
Improving Programming Support for Hardware Accelerators
Through Automata Processing Abstractions

by

Kevin A. Angstadt

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2020

Doctoral Committee:

Professor Westley Weimer, Chair
Assistant Professor Reetuparna Das
Assistant Professor Jean-Baptiste Jeannin
Professor Kevin Skadron, University of Virginia

If you find that you’re spending almost all your
time on theory, start turning some attention to

practical things; it will improve your theories. If
you find that you’re spending almost all your

time on practice, start turning some attention to
theoretical things; it will improve your practice.

— Donald Knuth

Ein neues Tor ins Unglaubliche und ins Mögliche,
ein neuer Tag, an dem alles geschehen konnte,

wenn man es nur wollte.

— Tove Jansson, Muminvaters wildbewegte Jugend

Kevin A. Angstadt

angstadt@umich.edu

ORCID iD: 0000-0002-0104-5257

c© Kevin A. Angstadt 2020

angstadt@umich.edu

acknowledgments

Research is an inherently collaborative endeavor, and throughout this long jour-

ney, I have been supported by some phenomenal individuals. I would like to

acknowledge, with brevity unbefitting of their contributions, many of those who

helped me reach this moment in my life.

First, I would like to thank my advisor, Westley Weimer, who has patiently

guided me through my journey of doctoral studies from start to finish. Wes con-

tinually challenged me to step outside my academic comfort zone while helping

me learn the skills necessary to be a successful researcher. Wes’s knowledge of

program analysis techniques played a key role in the success of the work described

in this dissertation. I may have needed to take graduate-level Programming Lan-

guages two and a half times, but I got there eventually. I am also seriously indebted

to Wes’s efforts to support my mentorship and teaching interests. I would not

be the educator and scholar I am today without Wes. Finally, I must thank Wes

for always being a good sport when it comes to terrible puns—even in our most

overworked hours testing and implementing quadcopter-based software systems.

Next, I would like to thank Kevin Skadron, my former advisor and continued

mentor. Kevin is the reason this dissertation exists; he got me hooked during a

visit to the University of Virginia when he described a new project involving an

ii

experimental processor. Little did I know that it would be the start of a six-year

journey into understanding how to best leverage finite automata to program new

kinds of hardware! I am also thankful for Kevin’s ability to always consider the

“big picture” and to remind me of its importance.

None of this work would be possible without the expertise and experience

of my collaborators. Thank you to Jack Wadden, Tommy Tracy II, Matt Casias,

Arun Subramaniyan, Xiaowei Wang, Elaheh Sadredini, Reza Rahimi, Vinh Dang,

Ted Xie, Nathan Brunelle, Chunkun Bo, Dan Kramp, Reetuparna Das, Stephanie

Forrest, Jean-Baptise Jeannin, Mircea Stan, and Lu Feng for all that they have

taught me while we conducted research together. To my computer architecture

colleagues, thank you for your patience whenever I would ask ignorant questions.

To my software engineering and programming languages colleagues, thank you

for your patience whenever I would ask ignorant questions.

I am also very much appreciative of my officemates over the years: Jonathan

Dorn, Kevin Leach, Yu Huang, Madeline Endres, Colton Holoday, Zohreh Sharafi,

Jamie Floyd, Kate Highnam, Hammad Ahmad, Fee Christoph, Yirui Liu, Ryan

Krueger, Xinyu Liu, and Martin Kellogg. I truly enjoyed our conversations over

the years and their willingness to teach me about their research.

I also wish to acknowledge my teaching colleagues and mentors. While teaching

is not an explicit part of the doctoral experience, it was a significant portion of my

experience. Teaching is what has kept me motivated to finish. I am indebted to

Amir Kamil, Dave Paoletti, Marcus Darden, Mark Sherriff, Luther Tychonievich,

iii

Ed Harcourt, and Patti Frazer Lock (among others) for all that they have done to

help my development as an educator over the years.

I would not have been able to complete this degree without the unconditional

love and support of my family (Mom, Dad, Mike, Charlotte, Linnea, Shay, my

grandparents, and my aunts and uncles). I might not have always been able to

communicate clearly to them what my research is about, but they’ve stuck by me

nonetheless. I’m fortunate to be able to celebrate my successes and overcome my

setbacks with them by my side. To my family: thank you, and I love you.

Thank you to my friends (Katja, Elaine, Nya, Terry, Liz, Joey, Tristan, Erin,

Samyukta, Christabel, and Clara, among others) for tolerating my quirkiness.

They have made this six-year journey significantly more fun and tolerable.

Finally, thank you to you, the reader. The fact that you are reading this now

means that my efforts were not for naught.

If I have forgotten to thank you, I apologize. It has more to do with fatigue than

anything else.

iv

table of contents

acknowledgments ii

list of figures xiii

list of tables xv

list of source code listings xvii

list of algorithms xvii

list of acronyms xviii

abstract xxiv

chapter

1 introduction 1

1.1 Approach . 3

1.2 Contributions . 5

1.2.1 Adapting Legacy Code for Execution on Hardware Acceler-

ators . 5

v

1.2.2 High-Level Languages for Automata Processing 6

1.2.3 Interactive Debugging for High-Level Languages and Accel-

erators . 7

1.2.4 Architectural Support for Common Applications 8

1.3 Methodology . 10

1.4 Summary and Organization . 11

2 background 13

2.1 Finite Automata . 13

2.1.1 Deterministic and Non-Deterministic Finite Automata . . . 14

2.1.2 Deterministic Pushdown Automata 16

2.2 Accelerating Automata Processing 19

2.2.1 Micron’s D480 AP . 21

2.2.2 Cache Automaton . 23

2.2.3 Field-Programmable Gate Arrays 24

2.3 Programming Models . 26

2.3.1 Automata Representations and Regular Expressions 26

2.3.2 Languages for Streaming Applications 28

2.3.3 Non-Deterministic Languages 29

2.3.4 Programming Models for Portability 30

2.3.5 Languages for Programming FPGAs 31

2.3.6 State Machine Learning Algorithms 33

2.3.7 Program Synthesis . 34

2.4 Maintenance Tools . 35

vi

2.4.1 Debugging on Hardware Accelerators 35

2.4.2 Understanding the Importance of Debugging 36

2.4.3 Software Verification . 37

2.5 Applications Benefiting from Acceleration 38

2.5.1 Parsing of XML Files . 38

2.5.2 Architectural Side-Channel Attacks 40

2.5.3 Runtime Intrusion Detection Systems 42

2.6 Chapter Summary . 43

3 acceleration of legacy string functions 44

3.1 Learning State Machines from Legacy Code 47

3.1.1 L* Primer . 47

3.1.2 AutomataSynth Problem Description 49

3.1.3 Using Source Code as a MAT 51

3.1.4 Synthesizing Hardware Descriptions from Automata 54

3.1.5 System Architecture . 54

3.2 Implementation and Correctness . 56

3.2.1 Bounded Model Checking . 56

3.2.2 Reasoning about Strings . 57

3.2.3 Verification for Termination Queries 58

3.2.4 Correctness . 60

3.2.5 Implications. 65

3.3 Experimental Methodology . 66

3.3.1 Benchmark Selection . 66

vii

3.3.2 Experimental Setup . 68

3.4 Evaluation . 70

3.4.1 State Machine Learning . 70

3.4.2 Hardware Acceleration . 72

3.5 Discussion . 73

3.5.1 Learning More Expressive Models 74

3.5.2 Expressive Power and Performance of String Solvers 75

3.5.3 Scaling Termination Queries 76

3.5.4 Characterizing and Taming Approximation 77

3.6 Chapter Summary . 78

4 rapid : a high-level language for portable automata pro-

cessing 80

4.1 Automata Processing Stability . 83

4.1.1 Performance Stability . 83

4.1.2 Automata Processing Performance 86

4.1.3 Discussion . 89

4.2 The RAPID Language . 90

4.2.1 Program Structure . 91

4.2.2 Types and Data in RAPID . 94

4.2.3 Parallel Control Structures . 96

4.3 Code Generation . 100

4.3.1 Converting Expressions . 101

4.3.2 Converting Statements . 103

viii

4.3.3 Converting Counters . 104

4.4 Executing RAPID Programs . 108

4.4.1 Targeting the Automata Processor 109

4.4.2 Targeting CPUs . 109

4.4.3 Targeting GPUs . 111

4.4.4 Targeting FPGAs . 111

4.5 Evaluation . 112

4.5.1 Expressive Power . 113

4.5.2 Empirical Evaluation . 115

4.6 Chapter Summary . 121

5 interactive debugging for high-level languages and ac-

celerators 123

5.1 Hardware-Supported Debugging . 127

5.1.1 Example Program . 127

5.1.2 Breakpoints . 129

5.1.3 Hardware Abstractions for Debugging 130

5.1.4 Accessing the State Vector . 131

5.1.5 Hardware Support for Breakpoints 134

5.1.6 Debugging of RAPID Programs 137

5.1.7 Time-Travel Debugging . 138

5.2 FPGA Evaluation . 139

5.2.1 Experimental Methodology 140

5.2.2 FPGA Results . 142

ix

5.3 Human Study Evaluation . 145

5.3.1 Experimental Methodology 145

5.3.2 Statistical Analysis . 147

5.3.3 Threats to Validity . 150

5.4 Chapter Summary . 151

6 architectural support for automata-based computation 153

6.1 Detecting Attacks with Memory Accesses 158

6.1.1 The Memory Access Pattern Abstraction 159

6.1.2 Dictionaries of Program Behavior 162

6.1.2.1 ∆-Windows . 163

6.1.2.2 Truncation . 163

6.1.2.3 Compression . 164

6.1.3 Detecting Anomalous Program Execution 165

6.2 Compiling Grammars to Pushdown Automata 167

6.2.1 Context-Free Grammars . 167

6.2.2 Compiling Grammars to DPDAs 169

6.2.2.1 Parsing Automaton Generation 169

6.2.2.2 hDPDA Generation 171

6.2.2.3 Optimization . 172

6.2.3 Compilation Summary . 174

6.3 Martini Architectural Design . 175

6.3.1 From Dictionaries to Automata 175

6.3.2 Martini Address Monitor . 177

x

6.3.3 Automata Processing Core . 178

6.3.4 System Integration . 181

6.4 Aspen Architectural Design . 181

6.4.1 Cache Slice Design . 182

6.4.2 Operation . 183

6.4.3 Critical Path . 187

6.4.4 Support for Lexical Analysis 189

6.4.5 System Integration . 190

6.5 Experimental Methodology . 191

6.5.1 Recording Memory Traces to Evaluate Martini 191

6.5.2 Building and Testing Dictionaries 192

6.5.3 Benchmarks . 193

6.6 Architectural Evaluation . 196

6.6.1 System Performance Impact 196

6.6.2 Martini Parameters . 198

6.6.3 ASPEN Parameters . 199

6.7 Attack Detection Evaluation . 200

6.7.1 Differentiating Programs . 200

6.7.2 Effects of Dictionary Compression 202

6.7.3 Distinguishing Malicious from Benign Inputs 203

6.7.4 Detecting Anomalous and Malicious Programs 205

6.7.5 Martini Evaluation Summary 208

6.8 DPDA Processing Engine Evaluation 209

xi

6.8.1 Parsing Generality . 210

6.8.2 XML Parsing Performance . 212

6.8.3 ASPEN Evaluation Summary 214

6.9 Chapter Summary . 214

7 conclusions 216

7.1 Summary of Contributions . 217

7.2 A Look to the Future . 221

7.3 Final Remarks . 223

appendix 225

bibliography 242

xii

list of figures

Figure 2.1 A behaviorally equivalent NFA and homogeneous NFA . . 15

Figure 2.2 A behaviorally equivalent DPDA and hDPDA 17

Figure 2.3 Overview of AP Architecture 20

Figure 2.4 Conventional parser performance 40

Figure 3.1 AutomataSynth system architecture 55

Figure 4.1 Relative performance of automata processing vs. application-

specific algorithms on the CPU 87

Figure 4.2 Transformations of RAPID expressions into automata . . . 102

Figure 4.3 Automaton designs for RAPID statements 105

Figure 4.4 Structure of whenever statement with counters 107

Figure 4.5 Supported pipelines for executing RAPID programs 108

Figure 5.1 An example debugging scenario 134

Figure 5.2 Transformation of a line breakpoint to an input breakpoint 136

Figure 5.3 A question from the human study including generated

debugging information . 147

Figure 6.1 Example of a four-address, fixed-width window 160

Figure 6.2 Visualization of n-gram representation for two programs . 161

Figure 6.3 Example of address truncation 163

xiii

Figure 6.4 Example CFG and parse tree 168

Figure 6.5 Two compiler optimizations for reducing the number stalls

incurred by ε-transitions . 173

Figure 6.6 Homogeneous NFA representation of a dictionary 176

Figure 6.7 High-level architectural design of Martini 177

Figure 6.8 Specialized Martini automata processing architecture . . 179

Figure 6.9 Xeon processor with SRAM arrays repurposed for DPDA

processing . 182

Figure 6.10 DPDA processing on ASPEN 188

Figure 6.11 Comparison of memory traces between pairs of utilities . . 201

Figure 6.12 Martini performance on objdump CVE-2018-6263, as a

function of threshold for benign and malicious inputs . . . 204

Figure 6.13 Experimental Martini results for tested anomalies 206

Figure 6.14 Detection of anomalous, out-of-dictionary execution 207

Figure 6.15 Performance and energy evaluation of ASPEN. 212

Figure A.1 Tools supplied as part of MNCaRT 234

xiv

list of tables

Table 3.1 Benchmark Suite of Real-World, Legacy String Kernels . . 67

Table 3.2 Experimental Results . 69

Table 4.1 Performance stability of OpenCL programs 84

Table 4.2 Performance stability of Automata Processing optimizations 85

Table 4.3 Rules for thresholds and outputs on counters 106

Table 4.4 Description of benchmarks 116

Table 4.5 Comparison between RAPID and hand-crafted code with

respect to lines of code (LOC) and STE usage 118

Table 4.6 Space utilization on AP and FPGA targets 120

Table 5.1 ANMLZoo benchmark overview 141

Table 5.2 FPGA-Based debugging system performance results 143

Table 5.3 Participant subsets and average accuracies 148

Table 6.1 Summary of benchmarks used to evaluate Martini 194

Table 6.3 Runtime overhead of reducing LLC capacity 196

Table 6.4 Stage delays and operating frequencies in ASPEN 199

Table 6.5 Description of grammars . 209

Table 6.6 Grammar compilation results 210

Table 7.1 Major Publications Supporting This Dissertation 223

xv

Table A.1 Custom Attributes for MNRL Node Types 231

Table A.2 Modes for Enabling MNRL Nodes 232

xvi

list of source code listings

Listing 3.1 Formulating termination queries as software verification

problems . 59

Listing 4.1 A RAPID program for computing Hamming distances . . 92

Listing 4.2 Example RAPID program using counters 95

Listing 4.3 An example usage of an either/orelse statement 97

Listing 4.4 Execution of a sliding window search over the entire input

stream for the string “rapid” 99

Listing 4.5 Implementing Kleene closures in RAPID 114

Listing 5.1 An example RAPID program that matches “hello world”

anywhere in an input string 128

Listing A.1 Sample MNRL homogeneous hState node 230

list of algorithms

Algorithm 3.1 Angluin’s L* Learner [10] . 50

xvii

list of acronyms

µj Microjoule

al Stack Action Lookup

anml Automata Network Markup Language

anova Analysis of Variance

ap Automata Processor

api Application Programming Interface

arm Association Rule Mining

art Aligned Rank Transform

asic Application-Specific Integrated Circuit

aspen Accelerated in-SRAM Pushdown ENgine

atr Automata-to-Routing

auc Area Under Curve

bram Block RAM

xviii

bsd Berkeley Software Distribution

c-box Control Box

ca Cache Automaton

cegis Counterexample-Guided Inductive Synthesis

cfg Context-Free Grammar (or Control-Flow Graph)

cpu Central Processing Unit

cve Common Vulnerabilities and Exposures

dfa Deterministic Finite Automaton

dna Deoxyribonucleic Acid

dom Document Object Model

dpda Deterministic Pushdown Automaton

drm Disjoint Report Merging

dsl Domain-Specific Language

epld Erasable Programmable Logic Device

er Entity Resolution

ff Flip-Flop

xix

fis Frequent Itemset

fpga Field-Programmable Gate Array

gb Gigabyte

gpgpu General-Purpose Graphics Processing Unit

gpu Graphics Processing Unit

gui Graphical User Interface

hdl Hardware Description Language

hdpda Homogeneous Deterministic Pushdown Automaton

hls High-Level Synthesis

hmd Hardware-based Malware Detector

ids Intrusion Detection System

ila Integrated Logic Analyzer

im Input Match

io Input/Output

ip Intellectual Property

irb Institutional Review Board

isa Instruction Set Architecture

xx

json JavaScript Object Notation

kb Kilobyte

llc Last Level Cache

loc Lines of Code

lut Look-up Table

martini Memory Address Representation To INfer Intrusions

mat Minimally Adequate Teacher

mb Megabyte

misd Multiple Instruction, Single Data

mncart MNRL Network Computation and Research Testbed

mnrl MNRL Network Representation Language

nfa Non-Deterministic Finite Automaton

nm Nanometer

ns Nanosecond

xxi

os Operating System

pac Probably Approximately Correct

pal Programmable Array Logic

panda Platform for Architecture-Neutral Dynamic Analysis

pcre Perl-Compatible Regular Expressions

pda Pushdown Automaton

pj Picojoule

pld Programmable Logic Device

ply Python Lex-Yacc

ps Picosecond

qemu Quick EMUlator

ram Random Access Memory

rf Random Forest

roc Receiver Operating Characteristic

rtl Register-Transfer Level

sax Simple API for XML

xxii

sm Stack Match

spm Sequential Pattern Mining

sram Static RAM

st State Transition

ste State Transition Element

su Stack Update

tdp Thermal Design Power

tos Top of Stack

tpu Tensor Processing Unit

uml Unified Modeling Language

vhdl Very High Speed Integrated Circuit Hardware Description Language

vio Virtual Input/Output

vpr Versatile Place and Route

w Watt

xml Extensible Markup Language

xxiii

abstract

The adoption of hardware accelerators, such as Field-Programmable Gate Arrays,

into general-purpose computation pipelines continues to rise, driven by recent

trends in data collection and analysis as well as pressure from challenging phys-

ical design constraints in hardware. The architectural designs of many of these

accelerators stand in stark contrast to the traditional von Neumann model of

CPUs. Consequently, existing programming languages, maintenance tools, and

techniques are not directly applicable to these devices, meaning that additional

architectural knowledge is required for effective programming and configuration.

Current programming models and techniques are akin to assembly-level pro-

gramming on a CPU, thus placing significant burden on developers tasked with

using these architectures. Because programming is currently performed at such

low levels of abstraction, the software development process is tedious and chal-

lenging and hinders the adoption of hardware accelerators.

This dissertation explores the thesis that theoretical finite automata provide

a suitable abstraction for bridging the gap between high-level programming

models and maintenance tools familiar to developers and the low-level hardware

representations that enable high-performance execution on hardware accelerators.

We adopt a principled hardware/software co-design methodology to develop a

xxiv

programming model providing the key properties that we observe are necessary

for success, namely performance and scalability, ease of use, expressive power,

and legacy support.

First, we develop a framework that allows developers to port existing, legacy

code to run on hardware accelerators by leveraging automata learning algo-

rithms in a novel composition with software verification, string solvers, and

high-performance automata architectures. Next, we design a domain-specific

programming language to aid programmers writing pattern-searching algorithms

and develop compilation algorithms to produce finite automata, which supports

efficient execution on a wide variety of processing architectures. Then, we develop

an interactive debugger for our new language, which allows developers to accu-

rately identify the locations of bugs in software while maintaining support for

high-throughput data processing. Finally, we develop two new automata-derived

accelerator architectures to support additional applications, including the detec-

tion of security attacks and the parsing of recursive and tree-structured data. Using

empirical studies, logical reasoning, and statistical analyses, we demonstrate that

our prototype artifacts scale to real-world applications, maintain manageable

overheads, and support developers’ use of hardware accelerators. Collectively,

the research efforts detailed in this dissertation help ease the adoption and use

of hardware accelerators for data analysis applications, while supporting high-

performance computation.

xxv

chapter 1

Introduction

H
ardware accelerators are currently experiencing a resurgence in

adoption for data processing pipelines. These devices often consist of

custom-designed silicon that trades off general computing capability

for increased performance on very specific workloads. The confluence of several

factors is driving this increased use. In particular, there is a rapid growth of data

collection (a fivefold increase over the next five-year 2020-2025 period according

to one report [177]), and business leaders believe that real-time analysis of this

data is critical for their success [62, 67]. On the technical front, Dennard Scaling

and Moore’s law, which describe scaling trends in semiconductor development,

either no longer hold or have significantly decreased impact [194]. Consequently,

a reinvigorated study of these devices is vital as their need in industry increases.

Accelerators are varied in their design and usage, and types include Field-

Programmable Gate Arrays (FPGAs) and Graphics Processing Units (GPUs) as well

as more esoteric accelerators, such as Google’s Tensor Processing Unit (TPU) [117]

and Micron’s D480 Automata Processor (AP). While present in industry for proto-

typing and application-specific deployments for quite some time, reconfigurable

1

architectures, such as FPGAs, are now becoming commonplace in everyday com-

puting as well [187]. In fact, FPGAs are in use in Microsoft datacenters and are

also widely available through Amazon’s cloud infrastructure [5, 51, 125, 175].

These devices, however, require additional architectural knowledge to effectively

program and configure.

Current programming models are akin to assembly-level development on tradi-

tional CPU architectures, in which developers must specify their application using

minute operations that are device-specific. While these hardware solutions provide

high throughputs [95, 181], programming them can be challenging. Consequently,

programs written for these accelerators are tedious to develop and challenging

to write correctly [57]. Additionally, these low-level representations do not lend

themselves well to debugging and maintenance tasks, which are key challenges

as it is estimated that developers spend roughly 80–90% of their time on these

activities [247]. Put in other words, current programming models lack sufficient

abstraction from the underlying hardware. Abstraction, as defined by Patterson and

Hennessy, refers to hiding low-level details of a system to enable development of

complex hardware or software systems to help cope with design complexity [172].

