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ABSTRACT 
 

Plastids are indispensable, plant-specific organelles of prokaryotic origin. They 

serve a plethora of biological functions crucial for plant metabolism. Plastids contain 

their own genomes, which are remnants of their cyanobacterial ancestor. However, 

mechanisms regulating expression of genes encoded in plastid DNA remain poorly 

understood. It is hypothesized that RNA processing plays a predominant role in this 

regulation but exact proteins involved in this process as well as their mode of action are 

not fully understood. Using a combination of phylogenetic, genetic, biochemical and cell 

biology approaches, I have expanded the knowledge about two groups of RNA-

associated proteins, which act in Arabidopsis thaliana plastids. First, I focused on RNase 

H1, a conserved enzyme responsible for digestion of the RNA strand of RNA:DNA 

hybrids. Through the phylogenetic analysis of this protein I have shown that the common 

ancestor of two largest groups of land plants, monocots and dicots, contained only one 

RNase H1. Subsequent gene duplication occurred independently in monocots and 

dicots and resulted in the presence of at least two RNase H1 paralogs in most 

angiosperm species. Additionally, I have shown that the Arabidopsis thaliana genome 

contains three RNase H1 genes encoding four RNase H1 proteins which display the 

canonical RNase H1 activity. Furthermore, I have demonstrated that these proteins 

localize to the nucleus, mitochondria and chloroplasts and the presence of at least one 

organellar (mitochondrial or plastid) RNase H1 is required for proper embryo 
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development. I have also shown that plants deficient in plastid RNase H1 accumulate 

higher levels of plastid DNA and display elevated sensitivity to replicative stress 

compared to wild type plants. Altogether, these results suggest that the canonical 

RNase H1 activity is crucial for proper nucleic acid metabolism in plastids and for plant 

embryonic development. Subsequently, I have performed characterization of another 

family of proteins that has been previously implicated in plastid RNA processing, the 

Defective in Chloroplasts and Leaves (DeCL) protein family. Through phylogenetic 

analysis I have shown that DeCL proteins are present mostly in photosynthetic 

organisms and are probably of cyanobacterial origin. These proteins group into five sub-

families, which share a well-defined domain of unknown function, the DeCL domain. 

Two of these sub-families contain subunits of plant-specific DNA-dependent RNA 

polymerases involved in Transcriptional Gene Silencing (RNA Pol IV and Pol V), one 

contains nuclear-localized rRNA binding proteins (DOMINO1) and two remaining sub-

families contain organellar proteins, DeCL1 and DeCL2. I have demonstrated that in 

Arabidopsis thaliana both DeCL1 and DeCL2 associate with chloroplasts membranes 

and the presence of at least one of those proteins is required for plant viability under 

normal growth conditions. DeCL1 interacts with a subset of plastid-encoded mRNAs, 

mostly binding to their 5’ or 3’ ends. rRNAs are also bound by DeCL1 and their 

processing is affected in the decl1 mutant, which is consistent with previous data 

implicating DeCL proteins in rRNA processing. Altogether, these results provide 

evidence of direct or indirect DeCL-RNA interaction and suggest at least partial 

redundancy between DeCL1 and DeCL2. This identifies the establishment of the 

molecular mechanism of DeCL function as an important goal for future research. 

Altogether, this work provides important, novel insights into the processes involved in 
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plastid RNA metabolism. It answers several important questions about two plastid RNA-

associated proteins and opens new avenues for studying regulation of plastid-encoded 

genes at the RNA level. 

  



1 
 

 
 
 
 

CHAPTER I 
 

INTRODUCTION 
 

Plastids 

 Plastids are endosymbiotic organelles specific to plants. These indispensable 

organelles are enclosed within a double membrane and serve a plethora of functions. 

Plastids are mostly known for performing photosynthesis, but they are also involved in 

fatty acid biosynthesis, pigment production as well storage of multiple energy sources. 

These organelles, like mitochondria, have retained their own genome which encodes 

some elements of plastid metabolism. Throughout this chapter I describe plastid 

metabolism and give an overview of current knowledge regarding regulation of the 

expression of plastid-encoded genes.  

 

Endosymbiotic origin of plastids 

 Plastids originate from an incorporation of cyanobacteria-like prokaryote into an 

eukaryotic cell in the process of endosymbiosis1, which occurred approximately 1.5 

billion years ago2. The endosymbiotic organelles retained certain essential features of 

their cyanobacterial ancestors like the membrane system and independent genome. 

Otherwise, they have been severely reduced and specialized in metabolism and 

especially photosynthesis. It is worth noting that the eukaryote which initially obtained 

plastids already contained a different type of endosymbiotic organelles – mitochondria3. 

These, however, originate from α-proteobacteria-like prokaryote and therefore are 

clearly distinct from plastids in their origin, structure and function4.  
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 It is hypothesized that plastids were obtained once during evolution and the first 

photosynthetic eukaryote is a common ancestor of all photosynthesizing algae and 

plants5. However, rising evidence suggests at least two more recent examples of 

established or ongoing primary endosymbiosis. Approximately 60 million years ago an 

amoeba Paulinella chromatophora had gained photosynthetic symbionts similar to 

cyanobacteria6,7. These symbiotic organelles, known as chromatophores, possess 

peptidoglycan wall like their cyanobacterial ancestor and are also capable of 

photosynthesis8,9. The second example of additional endosymbiotic origin of plastids 

comes from sea slugs Elysia chlorotica10. These animals sequester plastids from algae 

into a dedicated compartment in their gut in a process known as kleptoplastidy11. It is 

worth noting that these plastids provide products of photosynthesis to the slug and the 

slug itself nurtures acquired plastids12. 

 Despite the abovementioned exceptions it is a consensus that a single primary 

endosymbiosis between a mitochondria-containing eukaryote and a cyanobacteria-like 

prokaryote gave rise to all plants and algae. 

 

Plastid development 

 All plant cells originate from differentiation of meristematic (undifferentiated) cells. 

These cells contain approximately 10-20 plastids of only one type – proplastids13–15. 

Proplastids have the ability to differentiate into any specific type of plastid depending on 

the combination of environmental and cellular signals, a process involving extensive 

communication between the nucleus and plastids. Depending on the interplay of these 

factors, proplastids differentiate into one of several types of mature plastids and serve a 

specialized biological function16. 
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 The main environmental signal regulating plastid differentiation is light17. It is 

perceived by cytoplasmic photoreceptors PhyA and PhyB which, upon light illumination, 

undergo conformational change and in their active forms are translocated into the 

nucleus18,19. There they regulate the activity of transcription factors responsible for the 

transition to light-mediated growth. The downstream components of this regulation 

include proteins involved in chlorophyll synthesis as well as plant hormones synthesis 

and signaling20.  

 Chloroplasts are the most studied type of plastids, carrying the primary plastid 

function – photosynthesis. This type of plastids is found in all photosynthetic organs and 

tissues. Chloroplasts contain internal membrane structures, thylakoids, stacked on top of 

each other in large features, the grana. Thylakoid membranes are the anchor sites for 

chlorophyll pigments and light reactions of photosynthesis21. Light exposure induces 

multiple hormonal regulatory pathways which finetune chloroplast development. Plant 

hormone, gibberellic acid (GA), has been shown to inhibit greening of Arabidopsis 

seedlings grown in the dark as well as regulate chlorophyll and carotenoid synthesis22. It 

was also demonstrated to affect plastid division and stacking thylakoids into grana – 

process hypothesized to determine photosynthesis efficiency.  

 Apart from chloroplasts, plants contain three main types of plastids fulfilling different 

roles. Chromoplasts are responsible for synthesis and storage of carotenoids, including 

β-carotene, lycopene, neoxanthin, violaxanthin and lutein23. Instead of thylakoids, 

chromoplasts contain plastoglobules which mainly serve as storage sites for lipids and 

proteins but also are a site of a number of enzymatic reactions24–26. Leucoplasts are 

another type of plastids not involved in photosynthesis, and include three groups of 

plastids of different functions: amyloplasts (primarily involved in starch biosynthesis, 
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storage and degradation)27,28, elaioplasts (specialized in lipid biosynthesis and 

storage)29, and poorly characterized proteinoplasts (proposed to facilitate occurrence of 

specific enzymatic reactions)30. The last major type of plastids are gerontoplasts. These 

organelles develop from chloroplasts in senescent leaves and are characterized by the 

breakdown of chlorophyll pigments as well as degradation of the thylakoid 

membranes31,32. 

 

 Plastid division 
 Due to their endosymbiotic origin plastids, similarly to mitochondria, cannot be 

synthesized de novo inside the cells. Instead, they need to undergo division and be 

segregated to the daughter cells during cytokinesis. This complex biological process 

needs to be tightly controlled and coordinated33,34. 

 In order to multiply, plastids propagate through binary fission of a pre-existing plastid 

using protein machinery of chimeric origin that produces three major plastid-division 

(PD) ring structures: inner and outer PD rings and a dynamin ring35–38. First, the inner 

PD ring is formed by polymerization of FtsZA-FtsZB heterodimer in plastid stroma39. The 

information about localization of the FtsZ ring is transferred by a number of proteins40–43 

and determines the binding of PDR1 protein of glycosyltransferase activity to the outer 

plastid membrane. In the next step, PDR1 synthesizes polyglucan filament ring. This 

polyglucan filament is then bound by a dynamin-related GTPase protein DRPB5 which 

cross-links the PD ring filaments. Formed PD-dynamin ring generates contractile force at 

the plastid division site and pinches off the membranes. Resulting daughter plastids are 

separated and division machinery is disassembled39. 
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 It is important to note that cell and plastid division cycles need to be precisely 

coordinated. For example, in red alga Cyanidioschyzon merolae and in glaucophyte alga 

Cladophora paradoxa, it was demonstrated that cell division is arrested in prophase if 

plastid division is blocked before the formation of FtsZ ring. In these cells the increase of 

major cell-cycle regulator, cyclin B, is blocked44. It has been also shown that expression 

of genes encoding plastid division machinery in algae is cell-cycle regulated45. 

Additionally, multiple examples of coordination between nuclear DNA replication and 

plastid division has been shown and it is hypothesized that plastid-produced 

tetrapyrroles play a major role in this regulation46–49. However, the central mechanism 

driving cell and plastid division coordination remains undiscovered. 

  
 

Plastid genome  
  Plastids, similar to mitochondria, contain their own DNA descended from the 

cyanobacterial ancestor. Therefore, plastid equivalent of chromosome, the nucleoid, 

resembles a bacterial genome – it is genetically circular with most of the genes 

organized in polycistronic units. However, the presence of linear nucleoids has been 

strongly argued by some researchers50–52. Interestingly, during the course of evolution, 

the plastid genome underwent significant reduction and many genes of cyanobacterial 

origin are now encoded in the nuclear genome. From the initial hypothesized several 

thousands of genes in cyanobacterial ancestor of plastids1, Arabidopsis plastid genome 

encodes only 87 protein coding and 41 rRNA and tRNA genes53. In other plant species 

the number of genes present in the plastid genome does not exceed 200, while the 

plastid proteome consists of around 3000 proteins54,55. Interestingly, genes which 

remained in the plastid genome encode mostly proteins involved in photosynthesis and 
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this subset of genes remains relatively well conserved between plant species56,57. 

However, a significant portion of the photosynthetic apparatus proteins is encoded in the 

nuclear DNA. It has been shown that plastid encoded genes may still be transferred to 

the nuclear chromosomes and, interestingly, gene transfer from nucleus to the plastid 

genome is also possible58. The exact reason why plastids, similar to mitochondria, still 

contain their own DNA rather than fully depend on the import of nuclear encoded 

proteins, remains unknown but several hypotheses has been offered. One possibility is 

that plastids retained their genomes to allow for precise regulation of photosynthesis by 

controlling stoichiometry of protein complexes involved in these processes on the level 

of individual plastids rather than the entire cells56. Another hypothesis, Co-location for 

Redox Regulation (CoRR), originally proposed by John Allen59  suggests that plastids 

retained protein coding genes in the nucleoid in order to control their expression by the 

redox state of protein products of these genes. The CoRR hypothesis proposes that the 

status of the photosynthetic machinery affects the redox state of plastid proteins. This 

state may then be used to regulate the expression levels of plastid-encoded genes in a 

plastid-autonomous manner. In Arabidopsis the Chloroplast Sensor Kinase (CSK) has 

been proposed to serve as a redox sensor. This plastid-localized protein is encoded in 

the nuclear genome and has homologs in organisms from all major groups of 

photosynthetic organisms. This protein was also shown to be autophosphorylated in a 

redox-dependent manner60. Despite being extremely interesting, the CoRR hypothesis 

still remains controversial and awaits confirmation. 

 A third speculative explanation of the retention of the organellar genomes is based on 

the observation that they mainly encode hydrophobic proteins. It was proposed that the 

import of these proteins into plastids or mitochondria would be a major challenge and 
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therefore these proteins need to be synthesized in situ61–63. However, this hypothesis is 

also controversial and it remains possible that all current explanations are partially 

correct. 

 

Plastid genome organization 

The plastid genome encodes a subset of proteins needed for chloroplast metabolism 

and several proteins involved in plastid gene expression. It also encodes a complete set 

of rRNAs and tRNAs, since there is no known mechanism of RNA transport into plastids 

(REF). The plastid genome is typically divided into four major regions: the Large Singe 

Copy (LSC), Small Single Copy (SSC) and two Inverted Repeat Regions (IRR). LSC and 

SSC contain protein coding as well as some tRNA genes. The IRRs are nearly identical 

in sequence and contain rRNA the rest of tRNA genes and some protein-coding 

genes64. Interestingly, plastid genomes are very AT-rich, typically ~60%, especially in 

protein coding genes65. Recent report of gene sequences from plastids of Balanophora 

reflexa  and B. laxiflora, non-photosynthetic plants, demonstrated AT contents of 88.4% 

and 87.8%, respectively, for some genes reaching 98%. This strong AT bias is also 

represented in amino acid composition of proteins encoded in these genomes. 

Specifically, ~80% of the proteome is represented by only six amino acids (asparagine, 

isoleucine, leucine, lysine, phenylalanine and tyrosine). All of these amino acids may be 

encoded by codons lacking C or G. Despite the lack of photosynthetic abilities, plastids 

from these plants are metabolically active, especially in fatty acid synthesis54,66. The 

exact reason for the high AT content of plastid genomes is still unknown. Although, it 

was observed that GC content is correlated with plastid genome size and proposed that 

higher AT content allows for more structural rearrangements and higher mutation rate67. 



8 
 

 The single plastid genome size is typically between 100-200kbp, however exceptions 

do exist. For example marine unicellular alga Acetabularia has been reported to contain 

chloroplast genome up to 1.5Mbp68, on the contrary different marina alga Osteococcus 

taurus has a plastid genome tightly packed into 72kbp69. Diversity in plastid genomes 

has also been reported within single genera. For example, algae from the genus 

Chlamydomonas vary in plastid genome size from 187kbp up to 292kbp, depending on 

the species70. 

 

 Plastid nucleoid  

 Plastid DNA is packaged into a three dimentional nucleoprotein structure known as 

the nucleoid. Plastids contains multiple nucleoids, each containing multiple copies of the 

genome. Therefore, the copy number of the plastid genome greatly exceeds the copy 

number of the nuclear genome and chloroplasts may contain the majority of total cellular 

DNA content71. 

 Upon staining with a nucleic acid stain such as DAPI (4’,6’-diamidino-2-phenylindole), 

nucleoids are visible as granules of various sizes localized in the plastid stroma. They 

are often associated with plastid membranes such as thylakoid and inner envelope 

membranes. DNA in plastid nucleoids is packaged with several nucleoid-associated 

proteins71,72. During evolution land plants lost bacterial nucleoid-associated proteins like 

HU and H-NS, which are responsible for chromosome packaging in cyanobacteria. 

Plastids also do not contain histones or other typical nuclear chromatin proteins. Instead, 

plastid nucleoid is organized by unique set of DNA-binding proteins73. Additionally, 

proteomic analysis of maize nucleoids showed association of plastid DNA with various 

proteins involved in DNA replication and repair as well as in RNA metabolism: 
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transcription, RNA processing, translation and ribosome assembly73,74. Importantly, 

presence of those proteins on plastid DNA may suggest that plastid RNA processing 

and translation may occur co-transcriptionally.  

 

 Plastid DNA replication 

 In order to remain fully functional, plastids need to replicate their DNA before 

organelle division. First plastid protein exhibiting DNA polymerase activity was isolated 

from tobacco chloroplast and was demonstrated to be similar in size to the Klenow 

fragment of Polymerase I from E. coli75,76. Interestingly, activity of this enzyme 

resembled this of bacterial polymerases but no apparent sequence or structural 

similarity to cyanobacterial enzymes was found77. Due to this unclear origin, plastid 

Polymerase I is called POP – Plant and protist Organellar DNA Polymerase. Two genes 

encoding POPs were found in Arabidopsis – PolIa and PolIb. It was demonstrated that 

protein products of both genes localize to chloroplasts and mitochondria and act 

redundantly in organellar DNA replication78. Maize, in turn, contains only one gene 

encoding POP and loss of this enzyme leads to dramatic decrease in cpDNA copy 

number and seedling lethality79. This indicates that POP servers an important role in 

replication of plastid DNA. 

 Mechanism of plastid DNA replication is believed to follow the rolling circle model, 

where one of the strands of circular nucleoid is nicked, displaced from the 

complementary (not-nicked) strand which serves as a template for DNA replication while 

the nicked strand is elongated80,81. It was shown that the tobacco plastid genome 

contains two origins of replication (ori), located in the IRR section of the plastid genome, 

and at least one of them is needed to maintain plastid DNA82.  
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 An additional mechanism of plastid DNA replication was proposed, the 

Recombination-Dependent Replication (RDR)50. It is hypothesized that in this process, 

the 3’-OH end of ssDNA overhang of one of the genome copies invades another copy of 

the genome at a homologous site. It then primes DNA replication of the leading strand 

and eventually complete replication fork machinery is established83,84. This leads to the 

formation of a four-stranded DNA structure, the Holliday junction. It was shown that 

proper resolving of this structure is crucial for correct nucleoid segregation85. 

Importantly, if RDR originates in one of the IRRs in the plastid genome it may lead to 

inversion of the single copy regions, a phenomenon commonly observed in plastid 

genomes86. It was also hypothesized that the ssDNA overhang which initiates 

homologous recombination might be a substrate for C-to-T deamination and therefore, in 

combination with the presence of RNA editing enzymes, be an explanation of high AT-

content in plastid genomes87.  

 Interestingly, it was recently suggested that R-loops, three-stranded nucleic acid 

structures with RNA:DNA hybrids, may also serve as DNA replication initiation sites in 

plastids, similarly to mitochondrial DNA replication, where D-loops, three-stranded DNA, 

were shown to be DNA replication initiation sites50,88. However, the exact mechanism of 

the replication initiation by R-loops and direct evidence of this process remain 

undiscovered. Importantly, we need to remember that the central element of the R-loop, 

RNA:DNA hybrid, if not properly removed stalls DNA replication resulting in DNA breaks 

and genome instability89,90. 

