

We also conduct an experiment for which (Nn,Dn) is generated via Algorithm 3.4 but Kn

is chosen as the nodes of highest in-degree; results are shown in Figure 3.3b. The average

error bound is slightly smaller for each κ value than in Figure 3.3a; this again suggests that

Kn being the nodes of highest in-degree is indeed a good choice.

3.7 Discussion

Before closing the chapter, we discuss several other aspects of our analysis, including

the “optimal” choice of Kn, the restrictiveness of our assumptions, an example sequence

(Nn,Dn,Un) that satisfies our assumptions, a connection between our result and recent

work on mixing times, and a geometric interpretation of our dimensionality result.

3.7.1 Choice of hub nodes

A natural question is which choice of Kn gives the smallest exponent in Theorem 3.1. For

this, first note the exponent grows with κ and p and decays with δ (ε, τ , ρ, and ζ also appear

in the exponent, but all are independent of Kn). The growth with κ and p suggests a good

choice of Kn is a small set of nodes (small κ) containing a large fraction of instubs (small p).

In particular, this suggests choosing Kn to be the nodes with highest in-degree. We note the

authors of [16] heuristically choose Kn to be the nodes with highest global PageRank, and

we showed in Section 3.5 that the complexity of a similar algorithm relates to ∆(Kn, ε) on

the DCM. Since global PageRank is suspected to correlate closely with in-degree for many

graphs (see e.g. the aforementioned [51, 48, 50, 52, 53, 54] and the empirical works [74, 75]),

our analysis appears to validate this heuristic. However, it is difficult to prove that choosing

the highest in-degree nodes as Kn gives the smallest exponent, in part because exponent

decays with δ, which interacts with Kn more subtly (see Assumption 3.1).

Choosing Kn as nodes of high in-degree can also be motivated using results concerning
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the simple random walk on the DCM. In particular, it is known that the distribution of

this walk is close to the stationary distribution after Θ(log n) steps when starting from an

arbitrary node (Theorem 1 in [56]), but is close to stationarity after just a constant number

of steps when starting from the in-degree distribution (Theorem 3 in [56]).5 In other words,

the in-degree distribution is a good initial guess for the stationary distribution. This suggests

that high in-degree nodes are reached quickly on random walks. On the other hand, our

analysis states πv is close to a linear combination of {πk}k∈Kn when walks from v are likely to

hit Kn (see Appendix B.1.1). In summary, choosing high in-degree nodes as Kn means walks

are likely to reach Kn, which in turn means πv is likely well-approximated by {πk}k∈Kn .

3.7.2 Comments on assumptions

At a high level, our assumptions fall into two groups: the events {Ωn,i}5
i=1 in Assumption

3.1, which say that the degree sequence is sparse, and the event Ωn,6 in Assumption 3.1, which

(in light of Assumption 3.2) says that a vanishing fraction of nodes contains a non-vanishing

fraction of in-degrees. We discuss each of these in turn.

For the sparsity assumptions, we note {Ωn,i}3
i=1 in Assumption 3.1 are fairly standard

given our approach, which leverages the fact that the random graph is locally tree-like [76].

In fact, Ωn,3 is a weaker assumption than that required in e.g. [48]; see Appendix B.1.3 for

details. Next, we argue Ωn,4,Ωn,5 in Assumption 3.1 are not restrictive. For this, first note

that given Ωn,1 and Ωn,6 in Assumption 3.1, and since
∑n

h=1 Uh = Θ(n) by Assumption 3.2,

lim
n→∞

∑n
h=1 UhNh∑n
h=1 Uh

= lim
n→∞

∑n
h=1 UhNh∑n
h=1Nh

∑n
h=1Nh
n

1
n

∑n
h=1 Uh

= pη1 <∞,

i.e.
∑n

h=1 UhNh/
∑n

h=1 Uh converging to a finite limit is implied by other assumptions; addi-

tionally, Assumption 3.2 implicitly requires λ∗ = pη1. (We have written Ωn,5 as its own as-

sumption only out of convenience.) Similarly, Ωn,4 is essentially implied by
∑n

h=1 Uh = Θ(n)

and Ωn,1, since then the fraction in Ωn,4 satisfies∑n
h=1 UhDh∑n
h=1 Uh

≤
1
n

∑n
h=1Dh

1
n

∑n
h=1 Uh

−−−→
n→∞

η1 <∞.

For the remaining assumption, we recall that Ωn,6 requires
∑

v∈Vn UvNv/Ln to converge

to p < 1 with |Kn| sublinear by Assumption 3.2. We offer empirical evidence that this occurs

for certain graphs of interest. Specifically, in Figure 3.4a,
∑

v∈Vn UvNv/Ln remains constant

5These results require max{maxv∈Vn Dv,maxv∈Vn Nv} = O(1), which is a stronger sparsity condition than
we have assumed in this chapter. In fact, we suspect that max in-degree is not O(1) for many sequences to
which our results apply (see Sections 3.7.2 and 3.7.3), so this discussion is not entirely rigorous.
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(a) Kn is sublinear and contains a constant fraction
of instubs. (Here Kn are nodes of highest in-degree.)

(b) The in-degrees for Fig. 3.4a are similar to in-
degrees for the Twitter graph from [77]. (n ≈ 4×107.)

Figure 3.4: Ωn,6 is empirically satisfied for power law in-degrees similar to Twitter.

and strictly less than 1 as n grows, for a variety of sublinear |Kn| choices (here we take

Kn to be the nodes of highest in-degree, as in Section 3.6). For this plot, in-degrees were

sampled from a power law with exponent 2, i.e. P[Nv = i] ∝ i−2. This in-degree distribution

is commonly seen in real graphs and has been studied extensively, see e.g. [78, 79]. As an

example, Figure 3.4b compares the histogram of these in-degrees with the in-degrees of the

Twitter graph (available at [77] from WebGraph [80]). Both histograms are linear with slopes

≈ −2 over x ∈ [10, 5000]. In short, a common model of in-degree distributions for graphs

aligning with the applications of Section 1.2.3 empirically satisfies Ωn,6 with |Kn| sublinear.

Ultimately, we believe this last assumption is fundamentally necessary, while the sparsity

assumptions may be artifacts of our analysis. To illustrate this, we compare the same power

law in-degree sequence to a sequence of binomial in-degrees with parameters n and 10/n

(i.e. Poisson(10) in-degrees asymptotically). For both sequences, we first realize in-degrees

independently and choose Kn to be the nodes of highest in-degree; we then generate out-

degrees as in Section 3.7.3. In Figure 3.5a, we observe the moments appearing in {Ωn,i}5
i=1

grow without bound as n grows for the power law case but converge to constants for the

binomial case. On the other hand, Figure 3.5b shows the quantity appearing in Ωn,6 converges

to p < 1 for the power law case but rapidly approaches 1 for the binomial case. In short,

the sparsity assumptions fail while the remaining assumption holds for power law in-degrees;

the opposite is true for binomial in-degrees. From Figure 3.5c, we observe the average

error bound (3.13) (computed as in Section 3.6) decays to 0 for the power law case but

grows to 1 for the binomial case. Hence, we ultimately conclude the following: when the

sparsity assumptions fail but the remaining assumption holds, πv, v /∈ Kn is typically well-

approximated as a linear combination of {πk}k∈Kn , so our dimensionality measure should be

small; when sparsity holds but the remaining assumption fails, the opposite is true. This

suggests that the sparsity assumption is a less necessary assumption.
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(a) Assumption 3.1 requires the quantities in {Ωn,i}5i=1 to converge to finite limits; this fails for the power
law case (top row) but occurs for the binomial case (bottom row)

(b) Assumption 3.1 requires the quantity in Ωn,6 to
converge to p < 1; this holds for the power law case
(left) but fails for the binomial case (right)

(c) The average error bound (3.13) decays to 0 for
the power law case (left) but increases to 1 for the
binomial case (right)

Figure 3.5: Power law in-degrees satisfy only our most crucial assumption (Fig. 3.5a,3.5b),
but average estimation error decreases, suggesting low dimensionality (Fig. 3.5c);
the opposite is true for binomial in-degrees.
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3.7.3 Example degree sequence

We next provide an example of a degree sequence satisfying Assumption 3.2. This is

meant as a coarse model of a network like Twitter: roughly speaking, it will contain a

small number of nodes with huge in-degrees (corresponding to celebrities on Twitter with

millions of followers) and a large number of nodes with small in-degree (corresponding to

“normal” users with tens or hundreds of followers); additionally, all nodes will have out-

degrees that (in expectation) do not scale with n (a given Twitter user does not follow a

sizeable portion of all users). Specifically, given c1, c2 > 0 and κ, l1, l2 ∈ (0, 1), we assign

degrees and choose Kn via Algorithm 3.4. In words, we assign in-degrees as a mixture of two

(truncated) power laws; after realizing in-degrees, each node initially receives one outstub,

and the remaining
∑

w∈Vn(Nw − 1) outstubs are each assigned uniformly. (Note that this

guarantees Nv, Dv ∈ N ∀ v ∈ Vn and
∑

v∈Vn Nv =
∑

v∈Vn Dv, as we have assumed throughout

the chapter.) Proposition 3.2 states that the resulting sequence satisfies our assumptions.

Algorithm 3.4: Example degree sequence construction

1 ∀ v ∈ Vn, let Uv ∼ Bernoulli(1− nκ−1) and sample Nv as

P[Nv = i|Uv = 1] =
i−c1∑dnl1e

j=1 j−c1
∀ i ∈ {1, . . . , dnl1e}

P[Nv = i|Uv = 0] =
i−c2∑dnl2e

j=1 j−c2
∀ i ∈ {1, . . . , dnl2e}

2 Sample νi ∼ Vn uniformly ∀ i ∈ {1, 2, . . . ,
∑

w∈Vn(Nw − 1)}
3 ∀ v ∈ Vn, set Dv = 1 +

∑∑
w∈Vn (Nw−1)

i=1 1(νi = v)

Proposition 3.2. Assume c1 ∈ (3, 4), c2 ∈ (1, 2), l1 ∈ (0, 1/(5 − c1)), l2 ∈ (0, 1), and

κ = 1− l2(2− c2). Then (Nn,Dn,Un) generated by Algorithm 3.4 satisfies Assumption 3.2.

Proof. The proof is tedious but elementary and can be found in [45, Appendix I].

As an example of parameter choices for Proposition 3.2, we can take c1 = 3.1, c2 = 1.1,

l1 = 0.5, l2 = 0.9, and κ = 0.19. In this case, nodes belonging to Vn \ Kn have maximum

in-degree n0.5, while nodes in Kn have maximum in-degree n0.9; additionally, the in-degree

distribution for Kn has a heavier tail (since c2 < c1). This is consistent with the discussion

of Section 3.7.1, where we argued Kn should contain high in-degree nodes.

We note that, per Figure 3.4, a more appropriate model for the Twitter in-degree sequence

would be a power law with exponent ≈ 2. However, Assumption 3.2 requires the second

moment of Nv to converge for v ∈ Vn \ Kn; when Nv follows a power law for such v, this
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requires the exponent to exceed 3 (hence the requirement c1 > 3 in Proposition 3.2). On

the other hand, recall that our analysis uses a result from [48] but with weaker assumptions.

Specifically, we only require
∑

v UvN
2
v = O(n), whereas [48] requires

∑
vN

2
v = O(n) (see

Appendix B.1.3). Weakening the assumption in this manner allows for Nv, v ∈ Kn to follow

a power law with exponent c2 ∈ (1, 2) in Proposition 3.2. This is turn yields an in-degree

distribution with a heavier tail than if all in-degrees were restricted to power law with

exponent exceeding 3, which allows our model to more closely resemble the exponent ≈ 2

case. In particular, c1 ∈ (3, 4), c2 ∈ (1, 2) yields an in-degree sequence with bounded mean

but unbounded variance as n→∞, as does a power law with e.g. exponent 2.1.

Finally, we note c1 < 4 is not necessary to prove Assumption 3.2 holds but allows us to

avoid addressing separate cases in the proof; also, taking c1 > 4 would yield a less accurate

model of power law sequences observed in practice, which often have exponents ≈ 2.

3.7.4 Connection to mixing times

We can also motivate our choice of αn in terms of the mixing time of the simple random

walk on Gn. First, we let π denote the stationary distribution of this walk. For any v ∈ N,

and for a graph of n nodes, we let πv be the uniform distribution on Vn for n < v, and we

define πv as in Section 3.2.2 for n ≥ v. (This ensures πv is well-defined in what follows.) We

can then prove the following, which shows that πv is (asymptotically) indistinguishable from

π when αn = o(1/ log n) and when a certain mixing condition is satisfied.

Proposition 3.3. Let v ∈ N, m = Θ(log n), αn = o(1/ log n), and ε > 0. Then for n

sufficiently large, we have for any Gn,

‖πv − π‖1 ≤ 3 max
w∈Vn

∥∥eTwPm − π
∥∥

1
+ ε.

As a consequence, if

max
w∈Vn

∥∥eTwPm − π
∥∥

1

P−−−→
n→∞

0, (3.14)

then ‖πv − π‖1
P−−−→

n→∞
0, where

P−→ denotes convergence in probability.

Proof. See Appendix B.6.

Proposition 3.3 states that when αn log n→ 0 and the random walk on Gn mixes in log n

steps (in the sense of (3.14)), πv is close to π in l1 (for large n and with high probability). Put

differently, Πn is close to the rank one matrix 1nπ in this case, suggesting a dimensionality of

1. This is in fact somewhat obvious: since the first restart at v on the Markov chain defining

πv occurs at time 1/αn (in expectation), the chain reaches stationarity after log n steps but

does not restart at v until e.g. (log n)2 steps, so πv should not depend on v.
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We believe that the mixing condition (3.14) holds for our graph model. This belief is

based on recent work by Bordenave, Caputo, and Salez, who prove (3.14) for a class of

sparse, randomly-generated Markov chains (Theorem 1 in [81]). In particular, this class

includes random walks on random graphs with a given degree sequence (i.e. the DCM). The

key differences between this model and ours are (1) we permit multi-edges, while the model

in [81] does not, and (2) Dv > 1, Dv = O(1) ∀ v ∈ Vn in the [81] model.6 We note that

the condition Dv > 1, Dv = O(1) can be added to Assumption 3.1 without contradiction;

Assumption 3.2 then implies a graph with a few huge in-degrees, mostly small in-degrees,

and all small out-degrees, as in Section 3.7.3.

We have thus far argued the dimensionality of {πv}v∈Vn grows as nc for some c ∈ (0, 1)

when αn = Θ(1/ log n) (Theorem 3.1) and is constant when αn = o(1/ log n) (Proposition

3.3). A third case is αn = ω(1/ log n). For this case, we first note [81, 56] prove a matching

lower bound to (3.14), i.e. they show for some m′ = Θ(log n),

min
w∈Vn

‖eTwPm′ − π‖TV
P−−−→

n→∞
1,

where ‖·‖TV denotes total variation distance. Hence, the number of restarts at v before mix-

ing scales with αn log n in expectation, which is unbounded in the case αn = ω(1/ log n). In

contrast, only a constant number of restarts at v occur before mixing in the αn = Θ(1/ log n)

case. For this reason, we conjecture that ∆(Kn, ε) behaves fundamentally differently if

αn = ω(1/ log n), perhaps dominating nc for any c ∈ (0, 1) (e.g., n/ log n or even n).

Ultimately, this discussion further explains our choice of αn: if we set αn much smaller, we

obtain dimensionality 1; if we set αn much larger, we expect to obtain a much larger dimen-

sionality. Hence, our choice of αn yields the strongest possible result before trivial behavior

occurs. Finally, we note this “trichotomy” – O(1), O(nc), and Ω(n/ log n) dimensionality if

αn is very small, moderate, or very large – is further explored in Chapter V.

3.7.5 Geometric interpretation

Before closing, we note Theorem 3.1 has a simple geometric interpretation. To see this,

first recall that for all but a vanishing fraction of v ∈ Vn \Kn, the theorem states∥∥∥∥πv − ∑
k∈Kn π̃v(k)πk

αn + (1− αn)π̃v(Kn)

∥∥∥∥ < ε.

6For simplicity, we stated a slightly stronger condition than requiredin [81]; see Example 1 in [81] for details.
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Figure 3.6: As n grows, most of {πv}v∈Vn\Kn (green dots) concentrate near the convex hull
of {πk}k∈Kn (blue dots/lines) (a few of {πv}v∈Vn\Kn (red dots) can be far away).
Further, since |Kn| shrinks relative to n, the convex hull of {πk}k∈Kn shrinks
relative to the n-dimensional simplex.

Furthermore, for such v, we have by (B.81) in Appendix B.4,

π̃v(Kn)

αn + (1− αn)π̃v(Kn)
≥ 1

ε+αn(2−(ε+αn))
1−(ε+αn)

+ (1− αn)
. (3.15)

Note the left side of (3.15) is upper bounded by 1, while the right side tends to 1 − ε

as n → ∞. The previous two equations can then be interpreted as follows: setting ε

arbitrarily small, and letting n grow large, πv is arbitrarily close to a linear combination

{πk}k∈Kn ; furthermore, the weights for the linear combination are nonnegative and their

sum is arbitrarily close to 1. Taken together, πv is arbitrarily close to the convex hull of

{πk}k∈Kn . Additionally, because Bv(Kn, ε) fails with high probability, all but a vanishing

fraction of {πv}v∈Vn are arbitrarily close to this convex hull. Finally, because |Kn| scales

sublinearly in n, this convex hull is a low dimensional subset of the n-dimensional simplex

to which {πv}v∈Vn belong. Hence, beyond describing the dimensionality of the set of PPR

vectors, our dimensionality result also describes the space in which most of these vectors

reside. This interpretation is depicted graphically in Figure 3.6; we note this figure is simply

an illustration of the preceding paragraph and was not generated using actual PPR vectors.7

3.8 Conclusions and future directions

In this chapter, we argued (analytically for the DCM and empirically for other graphs)

that the dimensionality of the PPR matrix scales sublinearly in n. We also used our analysis

to bound the complexity of an algorithm to compute all PPR vectors, which is similar to

that found in [16]. Our analysis suggests several avenues for future work. First, the proof of

7Generating such a figure with actual PPR vectors is difficult because n-dimensional vectors must be projected
into 2D space while roughly preserving l1 distances, and such a projection is not well understood [82, 83].
Appendix B.7.4 includes a figure obtained from actual PPR vectors, but it is less illustrative.

65



Lemma 3.1 can be modified to analyze the tail of the l∞ error (this would essentially involve

replacing Lemma B.5 with a tail bound on a maximum instead of a sum). Hence, bounding

absolute error for the estimate of πs(v) for any v ∈ Vn is a straightforward extension; a less

immediate variant would involve bounding relative error. Second, examining PPR dimen-

sionality for other random graph models may be of interest. For example, several papers

have analyzed PPR on preferential attachment models [84, 85]; we suspect a dimensionality

analysis for such graphs would yield a message similar to this chapter (Kn should contain

nodes with high in-degrees). A more interesting class of graphs would be from the stochastic

block model; here it may be more beneficial to choose Kn such that each community contains

a nonempty subset of Kn. Finally, as discussed in Section 3.5.2, we believe our analysis and

our approach to analyzing the algorithm from [16] can be used to design improved versions

of existing algorithms and derive tighter complexity bounds.
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CHAPTER IV

Empirical Policy Evaluation with Supergraphs

Important remark on notation: In this chapter, we use notation from the reinforcement

learning literature: π will denote a policy, not to be confused with the PageRank vector used

in other chapters, and the roles of α and 1− α are reversed compared to other chapters.

4.1 Introduction

Reinforcement learning (RL) is a machine learning paradigm with potential for impact in

many applications. At its most basic level, RL studies autonomous agents interacting with

uncertain environments, by taking actions and observing the effects of those actions, in hopes

of achieving some goal. Mathematically, this is often cast in the following (finite, discrete-

time) Markov decision process (MDP) model. Let S and A be finite sets called the state

space and action space, respectively; for simplicity, we let S = {1, . . . , S} and A = {1, . . . , A}
for some S,A ∈ N. If the current state is s ∈ S and the agent takes action a ∈ A, it incurs

instantaneous cost c(s, a) ∈ R+ and transitions to state s′ ∈ S with probability Q(s′|s, a).

Given discount factor α ∈ (0, 1), the infinite horizon discounted cost problem is

inf
π
vπ(s) = Eπ

[
(1− α)

∞∑
t=0

αtc(St, At)

∣∣∣∣∣S0 = s

]
, (4.1)

where the infimum is over stationary, deterministic, Markov policies π : S → A, i.e. mappings

from the current state St to the current action At. It is well known that one can restrict

to such policies without loss of optimality (see e.g. [86, Ch. 8]). Also, it is clear that each

such policy π induces a transition matrix Qπ(s, s′) = Q(s′|s, π(s)) and an instantaneous cost

vector cπ(s) = c(s, π(s)) that depend only on the current state s. From this observation, one

can use (4.1) to show that the vector vπ = {vπ(s)}s∈S satisfies

vπ = (1− α)
∞∑
t=0

αtQt
πcπ = (1− α)(I − αQπ)−1cπ. (4.2)
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Assuming Q is known, several classical algorithms can be used to solve (4.1). For example,

the policy iteration algorithm (see e.g. [86, Ch. 8]) solves (4.1) by iteratively computing (4.2)

(the policy evaluation step) and greedily updating π (the policy improvement step). In the RL

setting, however, one models the uncertainty of the environment by incomplete knowledge of

Q. More specifically, Q is not known explicitly, but given state-action pair (s, a) ∈ S×A, the

agent can obtain samples from Q(·|s, a). The empirical dynamic programming approach thus

adapts algorithms from the classical setting to the RL setting by replacing terms involving

Q with empirical estimates (see e.g. [87, 88, 89, 90], and in particular [19] for the discounted

cost problem). For instance, the policy evaluation step (4.2) becomes an empirical policy

evaluation step, wherein (4.2) is estimated via samples from Qπ(s, ·) = Q(·|s, π(s)).

In this chapter, we restrict attention to empirical policy evaluation. The policy π will

thus be fixed for the remainder of the chapter, so we dispense with this subscript in (4.2) and

(with slight abuse of notation) define our problem as follows. Let discount factor α ∈ (0, 1)

and cost vector c ∈ RS
+ be given, and let Q be an unknown S × S row stochastic matrix.

Our goal is to devise an algorithm to estimate the value function

v = (1− α)
∞∑
t=0

αtQtc = (1− α)(I − αQ)−1c. (4.3)

while accessing Q via samples, i.e. the algorithm has a subroutine which, given s ∈ S,

returns a sample from Q(s, ·) (the s-th row of Q, a probability distribution over S). Clearly,

one can obtain an arbitrarily accurate estimate of v with enough samples. However, in RL

applications this sampling requires costly interaction with the environment, and thus we face

a trade-off between accuracy and sample complexity.

4.1.1 Conceptual motivation of our algorithms

To motivate our approach, we first discuss the existing approach from [19]. Let {Wt}∞t=0

be a Markov chain with transition matrix Q, fix s ∈ S and T ∈ N, and rewrite (4.3) as

v(s) = (1− α)
T−1∑
t=0

αtE[c(Wt)|W0 = s] +O
(
‖c‖∞αT

)
. (4.4)

Here the O(‖c‖∞αT ) bias can be made small if T is chosen large, and the first term can

be estimated by simulating length-T trajectories. Specifically, let {W s,i
t }T−1

t=0 be a trajectory

obtained as follows: set W s,i
0 = s and, for t ∈ {1, . . . , T − 1}, sample W s,i

t from Q(W s,i
t−1, ·).

Letting m ∈ N and repeating this for each i ∈ {1, . . . ,m}, we obtain an unbiased estimate of

the first term in (4.4), namely 1
m

∑m
i=1(1−α)

∑T−1
t=0 α

tc(W s,i
t ). Repeating this across s yields

an estimate of v, and for large m one can show ‖v̂ − v‖ is small with high probability. We
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discuss this more in Section 4.2.4; for now, we simply note that this approach fundamentally

requires Ω(S) samples, as we must simulate trajectories beginning at each states.

At a high level, this approach explores the T -step outgoing neighborhood of each state

s, i.e. those states reached with positive probability within T steps when the chain starts at

s. We refer to this as forward exploration, as it is roughly analogous to conducting a T -step

breadth-first-search forward (i.e. along outgoing edges in the graph induced by Q) from each

state. Note that when Q is known, estimating v by computing the first T powers of Q involves

a similar breadth-first-search. But when Q is known, it is more computationally efficient to

use the power iteration: initialize v̂0 = (1− α)c and, given v̂t−1, set v̂t = (1− α)c+ αQv̂t−1,

so that v̂t = (1−α)
∑t

τ=0 α
τQτc. Conceptually, this is a backward exploration approach, i.e.

exploration along incoming edges. This is most obvious when c has a single nonzero entry

c(s∗): we begin at s∗ ((1−α)c term), then discover the incoming neighbors of s∗ ((1−α)αQc

term), then discover states two steps away from s∗ ((1− α)α2Q2c term), etc.

Motivated by the observation that backward exploration is more computationally effi-

cient when Q is known, we will devise analogues for the case where Q is unknown, in hopes

that these will be more sample-efficient than the forward exploration-based approach from

[19]. Of course, computational complexity and sample complexity are in general very dif-

ferent creatures, but in our problem they are intuitively related owing to their conceptual

connections to breadth-first-search discussed in the previous paragraph. We also note that

several works – see e.g. [91, 92, 93, 94] – have recognized the advantages of the backward

exploration approach, but these works have only studied the approach empirically. Thus,

another motivation of this chapter is to add theoretical grounding to this line of work.

4.1.2 The supergraph

There is, however, a fundamental issue with our approach: backward exploration requires

us to understand the columns of Q; in contrast, we can only sample from rows of Q. Of

course, we can estimate all columns by estimating all rows, but then we incur Ω(S) sample

complexity as in the existing approach. To overcome this issue, we will assume more is known

about the underlying MDP: in addition to sampling from Q, we assume the algorithm is given

a binary matrix A satisfying the “absolute continuity” condition

A(s, s′) = 0⇒ Q(s, s′) = 0 ∀ s, s′ ∈ S. (4.5)

Note we can view A as the adjacency matrix for a graph whose edges are a superset of those

in the graph induced by Q; thus, we refer to this side information as the supergraph.

In words, the supergraph tells us that one-step transitions cannot occur between certain

(ordered) pairs of states. For instance, if the MDP models a robot moving through an
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environment, known physical limitations may prevent one-step transitions between states

corresponding to significantly different locations, speeds, etc. As another example, if the

MDP models a game, the game’s rules may prevent transitions between certain pairs of

states. Thus, in principle, domain knowledge can be used to construct such a supergraph.

Hence, we believe our supergraph assumption is reasonable in many RL applications of

interest. We emphasize that the reverse of the implication in (4.5) need not hold, i.e. we

allow pairs s, s′ for which A(s, s′) = 1 but Q(s, s′) = 0. Put differently, we do not require

exact knowledge of the sparsity pattern of Q. Of course, there is a trade-off: our algorithms

are more sample-efficient when A is sparser; thus, while one can always set A(s, s′) = 1 ∀ s, s′

to ensure that (4.5) holds, this will typically increase sample complexity.

In this chapter, we assume the supergraph is given, and we investigate how certain

features of the supergraph (e.g. sparsity) impact the performance of our algorithms. An

important practical consideration is how to actually obtain the supergraph; this problem is

application-dependent and one we do not address. However, we do note that in applications

like those of the previous paragraph, one can likely obtain policy-independent supergraphs:

for instance, regardless of the action the robot takes from its current state (i.e. its policy),

it cannot transition to a new state that corresponds to a significantly higher speed. Thus,

in many applications, we believe one can construct a single supergraph, and then use it to

evaluate many policies. For example, in the empirical policy iteration algorithm from [19]

mentioned above, we would incur a one-time, offline expense to construct a supergraph that

would then be used for the duration of the algorithm. In principle, this would be much more

efficient than constructing a new supergraph at each policy improvement step.

4.1.3 Overview of chapter

Having motivated our approach, we give a brief summary of the chapter. As alluded

to above, we devise algorithms for empirical policy evaluation (EPE), i.e. estimators for

the value function (4.3) using the supergraph and samples from Q. Our first algorithm,

Backward-EPE, is based on the idea of backward exploration and the power iteration. But

in fact, Backward-EPE is more closely related to the Approx-Contributions algorithm [32]

discussed in Section 2.3, which estimates (4.3) when Q is known and c has a single nonzero

entry. We generalize this algorithm to the case c ∈ RS
+ and unknown Q; in the empirical

dynamic programming spirit, we replace terms involving Q with empirical estimates.

Our analysis shows the worst-case sample complexity of Backward-EPE is O(S logS),

which is the best-case complexity of the forward approach from [19] (assuming an l∞ ac-

curacy guarantee). We also show that when averaging over a certain class of cost vectors,

Backward-EPE has expected complexityO(d̄(‖c‖1/‖c‖∞) logS}), where d̄ = 1
S

∑S
s,s′=1 A(s, s′)
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is the average degree in the supergraph. Note d̄‖c‖1/‖c‖∞ = O(1) can occur, and thus

Backward-EPE can offer dramatic improvements over the forward approach, reducing sam-

ple complexity from O(S logS) to as low as O(logS). In general, this average case result

suggests Backward-EPE reduces sample complexity when the supergraph is sparse (so that

d̄ is small) and there are few high-cost states (so that ‖c‖1/‖c‖∞ is small).

Our second algorithm, Bidirectional-EPE, is inspired by the Bidirectional-PPR al-

gorithm [15] discussed in Section 2.3; perhaps unsurprisingly, Bidirectional-EPE combines

Backward-EPE with the forward exploration approach. This algorithm is less suited to the

l∞ guarantee that we establish for Backward-EPE and that is used in [19]; instead, we show

Backward-EPE is conducive to a relative-plus-absolute error bound. Owing to this, it is more

natural to compare Bidirectional-EPE to a plug-in estimator, wherein one estimates v by

replacing Q with an empirical estimate in (4.3). Our analysis suggests Bidirectional-EPE

is more sample-efficient than this plug-in estimator whenever the average degree in the su-

pergraph is comparable to the maximum degree in the graph induced by Q.

Analytically, one of the main contributions of this chapter is an approach for analyzing

power iteration variants like Approx-Contributions in the setting where Q is unknown.

Analyzing such algorithms in this setting is difficult because the existing analysis relies on

the invariant (2.2) from Section 2.3, which is in terms of PPR vectors defined on Q. Since

we replace Q with empirical estimates in the algorithm, the invariant fails in the current

setting, and with it the existing analysis. However, we show the invariant does hold if Q

is replaced by any of a large set of matrices related to the estimate of Q generated during

Backward-EPE (see Lemma 4.1). While we focus on two specific algorithms, we believe this

analytical approach is applicable to other settings; Section 4.4 discusses some examples.

Notational conventions for the chapter: The following notation is often used in this

chapter. For a matrix B and any t ∈ N, we let Bt(s, s′), Bt(s, ·), and Bt(·, s′) denote the

(s, s′)-th entry, s-th row, and s′-th column of Bt, respectively. We write 0n×m and 1n×m for

the n×m matrices of zeroes and ones, respectively. Matrix transpose is denoted by T. We use

1(·) for the indicator function, i.e. 1(E) = 1 if statement E is true and 1(E) = 0 otherwise.

For s ∈ S, es is the length-S column vector with 1 in the s-th entry and 0 elsewhere, i.e.

es(s
′) = 1(s = s′). Also for s ∈ S, Nin(s) = {s′ ∈ A : A(s′, s) = 1} and din(s) = |Nin(s)|

are the incoming neighbors and in-degree of s in the supergraph. Average degree in the

supergraph is denoted by d̄ =
∑S

s,s′=1A(s, s′)/S =
∑S

s=1 din(s)/S. We use the following

(standard) notation for {an}n∈N, {bn}n∈N ⊂ [0,∞): an = O(bn), an = Ω(bn), an = Θ(bn),

and an = o(bn), resp., mean lim supn→∞ an/bn < ∞, lim infn→∞ an/bn > 0, an = O(bn) and

an = Ω(bn), and limn→∞ an/bn = 0, resp. All random variables are defined on a probability

space (Ω,F ,P), with E[·] =
∫

Ω
· dP denoting expectation and a.s. meaning P-almost surely.
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4.2 Backward empirical policy evaluation

4.2.1 PageRank contributions and policy evaluation

We begin by restating some PPR ideas from Chapter II in the notation of this chapter

and clarifying the connection between PageRank and policy evaluation. To avoid confusion

with the policy notation of Section 4.1, we write µs = (1 − α)eTs (I − αQ)−1 for the s-th

primitive PPR vector in this chapter (also recall the roles of α and 1−α are reversed). Note

that in the special case c = es∗ for some s∗ ∈ S, v(s) = µsc = µs(s
∗), so estimating the

value function (4.3) amounts to estimating the s∗-th column of (1 − α)(I − αQ)−1. This is

precisely the task accomplished by the Approx-Contributions algorithm. For the general

case c ∈ RS
+, we can simply initialize the residual vector in Approx-Contributions as the

cost vector; we define this scheme formally in Algorithm 4.1.

Algorithm 4.1: Approx-Contributions [32]

1 Input: Transition matrix Q; cost c; discount factor α; termination parameter ε
2 k = 0, v̂k = 0S×1, rk = c
3 while ‖rk‖∞ > ε do
4 k ← k + 1, sk ∼ arg maxs∈S rk−1(s) uniformly
5 for s ∈ S do
6 if s = sk then v̂k(s) = v̂k−1(s) + (1− α)rk−1(s), rk(s) = αQ(s, sk)rk−1(sk);
7 else v̂k(s) = v̂k−1(s), rk(s) = rk−1(s) + αQ(s, sk)rk−1(sk);

8 Output: Estimate v̂k of v = (1− α)
∑∞

t=0 α
tQtc

In the case where Q is known, the accuracy analysis from [32] immediately extends to

this general cost vector initialization. In particular, one can use the proof of [32] to show

v̂k(s) + µsrk = v(s) ∀ k ∈ {0, 1, . . .}, s ∈ S (4.6)

(see also Remark 4.1 below). Thus, letting k∗ = min{k ∈ Z+ : ‖rk‖∞ ≤ ε} denote the

iteration at which Approx-Contributions terminates, we have

|v̂k∗(s)− v(s)| ≤
S∑

s′=1

µs(s
′)rk∗(s

′) ≤ ε

S∑
s′=1

µs(s
′) = ε.

i.e. v̂k∗(s) is an ε-accurate estimate of v(s). Thus, the fact that Approx-Contributions

produces an accurate estimate is fundamentally due to (4.6); since this equation relies on Q

(through v and µs), one of our challenges will be to adapt this to the case of unknown Q.

At this point, it may not be clear why Approx-Contributions is preferable to the basic

power iteration. To explain why it can be, first note that while we defined a sequence of vector
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pairs {v̂k, rk}k∗k=0 in Algorithm 4.1 for notational clarity, in practice one would iteratively

update the same vector pair v̂, r, i.e. one would overwrite the old values of v̂(s), r(s) with

the new values per Lines 6-7 if these values change (for values that do not change, no update

need occur). As an example, consider the problem instance

Q(s, s′) =

1, s = 1, s′ = S or s > 1, s′ = s− 1

0, otherwise
, c(s) =

2ε, s = 1

(1− 3α)ε, s 6= 1
.

Here we initialize v̂ = 0S×1, r = c. At the first iteration, we choose s1 = 1 and update v̂(1) =

2ε(1 − α), r(1) = 0, and r(2) = (1 − α)ε. After this update, ‖r‖∞ = r(2) = (1 − α)ε < ε,

so the algorithm terminates. Note we only updated v̂(1), r(1), and r(2), and thus the

computational complexity is O(1). In contrast, a single power iteration, i.e. computation of

Qc, incurs Ω(S) complexity. More generally, [32, Theorem 1] and [62, Theorem 2] provide

computational complexity results; see Remark 4.4 below. For now, we only mention that,

like the accuracy guarantee, these complexity results fundamentally rely on the invariant

(4.6). Thus, our challenge will again be extending to the setting of unknown Q.

4.2.2 Algorithm

We now devise our first algorithm, Backward-EPE, by adapting Approx-Contributions

to the EPE-with-supergraph setting. To explain our exact implementation, we begin with the

first iteration of Approx-Contributions. Note here we only require knowledge of Q(·, s1).

Using the supergraph and samples from Q, we estimate this column as follows:

• ∀ s ∈ Nin(s1), (4.5) ensures Q(s, s1) = 0, so estimate such entries as zero.

• ∀ s /∈ Nin(s1), let {Xs,i}ni=1 ∼ Q(s, ·) and estimate Q(s, s1) as
∑n

i=1 1(Xs,i = s1)/n.

Note this approach yields an unbiased estimate of Q(·, s1) (and for large n this estimate

will concentrate around Q(·, s1)). Now at future iterations, we could proceed in the exact

same manner as the first iteration; however, this may be sample-inefficient. In particular, if

s ∈ Nin(s1) and s ∈ Nin(sk) at some later iteration k > 1, we have already taken n samples

from Q(s, ·), so taking more samples from Q(s, ·) to estimate Q(s, sk) is wasteful. Thus, we

will instead reuse the samples taken at the first iteration to estimate Q(s, sk). (In Section

4.4.3, we discuss the relative merits of reusing samples versus resampling in more detail.)

To make this more concrete, we refer to the formal definition of Backward-EPE, Algo-

rithm 4.2. In addition to the estimate and residual vectors from Approx-Contributions,

we iteratively update a set Uk that tracks the states we have encountered up to and in-

cluding iteration k and a matrix Q̂k that represents our estimate of Q at iteration k, ini-

tialized to U0 = ∅, Q̂0 = 0S×S. At the k-th iteration, we sample a high-residual state sk

as in Approx-Contributions and then use Uk−1 and the supergraph to determine which
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incoming neighbors of sk have not yet been encountered (Line 4 of Algorithm 4.2), i.e.

for which neighbors s we have not yet estimated Q(s, ·). For such neighbors, we esti-

mate Q(s, ·) via samples from Q(s, ·) (Line 7); for other states s, our estimate of Q(s, ·)
remains unchanged (Line 8). We then update the estimate and residual vectors in the

same manner as Approx-Contributions but using the empirical estimate of Q. As in

Approx-Contributions, this sequence of updates continues until ‖rk‖∞ ≤ ε. We re-

emphasize that our initial estimate of Q is Q̂0 = 0S×S and we gradually fill the rows of

Q̂k with estimates as we encounter more states; once we fill a row Q̂k(s, ·) it remains un-

changed for the remainder of the algorithm.

Algorithm 4.2: Backward-EPE

1 Input: Sampler for transition matrix Q; cost vector c; discount factor α; supergraph
in-neighbors {Nin(s)}Ss=1; termination parameter ε; per-state sample count n

2 k = 0, v̂k = 0S×1, rk = c, Uk = ∅, Q̂k = 0S×S
3 while ‖rk‖∞ > ε do
4 k ← k + 1, sk ∼ arg maxs∈S rk−1(s) uniformly, Uk = Uk−1 ∪Nin(sk)

5 // Q̂ update loop
6 for s ∈ S do

7 if s ∈ Nin(sk) \ Uk−1 then {Xs,i}ni=1 ∼ Q(s, ·), Q̂k(s, ·) = 1
n

∑n
i=1 1(Xs,i = ·);

8 else Q̂k(v, ·) = Q̂k−1(v, ·);
9 // v̂, r update loop

10 for s ∈ S do

11 if s = sk then v̂k(s) = v̂k−1(s) + (1− α)rk−1(s), rk(s) = αQ̂k(s, sk)rk−1(sk);

12 else v̂k(s) = v̂k−1(s), rk(s) = rk−1(s) + αQ̂k(s, sk)rk−1(sk);

13 Output: Estimate v̂k of v = (1− α)
∑∞

t=0 α
tQtc

4.2.3 Analysis

As discussed in Section 4.2.2, the main analytical difficulty is that v̂k, rk need not satisfy

(4.6) when these vectors are generated via Backward-EPE. To overcome this issue, we begin

with the key observation mentioned in Section 4.1.3: while the invariant need not hold for

the actual transition matrix Q, it does hold for a class of matrices derived from the estimated

transition matrix Q̂k∗ . More specifically, we will show that (4.6) holds if we replace µs(s
′) and

v(s) with analogous quantities defined in terms any matrix P satisfying two key properties:

P should contain the estimates of Q generated during Backward-EPE, and P should satisfy

the absolute continuity condition (4.5). Note that if we encounter all states during the

algorithm, i.e. if Uk∗ = S, then only Q̂k∗ satisfies these properties; however, if Uk∗ is a strict

subset of S, many choices of P will satisfy these properties (i.e. we can fill the unestimated

rows of Q̂k∗ with any entries satisfying (4.5)). This is formalized by Lemma 4.1.

74



Lemma 4.1. Let P = {B ∈ RS×S
+ :

∑S
s′=1 B(s, s′) = 1 ∀ s ∈ S} denote the set of S×S row

stochastic matrices, and let P be a P-valued random matrix satisfying the following:

P (s, ·) = Q̂k∗(s, ·) ∀ s ∈ Uk∗ a.s., A(s, s′) = 0⇒ P (s, s′) = 0 ∀ s, s′ ∈ S a.s.

For each s ∈ S, let νs = (1 − α)eTs (I − αP )−1 and u(s) = νsc denote the PPR vector and

value function on P . Then the vectors {v̂k, rk}k∗k=0 from Algorithm 4.2 satisfy the following:

v̂k(s) + νsrk = u(s) ∀ k ∈ {0, . . . , k∗}, s ∈ S a.s. (4.7)

Proof. Fix s ∈ S. We prove (4.7) by induction. For k = 0, (4.7) is immediate, since

v̂0 = 0S×1, r0 = c in Algorithm 4.2. For k ∈ [k∗], Lines 11-12 of Algorithm 7 imply (a.s.)

v̂k(s) + νsrk = v̂k−1(s) + (1− α)rk−1(sk)1(s = sk)

+
S∑

s′=1

νs(s
′)(rk−1(s′)1(s′ 6= sk) + αQ̂k(s

′, sk)rk−1(sk))

= v̂k−1(s) + νsrk−1 + rk−1(sk)(−νs(sk) + (1− α)1(s = sk) + ανsQ̂(·, sk)),(4.8)

where for the second equality we added and subtracted µs(sk)rk−1(sk). Now since v̂k−1(s) +

νsrk−1 = u(s) a.s. by the inductive hypothesis, and since

νs(sk)− (1− α)1(s = sk) = α(1− α)
∞∑
t=0

αtP t(s, ·)P (·, sk) = ανsP (·, sk), (4.9)

it suffices to show Q̂k(s
′, sk) = P (s′, sk) ∀ s′ ∈ S a.s. (since then the term in parentheses in

(4.8) will be zero). Toward this end, we fix s′ ∈ S and consider two cases:

• If s′ ∈ Uk, Algorithm 4.2 implies Q̂k(s
′, sk) = Q̂k∗(s

′, sk). Moreover, Uk ⊂ Uk∗ in

Algorithm 4.2, so s′ ∈ Uk∗ , and thus P (s′, sk) = Q̂k∗(s
′, sk) a.s. by assumption on P .

Taken together, Q̂k(s
′, sk) = P (s′, sk) a.s.

• If s′ /∈ Uk, Algorithm 4.2 implies Qk(s
′, sk) = 0. On the other hand, Nin(sk) ⊂ Uk,

(Line 4 of Algorithm 4.2) so s′ /∈ Nin(sk) and A(s′, sk) = 0 by definition of Nin(sk).

Hence, by assumption on P , we have P (s′, sk) = 0 a.s. as well.

Thus, Q̂k(s
′, sk) = P (s′, sk) a.s. in both cases, completing the proof.

Remark 4.1. The Approx-Contributions invariant (4.6) is proven in a similar (but sim-

pler) manner: assuming (4.6) holds for k − 1, one proves it holds for k using the approach

of (4.8) and (4.9) (replacing νs with µs and both P, Q̂k with Q).

75



Lemma 4.1 allows us to apply the invariant (4.7) to (potentially) many matrices P . In this

chapter, we only use two (somewhat obvious) choices of P . For the first choice, we fill rows

of Q̂k∗ that were not estimated during the algorithm with independent estimates generated

offline. More precisely, for each s ∈ S and each i ∈ [n], let Ys,i ∼ Q(s, ·), independent across

s and i, and independent of all the random variables generated by Algorithm 4.2. From

{Ys,i}s∈S,i∈[n], define an offline estimate Q̃ of Q row-wise by

Q̃(s, ·) =
1

n

n∑
i=1

1(Ys,i = ·). (4.10)

From Q̃, we define our first choice of P and the corresponding value function by

Q(s, ·) =

Q̂k∗(s, ·), s ∈ Uk∗
Q̃(s, ·), s ∈ S \ Uk∗

, µs = (1− α)eTs (I − αQ)−1, v(s) = µsc ∀ s ∈ S. (4.11)

For the second choice, we fill unestimated rows by the actual rows of Q, i.e. we let

Q(s, ·) =

Q̂k∗(s, ·), s ∈ Uk∗
Q(s, ·), s ∈ S \ Uk∗

, µs = (1− α)eTs (I − αQ)−1), v(s) = µsc ∀ s ∈ S. (4.12)

Note Q = Q = Q̂k∗ if Uk∗ = S. Also note Q and Q satisfy the assumptions of Lemma 4.1, so

v̂k(s) + µsrk = v(s), v̂k(s) + µsrk = v(s) ∀ k ∈ {0, . . . , k∗}, s ∈ S a.s. (4.13)

We will refer to the identities in (4.13) as the Q-invariant and the Q-invariant, respectively.

For clarity, we hereafter refer to (4.6) as the Q-invariant. The Q- and Q-invariants will be

crucial tools in our proofs; however, typically these proofs will only work when using one of

the two invariants (see Remarks 4.2, 4.3, and 4.5).

Equipped with Lemma 4.1, we can prove our first main result concerning Backward-EPE,

Theorem 4.1. The theorem provides a lower bound on the per-state sample count n to

ensure the ultimate estimate v̂k∗ is 2ε-close to v in the l∞ norm with high probability. Here

2ε arises because we have two sources of error: the ε-bounded residual and the fact that the

Q-invariant fails. Of course, we could bound both errors by ε/2 with only worse constants

for the per-state sample count; however, for later analysis, it will be more convenient to have

residual error bounded by ε instead of ε/2 (i.e. to not carry the 1/2 factor).
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Theorem 4.1. Fix ε, δ > 0 and define

n∗(ε, δ) =
2‖c‖2

∞α
2

ε2(1− α)2
log

(
2S

δ

⌈
log(4‖c‖∞/ε)

1− α

⌉)
.

Then assuming n ≥ n∗(ε, δ) in Algorithm 4.2, we have

P(‖v̂k∗ − v‖∞ ≥ 2ε) ≤ δ. (4.14)

Proof sketch. The full proof is deferred to Appendix C.1 but we sketch it here. First, by the

Q-invariant (4.13), the triangle inequality, and the termination criteria of Backward-EPE,

‖v̂k∗ − v‖∞ ≤ ‖v̂k∗ − v‖∞ + ‖v − v‖∞ ≤ ε+ ‖v − v‖∞,

so our task is reduced to showing ‖v−v‖∞ ≤ ε with high probability, i.e. that v concentrates

around v. It is reasonable to expect this to hold for large n, since v and v are defined in terms

of Q and Q, respectively, and since Q ≈ Q when n is large. However, this concentration is not

immediate, in part because v need not be an unbiased estimate of v. Thus, most of the proof

involves estimating ‖v − v‖∞ by an upper bound that is more amenable to concentration

inequalities, i.e. the deviation of an empirical average from its true mean. Here the key steps

are as follows. First, it is straightforward to show that for large enough T ,

‖v − v‖∞ ≤ (1− α)
T−1∑
t=1

αt‖(Qt −Qt)c‖∞ +
ε

2
. (4.15)

Second, using convexity of ‖ · ‖∞ and row stochasticity of Q, a simple calculation yields

‖(Qt −Qt)c‖∞ ≤ ‖(Q
t−1 −Qt−1)c‖∞ + ‖(Q−Q)Qt−1c‖∞.

Iterating this inequality and substituting into (4.15) gives a bound on ‖v − v‖∞ in terms of

‖(Q−Q)Qt−1c‖∞. Furthermore, by definition this latter quantity has the same distribution

as ‖(Q̃−Q)Qt−1c‖∞, so we can bound ‖v− v‖∞ in terms of ‖(Q̃−Q)Qt−1c‖∞ (see Remark

4.2). Finally, defining dt−1 = Qt−1c, the s-th entry of Q̃Qt−1c is

S∑
s′=1

Q̃(s, s′)dt−1(s′) =
S∑

s′=1

(
1

n

n∑
i=1

1(Ys,i = s′)

)
dt−1(s′) =

1

n

n∑
i=1

dt−1(Ys,i),
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and similarly, the s-th entry of QQt−1c is Edt−1(Ys,i). Therefore,

‖(Q̃−Q)Qt−1c‖∞ = max
s∈S

∣∣∣∣∣ 1n
n∑
i=1

(dt−1(Ys,i)− Edt−1(Ys,i))

∣∣∣∣∣ ,
so that ‖(Q̃−Q)Qt−1c‖∞ is the deviation of an empirical average around its mean, as desired.

The proof is completed using standard Chernoff bounds.

Remark 4.2. It may seem wasteful that we use the Q-invariant instead of the Q-invariant

for Theorem 4.1, since Q fills unestimated rows of Q̂k∗ with the actual rows of Q, and thus

v should be a better estimate of v. We explain this choice as follows. First note that by the

arguments in the proof sketch, bounding ‖v− v‖∞ amounts to bounding ‖(Q−Q)Qt−1c‖∞.

It is tempting to use the union bound to bound such terms as

P
(
‖(Q−Q)Qt−1c‖∞ ≥ η

∣∣Uk∗) ≤ ∑
s∈Uk∗

P
(
|
∑n

i=1(dt−1(Xs,i)− Edt−1(Xs,i))|
n

≥ η

∣∣∣∣Uk∗) .
The issue with this approach is that there is a complicated dependence between {Xs,i}ni=1 and

Uk∗ in Algorithm 4.2. We also note that we replace ‖(Q−Q)Qt−1c‖∞ by ‖(Q̃−Q)Qt−1c‖∞
in the proof of Theorem 4.1 owing to a similar issue.

Theorem 4.1 says that if we take n ≥ n∗(ε, δ) samples from Q(s, ·) in Line 7 of Algorithm

4.2, the ultimate estimate v̂k∗ will be 2ε-accurate. Hence, the total number of samples

needed to ensure 2ε-accuracy is n∗(ε, δ) multiplied by the number of times Line 7 is reached;

by definition, this latter quantity is |Uk∗|. Our next goal is thus to bound |Uk∗|, in order

to bound the overall sample complexity of Backward-EPE. Before presenting our result, we

develop some intuition regarding the behavior of |Uk∗|. First, it is clear that |Uk∗| ≤ S.

Moreover, this upper bound can be attained in certain cases, for example:

• Suppose mins∈S c(s) ≥ ε. Then ∀ s ∈ S, we have sk = s for some k ∈ [k∗] (else,

rk∗(s) ≥ r0(s) = c(s) ≥ ε, a contradiction). Thus, each s ∈ S will belong to Nin(sk) at

some k, so Uk∗ = ∪k∗k=1Nin(sk) = S.

• Suppose A(s, s′) = 1 ∀ s, s′ ∈ S. Then Nin(s1) = S by definition, so Uk∗ = S as well.

While these examples are extreme cases, they suggest |Uk∗ | will be large if there are too

many high-cost states or too many edges in the supergraph. Put differently, it seems |Uk∗|
may be small if there are sufficiently few high-cost states and sufficiently few edges in the

supergraph. But even when both of these occur, one can construct adversarial examples for

which Uk∗ = S. For instance, suppose we restrict to c having a single high-cost state and the

supergraph to having the minimal number of edges possible, S. Then taking c = [1 0 . . . 0],
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A = 1S×1e
T
1 will satisfy this restriction, but will yield Uk∗ = S (assuming ε < 1). The

key issue in this example (and, we suspect, in most adversarial examples) is the interaction

between the cost vector and the supergraph; in particular, if high-cost states have high

in-degrees, |Uk∗| will be large (even if there are few high-cost states and edges overall).

In summary, the sample complexity of Backward-EPE scales with |Uk∗|, which is intu-

itively small when there are few high-cost states and supergraph edges; however, even when

both of these quantities are minimal, |Uk∗| is maximal in the worst-case. Given this, our

best hope for bounding |Uk∗| is an average-case analysis; in particular, bounding E|Uk∗| while

randomizing over the inputs of Backward-EPE. As it turns out, we only need to randomize

over the cost vector (not Q). Roughly, we will consider a random cost vector C for which

EC(s) = O(E‖C‖1/S) ∀ s ∈ S, i.e. the expected cost of any given state does not dominate

the average expected cost. For such cost vectors, the interaction between cost and in-degree

discussed in the previous paragraph will “average out”, and consequently the adversarial

examples will not dominate in expectation. This is formalized in the following theorem.

Theorem 4.2. Let C be an RS
+-valued random vector s.t. E‖C‖1 <∞ and maxs∈S EC(s) ≤

βE‖C‖1/S =: c̄ for some constant β ∈ [1,∞). Then if Algorithm 4.2 is initialized with C,

E|Uk∗| ≤
Sc̄d̄

ε(1− α)
,

where the expectation is with respect to C and the randomness in Algorithm 4.2.

Proof. We use the Q-invariant (4.13) (note we proved Lemma 4.1 for fixed c but the same

arguments hold for random C owing to their almost-sure nature). First, for for any s ∈ S,

v(s) ≥ v̂k∗(s) = (1− α)
k∗∑
k=1

rk−1(s)1(s = sk) ≥ ε(1− α)
k∗∑
k=1

1(s = sk), (4.16)

where the first inequality holds by the Q-invariant (4.13), the equality by Lines 11-12 of

Algorithm 4.2, and the second inequality by definition of k∗. On the other hand, we have

|Uk∗| = | ∪k∗s=1 Nin(sk)| ≤
k∗∑
k=1

din(sk) =
k∗∑
k=1

S∑
s=1

din(s)1(s = sk) =
S∑
s=1

din(s)
k∗∑
k=1

1(s = sk).

Combining the previous two inequalities and taking expectation, we have therefore shown

E|Uk∗| ≤
1

ε(1− α)

S∑
s=1

din(s)Ev(s). (4.17)
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Now consider Ev(s). By definition (4.11),

Ev(s) = EµsC = (1− α)
∞∑
t=0

αtEQt
(s, ·)C = (1− α)

∞∑
t=0

αtE[E[Q
t
(s, ·)|C]C].

Now after realizing C, we fill some rows of Q with samples generated during the algorithm

and other rows with samples generated offline; in contrast, all rows of Q̃ are filled with offline

samples. But in either case, these samples have the same distribution, so we can replace

Q by Q̃ in the previous equation. Moreover, Q̃ is independent of the random variables in

Algorithm 4.2, including r0 = C. In summary,

E[Q
t
(s, ·)|C] = E[Q̃t(s, ·)|C] = E[Q̃t(s, ·)]. (4.18)

Combining the previous two equations and using the assumption on C, we obtain

Ev(s) = (1− α)
∞∑
t=0

αtE[Q̃t(s, ·)]E[C] ≤ (1− α)
∞∑
t=0

αtE[Q̃t(s, ·)]c̄1S×1 = c̄,

where we also used row stochasticity of Q̃. Substituting into (4.17) completes the proof.

Remark 4.3. Note this approach fails if we use the Q-invariant. In particular, we cannot

express E[Qt(s, ·)|C] as deterministic in (4.18), since C influences which states are encoun-

tered during the algorithm and thus influences which rows of Q are estimates and which are

exact. This illustrates the utility of the Q-invariant: it allows us to “decorrelate” the esti-

mated transition matrix from the cost vector, i.e. to obtain E[Q
t
(s, ·)C] = E[Q̃t(s, ·)]E[C].

In the current chapter, this is our only use of this decorrelation trick, but it may useful in

analyses of algorithms like Backward-EPE (for example, those discussed in Section 4.4).

Remark 4.4. The preceding proof is similar that of Theorem 2 in [62], which considers the

expected computational complexity of Approx-Contributions when C ∼ {es}Ss=1 uniformly.

In fact, [62] uses the Q-invariant but otherwise follows the logic leading to (4.17); since µs is

deterministic in the Q-invariant, one immediately obtains Ev(s) = µsEC = µs1S×1/S = 1/S

in this case. Similarly, [32, Theorem 1] provides a bound on k∗ for fixed c of the form c = es∗ ;

the proof uses theQ-invariant and the logic of (4.16) to obtain v(s) ≥ ε(1−α)
∑k∗

k=1 1(s = sk),

then sums over s to obtain k∗ ≤ ‖v‖1/(ε(1−α)). We note similar arguments are used in our

analysis for Chapters II (see Appendix A.1-A.2) and III (see Appendix B.4).

4.2.4 Discussion

We now return to interpret our results for Backward-EPE and specifically to derive the

algorithm’s overall sample complexity, which by definition is n∗(ε, δ)|Uk∗|. In the worst case,
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|Uk∗| = Ω(S), and thus the worst-case sample complexity for fixed c is Sn∗(ε, δ). Neglecting

all log log factors and all absolute constants, ignoring log terms for quantities that have

polynomial scaling (e.g. writing log(1/(1−α))/(1−α)2 as simply 1/(1−α)2), and assuming

α is either constant or grows to 1, Theorem 4.1 implies

Sn∗(ε, δ) = O
(
S log(S/δ)‖c‖2

∞ε
−2(1− α)−2

)
.

For comparison, the sample complexity of the approach from [19] in any case is

O
(
S log(S/δ)‖c‖2

∞ε
−2(1− α)−3

)
(4.19)

(see Appendix C.4). Thus, in the worst case Backward-EPE has similar complexity to the

best case of the approach from [19], with a slightly improved dependence on the discount

factor α. (The extra (1 − α) factor in (4.19) arises since O(1/(1 − α))-length trajectories

must be sampled to make the bias in (4.4) small.)

In the average case, the sample complexity of Backward-EPE can be dramatically better.

In particular, by Theorem 4.2, we can bound the average-case sample complexity as

E[|Uk∗ |]× n∗(ε, δ) = O

(
Sc̄d̄

ε(1− α)
× log(S/δ)‖C‖2

∞
ε2(1− α)2

)
= O

(
‖C‖1d̄ log(S/δ)‖C‖2

∞
ε3(1− α)3

)
.

(This argument is not precise, since ‖C‖∞ is random in Theorem 4.2; we return to address

this shortly.) Thus, assuming α, δ, and ‖C‖∞/ε are constants, the expected complexity is

O
(
(‖C‖1/‖C‖∞)× d̄× logS

)
. (4.20)

Interestingly, (4.20) exactly captures the intuition discussed in Section 4.2.3: ‖C‖1/‖C‖∞
quantifies the intuition that Backward-EPE has low complexity if there are few high-cost

states; d̄ quantifies the intuition of low complexity if there are sufficiently few edges in the

supergraph. We also note that when α, δ, and ‖C‖∞/ε are constants, the existing approach’s

complexity (4.19) becomes O(S logS). In the extreme case, ‖C‖1/‖C‖∞ and d̄ are both O(1),

and thus Backward-EPE offers a dramatic reduction in sample complexity.

Though this average-case argument is not entirely precise, we can make it precise with

further assumptions on C. For example, the following corollary considers random binary

cost vectors with H nonzero entries. Such cost vectors could arise, for example, in simple

MDP models of games, where states corresponding to losing configurations of the game have

unit cost and other states have zero cost.

Corollary 4.1. Let H ∈ S and CH = {
∑S

s=1 ases : as ∈ {0, 1} ∀ s ∈ S,
∑S

s=1 as = H}.
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Assume the cost vector C is chosen uniformly at random from CH and α, δ, ε are con-

stants. Then to guarantee an accurate estimate in the sense of (4.14), Backward-EPE requires

O(min{Hd̄, S} logS) samples in expectation.

Proof. Though we stated Theorem 4.1 in the case of a deterministic cost vector c, it also

holds for C if the lower bound on n holds almost surely (see Remark C.1). Moreover, by

assumption on C, ‖C‖∞ = 1 pointwise and thus n∗(ε, δ) is deterministic; paired with the

assumption on α, δ, ε, we have n∗(ε, δ) = O(logS). Thus, the expected sample complexity

of Backward-EPE is E[|Uk∗|n∗(ε, δ)] = O(E[|Uk∗|] logS). Again using the assumption on C,

EC(s) = H/S ∀ s ∈ S, so we can apply Theorem 4.2 with c̄ = H/S to obtain E|Uk∗| =

O(Hd̄). Finally, since Uk∗ ⊂ S, we can sharpen this to obtain E|Uk∗ | = O(min{Hd̄, S}).

4.3 Bidirectional empirical policy evaluation

4.3.1 Algorithm

We next explain our second algorithm, which is derived from Backward-EPE in much the

same way FW-BW-MCMC and Bidirectional-PPR are derived from Approx-Contributions

(see Section 2.3). The main wrinkle is that the Q-invariant fails, so we will instead use the

Q-invariant. In particular, similar to Theorem 4.1, we can make |v(s) − v(s)| small if we

take enough samples during Backward-EPE; when this holds, we have

v(s) ≈ v(s) = v̂k∗(s) + µsrk∗ . (4.21)

Now since µs is a probability distribution over S, the residual term in (4.21) satisfies

µsrk∗ = EZs∼µsrk∗(Zs) ≈
1

nF

nF∑
i=1

rk∗(Zs,i),

where {Zs,i}nFi=1 are i.i.d. samples from µs and nF is large. Hence, by (4.21),

v(s) ≈ v̂k∗(s) +
1

nF

nF∑
i=1

rk∗(Zs,i). (4.22)

Intuitively, the right side of (4.22) is a more accurate estimate of v(s) than v̂k∗(s) alone;

the only remaining question is how to generate {Zs,i}nFi=1. For this, we exploit the perfect

sampling property (1.4), restated in our current notation as PQ(Zs,i = s′) = µs(s
′), where

PQ means probability conditioned on Q and Zs,i is the endpoint of a Geometric(1 − α)-

length trajectory on Q beginning on s. Note we can indeed simulate trajectories on Q, since

sampling from Q(s, ·) amounts to sampling either from Q(s, ·) (as in Backward-EPE) or from
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Q̂k∗(s, ·) (which is known after running Backward-EPE). Put differently, to generate Zs,i we

sample from Q(s, ·) unless we have already sampled from Q(s, ·) during Backward-EPE, in

which case we sample from the empirical estimate Q̂k∗(s, ·) from Backward-EPE.

This procedure is formalized in Algorithm 4.3. As above, write nF for the per-state for-

ward trajectory count; we also write nB for the per-state sample count in the Backward-EPE

subrountine. We denote the ultimate estimate of v by v̂BD. Other than these changes, the

notation is identical to that used for Backward-EPE.

Algorithm 4.3: Bidirectional-EPE

1 Input: Sampler for transition matrix Q; cost vector c; discount factor α; supergraph
in-neighbors {Nin(s)}Ss=1; termination parameter ε; per-state backward, forward
sample counts nB, nF

2 // Backward exploration stage
3 Run Backward-EPE with inputs Q sampler, c, α, {Nin(s)}Ss=1, ε, nB
4 // Forward exploration stage
5 for s ∈ S do
6 for i = 1 to nF do
7 // Generate sample Zs,i from µs
8 Ls,i ∼ Geometric(1− α), Z0

s,i = s

9 for t = 1 to Ls,i do
10 Zt

s,i ∼ Q(Zt−1
s,i , ·)

11 Zs,i = Z
Ls,i
s,i

12 Output: Estimate v̂BD(s) = v̂k∗(s) + 1
nF

∑nF
i=1 rk∗(Zs,i) for each s ∈ S

4.3.2 Analysis

Since Bidirectional-EPE samples trajectories forward from each s ∈ S and thus incurs

Ω(S) sample complexity, it cannot asymptotically dominate the approach of [19] when both

algorithms are subject to an l∞ error guarantee (unlike Backward-EPE). Instead, we will

show in this section that Bidirectional-EPE is conductive to a different error guarantee,

and we will argue in Section 4.3.3 that this guarantee is stronger than the l∞ guarantee of

Backward-EPE for certain problem instances. Thus, Bidirectional-EPE can be viewed as

a more accurate but less sample efficient variant of Backward-EPE.

The aforementioned error guarantee is formalized in the following theorem, which states

that with high probability, the estimate v̂BD satisfies the following (uniformly in s):

(1− εrel)v(s)− εabs ≤ v̂BD(s) ≤ (1 + εrel)v(s) + εabs.

Here εrel ∈ (0, 1) denotes a relative error tolerance while εabs > 0 denotes an absolute error
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tolerance. Put differently (with a change of constants to nF and nB) the estimate will satisfy

|v̂BD(s)− v(s)| ≤ εrel
2
v(s) +

εabs
2
≤ max {εrelv(s), εabs} =

εrelv(s), v(s) ≥ εabs/εrel

εabs, v(s) ≤ εabs/εrel

with high probability. Hence, Theorem 4.3 provides a relative error guarantee for high-value

states (v(s) ≥ εabs/εrel) and an absolute error guarantee otherwise, similar to the guarantee

found in [15] for the analogous bidirectional PPR estimator (see Appendices A.1-A.2).

Theorem 4.3. Fix εrel ∈ (0, 1) and εabs, δ > 0, and define

n∗F (εrel, εabs, δ) =
324ε log(4S/δ)

ε2
relεabs

,

n∗B(εrel, εabs, δ) =
3 log(4S2/δ)

(log(1 + εrel/2))2 mini,j∈S:Q(i,j)>0Q(i, j)

⌈
log(2‖c‖∞/εabs)

(1− α)

⌉2

.

Then assuming nF ≥ n∗F (εrel, εabs, δ) and nB ≥ n∗B(εrel, εabs, δ) in Algorithm 4.3, we have

P(∪Ss=1{|v̂BD(s)− v(s)| > εrelv(s) + εabs}) ≤ δ. (4.23)

Proof sketch. The proof separately treats errors from the backward and forward exploration

stages. We briefly describe each stage here; the full proof is in Appendix C.2. For the

backward stage, Lemma C.1 in Appendix C.2 shows that if nB ≥ n∗B(εrel, εabs, δ), then

P
(
∪Ss=1

{
|v(s)− v(s)| > εrel

2
v(s) +

εabs
2

})
≤ δ

2
, (4.24)

with v defined as in (4.12). We prove (4.24) in two steps. First, we show that if nB ≥
n∗B(εrel, εabs, δ), then |Q(s, s′)−Q(s, s′)| ≤ λQ(s, s′) for some λ ∈ (0, 1) and all s, s′ ∈ S. This

follows from standard Chernoff bounds after replacing Q by Q̃ (which is necessary for similar

reasons as those discussed in Remark 4.2). Second, we show that if |Q(s, s′) − Q(s, s′)| ≤
λQ(s, s′), then v is close to v (in the sense of (4.24)). To illustrate the second step, note we

can use the upper bound on Q to write

(1− α)
T̄∑
t=0

αtQt(s, ·)c ≤ (1− α)
T̄∑
t=0

αt(1 + λ)tQt(s, ·)c ≤ (1 + λ)T̄ (1− α)
T̄∑
t=0

αtQt(s, ·)c.

For large enough T̄ , the left and right sides are within εabs/2-additive errors of v(s) and

(1 +λ)T̄v(s), respectively; having chosen T̄ , we can choose λ to ensure (1 +λ)T̄ ≤ 1 + εrel/2.

It is from here that the relative-plus-additive guarantee of Theorem 4.3 arises.
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For the forward exploration stage, we let G denote the σ-algebra generated by the random

variables from the Backward-EPE subroutine and show that when nF ≥ n∗F (εrel, εabs, δ),

P
(
|v̂BD(s)− v(s)| ≥ εrel

2
v(s) +

εabs
2

∣∣∣G) 1
(
|v(s)− v(s)| ≤ εrel

2
v(s) +

εabs
2

)
≤ δ

2S
. (4.25)

Here we use probability conditioned on G so that the only randomness in |v̂BD(s) − v(s)|
is that from the forward exploration. Moreover, we can bound this term by exploiting the

Q-invariant to write |v̂BD(s)−v(s)| as the deviation of an empirical average from its mean (as

discussed in Section 4.3.1) and then use standard Chernoff bounds. Roughly speaking, this

requires us to use the indicator function in (4.25) to replace v(s) by v(s) in the probability

term; we then separately address the cases of large v(s) and small v(s) using a modification

of the approach for the analogous bidirectional PPR estimators.

Remark 4.5. While the choice of invariant for Theorems 4.1-4.2 was subtle (see Remarks

4.2-4.3), using the Q-invariant for Theorem 4.3 is obvious, since Q appears in Algorithm 4.3.

4.3.3 Discussion

We next discuss Theorem 4.3. To simplify notation, we restrict to the setting of Corollary

4.1; however, the key insights extend to the more general setting of Theorem 4.2. Also, we

assume the relative error tolerance εrel, the discount factor α, and inaccuracy probability δ

are constants independent of S. Finally, we note Theorem 4.3 holds for random C assuming

the lower bound on nB holds almost surely; see Remark C.2.

We begin by deriving expressions for the sample complexity of Bidirectional-EPE in

the setting of Corollary 4.1. For the backward stage (i.e. the Backward-EPE subroutine), we

require per-state sample complexity n∗B(εrel, εabs, δ); note this is deterministic since ‖C‖∞ = 1

pointwise in Corollary 4.1. Thus, the average-case sample complexity is (by Corollary 4.1),

En∗B(εrel, εabs, δ)× |Uk∗| = O

(
log(S) log(1/εabs)

mini,j∈S:Q(i,j)>0Q(i, j)
× Hd̄

ε

)
. (4.26)

For the forward stage, we require n∗F (εrel, εabs, δ) = O(ε log(S)/εabs) trajectories of expected

length α/(1−α) for each of S states. We are assuming α is a constant, and thus the expected

forward complexity is simply O(εS logS/εabs). Combined with (4.26), and writing KBD for

the overall expected sample of Bidirectional-EPE in the setting of Corollary 4.1, we obtain

KBD = O

(
Hd̄ log(S) log(1/εabs)

εmini,j∈S:Q(i,j)>0Q(i, j)
+
εS logS

εabs

)
.

Here the termination parameter ε for the Backward-EPE subroutine is a free parameter that
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can be chosen to minimize the overall sample complexity. For example,

ε = Θ

(√
Hd̄εabs

Smini,j∈S:Q(i,j)>0Q(i, j)

)
⇒ KBD = O

(√
SHd̄

εabs mini,j∈S:Q(i,j)>0Q(i, j)
logS

)
,

(4.27)

where for simplicity we wrote log(1/εabs)/
√
εabs as simply 1/

√
εabs. Now to better understand

(4.27), we will consider a specific choice of εabs (similar in spirit to the choice of the analogous

parameter the PPR setting; see Appendix A.1). To motivate this, we first observe that in

the setting of Corollary 4.1,

Ev = (1− α)
∑
t=0

αtQt × EC = (1− α)
∑
t=0

αtQt × H

S
1S×1 =

H

S
1S×1,

i.e. the “typical” value in the setting of Corollary 4.1 is H/S. It is thus sensible to choose

εabs = Θ(H/S), so that we obtain a relative guarantee for above-typical values and settle for

the absolute guarantee for below-typical values. Substituting into (4.27), we conclude

KBD = O

(√
d̄

mini,j∈S:Q(i,j)>0Q(i, j)
S logS

)
(4.28)

samples are required to guarantee (4.23) in the setting of Corollary 4.1.

It is interesting to compare Bidirectional-EPE to a certain plug-in estimator that lends

itself to the same accuracy guarantee. For this plug-in estimator, we simply estimate v as

(1−α)
∑

t=0 α
tQ̃tC, where Q̃(s, ·) = 1

n

∑n
i=1 1(Ys,i = ·) with Ys,i ∼ Q(s, ·) as in (4.10). Then

by the same argument following (C.17) in the proof of Theorem 4.3, the plug-in estimate

will satisfy the guarantee (4.23) whenever n ≥ n∗B(εrel, εabs, δ). Consequently, the sample

complexity of the plug-in estimator is, under the assumptions leading to (4.28),

Sn∗B(εrel, εabs, δ) = O

(
S logS

mini,j∈S:Q(i,j)>0Q(i, j)

)
. (4.29)

Comparing (4.28) and (4.29), we see Bidirectional-EPE is more efficient than the plug-in

estimator whenever d̄ ≤ 1/mini,j∈S:Q(i,j)>0Q(i, j). To interpret this inequality, first suppose

the supergraph is precisely the graph induced by Q, i.e. A(s, s′) = 0⇔ Q(s, s′) = 0. Then

∑
s′∈S

A(s, s′) =
∑

s′∈S:Q(s,s′)>0

Q(s, s′)

Q(s, s′)
≤
∑

s′∈S:Q(s,s′)>0Q(s, s′)

mini,j∈S:Q(i,j)>0Q(i, j)
=

1

mini,j∈S:Q(i,j)>0Q(i, j)
,

so d̄ ≤ 1/mini,j∈S:Q(i,j)>0Q(i, j) holds. More generally, this shows that the complexity of
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Bidirectional-EPE is order-wise equivalent to that of the plug-in method whenever degrees

in the supergraph and induced graph are order-wise equivalent. If also most positive transi-

tion probabilities dominate the minimum probability, then d̄ = o(1/mini,j∈S:Q(i,j)>0Q(i, j)),

in which case Bidirectional-EPE is strictly better.

Generally, it is difficult to compare the sample complexity (4.28) to the bounds derived in

Section 4.2, owing to the different error guarantees. However, we note the l∞ guarantee for

the estimators Section 4.2 implies the guarantee of Theorem 4.3 if we choose εabs = H/S for

the l∞ error tolerance; this choice gives O(S3 logS/H2) sample complexity for the Section

4.2 estimators. In certain cases, Bidirectional-EPE is thus dramatically more efficient: for

instance, if d̄ = O(1), mini,j∈S:Q(i,j)>0Q(i, j) = Ω(1), and H = O(1), then KBD = O(S logS)

but O(S3 logS/H2) = O(S3 logS), i.e. Bidirectional-EPE reduces the sample complexity

of the Section 4.2 estimators by a factor of S2. This illustrates that Bidirectional-EPE is

more sample efficient than the approach from [19] when a highly accurate estimate is desired.

4.4 Conclusions and future directions

4.4.1 Adaptation of other PageRank algorithms

In this chapter, we adapted Approx-Contributions and Bidirectional-PPR to the EPE

setting. As discussed in Sections 2.2-2.3, many related algorithms exist (e.g. the forward

exploration analogue of Approx-Contributions from [7], our algorithm FW-BW-MCMC from

Section 2.3, etc.). Each of these algorithms relies on an invariant analogous to (4.6), so each

could (in principle) be adapted to the current setting using our analytical approach. Thus,

while we have focused on two specific algorithms in this chapter, our analysis should be

viewed as an example of how to extend a family of algorithms to the setting of EPE.

4.4.2 Finite horizon empirical policy evaluation

We studied the discounted cost problem in this chapter, where the value function is given

by (4.3). Another problem in the MDP literature is the finite horizon problem, wherein one

aims to minimize the total cost over a finite time horizon T . Here the value function is

v(s) = E

[
T∑
t=0

c(Zt)

∣∣∣∣∣Z0 = s

]
=

T∑
t=0

Qt(s, ·)c,

so one aims to estimate multi-step transition distributions of the form Qt(s, ·). Though our

algorithms do not immediately apply, relevant analogues of Approx-Contributions exist

in the case where Q is known. In particular, [95] provides an algorithm to estimate Qt(s, ·)
when Q is known. The algorithm is analogous to Approx-Contributions in that it explores

backward while only pushing residual mass from a single high-residual state at each iteration.
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Moreover, the authors of [95] provide a bidirectional variant. Both of these algorithms

could be adapted to the current setting; this would yield analogues of Backward-EPE and

Bidirectional-EPE for the finite horizon problem. As in Section 4.4.1, the analysis in [95]

relies on a Q-invariant analogous to (4.6) and thus our analytical approach may be useful.

4.4.3 Reusing samples versus resampling

As an alternative to Backward-EPE, we can take independent samples from Q(s, ·) for

each s ∈ Nin(sk) and at each iteration k, rather than only sampling from Q(s, ·) when we first

encounter s as in Backward-EPE. This alternative scheme is formally defined in Appendix

C.3. An interesting property of this alternative is that, while the Q-invariant (4.6) need not

hold, the corresponding error process ek(s) = v̂k(s) + µsrk − v(s) is a zero-mean martingale

(see Appendix C.3 for a proof), so the Q-invariant holds in expectation. Analytically, this is

an advantage over Backward-EPE, where the Q- and Q-invariants hold but the corresponding

value functions v and v are biased. The disadvantage of this scheme is that it may sample

many times from each row of Q, and thus the overall sample complexity may exceed that

of the approach from [19]. Put differently, Backward-EPE is conservative in the sense that

it performs no worse than the existing approach in the worst case (see Section 4.2.4), but

it sacrifices desirable properties that could perhaps improve performance in other cases. A

useful avenue for future work would thus be to investigate this tradeoff.

4.4.4 PageRank estimation with limited knowledge

A problem that has received little attention in the PageRank/PPR literature is PageR-

ank/PPR estimation when the estimator has limited knowledge of Q. For instance, consider

a third party who wishes to pay influential Twitter users to promote their products. Since

PageRank serves as a measure of influence or centrality in networks, the third party may

wish to identify high PageRank users, but the Twitter graph (as encoded by Q) is not pub-

licly available, and thus existing PageRank estimators do not apply. However, Twitter does

allow limited data requests [96], which may allow the third party to partially recover rele-

vant entries of Q. This setting could be abstracted as the follows: devise an algorithm that

estimates PageRank while only sampling from Q and while minimizing sample complexity.

This is similar to the problem we considered in this chapter, with one major difference:

we justified the existence of a supergraph based on, for example, physical limitations that

prevent transitions between states; if Q represents Twitter, states (i.e. Twitter users) can

be connected arbitrarily. Thus, we could perhaps replace knowledge of the supergraph with

sampling of incoming neighbors, i.e. given a Twitter user, we can sample a random follower

via data request. This would serve a similar purpose as the supergraph (allowing us to

understand columns of Q), and we suscept many of our ideas could be recycled.
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CHAPTER V

Restart Perturbations for Lazy, Reversible Markov

Chains1

5.1 Introduction

In this chapter, we apply analytical ideas from the PPR literature to study the robustness

of Markov models. Our motivation is the basic question of how modeling inaccuracies affect a

chain’s steady-state behavior, i.e. how changes to the transition matrix affect the stationary

distribution. Mathematically, we formalize this as follows. Let Pn be the transition matrix

of a Markov chain with n states and stationary distribution πn. Denote by P̃n the transition

matrix and π̃n the stationary distribution of another chain, obtained by perturbing each row

of Pn by at most αn ∈ (0, 1) (in total variation). Then the main question we study is as

follows: how does the perturbation magnitude αn relate to the error magnitude ‖πn − π̃n‖
(where ‖ · ‖ denotes total variation) as the number of states n grows?

Before previewing our results, we outline two basic notions. The first is a class of PPR-

like perturbations we call restart perturbations in this chapter. Here we obtain P̃n from Pn

by “restarting” at a state distributed as some auxiliary distribution σn with probability αn

at each step. A second important notion is that of mixing times and cutoff. Roughly, the

ε-mixing time t
(n)
mix(ε) is the number of steps the chain with transition matrix Pn must take

before its distribution is ε-close to πn (see (5.3)). Certain chains exhibit cutoff, meaning

lim
n→∞

t
(n)
mix(ε)/t

(n)
mix(1− ε) = 1 ∀ ε ∈ (0, 1/2). (5.1)

Intuitively, (5.1) says the chain is far from stationarity for many steps, then abruptly becomes

1This chapter is adapted from [97].
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close to stationarity. A weaker condition is pre-cutoff, which only requires

sup
ε∈(0,1/2)

lim sup
n→∞

t
(n)
mix(ε)/t

(n)
mix(1− ε) <∞. (5.2)

We now preview the two main results of this chapter. The first, Theorem 5.1, says that

the relative asymptotics of αn and t
(n)
mix(ε) fully characterize the asymptotics of ‖πn− π̃n‖ in

the case of restart perturbations. More specifically, we establish the following trichotomy:

• If limn→∞ αnt
(n)
mix(ε) = 0, then limn→∞ ‖πn − π̃n‖ = 0 for all restart perturbations.

• If limn→∞ αnt
(n)
mix(ε) =∞, then limn→∞ ‖πn − π̃n‖ = 1 for some restart perturbation.

• If limn→∞ αnt
(n)
mix(ε) = c ∈ (0,∞), then lim supn→∞ ‖πn − π̃n‖ ≤ 1− e−c for all restart

perturbations, and some restart perturbation attains the bound.

We note Theorem 5.1 holds assuming the original chain is lazy (Pn(i, i) ≥ 1/2 ∀ i), reversible

(πn(i)Pn(i, j) = πn(j)Pn(j, i) ∀ i, j), and exhibits cutoff. The laziness and reversibility

assumptions are inherited from [22], which contains an inequality used in our lower bounds

(see Section 5.3). Hence, we suspect these assumptions may be artifacts of our analysis. In

contrast, we believe some notion of cutoff is fundamentally necessary (as will be discussed

shortly). Also, parts of our analysis hold more generally; see Lemmas 5.1 and 5.2.