We hypothesize that this lack of abstraction places a high burden on developers

and is a key barrier for the adoption of hardware accelerators. Higher levels of

abstraction for programming FPGAs have been achieved with languages such

as OpenCL [208] and frameworks such as Xilinx’s SDAccel [248]; however, these

models still require low-level knowledge of the underlying architecture to allow

for efficient implementation and execution of applications [223, 268].

2

1.1 approach

To reap the benefits of the performance of hardware accelerators, while enabling

higher levels of abstraction and ease of maintenance, we argue that a successful

programming model must satisfy the following criteria:

• performance and scalability. Maintaining the performance gains

provided by hardware accelerators is critical and is achieved by minimizing

the overhead introduced by high-level programming models and tools.

• ease of use . Tools must aid developers in effectively writing and maintain-

ing software for hardware accelerators by providing familiar abstractions

and a shallow learning curve.

• expressive power . The underlying computational model (of both the

programming model and the hardware) must be sufficiently rich to support

the applications that developers wish to accelerate with dedicated hardware.

• legacy support. Programming models must support the adaptation

of existing software to execute efficiently on hardware accelerators while

placing a minimal burden on developers.

In this dissertation, we adopt a principled hardware/software co-design approach

to developing a programming model that meets these requirements [213]. By

doing so, we recognize that both the software development process and the hard-

ware architectural designs of accelerators are evolving in response to each other.

3

Consequently, we develop new software tools for supporting hardware accelera-

tors as well as new architectural designs that better support these tools. To do so,

we leverage the theoretical findings from automata theory [199] to bridge the gap

between these two sides. Automata model computation mathematically as tran-

sitions between discrete states following a predefined function. The overarching

thesis of this work is:

Finite automata provide a suitable abstraction for bridging the gap be-

tween high-level programming models and maintenance tools familiar

to developers and the low-level representations that execute efficiently

on hardware accelerators.

Our approach in this dissertation leverages several key insights. First, finite

automata are a good fit for representing a diversity of applications. Recently,

researchers have successfully developed new algorithms using the automata pro-

cessing abstraction to accelerate analyses across many domains, including: natural

language processing [267], network security [184], graph analytics [183], high-

energy physics [240], bioinformatics [185, 186, 220], pseudo-random number gen-

eration and simulation [232], data-mining [238, 239], and machine learning [221].

Second, finite automata maintain compact state, which admits debugging on accel-

erators by minimizing and supporting the capture of relevant program state. Third,

finite automata can be mapped efficiently to reconfigurable architectures [75, 252],

allowing for scalability and performance. Finally, we observe that support for

the execution of existing software on hardware accelerators can leverage recent

4

results from automata theory and software maintenance to construct and execute

functionally equivalent automata [10, 60].

1.2 contributions

In this dissertation, we introduce new programming models, software maintenance

tools, and architectural designs to improve programming support for current and

future hardware accelerators. Our contributions include two programming models,

a software debugger for accelerator-based applications, and two new hardware

accelerator designs for common applications. We briefly describe each in turn.

1.2.1 Adapting Legacy Code for Execution on Hardware Accelerators

First, we focus on the task of porting existing, legacy source code for execution

on FPGAs and other hardware accelerators. As companies and individuals adopt

hardware accelerators into their application workflows, they will need to port

existing code to these new devices. Ultimately, we wish to reduce the burden on

developers tasked with porting legacy code.

We develop AutomataSynth, an algorithm for accelerating a particular, relevant

class of functions (known as Boolean string kernels) found in extant source code.

Our approach uses a novel combination of techniques and approaches from

software engineering, machine learning, formal methods, and high-performance

automata processing architectures to learn the behavior of a program and construct

5

a behaviorally equivalent FPGA hardware description. We also formally prove the

correctness and termination of AutomataSynth for our target class of functions.

For programs that do not meet these criteria, AutomataSynth is able to produce

an approximate hardware description.

1.2.2 High-Level Languages for Automata Processing

After establishing the feasibility of porting extant code for execution on hardware

accelerators, we next focus on supporting development of new applications. We

observe that one common technique used in hardware accelerator application

design is to quickly scan the data for “interesting” regions (the definition of

interesting varies between applications), and return to these regions to perform a

more thorough analysis later, reducing the amount of data being processed by a

complex algorithm. The initial scan can often be re-phrased as a pattern-searching

problem, in which many searches are conducted against a single stream of data.

A pattern defines a sequence of data that should be identified within another

collection of data.

As such, we present RAPID, a new programming model that supports high-level

representation of pattern-searching algorithms while maintaining the performance

benefits of hardware accelerators. To provide familiar abstractions, we extend a C-

or Java-like language with domain-specific parallel control structures to support

common pattern-searching paradigms. We also develop compilation algorithms

to lower programs written in RAPID to an automata-based representation. The

6

language supports execution on many hardware platforms, including FPGAs,

GPUs, CPUs, and the Micron D480 Automata Processor, and this is achieved

through adapting existing automata-based architectures to work with the RAPID

language. Further, RAPID programs use code abstractions similar to functions

or procedures that allow for efficient reuse while mapping naturally to pattern-

matching problems and the underlying automata computational model.

1.2.3 Interactive Debugging for High-Level Languages and Accelerators

Next, we design an interactive debugger to help developers maintain code written

in high-level languages for hardware accelerators. Debuggers are a vital part of a

developer’s arsenal of maintenance tools [190]. Although debugging support for

CPUs is mature and fully featured (e.g., including standard tools [206], successful

technology transfer [24] and annual conferences [1]), the throughput of automata

processing applications on CPUs is typically orders of magnitude slower than

execution on hardware accelerators [166, 231], making CPUs too slow for effective

debugging of automata processing. Unfortunately, current debugging techniques

are limited or nonexistent for hardware accelerators. For example, debugging of

FPGA designs is typically conducted at extremely low levels of abstraction, such

as monitoring individual voltages of hardware elements in the device [21, 128,

219, 246].

We develop a high-throughput, interactive debugger for the RAPID program-

ming language. Our approach bridges the semantic gap between low-level hard-

7

ware signal inspection available on accelerators and the high levels of abstraction in

a programming language using finite automata as an intermediate representation.

We focus on the implementation of two key debugging operations: setting break-

points to stop program execution, and the inspection of program variables [190].

In addition to supporting a traditional notion of breakpoints in RAPID programs,

we also introduce a novel breakpoint scheme where breakpoints are set on streams

of data. We argue that this new form of breakpoint aids debugging of the class of

applications commonly represented in RAPID. To reduce latency in our system

(i.e., the time taken between executing a statement or expression in the program

and being able to view updated variable values), we also develop a combined

hardware accelerator and CPU-software simulation design. While we focus our

presentation on RAPID, the general techniques we develop for exposing state

from low-level accelerators to provide debugging support lay out a general path

for providing such capabilities for other accelerators and languages.

1.2.4 Architectural Support for Common Applications

Finally, we develop accelerator architectures to improve the performance of vital

applications, such as the parsing of tree-structured and recursively nested data as

well as the detection of security policy violations [38, 135]. To enable accelerated

parsing of data (e.g., data stored in common text-based serialization formats

such as XML and JSON), we develop ASPEN, an Accelerated in-SRAM Push-

down ENgine that implements a more expressive computational abstraction than

8

previous automata processors. For monitoring of security policies, we develop

Martini, a simplified automata processing architecture designed to store a Mem-

ory Address Representation To INfer Intrusions. Both leverage recent advances in

high-performance automata processing architectures and can be implemented by

repurposing a portion of the cache subsystem in a modern processor. By doing

so, we leverage existing, suitable hardware resources to minimize latency in data

processing pipelines and to gain access to internal CPU state.

To support parsing of data, we observe that a computational model more expres-

sive than finite automata—notably deterministic pushdown automata (DPDA)—is

necessary [199]. We thus develop a novel, five-stage architecture for execution of

DPDA. To support direct adaptation of a large class of legacy parsing applications,

we design a compiler that supports existing grammars used to define many com-

mon languages and introduce two key optimizations for improving the runtime

of parsers on ASPEN.

We restrict the expressive power in Martini to minimize hardware resources

while providing support for detection of security violations. Martini monitors

sequences of abstracted memory accesses to validate system behavior. This ap-

proach supports the rapid detection of a variety of low-level anomalous behaviors

and attacks not otherwise easily discernible at the software level. In particular,

our architecture is capable of detecting attacks that exploit internal CPU state,

such as Spectre and Meltdown vulnerabilities in Intel processors, discovered in

2018 and 2019 [130, 142].

9

1.3 methodology

In this dissertation, we develop programming models and maintenance tools

primarily suited for logic-based or spatial-reconfigurable accelerators, such as FPGAs

and the Micron D480 AP. Additionally, we develop new logic-based architectures

to support these models. In many cases, our models may also be used with more

traditional von Neumann architectures, such as CPUs and GPUs.

Our evaluation focuses primarily on measuring the extent to which our lan-

guages, tools, and architectures satisfy the criteria for successful programming

models: performance and scalability, ease of use, expressive power, and legacy

support (as described in Section 1.1). As our contributions and criteria are varied,

we employ a variety of evaluation approaches, including simulations, empirical

studies of real hardware and software, human subjects studies, and formal proofs.

In particular, we strive to align our individual methodologies with the metrics of

interest.

In general, we evaluate our prototypes using real-world applications. Whenever

possible, we strive to use existing benchmark suites and previously published

implementations, thereby admitting direct comparison with previous results. For

cases where no such benchmarks exist, we develop rigorous protocols for selecting

benchmark applications, often based on the mining of open-source repositories of

source code (e.g., GitHub).

10

1.4 summary and organization

To summarize, this dissertation makes the following contributions:

1. AutomataSynth, an automata synthesis system for porting legacy source

code to execute on hardware accelerators by learning functionally equivalent

automata.

2. A high-level programming language, RAPID, for accelerating sequential

pattern matching applications on hardware accelerators.

3. A high-throughput, interactive debugging system for RAPID programs for

maintenance tasks on FPGAs and the Micron D480 AP.

4. An in-cache accelerator and associated optimizing compilation algorithms

for execution of deterministic pushdown automata, such as those used for

parsing of serialized data formats.

5. An in-cache accelerator for monitoring memory accesses to detect secu-

rity policy violations, including many attacks not easily discernible at the

software level.

The remainder of this dissertation is organized in the following manner. In

Chapter 2, we provide relevant background material on the formalisms and

techniques used in the remainder of this dissertation, including finite automata

models, common automata-based accelerator designs, programming models, and

maintenance tools. Chapter 3 introduces our algorithm for porting legacy code

11

to hardware accelerators. In Chapter 4 we develop RAPID, a new programming

model for representing pattern-searching algorithms, and then develop a high-

throughput, interactive debugger for the language in Chapter 5. Next, we develop

new architectural designs to support the execution of deterministic pushdown

automata as well as detect security policy violations in Chapter 6. Finally, in

Chapter 7 we summarize our results and lay out proposed directions of future

exploration of related and emerging research challenges.

12

chapter 2

Background

P
rior to commencing our exploration of improving programming sup-

port for hardware accelerators, we introduce key concepts and for-

malisms used heavily throughout the remainder of the chapters. First,

we formally define finite automata, which we will use as an abstraction and

intermediate representation of computation (Section 2.1). Next, we describe com-

mon architectural approaches for accelerating automata computation (Section 2.2).

Then, we introduce several extant programming models related to our efforts

(Section 2.3) and describe debugging (a typical software maintenance task) with

a particular emphasis on hardware accelerators (Section 2.4). Finally, we con-

clude our presentation of background material with a discussion of two target

application areas (Section 2.5).

2.1 finite automata

We employ several automata-based models of computation to support performant

execution of code on hardware accelerators. In this subsection, we describe these

13

models, introduce notation used in this dissertation, and summarize relevant prop-

erties of each model. Readers are encouraged to refer to a theory of computation

reference (e.g., Sipser [199]) for a more thorough handling of these computational

models.

2.1.1 Deterministic and Non-Deterministic Finite Automata

Deterministic and non-deterministic finite automata (DFAs and NFAs) provide useful

models of computation for identifying patterns in a string of symbols. A DFA,

formally, is defined as a five-tuple, (Q, Σ, q0, δ, F), where Q is a finite set of states,

Σ is a finite alphabet, q0 ∈ Q is the initial state, δ : Q× Σ → Q is a transition

function, and F ⊆ Q is the set of accepting states. The finite alphabet defines the

allowable symbols within the input string. The transition function takes, as input,

the currently active state and a symbol, and the function returns a new active

state.

A DFA processes input data through the repeated application of the transition

function with each subsequent symbol in the input string. After the application

of the transition function, a single state within the DFA becomes active. If an

accepting state is active after all input characters have been processed, the DFA

accepts the input (i.e., the input matches the pattern encoded by the DFA).

14

q0start

q1

q2 q3

q4

a
a

a
a

c b

(a)

c

astart

astart a

a

b

(b)

Figure 2.1: A behaviorally equivalent NFA and homogeneous NFA (both accept exactly
aa, aab, and aaca). Note that there is a singleton start state in (a) (i.e., Qstart =
{q0}), but there are two start states in (b).

An NFA modifies this five-tuple to be (Q, Σ, Qstart, δ, F), where Qstart ⊆ Q is

a set of initial states and δ : 2Q × Σ → 2Q is the transition function.1 Note that

non-determinism in terms of finite state machines does not refer to stochastic

non-determinism, but rather refers to the transition function, which given a set

of active states and symbol, returns a new set of active states. This allows for

multiple transitions to occur for every symbol processed, effectively forming a

tree of computation. NFAs have the same representative power as DFAs but have

the advantage of being more spatially compact [199].

In this dissertation, we use an alternate form of DFAs and NFAs known as

homogeneous DFAs and NFAs. These automata restrict the possible transition rules

such that all incoming transitions to a state must occur on the same symbol.

Because all transitions to a state occur on the same symbol, we can label states

with symbols rather than labeling the transitions. We refer to these combined

1 NFAs traditionally support ε-transitions between a source and target state without consuming a
symbol. These are not present in our definition of an NFA. An ε-transition may be removed by
duplicating all incident transitions to the source state on the target state.

15

states and labels as state transition elements (STEs), following the nomenclature

adopted by Dlugosch et al. [75]. An STE accepts the symbols in its label, which

we refer to as the character class of the STE. Figure 2.1 depicts an NFA and a

behaviorally equivalent homogeneous NFA.

Additionally, we relax the definition of machine acceptance. Instead of accepting

if an accepting state is active at the end of input, whenever an accepting state is

active, we report the relative offset in the input stream. This allows for pattern-

recognition in streams of data symbols by supporting multiple matches in a

sequence of input data.

2.1.2 Deterministic Pushdown Automata

Pushdown automata (PDAs) extend basic finite automata by including a stack

memory structure. A PDA is represented by a 6-tuple, (Q, Σ, Γ, δ, S, F), where Γ is

the finite alphabet of the stack, which need not be the same as the input symbol

alphabet. The transition function, δ, is extended to consider stack operations. The

transition function for a PDA considers the current state, the input symbol, and

the top of the stack and returns a new state along with a stack operation (one

of: push a specified symbol, pop the top of the stack, or no operation). Note that

PDA are, by definition, non-deterministic, meaning that multiple transitions while

processing a single input character. Consequently, the state of the stack memory

16

q0start q1 q2

X,⊥/X⊥ Y,⊥/Y⊥
X, X/XX X, Y/XY
Y, X/YX Y, Y/YY

X, X/ε

Y, Y/ε

c,⊥/⊥
c, X/X
c, Y/Y

ε,⊥/⊥

(a)

X
∗

Pop 0
Push ‘X′

start

Y
∗

Pop 0
Push ‘Y′

start

c
∗

Pop 0
No Push

X
X

Pop 1
No Push

Y
Y

Pop 1
No Push

ε
⊥

Pop 0
No Push

(b)

Figure 2.2: A behaviorally equivalent DPDA (a) and hDPDA (b) for recognizing odd-
length palindromes with a given center character. For simplicity, we consider
strings formed from Σ = {X, Y} with center character c. Transition rules for
the DPDA (a) are written as “a, b/c”, where a is the matched input symbol,
b is the matched stack symbol, and c is the top of the stack after a push or ε
for a pop. Note that ⊥ is a special symbol to represent the bottom of the stack.
The hDPDA (b) lists (in order) the input symbol match (ε for no match), stack
symbol match (∗ is a wildcard match), number of symbols to pop, and symbol
to push.

may diverge. That is, the transition function induces a tree of computation in which

each branching point creates a duplicate copy of the stack memory.

In Chapter 6, we restrict attention to deterministic pushdown automata (DPDAs),

which limit the transition function to only allow a single transition for any valid

configuration of the DPDA and an input symbol. This restriction prevents stack

divergence, a property we leverage for efficient implementation in hardware.

Some transitions perform stack operations without considering the next input

symbol, and we refer to these transitions as epsilon- or ε-transitions. To maintain

17

determinism, all ε-transitions take place before transitions considering the next

input symbol.

Unlike basic finite automata, where non-deterministic and deterministic ma-

chines have the same representative power (any NFA has an equivalent DFA and

vice versa), DPDAs are strictly weaker than PDAs [199, Theorems 2.52 and 2.57].

DPDAs, however, are still powerful enough to parse most programming languages

and serialization formats (as described in Chapter 6) as well as other common

tasks, such as mining for frequent subtrees within a dataset [17].

For hardware efficiency, we extend the definition of homogeneous finite au-

tomata to DPDAs. In a homogeneous DPDA (hDPDA), all transitions to a state occur

on the same input character, stack comparison, and stack operation. Concretely,

the homogeneous property for DPDAs states that for any q, q′, p, p′ ∈ Q, σ, σ′ ∈ Σ,

γ, γ′ ∈ Γ, and op, op′ that are operations on the stack, if δ(q, σ, γ) = (p, op) and

δ(q′, σ′, γ′) = (p′, op′), then

p = p′ ⇒
(
σ = σ′ ∧ γ = γ′ ∧ op = op′

)
. (2.1)

This restriction on the transitions function does not limit computational power, but

may increase the number of states needed to represent a particular computation.

It is possible to characterize this increase as follows.

Claim 1. Given any DPDA A = (Q, Σ, Γ, δ, S, F), the number of states in an equivalent

hDPDA is bounded by O(|Σ||Q|2).

18

Proof. We consider the worst case: A is fully connected with |Σ| · |Q| incident

edges to each state and each of these incoming edges performs a different set of

input/stack matches and stack operations. Therefore, we must duplicate each node

|Σ|(|Q| − 1) times to ensure the homogeneity property as defined in Equation (2.1).

For any node q ∈ Q, we add |Σ| · |Q| copies of q to the equivalent hDPDA, one

node for each of the different input/stack operations on incident edges. Therefore,

there are at most |Σ| · |Q| · |Q| = |Σ||Q|2 vertices in the equivalent hDPDA.

In practice, DPDAs tend to have a fixed alphabet (e.g., ASCII) and are not

fully connected, resulting in less than quadratic growth. Even in the worst case,

hDPDAs do not significantly increase the number of states (cf. the exponential

NFA to DFA transformation[199, Theorem 1.39]). Figure 2.2 provides an example

of equivalent DPDA and hDPDA for odd-length palindromes with a known

middle character.

2.2 accelerating automata processing

As improvements in semiconductor technology have slowed while demand for

increased throughput for complex algorithms remains, there is a trend in hardware

design toward specialized accelerator architectures [176, 195]. For example, the

use of GPUs and Field-Programmable Gate Arrays (FPGAs) to accelerate general-

purpose computation has become commonplace [187]. A recent body of work

studies the acceleration of finite automata (NFA and DFA) processing across

19

ST
E 0

ST
E 1

ST
E 2

ST
E 3

ST
E

n−
4

ST
E

n−
3

ST
E

n−
2

ST
E

n−
1

8-Bit
Input

Symbol

R
ow

D
ec

od
er

Activation Bits

Reconfigurable Routing Matrix

Figure 2.3: Overview of AP architecture. STEs are stored in a memory array, and edges
are encoded in a reconfigurable routing matrix.

multiple architectures. Becchi et al. have developed a set of tools and algorithms

for efficient CPU-based automata processing [27]. Several regular-expression-

matching and DFA-processing ASIC designs have also been proposed [79, 91, 146,

212]. Some (e.g., [80]) incorporate regular expression matching into an extract-

transform-load pipeline, supporting a richer set of applications. In this work,

we focus on three architectures that accelerate automata processing applications:

20

the Micron D480 AP, commodity FPGAs, and the Cache Automaton. While we

focus on these particular architectures, automata processing engines have been

developed for other hardware platforms, including CPUs and GPUs [12, 111].

Readers may refer to Appendix A for more details.

2.2.1 Micron’s D480 AP

The AP is a hierarchical, memory-derived architecture for direct execution of

homogeneous non-deterministic finite automata developed by Dlugosch et al. at

Micron Technology (a large producer of computer memory) [75]. A homogeneous

state (and its transition symbols) is referred to as a State Transition Element (STE).

The processing core of the AP consists of a DRAM array and a hierarchical,

reconfigurable routing matrix, representing the STEs and edges respectively. The

architecture is depicted in Figure 2.3.

A single column of the memory array is used to represent an STE. For the NFA

given in Figure 2.1, six columns of memory are needed. The transition symbol(s)

of an STE are encoded in the rows of the memory array; each row represents

a different symbol in the alphabet. At runtime, a decoded input symbol drives

a single row in the DRAM, and the architecture simultaneously computes the

subset of STEs that match the input. STEs that match and are active (determined

by an additional activation bit stored with each column) generate an output signal

that passes through the reconfigurable routing matrix to set the activation bits of

downstream STEs.

21

The ability to record locations in input data where patterns are matched is

supported by connecting accepting STEs to special reporting elements. When an

accepting STE activates, the reporting element generates a report, which encodes

information about which STE generated the signal and the offset in the data stream

where the report was made (as defined in Section 2.1.1). Reports are collected on

the AP through a series of buffers and caches before being copied back to the

host system (i.e., the AP supports an offload model similar to GPU programming).

Because the AP allows for the execution of many NFAs in parallel and because

a single NFA may contain multiple reporting STEs, Dlugosch et al. extend the

definition of an NFA to contain a labeling function that maps nodes to unique

labels. We represent labeled NFAs as (Q, Σ, δ, S, F, id), where id is the labeling

function. In Chapter 5, we leverage this mapping information to lift hardware

runtime state to the semantics of the user-level program.

