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ABSTRACT

Two-dimensional materials (2D materials) refer to atomically thin layered crys-

talline materials with strong intralayer bonding and weak interlayer van der Waals

bonding. Since the discovery of graphene, a single layer of graphite, in 2004, 2D

materials have attracted great attention due to their attractive mechanical, chemical,

and electronic properties. Among all 2D materials, semiconducting transition metal

dichalcogenides (TMDs), such as molybdenum disulfide (MoS2) and tungsten dise-

lenide (WSe2), have shown great promise for next-generation semiconductor devices.

As the feature size in the state-of-the-art complementary metal-oxide-semiconductor

(CMOS) technology is approaching its fundamental limit, TMD-based transistors of-

fer a prospect for transistor downsizing and exhibit favorable electronic properties

including high on-and-off current ratio, low subthreshold slope, and high mobility.

However, for these atomically thin materials, where the ultimate limit of their thick-

ness is a monolayer, it is not fully understood how ion irradiation affects their prop-

erties. First, ion radiation can be used as an effective tool to provide controlled

modifications to 2D materials so that defect engineering and material functionaliza-

tion can be realized. Second, due to their reduced size and power consumption, 2D

material-based electronics holds promise for space applications, where the intensity

of cosmic rays is high. Therefore, understanding radiation effects on 2D materials is

crucial for their use in radiation-harsh environments. In this dissertation, for different

2D materials (graphene, WSe2, and MoS2), the impact of ion irradiation on mate-

rial structure, surface chemistry, and electronic properties was studied by molecular

dynamics (MD) simulations and ion irradiation experiments.
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First, a comprehensive study of graphene defects induced by proton irradiation

was performed by MD simulations. The defect generation probabilities at differ-

ent proton energies were determined by classical MD simulations and validated by

ab-initio MD simulations. It is shown that with increasing proton energy, defect

structures transition from single vacancies to a rich variety of defect configurations.

The defect probabilities also show large dependence on the proton incident angle,

which, combined with the proton energy, can be used to effectively tune the ratios

of generation probabilities of different defect structures. Next, X-ray photoelectron

spectroscopy (XPS) was used to study the impact of ion irradiation on WSe2 chem-

ical and electronic properties. With 2-MeV protons, no detectable oxidation was

observed even at a high fluence level of 1017 protons/cm2. Starting from a fluence

of 1016 protons/cm2, charge transfer between WSe2 and SiC substrate was observed

due to a combination of radiation-induced defects and charge trapping in pre-existing

defects. Lastly, the degradation of MoS2 field-effect transistor (FET) electrical per-

formance induced by high-energy protons and helium ions was studied at different

fluences. By irradiating individual FET components, the damage to MoS2 and SiO2

dielectric was decoupled. The nuclear stopping power was shown to play an impor-

tant role in the generation of interface states and structural defects. With 390-keV

He ions, degradation of I-V characteristics became statistically significant at a fluence

level of 1015 ions/cm2. Nevertheless, a high on-state current and a high on-and-off

current ratio were still maintained at this high fluence level, indicating a strong ra-

diation resilience of MoS2. MD simulations were also performed to study the defect

generation probabilities and sputtering yields within monolayer MoS2 as a function

of the proton and helium ion energy. With increasing ion energy, larger defect size

can be produced; however, point defects such as S vacancies are still the dominant

defect structures.
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CHAPTER I

Interactions Between Ions and Two-Dimensional

Materials

1.1 Introduction to two-dimensional materials

2D materials represent a family of crystalline materials with strong intralayer

bonding and weak interlayer van der Waals bonding. Due to their reduced dimen-

sionality and unique structure, 2D materials show unusual mechanical [5, 6], chem-

ical [7], electronic [8], and physical properties [9]. For example, graphene, a single

layer of graphite (see Figure 1.1(a)), has the highest tensile strength and elastic mod-

ulus among all natural materials by virtue of its strong sp2 covalent bonding [6].

Molybdenum disulfide (MoS2) has extremely low hydrogen adsorption energy, which

is promising for hydrogen evolution reaction in electrocatalysis [10, 11]. Since elec-

tron and phonon transport are confined in a planar space [9], 2D materials can exhibit

excellent charge carrier mobility [12, 13] and high thermal conductivity [14, 15], ac-

cording to both first-principles calculations and experiments. Also, tunable band

structures of 2D materials can be achieved by doping [16], straining [17], heterostruc-

tures [18], and thickness tuning [7]. Transition metal dichalcogenide (TMD) monolay-

ers also show excellent optical properties and can reach a 5–10% light absorbance in

the visible range within sub-nanometer thickness [19]. Because of all these interesting
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properties, 2D materials have found interesting applications in chemical sensing [20],

catalysis [10], electronics [21], and photovoltaics [19].

One important research thrust associated with 2D materials is the development of

ultra-thin transistors, with a goal to sustain the Moore’s law of transistor downscaling.

In 1975, Moore predicted that the total number of transistors in an integrated circuit

would double every year before ∼1980 and would double approximately every two

years after 1980. The actual trend followed this prediction or became even faster in

the last 30–40 years until recently, when the pace of growth has slowed down. With

reduced transistor size, gate control becomes more difficult and tunneling leakage

current becomes more important as the device dimensions are reaching their physical

limits. Therefore, a search is underway for alternative materials and device designs,

including alternative channel materials and high-κ dielectrics, which could overcome

the limits of the traditional silicon metal–oxide–semiconductor field-effect transistor

(MOSFET) technology.

Figure 1.1: Atomic structure of (a) graphene and (b) TMD with a representative material
of monolayer MoS2 shown.

2D layered materials offer a prospect for further transistor downsizing, where the
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ultimate limit is a single layer for the channel material. Graphene shows excellent

charge mobility; however, it does not have a bandgap, which is why a graphene-based

transistor cannot be effectively turned off. Although it is possible to open a bandgap

in graphene by various routes [22, 23], the bandgap is usually small and there is

also an associated tradeoff in mobility [24]. Among all 2D materials, 2D TMDs are

semiconductors and are therefore promising candidates for digital electronics. TMDs

is a group of materials consisting of one transition metal atom (e.g., Mo, W, Ti) and

two chalcogens atoms (S, Se or Te). TMDs have a general chemical formula of MX2,

where M represents the metal atom and X represents the chalcogen atom. Monolayer

TMD has a hexagonal lattice structure with three atomic layers in which the metal

layer is sandwiched by two layers of chalcogen atoms (see Figure 1.1(b)). Examples

of TMD materials are MoS2, MoSe2, MoTe2, WSe2, WS2, etc.. With the recent

advances in device fabrication, single-layer MoS2 field-effect transistor (FET) has

been demonstrated in 2011 with good performance [25]. The mobility was found to

be 200 cm2 V−1 s−1 with a high on-and-off current ratio of 108. FET devices based on

multilayer MoS2 with similar or improved performance have also been fabricated [13].

Furthermore, MoS2 FETs solely based on 2D materials with boron nitride as the high-

κ dielectric have been demonstrated with an electron mobility of 33 cm2 V−1 s−1 and

an on-and-off ratio larger than 106 [26]. The inverter, NAND gate, and static random

access memory have also been made with MoS2 transistors as the basic building

blocks [27].

1.2 Motivation and scope of the study

In order to better understand the potential for the use of 2D materials in ex-

treme environments, this work is focused on the study of ion irradiation effects on 2D

materials and 2D electronics. Although past studies of ion-induced effects on these

materials have been reported, it is still not completely understood how high-energy
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radiation would affect their properties. Fundamentally, the properties of 2D mate-

rials can differ from their bulk counterparts due to the reduced dimensionality. For

most applications, 2D channel materials have a thickness ranging from monolayer to

several layers. On one hand, reduced thickness leads to reduced interaction probabil-

ity with the incident radiation. On the other hand, interaction probability per atom

number density does not differ significantly from bulk materials since the microscopic

cross sections do not change; however, more sputtering effects might be expected due

to the larger surface-area-to-volume ratio. Furthermore, the presence of radiation-

induced defects at or close to the interface between 2D and surrounding materials,

such as substrates, could have a great impact on their intrinsic properties [9]. It is

also unclear how energy is dissipated in 2D materials after energy deposition from the

incident radiation. Thus, in order to better understand ion radiation effects, many

questions remain to be answered.

In addition to the fundamental questions related to the damage mechanisms, this

study was motivated by the following two applications. First, ion radiation can

be used as an effective tool to provide controlled modification of 2D materials so

that defect engineering and material functionalization can be realized. This is also

known as the ion modification technique. With controlled radiation conditions, ions

can be used to tune material properties and produce desirable defects. Therefore,

understanding ion irradiation effects is important for providing new routes for tailing

2D material properties. Second, 2D electronics are promising candidates for space

applications due to their lower power consumption and weight. The component of

cosmic rays in space which is intense and difficult to shield are protons and heavy

charged particles. How these high-energy ions would damage 2D materials has not

been studied in sufficient detail to date. In addition, there is also interest in using these

materials in other radiation-harsh environment such as nuclear power systems and

defense systems. While radiation effects on MOSFETs have been studied extensively
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in the past [28, 29], similar assessment has yet to be performed for 2D materials.

In this dissertation, the impact of ion irradiation on material structure, surface

chemistry and electronic properties was studied by molecular dynamics (MD) sim-

ulations and ion irradiation experiments. In order to understand the impact of ion

irradiation on material properties, it is important to know the defect structures and

their generation probabilities under different irradiation conditions. In this work,

with graphene as a representative 2D material, the defect generation process was

examined at various proton energies and incident angles through MD simulations.

Protons were selected for this study because they are a major component of cosmic

rays in outer space. Knowing the response at each proton energy and incident an-

gle is essential in determining the aggregated proton irradiation damage in space, In

addition, although proton irradiation experiments for different types of 2D materials

have been performed in prior research [30–33], the defect structures are not clearly

understood. The simulation results can provide useful microscopic information on the

collision dynamics and defect generation process. Due to the lack of accurate inter-

atomic potentials for new types of 2D materials, a novel simulation approach based

on first principles was demonstrated so that the full dynamics of the ion interaction

process can be modeled with an efficient position sampling scheme.

Next, TMD materials were studied due to their prospect for use in 2D electronics.

The surface chemistry and electronic properties of WSe2/SiC heterostructures were

investigated using MeV-energy protons and heavy ions. From this study, the chemical

stability of WSe2 and the impact of ion irradiation on the WSe2/SiC interface were

examined. Lastly, electrical degradation of MoS2 FETs was studied using a new

irradiation and device fabrication procedure with protons and helium ions as probe

particles. Although radiation effects on 2D FETs have been reported in the past [32,

34], it is sometimes difficult to isolate the impact of irradiation on standalone ultra-

thin 2D layer due to the radiation damage to the dielectric. For dielectric of different
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qualities and thicknesses, the results are not directly comparable between different

studies. In this work, the MoS2 channel layer and the SiO2 dielectric were irradiated

separately in order to understand the effects intrinsic to MoS2. MD simulations were

also performed to determine the probability of structural defects at experimental

conditions and at a wide range of ion energies.

1.3 Fundamentals of ion-matter interactions

1.3.1 Interatomic potentials

The interactions between an incident ion and target atoms depend on the potential

energy between the atoms. If the potential energy is known or can be approximated,

force, acceleration, and energy transfer can all be computed accordingly. Interatomic

potential functions are usually used to describe the system’s potential energy. For

example, in MD simulations, various formulations of potential functions are intro-

duced to describe a range of material systems so that the material structure and

movement of atoms can be modeled. The interatomic potentials can take different

analytical forms representing different aspects of the interaction physics. Based on

the number of atoms involved, the interatomic potentials can be classified into two

groups: pair potential and many-body potential. The pair potential describes the

interactions between two atoms, whereas many-body potential takes into account the

interactions among multiple neighboring atoms simultaneously. For example, for a

three-body potential, the effects of bond angle and bond order can be included so that

the interatomic potential formalism can provide a better description of the bonding

environment of a specific material structure.

Figure 1.2 shows a typical potential profile as a function of the interatomic dis-

tance r between two atoms. In the context of ion interactions, it corresponds to the

potential between an incident ion and an atom within the target material. As shown
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Figure 1.2: Potential as a function of the interatomic distance.

in Figure 1.2, repulsive force is dominant at small r while attractive force is dominant

at large r. Here, re is defined as the equilibrium position where the force, the slope

of the potential, is equal to zero. The range for re is around 0.15–0.3 nm [35]. In

order to provide an estimation of the radius of the atomic shell, a second reference

distance is used here: the Bohr radius of the hydrogen atom rh, which has a value of

0.053 nm. Based on these two reference distances, different potential functions can be

used to describe the potentials at different distances, according to the classification

used in Ref. [35]. When r > re and when the two atoms are getting closer, the outer

electron shells start to overlap and an weak attractive force is manifested. When

rh < r < re, the inner electron shells start to overlap and the repulsion in this region

can be described by the Born-Mayer potential [36]:

V (r) = C1 exp (−r/C2), (1.1)

where C1 and C2 are material-dependant constants. This potential provides a good

approximation for an ion impact parameter that is close to re [35]. When r < rh,
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the nuclei are screened by the electrons in the inner shells. the screened Coulomb

potential [37, 38] can be used to describe this range of separation distance:

V (r) =

(
Z1Z2q

2
e

4πε0r

)
exp (−r/rsc), (1.2)

where qe is the elementary charge, ε0 is the vacuum permittivity, and the screening

radius rsc can be expressed as

rsc =

(
9π2

128

)1/3
rh

(Z
2/3
1 + Z

2/3
2 )1/2

. (1.3)

Here, Z1 and Z2 are the atomic number of the ion and the target atom, respectively.

When r � rh, the repulsive force between the two nuclei is dominant. The pure

Coulomb potential can be used to describe the nuclei-nuclei interactions in this region:

V (r) =
Z1Z2q

2
e

4πε0r
. (1.4)

The pure Coulomb potential can be considered as an extreme condition of the

screened Coulomb potential with the exponential term to be unity. To the first

approximation, for r < re, the total potential can be expressed as the sum of the

Born-Mayer potential shown in Equation (1.2) and the screened Coulomb potential

shown in Equation (1.2). However, it is worth noting that when r is approximately

equal to rh or slightly larger (between the Born-Mayer regime and screened Coulomb

regime), there is no universal formalism that can be used to describe the interatomic

interactions with great accuracy. Therefore, more sophisticated empirical potential

functions are developed for different material systems with each of them having a

certain range of applicability.

After the interatomic potential is defined, the energy transfer between an incident

ion and a target atom can be determined. As shown in Figure 1.3, the impact param-
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Figure 1.3: Ion trajectory after collision with a target atom. The impact parameter b is
defined in the schematic trajectory.

eter b is defined as the perpendicular distance between the initial direction of the ion

and the initial position of the target atom. Assuming that the initial kinetic energy

of the ion is Ei and the energy transfer at an impact parameter b is T , the differential

energy transfer cross section can be expressed as

σs(Ei, T ) dT = 2πb db. (1.5)

The total cross section can then be calculated by:

σ(Ei) =

Tmax∫
Tmin

σs(Ei, T )dT, (1.6)

where Tmin and Tmax are the minimum and maximum energy transferred, respectively.

The Tmax corresponds to a head-on collision and is found to be:

Tmax = γEi =
4M1M2

(M1 +M2)2
Ei, (1.7)
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where M1 and M2 are the atomic mass of the incident ion and the target atom,

respectively. Next, the average energy transferred can be computed:

Tavg =

∫ Tmax

Tmin
Tσs(Ei, T ) dT∫ Tmax

Tmin
σs(Ei, T ) dT

. (1.8)

For the calculation of average energy transfer from ions that can lead to displacement

damage, Tmin is equal to the threshold displacement energy Td, which is defined as

the minimum kinetic energy required by the target atom to be permanently displaced

to a different lattice site.

Taking the Rutherford scattering as an example, based on the pure Coulomb

potential shown in Equation (1.4), the total scattering cross section is [35]

σs(Ei, T ) =
πb20γEi

4T 2
, (1.9)

where b0 is defined as

b0 =
Z1Z2q

2
e

4πε0Ei

M1 +M2

M2

. (1.10)

From Equation (1.8), the average energy transferred is as follows:

Tavg =

∫ Tmax

Tmin
Tσs(Ei, T ) dT∫ Tmax

Tmin
σs(Ei, T ) dT

=
Tmin ln(Tmax/Tmin)

1 − Tmin/Tmax
. (1.11)

Assuming that Emin is equal to Ed and Tmax is much larger than the threshold dis-

placement energy Ed, the expression can be simplified to

Tavg ≈ Ed ln

(
γEi
Ed

)
. (1.12)

Since a pure Coulomb potential is used, these results are only valid for near head-on

collisions, which means that the atomic displacement can only be produced when the

incident ion is close to the target atom. This is valid for light ions with a kinetic
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energy that is larger than ∼1 MeV [35]. For heavy ions, other potentials such as the

inverse square potential need to be used. When a more complex potential is used, such

analytical expressions cannot be derived easily. In addition, cascade collisions could

take place after the initial ion collision, and the threshold displacement energy varies

with the direction of the incident ion [39]. Therefore, computational simulations are

used in this work to calculate the energy transfer for different ion impact positions.

Nevertheless, the derivations presented here illustrates the relationship between the

interatomic potential and the energy transfer during the ion collision process.

1.3.2 Ion energy loss through matter

When an ion slows down in a material, it interacts with the medium by two

primary mechanisms: inelastic collisions with electrons in the medium (electronic

energy loss) and elastic collisions with nuclei (nuclear energy loss):

(
−dE
dx

)
total

=

(
−dE
dx

)
electronic

+

(
−dE
dx

)
nuclear

, (1.13)

where
(
−dE

dx

)
electronic

and
(
−dE

dx

)
nuclear

represent the electronic and nuclear stopping

power, respectively. The energy loss by radiation is usually negligible.

When the ion energy is high and the impact parameter is small relative to the

screening radius rsc defined in Equation (1.3), pure Coulomb potential can be used to

describe the nuclear energy loss. When the ion energy is low and the impact parameter

is of the same order of magnitude as the screening radius, screened Coulomb potential

needs to be used because the screening effect from the shell electrons cannot be

ignored. Different descriptions of the screening effect have been developed from the

1930s to the 1950s, including the Bohr potential [40], Thomas-Fermi potential [41],

Lenz-Jenzen potential [42], and Molière potential [43]. Besides these, the Ziegler-

Biersack-Littmark (ZBL) universal screening potential has also been developed from
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first-principles calculations with free-electron approximation [44, 45]. The potential

energy can be expressed as [45]

EZBL =
1

4πε0

Z1Z2q
2
e

r
Φ(r/ra), (1.14)

ra =
0.46850

Z0.23
1 + Z0.23

2

, (1.15)

Φ(x) = 0.1818e−3.1998x + 0.5099−0.9423x + 0.2802−0.4029x + 0.0282e−0.2016x. (1.16)

The ZBL potential is widely used for the study of high-energy ion collisions [1].

Regarding the damage induced by nuclear energy loss, more massive ions lead

to a higher extent of structural damage due to their greater energy transfer to the

target atoms. The probability of defect formation also depends on the atom threshold

displacement energy. For example, according to atomistic simulations, the threshold

displacement energies for Mo and S atoms in monolayer MoS2 are ∼20 eV and 6.9 eV,

respectively, indicating that S vacancies are more likely to be formed [46].

For the electronic energy loss, since the movement of electrons needs to be con-

sidered, quantum-mechanical calculations need to be used to accurately determine

the ion-electron interactions. Electronic stopping power can be calculated with first-

principles simulations using time-dependent density functional theory (DFT) [47, 48].

If the ion velocity is higher than the velocity of the bound electrons, the Bethe–Bloch

formula provides a good approximation, which has the form [49]:

(
−dE
dx

)
electronic

=
4πnZ2

1

mec2β2

(
q2e

4πε0

)2 [
ln

(
2mec

2β2

I(1 − β2)

)
− β2

]
, (1.17)

where n is the electron density of the target material, me is the electron rest mass, c

is the speed of light, β is the ratio of the ion velocity to the speed of light, and I is the

mean excitation potential. If the ion energy is low and there are electrons bounded

with the ion, the ion effective charge becomes lower and corrections need to be made.
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Electronic energy loss leads to ionization and excitation. For semiconductors

and metals, individual ionization or excitation usually does not produce a physical

defect. Secondary low-energy electrons from ion-induced ionization have a negligibly

low probability to knock out a nucleus within the commonly studied range of ion

energy and ion fluence [46]. However, the total electronic energy deposition from

the ion stopping can produce heating within a localized volume along the ion track

over a short time scale and lead to structural disorder according to the thermal

spike model [50]. It has been shown by MD simulations that swift heavy ions can

produce defects in suspended and supported graphene with an energy loss threshold

of 8.0 keV/nm and 6.5 keV/nm, respectively [51]. For light ions such as protons and

helium ions in the keV and MeV range, defects induced by electronic energy loss from

the heating effect could be ignored due to the lower electronic stopping power.

1.4 Ion damage and modification of two-dimensional materials

Ion irradiation of 2D materials has been investigated by previous studies [52]. Dif-

ferent effects have been observed for various ion species at a range of fluence levels. A

brief summary is provided here based on the observed effects. First, structural defects

can be produced by ion irradiation. For light ions such as protons and helium ions,

noticeable damage usually occurs at a fluence on the order of ∼1016 ions/cm2 [30, 53].