 Additionally, plastid DNA replication does not seem to be coupled with either 

organelle or cell division91. Especially, that plastids by default contain variable numbers 

of genome copies. Instead, it is believed that nucleoid molecules are tightly associated 
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with thylakoid membranes and therefore can be uniformly propagated to the daughter 

organelles92. 

 

Plastid RNA metabolism 

 Organization of plastid-encoded genes 

 Despite over 95% of chloroplast proteome being encoded in the nucleus and imported 

from the cytoplasm, proteins encoded in plastid DNA serve functions crucial to 

organelle, cell and whole organism survival93. Therefore, expression of plastid-encoded 

genes must be tightly regulated and coordinated with the metabolism of the entire cell. 

 Genes in the plastid genome are organized in operons, polycistronic transcriptional 

units, a characteristic of prokaryotic organisms. However, bacterial operons usually 

encode functionally related genes while those in plastids sometimes contain genes 

encoding proteins of unrelated functions94,95. Additionally, some plastid-encoded genes 

contain introns, which need to be co-transcriptionally spliced96. 

 

 Transcription 

 Transcription of genes encoded in the plastid genome is orchestrated by a 

combination of two DNA-dependent RNA polymerase complexes. Interestingly, one of 

these complexes is encoded in the nuclear genome, the Nuclear-Encoded Polymerase 

(NEP), while the genes encoding components of the second one, the Plastid-Encoded 

Polymerase (PEP),  are present in the plastid chromosome97. It is believed that these 

two RNA polymerase complexes function sequentially, but on a different subset of 

operons and specificity is achieved through different promoters being recognized by 

NEP and PEP96,98. NEP is thought to be the most active in proplastids where it 

transcribes plastid-encoded genes for PEP subunits, then PEP transcribes genes crucial 
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for mature plastid development. Interestingly, NEP is also active in mature plastids and 

may rescue PEP function upon the latter one being absent or defective99. 

 NEP was initially found in spinach chloroplasts as a 110kDa polypeptide exhibiting 

RNA polymerase activity100. Interestingly, the number of genes encoding NEP is variable 

between plant species. This variability correlates with the number of localization sites for 

these enzymes. Most dicots (e.g. Arabidopsis, Tobacco) contain three NEP genes, 

products of which localize to plastids, mitochondria while the third one exhibits dual 

targeting to both of these organelle types. Monocots (e.g. Rice, Wheat, Maize) contain 

only two NEPs, localized to either plastids or mitochondria, and basal plants (e.g. green 

algae, Selaginella) encode only one NEP96. NEP is the only transcriptional machinery for 

rpoB operon (which contain genes encoding PEP components) as well as single genes 

accD and ycf2, which encode acetyl-CoA carboxylase and ATPase of unknown function, 

respectively101.  

 The first evidence of RNA synthesis in isolated broad bean chloroplasts was obtained 

in 1960s102, a discovery followed by characterization and purification of the PEP 

complex from maize103, pea104 and spinach105 chloroplasts. Interestingly, all of these 

enzymes were found to be composed of five subunits - two α subunits, and one of each 

β, β’ and β’’, architecture resembling that of the bacterial RNA polymerase complex106 

but the ω subunit is absent. Protein products of genes rpoC1 and rpoC2 which encode 

plastid β’ and β’’ subunits, respectively, can be aligned with the N- and C-terminal 

fragments of bacterial β’ subunit, suggesting duplication of this gene in the 

cyanobacterial ancestor of plastids or in the common ancestor of all photosynthesizing 

eukaryotes107.  
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 Transcription initiation 

 DNA binding and transcription initiation by bacterial RNA polymerase was 

demonstrated to be dependent on the activity of a protein named σ (sigma) factor. 

Initially, a 70 kDa protein was discovered in E. coli and named sig70108,109 followed by 

discoveries of other sigma factors in E. coli and almost all known bacteria110. Prokaryotic 

σ factors are divided into two independent families, named after their first 

representatives, namely SIG70 and SIG54. Families are then divided into groups, with 

group I containing essential σ factors and groups II-IV containing alternative or 

specialized sigma factors111. It was demonstrated that σ factor binding to the bacterial 

core RNA polymerase leads to enhanced affinity of the holoenzyme to the gene 

promoter and increased transcription112. 

 Considering high similarity between bacterial RNA polymerase and PEP it is not 

surprising that plastid RNA polymerase machinery uses sigma factors as well. Initially 

discovered in the red alga and soon described from many higher plant species, 

eukaryotic sigma factors were  found to share high sequence similarity of their C-

terminal fragments with the members of bacterial SIG70 family113,114. Interestingly, the 

N-terminal portion of plastid sigma factors is shared among all photosynthesizing 

eukaryotes but is absent from the bacterial ones and its biological function remains 

unknown. 

 The number of plastid sigma factors varies from one in green alga Chlamydomonas 

reinhardtii115 up to seven in California poplar tree with typical number of six in majority 

plants, including Arabidopsis thaliana (SIG1-6)114,116. The expression of sigma factors 

depends on the environmental signals, cell type as well as developmental stage. These 

transcription factors are known to either regulate expression of specific subset of 
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genes117–122 or broadly regulate expression of plastid encoded genes in response to 

particular stimulus123–125.  

 

 Intercistronic transcript processing 

 Plastid-encoded genes are transcribed as long, polycistronic mRNA molecules96. 

However, contrary to what is observed in bacteria, polycistronic mRNAs are subjected to 

slicing, known as intercistronic transcript processing126. It has been shown that 

processed, monocistronic transcripts are translated more effectively than polycistronic 

ones127. However, it was also demonstrated that this processing is not required for 

translation and, additionally, that it is not crucial for over-expression of transgenes, 

which may be efficiently translated from unprocessed transcripts128,129. 

 Little is known about specific proteins involved in intercistronic cleavage of plastid 

transcripts. Two Pentatricopeptide Repeat Proteins (PPR) have been demonstrated to 

bind some plastid-encoded transcripts. Arabidopsis HCF152 and maize CRP1 proteins 

recognize and bind specific RNA sequence. It was demonstrated that this binding 

determines 5’-ends of processed transcripts through protecting it from 5’->3’ 

exonuclease digestion130. The Arabidopsis HCF107 protein is another identified factor 

which was proposed to be involved in this process. Plants deficient in HCF107 fail to 

accumulate processed mRNA encoding PsbH protein, a component of the 

photosynthetic machinery, which leads to lethality of mutant seedlings131. Importantly, it 

cannot be excluded that HCF107 stabilizes processed mRNA allowing for its’ 

accumulation. 
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 Splicing of plastid-encoded mRNAs 

 Genes encoded in the plastid genome contain two types of introns, group I and group 

II126. Splicing of both is considered RNA-catalyzed because some members of these 

groups are capable of self-splicing in vitro. However, many of organelle introns require 

protein machinery for in vivo splicing. 

 Group I introns are spliced in a two-step process. In the first step, the trans-

esterification, guanine performs nucleolytic attack on the 5’-end of the intron. This step is 

followed by another nucleophilic attack by the same guanine on the now exposed 3’OH 

group of the upstream exon132. Interestingly, land plants retained only one group I intron, 

which has lost the self-splicing ability. However, all five group I introns from green algae 

Chlamydomonas exhibit autocatalytic splicing activity in vitro133. 

 Group II introns are characterized by the conserved structure of six helical domains 

connected to a central core134. These introns are usually spliced in a two-step trans-

esterification reaction. First, the 2’OH of adenosine nucleotide bulging in the sixth helix 

domain performs the nucleophilic attack on the 5’-end of the intron. This results in a 

branched structure, and after second trans-esterification, the intron is released as a 

lariat. Alternatively, the water molecule may serve as a nucleophile during first step of 

this splicing135. Plastid genome of Arabidopsis contains twenty group II introns with one 

unusual example of trans-splicing of rps12-1 gene136,137. 

 Splicing factors involved in plastid pre-mRNA maturation are encoded in both plastid 

and nuclear genomes126. The main plastid-encoded splicing factor, MatK, shares 

sequence similarity with canonical proteins involved in intron splicing (maturases). It was 

demonstrated to bind intron RNA in vitro and to be required for proper splicing of some 

group II introns138–140. 
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 The main family of nucleus-encoded splicing factors is the CRM (Chloroplast RNA 

and ribosome Maturation) domain family141. They contain up to four RNA-binding 

domains. Interestingly, in prokaryotes, proteins containing single CRM domain are 

involved in ribosome maturation. Majority of plant CRMs have been predicted or shown 

to localize to either plastids or mitochondria142. Five of them participate in the splicing of 

specific group II introns in plastids. Interestingly, no redundancy was detected between 

them. One of the CRM domain proteins, CFM2 was shown to be required for a single 

group I intron in plastids143,144. 

 The Pentatricopeptide Repeat (PPR) is another protein family shown to participate in 

plastid splicing. PPR4 was found to be essential for trans-splicing of rps12-1 intron in 

Arabidopsis and maize137. Loss of a different PPR protein, OTP51, causes substantial 

defect in splicing of ycf3-2  intron as well as partial defects in splicing of other group II 

introns145. PPR5 protein was shown to protect trnG pre-mRNA from degradation but is 

also suggested to be directly involved in splicing due to its’ ability to bind intron RNA in 

vitro146,147. 

 WTF1 protein was found to bind RNA in vitro as well as associate with a specific 

subset of introns in maize chloroplasts. Loss of WTF1 leads to defects in splicing of 

these introns148. Additionally, another protein from this family, WTF9, was found to be  

involved in group II intron splicing in Arabidopsis mitochondria149. 

 Intron splicing from plastid-encoded mRNAs uses a number of mechanisms and 

specific proteins which often are involved in processing of only a few genes. Additionally, 

only a small number of plastid-encoded genes contain introns. This raises an important 

question of whether introns play a role in regulation of plastid gene expression. It was 

shown that deletion of group I introns in C. reinhardtii psbA and rRNA genes did not 



17 
 

cause any obvious effect on cell growth150–152. Additionally, it was shown that trans-

splicing mutants can be rescued with intron-less psaA sequence126. Therefore, it is 

possible that plastid introns are not important for plastid gene expression but rather are 

relics from their bacterial ancestors. However, conclusive results from flowering plants 

are still missing.  

 

 Transcription termination 

 Properly controlled transcription termination prevents formation of antisense RNAs, 

interference with the activity of other RNA polymerase complexes as well as secures a 

pool of RNA polymerase for new transcription events153. In bacteria two major 

mechanisms of transcription termination have been described - Rho-dependent and 

intrinsic (Rho-independent).  

 Despite the bacterial origin of plastids, no homologs of prokaryotic Rho factors have 

been identified in chloroplasts so far. Additionally, in plastids it is mainly RNA maturation 

rather than transcription termination that determines 3’-ends of transcripts130,154. 

However, Arabidopsis genome sequence analysis revealed the presence of several 

proteins predicted to localize to plastids, which contained an RNA-binding domain 

similar to the one present at the N-terminus of bacterial Rho factors. These proteins 

were named RHON and proposed to be involved in plastid RNA metabolism. 

Specifically, RHON1 protein was demonstrated to participate in transcription termination 

of rbcL operon. Loss of RHON1 caused read-through of this operon leading to the 

production of a large precursor transcript consisting of rbcL as well as multiple 

downstream operons155. Biochemical characterization of RHON1 function suggests that 

it is able to terminate rbcL transcription in a similar way to bacterial Rho factors. 
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Specifically, RHON1 specifically binds to the 3’UTR of rbcL mRNA as well as single-

stranded DNA encoding this region. In vitro transcription termination studies showed that 

RHON1 terminates transcription of rbcL and that this process was dependent on its’ 

ATPase activity156. However, the actual mechanism of this termination may be different 

from the one observed in bacteria. The mRNA sequence bound by RHON1 does not 

show similarity to the Rho binding site, specifically C-content is significantly lower. 

Additionally, in E. coli Rho binds naked mRNA molecules which are not being translated 

or bound to RNA-binding proteins157. In contrast, RHON1 binds nascent mRNAs as part 

of a large RNA-protein complex in vivo155. 

 An interesting feature of plastid transcriptional units is the presence of inverted repeat 

sequences in their 3’-ends158,159. These sequences are capable of folding into stem-loop 

structures, similar to those observed in intrinsic transcription terminators in E. coli. 

Therefore, it was suggested that inverted repeat sequences may serve as intrinsic 

transcription terminators in plastids160. In vitro transcription termination experiment in 

spinach chloroplasts showed that some of the inverted repeats were partially effective as 

intrinsic transcription terminators. However, based on the partial effect, it was proposed 

that the inverted repeats at the 3’-ends of plastid transcripts form stem-loops in order to 

stabilize those transcripts, preventing 3’->5’ mRNA degradation or that  these structures 

serve as platforms for RNA-binding proteins which protect nascent mRNAs from 

degradation161. However, whether this mechanism truly applies to plastid transcription 

termination, still remains to be determined. 
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RNA processing 
 Regulation of plastid-encoded gene expression is believed to be regulated mainly at 

the post-transcriptional level, contrary to bacterial regulation affecting primarily (but not 

only) transcription initiation162. RNA molecules produced in plastids undergo extensive 

processing affecting their sequence, structure, stability, size and functions. Protein 

machinery responsible for RNA processing represents a significant fraction of the plastid 

proteome74 and therefore a thorough understanding of its functions remains a key step 

in discovering all regulatory mechanisms orchestrating the plastid transcriptome. 

 

 RNA editing 

 An unusual feature of organellar RNA metabolism in plants is RNA editing. It most 

likely emerged approximately 450 million years ago in early land plants. Interestingly, 

evidence of RNA editing have not been found in green algae and liverworts but have 

been discovered in animals, suggesting convergent evolution of this process in land 

plants and animals163. However, RNA editing in animals occurs in both the nucleus and 

mitochondria, while in land plants it is restricted to plastid and mitochondrial RNA 

maturation. 

 The most common event of RNA editing is conversion of cytidine to uridine (C-to-U) 

while adenosine to inosine (A-to-I) conversion is limited to animals164. The number of 

editing sites in chloroplast transcripts varies from zero to thousands between plant 

species, with flowering plants exhibiting usually between 20 and 60 editing sites165–168. 

This process seems to be more common in plant mitochondria where the number of 

editing sites is usually between 400 and 600169–172. RNA editing is also more common in 

basal plants (e.g. lycophytes and ferns) in both plastids and mitochondria exhibiting 

approximately 10 times more editing sites than their flowering plant counterparts173–175. 
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 C-to-U conversion can be explained by cytidine deamination. However, plant 

enzymes directly involved in this reaction have not been identified. Multiple sequence-

specific PPR proteins have been found to bind in close proximity to editing sites126. Also, 

DYW domain-containing proteins were implicated in RNA editing. The DYW domains 

contain the zinc-binding motif also found in cytidine deaminases from different 

organisms. However, in vitro editing assays did not prove enzymatic activity of these 

proteins and loss of them does not affect RNA editing in vivo176,177. 

 It is hypothesized that RNA editing serves as post-transcriptional correction 

mechanism and acts as a buffer for T-to-C mutations in the coding sequences178. 

However, why it is limited to organelles in plants and why only one type of mutation can 

be corrected by this mechanism remains unknown. 

  

RNA-binding proteins 

 PPR proteins 

 The most thoroughly characterized group of plastid RNA-binding proteins is the 

Pentatricopeptide repeat (PPR) protein family. PPR proteins contain between 2 and 30 

helical repeats composed of 35 amino acids. Each of the repeats is composed of two α-

helices, which were proposed to specifically recognize RNA bases. These repeats stack 

together and form an extended surface recognizing a specific RNA sequence179.  

 Genes encoding PPR proteins have been found in every sequenced plant genome 

and were predicted to localize mainly to plastids and mitochondria. Maize genome 

encodes almost 600 PPR proteins and Arabidopsis genome was found to encode 450 

PPR proteins, out of which 41 and 63 are targeted to plastids and mitochondria, 

respectively180. 
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 PPR proteins affect various aspects of RNA metabolism. They were implicated in 

splicing, maturation, editing, stabilization as well transcription and translation in the 

organelles181. These proteins also affect a number of biological processes including 

photosynthesis, respiration, gametogenesis and organelle development128,182–184. 

 Members of this family have been shown to bind and promote splicing of specific 

introns137,185. It has been proposed that in the case of cis-splicing, PPR proteins prevent 

the formation of an RNA hairpin which would prevent efficient splicing146,147. Additionally, 

PPR proteins protect some introns, including those being a subject of trans-splicing, 

from nucleolytic cleavage and therefore allowing for proper splicing to occur181. 

 This family of proteins also plays an important role in determination of both ends of 

mature RNAs. PPR proteins have been shown to bind 5’- and 3’-ends and protect them 

from exonucleolytic cleavages and it was demonstrated that the PPR protein binding site 

determines the end of mature transcripts154,186. Importantly, these proteins affect ends of 

transcription units but also termini which result from intercistronic cleavages126. It has 

been proposed that the RNA-stabilizing function of PPR proteins is its major role and 

that it determines the complexity of the plastid transcriptome181. 

 Members of the PPR protein family also affect translation of plastid-encoded genes. It 

was shown PPR protein binding specifically enhances translation of mRNAs. It was 

demonstrated that in the absence of PPR10 an RNA hairpin is formed at the ribosome-

binding site of atpH mRNA. Upon PPR10 binding the hairpin is resolved and translation 

may occur. Importantly, at the same time PPR10 protects the 5’-end of this mRNA from 

exonucleolytic cleavage. It was proposed that translation of other plastid-encoded 

mRNAs is stimulated in a similar manner by other PPR proteins187,188. 
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 In addition to their RNA-metabolism related role, PPR proteins have been shown to 

associate with a number of protein complexes in plastids. They directly interact with 

elements of photosynthetic machinery, electron transfer as well as carbon metabolism 

and protein degradation complexes181. However, the exact role of those interactions 

remains unknown, it is tempting to speculate that they may affect plastid gene 

expression at the levels beyond RNA-metabolism. 

 

 RNA-stabilizing proteins 

 Apart from PPR proteins recognizing specific RNA sequences other plastid RNA-

binding proteins exist and participate in transcript stabilization. Large group of cpRNPs 

(Chloroplast Ribonucleoproteins) consists of chloroplast stroma-localized proteins 

containing RNA-Recognition Motifs (RRM)189. These proteins bind various mRNA 

molecules which are not engaged in the translation process as well as pre-tRNAs190. It 

was demonstrated that upon cpRNPs depletion from stromal extracts, RNA was 

degraded rapidly, which was reversed upon addition of recombinant cpRNPs191. These 

results indicate that cpRNPs are key proteins responsible for chloroplast RNA stability. 