In addition to STEs, there may be additional special purpose elements. For

example, the current generation AP contains saturating counters and combina-

tional logic. These elements connect to the STEs via transition edges and allow for

aggregation and thresholding of transitions between STEs. While these elements

do not necessarily add any expressive power over traditional NFAs, the use of

counters and logic often reduces the overall size of automata. This allows the

AP architecture to be flexible. Future implementations might contain additional

special purpose elements. In Chapter 4, we use these elements to aid in generating

efficient automata from a high-level programming language.

22

2.2.2 Cache Automaton

In addition to the DRAM-based AP, a recent research effort by Subramaniyan et

al. developed an SRAM-based automata processor, known as the Cache Automaton

(CA) [209]. The CA repurposes SRAM-based memory arrays typically found in the

Last Level Cache (LLC) [81] of modern CPUs to perform automata computations.

The theoretical underpinnings of the design closely mirror those of the AP: STEs

are stored in arrays and are connected with a reconfigurable routing matrix

(see Figure 2.3). Subramaniyan et al. note two primary advantages of a cache-

based design. First, SRAM allows for higher clock frequencies than DRAM (i.e.,

one iteration of state updating can be made faster in a cache). Second, caches

are integrated on a processor die, which typically implies improved overall

performance due to improved and optimized logic and interconnect performance.

However, the disadvantage of embedding the CA in the cache of a processor is

capacity: the CA supports approximately an order of magnitude fewer STEs than

the AP in practice.

Subramaniyan et al. introduced several novel components to improve perfor-

mance and space efficiency and support the execution of automata in cache. These

include: (1) a sense-amplifier2 cycling technique to more quickly read all columns

of data in an SRAM array, (2) an eight-transistor-based SRAM array-based imple-

mentation for a compact and programmable switching architecture for the routing

2 A sense-amplifier is the electrical component in a memory system responsible for detecting the bits
being read out of a memory array and converting the voltages to match the rest of the circuit [97].

23

matrix,3 and (3) a hierarchical switch and wire-routing topology leveraging the

existing design of LLC cache ways4 to support tens of thousands of states in an

NFA.

In Chapter 6, we leverage many of the optimizations proposed by Subramaniyan

et al. in the development of two automata-derived architectures.

2.2.3 Field-Programmable Gate Arrays

Field-Programmable Gate Arrays (FPGAs) are reconfigurable integrated circuits

containing both combinational logic (e.g., logical gates) and memory [172]. These

sub-units are typically laid out in a regular, repeated pattern, often referred to

as a fabric, of reconfigurable look-up tables (LUTs), flip-flops (FFs), and block

RAMs (BRAMs). LUTs can be configured to compute arbitrary logic functions and

are connected together with memory using a reconfigurable routing matrix. This

architectural model allows FPGAs to dynamically form arbitrary circuits, which

can be useful for prototyping logic circuits.

FPGAs have been in use for decades and were introduced as an improvement

over earlier programmable devices, such as programmable array logic (PAL), pro-

grammable logic devices (PLDs), erasable programmable logic devices (EPLDs) [25].

Their use has been varied over the years, including rapid system prototyping,

3 SRAM arrays traditionally use six transistors to store one bit [198]. Eight transistors may be used
to increase redundancy and improve signals, and this property enables the reuse as a switching
architecture.

4 Last Level Caches are typically hierarchically subdivided into manageable units. The first level of
subdivisions are referred to as slices [81]. Slices are further subdivided into ways.

24

communications processors, digital signal processing, industrial control systems,

wearables, fully custom computing machines, and dynamically reconfigurable

systems [180]. There have also been efforts to combine traditional CPUs with

FPGAs, which can take many forms. For example, some FPGAs include processing

units as discrete components in the fabric (i.e., hard cores) [228]. More common

are soft cores, which implement a traditional microprocessor using combinational

logic and memory (e.g., Xilinx MicroBlaze [154], ARM Cortex-M1 [64], and the

Oracle OpenSPARC T1 [167]). Finally, there is an effort to manufacture hybrid

devices that combine CPUs and FPGAs into a single package [107].

Prior work has investigated implementing finite automata processing on FP-

GAs [28, 119, 196, 204, 241, 256]. Because automata can be thought of as circuits—

where each state transition element is a specialized logic gate—they can be

naturally implemented in an FPGA fabric. Recently Xie et al. combined these

recent advances with optimized input/output circuitry to support integration of

high-performance automata processing into data processing pipelines [252]. The

aptly named Reconfigurable Engine for Automata Processing (REAPR) config-

ures an FPGA to operate very similarly to the AP-style processing model (see

Section 2.2). LUTs are used in place of columns of memory to determine input

symbol matches each clock cycle (logically, one LUT is assigned to each STE).

Flip-flops are then used to store the activation bits for STEs, and transition signals

are propagated through the FPGA’s reconfigurable routing matrix.

Although FPGAs are a natural and successful fit for acceleration of automata

processing and have been the subject of significant study [28, 119, 252], the ability

25

to port software to FPGAs while maintaining performance remains an open

research problem [268]. In this dissertation, we leverage the recent advances in

automata processing to support porting existing software to FPGAs (Chapter 3)

as well as maintaining the performance of design choices across architectures

(Chapter 4).

2.3 programming models

Next, we the consider current landscape of relevant programming models. We

begin by introducing models most relevant for automata processing and hardware-

accelerator-based computation. We also briefly discuss programming models that

we use as springboards for porting legacy code to accelerators in Chapter 3.

2.3.1 Automata Representations and Regular Expressions

The most direct programming model for automata processing is to develop DFAs

and NFAs. Traditionally, NFAs are often represented as a directed graph with

states as vertices and the transition function encoded as edges. While capable of

specifying search patterns, NFAs are difficult to write and maintain. Text-based

NFA formats, such as the XML-based Automata Network Markup Language

(ANML) and Becchi’s transition table representation [27], are extremely verbose.

For example, a toy example for measuring the pairwise difference of characters

between an input string and a fixed five-character string requires 62 lines of

26

ANML to represent [155]. Maintenance tasks on this code are also cumbersome:

changing such an automaton to compare against a string of length 12 requires

modification of 65% of the code. NFAs can be challenging and tedious to write

correctly, especially for developers lacking familiarity with automata theory. In

research areas such as program verification, the task of specifying automata is

often automated [7].

Regular expressions are another common option for representing a search

pattern as matched by an NFA or DFA and are defined recursively by Sipser using

the following rules [199]:

1. a for some a in the alphabet Σ (i.e., match a single character),

2. ε (i.e., match the empty string),

3. ∅ (i.e., match nothing),

4. (R1 ∪ R2), where R1 and R2 are regular expressions (i.e., match the union of

R1 and R2),

5. (R1R2), where R1 and R2 are regular expressions (i.e., match the concatenation

of R1 and R2), and

6. (R∗1), where R1 is a regular expression (i.e., match the Kleene closure, which

is zero or more occurrences of R1).

We will use this definition in Chapter 4 to demonstrate the expressive power of

the RAPID language. Regular expressions suffer from similar maintainability chal-

lenges as explicit automata representations. For many of our target applications,

27

such as motif searches, particle tracking, and rule mining, the regular expression

representing the search is non-intuitive and may simply be an exhaustive enu-

meration of all possible strings that should be matched (much in the same way

an overfit machine learning classifier might directly encode a lookup table of the

training data [131]). Additionally, programming of regular expressions can be

extremely error-prone due to variations in regular expression syntax, which leads

to high rates of runtime exceptions [205].

Therefore, both of these programming model fail to meet our required ease of

use criterion (see Section 1.1).

2.3.2 Languages for Streaming Applications

Streaming applications process a sequence of data received in real time. Common

examples include radio receivers and software routers. Automata processing can

be viewed as a streaming application because input symbols are processed in real

time to update the automaton’s active states.

Languages for streaming applications have been studied in great detail. StreamIt [215],

an exemplar of this class of languages, provides structures for stream pipelining,

splitting and joining, and feedback loops. StreamIt objects may peek and pop

from the input stream, store input, and perform computations before outputting a

result. Automata processing, however, does not readily admit this computational

model. Finite automata have no inherent memory (see Section 2.1.1) and cannot

generally peek at the input stream. Many of the operations allowed by StreamIt

28

are thus not applicable in our domain, and it is not evident how to extend the

StreamIt model to describe complex automata nor non-deterministic execution. Ul-

timately, StreamIt targets a different computational abstraction, and is not directly

applicable.

2.3.3 Non-Deterministic Languages

Non-determinism is a useful formalism for identifying patterns in parallel within

a data stream. In a state machine, non-determinism arises when multiple states

are active simultaneously, allowing for parallel exploration of input data. Several

existing languages contain non-deterministic control structures to facilitate these

types of operations.

Dijkstra’s Guarded Command Language [74] introduces non-deterministic

alternative and repetitive constructs. These constructs are predicated with a

Boolean guard that must be true for the encapsulated statements to execute. The

alternative construct chooses arbitrarily one command with a satisfied guard

and executes it. In the repetitive construct, the program loops, choosing one

command with a satisfied guard to execute, until no guards are satisfied. Rather

than proposing a concrete syntax, the Guarded Command Language presents

guiding formalisms for supporting non-determinism. We develop a programming

model that provides similar constructs in Chapter 4, with a particular focus on

identifying patterns in streams of data.

29

An additional non-deterministic programming language is Alma-0 [19], a declar-

ative extension of Modula-2. Alma-0 supports the use of Boolean expressions

as statements, an ORELSE statement allowing for execution of multiple paths

through the program, and a SOME statement that is the non-deterministic dual of

a traditional for-loop. In Alma-0, ORELSE and SOME are defined via backtracking.

Execution is single threaded: when an ORELSE statement or a SOME statement is

encountered, the program will choose a single option to execute. If an explo-

ration fails, the program backtracks to the last choice point, restoring all program

state, and attempts a different option. These additional constructs provide natural

extensions to traditional languages to support parallel processing of data and

thus satisfy our stated requirement for ease of use. In Chapter 4 we introduce a

programming model that leverages these constructs for abstractly representing

automata computation.

2.3.4 Programming Models for Portability

The holy grail of programming for heterogeneous environments is to “write

once and run anywhere.” Research into portability dates back decades and has

its origins in attempts to support multiple mainframe computer architectures.

For example, the Parallel Programming Language (PPL) was a strongly typed

language that abstracted away from machine-dependent types to support multi-

ple architectural targets [236]. More recently, the focus has been on supporting

portability across different coprocessors.

30

The OpenCL language boasts support for CPUs, GPUs, FPGAs, and other mi-

croprocessors [208]. The language provides an abstract notion of computational

devices and processing elements, which allow for task- and data-parallel appli-

cations to be executed in heterogeneous environments. While the same code can

be run on multiple types of hardware, code written for one architecture rarely

performs well on another architecture. To execute efficiently on both GPUs and

FPGAs, for example, a developer must often write two copies of the application,

crafting the code to make use of the particular strengths of each platform. Our

goal in this dissertation is to avoid this rewriting step, allowing the developer to

write an application using a computational abstraction that performs well across

architectures.

High-level constructs, such as Map-Reduce, have been demonstrated to pro-

vide portability across architectures [102, 258]. We also make use of high-level

constructs, but constructs in our language are more specific to sequential pattern

identification tasks.

2.3.5 Languages for Programming FPGAs

Adopting hardware accelerators into existing application workflows requires

porting code to these new programming models. Unfortunately, porting legacy

code remains difficult. The primary programming model for FPGAs remains

Hardware Description Languages (HDLs) such as Verilog and VHDL [173, 216].

HDLs have a level of abstraction akin to assembly-level development on traditional

31

CPU architectures, allowing for the specification of circuits by specifying logical

formulas and their connections to memory and each other. While these hardware

solutions provide high throughputs, these languages and their abstractions are

not a part of computer science curricula. For example, the Joint Task Force on

Computing Curricula at the Association of Computing Machinery (ACM) and

IEEE Computer Society recommend in its 2013 curriculum that a computer science

degree program includes only three lecture hours of “digital logic and digital

systems” [116]. HDLs are listed as a topic, but none of the learning outcomes

specify familiarity with HDLs—let alone competency. Therefore, we should not

expect software developers entering the workforce to have the necessary skills to

port code to HDLs.

High-Level Synthesis (HLS) allows development for FPGAs at a much higher level

of abstraction than HDLs [161]. Indeed, HLS has been demonstrated to reduce

the time to develop FPGA designs [134]. Most tools support programs written

in C-like languages, suggesting that HLS would be amenable for adapting and

accelerating legacy code bases. However, the performance of designs constructed

using HLS can be unimpressive, requiring significant optimization [223, 268].

HLS tools may also not support all features of the language (e.g., dynamic data

structures), meaning that legacy code must be refactored before the approach is

applicable.

In Chapter 3, we present an alternative to HLS that decouples the existing

design and implementation of legacy code from the final design produced for an

FPGA. In doing so, we avoid many of the limitations of HLS techniques.

32

2.3.6 State Machine Learning Algorithms

In this dissertation, we employ state machining learning algorithms as an alterna-

tive to HLS. We briefly summarize learning of state machines here, detailing the

most relevant instance in Section 3.1.1. These algorithms are a subset of model learn-

ing in learning theory and have been the subject of study for several decades [9,

207, 225, 269]. The most common approach is to use active learning in which the

model is learned by performing experiments (tests) on the software or system to

be learned. State machine learning has been applied to the domains of internet

banking [2], network protocols [72, 82], legacy systems [148, 189], and describing

machine learning classifiers [245].

Most efforts have focused on developing suitable algorithms for learning finite

automata [10, 41]. More recent advances simplify the internal data structures

of the algorithms, reduce the number of tests necessary to learn a model, or

combinations thereof [113, 114, 123, 179]. Learning an equivalent state machine

from software remains challenging, and most approaches employ some form of

approximation [10, 137].

In Chapter 3, we apply this body of model learning research to the problem of

adapting legacy source code for efficient execution on hardware accelerators. Our

approach attempts to learn a model that is fully equivalent to the original program

using software verification techniques but may also produce approximate results

in some situations.

33

2.3.7 Program Synthesis

Program synthesis is a holistic term for automatically generating software from

some input description. Recent efforts have focused on different applications

of synthesis, such as sketching [6, 200, 201], programming by example [94],

and automated program repair [152, 164]. Many of these approaches employ

counterexample-guided inductive synthesis (CEGIS) to produce a final solution [201].

CEGIS is an iterative technique that constructs candidate solutions that are tested

(typically via formal methods) for equivalence. A counterexample, or model of

undesirable behavior, is provided if the candidate solution is incorrect, and begins

the next iteration of synthesis. We note that CEGIS is largely equivalent to the

techniques used in the learning theory community for model learning.

A related body of research focuses on extracting program behavior from legacy

code for acceleration using domain-specific languages (DSLs), an approach referred

to as verified lifting. Examples, include extracting stencil computations [118, 153],

database queries [55], and sparse and dense linear algebra calculations [89]. By

targeting DSLs, verified lifting can leverage known properties of the given problem

domain to aid extraction and acceleration. For generality in this dissertation, we

intentionally limit the domain-specific assumptions leveraged by our approach.

34

2.4 maintenance tools

Software maintenance tasks are varied and account for a significant proportion

of developer effort [174, 191]. In this section, we describe efforts to support and

evaluate the common maintenance task of debugging. Further, we introduce the

maintenance task of verification, which we leverage in a framework for porting

legacy code to hardware accelerators.

2.4.1 Debugging on Hardware Accelerators

In this dissertation, we focus on the task of debugging, including aiding fault

localization. Fault localization is an aspect of debugging that attempts to implicate

particular statements or expressions as the likely source of undesirable behav-

ior [259]. The development of debugging tools has a lengthy history [96, 136, 188,

262], and software debuggers are commonplace in development toolchains [149].

Ungar et al. argue that immediacy is important for debugging tasks and developed

a step-through debugger [224]. There has also been significant effort devoted to

improving the efficiency of debugging tools, such as quickly transferring control

when a breakpoint is reached [124] and efficiently supporting large numbers

of watchpoints [265]. These approaches provide debugging support for general

purpose processors and languages. The technique presented in this work is in

the same spirit: we provide immediacy for debugging big data pattern-matching

35

applications through low-overhead breakpoints on specialized hardware and

interactive, step-through program inspection.

Previous research has considered debugging for specialized hardware, including

support for distributed sensor networks [203] and energy-harvesting systems [61].

Hou et al. developed a debugger for general-purpose GPU programs which

leverages automatic dataflow recording to allow users to analyze errors after

program execution [104]. Similarly, there are approaches for debugging FPGA

applications [8, 92]; however, these techniques typically focus on inspection of

the underlying hardware description, rather than programs written in high-level

languages. Debugging of high-level synthesis (HLS) designs has focused on moni-

toring trace registers and using record-replay techniques to expose program state

for segments of single-threaded applications [90, 159]. Our work further develops

the area of debugging for specialized processors by presenting a technique for

inspecting source-level program state during program execution on highly parallel

automata processing engines.

2.4.2 Understanding the Importance of Debugging

Human studies have shed light on debugging and the role of automated tools.

Weiser found that programmers inspect “program slices” when debugging, which

may not be textually contiguous but follow data and control flow [244]. Ko and

Myers demonstrated that their debugging tool, Whyline, allowed study partic-

ipants to perform debugging tasks more quickly [129]. Fry and Weimer found

36

that localization accuracy is not uniform across various bug types [86]. Romero

et al. found that debugging performance is related to balanced use of available

information in programming systems that provide multiple representations of

state [182]. Our results in Chapter 5 complement these findings by demonstrating

our debugging system improves fault localization accuracy for the domain of

pattern-matching automata processing applications.

2.4.3 Software Verification

Software maintenance encompasses more than just debugging, including activities

such as validating that a program provides pre-specified functionality and meets

pre-defined requirements.

Program verifiers and software model checkers prove that a program adheres

to a specification or produce counterexamples that violate the specification [35].

These tools typically interleave the control flow graph (CFG) and a specification

automaton and explore the resulting graph to determine if any path leads to an

error state in the specification.

There has been significant research and engineering effort applied to making

these techniques scalable and applicable to real applications [34, 60, 151]. Of

particular relevance here are bounded or iterative techniques that address recursive

control flow [37, 115], which typically unroll loops a fixed number of times before

checking if an error state is reachable in the straight-line portion of the CFG.

Most closely related to our work has been the use of bounded model checking to

37

verify string-processing web applications; however, this work often focused on

secure information flow rather than constraints over strings [106]. There are also

theoretical results on the decidability of straight-line programs on strings, which

naturally arise in bounded model checking [140].

These techniques have been employed to verify operating system drivers [24],

validating communication protocols [82], and finding bugs in concurrent data

structures [169], among others. In Chapter 3, we combine software verification

with model learning techniques to port legacy code to FPGAs.

2.5 applications benefiting from acceleration

The principle of hardware/software co-design suggests that choices made when

designing hardware should be influenced by the target applications. In this section,

we introduce two application domains, data parsing and computer security, that

we use as motivation for proposing new, automata-based accelerator architectures

in Chapter 6.

2.5.1 Parsing of XML Files

As data continues to be collected and processed at ever-increasing rates, it is

paramount that software be able to efficiently read stored data. Such data is often

stored in structured text files, often formatted in Extensible Markup Language (XML)

or JavaScript Object Notation (JSON) [77, 98].

38

Parsing, or syntactic analysis, is the process of validating and reconstructing

tree (nested) data structures from a sequence of input tokens [4]. In natural

language, this process relates to validating that a sequence of words forms a valid

sentence structure, and for a programming language, a parser will verify that

a statement has the correct form (e.g., a conditional in C contains the correct

keywords, expressions, and statements in the correct order). In this dissertation,

we focus primarily on the task of parsing XML files, which is common to many

applications [135, 145]. Parsing XML produces a special tree data structure called

the Document Object Model (DOM) [98].

Parsers are typically implemented as the second stage of a larger pipeline [190].

In the first stage, a lexer, tokenizer, or scanner reads raw data and produces a

list of tokens (i.e., a lexer converts a stream of characters into a stream of words),

which are passed to the parser. The parser produces a tree from these input

tokens, which can be further validated and processed by later pipeline stages.

For example, an XML parser will validate that tags are properly nested, but a

later stage in the pipeline performs semantic checks, such as verifying that text in

opening and closing tags match.

Conventional software-based parsers exhibit complex input-dependent data

and control flow patterns resulting in poor performance when executed on CPUs.

Figure 2.4 (b) shows two state-of-the-art open-source XML parsers, Expat [58] and

Xerces [18], which can require approximately 6–25 branch instructions to process

a single byte of input depending on the markup density of the input XML file (i.e.,

ratio of syntactic markup to document size). These overheads result from nested

39

0

5

10

15

20

25

30

35

40

45

50

ebay (Low) psd7003 (Med) soap (High)

C
P

U
 c

yc
le

s
p

e
r

b
yt

e
Expat Xerces

0

5

10

15

20

25

30

ebay (Low) psd7003 (Med) soap (High)

B
ra

n
ch

 In
st

ru
ct

io
n

s
p

e
r

b
yt

e

Expat Xerces

(a) (b)

Figure 2.4: Conventional parser performance. (a) CPU cycles per byte. (b) Branch instruc-
tions per byte

switch-case statements that determine the next parsing state. Furthermore, as the

parser alternates between markup processing and processing of variable-length

content (e.g., free-form strings), there is little data reuse, leading to high cache

miss rates (approximately 100 L1 caches misses per kB for Xerces). As a result of

both high branch misprediction and cache miss rates, software parsers take about

12–45 CPU cycles to parse a single input byte as depicted in Figure 2.4 (a). In

Chapter 6, we demonstrate that is possible to avoid these overheads by applying

principles from in-memory automata processing architectures (Section 2.2) to

develop an architecture that supports DPDA computation (Section 2.1.2).

2.5.2 Architectural Side-Channel Attacks

The security of software and hardware systems is the subject of much study [38].

Side-channel attacks are a particularly insidious form of security vulnerabilities

40

in a system. Side-channel attacks steal information from a system indirectly by

monitoring properties of the system, such as power dissipation, high-frequency

sounds, or timing to infer program state and data [44, 59, 88]. Of particular interest

in recent years have been so-called architectural side-channel attacks, which leverage

properties of—or design flaws in—commodity computational hardware [242].

Architectural side-channel attacks, such as Spectre [130] and Meltdown [142],

use cache timing to leak information in memory. Such attacks can exploit side

effects of branch prediction and speculative execution to read or affect arbitrary

memory locations. The key problem is that changes to the state of the cache persist

even if the CPU discards instructions that are speculatively executed. As a result,

a malicious program can execute a controlled sequence of memory accesses and

then leverage its knowledge of the cache structure to read arbitrary locations in

memory that are cached by other programs. In addition to Spectre and Meltdown,

other cache side-channel attacks include: Foreshadow [227], Flush+Reload [257],

Evict+Time [168], Prime+Probe [143], and Nailgun [165]. Since this class of attacks

relies on hardware vulnerabilities, they are OS-independent and challenging to

patch efficiently in software.