Structural damage of suspended and supported graphene induced by 2-MeV protons

was studied by Raman spectroscopy at different fluences [30]. It was shown that

graphene is more susceptible to damage when there are fewer layers and when it

is not supported by a substrate. The dependence of MoS2 and WSe2 defect gen-

eration on the helium fluence was also investigated via Raman spectroscopy and

scanning transmission electron microscopy [53, 54]. With the increase of helium ion

fluence, a semiconductor-metal-insulator transition was observed and explained by

the preferential sputtering of chalcogen atoms and the dominance of metallic bonds
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at intermediate helium fluence [53, 54]. Besides material-level damage, degradation

of MoS2 and graphene FETs has been probed by MeV-level protons [32, 55]. Decrease

of conductivity and shift of threshold voltage were observed due to the generation of

interface states and oxide charges. A more comprehensive explanation of the damage

mechanisms of FET devices is included in Chapter IV. In contrast to light ions, heavy

ions usually lead to detrimental effects to 2D materials and devices. It was reported

that large morphological changes were created by swift heavy ions with a kinetic en-

ergy of ∼100 MeV at oblique incident angles [56, 57]. Layer folding, surface tracks,

and surface protrusions were observed [56, 57]. For 2D FET devices, the degradation

induced by heavy ions was shown to occur at a much lower fluence level compared

to proton irradiation [58]. This is because heavy ions can cause higher displacement

damage due to their higher atomic mass and higher energy transferred per collision.

Besides damage effects, ion irradiation can also be used to pattern 2D materials,

introduce desired dopants, and tune material properties. Focused ion beams can be

used for patterning and etching of 2D materials [53, 54, 59–61]. For example, thin

nanoribbons with various widths can be fabricated by use of a helium ion microscope

with sub-nanometer precision [54]. Focused ion beam with Ga+ ions can be used to

etch a MoS2 thin film layer by layer [62]. Lateral homo-junction in fewer layer WSe2

was also demonstrated by irradiating only half of the channel area with a focused

helium beam [53]. There is also interest in using ions to produce graphene nanopores

for DNA sequencing and water purification [63–65]. For the purpose of intentional

doping, ion irradiation can either be used to create vacancies as favorable dopant sites

or directly be used as doping species. For direct ion implantation, the ion energy needs

to be low so that structural damage can be minimized. Doping with ion irradiation in

a controlled manner was demonstrated in multiple experiments with nitrogen, boron,

and heavy metals [66–68]. MD simulations have also been used to study the possible

routes of controlled defect production and ion implantation [69–71].
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It is noted that radiation-induced single event effects (SEEs) is an important area

for the evaluation of radiation hardness of digital electronics. However, this area

has not been studied in prior work mostly due to the fact that the development of

2D-based electronics is still in the basic research stage. SEEs refer to detrimental

phenomena (latchup, upset, burnout, etc.) induced by one charged particle. For ex-

ample, due to the large number of charge carriers produced by an incident charged

particle, the digital state at a sensitive node can be flipped, or the induced current

can surpass the damage threshold. These effects can affect or lead to catastrophic

failure of electronics operation. SEE has been extensively studied for silicon comple-

mentary metal-oxide-semiconductor (CMOS) technology [72, 73], so for the use of 2D

electronics in space, the assessment of SEE is also necessary in the future.

1.5 Organization of the dissertation

Chapter I describes the motivation for this research and provides a general intro-

duction to ion irradiation effects on 2D materials. In Chapter II, proton irradiation

damage on graphene is investigated using MD simulations. Defect generation proba-

bilities and defect structures are discussed for different proton energies and incident

angles. In addition, ab-initio and classical MD simulations are compared to evaluate

the accuracy of the widely used classical MD approach. In Chapter III, X-ray photo-

electron spectroscopy (XPS) was used to determine the change of chemical and elec-

tronic properties of WSe2 fabricated from mechanical exfoliation and metal organic

chemical vapor deposition (MOCVD) growth after proton and heavy-ion irradiation.

In Chapter IV, the electrical characteristics of MoS2 FETs were studied after proton

and helium ion irradiation. Different FET components were irradiated separately to

isolate the radiation effects to MoS2. In addition, MD simulations were performed to

determine the physical damage induced by proton and helium ions for a wide range

of energies. Since the work in each chapter adopts a different approach and studies a
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different 2D material, a more relevant comprehensive literature review is provided in

the introduction section of each chapter.

Previously published results are incorporated into this dissertation. Chapter II

includes portions of the paper entitled “Proton irradiation of graphene: insights from

atomistic modeling” published in the journal Nanoscale. The material is reproduced

from Ref. [74] with permission from the Royal Society of Chemistry. Chapter III

uses portions of the paper entitled “Effects of energetic ion irradiation on WSe2/SiC

heterostructures” [75] published in the journal Scientific Reports with the permission

of reuse from Springer Nature, and portions of the paper entitled “Stability of the

tungsten diselenide and silicon carbide heterostructure against high energy proton ex-

posure” [76] published in the journal Applied Physics Letters with the permission of

reuse from AIP Publishing. The experimental section of Chapter IV includes por-

tions of the paper entitled “Extraordinary Radiation Hardness of Atomically Thin

MoS2” [77] published in the journal ACS Applied Materials & Interfaces. The results

are reprinted with permission from Ref. [77] (Copyright 2019 American Chemical

Society). The use of previously published materials has been approved by all co-

authors.
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CHAPTER II

Molecular Dynamics Simulation of Proton

Irradiation of Graphene

2.1 Introduction

It has been demonstrated that ion irradiation can modify the structural, electronic,

mechanical, magnetic, and optical properties of 2D materials [78–80]. For example,

electronic properties can be modified by creating vacancies and filling them with

selected dopants [67, 81]. Transport properties of layered transition metal dichalco-

genides can be tuned by irradiation with a focused ion beam [54, 82]. Ion bom-

bardment can form graphene nanopores [64, 83, 84] for DNA translocation [65] and

membrane devices for water purification [85]. Improvement of graphene mechanical

properties such as Young’s modulus with controlled Ar+ irradiation has also been re-

ported [86]. Although the effect of ion bombardment of graphene has been simulated

previously over a range of energies and incident angles [69–71, 81, 87], the impact

of proton irradiation has not yet been investigated. The proton, as the nucleus of

the lightest element (hydrogen), has the capability to produce small and controlled

defects so that the desired material structure and morphology can be realized. It

would be challenging to achieve the same effect with swift heavy ions or ions with

high atomic masses, which usually form large defect clusters [88, 89]. Experiments
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have shown that unusual magnetic properties could be induced in graphene by proton-

induced defects [90, 91], and techniques such as XPS and Raman spectroscopy have

been used to characterize the electronic and structural properties of 2D materials with

proton-induced defects [30, 75, 76]. To complement these experimental efforts, it is

desirable to study the types of defects that are created by protons from a microscopic

perspective. In addition, protons are a major component of cosmic rays, accounting

for approximately 90% of the nuclei in cosmic rays. The use of 2D materials has been

proposed for low-weight, low-power electronic devices in space applications, which is

why it is important to understand their response to proton irradiation. Knowing the

defect type and concentration is required for the estimation of the transport prop-

erties, mechanical properties, and thermal conductivity of irradiated graphene [92].

In this work, both classical and ab-initio MD methods were used to study the defect

structures and defect generation probabilities induced by protons in graphene, as a

representative 2D material.

Classical MD simulation tools, such as LAMMPS [93], have been widely used

to simulate ion damage of graphene and other nanostructures. Here, in addition to

LAMMPS, an ab-initio MD method is also used, in which the full interaction dynam-

ics is simulated and different ion impact positions are sampled. Unlike graphene, an

accurate and extensively-tested potential might not exist for novel 2D materials. In

this case, a direct modelling based on first principles could be an appealing method.

Although the ab-initio method is computationally expensive, it is demonstrated that

with limited number of sample points, it can be used to determine the defect gener-

ation probability induced by low-energy ions.

With the classical MD code LAMMPS, an extensive study on proton-induced

effects has been carried out for a proton energy range of 0.1–100 keV at various

incident angles, which is limited by ab-initio MD simulations due to the computational

expense required. However, the ab-initio MD method provides an accurate approach
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to validate the classical MD simulations. Different defect configurations are classified

and analyzed. Since protons originating from space radiation have a broad energy

spectrum and is incident over a wide range of angles, our results at different proton

energies and incident angles will be useful for calculating the aggregate damage effects

induced by the aforementioned space proton flux. By establishing the relationship

between the ion impact positions and defect types, more insight can be provided into

the variation of defect generation probabilities as a function of proton energy and

angle, which could also be useful for the understanding of the irradiation response of

other 2D materials and ion species.

2.2 Methods

2.2.1 Methods for ab-initio MD simulations

Ab-initio MD simulations were performed with the SIESTA program, which uses

a self-consistent density functional method with standard norm-conserving pseudopo-

tentials [94]. As shown in Figure 2.1(a), the studied system consists of one layer of

graphene of 98 carbon atoms in the x − y plane and one hydrogen atom initially

positioned 1.0 nm above the graphene layer. The ion charge was not simulated ex-

plicitly: the neutral hydrogen atom was used to study the impact of proton (the

term “proton” is used interchangeably with the term “hydrogen atom” in this chap-

ter). Periodic boundary conditions were applied in all three directions. The number

of carbon atoms was chosen as a trade-off between the simulation speed and the in-

terference of defect-defect interactions due to periodic boundary conditions. In the

z direction, the distance between graphene and its image plane was set to 5.0 nm

to avoid interactions between image systems. Double-ζ plus polarization basis sets

were used with a cutoff energy of 120 Ry and a Monkhorst-Park k-point sampling

mesh of 2 × 2 × 1 point. The generalized gradient approximation with the PBE
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Figure 2.1: (a) The studied system in the SIESTA simulation. The position of the hydrogen
atom was sampled in the blue rectangular triangle based on the structure symmetry. (b) The
studied system in the LAMMPS simulation. For oblique incidence of the hydrogen atom,
the polar and azimuthal angles are defined in the figure.
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exchange correlation functional was used [95]. The lattice constant was optimized to

be 0.247 nm according to energy minimization.

Different impact positions were sampled with four different proton energies (EH):

0.1, 1, 10 and 100 keV. The incident direction was perpendicular to the graphene

surface and each simulation only involved the incidence of one hydrogen atom without

defect accumulation. Around 80 impact positions were performed for an EH of 0.1, 1

and 10 keV, and approximately 50 simulations were performed for an EH of 100 keV.

For each simulation, the system was first relaxed at 300 K with a Nosé thermostat

for 5 ps with a timestep of 1 fs. The hydrogen atom was then positioned to the

top of the desired impact position. Next, the system was relaxed again for 20–

120 fs, during which the movement of the hydrogen atom and the carbon primary

knock-on atom (PKA) was constrained in order to maintain their relative position.

The procedure described above was used to avoid repetitively running the 5-ps-long

relaxation for all the different cases. The tolerance of the density matrix was fixed at

10−5 during the initial relaxation period. After full relaxation, the hydrogen atom was

given an initial kinetic energy to initiate the collision process. During the collision

and the following relaxation process, the Verlet MD method with a variable timestep

was applied. A variable timestep algorithm was implemented into the SIESTA code

to optimize the simulation time because extremely short timesteps are mandatory

to simulate the collision process. With a higher bound of 1 fs, the actual timestep

was chosen as the smallest timestep derived from the following two criteria: the

displacement distance per step and the energy transfer per step. For every atom, the

displacement per step was set to be less than 2.5 × 10−3–2.5 × 10−2 nm depending

on the initial velocity of the hydrogen atom. The energy loss per step was controlled

to be less than 3% of the kinetic energy of the incident atom; energy transfer is

inaccurate if the energy loss per step is too large. Extensive testing with various ion

energies and positions was performed to make sure that the choice of the timestep
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can yield self-consistent result from the energy transfer process. A smaller timestep is

required for higher ion energy and smaller impact distance. For an EH of 0.1 keV and

1 keV, a minimum timestep of 10−3 fs is sufficient, however, for an EH of 100 keV,

a minimum timestep of 10−5–10−4 fs is required to properly compute the energy

transferred. The tolerance of the density matrix was maintained at 10−5 during the

C-H collision but was increased to 10−3–10−4 during the final relaxation period. In

order to avoid ejected carbon atom or hydrogen atom from re-entering the simulation

box due to the periodic boundary conditions, their kinetic energies were forced to zero

if their projected distance to the graphene surface along the z direction was larger

than 0.8–1.0 nm, which is sufficiently large to avoid perturbation to the relaxation of

the defected structure. After the ion bombardment, the system was relaxed with a

timestep of 1 fs until the structure of the system was stable for 500 fs.

2.2.2 Methods for classical MD simulations

The classical MD simulations were performed with the LAMMPS code [93]. As

shown in Figure 2.1(a), one layer of graphene of 756 atoms with a lattice constant

of 0.253 nm was created in LAMMPS with periodic boundary conditions in the x

and y directions and a fixed boundary condition in the z direction. The incident

hydrogen atom was initially placed 0.3–0.5 nm distance away from the surface of

graphene, which is beyond the defined cutoff distance of the ZBL potential between

the hydrogen atom and carbon atoms. The universal repulsive potential from the

ZBL formalism [96] was used to describe the screened nuclear repulsive force at short

range. It was used here because a very small impact distance is required to create

defects with the incident hydrogen atom. The ZBL cutoff distance was set to be

0.25–0.5 nm depending on the ion energy, while ensuring that further increase of the

cutoff distance does not cause significant change of the energy transfer during the

collision process. Here, the chemical effect between hydrogen and carbon atoms was
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ignored, which is justified for high-energy ions, where the energy transfer from long-

range interactions is small. For low-energy ions, for example at a hydrogen energy of

0.1 keV, this could lead to a slight underestimation of the energy transfer. However,

a smooth connection between the ZBL potential and a chemical potential could also

lead to errors at intermediate interatomic distance near the connection point. The

effective charge of a high-energy ion depends on its velocity. For example, for a

proton energy of 0.1 keV and 100 keV, the effective charge is estimated to be 0.85 and

0.20, respectively [44]. Although the ion effective charge is not taken into account in

the ZBL formalism, the ZBL potential has shown good agreement with experimental

data when predicting the ion stopping power [96]. The Tersoff/ZBL potential from

the LAMMPS package was applied for the potential between carbon atoms. In the

Tersoff/ZBL potential, the Tersoff and ZBL are smoothly connected by a Fermi-like

function where short interatomic distance is dominated by the ZBL potential and long

interatomic distance is dominated by the Tersoff potential. The parameters described

in Ref. [97] were used to define the Tersoff/ZBL potential, which were also used in a

prior work in which the ion bombardment of graphene was studied [69].

After the potentials were defined, the system energy was minimized and then

the system was relaxed for 2 ps with a timestep of 0.1 fs with NVT ensemble at

300 K. After the relaxation, the position of the hydrogen atom was re-positioned

based on the position of the selected carbon PKA at the center of the graphene

system. The impact position of the hydrogen atom relative to the PKA was defined

as its projected position in the graphene plane following the direction of its initial

velocity. Although there is thermal vibration of the PKA during the time when the

hydrogen atom is approaching the graphene surface, this only leads to a small change

to the impact position and is minimized by placing the hydrogen atom right above

the potential cutoff distance. The hydrogen atom was then given an initial velocity

and the irradiation process was simulated with the NVE ensemble with an adaptive
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timestep for a period of 0.5–1 ps depending on the ion energy. During the irradiation,

three different timesteps were used for the following three phases to optimize the total

simulation time. In the first phase, C-H interactions will take place. The hydrogen

atom interacts with the PKA and then might collide with another carbon atom with

a very small probability. The timestep used for the C-H collision process ranged

from 10−2 fs to 10−5 fs for an ion energy range of 0.1 keV to 100 keV. A smaller

timestep needs to be used for a higher ion kinetic energy to ensure that the energy

transferred during the collision process is not affected by the coarse timestep. In the

second phase, C-C interactions will take place. The initial PKA will have a certain

probability to collide with other carbon atoms and cause cascade collisions. The

timestep used for the C-C collisions ranged from 2 × 10−2 fs to 2 × 10−4 fs for an

ion energy range of 0.1 keV to 100 keV. In the third phase, if there are atoms being

ejected, it takes time for them to escape the simulation box and further relaxation

also takes place. A timestep of 0.02 fs was used during this phase. After the ion

irradiation, the system was relaxed with NVT ensemble at 300 K for 10 ps with a

timestep of 0.1 fs. In order to classify different types of defects, the system energy

was minimized again after the relaxation and the centro-symmetry parameter [98]

was computed in LAMMPS to quantify the local environment of each atom. Based

on the centro-symmetry parameter of each atom, different defect configurations were

identified.

Using the described approach, the defect structures were simulated first at different

proton energies ranging from 0.1 keV to 100 keV at normal incidence. Since the

thermal vibration of atoms affects the collision process and the resulting defect type,

for the same ion energy, the same impact position was simulated three different times

with a different random number seed for the initial relaxation process. Thus, the

defect map shown in Figure 2.4 was generated three times for the same ion energy

although one of them is shown here. However, all the data were included when the
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defect generation probabilities were calculated. Next, oblique incident angles were

studied with different azimuthal and polar angles, as defined in Figure 2.1(b). To

study the effect of azimuthal angle, different azimuthal angles were sampled at an

EH of 10 keV at a polar angle of 30° and 75°. The azimuthal angles were sampled at

0°, 15°, 30°, 45°, 60°, 75° and 90°. To study the effect of polar angle, the polar angles

were sampled at 15°, 30°, 45°, 60° and 75° for an EH of 0.1, 1, 10 and 100 keV. The

azimuthal angle was randomly selected between 30° and 90° due to the crystal lattice

symmetry, as illustrated in Figure 2.1(b). In total, approximately 200,000 simulations

were performed.

2.3 Results and discussion

2.3.1 Defect structures and defect generation probabilities from ab-initio

MD simulations

The defect types as a function of the proton impact position are shown in Fig-

ure 2.2 with the defect structures drawn in Figure 2.3. As shown in Figure 2.3(a),

due to the symmetry of the graphene hexagonal lattice structure, the impact posi-

tions only need to be sampled from 0° to 60° relative to the carbon PKA. Generally,

a higher fraction of the ion kinetic energy can be imparted to the PKA when the

distance between the two atoms is closer. Due to the small defect cross section from

the proton irradiation, a bisection method was used to first find the onset impact

position for single-vacancy (SV) within which more impact positions were sampled.

From Figure 2.2(a), it is shown that at 0.1 keV, the dominant defect type is SV.

At the boundary of SV and intact in Figure 2.2(a), there is one instance of Frenkel

pair (FP) corresponding to the situation where the PKA does not have enough energy

to escape the graphene surface and finally pulls back to another crystal site (in the

image system). In this work, the term FP is used to describe all the defect structures
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Figure 2.2: Defect types as a function of the impact position of the proton for an incident
energy of (a) 0.1 keV, (b) 1 keV, (c) 10 keV, and (d) 100 keV at a vertical incident angle
simulated with the ab-initio MD code SIESTA. The origin of the polar coordinate system is
the position of the selected carbon PKA and the marker positions correspond to the impact
positions of the proton. For defect configurations with no, one, two, three and four atoms
being ejected out of the simulation system, they are labeled as FP (purple), SV (blue), DV
(green), TV (orange), and QV (pink), respectively.
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without atom being ejected. Along a direction of 40° relative to the PKA, one instance

is observed of no defect at a radius smaller than those that can cause SV. Intuitively,

one would expect a larger energy transfer at a closer impact position and, accordingly,

a SV at this impact position. However, due to the random thermal movement of the

carbon atoms, even if the initial impact position were fixed, the energy transfer to

the PKA during the collision process and the ejected direction of the PKA could

vary. In addition, at 0.1 keV, the maximum energy transferred to the PKA is very

close to the threshold displacement energy. Therefore, it is possible that the PKA

relaxes back from an impact distance smaller than those at which the PKA does not

relax back. This also means that the defect map shown in Figure 2.2 is not completely

deterministic. The same effect has also been seen in Figure 2.4(a) from the LAMMPS

simulation.

At an EH of 1 keV, the dominant defect type is still SV, as shown in Figure 2.2(b).

However, the double-vacancy (DV) starts to form. The DVs are created when the

hydrogen atom is 60° relative to the PKA because the closest neighbor of the PKA is

right along the path of the PKA. The relaxed 5-8-5 structure, which is also the most

common DV structure from the simulation, is shown in Figure 2.2(f).

At an EH of 10 keV, the SV cross section becomes smaller (see Figure 2.2(c))

because the interaction time around the PKA becomes shorter. As a result, a closer

distance is required for the same amount of energy transferred, which leads to a

smaller SV cross section. The relative probability of DV becomes higher than that of

1 keV because the incident proton is more energetic. Besides the cluster of DVs at 60°,

there are also two isolated instances of DV at 0° and 50°. The DV at 0° is formed by

the PKA hitting the second carbon atom at the opposite end of the carbon ring. The

DV at 50° is formed by the incident proton hitting the second carbon atom (structure

shown in the right image of Figure 2.5(g)). The DVs are more frequently formed by

a second collision with the carbon PKA. Such a second collision with proton is less
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likely to happen due to its smaller size.

At an EH of 100 keV, due to the higher kinetic energy of the incident ion, different

defect structures with multiple vacancies can be formed (see Figure 2.2(d)). As higher

ion energy leads to more complicated cascade collisions and longer relaxation time,

longer computational time is required for each simulation, which limits the number

of impact positions to be sampled. Defect structures up to four vacancies have been

obtained. Ejecting more atoms is still possible but less likely, as shown later from

the LAMMPS simulation. The total defect cross section continues decreasing with

increasing proton energy. Defects can only be produced within a radius of ∼0.01 Å,

corresponding to an extremely small defect cross section. Thus, for light ions, in

order to simulate the defect generation probabilities efficiently, it is important to first

exclude the areas where the energy transfer is too small to produce any defects.