Interestingly, Theorem 5.1 says that a threshold phenomena for the original chain – cutoff

– translates into a different threshold phenomena for the perturbed chain – the trichotomy

above. Another point of interest is that similar trichotomies have been established in sev-

eral recent works. For example, [21] shows that the restart perturbation adopts the cutoff

behavior of the original chain if αnt
(n)
mix(ε) → 0, has a distinct convergence to stationarity

if αnt
(n)
mix(ε) → ∞, and exhibits an intermediate behavior if αnt

(n)
mix(ε) → (0,∞), assuming

the original chain is the random walk on the directed configuration model from Chapter III.

Similar results were obtained in [20, 98] for random walks on dynamic versions of the DCM.

Finally, in Chapter III we showed the PPR matrix has dimension O(1) if αnt
(n)
mix(ε)→ 0, con-

jectured the dimension is Ω(n/ log n) if αnt
(n)
mix(ε)→∞, and proved the dimension is O(nf(c))

for some f(c) ∈ (0, 1) if αnt
(n)
mix(ε) → c ∈ (0,∞), when the original chain is generated as in

[21]. See Section 5.6 for details of these related results.

Ultimately, this chapter, [21, 20, 98], and Chapter III all study different questions, but

the similarities speak to a much deeper phenomena: some aspect of the original chain is

unaffected when αnt
(n)
mix(ε)→ 0, this aspect is significantly altered when αnt

(n)
mix(ε)→∞, and

an intermediate behavior occurs when αnt
(n)
mix(ε)→ (0,∞). However, in contrast to [21], [20],

and Chapter III, we work directly with the stationary distribution in this chapter, which is

arguably the most fundamental such aspect one would hope to understand. Additionally,

we do not assume a generative model for the original chain in this chapter; in this sense, the
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results of this chapter are more general, while demonstrating a similar idea.

Our second result concerns pre-cutoff. As alluded to above, we believe some notion of

cutoff is fundamental for the lower bounds of Theorem 5.1. Indeed, in Theorem 5.2 we show

that for lazy and reversible chains, pre-cutoff (5.2) implies a perturbation condition, and

sup
ε∈(0,1/2)

lim inf
n→∞

t
(n)
mix(ε)/t

(n)
mix(1− ε) =∞

implies the negation of the perturbation condition. Roughly, this condition is as follows:

for certain {αn,ε}n∈N,ε∈(0,1/2) ⊂ (0, 1) and all ε ∈ (0, 1/2), there exists a sequence of restart

perturbations with restart probabilities {αn,ε}n∈N and stationary distributions {π̃n,ε}n∈N s.t.

‖πn− π̃n,ε‖ → 1. Hence, Theorem 5.2 says that chains with pre-cutoff are sensitive to pertur-

bation, in the sense that certain perturbations maximally change the stationary distribution,

and the converse (almost) holds. The only gap in our logic involves the case

sup
ε∈(0,1/2)

lim inf
n→∞

t
(n)
mix(ε)/t

(n)
mix(1− ε) <∞ = sup

ε∈(0,1/2)

lim sup
n→∞

t
(n)
mix(ε)/t

(n)
mix(1− ε),

which only occurs for a class of chains of little interest (see Section 5.4). Thus, for all intents

and purposes, Theorem 5.2 is an equivalence between pre-cutoff and sensitivity.

The utility of Theorem 5.2 is that, while different notions of cutoff have been proven for

different chains, there is little general theory. In fact, only recently was a condition equivalent

to cutoff determined in [22] (a certain notion of “hitting time cutoff”). Additionally, while

Theorem 5.2 relies on an inequality from [22], we believe it is more than a corollary of this

inequality. Instead, we believe our result complements [22], since we consider pre-cutoff

instead of cutoff, and since our equivalent notion is different. See Section 5.6 for details.

In short, this chapter contributes to two lines of work. First, we add to the growing

collection of “trichotomy” results; unlike existing results, however, we study the stationary

distribution directly and do not assume a generative model. Second, we add to the general

theory of cutoff in the manner of [22], but for a different notion of cutoff.

The remainder of the chapter is organized as follows. We begin in Section 5.2 with

definitions. Sections 5.3 and 5.4 contain the two theorems described above. We present

examples in Section 5.5. Finally, Section 5.6 discusses the related results mentioned above,

and Section 5.7 discusses conclusions and future directions.

5.2 Preliminaries

We first define the notation used in this chapter. Let Z+ = {0, 1, . . .}, and let {Xn(t)}t∈Z+

be a time-homogeneous, irreducible, aperiodic Markov chain with states [n] = {1, . . . , n}.
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We denote by Pn the transition matrix of this chain, i.e. the matrix with (i, j)-th entry

Pn(i, j) = P(Xn(t+ 1) = j|Xn(t) = i) ∀ i, j ∈ [n], t ∈ Z+.

It is a standard result that this chain has a unique stationary distribution πn, i.e. a unique

vector πn satisfying πn = πnPn and
∑n

i=1 πn(i) = 1. Here and for the remainder of the

chapter, we treat all vectors as row vectors. For i ∈ [n], we let ei denote the length-n

vector with 1 in the i-th coordinate and zeros elsewhere. Also, we let ∆n−1 denote the set

of distributions over [n], so that (for example) πn ∈ ∆n−1. Finally, we let En denote the set

of transition matrices for time-homogeneous, irreducible, and aperiodic Markov chains with

state space [n], so that (for example) Pn ∈ En.

Some of our results will only apply to a strict subset of En. In particular, we at times

require the chain to be lazy, meaning Pn(i, i) ≥ 1/2 ∀ i ∈ [n], and reversible, meaning

πn(i)Pn(i, j) = πn(j)Pn(j, i) ∀ i, j ∈ [n]. Note any chain can be made lazy without changing

its stationary distribution, by considering (Pn + In)/2 instead of Pn, where In is the n × n
identity matrix. In this sense, reversibility is our most restrictive assumption. However, this

is a common restriction in the mixing times literature, as it guarantees the eigenvalues of Pn

are real and allows one to use certain linear algebraic techniques (see e.g. [99, Chapter 12]).

As discussed in Section 5.1, mixing times will play a pivotal role. To define mixing times,

we first define the distance between the t-step distribution and stationarity as

dn(t) = max
i∈[n]
‖eiP t

n − πn‖ ∀ t ∈ Z+,

where ‖·‖ denotes total variation distance, ‖µ−ν‖ = maxA⊂[n] |µ(A)−ν(A)| for µ, ν ∈ ∆n−1.

For ε ∈ (0, 1), we can now define the ε-mixing time as

t
(n)
mix(ε) = min{t ∈ Z+ : dn(t) ≤ ε}. (5.3)

As is convention in the literature, we set t
(n)
mix = t

(n)
mix(1/4). We also note the following

monotocity property follows immediately, but we record it here as it will be used often:

∀ ε, δ ∈ (0, 1) s.t. ε ≤ δ, t
(n)
mix(ε) ≥ t

(n)
mix(δ). (5.4)

Having defined mixing times, cutoff (5.1) and pre-cutoff (5.2) are now clearly defined2. We

2Note ‖ei − πn‖ ≥ 1− πn(i) ∀ i ∈ [n], so dn(0) ≥ 1−mini∈[n] πn(i) ≥ 1− 1/n > 1− ε for fixed ε and n large.

Thus, t
(n)
mix(1 − ε) > 0 for such n, so the fractions in (5.1) and (5.2) is well-defined for large n. Along these

lines, we at times assume t
(n)
mix(1− ε) ≥ 1, with the implicit understanding that this holds for large n.
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note a basic result (see e.g. Section 18.1 of [99]) says that cutoff occurs if and only if

s < 1⇒ lim
n→∞

dn(st
(n)
mix) = 1, s > 1⇒ lim

n→∞
dn(st

(n)
mix) = 0. (5.5)

Thus, cutoff means the graph of dn(t) approaches a step function as n→∞, when the t-axis

is normalized by t
(n)
mix. Put differently, the chain is far from stationarity at time e.g. 0.99t

(n)
mix,

then reaches stationarity at time e.g. 1.01t
(n)
mix. Pre-cutoff has weaker but similar intuition.

For the perturbation analysis described in the introduction, it will be convenient to

introduce some additional notation. First, given Pn ∈ En and α ∈ (0, 1), we define

B(Pn, α) =

{
P̃n ∈ En : max

i∈[n]
‖eiPn − eiP̃n‖ ≤ α

}
. (5.6)

In words, B(Pn, α) is the set of transition matrices for time-homogeneous, irreducible, and

aperiodic chains whose rows differ from the rows of Pn by at most α. We will denote the

unique stationary distribution of P̃n ∈ B(Pn, α) by π̃n. A particular subset of B(Pn, α) is

the class of restart perturbations discussed above. Such perturbations have the same form

as PPR, i.e. (1− α)Pn + α1T
nσn ∈ B(Pn, α) for some α ∈ (0, 1) and σn ∈ ∆n−1, where 1n is

the length-n row vector of ones. For clarity, we use the notation

Pα,σn = (1− α)Pn + α1T
nσn

to define restart perturbations. We denote the corresponding stationary distribution by

πα,σn . Moving forward, α will typically depend on n, so we write Pαn,σn and παn,σn .

Finally, the following (standard) notation for {an}n∈N, {bn}n∈N ⊂ [0,∞) will be used: we

write an = O(bn), an = Ω(bn), an = Θ(bn), and an = o(bn), resp., if lim supn→∞ an/bn <∞,

lim infn→∞ an/bn > 0, an = O(bn) and an = Ω(bn), and limn→∞ an/bn = 0, resp.

5.3 Trichotomy

In this section, we formulate our first main result, the trichotomy described in Section 5.1.

For transparency, we begin with two lemmas, parts of which require weaker assumptions.

We then collect these results under our strongest assumptions in Theorem 5.1.

The first lemma concerns the case αnt
(n)
mix(ε) → {0,∞}. The lemma states that if the

perturbation magnitude αn is dominated by the inverse mixing time, no perturbation can

change the stationary distribution. On the other hand, if αn dominates the inverse mixing

time, one can find a perturbation that maximally changes this distribution. Note the former

case holds for all bounded perturbations (not just the restart variety). Also, while the latter

case requires laziness and reversibility, it does not require cutoff (only pre-cutoff). Hence,
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Lemma 5.1 contains stronger results for the case αnt
(n)
mix(ε)→ {0,∞} than Theorem 5.1.

Lemma 5.1. Let Pn ∈ En, αn ∈ (0, 1) ∀ n ∈ N, and let ε ∈ (0, 1) be independent of n.

Assume limn→∞ αnt
(n)
mix(ε) = c ∈ {0,∞}. Then the following hold:

• If c = 0 and ε < 1/2, then ∀ {P̃n}n∈N s.t. P̃n ∈ B(Pn, αn) ∀ n ∈ N,

lim
n→∞

‖πn − π̃n‖ = 0. (5.7)

• If c = ∞, {Pn}n∈N exhibits pre-cutoff, and each Pn is lazy and reversible, then

∃ {P̃n}n∈N s.t. P̃n ∈ B(Pn, αn) ∀ n ∈ N and

lim
n→∞

‖πn − π̃n‖ = 1. (5.8)

In particular, ∀ n ∈ N, P̃n is a restart perturbation, i.e. P̃n = Pαn,σn for some σn ∈ ∆n−1.

Proof. See Appendix D.2

We briefly discuss the proof. The case c = 0 is simpler and relies on standard mixing

time results. In particular, we use the fact that distance to stationarity decays exponentially

after it reaches 1/2 (dn(kt
(n)
mix(ε)) ≤ (2ε)k ∀ k ∈ N), hence the additional assumption ε < 1/2

in this case. The case c =∞ is more involved. The key step is to establish a weaker version

of (5.8): namely, ∀ δ > 0 s.t. αnt
(n)
mix(δ)→∞, ∃ P̃n ∈ B(Pn, αn) s.t.

lim inf
n→∞

‖πn − π̃n‖ ≥ 1− 3δ. (5.9)

After proving (5.9), we define a vanishing sequence {δk}k∈N and apply (5.9) to each k ∈ N to

reach the stronger conclusion of (5.8). (The extension to (5.8) is not as immediate because

the left side of (5.9) has a dependence on δ; however, it is still reasonably simple.)

Before proceeding, we discuss further the key step from the c =∞ case, i.e. the proof of

(5.9). This proof involves a construction of P̃n that relies on a result from the aforementioned

[22]. Roughly speaking, this result shows that one can find a state xn ∈ [n], a subset of states

An ⊂ [n], and some tn ∈ Z+, such that {Xn(t)}t∈Z+ is unlikely to reach An within tn steps

when started from Xn(0) = xn. Furthermore, in the case of pre-cutoff, πn(An) is large and

tn is comparable to t
(n)
mix(δ). In summary, the chain started from xn makes its first visit to a

“large” set An just before t
(n)
mix(δ).

This argument suggests a good construction for the perturbed chain: set P̃n = Pαn,exn , i.e.

perturb the chain by restarting at xn with probability αn at each step. On this perturbed

chain, the number of steps between restarts at xn is (in expectation) 1/αn; hence, when

αnt
(n)
mix(δ) → ∞, restarts occur at intervals typically much shorter than t

(n)
mix(δ). In other
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words, the perturbed chain rarely wanders t
(n)
mix(δ) steps from xn. But, per the previous

paragraph, the chain started from xn requires t
(n)
mix(δ) steps to reach An. Hence, the perturbed

chain rarely visitsAn and thus assigns a small stationary measure toAn. Finally, since πn(An)

is large, the definition of total variation ensures ‖πn − π̃n‖ ≥ πn(An)− π̃n(An) is also large.

This intuition is the key idea behind (5.9).

We turn to the second lemma, which considers the case αnt
(n)
mix(ε)→ (0,∞). This lemma

contains two bounds; one analogous to the upper bound (5.7) and one analogous to the lower

bound (5.8). Here we require stronger assumptions than Lemma 5.1. For the upper bound,

we restrict to restart perturbations and we assume t
(n)
mix(ε) → ∞ as n → ∞. This latter

assumption is minor, since typically one studies the growth rate of t
(n)
mix(ε), and thus chains

that mix in constant time are of less interest. For the lower bound, we again assume laziness

and reversibility, as well as strengthening the pre-cutoff assumption to cutoff. The proof is

similar to that of Lemma 5.1, but the stronger assumptions allow for a tighter analysis.

Lemma 5.2. Let Pn ∈ En, αn ∈ (0, 1) ∀ n ∈ N, and let ε ∈ (0, 1) be independent of n.

Assume limn→∞ αnt
(n)
mix(ε) = c ∈ (0,∞). Then the following hold:

• If limn→∞ t
(n)
mix(ε) =∞, then ∀ {σn}n∈N s.t. σn ∈ ∆n−1 ∀ n ∈ N,

lim sup
n→∞

‖πn − παn,σn‖ ≤

1− (1− ε)e−c, ε ∈ [1/2, 1)

min{1− (1− ε)e−c, (1− e−c)/(1− 2εe−c)}, ε ∈ (0, 1/2)
.

(5.10)

• If {Pn}n∈N exhibits cutoff and each Pn is lazy and reversible, then ∃ {σn}n∈N s.t.

σn ∈ ∆n−1 ∀ n ∈ N and lim infn→∞ ‖πn − παn,σn‖ ≥ 1− e−c.

Proof. See Appendix D.3.

Before proceeding, we comment on the upper bound in the case ε ∈ (0, 1/2), which (we

note) includes the usual case of interest ε = 1/4. Here one can verify

min{1− (1− ε)e−c, (1− e−c)/(1− 2εe−c)} =

1− (1− ε)e−c, c ≥ log(2(1− ε))

(1− e−c)/(1− 2εe−c), c ≤ log(2(1− ε))
.

Hence, for smaller c, the upper bound in Lemma 5.2 is (1− e−c)/(1−2εe−c), while for larger

c, the bound is 1 − (1 − ε)e−c. Note the former bound approaches 0 as c → 0, and thus

approaches the c = 0 case of Lemma 5.1. Furthermore, the latter bound approaches 1 and

thus becomes trivial as c→∞; this is expected due to the c =∞ case of Lemma 5.1.

Combining Lemmas 5.1 and 5.2, we arrive at our first main result. Theorem 5.1 collects

the results of the lemmas under our strongest assumptions: the chain is lazy, reversible,
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and exhibits cutoff, and the perturbation is restricted to the restart variety. Under these

assumptions, we can fully characterize perturbation behavior. Note these assumptions are

stronger than those required for the upper bounds in the lemmas, which allows us to discard

the ε < 1/2 assumption of Lemma 5.1 and the t
(n)
mix(ε)→∞ assumption of Lemma 5.2.

Theorem 5.1. Let Pn ∈ En, αn ∈ (0, 1) ∀ n ∈ N, and let ε ∈ (0, 1) be independent of n.

Assume {Pn}n∈N exhibits cutoff, each Pn is lazy and reversible, and limn→∞ αnt
(n)
mix(ε) = c ∈

[0,∞]. Then the following hold:

• If c = 0, then ∀ {σn}n∈N s.t. σn ∈ ∆n−1 ∀ n ∈ N,

lim
n→∞

‖πn − παn,σn‖ = 0. (5.11)

• If c ∈ (0,∞), then ∀ {σn}n∈N s.t. σn ∈ ∆n−1 ∀ n ∈ N,

lim sup
n→∞

‖πn − παn,σn‖ ≤ 1− e−c. (5.12)

Furthermore, (5.12) is tight, i.e. ∃ {σn}n∈N s.t. σn ∈ ∆n−1 ∀ n ∈ N and

lim inf
n→∞

‖πn − παn,σn‖ ≥ 1− e−c. (5.13)

• If c =∞, then ∃ {σn}n∈N s.t. σn ∈ ∆n−1 ∀ n ∈ N and

lim
n→∞

‖πn − παn,σn‖ = 1. (5.14)

Proof. See Appendix D.4.

5.4 Pre-cutoff equivalence

We next turn to Theorem 5.2. As discussed in the introduction, the theorem provides a

near-equivalence between pre-cutoff and a perturbation condition. More specifically, we will

show that pre-cutoff implies a perturbation condition, and that this condition fails if

sup
ε∈(0,1/2)

lim inf
n→∞

t
(n)
mix(ε)/t

(n)
mix(1− ε) =∞. (5.15)

The caveat of Theorem 5.2 being a near-equivalence arises because (5.15) is stronger than

the negation of pre-cutoff. Indeed, one can construct sequences of chains for which pre-cutoff

and (5.15) both fail. For instance, in Section 5.5 we provide two example sequences with
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drastically different cutoff behaviors; if we oscillate between these two, we obtain

lim inf
n→∞

t
(n)
mix(ε)/t

(n)
mix(1− ε) = 1, lim sup

n→∞
t
(n)
mix(ε)/t

(n)
mix(1− ε) =∞, ∀ ε ∈ (0, 1/2).

However, this oscillating sequence is pathological; the literature typically considers chains

defined in the same manner for each n. Thus, the “near-equivalence” caveat is a small one.

Before presenting Theorem 5.2, we must define the perturbation condition. However, this

condition is somewhat mysterious, so we first discuss the difficulty in deriving it, in hopes of

making it less opaque. We begin with an obvious candidate, the condition from Lemma 5.1:

∀ {αn}n∈N s.t. lim
n→∞

αnt
(n)
mix(ε) =∞, ∃ {P̃n}n∈N s.t. lim

n→∞
‖πn − π̃n‖ = 1. (5.16)

Indeed, we have already proven that pre-cutoff implies (5.16) (assuming laziness and re-

versibility). The difficulty is showing that (5.16) fails whenever (5.15) holds. The most

obvious approach is as follows. When (5.15) holds, it is possible that for a fixed ε ∈ (0, 1/2),

lim
n→∞

t
(n)
mix(ε)/t

(n)
mix(1− ε) =∞, (5.17)

which suggests setting αn = c/t
(n)
mix(1− ε) for some c independent of n, since then

lim
n→∞

αnt
(n)
mix(ε) = c lim

n→∞
t
(n)
mix(ε)/t

(n)
mix(1− ε) =∞.

Our task would then be reduced to upper bounding ‖πn− π̃n‖ (perhaps via techniques used

for upper bounds above). Unfortunately, we are not guaranteed that (5.17) holds.

While this attempt fails, it illustrates the dissonance at hand: (5.16) considers sequences

{αn}n∈N depending only on n, while the sequence {1/t(n)
mix(1−ε)}n∈N,ε∈(0,1/2) in (5.15) depends

on both n and ε. Hence, we could modify (5.16) to involve a sequence {αn,ε}n∈N,ε∈(0,1/2)

depending on both n and ε. However, if (5.16) is modified in this manner, it is no longer

implied by pre-cutoff via Lemma 5.1, so this direction of the proof may become difficult.

It turns out this issue can be resolved by placing appropriate restrictions on the set of

sequences of restart probabilities appearing in the perturbation condition. In particular, we

will say {αn,ε}n∈N,ε∈(0,1/2) ⊂ (0, 1) coincides with the mixing times {t(n)
mix(ε)}n∈N,ε∈(0,1) if3

sup
ε∈(0,1/2)

lim inf
n→∞

αn,εt
(n)
mix(ε) =∞, αn,ε

αn,δ
∈

[
t
(n)
mix(1− δ)
t
(n)
mix(1− ε)

, 1

]
∀ ε, δ ∈ (0, 1/2) s.t. ε ≥ δ, ∀ n ∈ N,

(5.18)

3As shown in the proof of Theorem 5.2, such sequences always exist under the assumption of laziness.
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Figure 5.1: Partition of lazy/reversible sequences of chains induced by Condition 5.1. The-
orem 5.2 says chains satisfying pre-cutoff and (5.15), respectively, are contained
in the subsets for which Condition 5.1 holds and fails, respectively. The gray
subset contains e.g. the pathological example from Section 5.4.

and we will restrict to sequences that coincide with the mixing times. More specifically, we

define the following perturbation condition for use in our second main result.

Condition 5.1. For any {αn,ε}n∈N,ε∈(0,1/2) ⊂ (0, 1) that coincides with the mixing times

{t(n)
mix(ε)}n∈N,ε∈(0,1), there exists {σn,ε}n∈N,ε∈(0,1/2) such that

σn,ε ∈ ∆n−1 ∀ n ∈ N, ε ∈ (0, 1/2), lim
n→∞

‖πn − παn,ε,σn,ε‖ = 1 ∀ ε ∈ (0, 1/2).

The definition of “coincides with” yields a crucial property: when pre-cutoff holds and

{αn,ε}n∈N,ε∈(0,1/2) coincides with {t(n)
mix(ε)}n∈N,ε∈(0,1), αn,εt

(n)
mix(ε)→∞∀ ε ∈ (0, 1/2). In words,

not only is the sup in (5.18) infinite, the lim inf in (5.18) is infinite, for every ε ∈ (0, 1/2).

This allows us to prove (via Lemma 5.1) that Condition 5.1 is implied by pre-cutoff, while

also proving that Condition 5.1 fails (via the approach discussed above) if (5.15) holds.

With Condition 5.1 in place, we present Theorem 5.2; see Figure 5.1 for an illustration.

Theorem 5.2. Let {Pn}n∈N be s.t. Pn ∈ En is lazy and reversible ∀ n ∈ N. If {Pn}n∈N
exhibits pre-cutoff, Condition 5.1 holds; if {Pn}n∈N satisfies (5.15), Condition 5.1 fails.

Proof. See Appendix D.5.

5.5 Illustrative examples

Our results suggest a deep connection between some notion of cutoff and some notion of

perturbation sensitivity. Here we illustrate this with two example chains called the winning

streak reversal (WSR) and the complete graph bijection (CGB). We define each in turn.

The winning streak reversal (WSR) is taken from [99]. As its name suggests, this chain

is the time reversal of the so-called winning streak chain. The winning streak chain is shown

at left in Figure 5.2a and has the following interpretation. At each step, one plays a fair

game. If the game is won, the winning streak is increased, meaning the state is increased

by 1 (unless the current state is n, in which case the state remains n); if the game is lost,
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the winning streak ends, meaning the state returns to its lowest value.4 The reversal of

this chain, which we analyze, is shown at right in Figure 5.2a. For general n, the transition

matrix and stationary distribution for the WSR are (see Section 4.6 of [99] for details)

Pn(i, j) =



2−j, i = 1, j ∈ {1, . . . , n− 1}

2−n+1, i = 1, j = n

1, i ∈ {2, . . . , n− 1}, j = i− 1

2−1, i = n, j ∈ {n− 1, n}

0, otherwise

, πn(i) =


2−i, i ∈ {1, . . . , n− 1}

2−n+1, i = n

(5.19)

Note that Pn(1, i) = πn(i) ∀ i ∈ [n]; hence, the chain started from state 1 reaches stationarity

(exactly) after 1 step. Furthermore, the chain starting from i ∈ {2, . . . , n− 1} deterministi-

cally transitions to state 1 in i− 1 steps and thus reaches stationarity (again, exactly) after

i steps. As will be seen, this implies a particularly strong form of cutoff.

We next define the complete graph bijection (CGB). As suggested by the name, for even

n we first construct complete graphs on nodes {1, . . . , n/2} and {1 + n/2, . . . , n}; we then

add edges between i and i+n/2 for each i ∈ [n/2], corresponding to the bijection i 7→ i+n/2.

For n odd, we first construct this graph for n − 1; we then add an auxiliary node n, along

with an edge between n and every i ∈ [n− 1]. Figure 5.2b shows these graphs for n = 6 and

n = 7. We consider the lazy random walks on these graphs. The transition matrices are

Pn =
In
2

+
1

n

[
1T
n
2
1n

2
− In

2
In

2

In
2

1T
n
2
1n

2
− In

2

]
∀ n even, (5.20)

Pn =
1

2
In +

1

n+ 1


1T
n−1

2

1n−1
2
− In−1

2
In−1

2
1T
n−1

2

In−1
2

1T
n−1

2

1n−1
2
− In−1

2
1T
n−1

2

n+1
2(n−1)

1n−1
2

n+1
2(n−1)

1n−1
2

0

 ∀ n odd.

It is a standard result that the degree distribution is stationary for random walks on undi-

rected graphs; this also holds for Pn since laziness does not change the stationary distribution.

From this, one can easily verify the stationary distributions for the CGB are

πn(i) =
1

n
∀ i ∈ [n], n even, πn(i) =

 n+1
(n+3)(n−1)

, i ∈ [n− 1]

2
n+3

, i = n
∀ n odd. (5.21)

4Given this interpretation, it is more sensible to use state space {0, . . . , n− 1}, so that the winning streak is
zero after a loss. However, for consistency with the rest of this chapter, we use state space {1, . . . , n}.
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(a) Winning streak chain (left) and its reversal (right) for n = 4

(b) Complete graph bijection for n = 6 (left) and n = 7 (right).

Figure 5.2: Depicition of example chains.

We next state a proposition that estimates the mixing times of these chains. The propo-

sition contains several results. First, we show both chains have Θ(n) ε-mixing time, for any

fixed ε ∈ (0, 1/2). Furthermore, the proposition says that for the WSR and for any such ε,

1 ≤ t
(n)
mix(ε)/t

(n)
mix(1− ε) ≤ 1 + Θ

(
n−1
)
. (5.22)

Hence, the ratios in (5.22) converge to 1 at rate n−1, a particularly strong notion of cutoff

(the standard definition of cutoff, (5.1), imposes no rate of convergence). In contrast, for

the CGB, the proposition shows that these ratios are Θ(n), the maximum (up to constants)

among all chains with Θ(n) ε-mixing times. In summary, while both chains have equivalent

ε-mixing times, their cutoff behaviors are at opposite extremes among such chains.

Proposition 5.1. Let ε ∈ (0, 1/2) be independent of n. Then the following hold:

• Suppose {Pn}n∈N is the WSR. Then

(n− 1)− log2(1/ε) < t
(n)
mix(1− ε) ≤ n− 1, t

(n)
mix(ε) = n− 1 ∀ n ∈ N.

• Suppose {Pn}n∈N is the CGB. Then

t
(n)
mix(1− ε) = 1 ∀ n ∈ N sufficiently large, t

(n)
mix(ε) = Θ(n).

Proof. See Appendix D.6. (For the WSR, much of the analysis is taken from [99].)

The next proposition shows that these polarized cutoff behaviors translate into polarized
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perturbation behaviors. First, for the WSR, note we cannot invoke lower bounds from our

earlier analysis, since we lack laziness. However, we can prove a stronger result: namely, we

can identify an uncountable class of restart perturbations such that ‖πn−παn,σn‖ → 1 (this is

a stronger result than previous lower bounds, which only guaranteed one such perturbation).

On the other hand, for the CGB, we show that the conclusion of Lemma 5.1 fails, despite

all assumptions except pre-cutoff holding. In particular, we have the following:

Proposition 5.2. Let ε ∈ (0, 1/2) be independent of n. Then the following hold:

• Suppose {Pn}n∈N is the WSR and {αn}n∈N ⊂ (0, 1) satisfies αn = Θ(n−c1) for some

c1 ∈ (0, 1) independent of n; note αnt
(n)
mix(ε)→∞ by Proposition 5.1. Furthermore, let

{σn}n∈N satisfy σn ∈ ∆n−1 ∀ n ∈ N, and, for some c2 > 1, c3 > 0 independent of n,

lim
n→∞

bc3α
−c2
n c∑

i=1

σn(i) = 0. (5.23)

Then limn→∞ ‖πn − παn,σn‖ = 1.

• Suppose {Pn}n∈N is the CGB and {αn}n∈N ⊂ (0, 1) satisfies limn→∞ αnn = ∞ and

lim supn→∞ αn = ᾱ < 1/2; note αnt
(n)
mix(ε) → ∞ by Proposition 5.1. Then ∀ {P̃n}n∈N

s.t. P̃n ∈ B(Pn, αn) ∀ n ∈ N, lim supn→∞ ‖πn − π̃n‖ ≤ ᾱ + 1/2 < 1.

Proof. See Appendix D.7.

We have stated Proposition 5.2 in some generality, so it is useful to consider an example.

Namely, let ε ∈ (0, 1/2) and αn = 1/
√
n ∀ n ∈ N, so that αnt

(n)
mix(ε) →∞ for both example

chains. Then for the WSR, many sequences {σn}n∈N yield restart perturbations satisfying

‖πn − παn,σn‖ → 1. Some examples (easily verified to satisfy (5.23)) are as follows:

• Uniform restart, i.e. σn(i) = 1/n ∀ i ∈ [n].

• “Flipped” stationary restart, i.e. σn(i) = πn(n− i+ 1) ∀ i ∈ [n].

• Deterministic restart on Ω(n3/4), i.e. σn = ein for some in = Ω(n3/4).

In contrast, for this choice of αn and any perturbation of the CGB, Proposition 5.2 implies

that lim supn→∞ ‖πn−π̃n‖ ≤ 1/2. Thus, while many restart perturbations maximally perturb

the WSR, no perturbation (restart or otherwise) can maximally perturb the CGB.

Finally, we summarize the discussion of this section graphically. At left in Figure 5.3,

we plot dn(t) versus t for n = 25. Note the WSR exhibits a clear cutoff behavior, dropping

suddenly from dn(n − 3) ≈ 1 to dn(n − 1) = 0. In contrast, the CGB initially falls from

dn(0) ≈ 1 to dn(1) < 1/2, after which point dn(t) decays gradually in t. Hence, roughly

speaking, the WSR “makes no progress” towards stationarity until step n − 1; in contrast,

the CGB “makes half its progress” towards stationarity after a single step. At right in Figure
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Figure 5.3: Convergence if n = 25 (left) and perturbation error (right) for WSR and CGB.

5.3, we show the error ‖πn−παn,σn‖ for a certain5 σn and for αn = 1/
√
n. Note αnt

(n)
mix(ε)→∞

for both chains, and that restarts occur every 1/αn =
√
n steps (in expectation). For the

WSR, error rapidly increases from ≈ 0 to ≈ 1; for the CGB, error approaches 1/2.

In short, we can (roughly) say the following to illustrate the intuition of this chapter:

• The WSR requires n − 1 steps to make any progress to stationarity. Thus, with the

perturbed chain restarting every
√
n steps, it never approaches the original stationary

distribution. Consequently, the perturbed chain wanders far from this distribution.

• The CGB makes half its progress to stationarity at time 1. Hence, one step after

each restart, the perturbed chain comes close to the original stationary distribution.

Consequently, the perturbed chain cannot wander too far from this distribution.

Ultimately, while the cutoff/perturbation connection is perhaps obvious for these chains, this

is because their cutoff behaviors lie at opposite extremes among chains with t
(n)
mix(ε) = Θ(n).

The main contribution of this chapter is to extend this connection to a wider class of chains

(lazy and reversible), for which it is far less obvious.

5.6 Related work

We now return to discuss the trichotomy results mentioned in the introduction. All of

these results concern the directed configuration model (DCM) discussed in Chapter III. It

was recently shown that for random walks on the DCM, cutoff occurs at Θ(log n) steps

[81, 56]. More precisely, [81, 56] prove an analogue of (5.5), namely

s < 1⇒ dn(st
(n)
ent)

P−−−→
n→∞

1, s > 1⇒ dn(st
(n)
ent)

P−−−→
n→∞

0, (5.24)

where t
(n)
ent = Θ(log n) is defined in terms of the given degrees and

P−→ denotes convergence in

probability. Using these results, Theorem 2 in [21] states that for certain sequences {σn}n∈N,

the distance to stationarity dαn,σn(·) corresponding to Pαn,σn satisfies the following:

5Intuitively, one should choose σn “far from” πn. Thus, in Figure 5.3 we let σn be uniform for the WSR
(since πn is highly non-uniform) and set σn = en for the CGB (since πn is roughly uniform).
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• If αnt
(n)
ent → 0, (5.24) holds with dn(·) replaced by dαn,σn(·).

• If αnt
(n)
ent →∞, dαn,σn(s/αn)

P−−−→
n→∞

e−s ∀ s > 0, i.e. dαn,σn(t) decays exponentially.

• If αnt
(n)
ent → (0,∞), the behavior is intermediate: for t < t

(n)
ent, dαn,σn(t) decays exponen-

tially; for t > t
(n)
ent, dαn,σn(t) = 0.

In [20], the authors study a dynamic version of the DCM for which an αn fraction of edges

are randomly sampled and re-paired at each time step. The main result (Theorem 1.4) says

the distance to stationarity of the non-backtracking random walk on this dynamic DCM

follows a trichotomy similar to the one from [21]. Similar results were also obtained in [98]

for a dynamic DCM in which the entire graph is regenerated at random intervals distributed

as Geometric(αn). Finally, in Chapter III we showed the dimensionality of Πn (the matrix

rows {παn,ei}i∈[n] in the present notation) scales like O(nf(c,ε)) for some f(c, ε) ∈ (0, 1) if

αn = c/t
(n)
ent but scales like O(1) if αnt

(n)
ent → 0; we also conjectured this dimensionality is

significantly larger if αnt
(n)
ent →∞ (see Section 3.7.4).

Ultimately, these results all echo Theorem 5.1 and hint at a deeper phenomena. However,

prior to this chapter, one may have (erroneously) suspected that such results rely crucially on

some property of the DCM, since [21, 20, 98] and Chapter III all study this generative model.

In contrast, the present chapter suggests that cutoff is the crucial property. Accordingly, it

is unsurprising that the existing trichotomy results rely on the cutoff results from [81, 56].

Theorem 5.2 relates closely to the aforementioned [22]. Here it is shown that mixing

cutoff (5.1) is equivalent to “hitting time cutoff”. Namely, Theorem 3 in [22] shows that for

lazy, reversible, and irreducible chains, (5.1) is equivalent to each of the following:

∃ η ∈ (0, 1/2] s.t. t
(n)
hit (η, ε)− t(n)

hit (η, 1− ε) = o(t
(n)
hit (η, 1/4)) ∀ ε ∈ (0, 1/4), (5.25)

∃ η ∈ (1/2, 1) s.t. t
(n)
hit (η, ε)− t(n)

hit (η, 1− ε) = o(t
(n)
hit (η, 1/4)) ∀ ε ∈ (0, 1/4), t

(n)
rel = o(t

(n)
mix).

Here t
(n)
rel is the inverse spectral gap of Pn (see (D.1) in Appendix D.1), and t

(n)
hit (η, ε) is the

first time the chain has visited all sets of stationary measure at least η with probability at

least 1− ε, from any starting state (see (D.2) in Appendix D.1). Hence, (5.25) roughly says

that shortly after “large” sets are reached at all, they are reached with high probability. As

discussed in Section 5.1 in Theorem 5.2 nicely complements this result, since both the cutoff

notion and the equivalent notion differ.

Finally, we mention some prior work with less immediate connections to our own. First,

we note that the basic connection between mixing times and perturbation bounds has been

previously been explored; for instance, the line of work [100, 101] derives upper bounds for

perturbation error in terms of mixing times. However, the more difficult lower bounds and

the precise asymptotic characterization in Theorem 5.1 are (to the best of our knowledge)
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new. In the PageRank literature, another relevant paper is [55], which estimates παn,σn as a

mixture of σn and the degree distribution; in this sense, the results in [55] are more precise

than ours, but they are restricted to a certain class of Pn.

5.7 Conclusions and future directions

In this chapter, we showed that the relative asymptotics of restart probability and mixing

time fully characterize the asymptotic change in stationary distribution for restart pertur-

bations of lazy, reversible chains. We also showed that a certain notion of perturbation

sensitivity is (almost) equivalent to pre-cutoff. Together, these results illustrate that how

“sharply” a chain converges to stationarity is intimately related to how robust it is.

There are several immediate extensions of this chapter. An obvious one is to extend

the results beyond lazy, reversible chains. Note the upper bounds in Lemmas 5.1 and 5.2

do not require laziness or reversibility, so this would only require generalizing the lower

bounds of these lemmas. Here the main challenge would be generalizing the lemma from

[22] discussed after (5.9). Another avenue to pursue is to extend the results to the wider

class of perturbations B(Pn, αn) defined by (5.6). Note Lemma 5.1 already holds for such

perturbations; moreover, the lower bound in Lemma 5.2 establishes existence of a restart

perturbation and thus existence of a perturbation in B(Pn, αn). Hence, the only challenge

is to extend the upper bound in Lemma 5.2 to B(Pn, αn). One approach would be to show

that restart perturbations drive the perturbed chain furthest from stationarity, after which

the existing upper bound would immediately extend to B(Pn, αn). We are unsure if this

actually holds, but intuition suggests it might, since the worst restart perturbation drives

the chain to a particularly bad part of the state space (see discussion after (5.9)).
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CHAPTER VI

Local Non-Bayesian Social Learning with Stubborn

Agents1

6.1 Introduction

With the rise of social networks like Twitter and Facebook, people increasingly receive

news through non-traditional sources. For instance, one recent study shows that two-thirds

of American adults have gotten news through social media [104]. Such news sources are

fundamentally different than traditional ones like print media and television, in the sense

that social media users read and discuss news on the same platform. As a consequence, users

turning to these platforms for news receive information not only from major publications but

from others users as well; in the words of [105], a user “with no track record or reputation

can in some cases reach as many readers as Fox News, CNN, or the New York Times.” This

phenomenon famously reared its head during the 2016 United States presidential election,

when fake news stories were shared tens of millions of times [105].

In this chapter, we study a mathematical model describing this situation. The model

includes a large number of agents attempting to learn an underlying true state of the world

(e.g. which of two candidates is better suited for office) using information from three sources.

First, each agent receives noisy observations of the true state, modeling e.g. news stories from

major publications. Second, each agent observes the opinions of a subset of other agents,

modeling e.g. discussions with other social media users. Third, each agent may observe the

opinions of stubborn agents or bots who aim to persuade others of an erroneous true state,

modeling e.g. users spreading fake news.2 Based on this information, agents iteratively

update their beliefs about the true state in a manner similar to the non-Bayesian social

learning model of Jadbabaie et al. [24]. This iterative process continues for a finite number

1This chapter is adapted from [102]. A preliminary version appeared in the abstract [103].
2The term stubborn agents has been used in the literature to describe such agents; the term bots is used in
reference to automated social media accounts spreading fake news while masquerading as real users [106].
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of iterations that we refer to as the learning horizon.

Under this model, two competing forces emerge as the learning horizon grows. On the one

hand, agents receive more observations of the true state, suggesting that they become more

likely to learn. On the other hand, the opinions of the bots gradually propagate through

the system, suggesting that agents become increasingly exposed to these opinions and thus

less likely to learn. Hence, while a growing horizon clearly affects the learning outcome, the

nature of this effect – namely, whether learning becomes more or less likely – is less clear.

This effect of the learning horizon has often been ignored in works with models similar

to ours. For example, our model is nearly identical to that in the empirical work [23], in

which the authors show that polarized beliefs can arise when there are two types of bots

with diametrically opposed viewpoints. However, the experiments in [23] simply fix a large

learning horizon and do not consider the effect of varying it. Models similar to ours have

also been treated analytically; for example, [24, 26, 25] study non-Bayesian learning models

similar to ours. However, these works consider a fixed number of agents and an infinite

learning horizon and thus also ignore timescale effects.

In our first set of results (see Section 6.3), we argue that the learning horizon plays a

prominent role in the learning outcome and therefore should not be ignored. In particular,

we show that the learning outcome depends on the relationship between the horizon Tn and

a quantity pn that describes the “density” of bots in the system, where both quantities may

depend on the number of agents n. Mathematically, letting θ ∈ (0, 1) denote the true state

and θTn(i∗) denote the belief about the true state for a uniformly random agent i∗ at the

horizon Tn, we show (see Theorem 6.1)

θTn(i∗)
P−−−→

n→∞

θ, Tn(1− pn) −−−→
n→∞

0

0, Tn(1− pn) −−−→
n→∞

∞
. (6.1)

Here pn is smaller when more bots are present and 0 is the erroneous true state promoted

by the bots. Hence, in words, (6.1) says the following: if there are sufficiently few bots, in

the sense that Tn(1− pn)→ 0, i∗ learns the true state; if there are sufficiently many bots, in

the sense that Tn(1− pn)→∞, i∗ adopts the extreme belief 0 promoted by the bots.

We note the result in (6.1) assumes a particular model for the graph connecting agents

and bots (a modification of the directed configuration model used in Chapter III). For such

models, phase transitions – wherein small changes to model parameters lead to starkly

different behaviors – are often observed. In this case, assuming Tn = (1 − pn)−k for some

k > 0 and pn → 1, the limiting belief suddenly drops from θ to 0 as k changes from e.g. 0.99

to 1.01 (see Figure 6.1). Put differently, agents initially (at time (1− pn)−0.99) learn the true
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Figure 6.1: Graphical illustration of learning outcome in the case η = θ = 0.5.

state, then suddenly (at time (1 − pn)−1.01) “forget” the true state and adopt the extreme

opinion 0. In light of this, it is interesting to set k = 1 and “zoom in” to study the dynamics

of this drop from θ to 0. Indeed, in Theorem 6.1, we show that if Tn(1− pn)→ c ∈ (0,∞),

θTn(i∗)
P−−−→

n→∞
θ(1− e−cη)/(cη), (6.2)

where η ∈ (0, 1) is a model parameter that dictates the weight agents place on other agents’

opinions in their belief updates. The limit in (6.2) is depicted graphically as a function of c

in Figure 6.1, which offers an intuitive interpretation: if an adversary deploys bots in hopes

of driving agent opinions to 0, the marginal benefit of deploying additional bots is smaller

when c is larger. In short, the adversary experiences diminishing returns.

To conclude the first part of the chapter, we show in Theorem 6.2 that all but o(n) agents

adopt opinion 0 in a certain sub-case of Tn(1− pn)→∞ (namely, the sub-case in which the

“density” of bots is non-vanishing). Hence, Theorem 6.2 is stronger than Theorem 6.1 and

applies to fewer cases; we argue empirically that this stronger result fails in other cases.

Our second set of results (see Section 6.4) consider a setting in which an adversary deploys

bots in hopes of disrupting learning. More specifically, the adversary chooses how many bots

to connect to each agent (subject to a budget constraint), with the aim of minimizing θTn(i∗).

Here we leverage our first set of results to formulate the adversary’s problem as an integer

program: by (6.1) and (6.2), an adversary can minimize beliefs (at least asymptotically) by

minimizing pn, viewed as a function of the number of bots connected to each agent.

Even after recasting the adversary’s problem as an integer program, it remains unclear if

it can be solved efficiently. Thus, in Section 6.4, we propose two solutions to this problem.

First, we show its objective function belongs to a special class of discrete-domain functions

that can be minimized in polynomial time, and we employ an existing algorithm to solve the

integer program exactly. However, this runtime is n2 even in the best case, which too high

for social networks like Twitter and Facebook (where n is on the order of 108). Thus, we also
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propose a randomized approximation algorithm that runs in time n log n and that produces

a constant-fraction approximation of the optimal 1− pn with high probability (see Theorem

6.4). Using this constant-fraction result, as well as our analysis from the first part of the

chapter, we (roughly) show the following: if the most sophisticated adversary can drive the

typical belief to 0 (in the sense of (6.1)), then our randomized scheme will drive the typical

belief to 0 as well. See Corollary 6.1 for a formal statement.

While the exact solution can only be found algorithmically, our randomized scheme has a

somewhat interpretable, and quite interesting, form. In particular, it suggests that successful

adversaries carefully balance agents’ influence and susceptibility to influence. For a social

network like Twitter, this means targeting users with many followers (i.e. influential users)

who follow very few users themselves (so that fake news tweeted by bots will appear promi-

nently in the targeted users’ Twitter feeds). While this is somewhat intuitive, the precise

form of the randomized scheme is far from obvious. Thus, we believe our analysis provides

new insights into vulnerabilities of news sharing platforms and social learning models.

Finally, we show empirically that our proposed adversary solutions outperform (in terms

of minimizing θTn(i∗)) a number of intuitive heuristics on graphs representing real social

networks. This is somewhat remarkable, because our adversary solutions fundamentally

assume that minimizing θTn(i∗) amounts to minimizing pn, and we only verify this assumption

for a certain random graph model (and only in the limit as n grows to infinity). Thus, our

empirical results suggest that our insights regarding vulnerabilities in news sharing and social

learning extend beyond the random graph model considered in the rest of the chapter.

Before proceeding, we note several of our results also assume Tn = O(log n), which

guarantees that at the learning horizon, an agent’s belief is only affected by a vanishing

fraction of other agents and bots (at least in the sparse random graph considered). This is

why the title of the chapter refers to the learning as “local”. More specifically, our choice of

Tn is dominated by the mixing time of the random walk on this random graph, which means

we cannot leverage global properties like the stationary distribution of this walk, in contrast

to many works on social learning (see Section 6.5). Instead, similar to the analysis in Chapter

III (see the discussion following Lemma 3.1), we leverage the fact that the random graph has

a well-behaved local structure, and we show that analyzing beliefs amounts to analyzing the

probability of reaching the absorbing states representing bots. It is from three regimes of

these absorption probabilities that the three regimes in (6.1)-(6.2) arise (see Section 6.3.2).

Furthermore, we can view the introduction of these absorbing states as a perturbation of

the random walk on the agent sub-graph; from a learning perspective, this perturbation may

cause learning to fail where it may have succeeded. Thus, this chapter studies a perturbed

Markov chain for which the perturbation causes adverse effects.
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The remainder of the chapter is organized as follows. In Section 6.2, we define the model

studied in this chapter. We present our results concerning the learning outcome in Section

6.3. In Section 6.4, we discuss the adversarial setting. Finally, we discuss related work in

Section 6.5 and conclude the chapter in Section 6.6.

Notational conventions for the chapter: Most notation is standard or defined as needed,

but we note here that the following conventions are used frequently. For n ∈ N, we let

[n] = {1, 2, . . . , n}, and for n, k ∈ N we let k + [n] = [n] + k = {k + 1, k + 2, . . . , k + n}. All

vectors are treated as row vectors. We let ei denote the vector with 1 in the i-th position and

0 elsewhere. We denote the set of nonnegative integers by N0 = N ∪ {0}. We use 1(A) for

the indicator function, i.e. 1(A) = 1 if A is true and 0 otherwise. All random variables are

defined on a common probability space (Ω,F ,P), with E[·] =
∫

Ω
· dP denoting expectation,

P−→ denoting convergence in probability, and a.s. meaning P−almost surely.

6.2 Model

6.2.1 Learning model

We begin by defining the model studied throughout the chapter. The main ingredients

are (1) a true state of the world, represented as a scalar, (2) a social network connecting two

sets of nodes, some who aim to learn the true state and some who wish to persuade others of

an erroneous state, and (3) a learning horizon. We discuss each of these ingredients in turn.

The true state of the world is a constant θ ∈ (0, 1). For example, in an election between

candidates representing two political parties (say, Party 1 and Party 2), θ ≈ 0 can be

interpreted as the Party 1 candidate being far superior, θ ≈ 1 means the Party 2 candidate

is far superior, and θ ≈ 0.5 implies the candidates are roughly equal. We emphasize that θ

is a deterministic constant and does not depend on time, nor on the number of agents.

A directed graph G = (A ∪ B,E) connects disjoint sets of nodes A and B (details

regarding the graph structure are discussed in Section 6.2.2). We refer to elements of A as

regular agents, or simply agents, and elements of B as stubborn agents or bots. While agents

attempt to learn the true state θ, bots aim to disrupt this learning and convince agents

that the true state is instead 0. In the election example, agents represent voters who study

the two candidates to learn which is superior, while bots are loyal to Party 1 and aim to

convince agents that the corresponding candidate is superior (despite possible evidence to

the contrary). Edges in the graph represent connections in a social network over which nodes

share opinions in a manner that will be described shortly. An edge from node i to node j,

denoted i→ j, will be interpreted to mean that j observes i’s opinion.

Agents and bots share opinions until a learning horizon T ∈ N. We will allow the horizon

to depend on the number of agents n , |A| and will thus denote it by Tn at times. In the
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election example, T represents the duration of the election season, i.e. the number of time

units that agents can learn about the candidates and that bots can attempt to convince

agents of the superiority of the Party 1 candidate. Here Tn will be finite for each finite n,

and we will let Tn tend to infinity with n.

It remains to specify how agents attempt to learn and how bots aim to disrupt learning.

We begin with the agents. Initially, i ∈ A believes the state to be θ0(i) = α0(i)/(α0(i)+β0(i)),

where α0(i) ∈ [0, ᾱ] and β0(i) ∈ [0, β̄] for some ᾱ, β̄ ∈ (0,∞) that do not depend on n

(if α0(i) = β0(i) = 0, we let θ0(i) = 0.5 by convention). We refer to α0(i), β0(i) as the

prior parameters and will not specify them beyond assuming they lie in the aforementioned

intervals.3 In our running example, the initial belief θ0(i) can encode i’s past opinions

regarding the political parties, e.g. θ0(i) < 0.5 means i historically prefers Party 1 and

is predisposed towards the corresponding candidate before the election season begins. At

each time t ∈ [T ], i ∈ A receives a noisy observation of the true state (e.g. i reads a news

story regarding the candidates) and modifies its opinion based on this observation and on

the opinions of its incoming neighbors in G (e.g. i discusses the election with its social

connections). Mathematically, i ∈ A updates its belief as θt(i) = αt(i)/(αt(i) + βt(i)), where

αt(i) = (1− η)(αt−1(i) + st(i)) +
η

din(i)

∑
j∈Nin(i)

αt−1(j), (6.3)

βt(i) = (1− η)(βt−1(i) + (1− st(i))) +
η

din(i)

∑
j∈Nin(i)

βt−1(j).

Here st(i) ∼ Bernoulli(θ) is the observation of the true state, Nin(i) ⊂ A∪B are i’s incoming

neighbors in G, din(i) = |Nin(i)|, and η ∈ (0, 1) is a constant (independent of agent i and time

t). We note that, as η grows, the effect of the network becomes stronger (i.e. the opinions of

agent i’s neighbors have a stronger effect on i); this will be reflected in our results. Also, as

discussed in Section 6.2.2, we will assume din(i) > 0 ∀ i ∈ A, so (6.3) is well-defined.

Before discussing the bots, we comment further on the belief update (6.3). First, assuming

η = α0(i) = β0(i) = 0 temporarily, we simply have θt(i) =
∑t

τ=1 sτ (i)/t, which is an unbiased

estimate of the true state θ. Next, if we drop the assumption α0(i) = β0(i) = 0 (but still

assume η = 0), θt(i) is no longer an unbiased estimate. Instead, we can view θt(i) as the mean

of a beta distribution with parameters αt(i), βt(i); in this case, (6.3) is simply a Bayesian

update of the prior distribution Beta(αt−1(i), βt−1(i)) with a Bernoulli(θ) signal. Finally,

dropping the assumption η 6= 0 to obtain the model we actually consider, (6.3) is no longer

a Bayesian update, as alluded to by the title of this chapter. This non-Bayesian model is

closely related to others in the literature; see Section 6.5 for details.

3Appendix E.1.1 shows the effect of the priors vanishes when Tn →∞, so specifying them is unnecessary.
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Having specified the behavior of agents, we turn to the bots. For i ∈ B, we simply set

αt(i) = 0, βt(i) = β̄ + (1− η)t ∀ t ∈ [T ]. (6.4)

Hence, the opinion of i ∈ B is θt(i) = αt(i)/(αt(i) + βt(i)) = 0, e.g. bots believe the Party 1

candidate is far superior. To explain the precise form of (6.4), consider a system composed of

only agents (i.e. B = ∅). Since β0(i) ≤ β̄, st(i) ≥ 0 ∀ i ∈ A, it is easy to show via (6.3) that

βt(i) ≤ β̄ + (1− η)t and αt(i) ≥ 0 ∀ i ∈ A, t ∈ [T ]. Hence, not only are bots biased towards

state 0, but their bias is maximal, in the sense that their parameters αt(i), βt(i) are as

extreme as an agent’s can be. We also note we can define bot in an alternative way that will

be more convenient for our analysis. Specifically, for i ∈ B, we can set Nin(i) = {i} (i.e. i has

a self-loop and no other incoming edges in G), α0(i) = 0, β0(i) = β̄, and st(i) = 0 ∀ t ∈ [T ].

Then, assuming i ∈ B updates its parameters via (6.3), it is straightforward to show (6.4)

holds. This alternative definition will be used for the remainder of the chapter. Finally,

since all bots i ∈ B have the same behavior, we assume (without loss of generality) that

the outgoing neighbor set of i ∈ B is Nout(i) = {i, i′} for some i′ ∈ A, i.e. in addition to its

self-loop, each bot has a single outgoing neighbor from A.

6.2.2 Graph model

We next specify how the social network G is constructed. For this, we use a modification

of the directed configuration model (DCM) from Chapter III. Our modification is needed to

account for the distinct node types at hand (agents and bots).

To begin, we realize a random degree sequence {dout(i), dAin(i), dBin(i)}i∈A from some dis-

tribution; here we let A = [n]. In the construction described next, i ∈ A will have dout(i)

outgoing neighbors (i will be observed by dout(i) other agents), along with dAin(i) and dBin(i)

incoming neighbors from A and B, respectively (i will observe dAin(i) agents and dBin(i) bots).

The total in-degree of i is thus din(i) = dAin(i) + dBin(i). We will assume

dout(i), d
A
in(i) ∈ N, dBin(i) ∈ N0 ∀ i ∈ A,

∑
i∈A

dout(i) =
∑
i∈A

dAin(i). (6.5)

In words, the first condition says i is observed by and observes at least one agent, and may

observe by one or more bots. The second condition says sum out-degree equals sum in-degree

in the agent sub-graph; this will be necessary to construct a graph with the given degrees.

After realizing the degree sequence, we begin the graph construction.4 First, we attach

dout(i) outgoing half-edges, dAin(i) incoming half-edges labeled A, and dBin(i) incoming half-

edges labeled B, to each i ∈ A; we will refer to these half-edges as outstubs, A-instubs, and

4This construction is presented more formally as Algorithm E.1 in Appendix E.1.1.
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B-instubs, respectively. We let OA denote the set of all outstubs. We then pair each outstub

with an A-instub to form an agent sub-graph in the following breadth-first-search manner:

• Sample i∗ from A uniformly. For each of the dAin(i∗) A-instubs attached to i∗, sample

an outstub uniformly from OA (resampling if the sampled outstub has already been

paired), and connect the instub and outstub to form an edge from some agent to i∗.

• Let A1 = {i ∈ A \ {i∗} : an outstub of i was paired with an A-instub of i∗}. For each

i ∈ A1, pair i’s dAin(i) A-instubs in the same manner i∗’s A-instubs were paired.

• Continue iteratively until all A-instubs have been paired. In particular, during the l-th

iteration, we pair all A-instubs attached to Al, the set of agents at distance l from i∗

(by distance l, we mean a path of length l exists, but no shorter path exists).

At the conclusion of this procedure, we obtain an agent sub-graph, along with unpaired

B-instubs attached to some (possibly all) agents. It remains to attach these B-instubs to

bots. For this, we define B = n + [
∑

i∈A d
B
in(i)] to be the set of bots (hence, the node set is

A ∪ B = [n +
∑

i∈A d
B
in(i)]). To each i ∈ B we add a single self-loop and a single unpaired

outstub (as described at the end of Section 6.2.1). This yields
∑

i∈A d
B
in(i) unpaired outstubs

attached to bots. Finally, we pair these outstubs arbitrarily with the
∑

i∈A d
B
in(i) unpaired

B-instubs from above to form edges from bots to agents (note the exact pairing can be

arbitrary since all bots behave the same, per Section 6.2.1).

Before proceeding, we note that the pairing of A-instubs with outstubs from OA did not

prohibit us from forming agent self-loops (i.e. edges i → i for i ∈ A), nor did it prohibit

multiple edges from i ∈ A to i′ ∈ A. This second observation means the set of edges E will

in general be a multi-set. For this reason, we re-define the parameter update (6.3) as

αt(i) = (1− η)(αt−1(i) + st(i)) + η
∑
j∈A∪B

|{j′ → i′ ∈ E : j′ = j, i′ = i}|
din(i)

αt−1(j), (6.6)

βt(i) = (1− η)(βt−1(i) + (1− st(i))) + η
∑
j∈A∪B

|{j′ → i′ ∈ E : j′ = j, i′ = i}|
din(i)

βt−1(j),

i.e. we weigh i’s incoming neighbors proportional to the number of edges pointing to i. We

also note that, instead of attaching bots to B-instubs after pairing all A-instubs as described

above, we can pair B-instubs iteratively along with the pairing of A-instubs. Finally, in the

case dBin(i) = 0 ∀ i ∈ A, the construction above reduces to the standard DCM.

6.3 Learning outcome

Having defined our model, we turn to our learning outcome analysis. We begin by defining

the required assumptions in Section 6.3.1. We then state and discuss our results in Sections

6.3.2 and 6.3.3. Finally, in Section 6.3.4, we return to comment on our assumptions.
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6.3.1 Assumptions

To define our assumptions, we require some notation. First, from the given degree se-

quence {dout(i), dAin(i), dBin(i)}i∈A=[n], we define, for each (i, j, k) ∈ N× N× N0,

f ∗n(i, j, k) =
1

n

n∑
a=1

1((dout(a), dAin(a), dBin(a)) = (i, j, k)), (6.7)

fn(i, j, k) =
n∑
a=1

dout(a)∑
a′∈A dout(a

′)
1((dout(a), dAin(a), dBin(a)) = (i, j, k)).

In words, f ∗n and fn are the (random) degree distributions for agents sampled uniformly and

proportional to out-degree, respectively. Note that, since the first agent i∗ added to the

graph is sampled uniformly from A, the degrees of i∗ are distributed as f ∗n. Also recall that,

to pair A-instubs, we sample outstubs uniformly from OA, resampling if the sampled outstub

is already paired. Thus, each time we add a new agent to the graph (besides i∗), its degrees

are distributed as fn. Using these random distributions, we also define

p̃∗n =
∑

j∈N,k∈N0

j

j + k

∑
i∈N

f ∗n(i, j, k), p̃n =
∑

j∈N,k∈N0

j

j + k

∑
i∈N

fn(i, j, k), (6.8)

q̃n =
∑

j∈N,k∈N0

j

j + k

1

j + k

∑
i∈N

fn(i, j, k).

Following the discussion above, p̃∗n is the expected value (conditioned on the degree sequence)

of the ratio of A-instubs to total instubs for i∗; p̃n is the expected value of this same ratio,

but for new agents added to the graph (besides i∗). The interpretation of q̃n is similar, i.e.

the expected ratio of A-instubs to the square of total instubs for new agents (besides i∗). At

the end of Section 6.3.2, we discuss why these random variables arise in our analysis.

We now define the four assumptions that are needed to establish our results. Two of

these statements require the degree sequence to be well-behaved (with high probability) –

specifically, (A1) requires certain moments of the degree sequence to be finite, while (A3)

requires {p̃n}n∈N to be close to a deterministic sequence {pn}n∈N. The other statements,

(A2) and (A4), impose maximum and minimum rates of growth for the learning horizon Tn.

In particular, Tn must be finite for each finite n by (A2) and grow to infinity with n by (A4),

as mentioned in Section 6.2.1. We defer further discussion to Section 6.3.4.

(A1) limn→∞ P(Ωn,1) = 1, where, for some ν1, ν2, ν3, γ > 0 independent of n with ν3 > ν1,

Ωn,1 =
{

max
{∣∣∣∑n

i=1 dout(i)

n
− ν1

∣∣∣ , ∣∣∣∑n
i=1 dout(i)

2

n
− ν2

∣∣∣ , ∣∣∣∑n
i=1 dout(i)d

A
in(i)

n
− ν3

∣∣∣} < n−γ
}
.
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(A2) ∃ N ∈ N and ζ ∈ (0, 1/2) independent of n s.t. Tn ≤ ζ log(n)/ log(ν3/ν1) ∀ n ≥ N .

(A3) limn→∞ P(Ωn,2) = 1, where, for some pn ∈ [0, 1] s.t. limn→∞ pn = p ∈ [0, 1], some

0 ≤ δn = o(1/Tn), and some ξ ∈ (0, 1) independent of n,

Ωn,2 = {|pn − p̃n| < δn, p̃
∗
n ≥ p̃n, q̃n < 1− ξ} .

(A4) limn→∞ Tn =∞.

6.3.2 General case

We can now present our first result, Theorem 6.1. The theorem states that the belief at

time Tn of a uniformly random agent converges in probability as n→∞. Interestingly, the

limit depends only on the relative asymptotics of the time horizon Tn and the quantity pn

defined in (A3). For example, this limit is θ when Tn(1− pn)→ 0; note that Tn(1− pn)→ 0

requires pn to quickly approach 1 (since Tn →∞ by (A4)), which by (A3) and (6.8) suggests

the number of bots is small. Hence, i∗ learns the true state when there are sufficiently few

bots. (The other cases can be interpreted similarly.)

Theorem 6.1. Given (A1), (A2), (A3), and (A4), we have for i∗ ∼ A uniformly,

θTn(i∗)
P−−−→

n→∞
L(pn) ,


θ, Tn(1− pn) −−−→

n→∞
0

θ(1− e−cη)/(cη), Tn(1− pn) −−−→
n→∞

c ∈ (0,∞)

0, Tn(1− pn) −−−→
n→∞

∞

. (6.9)

Before discussing the proof of the theorem, we make several observations:

• Suppose pn is fixed and consider varying Tn, e.g. let pn = 1 − (log n)−1/2 and define

Tn,1 = (log n)1/4 and Tn,2 = (log n)3/4 (note Tn,1, Tn,2 satisfy (A2), (A4)). Then Tn,1(1−
pn) → 0 and Tn,2(1 − pn) → ∞, so by Theorem 6.1, the belief of i∗ converges to θ at

time Tn,1 and to 0 at time Tn,2. In words, i∗ initially (at time (log n)1/4) learns the

state of the world, then later (at time (log n)3/4) forgets it and adopts the bot opinions.

• Alternatively, suppose Tn is fixed and consider varying pn, e.g. let pn = 1−c/Tn for some

c ∈ (0,∞). Here smaller c implies fewer bots, and Theorem 6.1 says the limiting belief

of i∗ is a decreasing convex function of c (see Figure 6.1). One interpretation is that, if

an adversary deploys bots in hopes of driving agent beliefs to 0, the marginal benefit

of deploying additional bots is smaller when c is larger, i.e. the adversary experiences

“diminishing returns”. It is also worth noting that, since (1− e−cη)/(cη)→ 1 as c→ 0

and (1− e−cη)/(cη)→ 0 as c→∞, the limiting belief of i∗ is continuous in c.

• If Tn(1 − pn) → c ∈ (0,∞), consider the limiting belief of i∗ as a function of η. By
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Theorem 6.1, this belief tends to θ as η → 0 and tends to (1− e−c)/c as η → 1. This is

expected from (6.6): when η = 0, agents ignore the network (and thus avoid exposure

to biased bot opinions) and form opinions based only on unbiased signals; when η = 1,

the opposite is true. Interestingly, though, there is an asymmetry here: when η → 0,

the belief approaches the Tn(1− pn)→ 0 case, but when η → 1, it does not approach

the Tn(1− pn)→∞ case (since (1− e−c)/c > 0).

• If pn → p < 1, we must have Tn(1− pn)→∞ (since Tn →∞ by (A4)), and the belief

of i∗ tends to 0 by Theorem 6.1. Loosely speaking, this says that a necessary condition

for learning is that the bots vanish asymptotically (in the sense that pn → 1).

The proof of Theorem 6.1 is lengthy; for readability, we outline it in Appendix E.1 and

defer computational details to Appendix E.2. However, we next present a (non-rigorous)

argument to illustrate why the three cases of the limiting belief arise in Theorem 6.1.

At a high level, these three cases arise as follows. First, when Tn(1 − pn) → 0, the

“density” of bots within the Tn-step incoming neighborhood of i∗ is small. As a consequence,

i∗ is not exposed to the biased opinions of bots by time Tn and is able to learn the true state

(i.e. θTn(i∗) → θ in P). On the other hand, when Tn(1 − pn) → ∞, this “density” is large;

i∗ is exposed to bot opinions and thus adopts them (i.e. θTn(i∗) → 0 in P). Finally, when

Tn(1− pn)→ c ∈ (0,∞), the “density” is moderate; i∗ does not fully learn, nor does i∗ fully

adopt bot opinions (i.e. θTn(i∗)→ θ(1− e−cη)/(cη) in P).

The explanation of the previous paragraph is not at all surprising; what is more subtle

is what precisely density of bots within the Tn-step incoming neighborhood of i∗ means. It

turns out that the relevant quantity (and what we mean by this “density”) is the probability

that a random walker exploring this neighborhood reaches the set of bots.

To illustrate this, we consider a random walk {Xl}l∈N that begins at X0 = i∗ and, for

l ≥ 0, chooses Xl+1 uniformly from all incoming neighbors of Xl (agents and bots); note

here that the walk follows edges in the direction opposite their polarity in the graph. For

this walk, it is easy to see that, conditioned on Xl ∈ A, Xl+1 ∈ A occurs with probability

dAin(Xl)

dAin(Xl) + dBin(Xl)
. (6.10)

Importantly, we can sample this walk as we construct the graph, by choosing which instub

of Xl−1 to follow before pairing them. Assuming they are later paired with uniform agent

outstubs, and hence connected to agents chosen proportional to out-degree, we can average
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(6.10) over the out-degree distribution and conclude Xl+1 ∈ A occurs with probability

∑
a∈A

dAin(a)

dAin(a) + dBin(a)

dout(a)∑
a′∈A dout(a

′)
= p̃n. (6.11)

Now since bots have a self-loop and no other incoming edges, they are absorbing states, so

XTn ∈ A if and only if Xl ∈ A ∀ l ∈ [Tn]; by the argument above, this latter event occurs

with probability p̃Tnn . Since p̃n ≈ pn by (A3), we conclude XTn ∈ A occurs with probability

p̃Tnn ≈ pTnn ≈
(

1− limn→∞ Tn(1− pn)

Tn

)Tn
≈ e− limn→∞ Tn(1−pn).

From this expression, the three regimes of Theorem 6.1 emerge: when Tn(1 − pn) → 0, the

random walker remains in the agent set with probability ≈ 1; this corresponds to i∗ avoiding

exposure to bot opinions and learning the true state. Conversely, Tn(1 − pn) → ∞ means

the walker is absorbed into the bot set with probability ≈ 1 and thus adopts bot opinions.

Finally, Tn(1 − pn) → c ∈ (0,∞) means the walker stays in the agent set with probability

≈ e−c ∈ (0, 1), corresponding to i∗ not fully learning nor fully adopting bot opinions.

We note that the actual proof of Theorem 6.1 does not precisely follow this argument.

Instead, we locally approximate the graph construction with a certain branching process; we

then study random walks on the tree resulting from this branching process.5 However, the

foregoing argument illustrates the basic reason why the three cases of Theorem 6.1 arise.

Finally, we note the argument leading to (6.11) shows why p̃n enters into our analysis.

The other random variables defined in (6.8) enter similarly. Specifically, p̃∗n arises in almost

the same manner, but pertains only to the first step of the walk; this distinction arises since

the walk starts at i∗, the degrees of which relate to p̃∗n. On the other hand, q̃n arises when

we analyze the variance of agent beliefs, which involves studying two random walks; by an

argument similar to (6.11), the probability of both walks visiting the same agent is

∑
a∈A

dAin(a)

dAin(a) + dBin(a)

1

dAin(a) + dBin(a)

dout(a)∑
a′∈A dout(a

′)
= q̃n.

6.3.3 Special case

While Theorem 6.1 establishes convergence for the belief of a typical agent, a natural

question to ask is how many agents have convergent beliefs. Our second result, Theorem 6.2,

provides a partial answer to this question. To prove the result, we require slightly stronger

5This is necessary because the argument leading to (6.11) assumes instubs are paired with with uniform
outstubs, which is not true if resampling of outstubs occurs in the construction from Section 6.2.2.
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assumptions than those required for Theorem 6.1 (we will return shortly to comment on

why these are needed). First, we strengthen (A1) and (A3) to include particular rates of

convergence for the probabilities P(Ωn,i), i ∈ {1, 2}. Second, we strengthen (A4) with a

minimum rate at which Tn → ∞ (specifically, Tn = Ω(log n)). Third, and perhaps most

restrictively, we require pn → p < 1 in (A1). As a result, Theorem 6.2 only applies to the

case Tn(1− pn)→∞, for which Theorem 6.1 states the belief of a uniform agent converges

to zero. In this setting, Theorem 6.2 provides an upper bound on how many agents’ beliefs

do not converge to zero. In particular, this bound is O(nk) for some k < 1.

Theorem 6.2. Assume ∃ κ, µ > 0 and N ′ ∈ N independent of n s.t. the following hold:

• (A1), with P(Ωn,1) = O(n−κ).

• (A2).

• (A3), with P(Ωn,2) = O(n−κ) and p < 1.

• (A4), with Tn ≥ µ log n ∀ n ≥ N ′.

Then for any ε > 0, k > 1−min{1
2
− ζ, µ(εη(1−p)/θ)2

16
, κ}, and K > 0, all independent of n,

lim
n→∞

P
(
|{i ∈ [n] : θTn(i) > ε}| > Knk

)
= 0.

We reiterate that ζ < 1/2 by (A2) and µ, κ > 0 by the theorem statement. Hence,

min{1
2
− ζ, µ(εη(1−p)/θ)2

16
, κ} > 0, so we can choose k < 1 in Theorem 6.2 to show that the size

of the non-convergent set of agents vanishes relative to n. We suspect that such a result is

the best one could hope for; in particular, we suspect that showing all agent beliefs converge

to zero is impossible. This is in part because our assumptions do not preclude the graph from

being disconnected. Hence, there may be small connected components composed of agents

but no bots; in such components, agent beliefs will converge to θ (not zero). Additionally,

while the lower bound for k in Theorem 6.2 is somewhat unwieldy, certain terms are easily

interpretable: the bound sharpens as η grows (i.e. as agents place less weight on their

unbiased signals), as p decays (i.e. as the number of bots grows), and as θ decays (i.e. as

signals are more likely to be zero, pushing beliefs to zero).

As for Theorem 6.1, the proof of Theorem 6.2 is outlined in Appendix E.1 with details

provided in Appendix E.2. The crux of the proof involves obtaining a sufficiently fast rate

for the convergence in Theorem 6.1; namely, we show that for some γ > 0, P(θTn(i∗) > ε) =

O(n−γ).6 At a high level, obtaining such a bound requires bounding three probabilities by

O(n−γ), which also helps explain the stronger assumptions of Theorem 6.2:

6One may wonder why we derive a new bound for Theorem 6.2, since we already bounded P(θTn(i∗) > ε) for
Theorem 6.1. The reason is that the bound for Theorem 6.1 does not decay quickly enough as n → ∞ to
prove Theorem 6.2; on the other hand, the bound for Theorem 6.2 does not decay as n → ∞ for the case
Tn(1− pn)→ [0,∞) and thus cannot be used for all cases of Theorem 6.1.
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• As for Theorem 6.1, we first approximate the graph construction with a branching

process so as to analyze beliefs on the tree. Here strengthening (A1) with P(Ωn,1) =

O(n−κ) is necessary to ensure this approximation fails with probability at most O(n−γ).

• To analyze beliefs on the tree, we first condition on the random tree structure and treat

the belief as a weighted sum of i.i.d. signals using an approach similar to Hoeffding’s

inequality. Namely, we obtain the Hoeffding-like tail O(e−2ε2Tn); strengthening (A4)

with Tn ≥ µ log n is necessary to show this tail is O(e−2ε2µ logn) = O(n−γ).

• Finally, after conditioning on the tree structure, we show this structure is close to its

mean. Specifically, letting E[ϑ̂Tn(φ)|T ] denote the expected belief for the root node in

the tree conditioned on the tree structure (see Appendix E.1 for details), we show

P(E[ϑ̂Tn(φ)|T ] > ε) = O
(
n−γ
)
.

Note the only source of randomness in E[ϑ̂Tn(φ)|T ] is the tree; because this tree is

recursively generated, it has a martingale-like structure that can be analyzed using an

approach similar to the proof of Lemma 3.1 in Chapter III. Here we require P(Ωn,2) =

O(n−κ) to ensure the degree sequence is ill-behaved with probability at most O(n−γ);

we also require pn → p < 1 in this step (and only in this step).

We now address the most notable difference between Theorems 6.1 and 6.2; namely, that

the latter only applies when pn → p < 1. We believe this reflects a fundamental distinction

between the cases pn → p < 1 and pn → 1 and is not an artifact of our analysis. An intuitive

reason for this is that more bots are present in the former case, so fewer random signals are

present (recall bot signals are deterministically zero). As a result, θTn(i∗) is “less random”,

so its concentration is stronger. Toward a more rigorous explanation, we note that Appendix

E.1.4.1 provides the following condition for extending Theorem 6.2 to other cases of pn:

∃ γ′ > 0 s.t. P(|E[ϑ̂Tn(φ)|T ]− L(pn)| > ε) = O
(
n−γ

′
)
, (6.12)

where L(pn) is the limit from Theorem 6.1 defined in (6.9). It is the convergence of

|E[ϑ̂Tn(φ)|T ] − L(pn)| in (6.12) that we suspect is fundamentally different in the cases

pn → p < 1 and pn → 1. To illustrate this, we provide empirical results in Figure 6.2.

In the leftmost plot, we show 1 − p̃n versus Tn; here the plot is on a log-log scale, so a line

with slope m means (1 − p̃n) ∝ Tmn . Hence, we are comparing four cases: m ≈ 0, so that

pn ≈ p < 1 (blue circles); m ≈ −0.5, so that Tn(1− pn)→∞ and pn → 1 (orange squares);

m ≈ −1, so that Tn(1− pn)→ 1 (yellow diamonds); and m ≈ −1.5, so that Tn(1− pn)→ 0

(purple triangles). The second plot reflects the corresponding cases of L(pn): E[ϑ̂Tn(φ)|T ]

decays to zero in the first two cases, grows towards θ = 0.5 in the fourth case, and approaches
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Figure 6.2: Empirical comparison of cases pn → p < 1, Tn(1 − pn) → ∞ with pn → 1,
Tn(1−pn)→ 1, and Tn(1−pn)→ 0 (leftmost plot). Note E[ϑ̂Tn(φ)|T ] approaches
the corresponding limit from Theorem 6.1 in all cases (second plot from left).
However, the error term |E[ϑ̂Tn(φ)|T ] − L(pn)| behaves markedly differently in
the case pn → p < 1, with a faster decay on average (second plot from right)
and a strikingly lower variance (rightmost plot).

an intermediate limit in the third case. The final two plots illustrate the convergence (or

lack thereof) in (6.12). Here the empirical mean of the error term |E[ϑ̂Tn(φ)|T ] − L(pn)|
decays quickly for the first case but decays more slowly (or is even non-monotonic) in the

other cases. More strikingly, the empirical variance of this error term is several orders of

magnitude smaller in the first case. This suggests that P(|E[ϑ̂Tn(φ)|T ]− L(pn)| > ε) decays

much more rapidly in the case pn → p < 1, which is why we believe this is the only case for

which (6.12) is satisfied. (See Appendix E.5 for further details on this experiment.)

6.3.4 Comments on assumptions

We now return to comment on the assumptions needed to prove our results. First,

(A1) states that certain empirical moments of the degree distribution – namely, for i∗ ∼ A

uniformly, the first two moments of dout(i
∗) and the correlation between dout(i

∗) and dAin(i∗)

– converge to finite limits. This says our graph lies in a sparse regime, where typical node

degrees do not grow with the number of nodes.7 We also note ν3 > ν1 in (A1) is minor and

simply eliminates an uninteresting case. To see this, first note that when Ωn,1 holds,

ν3

ν1

≈
∑n

i=1 dout(i)d
A
in(i)/n∑n

i=1 dout(i)/n
=

n∑
i=1

dout(i)∑n
i′=1 dout(i

′)
dAin(i) ≥ 1, (6.13)

where we have used the assumed inequality dAin(i) ≥ 1 ∀ i ∈ [n]. Hence, ν3 < ν1 cannot occur,

so assuming ν3 > ν1 simply eliminates the case ν3 = ν1. This remaining case is uninteresting

7This is analogous to e.g. an Erdős-Rényi model with edge formation probability λ/n for some λ > 0 inde-
pendent of n, in which degrees converge in distribution to Poisson(λ) random variables.
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because ν3/ν1 is the limiting number of offspring for each node in the branching process we

analyze; thus, if ν3 = ν1, the tree resulting from this process is simply a line graph.

Next, (A2) states Tn = O(log n). Together with (A1), these assumptions are standard

given our analysis approach (locally approximating the graph construction with a branching

process). We also note that, with the interpretation of ν3/ν1 above, it follows that the

number of agents within the Tn-step neighborhood of i∗ can be upper bounded by

(ν3/ν1)Tn = O
(
(ν3/ν1)ζ log(n)/ log(ν3/ν1)

)
= O

(
nζ
)

= o(n).

In words, the size of the aforementioned neighborhood vanishes relative to n. As mentioned

in the introduction, this is why the chapter title refers to the learning as “local”: only a

vanishing fraction of other agents (those within this neighborhood) affect the belief of i∗.

The remaining statements are needed to establish belief convergence on the tree resulting

from the branching process. (A4) states Tn → ∞ with n, which is an obvious requirement

for convergence. (A3) essentially says that three events occur with high probability. First,

p̃n should be close to a convergent, deterministic sequence pn; this is necessary since the

asymptotics of pn play a prominent role in Theorem 6.1. Second, p̃∗n ≥ p̃n essentially says

that bots prefer to attach to agents with higher out-degrees, i.e. more influential agents;

this is the behavior one would intuitively expect. Third, q̃n < 1 − ξ ∈ (0, 1) is a minor

assumption; for example, if all agents have total in-degree at least 2, q̃n ≤ 1/2.

6.4 Adversarial setting

In the previous two sections, we defined and then analyzed the following model:

(I) A degree sequence {dout(i), dAin(i), dBin(i)}i∈[n] is realized.

(II) From {dout(i), dAin(i)}i∈[n], an agent sub-graph is constructed.

(III) To each i ∈ [n], dBin(i) bots are connected (each also containing a self-loop).

(IV) A learning process occurs on the graph connecting agents and bots.

We next consider an adversarial model, which modifies steps (I) and (III) of this model

as follows: in (I), only {dout(i), dAin(i)}i∈[n] is realized, and in (III), an adversary chooses

{dBin(i)}i∈[n] (subject to a budget constraint). Put differently, we first construct a graph of

agents aiming to learn; an adversary then deploys bots in hopes of disrupting this learning.

In this adversarial model, we will assume the adversary observes {dout(i), dAin(i)}i∈[n] but

does not observe the agent sub-graph. This is a reasonable assumption for social networks

like Twitter, where follower and followee counts (i.e. out- and in-degree) are displayed on each

user’s profile, but where the actual graph of follower/followee relationships is not publicly

available. Under this assumption, our adversarial model can be equivalently defined by

replacing (I) with (I’) in the model above (but otherwise proceeding as above), where
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(I’) A sequence {dout(i), dAin(i)}i∈[n] is realized and observed by the adversary, who then

chooses {dBin(i)}i∈[n], yielding the degree sequence {dout(i), dAin(i), dBin(i)}i∈[n].

To be clear, we will assume (as in previous sections) the observed sequence satisfies

dout(i), d
A
in(i) ∈ N ∀ i ∈ [n],

∑
i∈[n]

dout(i) =
∑
i∈[n]

dAin(i),

and the adversary’s choice satisfies dBin(i) ∈ N0 ∀ i ∈ [n], i.e. the full sequence satisfies (6.5).