To defend against Spectre and Meltdown, CPU speculation features can be

disabled, but the performance impact is high [150, 237] and doing so does not

address other extant hardware vulnerabilities. Further, novel microarchitecture

redesigns are non-trivial and costly in terms of time and resources and may expose

new—or overlook existing—hardware vulnerabilities.

41

In Chapter 6, we develop a custom processor unit for accelerating the detec-

tion of side-channel attacks, providing additional system security with minimal

overhead.

2.5.3 Runtime Intrusion Detection Systems

Broadly, an intrusion detection system (IDS) is tasked with classifying a sequence of

inputs as being normal or anomalous according to some detection technique [139].

Anomaly-based approaches have the advantage of being able to detect zero-day

attacks (i.e., previously unreleased or undocumented attacks), and they can be

customized to particular operating environments, IDS efforts most relevant to this

dissertation use n-grams of system calls to detect misbehaving Unix processes [84,

202]. Systems calls are special functions that allow a program to interact with the

operating system [45]. Forrest et al. found that modeling sequences of these calls

could accurately detect software-level attacks. Unfortunately, system calls do no

capture the low-level behavior exploited by many hardware side-channel attacks

(see Section 2.5.2), and can therefore not be directly applied our use case in this

dissertation.

A hardware-based malware detector (HMD) monitors micro-architectural traces and

raises alerts about anomalous behavior (e.g., [122]). HMDs can detect side-channel

attacks that leave no system call traces and can potentially be secured against a

compromised OS [263]. For example, Demme et al. used performance counters

as the data source for an HMD [73], though there are concerns about using

42

performance counters in this domain [69]. Similarly, Wei et al. proposed a power

anomaly detection system for embedded systems which can detect side-channel

attacks, including Spectre, with high accuracy [243]. However, this method targets

embedded systems that run fixed jobs with consistent behavior.

In Chapter 6, we combine the concepts of n-gram-based monitoring with HMDs

to detect attacks (including Spectre and Meltdown) with minimal system overhead.

We design a microarchitecture that monitors n-grams of memory access sequences,

which we model as finite automata.

2.6 chapter summary

We introduce several key concepts and describe how they apply to the work

presented in this dissertation. We describe several theoretical models from au-

tomata theory. Then, we consider several architectural approaches to accelerating

their execution. Next, we explore various programming models and describe

their relationship with automata-based computation. We introduce concepts from

various software maintenance tools, which we both implement and leverage in

this dissertation. Finally, we describe two application domains (security and data

parsing) that we use as case studies motivating further architectural development.

In the next chapter, we introduce a new programming model to help developers

port existing code to run on hardware accelerators.

43

chapter 3

Acceleration of Legacy String Functions

A
s hardware accelerators begin to be adopted in industry it will be nec-

essary to port extant software to these new platforms. In Section 2.3.5,

we described HLS, the state-of-the-art approach for porting legacy

code to FPGAs, which unfortunately lacks support for some language features,

and typically still requires significant refactoring to produce performant FPGA

code.

In this chapter, we present AutomataSynth,1 a new approach for executing

code (including legacy programs and automata computations) on FPGAs and

other hardware accelerators. Unlike HLS, which statically analyzes a program

to produce a hardware design, AutomataSynth both dynamically observes and

statically analyzes program behavior to synthesize a functionally equivalent hard-

ware design. Our approach is based on several key insights. First, state machines

provide an abstraction that has successfully accelerated applications across many

domains [183–186, 220, 221, 232, 238, 240, 267] and admit efficient implementations

in hardware [75, 146, 252], but typically require rewriting applications. Second,

1 https://github.com/kevinaangstadt/automata-synth

44

https://github.com/kevinaangstadt/automata-synth

there is an entire body of work on query-based learning of state machines (e.g.,

see Angluin for a classic survey of computational learning theory [11]), but these

algorithms commonly rely on unrealistic oracle assumptions. Third, we observe

that the combination of software model checking (e.g., [33, 35]) and recent ad-

vances in string decision procedures (e.g., [71, 120, 217, 222]) can be used in place

of oracles for certain classes of legacy code kernels, such as those that recognize

regular languages.

While AutomataSynth is based on a general approach for synthesizing hard-

ware designs from high-level source code, we focus in this chapter specifically

on synthesizing Boolean string kernels (functions that return true or false given

a string). We accelerate these string kernels using automata processing, which

requires representing functions as finite automata [75, 146, 252]. We demonstrate

how software model checking, using a novel combination of bounded model

checking with incremental loop unrolling augmented with string decision proce-

dures, can answer oracle queries required by Angluin-style learning algorithms,

resulting in a framework to iteratively infer automata corresponding to legacy

kernels.

We focus our evaluation of AutomataSynth on scalability and legacy support.

As such, we develop a benchmark suite of string kernels mined from public

repositories on GitHub and measure the correctness of the automata generated by

AutomataSynth as well as the time required to synthesize and size of the result-

ing automata. Our evaluation demonstrates that our approach is viable for small

functions and exposes new opportunities for improving current-generation tools.

45

We identify four key challenges associated with using state-of-the-art methods

to compile legacy kernels to FPGAs and suggest paths forward for addressing

current limitations.

In summary, we present the following scientific contributions in this chapter:

• AutomataSynth, a framework for accelerating legacy string kernels by

learning equivalent state machines. We extend an Angluin-style learning

algorithm to use a combination of iterative bounded software model checking

and string decision procedures to answer oracle queries.

• A proof that AutomataSynth terminates and is correct (i.e., relatively

complete with respect to the underlying model checker) for kernels that

recognize regular languages. The proof leverages the minimality of machines

learned by L* and the Pumping Lemma for regular languages.

• An empirical evaluation of AutomataSynth on 18 indicative kernels mined

from public GitHub repositories. We learn 13 exactly equivalent models and

2 near approximations.

In the remainder of this chapter, we introduce our formulation of the state

machining learning problem in Section 3.1. Then we detail a composition of

formal methods and software verification techniques for solving this problem and

prove, formally, the correctness of our approach in Section 3.2. Next, we describe

our experimental methodology in Section 3.3 present an empirical evaluation of

AutomataSynth in Section 3.4 before finally concluding with a discussion of

open challenges for learning-based approaches in Section 3.5.

46

3.1 learning state machines from legacy code

We present AutomataSynth, a framework for learning functional behavior mod-

els for off-the-shelf, legacy code implementing regular languages and synthesizing

hardware descriptions from those models. Our approach extends Angluin’s L*

algorithm [10] by (1) using bounded software model checking with incremental

unrolling to implement one of its assumptions, (2) using software testing to im-

plement another of its assumptions, and (3) transforming learned models into

homogeneous DFAs for hardware synthesis.

3.1.1 L* Primer

Dana Angluin’s foundational L* algorithm was popularized in 1987 [10]. Because

many of our framework decisions (such as how to implement its required queries

and counterexamples in a legacy source code context) and results (such as cor-

rectness and termination arguments) depend on the steps and invariants of her

algorithm, we sketch it here in some detail. We claim no novelty in this subsection

and readers familiar with L* can proceed to Section 3.1.2.

At its core, the L* algorithm relies on a minimally adequate teacher (MAT) to

answer two kinds of queries about a held-out language, L. First, the MAT must

answer membership queries, yielding a Boolean value indicating if the queried

string is a member of L. Second, the MAT must answer conjecture or termination

47

queries.2 Given a candidate regular language A, typically expressed as a finite

state machine, the MAT responds with true if A = L or responds with a coun-

terexample string for which A and L differ. (Note that automata learning is used in

applications where L is not a DFA, and thus this query is typically not resolved

by standard DFA equivalence checking.)

These queries are used to construct an observation table that can be transformed

directly into a DFA. This table may be defined as a 3-tuple, (S, E, T), where S is

a nonempty, finite, prefix-closed3 set of strings over Σ; E is a nonempty, finite,

suffix-closed set of strings over Σ; and T is a function mapping ((S ∪ S · Σ) · E) to

{true, false}. (S, E, T) may be visualized as a two-dimensional array where rows

are indexed by a value s ∈ S ·Σ, columns are indexed by a value e ∈ E, and entries

are equal to T(s · e). For ease of notation, Angluin defines row(s) to be a finite

function, f , mapping values from E to {true, false} defined as f (e) = T(s · e).

Informally, row(s) denotes the values in a particular row of the observation table.

An observation table must be both closed and consistent before a DFA may

be correctly constructed. A table is closed if for every t ∈ S · Σ, there exists an

s ∈ S such that row(t) = row(s). A table is consistent if, for all s1, s2 ∈ S where

row(s1) = row(s2), row(s1 · a) = row(s2 · a) for all a ∈ Σ. These properties ensure

that there is a valid transition out of each state in the DFA (closed) and that

transitions on any character remain the same regardless of the characters already

2 These are also called equivalence queries, but we avoid this term to prevent confusion with similar
uses of the term in software verification.

3 A set is prefix-closed if ∀s ∈ S, every prefix of s is also a member of S. Suffix-closure is defined
similarly.

48

processed (consistent). Given a closed and consistent observation table, a DFA

over the alphabet Σ may be constructed as follows:

Q = {row(s) | s ∈ S} ,

q0 = row(ε),

F = {row(s) | s ∈ S ∧ T(s) = true} ,

δ(row(s), a) = row(s · a).

Each unique row in the observation table becomes a state in the candidate au-

tomaton, and outgoing transitions from a state are defined by the row indexed by

the current row’s prefix concatenated with the transition character.

Pseudocode for the L* algorithm is provided in Algorithm 3.1. A closed, con-

sistent observation table is constructed using membership queries. Then, the

table is transformed into a candidate automaton for a termination query. If the

MAT responds with a counterexample, the counterexample and its prefixes are

added to the observation table. The process repeats until the MAT responds to a

termination query in the affirmative. The final automaton is the learned language.

3.1.2 AutomataSynth Problem Description

In this subsection, we formalize the problem of learning a state machine from a

legacy string kernel.

49

Algorithm 3.1: Angluin’s L* Learner [10]

Data: MAT for held-out language, L
Result: A DFA, M, representing the held-out language, L
Initialize S and E to {ε};
Ask membership queries for ε and each a ∈ Σ;
Construct initial observation table (S, E, T);
repeat

while (S, E, T) is not closed or not consistent do
if (S, E, T) is not consistent then

Find s1, s2 ∈ S, a ∈ Σ, e ∈ E such that
row(s1) = row(s2) ∧ T(s1 · a · e) 6= T(s2 · a · e);

Add a · e to E;
Extend T to include the new suffix with membership queries;

end
if (S, E, T) is not closed then

Find s1 ∈ S, a ∈ Σ such that row(s1 · a) 6= row(s) for all s ∈ Σ;
Add s1 · a to S;
Extend T to include the new prefix with membership queries;

end
end
Construct DFA, M from (S, E, T);
Make termination query with M;
if MAT responds with counterexample t then

Add t and all prefixes to S;
Extend T to include the new prefixes using membership queries;

end
until the MAT responds with true to the termination check on M;
return DFA M

AutomataSynth operates on a function that takes one string argument and

returns a Boolean value:

kernel : string -> bool

We assume that the source code for this function is provided and that the function

halts and returns a value on all inputs (i.e., kernel is an algorithm). If kernel

recognizes a regular language, AutomataSynth returns a state machine, M, with

equivalent behavior to kernel. That is, for all s ∈ Σ∗, M(s) = kernel(s). For

runs which exceed a resource budget or expose incompleteness in the underlying

50

theorem prover (including functions that are non-regular), our prototype imple-

mentation alerts and provides approximate equivalence, where M(s) = kernel(s)

when the length of s is less than an arbitrary fixed length (see Section 3.2).

In Section 3.2.4, we present a formal proof that our framework produces an

equivalent DFA for input kernels that recognize regular languages. Our empirical

evaluation in Section 3.4 demonstrates that real-world legacy string kernels either

recognize regular languages, or our tool can produce an approximation of the

original function. We discuss the challenges associated with supporting a broader

class of functions in Section 3.5.1.

3.1.3 Using Source Code as a MAT

We extend Angluin’s L* algorithm to learn a DFA representation of a legacy string

kernel. To succeed, we must construct a MAT that can answer membership and

termination queries about an input string kernel. While the L* algorithm provides

a framework for query-based DFA learning, the original work does not define any

one mechanism for implementing the teacher. Our proposed MAT implementation

leverages the source code of the target function.

membership queries . We observe that a membership query for a string,

s, may be implemented by executing the legacy kernel on s. The result returned

by the function is the answer to the query. For languages akin to C employing

integers, we interpret Boolean values in the standard way (i.e., 0 is false and all

51

other values are true). While direct and intuitive in theory, we note that there are

several challenges in practice. Following the C standard, many runtime systems

assume that strings are null-terminated (i.e., a null character must only occur as

the final character in a string). In practice, however, we find that legacy string

kernels will sometimes allow null characters in other positions. This often occurs

when the length of the input string is known a priori. While seemingly innocuous,

this deviation from the standard limits the runtime mechanisms by which the

legacy kernel may be invoked. We found that compiling the kernel to a shared

object and then invoking the function dynamically provided the best stability in

our experiments.

termination queries . At the heart of our problem formulation is the

challenge that a legacy string kernel does not admit a direct means for answering

termination queries. A recent survey of model learning indicates that testing for

equivalence queries [225]; however, our initial efforts found testing alone to be

unsuitable for termination queries in this domain. Our insight is that verification

strategies from software model checking may be used to test for equivalence

between the kernel and a candidate automaton. Traditionally in verification,

equivalence would be proven using bisimulation or interleaving of the automaton

and the source kernel. However, this formulation presupposes that the “state

transitions” are directly encoded in the source code and can be aligned with the

state transitions in the candidate automaton. We do not make this assumption in

our problem definition in Section 3.1.2, and we prefer an approach that does not

52

require manual annotation. Indeed, we do not even assume that the states of the

equivalent automaton are visited “in order” during the execution of the legacy

kernel.

We verify an alternate reachability property that places additional constraints

on the input string. In particular, we observe that a counterexample t ∈ Σ+ is

in either L(kernel) or L(M) but not in both, and thus will always satisfy the

constraint t ∈ L(kernel)⊕ L(M), where ⊕ is the symmetric difference operator.

Therefore, we ask the software verifier to prove that there is no execution of

kernel on t where kernel returns true and t 6∈ L(M) or kernel returns false

and t ∈ L(M). To test this reachability property, we use a novel combination

of bounded model checking with incremental loop unrolling augmented with a

string constraint solver. We discuss the implementation of this verification task in

depth in Section 3.2.

Software verifiers are relatively complete (e.g., [22]), meaning that there are

certain programs that cannot be fully verified due to limitations in the underlying

SMT solvers. Verifiers often return an answer in three-valued logic: true in

our application means that the kernel and candidate automaton were proved

equivalent, allowing for termination; false in our application means that the

property was not satisfied, and there is a counterexample to provide to the L*

algorithm; and unknown in our application means that the verifier was unable to

prove equivalence, but also does not provide a counterexample. In the case of

an unknown answer from the verifier, we halt our algorithm and warn the user

53

that the resulting automaton is approximate; there may be inputs for which the

automaton returns an incorrect answer.

3.1.4 Synthesizing Hardware Descriptions from Automata

Once a state machine has been learned using the L* algorithm with our custom

MAT, the kernel is now amenable to acceleration. There has been a significant

effort to accelerate automata using FPGAs [252] and other custom ASICs (e.g.,

GPUs [231, 261] and Micron’s AP [75]). We convert the learned automaton to a

hardware description and synthesize the design for loading onto an FPGA. Other

execution platforms are possible [12], but we focus on FPGAs in this work due to

their widespread deployment.

3.1.5 System Architecture

Figure 3.1 depicts the high-level system architecture of our framework. The L*

learner (shown to the left) queries a MAT (shown to the right) consisting of the

legacy source code, software model checker, SMT solver, and string decision proce-

dure. The legacy string kernel is used by the MAT to answer membership queries.

Termination queries are transformed by a mapper into a software verification

problem that searches for string that distinguish the language of a candidate

automaton from the target language implemented in the kernel. The output of the

54

L*
Learner

Minimally Adequate Teacher

Membership Query

Termination Query

s
?
∈ L(Kernel)

True or False

L(M)
?
= L(Kernel)

True or
Counterexample

Kernel

Mapper
Software Verifier

SMT
Solver

String
Solver

Learned
Automaton M Synthesis

FPGA

Figure 3.1: AutomataSynth system architecture. The Minimally Adequate Teacher uses
the legacy kernel to answer membership queries. The kernel is combined
with a candidate automaton in the mapper to produce a software verification
problem. Using bounded software model checking combined with string
decision procedures, we search for a counterexample that distinguishes the
target language from the language of the candidate automaton. Finally, we
synthesize the learned automaton for execution on an FPGA.

Learner is a DFA that encodes the same computation as the Kernel. We use this

DFA to synthesize a hardware design for execution on an FPGA.

55

3.2 implementation and correctness

In this section we lay out formal properties of our implementation, first demon-

strating that iterative, bounded software model checking conforms to the required

properties for MAT termination queries. We then prove correctness and termina-

tion for AutomataSynth. Because AutomataSynth operates on arbitrary source

code and employs theorem proving techniques, correctness and termination are

relative.

3.2.1 Bounded Model Checking

There are several SMT-based model checking algorithms that have been employed

to verify properties of software. We use bounded model checking, an algorithm

best-suited for the queries currently supported by string constraint solvers. In

particular, string solvers do not currently support most interpolation queries

(e.g., [66]), which are used heavily by counterexample-guided [60] algorithms

such as SLAM and BLAST [23, 35]. Developing interpolation algorithms that

support string constraints is beyond the scope of this work.

Bounded model checking enumerates all program paths up to a certain bound that

reach a target error state (e.g., an error label in the source code) [37]. For each path,

the algorithm generates a set of constraints over the program’s variables, and the

disjunction of these constraints is passed to an SMT solver to determine if the

constraints for at least one path are satisfiable. If so, the set of variable assignments

56

represents a configuration of the program that would result in an error condition

at runtime. In this approach, loops are unrolled a fixed number of times (the

“bound”). We follow the standard practice of incremental unrolling (cf. [43]),

which iteratively applies bounded model checking for increasing unrolling depths.

For programs with unbounded loops this strategy results in a semi-algorithm;

however, we demonstrate in Section 3.2.4 that there exists a finite unrolling that

fully verifies a kernel deciding a regular language for our property.

3.2.2 Reasoning about Strings

As described in Section 3.1.3, AutomataSynth must verify that there are no strings

in the symmetric difference of the legacy kernel and a candidate automaton. We

encode the language of the candidate automaton as a regular expression constraint

on the input string parameter of the kernel. We then solve the encoded problem

using a bounded model checker that reasons about strings. A suitable string

decision procedure must support (at minimum):

• Unbounded string length,

• Regular expression-based constraints over strings,

• Access to individual characters of strings,

• Comparison of individual characters and strings,

• Reasoning about the length of strings, and

57

• The ability to generate strings that satisfy a set of constraints.

Additional features supported by string decision procedures can be helpful for

representing standard library string functions. Recent decision procedures, such

as Z3str3 [31] or S3 [222], support these required properties.

To combine bounded model checking with string decision procedures, we ex-

tend the CPAChecker extensible program analysis framework [33] to generate and

solve string constraints. We modify CPAChecker’s predicate analysis algorithm to

generate “String” sort constraints for string-like types in C programs (e.g., char

and char* types [163]). We produce a character extraction constraint for each

occurrence of indexing of (and dereferencing) string variables. Additionally, we

add support for functions such as strlen.

The C language specification does not directly support regular expressions. To

embed these constraints in a program’s source code, we also add an additional

function for checking if a string variable conforms to a regular expression.

3.2.3 Verification for Termination Queries

Listing 3.1 demonstrates our formulation of termination queries using bounded

model checking with incremental loop unrolling and string decision procedures.

We construct a wrapper around the source code for the kernel that adds additional

assertions to the path constraints used by the software verifier. When the kernel

returns true, we add the constraint that the input string cannot be represented by

the regular expression representing the candidate automaton. We add a similar

58

1 // KERNEL is the legacy kernel function

2 // REGEX is the language of the candidate automaton

3 int termination_query(char* input) {

4

5 // call the kernel and record result

6 int ret = KERNEL(input);

7

8 if (ret) {

9 // if kernel accepts, candidate DFA must reject

10
__VERIFIER_assume(

11 !__VERIFIER_inregex(input, REGEX)

12);

13 goto ERROR;

14 } else {

15 // if kernel rejects, candidate DFA must accept

16
__VERIFIER_assume(

17
__VERIFIER_inregex(input, REGEX)

18);

19 goto ERROR;

20 }

21

22 // Error state to prove unreachable

23 ERROR:

24 return ret;

25 }

Listing 3.1: Formulating termination queries as software verification problems. We
embed regular expression constraints to force the legacy kernel and
candidate automaton to disagree on the input string. If the return statement
is unreachable, the two representations are equivalent. Otherwise, there is
a string counterexample that can be used to continue the L* algorithm.

59

constraint for the false case as well. Finally, we ask the verifier to prove that

the error label (line 23) is unreachable (note that assume constraints influence

reachability).

3.2.4 Correctness

In this subsection, we conclude our formal development of termination queries

based on the combination of bounded model checking with incremental loop

unrolling and string decision procedures. We demonstrate that this approach

satisfies the Angluin constraints for MAT termination queries (see Section 3.1.1).

In particular, we prove that this algorithm always halts with a counterexample or

proof of equivalence between the legacy string kernel and a candidate automa-

ton (assuming the underlying decision procedure is correct). While incremental

unrolling is a semi-algorithm in general, we demonstrate that a finite unrolling

is sufficient to prove equivalence for pure programs that decide a regular language

(i.e., programs that both recognize a regular language and halt on all inputs as

described in Section 3.1.2). We assume that the program is pure to avoid non-

deterministic behavior and side-effects (e.g., non-deterministic behavior resulting

from I/O) and that the program decides a regular language to leverage formal re-

sults from automata theory. While these assumptions restrict the class of programs

to which our formal result applies, we note that AutomataSynth can handle

more complex functions, but may produce approximate results. Ultimately, our

goal is to prove the following theorem:

60

Theorem 3.2.1. Let K be a pure program that decides a regular language L(K). There

exists a finite unrolling K′ of K such that if M is the candidate DFA learned by L* from

K′, then K ≡ M.