Figure 2.3: Different types of defects obtained from the SIESTA simulations for no (FP),
one (SV), two (DV), three atoms (TV), and four atoms (QV) ejected from the simulation
box after proton irradiation. The defect configurations labeled in Figure 2.2 are shown in
this figure.
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The different types of defects from the SIESTA simulations are shown in Fig-

ure 2.3. At an EH of 1 keV, a Stone-Wales (SW) defect (see Figure 2.3(a)) is pro-

duced after the PKA forms a dangling bond beneath the graphene surface for ∼1 ps.

The SW defect has been observed experimentally after electron irradiation [99, 100].

According to the DFT calculation, it has a formation energy of ∼4.8 eV and a high

formation/removal energy barrier of ∼9.2 eV due to the large atom arrangement

needed [101]. The 7-4-8-5 structure shown in Figure 2.3(b) is formed by a lateral

movement of the PKA atom located at the intersection of the 7-4-8 rings. The same

structure has also been identified by atomistic simulation as a radiation-induced defect

with a formation energy of 11.3 eV [102]. The 7-4-7-5-8-5 defect (see Figure 2.3(c))

is created by 100-keV proton after a more violent local disorder, which has also been

reported by atomistic simulation of graphene nanoribbon after annealing at high tem-

perature [103]. The structure in Figure 2.3(d) can be considered as a carbon atom

placed in the bond center of two adjacent atoms (the “bridge” site), which corresponds

to an energetically favorable site for adatom [92]. The three carbon atoms that are

bonded with each other are positioned below the graphene plane in order to accom-

modate to this topological structure. With one missing carbon atom, the 4-7-5-10

defect (see Figure 2.3(e)) can be formed instead of a commonly seen 5-9 structure.

According to Ref. [104], it can be transformed to the 5-9 structure by bond rotation

with an energy barrier of ∼1.2 eV. For DV structures, as shown in Figure 2.3(g), a

5-7-6-5-7-6 structure (not the SW defect) can be formed by rotation of two C-C bonds

after two adjacent carbon atoms are removed. Compared with other DV structures

such as 5-8-5 or 555-777, this structure is found to be energetically unstable [105].

For the triple-vacancy (TV), the 5-10-5 structure (see Figure 2.3(h)) has the low-

est energy among all TV defects with a formation energy of 10.63 eV according to

the tight-binding calculation [106]. In comparison, the 5-8-8-5 defect and 5-7-4-11-5

defect (see Figure 2.3(i) and (j)) are less energetically favorable by having higher for-
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mation energies [106]. Regarding the quad-vacancy (QV), the 5-5-5-9 structure has

been observed twice, corresponding to the most stable QV structure with a formation

energy of 11.84 eV [106]. It can be noted that, besides the defect structures shown in

Figure 2.3, other types of topological defects can also be formed, as later shown from

the LAMMPS simulations. Due to the high energy injection from the protons, a rich

variety of defects can be produced including both low-energy defects and those that

are energetically unfavorable.

2.3.2 Defect structures and defect generation probabilities from classical

MD simulations

The defect types as a function of the proton impact position at normal incidence

from the LAMMPS simulation are presented in Figure 2.4. For FP, SV and DV, a

finer classification of the defect structures was performed, as explained in Figure 2.5.

For FP (see Figure 2.5(a)–(c)), type 1 corresponds to a carbon atom near the top or

bottom position of another carbon atom (the “top” site). FP type 2 corresponds to a

vacancy along with an adatom between two adjacent carbon atoms (the “bridge” site).

The FP type 3 includes all the other FP structures, which are less likely to occur.

According to the ab-initio calculation [101], the “bridge” site has the lowest formation

energy (6.3 eV) whereas an exact “top” site has a formation energy of 7.2 eV. It was

also reported in Ref. [101] that, compared with the exact “top” site, it is more stable

to have an adatom slightly shifted from the top, which gives a formation energy of

6.8 eV. Among all the proton-induced defects, the SW defect does not have a high

probability to occur, which is consistent with prior MD results [107].

For SV (see Figure 2.5(d)–(f)), type 1 is a simple SV with 5-9 structure. SV type

2 is actually a DV with one adatom at the top/bottom/bridge location. The SV type

3 includes all the other SV configurations. For DV (see Figure 2.5(g)–(i)), type 1

is defined as the DV configurations where the distance between two missing atoms
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Figure 2.4: Defect types as a function of the impact position of the proton for an incident
energy of (a) 0.1 keV, (b) 1 keV, (c) 10 keV, and (d) 100 keV at normal incidence simulated
with the LAMMPS code. The origin of the polar coordinate system is the position of the
selected carbon PKA and the marker positions correspond to the proton impact positions.
For defect configurations with no, one, two, three, four, and five atoms being ejected out of
the simulation system, they are labeled as FP (purple), SV (blue), DV (green), TV (orange),
QV (pink), and PV (yellow), respectively.
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Figure 2.5: Different types of defects defined in Figure 2.4 for no (FP), one (SV), and two
atoms (DV) ejected from the simulation box after proton irradiation. The defect types
obtained from the LAMMPS code were classified based on the positions of the vacancies
and interstitials.

is equal to or smaller than 2a0, where a0 is the distance between two neighboring

atoms. There are only three configurations satisfying this condition, corresponding

to two missing atoms within the same carbon ring. They are grouped together because

these defects can be easily formed due to the short distance between the two missing

atoms. Type 2 is defined as configurations where the distance between two missing

atoms is larger than 2a0. Type 2 defects are usually formed by the relaxation of a large

local disorder, creating two single vacancies far away from each other. The DV type 3

includes all the other DV structures, for example, a defect with TV and one adatom.

The structures in the type 3 of FP, SV, and DV are usually complicated. Some of

them involve the rotation of bonds and some of them form complex structures by

breaking the planar crystal structure. In general, the number of possible structures

increases with the number of missing atoms since more defect combinations occur

with more vacancies. Therefore, for structures with more than two missing atoms, a
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finer defect classification was not attempted.

At an EH of 0.1 keV (see Figure 2.4(a)), only SV can be formed because the

proton energy is low. Instead of a sharp boundary between the SV and no defect, the

SV probability decreases gradually with increasing impact position (or radius). As

explained earlier for the SIESTA simulation, this is because the energy transferred to

PKA is very close to the threshold displacement energy so that the PKA energy and

direction will also be influenced by the random thermal motion of the carbon atoms.

At 1 keV (see Figure 2.4(b)), the dominant defect type is still SV with a low probability

of DV. Interestingly, no FP is formed at both 0.1 keV and 1 keV. At an EH energy of

10 keV (see Figure 2.4(c)), all three types of FP and SV are observed. In addition, DV

type 1 and TV can also be formed. Although SV type 3 is not shown in Figure 2.4(c),

it is observed in the complete data set since Figure 2.4(c) only includes one third of

the data as described in the Methods section. At 100 keV (see Figure 2.4(d)), all

three types of FP, SV and DV as well as TV, QV and penta-vacancy (PV) can be

formed. The fact that FPs can only be formed at 10 and 100 keV shows that if a

carbon atom does not have sufficient energy to escape the graphene surface and its

maximum distance to its original site is not far, it has a very high probability to

relax back. The fact that DV type 2 and 3 can only be formed at 100 keV indicates

that the complicated collision cascade induced by large energy injection is required

to form complicated DV structures. This can also be confirmed by examining the

individual collision dynamics of the type 2 and 3 of DV defects. The proton-induced

defects for 0.2, 0.5, 2, 5, 20 and 50-keV protons were also simulated and similar defect

maps can be found in Figure 2.6. The defect generation probabilities as a function

of the proton energy is shown in Figure 2.7. Since the simulated positions are not

uniformly distributed over the graphene area, the Monte Carlo method was used

to uniformly sample 107 positions within the area of interest where defects can be

produced. The defect type of the closest simulated impact position was assigned to
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the sampled positions from the Monte Carlo method. Within the area of interest,

the defect generation probability was calculated by dividing the number of points

corresponding to a certain type of defect by the total number of sample points. The

actual defect probability was then scaled to the entire graphene area. The number of

simulated points for each proton energy is shown in Figure 2.6. For a defect generation

probability below ∼ 5 × 10−5, a large statistical fluctuation is expected due to the

limited sample points.

If one considers each defect type as a function of the proton energy, the SV prob-

ability first increases and then decreases with the proton energy. The initial increase

is due to the fact that more energy can be transferred to the PKA to allow it to

escape from the graphene surface, and the further decrease is due to the fact that

shorter interaction time leads to closer impact position for the same amount of en-

ergy transferred. In other words, at the same impact position, the fraction of energy

transferred from the proton decreases with the increase of the proton energy, which

leads to the decrease of the defect probability at energies above 0.2 keV. These two

competing factors determine the overall trend of the SV probability. It is noted that

a proton energy of 100 eV is very close to the threshold proton energy that can lead to

defects in graphene. Based on the displacement threshold energy of graphene using

the Tersoff potential, the threshold proton energy is calculated to be ∼80 eV. The

trend for TV can be explained with the same two competing factors. However, for

the DV probability, there is an abrupt change at 5 keV and then a smooth decrease

with the increase of proton energy. The reason for the abrupt change is that the for-

mation of DV is dominated by a second collision with the proton if the proton energy

is below 5 keV, however, if the proton energy is above 5 keV, a second collision with

the PKA becomes dominant. In other words, the abrupt change is due to the change

of the direction of the proton and PKA after the collision. For vacancies above TV,

the statistics is not enough to draw conclusions. Based on Figure 2.7, the probability
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Figure 2.6: Defect types as a function of the impact position of the proton for an incident
energy of (a) 0.2 keV, (b) 0.5 keV, (c) 2 keV, (d) 5 keV, (e) 20 keV, and (f) 50 keV at normal
incidence simulated with the LAMMPS code. For defect configurations with no, one, two,
three and four atoms being ejected out of the simulation system, they are labeled as FP
(purple), SV (blue), DV (green), TV (orange), and QV (pink), respectively.
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Figure 2.7: The generation probabilities of different types of defects calculated from the
SIESTA and LAMMPS simulations.
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Figure 2.8: The number of sampled ion positions for different proton energies at a normal
incidence angle simulated with the LAMMPS code. The defect generation probabilities
presented in Figure 2.4 were determined based on the number of sampled positions shown
here.

of QV does not vary significantly, although the total defect generation probability

decreases with the proton energy.

Although the Tersoff potential was used here to describe the C-C interactions,

AIREBO potential [108] has also shown to be an accurate potential to simulate ther-

mal, mechanical and chemical properties of carbon systems [109, 110]. However, it

was not used here due to the concern of underestimation of short-range interactions.

An interesting direction for future work would be to smoothly connect AIREBO with

the ZBL potential and compare the difference with the Tersoff/ZBL potential.

2.3.3 Comparison of results from ab-initio and classical MD simulations

By comparing Figure 2.2 and Figure 2.4 obtained from the ab-initio and classical

MD simulations, respectively, a similarity of the defect types and their impact posi-

tions at each proton energy can be observed. For example, at 10 keV, the DVs are

generated at very similar impact positions and this is because these impact positions
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allow a high probability of a second collision with a neighboring carbon atom.

As shown in Figure 2.7, at 0.1 keV, the SV probability differs by a factor of 6.9.

This difference can also be reflected by the difference of the SV boundary between

Figure 2.2(a) and Figure 2.4(a). With the SIESTA code, among all the simulations,

the minimum PKA energy to cause SV is found to be 22.4 eV, which is consistent

with the published threshold displacement energies from DFT calculations of 22–

23 eV [111, 112]. With the LAMMPS code, the minimum PKA energy to cause SV is

∼22.5 eV, which is close to that found from the SIESTA code and is also consistent

with the reported threshold displacement energy calculated from the Tersoff/ZBL po-

tential [113]. However, depending on the ejected direction of the PKA, the minimum

energy to form a SV can vary [112]. It can be noticed that if the PKA gains a kinetic

energy of 23–25 eV, it has a high probability to form an SV with the SIESTA code,

but a much lower probability with the LAMMPS simulations. Although the global

minimum PKA energy to form an SV is about the same between the two approaches,

it differs by 1–2 eV depending on the ejected angle. Therefore, the discrepancy could

be related to the accuracy of the potential used. Since the proton energy is 100 eV,

the maximum energy that can be transferred to a PKA is only around 30 eV. There-

fore, the SV probability is very sensitive to the energy required to form a SV at

different ejection angles. When the proton energy is 1 keV, the SV generation prob-

abilities from the two approaches become closer to each other. The difference in the

displacement energy has less effect on the SV probability because the energy trans-

ferred becomes one order of magnitude larger and several electronvolts of difference

in energy only corresponds to small differences in the impact position. For the DV,

since its probability is extremely low (see Figure 2.2(b) and 2.4(b)), the accuracy of

the DV probability is limited by the number of sample points. A finer mesh will

be needed to improve the DV statistics, but might not be necessary depending on

the required precision of the application. At 10 keV, a relatively good agreement is
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observed for FP, SV and DV between the two approaches. The discrepancy is due to

the combination of limited sample points in the ab-initio method and the inaccuracy

of the interatomic potential defined in the simulations. However, for an application

that only requires the order of magnitude of the defect generation probabilities, both

methods can be considered as valid at this proton range. At 100 keV, only qualitative

comparison is possible due to the limited statistics from the SIESTA code. Since com-

plicated collision cascade and relaxation can take place, LAMMPS is a more practical

approach to estimate the defect generation probabilities at this high proton energy. It

is noted that the electronic energy loss is not taken into account in both the ab-initio

and classical MD simulations. In order to determine the electronic stopping power,

time-dependent DFT calculations need to be performed. However, for the proton

energy range studied in this work, the electronic stopping power is small compared

to the critical stopping power that can lead to structural damage induced by local

heating [51].

2.3.4 Proton irradiation at oblique angles

The oblique ion incidence angles were studied with classical MD simulations. The

azimuthal angle was first sampled between 0° and 90° with a proton energy of 10 keV at

two polar angles: 30° and 75°. It can be observed from Figure 2.9 that the dependence

of SV probability on the azimuthal angle is small. The variation of other types of

defects is small at a polar angle of 30°, but can be large for some types of defects

at a large polar angle (75°). Under most of the conditions, the difference in the

defect generation probability is within a factor of 2–3. This is expected because the

azimuthal angle of the incident ion only affects the azimuthal direction of the ejected

PKA but hardly affects its polar angle. Due to the discrete positions of the graphene

atoms, some extent of variation exists. For example, as shown in Figure 2.9(b), at a

proton energy of 10 keV and at a polar angle of 75°, the TV generation probability
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Figure 2.9: The generation probabilities of different types of defects as a function of the
azimuthal angle of the incident proton at an energy of 10 keV for a polar angle of (a)
30° and (b) 75°.
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Figure 2.10: Defect types as a function of the impact position of the proton for an incident
energy of 10 keV at different azimuthal incident angles. The study was performed at a polar
angle of 30° and 75°. At a polar angle of 30°, the results for an azimuthal angle of (a)
30° and (b) 75° are shown here. At a polar angle of 75°, the results for an azimuthal angle
of (c) 30° and (d) 75° are shown here. The relationships between the incident angle, impact
position and graphene structure lead to the differences shown in this figure.
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Figure 2.11: Example of TV formation dynamics. The PKA first hits the brown carbon
atom and then hits the pink carbon atom. All three atoms are ejected from the graphene
surface at the end. The red arrow shows the direction of the PKA.

varies greatly with the azimuthal angle. This is because the azimuthal angle of the

ejected PKA is influenced by the azimuthal angle of the incident ion. The PKA

direction with respect to the PKA neighboring atoms determines the defect structure

that can be created. The formation of TV requires two subsequent collisions after

the initial collision, and such collision sequence is more favorable at certain azimuthal

angles. At an azimuthal angle of 75°, the occurrence probability of TV is higher than

that at an azimuthal angle of 30°, and a cluster of TVs is seen when the ion impact

position is 20°–40° relative to the PKA (see Figure. 2.10(c) and (d)). The formation

dynamics of TV in this region is illustrated in Figure 2.11. The PKA first hits a

neighboring carbon atom (in brown) and is then deflected by that atom, which causes

it to hit a second carbon atom (in pink). At an azimuthal angle of 30°, this specific

PKA ejection angle is less probable so that this collision sequence is less favorable. It

can also be noted that the polar angle of the incident ion will also impact the direction
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of the PKA and, consequently, the probability of the collision cascade that leads to

TV. At a polar angle of 75°, the momentum from the incident ion has a direction

more parallel to the graphene plane, the possible collision sequences that lead to a

TV are different from those at a polar angle of 30°. The defect types at different

impact positions are presented in Figure 2.10, showing the relationship between the

azimuthal angle, impact position, lattice structure, and defect type. Due to the crystal

lattice symmetry (see Figure 2.1(b)), the results at 0° and 15° should be close to that

of 60° and 45°, respectively. This symmetry is observed for SVs and DVs but is not

apparent for the other types of defects due to the stochastic nature of the collision

process. The azimuthal angle was studied here because under certain experimental

irradiation conditions, there is a fixed azimuthal angle relative to the crystal structure

of the sample. The azimuthal angle does not appear to have a significant impact on

the defect generation process. However, for a more comprehensive study, a complete

survey using different ion energies and polar angles should be performed.

Next, the polar angle was studied at 15°, 30°, 45°, 60°, and 75°, and the results are

shown in Figure 2.12. For this study, the azimuthal angle was randomly chosen from

30° to 90°. For SV, the probability increases with increasing polar angle at an EH of

1, 10, and 100 keV. However, it first increases but then decreases at an EH of 0.1 keV.

The increase in the SV probability for all ion energies is due to the fact that the

projected impact area at the graphene plane becomes larger at higher polar angles.

For example, at a polar angle of 75°, the distance between the hydrogen and carbon

atom at the graphene plane is much larger than the minimum distance between the

two atoms (the impact parameter). This effect leads to the elongated impact area

along the direction of the ion, as shown in Figure 2.10 and Figure 2.13. At 0.1 keV,

the proton interaction time around a carbon atom is long due to its smaller velocity.

Therefore, the momentum change caused by the PKA neighboring atom is sufficient

to deflect the path of the proton so that it becomes difficult to approach the PKA.
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Figure 2.12: The generation probabilities of (a) SV, (b) DV, and (c) multiple vacancies
(more than DV) as a function of the polar angle of the incident proton.
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Figure 2.13: Defect types as a function of the impact position of the proton at different
incident angles. At an incident energy of 1 keV, the results are shown for a polar angle of
(a) 30° and (b) 60°, respectively. At an incident energy of 100 keV, the results are shown
for a polar angle of (c) 30° and (d) 60°, respectively. The azimuthal angle was randomly
sampled between 30° and 90° due to the crystal symmetry. The SV probability increases
with the polar angle, as manifested by an elongated impact area along the proton direction.
At 1 keV, a significant increase in the DV probability can be observed from (a) to (b). In
comparison, there is only a moderate change at 100 keV, as shown from (c) to (d).
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As a result, the SV probability decreases at large polar angles because only at large

polar angles, are the neighboring atoms close enough to the path of the proton to

deflect its trajectory.

The probabilities of DV and multi-vacancies increase rapidly with polar angles

at 1 keV but exhibit a more moderate variation at 10 and 100 keV. In order to

produce DV or multi-vacancies, the PKA needs to be ejected in a direction nearly

parallel to the graphene plane and the PKA needs to have sufficient energy to knock

out another atom. At 1 keV at near normal incidence, the PKA kinetic energy

is not sufficient to displace another atom when such a direction is possible. By

increasing the polar angle, both the direction and the energy criteria can be satisfied

with a higher probability. At 10 and 100 keV, the energy criterion can be easily

satisfied due to the higher ion kinetic energy. This explains why only at 1 keV do

the probabilities of DV and multi-vacancies increase significantly with polar angle.

Besides the aforementioned explanation, it should be noted that the variation of the

defect generation probabilities is a convoluted response of the polar angle, ion energy,

and impact position, as reflected from Figure 2.13.

2.3.5 Discussion

As discussed in the previous sections, depending on the proton energy and incident

angle, proton irradiation can produce various types of vacancies and defect structures.

These defects are created immediately after irradiation and experience further migra-

tion, agglomeration, annealing, or structural transformation over longer time scales.

For example, DFT calculations showed that 5-8-5 DV has an energy 7.2–8.7 eV lower

than separate SVs so that the formation of a DV from two SVs is energetically favor-

able [114]. A prior experiment with electron beam irradiation also showed that SV is

observed less frequently compared with the DV due to its higher defect energy and

mobility [115]. Similarly, TV is also more energetically favorable than a separate SV
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and DV [115]. In addition, point defects can also be joined together to form extended

and complex defect structures [114].

The proton-induced defect structures can alter the structural, electrical, and phys-

ical properties of graphene and this has been extensively discussed in the litera-

ture [92, 114, 116]. A small concentration of vacancies can actually increase the

electronic conductivity of graphene by generation of midgap states, which creates a

metallic region near vacancy sites [117]. Further increase in the vacancy concentra-

tion creates scattering centers and results in a decrease in the conductivity [117–119].