Specifically, it was shown in vitro that spinach 28RNP is important for stabilization of 3’-

ends of several chloroplast mRNAs192. It was also shown that Arabidopsis cpRNPs, 

CP31A and CP29A, bind 3’-ends of multiple sense and antisense transcript protecting 

them from degradation under cold stress condition193. Additionally, CP33A protein from 

Arabidopsis was discovered to serve as global regulator of chloroplast RNAs, crucial for 

plant development and chloroplast biogenesis194. 

 Multiple additional plastid RNA-stabilizing proteins have been discovered so far. 

HCF145 protein contains two transcript-binding motif (TMR) domains and was shown to 
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bind and stabilize 5’-end of polycistronic psaA transcript in Arabidopsis chloroplasts. 

HCF107 is another protein shown to be involved in plastid mRNA stabilization. This 

thylakoid-bound protein exists as part of high molecular weight complexes and binds 

RNA in a sequence-dependent manner195. It was demonstrated that HCF107 binds 5’-

UTR of psbH mRNA protecting it from 5’->3’ exonucleolytic digestion in vitro. It was also 

proposed that this binding affects the structure of mRNA which allows for ribosome 

binding and more efficient translation196,197. 

  

RNA ends modifications and degradation 
 The most thoroughly characterized enzyme responsible for processing of 5’-ends of 

plastid mRNAs is RNase J. Initially characterized in bacteria B. subtilis, RNase J usually 

contains metallo-β-lactamase (MBL) domain followed by β-CASP as well as RNA 

recognition motif domains. It was found to act as a dimer or tetramer and exhibit 5’->3’ 

exonucleolytic as well as endonucleolytic activity which is dependent on the presence of 

two zinc ions in its’ catalytic center198. Plant RNase J polypeptide chains are typically 

longer than their bacterial counterparts and contain N-terminal transit peptide 

responsible for plastid localization as well as C-terminal GT1-like DNA-binding domain, 

which exact properties remain unknown but it is not essential for RNA degradation in 

vitro. Arabidopsis RNase J was found to be phosphorylated and form high molecular 

weight complex with other plastid exonucleases PNPase and RNase E199. Analysis of 

Arabidopsis mutants deficient in RNase J revealed that this enzyme is crucial for embryo 

development. Specifically, rnj homozygous mutant embryos ceased development at the 

globular stage and exhibited impaired chloroplast development, suggesting a crucial role 

for RNase J in plastid RNA metabolism200. Based on in vitro experimental results, it was 
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proposed that RNase J digests mRNA from its’ 5’-end until it is stopped by a PPR 

protein protecting a specific sequence within a transcript199. Interestingly, virus-induced 

decrease of RNase J expression in tobacco leaves caused significant accumulation of 

antisense transcripts, suggesting high specificity of RNase J toward these201. However, 

exact mechanism of this recognition remains unknown but it is tempting to speculate that 

RNase J non-selectively digests RNA molecules and RNA-stabilizing proteins are 

required for the protection of specific mRNA species. 

 Maturation of 3’-ends of plastid-encoded mRNAs is believed to be coordinated by the 

activity of two exoribonucleases: polynucleotide phosphorylase (PNPase) and RNase R 

(RNR1)126. PNPase contains N-terminal transit peptide, responsible for plastid 

localization, two RNase PH-like core domains as well as KH and S1 domains 

responsible for RNA binding202. Interestingly, as suggested by the crystal structure of its’ 

bacterial counterpart, only one RNase PH-like domain of PNPase is sufficient for its’ 3’-

>5’ exonucleolytic activity203. Analysis of Arabidopsis mutants deficient in PNPase 

showed that loss of this enzyme leads to chlorosis of leaves as well as slower growth of 

these plants suggesting a role of PNPase in proper chloroplast development and 

function. It was demonstrated that PNPase polyadenylates 3’-ends of mRNAs and acts 

as a hexamer, while the bacterial enzyme functions as a homotrimer. This activity is 

shared with specialized chloroplast poly(A) polymerase (cpPAP). Notably, plastid 

transcript polyadenylation, contrary to nuclear polyadenylation, destabilizes mRNAs and 

leads to their degradation202. It was also shown that plant PNPase exonucleotically 

degrades mRNA in 3’->5’ direction and that this activity is stopped upon encountering 3’-

end stem loop structure or RNA-stabilizing proteins204.  
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 RNR1 protein contains RNase II-like (RNB) as well as C-terminal S1 RNA-binding 

domains and exhibits dual targeting to both mitochondria and chloroplasts in 

Arabidopsis205. Loss of RNR1 in Arabidopsis plants leads to dwarfism and significant 

decrease in chlorophyll accumulation. It was demonstrated that the major function of 

plant RNR1 is processing and degradation of rRNA species, similar to the activity of 

bacterial RNR1 enzyme206. However, thorough analysis of Arabidopsis double 

rnr1/pnpase mutants revealed an additional role of RNR1. It was proposed that RNR1 

works together with PNPase on mRNA molecules and contributes to 3’-ends generation. 

It was also demonstrated that RNR1 is not capable of digesting structured dsRNA, a 

feature typical for RNase II rather than RNase R205. Altogether, these results suggest 

that RNR1 and PNPase work together in 3’-end formation and that their activity is 

controlled by the presence of RNA secondary structures such as stem loops. 

 

 Endonucleolytic RNA processing 

 Plastid-encoded mRNA molecules are not only processed exonucleolytically but are 

also digested endonucleotically. In bacteria, RNase E (RNE) is a well characterized 

enzyme involved in regulation of gene expression through initiating RNA degradation 

and processing. In E. coli this protein works as a part of degradosome, high molecular 

weight complex, together with PNPase, Rhl B protein as well as glycolytic enzyme 

enolase. Bacterial RNE is composed of a large N-terminal catalytic domain and C-

terminal scaffold for degradosome assembly207. Its plant counterpart however, lacks the 

C-terminal portion and contains transit peptide upstream of the catalytic domain followed 

by a long linker peptide. In vitro analysis showed that plant RNE forms homo-oligomers. 

Altogether these results suggest that plastids do not contain a bacterial-type 
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degradosome208. A study in Arabidopsis showed that loss of RNE causes severe 

developmental defects, chlorosis of the mutant’s leaves, decreased size and defective 

development of chloroplast. It was also shown to accumulate precursors of multiple RNA 

species. Interestingly, all aforementioned features were similar to those observed in 

plants deficient in RHON1 protein, indicated in mRNA maturation and transcription 

termination. It was found that RNE forms a complex with RHON1 in the chloroplast 

stroma where they process both rRNA and mRNA precursors155.  

 Plastid-encoded pre-tRNAs are thought to be mainly processed at their 5’- and 3’-

ends by RNase P and RNase Z enzymes, respectively. Surprisingly, plant RNase P 

does not exhibit similarity to the bacterial enzyme, specifically it does not contain the 

catalytic RNA molecule, but does have RNA-binding PPR motifs. Yet, it is still able to 

perform pre-tRNA processing in vitro, suggesting a different mode of action for this 

protein209.  

 In B. subtilis RNase Z was shown to process 3’-ends of tRNA precursors which lack 

the CCA motif which is essential for aminoacylation and interaction with the ribosome210. 

Cleavage performed by RNase Z generates a substrate for addition of this motif by tRNA 

nucleotidyltransferase211. Interestingly, Arabidopsis genome encodes four RNase Z 

genes. Three of them encode proteins localized to the cytoplasm, nucleus and 

mitochondria and their loss does not cause lethality. However, the fourth RNase Z 

localizes to chloroplasts and is required for plant viability, which suggests its key role in 

plastid tRNA metabolism212. 

 CSP41 is an RNA-binding protein unique to photosynthetic organisms. Interestingly, 

cyanobacteria contain only one gene encoding this protein, while photosynthetic 

eukaryotes encode two CSP41 proteins213. These proteins contain Rossman fold 
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domains, similar to bacterial epimerase/dehydratase proteins, and were proposed to be 

involved in non-specific RNA binding and processing214. Analysis of Arabidopsis mutants 

revealed that the loss of CSP41A does not cause any observable phenotype. However, 

plants deficient in CSP41B exhibited delayed growth, chlorosis, and both chloroplast and 

embryo development defects. Decreased accumulation of PEP-transcribed RNAs was 

also observed. CSP41B was shown to directly interact with PRIN2, forming a DNA-

binding complex in vitro. Therefore, it was proposed that CSP41B together with PRIN2 

regulate the activity of PEP but the exact molecular mechanism remains unknown215. 

 

 RNase H proteins 

 Another group of enzymes likely to be involved in plastid RNA metabolism are RNase 

H1 proteins. RNase H1 proteins hydrolyze the phosphodiester bonds of the RNA strand 

in a RNA:DNA hybrid. This enzymatic activity requires at least four consecutive 

ribonucleotide in the substrate216. Human RNase H1 protein requires Mg2+ ions for its 

catalytic activity217 but enzymes from other organisms have been shown to use Mn2+ 

ions as co-factors218.Genes encoding RNase H1 proteins are highly conserved and were 

found in genomes of almost all eukaryotes and the majority of prokaryotes. These 

enzymes contain N-terminal transit peptide followed by catalytic domain and RNA:DNA 

hybrid binding domain at the C-terminus216,219. Additionally, eukaryotic RNase H1s often 

contain N-terminal mitochondrial targeting sequence (MTS). In this case a single gene 

expresses two splice variants, where one containing the MTS localizes to the 

mitochondria, while the second one does not contain MTS and localizes to the 

nucleus220,221. 
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 Canonical substrates of the RNase H1 enzymes, RNA:DNA hybrids, are formed 

during replication, transcription but also proposed to serve regulatory functions in gene 

expression222–224. Importantly, RNA:DNA hybrids need to contain at least four 

consecutive ribonucleotides in order to be recognized and cleaved by RNase H1225. The 

best characterized role of RNase H1 in eukaryotes is its involvement in removing RNA 

primers during mitochondrial DNA replication in mouse89,220. Additionally, it was 

demonstrated that RNase H1 binds telomeres and digests RNA:DNA hybrids formed 

between long non-coding RNA TERRA and telomeric DNA fragments226. Loss of RNase 

H1 leads to increased homologous recombination (HR) rates, replicative stress and 

rapid telomere loss. Conversely, overexpression of RNase H1 caused reduced HR, 

diminished replicative stress and telomere shortening226.  In yeast RNase H1 has been 

shown to be involved in genome maintenance but also to be partially redundant with 

RNase H2 complexes227. It has been shown that loss of Arabidopsis chloroplast 

localized RNase H1 (RNH1C) leads to chlorosis, stunted growth and chloroplast 

development defects and that this protein interacts with gyrase and is involved in plastid 

DNA replication228. However, several essential questions about plastid RNase H1 and its 

nuclear and mitochondrial paralogs remained unanswered. These include the 

evolutionary origin of multiple RNase H1 genes in plants, biochemical activity of plant 

RNase H1-like proteins, role of RNase H1 in plant development and DNA replication. 

These questions are answered in Chapter II. 

 In addition to RNase H1 enzymes, plants also contain RNase H2229. RNases H2 are 

nucleus-localized heterotrimeric complexes with one catalytic subunit and two subunits 

serving mainly structural roles. These complexes are responsible for the removal of 

single ribonucleotides incorporated into dsDNA and therefore have been implicated in 
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DNA repair. However, they have been also shown to digest longer RNA:DNA hybrids on 

a genome-wide scale as well as to be involved in Okazaki fragment maturation. 

Importantly, RNases H2 have been proposed to serve as a main machinery resolving 

RNA:DNA hybrids in the genome, while RNase H1s are proposed to work in locus-

specific manner216,219,227,230. In plants, loss of RNase H2 leads to increased homologous 

recombination rates as well as higher frequency of ribonucleotides in the nuclear DNA. 

Additionally, it was demonstrated that plants deficient in RNase H2 are more susceptible 

to replication stress. Interestingly, loss of WEE1 cell cycle checkpoint kinase reversed 

this phenotype suggesting that WEE1 and RNase H2 interact and together affect cell 

cycle progression. It was proposed that in Arabidopsis RNase H2 may act as a sensor of 

DNA damage which may cause cell cycle arrest if the level of ribonucleotides in DNA is 

too high229,231. However, direct evidence confirming this speculation remains to be 

found. 

 

 DeCL proteins 

 Another group of proteins hypothesized to be involved in plastid RNA metabolism are 

DeCL (Defective Chloroplasts and Leaves) proteins. They form an interesting but poorly 

characterized protein family. Initially described in tomato plants, these proteins contain 

one Domain of Unknown Function (DUF3223) which has a bacterial, uncharacterized, 

counterpart232. It was reported that loss of DeCL proteins leads to embryo lethality and 

that these proteins are involved in rRNA maturation, but presented data is at least 

partially inconclusive233,234.  

 In addition to DeCL proteins at least three plant proteins have been found to contain 

DUF3223 but both of them localize to the nucleus and not to plastids. DOMINO1 has 
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been shown to localize to the nucleolus and its loss leads to accumulation of rRNA 

precursors as well as decondensation of the nucleolus. Therefore it was proposed to 

process ribosomal RNA species235. Another nuclear protein containing DUF3223 is the 

largest subunit of plant-specific RNA Polymerases IV and V (Pol IV and Pol V)236,237. 

These polymerases are central enzymes involved in transcriptional gene silencing in 

plants, known as RNA-directed DNA methylation (RdDM)238,239. This mechanism is 

mainly responsible for repression of transposon expression through DNA methylation 

but has been also shown to regulate expression of protein-coding genes240,241. The 

exact role of DUF3223 in Pol IV and V remains unknown but it was shown to be required 

for transcription in vivo as well as for interaction of Pol V with the RRP6L 

exonuclease242. We hypothesize that elucidating molecular and biological roles of 

DeCLs in plastids will allow for better understanding of nuclear DUF3223-containing 

proteins. 

 Functional analysis of Arabidopsis DeCL proteins is described in Chapter III. In order 

to better understand the role of DeCL proteins we performed a thorough phylogenetic 

analysis of these proteins. Additionally, using genetic, biochemical and microscopy tools 

we aimed to determine the molecular function as well as specific substrates of organellar 

DeCLs. Finally, we propose a speculative model explaining the role of this protein family.  
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CHAPTER II 
 

RNase H1 is required for Arabidopsis thaliana embryonic development 
 

The content of this chapter is currently under review in Plant Cell and Physiology journal. 

Sebastian Chamera and Aleksandra Kmera performed in vitro assay for enzymatic 

activity of RNase H1s. Pragya Khurana performed analysis of nuclear, mitochondrial and 

plastid DNA content. 

 

Abstract 

RNase H1 is an endonuclease specific towards the RNA strand of RNA:DNA 

hybrids. Members of this protein family are present in most living organisms and are 

essential for removing RNA that base pairs with DNA. It prevents detrimental effects of 

RNA:DNA hybrids and is involved in several biological processes. We show that 

Arabidopsis thaliana contains at least three RNase H1-like proteins originating from two 

gene duplication events and alternative splicing. These proteins have the canonical 

RNase H1 activity, which requires at least four ribonucleotides for enzymatic activity. 

One of those proteins is nuclear, one is localized to plastids, one is localized to 

mitochondria. While the nuclear RNase H1 is dispensable for development under normal 

growth conditions, the presence of at least one organellar RNase H1 is required for 

embryonic development. The plastid protein RNH1C affects plastid DNA copy number 

and sensitivity to replicative stress. This suggests that three genomes present in each 

plant cell are served by at least one specialized RNase H1 protein. 
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Significance 

We integrate phylogenetic, genetic, molecular and physiological approaches to 

characterize RNase H1-like genes in Arabidopsis and their protein products. We provide 

detailed evolutionary history of all plant RNase H1s and for the first time report 

biochemical activity of plant RNase H. We present direct evidence of RNase H1 

requirement for embryonic development as well as demonstrate that plastid-localized 

RNase H1 is involved in DNA replication. Our results provide fundamental insight into 

the biochemical function of plant RNase H1s as well as biological processes they are 

involved in. 

 

Introduction 

Double stranded nucleic acids, which contain deoxyribonucleotides on one strand 

and one or more ribonucleotides on the other strand are known as RNA:DNA hybrids. 

They are common byproducts of replication, transcription and other processes. 

Ribonucleotides within RNA:DNA hybrids are specifically removed by a class of 

endonucleases known as RNases H216. RNases H2 are multisubunit complexes capable 

of removing even individual ribonucleotides incorporated in double stranded DNA and 

have been studied in various eukaryotes, including plants229,231. RNases H1 are 

monomers243 and require at least four ribonucleotides incorporated into double stranded 

DNA to bind and digest the substrate244.  

Among the substrates of RNases H1 are R-loops245 (RNA:DNA hybrid and a 

displaced ssDNA strand) which are often formed during transcription and 

replication223,246,247. These structures have also been implicated in DNA repair222,248,249, 
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telomere maintenance226, IgG class-switch recombination250 and regulation of gene 

expression224,247. RNase H1 digests ribonucleotides within its substrate in a metal ion-

dependent manner225, leading to single stranded DNA formation. The main feature of 

RNases H1 is the presence of the catalytic domain225,251. Additionally, some bacterial 

and most eukaryotic RNase H1 proteins contain a RNA:DNA hybrid binding domain 

(HBD)252.  

Genes encoding RNase H1 proteins are present in the vast majority of living 

organisms, including Archea253,254, Bacteria219 and all kingdoms of Eukarya216. They are 

not essential in prokaryotes and lower eukaryotes but are required for survival in higher 

eukaryotes216. Eukaryotic genomes usually contain unique RNase H1 genes216,219, 

which may however be subject to alternative splicing221. Arabidopsis thaliana RNases 

H1 are encoded by three different genes with different predicted subcellular 

localizations228. 

Among the three RNase H1 proteins in Arabidopsis thaliana, only the chloroplast-

localized paralog has been studied so far228. It has been shown to be essential for 

proper plastid development by maintaining the integrity of chloroplast DNA. It works with 

its interacting partner, DNA gyrase, to resolve transcription-replication conflicts and 

prevent DNA damage228. The role of the remaining two proteins remains unknown 

beyond the presumption that they resolve R-loops, which are relatively common in the 

Arabidopsis genome255. 

Here, we characterize all RNase H1 proteins detectable in the Arabidopsis 

genome. We identify two ancient gene duplication events, which led to the formation of 

RNase H1 proteins targeted to various cellular compartments in monocots and dicots. A 

more recent duplication and alternative splicing produced four RNase H1 proteins in 
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Arabidopsis thaliana, one of which is targeted to the nucleus, one to the chloroplast, one 

to the mitochondria and its splice variant which surprisingly does not localize to the 

nucleus upon the loss of MTS, contrary to the phenomenon observed in mammals220,221. 

The proteins localized to endosymbiotic organelles are required for proper embryonic 

development. These proteins exhibit canonical RNase H1 activity and are involved in 

nucleic acid metabolism. 