We write (≡) to denote equality of accepted languages, i.e., K ≡ M if and only

if L(K) = L(M). We will prove this theorem using a sequence of lemmas as well

as theoretical results from the L* algorithm. First, we demonstrate that there exists

a finite unrolling of a program K that recognizes all strings in L(K) shorter than a

given length. The intuition is that the finite unrolling K′ corresponds to the use of

bounded model checking.

Lemma 3.2.2. Let p ∈N and K be a program that recognizes a subset of Σ∗. There exists

an n ∈ N such that the n-finitely-unrolled program K′ obtained from K (with all loops

replaced with the finite unrolling of the first n iterations and all subsequent iterations

removed) satisfies ∀s ∈ Σ∗, |s| < p =⇒ K′(s) = K(s).

Proof. Given p ∈ N, we construct the set of strings S = {s | s ∈ Σ∗ ∧ |s| < p},

on which K′ must agree with K. We let n be the maximum number of iterations

performed by K(s) for all s ∈ S. Because S is a finite set, its maximum value

is guaranteed to exist and be finite. We construct K′ by unrolling n times the

program K. By construction, the property ∀s ∈ Σ∗, |s| < p =⇒ K′(s) = K(s)

holds.

We also reason using the standard Pumping Lemma for regular languages.

For reference, we recall the Lemma here without proof as defined by Sipser [199,

Theorem 1.70].

61

Lemma 3.2.3 (Pumping Lemma for Regular Languages). If A is a regular language,

then there is a number p such that for all s ∈ A, if |s| > p then s may be divided into three

pieces, s = xyz, satisfying the following conditions: for each i > 0, xyiz ∈ A, |y| > 0,

and |xy| 6 p.

The smallest such p is called the pumping length. We call out as a Lemma the

association between pumping lengths and minimality [199, Proof of 1.70]:

Lemma 3.2.4. The (smallest) pumping length of a regular language L is equal to the

number of states in the minimal DFA that recognizes L.

Additionally, our proof makes use of two theorems about the output of the

L* algorithm. We paraphrase these results here [10]. See Section 3.1.1 for L*

definitions, such as (S, E, T).

Theorem 3.2.5 (L* [10], Theorem 1). If (S, E, T) is a closed, consistent L* observation

table, then the DFA M constructed from (S, E, T) is consistent with the finite function T.

Any other DFA consistent with T but not equivalent to M must have more states.

We will use the following corollary of this result.

Corollary 3.2.5.1. Let p be the pumping length of the target language, L, and M be a

DFA constructed from a closed, consistent L* observation table. The pumping length of

L(M) does not exceed p.

Finally, we make use of the L* algorithm termination result. The property we

use in our proof has been emphasized.

62

Theorem 3.2.6 (L* [10], Theorem 6). Given any MAT presenting a regular language

L, l* eventually terminates and outputs a dfa isomorphic to the

minimum dfa accepting l. Additionally, if n is the number of states in the mini-

mum DFA recognizing L and m is an upper bound on the length of any counterexample

provided by the MAT, then the total running time of L* is bounded by a polynomial in m

and n.

With these properties in hand, we are now ready to prove our original theorem.

Proof (Theorem 3.2.1). Given a pure program K, which decides a regular language,

and a candidate DFA M constructed from a closed, consistent L* observation table

(S, E, T), let p be the pumping length of L(K). By Theorem 3.2.4, the minimal DFA

that recognizes L(K) has p states. By Theorem 3.2.2, there exists a finite unrolling

K′ of program K such that ∀s ∈ Σ∗.|s| < p =⇒ K′(s) = K(s). We will show that

verifying K′ ≡ M is sufficient to verify K ≡ M using bounded model checking.

Verifying the property 6 ∃t ∈ Σ∗ such that t ∈ L(K′)⊕ L(M) (the symmetric dif-

ference, i.e., t ∈ L(K′) ∪ L(M) and t 6∈ L(K′) ∩ L(M)) with incremental bounded

model checking (recall K′ is a finite unrolling) can result in two outcomes:

Case 1: ∃t ∈ Σ∗ such that |t| < p ∧ K′(t) 6= M(t).

Case 2: ∀t ∈ Σ∗ such that |t| < p, K′(t) = M(t) holds.

In the first case, we return t as a counterexample, concluding K 6≡ M. In the

second case, we conclude that K′ ≡ M and any counterexample must be at least

as long as p; however, no such counterexample exists. The proof proceeds by

contradiction.

63

Suppose, for the sake of contradiction, that ∃t′ ∈ Σ∗ such that |t′| > p and

K(t′) 6= M(t′). Let n be the number of states in the candidate DFA M. We

now relate n to the number of states in the minimal DFA recognizing L(K). By

Theorem 3.2.4 and Corollary 3.2.5.1, n 6 p because the pumping length of L(M)

is at most p and the number of states in M is equal to the pumping length of

L(M). Additionally, because the finite unrolling K′ ≡ M, n > p by Theorem 3.2.5.

Therefore, the number of states in M is bounded above and below by the pumping

length of our target language, implying that n = p. Using our assumption about t′,

we note that K is consistent with T but not equivalent to M, and thus by another

application of Theorem 3.2.5 we conclude that the DFA recognizing L(K) must

have more than n = p states. This contradicts the fact, from Theorem 3.2.4, that

the minimal DFA recognizing L(K) has exactly p states. Therefore, no such t′

exists.

Because L* produces a minimal DFA (Theorem 3.2.6), and M was produced

from a closed, consistent observation table, we can conclude that M must be a DFA

isomorphic with the minimal DFA accepting the language L(K). Thus, K ≡ M.

This means that, using bounded model checking on the program K′ (recall that

K′ is a finite unrolling and thus admits bounded model checking), we either find a

counterexample or can conclude equivalence of K and M. Therefore, K′ ≡ M =⇒

K ≡ M.

From this result, we can establish the following corollary, which allows us to

conclude that our approach may be used in a MAT to answer termination queries.

64

Corollary 3.2.6.1. For a given program K, there exists a finite number of iterations of

incremental unrolling needed for our approach to respond to a termination query with

either a counterexample or a proof of equivalence.

3.2.5 Implications.

In our formulation, termination queries return an answer if the bounded software

model checking with incremental loop unrolling and the string decision proce-

dures terminates. Our result is therefore relative to the completeness of the model

checker and underlying SMT theories (see Ball et al. for a discussion of relative

completeness in software model checking [22]). For pure kernels that decide a

regular language, we proved that there is a finite bound on the incremental un-

rolling that will determine equivalence of the kernel and a candidate automaton.

In practice, we make use of a timeout on the verification process to ensure timely

termination at the expense of correctness in some cases. This design decision

results in an approximate solution in cases where either the finite unrolling bound

has not yet been reached or the legacy kernel recognizes a non-regular program.

The approximate solution is correct for strings of length up to a particular bound

but may disagree on larger strings. Our empirical evaluation in Section 3.4 demon-

strates that AutomataSynth successfully learns an equivalent state machine for

thirteen of eighteen real-world string kernels mined from legacy source code.

65

3.3 experimental methodology

In this section, we describe our process for selecting real-world, legacy string

kernels benchmarks as well as our experimental setup for the evaluation described

in Section 3.4.

3.3.1 Benchmark Selection

In our evaluation, we focus on measuring the extent to which AutomataSynth

learns models for real-world string functions using varied library methods. We

construct our benchmark suite by mining legacy string kernels from open-source

software projects on GitHub using the following protocol. First, we filter all

projects for those with C source code and ordered the resulting repositories

by number of stars (i.e., popular repositories first). Next, we use the Cil [163]

framework to iteratively parse each source file and extract all functions with an

appropriate type signature (see Section 3.1.2). We filter these functions to exclude

those that referenced functions or data outside the compilation unit. We allow the

use of common library function (e.g., strlen, strcmp, etc.). In total, we considered

26 repositories and mined 973 separate string kernel functions using this protocol.

After filtering for duplicates and a manual analysis to identify functions that

return Boolean values (we note that while C has the _Bool data type, many

functions still use integers of varying widths), we collected 18 meaningfully

distinct real-world benchmarks. Table 3.1 provides an overview of these string

66

Table 3.1: Benchmark Suite of Real-World, Legacy String Kernels

function project loc support

git_offset_1st_component Git: Revision control system 6 3

is_encoding_utf8 38 8∗

checkerrormsg

jq: Command-line JSON processor
4 3

checkfail 14 3

skipline 17 3

end_line

Linux: OS kernel
11 3

start_line 11 3

is_mcounted_section_name 54 3

is_numeric_index MASSCAN: IP port scanner 17 3

is_comment 11 3

AMF_DecodeBoolean

OBS Studio: Live streaming and recording software

2 3

cf_is_comment 28 3

cf_is_splice 22 3

is_reserved_name 39 3

has_start_code 18 3

number_is_valid

openpilot: Open-source driving agent
72 8†

utf8_validate 72 8‡

stbtt__isfont 24 3

∗Requires strcasecmp support †Requires strtod support
‡Performs math on characters

kernels. We use the function name to refer to each benchmark and also indicate the

source project for each. Lines of code (LOC) provides a count of the total number

of non-comment lines in the post-processed version of the benchmark. Finally,

we also indicate whether the kernel is supported by our prototype system. Our

prototype implementation supports all but three of these legacy string kernels.

The unsupported kernels use computation that is difficult to capture with present

string decision procedures.

67

The kernels in our benchmark suite interact with strings in various man-

ners. Some kernels, such as is_numeric_index, skipline, and cf_is_comment,

loop over all characters in the string checking various constraints. Several also

make heavy use of strcmp to check for the presence of specific strings (e.g.,

checkerrormsg, is_mcounted_section_name, and start_line). We also found ex-

amples of kernels (e.g., git_offset_1st_component and AMF_DecodeBoolean) that

perform single character comparisons. While a developer will likely not be inter-

ested in accelerating a single character comparison, these kernels remain indicative

of real-world code and allow us to demonstrate a proof-of-concept for synthesiz-

ing designs for accelerators such as FPGAs. An evaluation of benchmarks more

typical of kernels accelerated by FPGAs (e.g., long-running kernels with hundreds

or thousands of states) is left for future work.

3.3.2 Experimental Setup

Our AutomataSynth implementation produces MNRL, an open-source state

machine representation language intended for large-scale automata processing

applications [12]. We transform the learned DFA to be homogeneous, a property

that admits a simplified transition rule while maintaining expressive power and

that is amenable to hardware acceleration [13, 48, 75, 231]. We use Brzozowski’s

algorithm [46] for converting candidate DFAs to regular expressions as part of the

software verification step (see Section 3.2).

68

Table 3.2: Experimental Results

benchmark
membership

queries

termination

queries

number

of states

total

runtime (s) correct

git_offset_1st_component 4,090 2 2 7 3

checkerrormsg 32,664 2 15 86,195 3∗

checkfail 189,013 3 35 86,308 3∗

skipline 7,663 3 3 294 3

end_line 510,623 4 44 29,531 3

start_line 206,613 2 46 4,813 Approx.

is_mcounted_section_name 672,041 7 57 86,399 Approx.

is_numeric_index 10,727 3 4 297 3

is_comment 4,090 2 2 14 3

AMF_DecodeBoolean 2,557 2 2 4 3

cf_is_comment 4,599 2 4 300 3

cf_is_splice 1,913 2 4 3 3

is_reserved_name 350,705 8 42 85,469 3

has_start_code 10,213 2 7 5 3

stbtt__isfont 79,598 5 19 13 3

∗AutomataSynth warned of a potential approximate solution due to timeout, but manual analysis confirmed
correctness

For termination queries, we add string constraint handling to CPAChecker

1.8 [33]. We also extend the JavaSMT framework [120] to support the draft SMT-LIB

strings theory interface [217]. We use Microsoft’s Z3 version 4.8.6 SMT solver [71]

with the Seq string solver [222] for all queries. All evaluations use an Ubuntu 16.04

Linux server with a 3.0 GHz Intel Xeon E5-2623-v3 with four physical cores and

16 GB of RAM and a maximum time budget of 24 hours.

69

3.4 evaluation

In this section, we evaluate AutomataSynth on fifteen real-world, legacy string

kernels mined from open-source projects. We first evaluate the correctness of

the state machines generated by AutomataSynth and report runtime and query

counts. Second, we evaluated the suitability of the generated automata for hard-

ware acceleration. Our evaluation focuses on metrics related to legacy support and

performance. At a high level, we are guided by the following research questions:

1. How many of the real-world string kernels can AutomataSynth correctly

learn? With approximation?

2. Does AutomataSynth learn automata that fit within the design constraints

of modern, automata-derived, reconfigurable architectures?

3.4.1 State Machine Learning

Table 3.2 presents results from our empirical evaluation of AutomataSynth on a

benchmark suite of fifteen legacy string kernels. We do not report results for the

three benchmarks that are not supported. We report the number of membership

and termination queries executed for each kernel as well as the number of states

in the learned automaton and the total runtime in seconds. The final column

indicates if AutomataSynth correctly learned the kernel’s functionality. A check

70

mark means that our tool learned a fully equivalent automaton. We also indicate

approximate results in which the maximum time limit was exceeded.

On average, it took seven hours to learn an automaton from the legacy string

kernel, with more than half of the benchmarks terminating in fewer than five

minutes. AutomataSynth correctly learned thirteen of the fifteen benchmarks.

The remaining two benchmarks yield approximate solutions, with many of these

approximations being extremely similar to the target kernel functionality. In our

evaluation this approximation was always the result of timeouts rather than the

relative completeness of the SMT solver used for termination queries. There were

no instances in our benchmark set for which the SMT solver returned an unknown

result due to a limitation in the string decision procedures.

We determined that there were two primary causes for AutomataSynth reach-

ing the timeout without learning a fully equivalent state machine. First, Brzo-

zowski’s algorithm for constructing a regular expressions can produce large

expressions that require simplification to remove redundant and superfluous

clauses. This was most relevant to kernels that compared string suffixes with a

string constant. We believe this performance limitation is an artifact of design

choices in our prototype, which could be solved with more careful construction of

regular expressions. Second, some SMT queries were significantly less performant

than others. We discuss this challenge in more detail in Section 3.5.

The relative utility of the membership and termination queries varies between

the benchmarks. For example, the function git_offset_1st_component checks a

string to see if the first character is a forward slash (/). Using membership queries,

71

AutomataSynth learned that the first character of the string must be a slash and

that any number of characters may follow. The termination query provided a single

counterexample of a longer string that was initially misclassified. For this kernel,

the membership queries provided much of the “learning”. This is in contrast to

the stbtt__isfont kernel, which ultimately compares an input string against four

hard-coded strings. In this case, the membership queries only provided minimal

information. Instead, the termination queries discovered the string constants in the

kernel’s source code and provided much of the learned information. In general,

membership queries tended to provide more information when each character in

the input string was considered separately while termination queries helped to

discover string constants used for comparison by the kernels.

AutomataSynth successfully learned automata for fifteen of the eighteen

legacy kernels mined from open-source projects. Of these, thirteen were exactly

equivalent and two were near approximations.

3.4.2 Hardware Acceleration

In this work, we claim no novelty for accelerating automata using hardware

accelerators, such as FPGAs. Instead, we leverage existing work in the area of

high-performance automata processing. On FPGAs, Xie et al.’s REAPR framework

supports high-throughput processing of data with finite automata on FPGAs [252].

For spatially reconfigurable architectures akin to FPGAs, the dominant factor

72

affecting performance is the number of hardware resources used by a design. For

ANMLZoo benchmarks, which contain tens of thousands of states [231], REAPR

successfully synthesized designs running in the range of 200–700 MHz. Because

the automata learned by AutomataSynth are significantly smaller, we expect

that similar throughputs could be achieved.

The finite automata learned by AutomataSynth fall withing the design con-

straints of FPGA-based automata accelerators, allowing for high-throughput

execution.

3.5 discussion

At a high level, AutomataSynth learns the behavior of a Boolean string kernel

through a combination of dynamic and static analyses and emits a functionally

equivalent state machine that is amenable to acceleration with FPGAs. We believe

that approaches such as AutomataSynth are very promising and could offer

solutions to limitations inherent to current HLS techniques. HLS relies heavily

on the structure of C-like source code to produce a hardware description, which

were designed for performance on—and as an abstraction of—von Neumann

architectures. As such, HLS is unlikely to produce performant FPGA designs

from legacy code that was heavily optimized for CPUs [223, 268]. This places a

heavy burden on developers tasked with porting code and represents a significant

barrier to adoption. Our approach decouples the implementation choices of the

73

legacy program from the emitted hardware design. This allows us to produce a

design using a model of computation—state machines—that is performant on

FPGAs [231, 252].

This chapter represents an initial effort to understand the benefits and limita-

tions of using state machine learning algorithms to compile code for FPGAs. A

significant research effort remains for approaches akin to AutomataSynth to be

mature enough for industry adoption. In the remainder of this section we identify

four key research challenges whose solutions would lead to significant advances

in learning-based synthesis for FPGAs. Additionally, we describe candidate future

directions to tackle each of these.

3.5.1 Learning More Expressive Models

We present an approach for accelerating regular language Boolean string kernels

with FPGAs. Our prototype soundly transforms such kernels to functionally

equivalent hardware descriptions; Boolean functions with inputs that may be

transformed into a serial data stream are also applicable. However, legacy code

contains many other types of functions, and these remain an open challenge.

Supporting a new function type presents a two-fold challenge: (1) identifying

suitable computational models for acceleration and (2) designing or adapting

an algorithm suitable for learning these models. Finite automata, as formally

defined, produce a single bit of output for each string processed and are limited

to recognizing Regular Languages. Additional models, such as Mealy and Moore

74

machines, support transforming an input value into an output value, while others,

such as pushdown automata, support more expressive classes of languages.

Several efforts are underway to extend learning algorithms to more expressive

computational models [41, 50, 157]. It may also be possible to leverage insights

from the architecture community and recent efforts to accelerate automata process-

ing, in which designs often support tagging output report signals with additional

metadata [75, 233]. Further, existing DFA learning algorithms may admit learning

functions that output an enumerated—or even a multi-bit—value.

An additional challenge is that determining program equivalence is, in the

limit, undecidable. For example, Angluin notes that termination queries are not

generally decidable for context-free languages [10]. However, existing software

verifiers suffer from this same challenge and provide relative completeness [22].

Further, this challenge may be addressed in some cases through careful use of

approximation.

3.5.2 Expressive Power and Performance of String Solvers

Our empirical evaluation of AutomataSynth demonstrated some limitations of

present string decision procedures. Certain string operations (e.g., case-insensitive

lexicographic comparisons and casting between characters and numbers to per-

form arithmetic operations) occur in real-world software but are difficult to

represent as constraints in String theories. Additionally, SMT queries generated

by bounded model checking algorithms can result in long-running computation.

75

These challenges are not new: the formal methods community has been laboring

to improve string decision procedures for over a decade. Early efforts often focused

on the problem domain of identifying cross-site scripting and SQL code injection

vulnerabilities (e.g., [103]) and introduced new constraint types. These efforts often

reasoned about fixed-sized string variables (e.g., [127]). Subsequent efforts, such

as Z3str3, also focus on improving the performance of these decision procedures

and have extended support to unbounded strings [31].

AutomataSynth is one of the first efforts to combine bounded software model

checking with string decision procedures. This combination presents a novel

and compelling use case for string solvers that requires new constraint types

and optimizations. We make our tool and all of the SMT queries automatically

generated by our process available4 to the community to encourage renewed

interest in—and efforts to—improve the performance of string solvers.

3.5.3 Scaling Termination Queries

We found, in practice, that termination queries consumed an average of 66% of

the total runtime of AutomataSynth. As candidate state machines increase in

size, we expect the scalability of termination queries to dominate. This challenge

presents an opportunity for innovation. We presented an approach based on

the novel combination of bounded software model checking and string decision

4 See the AutomataSynth repository at https://github.com/kevinaangstadt/automata-synth

76

https://github.com/kevinaangstadt/automata-synth

procedures; however, alternate formulations of termination queries may provide

better performance while maintaining correctness.

Many applications of model learning focus on the use of testing to provide

answers to termination queries [225]. We have observed that the application of au-

tomated testing presents several challenges, such as producing a suitable quantity

and diversity of inputs to identify counterexamples. Test input generators, such

as Klee [47], may only support bounded length strings (rather than unbounded).

The application of other software verification techniques may also provide

performance gains. Counterexample-guided abstraction refinement verifiers can

abstract much of a program’s state to gain performance, but require support

for interpolation queries. These are not currently support by string solvers, but

present an additional area for research.

3.5.4 Characterizing and Taming Approximation

Because scalability and decidability of termination queries are challenges, approx-

imation may play an important role in improving the performance of learning-

based approaches to synthesizing FPGA designs. Indeed, there is already sig-

nificant interest in the architecture and software communities for producing

approximate programs [156, 160, 170, 178].

Approximation has been a key parameter in model learning algorithms from

the start [10, 225]. Results from learning theory often analyze approximation

using Valiant’s probably approximately correct (PAC) framework, which bounds the

77

probability of the error being less than a fixed threshold for an approximately

learned model [226]. Such results can predict the number of queries necessary to

bound the error but do not characterize the locations or significance of the remaining

error. Anomalous results for frequently used inputs have a very different impact

than anomalous results for seldom-used inputs. Given the design of Angluin-style

algorithms, it may be possible to determine which inputs result in approximate

solutions. For example, pre-populating the observation table with rows pertaining

to known inputs (i.e., those taken from the test suite) ensures that the learned

state machine produces the correct output for those relevant values.

3.6 chapter summary

We present AutomataSynth, a framework for accelerating legacy regular lan-

guage Boolean string kernel functions using FPGAs. Our approach uses a novel

combination of state machine learning algorithms, software verification algo-

rithms, string decision procedures, and high-performance automata processing

architectures to learn the behavior of a program and construct a behaviorally

equivalent FPGA hardware description. We demonstrate a proof-of-concept of

this approach using a benchmark suite of eighteen string kernels mined from

open-source projects on GitHub. AutomataSynth successfully constructs equiva-

lent (or near equivalent) FPGA designs for more than 80% of these benchmarks.

We believe this approach shows promise for overcoming some of the limitations

of current HLS techniques.