In terms of the mechanical properties, vacancies are expected to significantly de-

crease the Young’s modulus and tensile strength only when they are present in large

concentrations [120]. With respect to the chemical properties, vacancies are useful in

providing reactive sites for chemisorption and intentional doping [121, 122]. Function-

alization of graphene can be achieved by a two-step process: first introduce vacancies

by ion irradiation and then introduce dopants into the reactive vacancy sites [67]. It

is also shown that SV itself can greatly enhance the binding energy of hydrogen atoms

for applications related to hydrogen storage. In order to achieve mono-dispersive SV,

a low proton energy is desirable. Based on Figure 2.7, a proton energy of 0.1 keV

results in a large SV yield with a low probability of creating other types of defects.

Based on Figure 2.12, an incident polar angle of 45° can further increase the SV yield

by a factor of 2.1 with respect to normal incidence.

Table 2.1: Graphene defect generation probabilities induced by 2-MeV protons simulated
with the LAMMPS code.

Defect type FP SV DV TV

Defect probability
per ion 1.42 × 10−6 2.66 × 10−6 1.48 × 10−6 5.37 × 10−7

Defect type QV PV >PV Total

Defect probability
per ion 8.90 × 10−8 4.24 × 10−8 3.49 × 10−8 6.27 × 10−6
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Figure 2.14: Defect types as a function of the impact position of the proton for an incident
energy of 2 MeV at normal incidence simulated with the LAMMPS code. For defect config-
urations with no, one, two, three, four, five, seven, and nine atoms being ejected out of the
simulation system, they are labeled as FP, SV, DV, TV, QV, PV, 7V, and 9V, respectively.

In order to help understand the previous experiment on proton irradiation of

graphene [30], classical MD simulations were also performed with 2-MeV protons us-

ing the same approach. The probabilities of different types of defects are presented

in Table 2.1 and the defect types at different impact positions are presented in Fig-

ure 2.14. With 2-MeV protons, it is shown that the most common defect structures

are FP, SV, and DV. The defect probabilities decrease with the number of vacan-

cies. Although the overall defect generation probability is low, it cannot be ignored

if graphene is irradiated with a high proton fluence. It has been reported that for

monolayer graphene, at a proton fluence of 1016 ions/cm2, the D peak in the Raman

spectrum, which is caused by disordered graphene structure, starts to become visi-

ble [30]. At this fluence level, the density of defective sites per Å2 and the values

in Table 2.1 have a one-to-one ratio. The total defect probability is 1.64 × 10−5,

corresponding to one defect site per 6.1× 104 carbon atoms. The order of magnitude

is consistent with the values determined from Ar+ irradiation [123].
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2.4 Summary

Using both ab-initio and classical MD simulations, the structures and generation

probabilities of different types of graphene defects were determined under proton

irradiation. It has been shown that in order to accurately and efficiently model the ion

irradiation process, a variable timestep and an adaptive position sampling scheme are

crucial. Although only a limited set of impact positions was sampled with the SIESTA

code, a relatively good agreement was found between the ab-initio and classical MD

simulation except at a low proton energy (0.1 keV), where the classical MD simulation

underestimates the SV generation probability due to the sensitivity of SV probability

on the accuracy of the potential at this low proton energy. Nevertheless, similar

defect structures have been observed from both simulation approaches, and can also

be compared to the irradiation experiments and prior simulation work. When the

proton energy is high, a rich variety of defects can be produced due to the large

energy injection from the incident ions. The physical reasons for the variation of

the probabilities of different types of defects as a function of the proton energy and

incident angle were discussed, which can also be applied to other 2D materials and

ion species. It has been shown that the generation probabilities and the relative

ratios of different types of defects can be effectively tuned by adjusting the proton

energy and the incident angle. The obtained results will be important for defect

engineering, material property tuning, as well as assessment of radiation damage for

the development of radiation-tolerant materials.
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CHAPTER III

Proton and Heavy Ion Irradiation of Layered WSe2

3.1 Introduction

Layered transition metal dichalcogenides have received much attention in recent

years because of their outstanding chemical [7], optical [8], and electronic properties.

Tungsten diselenide (WSe2), a layered material with a direct bandgap of 1.65 eV in the

monolayer form, exhibits attractive electronic properties such as a high on/off current

ratio [124] and high mobility [125], which make it a candidate for next-generation low-

power electronic devices [126, 127]. Significant progress has been made in fabrication

of WSe2 by controlled growth via MOCVD [128] and molecular beam epitaxy [129].

Novel transistors [130, 131] and optoelectronic devices [132] have been constructed

based upon WSe2. However, the effects of ionizing radiation on WSe2 have not been

extensively explored, and the understanding of radiation effects is critical for assess-

ing the potential of WSe2-based electronics for use in high-radiation environments.

Protons and heavy ions are major components of cosmic rays, and for this reason the

damage induced by proton and heavy-ion bombardment in WSe2/SiC heterostruc-

tures was studied.

Many previous irradiation studies of layered materials have focused on graphene

and MoS2. Here, the chemical and optical modification and the electronic property

changes to the heterostructure consisting of layered WSe2 and bulk silicon carbide
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(6H-SiC) were studied by proton and heavy-ion irradiation using XPS and ultraviolet-

visible spectroscopy (UV-Vis-NIR). Although ions can produce damage along the en-

tire length of their tracks, the XPS surface characterization technique was used for the

determination of sample damage only near the WSe2 channel region, since a material

modification near the channel region would have a significant impact on the charge

carrier transport in an electronic device based on WSe2 material, such as a transis-

tor. Proton damage was investigated due to its significance for space applications,

since cosmic radiation consists primarily of energetic protons. It has been reported

for graphene that proton-induced damage depends on sample thickness and substrate

interaction [133]. Thus, proton irradiation effects in WSe2/SiC heterostructures were

compared from two different fabrication methods: WSe2/SiC heterostructures with

relatively thick mechanically exfoliated WSe2 and WSe2/SiC heterostructures with

ultrathin as-grown WSe2 using the MOCVD growth technique. Although cosmic

rays are mostly composed of protons and helium nuclei, it is also worth investigating

the impact of heavier ions, which experience higher stopping power and are thus ex-

pected to produce a higher damage rate. The heavy ions account for 1% of the nuclei

in cosmic rays, but the damage from a heavy ion is significantly larger than that from

a proton. Furthermore, heavy ions can be used to simulate neutron radiation dam-

age by virtue of their comparable damage mechanism and greatly reduced irradiation

time [35, 134, 135].

3.2 Methods

Three types of samples were prepared: SiC with WSe2 surface flakes, SiC with

no WSe2 surface flakes, and mm-scale bulk WSe2 crystals. The 400 µm thick semi-

insulating 6H-SiC wafers were obtained from II-VI Incorporated, while bulk WSe2

crystals were obtained from 2D Semiconductors, Inc. For the first type of samples,

WSe2/SiC heterostructures were prepared by mechanically exfoliating WSe2 flakes
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from a bulk crystal and depositing them onto a sample of 6H-SiC (0001). The thick-

ness of the flakes ranged from several layers to several µm. The optical images of the

mechanically exfoliated WSe2 samples used in Subsection 3.3.1 and Subsection 3.3.2

are shown in Figure A.1 and Figure A.2(a) in Appendix A, respectively. All SiC

substrates were cleaned using the following procedure: sonication in acetone and iso-

propanol for 10 minutes each; rinsing in deionized water; wet clean in NanoStripTM

for 20 minutes; rinsing; drying off using a nitrogen gun.

The MOCVD WSe2 samples were grown in a vertical cold wall reactor on 6H-SiC

substrates. Growth was conducted at 800 °C for 20 minutes with tungsten hex-

acarbonyl (W(CO)6; purity: 99.9%) and hydrogen selenide (H2Se; purity: 99.9%) as

precursors for the respective elements. Hydrogen gas was used as the transport agent,

and the ambient pressure was 700 Torr. The ratio of H2Se to W(CO)6 was ∼12,000,

with ∼440 sccm of hydrogen gas flowed through the system. One subset of MOCVD

samples was characterized using scanning electron microscopy (SEM), and the other

subset was used for irradiation. An image of the MOCVD-grown WSe2 taken using

SEM (see Figure A.2(b) in Appendix A) shows that single-layer to few-layer crystals

were grown with a density of approximately 4.5 triangles per µm2, a domain size of

hundreds of nanometers, and an estimated surface coverage of 36%. In addition, the

MOCVD WSe2 domains were aligned with respect to each other. With the small lat-

tice mismatch between WSe2 (a = 3.3 Å) and 6H-SiC (a = 3.1 Å), epitaxial growth

was expected. However, interface states were also present and could impact the elec-

tronic properties [136]. All the WSe2 samples were prepared by our collaborators

(Roger Walker et al. from Prof. Joshua Robinson’s group at the Pennsylvania State

University). The XPS measurement was performed by Roger Walker and the analysis

of the XPS data was performed by Roger Walker and Tan Shi.

Proton and heavy-ion irradiation was carried out at the Michigan Ion Beam Lab-

oratory at University of Michigan. For exfoliated WSe2 samples, the irradiation was
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performed with 200-keV protons at fluences of 1016 protons/cm2 and with 2-MeV pro-

tons at fluences of 1014, 1015, 1016, and 1017 protons/cm2. For MOCVDWSe2 samples,

the irradiation was carried out with 200-keV protons at a fluence of 1016 protons/cm2

and 2-MeV protons at a fluence of 1015, 1016, and 1017 protons/cm2. The proton flu-

ence experienced by space electronics during their typical lifetime is within the range

of fluences investigated experimentally in this work [137]. The heavy-ion experiments

were performed with 2.5-MeV Fe ions, 5-MeV Fe ions, and 4-MeV Ag ions at a fluence

of 1016 ions/cm2. The ion beam was raster-scanned over the sample area of 6×6 mm2

at an angle of ∼7° from the normal to sample surface to avoid channeling effects. The

ion beam current density was kept within the range of 300–500 nA. The irradiation

temperature was monitored in real time by thermal imager and kept between 50 °C

and 100 °C to avoid selenium desorption due to thermal effects. The samples were

stored in a vacuum chamber before and after the irradiation at a typical pressure of

0.1 Torr. The XPS was performed one day before irradiation, two to three days after

irradiation, and two weeks after irradiation. XPS measurements were performed to

determine the stability of the samples in air and medium-level vacuum. For the proton

irradiation results presented in Subsection 3.3.1, XPS measurements were performed

with a Kratos Axis Ultra spectrometer. For the proton irradiation results presented in

Subsection 3.3.2 and heavy-ion irradiation results presented in Subsection 3.3.3, the

XPS measurements were performed with a PHI VersaProbe II spectrometer. Both

XPS tools use monochromatic aluminum Kα X-rays (1486.6 eV). All samples were

charge-referenced to adventitious carbon at 284.8 eV and mixed Gaussian-Lorentzian

peak fits were used. A low energy electron flood gun was used during the XPS mea-

surement for charge compensation. The UV-Vis-NIR spectroscopy was performed

using a Perkin-Elmer Lambda 950 spectrophotometer. Transmittance data was col-

lected for wavelengths ranging from 250 nm to 2000 nm, and then converted into

absorbance as a function of photon energy.
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3.3 Results and discussion

3.3.1 Proton irradiation of exfoliated WSe2

Prior to proton irradiation, the stability of exfoliated WSe2 in vacuum and in air

was evaluated. It is well-known that selenide-based TMDs can be oxidized in air at

room temperature over long periods of time [138]. To determine if the oxidation is

significant over the time frame of the experiment (several days), SiC samples with

WSe2 surface flakes (WSe2/SiC) were prepared and characterized via XPS. The sam-

ples were then either left in air or stored inside a vacuum chamber under a medium

vacuum (10–100 mTorr). After three days, the samples were removed and character-

ized again by XPS. Comparison of the spectra for the core tungsten shells (W 4f; see

Figure 3.1) reveals that only two visible peaks are present in both cases, which are

attributed to WSe2 (W 4f5/2 and W 4f7/2). For the sample in air, the binding energy

of the W 4f7/2 peak has an initial position of 32.31 eV that shifts upwards slightly to

32.40 eV. For the sample in vacuum, there is no significant shift of the W 4f7/2 binding

energy. These values for binding energy are in good agreement with the previously

reported results for WSe2 [124, 139]. Since oxidation is known to cause a downshift

of the binding energy [139, 140], it can be concluded that no significant oxidation of

exfoliated WSe2 occurs over the studied time period for either case.

After confirming that the samples do not oxidize in the experimental environmen-

tal conditions within the experimental time frame, samples of WSe2/SiC, bulk SiC,

and bulk WSe2 were prepared and characterized by XPS. Samples were then either

irradiated by 2-MeV protons or left unexposed as control samples. It is apparent from

the XPS data that no oxidation (determined by the lack of appearance of tungsten

oxide peaks as shown in Figure 3.2.) was induced in the exfoliated WSe2 by proton

beam irradiation. However, the observed variation in the position of W 4f peaks

appears to depend on the proton fluence (Figure 3.2). No significant variation of the
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Figure 3.1: The stability of the exfoliated flakes in (a) medium vacuum and (b) air has
been demonstrated via XPS. The two peaks in the W 4f7/2 window both correspond to
WSe2. No significant tungsten oxide formation was found to occur within the time frame of
these measurements. The initial W 4f7/2 positions and shifts were (a) 32.35 eV, + 0.01 eV;
(b) 32.31 eV, + 0.09 eV.
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Figure 3.2: The binding energy shift of the W 4f7/2 peak position (∼35 eV) as a function of
proton fluence. Data points at zero fluence correspond to control samples.
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Figure 3.3: The binding energy shift of the Se 3d5/2 peak position (∼54 eV) as a function
of proton fluence.
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Figure 3.4: The binding energy shift of O 1s peak position (∼532 eV) from surface oxygen
as a function of proton fluence.
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XPS spectra was observed for the control samples or when the samples were irradi-

ated at lower fluences (1014 and 1015 protons/cm2). However, a measurable increases

in binding energy of ∼0.6 eV and ∼0.8 eV were observed for the samples irradiated at

1016 and 1017 protons/cm2, respectively. The same trend was observed for selenium

(as measured via the Se 3d spectra; see Figure 3.3), and a similar trend was observed

for oxygen (as measured via the O 1s spectra; see Figure 3.4(c)) where surface oxygen

is attributed to the adsorption of oxygen onto the SiC substrate. However, the upshift

for the O 1s peak, ∼0.3 eV at 1016 protons/cm2 and ∼0.5 eV at 1017 protons/cm2, is

smaller than that of the WSe2 XPS signature. Significant shifts in peak positions for

carbon (C 1s) or silicon (Si 2p) were not observed until the irradiation fluence reached

1017 protons/cm2, and they were on the order of ∼0.2 eV for C 1s and ∼0.3 eV for

Si 2p. Since the XPS resolution is approximately 0.1 eV and there could be differen-

tial charging due to the non-uniformity of the exfoliated flakes, a shift of 0.2–0.3 eV

for C 1s and Si 2p peak is not statistically significant. However, the W 4f binding

energy shift of 0.6 eV and 0.8 eV are significant when compared with the equipment

resolution.

Figure 3.5: The depth profile of ionization and dpa in SiC estimated from the SRIM/TRIM
simulation. (a) Ionization depth profile of 2-MeV proton in SiC; (b) dpa of 2-MeV proton
in SiC at 1017 protons/cm2. The monolayer collisions calculation type was used in the
SRIM/TRIM simulation.

The observed peak shifts are attributed to charge buildup resulting from pro-
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ton/substrate interactions. The 2-MeV protons penetrate 32 µm deep into the SiC

substrate, as estimated by the SRIM/TRIM software package [1]. A proton loses

energy along its track via two mechanisms: inelastic collisions with bound electrons

in the medium (electronic ionization and excitation) and elastic collisions with nuclei.

The electronic energy loss is dominant at short depths, where the layered WSe2 is lo-

cated, while nuclear stopping only becomes important at the end of the particle range

(see Figure 3.5 for the depth profile of proton-induced ionization and displacement

per atom (dpa) in 6H-SiC). Since a proton is relatively light in comparison to the

nuclei that make up the irradiated sample, the probability of displacement damage to

the surface material is very small (∼0.007 dpa for a fluence of 1017 protons/cm2 in the

first 10 nm of the WSe2 surface, as calculated by SRIM/TRIM). This is consistent

with the absence of an oxidation peak, as measured by XPS after the irradiation.

The ionization is mostly responsible for the charge transfer at the WSe2/SiC inter-

face, which causes the XPS core-level peak shift. Although a small positive shift of

W 4f peak to the order of ∼0.15 eV can be induced by extensive oxidation [141, 142]

and there could be oxidation below the detection limit of XPS, the relatively large

W 4f peak shift (∼0.6 eV for a fluence of 1016 protons/cm2 and ∼0.8 eV for a fluence

of 1017 protons/cm2) can be mostly attributed to the charge transfer at the WSe2

interface. Based on SRIM/TRIM simulations, the electronic energy loss within the

WSe2 and SiC at the sample surface is approximately 56 eV/nm and 39 eV/nm, re-

spectively. Since the probability of direct interaction between a proton and WSe2

is small, most of the interactions occur within the substrate. The onset of a mea-

surable charging effect in the WSe2 is seen at a fluence of 1016 protons/cm2. This

fluence corresponds to a relatively high radiation dose in comparison to doses known

to induce effects on the operation of TMD transistors. For example, trapped charges

in dielectrics such as silicon dioxide can degrade the device electrical characteristics

of TMD transistors at a dose level that is two to three orders of magnitude lower
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than used in this experiment [32], suggesting that degradation in TMD-based device

architectures is not due to the TMD layer, but the surrounding materials. The XPS

peak shift observed in our experiment can be interpreted as charge transfer due to a

combination of direct damage to WSe2, indirect effects from the substrate, and carrier

trapping by interface states.

Before irradiation Fluence: 1016 protons/cm2(a) (b)
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Figure 3.6: VBO between WSe2 and SiC in the WSe2/SiC heterostructure. The VBO
was calculated using XPS spectra and was found to decrease after proton irradiation. It is
assumed that the bandgap was not modified by the proton beam exposure (CBM: conduction
band minimum).

Samples of bulk WSe2 and SiC were also exposed to protons at 1016 protons/cm2 in

order to analyze the effect of proton damage on the band alignment between these two

semiconductors. To the best of our knowledge, this is the first attempt to measure

the valence band offset (VBO) between these two materials using XPS. The VBO

between these materials was determined from the following equation [143–145]:

∆Ev = ∆ECL(i) + (EWSe2
W 4f − EWSe2

V BM ) + (E6H−SiC
Si 2p − E6H−SiC

V BM ). (3.1)

Here, ∆ECL(i) is the energy difference between the two selected core shell states

of the studied heterojunction (in this case, between W 4f and Si 2p states of the
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Figure 3.7: XPS spectra used in the calculation of VBO between WSe2 and SiC upon
exposure with 2-MeV protons at a fluence of 1016 protons/cm2. The VBO between WSe2
and SiC in the WSe2/SiC heterostructure can be calculated using XPS by determining the
binding energy difference between (a) W 4f and (b) Si 2p in WSe2/SiC heterostructure,
energy difference between (c) W 4f and (e) valence band edge in bulk WSe2, and energy
difference between (d) Si 2p and (f) valence band edge in bulk SiC.
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WSe2/SiC heterostructure). The band alignment before and after radiation damage

is schematically shown in Figure 3.6(a) and (b). The core level separation at the

interface was determined to have an initial value of 68.4 eV, decreasing to 67.9 eV

upon proton beam exposure. This decrease in the core level separation originates from

the charging processes described above. Interface states would not affect the VBO

because they would contribute to the WSe2 and SiC equally and their contribution

to VBO would cancel out [143]. The valence band maximum (VBM) was measured

by applying a linear regression to the low binding energy edge of the valence band

spectrum for both the bulk WSe2 and the bulk SiC samples. As shown in Figure 3.6,

the VBO between WSe2 and SiC decreases from 1.22 ± 0.24 eV to 0.71 ± 0.24 eV

after proton beam exposure at 1016 protons/cm2. Spectra used for the calculation of

VBO are shown in Figure 3.7. The error bar of 0.24 eV is estimated from the error of

six measurement values, where an error of 0.1 eV for each measurement is used. The

proton beam exposure had a minimal effect on the separation between the core-level

peak and VBM of bulk SiC or bulk WSe2. The primary cause of the VBO change is

the shift of the W 4f peak relative to the Si 2p peak in the WSe2/SiC heterostructure.

Regarding the ion irradiation effects on the SiC substrate, the dependence of amor-

phization and annealing on dose and temperature, as well as other property modifica-

tions, have been previously studied [146, 147]. The conversion of the crystalline and

transparent SiC to a heavily defective and either darkened (partially translucent) or

black (opaque) SixCy material was observed deep within the substrate for the sam-

ples exposed to 1016 and 1017 protons/cm2, respectively (see Appendix A Figure A.3).

The color change was also witnessed in a sample of exfoliated MoS2 on SiC substrate

after exposure to 1016 protons/cm2 at 2 MeV. In light of this change, the light ab-

sorbance properties of a control sample and sample exposed to 1016 protons/cm2 were

measured in order to examine how the color change in proton-irradiated SiC corre-

lates to optical properties. While XPS provides information on the chemical bonds
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(a) (b)

(c)

Figure 3.8: UV-Vis-NIR spectra before and after 2-MeV proton irradiation at a fluence of
1016 protons/cm2. (a) The measured UV-Vis-NIR spectra reveal irradiation-induced changes
in the optical properties of the SiC substrate. Magnified regions of the plot (a) depict the
changes in the absorption edge corresponding to (b) the SiC bandgap and (c) the new
absorption edge created around 1.1 eV due to the irradiation-induced vacancy-rich region
deep in the SiC substrate.
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within the first ∼10–20 nm of the surface, the UV-Vis-NIR spectroscopy provides an

absorption spectrum of the entire sample in the lower energy range of the electro-

magnetic spectrum. The absorbance data obtained are shown in Figure 3.8. For all

samples, there is a sharp increase in the light absorbance for photons with energy at

or above 3 eV, corresponding to the bandgap of 6H-SiC (Figure 3.8(b)). Addition-

ally, a new feature appears in the irradiated samples at ∼1.5 eV, with an absorption

edge at ∼1.1 eV (Figure 3.8(c)). This absorbance feature appears to result in the

black color of the irradiated SiC, as this energy lies in the near-infrared part of the

spectrum. This is explained by the generation of a deep acceptor in the SiC bandgap

near Ec− 1.1 eV [148, 149]. This deep acceptor results from point defects such as the

silicon single vacancy, the carbon single vacancy, and carbon anti-sites [150, 151].