 

Results 

Origin of angiosperm RNases H1 

Plant genomes have been shown to encode multiple RNase H1-proteins with 

different subcellular localizations228. Previous phylogenetic analysis indicated that these 

paralogs originate from recent gene duplication events228, however the exact timing and 

order of those events remained unresolved. To determine the evolutionary origins of 

plant RNase H1-like proteins we performed their in-depth phylogenetic analysis. We first 

used BLAST to identify all plant proteins, which display sequence similarity to 

Arabidopsis thaliana AtRNH1C228 and contain both RNase H1 and RNA:DNA hybrid 

binding (HBD) domains. The identified proteins were subject to a simultaneous Bayesian 

alignment and phylogenetic analysis implemented using BAli-Phy package in order to 

integrate over the uncertainty in both the phylogeny and alignment256. In parallel, we 

predicted the subcellular localization of each identified protein using the TargetP 

prediction tool257. RNase H1-like proteins from angiosperms grouped into four distinct 

clades (Fig. 2.1, Fig. S2.1). Within both monocots and dicots there are proteins with 

mostly nuclear and mostly organellar (chloroplast or mitochondrial) predicted localization 

(Fig. 2.1, Fig. S2.1, Fig. 2.2A). Phylogenetic relationships between these proteins 
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indicate that the common ancestor of monocots and dicots had one RNase H1-like 

protein. Two independent gene duplication events in early evolution of monocots and 

dicots led to both acquiring at least two RNase H1 proteins with distinct subcellular 

localizations. 

 

Origin of four RNases H1 in Arabidopsis 

Arabidopsis thaliana has been shown to contain three genes encoding RNase 

H1-like proteins: RNH1A (AT3G01410), RNH1B (AT5G51080) and RNH1C 

(AT1G24090). Products of these genes localize to the nucleus, mitochondria and 

chloroplasts, respectively228. While the split into nuclear and organellar proteins occurred 

early in dicot evolution (Fig. 2.1), the origin of two organellar proteins remains unknown. 

To determine the relationship between RNH1B and RNH1C we analyzed the phylogeny 

of RNase H1-like proteins in Brasicaceae (Fig. 2.2B). The phylogenetic tree identified 

one clade of nuclear and two distinct clades of organellar RNase H1-like proteins (Fig. 

2.2B). This indicates that a second diversification event occurred in the common 

ancestor of Brasicaceae, which led to the formation of two organellar proteins. While in 

Arabidopsis thaliana these proteins are localized to mitochondria and chloroplasts228, 

these specific localizations cannot be conclusively predicted for other Brasicaceae. 

Multiple subcellular localizations of proteins produced from unique RNase H1 

genes in animals are commonly determined by alternative splicing220. Araport11 genome 

annotation258 suggests a similar mechanism in Arabidopsis thaliana, where three splice 

variants of RNH1B (AT5G51080) have been identified (Fig. 2.2C). We partially 

confirmed these annotations using 5’RACE (Fig. 2.2D). Subcloning of RACE products 

followed by Sanger sequencing confirmed the presence of transcripts very similar to 



36 
 

splice variants AT5G51080.2 and AT5G51080.3 (Fig. S2.2). Although AT5G51080.1 has 

not been identified by sequencing, it is predicted to encode a protein identical to 

AT5G51080.2 and the difference is limited to the presence of an intron in 5’-UTR. The 

third splice variant (AT5G51080.3) has a truncated mitochondrial presequence region 

(Fig. 2.2E). TargetP predicted that this variant does not localize to mitochondria or 

chloroplasts, suggesting nuclear localization. In order to confirm this predicted 

localization, we transiently expressed GFP-tagged AtRNH1B.3 under control of a strong, 

constitutive 35S promoter in A. thaliana protoplasts (Fig. 2.2FG). While AtRNH1A shows 

the expected nuclear localization (Fig. 2.2G), for AtRNH1B.3 we did not observe signal 

typical to nuclear localization (Fig. 2.2F). Instead, the fusion protein localized in small 

distinct foci, similar to the signal reported for AtRNH1B.1-GFP228.  We conclude that 

Arabidopsis thaliana contains at least three RNase H1-like proteins originating from two 

independent gene duplication events. Additionally, one of those proteins may be present 

in two splice variants.  

 

RNase H1-like proteins from Arabidopsis have canonical RNase H1 activity 

Although Arabidopsis thaliana RNase H1-like proteins have extensive sequence 

similarity with RNase H1 proteins, their exact enzymatic activity remains unknown. 

RNH1C  has been shown to remove binding sites of  S9.6 antibody from chloroplast 

DNA228. This however, does not conclusively show RNase H1 activity of this protein. To 

determine if RNH1A and RNH1B are indeed RNases H1, we expressed their truncated 

versions, fragments from the beginning of HBD until STOP codon, and incubated the 

recombinant proteins with oligonucleotide substrates (Fig. 2.3AC). RNH1B.1/2 and 

RNH1B.3 differ only in the presence of the N-terminal pre-sequence, which is expected 
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to be proteolytically removed from the preprotein during protein import into the 

mitochondria259 and would not be included in our recombinant protein. Therefore, only 

one form of RNH1B was subject to the enzymatic assay. We also expressed a truncated 

version of RNH1A protein carrying mutation in its predicted catalytic active site (Fig. 

2.3B) as well as human RNase H1 (Fig. 2.3D) known to possess the canonical RNase 

H1 activity251. Double stranded DNA and RNA was not digested by the recombinant 

proteins (Fig. 2.3A-D two right-most columns). The same was true for oligonucleotides 

containing one or two ribonucleotides, which differentiates RNase H1 from RNase H2 

(Fig. 2.3A-D two left-most columns). Oligonucleotides containing four ribonucleotides 

were however digested by both RNH1A and RNH1B, as well as human RNase H1 (Fig. 

2.3ACD center column). Active site mutant of  RNH1A did not exhibit any detectable 

catalytic activity (Fig. 2.3B). We did not test RNH1C or catalytic mutant of RNH1B 

because despite significant efforts we were unable to produce soluble recombinant 

proteins. These results indicate that RNH1A and RNH1B have the canonical RNase H1 

activity. Because of the extensive sequence similarity (Fig. S2.3A), RNH1C is likely to 

have the same enzymatic activity. 

 

RNH1A and RNH1B do not affect development 

RNH1C has been shown to be required for proper chloroplast development228. To 

determine the roles of all three RNase H1 encoding genes, we obtained T-DNA mutants 

in RNH1A (SALK_150285C) and RNH1B (SAIL_1174_C11) as well as the previously 

published RNH1C (SAIL_97_E11). Single mutants atrnh1a and atrnh1b did not exhibit 

any obvious developmental phenotypes (Fig. 2.4A-C). atrnh1c mutant had the expected 
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pale leaf and dwarf phenotype (Fig. 2.4D). The pale green phenotype attributed to the 

loss of RNH1C was confirmed by chlorophyll content quantification (Fig. 2.4J). 

To determine if the studied T-DNA mutants may express truncated proteins, we 

performed RT-PCR with primers upstream or downstream of the T-DNA insertion sites 

(Fig. 2.4K). All mutants had strongly and significantly reduced RNA accumulation 

downstream of T-DNA insertions (Fig. 2.4LM). This indicates that these mutants are 

unlikely to produce truncated proteins containing the C-terminal RNase H1 domain. RNA 

accumulation upstream of T-DNA was reduced in atrnh1a, unchanged in atrnh1c and 

strongly increased in atrnh1b (Fig. 2.4LM). This indicates that a truncated N-terminal 

fragment is unlikely to be produced in atrnh1a. Truncated N-terminal fragments may be 

produced in atrnh1b and atrnh1c, however atrnh1b is not expected to contain full length 

RNase H1 domain. On the other hand, atrnh1c may produce a truncated protein 

including the RNase H domain (Fig. 2.4K), which indicates that the C-terminal part of the 

protein is important for its function. The strong increase of upstream RNA accumulation 

in atrnh1b may indicate the presence of an autoregulatory mechanism within RNH1B. 

 

Presence of RNH1B or RNH1C is required for viability 

Because RNases H1 are required for viability in animals220, we tested the 

phenotypes of all combinations of RNH1 double mutants. The atrnh1a, atrnh1b double 

mutant did not show any visible developmental phenotypes (Fig. 2.4E) and the 

phenotype of the atrnh1a, atrnh1c double mutant was similar to the atrnh1c single 

mutant (Fig. 2.4F). Phenotypic similarity of atrnh1c single mutant and atrnh1a, atrnh1c 

double mutant was confirmed by chlorophyll content quantification (Fig. 2.4J). We were 

unable to generate atrnh1a, atrnh1b, atrnh1c triple mutants but, interestingly plants 
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deficient in RNH1A and RNH1B and heterozygotic for RNH1C did not exhibit any 

obvious developmental phenotypes (Fig. 2.4G). Additionally, we generated triple 

atrnh1a, atrnh1b, atrnh1c mutant rescued with RNH1C-GFP under control of its native 

promoter which also did not exhibit any obvious phenotype (Fig. 2.4HI). 

Despite several attempts we were unable to obtain the atrnh1b, atrnh1c double 

mutant. Among 211 F1 plants obtained from self-pollination of  atrnh1b-/-atrnh1c+/- we 

found no viable double homozygous mutant (p < 5*10-17, Chi square test). However, 

self-pollination of atrnh1a/b/c+/- resulted in 25.5% of seeds not developing properly (Fig. 

2.5A-D), which is consistent with 25% embryo lethality (p < 0.9, Chi square test) and 

significantly more than expected without a lethal phenotype (p < 5*10-6, Chi square test). 

This indicates that most likely double mutants in RNH1B and RNH1C are embryo lethal. 

Importantly, triple mutant plants rescued with RNH1C::RNH1C-GFP did not produce 

aborted seeds (Fig. 2.5CD). These improperly developing seeds contain aborted 

embryos which stop developing at approximately heart-shape stage of embryonic 

development (Fig. 2.5EF). These results suggest that while the nuclear RNH1A is not 

required for viability, the presence of at least one organellar protein RNH1B or RNH1C is 

essential. 

 

RNH1C is involved in chloroplast nucleic acid metabolism 

Because RNH1C has been shown to be involved in DNA maintenance228, we 

hypothesized that RNases H1 expressed from the three Arabidopsis genes affect DNA 

copy numbers in various cellular compartments. To test this hypothesis, we performed 

real time PCR with multiple primers specific to sequences throughout the nuclear, 

mitochondrial and chloroplast genomes. Average signal from three to five primer pairs 
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specific to each genome was used as an estimate of their relative copy number260. 

atrnh1c mutant and atrnh1a, atrnh1c double mutant contained approximately three times 

more chloroplast DNA than wild type mutant plants (Fig. 2.6A-C). This result indicates 

that RNH1C protein is involved in controlling DNA copy number in chloroplasts, which is 

consistent with its postulated role in plastid genome maintenance228. Surprisingly, 

atrnh1a, atrnh1b mutants and the atrnh1a, atrnh1b double mutant did not affect the 

relative content of the three genomes (Fig. 2.6A-C). This indicates that only RNH1C 

affects content of the plastid genome relative to nuclear and mitochondrial genomes, 

which may be explained by a partial redundancy of RNases H1, RNase H2 complex261, 

topoisomerases262 or other factors. 

The increased amount of chloroplast DNA in atrnh1c mutants might be a result of 

changes in DNA replication. To test this possibility, we treated wild type plants and 

RNase H1 mutants with replication stress and measured root length. To induce 

replication stress, we applied 2mM hydroxyurea229–231, which is known to inhibit 

replication by inhibiting rNTP reductase and therefore decreasing the amount of 

available dNTPs263. In parallel, we used 40µM aphidicolin which inhibits replication 

through a different mechanism, specifically by inhibiting DNA polymerase ability to bind 

dCTP264. Treatment with 2mM hydroxyurea caused a decrease of root length in wild type 

plants to approximately 40% of root length in untreated plants (Fig. 2.6DF). rnh1a and 

rnh1b mutants had no effect on hydroxyurea sensitivity (Fig. 6G. However, roots of 

atrnh1c mutant and atrnh1a, atrnh1c double mutant grew to less than 30% of root length 

in untreated plants (Fig. 2.6G). Importantly, atrnh1a, atrnh1b, atrnh1c triple mutant 

expressing RNH1C::RNH1C-GFP did not exhibit increased sensitivity to HU (Fig. 

2.6DG). Similarly to hydroxyurea, 40µM aphidicolin treatment caused a decrease in root 
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length of wild type plants to approximately 40% (Fig. 2.6EH). Loss of RNH1A had no 

effect on root length upon replicative stress caused by aphidicolin treatment and roots of 

plants deficient in RNH1C grew to approximately 30% of the root length of untreated 

plants. Interestingly, loss of RNH1B lead to the increase of root length to approximately 

50% of length observed in untreated plants (Fig. 2.6H). Likewise, atrnh1a, atrrnh1b, 

atrnh1c RNH1C::RNH1C-GFP plants did not exhibit higher aphidicolin sensitivity than 

wild type plants. Altogether, these results suggest that RNH1C is likely to affect DNA 

replication. 

 

Discussion 

RNase H1 proteins are known to digest the RNA component of RNA:DNA hybrids 

and this substrate must contain at least four sequential ribonucleotides225. In contrast, 

RNase H2 complexes require only a single ribonucleotide incorporated into double-

stranded DNA for activity216,265. Therefore, RNase H2 has a broader substrate range and 

is partially redundant with RNase H1227. We demonstrate for the first time that 

Arabidopsis thaliana RNH1A and RNH1B have the canonical RNase H1 activity. 

Because the presence of RNase H2 complexes has been previously shown229,231, this 

indicates that plants, like other eukaryotes, have both RNase H1 and H2. Our results 

suggest that all three RNase H1 genes identified in the Arabidopsis thaliana genome 

encode canonical bona fide RNase H1 proteins. 

Arabidopsis thaliana contains at least three RNase H1 proteins. Their 

evolutionary origin may be traced down to three events. The first event occurred in the 

common ancestor of dicots, where nuclear and organellar paralogs have been formed. 

An independent event in the common ancestor of monocots (or possibly the common 



42 
 

ancestor of all angiosperms) led to the formation of similar, yet evolutionarily 

independent nuclear and organellar paralogs in monocots. Nuclear and organellar 

RNases H1 do not display any obvious structural differences beyond the presence or 

absence of a transit peptide/presequence. Therefore, it is unknown if they are 

functionally distinct beyond having different subcellular localizations and expression 

patterns.  

The second event in evolution of RNase H1 proteins in Arabidopsis thaliana 

occurred in the common ancestor of Brassicaceae. The ancestral organellar protein 

diversified into two proteins, which are represented by RNH1B and RNH1C in 

Arabidopsis. Although these proteins are localized to mitochondria and chloroplasts228, 

their orthologs in Brassicaceae do not have consistent predicted localizations and the 

functional impact of this event remains unknown. The third event is alternative splicing of 

RNH1B, which likely results in translation of proteins with distinct N-termini which is 

reminiscent of metazoan RNases H1221. Because we did not observe a nuclear 

localization pattern of the RNH1B.3 splice variant, the mechanism of its localization 

remains unknown and may possibly be attributed to internal MTS-like signals (iMTS-

Ls)266. Similarly, biological importance of RNH1B.3 remains to be elucidated. Overall, 

our results are consistent with recent evidence that each genome within Arabidopsis 

thaliana cells has at least one RNase H1228. Additionally, most eukaryotes, including 

Arabidopsis thaliana contain RNase H2 complexes, which are nuclear localized and at 

least partially redundant with RNases H1227,229,265. This may suggests that the nuclear 

genome uses a combination of several activities resolving RNA:DNA hybrids.  

Our results indicate that at least one organellar RNase H1 is needed for proper 

embryonic development. This is consistent with data from metazoans, where RNase H1 
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is crucial for proper mitochondrial DNA replication during embryo development89,90,220. 

Viability of single atrnh1b and atrnh1c mutants may speculatively be explained by dual 

(mitochondrial and plastid) localization of those proteins, which is not an uncommon 

phenomenon267,268. Alternatively, defects in both mitochondria and chloroplasts may 

have a synergistic effect in embryonic development.  

RNase H1 has been shown to be required for genome maintenance in 

chloroplasts228. Our observation that plastid DNA copy number is substantially increased 

in atrnh1c is counterintuitive, especially since this mutant has a reduced number of 

chloroplasts228. It may indicate that genome instability in atrnh1c leads to 

overamplification of the entire genome. Because the plastid genome is copied by a 

variety of mechanisms, including recombination269 and RNase H1 substrates, R-loops, 

were shown to increase recombination rates248,250, this overamplification may rely on 

homologous recombination. Alternatively, it is possible that RNA:DNA hybrids may be 

used by plastid DNA polymerase as primers for replication. Interestingly, loss of 

mitochondrial RNH1B does not affect the level of mitochondrial DNA. This may suggest 

that, contrary to animals, plant mitochondria contain enzymes at least partially redundant 

with RNH1s. 

The reported role of RNH1C in release of replication-transcription conflicts and 

chloroplast DNA integrity228 is consistent with our observations that atrnh1c mutation 

increases sensitivity to hydroxyurea. This may be interpreted as evidence of disrupted 

DNA replication in atrnh1c. This result should however be interpreted carefully because 

hydroxyurea inhibits synthesis of deoxyribonucleotides and increases misincorporation 

of ribonucleotides230,263, which may have a replication-independent effect on RNase H1-

dependent processes. Additionally, hydroxyurea may cause oxidative stress 270–272, 
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which could also have a replication-independent effect. However, the results of 

replicative stress experiment with use of aphidicolin, drug which inhibits DNA replication 

through different mechanism than HU264, strongly suggest that RNH1C is indeed 

involved in DNA replication. 

Our results raise questions about the roles of nuclear and mitochondrial RNases 

H1 in Arabidopsis thaliana. Single mutations in genes encoding these proteins do not 

result in visible phenotypes, which may likely be attributed to protein redundancy and 

localization to multiple cellular compartments. Resolving the roles of those proteins 

remains an important goal for future studies. 

 

Materials and Methods 

Plant material and oligonucleotides 

Plant lines used in this study: Col-0 (CS 70000), atrnh1a (SALK_150285C), atrnh1b 

(SAIL_1174_C11), atrnh1c (SAIL_97_E11) and crosses between abovementioned. 

Oligonucleotides used for expression analysis: P1: 5’-

TTTAGTTTGGGTTGATGGGTTCC-3’ + 5’-CACACTCATTGCAGGATGTGATAC-3’; P2: 

5’-ATCTCTTAGACGGGGAAGATTTGT-3’ + 5’-AATGCAAGTCATGTCAAAGATGAT-3’; 

P3: 5’-TCAATAATGCAAGTTTCATATGAGGT-3’ + 5’-

GTTTGGAGCTCTTACACCTTGTCT-3’; P4: 5’-ATCCCTTATAAACGCTAACTGGAG-3’ 

+ 5’-TCAAGTTGGATCTTCGGTTTATG-3’; P5: 5’-TACACCATGTCTTTTCCAGGAG-3’ + 

5’-GATATAGAAGCTGAAGGAAGTTGATCT-3’; P6: 5’-

AAAGATCCGGAGTTACACACTAGC-3’ + 5’-CATTCTGGTTCTTCACCAGTTTCT-3’. 