78

By leveraging automata abstractions, we are able to successful port certain

classes of legacy code to execute efficiently on hardware accelerators. Automata-

Synth thus meets the requirements of legacy support and performance as detailed

in Section 1.1. In the next chapter, we explore a custom programming language to

help developers write new applications for hardware accelerators.

79

chapter 4

RAPID: A High-Level Language for Portable Automata Processing

H
aving demonstrated the utility of automata-based abstractions for

porting extant code, we next focus on leveraging automata for the

development of new software for hardware accelerators. Because

accelerator ecosystems can often be heterogeneous [5, 162, 175], we first evaluate

the extent to which automata processing enables the portability of applications

across CPUs, GPUs, and FPGAs, which have all been considered for the execution

of automata applications [166, 231]. Then we develop a high-level programming

language, RAPID, for representing pattern search problems with respect to NFAs,

targeting Micron’s Automata Processor (AP), CPUs, GPUs, and FPGAs. Together,

these two contributions provide a programming model that is portable, reduces

code size, and improves maintainability.

To evaluate the portability of the automata processing paradigm, we consider

two questions: 1) do design and optimization choices for finite automata port

across architectures? and 2) to what extent does automata processing support high

performance across architectures? In particular, we measure the stability of finite

automata designs across hardware platforms. We evaluate six implementation-

80

and optimization-techniques and demonstrate that performance gains achieved by

these design choices are consistent across architectures. We contrast this result with

the OpenCL programming model, which frequently demonstrates performance

inversions across platforms. Further, we present a comparison of the performance

of automata processing (demonstrated to be performant on hardware accelerators)

with highly optimized, application-specific algorithms on CPUs. In total, our

results indicate that the performance of automata algorithms shows great promise

on the CPU platform. We argue that these stability and performance results

demonstrate the viability of automata processing as a portable computation

paradigm.

While automata processing provides a suitable abstraction for performance

portability, finite automata programming is tedious and error-prone. This chapter

presents RAPID, a high-level language that maintains the performance benefits of

pattern-recognition processors while also providing concise, clear, maintainable,

and efficient representations of pattern-identification algorithms. We introduce

three parallel control structures to facilitate common pattern-matching tasks. These

allow the concise specification of multiple, simultaneous comparisons against

a single data stream and provide high-level support for variable-offset sliding

window comparisons that are integral to many pattern-recognition problems. We

also demonstrate that RAPID maintains the performance and portability benefits

of automata processing across multiple architectures, including CPUs, GPUs,

FPGAs, and the Micron D480 AP. We present algorithms for converting RAPID

81

programs into NFAs for execution via automata processing. We describe code

generation and tool pipelines that are efficient across all target architectures.

To evaluate the expressiveness of RAPID, we re-implement a benchmark suite, in

RAPID, of real-world automata-based applications that have significant speedups

when executed using specialized hardware accelerators. Then, we evaluate the

performance and scalability of these compiled RAPID programs against their hand-

crafted equivalents, measuring program size, resource utilization, and runtime

metrics. Our evaluation demonstrates that RAPID programs introduce little over-

head compared with applications written at a lower level of abstraction and

maintain the performance and functional portability provided by the automata

paradigm.

In summary, this chapter makes the following contributions:

• An empirical evaluation of the stability and performance of automata pro-

cessing optimizations and design choices across CPUs, GPUs, and FPGAs.

• RAPID, a high-level language for programming automata processing appli-

cations.

• A set of algorithms for converting RAPID programs into non-deterministic

finite automata for execution with multiple automata processing engines.

• An experimental evaluation of the RAPID language against hand-crafted ap-

plications demonstrating improved density of generated NFAs as compared

with hand-optimized NFAs.

82

The remainder of this chapter is organized as follows. section 4.1 presents our

empirical evaluation of automata processing stability with respect to state-of-the-

art algorithms. Section 4.2 describes the RAPID programming language. Next,

section 4.3 describes the algorithms for generating Finite Automata from a RAPID

program. Section 4.4 discusses the tool pipelines for compiling and executing

Finite Automata applications on CPUs, GPUs, FPGAs, and the D480 AP. Finally,

Section 4.5 evaluates the performance of the RAPID programming language.

4.1 automata processing stability

In this section, we evaluate the suitability of the automata processing paradigm

as a performant, portable programming abstraction across disparate computer

architectures. We consider both the stability of implementations across architectures

(whether design choices impact performance on platforms differently) as well as

average throughput of applications, as compared with state-of-the-art algorithms.

While a thorough evaluation of performance portability is out of scope, our initial

results demonstrate the potential of automata processing as a suitable abstraction.

4.1.1 Performance Stability

We first compare the stability of design choices in automata processing applica-

tions with the stability of those in OpenCL. OpenCL supports execution across a

variety of architectures [208]. However, code written for one processor may not

83

Table 4.1: Performance stability of OpenCL programs

benchmark cpu gpu fpga stable

CFD ↓ ↓ ↑ 7

Hotspot ↓ ↓ ↑ 7

LUD ↑ ↑ ↓ 7

NW ↓ ↓ ↑ 7

Pathfinder ↓ ↓ ↑ 7

SRAD ↓ ↓ ↑ 7

↑ – Loop-based performs best ↓ – Thread-based performs best

compile for another target or may require significant re-writing to be performant

on the new architecture [268]. Given two implementations of the same application

and two hardware architectures, if one implementation outperforms the other on

the first architecture and the opposite is true for the second architecture, we say

that there is a performance inversion. Performance stability is the lack of observable

performance inversions.

The OpenCL language has many observable performance inversions and is

therefore not stable across architectures. We demonstrate such inversions using

applications in the Rodinia HPC benchmark suite, which were optimized for

multi-threaded execution [52]. Zohouri et al. have developed a second imple-

mentation based on an iterative approach [268]. For each benchmark, we time

both implementations on the CPU, GPU, and FPGA. Table 4.1 presents high-level

relative performance results for loop- and thread-based OpenCL Rodinia bench-

marks; performance is stable if arrows within a row do not reverse direction. We

find that all six benchmarks demonstrate performance inversions. That is, for all

84

Table 4.2: Performance stability of Automata Processing optimizations

optimization cpu gpu fpga ap stable

Automata Folding ↑ ↑ ↑ ↑ 3

Counters ↓ n/a ↓ ↑ 7

DRM — — — ↑ 3

Prefix Collapsing ↑ ↑ ↑ ↑ 3

Race Logic ↓ ↓ ↓ ↓ 3

Striding ↑ ↑ ↑ ↑ 3

↑ – improved performance ↓ – reduced performance
— – no change

benchmarks we consider, the design decisions needed for performant code vary

with each architecture.

We next examine performance stability in automata processing applications,

focusing on six implementation and optimization techniques from recent literature:

• automata folding [221]: reducing automata states by combining non-

overlapping input comparisons.

• counters [75]: reducing states by rewriting automata to use saturating

counters.

• disjoint report merging (drm) [233]: reducing data transfer overheads

on spatial automata processors.

• prefix collapsing [28]: combining common automata states to form a

trie-like structure.

85

• race logic [147]: providing general support for dynamic programming at

the cost of performance.

• striding [28]: transforming automata to support compressed input streams.

For each, we select an arbitrary application that supports the optimization1

from the ANMLZoo automata processing benchmark suite [231]. Using one

implementation with the optimization and one without, we measure relative

performance (i.e., relative time-to-solution) across CPUs, GPUs, FPGAs, and the

AP. These results are presented in Table 4.2. We observe only a single performance

inversion (counters) in our experiments and believe this inversion is an artifact of

current implementation support.2 These results provide initial evidence that the

automata processing abstraction provides stable performance across architectures

for many implementations and optimizations. Design decisions for performant

code in automata processing do not appear to vary as much across architectures

as they do with OpenCL.

4.1.2 Automata Processing Performance

In addition to stability, performant code across architectures is a desirable quality

of a portable programming model. Recent studies by Wadden et al. and Nourian

1 No support results in the optimization being a no-op and thus has no impact on stability.
2 Nourian et al. support counters on GPUs [166], but their software artifacts have not been made

public. Performance on the CPU and FPGA is degraded due to the complexity of circuit simulation
(CPU) and routing constraints (FPGA). AP counters are discussed in Section 4.5.

86

Bril
l

ER
Fer

m
i

Pro
to

m
ata RF

SP
M

10−1

100

101

102
R

el
at

iv
e

Sp
ee

du
p

Figure 4.1: Relative performance of automata processing vs. application-specific algo-
rithms on the CPU. Higher bars indicate better performance of the automata-
based algorithm. Note that the y-axis is log-scale.

et al. investigate (and demonstrate) the performance of automata processing

on several hardware accelerators, including GPUs, FPGAs, and the AP [166,

231]. Therefore, we restrict our attention in this section to CPU-based automata

processing. We compare the performance of applications mapped to the automata

processing paradigm with state-of-the-art CPU algorithms.

We evaluate all applications from the ANMLZoo benchmark suite [231] that

were adapted from state-of-the-art, non-automata-based algorithms. These appli-

cations are:

• brill [267], a rule-writing processor for part of speech tagging in natural

language processing.

87

• entity resolution (er) [40], an algorithm for detecting duplicated (or

similar) names from a list.

• fermi [240], a path recognition algorithm for particle physics experiments.

• protomata [185], a protein motif signature classification application.

• random forest (rf) [221], a random forest ensemble classifier for hand-

writing recognition.

• spm [238], a sequential pattern mining application.

Each of these applications has been demonstrated to outperform a state-of-the-

art CPU implementation when executed on the AP. Here, we study whether the

algorithms designed for the AP outperform the state-of-the-art when executed on

CPUs using an automata processing engine.

For each experiment, we executed the state-of-the-art implementation ten times

and measured the average throughput of the core algorithm. Then, we averaged

ten runs of an automata engine running the same application. We executed the

benchmark automata using the Intel Hyperscan framework supplied as part of

MNCaRT [12]. Experiments were performed on an Intel Core i7-5820K (3.30 GHz)

processor with six physical cores and 32GB of RAM.

Figure 4.1 shows the relative speedup of automata engines over application-

specific algorithms on the CPU. For three applications (Brill, Protomata, and

SPM), the automata-based algorithm outperforms the state-of-the-art in terms

of average throughput. By representing Brill and Protomata as automata, new

88

opportunities for optimization are exposed, allowing for orders of magnitude

increased performance. For Fermi, the automata algorithm is within 3× of the

application-specific algorithm. Entity Resolution and Random Forest are an order

of magnitude slower primarily due to the increased accuracy and/or work [39] of

the automata implementations. When adapting a new application to the automata

paradigm, researchers should consider carefully how this might impact the work—

the time or steps needed for a serial processor to complete the task—performed

by the algorithm. Large increases in work may not be suitable for performant

automata processing algorithms across architectures.

4.1.3 Discussion

We observe that automata processing is more stable across disparate architectures

relative to design choices and optimizations than the OpenCL programming model.

We also observe that four of our six automata benchmarks perform within 3×

application-specific algorithms on the CPU, and two of these state machine-based

implementation are at least an order of magnitude faster than the state-of-the-

art. Additionally, automata processing is already a widely used computational

model in areas such as network security [184], computational finance [3], and

software engineering [7, 23]. There has been significant development of new

optimizations for state machine performance on CPUs [27], and we anticipate

continued improvement of automata processing performance on von Neumann

architectures.

89

We conclude that automata processing provides stability (Section 4.1.1) and

performance (Section 4.1.2) across architectures and implementations, including

CPUs, GPUs, FPGAs, and the AP. That is, the performance of an automata-based

algorithm is stable across architectures and often similar to the performance of

an application-specific algorithm on the same hardware platform. Note that this

performance portability includes applications that go beyond traditional regular

expression-based algorithms, even on the CPU. We believe that portability across

these architectures is beneficial to both the research and end-user communities. In

particular, there is a lower overhead and risk incurred by developers who learn

a programming model that is usable on multiple architectures. We believe that

automata processing provides a suitable abstraction for representing and porting

computation across multiple, dissimilar computer architectures.

4.2 the rapid language

While automata processing provides a suitable abstraction for performance

portable execution of algorithms, current programming models for pattern searches

have significant drawbacks (see Section 2.3). In this section, we discuss a new

programming language, RAPID, which allows developers to write concise, clear,

and maintainable algorithms for use with automata engines. In particular, RAPID

supports searching a stream of data for many patterns in parallel. This sort of

execution model is often referred to as multiple instruction, single data (MISD) in

the architecture literature [83]. Programs are written in a combined imperative

90

and declarative style using a C-like syntax. In this section, we present a high-

level overview of the control structures and data representations in the RAPID

programming language.

4.2.1 Program Structure

macros and networks . RAPID programs consist of one or more macros

and a network. The basic unit of computation in a RAPID program is a macro,

which defines a reusable pattern-matching algorithm. Macros in RAPID share

similarities with both C-style macros and ANML3 macros, allowing code to be

written once and then used as a “rubber stamp.” RAPID macros admit more

customized usage than their namesakes in C and ANML; the same macro can

generate all designs for a particular problem.

Statements within a macro are executed sequentially and define actions that

should be taken to identify a pattern. RAPID provides several control structures,

including if statements, while loops, and foreach loops. Unlike some languages,

we guarantee in-order traversal when iterating with a foreach loop. The language

also provides parallel control structures useful for pattern-matching, which we

describe later in this section.

Additionally, macros can instantiate other macros. When a macro is called,

control shifts to the called macro; all of its statements are executed, and then

control returns to the calling macro. While the macro code defines how to identify

3 ANML is the automata representation language for the AP. See Section 2.3.1

91

1 macro hamming_distance (String s, int d) {

2 Counter cnt;

3 foreach (char c : s)

4 if(c != input()) cnt.count();

5 cnt <= d;

6 report;

7 }

8 network (String[] comparisons) {

9 some(String s : comparisons)

10 hamming_distance(s,5);

11 }

Listing 4.1: A RAPID program for computing Hamming distances

a pattern in the input stream, the macro parameters can specify the particular

characters to match, allowing for comparisons of varying lengths. Consider the

macro in Listing 4.1, which performs a Hamming distance computation between

a string parameter, s, and the input stream. Changing from comparison against a

string of length five to a string of length twelve only requires passing a different

string argument to the macro. As noted in Section 2.3.1, more than half of the

code in the corresponding ANML implementation must be modified to make an

identical change.

The network represents the highest level of pattern-matching within a RAPID

program, and statements within a network definition are executed in parallel.

The most common use of the network is to define a collection of macros for

instantiation, which are executed in parallel at runtime to identify patterns in the

input data stream. The network may also have parameters to specify certain values

at runtime. Listing 4.1 contains a RAPID program that computes the Hamming

distance for a number of given strings and reports on input within a distance

92

of five. The network is parameterized on an array of strings, which is used at

runtime to specify the comparisons being made.

reporting . RAPID programs passively observe the input data stream; they

cannot modify the stream. Programs can indicate interesting regions within the

stream by using the report statement, which generates a report event. These

events provide the offset in the input data stream where the report occurred and

additional identifying meta data, such as the reporting macro. For the program in

Listing 4.1, reports indicate offsets where the input stream is within a Hamming

distance of five from the strings in comparisons.

boolean expressions as statements . Inspection of the input data

stream is central to the RAPID programming model. Often, pattern identifi-

cation algorithms only continue if a certain sequence of characters is detected.

RAPID provides concise support for this common domain idiom by allowing

Boolean expressions whenever full statements are allowed.4 These declarative

assertions terminate the thread of computation if the expression returns false.

Line 5 in Listing 4.1 illustrates this usage.

4 This is merely syntactic sugar; the same behavior may be implemented using a less compact if
statement.

93

4.2.2 Types and Data in RAPID

There are six primary data types in RAPID: char, int, bool, String, Counter,

and ref. Both String and Counter are lightweight objects, while the remaining

four are primitive types. The ref type stores a reference to an instantiated macro.

Additionally, there is support for nested arrays of these types.

In RAPID, pattern-matching occurs in a stream of characters. Therefore, the

language provides the char primitive type for interacting with input data. The

input data stream, however, is a stream of bits and does not need to be interpreted

as characters. To support this, a char may also store escaped hexadecimal values.

RAPID also defines two character constants, which represent special symbols

in the input stream: ALL_INPUT and START_OF_INPUT. The former represents any

symbol within the input and the latter is a reserved symbol (character 0xFF) for

indicating the start of data. For example, if the input data stream consists of the

flattening of an array, the entries would be concatenated into a stream, separated

by the START_OF_INPUT symbol.

A Counter represents of a saturating up-counter. Upon instantiation, a counter is

initialized to zero. Counters provide two functions: reset() and count(), which

set the value to zero and increment by one, respectively. Although programs

cannot access the internal value of the counter, it is possible to check against a

threshold.

Listing 4.2 demonstrates the usage of counters and interacting with the input

stream. The foreach loop iterates over each character in the string “rapid” se-

94

1 Counter cnt;

2 foreach(char c : "rapid") {

3 if(c == input()) cnt.count();

4 }

5 if(cnt >= 3) report;

Listing 4.2: The above code counts the number of characters matched in “rapid” and
reports if the count is at least three

quentially. If that character matches the next character from the input stream,

the counter is incremented. After iterating over the entire string, the program

checks if the counter is at least three and reports if so. For example, if the stream

contained “tepid,” the count would be three, and there would be a report, but

“party” results in a count of one and no report.

The input data stream in RAPID is privileged and is accessed via the input()

function. A call to this function returns a single character from the head of the

data stream. Access to the input data is destructive—no peeking or insertion

is allowed during program execution. Calls to input() act as synchronization

points across active threads in a RAPID program. Similar to how active states

in an NFA process the same input symbol, all active threads execute up to an

input() statement and then receive the same character from the input stream. For

example, if the stream contains “abcd...,” input() would return ‘a’ to all active

threads of computation, and the stream would now contain “bcd....” There is no

required number of calls to input() across threads and also no communication

between threads. Threads with fewer calls to input() than another thread will

simply terminate earlier. This data model supports the heterogeneity of MISD

computations.

95

RAPID’s design represents the input stream as a FIFO only accessible through

a special function, input(), rather than as a special indexed array. This is for

conceptual clarity: arrays afford a notion of random access into the stored data,

while pattern-recognition processors support sequential access to an ordered

sequential data stream. Global input access is intentionally similar to C’s “fgetc”

rather than “fread/fseek” or “mmap.”

4.2.3 Parallel Control Structures

In pattern-matching problems, it is often useful to explore multiple possibilities in

parallel. For example, a spam filter may wish to check for many black-listed subject

lines simultaneously, or a gene aligner may begin matching a sequence at any

point in the input stream. To facilitate such operations, RAPID provides both the

network environment and also parallel control structures. Networks, as described

previously, allow for parallelism at the macro level, which is useful for checking

several patterns in tandem. The parallel control structures (either/orelse, some,

and whenever) provide finer-grain control over parallel operations.

either/orelse statements . This structure provides basic support for

parallel exploration. An either/orelse statement consists of two or more blocks,

which allows for an arbitrary, static number of parallel computations. Computation

splits when an either/orelse statement is encountered during execution, and

each of the blocks is executed in parallel. When the end of a block is reached,

96

1 either {

2 hamming_distance(s,d); //hamming distance

3 ’y’ == input(); //next input is ’y’

4 report; //report candidate

5 } orelse {

6 while(’y’ != input()); //consume until ’y’

7 }

Listing 4.3: An example usage of an either/orelse statement

computation continues with the next statement in the program. No blocking

or joining occurs, meaning that different paths in the either/orelse statement

may begin executing the following statement at different times. This behavior is

desirable because it allows for the matching of different length patterns containing

the same suffix.

As an example usage of the either/orelse statement, consider the code frag-

ment in Listing 4.3, adapted from the MOTOMATA benchmark [186] evaluated in

Section 4.5. Candidates in the input stream are separated by the control character

’y’. The computation should report the candidates within a Hamming distance of d

from the string stored in variable s. We use an either/orelse statement to ensure

that computation continues to the next candidate when the current candidate

does not fall within the threshold. The first block of the either/orelse statement

performs the Hamming distance comparison, while the second block consumes

input until the control character is reached, always preparing the program to

check the next candidate.

97

some statements . In certain cases, for example instantiating macros based

on the content of an array, the ability to generate a dynamic number of parallel

paths is desirable. The some statement provides this functionality.

This statement is the parallel dual of a foreach loop. During execution, the

program iterates over a provided array or string and instantiates a parallel thread

of execution for each item. Similar to an either/orelse statement, the execution

of each parallel thread continues with the subsequent statement in the program;

different threads in the some statement may reach this next statement at disjoint

times. The some statement in Listing 4.1 instantiates a Hamming distance macro

for each string in the comparisons array. The number of parallel threads executed

depends on the number of entries in comparisons.

whenever statements . A common operation in pattern-matching algo-

rithms is a sliding window search, in which a pattern could begin on any character

within the input stream. The whenever statement consists of a Boolean guard and

an internal statement. The guard specifies a condition on the input stream that

must be true or a counter threshold that must be met before the internal statement

is executed. At any point in the data stream (potentially multiple times) where this

guard is satisfied, the internal statement will be executed in parallel with the rest

of the program. A whenever statement is the parallel dual of a while statement.

Whereas a while statement checks the guard condition before each iteration of

the internal statement, a whenever statement checks the guard in parallel with all

other computations, if any.

98

1 whenever(ALL_INPUT == input()) {

2 foreach(char c : "rapid")

3 c == input();

4 report;

5 }

Listing 4.4: Execution of a sliding window search over the entire input stream for the
string “rapid”

The code fragment in Listing 4.4 will perform a sliding window search for the

string “rapid.” The predicate within the guard will return true on any input,

and therefore the block of code will begin execution at every character in the

input stream. The whenever statement can also perform restricted sliding window

searches depending on the predicate in the guard. For example, an application

searching through HTTP transactions might use the predicate matching “GET”

before matching specific URLs.

Sliding window searches are fundamental to stream pattern recognition. All

RAPID programs perform a sliding window search on the START_OF_INPUT symbol.

In the common case, this sliding window search occurs at the topmost level of

a RAPID program, i.e. right within the network. To reduce verbosity, RAPID

infers this whenever statement, only requiring developers to specify a whenever

statement with non-default sliding window searches.

99

4.3 code generation

In this section, we present techniques for converting RAPID programs into au-

tomata for execution with automata processing. Our technique takes two files as

input: the RAPID program and a file annotating properties of the network param-

eters (e.g., lengths of arrays and strings). Our tool converts the RAPID program

into two files: an ANML or MNRL5 specification and host driver code. The ANML

or MNRL file specifies the configuration of automata processing engine needed

to perform the given pattern-matching algorithm given by the RAPID program.