3.3.2 Proton irradiation of MOCVD-grown WSe2

In this section, the proton irradiation results from MOCVD-grown WSe2 are pre-

sented. There are two main factors that make it difficult to determine whether

MOCVD-grown WSe2 and exfoliated WSe2 have a similar response to proton radia-

tion. First, MOCVD growth is usually accompanied by a greater density of interface

states [152]; and second, the exact chemical composition and the doping level are

also different in the two techniques. The MOCVD samples used in the experiment

have a consistent Se:W ratio of ∼2.1, meaning that WSe2 is Se-rich and there is a

pre-existing concentration of holes with p-type conductivity. In comparison, the ex-

foliated WSe2 samples have an ideal Se:W ratio of 2 although they are also p-type

doped due to the intrinsic W vacancy defects [153]. These differences may lead to

different charging behavior induced by proton irradiation. Therefore, comparisons

between the MOCVD and exfoliated samples were made with the goal of determining

the extent to which the irradiation effects are influenced by the material fabrication

method.
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Table 3.1: Initial binding energies of core level peaks for WSe2 and SiC in a heterostructure.

Core level peak
Binding energy for

exfoliated WSe2 on SiC
heterostructure (eV)

Binding energy for
MOCVD WSe2 on SiC
heterostructure (eV)

Binding energy
difference (eV)

W 4f7/2 31.94 32.72 0.78
Se 3d5/2 54.19 54.96 0.77
Si 2p3/2 100.39 101.39 1.00
C 1s 282.66 283.64 0.98

Besides the experimental results shown in Subsection 3.3.1, irradiation of addi-

tional exfoliated WSe2 samples was also performed for comparison with the MOCVD

samples. The initial XPS spectra before the proton irradiation show that the only

detectable sources of contamination common to exfoliated and MOCVDWSe2 are sur-

face oxygen and adventitious carbon (see Appendix A Figure A.4 and Figure A.5).

Exfoliated WSe2 on SiC exhibits a weak Na 1s peak, indicating a small amount of

sodium contamination, likely a byproduct of the exfoliation process. Analysis of

the core level peaks reveals that there is no oxidation of the WSe2 or SiC surface

detectable by XPS.

After charge calibration to the XPS peaks, it is shown that the initial binding en-

ergies vary with the heterostructure fabrication method. This difference is presented

in Table 3.1, where the core-level W and Se peaks for MOCVD WSe2 have higher

binding energies than those of exfoliated WSe2. The binding energies of core-level Si

and C peaks are also higher in MOCVD samples. This is partially due to the fact

that MOCVD WSe2 has a larger bandgap since its thickness is close to monolayer. In

addition, there is a greater density of interface states produced during the MOCVD

growth, which is known to influence the measured binding energies in XPS spectra

at the WSe2 and SiC interface [143, 154].

Shown in Figure 3.9 is the binding energy shift induced in the MOCVD WSe2 and

exfoliated WSe2 by exposure to 2-MeV protons at various fluences. In Figure 3.9,

part of the exfoliated data have been presented in Subsection 3.3.1, and are labeled
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as “prior work” here to distinguish from the new results reported in this subsection.

Shifts from both the W 4f and Se 3d spectra are shown, and there is good agreement

in shifts between spectra from the same material. This is also observed for the

SiC data discussed later. It was determined from Subsection 3.3.1 that a fluence of

1016 protons/cm2 is needed to induce a significant positive binding energy shift (and

thus a positive charge) in the exfoliated WSe2. Given the fluence rates in space [137],

this corresponds to lifetime of years to decades. The results presented here suggest

that a fluence of 1016 protons/cm2 is needed to induce binding energy shifts in the

MOCVD WSe2 as well.

There are two key differences observed between samples fabricated by the two

methods. One is that the binding energy decreases for the MOCVD-generated het-

erostructure, rather than increasing as in the heterostructure generated by mechanical

exfoliation. This result is unexpected based on our previous results, and it is likely due

to the trapped charges in the interface states generated by the MOCVD growth. The

charging effect originates from a combination of charging directly in the TMD and

charge transfer from the substrate. The pre-existing trapped positive charge at the

interface appears to have influenced the proton-induced charging process. Negative

peak shift indicates a p-type doping effect in the WSe2. This means that the there is

either an increase of traps for positive charges or a decrease in the electron traps. Ei-

ther case would have the same effect on the XPS spectra, and analysis using electrical

measurements would be needed to uniquely identify the prevailing mechanism. Based

on the MD simulation of 2-MeV proton irradiation of monolayer graphene and MoS2

presented in Chapters I and IV, the density of defect sites and the sputtering ratio

at a fluence of 1016 protons/cm2 are about one order of magnitude below the XPS

detection limit (∼ 0.1%). Thus, the interactions with existing defects and interface

states should be the dominant reason for the shift of the core-level peaks.

The second difference is that the extent of charging induced in the MOCVD
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Figure 3.9: Binding energy shifts induced in the Se 3d and W 4f peaks of the exfoliated and
MOCVD WSe2 samples by exposure to 2-MeV protons at various fluence levels.

WSe2 (peak shift of W 4f and Se 3d peaks: -0.2 eV) is small when compared with the

extent of charging in the exfoliated WSe2 (+0.4 eV to +0.7 eV). It has been shown

before that an increase in the coupling strength between two-dimensional materials

and the substrate can reduce the damage done by X-rays [155, 156]. In addition

to the intralayer sp2 bonds for layered WSe2, the bonding between WSe2 and the

substrate increases the overall bonding strength and may reduce the extent of charging

effect. The coupling originates from substrate interactions that occur during growth

to stabilize the 2D layers so that thin film growth may occur [128, 156]. As such, the

protective effect from that strong coupling is expected and was observed.

Corresponding data for the SiC substrate is shown in Figure 3.10. Here, the

surface chemistry and surface charging within the penetration depth of XPS (down

to ∼20 nm) were analyzed. Based on the core-level peak shift in XPS, the SiC charged

to a similar extent as the WSe2 in the case of MOCVD-grown material, but charged

up significantly less than the exfoliated WSe2 in the case of exfoliated material. The
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Figure 3.10: Binding energy shifts induced in the C 1s and Si 2p peaks of the SiC substrates
by exposure to 2-MeV protons at various fluence levels.

charge build-up in the case of MOCVD growth appears to occur mostly at the interface

between the two materials, which would lead to similar observed shifts [143]. At a

region near the interface, the interface states (or surface stats) will lead to the same

potential shift on both sides of the interface [143]. Several factors may contribute

to the similar shift of core-level peaks of WSe2 and SiC. First, the ultra-thin nature

of the MOCVD WSe2 limits the amount of charge it can store far away from the

interface. In the limit of ultra-thin films, as discussed in this work, such charging

may not be possible. Second, any charge in the SiC very far away from the surface

will not be detected by XPS and thus not observed. Third, although 100% coverage

was not achieved, the 36% coverage and high domain density present here means

that charging at the WSe2 and SiC interface can have a strong influence on the

XPS spectra. It appears that this coverage level is sufficient to have the interface be

dominant in influencing the peak shifts when the WSe2 is only one to a few layers

thick. On the other hand, significant difference in charging means that more charging
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occurs on one side of the interface than the other. Here, the exfoliated WSe2 charges

more than the substrate. This is attributed to a mix of charging directly in the thick

exfoliated WSe2, charge transfer between WSe2 and SiC, and charging at the interface

that affects them both equally. Based on these results, the charging in the exfoliated

WSe2 is dominated by charges that are generated directly in the thick WSe2 film,

far from the substrate interface. This may change in the case of ultra-thin exfoliated

films, where the interface becomes more important.
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Figure 3.11: Energy loss of protons as a function of proton energy at the WSe2 and SiC
surface and penetration depth of protons within SiC substrate estimated with SRIM/TRIM
simulation [1]. 200-keV and 2-MeV protons were used in our experiment. 200-keV protons
have a shorter range in the substrate but have a higher stopping power compared with
2-MeV protons.

The energy that a proton can transfer to the surface of a material is expected to

depend on its kinetic energy, as shown in Figure 3.11. As such, both exfoliated and

MOCVD samples were exposed to 200-keV protons at a fluence of 1016 protons/cm2,

and the results are shown in Figure 3.12. Lower energy protons are expected to

more effectively transfer energy at the sample surface; therefore, there should be

greater extent of charging in both sample types. However, the charging induced in
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Figure 3.12: (a) Binding energy shifts induced in the Se 3d and W 4f peaks of the exfoli-
ated and MOCVD WSe2 by exposure to 200-keV protons at a fluence of 1016 protons/cm2.
(b) Binding energy shifts induced in the C 1s and Si 2p peaks of the SiC substrates by
exposure to 200-keV protons at a fluence of 1016 protons/cm2. Data from control samples
is provided for comparison in both plots. Two exfoliated samples and one MOCVD sample
were irradiated. Data from control samples is provided for comparison in both plots. Four
exfoliated control samples and four MOCVD control samples were used.
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the exfoliated WSe2 after exposure to 200-keV protons is found to be comparable

to the charging induced with exposure to 2-MeV protons. Based on the peak shift

variation of different samples under the same irradiation conditions, the difference

between samples irradiated with 200-keV and 2-MeV protons cannot be reflected by

the extent of the peak shift although the energy loss per length differs by a factor

of three. For MOCVD samples, the charging induced in the WSe2 layer is different

by approximately 0.1 eV, which is also a statistically insignificant change. Thus,

it is hypothesized that the sample initial conditions (pre-existing defects, interface

states, WSe2 thickness, initial charging, etc.) play an important role in determining

charging effects. For the SiC, the samples with exfoliated material behaved like the

samples exposed to 2-MeV protons, while the sample with MOCVD-grown material

charged more than the SiC with WSe2 flakes. Although consistent negative charging

of SiC was observed in MOCVD samples irradiated by protons with energies between

200 keV and 2 MeV, it is not clear why the charging in SiC was more significant

at 200 keV. Future studies and more measurements will be needed to address this

question.

To correlate these charging effects with changes in the electronic properties, the

VBOs for WSe2 on SiC were extracted and the changes induced by proton exposure

were measured. The initial as-measured VBO and schematic band alignments are

shown in Figure 3.13 for exfoliated WSe2/SiC (Figure 3.13(a)) and for MOCVD-grown

WSe2/SiC (Figure 3.13(b)). The initial VBO is shown to depend on the heterostruc-

ture preparation method due to interface states. Bulk WSe2 with a bandgap of 1.2 eV

achieves Type I band alignment with SiC, while single layer WSe2 with a bandgap

of 2.2 eV achieves Type II band alignment with SiC. The electron affinities for bulk

WSe2 and for 6H-SiC have been previously reported at ∼4 eV [157] and ∼3.3 eV [158],

respectively, leading to an expected 0.7 eV conduction band offset (CBO). This is

close to the value extracted here for the exfoliated WSe2 on SiC (0.5 eV), indicating
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Figure 3.13: (a) Schematic band alignment between exfoliated WSe2 and SiC. The bulk
bandgap of WSe2 is used due to the thick nature of the exfoliated flakes. (b) Schematic band
alignment between MOCVD WSe2 and SiC. The single layer bandgap value of WSe2 is used
due to the ultra-thin nature of MOCVD grown material. (c) Shifts in the valence band offset
between WSe2 and SiC induced by exposure to protons at a fluence of 1016 protons/cm2.
Several control samples were also analyzed and averaged together.
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that interface states do not have a large impact. On the other hand, the extracted

electron affinity for single layers of WSe2 has been reported as ∼3.3 eV [159, 160], in-

dicating that the CBO between ultra-thin MOCVD WSe2 and SiC would be zero and

the VBO would be ∼0.8 eV in the case of an ideal interface. The fact that this does

not occur is a clear indication that significant populations of interface states affect the

electronic properties of this heterostructure, having been induced by TMD-substrate

interactions during the MOCVD growth process.

In general, as shown in Figure 3.13(c), the VBO is reduced by 200-keV and 2-

MeV proton exposure and remains stable with no proton exposure. When the VBO

is modified, the change comes mostly from differential charging at the interface –

i.e. a larger core level peak shift in the WSe2 than in the SiC in samples where

the WSe2/SiC interface can be analyzed, which changes ΔECL(WSe2/SiC) defined

in Equation( 3.1). Again, the variation of the VBO for exfoliated samples under

the same conditions indicates that the sample initial condition has a strong impact

on the VBO shift. Notably, the modification of the VBO is much more significant

for heterostructures generated via exfoliation than for those generated via MOCVD

growth. This is expected based on the effects of greater substrate coupling and re-

duced thickness obtained by MOCVD growth. As such, the choice of heterostructure

fabrication technique determines both the initial electronic quality of the interface

and how it responds to stressors such as high-energy particles. Furthermore, main-

taining the advantages of the MOCVD growth of WSe2 while growing it on a more

insulating, yet still radiation tolerant substrate would allow for atomically thin WSe2

to form a basis for future space-based electronics scaled to reduced thicknesses. Such

substrates include insulators such as diamond [161], and dielectrics such as silicon

nitride [162, 163] and various high-κ oxides [164] (e.g. Al2O3, HfO2, etc.).
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3.3.3 Heavy-ion irradiation of exfoliated WSe2

When a heavy ion interacts with matter, electronic energy transfer from exci-

tations and ionization leads to local heating around the ion track. If the energy

deposition is sufficiently high, structural damage can take place. On the other hand,

collision cascades induced by the nuclear energy loss can also cause material dam-

age. Table 3.2 shows the results of SRIM/TRIM simulations of the three irradiation

conditions investigated in this work. Bulk material parameters for WSe2 were used

in the simulation since exfoliated WSe2 has a relatively large average thickness (see

Appendix A Figure A.3). The displacement threshold energy was set to 25 eV for W

and Se for the calculation of dpa. For monolayer WSe2, the displacement threshold

energy is known to be lower. According to atomisitic calculations, the displacement

threshold for Se atoms is ∼6.4 eV, assuming a 5×5 supercell of WSe2 monolayer [46].

When there are fewer layers present, the displacement threshold tends to be lower,

which results in a higher damage rate [133]. In addition, the coupling with the sub-

strate will also affect the displacement threshold [133]. The penetration depth of the

heavy ions used in the experiment is in the range of 1–2 µm. The nuclear stopping

power of 2.5-MeV Fe ions is higher than that of 5-MeV Fe ions at the sample surface

while the opposite is true for electronic stopping power. The dpa of 4-MeV Ag ions

is approximately 2–3 times higher than that of Fe ions and is therefore expected to

result in greater structural damage if the damage is not saturated.

While MeV-energy proton beam exposure leads to charging effects in the WSe2

without significant chemical modification, exposure to heavy-ion beams at MeV ener-

gies leads to a partial transformation of WSe2 into tungsten oxide (see Figure 3.15),

as well as a partial transformation of SiC into SiO2 and heavily defective SiC mix-

ture (see Figure 3.16). Compared with protons, the probability of elastic collisions

and the average energy transferred to the primary knock-on atom are much higher

for heavy ions, which leads to larger collision cascades. Due to the higher nuclear
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Table 3.2: Summary of the results from the SRIM/TRIM simulation. The dpa was calculated
with a fluence of 1016 ions/cm2 at the top 10 nm of the material, corresponding to the
detection depth of XPS measurement. The monolayer collisions calculation type was used
in the SRIM/TRIM simulation. The depth profiles of ionization and dpa in the SiC substrate
induced by heavy ions are shown in Figure 3.14.

Projected
range in bulk
WSe2 (µm)

(dE/dx)nucl. at
WSe2 surface
(MeV cm2/mg)

(dE/dx)elec. at
WSe2 surface
(MeV cm2/mg)

dpa in WSe2

2.5-MeV
Fe2+ ion 1.00 0.47 2.04 3.7

5-MeV
Fe4+ ion 1.73 0.30 3.58 2.3

4-MeV
Ag4+ ion 0.93 1.51 1.98 8.7

Projected
range in bulk
SiC (µm)

(dE/dx)nucl. at
SiC surface

(MeV cm2/mg)

(dE/dx)elec. at
SiC surface

(MeV cm2/mg)
dpa in SiC

2.5-MeV
Fe2+ ion 1.24 0.90 7.16 0.74

5-MeV
Fe4+ ion 1.98 0.55 12.1 0.47

4-MeV
Ag4+ ion 1.23 6.99 2.76 1.6

Figure 3.14: The depth profile of ionization and dpa in SiC estimated from the SRIM/TRIM
simulation. (a) Ionization depth profile of heavy ions in SiC; (b) dpa of heavy ions at a fluence
of 1016 protons/cm2. The monolayer collisions calculation type was used in the SRIM/TRIM
simulation.
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(a) (b)

(c)

Figure 3.15: The change of XPS W 4f spectrum after heavy-ion irradiation with (a) 2.5-
MeV Fe, (b) 5-MeV Fe, and (c) 4-MeV Ag ions at a fluence level of 1016 ions/cm2. The XPS
spectrum intensity is expressed in the units of counts per second (CPS). The appearance
of two additional peaks at ∼36 eV and ∼38 eV after irradiation indicates the oxidation of
tungsten.
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(a) (b)

(c)

Figure 3.16: The change of XPS Si 2p3/2 spectrum after heavy-ion irradiation with (a) 5-MeV
Fe, (b) 2.5-MeV Fe, and (c) 4-MeV Ag ions at a fluence of 1016 ions/cm2. The appearance
of new peak indicates the oxidation of silicon.
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stopping power as reflected by the dpa values, the effects of sputtering, recoil mix-

ing, and cascade mixing are more pronounced [35], which causes significant structural

transformation at the sample surface. The ion beam exposure was carried out under

high vacuum conditions (< 10−8 Torr), and therefore the oxidation occurred due to

the exposure to atmosphere during ex-situ XPS analysis. Initial XPS reveals that

tungsten and selenium are only bonded to each other, corresponding to WSe2. After

heavy-ion irradiation, a second set of peaks emerges in the tungsten spectra that cor-

respond to tungsten oxide based on peak positions of ∼36.0 eV and ∼38.2 eV [139]

and the changes in the oxygen spectra that appear to indicate the formation of a

metal oxide (see Appendix A Figure A.6). At the same time, there is a drastic re-

duction in the amount of selenium relative to the amount of tungsten. The initial

Se:W ratio for these three samples is 1.96± 0.05 and is reduced to 0.68± 0.05 follow-

ing heavy-ion bombardment (see Figure 3.17). This can be explained by the higher

volatility of selenium compared with tungsten. It is estimated from XPS that the

ratio of tungsten-oxygen bonding to tungsten-selenium bonding is 0.51 ± 0.05 after

the beam exposure, and increases slightly after two weeks in storage due to continued

oxidation. The Se:W ratio was also observed to decrease from a measurement made

two weeks following the experiment, confirming the continued desorption of selenium

from the sample. Although the dpa value of 4-MeV Ag is the highest among the

three experiments and the dpa of 2.5-MeV Fe is the lowest, the magnitude of damage

estimated on the basis of Se:W and WOx:WSe2 ratio is very similar in all three ex-

periments and does not exhibit a clear trend. At the total ionizing dose levels used in

this experiment, the amount of damage caused by the three ions to the WSe2 may be

similar enough that the different samples oxidize by roughly the same amount when

exposed to air. Comparisons between samples exposed to varying dose levels will be

needed to confirm if a correlation between dpa and oxidation exists. This correlation

was studied for several other materials [165, 166] and the same methodology could be
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applied to study the oxidation of layered materials. Other characterization techniques

such Rutherford backscattering spectrometry and transmission electron microscopy

could be used to study the induced damage at greater depths in the substrate.
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Figure 3.17: Compositional analysis of WSe2/SiC heterostructure from XPS studies. The
compositional ratio of C:Si, Se:W, SiOx:SiC and WOx:WSe2 of WSe2/SiC heterostructure
before and after heavy-ion irradiation. No oxidation of silicon and tungsten has been de-
tected before irradiation.

A change of composition was also observed for SiC, where the C:Si ratio drops from

0.84± 0.01 to 0.47± 0.05 (Figure 3.17) post irradiation. The initial spectrum for SiC

has only one chemical state: a peak doublet corresponding to silicon carbide. After

irradiation, another doublet centered around ∼103 eV was created that is attributed

to a silicon-oxygen compound [167], with silicon in a Si2+ or Si3+ state (Figure 3.16).

Carbon was initially present in three states: carbon-silicon bonds; carbon-carbon sp3

bonds; and carbon-oxygen bonds. Carbon-carbon and carbon-oxygen bonds are both

attributed to adventitious surface carbon. These same states were observed after ir-

radiation, but in different proportions — more of the carbon signal can be attributed

to the two surface carbon states rather than to the SiC. Additionally, the binding en-

ergy of carbon determined from the carbon peak corresponding to SiC increases from

282.6 eV to 283.4 eV. The carbon binding energy for SiC in the range from 282.9 eV to
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(a) (b)

(c)

Figure 3.18: The change of XPS spectrum near the valence band region after heavy-ion
irradiation with (a) 2.5-MeV Fe, (b) 5-MeV Fe, and (c) 4-MeV Ag ions at a fluence of
1016 ions/cm2.
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283.5 eV has been previously reported for SiC whiskers [168] and amorphous SiC [169].