Sequences of oligonucleotides used for organellar DNA content quantification were 

previously described by Kim et al260.  
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Phylogenetic analysis 

Sequences of putative plant RNH1 proteins were retrieved from Phytozome273, CoGE274, 

Ensembl Plants275, PLAZA276 and 1KP277 through BLAST search and aligned in 

MAFFT278. Only sequences containing full length hybrid binding domain (HBD), 

RNASEH1-like domain and four amino acids (DEDD) crucial for catalytic activity251, were 

kept. BAli-Phy279 with default settings on CIPRES280 platform was used for phylogenetic 

analysis. Consensus tree was generated using default burn-in values and visualized 

using FigTree. Subcellular localization was predicted by TargetP257. 

 

Protein expression and purification 

cDNAs encoding fragments from the beginning of HBD until STOP codon of wild type 

and catalytic mutants of Arabidopsis thaliana RNH1A and RNH1B were cloned into 

pET28-SUMO vector. Coding sequence of Homo sapiens RNase H1 was cloned into 

pET15b vector. 

All A. thaliana proteins were produced in E. coli BL21* cells induced with 0.4 mM 1-thio-

β-D-galactopyranoside at 18°C. The cells were then harvested and suspended in 40 mM 

Tris-HCl (pH=8.0), 200 mM NaCl, 5% glycerol, 10 mM imidazole and 1.4 mM β-

mercaptoethanol and incubated on ice in the presence of 1 mg/ml lysozyme and 

protease inhibitor cocktail. Following sonication, the cleared lysate was loaded onto a 

HisTrap column (GE Healthcare) equilibrated with 40 mM Tris-HCl (pH=8.0), 500 mM 

NaCl, 5% glycerol, 10 mM imidazole and 1.4 mM β-mercaptoethanol. After a wash step 

with 60 mM imidazole, the protein was eluted with 300 mM imidazole. The eluted 

fraction was dialyzed overnight against 40 mM Tris-HCl (pH=8.0), 500 mM NaCl, 5% 
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glycerol, 1 mM dithiothreitol (DTT) with SUMO protease to remove SUMO-His tag (due 

to extreme difficulties with purification of wild type AtRNH1B we decided not to remove 

the tag) and loaded onto a second HisTrap  (GE Healthcare) equilibrated with the buffer 

containing 40 mM Tris-HCl (pH=8.0), 500 mM NaCl, 5% glycerol, 10 mM imidazole and 

1.4 mM β- mercaptoethanol. Proteins were further purified on a Superdex 200 column 

(GE Healthcare) equilibrated with 40 mM Tris (pH 8.0), 500 mM NaCl, 5% glycerol, 0.5 

mM EDTA and 0.5 mM DTT. Selected fractions were pooled and concentrated. 

H. sapiens RNase H1 was expressed in E. coli BL21* cells induced with 0.4 mM 1-thio-

β-D-galactopyranoside at 18°C. The cells were then harvested and suspended in 40 mM 

NaH2PO4 (pH=7.0), 1M NaCl, 5% glycerol, 10 mM imidazole and 2.8 mM 

β- mercaptoethanol and incubated on ice in the presence of 1 mg/ml lysozyme and 

protease inhibitor cocktail. Following sonication, the cleared lysate was loaded onto a 

HisTrap column (GE Healthcare) equilibrated with 40 mM NaH2PO4 (pH=7.0), 1M NaCl, 

5% glycerol, 10 mM imidazole and 2.8 mM β-mercaptoethanol. After a wash step with 

60 mM imidazole, the protein was eluted with 300 mM imidazole. The eluted fraction 

was dialyzed overnight against 40 mM NaH2PO4(pH=7.0), 100mM NaCl, 5% glycerol, 

0.5 mM EDTA. His-tag was removed by thrombin digestion and then protein was loaded 

onto second HisTrap column. Protein was further purified on a Superdex 75 column 

(GE Healthcare) that was equilibrated with 40 mM NaH2PO4 (pH=7.0), 500 mM NaCl, 

5% glycerol, 0.5 mM EDTA and 1 mM DTT. Selected fractions were pooled and 

concentrated. 
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In vitro activity of RNH1s 

Reaction was conducted for 30min at 37°C in buffer containing 75mM NaCl, 20mM 

HEPES pH=7.0, 5% glycerol, 1mM DTT, 5mM MgCl2 with increasing enzyme:substrate 

ratio (black bar) indicated on top of the gels and stopped by addition of EDTA to final 

concentration of 40mM. First lane of each gel is a control (no enzyme added). Products 

were analyzed on 15% denaturing TBE-urea polyacrylamide gels containing 20% 

formamide and visualized by fluorescence readout. 

 

Chlorophyll content measurement 

Chlorophyll content was determined as described by Lichtenthaler281. Briefly, 1g of 

frozen 2-3 week old seedlings was ground in liquid nitrogen and chlorophyll was 

extracted with 100% acetone. Samples were centrifuged at 10000 x g for 10min at 40C 

and absorbance was measured at 645 and 662nm. Chlorophyll concentration was 

calculated using following formula: Ca+b(µg/ml) = 18.09 x A645 + 7.05 x A662. 

 

Microscopic observations 

Protoplasts were isolated from young leaves with protocol by Yoo et al282. Briefly, A. 

thaliana leaves were finely sliced and digested with macerozyme and cellulase for 2 

hours in the dark. Isolated protoplasts were transformed in 20% PEG 4000 with 10µg of 

plasmid pEG103 carrying cDNA encoding RNH1B.3. 

Mature siliques of Col-0 and rnh1b-/- / rnh1c+/- plants were destained in 70% ethanol and 

photographed under preparative microscope. For embryos observations siliques 

produced by rnh1b-/- / rnh1c+/-  mutant were dissected, seeds were split based on 
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morphology and cleared for 2h at room temperature with Visikol283. Embryos inside 

seeds were visualized using Nomarski optics. 

 

5’RACE 

5’RACE was performed using Invitrogen™ GeneRacer™ SuperScript™ TA Cloning™ 

TOPO™ GeneRacer Kit with SuperScript III RT and TOPO TA Cloning™ Kit for 

Sequencing. All procedures were performed as described by manufacturer. Cloning 

products were subjected to Sanger sequencing and results were aligned to A. thaliana 

mRNA collection in BLAST. 

 

Generation of transgenic plants 

The genomic DNA sequence including promoter region of RNH1C was cloned into 

pENTR/D-TOPO vector (Invitrogen) to produce clones as described by manufacturer. 

Resulting plasmid was incubated with the destination vector pMDC107284 and LR 

Clonase™ II Enzyme Mix to obtain RNH1C::RNH1C-GFP. Constructed plasmid was 

introduced into the GV3101 strain of Agrobacterium tumefaciens and transformed into 

atrnh1c plants by the floral dip method285. Plants carrying the transgene were selected 

based on their resistance to hygromycin and crossed with atrnh1a, atrnh1b double 

mutant to generate atrnh1a+/-, atrnh1b+/-, atrnh1c +/- RNH1C::RNH1C-GFP. Resulting 

progeny was self-pollinated and desired atrnh1a, atrnh1b, atrnh1c RNH1C::RNH1C-

GFP were identified in the next generation by genotyping. 
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IP-Western blot 

2 grams of young leaves were ground in liquid nitrogen, resuspended in 7ml of the 

Protein Extraction Buffer (20mM Tris-HCl pH=8.0, 300mM NaCl, 5mM MgCl2, 5mM DTT, 

1% Plant Protease Inhibitor) and centrifuged at 16,000 x g for 15min at 40C. Resulting 

supernatant was immunoprecipitated with 50µl of GFP-Trap at 40C overnight. After IP 

the beads were washed four times with wash buffer (200mM Tris-HCl pH=8.0, 300mM 

NaCl, 5mM MgCl2, 5mM DTT, 1mM PMSF, 0.5% IGE-PAL 630). Proteins were eluted in 

2x Laemmli buffer at 990C for 10min, separated in 12% SDS-PAGE and subjected to 

Western Blot. Detection was performed with primary mouse α-GFP antibody (SIGMA, 

cat. #: 11814460001) and secondary goat α-mouse antibody Dylight 800 conjugate 

(Fisher, cat. #: SA535521). 

 

Organellar DNA content quantification and expression analysis by qPCR 

Total DNA was isolated from 2-3 weeks old seedlings with DNeasy Plant Mini Kit 

(QIAGEN). 1ng of DNA per qPCR reaction was used as template. For expression 

analysis total RNA was extracted with RNeasy Plant Mini Kit (QIAGEN) from 2-3 weeks 

old seedlings and 500ng was treated with DNaseI (Ambion) and used for reverse 

transcription. 0.5ng of cDNA was used as template in qPCR.  

DNA content quantification was performed as described260, except that a subset 

of three primer pairs were used to quantify nuclear DNA. qPCR signals were averaged 

over three technical replicates, three biological replicates and three or five primer pairs. 

Values for all tested genotypes are plotted relative to Col-0 wild type. 

qPCR data were analyzed using a Bayesian hierarchical model, implemented 

using the brms package286. We centered the observed Ct values, and then fitted the re-
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centered Ct values as a sum of population-level terms for the primer pair, genotype, and 

primer/genotype interactions, plus a group level term for each primer/biological replicate 

pair. Student-distributed errors were assumed, and all priors were left at the BRMS 

defaults. Fits were performed for 6 Monte Carlo chains with 2000 iterations per chain. 

Convergence was assessed based on the observed Rhat values (all <1.01) and manual 

inspection of the posterior predictive distribution. Inferences stated in the text arise from 

inspection of the posterior 95% credible intervals of the pertinent parameters. 

 

Replicative stress assay 

Seeds were germinated on ½ MS plates supplemented with 1% sucrose and 0.75% 

agar. After 1 week seedlings were transferred to liquid ½ MS + 1% sucrose with 2mM 

hydroxyurea (HU), 40µM aphidicolin (Aph) or without any drugs and grown in continuous 

light. After 2 weeks root length was measured. Experiment was performed in three 

biological replicates, in each replicate 48 plants/genotype/treatment were used. 
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Figures 

 

Figure 2.1. Evolutionary origin of plant RNase H1 proteins.Phylogenetic tree of all full 
length predicted RNase H1 proteins. Support values at tree branches are posterior 
probability scores, which integrate over the uncertainty in both the alignment and the 
phylogeny. Predicted protein localizations obtained using TargetP are marked with 
colors. Mitochondria – red, chloroplast – green, other – blue. A version of this 
phylogenetic tree with all species names, sequence IDs and support values is shown in 
Fig. S2.1.
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Figure 2.2. Origin of four RNase H1 proteins in Arabidopsis thaliana. (A) Predicted 
localization of RNase H1 proteins from distinct clades identified in Fig 1. Predictions 
were performed using TargetP. (B) Detailed phylogenetic tree of all RNase H1 proteins 
in Brassicaceae. Support values and color-coded predicted localization are used as 
described for Fig 1. (C) Splice variants of RNH1B predicted in Araport11 (AT5G51080.1) 
and identified by 5’ RACE (AT5G51080.2 and AT5G51080.3). (D) 5’ RACE of RNH1B. 
Asterisk indicates a band, which is likely to be non-specific. (E) Domain composition of 
four RNase H1 proteins in Arabidopsis thaliana. (F) Subcellular localization of GFP-
tagged RNH1B.3 in transiently transformed Arabidopsis protoplasts. (G) Subcellular 
localization of GFP-tagged RNH1A in transiently transformed Arabidopsis protoplasts. 

Scale bars indicate 25m. 
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Figure 2.3. In vitro activity assays for RNH1A and RNH1B proteins from Arabidopsis 
thaliana. Wild type RNH1A (A), catalytic mutant of RNH1A (B), wild type RNH1B (C) and 
wild type human RNase H1 (D) (positive control) were incubated with fluorescently 
labeled oligonucleotide substrates containing different combinations of 
deoxyribonucleotides (black) and ribonucleotides (red). The triangle indicates increasing 
protein:substrate molar ratio. The reaction products were analyzed on TBE-urea PAGE 
and scanned for fluorescence. The experiment was repeated three times.  
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Figure 2.4. Effects of mutations in genes encoding RNase H1 proteins. Approximately 
3-week-old plants of Col-0 wild type (A), atrnh1a (B), atrnh1b (C), atrnh1c (D), atrnh1a, 
atrnh1b double mutant (E), atrnh1a, atrnh1c double mutant (F), atrnh1a, atrnh1b double 
mutant heterozygous for atrnh1c (G) and atrnh1a, atrnh1b, atrnh1c triple mutant 
expressing RNH1C::RNH1C-GFP (H). (I) Immunoprecipitation and detection of GFP-
tagged RNH1C expression in triple atrnh1a, atrnh1b, atrnh1c mutant background. 
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Bottom panel shows non-specific staining with Ponceau S. (J) Relative chlorophyll 
content of Col-0 wild type and mutants in genes encoding RNase H1 proteins. Error bars 
indicate standard deviation from three biological replicates. Asterisks indicate p < 0.05 
obtained from t-test. (K) Schematic representation of RNH1 genes in A. thaliana. Arrows 
indicate START codons, triangles indicate T-DNA insertion positions. Red boxes 
indicate positions of the conserved RNase domain. (L, M) Expression of genes encoding 
RNases H1 measured (L) upstream of T-DNA insertion and (L) downstream of T-DNA 
insertion. Primer pairs are marked in (K). Error bars indicate 95% confidence intervals. 
Asterisks indicate p < 0.05 in comparison to Col-0 wild type. 
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Figure 2.5. At least one organellar RNase H1 is required for embryo development. (A) 
Mature silique of Col-0 wild type. (B) atrnh1a, atrnh1b double mutant heterozygous for 
atrnh1c (atrnh1a/b/c+/-).  (C) atrnh1a, atrnh1b, atrnh1c triple mutant expressing 
RNH1C::RNH1C-GFP. (D) Percentage of properly developing seeds in siliques. Error 
bars indicate standard deviation from at least six independent siliques. (E) Development 
of a embryos in normally developing seeds obtained from atrnh1b-/-atrnh1c+/- parents. 
(F) Development of a embryos in abnormally developing seeds obtained from atrnh1b-/-

atrnh1c+/- parents. 
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Figure 2.6. Loss of RNH1C leads to increased chloroplast DNA content and 
hypersensitivity to replication stress. Relative levels of nuclear (A), mitochondrial (B) and 
chloroplast (C) DNA in Col-0 wild type and atrnh1 mutants. Error bars indicate 95% 
confidence intervals. Asterisks indicate p < 0.05 in comparison to Col-0 wild type. (D-F) 
Phenotype of plants subjected to Hydroxyurea (D), Aphidicolin (E) and mock (F) 
treatment. (G, H) Relative root length of Col-0 wild type and atrnh1 mutants upon 2mM 
hydroxyurea (F) and 40µM aphidicolin (G) treatment. Asterisks indicate 
p<0.0001determined using 2-way ANOVA. 
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Figure S2.1. Evolutionary origin of plant RNase H1 proteins. A version of the 
phylogenetic tree shown in Fig. 1 with all species names, sequence IDs and support 
values.  
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Figure S2.2. Sequences of 5’ ends of RNH1B splice variants identified by 5’ RACE 
shown in Fig. 2.2D. Arrow indicates position of the RACE primer. AT5G51080.1 is 
predicted by Araport11 annotation. AT5G51080.2 and AT5G51080.3 have been 
identified by sequencing.  
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Figure S2.3. (A) Sequences of the catalytic domains of RNH1A, RNH1B and RNH1C. 
(B) Sequences of wild type RNH1A, wild type RNH1B and the catalytic mutant of 
RNH1A (C-F) Purification of recombinant RNase H1 proteins used for in vitro activity 
assays shown in Fig. 2.3. Stars indicate fractions used for the activity assays. Arrows 
indicate specific bands. Panels show RNH1A (C), RNH1A catalytic mutant (D), RNH1B 
(E) and human RNase H1 (F). 



61 
 

 

Figure S2.4. Pictures of plants subject to hydroxyurea (A), aphidicolin (B) and mock (C) 
treatments. Scale bars indicate 10mm. Pictures of wild type, rnh1c and rnh1a/b/c 
expressing RNH1C-GFP are also shown in Fig. 2.6 D-F.  
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CHAPTER III 
 

Functional characterization of DeCL proteins from Arabidopsis thaliana 
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Abstract 

 RNA-binding proteins serve several essential roles in nucleic acid metabolism 

and gene regulation. They are present throughout the eukaryotic cell, including 

endosymbiotic organelles, chloroplast and mitochondria. Their roles in metabolism of 

organellar-encoded RNA are not fully understood. Here, we focus on characterization of 

an understudied group of RNA-associated proteins specific to the photosynthetic 

organisms, Defective in Chloroplasts and Leaves (DeCL) proteins. We show that in 

Arabidopsis thaliana these proteins accumulate in plastids and are expressed 

throughout plant development, also in non-photosynthesizing cells. We characterize 

Arabidopsis mutants in genes encoding the DeCL proteins and propose that two 

Arabidopsis DeCLs are partially redundant. Finally, we show that at least one of 

Arabidopsis DeCLs, DeCL1 specifically interacts with multiple plastid-encoded RNAs but 

loss of either DeCL does not lead to changes in RNA accumulation levels. Our 

preliminary RNA-seq data indicate that DeCL1 binding to rRNA may be associated with 
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enhanced processing by exonucleases. We hypothesize that DeCL proteins bind plastid-

encoded RNAs and mediate recruitment of exonucleases or are involved in resolving 

higher-order RNA structures, which affect RNA stability. 

 

Significance 
 We integrate genetic and molecular analysis of Arabidopsis plastid DeCL proteins 

to understand their functions in plastid RNA metabolism as well as two nuclear DeCL 

domain-containing proteins. We decipher phylogeny of DeCL proteins and aim to 

determine their biological functions. We provide the first evidence of DeCL-RNA 

interactions and show that they are limited mainly to the 5’- and 3’-ends of the 

transcripts, segments undergoing extensive processing and maturation. Our results 

provide fundamental insight into the biological and molecular functions of the plastid 

DeCL protein family and contribute potential advances into understanding of its nuclear 

counterpart. 