The adversary’s goal is to disrupt learning, by which we mean minimizing the average

belief at the learning horizon θTn(i∗), subject to the budget constraint
∑n

i=1 d
B
in(i) ≤ bn (here

bn is a given non-negative integer). At first glance, it is far from obvious how the adversary

should deploy bots to achieve this goal. Hence, we appeal to Theorem 6.1: to achieve this

goal asymptotically, the adversary should deploy bots so as to minimize pn. In particular, if

the adversary can drive pn to e.g. 1−T−1+ε
n for some ε > 0, Theorem 6.1 ensures θTn(i∗)→ 0

in P (when our assumptions hold). Furthermore, if the adversary’s choice of {dBin(i)}i∈[n]

yields a degree sequence {dout(i), dAin(i), dBin(i)}i∈[n] satisfying the assumptions of Theorem

6.18, minimizing pn is asymptotically equivalent to minimizing p̃n (since |pn − p̃n| → 0 with

high probability by (A3)). Hence, we will assume the adversary’s goal is to minimize p̃n

after observing the realization of {dout(i), dAin(i)}i∈[n]. More concretely, we first let mn =∑n
i=1 dout(i) and (with slight abuse of notation) define the function p̃n : Nn

0 → [0, 1] by

p̃n(d) =
n∑
i=1

dAin(i)

dAin(i) + d(i)

dout(i)

mn

∀ d = (d(1), . . . , d(n)) ∈ Nn
0 , (6.14)

which is simply p̃n, as defined in (6.8), viewed as a function of the bot in-degrees d(i) ,

dBin(i)9. In light of the preceding discussion, we then define the adversary’s problem as

min
d∈Nn0

p̃n(d) s.t.
n∑
i=1

d(i) ≤ bn. (6.15)

While a solution to (6.15) exists, it is not clear if it can be found efficiently, since the

minimization is over a discrete set that grows exponentially in n. Thus, in the remainder

of this section, we propose two approaches to efficiently solve (or approximate the solution

of) (6.15). The first, discussed in Section 6.4.1, employs an existing algorithm for so-called

M-convex minimization, which computes the solution of (6.15) exactly. When accounting for

8We cannot verify these assumptions in general, as the structures of our proposed solutions are not amenable
to analysis. Thus, there is a slight gap in our argument that minimizing θTn

(i∗) amounts to minimizing p̃n.
However, we show empirically in Section 6.4.3 that θTn(i∗) and p̃n are closely correlated in practice.

9Here and for the remainder of the section, we suppress the sub- and super-scripts in dBin(i).
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the separable nature of our objective function p̃n, this approach is somewhat efficient, with

computational complexity between O(n2) and O(n2bn). However, this complexity is too high

for social networks like Twitter, where n is on the order of 108. Hence, our second approach,

discussed in Section 6.4.2, is a randomized algorithm that approximates the solution of (6.15)

with O(n log n+bn) complexity and provably high accuracy. In addition to these advantages,

the randomized scheme has a non-obvious but interpretable form, which provides new insights

regarding vulnerabilities in non-Bayesian social learning models.

6.4.1 Exact solution

For the exact solution, we first rewrite (6.15) as mind∈Zn p̂n(d), where

p̂n(d) =

p̃n(d), d(i) ≥ 0 ∀ i ∈ [n],
∑n

i=1 d(i) = bn

∞, otherwise
.

In words, we incorporated the constraints from (6.15) into the objective; we also used the fact

that the solution of (6.15) satisfies the budget constraint with equality. In this equivalent

problem, the objective p̂n belongs to a special class of discrete-domain functions that can be

efficiently minimized. This class is the set of M-convex functions, defined as follows.

Definition 6.1. [107, Section 1.4.2] Let f : Zn → R ∪ {∞} be a function with effective

domain dom(f) = {x ∈ Zn : f(x) ∈ R}. Then f is called M-convex if for any x, y ∈ dom(f)

and any i ∈ [n] satisfying x(i) > y(i), there exists j ∈ [n] satisfying

y(j) > x(j), f(x) + f(y) ≥ f(x− ei + ej) + f(y + ei − ej).

To verify that our objective is M-convex, first note that by definition,

dom (p̂n) =

{
d ∈ Zn : d(i) ≥ 0 ∀ i ∈ [n],

n∑
i=1

d(i) = bn

}
.

Now let d, d′ ∈ dom(p̂n), i ∈ [n] s.t. d(i) > d′(i). Then since
∑n

k=1 d(k) =
∑n

k=1 d
′(k) = bn,

we have d′(j) > d(j) for some j ∈ [n]. From
∑n

k=1 d(k) =
∑n

k=1 d
′(k) = bn and d(i), d′(j) ≥ 1,

it is also clear that d−ei+ej, d
′+ei−ej ∈ dom(p̂n). Hence, letting µ(k) = dout(k)dAin(k)/mn,

p̂n(d− ei + ej) =
∑

k∈[n]\{i,j}

µ(k)

dAin(k) + d(k)
+

µ(i)

dAin(i) + d(i)− 1
+

µ(j)

dAin(j) + d(j) + 1
(6.16)

= p̂n(d) +
µ(i)

(dAin(i) + d(i)− 1)(dAin(i) + d(i))
− µ(j)

(dAin(j) + d(j) + 1)(dAin(j) + d(j))
,
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where we have simply used the definitions of p̂n, p̃n. Similarly, we obtain

p̂n(d′ + ei − ej) = p̂n(d′)− µ(i)

(dAin(i) + d′(i) + 1)(dAin(i) + d′(i))

+
µ(j)

(dAin(j) + d′(j)− 1)(dAin(j) + d′(j))
.

Adding the previous two equations, and using the inequalities d(i) ≥ d′(i)+1, d′(j) ≥ d(j)+1

(where the first holds since d(i) > d′(i) and d(i), d′(i) ∈ Z, and the second holds similarly)

gives p̂n(d− ei + ej) + p̂n(d′ + ei − ej) ≤ p̂n(d) + p̂n(d′), i.e. p̂n is M-convex.

Any M-convex function f satisfies the following optimality criterion, which says x mini-

mizes f if and only if f cannot be decreased by “exchanging” x by x− ei + ej.

Theorem 6.3. [107, Theorem 6.26] Let f be M-convex, and let x ∈ dom(f). Then

f(x) ≤ f(y) ∀ y ∈ Zn ⇔ f(x) ≤ f(x− ei + ej) ∀ i, j ∈ [n].

From Theorem 6.3, our exact solution emerges: we begin with an initial bot deployment d;

we then iteratively “exchange” bots and check whether or not the objective has decreased.

More formally, our exact solution is Algorithm 6.1; it is taken from [107, Section 10.1.1],

where it is called steepest descent. Note that the algorithm terminates when the optimality

criterion of Theorem 6.3 is satisfied; thus, Algorithm 6.1 provides an exact solution of of

(6.15).

We offer several remarks on the algorithm’s complexity:

• Line 3 dominates each iteration’s complexity. Naively, this requires O(n) time per i, j,

so each iteration’s complexity is O(n3). However, by (6.16), we can accelerate this by

computing p̂n(d− ei + ej) in O(1) time, which yields O(n2) complexity per iteration.

• In the best case, the initial choice of d is actually a solution. However, it still requires

one iteration to verify this, so the best-case complexity is O(n2).

• In the general case, [107, Section 10.1.1] provides a tie-breaking rule for the choice

of (i∗, j∗) that guarantees termination in max{‖d − d′‖1 : d, d′ ∈ dom(p̂n)} = O(bn)

iterations. Furthermore, this tie-breaking does not increase each iteration’s runtime (in

an order sense). Thus, for an arbitrary choice of initial d, the complexity is O(n2bn).

6.4.2 Approximation algorithm

We now turn to our approximation algorithm. The idea to first solve the relaxed problem

min
d∈Rn+

p̃n(d) s.t.
n∑
i=1

d(i) ≤ bn, (6.17)
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Algorithm 6.1: Exact solution of (6.15)

1 Let d ∈ dom(p̂n), compute p̂n(d) (in practice, we use a rounded version of the
relaxed solution (6.18))

2 while 1 do
3 Compute p̂n(d− ei + ej) ∀ i, j ∈ [n] s.t. i 6= j (using p̂n(d) and (6.16), this

requires O(1) time per i, j pair)
4 Let (i∗, j∗) ∈ arg min(i,j)∈[n]2:i 6=j p̂n(d− ei + ej)
5 if p̂n(d) ≤ p̂n(d− ei∗ + ej∗) then terminate (d solves (6.15) by Theorem 6.3)
6 else Set d = d− ei∗ + ej∗

Algorithm 6.2: Approximate solution of (6.15)

1 Compute dreln (i) as in (6.18) and set drandn (i) = 0 ∀ i ∈ [n]
2 for j = 1 to bn do

3 Sample Wj from the distribution dreln∑n
k=1 d

rel
n (k)

, i.e. P(Wj = i) = dreln (i)∑n
k=1 d

rel
n (k)

∀ i ∈ [n]

4 Set drandn (i) =
∑bn

j=1 1(Wj = i) ∀ i ∈ [n]

and then to sample bot locations in proportion to the relaxed solution. More formally, our

approximate solution drandn is constructed via Algorithm 6.2. We note that, as shown in

Appendix E.3.1, the solution of the relaxed problem (6.17) is

dreln (i) = dAin(i)

(√
r(i)

h∗
− 1

)
+

∀ i ∈ [n], (6.18)

where x+ = x1(x > 0), r(i) = dout(i)/d
A
in(i) ∀ i ∈ [n], h∗ = maxx∈R+ h(x), and

h(x) =

∑
i∈[n]:r(i)≥x2

√
dout(i)dAin(i)

bn +
∑

i∈[n]:r(i)≥x2 dAin(i)
∀ x ∈ R+. (6.19)

While this randomized scheme is somewhat opaque, it in fact yields useful insights. In

particular, the randomized and relaxed solutions drandn and dreln are equal in expectation, and

the relaxed solution dreln satisfies some intuitive properties:

• dreln (i) grows with r(i) = dout(i)/d
A
in(i), i.e. the adversary targets i with large dout(i)

and small dAin(i) under the relaxed solution. Here large dout(i) means i is influential

(e.g. i has many Twitter followers), while small dAin(i) means i is susceptible to influence

(e.g. i has few followees, so bot tweets will appear prominently in i’s Twitter feed).

• If r(i) < (h∗)2, then dreln (i) = drandn (i) = 0. Hence, if i is sufficiently non-influential,

and/or sufficiently non-susceptible, then targeting i gives no value to the adversary.
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• If r(i) = r(j) > (h∗)2, the relaxed solution yields

dAin(i)

dAin(i) + dreln (i)
=

h∗√
r(i)

=
h∗√
r(j)

=
dAin(j)

dAin(j) + dreln (j)
.

This can be interpreted as follows: the adversary strives for a similar proportion of

fake news in the feeds of users with similar ratios of influence to susceptibility.

In short, our approximate solution balances influence and susceptibility. While somewhat

intuitive, the precise manner in which this balance occurs (in particular, the precise form of

(6.18)-(6.19)) is highly non-obvious. Thus, in the absence of Theorem 6.1 and the subsequent

formulation of the adversary problem (6.15), one would not have arrived at this solution.

We now turn to the analysis of the randomized scheme. For the complexity analysis, first

observe that by definition of h, {h(x)}x∈R+ = {h(
√
r(i))}i∈[n]. Furthermore, {h(

√
r(i))}i∈[n],

and thus {h(x)}x∈R+ , can be computed in time O(n log n) as follows:

• Compute a vector containing {r(i)}i∈[n] sorted in decreasing order (O(n log n) time).

• Iteratively compute the sums in (6.19) at each x ∈ {
√
r(i)}i∈[n] (O(n) time).

• Compute {h(
√
r(i)) : i ∈ [n]} (O(n) time).

In summary, {h(x)}x∈R+ (which contains at most n elements) can be computed in O(n log n)

time. After computing this set, h∗, and then dreln , can each be computed in linear time. Thus,

computing the relaxed solution (6.18) requires O(n log n) complexity. Finally, assuming we

can obtain one sample from dreln in O(1) time after O(n log n) pre-processing time (using e.g.

the alias method [108, 109],[110, Section 3.4.1]), Algorithm 6.2 has complexity O(n log n+bn).

Analyzing the accuracy of Algorithm 6.2 is more difficult. We will prove a guarantee that

says that with high probability, and for any δ > 0

p̃n
(
drandn

)
<

1 + δ + p̃n (doptn )

2 + δ
⇔ 1− p̃n

(
drandn

)
> 1− 1 + δ + p̃n (doptn )

2 + δ
=

1− p̃n (doptn )

2 + δ
,

where doptn is any solution of (6.15), i.e. 1−p̃n(drandn ) provides a constant-factor approximation

of 1− p̃n(doptn ) with high probability. More formally, we have the following theorem.

Theorem 6.4. Assume the following holds:

∃ {xn}n∈N ⊂ [0,∞) s.t. lim
n→∞

xn =∞, lim
n→∞

P
(
mn(1− p̃n(doptn ))

maxj∈[n] r(j)
≥ xn

)
= 1. (6.20)

Then for any δ > 0,

lim
n→∞

P
(
p̃n
(
drandn

)
≥ 1 + δ + p̃n(doptn )

2 + δ

)
= 0.
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Proof. See Appendix E.3.

We reiterate that p̃n(doptn ) and p̃n(drandn ) are both random variables; the former some

complicated function of the given (random) degrees {dout(i), dAin(i)}i∈[n], the latter also de-

pending on the random sampling in Algorithm 6.2. To prove Theorem 6.4, we first condition

on the given degrees – so that the only randomness is the Algorithm 6.2 sampling – and

bound the probability that p̃n(drandn ) exceeds (1 + δ + p̃n(doptn ))/(2 + δ) (viewed as a fixed

quantity when conditioning on the given degrees). We then average over the realization of

{dout(i), dAin(i)}i∈[n] and use (6.20) to show that this tail bound decays in n. In particular,

the conditional tail bound almost surely decays in mn(1 − p̃n(doptn ))/maxj∈[n] r(j); this is a

complicated function of the given degrees and thus a difficult random variable to understand,

so we assume it behaves as in (6.20) to prove concentration of p̃n(drandn ).

In light of this proof approach, one may think (6.20) “assumes away” the difficulty of the

proof, but we argue that this assumption is in fact minor. Indeed, in the setting of Theorem

6.1, and in particular by (A1), the following occur with high probability:

mn ≈ ν1n, max
j∈[n]

r(j) ≤ max
j∈[n]

dout(j) = max
j∈[n]

√
dout(j)2 <

√√√√ n∑
j=1

dout(j)2 ≈
√
ν2n.

Thus, assumption (6.20) in Theorem 6.4 holds if (A1) holds and with high probability,

√
n
(
1− p̃n

(
doptn

))
−−−→
n→∞

∞. (6.21)

If instead (6.21) fails, assumption (6.20) may fail as well. However, if (6.21) does fail, the

Tn = O(log n) assumption of Theorem 6.1 implies

Tn
(
1− p̃n

(
doptn

))
= O

(
log n/

√
n
)
−−−→
n→∞

0,

which, by Theorem 6.1, suggests that agents successfully learn. In short, (6.20) only elim-

inates cases in which even the most sophisticated adversary (i.e. one using the optimal

strategy) cannot prevent learning. This is an uninteresting case, so (6.20) is minor.

As a corollary of Theorem 6.4 (and of the Theorem 6.1 analysis), we can prove the

following. It essentially says that if the most sophisticated adversary can drive the typical

belief to zero, then the randomized scheme will drive the typical belief to zero as well. It also

establishes the reverse implication; while this is intuitively obvious, it requires some work to

prove (though no additional effort than is needed to establish the forward implication, so we

include it for completeness). Here we write θoptt (i) and θrandt (i), respectively, for the belief of
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Table 6.1: Dataset details.
Name Description n |En|
Gnutella Peer-to-peer network 6,301 20,777
Wiki-Vote Wikipedia administrator elections 7,115 103,689
Pokec Slovakian social network 1,632,803 30,622,564
LiveJournal Blogging platform 4,847,571 68,993,773

agent i ∈ [n] at time t ∈ [Tn] in the graphs with bot degrees doptn and drandn , respectively.

Corollary 6.1. Assume (A1), (A2), (A4), and (6.20) hold. Then for i∗ ∼ [n] uniformly,

θoptTn
(i∗)

P−−−→
n→∞

0 ⇔ θrandTn (i∗)
P−−−→

n→∞
0.

Proof. See Appendix E.4.

Note the corollary assumes (A1), (A2), and (A4); this allows us to leverage the branching

process approximation from the Theorem 6.1 proof. Importantly, these assumptions only

involve the learning horizon Tn and the given degrees {dout(i), dAin(i)}i∈[n], not the bot degrees

{dBin(i)}i∈[n]. We again assume (6.20), but as discussed above, this is minor given (A1), (A2).

6.4.3 Empirical results

A fundamental assumption in our adversary solutions is that p̃n and θTn(i∗) are correlated,

in the sense that minimizing p̃n also minimizes θTn(i∗). While Theorem 6.1 states this

correlation holds for the random graph model of Section 6.2.2, it is unclear if it holds in

practice. To conclude, we present empirical results suggesting that this indeed occurs.

In our experiments, we compare our proposed solutions against some natural heuristics:

• A naive baseline, which uses Algorithm 6.2 but samples each Wj uniformly from [n].

• Three schemes which similarly use Algorithm 6.2, along with the observed degrees:

sampling Wj proportional to dout (i.e. targeting influential nodes), dAin (i.e. targeting

susceptible nodes), and dout/d
A
in (i.e. naively balancing influence and susceptibility).

• Sampling proportional to PageRank with restart probability ε, denoted PageRank(ε).

We compare our proposed solutions with these heuristics using four datasets from [43],

described in Table 6.1. We chose these datasets so we could test our proposed solutions on

real social networks of two scales: Gnutella and Wiki-Vote have n < 104, a scale at which the

exact solution Algorithm 6.1 is feasible; Pokec and LiveJournal have n > 106, a scale that

renders Algorithm 6.1 infeasible but that more closely resembles social networks of interest.

For the experiments, we set θ = 0.5 (the case of maximal variance for the signals), η = 0.9

(to emphasize network effects), and Tn = 101 (to ensure the code had reasonable runtime).

We set bn = d|En|/400e, so that (roughly) 0.25% of all agent in-edges are connected to bots.
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Figure 6.3: Average belief over time when simulating our learning model on real datasets; our
proposed solutions (Algorithms 6.1 and 6.2) outperform heuristics, even those
using graph structure (i.e. PageRank).

For each graph and for five experimental trials, we chose {dBin(i)}i∈[n] as above, added bots

to the original graph accordingly, and simulated the learning process from Section 6.2.1.

In Figure 6.3, we plot the mean and standard deviation (across trials) of θt(i
∗) as a

function of t (to avoid cluttering the plot, we only show θt(i
∗) for t ∈ {1, 11, . . . , 101 = Tn}).

For all datasets, our solutions outperform all heuristics, in the sense that our solutions yield

the lowest average θt(i
∗) for most values of t. More specifically, we note the following:

• Across datasets, our solutions outperform PageRank(ε) for all values of ε. This is quite

surprising, since PageRank uses the entire graph structure, whereas our solutions only

use degrees. Also, as ε becomes increasingly smaller, PageRank(ε) performs increas-

ingly better, but this comes at the cost of higher runtime to estimate PageRank(ε).

• Among the heuristics using only degree information, dout/d
A
in performs best – though

worse than Algorithm 6.2 – across all datasets. Thus, naively balancing influence and

susceptibility is not enough; the form of Algorithm 6.2 yields better performance.

• For Gnutella and Wiki-Vote, Algorithm 6.1 outperforms Algorithm 6.2. Though the

former is exact and the latter is an approximation, this is still surprising, since it is

unclear that these schemes are even optimizing the correct objective for real graphs.

While Figure 6.3 only considers one choice of bn, we believe our conclusions are robust.

In particular, we also tested the cases bn = db̃|En|e for each b̃ ∈ { 1
1600

, 1
800
, 1

400
, 1

200
, 1

100
}, so

that between ≈ 0.0625% and ≈ 1% of edges connected to bots (thus, Figure 6.3 shows the

middle case b̃ = 1
400

). Appendix E.5 contains a figure analogous to Figure 6.3 for the other

choices of b̃; the plots are qualitatively similar. In Figure 6.4, we also summarize this set of

results by plotting the final average belief θTn(i∗) as a function of bn. Generally speaking,

the gap between our solutions and the heuristics increases as bn decreases. Put differently, if

an adversary with a limited budget spends this budget intelligently (i.e. using our proposed

128



Figure 6.4: Average belief at the learning horizon versus budget on real datasets. Generally,
the improvement of our solutions over heuristics increases as bn decreases.

Figure 6.5: As suggested by Figures 6.3 and 6.4, θTn(i∗) and p̃n are closely correlated.

solutions), they can still disrupt learning; in contrast, an adversary with a large budget need

not be as careful. Also, as expected, θTn(i∗) decreases in bn in Figure 6.4.

We have thus far shown that our solutions outperform the heuristics. This is somewhat

remarkable: our solutions were derived under the fundamental assumption that minimizing

θTn(i∗) amounts to minimizing p̃n, but we only verified this assumption for a class of random

graphs. Thus, our empirical results suggest that even for real social networks, this assumption

holds. Indeed, in Figure 6.5 we show scatter plots of θTn(i∗) against p̃n (each dot represents

one experimental trial). For all datasets, the two quantities are closely correlated.

6.5 Related work

Before closing, we discuss some connections between existing work and this chapter.

First, from a modeling perspective, we note our belief update (6.3) is closely related to the

non-Bayesian social learning model from [24]. In that model, agent beliefs are distributions

over a finite set of possible states of the world (not scalars, as in our model), but belief

updates are similar. Specifically, at time t agent i updates its belief µt(i) as

µt(i) = ηiiBU(µt−1(i), ωt(i)) +
∑

j∈Nin(i)

ηijµt−1(j),
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where ωt(i) is the signal received by i at t, BU(µt−1(i), ωt(i)) means a Bayesian update of

the prior belief µt−1(i) with the observed signal ωt(i), and
∑

j∈Nin(i)∪{i} ηij = 1. In [24,

Proposition 3], it is shown that, under certain assumptions, including the graph being fixed

and strongly connected, these distributions converge to point masses on the true state as

t→∞.

Per the discussion following (6.3) in Section 6.2.1, our model can be viewed as a variant of

this one, in which all agents have beta beliefs and Bernoulli signals, communicate parameters

of distributions instead of the distributions themselves, and average parameters instead of

distributions. From this viewpoint, our quantity of interest θt(i) is simply the mean of agent

i’s belief. However, the crucial assumptions of strong connectedness and an infinite learning

horizon from [24] are violated in our model (the former since bots have self-loops but no

other incoming edges; the latter since we take Tn = O(log n)). This necessitates a different

analysis, which in turn requires us to simplify the model from [24] by communicating scalars

and by taking a simple form of the weights {ηij}j∈Nin(i)∪{i}.

We also note our variant of the model from [24] is quite similar to the model in the

working paper [23]. In fact, our belief update and inclusion of bots are both taken from this

work (with minor differences to bot behavior). However, this work only includes theoretical

results in the case B = ∅; the case B 6= ∅ is studied empirically. This allows [23] to use a

richer model than ours, including a time-varying graph structure, agent-dependent mixture

parameters
∑

j∈Nin(i)∪{i} ηij, and three types of nodes (bots, agents who observe bots, and

agents who do not observe bots). Notably, the empirical results from [23] for the case B 6= ∅
fix a learning horizon, so the delicate relationship between timescale and bot prevalence that

we describe in Theorem 6.1 is not brought to light in [23].

From an analytical perspective, our approach of analyzing beliefs by studying random

walks is not new. Perhaps the most obvious example is the classical deGroot model [111],

in which agent i updates its (scalar) belief as θt(i) =
∑

j θt−1(j)W (j, i) for some column-

stochastic matrix W . Collecting beliefs in vector form yields θt = θ0W
t, where θ0 is the vector

of initial beliefs. From here, it is clear that beliefs relate closely to random walks, since the

i-th column of W t gives the distribution of a t-step random walk from i on the weighted

graph defined by W . This observation has been exploited in the literature; see the surveys

[112, Section 3] and [113, Section 4], and the references therein. For example, assuming W

is irreducible and aperiodic, and therefore has a well-defined stationary distribution π, [26]

establishes conditions for learning using the fact that θt(i) = θ0W
teTi ≈ θ0π

T ∀ i when t

is large. Beyond the deGroot model and deGroot-like models such as ours, random walk

interpretations have also been leveraged in Bayesian learning models. For example, [114]

considers a model for which agents perform a Bayesian update using their own signal but
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using the prior of a randomly-chosen neighbor. Exchanging priors with neighbors yields a

natural connection to random walks; assuming strong connectedness, the authors exploit the

fact that the walk visits every agent infinitely often (i.o.) to derive conditions for learning.

Similar to [24], these works typically assume strong connectedness and long horizons so as

to leverage properties such as stationary distributions and i.o. visits, which is a fundamental

distinction from this chapter. Indeed, even if we disregard stubborn agents, so that the

random walk has a stationary distribution, it does not converge within our learning horizon.

This is because, as shown in [56], the sparse DCM we consider has mixing time that exceeds

log n∑
i∈[n] log(dAin(i)) dout(i)∑

i′∈A dout(i
′)

≥ log n

log(
∑

i∈[n] d
A
in(i) dout(i)∑

i′∈A dout(i
′)

)
≈ log n

log(ν3/ν1)
,

where the inequality is Jensen’s and the approximate equality is (6.13). The final expression

exceeds Tn by (A2), i.e. our learning horizon occurs before the underlying random walk mixes.

But the situation is in fact more severe, since the random walk on this DCM exhibits cutoff

(see Section 5.6). Thus, the Tn-step distribution of this walk can be maximally far from the

stationarity. Hence, not only can we not use this stationary distribution, we cannot even

use an approximation of it. Again, this means our analysis cannot leverage global properties

typically used when relating beliefs to random walks and thus requires a different approach.

We also note that our idea to simultaneously construct the graph and sample the walk (as

discussed in Section 6.3.2) is taken from [56].

Some other works have considered social learning with stubborn agents. For example,

[25] studies a model in which agents meet and either retain their own (scalar) beliefs, adopt

the average of their beliefs, or adopt a weighted average; the agent whose belief has a larger

weight is called a “forceful” agent. Here the authors show that all agent beliefs converge to

a common random variable and study its deviation from the true state. A crucial difference

between [25] and this chapter is that [25] assumes even forceful agents occasionally observe

other agents’ opinions. This yields an underlying Markov chain that is irreducible; the

analysis then relies on this chain having a well-defined stationary distribution.

Stubborn agents have also been considered in the consensus setting. This setting is

similar to the social learning setting we consider, but instead of asking whether agents learn

an underlying state, one asks whether agent beliefs converge to a common value, i.e. a

consensus. For example, [115] considers a model in which regular agents adopt weighted

averages of beliefs upon meeting other agents (regular or stubborn), while stubborn agents

always retain their own beliefs. This intuitively prohibits a consensus from forming; indeed,

it is shown that agent beliefs fail to converge, and therefore that disagreement can persist

indefinitely. Another example is [116], in which an agent’s belief at time t+ 1 is a weighted
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average of their own belief at time 0 and their neighbors’ beliefs at time t. In this model,

stubborn agents place all weight on their own belief from time 0 and thus do not update

their beliefs. The analysis in [116] is similar to ours as it relates agent beliefs to hitting

probabilities of the stubborn agent set, but it differs as the learning horizon is infinite in

[116]. Also in the consensus setting, [117] investigates protocols for robust consensus that

may lessen the undesirable effects of stubborn agents in e.g. [115, 116].

6.6 Conclusions and future directions

In this chapter, we analyzed a model for social learning in the presence of stubborn

agents. Our learning outcome analysis identified a close relationship between the learning

horizon, the “density” of stubborn agents, and the learning outcome. We also considered

an adversarial setting which, paired with our learning outcome analysis, yielded insights

regarding social learning vulnerabilities.

Several extensions of our learning outcome analysis can be considered. First, it would be

useful to generalize our model to allow for agent- and/or time-dependent mixture parameters

(i.e. allowing η to vary with i and/or t in (6.6)). Allowing agent dependence suggests a

more heterogeneous model in which some agents place more value on private observations,

while others place more value on the opinions of their social connections. Allowing time

dependence, and specifically allowing ηt to vanish as t grows, suggests a model in which

agents become more “set in their ways” over time. Second, one could keep Tn finite for

each finite n but allow it to asymptotically dominate our “local” O(log n) horizon. Here our

branching process approximation fails, so this would require a different analysis. However,

it would be interesting to see if the three regimes of Theorem 6.1 still hold for such Tn, or if

a different phenomenon emerges when global effects of the network take hold.

Each of these extensions of our model would likely yield a different learning outcome,

and thus a different objective function in the adversarial setting. Hence, each may require

a different analysis to determine optimal or near-optimal bot strategies. Subsequently, each

may also yield new and useful insights regarding the sensitivity of the associated models.
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CHAPTER VII

Conclusion

Throughout the thesis, we discussed conclusions and immediate extensions of our results

on a per-chapter basis; see Sections 2.7, 3.8, 4.4, 5.7, and 6.6. In this chapter, we mention

some more holistic takeaways and some less immediate future directions.

7.1 High-level takeaways

Put succinctly, the main ideas developed in this thesis are as follows:

• PPR estimation can be accelerated by exploiting local graph structure. The resulting

algorithms are amenable to random graph-based analyses, and if the random graph

model is well-chosen, the key insights hold empirically for real graphs.

• Algorithmic and analytical ideas from the PPR literature can be leveraged in a num-

ber of different settings. In this thesis, we specifically showed how empirical policy

evaluation can be accelerated and how Markov chain perturbations can be analyzed.

• In non-Bayesian social learning, adversaries should carefully balance an agent’s influ-

ence and susceptibility when deciding whether or not to target the agent. Practically,

this may give insights regarding fake news on social networks (see Section 7.2.6).

Given the diversity of the topics considered in this thesis, we lack a unifying conclusion

regarding a particular application or real-world problem. However, we next describe some

unifying methodological insights provided by this thesis.

7.1.1 Perturbed Markov chains

As discussed in Chapter I, a recurring mathematical object in the thesis was a perturbed

Markov chain. In Chapters II, III, and IV, we specifically considered the PPR Markov chain,

and we proposed algorithms derived from this chain’s power iteration property (1.1) and/or

its perfect sampling property (1.4). These properties were fundamentally necessary. For

instance, the algorithms in Chapters II and III estimate the PPR chain’s stationary distri-

bution but cannot be used to estimate stationary distributions of general chains. Similarly,
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the algorithm in Chapter IV relies on the discounted cost objective’s connection to PPR and

does not immediately apply to other objectives used in reinforcement learning (though we

believe an analogue can be derived for the finite horizon objective; see Section 4.4.2).

The special properties of the PPR chain are also useful analytically. The primary example

of this thesis arose in Chapter V. For extremely small and extremely large perturbation

magnitudes, we were able to characterize the behavior of a general class of perturbations

(Lemma 5.1). However, for perturbations of moderate magnitude, the behavior is more

subtle, and we needed the closed-form solution of the power iteration (Lemma 5.2).

While the PPR chain did not arise in Chapter VI, a different perturbed Markov chain

provided a conceptual approach for our analysis. Namely, we viewed the introduction of

bots into our social learning model as a perturbation of a certain random walk relating to

agent beliefs (see end of Section 6.1). In contrast to other chapters, we do not believe this

viewpoint was fundamentally necessary to analyze the learning outcome; however, it did

provide a tractable framework that made the analysis more intuitive. This was especially

welcome in Chapter VI, since there we considered a random process unfolding over a random

graph, perhaps the most complex mathematical object studied in this thesis.

7.1.2 Concentration of measure

Another recurring mathematical theme was the concentration of measure phenomena –

the idea that a function of a large (but finite) set of independent random variables is close

to its expected value with high probability. This phenomena was crucial in our analysis of

a number of randomized algorithms that estimated expected values of functions by taking

many samples and averaging. In Chapters II and IV, the function was simply a sum, so we

only used basic Chernoff bounds; in Chapter VI, the function was more complex, and we

required the theory of self-bounding functions (see Appendix E.3.3).

Concentration of measure arose in a different manner when we analyzed PPR dimension-

ality in Chapter III and learning outcomes in Chapter VI. We discuss this in some detail as

the analysis is similar in both cases and speaks to a more general approach. In both cases,

we considered quantities defined on a per-node basis, recursively in terms of the node’s

neighbors. In Chapter III, this recursion arose from the PPR power iteration (1.1):

πs = αeTs + (1− α)eTs P
∞∑
t=0

(1− α)tP t = αeTs + (1− α)
∑
v∈V

P (s, v)πv, (7.1)

i.e. s’s PPR vector can be written in terms of PPR vectors of s’s neighbors (those v for which
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P (s, v) > 0). In Chapter VI, the recursion arose from the belief update

βt(i) = (1− η)(βt−1(i) + (1− st(i))) +
η

din(i)

∑
j∈Nin(i)

βt−1(j), (7.2)

i.e. i’s belief is written in terms of its neighbors’ beliefs (see discussion preceding (6.3)). In

both cases, the recursive form implied that the quantity could be estimated on a local neigh-

borhood in the graph, and we exploited the concentration phenomena to approximate these

neighborhoods with branching processes. Moreover, the recursive nature of the branching

processes, paired with the recursive nature of (7.1) and (7.2), yielded martingale-like pro-

cesses that could be treated with modifications of existing martingale techniques.

We have ignored many details in this discussion; see the proof outlines of Lemma 3.1 and

Theorem 6.2 in Appendices B.1 and E.1, respectively, for a more detailed description. The

key point is that we believe this analytical approach is more generally useful. In particular, we

believe that many quantities defined recursively on sparse random graphs can be estimated

in terms of related branching processes, and that the recursion of the branching processes,

paired with the recursively-defined quantity, will yield tractable, martingle-like processes.

Finally, we mention that another manifestation of the concentration phenomena involved

non-standard norms of random matrices. This arose twice in the thesis: in Section 2.4.1.1, we

encountered the l∞,1 norm (sum of column-wise maximums), while in Chapter III, we studied

the l∞ norm (max of row-wise sums). At present, there is less theory regarding concentration

in these norms than in more standard ones like the Frobenius or spectral norm [42]. Thus,

it may be worth investigating if these non-standard norms have wider utility, and if so, to

develop a more formal concentration theory for such norms.

7.2 Future directions and open problems

We close by discussing some future directions. In the spirit of the thesis, we discuss

several PPR problems, two applications of PPR ideas, and social learning.

7.2.1 Accuracy criteria for PPR estimation

The PPR estimators discussed in Chapters II and III, along with most all appearing

in the literature, assess accuracy in terms of the estimates of PPR values – e.g. relative or

absolute error of each estimate, lp error of the vector of estimates, etc. While such guarantees

are far more tractable to establish, the ranking of these values is more relevant in many of

the motivating applications discussed in Section 1.2.3 (ordering of Internet search results

or friend recommendations on social networks, for instance). Thus, we believe the “gold

standard” of PPR estimators is an efficient algorithm with rigorous guarantees on how far
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the true and estimated rankings differ, quantified in terms of some metric on permutations

(e.g. Cayley distance, Kendall’s tau distance, etc. [118, Ch. 6B]). Such an analysis would be

novel in the PPR literature and could be extremely useful in applications.

7.2.2 PPR with non-backtracking random walks

Another significant deviation from the PPR literature would be replacing the underlying

random walk of PPR with a non-backtracking one. More precisely, one could consider a

Markov chain on a graph G = (V,E) that restarts at v ∈ V with probability α and takes

a non-backtracking random walk step1 with probability 1 − α. At a high level, this chain

explores the neighborhood of v between restarts in more efficient manner than the standard

PPR chain. For example, it may take fewer samples of the Geometric(α)-length trajectories

described by (1.4) to obtain an accurate approximation of the corresponding stationary

distribution. In fact, it is known that the non-backtracking version of certain chains can

mix much faster than the backtracking version (see e.g. [119]), which further supports this

conjecture. Thus, we expect the mixing time of this non-backtracking version of PPR would

play an important role in the analysis, which may involve connections to our ideas considering

mixing times and PPR (namely, those in Section 3.7.4 and Chapter V).

7.2.3 PPR microfoundations

In Section 1.2.2, we discussed the PPR interpretation of “similarity” or “relevance” be-

tween nodes. We noted that this is intuitively reasonable, since many graphs exhibit ho-

mophily and PPR is a measure of “inverse distance” in networks. Some empirical studies,

e.g. [2], have also attempted to justify PPR’s use in personalized web search. Nevertheless,

there is a lack of theoretical microfoundations for PPR as a relevance/similarity metric. One

approach to formalize this mathematically is as follows. Let V be a set of nodes and asso-

ciate each v ∈ V with a vector xv (perhaps generated from some distribution). For instance,

V could represent a set of people and xv could quantify certain characteristics of person v

(i.e. age, geographic location, political leanings, employment status, etc.). From {xv}v∈V ,

generate a social network with homophily, perhaps by adding edge (v, w) with probability

proportional to e−‖xv−xw‖ for some norm ‖ · ‖ (i.e. v, w are more likely to be friends if they

have similar age, location, politics, and jobs). From this random graph model, one could

consider the following questions. (1) Are ‖xv−xw‖ and the corresponding PPR value Π(v, w)

strongly correlated? If so, this would offer justification for PPR as a similarity/relevance

metric. (2) If ‖xv − xw‖ and Π(v, w) are only weakly correlated (or even uncorrelated), is

there a metric that correlates more strongly with ‖xv − xw‖? If so, this would suggest the

1By “non-backtracking random walk step,” we mean that if the previous state is u ∈ V , the current state is
w ∈ V , and the outgoing neighbors of w are Nout(w), the next state is chosen randomly from Nout(w) \ {u}.
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new metric is a more appropriate measure of similarity/relevance than PPR. (3) If a new

metric is more appropriate, can it be efficiently estimated for large graphs?

7.2.4 Empirical policy iteration

As discussed in Section 4.2, Backward-EPE can reduce the sample complexity of the

existing scheme from [19], while attaining the same accuracy in the l∞ norm. Since l∞ is the

same norm used in [19], our algorithm can be “plugged in” as the EPE subroutine to improve

sample complexity bounds for the overall empirical policy iteration (EPI) algorithm discussed

in Section 4.1. In contrast, Bidirectional-EPE offers a different accuracy guarantee, and

thus would necessitate a new analysis if used in EPI. Put roughly, this accuracy guarantee

(see Section 4.3) provides a better estimate of the value function for “good” starting states

(i.e. states s for which vπ(s) is small) than for “bad” starting states (s such that vπ(s)

is large). This is arguably more natural than an l∞ guarantee: if s is a particularly bad

starting state, there is little utility in accurately estimating vπ(s), since we will likely change

the policy π(s) at the next policy improvement step. Thus, it would be useful to analyze

EPI with this EPE subroutine to determine if the overall sample complexity is reduced.

7.2.5 Computational estimation of mixing times

In Markov chain Monte Carlo, one aims to estimate EX∼πf(X), where f is some function

and π is the stationary distribution of some Markov chain {Xt}∞t=0 with transition matrix

P . Consider the case for which P is unknown but, given a state i, one can obtain samples

from P (i, ·) (as in Chapter IV). In this case, a natural method is to choose some state

X0, iteratively sample Xt+1 from P (Xt, ·) until the mixing time t = tmix(ε) (as defined in

Chapter V) and estimate EX∼πf(X) as f(Xtmix(ε)) (perhaps averaging over many samples).

However, when P is unknown, tmix(ε) is unknown as well, so a recent line of work has

proposed algorithms for estimating tmix(ε) in this setting [120, 121, 122, 123]. These existing

works indirectly estimate tmix(ε) by instead estimating the relaxation time trel (see Appendix

D.1). A classical result in the mixing times literature states (trel − 1) log(1/2ε) ≤ tmix(ε) ≤
trel log(1/επmin), where πmin is the minimum stationary distribution of any state, and thus

the upper bound is never tight in the number of states. Hence, a remaining challenge is direct

estimation of tmix(ε) in the aforementioned sampling model. Our understanding of mixing

times and PPR-like perturbations from Chapter V, and our extension of PPR estimators to

this sampling model in Chapter IV, may be useful tools in tackling this challenge.

7.2.6 Social learning and fake news

Our main finding in Chapter VI was that in order to prevent social learning, adversaries

should target agents who are influential, yet susceptible to influence themselves. An obvious

137



follow-up question is whether this finding holds in practice; namely, whether influential-

yet-susceptible users encountering fake news facilitates its spread. This question could be

addressed in several ways. From a social sciences perspective, one could investigate whether

our social learning model is a reasonable approximation of how social media users’ opinions

evolve. From a data science perspective, one could use historical data to investigate if fake

news spreads more extensively when it reaches influential-yet-susceptible users (quantified

in some manner). If our finding indeed holds in practice, the next question would be how

to leverage it to mitigate the spread of fake news. And if such solutions exist, incentivizing

social media platforms to adopt them would be yet another issue. In short, Chapter VI

suggests a more sprawling research agenda than the other directions proposed in this chapter.

Nevertheless, we believe these are important questions given the societal impact of fake news.
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APPENDIX A

Proofs and Experimental Details for Chapter II

A.1 Analysis of FW-BW-MCMC and comparison to Bidirectional-PPR

Here we state and prove the guarantees that were stated informally in Section 2.3. We
include the corresponding results for Bidirectional-PPR for comparison. We first state the
accuracy guarantee, Theorem A.1. The idea is to bound relative error when πs(t) ≥ δ and to
bound absolute error when πs(t) < δ. The authors of [15] suggest choosing δ = O( 1

n
). This

choice dictates that we desire the relative bound when t’s PPR exceeds a uniform distribution
over all nodes, which suggests that t is “significant” to s in this case. The proof applies the
Chernoff bound to a variety of cases, which vary between the algorithms.

Theorem A.1. Fix minimum PPR threshold δ, relative error tolerance ε, and failure prob-
ability pfail. For FW-BW-MCMC, assume the following hold:

ε ∈
(

0,
1√
2e

)
, w =

crsmaxr
t
max

δ
, c >

3(2e)1/3 log(2/pfail)

ε7/3
. (A.1)

For Bidirectional-PPR, assume the following hold:

rtmax ∈
(

2eδ

αε
, 1

)
, w =

crtmax

δ
, c >

3 log(2/pfail)

ε2
. (A.2)

Then with probability ≥ 1− pfail, the estimate π̂s(t) from either algorithm satisfies

|πs(t)− π̂s(t)| ≤

{
επs(t), πs(t) ≥ δ (significant case)

2eδ, πs(t) < δ (insignificant case)
. (A.3)

Proof. See [15] for Bidirectional-PPR; see Appendix A.1.1 for FW-BW-MCMC.

From Theorem A.1, FW-BW-MCMC offers the same accuracy as Bidirectional-PPR. How-
ever, our assumptions on ε and c are stronger than those required for Bidirectional-PPR.
The first assumption is mild, since 1√

2e
≈ 0.43 and we typically desire a tighter relative

error bound. The second affects complexity and will be discussed next. Note also that our
guarantee holds ∀ rtmax ∈ (0, 1), while Bidirectional-PPR requires a lower bound on rtmax.
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Next, we have a worst-case complexity result in Theorem A.2 (by worst case, we for any
s, t ∈ V ). The idea is to choose rsmax, r

t
max to balance the complexity of the DP and MCMC

stages of the algorithm. The result requires the additional assumption mδ < log(1/pfail)/ε
2,

which guarantees that these rsmax, r
t
max values lie in (0, 1). Note that with δ = O( 1

n
), this

implies m = O(n), i.e. nodes have constant degrees as n grows.

Theorem A.2. Fix minimum PPR threshold δ, relative error tolerance ε, and failure prob-
ability pfail. Assume (A.1)-(A.2) hold and mδ < log(1/pfail)/ε

2. Then setting rsmax =

rtmax = m1/3δ1/3ε7/9

(log(1/pfail))1/3 in FW-BW-MCMC yields complexity O
(
m2/3(log(1/pfail))

1/3

αε7/9δ1/3

)
, and setting

rtmax =
√
mδε√

log(1/pfail)
in Bidirectional-PPR yields complexity O

(√
m log(1/pfail)

αε
√
δ

)
.

Proof. See Appendix A.1.2.

Note that, with δ = O( 1
n
), so that m = O(n), both algorithms have complexity linear in

n, while FW-BW-MCMC has strictly better dependence on the parameters pfail and ε.
Finally, we present an average-case complexity result for FW-BW-MCMC-Practical (Algo-

rithm A.2), which uses termination criteria ‖D−1rs‖∞ ≤ rsmax in the forward DP.

Theorem A.3. For any s ∈ V and t ∼ V uniformly, FW-BW-MCMC-Practical produces an

estimate satisfying the Theorem A.1 and has complexity O

(√
m log(1/pfail)√
nδαε7/6

)
.

Proof. See Appendix A.2.

With δ = O( 1
n
), the average-case complexity is O(

√
m), as claimed in Section 2.3. The

guarantee for Bidirectional-PPR in [15] has ε instead of ε7/6 but is otherwise identical.

A.1.1 Proof of Theorem A.1

We will use the following result from [124].

Theorem A.4. (from Theorem 1.1 in [124]) Let {Zi} be a set of independent random
variables with Zi ∈ [0, 1] ∀ i, and let Z =

∑
i Zi. Then for any η ∈ (0, 1) and any d > 2eE[Z],

P[Z > (1 + η)E[Z]] ≤ exp(−η2E[Z]/3), P[Z < (1− η)E[Z]] ≤ exp(−η2E[Z]/2),(A.4)

P[Z > d] ≤ 2−d. (A.5)

To begin the proof, we define Yi = Xi/r
t
max and Y =

∑w
i=1 Yi, where Xi is from Algorithm

2.3. Observe the Yi’s are independent and Yi ∈ [0, 1] (by the terminating condition of
Algorithm 2.2), so Theorem A.4 applies for appropriate choices of η and d. We also observe

that (A.6) holds, which follows by linearity and w = crsmaxr
t
max

δ
in the statement of the theorem.

E[Y ] =
w

rtmax

E[Xi] =
crsmax

δ
E[Xi]. (A.6)

We now turn to the case πs(t) ≥ δ, for which we aim to show P[|π̂s(t)−πs(t)| > επs(t)] <
pfail ∀ ε ∈ (0, 1√

2e
). We will examine three sub-cases. The first two sub-cases depend on the
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constant k := ( ε
2e

)1/3 (we motivate the choice of this constant at the conclusion of the proof).

We also observe the following, which follows from the assumption c > 3(2e)1/3 log(2/pfail)

ε7/3
:

k

3
=

ε

6ek2
=

ε1/3

3(2e)1/3
>

log(2/pfail)

ε2c
. (A.7)

For the first sub-case, assume E[Y ] ≥ kc. Then we have the following:

P[|π̂s(t)− πs(t)| > επs(t)] ≤ P

[∣∣∣∣∣ 1

w

w∑
i=1

Xi − E[Xi]

∣∣∣∣∣ > εE[Xi]

]
= P [|Y − E[Y ]| > εE[Y ]] ≤ 2 exp

(
−ε2E[Y ]/3

)
≤ 2 exp

(
−ε2kc/3

)
< pfail.

Here the first inequality holds by definition of π̂s(t) in Algorithm 2.3 and the invariant (2.3);
the equality holds by (A.6) and the definition of Y ; the second inequality uses Theorem A.4
(note ε < 1√

2e
< 1); and the final two inequalities hold by E[Y ] ≥ kc and (A.7).

For the second sub-case, assume E[Y ] ∈ [ εc
2e
, kc). First, observe that by (A.6), the as-

sumption E[Y ] < kc, and the Algorithm 2.1 terminating condition,

‖rs‖1E[Xi] =
‖rs‖1δE[Y ]

crsmax

<
‖rs‖1kδ

rsmax

≤ kδ.

and so πs(t) ≥ ‖rs‖1E[Xi] + (1− k)δ (else, πs(t) < δ by (2.3), a contradiction). Then:

P[|π̂s(t)− πs(t)| > επs(t)] ≤ P

[∣∣∣∣∣ 1

w

w∑
i=1

Xi − E[Xi]

∣∣∣∣∣ > ε

(
E[X] +

(1− k)δ

‖rs‖1

)]

= P
[
|Y − E[Y ]| > ε

(
E[Y ] +

(1− k)δw

‖rs‖1rtmax

)]
≤ P [|Y − E[Y ]| > ε (E[Y ] + (1− k)c)]

= P
[
|Y − E[Y ]| > ε

(
E[Y ] +

(
1− k
k

)
kc

)]
< P

[
|Y − E[Y ]| > ε

k
E[Y ]

]
≤ 2 exp

(
−ε2E[Y ]/

(
3k2
))
< 2 exp

(
−ε3c/

(
6ek2

))
< pfail.

Here the first inequality and first equality follow similar arguments as Case 1; the second

inequality is by the Algorithm 2.1 terminating condition and w = crsmaxr
t
max

δ
; the second

equality multiplies and divides k; the third inequality holds by assumption E[Y ] ∈ [ εc
2e
, kc);

the fourth inequality holds by Theorem A.4 (note ε
k

= ε2/3(2e)1/3 < 1 by assumption ε <
1√
2e

); the fifth inequality follows from E[Y ] ∈ [ εc
2e
, kc); and the final inequality holds by (A.7).

Note we have assumed 1− k > 0 in the third and fifth inequality; this follows from ε < 1√
2e

.

For the third and final sub-case, assume E[Y ] < εc
2e

. We have the following:

P[|π̂s(t)− πs(t)| > επs(t)]

= P

[∣∣∣∣∣ 1

w

w∑
i=1

Xi − E[Xi]

∣∣∣∣∣ > επs(t)

‖rs‖1

]
= P

[
|Y − E[Y ]| > επs(t)w

‖rs‖1rtmax

]
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≤ P
[
|Y − E[Y ]| > εδw

rsmaxr
t
max

]
= P [|Y − E[Y ]| > εc] ≤ P[Y > εc] ≤ 2−εc. (A.8)

Here the first three equalities and first inequality follow similar arguments as previous cases;
the penultimate inequality holds since {|Y − E[Y ]| > εc} ⊂ {Y > εc} when Y ≥ E[Y ],
whereas {|Y − E[Y ]| > εc} ⊂ {E[Y ] > εc} ⊂ {2eE[Y ] > εc} = ∅ when Y < E[Y ]; and the
final inequality holds by Theorem A.4; note εc > 2eE[Y ] by assumption. Next, observe

εc >
6e log(1/pfail)

(
√

2eε)4/3
> 6e log(1/pfail) =

6e

log2(e)
log2(1/pfail) > log2(1/pfail). (A.9)

where the first two inequalities hold by c > 3(2e)1/3 log(1/pfail)

ε7/3
and ε < 1√

2e
, and the final one

holds since log2(e) < 2⇒ 6e
log2(e)

> 3e
2
> 1. Combining (A.8) and (A.9) completes Case 3.

Finally, note the bounds in Cases 1 and 3 grow with decreasing and increasing k, respec-
tively. Hence, k = ( ε

2e
)1/3 arises from equating the two to minimize failure probability.

We now turn to the case πs(t) < δ. Observe that by πs(t) < δ and the invariant (2.3),
‖rs‖1E[Xi] < δ. By (A.6), this implies 2eE[Y ] < 2ewδ

rtmax‖rs‖1
=: b. Then

P[|π̂s(t)− πs(t)| > 2eδ] = P

[∣∣∣∣∣ 1

w

w∑
i=1

Xi − E[Xi]

∣∣∣∣∣ > 2eδ

‖rs‖1

]
= P

[
|Y − E[Y ]| > 2eδw

‖rs‖1rtmax

]
= P [|Y − E[Y ]| > b] ≤ P [Y > b] ≤ 2−b. (A.10)

Here the equalities follow similar steps as previous cases, the first inequality holds by the
same argument in the Case 3 analysis, and the final inequality holds by Theorem A.4 (note
(A.5) applies since b > 2eE[Y ]). We also observe

b =
2ewδ

rtmax‖rs‖1

>
2ewδ

rtmaxr
s
max

= 2ec > εc > log2(1/pfail), (A.11)

where the first inequality is by the Algorithm 2.1 terminating condition, the second inequality
holds since 2e > 1 > ε, and the third inequality follows from (A.9); the equalities are by
definition. Finally, we combine (A.10) and (A.11) to complete the proof.

A.1.2 Proof of Theorem A.2

The complexity of Algorithm 2.3 is the total complexity of Algorithm 2.2, Algorithm 2.1,
and the random walks. Below, we show Algorithms 2.2 and 2.1 have complexity m

αrtmax
and

m
αrsmax

, respectively (using arguments from [32] and [7]). Furthermore, the complexity of the

random walk stage is O( r
s
maxr

t
max log(1/pfail)

αδε7/3
), where 1

α
is the expected complexity of sampling a

single random walk, and where the remaining factors give the number of walks required for
(A.1) to hold. Hence, the complexity of Algorithm 2.3 is O(C(rsmaxr

t
max)/α), where

C(rsmaxr
t
max) =

m

rsmax

+
rsmaxr

t
max log(1/pfail)

δε7/3
+

m

rtmax

. (A.12)

We now aim choose rsmax, r
t
max to minimizeO(C(rsmaxr

t
max)/α), or equivalently, to minimize
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C(rsmaxr
t
max). For this, we let K = log(1/pfail)

δε7/3
> 0 and note ∂C

∂rsmax
= Krtmax − m

(rsmax)2 = 0 if

and only if (rsmax)2rtmax = m
K

, and similarly, ∂C
∂rtmax

= 0 if and only if (rtmax)2rsmax = m
K

; hence,

(m
K

)1/3, (m
K

)1/3 is a stationary point of C(rsmax, r
t
max). To verify this is a minimizer, we observe[

∂2C
∂(rsmax)2

∂2C
∂rsmaxr

t
max

∂2C
∂rtmaxr

s
max

∂2C
∂(rtmax)2

]
=

[
2m

(rsmax)3 K

K 2m
(rtmax)3

]
,

from which it follows that the Hessian of C evaluated at rsmax = rtmax = (m
K

)1/3 is K(I+11T).
This is positive definite, since zT(K(I+11T))z = K(‖z‖2

2+(zT1)2) > 0 for any nonzero vector
z. To summarize, we have shown rsmax = rtmax = (m

K
)1/3 minimizes C(rsmax, r

t
max) and thus

minimizes the complexity of Algorithm 2.3, i.e. the choice of rsmax, r
t
max in the statement of the

theorem minimizes complexity. Finally, substituting rsmax = rtmax = (m
K

)1/3 into (A.12) and
dividing by α gives the complexity expression of the theorem. Following the same approach
establishes the Algorithm Bidirectional-PPR complexity bound given in the theorem.

We return to bound the complexities of Algorithms 2.2 and 2.1. For Algorithm 2.2, we
use an argument from [32]. First, let v ∈ V . From Algorithm 2.2, pt(v) increases by at
least αrtmax at each iteration for which v∗ = v. By the invariant (2.2), pt(v) ≤ πv(t). Taken

together, v∗ = v for at most πv(t)
αrtmax

iterations. Furthermore, the complexity of each iteration

for which v∗ = v is din(v). Hence, the complexity of all iterations for which v∗ = v is bounded

by din(v) πv(t)
αrtmax

. Finally, the complexity of Algorithm 2.2 can be bounded by summing over

all v ∈ V , i.e.
∑

v∈V din(v) πv(t)
αrtmax

≤ 1
αrtmax

∑
v∈V din(v) = m

αrtmax
.

We turn to Algorithm 2.1. As mentioned in the main text, Algorithm 2.1 changes the
termination criteria from [7]; for clarity, we include the original definition in Algorithm A.1.
Here we use tilde marks to distinguish quantities from those in Algorithm 2.1, and we indicate
iteration number k to improve clarity of the arguments to follow. Besides these notational
changes, the only difference between Algorithms 2.1 and A.1 is the termination criteria.

With this notation in place, the complexity of Algorithm A.1 can be bounded as follows
(using arguments from [7]). First, observe that for any iteration k,

‖r̃sk‖1 =
∑

v∈V \({vk}∪Nout(vk))

r̃sk−1(v) +
∑

v∈Nout(vk)

(
r̃sk−1(v) +

(1− α)r̃sk−1(vk)

dout(vk)

)
(A.13)

= ‖r̃sk−1‖1 − αr̃sk−1(vk),

where the first equality holds via Algorithm A.1. Next, let k∗ be the iteration at which
Algorithm A.1 terminates. Then the complexity of the algorithm is

∑k∗

k=1 dout(vk), and

k∗∑
k=1

dout(vk) =
k∗∑
k=1

dout(vk)

r̃sk−1(vk)
r̃sk−1(vk) <

1

r̃smax

k∗∑
k=1

r̃sk−1(vk)

=
1

αr̃smax

k∗∑
k=1

(
‖r̃sk−1‖1 − ‖r̃sk‖1

)
= t

1

αr̃smax

(‖r̃s0‖1 − ‖r̃sk∗‖1) ≤ 1

αr̃smax

,

where the first inequality holds since r̃smax < ‖D−1r̃sk‖∞ =
r̃sk−1(vk)

dout(vk)
for k ≤ k∗ (i.e. for each k
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before termination), the second equality holds by the previous display, and the final inequality
holds since ‖r̃s0‖1 = ‖es‖1 = 1 and ‖r̃sk∗‖1 ≥ 0 (the remaining steps are straightforward).

Using this, we bound the complexity of Algorithm 2.1. First, in Algorithm 2.1 we have

‖rs‖1 =
∑
v∈V

rs(v)

dout(v)
dout(v) ≤ mmax

v∈V

rs(v)

dout(v)
= m‖D−1rs‖∞,

so to guarantee termination of Algorithm 2.1 (i.e. to ensure ‖rs‖1 ≤ rsmax), it suffices to
have ‖D−1rs‖∞ ≤ rsmax

m
. But from the analysis of Algorithm A.1, the complexity required to

ensure ‖D−1rs‖∞ ≤ rsmax

m
is m

αrsmax
; hence, the complexity of Algorithm 2.1 is at most m

αrsmax
.

Algorithm A.1: (p̃s, r̃s) = Approximate-PageRank-Original(G, s, α, r̃smax)

1 Set k = 0, p̃sk = 0, r̃sk = es
2 while ‖D−1r̃sk‖∞ > r̃smax do
3 Set k ← k + 1; let vk ∈ arg maxv∈V r̃

s
k−1(v)/dout(v)

4 Set r̃sk(v) = r̃sk−1(v) + (1− α)r̃sk−1(vk)/dout(vk), p̃
s
k(v) = p̃sk−1(v) ∀ v ∈ Nout(vk)

5 Set r̃sk(vk) = 0, p̃sk(vk) = p̃sk−1(vk) + αr̃sk−1(vk)
6 Set p̃sk(v) = p̃sk−1(v), r̃sk(v) = r̃sk−1(v) ∀ v ∈ V \ ({vk} ∪Nout(vk))

A.2 Practical version of FW-BW-MCMC

In this appendix, we define and analyze a modified version of FW-BW-MCMC that is more
useful in practice. Before proceeding to the formal definition and analysis, we first motivate
the practical algorithm. First, suppose for an instance of FW-BW-MCMC we have already run the
backward DP (Algorithm 2.2) and we are currently running the forward DP (Algorithm 2.1).
Though FW-BW-MCMC dictates we run the forward DP until ‖rs‖1 < rsmax for some predefined
rsmax, we could instead terminate the forward DP (even if ‖rs‖1 > rsmax) and proceed to the
random walks. In other words, we dynamically change rsmax from the predefined value to the
current value of ‖rs‖1. Then, if the number of walks sampled is w = c‖rs‖1r

t
max/δ, where

c = 3(2e)1/3 log(2/pfail)/ε
7/3, (A.14)

the proof of Theorem A.1 goes through. Furthermore, this argument holds at any iteration
of the forward DP. In other words, we can terminate the forward DP at any iteration and
achieve the accuracy guarantee, as long as we scale w with the ‖rs‖1 value obtained at
termination. From this observation, we aim to terminate the forward DP at the “optimal”
iteration, i.e. the iteration for which the overall complexity of the algorithm is minimized.

Towards determining this optimal iteration, let CFDP denote the complexity of the

forward DP until the current iteration, and define CMCMC = 3(2e)1/3rtmax log(2/pfail)

αδε7/3
, so that

‖rs‖1CMCMC gives the complexity of the MCMC stage (since c‖rs‖1r
t
max/δ walks are sam-

pled, each in expected time 1
α

, with c satisfying (A.14)). Then, if we terminate the forward
DP at the current iteration, the combined complexity of forward DP and MCMC stages will
be CFDP + ‖rs‖1CMCMC . Suppose instead that we decide to run one more iteration, i.e. to
terminate the forward DP at the next iteration. Then, by Algorithm 2.1, the next iteration
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will have complexity dout(v
∗). Furthermore, by (A.13) in Appendix A.1.2, ‖rs‖1 will decrease

by αrs(v∗) at the next iteration. Hence, if we run one more iteration, the combined complex-
ity of forward DP and MCMC will be (CFDP + dout(v

∗)) + (‖rs‖1 − αrs(v∗))CMCMC . Now
clearly, we should terminate the forward DP if and only if the resulting complexity is less
than the complexity resulting from running another iteration, i.e. if and only if

CFDP + ‖rs‖1CMCMC < (CFDP + dout(v
∗)) + (‖rs‖1 − αrs(v∗))CMCMC (A.15)

⇔ rs(v∗)/dout(v
∗) < 1/(αCMCMC).

In other words, to optimize the tradeoff between forward DP and MCMC, we should run the
forward DP until ‖D−1rs‖∞ falls below the threshold in (A.15). This motivates the practical
version of FW-BW-MCMC in Algorithm A.2. Algorithm A.2 changes two aspects of FW-BW-MCMC:
it replaces Algorithm 2.1 with Algorithm A.1 (which uses ‖D−1r̃s‖∞ termination), and it
scales the the number of random walks sampled with ‖r̃s‖1 (as discussed above.)

Algorithm A.2: π̂s(t) = FW-BW-MCMC-Practical(G, s, t, α, r̃smax, r
t
max, w)

1 Let (pt, rt) = Approximate-Contributions(G, t, α, rtmax) (Algorithm 2.2)
2 Let (p̃s, r̃s) = Approximate-PageRank-Original(G, s, α, r̃smax) (Algorithm A.1); set

σ̃s = r̃s/‖r̃s‖1

3 for i = 1 to w‖r̃s‖1 do
4 Sample random walk starting at ν ∼ σ̃s of length ∼ geom(α); let Xi = rt(Ui),

where Ui is endpoint of walk

5 Let π̂s(t) = pt(s) + 〈p̃s, rt〉+ 1
w

∑w‖r̃s‖1
i=1 Xi

We now establish accuracy and average-case complexity guarantees for Algorithm A.2.

Theorem A.5. Fix min. PPR threshold δ, error tolerance ε, failure probability pfail. Let

ε ∈
(

0,
1√
2e

)
, w =

crtmax

δ
, c >

3(2e)1/3 log(2/pfail)

ε7/3
. (A.16)

Then the estimate π̂s(t) produced by Algorithm A.2 satisfies (A.3)with probability ≥ 1−pfail.

Proof. As discussed above, the proof of Theorem A.1 establishes this result.

Theorem A.6. Fix minimum PPR threshold δ, relative error tolerance ε, and failure proba-
bility pfail. Assume (A.16) holds. Then for any s ∈ V and for t ∼ V uniformly, setting r̃smax =

δε7/3

rtmax log(1/pfail)
, rtmax =

√
mδε7/6√

n log(1/pfail)
in Algorithm A.2 yields complexity O

(√
m log(1/pfail)√
nδαε7/6

)
.

Proof. For the backward DP (Algorithm 2.2), we use the result from [62], which we include
for completeness. Recall from Appendix A.1.2 that the complexity of Algorithm 2.2 for t ∈ V
is bounded by

∑
v∈V din(v) πv(t)

αrtmax
. Hence, for t ∼ V uniformly, the expected complexity is

1

n

∑
t∈V

∑
v∈V

din(v)
πv(t)

αrtmax

=
1

nαrtmax

∑
v∈V

din(v)
∑
t∈V

πv(t) =
m

nαrtmax

,
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since
∑

t∈V πv(t) = 1 by definition. Next, we consider the complexity of the forward DP (Al-

gorithm A.1). From Appendix A.1.2, for any s ∈ V we have complexity 1
αr̃smax

= rtmax log(1/pfail)

αδε7/3
.

Finally, for the MCMC stage, we sample w‖r̃s‖1 ≤ w walks, where w = crtmax/δ with c
satisfying (A.16). Each walk is sampled in average time 1

α
. Therefore, the MCMC stage

complexity is O( r
t
max log(1/pfail)

αδε7/3
). Thus, the overall complexity of Algorithm A.2 is bounded by

O

(
m

nαrtmax

+
rtmax log(1/pfail)

αδε7/3

)
. (A.17)

Substituting rtmax given in the statement of the theorem yields the desired complexity bound.
Further, viewing (A.17) as a function of rtmax, one can verify this rtmax is the minimizer.

A.3 Proof of Theorem 2.1

We first observe

P

[∑
v∈V

max
s∈S

X(w)
s (v) > (1 + ε)w

∑
v∈V

max
s∈S

σs(v)

]
≤ P

[
∪s∈S,v∈V {X(w)

s (v) > (1 + ε)wσs(v)}
]

≤
∑

s∈S,v∈V :σs(v)>0

P
[
X(w)
s (v) > (1 + ε)wσs(v)

]
, (A.18)

where the second inequality holds since X
(w)
s (v) ∼ Binomial(w, σs(v)) (so X

(w)
s (v) = 0 when

σs(v) = 0). Again using this fact, we have by (A.4) from Theorem A.4 in Appendix A.1.1,

P
[
X(w)
s (v) > (1 + ε)wσs(v)

]
≤ exp

(
−ε

2

3
wσs(v)

)
. (A.19)

Combining (A.18) and (A.19), we obtain

P

[∑
v∈V

max
s∈S

X(w)
s (v) > (1 + ε)w

∑
v∈V

max
s∈S

σs(v)

]
≤

∑
s∈S,v∈V :σs(v)>0

exp

(
−ε

2

3
wσs(v)

)

≤
(

max
s∈S,v∈V :σs(v)>0

{
exp

(
−ε

2

3
wσs(v)

)})( ∑
s∈S,v∈V

1(σs(v) > 0)

)

= exp

(
−ε2

3
w min
s∈S,v∈V :σs(v)>0

σs(v)

)( ∑
s∈S,v∈V

1(σs(v) > 0)

)
< pfail/2, (A.20)

where the final inequality holds by the bound on w in the statement of the theorem. For the
lower tail, following the same steps used to obtain (A.20) gives

P

[∑
v∈V

max
s∈S

X(w)
s (v) < (1− ε)w

∑
v∈V

max
s∈S

σs(v)

]
< pfail/2. (A.21)
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Finally, by the union bound, (A.20) and (A.21) together establish the theorem.

A.4 Proof of Theorem 2.2

The theorem relies on two key lemmas. The first (Lemma A.1) shows that the out-degrees
in our stochastic block model (SBM) concentrate, in the sense that these degrees are all close
to p
√
n with high probability. The proof, deferred to Appendix A.4.1, is a modified version

of a standard result for similar random graph families (such as the Erdős-Rényi model).

Lemma A.1. Let {Gn = (Vn, En)}n∈N:
√
n∈N be the sequence of SBMs defined in Section

2.4.1.1, with pn = p for some constant p ∈ (0, 1). For ε, C > 0, define the following events:

En,ε = ∩v∈Vn
{
dout(v) ∈

(
(1− ε)p

√
n, (1 + ε)p

√
n
)}
,

Fn,C =

{
max
v∈Vn

d−out(v) ≤ Cqnn

}
, Gn,C =

{
max
v∈Vn

d−out(v) ≤ C log n

log log n

}
.

Then the following hold:
• If qn = o(1/

√
n), then for any constant ε > 0, limn→∞ P(En,ε) = 1.

• If qn = Ω(log n/n), then for some constant C > 0, limn→∞ P(Fn,C) = 1.
• If qn = Θ(1/n), then for some constant C > 0, limn→∞ P(Gn,C) = 1.

Proof. See Appendix A.4.1.

The second lemma (Lemma A.2) contains bounds regarding σsk = rsk/‖rsk‖1, where rsk is
the rs vector in the k-th iteration of Algorithm 2.1. (Here and moving forward, we explicitly
denote the iteration of Algorithm 2.1 via subscripts, as in Algorithm A.1 from Appendix
A.1.2). In fact, these bounds hold more generally than will be required for the theorem;
namely, we formulate the lemma for any deterministic graph on n nodes for which the out-
degree condition En,ε holds. The proof is tedious so is deferred to Appendix A.4.2.

Lemma A.2. Let Gn = (Vn = {1, . . . , n}, En) be a deterministic graph satisfying

dout(v) ∈
(
(1− ε)p

√
n, (1 + ε)p

√
n
)
∀ v ∈ Vn (A.22)

for some p, ε ∈ (0, 1), and let k ∈ {1, . . . , d(1− ε)2p
√
n(1− α)/(2e)e}. Then for any s ∈ Vn,

σsk(v) <
1√
n

e

(1− α)(1− ε)2p− 2ek/
√
n
∀ v ∈ Vn,

and for any Sn ⊂ Vn s.t. s ∈ Sn,∑
v∈Vn\Sn

σsk(v) <
maxs′∈Sn |Nout(s

′) \ Sn|√
n

1 + 2ek/
√
n

(1− ε)p ((1− α)(1− ε)2p− 2ek/
√
n)
.

Proof. See Appendix A.4.2.

We now turn to the proof of the theorem. First, suppose all sources belong to the
same community, and consider the sub-case qn = o(1/

√
n), qn = Ω(log n/n). Then for any

159



ε ∈ (0, 1), Lemma A.2 implies that any realization of Gn satisfying En,ε also satisfies∑
v∈Vn

max
s∈Sn

σsk(v) ≤
∑
v∈Sn

max
s∈Sn

σsk(v) +
∑
s∈Sn

∑
v∈Vn\Sn

σsk(v)

≤ |Sn| ×
1√
n

e

(1− α)(1− ε)2p− 2ek/
√
n

+ |Sn| ×
maxs∈Sn d

−
out(s)√

n

1 + 2ek/
√
n

(1− ε)p ((1− α)(1− ε)2p− 2ek/
√
n)
.

Recall α, ε, p are constants and |Sn| =
√
n, k = o(

√
n) in the statement of the theorem.

Hence, for some C ′′ > 0 and all n large, any realization of Gn satisfying En,ε also satisfies∑
v∈Vn

max
s∈Sn

σsk(v) ≤ C ′′max
s∈Sn

d−out(s).

Now let C ′ > 0, C = C ′C ′′. Then for n large, any realization satisfying En,ε ∩ Fn,C′ satisfies∑
v∈Vn

max
s∈Sn

σsk(v) ≤ Cqnn.

In other words, we have shown that for some C > 0 and any C ′ > 0,

lim
n→∞

P

(∑
v∈Vn

max
s∈Sn

σsk(v) ≤ Cqnn

∣∣∣∣∣En,ε,Fn,C′
)

= 1.

Finally, for C ′ satisfying the second statement of Lemma A.1, we obtain

P

(∑
v∈Vn

max
s∈Sn

σsk(v) ≤ Cqnn

)
≥ P

(∑
v∈Vn

max
s∈Sn

σsk(v) ≤ Cqnn

∣∣∣∣∣En,ε,Fn,C′
)
P (En,ε,Fn,C′) −→ 1.

In the sub-case qn = Θ(1/n), a similar argument implies that for some C,C ′ > 0,

P

(∑
v∈Vn

max
s∈Sn

σsk(v) ≤ C log n

log log n

)

≥ P

(∑
v∈Vn

max
s∈Sn

σsk(v) ≤ C log n

log log n

∣∣∣∣∣En,ε,Gn,C′
)
P (En,ε,Gn,C′) −→ 1.

We next consider the case for which all sources belong to different communities, i.e.
Sn = {

√
n, 2
√
n, . . . , n} (which is without loss of generality by symmetry). Then clearly

∑
v∈Vn

max
s∈Sn

σsk(v) ≥

√
n∑

i=1

i
√
n∑

v=1+(i−1)
√
n

σ
i
√
n

k (v). (A.23)
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Further, for any ε ∈ (0, 1), Lemma A.2 implies that any realization satisfying En,ε satisfies

√
n∑

v=1

σ
√
n

k (v) ≥ 1− maxv∈Vn d
−
out(v)√

n

1 + 2ek/
√
n

(1− ε)p ((1− α)(1− ε)2p− 2ek/
√
n)
.

Now suppose qn = o(1/
√
n), qn = Ω(log n/n), and let δ ∈ (0, 1) be a constant. Then for

C > 0 and n sufficiently large, any realization satisfying En,ε and Fn,C will also satisfy

√
n∑

v=1

σ
√
n

k (v) ≥ 1− Cqnn√
n

= 1− Cqn
√
n ≥ 1− δ.

where we again used the fact that α, ε, p are constant and k = o(
√
n). The same argument

holds for each i ∈ {2, . . . ,
√
n} in (A.23). It follows that, for appropriate choice of C > 0,

lim
n→∞

P

(∑
v∈Vn

max
s∈Sn

σsk(v) ≥ (1− δ)
√
n

∣∣∣∣∣En,ε,Fn,C
)
P (En,ε,Fn,C) = 1.

A similar approach establishes the desired result in the case qn = Θ(1/n).
Note that the only feature of the SBM used above was the degree concentration of Lemma

A.1. In other words, we considered the number of edges for each node, while ignoring how
exactly these edges were connected. Consequently, the same analysis can be used to obtain
results for sequences of deterministic graphs {Gn = (Vn, En)}n∈N:

√
n∈N. For example, if such

a sequence satisfies En,ε,Gn,C for some constants ε, C and for all n large, the analysis above
implies ‖ΣSn‖∞,1 = O(log n/ log log n) when

√
n sources belong to the same community,

whereas ‖ΣSn‖∞,1 = Ω(
√
n) when

√
n sources belong to different communities.

A.4.1 Proof of Lemma A.1

For the first statement, we begin by showing dout(1) concentrates around p
√
n; we will

then use the union bound to establish the lemma. Towards this end, first note that since
edges from node 1 to each v ∈ {2, . . . ,

√
n} are present with probability p, and since edges

from node 1 to each v ∈ {
√
n+ 1, . . . , n} are present with probability qn, we have

E [dout(1)] = p
(√

n− 1
)

+ qn
(
n−
√
n
)

= p
√
n+

(
qn
(
n−
√
n
)
− p
)
. (A.24)

Next, since qn = o(1/
√
n) and p is constant by assumption, we have for n sufficiently large,

qn(n−
√
n)− p

p
√
n

≤ ε/2

1 + ε/2
⇒

(
1 +

ε

2

) (
qn(n−

√
n)− p

)
≤ ε

2
p
√
n.

Thus, combining the previous two lines, we obtain (for such n),(
1 +

ε

2

)
E [dout(1)] =

(
1 +

ε

2

)
p
√
n+

(
1 +

ε

2

) (
qn
(
n−
√
n
)
− p
)
≤ (1 + ε)p

√
n.
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We can then use monotonicity and (A.4) from Appendix A.1.1 to obtain

P
(
dout(1) > (1 + ε)p

√
n
)
≤ P

(
dout(1) >

(
1 +

ε

2

)
E [dout(1)]

)
≤ exp

(
−ε

2p

12

√
n

)
,

where we also used E[dout(1)] ≥ p
√
n by (A.24). Using the same argument for the lower tail,

and then using the union bound, we thus obtain

P
(
dout(1) /∈

[
(1− ε)p

√
n, (1 + ε)p

√
n
])
≤ 2 exp

(
−ε

2p

12

√
n

)
.

Since also {dout(v)}v∈V are identically-distributed, and by the union bound,

P
(
∪v∈V

{
dout(v) /∈

[
(1− ε)p

√
n, (1 + ε)p

√
n
]})
≤ 2n exp

(
−ε

2p

12

√
n

)
−−−→
n→∞

0,

which completes the proof of the first statement.
For the second statement, we similarly begin with a tail bound for d−out(1). First note that,

since qn = Ω(log n/n), we can find C ′ > 0 such that for all n sufficiently large, qnn > C ′ log n.
Now let C > max{2e, 2/(C ′ log 2)}. Then clearly

Cqnn > 2eqn
(
n−
√
n
)

= 2eE
[
d−out(1)

]
.

Hence, we can use (A.5) from Appendix A.1.1 to obtain

P
(
d−out(1) > Cqnn

)
≤ 2−Cqnn.

By the union bound argument used above, we then have

P
(

max
v∈Vn

d−out(v) > Cqnn

)
≤ nP

(
d−out(1) > Cqnn

)
= 2−(Cqnn−log2 n).

Also, by our choice of C and for n sufficiently large (so that qnn > C ′ log n),

Cqnn− log2 n >
2

C ′ log 2
C ′ log n− log2 n = log2 n.

Combining the previous two inequalities then yields, for n sufficiently large,

P
(

max
v∈Vn

d−out(v) > Cqnn

)
≤ 1/n,

from which the second statement clearly follows.
For the third statement, we again derive a tail bound for d−out(1), but this requires a

different approach. First, for any M ∈ {1, . . . , bn −
√
nc}, the event {d−out(1) ≥ M} means

that node 1 has outgoing edges to M nodes in other communities, so

P
(
d−out(1) ≥M

)
= P

(
∪Un⊂{1+

√
n,...,n}:|Un|=M{1→ u ∈ En ∀ u ∈ Un}

)
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≤
∑

Un⊂{1+
√
n,...,n}:|Un|=M

P (1→ u ∈ En ∀ u ∈ Un)

=

(
n−
√
n

M

)
qMn ≤

(
n

M

)
qMn ,

where the first inequality is the union bound, the second equality holds by definition of our
SBM, and the inequality is immediate. Now by assumption qn = Θ(1/n), we can find C1

such that qnn ≤ C1 for n sufficiently large; combined with the standard binomial coefficient
approximation

(
n
M

)
≤ (ne

M
)M , we can further bound the above as

P
(
d−out(1) ≥M

)
≤
(nqne
M

)M
≤
(
C2

M

)M
for all n large (we also defined C2 = C1e). Thus, by the union bound and the fact that
{d−out(v)}v∈V are identically-distributed, we obtain for all n large and any constant C > 0,

P
(

max
v∈Vn

d−out(v) ≥ C log n

log log n

)
≤ n

(
C2 log log n

C log n

)C logn/ log logn

.

Next, we note

log

(
n

(
C2 log log n

C log n

)C logn/ log logn
)

= log n+
C log n

log log n
(log(C2 log log n)− log(C log n))

= log n

(
1 +

C log log(log n)C2

log log n
− C log log nC

log log n

)
.

Choosing any C ≥ 1 clearly implies

(log log nC)/(log log n) ≥ 1.

Also, since C2 > 0 is a constant, we have for all n large (for example)

(log log(log n)C2)/(log log n) <
1

2
.

Combining the previous four lines, we then obtain, for all n large,

logP
(

max
v∈Vn

d−out(v) >
C log n

log log n

)
≤ (1− C/2) log n,

so that choosing any C > 2 establishes the third statement.

A.4.2 Proof of Lemma A.2

We begin with another lemma, which in fact holds for any underlying graph G.

Lemma A.3. For any graph G = (V,E), any source node s ∈ V , and any iteration k ∈
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{1, . . . , dout(s)} of Algorithm 2.1,

1− α
maxv∈V dout(v)

≤ max
v∈V

rsk(v) ≤ 1− α
minv∈V dout(v)

exp

(
(1− α)(k − 1)

minv∈V dout(v)

)
.

Proof. For the lower bound, first note rs1(v) = (1 − α)/dout(s) ∀ v ∈ Nout(s). Furthermore,
for each such v, rsk(v) is non-decreasing in k for k < kv, where kv is the first iteration k for
which v∗k = v. Also, since v∗1 = s, we must have kv ≥ dout(s) + 1 for some v ∈ Nout(s).
Hence, for any k ∈ {1, . . . , dout(s)}, we can find some v ∈ Nout(s) for which kv > k, which
implies rsk(v) ≥ rs1(v) = (1−α)/dout(s). Since also dout(s) ≤ maxv∈V dout(v), the lower bound
follows. For the upper bound, we use induction. For the base of induction, simply note

rs1(v) =
1− α
dout(s)

≤ 1− α
minv∈V dout(v)

∀ v ∈ Nout(s).

Now assuming the upper bound holds for k − 1, we have for any v ∈ V ,

rsk(v) ≤ rsk−1(v) +
1− α
dout(v∗k)

rsk−1(v∗k) ≤
(

1 +
1− α

minv∈V dout(v)

)
max
v′∈V

rsk−1(v′)

≤
(

1 +
1− α

minv∈V dout(v)

)
1− α

minv∈V dout(v)
exp

(
(1− α)(k − 2)

minv∈V dout

(v)

)
≤ 1− α

minv∈V dout(v)
exp

(
(1− α)(k − 1)

minv∈V dout(v)

)
,

where the first inequality uses the iterative update in Algorithm 2.1, the second is immediate,
the third uses the inductive hypothesis, and the fourth uses 1 + x ≤ ex.

We next state and prove a corollary of Lemma A.3, which translates the rsk bounds from
Lemma A.3 to bounds regarding σsk (the actual vector of interest in the theorem).

Corollary A.1. Let Gn = (Vn = {1, . . . , n}, En) be a graph satisfying

dout(v) ∈
(
(1− ε)p

√
n, (1 + ε)p

√
n
)
∀ v ∈ Vn (A.25)

for some p, ε ∈ (0, 1). Then for any k ∈ {1, . . . , b(1− ε)p
√
nc} and any s ∈ Vn,

1− α
2
√
n
< max

v∈Vn
rsk(v) <

e

(1− ε)p
√
n
,

(1− ε)(1− α)

4
√
n

< rsk(v
∗
k+1) <

2e

(1− ε)2p
√
n
,

(1− α)− 2e(k − 1)

(1− ε)2p
√
n
≤ ‖rsk‖1 ≤ (1− α)− (k − 1)(1− ε)(1− α)

4
√
n

.