It can be concluded that this shift corresponds to a transformation of the SiC from

crystalline to amorphous. Complete amorphization of 6H-SiC corresponds to a dam-

age level of ∼0.5–10 dpa, depending on the ion energy and species [147], and is thus

expected.

A significant modification of the valence band structure was also observed via XPS

(Figure 3.18). The initial spectrum consists of a single peak that is attributed to the

SiC, as well as a broader feature at a lower energy that is a convolution of the SiC and

WSe2 valence orbitals. The VBM of the semi-insulating SiC substrate is typically lo-

cated at ∼1.5 eV. Measurement of the VBM using a linear fit to the valence band edge

reveals an average value of 0.36 eV due to the initial p-type doping of the exfoliated

WSe2. After irradiation, all samples show a shape change in the valence band spectra

and lead to a VBM at or below the Fermi level using the linear fit approach, which

indicates a loss of the semiconducting properties of the heterostructure. Additionally,

the single peak has also vanished from the spectra due to the heavy-ion damage. The

increases in the signal intensity around ∼8 eV and ∼2 eV are attributed to tungsten

oxide [170] and silicon oxide [171] contributions to the valence band.

3.4 Summary

The effects of 2-MeV proton and heavy-ion bombardment on the WSe2 and SiC

heterostructure have been studied with XPS and UV-Vis-NIR spectroscopy. It was

found that a proton fluence of ∼1016 protons/cm2 is needed to influence the surface

chemistry, band offset, and absorbance properties. No detectable new surface states

were generated by proton exposure, but a charging effect was observed that is mostly

attributed to the proton-induced ionization and excitation within both the WSe2 and

the SiC substrate. The difference in charging between WSe2 and SiC leads to a change

in the valence band offset, as measured by XPS. The buildup of point vacancies, such
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as the silicon single vacancy, carbon single vacancy, and carbon anti-site also result in

the modification of light absorbance properties within the SiC substrate. These two

different effects would both have consequences for device performance based on this

heterostructure, which should be evaluated in future work. Mechanical exfoliation of

thick WSe2 onto SiC leads to an interface that is relatively free of interface states

and more vulnerable to proton-induced charging. MOCVD growth of WSe2 onto SiC

leads to the epitaxial growth of single-layer crystals with an interface that is strongly

impacted by interface states and less impacted by high-energy proton exposure. In

conclusion, due to the absence of chemical modifications of WSe2 via XPS and the

observation of charging effects only at very high proton fluence levels, the radiation

resilience of TMD-based transistors is expected to be limited by the dielectric insulator

and the substrate, which would degrade at a much lower proton fluence level [32, 172].

The bombardment of WSe2/SiC heterostructure with heavy ions at high dpa levels

leads to significant physical damage. Collisions between heavy ions and WSe2 lead to

structural disorder and the preferential ejection of selenium; therefore, the sample is

oxidized once exposed to an oxygen-bearing environment. Collisions between heavy

ions and SiC lead to the sputtering of both elements, but carbon is preferentially

removed. These combined changes lead to heavy alteration of the band structure,

which can be monitored by changes in the valence band spectra in XPS. It is expected

that at this total ionizing radiation dose level, a device based on this heterostructure

would be damaged beyond repair due to heavy damage to the WSe2 channel. Further

experiments to determine the threshold dose level for heavy ions, the dependence of

ion-induced damage on the number of WSe2 layers and growth techniques, as well

as experiments tracking damage to devices such as diodes and transistors, would aid

in developing a more complete understanding of the radiation hardness of WSe2/SiC

heterostructures and help to develop radiation-hardened systems based upon those

materials.
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CHAPTER IV

Ion Irradiation of MoS2 Field-Effect Transistors

4.1 Introduction

Two-dimensional TMDs such as MoS2 exhibit interesting semiconducting proper-

ties including bandgap tunability [173–175], good mobility [125], as well as high on/off

current ratio [176]. Because of the advances in theoretical modeling [177], material

synthesis [178], and device fabrication [8], high performance MoS2 FETs [25, 179] and

more complex digital components such as NAND gates and static random access mem-

ory [27] have been demonstrated. As the feature size of the state-of-the-art CMOS

is approaching its fundamental limit due to the increase of the leakage current [180],

layered TMD materials offer new device concepts [21] and provide new possibilities

for transistor downsizing. This is particularly desirable for space applications where

a reduced device weight and a lower energy consumption are sought. However, due to

the atomically thin nature of the TMD channel layer, it is not fully understood how

radiation would impact TMD-based FETs. The contribution from various damage

mechanisms is unclear: while positive oxide charges are created by charge trapping

in the dielectric, the direct damage to the TMD layer and the generation of interface

states are intrinsically related to the properties of TMD materials, which differ from

those of silicon CMOS technology.

Radiation effects on TMD FETs have been studied in several prior works. Fox et
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al. [54] and Stanford et al. [53] studied He ion damage to MoS2 andWSe2, respectively,

through Raman spectroscopy and electric measurements. Kim et al. [32] studied the

evolution of MoS2 FET I-V characteristics after the samples were irradiated with

10-MeV protons with a fluence in the range of 1012 to 1014 cm−2. The degradation

of the electric performance was explained by a combined effect of oxide-charge traps

in SiO2 and interface states, which is similar to the total ionizing effect of traditional

silicon MOSFET [181]. In the work of Dhakras et al. [182], a reconfigurable WSe2

FET was fabricated with three buried gates to tune the channel polarity in order to

suppress the impact of Schottky barriers on the subthreshold characteristics. With

proton fluence from 1011 to 1014 cm−2, it was found that the creation of charges in

oxide is the most relevant phenomenon, which leads to significant degradation of the

subthreshold slope (SS). In the work of Lu et al. [183], MoS2 FETs were irradiated

by 30-keV low-energy electrons. A transition from negative to positive voltage shift

with increasing aging time was observed and explained by the dominance of oxide

charges immediately after the irradiation and the dominance of interface traps at

high aging time. Besides protons and electrons, total ionizing effects induced by 10-

keV X-rays and detrimental effects induced by energetic heavy swift ions have also

been reported [58, 184]. In addition to TMD heterostructures, ionizing radiation

effects on FETs based on 2D heterostructures and other low-dimensional materials,

such as MoS2/graphene [185], graphene [34], and carbon nanotubes [186, 187], have

also been investigated in prior research.

Since radiation effects depend on the dielectric thickness [28], number of 2D lay-

ers [133], growth methods [76], processing techniques [28], and irradiation conditions,

a range of effects was observed in different studies. Due to the effects from both the

2D channeling material and the dielectric material, it is sometimes difficult to isolate

the damage to the standalone 2D material from the I-V measurement. First, ioniza-

tion can create electron-hole pairs in the dielectric. Since holes have a low mobility,
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a fraction of the radiation-induced holes can be trapped at defect sites and affect the

FET bias. Second, charge carriers can be trapped at the interface between the channel

material and the dielectric. These interface states can degrade the device mobility

and shift the transistor threshold voltage. Third, structural damage can also take

place within the TMD layer and degrade the device performance. For the interface

states, if they are located in the lower half of the bandgap, they are more likely to

become donor states, and if they are located in the upper half of the bandgap, they

tend to become acceptor states [188]. When a donor state is above the Fermi level,

the donor state releases an electron and becomes positively charged. When a donor

state is below the Fermi level, the donor state becomes charge neutral. The acceptor

states follow the same principle: when an acceptor state is below the Fermi level, the

acceptor state accepts an electron and becomes negatively charged. For n-type chan-

nel material such as MoS2, the interface traps are usually below the Fermi level and

are negatively charged. This leads to a positive shift of the transistor transfer curve.

In contrast, positive charges produced within the dielectric can cause a negative shift

of the I-V curve. These two mechanisms lead to compensating effects, which make it

difficult to decouple their contributions to performance degradation.

Besides the traditional methods of annealing tests such as current and capacitance

measurement [189], a new experimental approach was used here to separate the ef-

fects of interface states and oxide charges so that the damage of MoS2 can be accessed

from proton and He ion irradiation. It was found that the MoS2 nanosheets can with-

stand 2-MeV proton and 390-keV He fluences as high as ∼1016 and ∼1015 ions/cm2,

respectively, with a high on-and-off current ratio. In order to understand the physical

structural damage induced by proton and He ions, MD simulations were performed

to study the defect generation and sputtering process in monolayer MoS2 at a range

of proton and He ion energies up to 2 MeV. The defect generation probability, defect

size distribution, and sputtering yield (SY ) were obtained for 2-MeV protons and
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390-keV He ions.

4.2 Methods

4.2.1 Experimental procedure

The irradiation and device fabrication procedure is illustrated in Figure 4.1. In

the traditional approach the entire FET device is irradiated, including the substrate,

channel layer (MoS2 flakes), and source/drain contacts (see Figure 4.1(a)). The ad-

vantage is that one can compare the pre-irradiation and post-irradiation electrical

characteristics of the same device. However, as explained in Section 4.1, the response

can result from the simultaneous radiation damage of multiple device components.

In the new approach, different components were irradiated separately. As shown

in Figure 4.1(b)-(d), both the SiO2 substrate and MoS2 flakes, only the MoS2, and

only the SiO2 substrate were irradiated. When only the flakes were irradiated, they

were transferred to an unirradiated SiO2 substrate using the wet transfer process (see

Figure 4.1(e)). In all cases, the source/drain contacts were fabricated after the irradi-

ation. They were first defined using electron beam lithography and then fabricated by

depositing 40 nm of Ni and 30 nm of Au via electron beam evaporation. The device

channel length was kept at 500 nm for all devices. The SiO2 substrates were heavily

doped with Si and were used as the back-gate of the FET devices. Electrical mea-

surements were performed using a Keysight B1500A parameter analyzer after samples

were irradiated and complete devices were fabricated. The samples were placed in a

Lakeshore CRX-VF probe station and placed under vacuum. They were allowed to

stay in vacuum overnight to remove any hysteresis effects or threshold voltage shifts

caused by exposure of the MoS2 to air. The device fabrication and electrical measure-

ment were performed by collaborators (Andrew J. Arnold from Prof. Saptarshi Das’

group at the Pennsylvania State University). More details on the device fabrication

85



Figure 4.1: Schematic of the device fabrication and irradiation procedure. The irradiated
and unirradiated components are painted in blue and green, respectively. (a) In the standard
approach the entire FET device is irradiated. (b) The substrate and MoS2 flakes are irradi-
ated. The contacts are fabricated after the irradiation. (c) The MoS2 flakes are irradiated
and then transferred to a new substrate for device fabrication. (d) The substrate is irradi-
ated and new MoS2 flakes are exfoliated onto the irradiated substrate for device fabrication.
(e) PMMA-assisted wet flake transfer process. The flakes are first coated with PMMA and
then removed from the substrate in a NaOH bath. Next, the PMMA and flakes are rinsed
in deionized water and transferred to a new substrate. The PMMA is then removed by
acetone, leaving the irradiated MoS2 flakes on the new substrate.
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procedure are described in Appendix B.

The irradiation experiment was performed at the Michigan Ion Beam Laboratory,

University of Michigan. Protons and He ions were used because they are major com-

ponents of cosmic radiation and cannot be effectively shielded in space applications.

Samples were irradiated by 390-keV singly charged He ions at fluences of 1014, 1015,

and 1016 ions/cm2 and 2-MeV protons at a fluence of 1.26× 1016 ions/cm2. The 390-

keV He ions were produced by a 400-kV ion implanter, and the 2-MeV protons were

produced by a 3-MV tandem Pelletron accelerator. The selected ion energies are high

enough to penetrate through the MoS2 FET structure. Although one specific ion

energy was used, the total dose can be determined based on the ion stopping power

and fluence, and then scaled to the dose in a more complex radiation environment.

The samples were uniformly raster-scanned and the current was controlled to keep

the sample surface temperature to be less than 75 °C. The control samples (CS) were

prepared and fabricated with the same procedure as the irradiated samples and went

through the same transport process between the fabrication lab and the irradiation

facility. Around 10 control devices were made for each type of sample. At a 390-keV

He+ fluence of 1014, 1015, and 1016 ions/cm2, for all three types of samples (see Fig-

ure 4.1(b)-(d)), in total 20, 68, and 50 FET devices were prepared, respectively. At

a 2-MeV proton fluence of 1.26× 1016 ions/cm2, in total 60 devices were prepared.

4.2.2 Simulation methodology

The classical MD simulations were performed with the LAMMPS code [93] to

study the defect structures in monolayer MoS2 induced by protons and He ions. As

shown in Figure 4.2(a), one layer of MoS2 with 1512 atoms was created in LAMMPS

with periodic boundary conditions in the x and y directions and a fixed boundary

condition in the z direction. MoS2 has a hexagonal structure with one layer of Mo

atoms sandwiched between two layers of S atoms (see the side view in Figure 4.2(a)).
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Figure 4.2: (a) Top and side view of the simulated system in the LAMMPS code. The
system consists of 1512 MoS2 atoms and one incident ion (in red). The S atoms in the top
and bottom layer are distinguished by yellow and orange color, respectively. The Mo atoms
(in blue) are located in the middle layer in the side view. (b) Two ion position sampling
schemes were used based on the critical ion impact radius. When the ion energy is low, ion
impact positions were uniformly sampled in a MoS2 unit cell (area contoured by the dashed
line). When the ion energy is high, impact positions were uniformly sampled within a circle
around the Mo atom and two overlapped circles around the S atoms (areas contoured by
the solid line).
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The incident atom was initially placed 4.5 nm above the top layer S atoms. The ZBL

potential [96] was used to describe the interactions between the incident ion and MoS2

atoms. Here, only the nuclear repulsive force was considered. There are two main

reasons for not considering chemical interactions between the ion and MoS2 atoms.

First, such chemical potential has not been developed and is therefore not available.

Second, for high-energy ions, the energy transfer from long-range interactions is small,

and it is highly unlikely for the incident ion to stay within MoS2 to form any chemical

bonding due to its high velocity. Thus, for high-energy ions, the chemical interactions

have little effect on the collision dynamics and the relaxed structure. For low-energy

ions, the total energy transferred could be slightly underestimated without a chemical

potential. However, the energy transfer is mostly determined by the nuclear repulsive

force described by the ZBL potential and it is a common practice to only use ZBL

potential to describe interactions between an incident ion and a 2D material [4, 89,

190]. Although the irradiation experiments were performed with high-energy ions,

the evolution of defect generation probability as a function of ion energy is also

worth investigating. The simulation results at low ion energies are still useful for

understanding the possible collision cascades and their dependence on ion energy.

The reactive empirical bond order (REBO) potential was used to describe the

interactions among MoS2 atoms. The REBO potential uses an empirical formalism

based on the bond order between atoms and is able to describe the complex chemistry

of a material system [191]. Here, the REBO parameterization developed by Liang et

al. [192] and Stewart et al. [193] was used in which the Lennard-Jones (LJ) potential

is also included to describe the van der Waals interactions [192]. It is found that

the distance between neighboring Mo atoms or S atoms (the a value of a hexagonal

structure) is 0.317 nm, which is close to the experimental result of 0.315 nm [194].

The height between MoS2 layers (the c value) is found to be 1.297 nm, which is

also close to the experimental value of 1.229 nm [194]. High-energy ions can create
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cascade collisions within MoS2, displacing Mo and S atoms far from their equilibrium

positions. Since REBO potential is designed for chemical reactions during which the

interatomic distance is close to the equilibrium position, the accuracy of short-range

interactions cannot be guaranteed. Therefore, the ZBL potential was combined with

the REBO potential by a Fermi-like function so that the short interatomic distance

is dominated by the ZBL potential and the long interatomic distance is dominated

by the REBO potential:

Vij = (1 − fF (rij))V
ZBL
ij + fF (rij)V

REBO
ij + V LJ

ij ,

fF (rij) =
1

1 + exp [−AF (rij − rC)]
.

(4.1)

Here, rij is the distance between atom i and j. Vij, V ZBL
ij , V REBO

ij , and V LJ
ij are the

total, ZBL, REBO and LJ potential, respectively, fF is a Fermi-like function used

to connect the ZBL and REBO potential, and rC and AF are parameters used to

define the shape of fF . When rij is equal to rC , fF is equal to 0.5, which means

that V ZBL
ij and V REBO

ij have the same weight of 0.5. Thus, rC defines the transition

distance between the two potentials. AF describes the sharpness of the transition

around the transition point rC . The AF and rC were set to 14 Å−1 and 1.2 Å,

respectively. An AF value of 14 Å−1 was also used in a prior work when graphene

was described by the Tersoff/ZBL potential [69]. A rC value of 1.2 Å was chosen

based on the lattice constant of MoS2. The connection of the two potentials was

achieved by modifications of the LAMMPS potential file. In addition to the change

of potential, the interatomic forces were also reformulated due to the incorporation

of the Fermi-like function. In order to show the differences between the ZBL, REBO,

and combined potential, the energy transfer between an incident Mo/S atom and an

immobile Mo/S PKA was simulated at different impact positions with different kinetic

energies. The results are shown in Figure 4.3 and Figure C.1 of Appendix C. The

REBO potential significantly underestimates the short-range energy transfer, and the
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underestimation becomes more pronounced at higher ion energies. When the impact

position is smaller than than 1.2 Å, the energy transfer from the combined potential

is very close to that of ZBL. When the impact position becomes larger than 1.2 Å,

the combined potential starts to approach the REBO potential as expected.

Figure 4.3: Energy transfer between Mo and S atoms as a function of the ion impact position
with the ZBL, REBO, and combined ZBL/REBO potential. For a Mo ion incident on a
Mo PKA, the energy transfer is shown for an ion kinetic energy of (a) 0.1 keV, (c) 10 keV,
and (e) 1000 keV. For a S ion incident on a S PKA, the energy transfer is shown for an ion
kinetic energy of (b) 0.1 keV, (d) 10 keV, and (f) 1000 keV.

In order to have an accurate estimation of the defect generation probability, the
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formation energies of different types of defects need to be accurate. The defect forma-

tion energies from the REBO potential were calculated by the following relationship:

Ef = Edefect − Eperfect ±
∑
i

niµi. (4.2)

Here, Ef is the defect formation energy, Edefect is the system energy with defect, and

Eperfect is the perfect system energy. ni and µi are the number and chemical potential

of the added/removed atom species i, respectively. For an added or removed atom,

the chemical potential is subtracted or added, respectively. For a compound material

like MoS2, it is difficult to determine the exact chemical potential with a simulation

method that uses empirical potentials. It is only possible to determine a range for

chemical potentials and, accordingly, a range for the defect formation energy. For

Mo-rich MoS2, the chemical potential of Mo atoms was determined by the system

energy of bulk Mo with body-centered cubic structure. In this case, the chemical

potential of S atoms was calculated by:

µS,Mo−rich =
1

2
(EMoS2 − µMo,Mo−rich), (4.3)

where EMoS2 is the energy of one MoS2 molecule. For S-rich MoS2, the chemical

potential of S atoms was determined by the system energy of bulk α-S, and the

chemical potential of Mo atoms was calculated by:

µMo,S−rich = EMoS2 − 2µS,S−rich. (4.4)

Based on Figure 4.4, it is shown that the formation energies of most of the defect

structures show good agreement with the results of first-principles calculations except

for VMoS3 vacancy and S2Mo antisite, where REBO overestimates the formation en-

ergies. The most common defects from the simulations are sulfur SV (VS), sulfur DV
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Figure 4.4: MoS2 defect formation energies with the REBO potential. VS and VMo represent
single S and Mo vacancy, respectively. V2S, neighbor corresponds to two missing neighbor S
atoms at the same layer. V2S, top-bottom corresponds to a S vacancy at the bottom of another
top S vacancy. V3S corresponds to three S vacancies at the same layer next to the same Mo
atom. VMoS3 is a V3S plus a Mo vacancy in the center. VMoS6 is a vacancy cluster with
one Mo atom and six neighboring S atoms. MoS2 corresponds to a Mo antisite occupying
a V2S, top-bottom site. S2Mo corresponds to two S atoms occupying a Mo site. The defect
formation energies based on first-principles calculations from KC et al. [2] and Zhou et al. [3]
are also shown.
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(V2S, neighbor and V2S, top-bottom), and molybdenum SV (VMo). The formation energies

of these defects are close to the reported values. According to the REBO potential,

the VS formation energy is within a range of 2.5 eV to 3.1 eV and the VMo formation

energy is within a range of 5.0 eV to 6.1 eV. This is consistent with the result from

previous studies showing that it is easier to form S vacancy than Mo vacancy [4, 46].

The good agreement on the defect formation energies validates the use of REBO

potential for studying ion damage of MoS2.

After the geometry and potentials were defined, the energy of the simulated system

was minimized and the system was relaxed for 2.5 ps with a timestep of 1.0 fs at

300 K with NVT ensemble. After the relaxation, the next step was to simulate

ion irradiation at normal incidence from different ion impact positions. The impact

position of the incident ion relative to the PKA is defined as its projected position

in the MoS2 PKA plane following the direction of its initial velocity. Before the

irradiation process, the x- and y-coordinate of the incident atom (hydrogen or He

atom) were re-positioned according to the position sampling scheme used. When the

ion energy is low, the ion initial position was uniformly sampled within a unit cell

area (see Figure 4.2(b)). When the ion energy is high, the defect cross section is small

and it becomes inefficient to sample the entire unit cell area. Therefore, only a small

area around the PKA atom was sampled. For a Mo PKA, ion impact positions were

uniformly sampled within a radius that is a constant at a fixed ion energy. For a S

PKA, since there are two S atoms along the direction of the ion, ion positions were

sampled within two overlapped circles centered at each S atom (see Figure 4.2(b)).