 

Introduction 

 RNA processing is a crucial element in regulation of gene expression and 

therefore is one of the main mechanisms establishing cell homeostasis. In plant cells 

RNA is produced mainly in three cellular compartments: the nucleus, mitochondria and 

plastids126. While metabolism of nuclear-encoded RNA is well characterized, processing 

of RNAs in endosymbiotic organelles remains less understood. Large numbers of 

proteins have been proposed to be involved in plastid RNA metabolism, based on their 

predicted subcellular localization, but their specific roles and exact mechanisms are 
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unknown. Plastid-encoded RNA species have been shown to undergo extensive 

processing and modifications162. Additionally, it was shown that plastid transcription start 

sites and transcription termination sites rarely correspond with actual termini of mature 

transcripts.  Both 5’- and 3’-ends of mature transcripts are determined by the processing 

mechanisms,  and the activity of RNase J287 and a combination of RNR1 and 

PNPase288,289, respectively, rather than correspond to the ends of nascent RNAs being 

transcribed. The termini of mature RNAs are often marked by PPR proteins binding 

which protects them from further nucleolytic degradation181. Additionally, often 

polycistronic plastid transcripts are subjected to cleavage by HCF107 protein131, and 

mRNAs occasionally contain introns which are spliced with assistance of plastid splicing 

factors, such as CRM, CFM and some PPR proteins143,181. On the other hand, a different 

subset of PPR proteins is involved in RNA editing179. Similarly to the nuclear rRNA, 

plastid-encoded rRNA species also undergo extensive maturation by a combination of 

exo- and endonucleolytic cleavages. Specifically, DEAD-box RNA helicases have been 

shown to be involved in 23S and 4.5S maturation, YbeY being responsible for proper 

maturation of both ends of 16S, 23S and 4.5S maturation290, and a number of other, 

unknown proteins was proposed to process all pre-rRNA species291. One other family of 

proteins, DeCL (Defective Chloroplasts and Leaves), was proposed to, directly or 

indirectly, affect maturation of 4.5S rRNA233. However, despite their discovery over two 

decades ago, DeCL proteins remain poorly characterized and their molecular role is still 

unknown. 

 The first gene encoding a protein from this family was found in tomato and initially 

named DCL232, however, in order to avoid being potentially mistaken for another protein 
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DCL (Dicer-like), it is currently often referred to as DeCL242. The structural characteristic 

of these small, usually 20-25kDa proteins, is the presence of a domain of unknown 

function DUF3223, later referred to as the DeCL domain, as well as the transfer peptide 

localized at the N-terminus234. Interestingly, the DeCL domain is also found in some 

bacterial proteins, suggesting its endosymbiotic origin in eukaryotes292. Initial research 

showed that tomato DeCL protein is required for proper development of chloroplasts as 

well as palisade cells in tomato leaves. Additionally, leaf sectors transiently depleted of 

DeCL displayed chlorosis and efforts to establish stable tomato line deficient in this 

protein failed, suggesting an essential role for DeCL in tomato. Furthermore, it was 

shown that upon DeCL loss, the mRNA encoding one of the Plastid Encoded 

Polymerase (PEP) subunits RpoB accumulated at a higher level232. 

 Further characterization of tomato DeCL proteins demonstrated that upon DeCL 

loss, accumulation of all investigated plastid-encoded proteins was decreased while their 

corresponding mRNA levels remain unchanged. Interestingly, levels of some, but not all, 

nuclear-encoded chloroplast proteins were also decreased, which was suggested to be 

an effect of retrograde signaling between improperly developing chloroplasts and the 

nucleus. These results suggested that DeCL may be involved in plastid protein 

biosynthesis, possibly at the level of translation. It was shown that upon DeCL loss, 

plastid 4.5S rRNA precursor was not efficiently processed and that this leads to 

improper polysome assembly. Importantly, cytosolic ribosomes were not affected233. 

 Finally, the Arabidopsis ortholog of tomato DeCL was identified. Similar in size 

and domain composition, it was shown to be expressed in all tested types of tissues and 

to localize in plastids. Interestingly, it was shown that stable overexpression of DeCL-
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GFP fusion protein caused leaf chlorosis and retarded growth compared to wild-type 

plants. Furthermore, plants overexpressing the fusion protein accumulated plastid 4.5S 

rRNA precursor. Surprisingly, plants expressing an antisense DeCL transgene, 

presumably knock-down mutation lines, exhibited phenotypes similar to plants 

overexpressing DeCL-GFP fusion protein, as well as accumulated plastid-encoded 

proteins at lower levels compared to wild type plants. It was concluded that 

overexpression of DeCL-GFP fusion protein acts as a dominant negative mutation and 

that Arabidopsis DeCL protein serves similar function in plastid 4.5S rRNA maturation as 

its counterpart in tomato. However, no direct evidence was shown234. 

 Four additional proteins containing the DeCL domain have been identified so far 

in Arabidopsis thaliana. DOMINO1 is a small, 22kDa protein localized in the nucleus. It 

was shown that embryos deficient in DOMINO1 develop significantly slower than wild-

type plants and die during early embryo development, when the seed already 

desiccates. It was also shown, that these embryos display abnormally large nucleoli, 

suggesting DeCL involvement in rDNA organization. Additionally, presence of a gene 

encoding potential mitochondrial DeCL in Arabidopsis genome was reported but no 

further characterization of this protein was provided235. 

 Finally, the presence of the DeCL domain was reported in the C-terminal domains 

(CTD) of largest subunits (NRPD1 and NRPE1) of plant-specific Polymerase IV (Pol IV) 

and Polymerase V (Pol V), respectively236. These polymerases are best known for their 

crucial role in Transcriptional Gene Silencing (TGS) process – RNA-directed DNA 

Methylation (RdDM)293. This mechanism is mainly responsible for silencing expression 

of transposons but also has been shown to regulate expression of protein-coding 
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genes239,241. While Pol IV is mainly responsible for the generation of siRNA precursors, 

the core of this process is long (usually ~200bp) non-coding RNA (ncRNA) produced by 

Pol V294. This ncRNA remains in the nucleus where it is bound by an ARGONAUTE 

(AGO) protein. AGO proteins are imported from the cytoplasm into the nucleus upon 

binding of Pol IV-produced siRNA. It is believed that it is the base pairing between 

siRNA and ncRNA produced by Pol IV and Pol V, respectively, that provides the 

specificity of AGO binding293. Upon binding to ncRNA, AGO protein is believed to 

interact with, directly or indirectly, and recruit DNA methyltransferase machinery which 

methylates DNA strands. DNA methylation in plants is mainly associated with the 

repression of transcription. This allows for silencing of transposon expression which 

might be detrimental to genome stability295. Additional, RdDM-regulated gene control 

mechanisms, such as nucleosome remodeling296 and chromatin looping297, have also 

been reported. Importantly, after recruitment of DNA methyltransferases, AGO is 

believed to endonucleotically cleave (slice) ncRNA298, so that its 3’-end is still bound by 

the Pol V while 5’-end portion of the transcript is subjected to degradation. It was shown 

that DeCL domain of NRPE1 interacts with 3’->5’ exonuclease RRP6L, which was 

demonstrated to digest sliced ncRNAs in vitro. Additionally, it was shown that the DeCL 

domain is required for Pol V transcription in vivo as well as for DNA methylation242. 

However, no specific function of DeCL domain of NRPE1 was proposed. Similarly, the 

function and importance of NRPD1 DeCL domain remains unknown. Importantly, DeCL 

domain is the main structural difference between plant Polymerase II and Pol IV and Pol 

V292. Why would this domain be required for long non-coding RNA production but not for 

mRNA transcription, remains an intriguing question. 
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 Here, we show that DeCL proteins are present mostly in photosynthetic 

organisms, we provide characterization of two Arabidopsis DeCL proteins and show that 

both localize to chloroplasts. We also investigate their role in regulation of gene 

expression and provide the first evidence for association of these proteins with RNA but 

not DNA.  

 

Results 

DeCL proteins are present mostly in photosynthetic organisms 

In order to identify potential DeCL proteins we used the BLAST search tool, using 

sequence of a previously identified Arabidopsis DeCL domain. We found that DeCL 

proteins are present in all flowering plant species that we examined, as well as green 

algae, mosses and cyanobacteria (Fig. 3.1). Often, more than one DeCL protein was 

identified in each of the species. Interestingly, we did not detect the presence of a DeCL 

domain in animals or fungi but also in majority of bacterial species that we investigated 

(Table 3.1). Specifically, we did not identify this domain in Rickettsiales, a group of 

bacteria believed to be ancestors of mitochondria4. Low resolution phylogenetic analysis 

of obtained hypothetical DeCL protein sequences from plants and cyanobacteria 

indicated presence of five major groups, which we refer to as DeCL1, DeCL2, DOMINO 

and Pol IV/Pol V. Bacterial sequences have formed a distinct group on the unrooted 

phylogenetic tree (Fig. 3.1A).  

 

Arabidopsis contains two plastid-localized DeCLs 

We performed a high resolution phylogenetic analysis of DeCL1 and DeCL2 

protein sequences from a selected subset of plant species and found that plants often 
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encode both DeCL1 and DeCL2 and that proteins from both groups are present in all 

flowering plant species that we tested (Fig. 3.1B). We hypothesized that a gene 

duplication that lead to split of DeCL into two groups is due to DeCL proteins acting in 

various cell compartments. We found that in addition to DeCL domain, these proteins 

often contain N-terminal transfer peptides, presumably required for chloroplast or 

mitochondrial localization (Fig. 3.2B). In order to test our hypothesis we used TargetP257 

localization prediction tool and found that the vast majority of DeCL1 proteins displayed 

predicted chloroplast localization, consistent with published work234, while most DeCL2 

proteins were predicted to localize to mitochondria (Fig. 3.2A). To further validate our 

hypothesis that DeCL proteins localize to various cellular compartments, we cloned 

Arabidopsis genes encoding DeCL1 and DeCL2, AT1G45230 and AT3G46630, 

respectively, fused them with GFP followed by transient overexpression in Arabidopsis 

protoplasts (Fig. 3.2C). We confirmed previously reported chloroplast localization of 

DeCL1 but, unexpectedly, we found that DeCL2 also localizes to the chloroplasts and no 

GFP signal was visible outside of these organelles. Interestingly, we observed strong, 

focal GFP signal for both fusion constructs, similar to the appearance of stained 

nucleoids. In order to further confirm this result, we generated Arabidopsis lines stably 

expressing DeCL proteins fused with GFP under control of their respective promoters. 

Biochemical purification of chloroplast followed by Western Blot confirmed chloroplast 

localization of both Arabidopsis DeCL proteins (Fig. 3.2D). In order to further dissect 

suborganellar localization of DeCLs we lysed chloroplast containing GFP-tagged DeCL1 

and DeCL2 in a hypotonic buffer. Interestingly, both DeCL1 and DeCL2 were in the 

insoluble fraction suggesting membrane localization. Therefore, in order to elute weakly 

membrane-bound proteins we treated the insoluble fractions with high salt 
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concentration. This treatment should break protein-protein interactions allow only 

transmembrane proteins to remain in the membranes. Interestingly, both GFP-tagged 

DeCL proteins remained in the membrane fraction even after 2M NaCl treatment, 

suggesting a strong association of these proteins with chloroplast membranes. 

Importantly, Arabidopsis DeCL proteins do not contain any obvious transmembrane 

domains in their predicted structure. 

 

Plastid DeCLs are broadly expressed 

In order to better understand the biological function of Arabidopsis DeCL proteins, 

we looked at their expression patterns throughout development using publicly available 

RNA-seq data299. We found that both DeCL1 and DeCL2 are expressed in all organs 

tested, including roots, stems, flowers, young and old leaves as well as fruits (siliques) 

(Fig. 3.3AB). Similarly, both genes are transcribed at all stages of development, 

including male and female gametophytes, dry seeds, developing embryo and 

germinating seedling. Highest mRNA accumulation of both genes was observed in 

mature embryos, cotyledons and leaves. Interestingly, mRNAs encoding both DeCL1 

and DeCL2 were found in non-photosynthetic cells of roots and flowers as well as non-

photosynthesizing cells of dry seeds. This suggests that function of organellar DeCLs is 

not limited to photosynthesis-related processes. 

 

DeCL1 and DeCL2 are required for plant survival 

We obtained Arabidopsis mutants deficient in DeCL1 and DeCL2 proteins. Both 

mutant lines contained T-DNA insertions in the protein-coding sequences of 
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corresponding genes (Fig. 3.4A). We found that both single mutants are viable but 

simultaneous loss of both DeCL1 and DeCL2 leads to plant lethality shortly after 

germination on soil (p < 2.26*10-13, Chi square test; n = 170 plants). Interestingly, plants 

deficient in DeCL1 displayed lower chlorophyll level and retarded growth, similarly to 

knock-down line described previously. However, mutation of DeCL2 did not cause any 

visible phenotype. Importantly, we were able to obtain viable atdecl1/atdecl2 seedlings 

from seeds germinated on ½ MS agar plates supplemented with 1% sucrose (Fig. 3.4B). 

These plants were significantly smaller and displayed stronger chlorosis than single 

atdecl mutants grown in parallel.  We were able to reverse visible phenotype of atdecl1 

by complementation with DeCL1-GFP fusion construct, suggesting specificity of the 

atdecl1 phenotype (Fig. 3.4C). To determine if the lower chlorophyll content is caused by 

a reduction in the abundance of the plastid genome, we quantified their plastid DNA 

content, similarly to an approach used in Chapter 2 (Fig. 3.4DEF). We did not identify 

any significant difference in plastid DNA content between tested lines, which may 

suggest that the copy number of plastid chromosomes is not affected by the loss of 

DeCL proteins. 

 

DeCL1 interacts with plastid-encoded mRNAs 

In order to decipher the molecular role of DeCL proteins we performed cpRNA-

immunoprecipitation, followed by sequencing (cpRIP-seq), of GFP-tagged DeCL1 

protein in two biological replicates (Fig. 3.5A-C, top panel). We found that DeCL1 

interacts with multiple RNA molecules in chloroplasts. Specifically, we found that this 

protein often associates with 5’-ends of polycistronic transcripts as well as 3’-ends of 
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transcripts produced from monocistronic units. Interestingly, transcripts associated with 

DeCL1 almost exclusively encode elements of photosynthetic machinery, ribosomal 

proteins and very rarely tRNAs and subunits of ATPases. We did not observe any 

significant interaction between DeCL1 and mRNAs encoding NADH dehydrogenases. 

Furthermore, interaction sites appeared to be limited to PEP-transcribed genes. 

Importantly, our results were comparable between biological replicates. To confirm 

specificity of DeCL1-RNA interaction we performed locus-specific Chromatin 

Immunoprecipitation followed by qPCR (ChIP-qPCR) (Fig. 3.5A-CD, bottom panel). We 

did not detect significant DeCL1 interaction with any of the tested loci, which indicates 

that DeCL1 is unlikely to associate with DNA. 

Previous reports showed that loss of DeCL1 causes lower accumulation of 

chloroplast-encoded proteins, possibly due to affected translation, but no changes in 

accumulation of mRNAs of specific genes. In order to verify this observation on a 

plastome-wide scale we performed cpRNA-seq in wild-type as well as plants deficient in 

DeCL1 and DeCL2. Similar to previous reports233,234, we did not identify any major 

changes in accumulation levels of plastid-encoded mRNAs. However, we did observe 

some changes in rRNA accumulation levels between atdecl1 and wild type plants, 

specifically in fragments of pre-rRNA which are believed to be post-transcriptionally 

processed (Fig. 3.5E, bottom panel). These changes in atdecl1 are consistent with an 

increased accumulation of RNA fragments, which are typically removed by the activity of 

exonucleases155,212,289,300–303. cpRIP-seq indicated that these sequences are normally 

bound by DeCL1 (Fig. 3.5E, top panel). These results, although preliminary, may allow 

speculating that DeCL1 binds rRNA ends and mediates the recruitment of 
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exonucleases. Alternatively, it may be involved in resolving higher-order RNA structures, 

which affect RNA stability. 

 

Discussion 

Here, we characterize a novel family of RNA-associated proteins, the DeCL 

family. We found that DeCL proteins are present in all tested flowering plants as well as 

basal plants, algae and cyanobacteria (Fig. 3.1A). We did not find any direct evidence 

for presence of these proteins in non-photosynthetic eukaryotes or bacteria, specifically 

not in ancestors of mitochondria (Table 3.1). Presence of a bacterial protein in 

eukaryotes may be the result of an endosymbiotic event or horizontal gene transfer. 

However, specificity of DeCLs presence and their evolutionary conservation specifically 

in photosynthetic organisms strongly indicates endosymbiotic origin of these proteins. 

Additionally, despite some DeCL proteins being predicted to localize to mitochondria, 

there is no evidence of DeCLs presence in Rickettsiales, the mitochondria ancestors4, 

indicating that this localization was acquired later during evolution. Altogether, these 

data strongly suggest cyanobacterial origin of DeCL proteins. Therefore, it may be 

hypothesized that their primary function is crucial for photosynthesis-related metabolism 

regulation. 

Phylogenetic analysis of DeCL proteins from flowering plants suggests presence 

of four subfamilies. Two of them, DOMINO and Pol IV/Pol V, contain proteins localized 

in the nucleus. The remaining subfamilies, DeCL1 and DeCL2, contain proteins localized 

in endosymbiotic organelles (Fig. 3.1B, Fig. 3.2A). We found that plant genomes often 

encode more than one DeCL protein and that in many cases one of these proteins is 
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predicted to localize to chloroplasts (DeCL1) and the other to mitochondria (DeCL2). 

Sequence similarities between DeCL1and DeCL2 protein from different species suggest 

that duplication which lead to the presence of multiple DeCLs occurred relatively early in 

flowering plant evolution and that the genome of the last common ancestor of monocots 

and dicots encoded two DeCL proteins.  

Interestingly, both microscopy observations as well as biochemical fractionation 

approaches demonstrated chloroplast localization of both DeCL proteins from 

Arabidopsis (Fig. 3.2CD). Our results also suggest that these proteins are anchored in 

chloroplast membranes, despite, DeCL proteins not containing any predicted 

transmembrane domains. Therefore, it is tempting to speculate that they are associated 

with plastid membranes through post-translational modifications. Additionally, both 

DeCL1-GFP and DeCL2-GFP fusion proteins form strong foci inside chloroplasts which 

resemble signal characteristic for plastid nucleoid or nucleoid-associated proteins.  

Therefore, it is possible that DeCLs association with plastid membranes is mediated by 

nucleic acids. However, neither of DeCL domain-containing proteins were found to 

directly associate with plastid nucleoids in mass spectrometry analysis73,74. Membrane 

localization and close proximity with cpDNA are consistent with potential role of DeCLs 

in co-transcriptional RNA processing. 

Analysis of DeCLs expression showed that genes encoding these proteins are 

transcribed at virtually all developmental stages and in all organs (Fig. 3.3AB). 