Proof. Fix k ∈ {1, . . . , b(1−ε)p
√
nc} and s ∈ Vn. Then k < dout(s) by (A.25) and the choice
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of k. We can then use the assumption (A.25), Lemma A.3, and the choice of k to obtain

1− α
(1 + ε)p

√
n
<

1− α
maxv∈V dout(v)

≤ max
v∈V

rsk(v)

≤ 1− α
minv∈V dout(v)

exp

(
(1− α)(k − 1)

minv∈V dout(v)

)
<

(1− α)e1−α

(1− ε)p
√
n
.

Finally, ε, p, α ∈ (0, 1) yields the first pair of inequalities. Next, by definition of v∗k+1,

rsk(v
∗
k+1) = dout(v

∗
k+1)

rsk(v
∗
k+1)

dout(v∗k+1)
= dout(v

∗
k+1) max

v∈Vn

rsk(v)

dout(v)
= max

v∈Vn

dout(v
∗
k+1)

dout(v)
rsk(v). (A.26)

On the other hand, by the assumption (A.25), and since ε ∈ (0, 1),

1− ε
2

<
1− ε
1 + ε

<
dout(v

∗
k+1)

dout(v)
<

1 + ε

1− ε
<

2

1− ε
(A.27)

Combining (A.26) and (A.27), and using the first pair of inequalities, yields the second pair
of inequalities. For the third pair of inequalities, we first assume k > 1 and use (A.13) from
Appendix A.1.2 to obtain

‖rsk‖1 = ‖rsk−1‖1−αrsk−1(v∗k) = · · · = ‖rs0‖1−αrs0(v∗1)−α
k−1∑
j=1

rsj(v
∗
j+1) = 1−α−α

k−1∑
j=1

rsj(v
∗
j+1),

where we also used rs0 = es, v
∗
1 = s by Algorithm 2.1. We can then use the second pair of

inequalities to obtain the third pair of inequalities. If instead k = 1, we immediately have
‖rsk‖1 = 1− α, which is precisely the third pair of inequalities in the case k = 1.

We can now prove Lemma A.2. For the first bound, note the assumptions of Lemma A.2
are stronger than those of Corollary A.1, so we can use Corollary A.1 to obtain

σsk(v) =
rsk(v)

‖rsk‖1

<

e
(1−ε)p

√
n

(1− α)− 2e(k−1)
(1−ε)2p

√
n

=
1√
n

(1− ε)e
(1− α)(1− ε)2p− 2e(k − 1)/

√
n
.

Using the trivial inequalities 1 − ε < 1, k − 1 < k then yields the first upper bound. (Note
the assumed upper bound on k ensures the denominator is non-negative.)

For the second bound, let Sn ⊂ Vn be a set containing s. We begin by showing∑
v∈Vn\Sn

rsk(v) <

√
n+ 2e(k − 1)

(1− ε)3p2n
max
s′∈Sn

|Nout(s
′) \ Sn| . (A.28)

To prove (A.28), we use induction. For k = 1, the rs update in Algorithm 2.1 implies

rs1(v) =
1− α
dout(s)

1(v ∈ Nout(s))⇒
∑

v∈Vn\Sn

rsk(v) =
1− α
dout(s)

|Nout(s) \ Sn| ,
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which, using the assumption (A.22) and α, ε, p ∈ (0, 1), can clearly be bounded as∑
v∈Vn\Sn

rsk(v) <
1

(1− ε)3p2
√
n

max
s′∈Sn

|Nout(s
′) \ Sn| ,

which proves (A.28) when k = 1. Now assume (A.28) holds for k−1 and consider two cases:
1. v∗k /∈ Sn: We can write the rs update in Algorithm 2.1 as

rsk(v) = rsk−1(v)+
1− α
dout(v∗k)

rk−1(v∗k)1(v ∈ Nout(v
∗
k))−rk−1(v∗k)1(v = v∗k) ∀ v ∈ Vn, (A.29)

where 1(A) is the indicator function of the event A. This clearly implies∑
v∈Vn\Sn

rsk(v) =
∑

v∈Vn\Sn

rsk−1(v) + rk−1(v∗k)

(
1− α
dout(v∗k)

|Nout(v
∗
k) \ Sn| − 1

)
<

∑
v∈Vn\Sn

rsk−1(v),

from which the inductive hypothesis completes the proof.
2. v∗k ∈ Sn: Again using (A.29), we observe∑

v∈Vn\Sn

rsk(v) =
∑

v∈Vn\Sn

rsk−1(v) +
1− α
dout(v∗k)

rk−1(v∗k) |Nout(v
∗
k) \ Sn| . (A.30)

(Note the final term in (A.29) does not appear in (A.30), since
∑

v∈Vn\Sn 1(v = v∗k) = 0

when v∗k ∈ Sn.) For the second summand in (A.30), the second upper bound from
Corollary A.1, the assumption (A.22), α ∈ (0, 1), and the assumption v∗k ∈ Sn imply

1− α
dout(v∗k)

rk−1(v∗k) |Nout(v
∗
k) \ Sn| <

2e

(1− ε)3p2n
max
s′∈Sn

|Nout(s
′) \ Sn| ,

Substituting into (A.30) and using the inductive hypothesis yields∑
v∈Vn\Sn

rsk(v) <

(√
n+ 2e(k − 2)

(1− ε)3p2n
+

2e

(1− ε)3p2n

)
max
s′∈S
|Nout(s

′) \ Sn| ,

which completes the proof.
Combining (A.28) with the lower bound for ‖rsk‖1 from Corollary A.1 gives

∑
v∈Vn\Sn

σsk(v) =

∑
v∈Vn\Sn r

s
k(v)

‖rsk‖1

<

√
n+2e(k−1)
(1−ε)3p2n

maxs′∈S |Nout(s
′) \ Sn|

(1− α)− 2e(k−1)
(1−ε)2p

√
n

=
maxs′∈Sn |Nout(s

′) \ Sn|√
n

1 + 2e(k − 1)/
√
n

(1− ε)p ((1− α)(1− ε)2p− 2e(k − 1)/
√
n)
,

166



from which the trivial bound k − 1 < k completes the proof.

A.5 Proof of Proposition 2.1

First, assume Merge is used at each iteration for which v∗ = t2. By Algorithm 2.2,
‖pt2‖1 increases by at least αrtmax at each iteration for which v∗ 6= t1. By (2.9), ‖pt2‖1

increases by at least ‖pt1‖1r
t
max at each iteration for which v∗ = t1. Let us define I1 as the

number of iterations for which v∗ 6= t1, I2 as the number of iterations for which v∗ = t1, and
I = I1 + I2 as the total number of iterations. Since ‖pt2‖1 = 0 at the start of Algorithm 2.2
and ‖pt2‖1 ≤ nπ(t2) by the invariant (2.2), we have

nπ(t2)

rtmax

≥ αI1 + ‖pt1‖1I2 = αI + (‖pt1‖1 − α)I2. (A.31)

Now at termination of Algorithm 2.2, ‖rt2‖∞ ≤ rtmax, so by the invariant (2.2), πt1(t2) ≤
pt2(t1) + rtmax at termination. Therefore, if πt1(t2) > rtmax, pt2(t1) > 0 at termination, which
can only occur if v∗ = t1 at some iteration. Hence, πt1(t2) > rtmax ⇒ I2 ≥ 1. Finally, from

Algorithm 2.2, ‖pt1‖1 ≥ α. Substituting into (A.31) gives I ≤ nπ(t2)
αrtmax

− (‖pt1‖1−α)
α

.

If instead Merge is not used, ‖pt2‖1 increases by at least αrtmax at every iteration. Hence,

the same argument establishes that the total number of iterations is bounded by nπ(t2)
αrtmax

.

A.6 Proof of Theorem 2.3

We will use Corollary 6.2.1 from [42], which (applied to our setting) states the following.
Assume {Xi}wi=1 are independent random matrices satisfying E[Xi] = RT

SΠRT . Let M be
s.t. ‖Xi‖2 ≤M a.s., and let m2(Xi) = max{‖E[XiX

T
i ]‖2, ‖E[XT

i Xi]‖2}. Then ∀ η > 0,

P

[∥∥∥∥∥RT
SΠRt −

1

w

w∑
i=1

Xi

∥∥∥∥∥
2

> η

]
≤ 2l exp

(
−3wη2

6m2(Xi) + 4Mη

)
.

We have verified the independence and E[Xi] = RT
SΠRT assumptions in the main text. Also,

from (2.15) and Algorithm 2.5, Π(S, T )− Π̂(S, T ) = RT
SΠRt − 1

w

∑w
i=1 Xi. Thus,

P
[∥∥∥Π(S, T )− Π̂(S, T )

∥∥∥
2
> εmax{‖Π(S, T )‖2, 1}

]
≤ 2l exp

(
−3w (εmax{‖Π(S, T )‖2, 1})2

6m2(Xi) + 4Mεmax{‖Π(S, T )‖2, 1}

)

≤ 2l exp

(
−3wε2

6 m2(Xi)
max{‖Π(S,T )‖2,1} + 4Mε

)
≤ 2l exp

(
−3wε2

6 m2(Xi)
‖Π(S,T )‖2 + 4Mε

)
. (A.32)

where we have also used max{‖Π(S, T )‖2, 1} ≥ 1, max{‖Π(S, T )‖2, 1} ≥ ‖Π(S, T )‖2.
Now to prove the theorem, we aim to find M s.t. ‖Xi‖2 ≤M a.s. and to compute m2(Xi)

such that (A.32) is bounded by pfail, in each of the following cases:

(Case 1) σ = σavg, w ≥
l2
√

srank(Π(S, T )) log(2l/pfail)r
s
maxr

t
max(6 + 4ε)

3ε2
. (A.33)
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(Case 2) σ = σmax, w ≥ l3/2‖Σ‖∞,1 log(2l/pfail)r
s
maxr

t
max(6 + 4ε)

3ε2
. (A.34)

We begin with Case 1. By Lemma A.4, we may take M = l3/2rsmaxr
t
max, and by Lemma

A.5, we have m2(Xi) ≤ l2rsmaxr
t
max‖Π(S, T )‖F . We can then write

6
m2(Xi)

‖Π(S, T )‖2

+ 4Mε ≤ l2rsmaxr
t
max

(
6
‖Π(S, T )‖F
‖Π(S, T )‖2

+
4√
l
ε

)
= l2rsmaxr

t
max

(
6
√

srank(Π(S, T )) +
4√
l
ε

)
≤ l2rsmaxr

t
max

√
srank(Π(S, T ))(6 + 4ε) ≤ 3wε2

log(2l/pfail)
, (A.35)

where the penultimate inequality holds since l, srank(Π(S, T )) ≥ 1, and the final inequality
is by (A.33). Substituting (A.35) into (A.32) establishes the desired result.

For Case 2, we take M = l3/2‖Σ‖∞,1rsmaxr
t
max (Lemma A.4), and by Lemma A.5 we have

m2(Xi) ≤ l‖Σ‖∞,1rsmaxr
t
max max{‖Π(S, T )‖∞, ‖Π(S, T )‖1}.

We then obtain

6
m2(Xi)

‖Π(S, T )‖2

+ 4Mε ≤ l‖Σ‖∞,1rsmaxr
t
max

(
6

max{‖Π(S, T )‖∞, ‖Π(S, T )‖1}
‖Π(S, T )‖2

+ 4
√
lε

)
≤ l3/2‖Σ‖∞,1rsmaxr

t
max (6 + 4ε) ≤ 3wε2

log(2l/pfail)
(A.36)

where the second inequality is ‖A‖∞, ‖A‖1 ≤
√
l‖A‖2 ∀ A ∈ Rl×l), and the third inequality

is by (A.34). Substituting (A.36) into (A.32) completes the proof.

Lemma A.4. If σ = σavg, ‖Xi‖2 ≤ l3/2rsmaxr
t
max; if σ = σmax, ‖Xi‖2 ≤ l3/2‖Σ‖∞,1rsmaxr

t
max.

Proof. Observe Xi = aib
T
i , where ai, bi ∈ Rl with ai(j) = rsj(µi)/σ(µi), bi(j) = rtj(νi). Xi

has rank 1, and we may write its singular value decomposition as

Xi = (‖ai‖2‖bi‖2)

(
ai
‖ai‖2

)(
bi
‖bi‖2

)T

,

so the nonzero singular value of Xi is ‖ai‖2‖bi‖2. Using the well-known fact that a matrix’s
2-norm equals its largest singular value, ‖Xi‖2 = ‖ai‖2‖bi‖2, so we seek bounds on ‖ai‖2 and
‖bi‖2. First, if σ = σavg, we have

σ(µi) =
1

l

∑
s∈S

rs(µi)

‖rs‖1

≥ 1

lrsmax

∑
s∈S

rs(µi) ≥
1

lrsmax

(∑
s∈S

rs(µi)
2

)1/2

=
1

lrsmax

‖ai‖2σ(µi).

(A.37)
Here the first equality holds by definition (2.17), the first inequality uses the terminating
condition of Algorithm 2.1 (‖rs‖1 ≤ rsmax), and the second equality is by definition of ai. We
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conclude ‖ai‖2 ≤ lrsmax. To bound ‖bi‖2, we have

‖bi‖2 ≤
√
l‖bi‖∞ ≤

√
lrtmax, (A.38)

where we have used a well-known vector norm inequality and the terminating condition of
Algorithm 2.2 (‖rt‖∞ ≤ rtmax). Hence, ‖Xi‖2 ≤ l3/2rsmaxr

t
max follows. If instead σ = σmax,

σ(µi) =
1

‖Σ‖∞,1
max
s∈S

rs(µi)

‖rs‖1

≥ 1

‖Σ‖∞,1rsmax

max
s∈S

rs(µi)

≥ 1

l‖Σ‖∞,1rsmax

∑
s∈S

rs(µi) =
1

l‖Σ‖∞,1rsmax

‖ai‖σ(µi), (A.39)

which holds similar to (A.37). Combining with (A.38) gives ‖Xi‖2 ≤ l3/2‖Σ‖∞,1rsmaxr
t
max.

Lemma A.5. If σ = σavg, then m2(Xi) ≤ l2rsmaxr
t
max‖Π(S, T )‖F ; if instead σ = σmax, then

m2(Xi) ≤ l‖Σ‖∞,1rsmaxr
t
max max{‖Π(S, T )‖∞, ‖Π(S, T )‖1}.

Proof. We first assume σ = σavg. Using Jensen’s inequality, and since Xi = aib
T
i , we have

‖E[XiX
T
i ]‖2 ≤ E[‖XiX

T
i ‖2] = E[‖ai‖2

2‖bi‖2
2]; similarly, ‖E[XiX

T
i ]‖2 ≤ E[‖ai‖2

2‖bi‖2
2]. Thus,

m2(Xi) ≤ E[‖ai‖2
2‖bi‖2

2] =
∑
u,v∈V

σ(u)πu(v)

(
1

σ(u)2

∑
s∈S

rs(u)2

)(∑
t∈T

rt(v)2

)

≤ rtmax

∑
u,v∈V

πu(v)

σ(u)

(∑
s∈S

rs(u)

)2∑
t∈T

rt(v)

≤ lrsmaxr
t
max

∑
s∈S

∑
t∈T

∑
u,v∈V

rs(u)πu(v)rt(v) ≤ lrsmaxr
t
max

∑
s∈S

∑
t∈T

πs(t), (A.40)

where the second inequality uses the terminating condition of Algorithm 2.2 (rt(v) ≤ rtmax)
and the nonnegativity of rs(u), the third follows from (A.37), and the fourth uses the invari-
ant (2.3). Finally, letting vec(Π(S, T )) denote the l2-length vector with entries {πs(t)}s∈S,t∈T ,∑

s∈S

∑
t∈T

πs(t) = ‖vec(Π(S, T ))‖1 ≤ l‖vec(Π(S, T ))‖2 = l‖Π(S, T )‖F ,

where the inequality is a standard norm inequality, and the second inequality is by definition
of Frobenius norm. Substituting into (A.40) establishes the result.

We next assume σ = σmax and bound ‖E[XiX
T
i ]‖2. We observe that by definition,

XiX
T
i =

(∑
t∈T r

t(νi)
2
)

σ(µi)2

[
rs1(µi) · · · rsl(µi)

]T [
rs1(µi) · · · rsl(µi)

]
⇒ E[XiX

T
i ] =

∑
u,v∈V

πu(v)

σ(u)

∑
t∈T

rt(v)2
[
rs1(u) · · · rsl(u)

]T [
rs1(u) · · · rsl(u)

]
.
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Letting 1l denote the all ones vector of length l, we also have

E[XiX
T
i ]1l =

∑
u,v∈V

πu(v)

σ(u)

∑
t∈T

rt(v)2
∑
s∈S

rs(u)
[
rs1(u) · · · rsl(u)

]T
. (A.41)

Now since E[XiX
T
i ] is symmetric, its 2-norm is its largest eigenvalue; since it is nonnegative,

this eigenvalue is bounded by its maximum row sum (Perron-Frobenius Theorem). Thus,

‖E[XiX
T
i ]‖2 ≤ max

j∈{1,2,...,l}

∑
u,v∈V

πu(v)

σ(u)

∑
t∈T

rt(v)2
∑
s∈S

rs(u)rsj(u) (A.42)

≤ l‖Σ‖∞,1rsmaxr
t
max max

j∈{1,2,...,l}

∑
t∈T

∑
u,v∈V

rsj(u)πu(v)rt(v) (A.43)

≤ l‖Σ‖∞,1rsmaxr
t
max max

j∈{1,2,...,l}

∑
t∈T

πsj(t) = l‖Σ‖∞,1rsmaxr
t
max‖Π(S, T )‖∞,(A.44)

where (A.42) uses the row sums derived in (A.41), (A.43) uses (A.39) from the proof of
Lemma A.4 and the terminating condition of Algorithm 2.2 (‖rt‖∞ ≤ rtmax), and (A.44) uses
the invariant (2.3). We can use the same idea to bound ‖E[XT

i Xi]‖2. The steps to obtain the
expression analogous to (A.42) follow the same approach so we omit them. We then have

‖E[XT
i Xi]‖2 ≤ max

j∈{1,2,...,l}

∑
u,v∈V

πu(v)

σ(u)

∑
s∈S

rs(u)2
∑
t∈T

rt(v)rtj(v)

≤
∑
u,v∈V

πu(v)

σ(u)

∑
s∈S

rs(u) max
s′∈S

rs
′
(u)
∑
t∈T

rt(v)rtj(v)

≤ l‖Σ‖∞,1rsmaxr
t
max max

j∈{1,2,...,l}

∑
s∈S

∑
u,v∈V

rs(u)πu(v)rtj(v) (A.45)

≤ l‖Σ‖∞,1rsmaxr
t
max max

j∈{1,2,...,l}

∑
s∈S

πs(tj) = l‖Σ‖∞,1rsmaxr
t
max‖Π(S, T )‖1,(A.46)

where (A.45) uses (A.39) from the proof of Lemma A.4 and the terminating condition of
Algorithm 2.2 (‖rt‖∞ ≤ rtmax), and (A.46) uses (2.3). Thus, by (A.44) and (A.46),

max{‖E[XT
i Xi]‖2, ‖E[XiX

T
i ]‖2} ≤ l‖Σ‖∞,1rsmaxr

t
max max{‖Π(S, T )‖∞, ‖Π(S, T )‖1}.

A.7 Choosing order of targets in Algorithm 2.4

As mentioned at the end of Section 2.4.1.2, the performance of Algorithm 2.4 can sig-
nificantly depend on the order in which the targets t1, t2, . . . , t|T | are chosen. For instance,
suppose there exists t∗ ∈ T such that πt∗(t

′) > rtmax ∀ t′ ∈ T , but πt(t
′) ≤ rtmax ∀ t ∈

T \ {t∗}, t′ ∈ T . Then choosing t1 = t∗ implies cT = |T | − 1, while choosing t|T | = t∗ implies
cT = 0. More generally, the algorithm is most efficient when any t satisfying πt(t

′) > rtmax for
many t′ ∈ T is chosen “early” in the algorithm, i.e. ti = t for small i. However, because πt(t

′)
is unknown, optimizing the order t1, t2, . . . , t|T | at runtime is difficult. A possible workaround
is to use pt

′
(t) as a proxy for πt(t

′), since pt
′
(t) ∈ [πt(t

′)− rtmax, πt(t
′)] by the invariant (2.2).
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Table A.1: Datasets for real graph experiments.
Dataset Description n m
com-Amazon Amazon co-purchasing 334863 925872
com-dblp Scientific co-authorship 317080 1049866
roadNet-PA Roads in Pennsylvania 1087532 1541514
Slashdot Friendships on technology news site 71307 912381
web-BerkStan berkley.edu, stanford.edu web graph 334857 4523232
web-Google Partial web crawl 434818 3419124
Wiki-Talk Friendships among Wikipedia editors 111881 1477893

Unfortunately, even this proxy is difficult to utilize at runtime. This is because we would
like to choose ti such that πtj(ti) is large for many j < i, but the proxy pti(tj) of πtj(ti) is
only known after choosing ti. (Loosely speaking, we have a “chicken and egg” scenario.)
Hence, we do not suspect there is a provably optimal method, or even a simple heuristic but
suboptimal method, for choosing the order of targets at runtime.

A.8 Experimental details

Here we provide some details on the experiments from Section 2.5.
Datasets: Direct-ER is a directed Erdős-Rényi graph with parameters n = 2000, p =

0.005 (edge v → u is present with probability p, independent of other edges, ∀ v, u ∈
V, v 6= u). Direct-SBM is a directed stochastic block model; there are n = 2000 nodes
partitioned into k = 20 disjoint communities, each of size n

k
= 100; directed edges occur with

probability 9/(n
k
− 1) between distinct nodes in the same community and with probability

1/(n− n
k
) between nodes in different communities (so that each node has nine neighbors in its

own community and one neighbor in another community, in expectation, yielding a highly
modular graph). The real graphs used are available from the Stanford Network Analysis
Platform (SNAP) [43]; see Table A.1 for further details.

Parameters: For the scalar estimation experiments in Sections 2.5.1.1 and 2.5.2.1, we
use the algorithmic parameters shown in Table A.2. More specifically, FW-BW-MCMC uses
Algorithm A.1 for forward DP with parameter r̃smax and samples w‖r̃s‖1 random walk starting
node locations for each source s (as in Algorithm A.2), uses the walk sharing scheme from
Section 2.4.1.1 to sample walks jointly across S, and uses Algorithm 2.4 with parameter
rtmax for the targets; for Bidirectional-PPR, we sample w walks separately for each source
and run Algorithm 2.2 separately for each target. In practice, we find that w given by the

accuracy guarantee (Theorem A.1) is overly pessimistic, so we instead set w = crtmax

δ
for both

methods, with c given in the table. For the matrix experiments in Sections 2.5.1.2 and 2.5.2.2,

we use the same r̃smax and rtmax values. Furthermore, we set w = l cr
t
max

δ
, w = ‖Σ‖∞,1 cr

t
max

δ
, and

w =
√
l srank(PT (S, :) + PT

S RT ) cr
t
max

δ
for the baseline, σmax, and σavg schemes, respectively.

Single pair performance: The parameters in Table A.2 were chosen so the primitives
FW-BW-MCMC- Practical and Bidirectional-PPR offer similar accuracy in the single pair
case and balance runtime between dynamic programming (DP) and Monte Carlo (MC). To
demonstrate this, we show statistics in Table A.2. We obtained the statistics by averaging
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Table A.2: Algorithmic parameters and single pair performance.

Graph Algorithm
r̃smax

×103

rtmax

×103 δ c
DP
time
(ms)

MC
time
(ms)

Error

Direct-ER FW-BW-MCMC-Prac 1.8 3.8 1/n 7 10.61 7.63 0.075
Direct-ER Bidir-PPR N/A 1.6 1/n 12 6.94 7.52 0.072
Direct-SBM FW-BW-MCMC-Prac 1 4 1/n 7 15.43 7.08 0.052
Direct-SBM Bidir-PPR N/A 3 1/n 10 10.19 12.01 0.061
com-amazon FW-BW-MCMC-Prac 3.6 18.2 10/n 12 22.55 22.54 0.12
com-amazon Bidir-PPR N/A 7.4 10/n 13 22.13 22.21 0.11
com-dblp FW-BW-MCMC-Prac 2.9 14.3 10/n 13 20.27 20.31 0.12
com-dblp Bidir-PPR N/A 6 10/n 15 20.03 19.65 0.11

roadNet-PA FW-BW-MCMC-Prac 15.1 34.8 10/n 6 55.04 56.58 0.11
roadNet-PA Bidir-PPR N/A 12.8 10/n 6 53.19 55.96 0.10
Slashdot FW-BW-MCMC-Prac 2 12.2 10/n 7 3.08 3.38 0.10
Slashdot Bidir-PPR N/A 4.2 10/n 17 3.30 4.03 0.11

web-BerkStan FW-BW-MCMC-Prac 6.9 23 10/n 3 11.13 11.02 0.12
web-BerkStan Bidir-PPR N/A 11.6 10/n 3 8.40 8.42 0.12
web-Google FW-BW-MCMC-Prac 4.5 17.6 10/n 8 23.33 22.83 0.11
web-Google Bidir-PPR N/A 6.7 10/n 11 26.07 22.29 0.11
WikiTalk FW-BW-MCMC-Prac 2.3 7.5 10/n 8 4.40 3.99 0.11
WikiTalk Bidir-PPR N/A 2.9 10/n 20 5.84 5.10 0.11

across 103 trials of the following procedure. First, we sample t ∈ V uniformly. Next, we
sample a “significant” source s (i.e. s satisfying πs(t) > δ) and an “insignificant” source
s′ (i.e. s′ satisfying πs′(t) < δ). Since Theorem A.1 bounds relative and absolute error for
significant and insignificant pairs, respectively, we compute relative and absolute error for
the πs(t) and πs′(t) estimates, respectively. (We do not report absolute error statistics as no
insignificant estimate violated the absolute error guarantee.) For real datasets, we cannot
compute πs(t) to test error performance; instead, we run Algorithm 2.2 with rtmax replaced
by η = 1

n
, denote the output ptη, r

t
η, and bound relative error for significant pairs as

|π̂s(t)− π(t)|
πs(t)

≤
|π̂s(t)− ptη(s)|+ ‖rtη‖∞

ptη(s)
<
|π̂s(t)− ptη(s)|

ptη(s)
+

1

10
,

where we have used ptη(s) ∈ [πs(t) − ‖rtη‖∞, πs(t)] (which holds by (2.2)), ‖rtη‖∞ < η = 1
n

(which holds by Algorithm 2.2), and ptη(s) ≥ δ = 10
n

(which holds by choice of s, t). In
the same manner, we can bound absolute error for insignificant pairs as |π̂s(t) − π(t)| ≤
|π̂s(t) − ptη(s)| + 1

n
. (Note we choose significant pairs as those (s, t) satisfying ptη(s) ≥ δ,

since then πs(t) ≥ δ by (2.2); similarly, we choose insignificant pairs as those (s′, t) satisfying
ptη(s

′) < δ − η, since then πs′(t) < δ by (2.2).)

Additional Erdős-Rényi results: We also ran the first experiment from Section 2.5.1.1
for Erdős-Rényi graphs with n ∈ {4000, 8000}, each with edge formation probability 10/n.
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Figure A.1: Replicating Erdős-Rényi experiment from Section 2.5.1.1 with n = 4000 (top)
and n = 8000 (bottom).

For FW-BW-MCMC, we used parameters (r̃smax, r
t
max) = (1.5, 3.5) × 10−3 when n = 4000 and

(r̃smax, r
t
max) = (1.2, 3.2)×10−3 when n = 8000 (choosing smaller parameters for larger n gave

more balanced runtime than using the n = 2000 parameters from Table A.2). Similarly, for
Bidirectional-PPR, we used rtmax = 1.1× 10−3 when n = 2000 and rtmax = 0.8× 10−3 when
n = 8000. As in Table A.2, we ensured these parameters gave similar accuracy for both
algorithms. Results are shown in Fig. A.1. As mentioned in Section 2.5.1.1, the plots are
qualitatively similar across n; however, they improve slightly as n grows. For instance, in
the extreme case |S| = |T | = n/2, FW-BW-MCMC-Prac was (on average) 2.9, 4.5, and 5.8 times
faster than Bidirectional-PPR for n = 2000, n = 4000, and n = 8000, respectively.

Building clustered subsets: As mentioned in Section 2.5.2, we use a simple algorithm to
randomly construct clustered subsets of nodes for experiments; see Algorithm A.3.

Algorithm A.3: U = Construct-Clustered-Set(G, l)

1 Choose u ∈ V uniformly at random, let U = {u}
2 for i = 2 to l do

3 w ∼ (∪u∈UNout(u)) \U with prob. proportional to
∑
u∈U 1(w∈Nout(u))

Nin(w)
; U ← U ∪{w}

A.9 Additional experiments for distributed setting

A.9.1 Matrix approximation, average sampling approach

In this section, we describe a scheme to use the σavg variant of Algorithm 2.5 in the
distributed setting from Section 2.6. Our scheme is quite similar to that defined in Section
2.6 and proceeds as follows. First, we arbitrarily partition S into k subsets of size |S|/k, and
we use the i-th machine to run forward DP (Algorithm 2.1) for each source s belonging to
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the i-th subset. Next, we create another partition {Si}ki=1 of S and use the i-th machine to
sample random walks for Si using the σavg variant of Algorithm 2.5. Finally, we construct

the estimate Π̂(S, T ) of Π(S, T ) as in Algorithm 2.5.
It remains to specify the construction of {Si}ki=1. For this, we first use the output ps

of Algorithm 2.1 to define surrs = PT (s, :) + (ps)TRT for each s ∈ S; here PT and RT are
the matrices with columns {pt}t∈T and {rt}t∈T , respectively (with each (pt, rt) computed
offline via Algorithm 2.2 as in Section 2.6). Note that surrs is a row of the surrogate matrix
PT (S, :) + PT

S RT discussed at the conclusion of Section 2.4.2. For S ′ ⊂ S, we also define
surrS′ be the matrix with rows {surrs}s∈S′ . Now, as in Section 2.5.2.2, the number of walks
sampled on the i-th machine will be set proportional to

√
|Si|srank(surrSi)); hence, our goal

is to construct {Si}ki=1 so as to minimize

max
i∈{1,...,k}

√
|Si|srank(surrSi). (A.47)

To approximate the solution of this minimization problem, we consider a heuristic method
defined in Algorithm A.4. Note this is similar to Algorithm 2.6 in Section 2.6: we assign one
source to each Si (with surrs vectors far apart), and then iteratively assign the remaining
nodes to some Si so as to minimize the cost of this assignment. In light of (A.47), we here
define the cost of assigning s to Si as d̃(s, Si) =

√
(|Si|+ 1)srank(surrSi∪{s}).

Algorithm A.4: {Si}ki=1 = Source-Partition-σavg ({surrs}s∈S, k)

1 Draw s ∼ S uniformly, set S1 = {s}; set Si = ∅ ∀ i ∈ {2, . . . , k}
2 for i = 2 to k do
3 Let s ∼ S with prob. proportional to minj∈{1,...,i−1} ‖surrs− surrSj‖1; set Si = {s}
4 for i = k + 1 to |S| do

5 Choose s ∈ S \ (∪kj=1Sj) ; compute d̃(s, Sj) ∀ j ∈ {1, . . . , k}
6 Let j∗ ∈ arg minj d̃(s, Sj) , Sj∗ = Sj∗ ∪ {s}.

Note Algorithm A.4 requires the singular value decomposition (SVD) of surrSj∪{s} to

be computed, so that d̃(s, Sj) can computed in the second for loop of Algorithm A.4. (In
contrast, computing d(s, Sj) in the σmax partitioning scheme, Algorithm 2.6, only requires
subtracting one vector from another.) Hence, we also propose an alternative partitioning
method that avoids this SVD. This method is based on two observations. First, we have

‖surrSj∪{s}‖2
2 = λmax

([
surrTSj surrTs

] [surrSj
surrs

])
= λmax

∑
s′∈Sj

surrTs′surrs′ + surrTs surrs


≤ max

t∈T

∑
t′∈T

∑
s′∈Sj

surrTs′surrs′ + surrTs surrs

 (t, t′)

= max
t∈T

∑
s′∈Sj

surrs′(t)‖surrs′‖1 + surrs(t)‖surrs‖1

 ,
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where the first equality is a well-known result and the inequality follows from the Perron-
Frobenius Theorem. Second, by definition of ‖ · ‖F , we have

‖surrSj∪{s}‖2
F =

∑
s′∈Sj

‖surrs′‖2
2 + ‖surrs‖2

2.

Combining these observations, we obtain

d̃(s, Sj) ≥ d̂(s, Sj) =

√√√√√ (|Sj|+ 1)
(∑

s′∈Sj ‖surrs′‖2
2 + ‖surrs‖2

2

)
maxt∈T

(∑
s′∈Sj surrs′(t)‖surrs′‖1 + surrs(t)‖surrs‖1

) . (A.48)

This expression allows us to estimate d̃(s, Sj) more efficiently than it can be computed
exactly. In Algorithm A.5, we give a partitioning scheme that leverages this insight. Note
that the computation of d̂(s, Sj) in Algorithm A.5 can be performed as

d̂(s, Sj) =

√
(|Sj|+ 1) (xj + ‖surrs‖2

2)

maxt∈T (yj(t) + surrs(t)‖surrs‖1)
,

i.e. the terms
∑

s′∈Sj ‖surrs′‖2
2 and

∑
s′∈Sj surrs′(t)‖surrs′‖1 in (A.48) have already been com-

puted as xj and yj(t) when d̂(s, Sj) is computed; further, xj and yj(t) are updated (rather
than being computed in full) each time some s is added to Sj (last line of Algorithm A.5).

Algorithm A.5: {Si}ki=1 = Source-Partition-σavg-alt ({surrs}s∈S, k)

1 Draw s ∼ S uniformly, set S1 = {s}, x1 = ‖surrs‖2
2, y1(t) = surrs(t)‖surrs‖1 ∀ t ∈ T

2 Set Si = ∅, xi = yi = 0 ∀ i ∈ {2, . . . , k}
3 for i = 2 to k do
4 Draw s ∼ S with probability proportional to minj∈{1,...,i−1} ‖surrs − surrSj‖1

5 Set Si = {s}, xi = ‖surrs‖2
2, yi(t) = surrs(t)‖surrs‖1 ∀ t ∈ T

6 for i = k + 1 to |S| do

7 Choose any s ∈ S \ (∪kj=1Sj); compute d̂(s, Sj) ∀ j ∈ {1, . . . , k}
8 Let j∗ ∈ arg minj d̂(s, Sj)

9 Set xj∗ = xj∗ + ‖surrs‖2
2, yj∗(t) = yj∗(t) + surrs(t)‖surrs‖1 ∀ t ∈ T , Sj∗ = Sj∗ ∪{s}

In Fig. A.2, we present empirical results for the σavg matrix approximation scheme in the
distributed setting. In particular, we show results for the scheme described above with the
partition {Si}ki=1 constructed via Algorithm A.4 (“Heuristic” in Fig. A.2) and via Algorithm
A.5 (“Alt Heuristic” in Fig. A.2). For both schemes, we show the maximum forward DP and
random walk sampling time across machines, the maximum number of walks sampled across
machines, and the value of the objective function (A.47). The first two quantities are shown
relative to the respective quantities for a baseline scheme, which arbitrarily partitions S into
subsets of size |S|/k and uses the i-th machine to run the baseline matrix approximation
scheme from Section 2.5.2.2 for the i-th subset (recall no forward DP is used for this baseline
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Figure A.2: The σavg matrix approximation scheme is typically 2-3 times faster than the
baseline scheme in the distributed setting of Section 2.6, and our heuristic parti-
tioning schemes (Algorithms A.4 and A.5) perform similar to the oracle method.

Figure A.3: Our source partitioning schemes produce partitions {Si}ki=1 with |Si| ≈ S|/k =
100 ∀ i (where |S|/k = 100 is the case of perfectly balanced partition).

scheme, i.e. walks are not shared across sources). For this experiment, we let S = {S̃i}ki=1,
where k = 10 and each S̃i is a clustered subset satisfying |S̃i| = 100; we also compare to an
oracle scheme that sets Si = S̃i (as in Section 2.6). In general, Fig. A.2 conveys the same
message as Fig. 2.10 in Section 2.6: our methods perform similarly to the oracle method
and noticeably outperform the baseline. Here we also note that the heuristic outperforms
the oracle across graphs, while the oracle in turn outperforms the alternative heuristic.
Nevertheless, the alternative heuristic offers similar performance as the other schemes, while
avoiding the SVD computation of the heuristic (which may be prohibitive as S grows).

A.9.2 Other results for source partitioning schemes

As discussed at the conclusion of Section 2.6, it is crucial that our source partitioning
schemes (Algorithms 2.6, A.4, and A.5) balance the number of sources assigned to each
machine. We find this occurs in practice, despite the lack of explicit balance constraints in
Algorithms 2.6, A.4, and A.5. To demonstrate this, we show the maximum and minimum
number of sources assigned to machines for the three partitioning schemes in Fig. A.3.
Averaged across graphs, Algorithms 2.6, A.4 and A.5 typically produce partitions with |Si| ∈
[85, 122], |Si| ∈ [55, 188], and |Si| ∈ [75, 134], respectively (the red line shows |S|/k = 100, i.e.
a perfectly balanced partition). We also note that, while Algorithm A.4 typically produces
the least balanced partition, its overall performance is similar to that for Algorithm A.5 (see
Fig. A.2), which we have argued is more useful in practice for large S.
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APPENDIX B

Proofs and Experimental Details for Chapter III

B.1 Proof of Lemma 3.1 (outline)

In this appendix, we outline the proof of Lemma 3.1. Our approach follows the outline
described in Section 3.4.3. Specifically, we consider Steps 1-4 of the outline in Appendices
B.1.1-B.1.4, respectively. In Appendix B.1.5, we combine the results to prove the lemma.

B.1.1 Error bound in local neighborhood

Our first goal is to bound the error term∥∥∥∥∥πs −
(
αne

T
s +

∑
k∈Kn

βs(k)πk

)∥∥∥∥∥
1

(B.1)

for a particular choice of {βs(k)}k∈Kn . For this, we require an intermediate result; namely,
(3.5) from Section 3.4.3, which we formalize as Lemma B.1 here. Recall from Section 3.4.3
that π̃s is the stationary distribution of the Markov chain with transition matrix P̃s =
(1− αn)P̃ + (αneVn\Kn + eKn)eTs , where P̃ satisfies P̃ (i, j) = UiP (i, j).

As mentioned in Section 3.4, Lemma B.1 is an alternate form of the Hubs Theorem from
[16]. Conceptually, both formulations view πs(v) as the probability of paths from s to v and
partition these paths into those that avoid Kn (which have probability proportional to π̃s(v))
and those through Kn (which have probability proportional to π̃s(k)πk(v)). The difference
between the formulations is that we explicitly construct a new Markov chain that does not
include paths through Kn (i.e. the chain with transition matrix P̃s), while [16] does not. Our
formulation admits an intuitive probabilistic proof; the proof in [16] is linear algebraic.

Lemma B.1. If Us = 1, we have for any realization of the DCM,

πs(v) =
αnUvπ̃s(v) +

∑
k∈Kn π̃s(k)πk(v)

αn + (1− αn)π̃s(Kn)
∀ v ∈ Vn.

Proof. See Appendix B.2.1.

We next bound the error term (B.1) using a particular {βs(k)}k∈Kn : that suggested by
Lemma B.1. Our bound leverages the fact that the transition matrix P̃s is the sum of two
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matrices, one of which is rank one. This allows us to use the Sherman-Morrison-Woodbury
formula (see e.g. Section 6.4 of [125]) to bound the error term in terms of the (row) vector

µ(m)
s = eTs

m∑
j=0

(1− αn)jP̃ j, (B.2)

which clearly depends only on the m step neighborhood out of s.

Lemma B.2. Consider any realization of the DCM and assume Us = 1. Define

βs(k) =
π̃s(k)

αn + (1− αn)π̃s(Kn)
∀ k ∈ Kn.

Then for each m ∈ N,∥∥∥∥∥πs −
(
αne

T
s +

∑
k∈Kn

βs(k)πk

)∥∥∥∥∥
1

≤ αn
(
µ(m−1)
s (Vn \Kn)− 1

)
+ eTs (1− αn)mP̃meVn\Kn .

Proof. See Appendix B.2.2.

B.1.2 Coupling with branching process (Step 2)

Next, we show that the error bound in Lemma B.2 follows the same distribution as a
related quantity defined in terms of a branching process. Before presenting this result, we
formally define the DCM construction and the branching process.

We begin with the DCM. As described in Section 3.2.1, the basic idea is to randomly pair
outgoing half-edges (which we call outstubs) with incoming half-edges (which we call instubs)
in a breadth-first search fashion. We begin by sampling a node s uniformly at random from
Vn. In the first iteration, for each outstub belonging to s, we sample an instub uniformly
(resampling if the sampled instub has already been paired), and we pair the outstub and
instub. We allow the possibility that the sampled instub belongs to s (in which case a self-
loop is formed) or that multiple outstubs of s are paired with instubs belonging to the same
node (in which case multiple edges are formed between s and that node).1

At the end of the first iteration, we denote by A1 the subset of Vn \ {s} containing those
nodes that have had at least one instub paired with an outstub of s. In the second iteration,
we pair all outstubs of all nodes in A1 in the manner described previously. In general, we
pair all outstubs of all nodes in Am−1 during the m-th iteration, where Am−1 is the set of
nodes v at distance m−1 from s. In other words, paths out of s of length m are constructed
during the m-th iteration. When all outstubs have been paired, the construction finishes.

To facilitate this construction and the coupling argument, we define labels for each instub
e and for each node v, denoted g(e) and g(v). The instub label g(e) is necessary because if e

1Because of this, the resulting graph will in general be a multi-graph. We note the authors of [18] prove
that a simple graph (no self-loops or multi-edges) results with positive probability as n→∞; however, this
requires stronger assumptions on the degree sequence than Assumption 3.1, which is all that we require.
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Figure B.1: Example DCM after three steps; µ
(3)
s (Vn\Kn) depends only on dashed subgraph.

is sampled for pairing, we must check whether e has already been paired. Hence, we define

g(e) =

{
1, e is currently unpaired

0, e is currently paired
.

The node label g(v) is defined as

g(v) =



A, v does not currently belong to graph

B, v belongs to graph, Uv = 0

C, v belongs to graph, Uv = 1, all paths from s to v

visit some w ∈ Vn s.t. Uw = 0

D, v belongs to graph, Uv = 1, some path from s to v

avoids all w ∈ Vn s.t. Uw = 0

. (B.3)

To illustrate these node labels, we show a graph after three iterations of the construction
in Figure B.1. The node at the top of the figure is s. Circle and square nodes, respectively,
depict those nodes v with Uv = 1 and Uv = 0, respectively (i.e., those belonging to Vn \Kn

and Kn, respectively). Short arrows depict half-edges (i.e. unpaired instubs and outstubs),
while longer arrows depict edges (i.e. instubs and outstubs that have been paired). Node
labels, assigned according to (B.3), are displayed on each node.

Node labels will be useful in the coupling argument to come. In particular, the term
µ

(m)
s (Vn \Kn) in Lemma B.2 only depends on the subgraph containing label D nodes within

m steps of s (see Figure B.1). This observation follows since µ
(m)
s (v) (by definition) is nonzero

if and only if there exists a path from s to v of length at most m that avoids Kn.
The graph construction is defined in Algorithm B.1. We use three additional pieces of

notation: In is the set of all instubs, {(v′, j)}Dv′j=1 is the set of outstubs belonging to v′ ∈ Vn
(ordered arbitrarily), and τG is a variable that tracks the first iteration at which certain
events occur (these events relate to the coupling and will be discussed shortly). Before
proceeding, we offer several comments to relate Algorithm B.1 to the preceding discussion:
• In Line 1-2, we initialize the algorithm. We sample the first node s, define the label
g(s) according to (B.3), and set A0 = {s} (i.e. the only node at distance zero from s is
s itself). We then set g(e) = 1 for all instubs e (since no instubs have been paired) and
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Algorithm B.1: Graph Construction

1 Choose s from Vn uniformly, set g(s) = D if Us = 1 and g(s) = B if Us = 0, set
A0 = {s}

2 Set g(e) = 1 ∀ e ∈ In, set g(v) = A ∀ v ∈ Vn \ {s}, set τG =∞
3 for m = 1 to ∞ do
4 Set Am = ∅
5 for v′ ∈ Am−1 do
6 for j = 1 to Dv′ do
7 // find instub for pairing
8 Uniformly sample instub e
9 if g(e) = 0, τG =∞ then set τG = m

10 while g(e) = 0 do
11 Uniformly sample instub e
12 Pair (v′, j) with e, set g(e) = 0, denote instub node by v
13 if g(v) = A then set Am = Am ∪ {v}
14 if g(v′) = D, g(v) ∈ {C,D}, τG =∞ then set τG = m
15 // update label
16 if Uv = 0, g(v) = A then set g(v) = B
17 else if Uv = 1, g(v′) = B, g(v) = A then set g(v) = C
18 else if Uv = 1, g(v′) ∈ {C,D}, g(v) = A then set g(v) = g(v′)
19 else if g(v′) = D, g(v) = C then set g(v) = D, set g(w) = D ∀ w ∈ Vn

s.t. g(w) = C and v → w path avoiding all w′ ∈ Vn s.t. Uw′ = 0 exists
20 // termination
21 if g(e′) = 0 ∀ e′ ∈ In then return

g(v) = A ∀ v 6= s (since only s belongs to the graph at this stage of the algorithm).
• The remainder of the algorithm iterates over m (outer for loop), iterates over nodes
v′ at distance m− 1 from s (middle for loop), and iterates over outstubs belonging to
v′ (inner for loop). For each such outstub, denoted (v′, j), the occurs:

– In Lines 8-11, we uniformly sample an instub e, resampling until an unpaired
instub is found. (Line 9 relates to the coupling and will be discussed shortly.)

– After sampling an unpaired instub e, we pair (v′, j) with e and set g(e) = 0 to
reflect the fact that e has been paired (Line 12). If the node v to which e belongs
did not previously belong to the graph (i.e. if g(v) = A), then v is at distance m
from s, so we add v to Am (Line 13). (Line 14 relates to the coupling.)

– In Lines 16-19, we update the label of v according to (B.3). Note that, if g(v′) = D
and g(v) = C, (B.3) implies that a path from s to v avoiding Kn did not exist
before (v′, j) and e were paired, but now such a path does exist. Hence, if some
node w s.t. g(w) = C can be reached from v while avoiding Kn, a path from s to
w avoiding Kn now exists as well. For this reason, we must change the label of
such w from C to D (Line 19).

• If all instubs have been paired, the algorithm terminates (Line 21).
Our next goal is to define a branching process and a quantity related to the error bound in
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Figure B.2: Instub belonging to label C node (top) or label D node (bottom) is sampled for
pairing with outstub of label D node (left of arrow). After labels are updated,
orange dashed subgraph of label D nodes is no longer a tree (right of label).

Lemma B.2, so that this error bound can instead be analyzed on the tree resulting from the
branching process. Before defining this tree construction, we offer some intuition, which also
helps explain the variable τG in Algorithm B.1. First, recall the error bound in Lemma B.2
depends only on the m-step neighborhood out of s. Hence, a typical approach to analyzing
the bound would be to argue that this neighborhood is treelike, and then to analyze the
bound on a related tree. However, this is more than we require. To see this, we return to
the example from Figure B.1. As argued previously, the error bound only depends on the
orange dashed subgraph. Hence, the related tree we construct will (roughly speaking) only
contain this subgraph, i.e. rather than require the entire m-step neighborhood to be treelike,
we only require the m-step neighborhood of label D nodes to be treelike.

This discussion also helps explain the variable τG in Algorithm B.1. Note that we set
τG = m if we pair an outstub of v′ ∈ Am−1 with an instub of v, where g(v′) = D and
g(v) ∈ {C,D} (Line 14 in Algorithm B.1). As shown in Figure B.2, these events (may)
destroy the tree structure of the label D subgraph. We also set τG = m if we sample an
instub that has already been paired while attempting to pair an outstub of v′ ∈ Am−1 (Line
9). This is to ensure nodes have i.i.d. attributes (Nv, Dv, Uv), as will nodes in the tree
construction.

This intuition motivates our tree construction. We begin with a root node denoted by
φ, and we assign attributes (Nφ, Dφ, Uφ). Here Nφ is the number of instubs of φ, all of
which will remain unpaired for the duration of the algorithm (so that the tree structure is
maintained); Dφ is the number of offspring of φ; and Uφ = 1. To each offspring of φ, denoted
1, 2, . . . , Dφ, we assign attributes (Ni, Di, Ui). Here Ni denotes the number of instubs of i;
one of these is paired with the i-th outstub of φ, while the other Ni − 1 remain unpaired
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Figure B.3: Branching process after three generations, corresponding to the example graph
from Figure B.1. In particular, the orange dashed subgraphs are identical.

(again, to preserve the tree structure). Furthermore, unlike the root node, node i receives
Di offspring only if Ui = 1; otherwise, the outstubs remain unpaired. This is explained by
Figure B.1, since only the orange dashed subgraph affects the quantity of interest.

The set of nodes 1, 2, . . . , Dφ is denoted by Â1. In general, we denote by Âm the m-th
generation of the tree, i.e. the set of nodes at distance m from the root node. The generic
node in Âm,m > 1 is denoted by ı, where ı = (i1, i2, . . . , im) is an ordered list of natural
numbers that traces the unique path from φ to ı: specifically, this path is φ ∈ Â0, i1 ∈
Â1, (i1, i2) ∈ Â2, . . . , ı ∈ Âm. The offspring of ı (assuming Uı = 1) are denoted by {(ı, j)}Dı

j=1,
where (ı, j) = (i1, i2, . . . , im, j) is the concatenation operation.

To assign attributes, we define fn : N × N × {0, 1} → [0, 1] and f ∗n : N × N → [0, 1]
(given the degree sequence) by (B.4). Note that fn is the distribution of node attributes for
nodes sampled proportional to in-degree, whereas f ∗n is the distribution of node attributes
for nodes sampled uniformly at random from Vn \Kn. Because non-root nodes are sampled
proportional to in-degree in the graph construction (until an edge must be resampled, i.e.
until we set τG = m), non-root node attributes are sampled from fn in the tree construction.
Similarly, since the first node is sampled uniformly from Vn \ Kn in the case of interest of
the graph construction, root node attributes are sampled from f ∗n in the tree.

fn(i, j, k) =
n∑
h=1

Nh

Ln
1(Nh = i,Dh = j, Uh = k), f ∗n(i, j) =

n∑
h=1

Uh∑n
h′=1 Uh′

1(Nh = i,Dh = j).

(B.4)
The tree construction is given formally in Algorithm B.2. We denote by Ĝn = (V̂n, Ên)

the resulting tree. Note the tree construction continues indefinitely, so the subscript n does
not refer to the number of nodes in the tree; rather, it refers to the length of the sequence
{Nh, Dh, Uh}nh=1 from which the distributions fn, f

∗
n are defined. Finally, in Figure B.3, we

show an example of the tree construction, which corresponds to the graph construction of
Figures B.1 (i.e. the dashed orange subgraph has the same structure).

Having defined the tree construction, we define the aforementioned quantity that follows
the distribution of the error bound in Lemma B.2. Specifically, we define µ̂φ recursively as

µ̂φ(φ) = 1, µ̂φ((ı, j)) = µ̂φ(ı)
(1− αn)Uı

Dı

, (ı, j) ∈ Âl, l > 0, (B.5)
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Algorithm B.2: Tree Construction

1 Draw root attributes (Nφ, Dφ) ∼ f ∗n, set Uφ = 1, set Â0 = {φ}
2 for m = 1 to ∞ do

3 Set Âm = ∅
4 for ı ∈ Âm−1 do
5 if Uı = 1 then
6 for j = 1 to Dı do
7 Add offspring (ı, j) to ı, let (N(ı,j), D(ı,j), U(ı,j)) ∼ fn, set

Âm = Âm ∪ {(ı, j)}

where (by convention), ı = φ when (ı, j) = i1 ∈ N, i.e. when (ı, j) ∈ Â1. Note that (B.5) is
the same as (B.2) but computed on the tree Ĝn; because there is a unique path from φ to ı
for each ı ∈ V̂n, this recursive definition will be more convenient.

We next state Lemma B.3, whose proof is in Appendix B.2.3. The proof formalizes the
preceding intuition, that when τG > m, the error bound from Lemma B.2 is computed on a
treelike subgraph and therefore follows the distribution of the analogous tree quantity.

Lemma B.3. For any m ∈ N,

µ(m)
s (Vn \Kn)|{τG > m,Us = 1} D=

m∑
j=0

∑
ı∈Âj

Uıµ̂φ(ı),

where
D
= denotes equality in distribution.

Proof. See Appendix B.2.3.

We can now explain the remainder of our approach to proving the lemma. Using Lemmas
B.2 and B.3, and noting that, by definition,

∑
ı∈Â0

Uıµ̂φ(ı) = Uφµ̂φ(φ) = 1, we have

P [Bs(Kn, ε)|Us = 1] ≤ P
[
αn
(
µ(m−1)
s (Vn \Kn)− 1

)
+ eTs (1− α)mP̃meVn\Kn ≥ ε

∣∣∣Us = 1
]

≤ P[τG ≤ m|Us = 1] + P

αn m−1∑
j=1

∑
ı∈Âj

Uıµ̂φ(ı) +
∑
ı∈Âm

Uıµ̂φ(ı) ≥ ε

 .(B.6)

Hence, our approach to bounding the probability of (3.2) will be to further bound the
two summands in (B.6). Since (B.6) holds for any m ∈ N, our final step will be to choose
m to optimize the sum of these bounds. In particular, we will choose m to balance the two
bounds. This is because the summands are increasing and decreasing in m, respectively.

B.1.3 Coupling failure (Step 3)

Our bound for the first summand in (B.6) is given in Lemma B.4. This result is similar
to Lemma 5.4 of [48], and our proof follows a similar approach. However, Assumption 3.1 is
different than the assumption required for the result in [48]. This difference arises because
the result in [48] requires the entire m-step neighborhood to be treelike, while we only

183



require the m-step neighborhood of label D nodes to be treelike. This allows us to relax the
assumption from [48], which requires

∑n
h=1N

2
h/n to converge; we only require

∑n
h=1N

2
hUh/n

to converge. In fact, the example degree sequence presented in Section 3.7.3 satisfies

E[N2
hUh] = O(1), E[N2

h ] = O
(
nl2
)
,

where l2 > 0. Hence, there are sequences for which the lemma from [48] does not apply, but
for which our version does apply. This is why we do not directly use the lemma from [48].

Lemma B.4. Given Assumption 3.1, for any mn →∞ as n→∞ s.t. mn = O(nγ), we have

P[τG ≤ mn|Us = 1] = O
(
n−δ + ζmn/

√
n
)
,

where γ, δ, ζ are defined in Assumption 3.1.

Proof. See Appendix B.2.4.

B.1.4 Tail bound on branching process quantity (Step 4)

Our final step is to bound the second summand in (B.6). Our approach is to bound the
probability that either αn

∑m−1
j=1

∑
ı∈Âj Uıµ̂φ(ı) or

∑
ı∈Âm Uıµ̂φ(ı) exceeds ε/2. For the first

term, the recursive definition of µ̂φ yields a martingale structure that allows us to use an
approach similar to the method of bounded differences. The second term arises from the tail
of the m-step neighborhood approximation from Appendix B.1.1; hence, its expected value
decays geometrically fast in m, so we simply use Markov’s inequality.

Lemma B.5. Given Assumption 3.1, for any ε > 0, any mn → ∞ as n → ∞ s.t. mn =
O(nγ), and any αn → 0 as n→∞, we have

P

αn m−1∑
j=1

∑
ı∈Âj

Uıµ̂φ(ı) +
∑
ı∈Âm

Uıµ̂φ(ı) ≥ ε

 = O
(
n−δ + pmn + e−((1−p)ε)2/(2αn)

)
,

where p, δ are defined in Assumption 3.1.

Proof. See Appendix B.2.5.

B.1.5 Completing the proof of Lemma 3.1

Finally, we can combine the results of this section to prove Lemma 3.1. First, we substi-
tute the results of Lemmas B.4 and B.5 into (B.6) to obtain (when Assumption 3.1 holds)

P [Bs(Kn, ε)|Us = 1] = O

(
n−δ +

ζmn√
n

+ pmn + e−((1−p)ε)2/(2αn)

)
.

Next, choose mn = logn
2 log(ζ/p)

to equate the middle two terms, i.e.

ζmn√
n

= pmn = n− log(1/p)/(2 log(ζ/p)).
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For the third term, take αn = ρ log(1/τ) log ζ/ log n as in Proposition 3.1 to obtain

exp

(
−((1− p)ε)2

2αn

)
= n−((1−p)ε)2/(2ρ log(1/τ) log ζ).

Hence, we ultimately obtain

P [Bs(Kn, ε)|Us = 1] = O
(
n−c(ε)

)
,

where c(ε) is defined as in the statement of the lemma.

B.2 Proof of Lemma 3.1 (details)

B.2.1 Proof of Lemma B.1

The lemma relates the stationary distributions of several Markov chains: those with
transition matrices Ps, P̃s, and Pk, k ∈ Kn, where Ps and Pk are defined in Section 3.2.2
and P̃s is defined in (3.4). We will denote these chains by {Xs

i }∞i=0, {X̃s
i }∞i=0, and {Xk

i }∞i=0,
k ∈ Kn, respectively, in this proof. Our basic approach will be to relate the stationary
distributions indirectly via a renewal-reward interpretation of PPR. Hence, we begin by
defining this interpretation in Appendix B.2.1.1. We then prove the lemma in Appendix
B.2.1.2. Recall from the main text that PGn [·] and EGn [·] denote probability and expectation
with the DCM fixed (as in the statement of the lemma).

B.2.1.1 Renewal-reward interpretation of PPR

From the dynamics of {Xs
i }∞i=0 described in Section 3.2.2, we can view the time instances

of jumps to s as forming a Bernoulli process with parameter αn, independent of the random
walk. Furthermore, for each v ∈ Vn, we can define a reward function 1(Xs

i = v). Then,
letting Ls denote the time of the first jump to s, we define

τs(v) =
Ls−1∑
i=0

1(Xs
i = v), (B.7)

which, when Xs
0 = s, gives the accumulated reward during the first inter-renewal interval.

From the renewal-reward theorem (see, for example, Section 5.4 of [126]), it follows that

lim
t→∞

1

t

t−1∑
i=0

1(Xs
i = v) = αnEGn [τs(v)|Xs

0 = s], (B.8)

where we have also used the fact that Ls ∼ geometric(αn). On the other hand, assuming Ps
is irreducible (which we will return to argue is without loss of generality), we have

πs(v) = lim
t→∞

1

t

t−1∑
i=0

1(Xs
i = v). (B.9)
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Hence, combining (B.8) and (B.9) yields

πs(v) = αnEGn [τs(v)|Xs
0 = s] ∀ v ∈ Vn. (B.10)

Similarly, for k ∈ Kn, πk(v) = αnEGn [τk(v)|Xk
0 = k], where τk(v) is defined as in (B.7).

For the chain {X̃s
i }∞i=0, we have a similar (though subtler) renewal-reward interpretation.

Recall the dynamics of this chain are as follows: from v ∈ Vn \Kn, follow the random walk
with probability 1 − αn and jump to s with probability αn; from k ∈ Kn, jump to s with
probability 1. Hence, while the time instances of jumps to s do not form a Bernoulli process,
they still form a renewal process: inter-renewal intervals are independent (due to the Markov
property) and identically-distributed (due to the time invariance of the Markov chain). Also,
assuming X̃s

0 = s, the first renewal occurs at min{L̃s, H̃+1}, where L̃s ∼ geometric(αn) and
H̃ = inf{i ∈ Z+ : X̃s

i ∈ Kn} is the hitting time of Kn. It follows that

π̃s(v) =
EGn [τ̃s(v)|X̃s

0 = s]

EGn [min{L̃s, H̃ + 1}|X̃s
0 = s]

∀ v ∈ Vn,

where τ̃s(v) =
∑min{L̃s−1,H̃}

i=0 1(X̃s
i = v).

Before proceeding, we argue irreducibility is without loss of generality for the Markov
chains at hand. Consider, for example, {Xs

i }∞i=0. If this chain is not irreducible, we can
define Vn,s ⊂ Vn as the states for which a path of positive probability from s to v exists.
Then the Markov chain restricted to states Vn,s is irreducible: for any v, w ∈ Vn,s, we can
jump from v to s and then reach w from s. We can then compute the stationary distribution
{πs(v)}v∈Vn,s for this irreducible chain and set πs(v) = 0 ∀ v ∈ Vn \ Vn,s (intuitively, v is
unimportant to s if s cannot reach v, so its PPR should be zero). Note this is consistent
with the derivation above. In particular, (B.8) and (B.9) hold for the chain restricted to
states Vn,s, so (B.10) holds for v ∈ Vn,s; conversely, both sides of (B.10) are zero for v /∈ Vn,s.
B.2.1.2 Proof of the lemma

Equipped with this renewal-reward interpretation, we will relate πs, π̃s, and πk, k ∈ Kn

by relating EGn [τs(v)|Xs
0 = s], EGn [τ̃s(v)|X̃s

0 = s], and EGn [τk(v)|Xk
0 = k]. For this, we define

H = inf{i ∈ Z+ : Xs
i ∈ Kn}, the quantity analogous to H̃ instead defined on {Xs

i }∞i=0.
Because the dynamics of {Xs

i }∞i=0 and {X̃s
i }∞i=0 only differ when Kn is reached, we can

immediately obtain several relationship between the quantities computed on these chains.
In particular, if Kn is not reached before the first renewal (i.e. if Ls ≤ H, L̃s ≤ H̃), the
chains have identical dynamics. Therefore, we have ∀ v ∈ Vn,

EGn [τs(v)|Ls ≤ H,Xs
0 = s] = EGn [τ̃s(v)|L̃s ≤ H̃, X̃s

0 = s].

Furthermore, τ̃s(v) = 0 when v ∈ Kn and L̃s ≤ H̃ (i.e. when Kn is not reached before the
first renewal), so we may rewrite this as

EGn [τs(v)|Ls ≤ H,Xs
0 = s] = UvEGn [τ̃s(v)|L̃s ≤ H̃, X̃s

0 = s]. (B.11)

By a similar argument, if Kn is reached before the first renewal (Ls > H, L̃s > H̃), the
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dynamics of the chains differ after H, H̃, but remain the until H, H̃. Hence, ∀ k ∈ Kn,

PGn [Xs
H = k, Ls > H|Xs

0 = s] = PGn [X̃s
H̃

= k, L̃s > H̃|X̃s
0 = s], (B.12)

which also implies
PGn [Ls ≤ H|Xs

0 = s] = PGn [L̃s ≤ H̃|X̃s
0 = s]. (B.13)

We can obtain another expression for the right side of (B.12). Since jumps from k to s
occur with probability 1 on the {X̃s

i }∞i=0 chain, k is visited at most one time before the first
renewal, i.e. τ̃s(k) ∈ {0, 1}. Also, τ̃s(k) = 1 if and only if L̃s > H̃ and X̃s

H̃
= k. Hence,

PGn [Xs
H = k, Ls > H|Xs

0 = s] = EGn [τ̃s(k)|X̃s
0 = s] ∀ k ∈ Kn. (B.14)

If instead Kn is reached, the dynamics of {Xs
i }∞i=0 and {X̃s

i }∞i=0 differ. In this case, we claim

EGn [τs(v)|Xs
H = k, Ls > H,Xs

0 = s] = UvEGn [τ̃s(v)|X̃s
H̃

= k, L̃s > H̃, X̃s
0 = s] (B.15)

+ EGn [τk(v)|Xk
0 = k],

which we will return to prove shortly. (In essence, (B.15) counts the number visits to v
before and after reaching k using the {X̃s

i }∞i=0 and {Xk
i }ki=1 chains, respectively.)

By (B.11), (B.12), (B.13), (B.14), and (B.15), and the law of total expectation,

EGn [τs(v)|Xs
0 = s] = UvEGn [τ̃s(v)|X̃s

0 = s] +
∑
k∈Kn

EGn [τ̃s(k)|X̃s
0 = s]EGn [τk(v)|Xk

0 = k].

We then use the renewal-reward interpretation from Appendix B.2.1.1 to translate this equa-
tion back to stationary distributions. Specifically, multiplying by αn on both sides, and
multiplying and dividing by EGn [min{L̃s, H̃ + 1}|X̃s

0 = s] on the right side, gives

πs(v) = EGn [min{L̃s, H̃ + 1}|X̃s
0 = s]

(
αnUvπ̃s(v) +

∑
k∈Kn

π̃s(k)πk(v)

)
. (B.16)

Then, summing over v ∈ Vn (assuming stationary distributions are normalized to sum to 1),

1 = EGn [min{L̃s, H̃ + 1}|X̃s
0 = s] (αnπ̃s(Vn \Kn) + π̃s(Kn)) (B.17)

⇒ EGn [min{L̃s, H̃ + 1}|X̃s
0 = s] =

1

αn + (1− αn)π̃s(Kn)
.

Finally, combining (B.16) and (B.17) completes the proof.
We now return to prove (B.15). First, by definition of τs(v),

EGn [τs(v)|Xs
H = k, Ls > H,Xs

0 = s] = EGn

[
H−1∑
i=0

1(Xs
i = v)

∣∣∣∣∣Xs
H = k, Ls > H,Xs

0 = s

]
(B.18)

+ EGn

[
Ls−1∑
i=H

1(Xs
i = v)

∣∣∣∣∣Xs
H = k, Ls > H,Xs

0 = s

]
.
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Now by the preceding arguments, {Xs
i }∞i=0, {X̃s

i }∞i=0 have the same dynamics before H, H̃,
so we can replace H,Xs

i , X
s
H , Ls, X

s
0 by H̃, X̃s

i , X̃
s
H̃
, L̃s, X̃

s
0 in the first summand in (B.18).

Moreover, for v ∈ Vn \Kn (i.e. Uv = 1), we can write

EGn

H̃−1∑
i=0

1(X̃s
i = v)

∣∣∣∣∣∣X̃s
H̃

= k, L̃s > H̃, X̃s
0 = s


= EGn

 H̃∑
i=0

1(X̃s
i = v)

∣∣∣∣∣∣X̃s
H̃

= k, L̃s > H̃, X̃s
0 = s


= EGn

min{L̃s−1,H̃}∑
i=0

1(X̃s
i = v)

∣∣∣∣∣∣X̃s
H̃

= k, L̃s > H̃, X̃s
0 = s


= EGn

[
τ̃s(v)

∣∣∣X̃s
H̃

= k, L̃s > H̃, X̃s
0 = s

]
,

where the first equality holds since v ∈ Vn \Kn and by conditioning on {X̃s
H̃

= k} (k ∈ Kn),

the second holds by conditioning on {L̃s > H̃}, and the third holds by definition of τ̃s(v).
Note also that if v ∈ Kn (i.e. Uv = 0), we simply have

EGn

H̃−1∑
i=0

1(X̃s
i = v)

∣∣∣∣∣∣X̃s
H̃

= k, L̃s > H̃, X̃s
0 = s

 = 0,

which holds by definition of H̃. To summarize, we have shown

EGn

[
H−1∑
i=0

1(Xs
i = v)

∣∣∣∣∣Xs
H = k, Ls > H,Xs

0 = s

]
= UvEGn

[
τ̃s(v)

∣∣∣X̃s
H̃

= k, L̃s > H̃, X̃s
0 = s

]
.

(B.19)

Next, consider the second summand in (B.18). We rewrite this term as

EGn [
∑Ls−1

i=H 1(Xs
i = v,Xs

H = k,Xs
0 = s)1(Ls > H)]

PGn [Xs
H = k, Ls > H,Xs

0 = s]
, (B.20)

and we focus on the numerator. First, we note 1(Ls > H) =
∑

l>h 1(Ls = l, H = h), where
the sum is taken over {(l, h) ∈ Z+ × Z+ : l > h}. Substituting and using linearity gives

∑
l>h

EGn

[
Ls−1∑
i=H

1(Xs
i = v,Xs

H = k,Xs
0 = s)1(Ls = l, H = h)

]

=
∑
l>h

EGn

[
l−1∑
i=h

1(Xs
i = v,Xs

h = k,Xs
0 = s)1(Ls = l, H = h)

]

188



=
∑
l>h

l−1∑
i=h

PGn [Xs
i = v,Xs

h = k,Xs
0 = s, Ls = l, H = h] (B.21)

Rewriting the summand in (B.21) as

PGn [Xs
i = v,Xs

0 = s, Ls = l, H = h|Xs
h = k]PGn [Xs

h = k] ,

we next aim to apply the Markov property to the conditional probability above. For this,
we write {Ls = l} = As,l ∩ (∩l−1

j=0A
C
s,j), where As,j denotes the event that a jump to s occurs

at step j of the random walk. We then have

{Xs
i = v,Xs

0 = s, Ls = l, H = h} =
{
Xs
i = v, As,l,∩l−1

j=h+1A
C
s,j

}
∩
{
H = h,∩hj=0A

C
s,j, X

s
0 = s

}
where on the right side, the first event is the future and the second event is the past, when
h is viewed as the present. Hence, the Markov property implies

PGn [Xs
i = v,Xs

0 = s, Ls = l, H = h|Xs
h = k] = PGn

[
Xs
i = v, As,l,∩l−1

j=hA
C
s,j

∣∣Xs
h = k

]
× PGn

[
H = h,∩h−1

j=0A
C
s,j, X

s
0 = s

∣∣Xs
h = k

]
.

(B.22)

Furthermore, by the time invariance of the Markov chain,

PGn
[
Xs
i = v, As,l,∩l−1

j=hA
C
s,j

∣∣Xs
h = k

]
= PGn

[
Xs
i−h = v, As,l−h,∩l−h−1

j=0 ACs,j
∣∣Xs

0 = k
]

= PGn
[
Xs
i−h = v, Ls = l − h

∣∣Xs
0 = k

]
. (B.23)

Finally, by definition of As,j, we have

PGn
[
H = h,∩h−1

j=0A
C
s,j, X

s
0 = s

∣∣Xs
h = k

]
= PGn [H = h, Ls > h,Xs

0 = s|Xs
h = k] . (B.24)

Combining (B.21), (B.22), (B.23), and (B.24) then yields

∑
l>h

EGn

[
Ls−1∑
i=H

1(Xs
i = v,Xs

H = k,Xs
0 = s)1(Ls = l, H = h)

]
(B.25)

=
∑
l>h

l−1∑
i=h

PGn
[
Xs
i−h = v, Ls = l − h

∣∣Xs
0 = k

]
PGn [H = h, Ls > h,Xs

0 = s,Xs
h = k]

=
∑
h∈Z+

PGn [H = h, Ls > h,Xs
0 = s,Xs

h = k]
∞∑

l=h+1

l−h−1∑
i=0

PGn [Xs
i = v, Ls = l − h|Xs

0 = k] ,

where in the second equality we have simply rearranged terms and rewritten indices. For
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the inner double summation, we have

∞∑
l=h+1

l−h−1∑
i=0

PGn [Xs
i = v, Ls = l − h|Xs

0 = k]

=

∑∞
l=h+1 EGn

[∑l−h−1
i=0 1(Xs

i = v)1(Ls = l − h,Xs
0 = k)

]
PGn [Xs

0 = k]

=

∑∞
l=h+1 EGn

[∑Ls−1
i=0 1(Xs

i = v)1(Ls = l − h,Xs
0 = k)

]
PGn [Xs

0 = k]

=
EGn

[∑Ls−1
i=0 1(Xs

i = v)1(Xs
0 = k)

∑∞
l=h+1 1(Ls = l − h)

]
PGn [Xs

0 = k]

= EGn

[
Ls−1∑
i=0

1(Xs
i = v)

∣∣∣∣∣Xs
0 = k

]
= EGn [τs(v)|Xs

0 = k] = EGn [τk(v)|Xk
0 = k],

where the first three steps are straightforward, the fourth step uses the fact that Ls is integer-
valued and a.s. finite, and the fifth step follows by definition. The final inequality follows
because τs(v) and τk(v) count the number of visits to v on the {Xs

i }∞i=0 and {Xk
i }∞i=0 chains

before jumps occur, and before jumps occur, these chains have the same dynamics (since
they only differ in jump locations, s versus k). Substituting into (B.25) gives

∑
l>h

EGn

[
Ls−1∑
i=H

1(Xs
i = v,Xs

H = k,Xs
0 = s)1(Ls = l, H = h)

]
= EGn [τk(v)|Xk

0 = k]
∑
h∈Z+

PGn [H = h, Ls > h,Xs
0 = s,Xs

h = k]

= EGn [τk(v)|Xk
0 = k]PGn [Ls > H,Xs

0 = s,Xs
H = k] . (B.26)

Hence, combining (B.20) and (B.26) yields

EGn

[
Ls−1∑
i=H

1(Xs
i = v)

∣∣∣∣∣Xs
H = k, Ls > H,Xs

0 = s

]
= EGn [τk(v)|Xk

0 = k]. (B.27)

Finally, (B.18), (B.19), and (B.27) complete the proof of (B.15).

B.2.2 Proof of Lemma B.2

We aim to bound ‖πs − (αne
T
s +

∑
k∈Kn βs(k)πk)‖1, where

βs(k) =
π̃s(k)

αn + (1− αn)π̃s(Kn)
∀ k ∈ Kn.
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Using Lemma B.1, we can write∥∥∥∥∥πs −
(
αne

T
s +

∑
k∈Kn

βs(k)πk

)∥∥∥∥∥
1

=
∑
v∈Vn

∣∣∣∣ αnUvπ̃s(v)

αn + (1− αn)π̃s(Kn)
− αn1(v = s)

∣∣∣∣ .
We next claim that the terms in the absolute values are nonnegative. This is obvious for
v 6= s. For v = s, since Us = 1, we aim to show

π̃s(s) ≥ αn + (1− αn)π̃s(Kn). (B.28)

To this end, first note that by π̃s = π̃sP̃s and π̃s1n = 1,

π̃s = (1− αn)π̃s

(
P̃ + eKne

T
s

)
+ αne

T
s ,

which implies

π̃s = αne
T
s

(
I − (1− αn)

(
P̃ + eKne

T
s

))−1

= αne
T
s

∞∑
i=0

(1− αn)i
(
P̃ + eKne

T
s

)i
. (B.29)

Using (B.29), we have

π̃s(s) = αne
T
s

∞∑
i=0

(1− αn)i
(
P̃ + eKne

T
s

)i
es = αn + αne

T
s

∞∑
i=1

(1− αn)i
(
P̃ + eKne

T
s

)i
es

= αn + αn(1− αn)eTs

∞∑
i=0

(1− αn)i
(
P̃ + eKne

T
s

)i
eKne

T
s es

+ αn(1− αn)eTs

∞∑
i=0

(1− αn)i
(
P̃ + eKne

T
s

)i
P̃ eTs ,

and so, discarding a nonnegative term, we obtain

π̃s(s) ≥ αn + αn(1− αn)eTs

∞∑
i=0

(1− αn)i
(
P̃ + eKne

T
s

)i
eKne

T
s es = αn + (1− αn)π̃seKn .

This establishes (B.28), since π̃seKn = π̃s(Kn). Hence, we have shown∥∥∥∥∥πs −
(
αne

T
s +

∑
k∈Kn

βs(k)πk

)∥∥∥∥∥
1

= αn

(
π̃s(Vn \Kn)

αn + (1− αn)π̃s(Kn)
− 1

)
. (B.30)

(We pause to note that since π̃s(Vn \Kn) ≤ 1 and π̃s(Kn) ≥ 0,∥∥∥∥∥πs −
(
αne

T
s +

∑
k∈Kn

βs(k)πk

)∥∥∥∥∥
1

≤ αn

(
1

αn
− 1

)
= 1− αn, (B.31)
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i.e. πs is at l1 distance at most 1 − αn from a linear combination of eTs and {πk}k∈Kn .) We

next bound the right side of (B.30) in terms of µ
(m)
s , as in the statement of the lemma. We

begin by establishing a relationship between π̃s and µs, where

µs = lim
m→∞

µ(m)
s = eTs

∞∑
i=0

(1− αn)iP̃ i = eTs

(
I − (1− αn)P̃

)−1

. (B.32)

To this end, consider the matrix inversion in (B.29). By the Sherman-Morrison-Woodbury
formula (see, for example, Section 6.4 of [125]),(

I − (1− αn)
(
P̃ + eKne

T
s

))−1

=
((
I − (1− αn)P̃

)
− (1− αn)eKne

T
s

)−1

=
(
I − (1− αn)P̃

)−1

+

(
I − (1− αn)P̃

)−1

(1− αn)eKne
T
s

(
I − (1− αn)P̃

)−1

1− eTs
(
I − (1− αn)P̃

)−1

(1− αn)eKn

.(B.33)

It follows that, for each v ∈ Vn,

π̃s(v) = αne
T
s

(
I − (1− αn)

(
P̃ + eKne

T
s

))−1

ev

= αne
T
s

(
I − (1− αn)P̃

)−1

ev

+ αne
T
s

(
I − (1− αn)P̃

)−1

(1− αn)eKne
T
s

(
I − (1− αn)P̃

)−1

1− eTs
(
I − (1− αn)P̃

)−1

(1− αn)eKn

ev

= αnµs(v)

(
1 +

(1− αn)µs(Kn)

1− (1− αn)µs(Kn)

)
=

αnµs(v)

1− (1− αn)µs(Kn)
, (B.34)

where the first three equalities follow from (B.29), (B.33), and (B.32), respectively, and the
fourth involves simple manipulations. We can then combine (B.30) and (B.34) to obtain∥∥∥∥∥πs −

(
αne

T
s +

∑
k∈K

βs(k)πk

)∥∥∥∥∥
1

= αn (µs(Vn \Kn)− 1) . (B.35)

Next, we observe

µs(Vn \Kn) = µ(m)
s (Vn \Kn) + eTs

∞∑
i=m+1

(1− αn)iP̃ ieVn\Kn

= µ(m)
s (Vn \Kn) + eTs (1− αn)mP̃m

∞∑
i=1

(1− αn)iP̃ ieVn\Kn

= µ(m)
s (Vn \Kn) +

(
µ(m)
s − µ(m−1)

s

) ∞∑
i=1

(1− αn)iP̃ ieVn\Kn , (B.36)
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where we have used (B.2) and (B.32). We next claim P̃ eVn\Kn ≤ eVn\Kn componentwise. To

prove this, let (P̃ eVn\Kn)(i) denote the i-th component of P̃ eVn\Kn . Then

(P̃ eVn\Kn)(i) = Ui

n∑
j=1

P (i, j)eVn\Kn(j) ≤ Ui

n∑
j=1

P (i, j) = Ui = eVn\Kn(i),

where the first equality uses the definition of P̃ , the second equality holds because P is row
stochastic, and the remaining steps are straightforward. It follows that

∞∑
i=1

(1− αn)iP̃ ieVn\Kn ≤

(
∞∑
i=1

(1− αn)i

)
eVn\Kn =

(
1− αn
αn

)
eVn\Kn , (B.37)

where the inequality is componentwise. Combining (B.36) and (B.37),

µs(Vn \Kn) ≤ µ(m)
s (Vn \Kn) +

(
µ(m)
s − µ(m−1)

s

)(1− αn
αn

)
eVn\Kn

=
1

αn
eTs (1− αn)mP̃meVn\Kn + µ(m−1)

s (Vn \Kn), (B.38)

where we also used µ
(m)
s ≥ µ

(m−1)
s (componentwise). Finally, (B.35) and (B.38) imply∥∥∥∥∥πs −

(
αne

T
s +

∑
k∈K

βs(k)πk

)∥∥∥∥∥
1

≤ αn
(
µ(m−1)
s (Vn \Kn)− 1

)
+ eTs (1− αn)mP̃meVn\Kn .

B.2.3 Proof of Lemma B.3

We use Algorithm B.3 in Appendix B.2.6, which simultaneously constructs a graph and
a tree. We let Hn and Ĥn denote the graph and tree, respectively. From Hn, we define

ν(m)
s = eTs

m∑
j=0

(1− αn)jQ̃j, (B.39)

where Q̃(i, j) = UiQ(i, j) and Q is the adjacency matrix of Hn, normalized to be row stochas-

tic. Note this is simply (B.2), i.e. the definition as µ
(m)
s , but computed on Hn (while µ

(m)
s is

computed on Gn). Similarly, using Ĥn, recursively define

ν̂φ(φ) = 1, ν̂φ((ı, j)) = ν̂φ(ı)
(1− αn)Uı

Dı

, (ı, j) ∈ Âl, l > 0, (B.40)

which is (B.5) but computed on Ĥn instead of Ĝn. With this notation in place, we will show

µ(m)
s (Vn \Kn)|{τG > m,Us = 1} D= ν(m)

s (Vn \Kn)|{τS > m}, (B.41)

ν(m)
s (Vn \Kn) =

m∑
j=0

∑
ı∈Âj

Uıν̂φ(ı) when τS > m, (B.42)
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m∑
j=0

∑
ı∈Âj

Uıν̂φ(ı)|{τS > m} D=
m∑
j=0

∑
ı∈Âj

Uıµ̂φ(ı), (B.43)

which, taken together, establish the lemma. (We remind the reader that τG and τS, re-
spectively, denote the first iteration at which certain events occur in Algorithm B.1 and
Algorithm B.3, respectively. Specifically, these events are the following: an instub belonging
to v with label g(v) ∈ {C,D} is sampled for pairing to an oustub of v′ with label g(v′) = D,
or an instub e with label g(e) = 0 is sampled for pairing with any outstub.)