These two circles do not completely coincide due to the thermal motion of atoms at

300 K. Impact positions cannot be simply sampled within a radius around the top S

atom because this will ignore ion positions that can lead to ejections of the bottom

S atoms and create bias to the defect generation probability. In order to uniformly

sample positions within two overlapped circles, a Monte Carlo rejection scheme was
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used. For both proton and He ions, for a kinetic energy lower than 1 keV, the first

sampling scheme was used in which the entire unit cell area was sampled. At this

low energy, defects can be generated at a large impact position and therefore, impact

positions cannot be confined to a small area around the PKA atoms. For a kinetic

energy equal to or larger than 1 keV, the second sampling scheme was used in which

the sampling area was confined to a small area and was adjusted for each ion species

and ion energy.

Next, the ion was given an initial velocity and the irradiation process was simulated

with the NVE ensemble with an adaptive timestep until no more collision could

take place and sputtered atoms all left the simulation box. For all the atoms in

the simulation box, the energy loss per step was set to be less than 2 eV, and the

displacement per step was set to be less than 0.01 Å. The minimum and maximum

timestep were set to 2×10−7 fs and 10−1 fs, respectively. For example, if the timestep

for an energy loss of 2 eV is less than the minimum timestep, the simulation will use

the minimum timestep of 2×10−7 fs. All the parameters used in the adaptive timestep

scheme were extensively tested to ensure that the energy transfer process is accurate,

especially during the collision process.

After the ion irradiation, the system was relaxed with NVT ensemble at 300 K for

8 ps with a timestep of 0.5 fs. In order to identify the structural change, the system

energy was minimized again and Voronoi tessellation was computed in LAMMPS to

identify the interstitials and vacancies. The number of sputtered S and Mo atoms

were also obtained from the LAMMPS output. For proton irradiation, the ion energy

was simulated from 0.05 keV to 2000 keV. For He ion irradiation, the ion energy was

simulated from 0.01 keV to 2000 keV, including the experimental condition of 390 keV.

For an ion energy equal to or larger than 1 keV, at least 1000 instances of defects

were obtained. For an ion energy less than 1 keV, at least 10,000 impact positions

were sampled. In total 300,000 simulations were performed.
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4.3 Results and discussion

4.3.1 Helium ion irradiation of MoS2 field-effect transistors

Figure 4.5: Radiation damage due to He+ exposure. Representative transfer characteristics
of MoS2 FETs from an unirradiated control sample with neither the flakes nor the substrate
being irradiated, and post radiation samples with both the flake and the substrate irradiated
(BI), only the flake irradiated (FI), and only the substrate irradiated (SI). 390-keV He+

ions were used at a total fluence of (a)-(d) 1014 ions/cm2, (e)-(h) 1015 ions/cm2, and (i)-
(l) 1016 ions/cm2.

Figure 4.5(a)–(d) shows the representative transfer curves for CS, samples with

both the MoS2 flakes and substrate irradiated (BI), samples with only the MoS2 flakes

irradiated (FI), and samples with only the SiO2 substrate irradiated (SI) for different

source and drain voltages (VDS) at a He+ fluence of 1014 ions/cm2. A transfer curve

shows the evolution of the current between source and drain (IDS) at a fixed VDS

as a function of the back-gate voltage between gate and source (VGS). For an ideal
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transistor, low off-state current, high on-state current, and fast transition between on

and off state are expected. In addition, the threshold voltage (VT ) needs to be stable,

where VT is defined as the minimum voltage between source and gate to create a

conducting path between source and drain. The capability to turn on/off a transistor

efficiently can be described by the SS, which is defined as SS = ∂VGS/∂ log IDS. At

a fluence of 1014 ions/cm2, minimum degradation of transfer curves was observed for

FI and SI devices. For BI devices, although there is also a minimal change to the

on-state current and VT , a lower current slope (a larger SS) was observed between

the on and off region, indicating a higher extent of damage, which can be attributed

to the generation of structural defects and interfaces states. However, the change of

SS is relatively small and due to the sample-to-sample variation, it is hard to draw

convincing conclusions based on this small change. At a He+ fluence of 1015 ions/cm2,

the transfer characteristics for CS, BI, FI, and SI samples are shown in Figure 4.5(e)–

(h). A negative shift of VT was observed in SI samples. For FI and BI samples, there

is a significant degradation of SS and on-state current, and a large positive shift in

VT . The increase of SS in FI and BI samples originates from the creation of structural

defects within MoS2 and creation of interface states at the MoS2/SiO2 interface. At

a He+ fluence of 1016 ions/cm2, as shown in Figure 4.5(i)–(l), a complete failure of

FET operation was observed in all samples. BI and FI devices show extremely low

source-drain currents (below 10−10 A/µm) over the entire VGS sweep range. The

current level is comparable to the leakage current, indicating that the devices cannot

conduct any current between the source and drain. For SI devices, since the MoS2

flakes were not irradiated, the MoS2 could still conduct current, but the devices lost

the gate control due to the significant damage to the oxide. There are two possible

reasons for the loss of gate control: Either the oxide is damaged to a point that

it cannot change the electric field across the channel layer, or there is a significant

amount of positive charge accumulation so that the off-state voltage is outside the
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VGS sweep range. In summary, based on the representative transfer curves shown

in Figure 4.5, at a fluence of 1014 ions/cm2, 1015 ions/cm2, and 1016 ions/cm2, the

degradation induced by 390-keV He+ ions is minimal, intermediate, and catastrophic,

respectively. At 1016 ions/cm2, the devices can no longer function properly for all

three types of samples.

Figure 4.6: Statistical analysis of He+ irradiation at a fluence of 1015 ions/cm2. Overlaid
transfer characteristics of all MoS2 FETs correspond to (a) control samples (CS), (b) samples
with both flakes and substrate irradiated (BI), (c) samples with flakes irradiated (FI), and
(d) samples with substrate irradiated (SI) at a fluence of 1015 He+ ions/cm2. (e) Mean and
standard deviation of subthreshold slope, threshold voltage, and field effect electron mobility
for all four sample configurations.

The electrical characteristics of the fabricated FET devices experienced a certain

level of device-to-device variation due to the variation in MoS2 flake size and thickness.

Therefore, in order to obtain statistically significant conclusions, more than 20 devices

were fabricated for each type of sample (BI, FI, or SI) at a fluence of 1015 ions/cm2.

Figure 4.6(a)–(d) shows the transfer curves of all the devices under each irradiation

procedure. Figure 4.6(e) shows the statistical analysis of SS, VT , and mobility where

the charge carrier mobility is determined by the peak transconductance in the transfer
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curve. For FET devices, The VT is influenced by both the positive oxide charges and

the interface states, while the SS is only influenced by the interface states [77, 188,

195]. In BI devices, the SS has the highest increase, changing from 1.81 V/dec to

10.3 V/dec. FI devices also have a large SS increase, changing from 1.81 V/dec to

8.9 V/dec. Due to the irradiation of MoS2, a significant amount of interface states has

been created. Based on the relationship between the SS and the density of interface

states (DIT ), DIT increases by a factor of ∼5 in BI devices [77, 195]. What may at first

seem counterintuitive is that the SS also increases from 1.81 V/dec to 4.6 V/dec in

SI devices where the MoS2 was not irradiated. This is actually due to the generation

and migration of oxide charges to near-interfacial locations. These near-interfacial

oxide charges can form defects known as border traps, which have similar electric

behavior to interface traps and therefore lead to the SS increase [196].

With respect to the VT shift, there is a positive shift from −41 V to 16 V in FI

devices due to the generation of negative interface states from n-type doped MoS2.

There is a negative shift from −41 V to −65 V in SI devices due to the generation

of positive oxide charges. Although all of these effects are expected, there is a large

variation of the transfer curves in SI devices. The fact that similar large variation

is also seen for proton-irradiated SI samples (see Figure 4.7(d)) indicates that this is

not due to an human error in sample preparation. However, this large variation is

not seen in BI devices where the substrate was also irradiated. If this is due to the

sample heating during the lithography process, the same behavior is also expected

in BI samples. The atomic force microscope measurement on flake thickness shows

that the magnitude of the VT shift depends weakly on the number of MoS2 layers. In

addition, ion beam was defocused and raster-scanned over the entire substrate, and

therefore, any spatial non-uniformity of the radiation dose is not expected. This is

also supported by the fact that the spatial distribution of devices with extreme low

VT on the substrate surface is random. All these facts make it difficult to explain the
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large statistical variation of transfer curves and further investigation is required. A

comprehensive discussion of this issue can be found in our publication [77]. For BI

samples, the VT shift is a combined effect from positive oxide charges and negative

interface states. Since VT experiences a positive shift from −41 V to 12 V, the density

of negative interface states dominates over the positive oxide charges.

The mobility drops from 22.7 cm2/V·s to 2.4 cm2/V·s and 2.2 cm2/V·s for BI

and FI devices, respectively. The decrease in mobility by an order of magnitude is

induced by the formation of scattering sites at the channeling layer. The scattering

sites are mainly caused by structural defects from elastic collisions between He ions

and MoS2 atoms. Elastic collisions can create vacancies, FPs, and more complicated

structural disorder [74]. Sulfur vacancies are the most probable defects due to its lower

displacement energy according to prior simulation results [4], which is also confirmed

by our simulations, as discussed later in this chapter. Although ionization usually does

not lead to structural defects in semiconductor materials, it was also reported that

ionization can break the interplanar bonds in the 2D material and form defects [156].

Nevertheless, at such a high fluence, the FET devices still exhibit good high-state

current and high on/off ratio (above 106), showing the good radiation resilience of

MoS2 FETs. For SI devices, the decrease in mobility is statistically insignificant.

This shows that the degradation of mobility is not due to damage of the oxide, but

the damage of MoS2. In the studies of traditional MOSFETs, it has been shown that

hydrogen ions (protons) can be released from SiO2 and act as holes [181]. These holes

hop through the oxide and get trapped at trapping centers [181], which originate from

oxygen vacancies at the interface [172]. Although interface states can be generated

from the oxide side, they have minimal contribution to the decrease in mobility.
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4.3.2 Proton irradiation of MoS2 field-effect transistors

Samples were irradiated with 2-MeV protons at a fluence of 1.26× 1016 ions/cm2.

This proton fluence was chosen to match the same dose (total energy absorbed per

mass) of 390-keV He ions at a fluence of 1015 ions/cm2. Since the ratios of stopping

powers in MoS2, SiO2, and Si are approximately the same for each irradiation condi-

tion, the dose in each material (MoS2, SiO2, and Si) is also about the same between

the two irradiation conditions. However, the fraction of energy channeled into nuclear

stopping power is lower for protons, and they also have a longer penetration depth.

The ion stopping powers and the ion range in Si are shown in Table 4.1. The overlaid

transfer curves are shown in Figure 4.7(a)–(d) with the statistical analysis of VT , SS,

and mobility presented in Figure 4.7(e).

Table 4.1: Stopping powers and ranges of protons and He ions in the irradiated materials
estimated from SRIM/TRIM [1]. A displacement threshold energy of 31.7 eV and 5.0 eV
were used for Mo and S atoms, respectively [4].

(dE/dx)elec.
in MoS2

(eV/Å)

(dE/dx)nucl.
in MoS2

(eV/Å)

(dE/dx)elec.
in SiO2

(eV/Å)

(dE/dx)nucl.
in SiO2

(eV/Å)
Range in Si (µm)

390 keV
He+ ion 53.9 3.37 × 10−2 38.7 2.09 × 10−2 1.66

2 MeV
proton 4.30 5.45 × 10−4 3.29 3.86 × 10−4 47.7

For BI and FI devices, the SS increases from 1.81 V/dec to 6.0 V/dec and

4.7 V/dec, respectively. Compared with a SS of 10.3 V/dec and 8.9 V/dec in BI

and FI devices under He+ irradiation of the same dose, the extent of SS increase in

proton-irradiated devices is lower. This difference is due to the fact that protons have

a lower ratio of nuclear stopping power to electronic stopping power. Lower prob-

ability of elastic collisions with sample atoms leads to a lower DIT , which explains

the lower increase in the SS. For SI devices, the SS increases from 1.81 V/dec to

5.6 V/dec. As with the devices exposed to He+ irradiation, there is a large variation
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Figure 4.7: Statistical analysis of proton irradiation. Overlaid transfer characteristics of
all MoS2 FETs correspond to (a) control samples (CS), (b) samples with both flakes and
substrate irradiated (BI), (c) samples with flakes irradiated (FI), and (d) samples with
substrate irradiated (SI) at a fluence of 1.26× 1016 protons/cm2. (e) Mean and standard
deviation of subthreshold slope, threshold voltage, and field effect electron mobility for all
four sample configurations.
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in transfer curves, where approximately half of the devices exhibit very low SS and

large negative VT shift. The VT shifts from −41 V in CS to −51 V, −46 V, and −52 V

in BI, FI, and SI devices, respectively. The extent of VT shift in FI samples is statis-

tically insignificant, showing that the DIT is much lower than that produced by He+

ions, which is also confirmed by the lower SS increase. However, the SS increase is

statistically significant whereas the shift of VT is not. It could be due to the different

dependence of SS and VT on the nature of interface states. The shift of VT depends

on the net charge of the interface states while the SS increase depends on the impact

of interface states on the transport properties of charge carriers. For BI devices, the

negative shift of VT can be explained by the dominance of positive oxide charges over

the interface states. It is noted that although the dose is about the same between

proton and He+ irradiation, 2-MeV protons have a higher charge yield (the fraction

of electron-hole pairs that escape the initial recombination) than 390-keV He+ ions,

leading to a greater number of holes generated in the oxide layer [197]. Due to the

higher density of oxide charges and smaller DIT , a negative VT shift is expected in

BI devices. As the charge yield is higher for protons, a more negative shift of VT is

expected in SI devices compared with that of He+ irradiation. It is not seen here

due to the large variation of the transfer curves. For VT that is lower than −90 V

(beyond the sweep range), a VT of −90 V was used. This could also lead to a bias to

the actual VT value.

The change of mobility of SI devices is minimal because the MoS2 flakes were

not irradiated. For BI and FI devices, the mobility changes from 22.7 cm2/V·s to

18.3 cm2/V·s and 19.2 cm2/V·s for BI and FI devices, respectively. The changes

are much smaller than those observed in He+ irradiation. This is also due to the

smaller DIT and structural defects produced from protons. By comparing the two

experiments of the same dose but different nuclear stopping, it is shown that mobil-

ity is largely related to the physical defects produced within the MoS2. The larger
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decrease in mobility along with the larger increase in the SS in He-irradiated devices

indicates that structural defects have a significant contribution to the generation of

interface states. The relative extent of VT shift also follows the expected behavior.

Although the interface charge density and oxide charge density cannot be precisely

determined from our electric measurements, the effects from these two factors can be

decoupled from different sets of samples. Again, further investigation is required to

fully understand the large variation of transfer curves in SI devices.

4.3.3 Defect structures and generation probabilities from classical MD

simulations

4.3.3.1 Defect generation from helium ion irradiation

SY s of Mo atoms, S atoms, top layer S atoms, and bottom layer S atoms as a

function of the He ion energy are shown in Figure 4.8(a). Since it is possible to eject

multiple atoms from the same ion and SY does not take into account the defects

without atom being sputtered, the probability of defective sites per incident ion is

also shown in Figure 4.8(b). The lowest He energies for the sputtering of Mo and S

atoms are 0.8 keV and 0.1 keV, respectively. The actual onset of sputtering could be

slightly lower due to the discrete ion energies used. S atoms have an atomic mass

of 32.1 amu, which is lower than that of Mo atoms (96.0 amu), and therefore, the

energy transferred to a S atom is higher than that of Mo atom at the same impact

position. For example, for a head-on collision, the maximum fractions of energy

transferred to Mo and S atoms are approximately 15.4 % and 39.4 %, respectively. In

addition, S vacancy has a lower formation energy and, accordingly, a lower threshold

displacement energy. Due to these two reasons, sputtering of S atoms initiates at a

lower energy. The SY of Mo atoms first increases with ion energy and then decreases

smoothly from 1 keV to 2000 keV. Below 1 keV, the increase in the ion energy is the

dominant reason for the increase in the SY . Above 1 keV, the decrease of the SY
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with the ion energy is due to the fact that the energy transferred to the PKA from

the same impact position becomes lower due to the shorter interaction time between

the ion and the PKA atom. The same trend was observed for proton irradiation of

graphene as well, as shown in Chapter II. Compared with Mo atoms, the SY of S

atoms does not exhibit a smooth increase below 0.5 keV. First, this is not due to

statistical fluctuations because an increase in the number of sample points within

this energy range does not change the shape of the trend. When the SY s of the top

and the bottom layer S atoms are examined individually, it is shown that the trend

in each S layer does not exhibit a smooth evolution either for a He ion energy below

0.5 keV. For example, there is a plateau between 0.05 keV and 0.5 keV for top S

atoms and there is a dip at 0.167 keV for bottom S atoms. In addition, the ratio of

the SY s from the two layers varies with the ion energy. The SY of bottom S atoms

is higher than that of top S atoms between 0.1 keV and 1 keV, and the opposite is

the case between 10 keV and 100 keV. At an energy higher than 100 keV, the SY s

from the two S layers start to converge. These results show that although one layer of

MoS2 is studied here, the possible collision sequences from the three layers of atoms

and their occurrence probabilities depend heavily on the ion energy. The ion energy

combined with the impact position determines the possible scattering angles for both

the PKA and the incident ion, which further determine the possible defects that

could be formed. Different collision sequences have different dependence on the ion

energy. Therefore, a smooth evolution of the SY is actually not expected. When the

magnitudes of the SY between Mo and S atoms are compared, the SY of S atoms is

about one order of magnitude higher than that of Mo atoms. This indicates that after

He ion irradiation, there are more S vacancies than Mo vacancies and the irradiated

MoS2 becomes deficient in S atoms.

To better understand the evolution of SY s, SY s are decoupled to two components:

sputtering induced by a first collision with a Mo atom and sputtering induced by a
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Figure 4.8: (a) Sputtering yields of Mo and S atoms per incident He ion as a function of the
He ion energy. The sputtering yields of S atoms in the top and bottom layer of a monolayer
MoS2 are labeled with RS_top and RS_bottom, respectively. (b) Probability of defective sites
per incident He ion as a function of the He ion energy.
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Figure 4.9: Sputtering yields of (a) Mo atoms, (b) top layer S atoms, and (c) bottom layer
S atoms are classified by the atom species of the PKA.
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first collision with a S atom. SY s of Mo atoms, top S atoms and bottom S atoms

induced by a Mo PKA and S PKA are shown in Figure 4.9. For Mo sputtering,

the SY is dominated by a first collision with a Mo atom because the ejection of Mo

PKA is the dominant sputtering mechanism. It is possible to have Mo ejections from

cascade collisions following the ejection of a S PKA, but it has a lower probability.

Regarding the sputtering of S atoms, it is shown that the S SY induced by a Mo

PKA can have a comparable probability to that induced by a S PKA. There are two

reasons for this behavior. First, S atoms have a lower displacement energy and can be

easily displaced by an ejected Mo atom. Second, Mo atoms are located in the middle

layer of this tri-layer system. Therefore, during the ejection of a Mo atom, it can

easily collide with S atoms along its path. In Figure 4.9(b) and (c), the SY curves all

have a double-peak structure, indicating that various types of collision cascades have

different dependence on the ion energy. This explains the evolution of the aggregated

SY curves shown in Figure 4.8(a) and the probability of defective sites shown in

Figure 4.8(b).

Figure 4.10 shows the two-dimensional color map of defect size as a function of

the number of sputtered Mo and S atoms of each defect at different He ion energies.

The distributions of defect size at other He energies can be found in Figure C.2 in

Appendix C. With increasing ion energy, it is shown that a wider range of defect sizes

can be produced with the possibility of producing defects with larger size. However,

the defect structures are still dominated by small point defects. The defect genera-

tion probability decreases with the size of the defects. Single-S vacancy is the most

probable defect structure at all simulated energies. Local disorder without sputtering

and double-S vacancies also have a high generation probability. Within an energy

range of 0.33 keV to 10 keV, defect structures with one Mo vacancy along with one

to three S vacancies are also quite probable. It is also shown that it is more likely to

form defects with the ratio of sputtered S atoms to sputtered Mo atoms to be larger
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Figure 4.10: Probability of defect size as a function of the number of sputtered Mo (X-axis)
and S atoms (Y-axis) for a He energy of (a) 0.1 keV, (b) 1 keV, (c) 10 keV, (d) 100 keV,
(e) 1000 keV, and (f) 2000 keV. The probability of zero sputtered Mo and S atom corresponds
to the probability of structural disorder without atom being ejected. The scale for the color
map is 1×10−5 to 1 in (a), 1× 10−6 to 1× 10−1 in (b) and (c), and 1× 10−7 to 1× 10−2 in
(d)–(f).
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than 2:1, indicating that defects tend to be S-deficient. This is also consistent with

prior experimental results with 30-keV He ions [54].