Interestingly, DeCL genes were expressed in non-photosynthetic parts of the plant, such 

as roots, flowers and seeds. This indicates a role of DeCL proteins not limited to 

photosynthesis or its regulation. However, the highest expression levels for both DeCLs 
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were observed in photosynthesizing tissues, such as leaves and cotyledons. This may 

indicate that DeCL proteins are required in higher amounts in plastids actively 

processing multiple metabolic processes at high pace, e.g. photosynthesis and fatty acid 

metabolism. Alternatively, it is possible that DeCL proteins are not required for non-

photosynthesizing plastids but their respective mRNAs accumulate in all plastid types to 

allow for quick response and photosynthesis regulation upon light detection. Yet another 

possibility is that the activity of DeCLs is related to the activity of PEP polymerase, which 

is most active in chloroplasts but less pronounced in other plastid types. 

We obtained and characterized Arabidopsis mutants deficient in DeCL proteins. 

We found that only loss of DeCL1 but not DeCL2 leads to a visible phenotype – retarded 

growth and chlorosis (Fig. 3.4BC). Importantly, we found that plants deficient in both 

DeCLs die shortly after germination on soil but survive on media supplemented with 

sucrose. Altogether, these results, together with plastid localization of both DeCLs, 

indicate partial redundancy between DeCL1 and DeCL2 functions. Additionally, we 

showed that chlorosis caused by the loss of DeCL1 is not due to DNA maintenance 

defect and most likely not due to differences in mRNA accumulation levels in these 

plants, but rather deficiencies in photosynthesis machinery (Fig. 3.4DEF). Interestingly, 

loss of a single DeCL protein in tomato leads to severe chloroplast development defects 

and embryo lethality. This may suggest that tomato contains only one functional plastid 

DeCL protein. Surprisingly, we found that tomato genome encodes at least two 

organellar DeCLs (Fig. 3.1B). Whether only one is functional or if they act in different 

cellular compartments remains an open question. Viability of atdecl1/atdecl2 mutant 
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embryos may indicate that DeCL proteins in tomato and Arabidopsis do not serve the 

exact same functions. 

Using RIP-seq, we found that the DeCL1 protein associates with multiple plastid-

encoded RNAs, which is consistent with its possible role in regulation of plastid gene 

expression (Fig. 3.5A-D). We found, that DeCL1 often interacts with transcribed 5’-ends 

of operons as well as mRNA 3’-ends of genes which are not parts of polycistronic units. 

Additionally, our results suggest that the role of DeCL1 is limited to PEP-transcribed 

genes, indicating its direct or indirect interaction with this polymerase complex. 

Interestingly, we found that out of the DeCL1-RNA association sites, most were present 

in close proximity to genes encoding elements of photosynthetic machinery and 

ribosomal proteins. These observations are consistent with the hypothesis that DeCL1 is 

responsible for the regulation of photosynthesis but also suggest specificity of this 

protein toward PEP-produced transcripts. We identified sequences directly bound by 

DeCL1 and subjected them to MEME sequence motif search304. Interestingly, we did not 

find any sequence preference for DeCL1 binding. Additionally, we did not detect any 

interaction between cpDNA and DeCL1 which suggests that this protein interacts only 

with RNA but not DNA, does not interact directly with RNA polymerase and potentially 

associates with RNA post-transcriptionally. These negative results confirm mass 

spectrometry analysis of Arabidopsis nucleoid-associated proteins73,74, where neither of 

the DeCL proteins was found to directly associate with plastid DNA. 

Previous studies have suggested the role DeCL proteins in ribosomal rRNA 

maturation233. Our cpRNA-seq data show that plants deficient in DeCL1 protein 

accumulate higher levels of pre-rRNA transcripts (Fig. 3.5E). Specifically, we observe 
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increased RNA accumulation at the pre-rRNA processing sites. This results confirms 

previously proposed role of DeCL1 in plastid rRNA maturation, however the exact 

function remains unknown. It is possible that DeCL1 possesses nucleolytic activity and 

directly digests nascent transcript. Alternatively, DeCL1 may bind specific RNA 

fragments and recruit RNA processing enzymes. However, we need to remember that 

this experiment requires additional biological replicates, therefore current results need to 

be interpreted carefully. 

It was previously shown that loss of the DeCL1 protein caused decrease in 

specific plastid-encoded proteins accumulation but did not affect respective mRNAs 

levels233,234. Consistent with previously reported results234, in our cpRNA-seq results we 

did not observe any substantial changes in plastid-encoded mRNA accumulation upon 

loss of either of DeCL proteins. This result suggests that DeCLs affect expression of 

plastid genes at the step of translation.  

Altogether, these results increase our knowledge of plant DeCL proteins. 

However, their exact biological and molecular roles remain mysterious, similarly to the 

functions of nuclear DOMINO protein and DeCL domain of Pol IV and Pol V. Based on 

our results, it is tempting to speculate that proteins containing the DeCL domain 

specifically bind RNA and mediate recruitment of specific RNA processing enzymes. 

Alternatively, it is possible that DeCL domain-containing proteins are able to directly 

resolve specific type of higher-order RNA structure which allows for more efficient 

ribosome binding, RNA processing or degradation. 
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Materials and Methods 

Phylogenetic analysis 

Sequences of DeCL proteins were identified through BLAST search using amino 

acid sequence of DUF3223 domain of the previously described protein DeCL1. Specific 

protein sequences were downloaded from Phytozome273 and NCBI305 and aligned in 

MAFFT278. Phylogenetic analysis was performed with BALI-Phy279 on the CIPRES280 

platform with default settings. Consensus greedy tree was constructed with the burn-in 

value of 100,000 and visualized in FigTree. Subcellular localization was predicted for the 

amino acid sequences using TargetP257 online tool. 

 

Protoplast preparation and imaging 

Arabidopsis protoplasts were prepared using a published protocol282. Twenty 

leaves from young Arabidopsis plants were finely chopped and submerged in 10ml of 

enzyme solution (20mM MES pH=5.7, 1.5% cellulase R10, 0.4% macerozyme R10, 

0.4M mannitol, 20mM KCl), vacuum infiltrated 3 times for 30 seconds and incubated at 

room temperature in the dark for 2 hours. Following digestion, equal volume of W5 

solution (2mM MES pH=5.7, 154mM NaCl, 125mM CaCl2, 5mM KCl) and  large leaf 

fragments were removed by filtering through 100µm nylon mesh. Liquid containing 

released protoplasts was centrifuged at 100 x g for 2 minutes with slow acceleration and 

deceleration. Pelleted protoplasts were resuspended in 5ml of W5 solution by gentle 

swirling and incubated in ice for 30 minutes. After incubation, supernatant was gently 

removed and protoplasts were resuspended in 3ml of MMg solution (4mM MES pH=5.7, 

0.4M mannitol, 15mM MgCl2). For each transformation 10µl plasmid DNA (1µg/µl; 
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pEG103 plasmid containing DeCL1 or DeCL2 cDNA sequence fused to the N-terminus 

of GFP under control of 35S promoter) was mixed with 100µl of protoplasts and 110µl of 

PEG solution (40% PEG4000, 0.2M mannitol, 100mM CaCl2) in 2-ml centrifuge tubes. 

Transfection mixture was incubated at room temperature in the dark for 15 minutes. To 

stop the transfection process, 440µl of W5 solution was added, mixed gently and 

mixtures were centrifuged 100 x g for 2 minutes with slow acceleration and deceleration. 

Protoplasts were resuspended in 300µl of W5 solution and incubated in 24-well plate 

overnight in the dark at room temperature. On the next day protoplasts were visualized 

under confocal Leica SP5 microscope. 

 

Biochemical fractionation of chloroplasts 

Arabidopsis chloroplasts were isolated using a published protocol306. 

Approximately 2 grams of young Arabidopsis leaves were ground in Cold Isolation Buffer 

(20mM Tris-HCl, pH=8.0, 1.25M NaCl, 5mM MgCl2, 5mM DTT, 1% Plant Protease 

Inhibitor) and centrifuged for 10min at 3000 x g at 40C. Chloroplast pellet was washed 

three times with Cold Isolation Buffer. Chloroplasts were lysed by incubation in 10ml of 

Low Salt Buffer (20mM Tris-HCl, pH=8.0, 20mM NaCl, 5mM MgCl2, 5mM DTT, 1% Plant 

Protease Inhibitor) for 30 minutes and centrifuged for 15min at 16 000 x g at 40C. 

Supernatant containing soluble chloroplast proteins was saved and pellet containing 

membrane fraction was resuspended in 10ml of High Salt Buffer (20mM Tris-HCl, 

pH=8.0, 2M NaCl, 5mM MgCl2, 5mM DTT, 1% Plant Protease Inhibitor), incubated for 

30min at room temperature and centrifuged for 15min at 16 000 x g at 40C. Resulting 

supernatant containing membrane-associated proteins was saved and pellet containing 
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insoluble, tightly membrane-associated proteins, was resuspended in 1x Laemmli 

buffer307 and incubated at room temperature for 2 hours. Soluble fractions were mixed 

with Laemmli buffer and boiled at 990C for 10min. Protein samples were separated on 

12% SDS-PAGE, subjected to Western Blot and detection with α-GFP antibody. 

 

Plant material and oligonucleotides 

Plant lines used in this study: Col-0 (CS 70000), atdecl1 (SALK_02883), atdecl2 

(GABI_370H12). Transgenic lines were generated using abovementioned mutant lines 

transformed with pMDC107 plasmid containing genomic DNA sequence of respective 

gene at the N-terminus of GFP, under control of its native promoter sequence. 

Oligonucleotides used in ChIP-qPCR: ndhcF: 5’-AGCAGAAACATAGACGAACTCCT-3’; 

ndhcR: 5’-CTTGCCCAATCCACTCCGAT-3’; atpbF: 5’-

AGCGAATTCGAAACGGAACTTT-3’; atpbR: 5’-AAATGGGACGCATAACCGGA-3’; 

petndF: 5’-CGCATGGGCTGCTTTAATGG-3’; petndR: 5’-

GCCGAACGGTCTAGAAAACG-3’; psaIF: 5’-GATCGGCTGAGACCGAATCAT-3’; 

psaIR: 5’-CCAAATGGGTCTTATCGAATCGAAG-3’. Sequences of oligonucleotides 

used for organellar DNA content quantification were previously described by Kim et al260. 

 

Chlorophyll content analysis 

Chlorophyll content was analyzed as described previously281. Briefly, 1 gram of 

Arabidopsis leaves was ground in liquid nitrogen and chlorophyll extracted with 100% 

acetone. Samples were centrifuged for 10min at 10,000 x g at 40C and absorbance was 
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measured at 645 and 662nm. Chlorophyll content was calculated using following 

formula: Ca+b(µg/ml) = 18.09 x A645 + 7.05 x A662. 

 

DNA content analysis and RNA-seq 

Total DNA was isolated from 2-3 week old Arabidopsis seedlings with DNeasy 

Plant Mini Kit (QIAGEN). 1ng of DNA per qPCR reaction was used as a template. 

Primers used were described previously. For RNA-seq total RNA was isolated from 2-3 

week old Arabidopsis seedlings with RNeasy Plant Mini Kit (QIAGEN) and submitted for 

Illumina sequencing. 

 

Nucleic acid IP 

For cpRIP-seq, 2 grams of young Arabidopsis leaves were ground in Cold 

Isolation Buffer306 and centrifuged at 3,000 x g for 10min at 40C. Resulting chloroplast 

pellet was washed three times with Cold Isolation Buffer. Purified chloroplasts were 

resuspended in the lysis buffer (50mM Tris-HCl, pH=8.0, 10mM EDTA, 1%SDS, 1mM 

PMSF, 1% Plant Protease Inhibitors) and sonicated. RNA-protein complexes were 

immunoprecipitated overnight with GFP-trap. Beads were washed and proteins digested 

as described previously. Purified RNA was submitted for sequencing. Total DNA ChIP 

was performed as described by Hanaoka et al308,309. Briefly, Arabidopsis tissue was 

crosslinked with 1% formaldehyde and ground in liquid nitrogen. Powdered tissue was 

resuspended in the lysis buffer (50mM Hepes-KOH, pH 7.5, 140 mM NaCl, 1 mM EDTA, 

1% Triton X-100, 0.1% sodium deoxycholate, 1% Plant Protease Inhibitor and 10% 
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glycerol), filtered through two layers of Miracloth and resulting slurry sonicated. The 

sample was centrifuged and resulting supernatant was immunoprecipitated with 25µl of 

GFP-Trap at 40C overnight. The DNA was extracted from the beads and used for qPCR 

analysis. 
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Figures and Tables 

Table 3.1: Number of proteins containing DUF3223 in various organisms 

 Organism/group of 

organisms 

Number of proteins 

containing DUF3223 

 Animals 0 

Fungi 0 

 

Bacteria 

Escherichia coli 0 

Bacillus sp. 0 

Rickettsiales 0 

Cyanobacteria 8 

 

 

 

 

 

Plants 

Selaginella moellendorffii 5 

Amborella trichopoda 3 

Vitis vinifera 6 

Glycine max 8 

Solanum tuberosum 5 

Solanum lycopersicum 5 

Arabidopsis thaliana 5 

Populus trichocarpa 7 

Oryza sativa 8 

Sorghum bicolor 7 

Zea mays 5 

Zostera marina 5 
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Figure 3.1. Evolutionary history of DeCL proteins. (A) Phylogenetic tree of all predicted 
full length DeCL proteins from selected organisms. (B) High resolution phylogenetic tree 
of DeCL1 and DeCL2 proteins. Green box marks DeCL1s, yellow box marks DeCL2 
proteins. Species names and transcript IDs are provided. 
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Figure 3.2. Subcellular localization of DeCL proteins. (A) Predicted localization of 
proteins from distinct DeCL groups identified in Fig. 3.1. (B) Domain composition of 
Arabidopsis DeCL1 and DeCL2. TP – Targeting Peptide (C) DeCL1-GFP (left) and 
DeCL2-GFP (right) localization in Arabidopsis protoplasts. (D) α-GFP Western Blot 
analysis of biochemically fractionated chloroplasts. WT – wild type, 1 – DeCL1-GFP, 2 – 
DeCL2-GFP. Red asterisk indicates expected size for GFP-tagged DeCL proteins. 
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Figure 3.3. Expression of genes encoding (A) DeCL1 and (B) DeCL2 proteins in 
Arabidopsis. Expression in various organs and at developmental stages was determined 
by RNA-seq299 and displayed in relative units provided by the authors. Error bars 
indicate standard deviations from two biological replicates. 
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Figure 3.4. Effects of mutations in DeCL genes in Arabidopsis. (A) Schematic 
representation of DeCL genes in Arabidopsis. Arrows indicate START codon and 
transcription direction, triangles indicate T-DNA insertion positions. Red boxes indicate 
positions of DUF3223 domain. (B) Approximately 3-week-old plants of wild type (left), 
atdecl1 (center) and atdecl2 (right). (C) Relative chlorophyll content of wild type, mutants 
in genes encoding DeCL proteins and mutant complemented with GFP-tagged DeCLs. 
Error bars indicate standard deviation from three biological replicates. (D-F) Relative 
levels of nuclear (D), mitochondrial (E) and plastid (F) DNA in wild type plants, atdecl 
mutants and mutants complemented with GFP-tagged DeCLs. 
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Figure 3.5. DeCL1 interacts with cpRNA but not cpDNA. (A-C) Browser screen-shots of 
cpRIP-seq (top), cpRNA-seq (middle) and ChIP-qPCR (bottom) analysis of 
corresponding DNA locus. Arrows indicate START codon and transcription direction. (D) 
ChIP-qPCR analysis at nuclear locus (Actin) – negative control. (E) Browser screen-shot 
of cpRIP-seq (top) and cpRNA-seq (bottom) at the rRNA locus. Red dotted lines indicate 
pre-rRNA processing sites.   
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CHAPTER IV 

 
Concluding Remarks and Future Directions 

 

Introduction 

 Throughout the course of this dissertation, plastid RNA metabolism has been 

discussed in detail (Chapter I), investigation of the Arabidopsis RNase H1 proteins 

functions in vivo and in vitro have been discussed (Chapter II), and an in vivo analysis of 

Arabidopsis DeCL proteins have been performed (Chapter III). This chapter focuses on 

a brief discussion of unanswered questions within the field of plastid RNA metabolism, 

biological functions of RNase H1 and DeCL proteins as well as attempts to place 

obtained results in a broader context. Future directions for investigation of these topics 

will be acknowledged, accentuating ongoing work on DeCL proteins functions. 

 

Plastid RNA metabolism 

 Regulation of plastid-encoded gene expression has long been simplified to a 

model in which it is the RNA processing and translation efficiency that dictates the 

amount of protein produced, while transcriptional regulation is believed to have little 

effect on gene expression162,310. Relatively much attention has been given to the 

research on mRNA editing163,179, a process which has its counterpart in the animal 

kingdom, but not a lot of interest has focused on other aspects of the plastid-encoded 

RNA metabolism. Therefore, many questions in this field remain open. 
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 We need to remember that plastids employ a unique combination of molecular 

mechanisms of prokaryotic and eukaryotic origin. These mechanisms have been 

evolving through the course of millions of years of co-evolution of endosymbiotic 

organelles in eukaryotic cells5. However, in some cases neither of these mechanisms is 

employed suggesting the presence of potential new solutions used by endosymbiotic 

organelles. For example, plastids of land plants have lost HU, H-NS and other nucleoid-

associated proteins of cyanobacterial origin92 but did not take advantage of nuclear 

histones to organize plastid chromosomes, suggesting different mechanisms 

responsible for DNA packaging in these organelles. Therefore, we cannot simply 

assume that any step of plastid biology follows its nuclear or bacterial counterparts. 

However, thorough characterization of mechanisms employed by plastids may provide 

foundations for better understanding of processes occurring outside of endosymbiotic 

organelles as well potentially opening new perspectives for synthetic biology, such as 

increasing efficiency of photosynthesis or use of plastids as protein overexpression 

platforms. 

 It has been shown that plastid-encoded RNA molecules are actively processed by 

an orchestra of enzymes recognizing either specific ribonucleotide sequence or a 

secondary RNA structure126,181,311. Interestingly, the largest family of proteins interacting 

with RNAs in plastid and mitochondria, the PPR family, contains enzymes recognizing 

often a single editing site in the transcriptome179. This provides specificity of regulation, 

however, simultaneously maintaining such large family of proteins, each specific towards 

a single location, seems to be a substantial expense of energy. Therefore, it is tempting 

to speculate that precise regulation and processing of RNA molecules in plastids 
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provides a significant evolutionary advantage. Alternatively, it may be advocated that the 

low frequency of editing in plastids suggests that this process gives no measurable 

advantage and might be considered an evolutionary dead end. 