We begin with (B.41). First, observe that by definition µ
(m)
s (Vn \Kn) and ν

(m)
s (Vn \Kn)

depend only the m-step neighborhood out of s (i.e. the subgraph with nodes ∪mj=0Aj) in Gn

and Hn, respectively. When τG > m,Us = 1 in Algorithm B.1 and τS > m in Algorithm B.3,
these neighborhoods are constructed by the same procedure. Thus, (B.41) follows.

We next consider (B.43). The left and right sides of (B.43) depend on the first m
generations of Ĝn and Ĥn, respectively. In Algorithm B.2, these first m generations of Ĝn

are constructed as follows: the root node φ has attributes (Nφ, Dφ) ∼ f ∗n and Uφ = 1,
non-root nodes ı have attributes (Nı, Dı, Uı) ∼ fn, and Dı offspring are born to ı if and
only if Uı = 1. In Algorithm B.3, the root node in Ĥn also has attributes has attributes
(Nφ, Dφ) ∼ f ∗n and Uφ = 1; furthermore, with τS > m, non-root nodes ı have attributes
(Nı, Dı, Uı) ∼ fn and Dı offspring are born for either value of Uı. Hence, when τS > m,
modifying the construction of the first m generations of Ĥn such that offspring are born only
when Uı = 1 yields the construction of the first m generations of Ĝn. But, by (B.40), the
left side of (B.43) remains unchanged when this modification occurs. (B.43) follows.

It remains to prove (B.42). For this, we begin with two lemmas. These lemmas use the
mapping Φ from graph nodes to tree nodes defined in Algorithm B.3 in Appendix B.2.6.
Lemma B.6 states that tree nodes that do not map to graph nodes do not contribute to the
right side of (B.42). Lemma B.7 states that a tree node that does map to a graph node
contributes to the right side of (B.42) the same value that the corresponding graph node
contributes to the left side of (B.42). Together, these lemmas will allow us to prove (B.42).

Lemma B.6. If τS > m, ı ∈ Âj for some j ∈ {0, . . . ,m}, and Φ−1(ı) = ∅, then Uıν̂φ(ı) = 0.

Proof. We will denote ı by ı = (i1, i2, . . . , ij), and for l ≤ j, we let ı|l = (i1, i2, . . . , il), with
ı|0 = φ by convention. Define l∗ = max{l ∈ {0, 1, . . . , j} : Φ−1(ı|l) 6= ∅}. Note the set over
which the maximum is taken is nonempty, since Φ−1(ı|0) = Φ−1(φ) = s; furthermore, since
Φ−1(ı|j) = Φ−1(ı) = ∅ by assumption, l∗ < j. In words, ı|l∗ is the youngest ancestor of ı that
maps to a node in the tree; we let v′ = Φ−1(ı|l∗) denote this node.

We observe Φ−1(ı|l) 6= ∅ ∀ l ∈ {0, 1, . . . , l∗ − 1}. To see this, suppose instead that
Φ−1(ı|l) = ∅ for some such l. Then, from the second inner for loop in Algorithm B.3, the
offspring ı|(l+1) was born without adding a node to the graph, which implies Φ−1(ı|(l+1)) =
∅. Repeating this argument eventually gives Φ−1(ı|l∗) = ∅, a contradiction.

Now suppose Uıν̂φ(ı) > 0; we seek a contradiction. First, by (B.40), Uıν̂φ(ı) > 0 implies

Uı|0 = Uı|1 = · · · = Uı = 1 (B.44)

which further implies UΦ−1(ı|l) = Uı|l = 1 ∀ l ∈ {0, 1, . . . , l∗}, i.e. the graph Hn contains a
path of length l∗ from s = Φ−1(ı|0) to v′ = Φ−1(ı|l∗) that avoids Kn.

194



Next, note that Φ−1(ı|l∗) 6= ∅, Φ−1(ı|(l∗ + 1)) = ∅ implies that, during the (l∗ + 1)-th
iteration of Algorithm B.3, an outstub of v′ was paired with an instub of some v ∈ Vn that
already belonged to the graph, and so a copy of v (namely, ı|(l∗+ 1)) was added to the tree.
Consider the following cases for the labels of these nodes at the moment of pairing:
• If g(v′) = A or g(v) = A, we have a contradiction, since by assumption, both v′ and v

already belonged to the graph at the moment of pairing.
• If g(v′) = B or g(v) = B, Uı|l∗ = Uv′ = 0 or Uı|(l∗+1) = Uv = 0, contradicting (B.44).
• If g(v′) = D, g(v) ∈ {C,D}, then τS = l∗ ≤ m in Algorithm B.3, a contradiction.

The remaining case is g(v′) = C at the moment of pairing. This contradicts the statement
that the graph contains a path from s to v′ of length l∗ that avoids Kn (since this path was
present at start of the (l∗ + 1)-th iteration, it was present at the moment of pairing).

Lemma B.7. If τS > m, then Uvν
(m)
s (v) = UΦ(v)ν̂φ(Φ(v)) ∀ v ∈ ∪mj=0Aj.

Proof. We proceed by induction. For the base of induction, we note A0 = {s}, so the
statement only needs to be verified for v = s. But this is immediate, since Φ(s) = φ and

Us = Uφ = 1 in Algorithm B.3, and since ν
(0)
s (s) = ν̂φ(φ) = 1 by (B.39) and (B.40).

Now assume τS > m and let v ∈ ∪mj=0Aj. We consider two cases. First, if v ∈ Aj for
some j ∈ {0, 1, . . . ,m− 1}, we can use the inductive hypothesis to write

Uvν
(m)
s (v) = Uv

(
ν(m)
s (v)− ν(m−1)

s (v)
)
+Uvν

(m−1)
s (v) = Uve

T
s (1−αn)mQ̃mev+UΦ(v)ν̂φ(Φ(v)),

and so it suffices to show Uve
T
s Q̃

mev = 0. Clearly, this holds when Uv = 0. If instead Uv = 1,
suppose eTs Q̃

mev > 0. First, note that Uv = 1 and v ∈ Aj, j < m imply g(v) ∈ {C,D} at the
start of the m-th iteration of Algorithm B.3. Furthermore, eTs Q̃

mev > 0 implies there exists
a path of length m from s to v, with every node w along the path satisfying Uw = 1. Let
v′ be the node immediately preceding v on this path, so that an outstub of v′ was paired
with instub of v during the m-th iteration. Then we have eTs Q̃

m−1ev′ > 0, which implies
g(v′) = D at the start of the m-th iteration of Algorithm B.3. But g(v′) = D, g(v) ∈ {C,D}
contradicts τS > m in Algorithm B.3. Therefore, we must have eTs Q̃

mev = 0.

Now suppose v ∈ Am. Then Uvν
(m−1)
s (v) = 0 (else, v is at most m − 1 steps from

s, contradicting v ∈ Am), so we aim to show Uve
T
s (1 − αn)mQ̃m = UΦ(v)ν̂φ(Φ(v)). Since

Uv = UΦ(v) in Algorithm B.3, this is trivial when Uv = 0; when Uv = 1, it suffices to show

eTs (1− αn)mQ̃m = ν̂φ(Φ(v)).

Towards this end, let v′ ∈ ∪m−1
j=0 Aj be the first node whose outstub was paired with an instub

of v during the m-th iteration (which occurs by v ∈ Am); by the inductive hypothesis,

Uv′ν
(m−1)
s (v′) = UΦ(v′)ν̂φ(Φ(v′)).

Now since Dv′ = DΦ(v′), and since Φ(v) is an offspring of Φ(v′), we can use (B.40) to obtain

(1− αn)Uv′ν
(m−1)
s (v′)

Dv′
=

(1− αn)UΦ(v′)ν̂φ(Φ(v′))

DΦ(v′)
= ν̂φ(Φ(v)). (B.45)
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Next, observe the left side of (B.45) is at most eTs (1− αn)mQ̃m by (B.39), so we must show
this inequality is actually an equality. Suppose instead that the inequality is strict. Then,
later in the m-th iteration, we must have paired an outstub of some v′′ s.t. g(v′′) = D with
another instub of v. But g(v) ∈ {C,D} after the v′ outstub was paired with the v instub,
and g(v′′) = D, g(v) ∈ {C,D} contradicts τS > m in Algorithm B.3.

We now return to the proof of (B.42). Assume τS > m. Note that by Lines 19-20 of
Algorithm B.3, {Φ(v) : v ∈ Aj} ⊂ Âj, so the right side of (B.42) satisfies

m∑
j=0

∑
ı∈Âj

Uıν̂φ(ı) =
m∑
j=0

 ∑
ı∈Âj :Φ−1(ı)=∅

Uıν̂φ(ı) +
∑
v∈Aj

UΦ(v)ν̂φ(Φ(v))

 .

Now since Uıν̂φ(ı) ≥ 0 by definition, Lemma B.6 implies∑
ı∈Âj :Φ−1(ı)=∅

Uıν̂φ(ı) = 0 ∀ j ∈ {0, 1, . . . ,m}.

Furthermore, since ν
(m)
s (v) = 0 ∀ v /∈ ∪mj=0Aj (which holds by (B.39)), Lemma B.7 implies

ν(m)
s (Vn \Kn) =

m∑
j=0

∑
v∈Aj

Uvν
(m)
s (v) =

m∑
j=0

∑
v∈Aj

UΦ(v)ν̂φ(Φ(v)).

Finally, combining the previous three equations yields (B.42).

B.2.4 Proof of Lemma B.4

We begin with some initial definitions that will be used throughout the proof. Specifically,
let ζn = En[Dı] and λn = En[NıUı], where (Nı, Dı, Uı) ∼ fn are the attributes for a non-root
node in the tree. Then, conditioned on Ωn,

ζn =
1

Ln

n∑
h=1

NhDh =
η2(1 +O(n−γ))

η1(1 +O(n−γ))
= ζ(1 +O(n−γ)),

λn =
1

Ln

n∑
h=1

N2
hUh =

η3(1 +O(n−γ))

η1(1 +O(n−γ))
= λ(1 +O(n−γ)).

Similarly, let ζ∗n = En[Dφ] and λ∗n = En[Nφ], where (Nφ, Dφ) ∼ f ∗n are the attributes for the
root node of the tree, so that given Ωn,

ζ∗n =
1∑n

h=1 Uh

n∑
h=1

DhUh = ζ∗(1 +O(n−γ)), λ∗n =
1∑n

h=1 Uh

n∑
h=1

NhUh = λ∗(1 +O(n−γ)).

We explain our approach for bounding P[τG ≤ m|Us = 1]. First, observe that, conditioned
on Us = 1, the graphs in Algorithms B.1 and B.3 (the graph and simultaneous constructions,
respectively) are constructed by the same procedure until τG = m or τS = m; further, τG is
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assigned in Algorithm B.1 by the same procedure τS is assigned in Algorithm B.3. Thus,

P[τG ≤ m|Us = 1] = P[τS ≤ m].

Next, for i ∈ {0, 1}, define

Ei = {g(e) = i at the moment τS is assigned in Algorithm B.3}.

In other words, E0 is the event that the coupling breaks because a paired instub was sampled,
while E1 is the event that the coupling breaks because an unpaired instub that forms an
edge v′ → v s.t. g(v′) = D, g(v) ∈ {C,D} was sampled. Also, for l ∈ {1, 2, . . . ,m}, let

Ẑl =
∑

ı∈Âl−1

Dı, (B.46)

which is the total number of outstubs in generation l− 1 of the tree; note Ẑl = |Âl|. Finally,
let {yn : n ∈ N} be a sequence tending to infinity (which we will choose later), and let

Fm =

{
max

1≤l≤m

Ẑl
ζ l−1

≤ ζ∗yn

}
.

We can then use the previous four equations to write

P[τG ≤ m|Us = 1] ≤ O(n−δ) + P[FC
m |Ωn] +

1∑
i=0

m∑
l=1

P[τS = l, Ei, Fm|Ωn]. (B.47)

where we also used P[ΩC
n ] = O(n−δ) by Assumption 3.1. We next bound each term in (B.47).

To bound P[FC
m |Ωn], first note {Dı}ı∈Âl−1

are identically distributed and independent of

Ẑl−1 = |Âl−1|, so

En[Ẑl] = En[En[Ẑl|Ẑl−1]] = En[Ẑl−1En[Dı|Ẑl−1]] = En[Ẑl−1]En[Dı] = En[Ẑl−1]ζn,

and so applying recursively gives

En[Ẑl] = En[Ẑ1]ζ l−1
n = En[Dφ]ζ l−1

n = ζ∗nζ
l−1
n . (B.48)

Now let Xl = Ẑl/(ζ
∗
nζ

l−1
n ), so that En[Xl] = 1. Furthermore, define

Gl = σ({Nh, Dh, Uh : 1 ≤ h ≤ n} ∪ {Dı : ı ∈ Âj, 0 ≤ j < l}),

where by σ(·) we mean the generated σ-algebra. Then for j > 0,

E[Xl+j|Gl] =
E[Ẑl+j|Gl]
ζ∗nζ

l+j−1
n

=
E[Ẑl+j−1|Gl]E[Dı|Gl]

ζ∗nζ
l+j−1
n

=
E[Ẑl+j−1|Gl]
ζ∗nζ

l+j−2
n

= E[Xl+j−1|Gl] = · · · = E[Xl|Gl] = Xl,
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so {Xl : l ∈ N} is a martingale. This implies, by Doob’s inequality,

Pn
[

max
1≤l≤m

Xl >
yn

(1 +O(n−γ))m

]
≤ (1 +O(n−γ))m

yn
,

where we have used En[Xm] = 1. Using this bound, we can obtain

P[FC
m |Ωn] = P

[
max

1≤l≤m

Ẑl
ζ l−1

> ζ∗yn

∣∣∣∣∣Ωn

]
= P

[
max

1≤l≤m

Xlζ
∗
nζ

l−1
n

ζ∗ζ l−1
> yn

∣∣∣∣Ωn

]
= P

[
max

1≤l≤m
Xl(1 +O(n−γ))l > yn

∣∣∣∣Ωn

]
≤ P

[
max

1≤l≤m
Xl >

yn
(1 +O(n−γ))m

∣∣∣∣Ωn

]
=

1

P[Ωn]
E
[
1(Ωn)Pn

[
max

1≤l≤m
Xl >

yn
(1 +O(n−γ))m

]]
≤ 1

P[Ωn]
E
[
1(Ωn)

(1 +O(n−γ))m

yn

]
=

(1 +O(n−γ))m

yn
= O(y−1

n ),

where in the third line we used the tower property and the fact that 1(Ωn) is fixed given the
degree sequence, and where the final equality holds by the assumption m = O(nγ) in the

statement of the lemma, since then (1 +O(n−γ))m = (1 + O(1)
m

)m = eO(1) = O(1).
To bound P[τS = l, E0, Fm|Ωn], we first write

P[τS = l, E0, Fm|Ωn] = E
[
1 (Fm)Pn

[
τS = l, E0

∣∣∣{Ẑj}m+1
j=1

]∣∣∣Ωn

]
(B.49)

which holds because 1(Ωn) and 1(Fm) are fixed given the degree sequence and {Ẑj}mj=1. Next,
observe {τS = l, E0} occurs if and only if, during iteration l, we sample an instub that has
already been paired while attempting to pair an outstub belonging to a node v′ ∈ Al−1.
We aim to bound the probability of this event. Consider any such outstub. Since we
sample instubs uniformly from the set of all Ln instubs, the probability of sampling a paired
instub is the fraction of paired instubs at the moment we attempt to pair the outstub under
consideration. This fraction is clearly bounded by the fraction of paired instubs at the end
of iteration l. Further, since each time we pair an instub of v ∈ V in the graph, we also add
a node to the tree with the same attributes as v, the numerator of this fraction is further
bounded by the number of nodes in the tree at the end of iteration l, which is

1

Ln

l+1∑
j=1

Ẑj, (B.50)

where (we recall) Ln =
∑

v∈Vn Nv =
∑

v∈Vn Dv. Now consider the number of such outstubs.
By definition, this is

∑
v′∈Al−1

Dv′ . Also, since each time we add a node to Al−1 in the graph,

we also add a node with the same attributes to Âl−1 in the tree, we have∑
v′∈Al−1

Dv′ ≤
∑

ı∈Âl−1

Dı , Ẑl.
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Combining these arguments, letting Bin denote a binomial random variable, and using
Markov’s inequality, we can write

Pn
[
τS = l, E0

∣∣∣{Ẑj}m+1
j=1

]
≤ Pn

[
Bin

(
Ẑl,

∑l+1
j=1 Ẑj

Ln

)
≥ 1

∣∣∣∣∣{Ẑj}m+1
j=1

]

≤ En

[
Bin

(
Ẑl,

∑l+1
j=1 Ẑj

Ln

)∣∣∣∣∣{Ẑj}m+1
j=1

]
= Ẑl

∑l+1
j=1 Ẑj

Ln
. (B.51)

Next, we recognize 1(Fm)Ẑl ≤ ζ∗ζ l−1yn by definition of Fm, so combining (B.49) and (B.51),

P[τS = l, E0, Fm|Ωn] ≤ E

[
1(Fm)Ẑl

∑l+1
j=1 Ẑj

Ln

∣∣∣∣∣Ωn

]
≤ ζ∗ζ l−1yn

l+1∑
j=1

E

[
Ẑj
Ln

∣∣∣∣∣Ωn

]
.

Furthermore, by definition of Ωn, we have

E

[
Ẑj
Ln

∣∣∣∣∣Ωn

]
= E

[
En[Ẑj]

Ln

∣∣∣∣∣Ωn

]
= E

[
ζ∗nζ

j−1
n

Ln

∣∣∣∣Ωn

]
=
ζ∗ζj−1

nη1

(1 +O(n−γ))j = O

(
ζj−1

n

)
(B.52)

where (1 +O(n−γ))j = O(1) again follows from m = O(n−γ). We have therefore shown

P[τS = l, E0, Fm|Ωn] = O

(
yn
n
ζ l−1

l∑
j=0

ζj

)
.

We will use the same approach to bound P[τS = l, E1, Fm|Ωn] as we used to bound
P[τS = l, E0, Fm|Ωn]. First, observe {τS = l, E1} occurs if and only if, during iteration l,
we sample an instub belonging to v s.t. g(v) ∈ {C,D} while attempting to pair an outstub
belonging to a node v′ ∈ Al−1 s.t. g(v′) = D. The key step in the derivation will be bounding
the number of such instubs and outstubs. First, the number of such outstubs is clearly
bounded the number of all outstubs paired during iteration l. As we argued previously, this
is further bounded by Ẑl. Next, for j ∈ {1, . . . ,m+ 1}, define V̂j =

∑
ı∈Âj−1

NıUı. As in the
previous argument, the number of such instubs while pairing any such outstub is bounded
by the number of instubs belonging to Uv = 1 nodes in the graph at the end of iteration l.
Since each time we add a node to the graph, we also add a node to the tree with the same
attributes, the former quantity is bounded by the same quantity computed on the tree, i.e.

l+1∑
j=1

∑
ı∈Âl−1

NıUı =
l+1∑
j=1

V̂j.

Hence, as in the analysis of P[τS = l, E0, Fm|Ωn],

P[τS = l, E1, Fm|Ωn] = E
[
1(Fm)Pn

[
τS = l, E1

∣∣∣{Ẑj}mj=1, {V̂j}l+1
j=1

]∣∣∣Ωn

]
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≤ E

[
1(Fm)Ẑl

∑l+1
j=1 V̂j

Ln

∣∣∣∣∣Ωn

]
≤ ζ∗ζ l−1yn

l+1∑
j=1

E

[
En[V̂j]

Ln

∣∣∣∣∣Ωn

]
.

Our final step is to compute En[V̂j]. For j > 1, we have

En[V̂j] = En[Ẑj−1]En[NıUı] = ζ∗nζ
j−2
n λn,

where the first equality holds since |Âj−1| = Ẑj−1 and since {NıUı : ı ∈ Âl−1} are identically

distributed and independent of Ẑj−1. Therefore,

E

[
En[V̂j]

Ln

∣∣∣∣∣Ωn

]
= E

[
ζ∗nζ

j−2
n λn
Ln

∣∣∣∣Ωn

]
=
ζ∗ζj−2λ

nη1

(1 +O(n−γ))j = O

(
ζj−2

n

)
.

For j = 1, since Â0 = {φ} with Uφ = 1, we simply have En[V̂1] = En[Nφ] = λ∗n, so

E

[
En[V̂1]

Ln

∣∣∣∣∣Ωn

]
= E

[
λ∗n
Ln

∣∣∣∣Ωn

]
=

λ∗

nη1

(1 +O(n−γ)) = O

(
1

n

)
.

Combining previous arguments, we obtain

P[τS = l, E1, Fm|Ωn] = O

(
yn
n
ζ l−1

l−1∑
j=0

ζj

)
.

B.2.4.1 Overall bound

Combining the bounds from the previous sections, we obtain

P[τG ≤ m|Us = 1] = O

(
n−δ + y−1

n +
yn
n

m∑
l=1

ζ l−1

l∑
j=0

ζj

)
.

By Assumption 3.1, we have ζ > 1, which implies

m∑
l=1

ζ l−1

l∑
j=0

ζj =
m∑
l=1

ζ l−1 ζ
l+1 − 1

ζ − 1
≤ 1

ζ − 1

m∑
l=1

ζ2l =
ζ2(ζ2m − 1)

(1− ζ)2
≤
(

ζ

ζ − 1

)2

ζ2m.

We thus obtain
P[τG ≤ m|Us = 1] = O

(
n−δ + y−1

n + ynζ
2m/n

)
Finally, we choose yn to minimize the bound. This yields

P[τG ≤ m|Us = 1] = O
(
n−δ + ζm/

√
n
)
.
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B.2.5 Proof of Lemma B.5

For j ∈ {1, 2, . . . ,m}, let Xj =
∑

ı∈Âj Uıµ̂φ(ı), and for n ∈ N, let

p̂n =

∑n
h=1 UhNh

Ln
.

Note that, by Assumption 3.1, |p̂n − p| < n−γ when Ωn holds.
Before proceeding, we present some intermediate results required for our analysis.

Lemma B.8. ∀ i, j ∈ N s.t. j ≥ i, let X i = {Xl}il=1. Then En[Xj|X i] = ((1− αn)p̂n)j−iXi.

Proof. We first observe

Xj =
∑
ı∈Âj

Uıµ̂φ(ı) =
∑
ı∈Âj

j−1∏
l=0

(1− αn)Uı|l

Dı|l
Uı =

∑
ı∈Âj−1

j−1∏
l=0

(1− αn)Uı|l

Dı|l

Dı∑
k=1

U(ı,k), (B.53)

where the first equality follows from (B.5) and the second follows since, by Algorithm B.2,

Âj =
{

(ı, k) : ı ∈ Âj−1, Uı = 1, k ∈ {1, 2, . . . , Dı}
}
.

Next, let ı ∈ Âj−1 s.t. Uı = 1. For each k ∈ {1, 2, . . . , Dı}, observe

E
[
U(ı,k)

∣∣∣{Nh, Dh, Uh : 1 ≤ h ≤ n} ∪ {Uı′ , Dı′ : ı′ ∈ Âs, s < j}
]

= E
[
U(ı,k)

∣∣{Nh, Dh, Uh : 1 ≤ h ≤ n}
]

=

∑n
h=1 UhNh

Ln
= p̂n, (B.54)

which follows since in Algorithm B.2, (N(ı,k), D(ı,k), U(ı,k)) are sampled from fn, independent
of the attributes of nodes in previous generations. Combining (B.53) and (B.54) gives

E
[
Xj

∣∣∣{Nh, Dh, Uh : 1 ≤ h ≤ n} ∪ {Uı, Dı : ı ∈ Âs, s < j}
]

=
∑

ı∈Âj−1

j−1∏
l=0

(1− αn)Uı|l

Dı|l

Dı∑
k=1

p̂n =
∑

ı∈Âj−1

j−2∏
l=0

(1− αn)Uı|l

Dı|l

(1− αn)Uı

Dı

(Dıp̂n)

= (1− αn)p̂n
∑

ı∈Âj−1

j−2∏
l=0

(1− αn)Uı|l

Dı|l
Uı = (1− αn)p̂n

∑
ı∈Âj−1

µ̂φ(ı)Uı = (1− αn)p̂nXj−1.

Note that X i is a function of {Uı, Dı : ı ∈ Âs, s < j}, so we can also write

E
[
Xj

∣∣∣{Nh, Dh, Uh : 1 ≤ h ≤ n} ∪ {Uı, Dı : ı ∈ Âs, s < j} ∪X i
]

= (1− αn)p̂nXj−1.

Then, taking conditional expectation with respect to {Nh, Dh, Uh : 1 ≤ h ≤ n} ∪X i,

En
[
Xj

∣∣X i
]

= (1− αn)p̂nEn
[
Xj−1|X i

]
,
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and so applying recursively gives

En[Xj|X i] = ((1− αn)p̂n)j−iXi,

which completes the proof.

Lemma B.9. Let Z be a random variable satisfying E[Z] = 0 and a ≤ Z ≤ b a.s. Then

E
[
eλZ
]
≤ eλ

2(b−a)2/8 ∀ λ > 0.

Proof. See, for example, Lemma 5.1 in [124].

Lemma B.10. For any j ∈ N and any cj > 0, define Yj = cj(Xj − (1− αn)p̂nXj−1)). Then

En[exp(λYj)|Xj−1] ≤ exp

(
λ2

8
(cj(1− αn)j)2

)
.

Proof. Note En[Yj|Xj−1] = 0 by Lemma B.8. Also, Xj ∈ [0, (1− αn)Xj−1] by (B.5), so

Yj ≤ cj(1− αn)(1− p̂n)Xj−1 , bj, Yj ≥ −cj(1− αn)p̂nXj−1 , aj.

Therefore, applying Lemma B.9 gives

En[exp(λYj)|Xj−1] ≤ exp

(
λ2

8
(cj(1− αn)Xj−1)2

)
,

and using Xj−1 ≤ (1− αn)j−1 (which again follows from (B.5)) completes the proof.

We now turn to the proof of the lemma. First, we write

P

[
αn

m−1∑
j=1

Xj +Xm ≥ ε

]
≤ P

[
αn

m−1∑
j=1

Xj +Xm ≥ ε

∣∣∣∣∣Ωn

]
+ P[ΩC

n ]. (B.55)

Recall P[ΩC
n ] = O(n−δ) by Assumption 3.1, so it remains to bound the first summand. First,

P

[
αn

m−1∑
j=1

Xj +Xm ≥ ε

∣∣∣∣∣Ωn

]
=

1

P[Ωn]
E

[
1 (Ωn)Pn

[
αn

m−1∑
j=1

Xj +Xm ≥ ε

]]
. (B.56)

For the term inside the expectation, we have

Pn

[
αn

m−1∑
j=1

Xj +Xm > ε

]
≤ Pn

[
αn

m−1∑
j=1

Xj >
ε

2

]
+ Pn

[
Xm >

ε

2

]
. (B.57)

For the second summand, we use Markov’s inequality to write

Pn
[
Xm >

ε

2

]
≤ 2En[Xm]

ε
=

2(1− αn)mp̂mn
ε

<
2p̂mn
ε
.
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Recall that p̂n ≤ p+ n−γ when Ωn holds. Therefore, by assumption m = O(nγ), we obtain

1(Ωn)Pn
[
Xm >

ε

2

]
<

2(p+ n−γ)m

ε
= pm

2(1 + 1/p
nγ

)m

ε
= O (pm) . (B.58)

We next consider the first summand in (B.57). First, we use the Chernoff bound to write

Pn

[
αn

m−1∑
j=1

Xj > ε

]
≤ min

λ>0
e−λεEn

[
m−1∏
j=1

exp (λαnXj)

]
. (B.59)

To analyze (B.59), we require a definition: for j = 0, 1, . . . ,m− 1, let

cj = En

[
αn

m−j−1∑
i=0

Xi

]
= αn

m−j−1∑
i=0

((1− αn)p̂n)i =
αn(1− ((1− αn)p̂n)m−j)

1− (1− αn)p̂n
, (B.60)

where we have used Lemma B.8 and since, by definition,

X0 =
∑
ı∈Â0

Uıµφ(ı) = Uφµφ(φ) = 1.

From (B.60), it is straightforward to show

c0 − αn = En

[
αn

m−1∑
i=1

Xi

]
, cm−1 = αn, cj = αn + (1− αn)p̂ncj+1. (B.61)

Now for j ∈ {1, . . . ,m− 1}, we use Lemma B.10 and (B.61) to obtain

En[exp(λcjXj)|Xj−1]

= En[exp(λcj(Xj − (1− αn)p̂nXj−1))|Xj−1] exp(λcj(1− αn)p̂nXj−1)

≤ exp

(
λ2

8
(cj(1− αn)j)2

)
exp(λ(cj−1 − αn)Xj−1).

We can then apply to the expectation in (B.59), i.e.

En

[
m−1∏
j=1

exp (λαnXj)

]
= En

[
m−2∏
j=1

exp (λαnXj) exp (λcm−1Xm−1)

]

= En

[
m−2∏
j=1

exp (λαnXj)En
[
exp (λcm−1Xm−1)

∣∣Xm−2
]]

≤ En

[
m−2∏
j=1

exp (λαnXj) exp(λ(cm−2 − αn)Xm−2)

]
exp

(
λ2

8

(
cm−1(1− αn)m−1

)2
)
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and so applying recursively eventually gives

En

[
m−1∏
j=1

exp (λαnXj)

]
≤ exp

(
λEn

[
αn

m−1∑
i=1

Xi

]
+
λ2

8

m−1∑
j=1

(
cj(1− αn)j

)2

)
,

where we have also used X0 = 1 and (B.61). Substituting into (B.59),

Pn

[
αn

m−1∑
j=1

Xj >
ε

2

]
≤ min

λ>0
exp

(
−λ

(
ε

2
− En

[
αn

m−1∑
i=1

Xi

])
+
λ2

8

m−1∑
j=1

(
cj(1− αn)j

)2

)
.

(B.62)
It is straightforward to show the global minimizer of (B.62) is

λ∗ =
4
(
ε
2
− En

[
αn
∑m−1

i=1 Xi

])∑m−1
j=1 (cj(1− αn)j)2 ,

which is positive when En
[
αn
∑m−1

i=1 Xi

]
< ε

2
. Plugging into (B.62),

Pn

[
αn

m−1∑
j=1

Xj >
ε

2

]
≤ exp

(
−

2
(
ε
2
− En

[
αn
∑m−1

i=1 Xi

])2∑m−1
j=1 (cj(1− αn)j)2

)
. (B.63)

We now derive bounds for the denominator and numerator in the exponential in (B.63). To
(coarsely) approximate the denominator,

cj <
αn

1− (1− αn)p̂n
<

αn
1− p̂n

,
m−1∑
j=1

(1− αn)2j <
∞∑
j=0

(1− αn)j =
1

αn

⇒
m−1∑
j=1

(
cj(1− αn)j

)2
<

αn
(1− p̂n)2

<
αn

(1− p− n−γ)2
, (B.64)

where the final inequality holds assuming Ωn and n is sufficiently large (so that p+n−γ < 1).
For the numerator, first observe that, when Ωn holds, we have

En

[
αn

m−1∑
i=1

Xi

]
=
αn((1− αn)p̂n − ((1− αn)p̂n)m)

1− (1− αn)p̂n
<

αn
1− (p+ n−γ)

,

and so En[αn
∑m−1

i=1 Xi] < ε/2 for n sufficiently large (as required), assuming αn → 0 as
n→∞. Therefore, when Ωn holds, αn → 0, and n is large,(

ε

2
− En

[
αn

m−1∑
i=1

Xi

])2

>

(
ε

2
− αn

1− (p+ n−γ)

)2

(B.65)

=
ε2

4
− αn

1− (p+ n−γ)

(
ε− αn

1− (p+ n−γ)

)
.
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Thus, under these assumptions, (B.64) and (B.65) give

2
(
ε
2
− En

[
αn
∑m−1

i=1 Xi

])2∑m−1
j=1 (cj(1− αn)j)2 >

(1− p− n−γ)2ε2

2αn
− 2(1− p− n−γ)

(
ε− αn

1− (p+ n−γ)

)
.

To summarize, we have shown that for n sufficiently large, assuming αn → 0 and Ωn holds,

Pn

[
αn

m−1∑
j=1

Xj >
ε

2

]
≤ exp

(
−(1− p− n−γ)2ε2

2αn

)
× exp

(
2(1− p− n−γ)

(
ε− αn

1− (p+ n−γ)

))
= O

(
exp

(
−((1− p)ε)2

2αn

))
(B.66)

where the equality holds because the second exponential term is O(1) for p ∈ (0, 1). Finally,
we combine (B.55), (B.56), (B.57), (B.58), and (B.66) to obtain

P

[
αn

m∑
j=1

Xj +Xm > ε

]
= O

(
n−δ + pm + e−((1−p)ε)2/(2αn)

)
,

which completes the proof.

B.2.6 Simultaneous construction of graph and tree

For the proofs of Lemmas B.3 and B.4, we use Algorithm B.3, which simultaneously
constructs a graph and a tree. Algorithm B.3 uses similar notation as Algorithms B.1 and
B.2 in Appendix B.1.2. However, there are some differences, which we explain first.
• In Algorithm B.1, we chose s ∼ Vn uniformly, which is the standard DCM construction.

In Algorithm B.3, we instead choose s ∼ Vn \ Kn uniformly. This is because in the

statement of Lemma B.3 involves µ
(m)
s (Vn\Kn), conditioned on Us = 1 (i.e. s ∈ Vn\Kn);

similarly, the statement of Lemma B.4 involves {τG ≤ m}, conditioned on Us = 1.
• Algorithm B.3 uses a function Φ : Vn → U , where U = ∪∞j=0Nj and N0 = {φ} by

convention. The function Φ will be used to map nodes in the graph (which have labels
in the set Vn) to nodes in the tree (which have labels in the set U).
• The variable τS in Algorithm B.3 denotes the first iteration at which events that break

the coupling occur (analogous to τG in Algorithm B.1). Once these events occur,
the simultaneous construction terminates, and the graph and tree constructions are
continued separately using Algorithms B.1 and B.2, respectively.

For illustrative purposes, we include an example of the simultaneous construction in
Figure B.4. The basic idea is as follows. Whenever a new node is added to the graph, (which
occurs when outstub (v′, j) is paired with an instub belonging to v ∈ Vn s.t. g(v) = A) a new
offspring (with the same attributes as v) is added to the tree, and a map between the graph
node and tree offspring is defined. In particular, Figure B.4 has the following mapping:

Φ(s) = φ, Φ(1) = (1), Φ(2) = (2), Φ(3) = (1, 2),
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Figure B.4: Simultaneous construction of graph (left) and tree (right).

Φ(4) = (1, 3), Φ(5) = (2, 1), Φ(6) = (2, 3), Φ(7) = (2, 4).

If an edge is added between two nodes already in the graph (which occurs when outstub
(v′, j) is paired with v ∈ Vn s.t. g(v) ∈ {B,C,D}), a new offspring with the same attributes
as v is added to the tree. This is illustrated by the following examples:
• Node 1 in the graph adds an edge to itself; (1, 1) in the tree has the attributes of 1
• Node 1 in the graph adds an edge to 2; (1, 4) in the tree has the attributes of 2
• Node 2 in the graph adds a multi-edge to 5; (2, 2) in the tree has the attributes of 5

These offspring can be thought of as copies of nodes already in the tree: (1, 1), (1, 4),
and (2, 2) are copies of (1), (2), and (2, 1), respectively. Furthermore, note that for ı ∈
{(1, 1), (1, 4), (2, 2)}, Φ−1(ı) = ∅. In other words, copies of nodes in the tree do not map to
nodes in the graph. This implies that we may have more nodes in the tree than in the graph.
For this reason, after pairing all outstubs belonging to all v′ ∈ Am−1 (which map to nodes
in the tree), we must separately add offspring to nodes ı ∈ Âm−1 s.t. Φ−1(ı) = ∅ (which do
not map to nodes in the tree). This is done in Lines 27-29 in Algorithm B.3.

B.3 Proof of Theorem 3.1

First, we observe

E[∆(Kn, ε)] = E [|Kn|+ |{v ∈ Vn \Kn : Bv(Kn, ε) holds}|]

= O (nκ) +
∑
v∈Vn

E [1(Bv(Kn, ε), Uv = 1)] = O (nκ) + nE [1(Bs(Kn, ε), Us = 1)]

≤ O (nκ) + nP[Bs(Kn, ε)|Us = 1] = O (nκ) + nO
(
n−c(ε)

)
= O

(
nmax{κ,1−c(ε)}) ,

where the steps hold by definition of ∆(Kn, ε), by Assumption 3.2, since 1(Bv(Kn, ε), Uv = 1)
are identically distributed before the degree sequence is realized, since P[Uv = 1] ≤ 1, and
by Lemma 3.1, respectively. Hence, by Markov’s inequality,

P
[
∆(Kn, ε) ≥ Cnc̄

]
≤ E[∆(Kn, ε)]

Cnc̄
= O

(
nmax{κ,1−c(ε)}−c̄) .

206



Algorithm B.3: Simultaneous Construction

1 Choose s from Vn \Kn uniformly, set g(s) = D, set A0 = {s}
2 Set g(e) = 1 ∀ e ∈ S, set g(v) = A ∀ v ∈ Vn \ {s}
3 Set (Nφ, Dφ, Uφ) = (Ns, Ds, Us), set Â0 = {φ}
4 Set Φ(s) = φ, set τS =∞
5 for m = 1 to ∞ do

6 Set Am = Âm = ∅
7 for v′ ∈ Am−1 do
8 Let ı = Φ(v′)
9 for j = 1 to Dv′ do

10 // find instub for pairing, check if failure has occurred
11 Uniformly sample instub e, denote instub node by v
12 if g(e) = 0 or g(e) = 1, g(v′) = D, g(v) ∈ {C,D} then
13 Set τS = m
14 Continue constructing graph as in Algorithm B.1
15 Continue constructing tree as in Algorithm B.2
16 return

17 // update graph, tree, and map
18 Pair (v′, j) with e, set g(e) = 0
19 if g(v) = A then set Am = Am ∪ {v}, set Φ(v) = (ı, j)
20 Add offspring (ı, j) to ı, set (N(ı,j), D(ı,j), U(ı,j)) = (Nv, Dv, Uv), set

Âm = Âm ∪ {(ı, j)}
21 // update node label in graph
22 if Uv = 0, g(v) = A then set g(v) = B
23 else if Uv = 1, g(v) = A, g(v′) = B then set g(v) = C
24 else if Uv = 1, g(v) = A, g(v′) ∈ {C,D} then set g(v) = g(v′)

25 if g(e′) = 0 ∀ e′ ∈ In then return

26 // generate offspring for tree nodes not mapped to a graph node

27 for ı ∈ Âm−1 s.t. Φ−1(ı) = ∅ do
28 for j = 1 to Dı do
29 Add offspring (ı, j) to ı, sample (N(ı,j), D(ı,j), U(ı,j)) from fn, set

Âm = Âm ∪ {(ı, j)}
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B.4 Proof of Theorem 3.2

B.4.1 Analysis of subroutines of Algorithm 3.1

We begin with analyses of Approx-PageRank and Approx-Contributions. Namely,
Lemma B.11 gives accuracy and complexity guarantees for Approx-PageRank, while Lemma
B.12 and Corollary B.1 provide guarantees for Approx-Contributions. We note that these
results are essentially restatements of those found in [7, 32]; we have included the arguments
because they need to be slightly modified and to state them using our notation. These ar-
guments are also similar to those used in Appendices A.1-A.2 for our PPR algorithm and in
Chapter IV for our policy evaluation algorithm.

Lemma B.11. For any Gn, v ∈ Vn, and ε1 ∈ (0, 1), Approx-PageRank(v, ε1) has complexity
O(Ln/(αnε1)), and the output π̂v satisfies ‖πv − π̂v‖1 ≤ ε1, π̂v(u) ≤ πv(u) ∀ u ∈ Vn.

Proof. We first claim that for each u ∈ Vn and at each iteration of Approx-PageRank,

πv(u) = π̂v(u) +
∑
w∈Vn

rv(w)πw(u). (B.67)

To prove (B.67), first note that since π̂v and rv are initialized to 0n and ev, respectively, it
holds trivially at the beginning of the algorithm. Now assume (B.67) holds before π̂v and rv
are updated at some iteration. Then after the update, we will have

(π̂v(u) + αnrv(v
∗)1(u = v∗)) +

∑
w∈Vn

(rv(w)1(w 6= v∗) + (1− αn)rv(v
∗)P (v∗, w))πw(u)

= (π̂v(u) + αnrv(v
∗)1(u = v∗))

+
∑

w∈Vn\{v∗}

rv(w)πw(u) + rv(v
∗)(1− αn)

∑
w∈Vn

P (v∗, w)πw(u)

= (π̂v(u) + αnrv(v
∗)1(u = v∗)) +

∑
w∈Vn\{v∗}

rv(w)πw(u) + rv(v
∗) (πv∗(u)− αn1(u = v∗))

= π̂v(u) +
∑
w∈Vn

rv(w)πw(u) = πv(u),

where the final equality uses the assumption that (B.67) holds before the update, and where
the second equality holds by (1.1). Next, observe that πw(u) ≥ 0 ∀ w, u ∈ Vn by definition;
further, rv(w) ≥ 0 ∀ w ∈ Vn for the duration of the algorithm. Together with (B.67), this
implies π̂v(u) ≤ πv(u) ∀ u ∈ Vn, as claimed.

To show ‖πv − π̂v‖1 ≤ ε1 at termination, observe

‖π − π̂v‖1 =
∑
u∈Vn

(πv(u)− π̂v(u)) =
∑
u∈Vn

∑
w∈Vn

rv(w)πw(u) =
∑
w∈Vn

rv(w)
∑
u∈Vn

πw(u)

=
∑
w∈Vn

rv(w) =
∑
w∈Vn

rv(w)

Dw

Dw ≤
ε1

Ln

∑
w∈Vn

Dw = ε1,

where the first equality holds by π̂v(u) ≤ πv(u), the second holds by (B.67), and the fourth
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uses the fact that πw sums to 1 (the others are immediate); the inequality holds at termination
of the algorithm via the terminating condition of the while loop.

For the complexity guarantee, let i∗ denote the iteration at which the algorithm ter-
minates, and let vi be the node chosen as v∗ during the i-th iteration. Then it is readily
verified that ‖rv‖1 decreases by αnrv(vi) = αn

rv(vi)
Dvi

Dvi ≥ αn
ε1
Ln
Dvi at the i-th iteration.

Hence, because ‖rv‖1 = 1 initially and is bounded below by zero,

1 ≥
i∗∑
i=1

αnrv(vi) ≥ αn
ε1

Ln

i∗∑
i=1

Dvi ⇒
i∗∑
i=1

Dvi ≤
Ln
αnε1

.

On the other hand, at most Dvi elements of the rv vector and one element of the π̂v vectors
are updated at iteration i, so the complexity of the algorithm scales with

∑i∗

i=1Dvi . Hence,
the complexity is bounded by Ln/(αnε1), as claimed.

Lemma B.12. For Gn, v ∈ Vn, and ε2 ∈ (0, 1), Approx-Contributions(v, ε2) has complex-
ity

O

(
1

ε2

∑
u∈V

µu(v)Nu

)
,

and the output {µ̂u(v)}u∈Vn satisfies |µu(v) − µ̂u(v)| ≤ ε2/αn and µ̂u(v) ≤ µu(v) ∀ u ∈ Vn,
where µu(v) is the v-th element of the vector µu given by (B.32) in Appendix B.2.2.

Proof. We begin with a claim analogous to (B.67); namely, that for each u ∈ Vn and at each
iteration of Approx-Contributions,

µu(v) = µ̂u(v) +
∑
w∈Vn

µu(w)rv(w). (B.68)

As for (B.67), (B.68) is immediate at the start of the algorithm, and if it holds before
{µ̂u(v)}u∈Vn and rv are updated, we have

(µ̂u(v) + rv(v
∗)1(u = v∗)) +

∑
w∈Vn

µu(w)
(
rv(w)1(w 6= v∗) + (1− αn)rv(v

∗)P̃ (w, v∗)
)

= (µ̂u(v) + rv(v
∗)1(u = v∗)) +

∑
w∈Vn\{v∗}

µu(w)rv(w) + rv(v
∗)(1− αn)

∑
w∈Vn

µu(w)P̃ (w, v∗)

= (µ̂u(v) + rv(v
∗)1(u = v∗)) +

∑
w∈Vn\{v∗}

µu(w)rv(w) + rv(v
∗) (µu(v

∗)− 1(u = v∗))

= µ̂u(v) +
∑
w∈Vn

µu(w)rv(w) = µu(v),

where the final step is because (B.68) holds before the update by assumption, and the second
equality holds by (B.32). From (B.68), the fact that µu(w) ≥ 0 ∀ u,w ∈ Vn by definition,
and the fact that rv(w) ≥ 0 ∀ w ∈ Vn for the duration of the algorithm, we immediately
obtain µ̂u(v) ≤ µu(v) ∀ u ∈ Vn, as claimed.
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For the accuracy guarantee, note that at termination, we have

µu(v)− µ̂u(v) =
∑
w∈Vn

µu(w)rv(w) ≤ ε2

∑
w∈Vn

µu(w) ≤ ε2/αn,

where the equality holds by (B.68), the first inequality is by the terminating condition of
the while loop, and the final inequality holds by definition of µu and the fact that P̃ is
nonnegative with row sums bounded by 1, together which imply

∑
w∈Vn

µu(w) =
∞∑
i=0

(1− αn)ieTu P̃
i1n ≤

∞∑
i=0

(1− αn)i =
1

αn
.

For the complexity guarantee, first note that µ̂u(v) increases by rv(u) > ε2 at each itera-
tion for which v∗ = u; hence, because µ̂u(v) ≤ µu(v), we can have v∗ = u for at most µu(v)/ε2

iterations. Also, the complexity of each such iteration scales with Nu (as in the argument in
the proof of Lemma B.11). Hence, the complexity is bounded by

∑
u∈Vn µu(v)Nu/ε2.

Corollary B.1. For any Gn and ε2 ∈ (0, 1), running Approx-Contributions(k, ε2) for each
k ∈ Kn produces output µ̂v(k) satisfying |µv(k)− µ̂v(k)| ≤ ε2/αn and µ̂v(k) ≤ µv(k) for each
v ∈ Vn, k ∈ Kn; also, if Ln = O(n) and ε2 depends on n, the complexity is O(n/ε2).

Proof. The accuracy guarantee follows from Lemma B.12. Also by Lemma B.12, we can
bound the complexity as

1

ε2

∑
k∈Kn

∑
u∈Vn

µu(k)Nu =
1

ε2

∑
u∈Vn

Nuµu(Kn).

Using (B.34), it is straightforward to show

µu(Kn) =
π̃u(Kn)

αn + (1− αn)π̃u(Kn)
≤ 1 ∀ u ∈ Vn,

where we have also used π̃u(Kn) ≤ 1. Combining the previous two equations gives complexity
Ln/ε2, from which the corollary follows by assumption Ln = O(n).

B.4.2 Proof of Theorem 3.2

With Lemmas B.11 and B.12 and Corollary B.1 in place, we turn to the proof of Theorem
3.2. We begin with the complexity guarantee. For this, we will proceed through each of the
six computations undertaken by Algorithm 3.1 and bound the complexity of each.

First, let C
(1)
Alg3.1 denote the complexity of running Approx-Page-Rank(k, ε1) ∀ k ∈ Kn. By

Lemma B.11, C
(1)
Alg3.1 = O(|Kn|Ln/(αnε1)). Since Ln = O(n) when Ωn holds, αn = Θ( 1

logn
),

and ε1 is constant, we conclude

E
[
C

(1)
Alg3.1

∣∣∣Ωn

]
= O (E[|Kn||Ωn]n log n) .

Next, let C
(2)
Alg3.1 denote the complexity of running Approx-Cont- ributions(k, ε2) for every
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k ∈ Kn. By Corollary B.1, this has complexity O(n/ε2) when Ln = O(n), which occurs

when Ωn holds. Since also ε2 = α2
ngn(ε/4)
2|Kn| , this is O(E[|Kn||Ωn]nα2

ngn(ε/4)) in expectation

when Ωn holds. Furthermore, since αn → 0 as n → ∞ and ε ∈ (0, 1) is constant, we have
1− 2(ε/4) < 1− αn − (ε/4) and ε/4 > αn(2− αn − (ε/4)) for large enough n; for such n,

αn(1− 2(ε/4))

2(ε/4)
<

αn(1− αn − (ε/4))

(ε/4) + (2− αn − (ε/4))
= gn(ε/4).

It is also immediate that gn(ε/4) ≤ αn
ε/4

. Taken together,

gn(ε/4) ∈
(
αn(1− 2(ε/4))

2(ε/4)
,
αn
ε/4

)
⇒ gn(ε/4) = Θ(αn). (B.69)

Hence, with αn = Θ( 1
logn

), we conclude

E
[
C

(2)
Alg3.1

∣∣∣Ωn

]
= O

(
E[|Kn||Ωn]n(log n)3

)
.

Next, let C
(3)
Alg3.1 denote the complexity of constructing π̂lk. We claim that this can be done

while running Approx-PageRank(k, ε1) without increasing the order of the Approx-PageRank
complexity. This argument is based on the fact that Approx-PageRank(k, ε1) essentially
completes a breadth-first-search out of k. First, we can set Vn,k(0) = {k} at the initial
iteration, and each time a new node is encountered, we can add it to Vn,k(j + 1) if its
previously-encountered incoming neighbor belongs to Vn,k(j) for some j. (By encountering
a new node u, we mean incrementing rv(u) for the first time; note that rv(u) is incremented
only if u’s incoming neighbor w is chosen as v∗, which in turn occurs only if rv(w) is nonzero,
which means w has been previously encountered.) Next, observe that π̂k(u) is not updated
until u is first encountered, at which point we can check if u ∈ Vn,k(j) for some j ≤ l; if it is,
π̂lk(u) can be updated each time π̂k(u) is updated. Adding nodes to Vn,k(j+1) has complexity
that scales with that of updating rv, while updating π̂lk has complexity that scales with that
of updating π̂k. Hence, constructing π̂lk has complexity bounded by the Approx-PageRank

complexity. In other words, we have

E
[
C

(3)
Alg3.1

∣∣∣Ωn

]
= O (E[|Kn||Ωn]n log n) .

Next, let C
(4)
Alg3.1 denote the complexity of computing ˆ̃πv(k) ∀ k ∈ Kn, v ∈ Vn \Kn. This has

complexity O(n|Kn|), i.e.

E
[
C

(4)
Alg3.1

∣∣∣Ωn

]
= O (E[|Kn||Ωn]n) . (B.70)

Next, let C
(5)
Alg3.1 denote the complexity of running Approx-Page-Rank(v, ε1) for any v ∈

Vn \ Kn satisfying ˆ̃πv(Kn) < gn(ε/4). We first observe that, by (B.85), ˆ̃πv(Kn) < gn(ε/4)
implies

π̃v(Kn) < gn(ε/4) +
|Kn|ε2

α2
n

=
3

2
gn(ε/4),
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where we have also used ε2 as given in the statement of the theorem. Next, as in the
argument leading to (B.69), we have

3

2
gn(ε/4) <

3

2

αn
ε/4

=
6αn
ε
, gn(ε/14) >

αn(1− (ε/7))

ε/7
=
αn(7− ε)

ε
.

Hence, by assumption ε < 1, we have 3
2
gn(ε/4) < gn(ε/14). In other words, we have shown

ˆ̃πv(Kn) < gn(ε/4)⇒ π̃v(Kn) < gn(ε/14). Therefore, by the argument leading to (B.81),

ˆ̃πv(Kn) < gn(ε/4)⇒
∥∥∥∥πv − (αneTv +

∑
k∈Kn π̃v(k)πk

αn + (1− αn)π̃v(Kn)

)∥∥∥∥
1

>
ε

14
. (B.71)

Note that the right side of (B.71) is the event Bv(Kn, ε/14) defined in (3.2). Hence, the
number of v ∈ Vn \Kn for which Approx-PageRank(v, ε1) is run in Algorithm 3.1 satisfies

E
[∣∣∣{v ∈ Vn \Kn : 1

(
ˆ̃πv(Kn) < gn(ε/4)

)}∣∣∣∣∣∣Ωn

]
≤ E [|{v ∈ Vn \Kn : Bv(Kn, ε/14) holds}||Ωn] .

On the other hand, by the argument in the analysis of C
(1)
Alg3.1, the complexity of running

Approx- PageRank(v, ε1) is O(n log n) when Ωn holds. Combining arguments, we obtain

E
[
C

(5)
Alg3.1

∣∣∣Ωn

]
= O (E [|{v ∈ Vn \Kn : Bv(Kn, ε/14) holds}||Ωn]n log n) . (B.72)

Finally, let C
(6)
Alg3.1 denote the complexity of computing π̂v for all v ∈ Vn \Kn s.t. ˆ̃πv(Kn) ≥

gn(ε/4). Here we multiply two matrices: the first has dimension O(n)× |Kn| and contains{
ˆ̃πv(k) : v ∈ Vn \Kn s.t. ˆ̃πv(Kn) ≥ gn(ε/4), k ∈ Kn

}
,

and the second has dimension |Kn| × n and contains rows {π̂lk}k∈Kn . We may bound the
complexity of this multiplication as n times the number of nonzero elements of the latter
matrix. Towards this end, recall that π̂lk(u) is nonzero only if u ∈ Vn,k(l) and π̂k(u) is nonzero,
so the number of nonzero elements of π̂lk is bounded by |Vn,k(l)|, which we can bound as

E [|Vn,k(l)||Ωn] ≤ E
[
|Vn,k(l)|

∣∣∣∣max
k∈Kn

Dk ≤ Dmax,Ωn

]
+ nP

[
max
k∈Kn

Dk > Dmax

∣∣∣∣Ωn

]
= E

[
|Vn,k(l)|

∣∣∣∣max
k∈Kn

Dk ≤ Dmax,Ωn

]
+O

(
n1−δ′

)
, (B.73)

where the equality holds by the assumption in the statement of the theorem. To further
bound the remaining expectation, we use an argument from Appendix B.2.4 (we describe
this briefly and refer the reader to Appendix B.2.4 for further details). The argument is
as follows. After k ∈ Kn is first encountered during the graph construction and Vn,k(l) is
being constructed, we can simultaneously construct a tree of l generations, adding a new
node to this tree each time an instub is sampled for pairing with an outstub belonging to
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some u ∈ Vn,k(l). By construction, |Vn,k(l)| will be upper bounded by the number of nodes
in this tree. Also, the number of nodes in this tree will have the same distribution as a tree
constructed via Algorithm B.2 in Appendix B.1, which, with slight modification of (B.48)
in Appendix B.1, satisfies Dmax

∑l
j=1 ζ

j
n (here ζn is defined at the start of Appendix B.2.4).

To summarize, we have argued En [|Vn,k(l)|] ≤ Dmax

∑l
j=1 ζ

j
n, which further implies

E
[
|Vn,k(l)|

∣∣∣∣max
k∈Kn

Dk ≤ Dmax,Ωn

]
=

1

P[maxk∈Kn Dk ≤ Dmax,Ωn]
E
[
1

(
max
k∈Kn

Dk ≤ Dmax,Ωn

)
En [|Vn,k(l)|]

]
≤ 1

P[maxk∈Kn Dk ≤ Dmax,Ωn]
E

[
1

(
max
k∈Kn

Dk ≤ Dmax,Ωn

)
Dmax

l∑
j=1

ζjn

]

= Dmax

l∑
j=1

E
[
ζjn

∣∣∣∣max
k∈Kn

Dk ≤ Dmax,Ωn

]
= O

(
ζ l
)

= O
(
n1/ρ

)
, (B.74)

where the penultimate equality uses Dmax = O(1), the argument of (B.52) in Appendix
B.2.4, and ζ > 1; the final equality uses (B.88) from Appendix B.5. Hence, by (B.73) and
(B.74),

E [|Vn,k(l)||Ωn] = O
(
n1/ρ + n1−δ′

)
= O

(
nmax{1/ρ,1−δ′}

)
.

Recalling that |Vn,k(l)| bounds the number of nonzeros of π̂lk, that C
(6)
Alg3.1 is bounded by n

times the number of nonzeros of {π̂lk}k∈Kn , we obtain

E
[
C

(6)
Alg3.1

∣∣∣Ωn

]
= O

(
E[|Kn||Ωn]n1+max{1/ρ,1−δ′}

)
.

Finally, since E[|Kn|] = O(nκ) by Assumption 3.2 and P[ΩC
n ] = O(n−δ) by Assumption 3.1,

E[|Kn||Ωn] =
E[Kn1(Ωn)]

P[Ωn]
≤ E[Kn]

P[Ωn]
= O (nκ) , (B.75)

and so we ultimately obtain

E
[
C

(6)
Alg3.1

∣∣∣Ωn

]
= O

(
n1+κ+max{1/ρ,1−δ′}

)
. (B.76)

Now because CAlg3.1 =
∑6

i=1 C
(i)
Alg3.1, we have

E [CAlg3.1|Ωn] = max

{
5∑
i=1

E
[
C

(i)
Alg3.1

∣∣∣Ωn

]
,E
[
C

(6)
Alg3.1

∣∣∣Ωn

]}
(B.77)
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Using the bounds derived above for {E[C
(i)
Alg3.1|Ωn]}5

i=1, we have

5∑
i=1

E
[
C

(i)
Alg3.1

∣∣∣Ωn

]
= O

((
E [|{v ∈ Vn \Kn : Bv(Kn, ε/14) holds}||Ωn] (B.78)

+ E[|Kn||Ωn]
)
n(log n)3

)
= O

(
E[∆(Kn, ε/14)|Ωn]n(log n)3

)
= O

(
E[∆(Kn, ε/14)]n(log n)3

)
,

where the final line holds as in (B.75). (B.76), (B.77), and (B.78) complete the proof.
We now turn to the accuracy guarantee. For this, first note that π̂v is computed via

Approx- PageRank(v, ε1) whenever v ∈ Kn or v ∈ Vn \Kn, ˆ̃πv(Kn) < gn(ε1). In both cases,
Lemma B.11 ensures ‖π̂v−πv‖1 ≤ ε1 = ε/4 < ε. Thus, it only remains to show ‖π̂v−πv‖1 ≤ ε
when v ∈ Vn \Kn and ˆ̃πv(Kn) ≥ gn(ε1), in which case we instead compute π̂v as

π̂v = αne
T
v +

∑
k∈Kn

ˆ̃πv(k)π̂lk

αn + (1− αn)ˆ̃πv(Kn)
. (B.79)

We first note that by (B.34) and the definition of ˆ̃πv, we have

π̃v(Kn) =
αnµv(Kn)

1− (1− αn)µv(Kn)
≥ αnµ̂v(Kn)

1− (1− αn)µ̂v(Kn)
= ˆ̃πv(Kn) (B.80)

where the inequality holds because the left side is increasing in µv(Kn) and since µv(Kn) ≥
µ̂v(Kn) by Lemma B.12. Thus, ˆ̃πv(Kn) ≥ gn(ε1) implies π̃v(Kn) ≥ gn(ε1) as well; further-
more, some simple algebra, along with (B.30) in Appendix B.2.2, shows

π̃v(Kn) ≥ gn(ε1)⇔
∥∥∥∥πv − (αneTv +

∑
k∈Kn π̃v(k)πk

αn + (1− αn)π̃v(Kn)

)∥∥∥∥
1

≤ ε1 =
ε

4
, (B.81)

where the equality holds by the statement of the theorem. Then

‖πv − π̂v‖1 ≤
∥∥∥∥πv − (αneTv +

∑
k∈Kn π̃v(k)πk

αn + (1− αn)π̃v(Kn)

)∥∥∥∥
1

+

∥∥∥∥ ∑
k∈Kn π̃v(k)

αn + (1− αn)π̃v(Kn)

(
πk − π̂lk

)∥∥∥∥
1

+

∥∥∥∥∥
∑

k∈Kn π̂
l
k

αn + (1− αn)π̃v(Kn)

(
π̃v(k)− ˆ̃πv(k)

)∥∥∥∥∥
1

+

∥∥∥∥∥∑
k∈Kn

ˆ̃πv(k)π̂lk

(
1

αn + (1− αn)π̃v(Kn)
− 1

αn + (1− αn)ˆ̃πv(Kn)

)∥∥∥∥∥
1

≤ ε

4
+ max

k∈Kn

∥∥πk − π̂lk∥∥1
+

π̃v(Kn)− ˆ̃πv(Kn)

αn + (1− αn)π̃v(Kn)
(B.82)
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+
(1− αn)ˆ̃πv(Kn)(π̃v(Kn)− ˆ̃πv(Kn))

(αn + (1− αn)π̃v(Kn))(αn + (1− αn)ˆ̃πv(Kn))
,

where the first inequality is the triangle inequality, and the second uses (B.81) for the first
term and the triangle inequality for the other terms (in bounding the final two terms, we
have also used the fact that for each k ∈ Kn, ‖π̂lk‖1 ≤ 1 and π̃v(k) ≥ ˆ̃πv(k)). We next derive
bounds on the final three terms in (B.82). For the second term, we observe

max
k∈Kn

∥∥πk − π̂lk∥∥1
≤ max

k∈Kn
‖πk − π̂k‖1 + max

k∈Kn

∥∥π̂k − π̂lk∥∥1
(B.83)

≤ ε1 + max
k∈Kn

πk (Vn \ Vn,k(l)) ≤ ε1 + τ,

where the first inequality is the triangle inequality, the second uses Lemma B.11 and the fact
that π̂k(v) = π̂lk(v) for v ∈ Vn,k(l) and π̂k(v) ≤ πk(v), π̂lk(v) = 0 for other v, and the third
follows by the argument leading to (B.87) in Appendix B.5. For the fourth term in (B.82),
first note that by αn > 0 and ˆ̃πv(Kn)) ≤ 1,

(1− αn)ˆ̃πv(Kn)

(αn + (1− αn)ˆ̃πv(Kn))
< 1,

and so the final two terms in (B.82) can be bounded as

π̃v(Kn)− ˆ̃πv(Kn)

αn + (1− αn)π̃v(Kn)
+

(1− αn)ˆ̃πv(Kn)(π̃v(Kn)− ˆ̃πv(Kn))

(αn + (1− αn)π̃v(Kn))(αn + (1− αn)ˆ̃πv(Kn))

≤ 2(π̃v(Kn)− ˆ̃πv(Kn))

αn + (1− αn)π̃v(Kn)
≤ 2(π̃v(Kn)− ˆ̃πv(Kn))

gn(ε/4)
, (B.84)

where for the second inequality, we have used αn + (1− αn)π̃v(Kn) ≥ π̃v(Kn) ≥ gn(ε/4) by
assumption. Furthermore, we note

π̃v(Kn)− ˆ̃πv(Kn) =
αnµv(Kn)

1− (1− αn)µv(Kn)
− αnµ̂v(Kn)

1− (1− αn)µ̂v(Kn)

=
αn(µv(Kn)− µ̂v(Kn))

(1− (1− αn)µv(Kn))(1− (1− αn)µ̂v(Kn))
≤ |Kn|ε2

α2
n

, (B.85)

where we used (B.80), Lemma B.12, and the fact that, by (B.34),

µv(Kn) =
π̃v(Kn)

αn + (1− αn)π̃v(Kn)
≤ 1,

and a similar argument implies µ̂v(Kn) ≤ 1. Combining (B.82), (B.83), (B.84), and (B.85),
we have shown that when v ∈/∈ Kn, ˆ̃πv(Kn) ≥ gn(ε1), i.e. when π̂v is computed via (B.79),

‖πv − π̂v‖1 ≤
ε

4
+ ε1 + τ +

2|Kn|ε2

α2
ngn(ε/4)

≤ ε,
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where the final inequality holds by our assumptions on ε1, ε2, τ . This completes the proof.

B.4.3 Precomputation variant of Algorithm 3.1

We begin by analyzing the precomputation variant’s accuracy. For this, we first note
that the estimate of πv, v /∈ Kn is computed in the same manner as in Algorithm 3.1, so the
accuracy guarantee of Theorem 3.2 holds for such v. However, for k ∈ Kn, the precomputa-
tion variant instead returns π̂lk, so the accuracy guarantee does not apply. Nevertheless, by
(B.83), ∥∥πk − π̂lk∥∥1

≤ ε1 + τ ≤ ε/2,

where the second inequality holds by the assumptions in Theorem 3.2. Hence, all estimates
returned by the variant satisfy the accuracy guarantee claimed in the main text. We next
consider the space complexity for storing {π̂lk}k∈Kn and {µ̂k(k)}u∈Vn,k∈Kn from the offline
stage. Trivially, nnz(π̂lk) ≤ n and nnz({µ̂k(k)}u∈Vn) ≤ n ∀ k ∈ Kn, where nnz(x) denote the
number of nonzero elements of the vector x. Hence, the overall storage is at most 2n|Kn|,
which is O(n1+κ) in expectation. Finally, we consider the complexity of running the online
stage for v∗ ∼ Vn uniformly. If v∗ ∈ Kn, no computation is required, so this complexity
is negligible. If v∗ ∈ Vn \ Kn, this complexity is simply 1/|Vn \ Kn| times the complexity
of running Lines 6-8 ∀ v ∈ Vn \ Kn in Algorithm 3.1. By the analysis in Appendix B.4.2
(specifically, by (B.70), (B.72), and (B.76)), this latter quantity is

6∑
i=4

E
[
C

(i)
Alg1

∣∣∣Ωn

]
= O(E[|Kn||Ωn]n)

+O (E [|{v ∈ Vn \Kn : Bv(Kn, ε/14) holds}||Ωn]n log n)

+O
(
n1+κ+max{1/ρ,1−δ′}

)
= O

(
max

{
∆(Kn, ε/14)n log n, n1+κ+max{1/ρ,1−δ′}

})
.

Hence, with |Vn \Kn| = O(n) in expectation, the complexity the online stage for v∗ ∼ Vn is

O
(

max
{

∆(Kn, ε/14) log n, nκ+max{1/ρ,1−δ′}
})

.

B.5 Proof of Proposition 3.1

First, note that ∀ n ∈ N, ∀ l ∈ N, and ∀ l′ ≤ l, we have (a.s.)

πs(Vn,s(l)) ≥ αn

l∑
j=0

(1− αn)j
(
eTs P

j1n
)

= αn

l∑
j=0

(1− αn)j ≥ 1− (1− αn)l
′
, (B.86)

where the first inequality follows from (1.1) and by definition of Vn,s(l), and the first equality
holds since P j is row stochastic (the remaining steps are simple manipulations). Therefore,
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when αn = ρ log(1/τ) log ζ
logn

, we can define c = ρ log ζ and use (B.86) to write

lim inf
n→∞

πs

(
Vn,s

(⌈
log(1/τ)
αn

⌉))
≥ 1− lim

n→∞

(
1 +

log(τ)

log(n)/c

)log(n)/c

= 1− τ a.s.,

which is the desired bound. If instead αn = α is a constant, we have more simply

lim inf
n→∞

πs

(
Vn,s

(⌈
log(1/τ)

log(1/(1−α))

⌉))
≥ 1− (1− α)

log(1/τ)
log(1/(1−α)) = 1− τ a.s.. (B.87)

Next, to bound the size of Vn,s(l), we use the analysis of Appendix B.2.4. First, for l ∈ N,

the argument preceding (B.50) in Appendix B.2.4 implies |Vn,s(l)| ≤
∑l

j=0 Ẑj, where Ẑj is
defined in (B.46). Furthermore, by (B.52) in Appendix B.2.4, we have for j ∈ N,

E
[
Ẑj

∣∣∣Ωn

]
= O

(
ζj−1

)
,

while Ẑ0 = 1 by definition. Combining gives for l ∈ N,

E [Vn,s(l)|Ωn] = O

(
1 +

l−1∑
j=0

ζj

)
= O

(
ζ l
)
.

Therefore, when αn = ρ log(1/τ) log ζ
logn

, we have

E
[∣∣∣Vn,s (⌈ log(1/τ)

αn

⌉)∣∣∣∣∣∣Ωn

]
= O

(
ζ log(1/τ)/αn

)
= O

(
ζ logζ(n1/ρ)

)
= O

(
n1/ρ

)
. (B.88)

Similarly, if αn = α is a constant,

E
[∣∣∣Vn,s (⌈ log(1/τ)

log(1/(1−α))

⌉)∣∣∣∣∣∣Ωn

]
= O

(
ζ log(1/τ)/ log(1/(1−α))

)
= O(1).

B.6 Proof of Proposition 3.3

Assume n ≥ v, so that πv, Pv are defined as in Section 3.2.2. For such n, we claim that
for any realization of Gn and any i ∈ N,

P i
v = αn1ne

T
v

i−1∑
j=0

(1− αn)jP j + (1− αn)iP i. (B.89)

We prove (B.89) inductively: it holds by definition for i = 1, and if it holds for general i,

P i+1
v = Pv

(
αn1ne

T
v

i−1∑
j=0

(1− αn)jP j + (1− αn)iP i

)

= αn(Pv1n)eTv

i−1∑
j=0

(1− αn)jP j +
(
αn1ne

T
v + (1− αn)P

)
(1− αn)iP i
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= αn1ne
T
v

i∑
j=0

(1− αn)jP j + (1− αn)i+1P i+1,

where the first equality holds by the inductive hypothesis, the second uses the definition of
Pv, and the third uses row stochasticity of Pv. We next write

πv = πvP
m
v = αne

T
v

m−1∑
j=0

(1− αn)jP j + (1− αn)mπvP
m (B.90)

= πvP
m + αne

T
v

m−1∑
j=0

(1− αn)jP j + ((1− αn)m − 1)πvP
m,

where the equalities follow by global balance (πv = πvPv), (B.89) and the fact πv sums to 1,
and adding/subtracting πvP

m, respectively. Next, we have for any w ∈ Vn,

‖π − πv‖1 ≤ ‖π − ewPm‖1 + ‖ewPm − πvPm‖1 + ‖πvPm − πv‖1

= ‖π − ewPm‖1 + ‖ewPm − πvPm‖1 + 2(1− (1− αn)m), (B.91)

where the inequality is the triangle inequality, and the equality follows by (B.90) and the
fact that P is row stochastic. Again using the triangle inequality, as well as the fact that πv
sums to 1 and convexity of ‖ · ‖1, we can write

‖ewPm − πvPm‖1 ≤ ‖ewP
m − π‖1 +

∥∥∥∥∥ ∑
w′∈Vn

πv(w
′)
(
eTw′P

m − π
)∥∥∥∥∥

1

≤ ‖ewPm − π‖1 +
∑
w′∈Vn

πv(w
′)
∥∥eTw′Pm − π

∥∥
1

= ‖ewPm − π‖1 + max
w′∈Vn

∥∥eTw′Pm − π
∥∥

1
≤ 2 max

w′∈Vn

∥∥eTw′Pm − π
∥∥

1
.(B.92)

We may then combine (B.91) and (B.92) to obtain

‖πv − π‖1 ≤ 3 max
w∈Vn

‖ewPm − π‖1 + 2(1− (1− αn)m). (B.93)

Furthermore, by Bernoulli’s inequality, m = Θ(log n), and αn = o(1/ logn),

1 ≥ (1− αn)m ≥ 1− αnm −−−→
n→∞

1.

Thus, letting n→∞ in (B.93), ‖πv − π‖1 → 0 by assumption on maxw∈Vn ‖ewPm − π‖1.

B.7 Experimental details

B.7.1 Dataset details

The following table shows details of the datasets used for experiments in Section 3.6.
All datasets are available from the Stanford Network Analysis Platform [43]. The αn values
shown are used for all experiments conducted on the corresponding graph. We note that,
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while these are smaller than αn values typically used, they are the same order of magnitude
(αn = 0.15 is a common choice in the literature). Finally, we note that the datasets with
prefix web- are partial web crawls; those with prefix soc- are social networks.

Dataset n Ln αn = 1/ log n
soc-LiveJournal1 4847571 68993773 0.065
soc-pokec 1632803 30622564 0.070
web-Google 875713 5105039 0.073
web-BerkStan 685230 7600595 0.074
web-Stanford 281903 2312497 0.080

B.7.2 Scheme to bound estimation error

To bound ‖πv − (αne
T
v +

∑
k∈Kn βv(k)πk)‖1, where βv(k) are defined in (3.6), we employ

a power iteration scheme: we initialize x
(0)
v = eTv , and given x

(i−1)
v for i ≥ 1, we set

x(i)
v = αne

T
v + (1− αn)x(i−1)

v P̃ ,

where P̃ is defined in (3.4). We claim

x(i)
v = αnµ

(i−1)
v + (1− αn)ieTv P̃

i, (B.94)

where µ
(i−1)
v = eTv

∑i−1
j=0(1−αn)jP̃ j (as in Appendix B.1-B.2). (B.94) is easily proven induc-

tively: the base of induction holds by definition; assuming true for i− 1, we have

x(i)
v = αne

T
v + (1− αn)

(
αnµ

(i−2)
v + (1− αn)i−1eTv P̃

i−1
)
P̃

= αne
T
v + αn

i−1∑
j=1

(1− αn)jP̃ j + (1− αn)ieTv P̃
i = αnµ

(i−1)
v + (1− αn)ieTv P̃

i

as claimed. Now by Lemma B.2 in Appendix B.1, for any i ∈ N we obtain the following
bound:∥∥∥∥∥πv −

(
αne

T
v +

∑
k∈Kn

βv(k)πk

)∥∥∥∥∥
1

≤ αnµ
(i−1)
v (Vn \Kn) + (1− αn)ieTv P̃

ieVn\Kn − αn (B.95)

= x(i)
v (Vn \Kn)− αn. (B.96)

From this bound, we can prove two other claims from Section 3.5. First, we note

x(i)
v (Vn \Kn) = αne

T
v

i−1∑
j=0

(1− αn)jP̃ j + (1− αn)ieTv P̃
ieVn\Kn ≤= 1,

where the inequality follows since P̃ is nonnegative with row sums bounded by 1. Hence,
from (B.96), the estimation error is bounded by (1− αn) (as claimed in Section 3.5). Next,

suppose v ∈ Vn,0, with Vn,0 given by (3.12). Then eTv P̃
jeVn\Kn = 0, so x

(i)
v (Vn \ Kn) = αn,
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and the estimation error is zero (as claimed in Section 3.6). We can also bound the gap in
the inequality (B.95): use (B.35) in Appendix B.2.2 and (B.95) to write∥∥∥∥∥πv −

(
αne

T
v +

∑
k∈Kn

βv(k)πk

)∥∥∥∥∥
1

−
(
x(i)
v (Vn \Kn)− αn

)
=

(
αne

T
v

∞∑
j=0

(1− αn)iP̃ ieVn\Kn − αn

)
−
(
x(i)
v (Vn \Kn)− αn

)
= αnµ

(i−1)
v (Vn \Kn) + αne

T
v

∞∑
j=i

(1− αn)iP̃ ieVn\Kn − x(i)
v (Vn \Kn)

= αne
T
v

∞∑
j=i

(1− αn)iP̃ ieVn\Kn − (1− αn)ieTv P̃
ieVn\Kn ≥ −(1− αn)i,

where the inequality holds by dropping a nonnegative term and since eTv P̃
ieVn\Kn ≤ 1. Hence,

if we let i∗ ≥ log(1−αn)(tol) for some desired tolerance tol, the bound x
(i∗)
v (Vn \Kn) − αn is

tight within additive error tol. (For all experiments, we set tol = 0.05.)
To bound average error across Vn \Kn, we instead use

x
(0)
Vn\Kn =

eTVn\Kn
|Vn \Kn|

, x
(i)
Vn\Kn = αn

eTVn\Kn
|Vn \Kn|

+ (1− αn)x
(i−1)
Vn\KnP̃ .

Note x
(i)
Vn\Kn = 1

|Vn\Kn|
∑

v∈Vn\Kn x
(i)
v when i = 0 by definition; assuming true for general i−1,

x
(i)
Vn\Kn = αn

eTVn\Kn
|Vn \Kn|

+ (1− αn)

 1

|Vn \Kn|
∑

v∈Vn\Kn

x(i−1)
v

 P̃

=
1

|Vn \Kn|
∑

v∈Vn\Kn

(
αne

T
v + (1− αn)x(i−1)

v P̃
)

=
1

|Vn \Kn|
∑

v∈Vn\Kn

x(i)
v ,

i.e. x
(i)
Vn\Kn = 1

|Vn\Kn|
∑

v∈Vn\Kn x
(i)
v ∀ i ∈ N. It follows from above that

1

|Vn \Kn|
∑

v∈Vn\Kn

∥∥∥∥∥πv −
(
αne

T
v +

∑
k∈Kn

βv(k)πk

)∥∥∥∥∥
1

≤ x
(i)
Vn\Kn(Vn \Kn)− αn,

which is the average error bound we compute for Figures 3.2a, 3.2b, and 3.3. The argument
above also implies this bound is tight within tol when i∗ ≥ log(1−αn)(tol).

B.7.3 Details on Figure 3.1 experiment

In addition to the histograms of l1 error shown in Figure 3.1a, we include a more de-
tailed set of plots for the same experiment. Specifically, we estimate the error |αneTv (w) +∑

k∈Kn βv(k)πk(w)| as x
(i)
v (w) − αn1(w = v) (where x

(i)
v is defined in Appendix B.7.2), for

each w ∈ Vn \Kn, and for each v in a subset of Vn \Kn of size ≈ 104. (These v were chosen
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Figure B.5: Detailed error analyses.

uniformly from nodes with average error ∈ (0.08, 0.25), which corresponds to the regime of
linear decay in Figure 3.1.) We also estimate the relative error, i.e. the ratio of this absolute
error to an estimate of πv(w), for the same set of (v, w). The estimate of πv is computed
using the same power iteration scheme in Appendix B.7.2, but replacing P̃ with P . Note
this gives a lower bound on the true value of πv(w), thereby upper bounding relative error.
Unfortunately, we cannot compute this relative error estimate when the estimate of πv(w)
is zero; this occurred for only 10% of (v, w) pairs considered. Finally, for both absolute and
relative error, we compute the number of error values lying in log-spaced bins and divide
these values by n to estimate the frequency of each error value. (We add values lying beyond
the first and last bin edges to the first and last bins, respectively.)

Results are shown for the soc-Pokec dataset at left in Figure B.5. (We note the spikes
at left occur due to values lying beyond the first bin edge.) As an illustration for absolute
error, the frequency of values above 10−3 was ≈ 10−5, i.e. the vast majority of nodes had
estimated absolute error below 10−3. To illustrate the relative error, the frequency of values
above 0.2 was ≈ 0.09, i.e. over 90% of nodes had estimated relative error below 0.2. The
results for web-Google are shown at right in Figure B.5. For absolute error, the frequency
above 10−3 was again ≈ 10−5; for relative error, over 90% of nodes had error below 0.2.

B.7.4 Geometric interpretation of Theorem 3.1

In Figure B.6, we show a graphical representation of Theorem 3.1 similar to Figure 3.6
in Section 3.7.5 but using actual PPR vectors. For these plots, Gn is a DCM with in-degrees
following a power law with exponent 2 and out-degrees generated as in Algorithm 3.4 from
Section 3.7.3. The dots are projections of the n-dimensional vectors {πv}v∈Vn\Kn into 2D
space; specifically, the v-th dot is at (πv(v1), πv(v2)), where v1 is the node of highest in-degree
and v2 is the node of second-highest in-degree. Red and green, respectively, correspond to
those v for which Bv(Kn, ε) holds and fails, respectively, with Kn chosen as the

√
n nodes

of highest in-degree and ε = 0.2. Finally, the region outlined in blue is the convex hull of
{(πk(v1), πk(v2))}k∈Kn . Note that, as n grows, a larger fraction of dots fall near or within
the blue outlined region, and the area of this region decreases as n grows, as in Figure 3.6.
However, the dichotomy of green dots lying inside the region and red dots lying outside
the region is much less clear than in Figure 3.6. This is in part because the projection
πv 7→ (πv(v1), πv(v2)) is not l1 distance-preserving. Instead, green and red dots exhibit a
different distinction in Figure B.6: roughly speaking, red dots lie closer to the bottom left of
each plot, while green dots lie closer to the top right. This is because v1, v2 ∈ Kn by definition
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Figure B.6: An analogue Figure 3.6 in Section 3.7.5, but here using actual PPR vectors.

of v1, v2 and choice of Kn; hence, dots near the top right are “close” in the graph to at least
two elements of Kn, which (at a high level) means their PPR vectors are well-approximated
as linear combinations of {πk}k∈Kn .

B.8 Algorithmic comparisons

B.8.1 Nonnegative matrix factorization

As discussed in Section 3.5.2, our algorithm can be viewed as a variant of nonnegative
matrix factorization (NMF). To explain this, we assume for simplicity that nodes are labeled
such that Kn = {1, . . . , |Kn|} and Bv(Kn, ε/14) holds ∀ v ∈ {|Kn| + 1, . . . ,∆(Kn, ε/14)}.
Thus, for v ≤ ∆(Kn, ε/14), the estimate π̂v is computed via Approx-PageRank, while for
v > ∆(Kn, ε/14), π̂v is computed as

π̂v = αne
T
v +

∑
k∈Kn

ˆ̃πv(k)π̂k

αn + (1− αn)ˆ̃πv(Kn)
.