The driver code is executed on the CPU at runtime and handles execution of the

automata processing core and collecting report events. This section focuses on the

transformation of RAPID into the ANML or MNRL specification.

We employ a staged computation model to convert RAPID programs: compar-

isons with the input stream and counters occur at runtime, while all other values

are resolved at compile time. To aid in partitioning, we annotate expressions with

their return type during type checking. Allowable annotations include the five

types listed in Section 4.2.2 as well as an internal Automata type, which denote ex-

pressions interacting with the input stream. Expressions annotated with Automata

or Counter are converted into ANML or MNRL (allowing for runtime execution),

while the remaining expressions are evaluated during compilation.

Our conversion algorithm recursively transforms RAPID programs into finite

automata in much the same way that regular expressions can be transformed

5 MNRL is an open-source state machine representation language. See Appendix A.

100

into NFAs. Comparisons with the input stream are transformed into STEs. The

statement in which the comparison occurs determines how the STEs attach to the

rest of the automaton. Rules for transforming automata expressions determine

the structure of the STEs within a given statement. We describe the conversion of

expressions, statements and counters in turn.

4.3.1 Converting Expressions

Expression transformation results in the formation of a chain of STEs. No cycles are

generated by expressions, but chains may include bifurcations. Figure 4.2 provides

examples of transformations from RAPID expressions to automata structures.

The most basic transformation is a comparison between a character and the

input stream, generating a single STE. AND expressions behave as concatenation

because reading from the input stream is destructive. The conversion of an OR

expression generates a bifurcation in the generated automaton. A special case

occurs when both sides of the OR expression contain input comparisons of length

one. In these instances, we take advantage of STE character classes to specify

multiple accepting symbols for a single STE.

Negations of expressions generate the most complex structures of all the ex-

pression types. Traditionally, an automaton is negated by swapping accepting and

non-accepting states. This construction, however, does not work for our use case

because RAPID programs consume the same number of symbols for an expression

101

’a’ == input() ’a’ != input()

[a] [ˆa]

’a’ == input() && ’b’ == input()

[a] [b]

’a’ == input() || ’b’ == input()

[ab]

!(’a’ == input() && ’b’ == input() &&

’c’ == input())

[ˆa] ∗ ∗

[a] [b] [ˆc]

[a] [ˆb]

Figure 4.2: Transformations of RAPID expressions into automata

102

and its negation. The traditional transformation does not maintain this property.

Instead, we transform the expression via De Morgan’s laws and generate STEs

for the resulting statement. After any mismatch in this negation, the remaining

symbols do not matter, but still must be consumed. We therefore use star states,

which match on any character.

4.3.2 Converting Statements

Statements in RAPID are transformed into the high-level automaton structures,

allowing for additional pipelining, feedback loops, and parallel exploration of

patterns. We present the overall structures in Figure 4.3.

During compilation, A foreach loop is unrolled into straight-line pattern-

matching. Parallel either/orelse and some statements are transformed by gen-

erating the code for each statement and connecting these structures in paral-

lel into the overall design. This mirrors the language semantics that the some

statement is the parallel dual of foreach. Note that some statements typically

depend on compile-time parameters (via input annotations on the network) while

either/orelse statements do not (see Section 4.2.3).

There is also a similarity between while loops and whenever statements. While

loops alternately perform predicate checks and execute the body code. This

generates a feedback loop structure in the automaton. In a whenever statement,

predicate checking begins on every character consumed. To support this, we gener-

ate a self-activating STE that accepts all symbols (see ∗ node in Section 4.3.2). This

103

added STE maintains an active transition into the predicate, allowing matching

to begin on every symbol consumed. Once the predicate accepts, the body of the

whenever statement will begin to execute (although the predicate is still checked

again in parallel on subsequent input characters).

4.3.3 Converting Counters

Counters in RAPID are challenging to implement because the state of a hardware

counter on the AP cannot be directly accessed. Therefore, counter comparisons

in RAPID programs are transformed into a pattern-matching operation using a

combination of one or more saturating counters and Boolean gates. The basic

structure consists of a saturating counter set to latch (once the threshold is reached,

the output signal remains active) and an inverter, which allows for detection of

the counter target not being reached.

Physical counters on the AP have three connection ports: count enable, reset,

and output. Counter object function calls to count() and reset() in RAPID are

connected to their respective ports on the counter. Output signals then connect to

the next statement in the program.

We follow the set of rules for determining the threshold and outputs of a

Counter shown in Table 4.3. Equality checking with a Counter requires the use

of two physical counter elements. While traversing the program, we note which

104

Statement 1

Statement 2

...

Statement n

•

•

(a) Foreach Loops

Statement 1

Statement 2
. . .

Statement n

• •

(b) Either/Orelse and Some statements

predicate

!predicate

While Body

•
•

(c) While Loops

*

predicate

Whenever
Body

••

(d) Whenever statement

Figure 4.3: Automaton designs for RAPID statements

105

Table 4.3: Rules for thresholds and outputs on counters

comparison threshold true output

< x x inverted
<= x x+1 inverted
> x x+1 non-inverted
>= x x non-inverted

== x convert to <= x && >= x

!= x convert to < x || > x

Counter objects are used for equality checking and during code generation emit

two counter elements for each.

This technique only allows for one threshold to be checked per counter in the

RAPID program. An alternate solution would be to use positional encodings,

which duplicate an automaton for each value of a counter, encoding the count

in the position of states within an automaton. While this design allows for easy

checking of multiple thresholds, it also significantly increases the number of states

in the final automaton and does not support counter resetting. We chose not to

implement this technique in our initial compiler because it does not support full,

generic functionality.

We must also support the use of Counter variables as predicates in a whenever

statement. For the body of a whenever statement to execute, the Counter must

have reached its threshold, and the statement itself must have been reached within

the control flow of the RAPID program. We use a self-activating STE matching

all symbols to track when the statement is reached. An AND gate checks both of

106

*

Counter

Whenever
Body

••

true

Figure 4.4: Structure of whenever statement with counters

these conditions before executing the body of the whenever statement. This design

is demonstrated in Figure 4.4.

Counter threshold checks are also used as assertions or as predicates in if

statements and while loops. Because NFAs do not have dynamic memory (beyond

the states themselves), we handle this case by both generating automata and also

pre-transforming the input stream. For each such Counter, we create a unique

reserved input symbol. This new symbol indicates that the threshold for that

particular Counter has been met. We add an STE matching the symbol to the

subsequent statement; whenever the symbol is encountered in the input data

stream, the appropriate subsequent statement begins execution. This symbol must

be injected into the input data stream before the RAPID program begins execution.

Actual injection is handled by the runtime code and can occur while data is being

streamed to the AP (but before execution of the RAPID program begins).

We attempt to automatically determine the pattern for inserting the count

threshold symbol into the input stream. An example pattern is “insert the symbol

after every 25 characters in the input stream.” Often, the compiler can infer the

pattern by counting the number of symbols consumed before the counter check

occurs. When certain while loops are included in the program, however, it may

107

RAPID
Program

RAPID
Compiler ANML

Micron AP
Compiler

VASim NFA Flat
File

iNFAnt2 GPU Output

AP Binary

MNRL
Hyperscan
Compiler CPU Engine

Verilog Xilinx PAR FPGA Engine

Figure 4.5: Supported pipelines for executing RAPID programs. RAPID programs can
be executed on CPUs (using VASim or Hyperscan), GPUs (using iNFAnt2),
FPGAs, and Micron’s D480 AP. Rounded green boxes indicate the input
and output of the pipeline. Orange rectangles are software tools used to
generate intermediate and output files. Blue parallelograms are intermediate
files generated by our pipeline.

not be possible to determine where in the input stream to inject the symbols.

In these cases, we currently output a warning at compile time and rely on the

developer to provide the pattern for inserting the control character into the data

stream.

4.4 executing rapid programs

A primary goal of the RAPID programming language is to support cross-platform

portability of pattern searching applications. This allows an application to be

tested on a developer’s machine, which might not contain high-performance

hardware, and be easily deployed into a heterogeneous hardware environment.

Finite automata provide a portable, intermediate computation form that can be

ported to many hardware backends, including CPUs, GPUs, FPGAs, and Micron’s

108

D480 AP. We achieve this by developing and adapting automata engines for each

platform.

As discussed in Section 4.1, automata processing provides a suitable abstraction

for efficient execution of applications across architectures. Such an approach effec-

tively decouples high-level application development from low-level optimizations.

Any advances in automata processing performance (e.g. new optimizations and

new computational approaches) can be beneficial for all high-level applications.

In the previous section, we described the process for compiling a high-level

RAPID program to finite automata. Now, we discuss workflows for executing

automata across common computer architectures. Figure 4.5 outlines our workflow

for targeting CPUs, GPUs, FPGAs, and the AP.

4.4.1 Targeting the Automata Processor

Micron provides a proprietary tool chain for converting ANML specifications into

a loadable binary image for the AP. This tool places and routes the NFAs onto the

hardware states and reconfigurable routing mesh of the processor. We use this

tool directly to synthesize ANML for the AP.

4.4.2 Targeting CPUs

We have developed and collected a set of algorithms for optimizing and trans-

forming finite automata. These algorithms are implemented in VASim, a tool we

109

created to facilitate automata research and experimentation [235]. This framework

supports easy prototyping, debugging, simulation, and analysis of automata-based

applications and architectures. We use VASim to optimize the automaton from

the RAPID compiler using common prefix collapsing [28]. This process merges states

that match the same input symbols, beginning with the starting states, producing

a functionally equivalent NFA with fewer states. In our Brill tagging benchmark,

for example, prefix collapsing results in a 57% reduction in the number of states.

Additionally, VASim contains a multi-threaded simulation core, which is capable

of executing automata on an input stream. The simulator was designed specifically

to execute ANML files, making VASim an excellent candidate for a RAPID CPU

backend.

While VASim is currently 4×–694× faster than existing simulation tools for

Micron’s AP, regular expression processors, such as Hyperscan [111] outperform

VASim for pure NFA applications. When a compiled RAPID program contain

no counters, we choose to execute with Hyperscan, using the compilation and

runtime tools supplied as part of the MNCaRT ecosystem [12]. We instruct the

RAPID compiler to emit MNRL and then use the Hyperscan compiler to generate

a serialized pattern dictionary and perform Hyperscan-specific optimizations to the

automata. We then execute the pattern dictionary against a supplied input stream

using the hsrun tool provided with MNCaRT.

110

4.4.3 Targeting GPUs

We support the execution of pure NFAs with a GPU backend. RAPID programs

that do not use counters can therefore be executed on GPUs. We use iNFAnt2, the

optimized GPU-based NFA engine used by Wadden et al. with the ANMLZoo

benchmark suite [231]. The iNFAnt2 engine reads in a transition table and uses

individual SIMD threads to compute possible transitions on a given input symbol.

We use VASim to convert the ANML produced by the RAPID compiler to

the transition tables needed by iNFAnt2. Similar to the CPU target, we optimize

the ANML using VASim’s optimization framework. Next, we output the NFA

transition table using the Becchi-style format [27]. To execute on the GPU, we

provide both this transition table and an input stream to iNFAnt2, which produces

reporting output.

4.4.4 Targeting FPGAs

When targeting an FPGA, we first optimize the compiled automata and then

convert to a hardware description using VASim. VASim transforms the optimized

NFA into a Verilog hardware description. Our tool generates a module with

inputs for clock, reset, and an 8-bit input symbol and outputs for report events.

Within the module, activations of states in the automaton are stored in registers,

which are updated on every clock cycle. A state becomes active if it is enabled

(a state with an incident edge to the current state is active) and the current

111

input symbol matches. Using this update rule, it is possible to execute the NFA

directly in hardware. Finally, we target Xilinx FPGAs by synthesizing the hardware

description produced by VASim. Additional optimization of automata kernel

generation for FPGAs using this same technique has been explored by Xie et

al. [252].

4.5 evaluation

We evaluate RAPID against hand-crafted designs for five real-world benchmark

applications, which were selected based upon previous research demonstrating

significant acceleration using Micron’s AP [40, 186, 239, 267]. We predominantly

consider metrics related to expressive power, scalability, and performance. We consider

the following research questions:

1. Do RAPID constructs allow for the representation of regular languages?

2. Do RAPID constructs generalize to pattern search problems across multiple

problem domains?

3. Do RAPID programs require fewer lines of code than a functionally equiva-

lent ANML program to represent a given pattern search problem?

4. Are RAPID programs no less efficient at runtime and during synthesis than

hand-optimized ANML programs?

112

4.5.1 Expressive Power

We begin our evaluation of the RAPID language by demonstrating that regular

expressions can be represented in our language. To do this, we will briefly sketch

the RAPID constructs necessary to implement each of the rules detailed in Sec-

tion 2.3.1. Because we consider a streaming model of computation, we do not

consider empty strings (i.e., we assume there is input).

RAPID programs for singleton matches and empty set matches are trivial: a

RAPID program with a single character comparison with input() followed by a

report and a program with no reports, respectively. A regular expression union

matches either one regular expression or another. In RAPID, this same behavior

is achieved using an either/orelse statement where the blocks of the statement

encode each expression in the union. Concatenation is similarly direct: statements

and expressions for matching both expressions are written in sequence within the

RAPID program.

Kleene closures are the most challenging to represent because they do not map

naturally to the looping constructs in our language. However, we can leverage a

macro reference to the body of the closure to provide the same semantics as a

Kleene closure. After calling this macro, we use an either/orelse statement to

both call the same instance of the macro or continue on to match the next portion

of the pattern. Finally, we use a surrounding either/orelse statement to allow for

zero matches of the body of the closure. We provide an example RAPID program

for matching b∗c in Listing 4.5. While this construction is neither intuitive nor

113

1 macro b() {

2 b == input();

3 }

4

5 macro bstar_c() {

6 // create a reference to the body of the Kleene closure

7 ref b_inst = b();

8

9 either{

10 b_inst;

11

12 // this either/orelse creates the backwards loop to the

13 // body of the Kleene closure

14 either {

15 b_inst;

16 } orelse {

17 // this empty block allows us to transfer

18 // control past the Kleene closure

19 }

20 } orelse {

21 // this empty block lets us match 0 instances

22 }

23

24 c == input();

25 report;

26 }

27

28 network {

29 bstar_c();

30 }

Listing 4.5: Example implementation of the regular expression b∗c in RAPID.

114

concise, we note that such a formulation never arose in our implementation of

real-world applications for our evaluation in Section 4.5.2. The control structures

in the RAPID language were designed to address pattern-matching paradigms

found in real-world applications.

We note that embedding of regular expression operators into the RAPID lan-

guage would provide a better solution in many cases; however, we have demon-

strated that this is not necessary with respect to the expressive power of the

language.

RAPID has sufficient expressive power to represent all regular expression

operations.

4.5.2 Empirical Evaluation

Next, we conduct an empirical evaluation of the RAPID language. Table 4.4

provides descriptions of the benchmarks used. For each benchmark, we chose

an instance size representative of a real-world problem. These sizes come either

directly from previous work or from conversations with the authors of the previous

work. The generation method column indicates the technique used to create

the handcrafted code, which ranged from custom Java or Python programs

for generating an ANML design to the use of a GUI design tool (Workbench)

for crafting automata by hand. The authors of the ARM [239] and Brill [267]

benchmarks provided us with their original code, including a collection of regular

115

Table 4.4: Description of benchmarks

benchmark description
generation

method

sample

instance size

ARM/FIS [239] Association rule mining / Fre-
quent itemset

Python + ANML 24 Item-Set

Brill [267] Rule re-writing for Brill part of
speech tagging

Java 219 Rules

Exact [40] Exact match DNA sequence
search

Workbench 25 Base Pairs

Gappy [40] DNA string search with gaps be-
tween characters

Workbench 25-bp, Gaps 6 3

MOTOMATA [186] Fuzzy matching for bioinformat-
ics planted motif search

Workbench (17,6) Motifs

expressions for performing the Brill benchmark. We recreated the remaining

designs, using algorithms and specifications published in previous work.

RAPID constructs generalize to a range of application domains for pattern-

searching problems.

Table 4.5 lists design statistics for the benchmarks. We compare the lines of code

needed to generate ANML For ARM, the RAPID code requires six times fewer

lines to represent, and Brill requires about half of the lines of the hand-crafted

solution. The regular expression representation for Brill is more compact than

RAPID.

We created the Gappy, Exact, and MOTOMATA benchmarks using a GUI design

tool. For these, we present the lines of code in ANML, which is roughly equivalent

to the number of actions taken within the design tool. ANML file sizes are

116

dependent on the specific instance of a problem, and the numbers we present are

for a single instance of the problem listed in Table 4.4. In all cases, the RAPID

program is significantly more compact than the ANML it generates.

RAPID programs are significantly more concise to write than hand-crafted

automata. Further, RAPID programs can also be more concise than automata-

generator scripts.

As an approximation for the size of the resulting automaton, we measure

the number of STEs generated and the number of STEs loaded to the AP after

placement and routing. The placement and routing tools modify the original

automaton to better match the architectural design of the AP. These optimizations

are similar to those applied by VASim for our CPU, GPU, and FPGA targets. For

most benchmarks, RAPID-generated automata contain fewer device STEs, taking

up less space on the device. Only the Gappy benchmark requires more device

STEs. Although we could optimize the RAPID code to reduce the size of the

generated automaton, we found that this more natural design, although larger,

has comparable placement and routing efficiency. For MOTOMATA, the RAPID

version requires approximately half the STEs of the hand-crafted version. The

compiled RAPID version makes use of a saturating counter, while the handcrafted

version uses positional encoding.

Due to the lock-step execution of automata on the AP, runtime performance of

loaded designs is linear in the length of a given input stream. Therefore, we focus

on evaluating the space efficiency of RAPID programs. In Table 4.6, we present

117

Table 4.5: Comparison between RAPID and hand-crafted code with respect to lines of
code (LOC) and STE usage

anml device

benchmark loc loc stes stes

ARM H 118 301 79 58

R 18 214 58 56

Brill H 1,292 9,698 3,073 1,514

R 688 10,594 3,322 1,429

Re 218 –‡
4,075 1,501

Exact H –†
193 28 27

R 14 85 29 27

Gappy H –†
2,155 675 123

R 30 2,337 748 399

MOTOMATA H –†
587 150 149

R 34 207 53 72

R – RAPID H – Hand-coded Re – Regular Expression
† The GUI tool does not have a LOC equivalent metric.

‡ No ANML statistics are provided by the regular expression compiler.

118

the performance of RAPID programs compared to hand-crafted ANML based

on placement and routing statistics for the AP, using version 1.4-11 of the AP

SDK to generate the placement and routing information. The total blocks column

measures the number of routing matrix blocks6 needed to accommodate the

design; lower numbers represent a more compact design. STE utilization indicates

the percent of used STEs within the routed blocks; high numbers indicate a design

with fewer unused STEs. Mean BR allocation (AP MBRA) is a metric provided

by the AP SDK that approximates the routing complexity of the design. Here,

a lower number is better, signifying lower congestion within the routing matrix.

The AP Clk column indicates whether the clock cycle of the AP must be reduced

to accommodate a design. In one instance (the RAPID MOTOMATA program),

the clock cycle must be halved due to a limitation in signal propagation between

counters and combinatorial elements in the current generation AP. However, the

RAPID version is four times more compact. Although this is a performance loss

for a single instance, it is a net performance gain for a full problem, which will fill

the AP board: four times as many instances execute in parallel at half the speed,

for a net improvement factor of two. Although RAPID provides a higher level of

abstraction than ANML, the final device binaries are more compact, using fewer

resources on the AP.

We also evaluate the space efficiency of the FPGA engines our tools produce.

We synthesize our designs for a Xilinx Kintex UltraScale XCKU060. Table 4.6

also lists the number of LUTs and registers needed to implement the hardware

6 blocks are a subunit of the hierarchical routing matrix found on the AP [75].

119

Table 4.6: Space utilization on AP and FPGA targets. Lower values for AP States, FPGA
LUTs and FPGA Registers indicate a smaller footprint; lower values for AP
MBRA indicate less stress on the routing network.

ap ap ap fpga fpga

benchmark stes mbra clk luts reg

ARM H 58 20.8% 1 73 76

R 56 20.8% 1 83 65

Brill H 1,514 65.4% 1 201 1483

R 1,429 60.6% 1 358 1360

Exact H 27 4.2% 1 6 25

R 27 4.2% 1 28 27

Gappy H 123 77.1% 1 73 123

R 399 70.8% 1 52 399

MOTOMATA H 149 75.0% 0.5 114 148

R 72 75.0% 1 85 60

H – Handcrafted R – RAPID

description of the benchmark. Lower numbers indicate smaller footprints for the

circuits, which allows for more widgets to be run in parallel on the FPGA. As

with the AP results, RAPID programs do not incur significant space overheads on

the FPGA. A complete timing analysis and comparison with other FPGA engines

falls outside the scope of this work but is examined by Xie et al. [252].

Despite representing problems at significantly higher levels of abstraction than

hand-optimized automata, RAPID programs do not incur significant hardware

overheads once compiled.

120

4.6 chapter summary

As data sets continue to grow in size, new hardware and software approaches are

needed to quickly process and analyze available data. This chapter explores the

viability of automata processing as an intermediate computational representation

to support high-throughput processing across computer architectures. We present

RAPID, a new language for defining pattern-matching algorithms. RAPID is

motivated by pattern-recognition processors, such as the Automata Processor,

which greatly accelerate pattern detection in streams of data, but lack easy-to-use

programming models.

Automata processing allows for a developer to write a single application and

execute on all common architectures. Further, our empirical evaluation demon-

strates that automata optimizations maintain performance stability across CPUs,

GPUs, FPGAs, and the AP.

RAPID raises the level of abstraction for programming pattern-recognition

applications, resulting in clear, concise, maintainable, and efficient programs. We

develop a notion of macros and networks, which we argue improve program main-

tainability. Additionally, RAPID provides parallel control structures to support

common tasks in pattern-matching algorithms, such as sliding window searches.

We present techniques for converting RAPID programs to finite automata that can

be executed on CPUs, GPUs, FPGAs, and Micron’s D480 AP. Although RAPID

programs are written at a higher level of abstraction than current hand-crafted

code, our evaluation indicates that RAPID programs have similar, if not better,

121

device utilization. RAPID therefore meets the requirements of scalability and

performance.