 Large number of plastid-localized RNA-binding proteins has been identified so 

far209. However, in many cases this localization is predicted based on the presence of N-

terminal transfer peptides. Despite many studies aiming to determine the total plastid 

proteome24,28,73,74, precise determination of proteins specifically associated with plastid-

encoded RNAs remains an open task. Out of the proteins with confirmed plastid 

localization very few have been thoroughly characterized. In many cases, published 

research is limited to mutant plant morphology analysis and limited in vitro 

characterization, as it is the case for RNH1C228. However, the in vivo evidence of direct 

interaction between a protein and its targets, despite being absolutely crucial for precise 

characterization, is often missing. Similarly, apart from proteins binding specific RNA 

sequences, for example PPR proteins, mechanisms of target recognition by RNA 

processing enzymes remain unclear126. It has been shown that RNase J199 and RNase 

E155 initiate and are mainly responsible for intercistronic cleavage of plastid-encoded 

mRNAs. However, it is unknown how their specificity is achieved. Another example of 

plastid RNA metabolism is that of secondary RNA structures which were shown to inhibit 

activity of certain nucleases126, but how specificity is achieved remains an open 

question. Likewise, plastid machinery responsible for RNA degradation remains poorly 

characterized. In bacteria this function is fulfilled by the high molecular weight complex – 

degradosome207. Some plant orthologs of bacterial degradosome components have 

been shown to interact. However, the presence of the degradosome complex itself has 



92 
 

not been shown126,209. Therefore, the exact mechanism responsible for RNA degradation 

in plastids remains unclear. 

 Finally, the sub-organellar localization of plastid RNA-associated machinery is 

often unknown. Plastid nucleoid is believed to be strongly associated with plastid 

membranes92, therefore it is hypothesized that in plastids transcription and co-

transcriptional translation occur on the surface of plastid membranes312. RNA processing 

is also believed to be mainly co-transcriptional126. However, a number of RNA-

associated proteins, including RNA-stabilizing factors, have been found in the plastid 

stroma – the liquid fraction of plastids311. An explanation of this intriguing phenomenon 

remains to be found. 

 

RNase H1 proteins functions 

Despite their biochemical activity being known for decades219, the exact biological 

role of RNase H1 proteins remains rather mysterious. They have been demonstrated to 

digest RNA component of RNA:DNA hybrids in vitro and in vivo216,251 and shown to be 

crucial for mitochondrial DNA replication in animals220. These results seem to be 

consistent with its reported function in plastids, where it resolves RNA:DNA hybrids and 

facilitates DNA replication228. However, loss of the RNase H1 protein in mice leads to 

decreased mtDNA and mRNA levels as well as retention of RNA primers which lead to 

the conclusion that this protein is responsible for RNA primer removal during DNA 

replication and prevents DNA polymerase stalling upon encountering RNA:DNA 

hybrids89,220. Interestingly, our results show a significant increase in plastid DNA content 

upon loss of RNH1C and we did not detect any significant effect of RNase H1 loss on 
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mRNA accumulation. These discrepancies may suggest different mechanisms of plastid 

RNase H1 action than the one observed in mitochondria of animals. It has been 

proposed that RNA:DNA hybrids formed in plastids of plants deficient in RNH1C serve 

as primers for DNA replication, leading to excessive plastid DNA amplification228 – a 

hypothesis consistent with our results. However, lack of misregulation of mRNA 

accumulation is surprising. It is tempting to speculate, that higher DNA content will 

correlate with increased mRNA accumulation. Alternatively, nascent mRNA may be 

quickly degraded, suggesting tight control of transcript accumulation. However, how this 

precise control may be achieved remains unknown. It may be also hypothesized that the 

accumulation of RNA:DNA hybrids in plastids of atrnh1c plants will result in a decrease 

of mRNA accumulation due to more frequent transcription – replication machinery 

collisions. Lack of observable effects on transcript quantity may indicate that such 

collisions do not happen more often than in wild-type plants and that only a well-defined 

subset of DNA molecules in plastids undergoes transcription. How such precise 

determination could be achieved, remains an open question.  

Despite a proposed role of Arabidopsis RNH1C in plastid DNA replication no 

direct evidence of interaction between RNH1C and origins of replication or RNA primers 

for Okazaki fragments has been shown. However, it was shown that RNH1C interacts 

with DNA gyrase in DNA- and RNA-dependent manner. Interestingly, it was also 

demonstrated that RNH1C and DNA gyrase are partially redundant in RNA:DNA hybrid 

removal228. This may confirm the proposed involvement of RNH1C in plastid DNA 

replication. However, it is unknown if RNH1C is a canonical component of DNA 

replication complex in plastids or if it is recruited only upon DNA polymerase complex 
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encountering RNA:DNA hybrids. Additionally, little is known about direct targets of 

RNase H1 proteins. It was shown that RNH1C digests substrates recognized by S9.6 

antibody, presumably RNA:DNA hybrids228. However, this antibody was shown to 

efficiently bind ssRNA as well as dsRNA molecules and exhibit preference toward 

specific sequences313,314. Therefore, all results generated with this tool need to be 

interpreted carefully. Although alternative approaches for RNA:DNA hybrid detection (for 

example nucleic acid pull-down with catalytically inactive human RNase H1 protein) do 

exist they were not tested in the case of plant RNase H1 proteins. Additionally, it was 

found that in Saccharomyces cerevisiae RNase H1 enzyme associates with RNA:DNA 

hybrids genome-wide but acts enzymatically only at a small subset of loci227. In contrast, 

RNase H2 complex binds and digests RNA:DNA hybrids genome-wide. It was proposed 

that the enzymatic activity of RNase H1 in yeast is regulated at a step after hybrid 

binding227. Whether this is the case for Arabidopsis RNase H1 proteins and what 

triggers, or inhibits, the enzymatic activity of this enzyme, remains to be found. 

Loss of mitochondrial RNase H1 in mice leads to embryonic lethality and, as 

mentioned earlier, decreased mtDNA content89,220. Interestingly, loss of RNH1B in 

Arabidopsis does not cause any visible phenotype or changes in mtDNA content. This 

suggests, at least partial, redundancy between plastid and mitochondrial enzyme. Dual 

localization is not uncommon for plant plastid and mitochondrial proteins but has not 

been reported for Arabidopsis RNase H1 proteins267,268. This potential dual localization 

may also explain lethality of atrnh1b/atrnh1c double mutants, while single mutants do 

not exhibit this feature. Alternatively, this lethality might be an additive effect of 

mitochondria and plastid malfunctioning. In this scenario loss of RNH1B in a single 
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atrnh1b mutant could be complemented by a redundant activity of other, unknown 

nucleases. Likewise, direct targets of RNH1B, its regulators as well as biological function 

remain to be discovered. 

Similarly to its mitochondrial counterpart, the function of nuclear RNH1A remains 

unknown. In yeast it was shown to work on a subset of RNase H2 targets, mainly the 

most highly abundant RNA:DNA hybrids resulting from aberrant transcription227,315. 

However, in plants no function of RNase H2 complex in co-transcriptional RNA:DNA 

hybrid removal have been shown. Instead, it was shown that in Arabidopsis the RNase 

H2 complex is responsible for the nuclear genome stability and acts as a sensor of DNA 

damage. Plants deficient in subunits of this complex were less sensitive to replication 

stress but exhibited increased ribonucleotide incorporation in DNA as well as increased 

frequency of small base pair deletions229,231. Whether in plants the nuclear RNase H1 

works together with RNase H2 complex, or if their activities are limited to separate 

processes, remains unknown and substantial genome-wide data is required to 

conclusively answer this question. 

Despite recent advances in understanding the biological roles of RNase H1 

proteins, the list of their direct targets is limited. It is possible that this group of enzymes 

does not have specific targets defined by the sequences but rather scan the genome in 

search of most abundant RNA:DNA hybrids227. Interestingly, potential RNase H1 targets, 

R-loops, have been found to be involved in regulation of gene expression224. This may 

suggest that RNase H1 proteins are involved in the regulation of expression of specific 

genes, however direct evidence has not been shown so far. Additionally, in vitro activity 

of RNase H1 proteins is not dependent on the presence of additional proteins251. 
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Therefore, it is possible that in vivo enzymatic activity of RNase H1s is controlled by 

additional regulatory proteins, which allow it to act only when RNase H2 complex, or 

other redundant protein (such as topoisomerase) activity is not sufficient. Whether this is 

the case and what actually regulates RNase H1 activity, remains to be discovered. 

Recent genome-wide identification of RNA:DNA hybrids in Arabidopsis may 

provide a strong basis for further characterization of plant nuclear RNase H proteins316. 

It was shown that the presence of potential substrates of RNase H1 or RNase H2 is a 

common feature of nuclear chromatin. These substrates are equally split between 

Watson and Crick strands of DNA and are usually ~200bp long. RNA:DNA hybrids were 

found to be enriched at gene promoters and depleted in the intergenic regions. They are 

also present in gene bodies and UTRs. Out of approximately 28,000 annotated genes, 

24 000 were found to contain at least one RNA:DNA hybrid. Interestingly, these 

structures were found in all chromatin contexts, and regions transcribed by all five plant 

polymerases316. Altogether, this data suggests that potential RNase H substrates are 

commonly found in Arabidopsis nucleus. Therefore, precisely regulated metabolism of 

these features seems indispensable and RNase H1 proteins are potentially very 

important element of this mechanism.  

 

DeCL proteins functions 

DeCL proteins have been proposed to be involved in rRNA maturation in tomato 

and Arabidopsis based on the observation that plants deficient in this enzyme 

accumulate rRNA precursors232–234. Additionally, nuclear counterparts of DeCLs, 

DOMINO proteins, have been found to be involved in rDNA condensation and nucleolar 
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dominance235. Interestingly, we found that at least one of Arabidopsis DeCL proteins 

binds multiple plastid-encoded mRNA species. This suggests a direct role of DeCLs in 

regulation of plastid-encoded genes expression. However, the biochemical function of 

these proteins remains unknown. It was proposed that DeCLs process pre-rRNAs but no 

direct evidence was shown233. Therefore, it is also possible that these proteins bind 

transcripts and either stabilize and protect them from degradation or recruit other factors 

involved in mRNA processing. Importantly, we have found no major effects of DeCL loss 

on mRNA accumulation. It is possible that DeCLs, either directly or indirectly, stabilize 

nascent mRNAs and facilitate their translation. This hypothesis will be validated using 

the Ribosome Profiling approach which allows measuring translation efficiency. 

Moreover, this hypothesis is consistent with the proposed role of DeCL-like domain of 

nuclear RNA Polymerase V242. Importantly, the DeCL-like domain is the only structured 

domain distinguishing RNA Pol IV and Pol V from Polymerase II292. It was proposed that 

the main function of this domain is to bind ncRNA which is further processed by RRP6L 

exonuclease242. However, the reason for why a prokaryotic factor would be required for 

eukaryotic DNA polymerase complex remains an open question. Additionally, no 

evidence was shown for the necessity of DeCL domain presence in the largest subunit 

of Pol IV so far. Likewise, specificity of organellar DeCLs toward a certain subset of 

transcripts is an interesting feature. We found no specific sequence or position within 

mRNA that would be preferred by DeCL1. It is possible that other proteins play a role in 

DeCL specificity but they yet remain to be discovered. 

Interestingly, sequence-based subcellular localization prediction of DeCL 

proteins, except for the nuclear DOMINO and Pol IV and Pol V subunits, suggests that 
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the majority of plants have at least two DeCLs localizing to plastids and mitochondria. 

This leads to a hypothesis that both DeCL proteins serve the same molecular function 

but in different subcellular compartments. However, both biochemical fractionation as 

well as microscopy observations suggest plastid localization of both DeCL proteins from 

Arabidopsis. Whether it is the case for DeCLs from other plants remains an interesting 

question. Likewise, functional separation of Arabidopsis proteins is possible but the 

reason for it is unknown. Based on lethality of double atdecl1/atdecl2 mutants at least 

partial redundancy between these two proteins can be proposed. An additional question 

arises regarding the mitochondrial counterpart of plastid DeCL. Considering prokaryotic 

origin of both plastids and mitochondria as well as millions of years of their co-evolution 

in eukaryotic cells, one would hypothesize that on a molecular level the majority of 

processes involving nucleic acids will be similar between nucleus, plastids and 

mitochondria. Nucleus contains DOMINO protein which may serve similar function to 

that carried by plastid DeCL. Therefore, which mitochondrial protein fulfills molecular 

function of plastid DeCL remains an intriguing question. Alternatively, it is possible that 

DOMINO only structurally resemble DeCL proteins but have been adapted to serve 

different molecular function and DeCLs are required only for plastid-specific RNA 

metabolism. Another interesting question is the sub-organellar localization of DeCL 

proteins from Arabidopsis. Neither of these proteins contains a trans-membrane domain 

but biochemical fractionation of chloroplasts suggests membrane localization for both. 

Also, microscopy observations, resulting in a signal typical for nucleoid-associated 

proteins, suggest membrane localization of these proteins. It is possible that this 

colocalization allows for co-transcriptional processing of specific mRNAs. But if this is 

truly the case remains an open question. 
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Determination of DeCLs functions will potentially increase the knowledge about 

DOMINO proteins as well as the DeCL domain of Pol V. The exact function of DOMINO 

was not demonstrated but it is possible that it affects nuclear rDNA and rRNA in a 

different manner than anticipated. It is possible that it interacts with rRNA and either 

stabilizes it or serves as a scaffold for other proteins. Likewise, DOMINO may act on a 

different subset of RNA species, like mRNAs and regulate rRNAs indirectly. The exact 

role of the C-terminal DeCL domain of the largest subunits Pol IV and Pol V complexes 

remains speculative. It was shown to be required for Pol V transcription in vivo but not in 

vitro as well as downstream effects of Pol V activity but no direct function was 

demonstrated242. The role in non-sequence specific RNA binding seems to be the most 

plausible hypothesis but does not explain why it is required for transcription itself. It is 

possible that in the absence of DeCL domain Pol V-produced transcripts are quickly 

degraded by non-specific exonucleases. Alternatively, it is possible that nascent RNA 

produced by Pol V forms a higher order structure which obstructs transcription 

elongation and leads to premature transcription termination. Altogether, it can be 

hypothesized that DeCL domain serves a dual function. First, it binds and stabilizes 

nascent transcript and when downstream RdDM machinery is already recruited, it 

interacts with exonuclease RRP6L which specifically degrades Pol V-produced 

transcripts. However, whether this is true, remains to be determined. It seems that the 

only functional similarity between DOMINOs, DeCL domains of Pol IV and Pol V as well 

as organellar DeCL proteins is their hypothesized role in RNA metabolism. However, 

direct interactions between abovementioned proteins and RNA molecules remain to be 

shown. Although our RIP-seq experiment strongly supports such interactions between 

DeCL1 and plastid-encoded mRNAs, it is still possible that there are other proteins 
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involved in this process, especially that no obvious RNA-binding domain can be 

identified in the sequence of DOMINOs or organellar DeCL proteins.  

Altogether, it is possible that DeCLs serve at least one of the hypothesized 

biochemical roles. First, it might be responsible for protein binding and serve as a 

docking platform for enzymes modifying nucleic acids. In this scenario, DeCLs would 

interact with RNA or DNA indirectly. Alternatively, it is possible that these proteins 

directly bind nucleic acids and recruit enzymatic machinery to specific sites of RNA or 

DNA molecules or protect these sites from degradation by nucleases. Yet another 

possibility is that DeCLs exhibit enzymatic activity and are able to digest or modify 

nucleic acids without other enzymatic factors. Finally, we cannot exclude that DeCLs 

play multiple biochemical roles in nucleic acid metabolism. 

 

Future directions 

New mechanisms of RNA metabolism await further exploration. Specifically, 

discovery of direct targets of Arabidopsis RNH1C protein as well as its interactors, apart 

from DNA gyrase228, will provide substantial knowledge toward understanding the 

precise roles of this enzyme. Similarly, determination of protein partners of nuclear and 

mitochondrial RNase H1s and RNA:DNA hybrids that they resolve remains an important 

goal. Double mutant lacking RNH1A and RNH1B displays no obvious phenotype. This 

strongly indicates that both nuclear and mitochondrial genomes possess alternative 

pathways for resolving RNA:DNA hybrids. Finding these mechanisms, at least partially 

redundant with RNase H1s, remains an important goal toward understanding the 

metabolism of RNA:DNA hybrids. Likewise, it is an important task to find a molecular 
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basis of embryonic lethality of atrnh1b/atrnh1c mutants. Importantly, mutants deficient in 

only one of these two RNase H1s do not die during embryo development. This suggests 

that RNH1B and RNH1C are partially redundant or that this lethality is a result of 

additive effect of plastids and mitochondria misfunctioning. However, the molecular 

phenotype of RNase H1 loss in mitochondria remains to be found. Additionally, we found 

that the expression of genes encoding RNH1s is often increased upon the loss of 

another RNH1 protein. This suggests the existence of autoregulatory mechanism of 

RNH1s expression. What is the exact mode of action of this mechanism and if RNH1s 

can exhibit dual localization is an intriguing and important question. Also the biological 

relevance of splice variant of RNH1B, the RNH1B.3 remains to be tested. It is 

particularly intriguing that even upon loss of the mitochondrial presequence, this protein, 

contrary to the phenomenon observed in animals220, does not exhibit a nuclear 

localization. Whether this protein is produced at all and if and where it is important for 

nucleic acid metabolism remains an important question for future research. Finally, it 

was proposed that yeast RNase H1 protein can only digest the substrate upon activation 

by another protein227. Our in vitro data suggest that for Arabidopsis RNase H1 enzymes 

such activator is not required. But it cannot be ruled out that in vivo catalytic activity of 

these enzymes is regulated by an inhibitor. Whether this is the case and what protein, or 

perhaps different molecule, might serve this function remains an intriguing question to 

test. 

Similarly to RNase H1s, many questions remain open in the biology of DeCL 

proteins. First, it needs to be determined if these proteins directly interact with RNAs, 

possibly through in vitro assays, and if specific sequences or RNA structures are their 
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preferred substrates. Additionally, extensive in vitro characterization of these proteins 

and their enzymatic activities need to be performed. Furthermore, actual in vivo targets 

of both DeCL1 and DeCL2 need to be found through RIP-seq. Additionally, sub-

organellar localization of DeCL proteins remains to be found. Preliminary results suggest 

that both DeCL1 and DeCL2 are tightly associated with plastid membranes. Whether 

this is the case and the underlying mechanism of this localization needs to be found. We 

speculate that organellar DeCL proteins regulate expression of plastid-encoded proteins 

at the level of translation and will test this hypothesis using Ribosome Profiling 

approach. Furthermore, it is important to determine the exact mechanism of DeCLs 

action and possibly other biological processes they might be involved in. Additionally, it 

is important to determine proteins interacting with DeCLs which might reveal potential 

regulators of their activity. Finally, results obtained from organellar DeCL proteins may 

allow for extrapolating roles served by DeCL domains present in the structures of 

nuclear Pol IV and Pol V as well as DOMINO protein. Importantly, transcripts produced 

by abovementioned polymerases do not undergo translation. Therefore, any conclusions 

need to be drawn very carefully and any potential roles need to be independently and 

carefully tested in the context of nuclear RNA metabolism.    
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