Thus, Algorithm 3.1 outputs αnI+WH, where W ∈ Rn×∆(Kn,ε/14), H ∈ R∆(Kn,ε/14)×n satisfy

W (v, :) =

{
eTv , v ≤ ∆(Kn, ε/14)
[ˆ̃πv(1) ··· ˆ̃πv(|Kn|) 0 ··· 0]

αn+(1−αn)π̃v(Kn)
, v > ∆(Kn, ε/14)

,

H(v, :) = π̂v − αneTv .

In short, our algorithm computes matrices W and H such that

‖(Πn − αnI)−WH‖∞ < ε,

which is the NMF-like objective function discussed in Section 3.5.2.
As mentioned in Section 3.5.2, our algorithm offers several advantages over typical NMF

algorithms. First, it is provably accurate (for general graphs) and provably efficient (for
the DCM). Second, it is adaptive in terms of the dimensions of W and H: while standard
NMF algorithms assume W ∈ Rn×r, H ∈ Rr×n a priori for some r (typically r � n to
obtain a low rank estimate), our algorithm determines at runtime which πv, v /∈ Kn can-
not be approximated as linear combinations of {πk}k∈Kn and adjusts r to account for this
(ultimately yielding r = ∆(Kn, ε/14) as above). Additionally, off-the-shelf NMF algorithms
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are difficult to adapt to our setting for several reasons. First, our objective function uses
the non-differentiable norm ‖ · ‖∞, so we cannot compute the gradients needed for standard
NMF. Second, even if our objective was differentiable, it involves the unknown matrix Πn,
again rendering gradient calculations impossible (typically, NMF aims to find W,H so as to
minimize ‖X −WH‖ for some known matrix X).

To overcome these issues, one could instead use the objective function

J(W,H) = min
W,H≥0

1
2
‖αnI −WH(I − (1− αn)P )‖2

F .

Here we have used the differentiable norm ‖ · ‖F and removed the unknown matrix Πn from
the objective. The form of this new objective function is motivated by (1.2), which shows
Πn = αn(I − (1 − αn)P )−1; hence, J(W,H) = 0 when WH = Πn. With this objective
function, the multiplicative update rule for NMF from [70] can be applied, which is

W ← W∇−W/∇
+
W , H ← H∇+

H/∇
−
H , (B.97)

where the multiplication and division is elementwise, and where∇−W and∇+
W are the negative

and positive parts of the gradient of J with respect to W (∇−H ,∇
+
H are defined analogously).

However, we claim that this method will perform worse than our algorithm. To see why, we
define Y = (I − (1− αn)P ) and note

∇W = −αnY THT +WHY Y THT,

∇H = −αnWTY T +WTWHY Y T.

Here multiplying WT by WHY Y T to compute ∇H at the first iteration has complexity
O(n2r), assuming W ∈ Rn×r and H ∈ Rr×n.2 In short, the first iteration of this NMF scheme
has higher complexity than our algorithm. We also note [127] provides similar algorithms
but tailored to stochastic matrices (such as Πn); however, these still involve computation of
∇W ,∇H and a multiplicative update, so the same issue remains.

B.8.2 Representation learning

In Section 3.5.2, we noted a connection between our algorithm and the representation
learning scheme from [73]. At a high level, the latter proceeds in two stages. The first stage
learns certain parameters for the second stage via stochastic gradient descent; the second
stage (Algorithm 1 in [73]) is described informally as Algorithm B.4 here. Roughly, this
second stage begins by representing each node with a given feature vector, then updates this
representation based on features of neighbors (after one iteration), neighbors of neighbors
(after two iterations), etc. There are some issues with applying Algorithm B.4 to our setting.
First, it relies on given feature vectors, derived from e.g. text data pertaining to each node;
our algorithm assumes only the graph structure is known. Second, it applies to undirected
graphs; we have assumed a directed graph throughout the chapter. However, setting these

2This claimed complexity assumes W,H are initialized as dense matrices. We assumed this because, if instead
they are initialized as sparse matrices, the resulting estimate WH could be far from Πn. This latter claim
follows from the update rule (B.97): entries of W,H initialized to zero will remain zero; hence, if W (i, :) or
H(:, j) contain mostly zeros but Πn(i, j) is large, the estimate W (i, :)H(:, j) could be far from Πn(i, j).
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issues aside, we next discuss two more subtle issues with adapting this algorithm to PPR.
We first consider the most immediate adaptation of Algorithm B.4 to our setting, which

we present as Algorithm B.5. Here we let feature vectors simply be point masses on each
node (Line 1), we let the aggregate function be a simple average (Line 4), and we update
hkv as a weighted average of this aggregated vector and eTv (Line 5). In essence, we have
chosen the learned parameters for Algorithm B.4, rather than learning them. This choices
guarantee h

i
1
...
hin

 = αn

i∑
j=0

(1− αn)jP j −−−→
i→∞

Πn, (B.98)

where hiv is the representation of v after i iterations of Algorithm B.5, the equality holds by
Proposition B.1 below, and the limit holds by (1.2). Hence, with these chosen parameters,
running Algorithm B.4 is effectively the same as computing the power iteration in (B.98).
However, as discussed in Section 3.5.1, Approx-PageRank and Approx-Contributions are
refined versions of this power iteration (with stronger complexity and accuracy guarantees),
and these methods have complexity O(n2 log n). Hence, we strongly suspect that this imme-
diate adaptation of Algorithm B.4 will have worse performance than our algorithm (which
has complexity O(nc̄), c̄ < 2). Of course, the preceding paragraph only considers one choice
of parameters for Algorithm B.4. We could also consider learning these parameters. How-
ever, [73] states that running Algorithm B.4 with learned parameters causes prohibitively
long runtime when I > 2 (where I is the number of iterations for the algorithm). Hence,
for feasible choices of I, each node’s ultimate representation only depends on its two-step
neighborhood. We believe this would lead to very poor accuracy in our setting. This is
because, as described in Section 3.4.2, the set of nodes with large PPR grows with n when
αn ∝ 1/ log n. Hence, approximating a node’s PPR vector while only accounting for its
two-step neighborhood will give exceedingly poor accuracy as n grows.

Algorithm B.4: Stage 2 from [73]

1 h0
v ← xv ∀ v ∈ Vn, where xv is a given feature vector

2 for i = 1 to I do
3 for v ∈ Vn do
4 hkN (v) ← AGGREGATEk({hk−1

u : u ∈ N (v)}), where N (v) are v’s neighbors and
AGGREGATEk is a para- meterized function with parameters learned in Stage 1

5 hkv ← σ(WkCONCAT(hk−1
v , hkN (v))), where σ is a nonlinearity, Wk is a matrix

learned in Stage 1, and CONCAT(x, y) concatenates vectors x and y

Proposition B.1. For any v ∈ Vn and any iteration i in Algorithm B.5,

hiv = αne
T
v

i∑
j=0

(1− αn)jP j.

Proof. We use induction. For i = 0, the proposition is immediate by Line 1 of Algorithm
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Algorithm B.5: Adapting Algorithm B.4 to PPR

1 h0
v ← eTv ∀ v ∈ Vn

2 for i = 1 to I do
3 for v ∈ Vn do
4 hkN (v) = 1

Dv

∑
u∈Nout(v) h

k−1
u

5 hkv ← αne
T
v + (1− αn)hkN (v)

B.5. Assuming true for i− 1, we have

hiv = αne
T
v +

(1− αn)

Dv

∑
u∈Nout(v)

hk−1
u

= αne
T
v +

(1− αn)

Dv

∑
u∈Nout(v)

(
αne

T
u

i−1∑
j=0

(1− αn)jP j

)

= αne
T
v + αn(1− αn)

 1

Dv

∑
u∈Nout(v)

eTu

 i−1∑
j=0

(1− αn)jP j

= αne
T
v + αn(1− αn)

(
eTvP

) i−1∑
j=0

(1− αn)jP j

= αne
T
v + αne

T
v

i∑
j=1

(1− αn)jP j = αne
T
v

i∑
j=0

(1− αn)jP j,

where the first equality holds by Lines 4 and 5 of Algorithm B.5, the second uses the inductive
hypothesis, and the fourth holds since P is the row-normalized adjacency matrix.
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APPENDIX C

Proofs for Chapter IV

C.1 Proof of Theorem 4.1

First note that, as stated in the proof sketch,

P(‖v̂k∗ − v‖∞ ≥ 2ε) ≤ P(‖v − v‖∞ ≥ ε). (C.1)

We next derive a pointwise bound for ‖v − v‖∞. First, fix T ∈ N and observe

‖v − v‖∞ ≤ (1− α)
∞∑
t=1

αt‖(Qt −Qt)c‖∞ ≤ (1− α)
T−1∑
t=1

αt‖(Qt −Qt)c‖∞ + 2‖c‖∞αT , (C.2)

where the first inequality is convexity and the second holds since by row stochasticity,

(1− α)
∞∑
t=T

αt‖(Qt −Qt)c‖∞ ≤ (1− α)
∞∑
t=T

αt(‖Qt
c‖∞ + ‖Qtc‖∞) ≤ 2‖c‖∞αT . (C.3)

Now for large enough T , the bound in (C.3) falls below ε/2; in particular,

T ≥ log(4‖c‖∞/ε)/(1− α) ⇒ 2‖c‖∞αT ≤ 2‖c‖∞e−(1−α)T ≤ ε/2 (C.4)

Furthermore, for the t-th summand in (C.2), we can use the triangle inequality to write

‖(Qt −Qt)c‖∞ ≤ ‖Q(Q
t−1 −Qt−1)c‖∞ + ‖(Q−Q)Qt−1c‖∞. (C.5)

For the first summand in (C.5), we have by convexity and row stochasticity,

‖Q(Q
t−1 −Qt−1)c‖∞ ≤ max

s∈S

S∑
s′=1

Q(s, s′)|(Qt−1
(s′, ·)−Qt−1(s′, ·))c| ≤ ‖(Qt−1 −Qt−1)c‖∞.
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We can then combine the previous two inequalities and iterate to obtain

‖(Qt −Qt)c‖∞ ≤
t∑
t=1

‖(Q−Q)Qτ−1c‖∞ ≤ tmax
τ∈[T ]
‖(Q−Q)Qτ−1c‖∞.

Since this holds uniformly in t, we obtain

(1− α)
T−1∑
t=1

αt‖(Qt −Qt)c‖∞ ≤ max
τ∈[T ]
‖(Q−Q)Qτ−1c‖∞

α

1− α
. (C.6)

To summarize, for T as in (C.4) we have shown

‖v − v‖∞ ≤ max
τ∈[T ]
‖(Q−Q)Qτ−1c‖∞

α

1− α
+
ε

2
,

and so, by the union bound,

P(‖v − v‖∞ ≥ ε) ≤
T∑
t=1

P
(
‖(Q−Q)Qt−1c‖∞ ≥

ε(1− α)

2α

)
. (C.7)

Now consider the t-th summand in (C.7). Since Q and Q̃ have the same distribution,

P
(
‖(Q−Q)Qt−1c‖∞ ≥

ε(1− α)

2α

)
= P

(
‖(Q̃−Q)Qt−1c‖∞ ≥

ε(1− α)

2α

)
. (C.8)

To bound the right side of (C.8), we first define dt−1 = Qt−1c and observe that for any s ∈ S,

Q̃(s, ·)Qt−1c =
S∑

s′=1

Q̃(s, s′)dt−1(s′) =
S∑

s′=1

(
1

n

n∑
i=1

1(Ys,i = s′)

)
dt−1(s′) =

1

n

n∑
i=1

dt−1(Ys,i).

Moreover, for any s ∈ S, i ∈ [n] we have

Q(s, ·)Qt−1c =
s∑

s′=1

Q(s, s′)dt−1(s′) =
s∑

s′=1

P(Ys,i = s′)dt−1(s′) = Edt−1(Ys,i).

Combining the previous two equations, and again the union bound, we obtain

P
(
‖(Q̃−Q)Qt−1c‖∞ ≥

ε(1− α)

2α

)
(C.9)

= P

(
max
s∈S

∣∣∣∣∣ 1n
n∑
i=1

(dt−1(Ys,i)− Edt−1(Ys,i))

∣∣∣∣∣ ≥ ε(1− α)

2α

)

≤
S∑
s=1

P

(∣∣∣∣∣ 1n
n∑
i=1

(dt−1(Ys,i)− Edt−1(Ys,i))

∣∣∣∣∣ ≥ ε(1− α)

2α

)
.
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Now fix s ∈ S. Since {Ys,i}ni=1 are independent, {dt−1(Ys,i)}ni=1 are independent as well.
Moreover, dt−1(Ys,i) takes values in [0, ‖c‖∞]. Thus, by the Chernoff bound (C.24),

P

(∣∣∣∣∣ 1n
n∑
i=1

(dt−1(Ys,i)− Edt−1(Ys,i))

∣∣∣∣∣ ≥ ε(1− α)

2α

)
(C.10)

= P

(∣∣∣∣∣
n∑
i=1

(
dt−1(Ys,i)

‖c‖∞
− Edt−1(Ys,i)

‖c‖∞

)∣∣∣∣∣ ≥ nε(1− α)

2‖c‖∞α

)

≤ 2 exp

(
−nε

2(1− α)2

2‖c‖2
∞α

2

)
≤ δ

ST
,

where the final inequality holds assuming we choose T as small as possible in (C.4) and by
the assumption on n. Combining (C.1), (C.7), (C.8), (C.9), and (C.10) implies the theorem.

Remark C.1. This proof assumes the cost vector c is deterministic; in the setting of The-
orem 4.2, the cost vector C is random. In the latter case, we can replace P(·) by P(·|C) but
otherwise follow the same proof to obtain P(‖v̂k∗ − v‖∞ ≥ 2δ|C) ≤ δ a.s. and then average
over C to obtain the same result, assuming the lower bound on n holds almost surely.

C.2 Proof of Theorem 4.3

Define Q, v as in (4.12). We also define the events

E1 = ∪Ss=1 {|v̂BD(s)− v(s)| ≥ εrelv(s) + εabs} ,

E2,s =
{
|v(s)− v(s)| ≥ εrel

2
v(s) +

εabs
2

}
, E2 = ∪Ss=1E2,s,

E3,s =
{
|v̂BD(s)− v(s)| ≥ εrel

2
v(s) +

εabs
2

}
, E3 = ∪Ss=1E3,s.

As discussed in the proof sketch, we let G = σ({v̂k, rk, Uk, Q̂k, sk+1}k∗k=0) denote σ-algebra
generated by the random variables in the Algorithm 4.2 subroutine of Algorithm 4.3. Note
in particular that Q is G-measurable, and thus v is G-measurable; consequently, E2,s ∈ G.
Using these definitions, we state two key lemmas.

Lemma C.1. For nB as in the theorem statement, P(E2) ≤ δ/2.

Lemma C.2. For nF as in the theorem statement, and ∀ s ∈ S, P(E3,s|G)1(EC
2,s) ≤

δ/(2S) a.s.

Before proving the lemmas, we show that they imply the theorem. Towards this end,
first note E1 ⊂ E2 ∪ E3 by the triangle inequality, so E1 ∩ EC

2 ⊂ E3 ∩ EC
2 . Consequently,

P(E1) = P(E1 ∩ E2) + P(E1 ∩ EC
2 ) ≤ P(E2) + P(E3 ∩ EC

2 ).

Furthermore, by the union bound and monotonicity, we have

P(E3 ∩ EC
2 ) ≤

S∑
s=1

P(E3,s ∩ EC
2 ) ≤

S∑
s=1

P(E3,s ∩ EC
2,s).
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Now fix s ∈ S. Then since EC
2,s ∈ G, we can write

P(E3,s ∩ EC
2,s) = E[P(E3,s|G)1(EC

2,s)].

Combining the previous three inequalities with the two lemmas, we obtain

P(E1) ≤ P(E2) +
S∑
s=1

E[P(E3,s|G)1(EC
2,s)] ≤ δ,

and by definition of E1, the theorem follows. We next return to prove the lemmas.

C.2.1 Proof of Lemma C.1

First, we define the constants

T̄ =

⌈
log(2‖c‖∞/εabs)

1− α

⌉
, λ =

log(1 + εrel/2)

T̄
.

Next, we prove the following implication that was mentioned in the proof sketch:

|Q(s, s′)−Q(s, s′)| ≤ λQ(s, s′) ∀ s, s′ ∈ S ⇒ |v(s)− v(s)| ≤ εrel
2
v(s) +

εabs
2
∀ s ∈ S. (C.11)

Assume the left side of (C.11) holds and fix s ∈ S. Then clearly

(1− α)
∞∑
t=T̄

αtQt(s, ·)c ≤ (1− α)
∞∑
t=T̄

αt‖c‖∞ = αT̄‖c‖∞ ≤ e−(1−α)T̄‖c‖∞ ≤
εabs
2

⇒ v(s) = (1− α)
∞∑
t=0

αtQt(s, ·)c ≤ (1− α)
T̄−1∑
t=0

αtQt(s, ·)c+
εabs
2
. (C.12)

We next upper bound the term Qt(s, ·)c in the t-th summand of (C.12). For t = 0, this term

is simply c(s) < (1 + λ)T̄ c(s). For t = 1, the left side of (C.11) implies

Q(s, ·)c =
S∑

s′=1

Q(s, s′)c(s′) ≤ (1 + λ)
S∑

s′=1

Q(s, s′)c(s′) = (1 + λ)Q(s, ·)c < (1 + λ)T̄Q(s, ·)c.

Finally, for t ∈ {2, . . . , T̄ − 1}, the left side of (C.11) similarly gives

Qt(s, ·)c =
∑
s′∈S

∑
s1,...,st−1∈S

Q(s, s1)Q(s1, s2) · · ·Q(st−2, st−1)Q(st−1, s
′)c(s′)

≤ (1 + λ)t
∑
s′∈S

∑
s1,...,st−1∈S

Q(s, s1)Q(s1, s2) · · ·Q(st−2, st−1)Q(st−1, s
′)c(s′)

= (1 + λ)tQt(s, ·)c < (1 + λ)T̄Qt(s, ·)c.
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In summary, we have shown Qt(s, ·)c < (1 + λ)T̄Qt(s, ·)c ∀ t ∈ {0, . . . , T̄ − 1}. Also,

(1 + λ)T̄ < eλT̄ ≤ 1 +
εrel
2
. (C.13)

Combining these observations, we can further bound (C.12) as

v(s) ≤
(

1 +
εrel
2

)
(1− α)

T̄−1∑
t=0

αtQt(s, ·)c+
εabs
2
≤
(

1 +
εrel
2

)
v(s) +

εabs
2
. (C.14)

For a lower bound on v(s), we similarly have

v(s) ≥ (1− α)
T̄−1∑
t=0

αtQt(s, ·)c ≥ (1− λ)T̄ (1− α)
T̄−1∑
t=0

αtQt(s, ·)c

= (1− λ)T̄

(
v(s)− (1− α)

∞∑
t=T̄

αtQt(s, ·)c

)
≥ (1− λ)T̄

(
v(s)− εabs

2

)
.

We next loosen this bound further. First, by convexity and (C.13),

2 = 2

(
1 + λ

2
+

1− λ
2

)T̄
≤ (1 + λ)T̄ + (1− λ)T̄ ≤

(
1 +

εrel
2

)
+ (1− λ)T̄ ,

and so (1− λ)T̄ ≥ 1− εrel/2. Since also (1− λ)T̄ ≤ 1, we thus obtain

v(s) ≥
(

1− εrel
2

)(
v(s)− εabs

2

)
≥
(

1− εrel
2

)
v(s)− εabs

2
. (C.15)

In summary, we have shown that if the left side of (C.11) holds, then (C.14) and (C.15) hold
as well. Since (C.14) and (C.15) together imply the right side of (C.11), (C.11) is proven.
We can now use (C.11) to prove the lemma. First, (C.11) and the union bound imply

P(E2) ≤ P
(
∪s,s′∈S{|Q(s, s′)−Q(s, s′)| > λQ(s, s′)}

)
(C.16)

≤
∑
s,s′∈S

P(|Q(s, s′)−Q(s, s′)| > λQ(s, s′)).

Now for the (s, s′)-th summand in (C.16), we first note

P(|Q(s, s′)−Q(s, s′)| > λQ(s, s′)) ≤ P(|Q(s, s′)−Q(s, s′)| > λQ(s, s′)) (C.17)

= P(|Q̃(s, s′)−Q(s, s′)| > λQ(s, s′))

where the inequality holds since |Q(s, s′)−Q(s, s′)| ≤ |Q(s, s′)−Q(s, s′)| pointwise by (4.11)-

(4.12) and the equality since Q and Q̃ have the same distribution. Substituting into (C.16),

P(E2) ≤
∑
s,s′∈S

P(|Q̃(s, s′)−Q(s, s′)| > λQ(s, s′)), (C.18)
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so our goal is to bound each summand in (C.18) by δ/(2S2). If Q(s, s′) = 0, this is trivial;
if instead Q(s, s′) > 0, the Chernoff bound (C.25) implies

P(|Q̃(s, s′)−Q(s, s′)| > λQ(s, s′)) ≤ 2 exp

(
−
nBλ

2 mini,j∈S:Q(i,j)>0Q(i, j)

3

)
≤ δ

2S2
,

where the final inequality holds by assumption on nB.

C.2.2 Proof of Lemma C.2

Fix s ∈ S. Then by definition of E2,s, E3,s, we aim to show

|v(s)−v(s)| < εrel
2
v(s)+

εabs
2
⇒ P

(
|v̂BD(s)− v(s)| ≥ εrel

2
v(s) +

εabs
2

∣∣∣G) ≤ δ

2S
a.s. (C.19)

Assume the left side of (C.19) holds. Recall by Algorithm 4.3 and the Q-invariant (4.13),

v̂BD(s) = v̂k∗(s) +
1

nF

nF∑
i=1

rk∗(Zs,i), v(s) = v̂k∗(s) + µsrk∗ = vk∗(s) +
1

nF

nF∑
i=1

E[rk∗(Zs,i)|G].

(C.20)
Consequently, defining Z̄s =

∑nF
i=1 rk∗(Zs,i)/ε, we have

P
(
|v̂BD(s)− v(s)| > εrel

2
v(s) +

εabs
2

∣∣∣G) (C.21)

= P
(
|Z̄s − E[Z̄s|G]| > nF

ε

(εrel
2
v(s) +

εabs
2

)∣∣∣G) .
Note that conditioned on G, Z̄s is a sum of independent [0, 1]-valued random variables, so
the Chernoff bounds from Appendix C.5 apply. We consider two cases:
• E[Z̄s|G] < nF εabs/(12ε): Here we bound the right side of (C.21) as

P
(
|Z̄s − E[Z̄s|G]| > nF

ε

(εrel
2
v(s) +

εabs
2

)∣∣∣G) ≤ P
(
|Z̄s − E[Z̄s|G]| > nF εabs

2ε

∣∣∣G)
= P

(
Z̄s − E[Z̄s|G] >

nF εabs
2ε

∣∣∣G)+ P
(
E[Z̄s|G]− Z̄s >

nF εabs
2ε

∣∣∣G)
≤ P

(
Z̄s >

nF εabs
2ε

∣∣∣G)+ 0,

where the first inequality and the equality are immediate, and the second inequality
holds since, by assumption on E[Z̄s|G], E[Z̄s|G] − Z̄s ≤ E[Z̄s|G] < nF εabs/(12ε) <
nF εabs/(2ε), so E[Z̄s|G] − Z̄s > nF εabs/(2ε) cannot occur. For the remaining term,
since E[Z̄s|G] < (1/6)× nF εabs/(2ε) we can use the Chernoff bound (C.26) to obtain

P
(
|Z̄s − E[Z̄s|G]| > nF

ε

(εrel
2
v(s) +

εabs
2

)∣∣∣G) ≤ P
(
Z̄s >

nF εabs
2ε

∣∣∣G)
≤ 2−nF εabs/(2ε) ≤ δ

4S
,
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where the final inequality holds since, by the theorem statement,

nF ≥
324ε log(4S/δ)

ε2
relεabs

=
162

ε2
rel log2 e

2ε log2(4S/δ)

εabs
≥ 2ε log2(4S/δ)

εabs
.

• E[Z̄s|G] ≥ nF εabs/(12ε): We first observe

v(s) <
(

1 +
εrel
2

)
v(s) +

εabs
2

⇔ v(s)− εabs/2
1 + εrel/2

< v(s).

Consequently, the left side of (C.19) implies

εrel
2
v(s)+

εabs
2

>
εrel
2

v(s)− εabs/2
1 + εrel/2

+
εabs
2

=
εrelv(s)

2 + εrel
+
εabs
2

(
1− εrel/2

1 + εrel/2

)
>
εrelv(s)

3
,

where we used εrel ∈ (0, 1). Since also v(s) ≥ E[rk∗(Zs,i)|G] by (C.20), we thus obtain

nF
ε

(εrel
2
v(s) +

εabs
2

)
>
nF
ε

εrelE[rk∗(Ys,i)|G]

3
=
εrel
3

nFE[rk∗(Ys,i)|G]

ε
=
εrel
3

E[Z̄s|G].

Therefore, we can bound the right side of (C.21) as

P
(
|Z̄s − E[Z̄s|G]| > nF

ε

(εrel
2
v(s) +

εabs
2

)∣∣∣G) ≤ P
(
|Z̄s − E[Z̄s|G]| > εrel

3
E[Z̄s|G]

∣∣∣G)
≤ 2 exp

(
−(εrel/3)2

3
E[Z̄s|G]

)
≤ 2 exp

(
−ε

2
rel

27

nF εabs
12ε

)
≤ δ

2S
,

where we used Chernoff bound (C.25), the E[Z̄s|G] assumption, and the nF assumption.

Remark C.2. The proof of Lemma C.1 extends to random cost vectors C by replacing P(·)
by P(·|C) and then averaging over C, similar to the proof of Theorem 4.1 (see Remark C.1).
Furthermore, recall r0 = C and thus C is G-measurable by definition of G, so the proof of
Lemma C.1 is identical in the case of random cost C. Thus, when C is random, Lemmas
C.1 and C.2 hold and can be used to prove the theorem as above.

C.3 Resampling approach

The resampling approach is formally defined in Algorithm C.1. In contrast to Backward-

EPE, we estimate Q(s, sk) as follows at each iteration k: for s ∈ Nin(sk) we draw indepen-
dent samples {Xk

s,i}ni=1 from Q(s, ·) (Line 5 of Algorithm C.1), and for s /∈ Nin(sk) we set

Q̂k(s, sk) = 0 (Line 6). We then compute v̂k, rk using the update rule from Backward-EPE

(Lines 7-8). Finally, as in Backward-EPE, we terminate when ‖rk‖∞ ≤ ε.
We derive the martingale property stated in Section 4.4.3. Define the error process ek(s)

as in Section 4.4.3, and define a filtration {Fk}k∗k=0 by Fk = σ({v̂k′ , rk′ , sk′+1}kk′=0), where by
σ(·) we mean the generated σ-algebra. Now fix k ∈ [k∗], s ∈ S. Then by the update in Lines
7-8 in Algorithm C.1, we have

ek(s) = (v̂k−1(s) + (1− α)rk−1(s)1(s = sk))
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Algorithm C.1: Backward-EPE-Resample

1 k = 0, v̂k = 0S×1, rk = c
2 while ‖rk‖∞ > ε do
3 k ← k + 1, sk ∼ arg maxs∈S rk−1(s) uniformly
4 for s ∈ S do

5 if s ∈ Nin(sk) then {Xk
s,i}ni=1 ∼ Q(s, ·), Q̂k(s, sk) = 1

n

∑n
i=1 1(Xk

s,i = sk) ;

6 else Q̂k(s, sk) = 0;

7 if s = sk then v̂k(s) = v̂k−1(s) + (1− α)rk−1(s), rk(s) = αQ̂k(s, sk)rk−1(sk);

8 else v̂k(s) = v̂k−1(s), rk(s) = rk−1(s) + αQ̂k(s, sk)rk−1(sk);

+
s∑

s′=1

µs(s
′)(rk−1(s′)1(s′ 6= sk) + αQ̂k(s

′, sk)rk−1(sk))− v(s)

= ek−1(s) + rk−1(sk)

(
−µs(sk) + (1− α)1(s = sk) + α

s∑
s′=1

µs(s
′)Q̂k(s

′, sk)

)
(C.22)

Note that all terms in (C.22) except Q̂k(s
′, sk) are Fk−1-measurable, and therefore

E[ek(s)|Fk−1]

= ek−1(s) + rk−1(sk)

(
−µs(sk) + (1− α)1(s = sk) + α

s∑
s′=1

µs(s
′)E[Q̂k(s

′, sk)|Fk−1]

)

= ek−1(s) + rk−1(sk)

(
−µs(sk) + (1− α)1(s = sk) + α

s∑
s′=1

µs(s
′)Q(s′, sk)

)
= ek−1(s),

where the first two equalities hold by Lines 5-6 of Algorithm C.1 and the third holds similar
to (4.9). Hence, {ek(s)}k∗k=0 is a martingale. Also note e0(s) = v̂0(s) + µsr0 − v(s) =
0 + µsc− v(s) = 0. We thus conclude Eek(s) = 0, i.e. the Q-invariant holds in expectation.

C.4 Analysis of existing approach

We recall from Section 4.1.1 that the approach from [19] proceeds as follows. Fix T ∈ N
and, ∀ s ∈ S, sample m length-T trajectories {{W s,i

t }T−1
t=0 }mi=1 from s, and estimate v(s) as

v̂E(s) =
1

m

m∑
i=1

(1− α)
T−1∑
t=0

αtc(W s,i
t ).

(We use the subscript E to distinguish the estimate of this existing approach from the esti-
mates of our algorithms.) To analyze this scheme, we follow the analysis of [19, Proposition
5.4]. By the argument leading to (C.4) in Appendix C.1 (but with a different constant),

T ≥ log(2‖c‖∞/ε)
1− α

⇒ |v̂E(s)− v(s)| ≤ |v̂E(s)− Ev̂E(s)|+ ε, (C.23)
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so consequently, for T as in (C.23),

P(|v̂E(s)− v(s)| ≥ 2ε) ≤ P (|v̂E(s)− Ev̂E(s)| ≥ ε) .

Towards further bounding the right side, we write (as in (C.6))

|v̂E(s)− v(s)| ≤ max
t∈[T−1]

∣∣∣∣∣ 1

m

m∑
i=1

(c(W s,i
t )− Ec(W s,i

t ))

∣∣∣∣∣ α

1− α
.

Combining the previous two inequalities, and using the union bound,

P(|v̂E(s)− v(s)| ≥ 2ε) ≤
T−1∑
t=1

P

(∣∣∣∣∣ 1

m

m∑
i=1

(c(W s,i
t )− Ec(W s,i

t ))

∣∣∣∣∣ ≥ ε(1− α)

α

)
.

We then apply the Chernoff bound (C.24) to bound the t-th summand by

P

(∣∣∣∣∣
m∑
i=1

(
c(W s,i

t )

‖c‖∞
− Ec(W s,i

t ))

‖c‖∞

)∣∣∣∣∣ ≥ mε(1− α)

‖c‖∞α

)
≤ 2 exp

(
−2mε2(1− α)2

‖c‖2
∞α

2

)
.

Note this holds uniformly in t; also, we can take a union bound over s ∈ S to obtain

P(‖v̂E − v‖∞ ≥ 2ε) ≤ 2ST

(
−2mε2(1− α)2

‖c‖2
∞α

2

)
≤ δ,

where the final inequality holds assuming we choose

m ≥ ‖c‖2
∞α

2

2ε2(1− α)2
log

(
2ST

δ

)
.

Note here that m is the number of length-T trajectories sampled from each state. Thus, the
overall sample complexity is at least STm, which we can lower bound as

STm ≥ S‖c‖2
∞α

2 log(2‖c‖∞/ε)
2ε2(1− α)3

log

(
2S

δ

log(2‖c‖∞/ε)
1− α

)
.

C.5 Chernoff bounds

The following is a standard result used throughout our analysis.

Theorem C.1. Let {Ri}mi=1 be independent [0, 1]-valued random variables, and define R =∑m
i=1Ri. Then

P(|R− ER| > η) ≤ 2 exp(−2η2/m) ∀ η > 0, (C.24)

P(|R− ER| > ηER) ≤ 2 exp(−η2ER/3) ∀ η ∈ (0, 1), (C.25)

P(R > η) ≤ 2−η ∀ η > 6ER. (C.26)

Proof. See e.g. [124, Theorem 1.1].

234



APPENDIX D

Proofs for Chapter V

D.1 Existing results

Here we collect some existing results that will be used in our proofs. Most can be found
in the textbook [99]. First, we recall some basic properties of total variation distance.

Lemma D.1. Let µ, ν, η ∈ ∆n−1. Then the following hold:
• (l1 equivalence) ‖µ− ν‖ = 1

2

∑n
i=1 |µ(i)− ν(i)| = 1

2
‖µ− ν‖1.

• (Triangle inequality) ‖µ− ν‖ ≤ ‖µ− η‖+ ‖η − ν‖.
• (Convexity) ‖(γµ+ (1− γ)ν)− η‖ ≤ γ‖µ− η‖+ (1− γ)‖ν − η‖ ∀ γ ∈ (0, 1).
• (Coupling) ‖µ− ν‖ ≤ P(X 6= Y ) for any coupling (X, Y ) of µ and ν, i.e. for any pair

of random variables X and Y with respective marginal distributions µ and ν.

Proof. For l1 equivalence, see Proposition 4.2 in [99]. The triangle inequality and convexity
follow from the corresponding l1 properties. For coupling, see Proposition 4.7 in [99].

We next collect some basic mixing time results. These involve the relaxation time

t
(n)
rel = 1/(1− λ∗n), (D.1)

where 1− λ∗n is the absolute spectral gap of Pn, defined by

λ∗n = max{|λ| : λ is an eigenvalue of Pn, λ 6= 1}.

(Note Pn ∈ En ⇒ λ∗n < 1 – see e.g. Lemma 12.1 in [99] – so (D.1) is well-defined in this case.)

Lemma D.2. Let Pn ∈ En ∀ n ∈ N, and let ε ∈ (0, 1) be independent of n.
• For any n, t ∈ N, dn(t) ≤ maxi,j∈[n] ‖eiP t

n − ejP t
n‖.

• If each Pn is lazy, then supδ∈(0,1) lim infn→∞ t
(n)
mix(δ) =∞.

• For any n, k ∈ N, dn(kt
(n)
mix(ε)) ≤ (2ε)k.1

• If Pn is reversible, then t
(n)
mix(ε) ≥ (t

(n)
rel − 1) log(1/(2ε)).

1Note this motivates the convention ε = 1/4, which yields the convenient inequality dn(kt
(n)
mix) ≤ 2−k.
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• If {Pn}n∈N exhibits pre-cutoff and each Pn is reversible, then t
(n)
rel = o(t

(n)
mix(ε)).

Proof. The first statement holds by global balance and convexity from Lemma D.1, i.e.

dn(t) = max
i∈[n]

∥∥∥eiP t
n−

∑
j∈[n]

πn(j)ejP
t
n

∥∥∥ ≤ max
i∈[n]

∑
j∈[n]

πn(j)‖eiP t
n−ejP t

n‖ ≤ max
i,j∈[n]

‖eiP t
n−ejP t

n‖.

For the second statement, let in ∈ [n] be s.t. πn(in) ≤ 1/n ∀ n ∈ N (clearly, such in exists).
Then by definition of dn(t), definition of total variation, and laziness, we have ∀ n, t ∈ N,

dn(t) ≥ ‖einP t
n − πn‖ ≥ (einP

t
n)(in)− πn(in) ≥ 2−t − 1/n.

As a consequence of this inequality, we obtain

t
(n)
mix(δ) ≥ log2

(
1

δ + 1/n

)
∀ n ∈ N, δ ∈ (0, 1) ⇒ sup

δ∈(0,1)

lim inf
n→∞

t
(n)
mix(δ) =∞.

For the other statements, see Equation 4.34, Theorem 12.4, and Proposition 18.4 in [99].

Finally, we state the inequality from [22] discussed in the main text. Define the hitting
time of A ⊂ [n] as Tn(A) = inf{t ∈ Z+ : Xn(t) ∈ A}. Given η1, η3 ∈ (0, 1), let

t
(n)
hit (1− η3, η1) = min

{
t : max

x∈[n],A⊂[n]:πn(A)≥1−η3

Px(Tn(A) > t) ≤ η1

}
, (D.2)

where Px denotes probability conditioned on the chain starting from Xn(0) = x. We now
state the aforementioned inequality, which relates (D.2) to mixing and relaxation times.

Lemma D.3. Let Pn ∈ En be lazy and reversible. Then for any η1, η2, η3 ∈ (0, 1),

t
(n)
mix((η1 + η2) ∧ 1) ≤ t

(n)
hit (1− η3, η1) +

⌈
t
(n)
rel

2
max

{
log

(
2(1− η1)2

η1η2η3

)
, 0

}⌉
.

Proof. See Corollary 3.1 in [22].

D.2 Proof of Lemma 5.1

For the upper bound, let {P̃n}n∈N satisfy P̃n ∈ B(Pn, αn) ∀ n ∈ N, and let δ ∈ (0, 1) be
arbitrary. It suffices to show that for some N ∈ N, ‖πn− π̃n‖ < δ ∀ n ≥ N . First, ∀ n, t ∈ N,

‖πn−π̃n‖ = ‖πn−π̃nP̃ t
n‖ ≤ ‖πn−π̃nP t

n‖+‖π̃nP t
n−π̃nP̃ t

n‖ ≤ dn(t)+max
x∈[n]
‖exP t

n−exP̃ t
n‖, (D.3)

where we have used global balance and Lemma D.1. For the second term in (D.3), we claim

max
x∈[n]
‖exP t

n − exP̃ t
n‖ ≤ αnt. (D.4)
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We prove (D.4) by induction. For t = 1, (D.4) holds by assumption. For general t, note

P t
n − P̃ t

n = Pn(P t−1
n − P̃ t−1

n ) + (Pn − P̃n)P̃ t−1
n ,

where we added and subtracted PnP̃
t−1
n . Hence, by Lemma D.1, we have ∀ x ∈ [n],

‖exP t
n − exP̃ t

n‖ ≤ ‖exPn(P t−1
n − P̃ t−1

n )‖+ ‖ex(Pn − P̃n)P̃ t−1
n ‖. (D.5)

For the first term in (D.5), we have by Lemma D.1 and the inductive hypothesis,

‖exPn(P t−1
n − P̃ t−1

n )‖ ≤ max
y∈[n]
‖eyP t−1

n − eyP̃ t−1
n ‖ ≤ αn(t− 1). (D.6)

For the second term, we use the following: for a vector x and a row stochastic matrix A,

‖xA‖1 ≤
∑
i

∑
j

|x(j)|A(j, i) =
∑
j

|x(j)|
∑
i

A(j, i) =
∑
j

|x(j)| = ‖x‖1.

Using this inequality and Lemma D.1, we can bound the second term in (D.5) as

‖ex(Pn−P̃n)P̃ t−1
n ‖ =

1

2
‖ex(Pn−P̃n)P̃ t−1

n ‖1 ≤
1

2
‖ex(Pn−P̃n)‖1 = ‖ex(Pn−P̃n)‖ ≤ αn, (D.7)

where the final inequality holds by assumption. Combining (D.6) and (D.7) establishes (D.4).
Substituting into (D.3), we have therefore shown

‖πn − π̃n‖ ≤ dn(t) + αnt ∀ n, t ∈ N.

Now set k = dlog(2/δ)/ log(1/(2ε))e and t = kt
(n)
mix(ε). Note k ∈ N since δ ∈ (0, 1) and

ε ∈ (0, 1/2). Hence, we can use Lemma D.2 to obtain

dn(t) = dn(kt
(n)
mix(ε)) ≤ (2ε)k ≤ (2ε)log(2/δ)/ log(1/(2ε)) =

δ

2
.

Furthermore, since k is independent of n and αnt
(n)
mix(ε)→ 0, we can find N s.t.

αnt = kαnt
(n)
mix(ε) <

δ

2
∀ n ≥ N.

Hence, combining the previous three inequalities, we obtain ‖πn − π̃n‖ < δ ∀ n ≥ N .
For the lower bound, we begin by stating and proving a weaker version of the result.

Lemma D.4. Let Pn ∈ En, αn ∈ (0, 1) ∀ n ∈ N, and let δ ∈ (0, 1/2) be independent of n.

Assume {Pn}n∈N exhibits pre-cutoff, each Pn is lazy and reversible, and limn→∞ αnt
(n)
mix(δ) =

∞. Then ∃ {P̃n}n∈N s.t. P̃n ∈ B(Pn, αn) ∀ n ∈ N and lim infn→∞ ‖πn − π̃n‖ ≥ 1− 3δ.

Proof. First note that 1 − δ, 1 − 2δ ∈ (0, 1) by assumption on δ, so tn := t
(n)
hit (1 − δ, 1 − 2δ)

is well-defined. Hence, by definition, ∃ xn ∈ [n], An ⊂ [n] satisfying

πn(An) ≥ 1− δ, Pxn(Tn(An) > tn − 1) > 1− 2δ. (D.8)
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Now set P̃n = Pαn,exn . Then by the PPR power iteration property (1.1),

π̃n(An) = αn

tn−1∑
t=0

(1− αn)tPxn(Xn(t) ∈ An) + αn

∞∑
t=tn

(1− αn)tPxn(Xn(t) ∈ An). (D.9)

We consider the two summands in (D.9) in turn. For the first summand, we note

Pxn(Xn(t) ∈ An) ≤ Pxn(Tn(An) ≤ t) ≤ Pxn(Tn(An) ≤ tn − 1) < 2δ,

where the second inequality holds for t < tn and the third by (D.8). It follows that

αn

tn−1∑
t=0

(1− αn)tPxn(Xn(t) ∈ An) < 2δ.

For the second summand in (D.9), we simply upper bound the probabilities by 1 to obtain

αn

∞∑
t=tn

(1− αn)tPxn(Xn(t) ∈ An) ≤ (1− αn)tn ≤ exp(−αntn).

Taken together, we have shown π̃n(An) < 2δ + exp(−αntn). Combined with (D.8),

‖πn − π̃n‖ ≥ πn(An)− π̃n(An) > 1− 3δ − exp(−αntn). (D.10)

Next, applying Lemma D.3 with η1 = 1− 2δ and η2 = η3 = δ, we obtain

t
(n)
mix(1− δ) ≤ tn +

⌈
t
(n)
rel

2
log

(
8

1− 2δ

)⌉
,

which, after rearranging, yields

αntn

αnt
(n)
mix(δ)

≥ t
(n)
mix(1− δ)
t
(n)
mix(δ)

−

⌈
t
(n)
rel log(8/(1− 2δ))/2

⌉
t
(n)
mix(δ)

. (D.11)

Now since pre-cutoff holds, t
(n)
mix(1 − δ)/t

(n)
mix(δ) is lower bounded by a positive constant as

n→∞ (by definition of pre-cutoff) and t
(n)
rel = o(t

(n)
mix(δ)) (by Lemma D.2). Hence,

lim inf
n→∞

αntn

αnt
(n)
mix(δ)

> 0.

Since αnt
(n)
mix(δ)→∞, this implies αntn →∞, so take n→∞ in (D.10).

We now prove the c =∞ case of the lemma. First, for k ∈ N, let δk = 2−(k+1)/3; clearly,

δk ∈ (0, 1/2) ∀ k ∈ N. We claim limn→∞ αnt
(n)
mix(δk) =∞ ∀ k ∈ N, which we prove as follows:

• If δk ≤ ε, then t
(n)
mix(δk) ≥ t

(n)
mix(ε) by (5.4), so αnt

(n)
mix(δk)→∞ by assumption.
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• If δk > ε and ε < 1/2, then δk < 1/2 < 1− ε, so t
(n)
mix(δk) ≥ t

(n)
mix(1− ε) by (5.4), and

αnt
(n)
mix(δk) = αnt

(n)
mix(ε)

t
(n)
mix(δk)

t
(n)
mix(ε)

≥ αnt
(n)
mix(ε)

t
(n)
mix(1− ε)
t
(n)
mix(ε)

−−−→
n→∞

∞,

where the limit holds since αnt
(n)
mix(ε)→∞ by assumption and since t

(n)
mix(1− ε)/t(n)

mix(ε)
is lower bounded by a positive constant as n→∞ by pre-cutoff.
• The final case, δk > ε and ε ≥ 1/2, cannot occur, since δk < 1/2 ∀ k ∈ N.

We have verified the conditions of Lemma D.4, so for each k ∈ N we can find {P̃ (k)
n }n∈N s.t.

P̃
(k)
n ∈ B(Pn, αn) ∀ n ∈ N, and, denoting the stationary distribution of P̃

(k)
n by π̃

(k)
n ,

lim inf
n→∞

‖πn − π̃(k)
n ‖ ≥ 1− 3δk = 1− 2−(k+1). (D.12)

Note that, as a consequence of (D.12), ∀ k ∈ N ∃ Nk ∈ N s.t.

‖πn − π̃(k)
n ‖ > 1− 2−k ∀ n ≥ Nk. (D.13)

We assume temporarily that limk→∞Nk = ∞. Our goal is to use {P̃ (k)
n }n,k∈N to construct

{P̃n}n∈N satisfying the lemma statement. The construction proceeds as follows:

• If n < mink∈NNk, set P̃n = P̃
(1)
n . (The choice k = 1 is arbitrary.)

• If n ≥ mink∈NNk, let kn = max{k ∈ N : n ≥ Nk} and set P̃n = P̃
(kn)
n . (Note

n ≥ mink∈NNk guarantees {k ∈ N : n ≥ Nk} 6= ∅, while Nk → ∞ guarantees
|{k ∈ N : n ≥ Nk}| <∞, so kn is well-defined.)

Note that, since P̃
(k)
n ∈ B(Pn, αn) ∀ n, k ∈ N by Lemma D.4, this construction guarantees

P̃n ∈ B(Pn, αn) ∀ n ∈ N as well. Additionally, for n ≥ mink∈NNk, we have n ≥ Nkn by

definition. Hence, because π̃n = π̃
(kn)
n for all such n, we can use (D.13) to obtain

‖πn−π̃n‖ = ‖πn−π̃(kn)
n ‖ > 1−2−kn ∀ n ≥ min

k∈N
Nk ⇒ lim inf

n→∞
‖πn−π̃n‖ ≥ 1−lim sup

n→∞
2−kn .

(D.14)
Thus, to complete the proof, it suffices to show kn →∞ as n→∞. For this, let M > 0 and
define N (m) = max{N1, . . . , NdMe}. Then kn ≥ dMe ≥ M ∀ n ≥ N (m), so since M > 0 was
arbitrary, kn →∞ as n→∞ follows. Thus, by (D.14), we obtain

lim inf
n→∞

‖πn − π̃n‖ ≥ 1 ≥ lim sup
n→∞

‖πn − π̃n‖ ⇒ lim
n→∞

‖πn − π̃n‖ = 1.

We now return to the case limk→∞Nk <∞. Here the construction is much simpler: we set
P̃n = P̃

(n)
n ∀ n ∈ N. Then for all n sufficiently large, n ≥ Nn, so for such n,

‖πn − π̃n‖ = ‖πn − π̃(n)
n ‖ > 1− 2−n,

from which it is clear that limn→∞ ‖πn − π̃n‖ = 1.
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D.3 Proof of Lemma 5.2

For the upper bound, let {σn}n∈N be s.t. σn ∈ ∆n−1 ∀ n ∈ N. Then ∀ n ∈ N,

‖πn − παn,σn‖ ≤ αn

∞∑
t=0

(1− αn)t‖πn − σnP t
n‖ ≤ αn

∞∑
t=0

(1− αn)tdn(t), (D.15)

where we used Lemma D.2 and the PPR power iteration. Now since dn(t) ≤ 1, we can write

αn

∞∑
t=0

(1− αn)tdn(t) = αn

t
(n)
mix(ε)−1∑
t=0

(1− αn)tdn(t) + αn

∞∑
t=t

(n)
mix(ε)

(1− αn)tdn(t) (D.16)

≤ 1− (1− αn)t
(n)
mix(ε) + αn

∞∑
t=t

(n)
mix(ε)

(1− αn)tdn(t).

We now consider the two cases of the bound in turn. First, assume ε ∈ [1/2, 1). Then

αn

∞∑
t=t

(n)
mix(ε)

(1− αn)tdn(t) ≤ ε(1− αn)t
(n)
mix(ε),

where we have used dn(t) ≤ ε whenever t ≥ t
(n)
mix(ε). Thus, by (D.15) and (D.16), we obtain

‖πn − παn,σn‖ ≤ 1− (1− ε)(1− αn)t
(n)
mix(ε) −−−→

n→∞
1− (1− ε)e−c. (D.17)

Note this argument also holds for ε ∈ (0, 1/2). Hence, for ε ∈ (0, 1/2), it suffices to show

lim sup
n→∞

‖πn − παn,σn‖ ≤
1− e−c

1− 2εe−c
, (D.18)

after which we can take a minimum over the bounds in (D.17) and (D.18) to complete the
proof. To prove (D.18), we first bound the remaining summation in (D.16) as

αn

∞∑
t=t

(n)
mix(ε)

(1− αn)tdn(t) = αn

∞∑
j=1

(j+1)t
(n)
mix(ε)−1∑

t=jt
(n)
mix(ε)

(1− αn)tdn(t) (D.19)

≤ αn

∞∑
j=1

dn(jt
(n)
mix(ε))

(j+1)t
(n)
mix(ε)−1∑

t=jt
(n)
mix(ε)

(1− αn)t

=
(

1− (1− αn)t
(n)
mix(ε)

) ∞∑
j=1

dn(jt
(n)
mix(ε))(1− αn)jt

(n)
mix(ε),
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where the first equality is immediate, the inequality holds by monotonicity of dn, and for the
second equality we computed a geometric series. Now by definition, dn(t

(n)
mix(ε)) ≤ ε < 2ε.

Furthermore, by Lemma D.2, dn(jt
(n)
mix(ε)) ≤ (2ε)j ∀ j > 1. We can therefore write

∞∑
j=1

dn(jt
(n)
mix(ε))(1− αn)jt

(n)
mix(ε) <

∞∑
j=1

(
2ε(1− αn)t

(n)
mix(ε)

)j
=

2ε(1− αn)t
(n)
mix(ε)

1− 2ε(1− αn)t
(n)
mix(ε)

. (D.20)

Hence, combining (D.15), (D.16), (D.19), and (D.20), we have ultimately shown

‖πn − π̃n‖ <
(

1− (1− αn)t
(n)
mix(ε)

)(
1 +

2ε(1− αn)t
(n)
mix(ε)

1− 2ε(1− αn)t
(n)
mix(ε)

)

=
1− (1− αn)t

(n)
mix(ε)

1− 2ε(1− αn)t
(n)
mix(ε)

−−−→
n→∞

1− e−c

1− 2εe−c
.

We turn to the lower bound. Similar to the c = ∞ case of Lemma 5.1, we begin with a
weaker result. This result is almost identical to Lemma D.4; its proof is similar and leverages
the stronger assumption of cutoff to obtain a useful bound when αnt

(n)
mix(δ)→ (0,∞).

Lemma D.5. Let Pn ∈ En, αn ∈ (0, 1) ∀ n ∈ N, and let δ ∈ (0, 1/2) be independent of n.

Assume {Pn}n∈N exhibits cutoff, each Pn is lazy and reversible, and limn→∞ αnt
(n)
mix(δ) = c ∈

(0,∞). Then ∃ {P̃n}n∈N s.t. P̃n ∈ B(Pn, αn) ∀ n ∈ N and lim infn→∞ ‖πn−π̃n‖ ≥ 1−3δ−e−c.

Proof. By the argument preceding (D.10) in the Lemma D.4 proof, we obtain {P̃n}n∈N s.t.

‖πn − π̃n‖ > 1− 3δ − exp(−αnt(n)
hit (1− δ, 1− 2δ)).

Furthermore, by the same argument leading to (D.11) in the proof of Lemma D.4, we have

αnt
(n)
hit (1− δ, 1− 2δ)

αnt
(n)
mix(δ)

≥ t
(n)
mix(1− δ)
t
(n)
mix(δ)

−

⌈
t
(n)
rel log(8/(1− 2δ))/2

⌉
t
(n)
mix(δ)

.

Now when cutoff holds, t
(n)
mix(1 − δ)/t

(n)
mix(δ) → 1 (by definition) and t

(n)
rel /t

(n)
mix(δ) → 0 (by

Lemma D.2) as n→∞. Hence, by assumption limn→∞ αnt
(n)
mix(δ) = c, we conclude

lim inf
n→∞

αnt
(n)
hit (1− δ, 1− 2δ) ≥ c.

To summarize, we have shown

lim inf
n→∞

‖πn − π̃n‖ ≥ 1− 3δ − exp(− lim inf
n→∞

αnt
(n)
hit (1− δ, 1− 2δ)) ≥ 1− 3δ − e−c.

We use Lemma D.5 to prove the lower bound in Lemma 5.2 in the manner we used Lemma
D.4 to prove the c =∞ case of Lemma 5.1. First, for k ∈ N, let δk = 2−(k+1)/3 ∈ (0, 1/2); we
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claim limn→∞ αnt
(n)
mix(δk) = c. To prove this, first note (provided the limits exist in (0,∞))

lim
n→∞

αnt
(n)
mix(δk) = lim

n→∞
αnt

(n)
mix(ε) lim

n→∞
t
(n)
mix(δk)/t

(n)
mix(ε) = c lim

n→∞
t
(n)
mix(δk)t

(n)
mix(ε),

so it suffices to show limn→∞ t
(n)
mix(δk)/t

(n)
mix(ε) = 1. This can be proven as follows:

• If ε ≤ δk ≤ 1− ε, we have t
(n)
mix(1− ε) ≤ t

(n)
mix(δk) ≤ t

(n)
mix(ε) by (5.4), so by cutoff,

1 = lim
n→∞

t
(n)
mix(1− ε)
t
(n)
mix(ε)

≤ lim
n→∞

t
(n)
mix(δk)

t
(n)
mix(ε)

≤ lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(ε)

= 1.

• If δk ≤ ε ≤ 1− ε, we have t
(n)
mix(1− δk) ≤ t

(n)
mix(ε) ≤ t

(n)
mix(δk) by (5.4), so by cutoff,

1 = lim
n→∞

t
(n)
mix(1− δk)
t
(n)
mix(δk)

≤ lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(δk)

≤ lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(ε)

= 1.

• If 1 − ε ≤ δk ≤ ε or δk ≤ 1 − ε ≤ ε, the result holds by reversing the roles of ε and
1− ε.
• Finally, ε ≤ 1− ε ≤ δk and 1− ε ≤ ε ≤ δk cannot occur since δk < 1/2.

We have shown δk ∈ (0, 1/2) and limn→∞ αnt
(n)
mix(δk) = c ∀ k ∈ N. Hence, for each k, we can

use Lemma D.5 to find {P̃ (k)
n }n∈N s.t. P̃

(k)
n ∈ B(Pn, αn) ∀ n ∈ N, and

lim inf
n→∞

‖πn − π̃(k)
n ‖ ≥ 1− e−c − 2−(k+1).

From here, proof can be completed in a similar manner as the c =∞ case of Lemma 5.1, by
replacing 1 with 1− e−c in the analysis following (D.12).

D.4 Proof of Theorem 5.1

The lower bounds (5.13) and (5.14) follow from the lower bounds in Lemmas 5.1 and 5.2.
Hence, we only need to prove the upper bounds (5.11) and (5.12). Towards this end, first
assume ε = 1/4; we will then extend the proof to the case ε 6= 1/4. In the case ε = 1/4
(in fact, any ε < 1/2), (5.11) follows immediately from the upper bound in Lemma 5.1. To
prove (5.12), assume for the sake of contradiction ∃ {σn}n∈N with σn ∈ ∆n−1 ∀ n ∈ N and

lim sup
n→∞

‖πn − παn,σn‖ > 1− e−c.

If this inequality holds, then the interval(
0,min

{
1/4, ec

(
lim sup
n→∞

‖πn − παn,σn‖ − (1− e−c)
)})

is nonempty, so we can choose δ in this interval. Since δ < 1/4 by construction, (5.4) implies

αnt
(n)
mix ≤ αnt

(n)
mix(δ) = αnt

(n)
mix(1− δ) t

(n)
mix(δ)

t
(n)
mix(1− δ)

≤ αnt
(n)
mix

t
(n)
mix(δ)

t
(n)
mix(1− δ)

.
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Hence, using the definition of c and the cutoff assumption,

c = lim
n→∞

αnt
(n)
mix ≤ lim

n→∞
αnt

(n)
mix(δ) ≤ lim

n→∞
αnt

(n)
mix × lim

n→∞

t
(n)
mix(δ)

t
(n)
mix(1− δ)

= c× 1 = c, (D.21)

so that limn→∞ αnt
(n)
mix(δ) = c. Assuming for the moment that t

(n)
mix(δ)→∞, we can then use

(5.10) and the choice of δ to obtain

lim sup
n→∞

‖πn − παn,σn‖ ≤ 1− e−c + δe−c < lim sup
n→∞

‖πn − παn,σn‖,

which is a contradiction. Now to see why t
(n)
mix(δ)→∞ holds, first note that ∀ δ′ ∈ (0, δ),

t
(n)
mix(δ) = t

(n)
mix(δ′)

t
(n)
mix(δ)

t
(n)
mix(δ′)

≥ t
(n)
mix(δ′)

t
(n)
mix(1− δ′)
t
(n)
mix(δ′)

,

where the inequality holds by (5.4). Hence, by cutoff, we obtain ∀ δ′ ∈ (0, δ),

lim inf
n→∞

t
(n)
mix(δ) ≥ lim inf

n→∞
t
(n)
mix(δ′).

On the other hand, the previous inequality immediately holds ∀ δ′ ∈ [δ, 1) by (5.4). Therefore,

lim inf
n→∞

t
(n)
mix(δ) ≥ sup

δ′∈(0,1)

lim inf
n→∞

t
(n)
mix(δ′) =∞,

where the equality holds by Lemma D.2.
Finally, we extend the upper bounds to ε 6= 1/4, for which it suffices to show

lim
n→∞

αnt
(n)
mix(ε) = c ⇒ lim

n→∞
αnt

(n)
mix = c, (D.22)

after which we can invoke the result from the case ε = 1/4 to complete the proof. (D.22) is
an almost direct consequence of cutoff. To prove it, we first use (5.4) to obtain

ε ∈ (0, 1/4)⇒ αnt
(n)
mix(ε) ≥ αnt

(n)
mix = αnt

(n)
mix(ε)

t
(n)
mix

t
(n)
mix(ε)

≥ αnt
(n)
mix(ε)

t
(n)
mix(1− ε)
t
(n)
mix(ε)

,

ε ∈ (1/4, 3/4]⇒ αnt
(n)
mix(ε) ≤ αnt

(n)
mix = αnt

(n)
mix(ε)

t
(n)
mix

t
(n)
mix(ε)

≤ αnt
(n)
mix(ε)

t
(n)
mix

t
(n)
mix(3/4)

,

ε ∈ (3/4, 1)⇒ αnt
(n)
mix(ε) ≤ αnt

(n)
mix = αnt

(n)
mix(ε)

t
(n)
mix

t
(n)
mix(ε)

≤ αnt
(n)
mix(ε)

t
(n)
mix(1− ε)
t
(n)
mix(ε)

.

Now letting n→∞ and using cutoff in the three cases, (D.22) follows as in (D.21).
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D.5 Proof of Theorem 5.2

For convenience, we restate the definition of “coincides with” from the main text: a
sequence {αn,ε}n∈N,ε∈(0,1/2) ⊂ (0, 1) coincides with {t(n)

mix(ε)}n∈N,ε∈(0,1) if

sup
ε∈(0,1/2)

lim inf
n→∞

αn,εt
(n)
mix(ε) =∞, αn,ε

αn,δ
∈

[
t
(n)
mix(1− δ)
t
(n)
mix(1− ε)

, 1

]
∀ ε, δ ∈ (0, 1/2) s.t. ε ≥ δ, ∀ n ∈ N.

(D.23)
Such sequences always exist for lazy chains. In particular, if c ∈ (0, 1) is independent of n
and ε, and if αn,ε = c ∀ n ∈ N, ε ∈ (0, 1/2), then {αn,ε}n∈N,ε∈(0,1/2) satisfies (D.23). To see
why, note that the first condition in (D.23) follows immediately from Lemma D.2; for the
second condition, the upper bound clearly holds, and the interval is nonempty by (5.4).

We now prove the crucial property that was discussed in Section 5.4.

Lemma D.6. If pre-cutoff holds and {αn,ε}n∈N,ε∈(0,1/2) ⊂ (0, 1) coincides with the mixing

times {t(n)
mix(ε)}n∈N,ε∈(0,1), then ∀ ε ∈ (0, 1/2), limn→∞ αn,εt

(n)
mix(ε) =∞.

Proof. Let ε ∈ (0, 1/2); we aim to show αn,εt
(n)
mix(ε)→∞. Fix n ∈ N. Then ∀ δ ∈ (0, ε],

αn,εt
(n)
mix(ε) ≥ αn,εt

(n)
mix(1− ε) ≥ αn,δt

(n)
mix(1− δ) = αn,δt

(n)
mix(δ)

t
(n)
mix(1− δ)
t
(n)
mix(δ)

, (D.24)

where the first inequality holds by (5.4) (since ε < 1/2), and the second holds by the lower
bound of the interval in (D.23). On the other hand, ∀ δ ∈ [ε, 1/2),

αn,εt
(n)
mix(ε) ≥ αn,δt

(n)
mix(δ) ≥ αn,δt

(n)
mix(δ)

t
(n)
mix(1− δ)
t
(n)
mix(δ)

, (D.25)

where the first inequality holds by the upper bound of the interval in (D.23) and by (5.4),
and the second by (5.4) (since δ < 1/2). Now n ∈ N was arbitrary, so (D.24) and (D.25)
imply

lim inf
n→∞

αn,εt
(n)
mix(ε) ≥ lim inf

n→∞
αn,δt

(n)
mix(δ)

t
(n)
mix(1− δ)
t
(n)
mix(δ)

∀ δ ∈ (0, 1/2).

Also, by definition of pre-cutoff, ∃ K > 0 independent of n, δ such that ∀ δ ∈ (0, 1/2),

lim inf
n→∞

αn,δt
(n)
mix(δ)

t
(n)
mix(1− δ)
t
(n)
mix(δ)

≥ lim inf
n→∞

t
(n)
mix(1− δ)
t
(n)
mix(δ)

lim inf
n→∞

αn,δt
(n)
mix(δ)

≥ K lim inf
n→∞

αn,δt
(n)
mix(δ).

Combining the previous two bounds, and since these bounds hold ∀ δ ∈ (0, 1/2),

lim inf
n→∞

αn,εt
(n)
mix(ε) ≥ K sup

δ∈(0,1/2)

lim inf
n→∞

αn,δt
(n)
mix(δ) =∞,

where the equality holds by (D.23).
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We turn to the proof of the theorem. First, we show pre-cutoff implies Condition 5.1.
For this, let {αn,ε}n∈N,ε∈(0,1/2) ⊂ (0, 1) coincide with {t(n)

mix(ε)}n∈N,ε∈(0,1), and fix ε ∈ (0, 1/2).

Lemma D.6 ensures αn,εt
(n)
mix(ε)→∞; hence, by Lemma 5.1, ∃ {σn,ε}n∈N s.t.

σn,ε ∈ ∆n−1 ∀ n ∈ N, lim
n→∞

‖πn − παn,ε,σn,ε‖ = 1.

Next, assume (5.15) holds and set αn,ε = 1/(2t
(n)
mix(1− ε)) ∀ n ∈ N, ε ∈ (0, 1/2). Then

αn,ε
αn,δ

=
t
(n)
mix(1− δ)
t
(n)
mix(1− ε)

∀ ε, δ ∈ (0, 1/2).

Furthermore, since (5.15) holds by assumption,

sup
ε∈(0,1/2)

lim inf
n→∞

αn,εt
(n)
mix(ε) =

1

2
sup

ε∈(0,1/2)

lim inf
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

=∞.

The previous two lines show that {αn,ε}n∈N,ε∈(0,1/2) coincides with {t(n)
mix(ε)}n∈N,ε∈(0,1). Fixing

ε ∈ (0, 1/2) and {σn,ε}n∈N s.t. σn,ε ∈ ∆n−1 ∀ n ∈ N, we can then use (D.15) to obtain

‖πn − παn,ε,σn,ε‖ ≤ αn,ε

t
(n)
mix(1−ε)−1∑

t=0

(1− αn,ε)tdn(t) + αn,ε

∞∑
t=t

(n)
mix(1−ε)

(1− αn,ε)tdn(t)

≤ αn,ε

t
(n)
mix(1−ε)−1∑

t=0

(1− αn,ε)t + αn,ε

∞∑
t=t

(n)
mix(1−ε)

(1− αn,ε)t(1− ε)

= 1− ε(1− αn,ε)t
(n)
mix(1−ε) = 1− ε

(
1− 1/2

t
(n)
mix(1− ε)

)t
(n)
mix(1−ε)

≤ 1− ε

2
,

where the final inequality is Bernoulli’s. Since ε, {σn,ε}n∈N were arbitrary, Condition 5.1
fails.

D.6 Proof of Proposition 5.1

D.6.1 Winning streak reversal

For the winning streak reversal, most of the arguments are recounted from Section 4.6 of
[99]. First, for i ∈ [n− 1], note the chain started from i reaches stationarity in i steps, i.e.

eiP
i
n = eiP

i−1
n Pn = e1Pn = πn.

It remains to analyze the chain starting from n. First, we claim that for j ∈ [n− 1],

enP
j
n =

j∑
i=1

2i−j−1en−i + 2−jen. (D.26)
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This claim can be proven inductively: for j = 1, the left side of (D.26) is (en−1 + en)/2 by
(5.19), while the right side of (D.26) is clearly (en−1 + en)/2; assuming true for j, we have

enP
j+1
n = enPnP

j
n =

1

2
(en−1 + en)P j

n =
1

2
en−1−j +

1

2

(
j∑
i=1

2i−j−1en−i + 2−jen

)

= 2−1en−(j+1) +

j∑
i=1

2i−(j+1)−1en−i + 2−(j+1)en =

j+1∑
i=1

2i−(j+1)−1en−i + 2−(j+1)en,

which establishes (D.26). Now taking j = n− 1 in (D.26), we obtain

enP
n−1
n =

n−1∑
i=1

2i−(n−1)−1en−i + 2−(n−1)en = 2−1e1 + · · ·+ 2−(n−1)en−1 + 2−(n−1)en = πn.

To summarize, we have shown eiP
i
n = πn ∀ i ∈ [n− 1] and eiP

n−1
n = πn, which implies

dn(n− 1) = max
i∈[n]
‖eiP n−1

n − πn‖ = 0 ⇒ t
(n)
mix(1− ε), t(n)

mix(ε) ≤ n− 1.

For a lower bound on the ε-mixing time, note that, by (D.26), P n−2
n (n, 1) = 0, where

P n−2
n (n, 1) is the (n, 1)-th element of P n−2

n . Hence, we immediately obtain

dn(n− 2) ≥ ‖enP n−2
n − πn‖ ≥ πn(1)− P n−2

n (n, 1) =
1

2
> ε ⇒ t

(n)
mix(ε) > n− 2,

so, combining with the above, we conclude t
(n)
mix(ε) = n − 1. Finally, to lower bound the

(1− ε)-mixing time, first note that for any t ∈ {0, . . . , n− 2}, we have en−1P
t
n = en−1−t, so

dn(t) ≥ ‖en−1P
t
n − πn‖ = ‖en−1−t − πn‖ ≥ 1− πn(n− 1− t) = 1− 2−n+1+t.

Hence, for t < n− 1− log2(1/ε), we obtain

dn(t) ≥ 1− 2−n+1+t > 1− 2− log2(1/ε) = 1− ε ⇒ t
(n)
mix(1− ε) ≥ n− 1− log2(1/ε).

D.6.2 Complete graph bijection

For the complete graph bijection, we denote by N(i) the neighbors of i ∈ [n] in the
underlying graph, i.e.

N(i) =



{1, . . . , i− 1, i+ 1, . . . , n/2, i+ n/2}, n even, i ≤ n/2

{i− n/2, 1 + n/2, . . . , i− 1, i+ 1, . . . , n}, n even, i > n/2

{1, . . . , i− 1, i+ 1, . . . , (n− 1)/2, i+ (n− 1)/2, n}, n odd, i ≤ (n− 1)/2

{i− (n− 1)/2, 1 + (n− 1)/2, . . . , i− 1, i+ 1, . . . , n}, n odd, (n− 1)/2 < i < n

{1, . . . , n− 1}, n odd, i = n

.
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As an example, for the n = 6 graph in Figure 5.2b, we have

N(1) = {2, 3, 4}, N(2) = {1, 3, 5}, N(3) = {1, 2, 6},
N(4) = {1, 5, 6}, N(5) = {2, 4, 6}, N(6) = {3, 4, 5},

while for the n = 7 graph in the same figure, we have

N(1) = {2, 3, 4, 7}, N(2) = {1, 3, 5, 7}, N(3) = {1, 2, 6, 7},
N(4) = {1, 5, 6, 7}, N(5) = {2, 4, 6, 7}, N(6) = {3, 4, 5, 7},

N(7) = {1, 2, 3, 4, 5, 6}.

We now show t
(n)
mix(1−ε) = 1 for n large. For n even, we have by Lemma D.1 and (5.20)-(5.21),

2‖e1Pn − πn‖

= |Pn(1, 1)− πn(1)|+
∑
j∈N(1)

|Pn(1, j)− πn(j)|+
∑

j∈[n]\({1}∪N(1))

|Pn(1, j)− πn(j)|

=

∣∣∣∣12 − 1

n

∣∣∣∣+
n

2

∣∣∣∣ 1n − 1

n

∣∣∣∣+
(n

2
− 1
) ∣∣∣∣0− 1

n

∣∣∣∣ −−−→n→∞
1,

so, by symmetry, maxi∈[n] ‖eiPn − πn‖ → 1/2 along even n. If n is odd, we similarly have

2‖e1Pn − πn‖ = |Pn(1, 1)− πn(1)|+ |Pn(1, n)− πn(n)|

+
∑

j∈N(1)\{n}

|Pn(1, j)− πn(j)|+
∑

j∈[n]\({1}∪N(1))

|Pn(1, j)− πn(j)|

=

∣∣∣∣12 − n+ 1

(n+ 3)(n− 1)

∣∣∣∣+

∣∣∣∣ 1

n+ 1
− 2

n+ 3

∣∣∣∣
+
n− 1

2

∣∣∣∣ 1

n+ 1
− n+ 1

(n+ 3)(n− 1)

∣∣∣∣+
n− 3

2

∣∣∣∣0− n+ 1

(n+ 3)(n− 1)

∣∣∣∣ −−−→n→∞
1,

so, by symmetry, maxi∈[n−1] ‖eiPn − πn‖ → 1/2 along odd n. We also note

2‖enPn − πn‖ =
n−1∑
j=1

|Pn(n, j)− πn(j)|+ |Pn(n, n)− πn|

= (n− 1)

∣∣∣∣ 1

2(n− 1)
− n+ 1

(n+ 3)(n− 1)

∣∣∣∣+

∣∣∣∣12 − 2

n+ 3

∣∣∣∣ −−−→n→∞

1

2
,

so maxi∈[n] ‖eiPn − πn‖ → 1/2 along odd n. Combined with the analysis for n even,

lim sup
n→∞

dn(1) = lim sup
n→∞

max
i∈[n]
‖eiPn − πn‖ ≤

1

2
< 1− ε, (D.27)
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so t
(n)
mix(1 − ε) ≤ 1 for large n. Finally, by the discussion in Section 5.2, we also know

t
(n)
mix(1− ε) 6= 0 for large n, so we conclude t

(n)
mix(1− ε) = 1 for such n.

We next show t
(n)
mix(ε) = Θ(n). We begin with the easier proof, t

(n)
mix(ε) = Ω(n). For n

even, the intuition is that the stationary distribution places equal weight on both cliques,
whereas the distribution of Xn(t) is biased towards [n/2] if Xn(0) = 1. Hence, we write

dn(t) ≥ ‖e1P
t
n − πn‖ ≥ P t

n(1, [n/2])− πn([n/2]) = P t
n(1, [n/2])− 1

2
, (D.28)

where P t
n(i, j) is the (i, j)-th element of P t

n for i, j ∈ [n] and P t
n(i, A) =

∑
j∈A P

t
n(i, j) for

A ⊂ [n]. It remains to lower bound P t
n(1, [n/2]). For this, we claim

P t
n(i, [n/2]) ≥

(
1− 1

n

)t
∀ t ∈ Z+, i ∈ [n/2]. (D.29)

We prove (D.29) by induction. For t = 0, (D.29) is immediate. Assuming (D.29) holds for t,

P t+1
n (i, [n/2]) =

∑
k∈[n]

Pn(i, k)P t
n(k, [n/2]) ≥

∑
k∈[n/2]

Pn(i, k)P t
n(k, [n/2])

≥
(

1− 1

n

)t
Pn(i, [n/2]) =

(
1− 1

n

)t+1

,

where the first inequality holds by nonnegativity, the second inequality is the inductive
hypothesis, and the last equality holds by (5.20). This proves (D.29). Substituting into
(D.28),

dn(t) ≥
(

1− 1

n

)t
− 1

2
≥
(

1− t

n

)
− 1

2
=

1

2
− t

n
,

where we have also used Bernoulli’s inequality. The following is then immediate:

t < n

(
1

2
− ε
)
⇒ dn(t) > ε ⇒ t

(n)
mix(ε) > n

(
1

2
− ε
)
. (D.30)

We next assume n is odd. Here the argument is nearly identical: since by (5.20),

Pn

(
i,

[
n− 1

2

])
= 1− 2

n+ 1
∀ i ∈

[
n− 1

2

]
,

we can use an inductive argument as above to obtain

P t
n

(
1,

[
n− 1

2

])
≥
(

1− 2

n+ 1

)t
∀ t ∈ Z+.

On the other hand, by (5.20) we have

πn

([
n− 1

2

])
=
n− 1

2

n+ 1

(n− 1)(n+ 3)
≤ 1

2
.
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Hence, combining the previous two lines, and using Bernoulli’s inequality, we obtain

dn(t) ≥ ‖e1P
t
n − πn‖ ≥

1

2
− 2t

n+ 1
.

The following implications are then immediate:

t <
n+ 1

2

(
1

2
− ε
)
⇒ dn(t) > ε ⇒ t

(n)
mix(ε) >

n+ 1

2

(
1

2
− ε
)
. (D.31)

Combining (D.30) and (D.31), we conclude t
(n)
mix(ε) = Ω(n).

For the remainder of the proof, we aim to show t
(n)
mix = O(n), for which we use couplings.2

More specifically, by Lemmas D.1 and D.2, we aim to bound

dn(t) ≤ max
i,j∈[n]

‖eiP t
n − ejP t

n‖ ≤ max
i,j∈[n]

Pij(Xn(t) 6= Yn(t)), (D.32)

where {Xn(t)}t∈Z+ and {Yn(t)}t∈Z+ , respectively, are Markov chains with transition matrix
Pn starting from Xn(0) = i and Yn(0) = j, respectively (as denoted by the subscript in Pij).
For n even, we will refer to the sets {1, . . . , n/2} and {1 +n/2, . . . , n} as cliques (since these
sets form complete subgraphs in the underlying graph); similarly, for n odd, we will call the
sets {1, . . . , (n− 1)/2} and {1 + (n− 1)/2, . . . , n− 1} cliques.

We begin with the case where n is even. Our approach is to first bring the two chains to
the same clique, after which they remain in the same clique forever. Once the chains are in
the same clique, we bring them to the same state, after which they remain in the same state
forever. More specifically, given Xn(t), Yn(t), we assign Xn(t+ 1), Yn(t+ 1) as follows:
(A) If Xn(t) 6= Yn(t), proceed to (B). Otherwise, let Xn(t+1) ∼ eXn(t)Pn and set Yn(t+1) =

Xn(t+ 1) (i.e. run the chains together).
(B) If Xn(t), Yn(t) are in the same clique, proceed to (C). Otherwise, flip an independent

fair coin. If heads, sample Xn(t + 1) from N(Xn(t)) uniformly (i.e. move this chain)
and set Yn(t+ 1) = Yn(t) (i.e. keep this chain lazy). If tails, set Xn(t+ 1) = Xn(t) (i.e.
keep lazy) and sample Yn(t+ 1) from N(Yn(t)) uniformly (i.e. move).3

(C) Flip an independent fair coin. If heads, set Xn(t + 1) = Xn(t), Yn(t + 1) = Yn(t)
(i.e. keep both chains lazy). If tails, roll a three-sided die that lands 1, 2, and 3 with
probability 2

n
, 2
n
, and 1− 4

n
, respectively, and proceed as follows:

• If 1, define Xn(t+ 1), Yn(t+ 1) as follows (i.e. move to the other clique):

(Xn(t+ 1), Yn(t+ 1)) =

{
(Xn(t) + n/2, Yn(t) + n/2), Xn(t) ≤ n/2

(Xn(t)− n/2, Yn(t)− n/2), Xn(t) > n/2
.

• If 2, set Xn(t+ 1) = Yn(t), Yn(t+ 1) = Xn(t) (i.e. swap the chains).4

2Note this bound is order optimal in the sense that is matches the Ω(n) lower bound. Hence, while some
intermediate bounds may seem needlessly loose, this is not a major concern.

3By moving only one chain, we ensure the chains do not switch cliques, i.e. we prevent e.g. the case Xn(t) ∈
{1, . . . , n/2}, Yn(t) ∈ {1 + n/2, . . . , n} and Xn(t+ 1) ∈ {1 + n/2, . . . , n}, Yn(t+ 1) ∈ {1, . . . , n/2}.

4When the die is 2 or 3, both chains move within the clique. By swapping the chains when the die is 2, we
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• If 3, sample Xn(t+1) uniformly from N(Xn(t))\{Yn(t)}, set Yn(t+1) = Xn(t+1).
To analyze this, first suppose Xn(0) = i, Yn(0) = j for some i 6= j in the same clique.

Then Xn(t) 6= Yn(t) implies that at each step τ ∈ {0, . . . , t− 1}, one of the following occur:
• The coin in (C) lands heads, so both chains are lazy. This occurs with probability 1/2.
• The coin in (C) lands tails and the die in (C) lands 1 or 2, so that both chains move,

but to different states. This occurs with probability (1/2)× (4/n) = 2/n.
By independence of these coin flips and die rolls, it follows that

Pij(Xn(t) 6= Yn(t)) ≤
(

1

2
+

2

n

)t
. (D.33)

Next, suppose Xn(0) = i, Yn(0) = j for i 6= j in different cliques. Fix t ∈ N, τ ∈ {1, . . . , t},
and let Eτ denote the event that Xn(τ), Yn(τ) are in the same clique. Then

Pij(Xn(t) 6= Yn(t)) = P(Xn(t) 6= Yn(t)|Eτ )P(Eτ |Xn(0) = i, Yn(0) = j)

+ P(Xn(t) 6= Yn(t)|EC
τ )P(EC

τ |Xn(0) = i, Yn(0) = j)

≤ P(Xn(t) 6= Yn(t)|Eτ ) + P(EC
τ |Xn(0) = i, Yn(0) = j), (D.34)

where we used the Markov property. For the first summand in (D.34), we use time invariance
and the fact that (D.33) holds for any i 6= j in the same clique to obtain

P(Xn(t) 6= Yn(t)|Eτ ) = P(Xn(t− τ) 6= Yn(t− τ)|E0) ≤
(

1

2
+

2

n

)t−τ
For the second summand in (D.34), note that EC

τ implies Xn(τ ′), Yn(τ ′) are not in the same
clique ∀ τ ′ ≤ τ (since once they reach the same clique, they remain in the same clique forever).
This in turn implies that at each such τ ′, the chain that moves in (B) at step τ ′ moves within
its current clique, which occurs with probability 1− 2/n. Thus, by independence,

P(EC
τ |Xn(0) = i, Yn(0) = j) ≤

(
1− 2

n

)τ
≤ exp

(
−2τ

n

)
.

To summarize, we have shown that if Xn(0) = i, Yn(0) = j for i 6= j not in the same clique,

Pij(Xn(t) 6= Yn(t)) ≤
(

1

2
+

2

n

)t−τ
+ exp

(
−2τ

n

)
. (D.35)

Combining (D.33) and (D.35), we thus obtain for any t ∈ N, τ ∈ {1, . . . , t},

max
i,j∈[n]

Pij(Xn(t) 6= Yn(t)) ≤ max

{(
1

2
+

2

n

)t
,

(
1

2
+

2

n

)t−τ
+ exp

(
−2τ

n

)}
. (D.36)

can sample uniformly from the clique, excluding the states Xn(t), Yn(t), when the die is 3.
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Now it is straightforward to verify that if (for example)

n ≥ 6, τ ≥ n

2
log

(
2

ε

)
, t ≥ τ +

log(2/ε)

log(6/5)
≥ n

2
log

(
2

ε

)
+

log(2/ε)

log(6/5)
,

then (D.36) is bounded by ε. Hence, by (D.32), we obtain for some aε independent of n,

t
(n)
mix(ε) ≤ n

2
log

(
2

ε

)
+

log(2/ε)

log(6/5)
≤ aεn ∀ n ∈ {6, 8, . . .}. (D.37)

We next consider n odd. Here we could use a similar approach, but the auxiliary state
n complicates this. Hence, we instead leverage this auxiliary state as follows: we wait until
both chains leave state n (if necessary); we then ensure that the next visits to n occur
simultaneously (after which point the chains run together indefinitely). More specifically,
given Xn(t), Yn(t), we assign Xn(t+ 1), Yn(t+ 1) as follows:
(D) If Xn(t) 6= Yn(t), proceed to (E); else, let Xn(t+ 1) ∼ eXn(t)Pn, Yn(t+ 1) = Xn(t+ 1).
(E) If Xn(t) 6= n and Yn(t) 6= n, proceed to (F). Otherwise, flip an independent fair coin.