In the experiment with 390-keV He ions, the SY s for Mo and S atoms are found to

be 9.8×10−4 and 6.1×10−3, respectively. For a fluence of 1015 ions/cm2, the sputtering

fractions of Mo and S atoms are 8.4×10−4 and 2.6×10−3, respectively. The density of

defective sites is 2.7× 10−3 per MoS2 (per one Mo and two S atoms). The magnitude

of defect occurrence probability and the distribution of defect structures at different

ion energies and fluence levels can be determined from the simulations in a similar

manner, which is useful for understanding the physical damage occurring within the

MoS2. An interesting future direction is to study the effect of the number of MoS2

layers on the defect generation probability since the MoS2 flakes used in the FETs

range from monolayer to several layers. In addition, it would be interesting to study

how these defects could impact the transport of charge carriers within MoS2.

4.3.3.2 Defect generation from proton irradiation

For proton irradiation, the SY s and probability of defective sites are shown in

Figure 4.11. The onset of Mo sputtering is between 0.5 keV and 0.8 keV, and the

onset of S sputtering is between 0.05 keV and 0.1 keV. As with the SY of He ions,

the trend of SY of S atoms at low energy is not smooth. There is a plateau between

0.2 keV and 0.5 keV and a dip at 3 keV. More sampling positions at these energies

were chosen, but there is little change in SY values, which indicates that it is not due

to the insufficient sampling points. The SY s of top layer and bottom layer S atoms

also exhibit complicated evolution with proton energy and the ratio of top layer S

atoms to bottom layer S atoms depends greatly on the proton energy. For the SY of

Mo atoms, there is a plateau region between 1 keV and 5 keV followed by a smooth

decrease after 5 keV. Regarding the probability of defective sties, there is a sharp

increase from 0.05 keV to 0.2 keV, a plateau between 0.2 keV to 0.8 keV, another
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increase from 0.8 keV to 3 keV, and a gradual decrease from 3 keV to 2000 keV. The

SY for each type of atoms is also classified by the PKA atom species, as shown in

Figure 4.12. The trends are also convoluted, indicating that different types of collision

sequences can take place and have different dependence on the proton energy.

Figure 4.13 shows the color map of defect size as a function of the number of

sputtered Mo and S atoms at different proton energies (see Appendix C, Figure C.3

for results at other proton energies). Compared with He ions at the same energy,

the defect size tends to be smaller. With the increase of proton energy, more defect

structures can be generated with the possibility of ejecting more atoms. As with

He ions, the most probable defect still corresponds to defect structures with one

sputtered S atom. It is noted that in the simulations, the defect accumulation is not

considered and only independent ion irradiation of perfect MoS2 structure is studied.

At our experimental condition of 2000 keV, for a fluence of 1.26 × 1016 ions/cm2, the

sputtering fractions of Mo and S atoms are 1.4 × 10−4 and 5.5 × 10−4, respectively.

The density of defective sites is 6.8 × 10−4 per MoS2 (per one Mo and two S atoms).

Since the sputtering ratio of S to M atom is 4.1, the irradiated MoS2 becomes S-

deficient. The sputtered Mo and S atoms are 16% and 21% of that of 390-keV He

ions at 1015 ions/cm2. The density of defective sites is 25% of that of He ions at

1015 ions/cm2. This is consistent with the FET irradiation results that less structural

damage occurred within proton-irradiated MoS2.

4.4 Summary

By irradiating individual MoS2 FET components, the effects of irradiation on SiO2

substrate and MoS2 flakes were decoupled. The impact of oxide charges and interface

states on the SS increase, mobility decrease and threshold shift was clearly illustrated

with the new experimental approach. By irradiating FETs with He ions and protons

of the same dose, it was shown that nuclear stopping power plays an important role
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Figure 4.11: (a) Sputtering yields of Mo and S atoms per incident proton as a function of the
proton energy. The sputtering yields of S atoms in the top and bottom layer of a monolayer
MoS2 are labeled with RS_top and RS_bottom, respectively. (b) Probability of defective sites
per incident proton as a function of the proton energy.
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Figure 4.12: Sputtering yields of (a) Mo atoms, (b) top layer S atoms, and (c) bottom layer
S atoms are classified by the atom species of the PKA.
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Figure 4.13: Probability of defect size as a function of the number of sputtered Mo (X-axis)
and S atoms (Y-axis) for a proton energy of (a) 0.1 keV, (b) 1 keV, (c) 10 keV, (d) 100 keV,
(e) 1000 keV, and (f) 2000 keV. The probability of zero sputtered Mo and S atom corresponds
to the probability of structural disorder without atom being ejected. The scale for the color
map is 1× 10−6 to 1× 10−2 in (a)–(c) and 5× 10−8 to 5× 10−4 in (d)–(f).
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in the generation of physical defects and interface states, resulting in the degradation

of SS and mobility. The damage to MoS2 was minimal, intermediate, and catas-

trophic at a 390-keV He+ fluence of 1014 ions/cm2, 1015 ions/cm2, and 1016 ions/cm2,

respectively. When exposed to a 390-keV He+ fluence of 1015 ions/cm2 and a 2-MeV

proton fluence of 1.26 × 1016 ions/cm2, although the VT shift and SS degradation

were observed, the back-gated MoS2 FETs still maintain good performance with high

on-state current and high on/off current ratio. This fluence level is higher than the

lifetime doses encountered by most satellites in even the most radiation-prone or-

bits and corresponds to hundreds or thousands of years of proton and alpha particle

irradiation in space with minimal shielding [198]. The structural damage of MoS2

from proton and He ion irradiation was also studied by MD simulations. With more

than 300,000 simulations, the SY s of S and Mo atoms and probabilities of different

types of defects were obtained for a wide range of ion energies up to 2000 keV. It

was found that single-S vacancy is the most probable defect even for high energy

ions. The possible defect size increases with the ion energy, but small point defects

are the dominant defect structures. The quantitative estimation from the simulations

provides useful insight into the physical defects induced by ion irradiation. Simula-

tions of multi-layer MoS2 and transport properties of defected MoS2 will further help

understand the radiation effects observed from the experiments.
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CHAPTER V

Conclusions and Future Work

5.1 Summary and conclusions

Understanding the ion irradiation effects on 2D materials is important for us-

ing controlled radiation to achieve material functionalization and assessing radiation

resilience of 2D materials and electronics for applications in radiation-harsh environ-

ments. In this work, the impact of ion irradiation on material structure, surface

chemistry, and electronic properties has been studied for three different 2D materials

(graphene, WSe2, and MoS2) through MD simulations and ion irradiation experi-

ments.

First, a comprehensive study of graphene defects induced by proton irradiation

was performed using both classical and ab-initio MD simulations. This includes a

novel approach to systematically treat the dynamics of proton-graphene interactions

via ab-initio simulation, which provides useful insight into the accuracy of the com-

monly used classical MD approach. It has been shown that relatively good agree-

ment on defect generation probabilities can be reached between the two simulation

approaches at a proton energy of 1 and 10 keV. However, at 0.1 keV, the SV gen-

eration probabilities diverge significantly due to reduced accuracy in the empirical

potential used by the classical MD approach. At low energy, the defect probability

is sensitive to the angle-dependent threshold displacement energy and, therefore, a
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small difference in the threshold displacement energy can lead to a large difference

in the defect generation probability. Next, the defect structures and defect genera-

tion probabilities were examined as a function of proton energy at normal incidence.

As the proton energy increases from 0.1 keV to 100 keV, defect structures transition

from simple SVs and FPs to a rich variety of topological defects. With high-energy

protons, defect structures with large formation energies can be produced due to the

large energy injection from the incident ion. The SV defect probability first increases

with proton energy due to the increasing energy from the incident ion and then de-

creases with proton energy due to the shorter interaction time between the PKA and

the ion. The generation probabilities of DV and other defect structures have a more

complicated dependence on proton energy due to the possibility of different types of

collision sequences. The impact of proton incident angle on the defect generation was

also investigated using classical MD simulations. The azimuthal angle of the incident

ion has a relatively small impact on the defect probabilities. However, the polar an-

gle can greatly impact the defect probabilities. By establishing correlations between

the proton impact position, proton energy, incidence direction, and graphene crystal

structure, the evolution of the defect structures and defect occurrence probabilities as

a function of the irradiation parameters can be clearly explained by various competing

mechanisms. The simulation results show that it is possible to tune proton energy

and angle to change the relative probabilities of creating different types of defects to

achieve graphene functionalization.

In order to evaluate the potential of WSe2-based electronics for use in high-

radiation environments, proton and heavy-ion irradiation at MeV-level energies were

performed on layered WSe2 and SiC heterostructures. XPS was used to study the

impact of ion irradiation on WSe2 chemical and electronic properties. For 2-MeV

incident protons, there was no detectable oxidation even at a high fluence level of

1017 protons/cm2. At a fluence of 1016 protons/cm2, charge transfer between WSe2
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and SiC substrate was observed due to a combination of radiation-induced defects and

charge trapping in pre-existing defects. Below this threshold, no significant charging

effect was found in either material. The method for fabricating WSe2 also influences

the charging behaviour and the extent of VBO shift between WSe2 and SiC sub-

strate. This is explained by the difference in the number of WSe2 layers and the

difference in initial sample conditions. In contrast with mechanically exfoliated sam-

ples, MOCVD-grown WSe2 exhibits a reduced number of layers and a larger density

of pre-existing interface states, which lead to a more significant impact on the charg-

ing behavior from the interface. Heavy-ion irradiation (Fe and Ag ions) at a fluence

of 1016 ions/cm2 was found to cause significant structural damage to both WSe2 and

SiC. The WSe2 lost its semiconducting properties after the heavy-ion irradiation and

subsequent oxidation. A reduced heavy-ion fluence is needed to accurately determine

the onset of radiation damage. Based on these results, from the material perspective,

WSe2 can withstand 2-MeV proton irradiation up to 1016 ions/cm2. The radiation

resilience of WSe2-based FET is not expected to be constrained by WSe2 itself, but

rather by the radiation hardness of other components that are less radiation-tolerant,

such as the dielectric.

After studying the material-level ion irradiation effects, the degradation of MoS2

FET electrical performance was investigated with high-energy protons and helium

ions. In contrast with previous methods, the MoS2 and SiO2 substrate were irradi-

ated individually before fabricating the FET device. Such an experimental approach

is able to decouple the radiation damage of 2D materials from that of the underly-

ing dielectric substrate. For 390-keV He ions, degradation of transfer characteristics

became statistically significant at a fluence of 1015 ions/cm2. When only MoS2 was

irradiated, an increase in the subthreshold slope and a decrease in the mobility were

observed, along with a positive shift in threshold voltage. These changes can be

attributed to the generation of structural defects and interface states within MoS2.
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When only SiO2 was irradiated, an increase in the subthreshold slope was also ob-

served because trapped oxide charges can migrate to the MoS2/SiO2 interface and

behave similarly to interface states. However, a negative shift in the threshold volt-

age occurred due to the creation of positive oxide charges. The decrease in mobility

was not significant since there was no damage in the channel material. The contribu-

tion of nuclear energy loss to the degradation of mobility and subthreshold slope was

also shown from the proton and helium irradiation experiments at the same dose. To

estimate the order of magnitude of physical defects induced by protons and helium

ions, MD simulations were performed to study the defect generation in monolayer

MoS2. The REBO and ZBL potentials were smoothly connected to describe the

cascade collisions within MoS2. The sputtering yields of Mo and S atoms and the

probability of defect sites were determined for a range of ion energies up to 2 MeV.

The sputtering ratio and defect density under each irradiation condition (390-keV He

ions and 2-MeV protons) were also determined. Based on the distribution of defect

size at each energy, it was shown that for the studied ion energy range, the most

probable defect structure is single-S vacancy. Other defects with high generation

probability include structural disorder without sputtering, double-S vacancies, and

defect structures with one Mo vacancy and one to three S vacancies. With increasing

ion energy, the possible defect size can be larger, but point defects such as single-S

vacancy are still the dominant defect structures.

The simulation results from this work provide a quantitative estimation of the

occurrence probabilities of different types of defect structures for a wide range of ion

energies and angles. These results are useful for interpreting previous ion irradiation

experiments, designing future experiments for material functionalization, as well as

estimating aggregated ion damage effects in a space environment. The onset dose

for the material-level and transistor-level degradation of 2D materials is also deter-

mined experimentally, which is useful for evaluating the resilience of 2D materials in
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a radiation-harsh environment.

5.2 Future work

In order to model the ion interaction process accurately, the interatomic poten-

tials used in the classical MD simulation need to provide accurate defect formation

energies and displacement energies, as well as an accurate description of the chem-

ical bonds so that the relaxed defect structure can be trusted. For graphene, the

Tersoff/ZBL potential was used, but it would be interesting to compare our results

with the AIREBO potential [108], which is also widely used for studying graphene

structural and chemical properties [109, 110]. As with the REBO potential for MoS2,

the AIREBO potential will need to be smoothly connected with the ZBL potential

so that cascade collisions can be accurately computed. For WSe2, a potential with

accurate defect formation energies and interatomic forces is not available to date. If

such potential can be developed, the defect probabilities can also be simulated, which

could help estimate the density of structural defects produced from high-energy pro-

tons under experimental irradiation conditions. In order to quantitatively validate

the simulation results, it is possible to perform measurements using scanning trans-

mission electron microscopy and calculate the density of ion-induced defects in a

monolayer sample. It is worth noting, however, that the simulated defect structures

are initial defects created immediately at the time of irradiation and can experience

further migration and structural transformation over longer time scales. In any case,

such validation with experiment is still useful and can provide important insight into

the defect formation and migration process.

With MD simulations, standalone monolayer graphene and MoS2 were studied.

For many applications, the use of 2D materials is not limited to a single layer, and

usually, there is a substrate beneath the material. For example, in the MoS2 FET

experiments, the number of MoS2 layers ranged from a monolayer to several layers,
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and MoS2 flakes were positioned on top of the SiO2 substrate. As such, it would be

interesting to simulate the response of 2D materials in a configuration that is closer

to that studied by experiment. It has been shown in simulations that for multilayer

graphene, ion irradiation can break the planar sp2 bonds and lead to interlayer cross-

linking [83, 87]. Also, for a monolayer material, once atoms are ejected from the

surface, they cannot lead to further damage, whereas for a multilayer system, ejected

atoms can lead to cascade collisions in other layers [83]. This is evident in the simu-

lation results for monolayer MoS2, which show a much more convoluted evolution of

defect probability than graphene, since MoS2 consists of three layers of atoms. For

multilayer 2D materials, it is yet unclear how defects are produced and how defect

probability changes as a function of the layer number and the total number of layers.

Therefore, further simulations are needed to study the dependence of defect genera-

tion on the thickness of 2D materials. In order to simulate interactions between 2D

materials and substrates, accurate interatomic potentials between the corresponding

atoms are needed. Such potentials are available for graphene and SiO2, and bom-

bardment of graphene on SiO2 substrate from swift heavy ions has been simulated

in prior work [51]. However, for TMD materials and other types of substrates, most

of the potentials are currently not available in the literature. If such potentials are

developed in the future, it would be possible to use simulations to study the impact

of ion irradiation on the structural damage at the 2D material/substrate interface,

which has been shown to have a great impact on the performance of 2D electronics.
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APPENDIX A

Optical images and XPS spectra of ion-irradiated

WSe2 samples

Optical images of ion-irradiated WSe2 samples

a b 

Figure A.1: Optical image of exfoliated WSe2. (a) Optical image of exfoliated WSe2 flakes
on 6H-SiC substrate taken by white light interferometry (optical profilometry). (b) Using
this technique, the thickness of the WSe2 flakes can also be measured. The thickness ranges
from several layers to several microns. The sparse coverage of exfoliated material allows the
substrate to be examined in XPS measurements.
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Figure A.2: Images of the exfoliated and directly grown WSe2 flakes on the SiC substrate.
(a) Optical image of exfoliated WSe2 flakes on the SiC substrate; b) Image of MOCVD-
grown WSe2 flakes on the SiC substrate taken via scanning electron microscopy. Bright
white streaks correspond to vertical growth of the WSe2, leading to fins rather than flakes.

Figure A.3: Proton-irradiated samples before and after irradiation. (a) Digital camera
image of the TMD samples before irradiation. The samples are transparent due to the
wide bandgap of SiC and the nanoscale dimensions of the WSe2 and MoS2. (b) Digital
camera image of the TMD samples after proton irradiation. Control samples (unlabeled)
and samples exposed to 1015 protons/cm2 are mostly transparent. Samples exposed to
1016 protons/cm2 and 1017 protons/cm2 turn black due to proton beam damage.
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XPS spectra of ion-irradiated WSe2 samples

Figure A.4: Representative XPS survey spectra of the WSe2/SiC heterostructures. (a) Sur-
vey spectrum of the WSe2/SiC heterostructure generated via mechanical exfoliation of the
WSe2. (b) Survey spectrum of the WSe2/SiC heterostructure generated via direct growth
of the WSe2 by MOCVD. Both spectra are presented without charge correction. The major
elemental peaks are labeled here. A trace amount of sodium was also detected on the sample
with the exfoliated WSe2. It is noted that for the case of MOCVD growth of WSe2, there
is a prominent selenium Auger line that overlaps with the C 1s peak.
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Figure A.5: Representative initial core-level XPS spectra for WSe2/SiC heterostructures.
(a) High-resolution core-level spectra of the WSe2/SiC heterostructure generated via me-
chanical exfoliation of the WSe2. (b) High-resolution core-level spectra of the WSe2/SiC
heterostructure generated via direct growth of the WSe2 by MOCVD. Spectra are charge
corrected as discussed in the main text. Constituent compounds are labeled here. It is noted
that for the case of MOCVD growth of WSe2, there is a prominent selenium Auger line that
overlaps with the C 1s peak. The signal from that line was separated from the C 1s signals
using data from pristine bulk samples in the high-resolution data, and was subtracted from
the spectra presented here. The background has also been subtracted in the spectra.
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(a) (b)

(c)

Figure A.6: Change of Oxygen 1s peak spectrum after heavy ion irradiation. O 1s spectra
before (black) and after the irradiation (red) for sample exposed to the heavy ions. The
initial oxygen spectra contain two chemical environments – one for adsorbed moisture and
the other for organic contaminants. The final spectra contain those two peaks and a third
peak corresponding to metal oxides.
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APPENDIX B

MoS2 field-effect transistor device fabrication

procedure

Fabrication of MoS2 field-effect transistors

The MoS2 was exfoliated using the standard tape method onto the target sub-

strates from a natural bulk crystal purchased from SPI supplies. The samples were

spun at 4000 rpm for 45 s with MMA EL6 photoresist and baked at 150 °C for 90 s.

A second coat of PMMA A3 was spun with identical conditions and baked at 180 °C

for 90 s. They were then patterned using a 100-kV Vistec EBPG 5200 electron beam

lithography tool with a dose of 300 µC/cm2. The develop consisted of immersion for

60 s in 1:1 MIBK:IPA solution followed by 45 s in IPA. 40 nm Ni/30 nm Au contacts

are deposited using a Kurt J. Lesker Lab-18 electron beam evaporation tool. Liftoff

was then performed in room temperature acetone with a rinse in IPA.

In order to transfer the flakes to a new substrate, the samples were first spun with

PMMA A6 at 4000 rpm for 45 s. They were then allowed to dry at room temperature

for 24 hours to avoid any film stresses that may result from baking. A razor was

used to remove the PMMA around the edge of the sample to allow the solution to
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approach the edge of the PMMA at the SiO2 surface without any irregularities in the

PMMA that may have been present at the edge of the sample after the spinning. The

substrate with PMMA was then placed in a beaker of 1 molar NaOH solution and

allowed to float at the top. The NaOH removed the PMMA film through capillary

action, which was then transferred to a series of three deionized water baths using

a glass slide. The film was then lifted onto the target substrate and allowed to dry

by heating on a hot plate at 50 °C for 10 minutes and then at 70 °C for 10 minutes.

Finally, the dried PMMA film was removed in a bath of room temperature acetone

leaving the flakes behind on the new substrate.
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APPENDIX C

Supplementary simulation results on proton and

helium ion irradiation of MoS2

Classical MD simulation results on proton and helium irradia-

tion of MoS2
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Figure C.1: Energy transfer between Mo and S atoms as a function of the ion impact
position with the ZBL, REBO, and combined ZBL/REBO potential. For a Mo ion incident
on a S PKA, the energy is shown for an ion kinetic energy of (a) 0.1 keV, (c) 10 keV and
(e) 1000 keV. For a S ion incident on a Mo PKA, the energy is shown for an ion kinetic
energy of (b) 0.1 keV, (d) 10 keV and (f) 1000 keV.
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Figure C.2: Probability of defect size as a function of the number of sputtered Mo (X-axis)
and S atoms (Y-axis) for a He energy of (a) 0.33 keV, (b) 3 keV, (c) 30 keV, and (d) 300 keV.
The probability of zero sputtered Mo and S atom corresponds to the probability of structural
disorder without atom being ejected. The scale for the color map is 1 × 10−5 to 1 in (a),
1× 10−6 to 1× 10−1 in (b) and (c), and 1× 10−7 to 1× 10−2 in (d).
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Figure C.3: Probability of defect size as a function of the number of sputtered Mo (X-
axis) and S atoms (Y-axis) for a proton energy of (a) 0.3 keV, (b) 3 keV, (c) 30 keV, and
(d) 300 keV. The probability of zero sputtered Mo and S atom corresponds to the probability
of structural disorder without atom being ejected. The scale for the color map is 1 × 10−6

to 1× 10−2 in (a)–(c) and 5× 10−8 to 5× 10−4 in (d).
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