If heads, sample Xn(t+ 1) from N(Xn(t)) uniformly and set Yn(t+ 1) = Yn(t). If tails,
set Xn(t+ 1) = Xn(t) and sample Yn(t+ 1) from N(Yn(t)) uniformly.

(F) Roll a die that lands 1, 2, and 3 with probability 1
2
, 1

2
− 1

n+1
, and 1

n+1
, respectively.

• If 1, set Xn(t+ 1) = Xn(t), Yn(t+ 1) = Yn(t).
• If 2, independently and uniformly sample Xn(t+1) and Yn(t+1) from N(Xn(t))\
{n} and N(Yn(t)) \ {n}, respectively.
• If 3, set Xn(t+ 1) = Yn(t+ 1) = n.

To analyze this coupling, first suppose Xn(0) = i, Yn(0) = j for some i, j ∈ [n] \ {n} s.t.
i 6= j. Then Xn(t) 6= Yn(t) implies the following, for each τ ≤ t:
• Xn(τ) 6= Yn(τ). (This can be proven by contradiction. Namely, if Xn(τ) = Yn(τ), then
Xn(t) 6= Yn(t) is violated, since the chains run together forever after meeting by (D).)
• Xn(τ) 6= n, Yn(τ) 6= n. (This can be proven inductively. For τ = 0, it holds by

assumption. For τ > 0, we have Xn(τ − 1) 6= Yn(τ − 1) by the previous item and
Xn(τ − 1) 6= n, Yn(τ − 1) 6= n by the inductive hypothesis. Hence, Xn(τ), Yn(τ) are
assigned via (F). This implies Xn(τ) 6= n, Yn(τ) 6= n; else, Xn(τ) = Yn(τ) = n by (F).)

By the argument of the second item, we can also conclude that, if Xn(t) 6= Yn(t), then
Xn(τ), Yn(τ) were assigned via (F) for each τ ≤ t. Thus, at all such τ , the die in (F) must
have landed 1 or 2 (else, Xn(t) 6= Yn(t) is violated); this occurs with probability 1 − 1

n+1
.

Hence, by independence,

Pij(Xn(t) 6= Yn(t)) ≤
(

1− 1

n+ 1

)t
≤ exp

(
− t

n+ 1

)
∀ i, j ∈ [n] \ {n} s.t. i 6= j. (D.38)

We next consider the case Xn(0) = n or Yn(0) = n; without loss of generality, assume
Xn(0) = n, Yn(0) = j 6= n. Let τ ≤ t and define Eτ = {Xn(τ) 6= n, Yn(τ) 6= n}. Then

Pnj(Xn(t) 6= Yn(t)) = P(Xn(t) 6= Yn(t), Eτ |Xn(0) = n, Yn(0) = j)

+ P(Xn(t) 6= Yn(t), EC
τ |Xn(0) = n, Yn(0) = j)
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= P(Xn(t) 6= Yn(t)|Eτ )P(Eτ |Xn(0) = n, Yn(0) = j)

+ P(Xn(t) 6= Yn(t), EC
τ |Xn(0) = n, Yn(0) = j)

≤ P(Xn(t) 6= Yn(t)|Eτ )
+ P(Xn(t) 6= Yn(t), EC

τ |Xn(0) = n, Yn(0) = j), (D.39)

where the equalities use the Markov property, and the inequality is immediate. Now for the
first summand in (D.39), we can use time invariance and (D.38) to obtain

P(Xn(t) 6= Yn(t)|Eτ ) = P(Xn(t− τ) 6= Yn(t− τ)|E0) ≤ exp

(
− t− τ
n+ 1

)
. (D.40)

For the second summand in (D.39), we again use Xn(t) 6= Yn(t)⇒ Xn(τ) 6= Yn(τ) to obtain

P(Xn(t) 6= Yn(t), EC
τ |Xn(0) = n, Yn(0) = j) ≤ P(Xn(τ) 6= Yn(τ), EC

τ |Xn(0) = n, Yn(0) = j)
(D.41)

We next claim (and will return to prove) that

{Xn(τ) 6= Yn(τ), EC
τ }|{Xn(0) = n, Yn(0) = j} ⇒ Xn(τ ′) = n ∀ τ ′ ≤ τ, (D.42)

i.e. conditioned on the event {Xn(0) = n, Yn(0) = j}, the event {Xn(τ) 6= Yn(τ), EC
τ } can

only occur if the Xn-chain is lazy at every step up to τ . In other words, we require the τ
independent coin tosses at the first τ iterations of (E) to all land tails. Hence, we conclude

P(Xn(τ) 6= Yn(τ), EC
τ |Xn(0) = n, Yn(0) = j) ≤ 2−τ . (D.43)

Combining (D.38), (D.39), (D.40), (D.41), and (D.43), we have shown that for n odd,

max
i,j∈[n]

Pij(Xn(t) 6= Yn(t)) ≤ max

{
exp

(
− t

n+ 1

)
, 2−τ + exp

(
− t− τ
n+ 1

)}
. (D.44)

Therefore, if we choose (for example)

τ ≥ log2

(
2

ε

)
, t ≥ τ + (n+ 1) log

(
2

ε

)
≥ (n+ 1) log

(
2

ε

)
+ log2

(
2

ε

)
,

we conclude (D.44) is further bounded by ε. We thus obtain for some bε independent of n,

t
(n)
mix(ε) ≤ (n+ 1) log

(
2

ε

)
+ log2

(
2

ε

)
≤ bεn ∀ n ∈ {1, 3, . . .}. (D.45)

Finally, we can combine (D.37) and (D.45) to obtain for some aε, bε independent of n,

t
(n)
mix(ε) ≤ max{aε, bε}n ∀ n ≥ 6 ⇒ t

(n)
mix(ε) = O(n).

We have completed the proof of t
(n)
mix(ε) = O(n), assuming (D.42) holds. We now return to

prove (D.42). Assume (for the sake of contradiction) that Xn(τ ∗) = n,Xn(τ ∗ + 1) 6= n for
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some τ ∗ < τ . (i.e. the Xn-chain was non-lazy at some τ ∗ < τ). Then, by (E), the Yn-chain
was lazy at time τ ∗, i.e. Yn(τ ∗) = Yn(τ ∗ + 1). Now consider two cases:

1. τ ∗ = τ − 1: By assumption, Xn(τ) = Xn(τ ∗ + 1) 6= n. Also, we must have Yn(τ) 6= n:
if instead Yn(τ) = n, then n = Yn(τ) = Yn(τ ∗ + 1) = Yn(τ ∗) (since τ ∗ = τ − 1 and
the Yn-chain was lazy at τ ∗), which implies Xn(τ ∗) = Yn(τ ∗) = n, which contradicts
Xn(τ) 6= Yn(τ) in (D.42). Hence, Xn(τ) 6= n, Yn(τ) 6= n, contradicting EC

τ in (D.42).
2. τ ∗ < τ−1: Similarly,Xn(τ ∗+1) 6= n, Yn(τ ∗+1) 6= n and Xn(τ ∗+1) 6= Yn(τ ∗+1). This

implies Xn(τ ∗+2), Yn(τ ∗+2) were assigned via (F). In (F), the chains only move to n if
they move to n together, after which point they remain together forever. Thus, neither
chain can move to n at time τ ∗ + 2, else Xn(τ) 6= Yn(τ) in (D.42) is contradicted.
Repeating this argument for τ ∗ + 3, . . . , τ then contradicts EC

τ in (D.42).
Since both cases yield contradictions, (D.42) is proven.

D.7 Proof of Proposition 5.2

D.7.1 Winning streak reversal

For the WSR, let {αn}n∈N, {σn}n∈N, c1, c2, and c3 be as in the statement of the proposi-
tion. For n ∈ N, set mn = bnc1(1+c2)/2c. Then by αn = Θ(n−c1), c1 > 0, and c2 > 1,

αnmn = Θ
(
n−c1nc1(1+c2)/2

)
= Θ

(
nc1(c2−1)/2

)
⇒ lim

n→∞
αnmn =∞. (D.46)

Again using αn = Θ(n−c1), c1 > 0, and c2 > 1, we also observe⌊
c3α

−c2
n

⌋
−mn = Θ

(
nc1c2 − nc1(1+c2)/2

)
⇒ lim

n→∞

(⌊
c3α

−c2
n

⌋
−mn

)
=∞.

Consequently, we can find a sequence of positive integers {m′n}n∈N such that⌊
c3α

−c2
n

⌋
−mn + 2 > m′n ∀ n ∈ N sufficiently large, lim

n→∞
m′n =∞. (D.47)

Now letting e[m′n] =
∑

i∈[m′n] ei =
∑m′n

i=1 ei, we can use Lemma 1.1 to obtain

παn,σn([m′n]) = αn

∞∑
t=0

(1− αn)tσnP
t
ne

T
[m′n] = αn

∞∑
t=0

(1− αn)t
n∑
i=1

σn(i)eiP
t
ne

T
[m′n]

= αn

mn−1∑
t=0

(1− αn)t
bc3α

−c2
n c∑

i=1

σn(i)eiP
t
ne

T
[m′n] (D.48)

+ αn

∞∑
t=mn

(1− αn)t
n∑
i=1

σn(i)eiP
t
ne

T
[m′n] (D.49)

+ αn

mn−1∑
t=0

(1− αn)t
n∑

i=bc3α
−c2
n c+1

σn(i)eiP
t
ne

T
[m′n]. (D.50)
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To bound the summands in (D.48)-(D.49), we use eiP
t
ne

T
[m′n] ≤ 1 ∀ i, t to obtain

αn

mn−1∑
t=0

(1− αn)t
bc3α

−c2
n c∑

i=1

σn(i)eiP
t
ne

T
[m′n] ≤ αn

mn−1∑
t=0

(1− αn)t
bc3α

−c2
n c∑

i=1

σn(i) ≤
bc3α

−c2
n c∑

i=1

σn(i),

αn

∞∑
t=mn

(1− αn)t
n∑
i=1

σn(i)eiP
t
ne

T
[m′n] ≤ αn

∞∑
t=mn

(1− αn)t = (1− αn)mn ≤ exp(−αnmn).

We next consider (D.50). First note that, whenever i− t > m′n > 0, we have by (5.19),

eiP
t
ne[m′n] = ei−te[m′n] = 0.

Also, every i, t pair in the summation in (D.50) satisfies, for n sufficiently large by (D.47),

i− t ≥ bc3α
−c2
n c+ 1− (mn − 1) = bc3α

−c2
n c −mn + 2 > m′n,

which implies (D.50) is zero for all n large. We have therefore shown

lim sup
n→∞

παn,σn([m′n]) ≤ lim sup
n→∞

bc3α−c2n c∑
i=1

σn(i) + exp(−αnmn)

 = 0,

where the equality holds by assumption and (D.46). Since also παn,σn([m′n]) ≥ 0 ∀ n ∈ N,
we conclude limn→∞ παn,σn([m′n]) = 0. On the other hand,

πn([m′n]) =

m′n∑
i=1

πn(i) =

m′n∑
i=1

2−i = 1− 2−m
′
n −−−→

n→∞
1,

where the limit holds since m′n →∞ by (D.47). Combining arguments, we have shown

lim inf
n→∞

‖πn − παn,σn‖ ≥ lim inf
n→∞

(πn([m′n])− παn,σn([m′n])) = 1,

and so, since ‖πn − παn,σn‖ ≤ 1 ∀ n ∈ N, we conclude limn→∞ ‖πn − παn,σn‖ = 1.

D.7.2 Complete graph bijection

For the CGB, let {αn}n∈N, {P̃n}n∈N be given. Then

‖πn − π̃n‖ ≤ max
i∈[n]
‖πn − eiPn‖+ max

i∈[n]
‖eiPn − eiP̃n‖ ≤ dn(1) + αn ∀ n ∈ N,

where we have used Lemma D.1, global balance, and the fact that P̃n ∈ B(Pn, αn). Thus,
using (D.27) from Appendix D.6 and the assumption lim supαn = ᾱ, we obtain

lim sup
n→∞

‖πn − π̃n‖ ≤ lim sup
n→∞

dn(1) + lim sup
n→∞

αn =
1

2
+ ᾱ.
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APPENDIX E

Proofs and Experimental Details for Chapter VI

E.1 Proof of Theorems 6.1 and 6.2 (outline)

The proofs of Theorems 6.1 and 6.2 proceed in two steps. First, we show that the
graph construction can be locally approximated by a certain branching process. Second, we
analyze the beliefs of agents in the graph by instead analyzing the beliefs of agents in the tree
resulting from the branching process. We note that studying tree agent beliefs rather than
graph agent beliefs is advantageous because the tree has a comparatively simple structure.

The first step is identical for both theorems, while the second step requires a different
analysis for each theorem. In Appendix E.1.1, we outline the first step, and in Appendices
E.1.2 and E.1.3, respectively, we outline the second step for Theorems 6.1 and 6.2, respec-
tively. To highlight the key ideas of our analysis, we defer many details to Appendix E.2;
in particular, proofs pertaining to Appendices E.1.1, E.1.2, and E.1.3 , respectively, can be
found in Appendices E.2.1, E.2.2, and E.2.3, respectively. Finally, we note that through-
out the analysis we use Pn and En, respectively, to denote probability and expectation,
respectively, conditioned on the degree sequence {dout(i), dAin(i), dBin(i)}i∈[n].

E.1.1 Branching process approximation

We first show the belief of any agent in the graph depends (asymptotically) only on
the structure of the agent’s neighborhood and on certain signals realized within this neigh-
borhood. This will facilitate the definition of the branching process with which we will
approximate the graph construction. Importantly, the agent’s belief will not depend on the
priors α0, β0 (asymptotically). This is necessary as we have not specified these priors (beyond
assuming they are bounded by some ᾱ, β̄ independent of n, as discussed in Section 6.2.1).

To begin, we require some notation. Let P denote the graph’s column-normalized adja-
cency matrix, i.e. P (i, j) = |{i′ → j′ ∈ E : i′ = i, j′ = j}|/din(j), and set Q = (1− η)I + ηP ,
where I is the identity matrix of appropriate dimension. (Recall from Section 6.2.2 that E
is in general a multi-set; hence, the numerator in P (i, j) may exceed 1.) Next, for t ∈ N, let
st denote the collection of signals {st(i)}i∈A∪B in vector form. Finally, for i ∈ A define

ϑTn(i) =
1

Tn

Tn−1∑
t=0

sTn−tQ
teTi . (E.1)
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We note that (E.1) can be rewritten as

ϑTn(i) =
1

Tn

Tn−1∑
t=0

∑
j∈A

sTn−t(j)ejQ
teTi , (E.2)

where we have used the fact that st(j) = 0 ∀ t ∈ N, j ∈ B. From this expression, it is clear
that ϑTn(i) only depends on the structure of the Tn-step neighborhood into i (since only
this sub-graph affects the ejQ

teTi terms) and on certain signals within this neighborhood, as
mentioned above. We can then establish the following.

Lemma E.1. Given (A4), ∀ ε > 0 ∃ N s.t. ∀ n ≥ N , |θTn(i)− ϑTn(i)| < ε a.s. ∀ i ∈ A.

Proof. See Appendix E.2.1.1.

Before defining the aforementioned branching process, we formally define the graph con-
struction described in Section 6.2.2. For this, we will use the following additional notation.
• We let Al, l ∈ N0 denote the set of agents at distance l from the initial agent i∗, i.e.
i ∈ Al means a path from i to i∗ of length l exists, but no shorter path exists. Similarly,
we let Bl, l ∈ N0 denote the set of bots at distance l from i∗.
• We let {(i, j) : j ∈ [dout(i)]} denote the set of outstubs belonging to i ∈ A; we let OA

denote the set of all such outstubs.
• For each (i, j) ∈ OA, we define a label g((i, j)) ∈ {1, 2, 3} as follows:

g((i, j)) =


1, i does not yet belong to graph

2, i belongs to graph but (i, j) has not been paired

3, i belongs to graph and (i, j) has been paired

. (E.3)

We will explain the utility of these labels shortly.
With this notation in place, we present the formal graph construction as Algorithm E.1. We
offer some further comments to help explain the algorithm:
• The algorithm takes as input the degree sequence {dout(i), dAin(i), dBin(i)}i∈A, which is

used in Line 1 to define OA. Also in Line 1, we label all outstubs as 1 (since no agents
have been added to the graph), and we initialize the set of bots to the empty set.
• In Line 2, we sample the agent i∗ from which the graph construction begins. Since i∗

then belongs to the graph, we change the labels of its outstubs to 2.
• The remainder of the algorithm proceeds in a breadth-first-search fashion, iterating

over l and agents i at distance l from i∗. For each such agent, we do the following:
– For each of the dAin(i) instubs of i intended for pairing with agent outstubs, we

sample an agent outstub uniformly (Line 7), resampling until an unpaired outstub
(i.e. one with label 1 or 2) has been found (Line 9). Upon finding such an outstub,
denoted (i′, j′), we pair it with i’s instub to form an edge from i′ to i (Line 10).
Note that g((i′, j′)) = 1 implies i′ was added to the graph when edge i′ → i was
formed; hence, because i ∈ Al, i′ is at distance l+1 from i∗ and must be added to
Al+1 (Line 11). Finally, we update the labels of the outstubs of i′ via (E.3) (Lines
11-12). (Line 8 will be used in the branching process approximation to come.)
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Algorithm E.1: Graph-Construction

1 Set OA = {(i, j) : i ∈ A, j ∈ [dout(i)]}, g((i, j)) = 1 ∀ (i, j) ∈ OA, B = ∅
2 Sample i∗ uniformly from A; set g((i∗, j)) = 2 ∀ j ∈ [dout(i

∗)]; set A0 = {i∗}
3 for l = 0 to ∞ do
4 Set Al+1 = Bl+1 = ∅
5 for i ∈ Al do
6 for j = 1 to dAin(i) do
7 Sample (i′, j′) from OA uniformly
8 if g((i′, j′)) 6= 1 and τn =∞ then set τn = l
9 while g((i′, j′)) = 3 do sample (i′, j′) from OA uniformly

10 Add directed edge from i′ to i
11 if g((i′, j′)) = 1 then set Al+1 = Al+1 ∪ {i′}, g((i′, j′)) = 3,

g((i′, j′′)) = 2 ∀ j′′ ∈ [dout(i
′)] \ {j′}

12 else if g((i′, j′)) = 2 then set g((i′, j′)) = 3

13 for j = 1 to dBin(i) do
14 Add bot b = n+ |B|+ 1 with self-loop and unpaired outstub, set

B = B ∪ {b}, Bl+1 = Bl+1 ∪ {b}
15 Add directed edge from b to i

16 if g((i′, j′)) = 3 ∀ (i′, j′) ∈ OA then return

– For each of the dBin(i) instubs of i intended for pairing with bot outstubs, we add
a new bot with a self-loop and an unpaired outstub to the set of bots, updating
Bl+1 accordingly (Line 14), and then add an edge from the new bot to i (Line
15). Note here that B = ∅ at the start of the construction; it follows that the
k-th bot added to the graph is n + k + 1, so B = n + [

∑
i∈A d

B
in(i)] is the set of

bots at the end of the construction.
– Finally, if all outstubs have been paired, the construction terminates (Line 16).

We return to discuss Line 8 of Algorithm E.1. Here τn denotes the first iteration an
outstub with label 2 or 3 is sampled for pairing with an instub. Put differently, τn > l
means that for the first l iterations of the construction, only outstubs with label 1 have
been sampled. This has two consequences. First, no edges have been added between two
nodes both at distance ≤ l from i∗, i.e. the l-step incoming neighborhood of i∗ is a tree
(except for bot self-loops). Second, no resampling of outstubs has occurred (Line 9); this
implies that the outstub (i′, j′) paired in Line 10 is chosen uniformly from OA, so the de-
grees (dout(i

′), dAin(i′), dBin(i′)) of i′ are distributed according to the out-degree distribution fn
defined in (6.7).

These observations motivate a tree construction that we define next. In particular, we
will construct a tree (except for bot self-loops) with edges pointing towards the root. Agents
will be added to the tree with degrees sampled from fn, except for the root node, whose
degrees are sampled from f ∗n (6.7), corresponding to the degrees of i∗ in the graph.

The tree construction requires further notation. First, we let Âl (B̂l, respectively) denote
agents (bots, respectively) at distance l from the tree’s root. We also set Â = ∪∞l=0Âl, B̂ =
∪∞l=0B̂l. (Here and moving forward, we use ·̂ to distinguish tree-related objects from similarly-
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Algorithm E.2: Tree-Construction

1 Define fn, f
∗
n via (6.7), set Â0 = {φ}, sample (dout(φ), dAin(φ), dBin(φ)) from f ∗n

2 Set X1
0 = X2

0 = φ
3 for l = 0 to ∞ do

4 Set Âl+1 = B̂l+1 = ∅
5 for ı ∈ Âl do
6 for k ∈ {1, 2} do
7 if Xk

l = ı then
8 Sample j∗ from [dAin(ı) + dBin(ı)] uniformly, set Xk

l+1 = (ı, j∗)
9 if j∗ > dAin(ı) then set Xk

l′ = (ı, j∗) ∀ l′ ∈ {l + 2, l + 3, · · · }
10 for j = 1 to dAin(ı) do
11 Sample (dout((ı, j)), d

A
in((ı, j)), dBin((ı, j))) from fn

12 Add directed edge from (ı, j) to ı, set Âl+1 = Âl+1 ∪ {(ı, j)}
13 for j = 1 to dBin(ı) do
14 Add bot b = (ı, dAin(ı) + j) with self-loop and unpaired outstub, set

B̂l+1 = B̂l+1 ∪ {b}
15 Add directed edge from b to i

defined graph-related ones.) At times, we will use branching process terminology and e.g.
refer to Âl as the l-th generation of agents. We let φ denote the root node, so that Â0 = {φ}.
We will denote generic node in Âl ∪ B̂l as ı ∈ Nl; here ı = (i1, . . . , il) encodes the ancestry of
ı, i.e. (i1, . . . , il) is the child of (i1, . . . , il−1), the grandchild of (i1, . . . , il−2), etc. Finally, for
such ı and for j ∈ N, (ı, j) = (i1, . . . , il, j) is the concatenation operation and ı|j = (i1, . . . , ij)
denotes ı’s ancestor in generation j, with ı|0 = φ by convention (note ı|l = ı).

We define the tree construction in Algorithm E.2 and offer several comments:
• Lines 2 and 6-9 define a random walk used in Appendix E.1.2; they do not affect the

tree structure and we defer further explanation to Appendix E.1.2.
• As mentioned above, the root node φ has degrees sampled from f ∗n (Line 1), while all

other agents have degrees sampled from fn (Line 11).
• In Line 12, a directed edge is added from (ı, j) to ı; the other dout((ı, j))−1 outstubs of

(ı, j) are left unpaired so that the tree structure is preserved (except for bot self-loops).
• At the conclusion of the l-th iteration, ı ∈ Âl has incoming neighbor set (offspring,

in the branching process terminology) {(ı, j) : j ∈ [dAin(ı) + dBin(ı)]}. More specifically,
the subset (ı, 1), . . . , (ı, dAin(ı)) of ı’s incoming neighbors are agents (Line 12), while the
subset (ı, dAin(ı) + 1), . . . , (ı, dAin(ı) + dBin(ı)) of ı’s incoming neighbors are bots (Line 14).
• Unlike the graph construction, the tree construction continues indefinitely, yielding an

infinite tree (except for bot self-loops) with edges pointing towards the root node φ.
Having defined the tree construction, we also define ϑ̂Tn(φ) as in (E.1) but using the tree

from Algorithm E.2 instead of the graph from Algorithm E.1. Specifically, we let

ϑ̂Tn(φ) =
1

Tn

Tn−1∑
t=0

ŝTn−tQ̂
teTφ =

1

Tn

Tn−1∑
t=0

∑
ı∈Â

ŝTn−t(ı)eıQ̂
teTφ , (E.4)
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where ŝt(ı) ∼ Bernoulli(θ) ∀ t ∈ N, ı ∈ Â; ŝt(ı) = 0 ∀ t ∈ N, ı ∈ B̂; Q̂ = (1− η)I + ηP̂ ; and
P̂ is the column-normalized adjacency matrix of the tree from Algorithm E.2. We note

0 ≤ ϑ̂Tn(φ) ≤ 1

Tn

Tn−1∑
t=0

1Q̂teTφ = 1, (E.5)

where the first inequality holds since (E.4) is a sum of nonnegative terms, the second follows
since

∑
ı∈Â ŝTn−t(ı)eı ≤ 1 component-wise (where 1 is the all ones vectors) and since Q̂teTφ is

element-wise nonnegative, and the equality holds by column stochasticity of Q̂.
We can now state Lemma E.2, which relates the belief of a uniformly random agent in

the graph with the belief of the root node in the tree. For the first statement in the lemma,
we argue that, conditioned on τn > Tn, the Tn-step neighborhood of i∗ in the graph and
the Tn-step neighborhood of φ in the tree are constructed via the same procedure; since the
signals are defined in the same manner as well, this implies ϑTn(i∗) and ϑ̂Tn(φ) have the same
distribution. The second statement of the lemma says that the condition τn > Tn occurs with
high probability; it is essentially implied by [48, Lemma 5.4]. We note that the assumptions
(A1) and (A2) are required for this second statement to hold, and are standard assumptions
needed to locally approximate a sparse random graph construction with a branching process.
Finally, we recall ζ < 1/2 by (A2), which is why the limit shown in Lemma E.2 holds.

Lemma E.2. Assume (A1) and (A2) hold, and let
D
= denote equality in distribution. Then

ϑTn(i∗)|{τn > Tn}
D
= ϑ̂Tn(φ), P(τn ≤ Tn|Ωn,1) = O

(
nζ−1/2

)
−−−→
n→∞

0.

Proof. See Appendix E.2.1.2.

We can now state and prove Lemma E.3, which is the main result for Step 1 of the proofs
of the theorems. This result will allow us to analyze convergence of θTn(i∗) (the graph agent
belief) by instead analyzing convergence of ϑ̂Tn(φ) (the tree agent belief).

Lemma E.3. Assume (A1), (A2), and (A4) hold. Then ∀ x ∈ R and all n ∈ N large,

P(|θTn(i∗)− x| > ε) ≤ P(|ϑ̂Tn(φ)− x| > ε/2) + P(ΩC
n,1) +O

(
nζ−1/2

)
.

Proof. First, given ε > 0, we have for sufficiently large n,

P(|θTn(i∗)− x| > ε) ≤ P(|θTn(i∗)− ϑTn(i∗)|+ |ϑTn(i∗)− x| > ε) ≤ P(|ϑTn(i∗)− x| > ε/2),

where the first inequality uses the triangle inequality and in the second we used Lemma E.1
to bound |θTn(i∗)−ϑTn(i∗)| by ε/2 a.s. Furthermore, by the law of total probability, we have

P(|ϑTn(i∗)− x| > ε/2) ≤ P(|ϑTn(i∗)− x| > ε/2|τn > Tn) + P(τn ≤ Tn|Ωn,1) + P(ΩC
n,1).

Combining the previous two inequalities and using Lemma E.2, we obtain

P(|θTn(i∗)− x| > ε) ≤ P(|ϑ̂Tn(φ)− x| > ε/2) +O
(
nζ−1/2

)
+ P(ΩC

n,1),
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which is what we set out to prove.

Before proceeding, we state a lemma that will be used in Step 2 of the proofs for both
theorems. This lemma uses the fact that each agent in the tree has a unique path to the
root. As a result, we can obtain an alternate expression for the terms eıQ̂

teTφ in (E.4).

Lemma E.4. For each n ∈ N,

ϑ̂Tn(φ) =
1

Tn

Tn−1∑
t=0

t∑
l=0

(
t

l

)
ηl(1− η)t−l

∑
ı∈Âl

ŝTn−t(ı)
l−1∏
j=0

din(ı|j)−1 a.s., (E.6)

where by convention
∏l−1

j=0 din(ı|j)−1 = 1 when l = 0.

Proof. See Appendix E.2.1.3.

E.1.2 Step 2 for proof of Theorem 6.1

We next establish convergence of ϑ̂Tn(φ), from which convergence of θTn(i∗) will follow via
Lemma E.3. We will use Chebyshev’s inequality, so we begin with two lemmas describing the
limiting behavior of the mean and variance of ϑ̂Tn(φ). Here and moving forward, for random
variables X and Y we use Varn(X) = En[X2] − (En[X])2 and Covn(X, Y ) = En[XY ] −
En[X]En[Y ] to denote variance and covariance conditional on the degree sequence.

Lemma E.5. Given (A3) and (A4), we have the following:

lim
n→∞

Tn(1− pn) = 0⇒ lim
n→∞

|En[ϑ̂Tn(φ)]− θ|1(Ωn,2) = 0 a.s.

lim
n→∞

Tn(1− pn) = c ∈ (0,∞)⇒ lim
n→∞

∣∣∣∣En[ϑ̂Tn(φ)]− θ1− e−cη

cη

∣∣∣∣ 1(Ωn,2) = 0 a.s.

lim
n→∞

Tn(1− pn) =∞⇒ lim
n→∞

|En[ϑ̂Tn(φ)]|1(Ωn,2) = 0 a.s.

Proof. See Appendix E.2.2.1.

Lemma E.6. Given (A3) and (A4), limn→∞Varn(ϑ̂Tn(φ))1(Ωn,2) = 0 a.s.

Proof. See Appendix E.2.2.2.

Before proceeding, we briefly describe our approach to proving these lemmas. First, we
note that in analyzing the moments of ϑ̂Tn(φ), the i.i.d. Bernoulli random variables ŝTn−t(ı)
in (E.6) are easily dealt with; the difficulty arises from the

∏l−1
j=0 din(ı|j)−1 terms. Luckily,

there is a simple interpretation of that guides our analysis and that proceeds as follows. First,
define a random walk {X1

l }l∈N0 with X1
0 = φ and X1

l chosen uniformly from the incoming
neighbors of X1

l−1, for each l ∈ N. Then, as shown in (E.25) in Appendix E.2.2.1,

E
∑
ı∈Âl

l−1∏
j=0

din(ı|j)−1 = P(X1
l ∈ Âl).
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In short, computing the mean of ϑ̂Tn(φ) amounts to computing hitting probabilities of the
form P(X1

l ∈ Âl). Similarly, to analyze the second moment of ϑ̂Tn(φ), we compute hitting
probabilities of the form P(X1

l ∈ Âl, X
2
l ∈ Âl), where X2

l is defined in the same manner
as X1

l and is conditionally independent of X1
l given the tree structure. We note that, in

principal, the k-th moment of ϑ̂Tn(φ) can be computed by analyzing k walks. However,
the calculations become exceedingly complex as k grows, and because we only require two
moments, we do not study any case k > 2.

This interpretation explains Lines 2 and 6-9 of Algorithm E.2: in Line 2, we begin two
walks at the root node φ; each time Lines 6-9 are reached, we advance the walks one step.
Importantly, we simultaneously sample the walks and construct the tree, i.e. the l-th step of
the walk is taken at Line 8, before the degrees of the corresponding node are realized in Line
11; this is crucial to our computation of the aforementioned hitting probabilities. Finally, we
note that in Line 9 of Algorithm E.2, the condition j∗ > dAin(ı) implies the walk reaches the
set of bots B̂; since bots have self-loops but no other incoming edges, they act as absorbing
states on the walk. This is why the future trajectory of the walk can be defined in Line 9.

In Lemmas E.7 and E.8, we compute the hitting probabilities needed for the proofs of
Lemmas E.5 and E.6. We note that, in addition to the random variables p̃n, p̃

∗
n, q̃n defined in

(6.8) in Section 6.3.1, Lemma E.8 requires the definition of several similar random variables;
we define these in (E.7) (and recall the definitions of p̃n, p̃

∗
n, q̃n). We discuss these in more

detail shortly.

p̃n =
∑

j∈N,k∈N0

j

j + k

∑
i∈N

fn(i, j, k)

q̃n =
∑

j∈N,k∈N0

j

j + k

1

j + k

∑
i∈N

fn(i, j, k)

r̃n =
∑

j∈N,k∈N0

j

j + k

j − 1

j + k

∑
i∈N

fn(i, j, k)

p̃∗n =
∑

j∈N,k∈N0

j

j + k

∑
i∈N

f ∗n(i, j, k)

q̃∗n =
∑

j∈N,k∈N0

j

j + k

1

j + k

∑
i∈N

f ∗n(i, j, k)

r̃∗n =
∑

j∈N,k∈N0

j

j + k

j − 1

j + k

∑
i∈N

f ∗n(i, j, k)

(E.7)

Lemma E.7. We have

Pn(X1
l ∈ Â) =

{
p̃∗np̃

l−1
n , l ∈ N

1, l = 0
.

Proof. See Appendix E.2.2.4.

Lemma E.8. For l′ > l, we have

Pn(X1
l ∈ Â,X2

l′ ∈ Â) =

{
Pn(X1

l ∈ Â,X2
l ∈ Â)p̃l

′−l
n , l ∈ N

p̃∗np̃
l′−1
n , l = 0

.

Furthermore,

Pn(X1
l ∈ Â,X2

l ∈ Â) =


r̃∗np̃

2(l−1)
n +

∑l
t=2 q̃

∗
nq̃

t−2
n r̃np̃

2(l−t)
n + q̃∗nq̃

l−1
n , l ∈ {2, 3, . . .}

r̃∗n + q̃∗n, l = 1

1, l = 0

. (E.8)
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Proof. See Appendix E.2.2.5.

Before proceeding, we comment on the form of (E.8), which helps explain the definitions

in (E.7). Namely, in (E.8), r̃∗np̃
2(l−1)
n is the probability of the two random walks visiting

different agents on the first step of the walk (r̃∗n term), then separately remaining in the

agent set for the next l − 1 steps of the walk (p̃
2(l−1)
n term); similarly, q̃∗nq̃

t−2
n r̃np̃

2(l−t)
n is the

probability of the walks visiting the same agents for t− 1 steps (q̃∗nq̃
t−2
n term), then visiting

a different agent on the t-th step (r̃n term), then separately remaining in the agent set for

l − t steps (p̃
2(l−t)
n term); finally, q̃∗nq̃

l−1
n is the probability of the walks remaining together

and in the agent set for l steps. Each of these arguments follows from (E.7): p̃n gives the
probability of a single walk proceeding to an agent (j/(j+ k) term), q̃n gives the probability
of two walks proceeding to the same agent (j/(j + k) term for the first walk, 1/(j + k)
term for the second walk), and r̃n gives the probability of two walks proceeding to different
agents (j/(j + k) term for the first walk, (j − 1)/(j + k) term for the second walk). Similar
arguments apply to p̃∗n, q̃

∗
n, r̃
∗
n, except these pertain to the first steps of the walks.

Equipped with Lemmas E.5 and E.6, we can prove Theorem 6.1. First, suppose Tn(1−
pn)→ 0. Given ε > 0, we can use Lemma E.3 to obtain (provided the limits exist)

lim
n→∞

P(|θTn(i∗)− θ| > ε) ≤ lim
n→∞

(
P(|ϑ̂Tn(φ)− θ| > ε/2) + P(ΩC

n,1) +O
(
nζ−1/2

))
(E.9)

= lim
n→∞

P(|ϑ̂Tn(φ)− θ| > ε/2),

where we have used P(ΩC
n,1)→ 0 by (A1) and ζ < 1/2 by (A2). Next, using total probability,

P(|ϑ̂Tn(φ)− θ| > ε/2) ≤ P(|ϑ̂Tn(φ)− θ| > ε/2,Ωn,2) + P(ΩC
n,2). (E.10)

We can further expand the first summand in (E.10) as

P(|ϑ̂Tn(φ)− θ| > ε/2,Ωn,2) ≤ P(|ϑ̂Tn(φ)− Enϑ̂Tn(φ)|+ |Enϑ̂Tn(φ)− θ| > ε/2,Ωn,2)

≤ P
(
|ϑ̂Tn(φ)− Enϑ̂Tn(φ)| > ε

4
,Ωn,2

)
+ P

(
|Enϑ̂Tn(φ)− θ| > ε

4
,Ωn,2

)
, (E.11)

where we have simply used the triangle inequality and the union bound. Now for the first
summand in (E.11), we have by Chebyshev’s inequality,

P
(
|ϑ̂Tn(φ)− Enϑ̂Tn(φ)| > ε

4
,Ωn,2

)
= E

[
Pn
(
|ϑ̂Tn(φ)− Enϑ̂Tn(φ)| > ε

4

)
1(Ωn,2)

]
(E.12)

≤ 16

ε2
E
[
Varn(ϑ̂Tn(φ))1(Ωn,2)

]
−−−→
n→∞

0,

where the limit holds by Lemma E.6. For second summand in (E.11), we write

P
(
|Enϑ̂Tn(φ)− θ| > ε

4
,Ωn,2

)
= E

[
1
(
|Enϑ̂Tn(φ)− θ| > ε

4

)
1(Ωn,2)

]
(E.13)

≤ 4

ε
E[|Enϑ̂Tn(φ)− θ|1(Ωn,2)] −−−→

n→∞
0,
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where the first two lines use total expectation and the inequality 1(x > y) ≤ x/y for x, y > 0
(which is easily verified), and the limit holds by Lemma E.5. Finally, combining (E.9),
(E.10), (E.11), (E.12), and (E.13), and recalling that P(ΩC

n,2)→ 0 by (A3), we obtain

0 ≤ lim
n→∞

P(|θTn(i∗)− θ| > ε) ≤ lim
n→∞

P(|ϑ̂Tn(φ)− θ| > ε/2) = 0.

Since ε > 0 was arbitrary, we conclude that θTn(i∗) converges to θ in probability, completing
the proof in the case Tn(1−pn)→ 0. For the cases Tn(1−pn)→ c ∈ (0,∞) and Tn(1−pn)→
∞, respectively, we can replace θ with θ(1−e−cη)/(cη) and 0, respectively (the corresponding
cases from Lemma E.5), but otherwise follow the same approach.

E.1.3 Step 2 for proof of Theorem 6.2

Similar to the second step in the proof of Theorem 6.1, we begin by analyzing the limiting
behavior of ϑ̂Tn(φ). However, we will use a different approach than that used in Theorem
6.1. This approach is made possible by the stronger assumptions of Theorem 6.2, and it will
yield a fast rate of convergence that will allow us to prove the theorem.

To explain our approach, we first recall that Lemma E.4 states

ϑ̂Tn(φ) =
1

Tn

Tn−1∑
t=0

t∑
l=0

(
t

l

)
ηl(1− η)t−l

∑
ı∈Âl

ŝTn−t(ı)
l−1∏
j=0

din(ı|j)−1.

Hence, letting T denote the collection of random variables defining the tree structure,

E[ϑ̂Tn(φ)|T ] =
1

Tn

Tn−1∑
t=0

t∑
l=0

(
t

l

)
ηl(1− η)t−l

∑
ı∈Âl

E[ŝTn−t(ı)|T ]
l−1∏
j=0

din(ı|j)−1 (E.14)

=
θ

Tn

Tn−1∑
t=0

t∑
l=0

(
t

l

)
ηl(1− η)t−l

∑
ı∈Âl

l−1∏
j=0

din(ı|j)−1,

where we have simply used the fact that the signals are i.i.d. Bernoulli(θ) random variables.
Our basic approach will now proceed in two steps. First, in Lemma E.9 we condition on the
tree structure, so that ϑ̂Tn(φ) is simply a weighted sum of i.i.d. Bernoulli(θ) random variables;
the lemma shows that this weighted sum is close to its conditional mean E[ϑ̂Tn(φ)|T ] with
high probability. Second, in Lemma E.10, we show that the conditional mean E[ϑ̂Tn(φ)|T ]
converges to zero in probability. Before proceeding, we also note that an argument similar
to (E.5) implies the following, which will be used throughout the section:

0 ≤ E[ϑ̂Tn(φ)|T ] ≤ θ a.s. (E.15)

We now state Lemma E.9. As mentioned, the proof involves analyzing a weighted sum
of i.i.d. random variables; hence, our analysis is similar to Hoeffding’s.

Lemma E.9. Assume ∃ µ > 0 and N ′ ∈ N independent of n s.t. the following hold:
• (A4), with Tn ≥ µ log n ∀ n ≥ N ′.
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Then ∀ ε > 0,

P(|ϑ̂Tn(φ)− E[ϑ̂Tn(φ)|T ]| > ε) = O
(
n−2ε2µ

)
.

Proof. See Appendix E.2.3.1.

Lemma E.10 states that conditional mean E[ϑ̂Tn(φ)|T ] converges to zero in probability.
Note that the only source of randomness in E[ϑ̂Tn(φ)|T ] is the tree structure. Since the tree
is generated recursively, E[ϑ̂Tn(φ)|T ] has a martingale-like structure; this allows us to use an
approach similar to the Azuma-Hoeffding inequality.

Lemma E.10. Assume ∃ κ, µ > 0 and N ′ ∈ N independent of n s.t. the following hold:
• (A3), with P (Ωn,2) = O(n−κ) and p < 1.
• (A4), with Tn ≥ µ log n ∀ n ≥ N ′.

Then ∀ ε > 0,

P(E[ϑ̂Tn(φ)|T ] > ε) = O
(
n−min{µ(εη(1−p)/θ)2,κ}

)
.

Proof. See Appendix E.2.3.2.

We prove Theorem 6.2. First, since θTn(i∗), ϑ̂Tn(φ) ≥ 0, taking x = 0 in Lemma E.3 gives

P(θTn(i∗) > ε) ≤ P(ϑ̂Tn(φ) > ε/2) + P(ΩC
n,1) +O

(
nζ−1/2

)
= P(ϑ̂Tn(φ) > ε/2) +O

(
n−κ

)
+O

(
nζ−1/2

)
, (E.16)

where the equality is by the theorem assumptions. For the first summand in (E.16), we write

P(ϑ̂Tn(φ) > ε/2) ≤ P(|ϑ̂Tn(φ)− E[ϑ̂Tn(φ)|T ]|+ E[ϑ̂Tn(φ)|T ] > ε/2)

≤ P(|ϑ̂Tn(φ)− E[ϑ̂Tn(φ)|T ]| > ε/4) + P(E[ϑ̂Tn(φ)|T ] > ε/4)

= O
(
n−ε

2µ/8 + n−min{µ(εη(1−p)/θ)2/16,κ}
)

= O
(
n−min{µ(εη(1−p)/θ)2/16,κ}

)
,

where the first inequality is immediate, the second inequality uses the union bound, the
second equality uses Lemmas E.9 and E.10, and the final equality holds since η, p ∈ (0, 1)
implies ε2µ/8 > µ(εη(1− p)/θ)2/16. Substituting into (E.16),

P(θTn(i∗) > ε) = O
(
n−min{(1/2)−ζ,µ(εη(1−p)/θ)2/16,κ}

)
. (E.17)

We can then write

E |{i ∈ [n] : θTn(i) > ε}| = nP(θTn(i∗) > ε) = O
(
n1−min{(1/2)−ζ,µ(εη(1−p)/θ)2/16,κ}

)
,

where we have used (E.17). Hence, by Markov’s inequality,

P
(
|{i ∈ [n] : θTn(i) > ε}| > Knk

)
≤ K−1n−kE |{i ∈ [n] : θTn(i) > ε}|

= O
(
n−k+(1−min{(1/2)−ζ,µ(εη(1−p)/θ)2/16,κ})

)
−−−→
n→∞

0,

where the limit holds by the assumption on k in the statement of the theorem.
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E.1.4 Other remarks

E.1.4.1 A sufficient condition for extending Theorem 6.2

Here we show that the condition (6.12) from Section 6.3.3 is sufficient to extend Theorem
6.2 to other cases of pn. Recall this condition is

∃ γ′ > 0 s.t. P(|E[ϑ̂Tn(φ)|T ]− L(pn)| > ε) = O
(
n−γ

′
)
, (E.18)

where L(pn) is the limit from Theorem 6.1 based on the relative asymptotics of Tn and pn,
i.e.

L(pn) =


θ, Tn(1− pn) −−−→

n→∞
0

θ(1− e−cη)/(cη), Tn(1− pn) −−−→
n→∞

c ∈ (0,∞)

0, Tn(1− pn) −−−→
n→∞

∞
. (E.19)

Suppose (E.18) holds in the case Tn(1− pn)→ 0, so that L(pn) = θ. In this case, we have

P(|θTn(i∗)− θ| > ε) ≤ P(|ϑ̂Tn(φ)− θ| > ε/2) +O
(
n−min{κ,(1/2)−ζ})

≤ P(|ϑ̂Tn(φ)− E[ϑ̂Tn(φ)|T ]| > ε/4) + P(|E[ϑ̂Tn(φ)|T ]− θ| > ε/4) +O
(
n−min{κ,(1/2)−ζ})

≤ O
(
n−ε

2µ/8
)

+O
(
n−γ

′
)

+O
(
n−min{κ,(1/2)−ζ}) = O

(
n−min{ε2µ/8,γ′,κ,(1/2)−ζ}

)
,

where the first inequality is Lemma E.3 (which holds for all cases of pn) with P(Ωn,1) =
O(n−κ) and the third uses Lemma E.9 (which holds for all cases of pn) and the sufficient
condition (E.18). Hence, by the argument following (E.17), we obtain for any ε > 0, K > 0,
and k′ > 1−min{ε2µ/8, γ′, κ, (1/2)− ζ},

P
(
|{i ∈ [n] : |θTn(i)− θ| > ε}| > Knk

′
)
−−−→
n→∞

0,

i.e. Theorem 6.2 holds with k replaced by k′. The same argument shows that Theorem 6.2
holds (with a change of k) if Tn(1− pn)→ c ∈ (0,∞) or Tn(1− pn)→∞ with pn → 1.

E.1.4.2 Comparing Step 2 for proofs of Theorems 6.1 and 6.2

As shown in Appendices E.1.2 and E.1.3, Step 2 for the proofs of both theorems involves
bounding P(|ϑ̂Tn(φ) − L(pn)| > ε/2) for the appropriate L(pn). One may wonder why we
have conducted a different analysis for the two theorems. The reason is that, as shown in
Appendix E.2.3.3, the analysis for Step 2 of Theorem 6.2 yields a bound that does not decay
with n in the case Tn(1 − pn) → c ∈ [0,∞). Hence, we have derived a bound for Theorem
6.1 that encompasses all cases of limn→∞ Tn(1 − pn). On the other hand, the bound from
Theorem 6.1 only states P(|ϑ̂Tn(φ) − L(pn)| > ε/2) → 0 but does not provide a rate of
convergence so cannot be used to prove Theorem 6.2. We also note Appendix E.2.3.3 shows
that, while the bound for Step 2 of Theorem 6.2 does decay in n for the case Tn(1−pn)→∞
with pn → 1, it does not decay quickly enough to establish (6.12).
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E.2 Proof of Theorems 6.1 and 6.2 (details)

E.2.1 Branching process approximation

E.2.1.1 Proof of Lemma E.1

For t ∈ N0, let αt, βt denote the parameters {αt(i)}i∈A∪B, {βt(i)}i∈A∪B in vector form,
and let 1 denote the all ones vector. We claim

αt = (1− η)
t∑

τ=1

sτQ
t−τ + α0Q

t, βt = (1− η)
t∑

τ=1

(1− sτ )Qt−τ + β0Q
t ∀ t ∈ N.(E.20)

We prove (E.20) for αt; the proof for βt follows the same approach. First, we use the
parameter update equations (6.6), and the definitions of P and Q from Appendix E.1.1 (P
being the column-normalized adjacency matrix and Q = (1− η)I + ηP ) to write

αt = (1− η)(αt + st) + ηαt−1P = (1− η)st + αt−1Q. (E.21)

Now for t = 1, (E.20) is equivalent to (E.21). Assuming (E.20) holds for t− 1, we have

αt = (1− η)st + αt−1Q = (1− η)st +

(
(1− η)

t−1∑
τ=1

sτQ
(t−1)−τ + α0Q

t−1

)
Q

= (1− η)st + (1− η)
t−1∑
τ=1

sτQ
t−τ + α0Q

t = (1− η)
t∑

τ=1

sτQ
t−τ + α0Q

t.

Next, recalling ei is the vector with 1 in the i-th position and 0 elsewhere,

θTn(i) =
αTn(i)

αTn(i) + βTn(i)
=

(1− η)
∑Tn

τ=1 sτQ
Tn−τeTi + α0Q

TneTi

(1− η)
∑Tn

τ=1 1QTn−τeTi + (α0 + β0)QTneTi

=
(1− η)

∑Tn
τ=1 sτQ

Tn−τeTi + α0Q
TneTi

(1− η)Tn + (α0 + β0)QTneTi
=

1
Tn

∑Tn
τ=1 sτQ

Tn−τeTi + 1
(1−η)Tn

α0Q
TneTi

1 + 1
(1−η)Tn

(α0 + β0)QTneTi
,

where the equalities hold by definition, by (E.20), since the columns of Q sum to 1 by
definition, and by multiplying numerator and denominator by 1

(1−η)Tn
, respectively. Next,

recall from Section 6.2.1 that α0(j) ∈ [0, ᾱ] ∀ j ∈ A ∪ B for some ᾱ > 0. Hence, α0

is element-wise upper bounded by ᾱ1, so α0Q
TneTi ≤ ᾱ1QTneTi = ᾱ, where we have used

column stochasticity of Q. Additionally, α0Q
TneTi ≥ 0 (since the three terms in the product

are elementwise nonnegative). By a similar argument, 0 ≤ β0Q
TneTi ≤ β̄. Taken together,

we can use the previous equation to obtain

1
Tn

∑Tn
τ=1 sτQ

Tn−τeTi

1 + ᾱ+β̄
(1−η)Tn

≤ θTn(i) ≤ 1

Tn

Tn∑
τ=1

sτQ
Tn−τeTi +

ᾱ

(1− η)Tn
.

Finally, recall from Section 6.2.1 that ᾱ and β̄ are independent of n. Hence, because Tn →∞
as n→∞ (by (A4) in the statement of the lemma), ᾱ/Tn, β̄/Tn → 0 as n→∞. It follows
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that, for given ε > 0 and n sufficiently large, |θTn(i)− 1
Tn

∑Tn
τ=1 sτQ

Tn−τeTi | < ε. Finally, by

changing the index of summation, 1
Tn

∑Tn
τ=1 sτQ

Tn−τeTi = ϑTn(i), completing the proof.

E.2.1.2 Proof of Lemma E.2

We begin by arguing ϑTn(i∗)|{τn > Tn}
D
= ϑ̂Tn(φ). For this, first consider the sub-graph

containing only edges between two agents formed during the first Tn iterations of Algorithm
E.1. Conditioned on τn > Tn, this sub-graph is constructed as follows:
• The initial agent i∗ is sampled uniformly from A (Line 2), which implies its degrees

(dout(i
∗), dAin(i∗), dBin(i∗)) are distributed as f ∗n. (In fact, this holds even if τn ≤ Tn.)

• Each time an edge is added to the sub-graph (Line 10), the paired outstub (i′, j′) is
sampled uniformly from OA (else, τn > Tn is contradicted by Line 8-9), so the degrees
(dout(i

′), dAin(i′), dBin(i′)) of the corresponding agent i′ are distributed as fn.
• The initial agent i∗ has no paired outstubs, while all other agents in the sub-graph

have one paired outstub (else, an outstub with label 2 was paired within the first Tn
iterations, contradicting τn > Tn by Line 8); in particular, the sub-graph has | ∪Tnl=0 Al|
nodes and |∪Tnl=0Al|−1 edges. Also, every agent in the sub-graph has a path to i∗ by the
breadth-first-search construction, so, neglecting edge polarities, we obtain a connected
graph with | ∪Tnl=0 Al| nodes and | ∪Tnl=0 Al| − 1 edges, i.e. a tree. Finally, since all edges
point towards i∗ (see Line 10), the sub-graph is a directed tree pointed towards i∗.

In summary, the sub-graph is a directed tree pointing towards an agent with degrees dis-
tributed as f ∗n, in which all other nodes have degrees distributed as fn. This is precisely the
procedure used to construct the sub-graph of agents during the first Tn iterations of Algo-
rithm E.2. Additionally, Algorithms E.1 and E.2 add bots in the same manner (Lines 14-15 in
Algorithm E.1, Lines 14-15 in Algorithm E.2). Taken together, we conclude that, conditioned
on τn > Tn, the Tn-step neighborhood into i∗ is constructed in the same manner in Algorithm
E.1 as the Tn-step neighborhood into φ is constructed in Algorithm E.2. Furthermore, by
(E.2) and (E.4), it is clear that ϑTn(i) and ϑ̂Tn(φ), respectively, depend only on these respec-
tive neighborhoods, and on the signals sTn−t(i) and ŝTn−t(ı), respectively. Since the signals
sTn−t(i) and ŝTn−t(ı) are also defined in the same manner (sTn−t(i), ŝTn−t(ı) ∼ Bernoulli(θ)
for i ∈ A, ı ∈ Â; sTn−t(i) = ŝTn−t(ı) = 0 for i ∈ B, ı ∈ B̂), we ultimately conclude that
ϑTn(i∗) and ϑ̂Tn(φ) have the same distribution when τn > Tn holds.

We next argue {τn > Tn} occurs with high probability when Ωn,1 holds. For this, we
note that Algorithm E.1 is identical to the graph construction described in [48, Section
5.2] except the construction in [48] does not include the pairing of agent instubs with bots
in Lines 14-15 of Algorithm E.1. However, these lines do not affect τn. Moreover, when
(A1) holds, the assumptions of [48, Lemma 5.4] are satisfied. This lemma states that,
if tn < (log n)/(2 log(ν3/ν1)) and ν3 > ν1 (with ν1, ν3 defined as in (A1)), then P (τn ≤
tn|Ωn,1) = O((ν3/ν1)tn/

√
n). In particular, by (A2) we have Tn ≤ ζ log(n)/ log(ν3/ν1) for n

sufficiently large, with ζ ∈ (0, 1/2) independent of n; substituting gives

P(τn ≤ Tn|Ωn,1) = O

(
(ν3/ν1)ζ log(n)/ log(ν3/ν1)

√
n

)
= O

(
nζ−1/2

)
.
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E.2.1.3 Proof of Lemma E.4

We first claim that for l ∈ N0 and ı ∈ Âl,

eıP̂
l′eφ =

{∏l−1
j=0 din(ı|j)−1, l′ = l

0, l′ ∈ N0 \ {l}
. (E.22)

(Recall P̂ is the column-normalized adjacency matrix.) We prove (E.22) separately for l = 0
and l ∈ N. When l = 0, the only case is ı = φ (since Â0 = {φ}); if l′ = 0, the left side is
clearly 1 and the right side is 1 by convention; if l′ ∈ N, the left side is 0 since eφP̂

l′ = 0

(φ has no outgoing neighbors in the tree). Next, we aim to prove (E.22) for ı ∈ Âl and
l ∈ N. For such ı, there is a unique path from ı to φ with length l that visits the nodes
ı|l = ı, ı|l − 1, . . . , ı|0 = φ. By definition of P̂ , it follows that

eıP̂
leφ = P̂ (ı|l, ı|l − 1)P̂ (ı|l − 1, ı|l − 2) · · · P̂ (ı|1, ı|0) =

1

din(ı|l − 1)

1

din(ı|l − 2)
· · · 1

din(φ)
.

On the other hand, if l′ 6= l, no path of length l′ from ı to φ exists, so eıP̂
l′eφ = 0.

Recalling that Q̂ = (1− η)I + ηP̂ , we next claim that ∀ t ∈ N0,

Q̂t =
t∑
l=0

(
t

l

)
ηl(1− η)t−lP̂ l. (E.23)

We prove (E.23) inductively: both sides equal I when t = 0; assuming (E.23) is true for t,

Q̂t+1 = ((1− η)I + ηP̂ )
t∑
l=0

(
t

l

)
ηl(1− η)t−lP̂ l

=
t∑
l=0

(
t

l

)
ηl(1− η)t+1−lP̂ l +

t+1∑
l=1

(
t

l − 1

)
ηl(1− η)t+1−lP̂ l

= (1− η)t+1I +
t∑
l=1

((
t

l

)
+

(
t

l − 1

))
ηl(1− η)t+1−lP̂ l + ηt+1P̂ t+1

= (1− η)t+1I +
t∑
l=1

(
t+ 1

l

)
ηl(1− η)t+1−lP̂ l + ηt+1P̂ t+1,

where in the first line we have used the definition of Q̂ and the inductive hypothesis, the
second line simply uses the distributive property, the third rearranges summations, and the
fourth uses Pascal’s rule ([t + 1] has

(
t+1
l

)
subsets of cardinality l;

(
t
l−1

)
that contain 1 and(

t
l

)
that do not contain 1). This completes the proof of (E.23).

Having established (E.23) and (E.22), we can combine them to obtain ∀ t ∈ N0, ı ∈ Âl,

eıQ̂
teφ =

{(
t
l

)
ηl(1− η)t−l

∏l−1
j=0 din(ı|j)−1, l ≤ t

0, l > t
.
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Finally, substituting the previous equation into (E.4), and recalling Â = ∪∞l=0Âl, we obtain

ϑ̂Tn(φ) =
1

Tn

Tn−1∑
t=0

t∑
l=0

∑
ı∈Âl

ŝTn−t(ı)

(
t

l

)
ηl(1− η)t−l

l−1∏
j=0

din(ı|j)−1,

which completes the proof.

E.2.2 Step 2 for proof of Theorem 6.1

E.2.2.1 Proof of Lemma E.5

First, letting D denote the degree sequence and T denote the set of random variables
defining the tree structure, we can use Lemma E.4 to write

En[ϑ̂Tn(φ)] =
1

Tn

Tn−1∑
t=0

t∑
l=0

(
t

l

)
ηl(1− η)t−lEn

∑
ı∈Âl

E[ŝTn−t(ı)|D, T ]
l−1∏
j=0

din(ı|j)−1


=

θ

Tn

Tn−1∑
t=0

t∑
l=0

(
t

l

)
ηl(1− η)t−lPn(X1

l ∈ Â), (E.24)

where the first equality uses the fact that Âl and d(ı|j)−1 are fixed given the tree structure,
and the second uses the fact that ŝTn−t(ı) ∼ Bernoulli(θ) and the definition of X1

l , i.e.

Pn(X1
l ∈ Â) = En[P(X1

l ∈ Â|D, T )] = En

∑
ı∈Âl

l−1∏
j=0

din(ı|j)−1

 . (E.25)

Here we have also used the fact that {X1
l }l∈N is a walk starting at the root of a directed

tree; hence, for ı ∈ Âl, P(X1
l = ı|D, T ) is the probability of the path from φ to ı, which is∏l−1

j=0 din(ı|j)−1, and X1
l ∈ Â⇔ X1

l = ı for some ı ∈ Âl. Next, using (E.24) and Lemma E.7,

En[ϑ̂Tn(φ)] =
θ

Tn

Tn−1∑
t=0

(
t∑
l=1

(
t

l

)
ηl(1− η)t−lp̃∗np̃

l−1
n + (1− η)t

)
, (E.26)

where by convention the summation over l is zero when t = 0. Adding and subtracting
(1− η)tp̃∗n/p̃n, the previous equation can be rewritten as

En[ϑ̂Tn(φ)] =
θ

Tn

p̃∗n
p̃n

Tn−1∑
t=0

t∑
l=0

(
t

l

)
(ηp̃n)l(1− η)t−l +

θ

Tn

(
1− p̃∗n

p̃n

) Tn−1∑
t=0

(1− η)t (E.27)

=
θ

Tn

p̃∗n
p̃n

Tn−1∑
t=0

(1− η(1− p̃n))t +
θ

Tn

(
1− p̃∗n

p̃n

)
1− (1− η)Tn

η

=
θ

Tn

p̃∗n
p̃n

1− (1− η(1− p̃n))Tn

η(1− p̃n)
+

θ

Tn

(
1− p̃∗n

p̃n

)
1− (1− η)Tn

η
,
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where we have simply used the binomial theorem and computed two geometric series.
Next, we assume temporarily that pn → 1 as n→∞. By (A3), we have for ω ∈ Ωn,2

p̃n(ω) ∈ (pn − δn, pn + δn).

Hence, by pn → 1, and δn → 0 by (A3), we have for γ1 > 0, n sufficiently large, and such ω

1− γ1 <
p̃∗n(ω)

p̃n(ω)
< 1 + γ1,

where we have also used the fact that 1 ≥ p̃∗n ≥ p̃n on Ωn,2 by (A3). Also, by (A4), it is clear
that (1− (1− η))Tn/Tn → 0, so for given γ2 > 0 and n sufficiently large,

0 <
θ

Tn

1− (1− η)Tn

η
< γ2.

Combining the previous four equations implies that for n sufficiently large and ω ∈ Ωn,2,

En[ϑ̂Tn(φ)](ω) < (1 + γ1)
θ

Tn

1− (1− η(1− pn − δn))Tn

η(1− pn − δn)
+ γ1γ2, (E.28)

En[ϑ̂Tn(φ)](ω) > (1− γ1)
θ

Tn

1− (1− η(1− pn + δn))Tn

η(1− pn + δn)
− γ1γ2.

We complete the proof for the case Tn(1−pn)→ 0; the proof for other cases is similar. First,
we use Lemma E.11 from Appendix E.2.4 to obtain for any γ3 > 0 and for n large enough

1− γ3 <
1− (1− η(1− pn − δn))Tn

Tnη(1− pn − δn)
< 1 + γ3,

1− γ3 <
1− (1− η(1− pn + δn))Tn

Tnη(1− pn + δn)
< 1 + γ3.

Combining the previous two equations gives for n large and ω ∈ Ωn,2

En[ϑ̂Tn(φ)](ω) < θ(1 + γ1)(1 + γ3) + γ1γ2 = θ + θ(γ1 + γ3 + γ1γ3) + γ1γ2,

En[ϑ̂Tn(φ)](ω) > θ(1− γ1)(1− γ3)− γ1γ2 = θ − θ(γ1 + γ3 − γ1γ3)− γ1γ2.

Hence, for given γ > 0, we can find γ1, γ2, γ3 small and n large such that, for ω ∈ Ωn,2,

|En[ϑ̂Tn(φ)](ω)− θ| < γ. This clearly also implies |En[ϑ̂Tn(φ)](ω)− θ|1(Ωn,2)(ω) < γ for such

ω. On the other hand, for ω /∈ Ωn,2, it is trivial that |En[ϑ̂Tn(φ)](ω)− θ|1(Ωn,2)(ω) = 0 < γ.
This completes the proof for the case Tn(1− pn)→ 0.

We return to the case pn → p ∈ [0, 1). Here it follows from (A4) that Tn(1−pn)→ [0,∞)
cannot occur, i.e. we need only consider the case Tn(1 − pn) → ∞. First, note that since
pn → p < 1 and δn → 0, we have pn + δn < 1− γ1 for some γ1 > 0 and n sufficiently large.
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For such n, and for ω ∈ Ωn,2, we then obtain p̃n(ω) < 1− γ1; substituting into (E.26) gives

En[ϑ̂Tn(φ)](ω) <
θ

Tn

Tn−1∑
t=0

(
t∑
l=1

(
t

l

)
ηl(1− η)t−l(1− γ1)l−1 + (1− η)t

)
(E.29)

<
θ

Tn

1

1− γ1

Tn−1∑
t=0

t∑
l=0

(
t

l

)
ηl(1− η)t−l(1− γ1)l

=
θ

Tn

1

1− γ1

1− (1− ηγ1)Tn

ηγ1

<
θ

Tn

1

1− γ1

1

ηγ1

where in the first inequality we used p̃n(ω) < 1 − γ1 and p̃∗n(ω) ≤ 1, in the second we used
1 − γ1 ∈ (0, 1) (so that (1 − η)t < (1 − η)t/(1 − γ1)), for the equality we used the binomial
theorem and computed a geometric series, and the final inequality is immediate. Since θ, η, γ1

are independent of n, while Tn →∞ as n→∞ by (A4), it is clear from this final expression
that, for given γ > 0, n sufficiently large, and ω ∈ Ωn,2, 0 ≤ En[ϑ̂Tn(φ)](ω) < γ. It follows

that |En[ϑ̂Tn(φ)]|1(Ωn,2)→ 0 a.s., completing the proof.

E.2.2.2 Proof of Lemma E.6

First, suppose pn → p ∈ [0, 1). Then, since ϑ̂Tn(φ) ≤ 1 a.s. (see (E.5) and the following
argument), Varn(ϑ̂Tn(φ)) ≤ Enϑ̂Tn(φ)2 ≤ Enϑ̂Tn(φ). Furthermore, since Tn → ∞ by (A4),
the fact that pn → p ∈ [0, 1) means only the case Tn(1 − pn) → ∞ can occur. In this case,
since En[ϑ̂Tn(φ)]1(Ωn,2)→ 0 a.s. by Lemma E.5, we immediately obtain from Varn(ϑ̂Tn(φ)) ≤
En[ϑ̂Tn(φ)] that Varn(ϑ̂Tn(φ))1(Ωn,2) → 0 a.s. as well. Hence, it only remains to prove the
lemma in the case pn → 1, which we assume to hold for the remainder of the proof.

Towards this end, letting D denote the degree sequence and T denote the set of random
variables defining the tree structure (as in Appendix E.2.2.1), we have

Varn(ϑ̂Tn(φ)) = En[Var(ϑ̂Tn(φ)|D, T )] + Varn(E[ϑ̂Tn(φ)|D, T ]). (E.30)

We next consider the two summands in (E.30) in turn. In particular, we aim to show that
each summand multiplied by 1(Ωn,2) tends to zero a.s. as n tends to infinity.

For the first summand in (E.30), we use the fact that the signals are i.i.d. Bernoulli(θ)
given the tree structure, as well as Lemma E.4, to write

Var(ϑ̂Tn(φ)|D, T ) =
1

T 2
n

Tn−1∑
t=0

t∑
l=0

∑
ı∈Âl

Var(ŝTn−t(ı)|D, T )

((
t

l

)
ηl(1− η)t−l

l−1∏
j=0

din(ı|j)−1

)2

=
1

T 2
n

Tn−1∑
t=0

t∑
l=0

∑
ı∈Âl

θ(1− θ)

((
t

l

)
ηl(1− η)t−l

l−1∏
j=0

din(ı|j)−1

)2

≤ 1

T 2
n

Tn−1∑
t=0

t∑
l=0

(
t

l

)
ηl(1− η)t−l

∑
ı∈Âl

l−1∏
j=0

din(ı|j)−1 ≤ 1

Tn
,

where in the final step we have used
∑

ı∈Âl

∏l−1
j=0 din(ı|j)−1 ≤ 1 and

∑t
l=0

(
t
l

)
ηl(1− η)t−l = 1.
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It immediately follows that 0 ≤ En[Var(ϑ̂Tn(φ)|D, T )]1(Ωn,2) ≤ 1/Tn a.s. Hence, because
Tn →∞ as n→∞ by (A4), analysis of the first summand in (E.30) is complete.

For the second summand in (E.30), we first use the argument of (E.24) to write

E[ϑ̂Tn(φ)|D, T ] =
θ

Tn

Tn−1∑
t=0

t∑
l=0

(
t

l

)
ηl(1− η)t−l

∑
ı∈Âl

l−1∏
j=0

din(ı|j)−1

=
θ

Tn

Tn−1∑
l=0

∑
ı∈Âl

l−1∏
j=0

din(ı|j)−1

Tn−1∑
t=l

(
t

l

)
ηl(1− η)t−l ,

θ

Tn

Tn−1∑
l=0

YluTn,l,

where we have defined Yl =
∑

ı∈Âl

∏l−1
j=0 din(ı|j)−1 and uTn,l =

∑Tn−1
t=l

(
t
l

)
ηl(1− η)t−l. Thus,

Varn(E[ϑ̂Tn(φ)|D, T ]) =
θ2

T 2
n

(
Tn−1∑
l=0

u2
Tn,lVarn(Yl) + 2

Tn−1∑
l=0

uTn,l

Tn−1∑
l′=l+1

uTn,l′Covn(Yl, Yl′)

)
.(E.31)

It remains to compute the variance and covariance in (E.31). First, for any l, l′ ∈ N,

En[YlYl′ ] = En
[
P(X1

l ∈ Â|D, T )P(X2
l′ ∈ Â|D, T )

]
(E.32)

= En
[
P(X1

l ∈ Â,X2
l′ ∈ Â|D, T )

]
= Pn(X1

l ∈ Â,X2
l′ ∈ Â),

where we have used the argument of (E.25) and the fact that {X1
i }∞i=1 and {X2

i }∞i=1 are inde-
pendent random walks given the tree structure. By a similar argument, En[Yl] = Pn(X1

l ∈ Â).
Hence, using Lemmas E.7 and E.8, and assuming for the moment that l > 1, we have

Varn(Yl) = Pn(X1
l ∈ Â,X2

l ∈ Â)− (Pn(X1
l ∈ Â))2

= r̃∗np̃
2(l−1)
n +

l∑
t=2

q̃∗nq̃
t−2
n r̃np̃

2(l−t)
n + q̃∗nq̃

l−1
n − (p̃∗np̃

l−1
n )2

=
1

p̃2
n

(
r̃∗n +

q̃∗nr̃n
p̃2
n − q̃n

− (p̃∗n)2

)
p̃2l
n +

q̃∗n
q̃n

(
1− r̃n

p̃2
n − q̃n

)
q̃ln. (E.33)

Next, using (E.7) and Jensen’s inequality, we have

r̃n ≥

( ∑
j∈N,k∈N0

j

j + k

∑
i∈N

fn(i, j, k)

)2

− q̃n = p̃2
n − q̃n, (E.34)

and so 1− r̃n/(p̃2
n − q̃n) ≤ 0, i.e. the second term in (E.33) is non-positive, so ∀ l > 1,

Varn(Yl) ≤
1

p̃2
n

(
r̃∗n +

q̃∗nr̃n
p̃2
n − q̃n

− (p̃∗n)2

)
p̃2l
n . (E.35)
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In the case l = 1, we have (again by Lemmas E.7 and E.8)

Varn(Yl) = (r̃∗n + q̃∗n)− p̃∗n ≤ r̃∗n +
q̃∗nr̃n
p̃2
n − q̃n

− (p̃∗n)2 =
1

p̃2
n

(
r̃∗n +

q̃∗nr̃n
p̃2
n − q̃n

− (p̃∗n)2

)
p̃2l
n ,

where the inequality is (E.34) and p̃∗n ≤ 1; hence, (E.35) holds for l = 1 as well. Finally,
since Y0 = 1 a.s., it is immediate that (E.35) also holds for l = 0. We next analyze the
covariance terms in (E.31). First, if l′ > l > 0, we can use (E.32) and Lemmas E.7 and E.8
to obtain

En[YlYl′ ] = Pn(X1
l ∈ Â,X2

l′ ∈ Â) = p̃l
′−l
n Pn(X1

l ∈ Â,X2
l ∈ Â) = p̃l

′−l
n En[Y 2

l ],

En[Yl′ ] = P(X2
l′ ∈ Â) = p̃∗np̃

l′−1
n = p̃∗np̃

l−1
n p̃l

′−l
n = P(X1

l ∈ Â)p̃l
′−l
n = En[Yl]p̃

l′−l
n ,

⇒ Covn(Yl, Yl′) = p̃l
′−l
n

(
En[Y 2

l ]− (En[Yl])
2
)

= p̃l
′−l
n Varn(Yl).

On the other hand, if l′ > l = 0, we have Yl = 1 a.s., so Covn(Yl, Yl′) = 0 = p̃l
′
nVarn(Y0).

Hence, combined with (E.35), we have argued

Covn(Yl, Yl′) = p̃l
′−l
n Varn(Yl) ≤

1

p̃2
n

(
r̃∗n +

q̃∗nr̃n
p̃2
n − q̃n

− (p̃∗n)2

)
p̃l+l

′

n ∀ l ∈ N0, l
′ > l. (E.36)

Hence, combining (E.31), (E.35), and (E.36), we obtain

Varn(E[ϑ̂Tn(φ)|D, T ])

≤ 1

p̃2
n

(
r̃∗n +

q̃∗nr̃n
p̃2
n − q̃n

− (p̃∗n)2

)
θ2

T 2
n

(
Tn−1∑
l=0

u2
Tn,lp̃

2l
n + 2

Tn−1∑
l=0

uTn,l

Tn−1∑
l′=l+1

uTn,l′ p̃
l+l′

n

)

≤ 1

p̃2
n

(
r̃∗n +

q̃∗nr̃n
p̃2
n − q̃n

− (p̃∗n)2

)
1

T 2
n

(
Tn−1∑
l=0

u2
Tn,l + 2

Tn−1∑
l=0

uTn,l

Tn−1∑
l′=l+1

uTn,l′

)

=
1

p̃2
n

(
r̃∗n +

q̃∗nr̃n
p̃2
n − q̃n

− (p̃∗n)2

)(
1

Tn

Tn−1∑
l=0

uTn,l

)2

=
1

p̃2
n

(
r̃∗n +

q̃∗nr̃n
p̃2
n − q̃n

− (p̃∗n)2

)
,

where the second inequality is simply θ, p̃n ≤ 1, the first equality is immediate, and the
second equality holds by definition of uTn,l. It clearly follows that

Varn(E[ϑ̂Tn(φ)|D, T ])1(Ωn,2) ≤ 1

p̃2
n

(
r̃∗n +

q̃∗nr̃n
p̃2
n − q̃n

− (p̃∗n)2

)
1(Ωn,2), (E.37)

and so we aim to show the right side of (E.37) tends to zero a.s. Clearly, the right side is
zero if ω /∈ Ωn,2; we aim to also show that, given γ > 0, ∃ N s.t. for n > N and ω ∈ Ωn,2,

1

p̃n(ω)2

(
r̃∗n(ω) +

q̃∗n(ω)r̃n(ω)

p̃n(ω)2 − q̃n(ω)
− p̃∗n(ω)2

)
< γ. (E.38)

To prove (E.38), we first recall that by (A3), we have for ω ∈ Ωn,2, p̃∗n(ω) ≥ p̃n(ω) > pn− δn.
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Hence, since we are assuming pn → 1, and since δn → 0 by (A3), we have for γ′ > 0, n
sufficiently large, and such ω, p̃n(ω)2, p̃∗n(ω)2 > 1− γ′. Thus, for n large and ω ∈ Ωn,2,

1

p̃n(ω)2

(
r̃∗n(ω) +

q̃∗n(ω)r̃n(ω)

p̃n(ω)2 − q̃n(ω)
− p̃∗n(ω)2

)
<

1

1− γ′

(
r̃∗n(ω) +

q̃∗n(ω)r̃n(ω)

1− γ′ − q̃n(ω)
− (1− γ′)

)
.

(E.39)
To further upper bound the right side of (E.39), we note r̃n ≤ 1− q̃n a.s. by the first equality
in (E.34). The same argument gives r̃∗n ≤ 1− q̃∗n a.s. Note, however, that to use the second
bound, we must ensure 1−γ′− q̃n(ω) > 0. To this end, recall that q̃n(ω) < 1− ξ for ω ∈ Ωn,2

by (A3). Hence, assuming we choose γ′ < ξ, we obtain 1− γ′ − q̃n(ω) > 0 for such ω. Thus,

1

p̃n(ω)2

(
r̃∗n(ω) +

q̃∗n(ω)r̃n(ω)

p̃n(ω)2 − q̃n(ω)
− p̃∗n(ω)2

)
<

1

1− γ′

(
(1− q̃∗n(ω)) +

q̃∗n(ω)(1− q̃n(ω))

1− γ′ − q̃n(ω)
− (1− γ′)

)
=

γ′

1− γ′

(
q̃∗n(ω)

1− γ′ − q̃n(ω)
+ 1

)
<

γ′

1− γ′

(
q̃∗n(ω)

ξ − γ′
+ 1

)
≤ γ′

1− γ′

(
1

ξ − γ′
+ 1

)
,(E.40)

where the first inequality uses (E.39) and the bounds from the previous paragraph, the
equalities are straightforward, the second inequality uses q̃n(ω) < 1− ξ for ω ∈ Ωn,2 by (A3),
and the third uses q̃∗n(ω) ≤ 1 (recall we have chosen γ′ < ξ). Finally, it is straightforward to
see the final bound in (E.40) tends to zero with γ′. Hence, for sufficiently small γ′, (E.38)
follows, completing the proof.

E.2.2.3 Notation for proofs of Lemmas E.7 and E.8

In the next two subsections, we prove Lemmas E.7 and E.8. For these proofs, we let
D denote the degree sequence {dout(i), dAin(i), dBin(i)}i∈[n], and we let D denote a realization
of this set. Note that the random variables defined in (E.7) are all functions of D; for
a realization D of D, we let e.g. p̃n,D denote the realization of p̃n. We similarly define
fn,D, f

∗
n,D for realizations of fn, f

∗
n, defined in (6.7). Finally, letting g(D) = P(·|D = D), we

have Pn(·) = g(D) by definition of Pn. Hence, to prove Lemma E.7, it suffices to show

P(Xl ∈ Â|D = D) =

{
p̃∗n,Dp̃

l−1
n,D, l ∈ N

1, l = 0
.

while to prove Lemma E.8, it suffices to show

P(X1
l ∈ Â,X2

l′ ∈ Â|D = D) =

{
P(X1

l ∈ Â,X2
l ∈ Â|D = D)p̃l

′−l
n,D, l ∈ N

p̃∗n,Dp̃
l′−1
n,D , l = 0

, (E.41)

P(X1
l ∈ Â,X2

l ∈ Â|D = D) =


r̃∗n,Dp̃

2(l−1)
n,D +

∑l
t=2 q̃

∗
n,Dq̃

t−2
n,Dr̃n,Dp̃

2(l−t)
n,D + q̃∗n,Dq̃

l−1
n,D, l > 1

r̃∗n,D + q̃∗n,D, l = 1

1, l = 0

.(E.42)
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E.2.2.4 Proof of Lemma E.7

The l = 0 case is trivial, since X1
0 = φ ∈ Â, so we assume l ∈ N moving forward. First,

since ÂC = B̂ is an absorbing set, we have X1
l ∈ Â⇒ X1

l−1 ∈ Â, so

P(X1
l ∈ Â|D = D) = P(X1

l ∈ Â|X1
l−1 ∈ Â,D = D)P(X1

l−1 ∈ Â|D = D). (E.43)

For the first term in (E.43), we have

P(X1
l ∈ Â|X1

l−1 ∈ Â,D = D) (E.44)

=
∑

j∈N,k∈N0

P(X1
l ∈ Â|dAin(X1

l−1) = j, dBin(X1
l−1) = k,X1

l−1 ∈ Â,D = D)

× P(dAin(X1
l−1) = j, dBin(X1

l−1) = k|X1
l−1 ∈ Â,D = D)

=

{∑
j∈N,k∈N0

j
j+k

∑
i∈N fn,D(i, j, k) = p̃n,D, l ∈ {2, 3, . . .}∑

j∈N,k∈N0

j
j+k

∑
i∈N f

∗
n,D(i, j, k) = p̃∗n,D, l = 1

,

where the second equality holds by Algorithm E.2. Specifically, for l > 1, the degrees of X1
l−1

are sampled from fn,D (Line 11) after realizing X1
l−1 (Line 8), yielding the

∑
i∈N fn,D(i, j, k)

term; further, X1
l is chosen uniformly from the incoming neighbors of X1

l−1 (Line 8) after
realizing the degrees of X1

l−1, yielding the j/(j+k) term (the l = 1 case is similarly justified).

Combining (E.43) and (E.44), and using the fact that X1
0 = φ ∈ Â by definition, completes

the proof in the case l = 1. For l > 1, we again use (E.43) and (E.44) to obtain

P(X1
l ∈ Â|D = D) = p̃n,DP(X1

l−1 ∈ Â|D = D) = · · · = p̃l−1
n,DP(X1

1 ∈ Â|D = D) = p̃l−1
n,Dp̃

∗
n,D.

E.2.2.5 Proof of Lemma E.8

We begin by proving the first statement in the lemma, i.e. (E.41). First, we note that for
the l = 0 case, X0 = φ ∈ Â by definition, so P(X1

l ∈ Â,X2
l′ ∈ Â|D = D) = P(X2

l′ ∈ Â|D =
D), and the statement holds by Lemma E.7. For the l ∈ N case, we first write

P(X1
l ∈ Â,X2

l′ ∈ Â|D = D) = P(X1
l ∈ Â,X2

l′−1 ∈ Â,X2
l′ ∈ Â|D = D)

= P(X2
l′ ∈ Â|X1

l ∈ Â,X2
l′−1 ∈ Â,D = D)P(X1

l ∈ Â,X2
l′−1 ∈ Â|D = D),

where the first equality holds since ÂC = B̂ is an absorbing set (i.e. X2
l′ ∈ Â ⇒ X2

l′−1 ∈ Â)
and the second rewrites a conditional probability. Next, by the same argument as (E.44),

P(X2
l′ ∈ Â|X1

l ∈ Â,X2
l′−1 ∈ Â,D = D) = p̃n,D,

where we used the l′ > 1 case of (E.44), since l′ > l ≥ 1. Hence,

P(X1
l ∈ Â,X2

l′ ∈ Â|D = D) = p̃n,DP(X1
l ∈ Â,X2

l′−1 ∈ Â|D = D)

= · · · = p̃l
′−l
n,DP(X1

l ∈ Â,X2
l ∈ Â|D = D).
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This establishes (E.41). For the second statement, i.e. (E.42), the l = 0 case is trivial, since
X1

0 = X2
0 = φ ∈ Â by definition, so we assume l ∈ N for the remainder of the proof. First,

let τ = inf{t ∈ N0 : X1
t 6= X2

t } denote the first step at which the walks diverge. Note
X1

0 = X2
0 = φ by definition, so τ ∈ N a.s.; also, due to the tree structure, the walks remain

apart forever after diverging, i.e. X1
τ+1 6= X2

τ+1, X
1
τ+2 6= X2

τ+1, . . . a.s. Next, for l ∈ N,

P(X1
l ∈ Â,X2

l ∈ Â|D = D) (E.45)

=
l∑

t=1

P(X1
l ∈ Â,X2

l ∈ Â, τ = t|D = D) + P(X1
l ∈ Â,X2

l ∈ Â, τ > l|D = D)

We begin by computing the second term in (E.45). Here we have

P(X1
l ∈ Â,X2

l ∈ Â, τ > l|D = D) (E.46)

= P(X1
l ∈ Â,X2

l ∈ Â,X1
l = X2

l |X1
l−1 ∈ Â,X2

l−1 ∈ Â,X1
l−1 = X2

l−1, . . . , X
1
1 = X2

1 ,D = D)

× P(X1
l−1 ∈ Â,X2

l−1 ∈ Â, τ > l − 1|D = D),

where we used the definition of τ and that ÂC = B̂ is an absorbing set. Now for l > 1,

P(X1
l ∈ Â,X2

l ∈ Â,X1
l = X2

l |X1
l−1 ∈ Â,X2

l−1 ∈ Â,X1
l−1 = X2

l−1, . . . , X
1
1 = X2

1 ,D = D)

= P(X1
l ∈ Â,X1

l = X2
l |X1

l−1 ∈ Â,X1
l−1 = X2

l−1,D = D) (E.47)

=
∑

j∈N,k∈N0

j

j + k

1

j + k

∑
i∈N

fn,D(i, j, k) = q̃n,D,

where the first equality uses independence and eliminates repetitive events, and the second
follows an argument similar to that following (E.44). Combining (E.46) and (E.47),

P(X1
l ∈ Â,X2

l ∈ Â, τ > l|D = D) = q̃n,DP(X1
l−1 ∈ Â,X2

l−1 ∈ Â, τ > l − 1|D = D)(E.48)

= · · · = q̃l−1
n,DP(X1

1 ∈ Â,X2
1 ∈ Â, τ > 1|D = D).

Finally, by an argument similar to (E.47), we have

P(X1
1 ∈ Â,X2

1 ∈ Â, τ > 1|D = D) = P(X1
1 ∈ Â,X1

1 = X2
1 |D = D) (E.49)

=
∑

j∈N,k∈N0

j

j + k

1

j + k

∑
i∈N

f ∗n,D(i, j, k) = q̃∗n,D.

Hence, combining (E.48) and (E.49) gives

P(X1
l ∈ Â,X2

l ∈ Â, τ > l|D = D) = q̃∗n,Dq̃
l−1
n,D ∀ l ∈ N. (E.50)

For the first term in (E.45), we first consider the t = l summand. For l > 1, similar to
(E.47),

P(X1
l ∈ Â,X2

l ∈ Â, τ = l|D = D)
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= P(X1
l ∈ Â,X2

l ∈ Â,X1
l 6= X2

l , X
1
l−1 = X2

l−1, . . . , X
1
1 = X2

1 |D = D)

= P(X1
l ∈ Â,X2

l ∈ Â,X1
l 6= X2

l , X
1
l−1 ∈ Â,X1

l−1 = X2
l−1, . . . , X

1
1 = X2

1 |D = D)

= P(X1
l ∈ Â,X2

l ∈ Â,X1
l 6= X2

l |X1
l−1 ∈ Â,X1

l−1 = X2
l−1, . . . , X

1
1 = X2

1 ,D = D)

× P(X1
l−1 ∈ Â,X1

l−1 = X2
l−1, . . . , X

1
1 = X2

1 |D = D)

=
∑

j∈N,k∈N0

j

j + k

j − 1

j + k

∑
i∈N

fn,D(i, j, k)P(X1
l−1 ∈ Â,X2

l−1 ∈ Â, τ > l − 1|D = D)

= r̃n,Dq̃
l−2
n,Dq̃

∗
n,D,

where in the final step we have also used (E.50). Similarly, for l = 1,

P(X1
1 ∈ Â,X2

1 ∈ Â, τ = 1|D = D) = P(X1
1 ∈ Â,X2

1 ∈ Â,X1
1 6= X2

1 |D = D)

=
∑

j∈N,k∈N0

j

j + k

j − 1

j + k

∑
i∈N

f ∗n,D(i, j, k) = r̃∗n,D.

To summarize, we have shown

P(X1
l ∈ Â,X2

l ∈ Â, τ = l|D = D) =

{
q̃∗n,Dq̃

l−2
n,Dr̃n,D, l ∈ {2, 3, . . .}

r̃∗n,D, l = 1
. (E.51)

Next, we consider the t < l summands in (E.45) (which are present only for l > 1). We have

P(X1
l ∈ Â,X2

l ∈ Â, τ = t|D = D)

= P(X1
l ∈ Â,X2

l ∈ Â,X1
l−1 ∈ Â,X2

l−1 ∈ Â,X1
l−1 6= X2

l−1, τ = t|D = D)

= P(X1
l ∈ Â,X2

l ∈ Â|X1
l−1 ∈ Â,X2

l−1 ∈ Â,X1
l−1 6= X2

l−1, τ = t,D = D)

× P(X1
l−1 ∈ Â,X2

l−1 ∈ Â,X1
l−1 6= X2

l−1, τ = t|D = D)

=
2∏

h=1

P(Xh
l ∈ Â|X1

l−1 ∈ Â,X2
l−1 ∈ Â,X1

l−1 6= X2
l−1, τ = t,D = D)

× P(X1
l−1 ∈ Â,X2

l−1 ∈ Â, τ = t|D = D),

where in the first equality we used the fact that ÂC = B̂ is an absorbing set and the fact that
once the walks diverge they remain apart; in the second equality we used the fact that X1

l

and X2
l are conditionally independent given the event X1

l−1 6= X2
l−1. Further, for h ∈ {1, 2},

P(Xh
l ∈ Â|X1

l−1 ∈ Â,X2
l−1 ∈ Â,X1

l−1 6= X2
l−1, τ = t,D = D)

=
∑

j∈N,k∈N0

j

j + k

∑
i∈N

fn,D(i, j, k) = p̃n,D,

and so, combining the previous two equations and applying recursively yields

P(X1
l ∈ Â,X2

l ∈ Â, τ = t|D = D) = p̃2
n,DP(X1

l−1 ∈ Â,X2
l−1 ∈ Â, τ = t|D = D) (E.52)
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= · · · = p̃
2(l−t)
n,D P(X1

t ∈ Â,X2
t ∈ Â, τ = t|D = D)

=

{
q̃∗n,Dq̃

t−2
n,Dr̃n,Dp̃

2(l−t)
n,D , t ∈ {2, 3, . . . , l − 1}

r̃∗n,Dp̃
2(l−1)
n,D , t = 1

,

where the final equality uses (E.51). Combining (E.45), (E.50), (E.51), and (E.52),

P(X1
l ∈ Â,X2

l ∈ Â|D = D) =

{
r̃∗n,Dp̃

2(l−1)
n,D +

∑l
t=2 q̃

∗
n,Dq̃

t−2
n,Dr̃n,Dp̃

2(l−t)
n,D + q̃∗n,Dq̃

l−1
n,D, l > 1

r̃∗n,D + q̃∗n,D, l = 1
.

E.2.3 Step 2 for proof of Theorem 6.2

E.2.3.1 Proof of Lemma E.9

We first write

P
(∣∣∣ϑ̂Tn(φ)− E[ϑ̂Tn(φ)|T ]

∣∣∣ > ε
)

= E
[
P
(∣∣∣ϑ̂Tn(φ)− E[ϑ̂Tn(φ)|T ]

∣∣∣ > ε
∣∣∣T )]

= E
[
P
(
ϑ̂Tn(φ)− E[ϑ̂Tn(φ)|T ] > ε

∣∣∣T )+ P
(
E[ϑ̂Tn(φ)|T ]− ϑ̂Tn(φ) > ε

∣∣∣T )] (E.53)

where the first equality uses the law of total expectation and the second is immediate. For
the first summand in the expectation in (E.53), we fix λ > 0 and write

P
(
ϑ̂Tn(φ)− E[ϑ̂Tn(φ)|T ] > ε

∣∣∣T ) = P
(

exp(λ(ϑ̂Tn(φ)− E[ϑ̂Tn(φ)|T ])) > e−λε
∣∣∣T )

≤ e−λεE
[
exp(λ(ϑ̂Tn(φ)− E[ϑ̂Tn(φ)|T ])

∣∣∣T ]
= e−λε

Tn−1∏
t=0

t∏
l=0

∏
ı∈Âl

E

[
exp

(
λ

Tn

(
t

l

)
ηl(1− η)t−l

l−1∏
j=0

din(ı|j)−1(ŝTn−t(ı)− θ)

)∣∣∣∣∣T
]

≤ e−λε
Tn−1∏
t=0

t∏
l=0

∏
ı∈Âl

exp

1

8

(
λ

Tn

(
t

l

)
ηl(1− η)t−l

l−1∏
j=0

din(ı|j)−1

)2


≤ e−λε
Tn−1∏
t=0

t∏
l=0

∏
ı∈Âl

exp

(
λ2

8T 2
n

(
t

l

)
ηl(1− η)t−l

l−1∏
j=0

din(ı|j)−1

)

= exp

−λε+
λ2

8Tn

1

Tn

Tn−1∑
t=0

t∑
l=0

∑
ı∈Âl

(
t

l

)
ηl(1− η)t−l

l−1∏
j=0

din(ı|j)−1


= exp

(
−λε+

λ2

8Tnθ
E[ϑ̂Tn(φ)|T ]

)
≤ exp

(
−λε+

λ2

8Tn

)
. (E.54)

Here the first equality holds by monotonicity of x 7→ eλx, the first inequality is Markov’s,
the second equality holds by (E.14), the second inequality uses Lemma E.13 from Appendix
E.2.4, the third inequality uses

(
t
l

)
ηl(1 − η)t−l,

∏l−1
j=0 din(ı|j)−1 ≤ 1, the third equality is

immediate, the fourth equality again uses (E.14), and the fourth inequality uses (E.15).
Since the preceding argument holds ∀ λ > 0, we choose λ = 4εTn to minimize the bound.
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Upon substituting into (E.54), we obtain e−2ε2Tn . The same argument holds for the second
summand in the expectation of (E.53). We also note that the bound e−2ε2Tn is non-random,
so we may discard the expectation. In summary, we have shown

P
(∣∣∣ϑ̂Tn(φ)− E[ϑ̂Tn(φ)|T ]

∣∣∣ > ε
)
≤ 2e−2ε2Tn .

Hence, for n sufficiently large, we have by assumption on Tn

P
(∣∣∣ϑ̂Tn(φ)− E[ϑ̂Tn(φ)|T ]

∣∣∣ > ε
)
≤ 2e−2ε2µ logn = 2n−2ε2µ = O

(
n−2ε2µ

)
,

which is what we set out to prove.

E.2.3.2 Proof of Lemma E.10

We begin by deriving a bound conditioned on the degree sequence. First, we fix λ̃ > 0
and use monotonicity of x 7→ eλ̃x and Markov’s inequality to write

Pn(E[ϑ̂Tn(φ)|T ] > ε) ≤ e−λ̃εEn exp(λ̃E[ϑ̂Tn(φ)|T ]). (E.55)

The bulk of the proof will involve bounding the expectation term. For this, we first note

En exp(λ̃E[ϑ̂Tn(φ)|T ]) = En exp

λ̃ θ
Tn

Tn−1∑
t=0

t∑
l=0

(
t

l

)
ηl(1− η)t−l

∑
ı∈Âl

l−1∏
j=0

din(ı|j)−1


= En exp

 λ̃θ
Tn

Tn−1∑
l=0

(
Tn−1∑
t=l

(
t

l

)
ηl(1− η)t−l

)∑
ı∈Âl

l−1∏
j=0

din(ı|j)−1


= En

Tn−1∏
l=0

exp(λuTn,lYl),

where the first equality holds by (E.14), the second rearranges summations, and in the third
we defined λ = λ̃θ/Tn, uTn,l =

∑Tn−1
t=l

(
t
l

)
ηl(1 − η)t−l, and Yl =

∑
ı∈Âl

∏l−1
j=0 din(ı|j)−1. For

the remainder of the proof, we use En,l to denote conditional expectation with respect to
the degree sequence and the set of random variables realized during the first l iterations of
Algorithm E.2 (i.e. the first l generations of the tree). Using this notation, we have

En
[ Tn−1∏

l=0

exp(λuTn,lYl)
]

= En
[
En,Tn−2

[ Tn−1∏
l=0

exp(λuTn,lYl)
]]

(E.56)

= En
[ Tn−2∏

l=0

exp(λuTn,lYl)En,Tn−2

[
exp(λuTn,Tn−1YTn−1)

]]
= En

[ Tn−3∏
l=0

exp(λuTn,lYl) exp(λ(uTn,Tn−2 + uTn,Tn−1p̃n)YTn−2)

× En,Tn−2

[
exp(λuTn,Tn−1(YTn−1 − p̃nYTn−2))

]]
,
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where in the third equality we multiplied and divided exp(λuTn,Tn−1p̃nYTn−2). Next, note

YTn−1 =
∑

ı′∈ÂTn−2

∑
ı∈ÂTn−1:ı|(Tn−2)=ı′

Tn−2∏
j=0

din(ı|j)−1 (E.57)

=
∑

ı′∈ÂTn−2

∑
ı∈ÂTn−1:ı|(Tn−2)=ı′

Tn−2∏
j=0

din(ı′|j)−1

=
∑

ı′∈ÂTn−2

Tn−2∏
j=0

din(ı′|j)−1|{ı ∈ ÂTn−1 : ı|(Tn − 2) = ı′}|

=
∑

ı′∈ÂTn−2

Tn−3∏
j=0

din(ı′|j)−1din(ı′)−1dAin(ı′),

where in the first equality we rewrote the sum based on the construction of ÂTn−1 in Algo-
rithm E.2, in the second we used the fact that ı|j = ı′|j for j ∈ {0, . . . , Tn− 2} by Algorithm
E.2 (in words, ı and ı′ share the same ancestry in the tree), in the third we have recognized
that the ı-th summand does not depend on ı, and in the fourth we used ı′|(Tn−2) = ı′ (since
ı′ ∈ ÂTn−2) and the construction of the offspring of ı′ in Algorithm E.2. It follows that

En,Tn−2YTn−1 =
∑

ı′∈ÂTn−2

Tn−3∏
j=0

din(ı′|j)−1En,Tn−2(dAin(ı′)/din(ı′)) =
Tn−3∏
j=0

din(ı′|j)−1p̃n = YTn−2p̃n,

where En,Tn−2(dAin(ı′)/din(ı′)) = p̃n holds by definition of dAin(ı′), din(ı′) in Algorithm E.2 and
of p̃n from (E.7). In summary, we have argued En,Tn−2(YTn−1 − YTn−2p̃n) = 0. On the other
hand, 0 ≤ YTn−1 ≤ YTn−2 ≤ · · · ≤ Y0 = 1, where the first inequality holds since YTn−1 is a sum
of nonnegative terms and the second holds by (E.57) (using din(ı′) = dAin(ı′)+dBin(ı′) ≥ dAin(ı′)),
and where Y0 = 1 by definition. Hence, we can use Lemma E.13 from Appendix E.2.4 to
obtain

En,Tn−2 exp(λuTn,Tn−1(YTn−1 − p̃nYTn−2)) ≤ eλ
2u2
Tn,Tn−1/8. (E.58)

Substituting into (E.56) then yields

En
[ Tn−1∏

l=0

exp(λuTn,lYl)
]

(E.59)

≤ En
[ Tn−3∏

l=0

exp(λuTn,lYl) exp(λ(uTn,Tn−2 + uTn,Tn−1p̃n)YTn−2)
]

exp

(
λ2

8
u2
Tn,Tn−1

)
.

We can then iteratively apply the preceding argument. Namely, we have

En
[ Tn−3∏

l=0

exp(λuTn,lYl) exp(λ(uTn,Tn−2 + uTn,Tn−1p̃n)YTn−2)
]

exp

(
λ2

8
u2
Tn,Tn−1

)
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= En
[ Tn−4∏

l=0

exp(λuTn,lYl) exp(λ(uTn,Tn−3 + uTn,Tn−2p̃n + uTn,Tn−1p̃
2
n)YTn−3)

× En,Tn−3

[
exp(λ(uTn,Tn−2 + uTn,Tn−1p̃n)(YTn−2 − p̃nYTn−3))

]]
exp

(
λ2

8
u2
Tn,Tn−1

)
≤ En

[ Tn−4∏
l=0

exp(λuTn,lYl) exp(λ(uTn,Tn−3 + uTn,Tn−2p̃n + uTn,Tn−1p̃
2
n)YTn−3)

]
(E.60)

× exp

(
λ2

8

(
(uTn,Tn−2 + uTn,Tn−1p̃n)2 + u2

Tn,Tn−1

))
(E.61)

≤ · · · ≤ En
[

exp(λuTn,0Y0) exp

(
λ
Tn−1∑
l=1

uTn,lp̃
l−1
n Y1

)]
exp

λ2

8

Tn−1∑
l=2

(
Tn−1∑
l′=l

uTn,l′ p̃
l′−l
n

)2
 .

(E.62)

(The precise form of the summations in (E.62) can be verified by considering the case Tn = 4
in (E.60) and (E.61).) Note that the final step of the iteration is different because the
root node has degrees sampled from f ∗n (the uniform distribution) instead of fn (the size-
biased distribution) in Algorithm E.2. Nevertheless, a similar argument holds: here we have
En,0Y1 = p̃∗nY0 and Y1 ∈ [0, 1] a.s., so by an argument similar to that leading to (E.58),

En
[

exp(λuTn,0Y0) exp

(
λ
Tn−1∑
l=1

uTn,lp̃
l−1
n Y1

)]
= En

[
exp

(
λ

(
uTn,0 + p̃∗n

Tn−1∑
l=1

uTn,lp̃
l−1
n

)
Y0

)
En,0

[
exp

(
λ
Tn−1∑
l=1

uTn,lp̃
l−1
n (Y1 − p̃∗nY0)

)]]

≤ En
[

exp

(
λ

(
uTn,0 + p̃∗n

Tn−1∑
l=1

uTn,lp̃
l−1
n

)
Y0

)]
exp

λ2

8

(
Tn−1∑
l=1

uTn,lp̃
l−1
n

)2
 .

Combining the previous inequality with (E.59) and (E.62) then yields

En
[ Tn−1∏

l=0

exp(λuTn,lYl)
]

≤ En
[

exp

(
λ

(
uTn,0 + p̃∗n

Tn−1∑
l=1

uTn,lp̃
l−1
n

)
Y0

)]
exp

λ2

8

Tn−1∑
l=1

(
Tn−1∑
l′=l

uTn,l′ p̃
l′−l
n

)2


Next, we recall Y0 = 1 by definition. Additionally, we have

uTn,0 + p̃∗n

Tn−1∑
l=1

uTn,lp̃
l−1
n =

Tn−1∑
t=0

(1− η)t + p̃∗n

Tn−1∑
l=1

Tn−1∑
t=l

(
t

l

)
ηl(1− η)t−lp̃l−1

n
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=
Tn−1∑
t=0

(
l∑

t=1

(
t

l

)
ηl(1− η)t−lp̃∗np̃

l−1
n + (1− η)t

)
=
Tn
θ
En[ϑ̂Tn(φ)],

where the first equality uses the definition of uTn,l, the second rearranges summations, and
the third uses (E.26). Combining the previous two equations therefore yields

En
[ Tn−1∏

l=0

exp(λuTn,lYl)
]
≤ exp

λTn
θ
En[ϑ̂Tn(φ)] +

λ2

8

Tn−1∑
l=1

(
Tn−1∑
l′=l

uTn,l′ p̃
l′−l
n

)2
 .

Hence, recalling that λ = λ̃θ/Tn, and substituting into (E.55), we have shown

Pn(E[ϑ̂Tn(φ)|T ] > ε) ≤ exp

−λ̃ε+ λ̃En[ϑ̂Tn(φ)] +
λ̃2θ2

8T 2
n

Tn−1∑
l=1

(
Tn−1∑
l′=l

uTn,l′ p̃
l′−l
n

)2
 . (E.63)

Clearly, this inequality still holds if we multiply both sides by 1(Ωn,2). Additionally, by
(A3), p̃n(ω) < pn + δn for ω ∈ Ωn,2, where pn → p and δn → 0; since we additionally assume
p < 1 in the statement of the lemma, we conclude p̃n(ω) < pn + δn < 1 for ω ∈ Ωn,2 and n
sufficiently large. For such n, we can therefore write

Pn(E[ϑ̂Tn(φ)|T ] > ε)1(Ωn,2)

≤ exp

−λ̃ε+ λ̃En[ϑ̂Tn(φ)] +
λ̃2θ2

8T 2
n

Tn−1∑
l=1

(
Tn−1∑
l′=l

uTn,l′(pn + δn)l
′−l

)2
 1(Ωn,2)

≤ exp

(
−λ̃ε+ λ̃En[ϑ̂Tn(φ)] +

λ̃2θ2

8Tnη2(1− (pn + δn))2

)
1(Ωn,2),

where the second inequality uses Lemma E.12 from Appendix E.2.4. Additionally, since
pn → p < 1, we can use the argument leading to (E.29) to obtain En[ϑ̂Tn(φ)](ω) < c/Tn
(for some c independent of n) whenever ω ∈ Ωn,2 and n is sufficiently large. For such n, we
obtain

Pn(E[ϑ̂Tn(φ)|T ] > ε)1(Ωn,2) ≤ exp

(
−λ̃ε+

λ̃c

Tn
+

λ̃2θ2

8Tnη2(1− (pn + δn))2

)
1(Ωn,2), (E.64)

Now since λ̃ > 0 was arbitrary, we can choose λ̃ = 4Tnεη
2(1 − (pn + δn))2/θ2. Upon

substituting into the exponent in the previous equation, this exponent becomes

− λ̃ε+
λ̃2

8Tnη2(1− (pn + δn))2
+
λ̃c

Tn

= −2Tnε
2η2(1− pn)2/θ2 + 2Tnε

2η2δn(2(1− pn)− δn)/θ2 + 4cεη2(1− (pn + δn))2/θ2

≤ −2Tnε
2η2(1− pn)2/θ2 + 4Tnε

2η2δn/θ
2 + 4cεη2/θ2, (E.65)
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where the inequality simply uses pn, δn > 0 and pn + δn ∈ (0, 1) (for large n). Now note
that since pn → p, we have (for example) (1 − pn)2 > (1 − p)2/2 for n sufficiently large.
Additionally, since δn = o(1/Tn), we have (for example) Tnδn < c/ε for n sufficiently large.
Combining these observations, we can upper bound (E.65) as

−2ε2Tnη
2(1− pn)2/θ2 + 4η2ε2Tnδn/θ

2 + 4η2εc/θ2 ≤ −(εη(1− p))2Tn/θ
2 + 8cεη2/θ2.

Hence, substituting into (E.64) gives

Pn(E[ϑ̂Tn(φ)|T ] > ε)1(Ωn,2) ≤ exp(8cεη2/θ2) exp(−(εη(1− p)/θ)2Tn)1(Ωn,2). (E.66)

Finally, we write

P(E[ϑ̂Tn(φ)|T ] > ε) = E[Pn(E[ϑ̂Tn(φ)|T ] > ε)1(Ωn,2) + Pn(E[ϑ̂Tn(φ)|T ] > ε)1(ΩC
n,2)]

≤ O
(
e−(εη(1−p)/θ)2Tn

)
+ P(ΩC

n,2) = O
(
e−(εη(1−p)/θ)2µ logn + n−κ

)
,

where the inequality uses (E.66) and upper bounds a probability by 1, and the second equality
uses the assumptions in the statement of the lemma.

E.2.3.3 Where the proof fails in the case pn → 1

As shown in Appendix E.1.4.1, extending Theorem 6.2 to the case pn → 1 amounts to
showing that for some γ′ > 0,

P(|E[ϑ̂Tn(φ)|T ]− L(pn)| > ε) = O
(
n−γ

′
)
, (E.67)

where L(pn) is the appropriate limit from (E.19). Here we show (roughly) why the approach
from the preceding proof fails to establish (E.67) in the case pn → 1. To begin, we note we
first used the assumption pn → p < 1 following (E.63). Hence, in the case pn → 1, we can
still follow the approach leading to (E.63) to obtain the (one-sided) bound

P(E[ϑ̂Tn(φ)|T ]− L(pn) > ε)1(Ωn,2) ≤ exp(−λ̃(ε+ L(pn))E exp(λ̃E[ϑ̂Tn(φ)|T ])1(Ωn,2)

≤ exp

−λ̃ε+ λ̃
(
−L(pn) + En[ϑ̂Tn(φ)]

)
+
λ̃2θ2

8T 2
n

Tn−1∑
l=1

(
Tn−1∑
l′=l

uTn,l′ p̃
l′−l
n

)2
 1(Ωn,2)

≈ exp

−λ̃ε+
λ̃2θ2

8T 2
n

Tn−1∑
l=1

(
Tn−1∑
l′=l

uTn,l′ p̃
l′−l
n

)2
 1(Ωn,2), (E.68)

where the approximate equality uses En[ϑ̂Tn(φ)] ≈ L(pn) on Ωn,2 by Lemma E.5. We next
note

Tn−1∑
l=1

(
Tn−1∑
l′=l

uTn,l′ p̃
l′−l
n

)2

≥

(
Tn−1∑
l′=1

uTn,l′ p̃
l′−1
n

)2

=

(
Tn−1∑
l′=1

(
Tn−1∑
t=l′

(
t

l′

)
ηl
′
(1− η)t−l

′

)
p̃l
′−1
n

)2

283



= (p̃∗n)−2

(
Tn−1∑
t=1

t∑
l′=1

(
t

l′

)
ηl
′
(1− η)t−l

′
p̃∗np̃

l′−1
n

)2

= (p̃∗n)−2

(
Tn
θ
En[ϑ̂Tn(φ)]− 1− (1− η)Tn

η

)2

,

where the inequality discards nonnegative terms, the first equality is by definition of uTn,l′ ,
the second rearranges summations and multiplies/divides by (p̃∗n)2, and the third uses (E.26).
Hence, we have shown (E.68) is (roughly) lower bounded by

exp

(
−λ̃ε+

λ̃2

8

(
En[ϑ̂Tn(φ)]− θ(1− (1− η)Tn)

Tnη

)2
)

1(Ωn,2),

where we have also used p̃∗n ≈ 1 for large n on Ωn,2 when pn → 1 by (A3). Now we consider
three cases for the exponent in the previous expression:
• Tn(1 − pn) → 0: Here Lemma E.5 states En[ϑ̂Tn(φ)] ≈ θ for large n on Ωn,2; for such
n, the exponent is roughly

−λ̃ε+
λ̃2θ2

8

(
1− θ(1− (1− η)Tn)

Tnη

)2

≥ −λ̃ε+
λ̃2θ2

16
= −4ε2

θ2
,

where the inequality holds for large n (so that θ(1−(1−η)Tn)/(Tnη) < 1−1/
√

2, which
holds since Tn → ∞) and the equality holds by choosing the minimizing λ̃ (namely,
λ̃ = 8ε/θ2). Since this lower bound is constant in n, (E.68) does not decay as n grows.
• Tn(1 − pn) → c ∈ (0,∞): Here Lemma E.5 states En[ϑ̂Tn(φ)] ≈ θ(1 − e−cη)/(cη) for

large n on Ωn,2. An argument similar to the previous case shows (E.68) does not decay.
• Tn(1 − pn) → ∞ with pn → 1: Here we consider an example to show (E.68) does not

decay sufficiently quickly for the general case: assume Tn = c̄ log n for some constant
c̄ that satisfies the theorem assumptions and we set pn = 1 − (log n)−0.9. Then since
δn = o((log n)−1) per (A3), we have e.g. 1− pn + δn < (1− pn)/2 for large n. Hence,

En[ϑ̂Tn(φ)] &
θ(1− (1− η(1− pn + δn))Tn)

ηTn(1− pn + δn)

>
θ(1− (1− (η/2)(log n)−0.9)c̄ logn)

(c̄η/2)(log n)0.1
>

c̃

(log n)0.1
,

where the first inequality holds by (E.28) in Appendix E.2.2.1 (where γ1, γ2 are ar-
bitrarily small, hence the approximate inequality), the second holds for our chosen
Tn, pn, δn, and the third holds for some constant c̃ and for large n. Hence, the expo-
nent is (roughly) lower bounded by

−λ̃ε+
λ̃2

8

c̃2

(log n)0.2
= −2ε2

c̃2
(log n)0.2,

where the equality holds for the minimizer λ̃ = (4ε/c̃2)(log n)0.2. From here it follows
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that (E.68) cannot be O(n−γ
′
): if it is, then for all large n and for some constant C̃,

exp

(
−2ε2

c̃2
(log n)0.2

)
< C̃n−γ

′ ⇒ exp

(
−2ε2

c̃2
(log n)0.2 + γ′ log n

)
< C̃.

The final inequality is a contradiction, since −(2ε2/c̃2)(log n)0.2 + γ′ log n→∞.

E.2.4 Auxiliary results

In this appendix, we collect several auxiliary results used in other proofs. (These results
are either cited from other sources, or their proofs are tedious but elementary, so we collect
them here to avoid cluttering other parts of our analysis.)

Lemma E.11. For Tn →∞, pn → 1, and δn → 0 s.t. δn = o(1/Tn), we have

1− (1− η(1− pn − δn))Tn

ηTn(1− pn − δn)
−−−→
n→∞


1, Tn(1− pn) −−−→

n→∞
0

(1− e−cη)/(cη), Tn(1− pn) −−−→
n→∞

c ∈ (0,∞)

0, Tn(1− pn) −−−→
n→∞

∞
,(E.69)

1− (1− η(1− pn + δn))Tn

ηTn(1− pn + δn)
−−−→
n→∞


1, Tn(1− pn) −−−→

n→∞
0

(1− e−cη)/(cη), Tn(1− pn) −−−→
n→∞

c ∈ (0,∞)

0, Tn(1− pn) −−−→
n→∞

∞
.(E.70)

Proof. We consider the three cases of (E.69) in turn; the proof of (E.70) follows the same
approach. First, suppose limn→∞ Tn(1−pn) =∞. Then since Tnδn → 0 and Tn(1−pn)→∞,
we have Tnδn < 1 < Tn(1 − pn) for sufficiently large n, which implies (1 − pn − δn) > 0 for
such n. Clearly, we also have (1 − pn − δn) < 1 for all n. Taken together, it follows that
1− (1− η(1− pn − δn))Tn ∈ (0, 1) for n large. For such n, we can then write

0 <
1− (1− η(1− pn − δn))Tn

ηTn(1− pn − δn)
<

1

ηTn(1− pn − δn)
,

where we used (1 − pn − δn) > 0 in the denominator. Now since Tn(1 − pn) → ∞ and
Tnδn → 0, Tn(1− pn − δn)→∞, so taking n→∞ in the above inequality gives the result.

Next, suppose limn→∞ Tn(1− pn) = c ∈ (0,∞). Since ηTn(1− pn − δn)→ ηc by Tn(1−
pn) → c and Tnδn → 0, it suffices to show (1 − η(1 − pn − δn))Tn → e−ηc as n → ∞. First,
since Tn(1 − pn) → c, ∀ ε1 > 0 ∃ N1 s.t. c − ε1 < Tn(1 − pn) < c + ε1 ∀ n ≥ N1. Further,
since Tnδn → 0, ∀ ε2 > 0 ∃ N2 s.t. −ε2 < Tnδn < ε2 ∀ n ≥ N2. Hence, ∀ n ≥ max{N1, N2},(

1− η(c+ ε1 + ε2)

Tn

)Tn
< (1− η(1− pn − δn))Tn <

(
1− η(c− ε1 − ε2)

Tn

)Tn
.

Moreover, since (1− x/m)m −−−→
m→∞

e−x, ∀ ε3 > 0 ∃ N3 s.t. ∀ n ≥ N3,

e−η(c+ε1+ε2) − ε3 <

(
1− η(c+ ε1 + ε2)

Tn

)Tn
,

(
1− η(c− ε1)

Tn

)Tn
< e−η(c−ε1−ε2) + ε3.
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Combining these arguments, we obtain ∀ n ≥ max{N1, N2, N3}

e−η(c+ε1+ε2) − ε3 < (1− η(1− pn − δn))Tn < e−η(c−ε1−ε2) + ε3.

Since both bounds converge to e−ηc as ε1, ε2, ε3 → 0, (1− η(1− pn − δn))Tn → e−ηc follows.
Finally, suppose limn→∞ Tn(1− pn) = 0. First, we observe

1− (1− η(1− pn − δn))Tn

ηTn(1− pn − δn)
=

1

Tn

Tn−1∑
t=0

(1− η(1− pn − δn))t ≤ 1, (E.71)

where the inequality holds for n s.t. (1− pn − δn) > 0 (which indeed occurs for large n; see
proof of Tn(1− pn)→∞ case), since then the sum is over Tn terms, each upper bounded by
1. On the other hand, we can use the binomial theorem to write

1− (1− η(1− pn − δn))Tn

ηTn(1− pn − δn)
=

1−
∑Tn

t=0

(
Tn
t

)
(−η(1− pn − δn))t

ηTn(1− pn − δn)
(E.72)

= 1−
Tn∑
t=2

(Tn − 1) · · · (Tn − t+ 1)(−1)t(η(1− pn − δn))t−1

t!
.

Next, we observe (assuming (1− pn − δn) > 0) as above)

Tn∑
t=2

(Tn − 1) · · · (Tn − t+ 1)(−1)t(η(1− pn − δn))t−1

t!
(E.73)

<
Tn∑
t=2

(Tn − 1) · · · (Tn − t+ 1)(η(1− pn − δn))t−1

t!
<

Tn∑
t=2

(Tn(1− pn − δn))t−1

(t− 2)!

= Tn(1− pn − δn)
Tn−2∑
t=0

(Tn(1− pn − δn))t

t!
< Tn(1− pn − δn)eTn(1−pn−δn),

where the first inequality replaces negative terms with positive ones; the second inequality
uses η < 1, (t− 2)! < t!, and (Tn − j) < Tn for j > 0; and the third inequality replaces the
upper limit of the summation with infinity. Hence, (E.71), (E.72), and (E.73) yield

1 ≥ 1− (1− η(1− pn − δn))Tn

ηTn(1− pn − δn)
> 1− Tn(1− pn − δn)eTn(1−pn−δn)

⇒ 1 ≥ lim
n→∞

1− (1− η(1− pn − δn))Tn

ηTn(1− pn − δn)
≥ 1− lim

n→∞
Tn(1− pn − δn)eTn(1−pn−δn) = 1,

where the final equality holds since Tn(1− pn), Tnδn → 0 by assumption.

Lemma E.12. Let uTn,l =
∑Tn−1

t=l

(
t
l

)
ηl(1− η)t−l. Then for any x ∈ (0, 1),

Tn−1∑
l=1

(
Tn−1∑
l′=l

uTn,l′x
l′−l

)2

≤ Tn
η2(1− x)2

.
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Proof. For l ∈ N0, define wl =
∑Tn−1

l′=l uTn,l′x
l′−l. Then

wl = uTn,l + x
Tn−1∑
l′=l+1

uTn,l′x
l′−(l+1) = uTn,l + xwl+1.

Assuming temporarily that uTn,l′ ≥ uTn,l′′ whenever l′ ≤ l′′ (which we will return to prove),

wl+1 ≤ uTn,l

Tn−1∑
l′=l+1

xl
′−(l+1) = uTn,l

Tn−l−2∑
l′=0

xl
′ ≤ uTn,l

∞∑
l′=0

xl
′
=

uTn,l
1− x

.

Hence, using the previous two equations, we obtain wl+1−wl = (1− x)wl+1− uTn−l ≤ 0, i.e.
the sequence {wl} decreases in l. It is also clearly nonnegative. Therefore,

Tn−1∑
l=1

(
Tn−1∑
l′=l

uTn,l′x
l′−l

)2

=
Tn−1∑
l=1

w2
l ≤ Tnw

2
0.

To further bound the right hand side, we note

w0 =
Tn−1∑
l′=0

(
Tn−1∑
t=l′

(
t

l′

)
ηl
′
(1− η)t−l

′

)
xl
′
=

Tn−1∑
t=0

t∑
l′=0

(
t

l′

)
(ηx)l

′
(1− η)t−l

′

=
Tn−1∑
t=0

(ηx+ (1− η))t =
Tn−1∑
t=0

(1− η(1− x))t ≤
∞∑
t=0

(1− η(1− x))t =
1

η(1− x)
,

where the first line uses the definition of uTn,l′ and rearranges summations, and the second
line involves simple calculations. The previous two inequalities then imply the lemma.

We return to prove uTn,l′ ≥ uTn,l′′ for l′ ≤ l′′. First, we claim that ∀ t∗ ∈ N, l ∈ {1, . . . , t∗},

t∗∑
t=l

(
t

l

)
ηl(1− η)t−l −

t∗+1∑
t=l+1

(
t

l + 1

)
ηl+1(1− η)t−(l+1) =

(
t∗ + 1

l + 1

)
ηl(1− η)t

∗+1−l. (E.74)

We prove (E.74) by induction on t∗. First, when t∗ = 1, the only case to prove is l = 1; when
t∗ = l = 1, it is immediate that both sides of (E.74) equal η(1 − η). Next, assume (E.74)
holds for t∗ − 1. If l = t∗, both sides of (E.74) equal ηt

∗
(1 − η). If l ∈ {1, . . . , t∗ − 1}, we

write

t∗∑
t=l

(
t

l

)
ηl(1− η)t−l −

t∗+1∑
t=l+1

(
t

l + 1

)
ηl+1(1− η)t−(l+1)

=

(
t∗−1∑
t=l

(
t

l

)
ηl(1− η)t−l −

t∗∑
t=l+1

(
t

l + 1

)
ηl+1(1− η)t−(l+1)

)

+

(
t∗

l

)
ηl(1− η)t

∗−l −
(
t∗ + 1

l + 1

)
ηl+1(1− η)t

∗+1−(l+1)
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=

((
t∗

l + 1

)
ηl(1− η)t

∗−l
)

+

(
t∗

l

)
ηl(1− η)t

∗−l −
(
t∗ + 1

l + 1

)
ηl+1(1− η)t

∗−l

= ηl(1− η)t
∗−l
((

t∗

l + 1

)
+

(
t∗

l

)
− η
(
t∗ + 1

l + 1

))
= ηl(1− η)t

∗−l
((

t∗ + 1

l + 1

)
− η
(
t∗ + 1

l + 1

))
=

(
t∗ + 1

l + 1

)
ηl(1− η)t

∗+1−l,

where the first equality simply writes the final summands separately, the second uses the
inductive hypothesis on the term in parentheses, the third is immediate, the fourth uses
Pascal’s rule ([t∗ + 1] has

(
t∗+1
l+1

)
subsets of cardinality l + 1;

(
t∗

l

)
that contain 1 and

(
t∗

l+1

)
that do not contain 1), and the fifth is immediate. This establishes (E.74). We then write

uTn,l′ − uTn,l′+1 =
Tn−1∑
t=l′

(
t

l′

)
ηl
′
(1− η)t−l

′ −
Tn−1∑
t=l′+1

(
t

l′ + 1

)
ηl
′+1(1− η)t−(l′+1)

=
Tn−1∑
t=l′

(
t

l′

)
ηl
′
(1− η)t−l

′ −
Tn∑

t=l′+1

(
t

l′ + 1

)
ηl
′+1(1− η)t−(l′+1)

+

(
Tn
l′ + 1

)
ηl
′+1(1− η)Tn−(l′+1)

=

(
Tn
l′ + 1

)
ηl
′
(1− η)Tn−l

′
+

(
Tn
l′ + 1

)
ηl
′+1(1− η)Tn−(l′+1)

=

(
Tn
l′ + 1

)
ηl
′
(1− η)Tn−(l′+1) ≥ 0,

where the first equality holds by definition of uTn,l′ , the second adds and subtracts a term,
and the third uses (E.74). Thus, uTn,l′ ≥ uTn,l′+1; iterating gives uTn,l′ ≥ uTn,l′′ for l′ ≤ l′′.

Lemma E.13. Let Z be a random variable satisfying EZ = 0 and Z ∈ [a, b] a.s., and let
λ > 0. Then EeλZ ≤ eλ

2(b−a)2/8.

Proof. See e.g. [124, Lemma 5.1].

E.3 Proof of Theorem 6.4

The proof relies on three lemmas proved at the end of this appendix. Also, throughout
the proof, we use P̃n and Ẽn, respectively, to denote probability and expectation, respectively,
conditioned on {dout(i), dAin(i)}i∈[n]] (i.e. the degrees observed by the adversary).

In the first lemma, we solve the relaxed problem. The proof is standard and primar-
ily amounts to verifying the Karush-Kuhn-Tucker (KKT) conditions (see e.g. [128, Section
5.5.3]).

Lemma E.14. The solution of the relaxed problem (6.17) is, almost surely,

dreln (i) = dAin(i)

(√
r(i)

h∗
− 1

)
+

∀ i ∈ [n],
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where x+ = x for x > 0 and x+ = 0 for x ≤ 0. Furthermore,
∑n

i=1 d
rel
n (i) = bn.

Proof. See Appendix E.3.1.

The next lemma shows that also the randomized scheme objective is (in expectation)
close to the relaxed solution objective.

Lemma E.15. The following inequalities hold almost surely:

p̃n
(
dreln
)
≤ p̃n

(
doptn

)
≤ Ẽnp̃n

(
drandn

)
<

1

2

(
1 + p̃n

(
dreln
))
≤ 1

2

(
1 + p̃n

(
doptn

))
.

Proof. See Appendix E.3.2.

The third and final lemma provides a tail bound for this randomized scheme objective.
The proof shows that an affine transform of this objective is a self-bounding function of
independent random variables [129, Section 3.3] and uses an existing result for such functions.

Lemma E.16. For any δ > 0, ∃ cδ > 0 independent of n such that, almost surely,

P̃n
(
p̃n
(
drandn

)
≥ 1 + δ + p̃n(doptn )

2 + δ

)
≤ exp

(
−cδmn(1− p̃n(doptn ))

maxj∈[n] r(j)

)
.

Proof. See Appendix E.3.3

With Lemma E.16 in place, we can prove the theorem. First, by (6.20), we can find a
sequence {xn}n∈N ⊂ [0,∞) satisfying xn →∞ and P(Exn)→ 1, where Exn is the event

Exn =

{
mn(1− p̃n(doptn ))

maxj∈[n] r(j)
≥ xn

}
.

Thus, by the law of total expectation and Lemma E.16,

P
(
p̃n
(
drandn

)
≥ 1 + δ + p̃n(doptn )

2 + δ

)
= E

[
P̃n
(
p̃n
(
drandn

)
≥ 1 + δ + p̃n(doptn )

2 + δ

)]
≤ E

[
P̃n
(
p̃n
(
drandn

)
≥ 1 + δ + p̃n(doptn )

2 + δ

)∣∣∣∣Exn]+ P
(
ECxn
)

≤ exp (−cδxn) + P
(
ECxn
)
−−−→
n→∞

0.

E.3.1 Proof of Lemma E.14

First note strict convexity of y 7→ 1/y for y ∈ R implies strict convexity of p̃n, i.e. for any
d 6= d′ ∈ Rn

+ and ρ ∈ (0, 1), we have

p̃n(ρd+ (1− ρ)d′) =
n∑
i=1

1

ρ(dAin(i) + d(i)) + (1− ρ)(dAin(i) + d′(i))

dAin(i)dout(i)

mn

<
n∑
i=1

(
ρ

dAin(i) + d(i)
+

1− ρ
dAin(i) + d′(i)

)
dAin(i)dout(i)

mn

= ρp̃n(d) + (1− ρ)p̃n(d′).
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Also note we can rewrite the relaxed problem (6.17) as

min
d∈Rn

p̃n(d) s.t. g(d) ≤ 0, gi(d) ≤ 0 ∀ i ∈ [n], (E.75)

where g(d) =
∑n

i=1 d(i)− bn, gi(d) = −d(i). Given λ, λi ≥ 0, we also define the Lagrangian

L(d, λ, λ1, . . . , λn) = p̃n(d) + λg(d) +
n∑
i=1

λigi(d).

Finally, we set λ∗ = (h∗)2/mn, λ
∗
i = ((h∗)2 − r(i))+/mn (clearly, λ∗, λ∗i ≥ 0). Now to prove

the theorem, it suffices to establish the following (see e.g. [128, Section 5.5.3]):
1. g(dreln ), g1(dreln ), . . . , gn(dreln ) ≤ 0 ∀ i ∈ [n], i.e. dreln is a feasible point of (E.75).
2. ∇L(dreln , λ∗, λ∗1, . . . , λ

∗
n) = 0, i.e. the first-order condition is satisfied.

3. λ∗g(dreln ) = λ∗1g1(dreln ) = · · · = λ∗ngn(dreln ) = 0, i.e. complementary slackness holds.
We proceed to the proofs of these three statements.

1. Clearly, gi(d
rel
n ) ≤ 0 ∀ i ∈ [n]. To show g(dreln ) ≤ 0, we claim (and will return to prove)

that h∗ is a fixed point of h, i.e. h∗ = h(h∗). Assuming this claim holds, we have

g
(
dreln
)

=
1

h∗

∑
i∈[n]:r(i)≥(h∗)2

dAin(i)
√
r(i)−

∑
i∈[n]:r(i)≥(h∗)2

dAin(i)− bn (E.76)

=
1

h(h∗)

∑
i∈[n]:r(i)≥(h∗)2

√
dout(i)dAin(i)−

∑
i∈[n]:r(i)≥(h∗)2

dAin(i)− bn = 0,

where the last two equalities use the fixed point claim and the definition of h.
2. If i ∈ [n] satisfies r(i) > (h∗)2, then dreln (i) = −dAin(i) + dAin(i)

√
r(i)/h∗, λ∗i = 0, and

∂L

∂d(i)

(
dreln , λ∗, λ∗1, . . . , λ

∗
n

)
= −dout(i)d

A
in(i)

mn

1

(dAin(i) + dreln (i))2
+ λ∗

= − dout(i)d
A
in(i)

mn(dAin(i)
√
r(i)/h∗)2

+
(h∗)2

mn

= − dout(i)d
A
in(i)

mn

(√
dout(i)dAin(i)/h∗

)2 +
(h∗)2

mn

= 0.

Next, let i ∈ [n] satisfy r(i) ≤ (h∗)2, so that dreln (i) = 0, λi = ((h∗)2 − r(i))/mn. Then

∂L

∂d(i)

(
dreln , λ∗, λ∗1, . . . , λ

∗
n

)
= −dout(i)d

A
in(i)

mn

1

(dAin(i))2
+ λ∗ − λ∗i

= −r(i)
mn

+
(h∗)2

mn

− (h∗)2 − r(i)
mn

= 0.

3. For any i ∈ [n], we have

λ∗i gi(d
rel
n ) = −dAin(i)

(
(h∗)2 − r(i)

mn

)
+

(√
r(i)

h∗
− 1

)
+

.
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Clearly, the first (·)+ term is zero if r(i) > (h∗)2, the second is zero if r(i) < (h∗)2, and
both are zero if r(i) = (h∗)2. Finally, λ∗g(dreln ) = 0 holds by (E.76).

We return to establish the fixed point claim. We in fact prove the slightly stronger result

h(x) ≤ h(h(x)) ∀ x ∈ R+. (E.77)

The fixed point claim then follows, since h∗ ≥ h(h∗) by definition and h∗ ≤ h(h∗) by (E.77)
with x = x∗, where x∗ is a maximizer of h. Thus, it suffices to prove (E.77). Towards this
end, fix x ∈ R+. We first assume x ≥ h(x) and will return to address the other case. For
any y, z ∈ R ∪ {∞}, we define

N(y, z) =
∑

i∈[n]:r(i)∈[y2,z2)

√
dout(i)dAin(i), D(y, z) =

∑
i∈[n]:r(i)∈[y2,z2)

dAin(i),

where by convention N(y, z) = D(y, z) = 0 if y, z are such that {i ∈ [n] : r(i) ∈ [y2, z2)} = ∅
(i.e. if the sums are over empty sets). Then by definition of h, N , and D, we have

h(h(x)) =
N(h(x),∞)

bn +D(h(x),∞)
=

N(x,∞) +N(h(x), x)

bn +D(x,∞) +D(h(x), x)
.

Again by definition of h, N , and D, and recalling r(i) = dout(i)/d
A
in(i), we also have

N(h(x), x) =
∑

i∈[n]:r(i)∈[h(x)2,x2)

√
r(i)dAin(i) ≥ h(x)

∑
i∈[n]:r(i)∈[h(x)2,x2)

dAin(i)

= h(x)D(h(x), x) =
N(x,∞)

bn +D(x,∞)
D(h(x), x)

Thus, combining the previous two equations, we obtain

h(h(x)) ≥
N(x,∞) + N(x,∞)

bn+D(x,∞)
D(h(x), x)

bn +D(x,∞) +D(h(x), x)
=

N(x,∞)

bn +D(x,∞)
= h(x).

If instead x ≤ h(x), we can use the same argument to obtain

h(h(x)) =
N(x,∞)−N(x, h(x))

bn +D(x,∞)−D(x, h(x))
, N(x, h(x)) ≤ N(x,∞)

bn +D(x,∞)
D(x, h(x)),

⇒ h(h(x)) ≥
N(x,∞)− N(x,∞)

bn+D(x,∞)
D(x, h(x))

bn +D(x,∞)−D(x, h(x))
=

N(x,∞)

bn +D(x,∞)
= h(x).

E.3.2 Proof of Lemma E.15

The first and fourth inequalities are immediate, since dreln is the solution of (6.17), doptn is
the solution of (6.15), and (6.17) enlarges the feasible set of (6.15). The second inequality is
immediate by definition of doptn . Thus, it only remains to prove the third inequality.
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Towards this end, first recall that for each i ∈ [n],

drandn (i) =
bn∑
j=1

1(Wj = i), P̃n(Wj = i) =
dreln (i)∑n
k=1 d

rel
n (k)

=
dreln (i)

bn
∀ j ∈ [bn], (E.78)

where the second equality holds by Lemma E.14. Also note, by definition of mn and drandn ,

Ẽn
(
1− p̃n

(
drandn

))
=

n∑
i=1

dout(i)

mn

Ẽn
drandn (i)

dAin(i) + drandn (i)

=
n∑
i=1

dout(i)

mn

Ẽn

∑bn
j=1 1(Wj = i)

dAin(i) +
∑bn

k=1 1(Wk = i)
=

n∑
i=1

dout(i)

mn

bn∑
j=1

Ẽn
1(Wj = i)

dAin(i) +
∑bn

k=1 1(Wk = i)
.(E.79)

We can then bound the (i, j)-th summand in (E.79) as

Ẽn
1(Wj = i)

dAin(i) +
∑bn

k=1 1(Wk = i)

= ẼnẼn

[
1(Wj = i)

dAin(i) + 1(Wj = i) +
∑bn

k=1,k 6=j 1(Wk = i)

∣∣∣∣∣{Wk}bnk=1,k 6=j

]

= Ẽn
dreln (i)/bn

dAin(i) + 1 +
∑bn

k=1,k 6=j 1(Wk = i)
≥ dreln (i)/bn

dAin(i) + 1 + Ẽn
∑bn

k=1,k 6=j 1(Wk = i)

=
dreln (i)/bn

dAin(i) + 1 + (bn − 1)dreln (i)/bn
>

1

2bn

dreln (i)

dAin(i) + dreln (i)
,

where in the first line we mean Ẽn[·|X] = E[·|X, {dout(i′), dAin(i′)}i′∈[n]] for any random vari-
able X, the second equality holds by (E.78), the first inequality is Jensen’s, the third equality
again uses (E.78), and the second inequality uses 1 ≤ dAin(i) (by assumption) and the obvious
inequality (bn − 1)/bn < 2. Substituting into (E.79), we thus obtain

Ẽn
(
1− p̃n

(
drandn

))
>

1

2

n∑
i=1

dout(i)

mn

dreln (i)

dAin(i) + dreln (i)
=

1

2

(
1− p̃n

(
dreln
))
,

which, after rearranging, completes the proof.

E.3.3 Proof of Lemma E.16

For any w ∈ (w1, . . . , wbn) ∈ [n]bn , define

gn(w) =
1

maxj∈[n] r(j)

bn∑
j=1

dout(wj)

dAin(wj) +
∑bn

k=1 1(wk = wj)
.
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Observe that, if W is the [n]bn-valued random vector with i.i.d. coordinates {Wj}j∈[bn] s.t.

P̃n(Wj = k) =
dreln (k)∑n
k′=1 d

rel
n (k′)

=
dreln (k)

bn
∀ j ∈ [bn], k ∈ [n]

(where the second equality holds by Lemma E.14), then the random variable gn(W ) satisfies

gn(W ) =
1

maxj∈[n] r(j)

bn∑
j=1

n∑
i=1

1(Wj = i)dout(i)

dAin(i) +
∑bn

k=1 1(Wk = i)
(E.80)

=
mn

maxj∈[n] r(j)

n∑
i=1

dout(i)

mn

∑bn
j=1 1(Wj = i)

dAin(i) +
∑bn

k=1 1(Wk = i)

=
mn

maxj∈[n] r(j)

n∑
i=1

dout(i)

mn

drandn (i)

dAin(i) + drandn (i)
=

mn

maxj∈[n] r(j)

(
1− p̃n

(
drandn

))
.

Thus, we can analyze gn(W ), then recover p̃n(drandn ) by an affine transform. Working with
gn(W ) is convenient because gn is a self-bounding function, defined as follows.

Definition E.1. [129, Section 3.3] Let X be some measurable space, l ∈ N, and f : X l →
[0,∞). We say f is a self-bounding function if there exists auxiliary functions f−i : X l−1 →
R, i ∈ [l] such that, for any x = (x1, . . . , xl) ∈ X l,

0 ≤ f(x)− f−i(x−i) ≤ 1 ∀ i ∈ [l],
l∑

i=1

(f(x)− f−i(x−i)) ≤ f(x),

where x−i = (x1, . . . , xi−1, xi+1, . . . , xl) ∀ i ∈ [l].

To verify gn is self-bounding, we use the most obvious choice of auxiliary functions: let

gn,−i(w−i) =
1

maxj∈[n] r(j)

bn∑
j=1,j 6=i

dout(wj)

dAin(wj) +
∑bn

k=1,k 6=i 1(wk = wj)
,

where w−i = (w1, . . . , wi−1, wi+1, . . . , wbn) for w ∈ (w1, . . . , wbn) ∈ [n]bn , i.e. we simply ignore
the i-th coordinate of w. Towards bounding gn(w)− gn,−i(w−i), we first observe

bn∑
j=1,j 6=i

dout(wj)

(
1

dAin(wj) +
∑bn

k=1 1(wk = wj)
− 1

dAin(wj) +
∑bn

k=1,k 6=i 1(wk = wj)

)
(E.81)

=
bn∑

j=1,j 6=i

−1(wi = wj)dout(wj)

(dAin(wj) +
∑bn

k=1 1(wk = wj))(dAin(wj) +
∑bn

k=1,k 6=i 1(wk = wj))
(E.82)

=
bn∑

j=1,j 6=i

−1(wi = wj)dout(wi)

(dAin(wi) +
∑bn

k=1 1(wk = wi))(dAin(wi) +
∑bn

k=1,k 6=i 1(wk = wi))
(E.83)
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=
−dout(wi)

dAin(wi) +
∑bn

k=1 1(wk = wi)
×

∑bn
k=1,k 6=i 1(wk = wi)

dAin(wi) +
∑bn

k=1,k 6=i 1(wk = wi)
(E.84)

∈

(
−dout(wi)

dAin(wi) +
∑bn

k=1 1(wk = wi)
, 0

)
, (E.85)

where in (E.82) we computed the difference of fractions in (E.81), in (E.83) we replaced wj
by wi (which is permitted due to the indicator 1(wi = wj)), and in (E.84) we rearranged
the expression; the upper bound in (E.85) is obvious, while the lower bound holds since the
second factor in (E.84) is less than 1. Using the upper bound in (E.85), we can then obtain

gn(w)− gn,−i(w−i) =

∑bn
j=1,j 6=i dout(wj)

(
1

dAin(wj)+
∑bn
k=1 1(wk=wj)

− 1

dAin(wj)+
∑bn
k=1,k 6=i 1(wk=wj)

)
maxj∈[n] r(j)

(E.86)

+
1

maxj∈[n] r(j)

dout(wi)

dAin(wi) +
∑bn

k=1 1(wk = wi)
(E.87)

<
1

maxj∈[n] r(j)

dout(wi)

dAin(wi) +
∑bn

k=1 1(wk = wi)
<

r(wi)

maxj∈[n] r(j)
≤ 1. (E.88)

On the other hand, using the lower bound in (E.85), along with (E.86)-(E.87), we obtain
gn(w) − gn,−i(w−i) > 0. Together with (E.88), the first condition in Definition E.1 holds.
To verify the second condition in Definition E.1, we use the leftmost expression in (E.88) to
obtain

bn∑
i=1

(gn(w)− gn,−i(w−i)) <
1

maxj∈[n] r(j)

bn∑
i=1

dout(wi)

dAin(wi) +
∑bn

k=1 1(wk = wi)
= gn(w).

Having verified that gn is self-bounding, we aim to show gn(W ) concentrates around its
mean. For this, we will use the following concentration inequality.

Theorem E.1. [129, Theorem 6.12] Let X1, . . . , Xl be independent X -valued random vari-
ables, define X = (X1, . . . , Xl), and let f : X l → [0,∞) be self-bounding. Then ∀ t ∈
(0,Ef(X)],

P(f(X) ≤ Ef(X)− t) ≤ exp

(
− t2

2Ef(X)

)
.

Applying the theorem to our setting, we obtain for any t ∈ (0, Ẽngn(W )],

P̃n(gn(W ) ≤ Ẽngn(W )− t) ≤ exp

(
− t2

2Ẽngn(W )

)
. (E.89)

Now for δ > 0 define

t(δ) =
δ

2 + δ

mn

maxj∈[n] r(j)

1− p̃n(doptn )

2
.
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Observe that, by Lemma E.15 and (E.80),

t(δ) ≤ δ

2 + δ

mn

maxj∈[n] r(j)

(
1− Ẽnp̃n

(
drandn

))
=

δ

2 + δ
Ẽngn(W ) < Ẽngn(W ).

Thus, for any δ > 0, we can set t = t(δ) in (E.89). Furthermore, we have

gn(W ) ≤ Ẽngn(W )− t(δ) = Ẽngn(W )− δ

2 + δ

mn

maxj∈[n] r(j)

1− p̃n(doptn )

2

⇔
maxj∈[n] r(j)gn(W )

mn

≤
maxj∈[n] r(j)Ẽngn(W )

mn

− δ

2 + δ

1− p̃n(doptn )

2

⇔ 1− p̃n
(
drandn

)
≤ 1− Ẽnp̃n

(
drandn

)
− δ

2 + δ

1− p̃n(doptn )

2

⇐ 1− p̃n
(
drandn

)
≤ 1− p̃n(doptn )

2
− δ

2 + δ

1− p̃n(doptn )

2
=

1− p̃n(doptn )

2 + δ

⇔ p̃n
(
drandn

)
≥ 1 + δ + p̃n(doptn )

2 + δ
,

where the second and third implications hold by (E.80) and Lemma E.15, respectively, and
the others are simple manipulations. Hence, by monotonicity and (E.89), we obtain ∀ δ > 0,

P̃n
(
p̃n
(
drandn

)
≥ 1 + δ + p̃n(doptn )

2 + δ

)
≤ exp

(
− t(δ)2

2Ẽngn(W )

)
Finally, we bound the exponential term. For this, we first note

t(δ)

Ẽngn(W )
=

δ

2(2 + δ)

1− p̃n(doptn )

maxj∈[n] r(j)Ẽngn(W )/mn

=
δ

2(2 + δ)

1− p̃n(doptn )

1− Ẽnp̃n(drandn )
≥ δ

2(2 + δ)
,

where the first inequality is the definition of t(δ), the second holds by (E.80), and the
inequality holds by definition of doptn . Combining the previous two inequalities, we thus
obtain

P̃n
(
p̃n
(
drandn

)
≥ 1 + δ + p̃n(doptn )

2 + δ

)
≤ exp

(
− δ2

4(2 + δ)2

mn(1− p̃n(doptn ))

maxj∈[n] r(j)

)
,

so choosing cδ = δ2/(4(2 + δ)2) completes the proof.

E.4 Proof of Corollary 6.1

Define ϑ̂optTn
(φ) and ϑ̂randTn

(φ) as in (E.4) but using the sequences {dout(i), dAin(i), doptn (i)}i∈[n]

and {dout(i), dAin(i), drandn (i)}i∈[n], respectively. (In words, these are the beliefs of the root
nodes in the trees induced by the optimal and randomized bot strategies, respectively.) The
proof proceeds in two steps. First, we use the analysis of Theorem 6.1 to show

θoptTn
(i∗)

P−−−→
n→∞

0⇔ Eϑ̂optTn
(φ) −−−→

n→∞
0, θrandTn (i∗)

P−−−→
n→∞

0⇔ Eϑ̂randTn (φ) −−−→
n→∞

0. (E.90)
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Second, we again leverage the analysis of Theorem 6.1, and also invoke Theorem 6.4, to show

Eϑ̂optTn
(φ) −−−→

n→∞
0⇔ Eϑ̂randTn (φ) −−−→

n→∞
0. (E.91)

Combining (E.90) and (E.91) then completes the proof.
We note the proof of (E.90) will specifically use Lemmas E.1, E.2, and E.3 from the

Theorem 6.1 analysis; these lemmas require (A1), (A2), and (A4), but not (A3) (hence the
assumptions of the corollary). To prove (E.91), we will use the analysis leading to (E.27)
in Appendix E.2.2.1; this analysis does not require any of the four assumptions and thus
applies.

E.4.1 First step for proof of Corollary 6.1

We only prove the first equivalence in (E.90); the proof does not rely on the choice of
{doptn (i)}i∈[n], so the same logic establishes the second. The proof combines a standard result
(Xn → 0 in P⇔ EXn → 0 for uniformly-bounded/non-negative random variables {Xn}n∈N)
with the fact that θoptTn

(i∗) and ϑ̂optTn
(φ) behave similarly per the proof of Theorem 6.1.

First, assume Eϑ̂optTn
(φ)→ 0. Then for any ε > 0 and all n large,

P
(
θoptTn

(i∗) > ε
)
≤ P

(
ϑ̂optTn

(φ) > ε/2
)

+ P
(
ΩC
n,1

)
+O

(
nζ−1/2

)
≤ 2

ε
Eϑ̂optTn

(φ) + P
(
ΩC
n,1

)
+O

(
nζ−1/2

)
−−−→
n→∞

0,

where the first inequality is Lemma E.3 (with x = 0), the second is Markov’s, and the limit
holds by assumption Eϑ̂optTn

(φ)→ 0 and by (A1)-(A2).

Next, assume θoptTn
(i∗) → 0 in P. We desire an inequality analogous to Lemma E.3, but

pointing in the opposite direction; we derive one using logic similar to the proof of Lemma
E.3. First, define ϑoptTn

(i∗) as in (E.1) but using {dout(i), dAin(i), doptn (i)}i∈[n]; in words, ϑoptTn
(i∗)

is like θoptTn
(i∗) but ignores the prior parameters. We can then write the following:

P
(
θoptTn

(i∗) ≥ ε/2
)
≥ P

(
ϑoptTn

(i∗) > ε
)
≥ P

(
ϑoptTn

(i∗) > ε
∣∣τ optn > Tn

)
P
(
τ optn > Tn

)
≥ P

(
ϑoptTn

(i∗) > ε
∣∣τ optn > Tn

)
P
(
τ optn > Tn

∣∣Ωn,1

)
P(Ωn,1)

= P
(
ϑ̂optTn

(φ) > ε
)
P
(
τ optn > Tn

∣∣Ωn,1

)
P(Ωn,1),

Here the first inequality holds for n large by Lemma E.1, the next two hold by monotonicity
(here τ optn is the first time at which the graph is no longer treelike; see Algorithm E.1), and
the equality holds by Lemma E.2 (ϑoptTn

(i∗) and ϑ̂optTn
(φ) have the same distribution when the

graph is treelike). Now by assumption θoptTn
(i∗)→ 0 in P, Lemma E.2, and (A1),

lim
n→∞

P
(
θoptTn

(i∗) > ε/2
)

= 0, lim
n→∞

P
(
τ optn > Tn

∣∣Ωn,1

)
= lim

n→∞
P(Ωn,1) = 1.

Combining the above, and since ε > 0 was arbitrary, we conclude ϑ̂optTn
(φ)→ 0 in P. Hence,
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because ϑ̂optTn
(φ) ∈ [0, 1] a.s., we have for any ε > 0 and for all n sufficiently large,

0 ≤ Eϑ̂optTn
(φ) ≤ ε

2
P
(
ϑ̂optTn

(φ) ≤ ε

2

)
+ P

(
ϑ̂optTn

(φ) >
ε

2

)
<
ε

2
+
ε

2
= ε.

E.4.2 Second step for proof of Corollary 6.1

To prove (E.91), we use the following notation: for dn = (dn(1), . . . , dn(n)) ∈ Nn
0 , define

p̃∗n(dn) =
1

n

n∑
i=1

dAin(i)

dAin(i) + dn(i)
,

which is simply the random variable p̃∗n defined in (6.8), viewed as a function of the bot
degrees dn (similar to how we defined p̃n(d) in (6.14)). For such dn, also define

g(dn) =
θ

Tn

Tn−1∑
t=0

(
t∑
l=1

(
t

l

)
ηl(1− η)t−lp̃∗n(dn) (p̃n(dn))l−1 + (1− η)t

)
(E.92)

=
θp̃∗n(dn)

ηp̃n(dn)

1− (1− η(1− p̃n(dn)))Tn

Tn(1− p̃n(dn))
+

θ

Tn

(
1− p̃∗n(dn)

p̃n(dn)

)
1− (1− η)Tn

η
,

where the second equality follows as in (E.27) from Appendix E.2.2.1; note from the first
expression that g(dn) monotonically increases in p̃∗n(dn) and p̃n(dn). Also, by (E.26),

Eϑ̂optTn
(φ) = Eg

(
doptn

)
, Eϑ̂randTn (φ) = Eg

(
drandn

)
.

Hence, we aim to show Eg(doptn ) → 0 ⇔ Eg(doptn ) → 0. By the monotonicity observed
above, this requires showing p̃n(drandn ) and p̃n(doptn ) are comparable, for which we will invoke
Theorem 6.4. In contrast, there is no obvious relationship between p̃∗n(drandn ) and p̃∗n(doptn ) in
the general case. However, in the case of a sublinear budget (i.e. bn = o(n)), we can derive
useful bounds on these terms. Thus, we begin by restricting to this case; we then return to
address the case bn = Ω(n).

E.4.2.1 Sublinear budget case

We begin by lower bounding p̃∗n(dn). We claim that for any {dn}n∈N satisfying dn ∈ Nn
0

and
∑n

i=1 dn(i) ≤ bn for each n (note doptn , drandn both satisfy this),

∃ N ∈ N s.t. ∀ n ≥ N, p̃∗n(dn) ≥ 1/2. (E.93)

Suppose instead ∀ N ∈ N ∃ n ≥ N satisfying p̃∗n(dn) < 1/2. For such n, we have

1

2
>

1

n

∑
i∈[n]

dAin(i)

dAin(i) + dn(i)
≥ 1

n

∑
i∈[n]:dn(i)=0

dAin(i)

dAin(i) + dn(i)
=

1

n
|{i ∈ [n] : dn(i) = 0}| ,
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where the second inequality holds as all summands are non-negative. On the other hand,

bn ≥
∑
i∈[n]

dn(i) =
∑

i∈[n]:dn(i)∈N

dn(i) ≥ |{i ∈ [n] : dn(i) ∈ N}| = n− |{i ∈ [n] : dn(i) = 0}| ,

where we used the fact that dn(i) ∈ N0 ∀ i. Combining the previous two inequalities,

∀ N ∈ N ∃ n ≥ N s.t. bn ≥ n− |{i ∈ [n] : dn(i) = 0}| > n/2,

which contradicts bn = o(n), completing the proof of (E.93).
We next show Eg(doptn )→ 0⇒ Eg(drandn )→ 0. First, we claim that for constant c > 0,

lim
n→∞

P
(
1− p̃n

(
doptn

)
≤ c/Tn

)
= 0. (E.94)

Assume for the sake of contradiction that (E.94) fails. Then for some ε > 0,

lim sup
n→∞

P
(
1− p̃n

(
doptn

)
≤ c/Tn

)
≥ ε,

⇒ lim sup
n→∞

Eg
(
doptn

)
≥ ε lim sup

n→∞
E
[
g
(
doptn

)∣∣1− p̃n (doptn

)
≤ c/Tn

]
.

Now assume n is such that p̃∗n(doptn ) ≥ 1/2 (i.e. n is large enough that the lower bound derived
above holds). Then 1− p̃n (doptn ) ≤ c/Tn implies

g(doptn ) ≥ θ(1/2)

η(1− c/Tn)

1− (1− ηc/Tn)Tn

c
+

θ

Tn

(
1− 1/2

1− c/Tn

)
1− (1− η)Tn

η

−−−→
n→∞

θ

2η

1− e−ηc

c
,

where we used the fact that gn(doptn ) is monotone in p̃∗n(doptn ) and p̃n(doptn ), and for the limit
we used Tn →∞ by (A4). Combining the previous two lines, we obtain

lim sup
n→∞

Eg
(
doptn

)
≥ ε

θ

2η

1− e−ηc

c
> 0,

which contradicts the assumption Eg(doptn )→ 0. This establishes (E.94).
Next, we prove (E.94) holds with doptn replaced by drandn . For constants c, δ > 0,

1− p̃n
(
doptn

)
>
c(2 + δ)

Tn
,

1− p̃n(drandn )

1− p̃n(doptn )
>

1

2 + δ
⇒ 1− p̃n

(
drandn

)
>

c

Tn
.

Thus, by monotonicity and the inclusion-exclusion principle,

P
(

1− p̃n
(
drandn

)
>

c

Tn

)
≥ P

(
1− p̃n

(
doptn

)
>
c(2 + δ)

Tn
,
1− p̃n(drandn )

1− p̃n(doptn )
>

1

2 + δ

)
≥ P

(
1− p̃n

(
doptn

)
>
c(2 + δ)

Tn

)
+ P

(
1− p̃n(drandn )

1− p̃n(doptn )
>

1

2 + δ

)
− 1 −−−→

n→∞
1,

298



where the limit holds by (E.94) and Theorem 6.4.
Finally, we show Eg(drandn )→ 0. First, we note that by the inclusion-exclusion argument

of the previous line, along with (A1), we have for any constant c > 0,

lim
n→∞

P
(
Ωn,1, 1− p̃n

(
drandn

)
> c/Tn

)
= 1.

Consequently, since g(drandn ) ≤ 1 a.s., and assuming the limits exist,

Eg
(
drandn

)
≤ E

[
g
(
drandn

)∣∣Ωn,1, 1− p̃n
(
drandn

)
> c/Tn

]
+ P

((
Ωn,1, 1− p̃n

(
drandn

)
> c/Tn

)C)
⇒ lim

n→∞
Eg
(
drandn

)
≤ lim

n→∞
E
[
g
(
drandn

)∣∣Ωn,1, 1− p̃n
(
drandn

)
> c/Tn

]
,

so it suffices to show Eg(drandn ) → 0 conditioned on Ωn,1 and 1 − p̃n(drandn ) > c/Tn. Given
these events, and using the trivial upper bound p̃∗n(drandn ) ≤ 1, we have by (E.92),

gn
(
drandn

)
≤ θ

η(1− c/Tn)

1− (1− ηc/Tn)Tn

c
+

θ

Tn

(
1− 1

1− c/Tn

)
1− (1− η)Tn

η

−−−→
n→∞

θ(1− e−ηc)
ηc

,

where the limit uses Tn → ∞ by (A4). Note the limit can be made arbitrarily small by
choosing c sufficiently large. In particular, given any ε > 0, we can choose c = cε such that

lim
n→∞

E
[
g(drandn )

∣∣Ωn,1, 1− p̃n
(
drandn

)
> cε/Tn

]
< ε,

which completes the proof of Eg(drandn )→ 0.
The proof of Eϑ̂randTn

(φ) → 0 ⇒ Eϑ̂optTn
(φ) → 0 is essentially identical, so for brevity we

only outline it. First, we can use Eϑ̂randTn
(φ) → 0 and the p̃∗n lower bound to prove (E.94)

with doptn replaced by drandn . This immediately implies (E.94), simply by definition of doptn

(i.e. we need not invoke Theorem 6.4). From (E.94), Eϑ̂optTn
(φ)→ 0 follows as above.

E.4.2.2 Linear budget case

We next consider the case lim infn→∞ bn/n > 0. The basic idea is as follows. Since average
in-degree is constant by (A1), we can find a constant fraction of nodes whose in-degrees are
bounded by some constant d. We can then (naively) connect one bot to each of bn nodes,
each with in-degree bounded by d. In this naive strategy, a constant fraction of nodes will
have a constant fraction of bot in-neighbors. Consequently, p̃n → 1 cannot occur, which
will imply the naive strategy drives the typical belief to zero. Finally, since even this naive
scheme drives the belief to zero, the randomized and optimal schemes will as well.

More specifically, we will construct a naive choice of bot degrees dnaiven satisfying

∃ ε ∈ (0, 1), N ∈ N s.t. ∀ n ≥ N, Ωn,1 ⇒ p̃n(dnaiven ) < 1− ε. (E.95)
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We claim (E.95) is sufficient to show Eg(doptn ),Eg(drandn )→ 0. Indeed, for doptn we have

lim
n→∞

Eg
(
doptn

)
≤ lim

n→∞
E
[
g
(
doptn

)∣∣Ωn,1

]
+ lim

n→∞
P
(
ΩC
n,1

)
≤ lim

n→∞

(
θ

η(1− ε)
1− (1− ηε)Tn

Tnε
+

θ

Tn

(
1− 1

1− ε

)
1− (1− η)Tn

η

)
+ lim

n→∞
P
(
ΩC
n,1

)
= 0,

where the second inequality uses p̃n(doptn ) ≤ p̃n(dnaiven ) by definition of doptn and p̃n(dnaiven ) <
1− ε on Ωn,1 for large n by (E.95), and the trivial inequality p̃∗n(doptn ) ≤ 1, and the equality
holds since Tn →∞ by (A2) and since P(Ωn,1)→ 1 by (A1). For drandn , we have ∀ δ > 0,

lim
n→∞

Eg
(
drandn

)
≤ lim

n→∞
E
[
g
(
drandn

)∣∣Ωn,1, p̃n
(
drandn

)
<
(
1 + δ + p̃n

(
doptn

))
/(2 + δ)

]
+ lim

n→∞
P
(
ΩC
n,1

)
+ lim

n→∞
P
(
p̃n
(
drandn

)
≥
(
1 + δ + p̃n

(
doptn

))
/(2 + δ)

)
(E.96)

≤ lim
n→∞

(
θ

η(1− ε/(2 + δ))

1− (1− ηε/(2 + δ))Tn

Tnε/(2 + δ)
+

θ

Tn

(
1− 1

1− ε/(2 + δ)

)
1− (1− η)Tn

η

)

= 0,

where the logic is similar, but we also Theorem 6.4 to equate (E.96) to zero.
It only remains to prove (E.95). Towards this end, we first show that for any c ∈ (0, 1),

∃ d ∈ (0,∞), N ∈ N s.t. ∀ n ≥ N, Ωn,1 ⇒
∣∣{i ∈ [n] : dAin(i) ≤ d

}∣∣ ≥ cn, (E.97)

i.e. when n is large and Ωn,1 holds, a constant fraction of nodes have bounded degrees.
Suppose instead that (E.97) fails for some c ∈ (0, 1). Let d = 3ν1/(1 − c), where ν1 is the

limiting mean degree in (A1), and N = dν−1/γ
1 e, where γ is the rate of convergence in (A1).

Then for n ≥ N , Ωn,1 implies

mn/n < ν1 + n−γ ≤ ν1 +N−γ ≤ 2ν1

By assumption, ∃ n ≥ N satisfying Ωn,1 and |{i ∈ [n] : dAin(i) ≤ d}| < cn. For such n,

2ν1 >
mn

n
>

∑
i∈[n]:dAin(i)>d d

A
in(i)

n
>
d|{i ∈ [n] : dAin(i) > d}|

n
≥ d(1− c)n

n
= 3ν1,

which is clearly a contradiction. Consequently, (E.97) holds.
Finally, we use (E.97) to prove (E.95). Let l = lim infn→∞ bn/n > 0. Then ∃ N1 ∈ N s.t.

bn ≥ nl/2 ∀ n ≥ N1. If l > 2, set c = 1/2; otherwise, set c = l/2. Then c ∈ (0, 1), so by
(E.97) we can find d ∈ (0,∞), N2 ∈ N s.t. ∀ n ≥ N2, Ωn,1 ⇒ |{i ∈ [n] : dAin(i) ≤ d}| ≥ cn.
Hence, for n ≥ max{N1, N2} satisfying Ωn,1, we can find In ⊂ [n] satisfying

cn ≤ |In| ≤ bn, dAin(i) ≤ d ∀ i ∈ In. (E.98)
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For such n, we define dnaiven (i) = 1(i ∈ In) and observe

p̃n
(
dnaiven

)
=
∑
i∈In

dout(i)

mn

dAin(i)

dAin(i) + 1
+
∑
i/∈In

dout(i)

mn

≤ d

d+ 1

∑
i∈In

dout(i)

mn

+
∑
i/∈In

dout(i)

mn

= 1− 1

d+ 1

∑
i∈In dout(i)

mn

≤ 1− 1

d+ 1

|In|
mn

≤ 1− 1

d+ 1

cn

mn

,

where the first inequality holds by (E.98) and since y/(y + 1) increases, the second equality
by definition of mn, the second inequality since dout(i) ≥ 1 ∀ i, and the third inequality by
(E.98). Thus, for any n ≥ max{N1, N2, ν

−γ
1 }, so that mn < 2ν1n on Ωn,1 as above, we obtain

Ωn,1 ⇒ p̃n (dnaiven ) ≤ 1− c
4ν1(d+1)

, so ε = c/(4ν1(d+ 1)) satisfies (E.95).

E.5 Experimental details

The basic workflow of the experiment in Section 6.3.3 proceeded as follows:
• Choose a sequence of time horizons Tn that increase linearly, then set n accordingly.
• Realize the degrees {dout(i), dAin(i), dBin(i)}i∈[n] after selecting n.
• Define the empirical distributions fn, f

∗
n using the degrees as in (6.7).

• Evaluate quantity of interest E[ϑ̂Tn(φ)|T ] empirically via (E.14) using fn, f
∗
n.

We repeated this 400 times to obtain 400 samples of E[ϑ̂Tn(φ)|T ]; the plots in Figure 6.2
show empirical means and variances. We used the following parameters:
• We set η = 0.9 to emphasize the effect of the network.
• We let dAin(i) = 1+Poisson(λA−1) ∀ i ∈ [n], so that E[dAin(i)] = λA; we choose λA = 2.1

so that E[dAin(i)] = O(1), as required by (A1).
• After realizing {dAin(i)}i∈[n], we assign one outgoing edge to each i ∈ [n], then assign

each of the remaining
∑

i∈[A] d
A
in(i) − n outgoing edges independently and uniformly.

This implies dAin(i), dout(i) > 0 and
∑

i∈[n] d
A
in(i) =

∑
i∈[n] dout(i), as required by (6.5).

• We let dBin(i) = Poisson(λB), with λB = λA(1− pn)/pn, so that

EdAin(i)/(EdAin(i) + EdBin(i)) = λA/(λA + λB) = 1/(1− (1− pn)/pn) = pn.

• We compare four cases of pn: pn = p and pn = 1− ciT (−i+1)/2
n for i ∈ {2, 3, 4}, with p

and ci independent of n. Note that the three latter cases satisfy

(1− pn) ∝ T (−i+1)/2
n ∈

{
T−1/2
n , T−1

n , T−3/2
n

}
,

as shown in Figure 6.2. Here p and ci were chosen so all four cases behaved roughly
the same at the smallest value of n (as in Figure 6.2). In particular, we chose

p = 0.9, c2 = 1.3, c3 = 1.9, c4 = 2.7.

• We let Tn ∈ {2, 3, . . . , 11}; here the minimum of 2 was chosen since Tn = 1 is a trivial
case and the maximum of 11 was chosen due to computational limitations.
• Given Tn, we let n = dλ2Tn

A e. Note that this implies Tn ≈ (log n)/(2 log λA), roughly
the upper bound in (A2). With our chosen Tn and λA, n ranged from 20 to ≈ 12×106.

Figure E.1 shows an analogue of Figure 6.3 with bn = db̃|En|e for b̃ ∈ { 1
1600

, 1
800
, 1

200
, 1

100
}.
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Figure E.1: Analogue of Figure 6.3 for b̃ = 1/100, 1/200, 1/800, and 1/1600, respectively.
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