Thus, in addition to supporting extant code (see Chapter 3), our programming

model also allows developers to write new applications for hardware accelerators.

Next, we will develop software maintenance tools, built atop our RAPID language,

to help developers identify and fix bugs in their code.

122

chapter 5

Interactive Debugging for High-Level Languages and Accelerators

T
he introduction of new domain-specific languages (DSLs), such as the

RAPID language presented in Chapter 4, and the adoption of new accel-

erators both create challenges from a software maintenance standpoint.

Developers may wish to port existing code to these new languages or rewrite

algorithms to be better-suited for these new accelerators, tasks which can intro-

duce new faults [264, 266]. For automata processing applications, these faults

can be particularly difficult to localize. Developers may not observe abnormal

behavior until processing large quantities of data (i.e., testing samples may not

exhibit high coverage of corner cases). Extracting a smaller input for analysis

from the large data set can be challenging or costly, since many pattern-matching

algorithms perform a sliding-window comparison where the relevant piece of data

is not known a priori. It is therefore desirable to support high-throughput data

processing with the ability to interrupt accelerated program execution and transfer

control to a debugging environment. As described in Section 1.2.3, CPUs are too

slow for effective debugging of many automata-based applications and debugging

on accelerators is currently conducted at extremely low levels of abstraction.

123

Therefore, we present an approach for building an interactive, source-level de-

bugger using low-level signal inspection on hardware accelerators. Our debugging

system includes support for breakpoints and data inspection. We demonstrate

prototype implementations for both the AP and Xilinx FPGAs; no modifications

to the underlying accelerators are needed. While we focus our presentation on

one indicative DSL, the techniques we present for exposing state from low-level

accelerators to provide debugging support lay out a general path for providing

such capabilities for other accelerators and languages. Our approach leverages

four key insights:

• A co-designed hardware accelerator and CPU-software simulation system

design allows for both high-speed data processing as well as interactive

debugging.

• Micron’s AP contains context-switching hardware resources, which are often

left unused, for processing multiple input streams in parallel. Additionally,

FPGA manufacturers provide logic analyzer APIs to inspect the values of

signals during data processing. We repurpose these hardware features to

transfer control from the execution context on the accelerator to an interactive

debugger on the host system.

• Runtime state for automata processing applications is compact, consisting

only of the set of active states. We lift this state to the semantics of the source-

level program through a series of mappings generated at compile time.

The mapping from source-level expressions to architecture-level automata

124

states is traceable within the RAPID compiler; our approach is applicable

to any high-level programming language for which such a mapping from

expressions to hardware resources may be inferred.

• Setting breakpoints on expressions in a program is not directly supported by

the automata processing paradigm. Instead, we set and trigger breakpoints

on input data, pausing execution after processing N bytes. We can leverage

these pauses to provide the abstraction of more traditional breakpoints set

on lines of code.

We also extend our basic design to support low-latency time-travel debugging

near breakpoints by stopping accelerated computation early and recording execu-

tion traces with a software-based automata simulator. The addition of software

simulation allows our system to support logical backward steps in the subject

program near breakpoints without incurring significant delays while data is

re-processed.

Capturing the state information from each automaton state on FPGAs incurs

a hardware, performance, and power overhead, in contrast to the AP (where

support is built into the architecture). We evaluate the scalability of our debugging

approach on the ANMLZoo benchmarks [231] using the REAPR automata-to-

FPGA tool [252] and a server-class FPGA. We were able to achieve an average of

81.70% of the baseline clock frequencies. We also discuss the trade-off between

resource overheads and support for debugging.

We evaluate the ease of use of our debugging approach using an IRB-approved

human study to understand how our technique affects developers’ abilities to

125

localize faults in pattern-matching applications. During the study, we collected

data using a set of ten programs indicative of real-world applications with a

total of twenty seeded defects. Our human study included 61 participants with a

wide range of programming experience, including a mix of undergraduate and

graduate students at our home institution, as well as a professional developer. We

found a statistically significant 22% increase (p = 0.013) in localization accuracy

when participants were provided with debugging information generated by our

system.

This chapter, therefore, makes the following contributions:

• A technique for interactive debugging of automata processing applications

written in a high-level DSL. We leverage an accelerator to quickly process

input data and repurpose existing hardware mechanisms to transfer control

and initiate a debugging session.

• A characterization of breakpoint types for the automata processing domain.

We differentiate between breakpoints set on input data and on expressions.

• An empirical evaluation of our debugging system on a Xilinx FPGA. We

achieve an average of 81.70% of the baseline clock frequencies for the ANM-

LZoo benchmarks.

• A human study of 61 participants using our debugging tool on real-world

applications. We observe a statistically significant (p = 0.013) increase in

fault localization accuracy when using our tool.

126

In the remainder of the chapter, we first introduce our debugging system

in Section 5.1. Then, we evaluate scalability on FPGAs in Section 5.2, and

present the statistical analysis of our human subjects study in Section 5.3.

5.1 hardware-supported debugging

In this section, we present a novel technique for accelerating debugging tasks

for sequential pattern-matching applications using a hardware-based automata

processor. Our technique bridges the semantic gap between the underlying com-

putation and the source-level RAPID program and can be extended to other

languages whose compilers map program expressions and state to hardware

resources. We consider two varieties of breakpoints (line and input) and describe

how input-based breakpoints can be used in our system to implement traditional

line-based breakpoints. We also extend our debugging system to support low-

latency time-travel debugging by using a software-based automata simulator.

While the technique generalizes to various automata processing architectures

(including CPUs), we present the approach with respect to Xilinx FPGAs and

Micron’s D480 AP.

5.1.1 Example Program

Listing 5.1 provides an example RAPID program, which we will consider at

various points in this chapter. The program matches the string “hello world”.

127

1 macro helloWorld() {

2 // match "Hello world" anywhere in the input stream

3 whenever(ALL_INPUT == input()) {

4 // match the word "Hello" in the input data stream

5 foreach(char c : "Hello") {

6 // match each character in turn

7 // computation stops if a character doesn’t match

8 c == input();

9 }

10

11 // match with a space (’ ’) between the two words

12 input() == ’ ’;

13

14 // match with the word "world" in the input data stream

15 foreach(char c : "world") {

16 c == input();

17 }

18

19 // if we successfully matched everything, report

20 report;

21 }

22 }

23

24 network() {

25 // instantiate a single search using the helloWorld macro

26 helloWorld();

27 }

Listing 5.1: An example RAPID program that matches “hello world” anywhere in an
input string

128

To do this, we instantiate a single instance of the helloWorld macro. This macro

continually attempts to match our target string (line 3). To match the “hello world”

string, we iterate over the characters in “hello”, matching each in turn (lines 5–9).

Then, we match a space (line 12), iterate over the characters in “world” (lines

15–17). If these characters are successfully matched, a report event is generated

(line 20). For a detailed description of the keywords and operators in the RAPID

language, please refer to Section 4.2.

5.1.2 Breakpoints

Breakpoints allow a developer to begin interacting with a debugger [124]. The

subject program executes until a breakpoint is reached, and then control is trans-

ferred into an interactive session, allowing the user to inspect program state [149].

Watchpoints, or conditional breakpoints, are another common tool developers use

to debug programs. Unlike breakpoints, a watchpoint only transfers control when

the value of a variable changes or an assertion becomes true. Because watchpoints

may be implemented as breakpoints [190], we focus solely on breakpoints in this

work.

line breakpoints . Traditionally, breakpoints are set on lines of code, state-

ments, or expressions in a program. Execution stops every time control reaches

the corresponding program point. We refer to this type of breakpoint as a line

breakpoint. In the example RAPID program in Listing 5.1, a line breakpoint could

129

be set on line 16 to halt execution for each match of a character in the sequence

“world”.

input breakpoints . Automata-based pattern-recognition programs often

process large quantities of data, and spurious or incorrect reports1 may only

appear after a significant portion of the input stream has been consumed. To

debug these defects, a developer may wish to pause program execution after a

given number of input symbols have been processed by all parallel searches. In

other words, the developer might wish to set a breakpoint on the input stream

given to an application. We refer to this type of breakpoint as an input breakpoint.

This abstraction provides functionality similar to several automata simulators that

support “jumping” to a given offset in input data.

5.1.3 Hardware Abstractions for Debugging

Unlike traditional (non-parallel) CPU debugging, we explicitly target a setting with

a particular kind of parallelism, one where multiple pattern-matching searches and

multiple automata states can be active simultaneously. Central to our technique

is the ability to inspect the active set, or currently active states, in the executing

automata. On both the AP and FPGA, this information is tracked using the

activation bit stored within each STE (see Section 2.2), and we refer to this

collection of data as the state vector. The state vector provides a complete and

1 False negatives (missing reports) remain an open challenge.

130

compact snapshot of machine execution after processing a given number of input

symbols (in NFAs, there is no other notion of “memory” such as a stack or tape).

5.1.4 Accessing the State Vector

To support our debugging system, a target hardware platform must provide access

to the state vector of the executing automata. We describe accessing this vector

on both the AP and Xilinx FPGAs; no modifications or additions to the hardware

platform are needed to support these techniques.

micron’s ap. Off-chip access to the state vector is provided through the

context switching cache on the AP [75]. This cache was developed to allow

automata executing on the AP to switch between—and process in parallel—

several input streams. Additionally, the AP runtime allows the host system to

inspect the contents of the context switching cache. We repurpose this hardware

to transfer control to the interactive debugging session: when a breakpoint is

reached, our debugger captures the state vector from the executing automata and

copies the values back to the host system.

xilinx fpga . We consider two approaches to accessing the state vector on

Xilinx FPGAs: integrated logic analyzers (ILAs) [109] and virtual IOs (VIOs) [229].

Both of these Xilinx IP (Intellectual Property) blocks are used for runtime debug-

ging the FPGA and come with different design trade-offs [230].

131

The ILA is a signal-probing core that can be used to monitor a hardware design’s

internal signals by attaching logical probes to these signals. It supports advanced,

dynamically configurable triggering conditions that specify when the ILA captures

data. This functionality allows the developer to trigger data capture on complex

hardware events represented by a combination of signals. ILAs use block RAM to

probe the internal design signals at the clock speed of the design under test but

have a fairly high hardware utilization cost. For our application, ILAs allow us to

dynamically specify breakpoint triggering conditions while having a negligible

impact on the data throughput of automata being debugged.

VIOs are similar to the ILAs, allowing logical probes to sample data within a

target design but without the advanced triggering functionality. Consequently,

VIOs are more compact than ILAs while still providing the needed access to data

in automata state vectors. Because they are instantiated within the design and are

synchronous with the design, VIOs can result in reduced design clock speeds.

While ILAs provide a richer set of features with little impact on clock frequency,

we found that the space requirements needed to interface with automata process-

ing designs frequently exceeded the capacity of FPGAs for indicative applications.

In particular, ILAs for our debugging system require more BRAM resources than

our server-class FPGA made available. Therefore, we choose to implement our

debugging system using VIOs, which require fewer hardware resources, but may

reduce clock frequencies. Our empirical evaluation (see Section 5.2) demonstrates

that these reductions are less than 20% for most automata applications.

132

We extend Xie et al.’s REAPR (see Section 2.2.3) to automatically generate VIOs

or ILAs attached to the activation bits of STEs for a given automaton. Applications

built with automata often consist of tens of thousands of states (see Table 5.1), but

the current VIO implementation provided by Xilinx only supports 256 individual

probes, and ILAs are limited to 1024. To address this dichotomy in scale, we

increase the width of each VIO probe, treating a set of N STEs as a single, multi-bit

value. Once the state vector data is transferred to the host system, we disambiguate

the individual STEs. For a probe width of 256 (the maximum supported width),

our technique is able to monitor a total of 256× 256 = 65, 536 STEs with a single

VIO; multiple VIOs may be used for larger designs. We greedily assign STEs to

VIO probes in the order STEs are encountered in an input automaton. A more

sophisticated graph analysis (e.g., calculating connectivity of states) could result

in probe assignments that reduce final placement and routing overheads. We leave

exploration of such optimizations to future work.

other processors . Other processors may be used in place of the AP in

our debugging system as long as the state vector abstraction is exposed. For

example, inspection of the state vector for some CPU-based automata processors

(e.g., VASim [235]) requires iterating through all states in the automaton to capture

the active set. Other custom accelerators for automata processing, such as the

Cache Automaton [209], also provide direct support for accessing the state vector.

133

standard program execution

debugging execution

Accelerator processes data

Accelerator processes data

Abnormal behavior observed

N

User-defined breakpoint
System-calculated breakpoint

Accelerator
state vector

Simulator
state vector

Simulator
processes

data

Mapping

Interactive debugging session

Figure 5.1: An example debugging scenario. While executing the RAPID program, abnor-
mal behavior is observed deep into processing data. The user sets an input
breakpoint, and the debugging system sets an input breakpoint N symbols
prior for low-latency time-travel support. Data is processed on the hardware
accelerator until the input breakpoint is reached, the state vector is exported,
and the final N symbols are processed using a software automata simulator.
The resulting state vector is then lifted to the semantics of the user-level RAPID
program and control is transferred to the interactive debugging session.

5.1.5 Hardware Support for Breakpoints

A typical use case for our debugging system begins with developers observing

abnormal behavior during the execution of a RAPID program. They then set

a breakpoint that triggers near the abnormal behavior and re-execute the pro-

gram. When the breakpoint is reached, runtime state is transferred to the host

system, lifted to the semantics of the source-level RAPID program, and control

is transferred to an interactive debugger. An overview of this process is given in

Figure 5.1. In this subsection, we describe the steps needed to trigger a breakpoint

134

on an automata processing engine. We first consider input breakpoints, and then

we describe how line breakpoints may be transformed into input breakpoints.

Input breakpoints are implemented through partitioning of the input data

stream. We split the data such that the input stops at the offset of the desired

breakpoint and process this using the AP. When processing completes, we export

the state vector of the executing automata to the host system.

Line breakpoints in source-level RAPID programs cannot be directly imple-

mented in the underlying AP or VIO-based FPGA hardware platforms. The

automata processing paradigm only generates reports; there is no notion of a

program counter or printf -like behavior that we can leverage.

We thus use reports to map line breakpoints to input breakpoints by recording

the offsets at which the NFA states associated with a RAPID statement or expres-

sion (determined during compilation) are active while processing the input data.

This is achieved by compiling two distinct sets of automata from an input RAPID

program. One set of automata (machine A) perform computation as normal. The

second set (machine B) report whenever selected lines of code execute. We modify

the RAPID compiler to emit machine B. Given a set of line numbers, the modified

compiler removes all previous reporting states and instead configures STEs as-

sociated with the given lines to report. By processing data with machine B, we

identify the input stream offsets at which breakpoints are triggered. Processing the

input data a second time with machine A allows our system to capture relevant

hardware state and trigger input breakpoints at offsets discovered with machine

135

macro helloWorld() {
 whenever(ALL_INPUT == input()) {
 foreach(char c : "Hello") {
 c == input();
 }
 input() == ' ';
 foreach(char c : "world") {
 c == input();
 }
 report;
 }
}

network() {
 helloWorld();
}

RAPID Program

RAPID
Compiler

Machine
A

Machine
B

Accelerator processes data with Machine B

Accelerator processes data with Machine A

Reports occur when
line is executed

Input breakpoints
inserted at reports

Figure 5.2: Transformation of a line breakpoint to an input breakpoint. Reports generated
by STEs mapped to RAPID expressions determine input breakpoints.

B. Updating or selecting new line breakpoints requires regenerating machine B.

This transformation is illustrated in Figure 5.2.

While the double compilation and execution steps do incur a minimum of a

2× overhead2 for line breakpoints over execution containing no line breakpoints,

we note that current hardware supports this approach. A more efficient approach

would be to support hardware-based debugging signals. On a straightforward

modification of the AP, these could be implemented similar to reporting events,

serving a similar role as a hardware break- or watch-point in a general-purpose

CPU [190]. Breakpoint signals are supported on FPGA-based automata processing

engines using ILAs to capture the state vector; however, space overheads are

currently too significant for use with most real-world applications.

2 Naively, processing of the input stream twice approximately doubles the execution time. However,
this does not consider the additional time needed to compile a second automaton, reconfigure the
AP or FPGA, or process reporting events.

136

5.1.6 Debugging of RAPID Programs

After capturing of the state vector, our system lifts the underlying state to the

semantics of the input RAPID program. Our approach is similar to traditional

CPU debugging, in which processor state is mapped to expressions in the input

program using lookup tables generated at compile time [190].

We augment the RAPID compiler to produce a debugging automaton, (Q, Σ, δ, S, F, id, d).

The additional term, d, is a mapping from NFA states to RAPID source locations

and known program variable state. RAPID employs a staged computation model

(Section 4.3); the values of some variables are resolved at compile time and are

known at the time of NFA state generation. These are stored in the mapping.

Compilation for the AP transforms an input automaton to a configuration for the

processor’s memory array and routing matrix (see Section 2.2), and compilation

for the FPGA maps an automaton to LUTs and FFs. These compilation processes

may result in multiple states being mapped to a single hardware location (state

merging) or a single state being mapped to multiple hardware locations (state

duplication) as a result of optimizations to better utilize available hardware

resources (cf. debugging with optimizations [101]). The compiler also produces a

mapping, loc, from hardware locations to automaton state IDs. This debugging

technique can be directly extended to any underlying automata processing engine

that can provide this location mapping.

137

When an STE-level breakpoint is triggered, we determine the corresponding

location(s) in the original RAPID program by calculating

⋃
q∈Qactive

d(id(loc(q)))

where Qactive is the set of active states extracted from the state vector. Due to

the inherent parallelism in RAPID programs, the locus of control may be on

several statements in the program simultaneously. Our technique for lifting the

underlying program state of the automata processing core to the semantics of the

RAPID program therefore returns a minimal set of the currently executing RAPID

statements.

5.1.7 Time-Travel Debugging

Many debuggers provide the ability to step backward in a program, a functionality

often referred to as time-travel debugging [126]. This feature is beneficial for

automata-based applications to find the start of a spuriously matched sequence.

To step backward in the source-level RAPID program or data stream, our debugger

would have to reprocess the input data, leading to high latency when breakpoints

are set deep in the data stream. We now describe a modification to our system

that significantly reduces this overhead.

When triggering input breakpoints, our debugging system splits the input

stream N bytes (symbols) before the user-specified location (rather than splitting

138

the data at the specified input offset). Once the input has been processed, we

export the current state vector like before and have access to the state vector N

bytes before the user’s breakpoint.

We then load the automata into a modified version of VASim [235], a CPU-

based automata execution engine. We have modified VASim to record and output

state vectors similar to those produced by the AP and FPGA.3 We then execute

the final N bytes before the breakpoint using VASim and save the state vector.

For the N bytes before the breakpoint, our system has low-latency access to the

execution state that is lifted to the semantics of the source-level RAPID program.

This allows a developer to step forward and backward near a breakpoint with

minimal processing delay.

In our initial implementation, we choose to stop processing on the accelerator

50 bytes (symbols) before the actual breakpoint. We find that this provides suit-

able time travel without incurring significant slow-downs; however, a complete

sensitivity analysis is beyond the scope of this work.

5.2 fpga evaluation

In this section, we present the results of an empirical evaluation of our FPGA-

based debugging system. Our evaluation focuses on the overheads of debugging

support. We repurpose existing hardware on the AP for debugging, and therefore

do not introduce additional overhead. Thus, we focus our evaluation on the space

3 Modified version available at https://github.com/kevinaangstadt/VASim/tree/statevec.

139

https://github.com/kevinaangstadt/VASim/tree/statevec

and time overheads incurred for the additional FPGA hardware needed in our

system. Our goal is to characterize the performance and scalability of our framework.

We consider the following research questions:

1. What percent of baseline (standard execution) clock frequency can applica-

tions achieve when synthesized with our debugging hardware?

2. Are applications synthesized with debugging hardware able to fit within

the resource constraints of server-class FPGAs? How many passes over the

data are needed when an application cannot fit?

5.2.1 Experimental Methodology

We evaluate our prototype automata debugging system on a server-grade Xilinx

FPGA using the ANMLZoo automata benchmark suite, which consists of fourteen

real-world-scale finite automata applications and associated input data [231]. The

benchmarks are varied, including both regular expression-based and hand-crafted

automata. We present a summary of the applications in Table 5.1, including the

number of states in each benchmark as well as the average degree (number of

incoming and outgoing transitions) for each state. The higher the degree, the more

challenging the benchmark is to map efficiently to the FPGA’s underlying routing

network.

For each benchmark, we generate an FPGA configuration using our modified

version of REAPR [252], producing Verilog including both VIOs (for capturing

140

Table 5.1: ANMLZoo benchmark overview

benchmark family states avg . node degree

Brill Regex 42,658 1.03287

ClamAV Regex 49,538 1.00396

Dotstar Regex 96,438 0.97396

PowerEN Regex 40,513 0.97601

Protamata Regex 42,009 0.99110

Snort Regex 69,029 1.08831

Hamming Mesh 11,346 1.69672

Levenshtein Mesh 2,784 3.26724

Entity Resolution (ER) Widget 95,136 2.28372

Fermi Widget 40,783 1.41176

Random Forest (RF) Widget 33,220 1.00000

SPM Widget 100,500 1.70000

BlockRings Synthetic 44,352 1.00000

CoreRings Synthetic 48,002 1.00000

state) and also Wadden et al.’s reporting architecture [233] for efficient transfer of

reports to the host system. We also use REAPR to generate a baseline configuration

that does not include the VIOs.

We synthesize and place-and-route each application for an Alphadata board rev

1.0 with a Xilinx Kintex-Ultrascale xcku060-ffva1156-2-e FPGA using Vivado 2017.2

on an Ubuntu 14.04.5 LTS Linux server with a 3.70GHz 4-core Intel Core i7-4820K

CPU and 32GB of RAM. As of 2019, this configuration represents a high-end

FPGA on a mid-range server. For both the baseline and our version supporting

141

debugging, we measure the hardware resources required, the maximum clock

frequency and the total power utilized. We present these results next.

5.2.2 FPGA Results

Performance results for FPGA-based debugging are presented in Table 5.2. We

were able to successfully place and route thirteen of the fourteen benchmarks—the

Xilinx toolchain fails with a segmentation fault for one of the synthetic benchmarks.

We limit our discussion to these thirteen benchmarks.

Entity Resolution, Snort, and SPM require two VIOs due to the number of

states in the automata. Nonetheless, all but Entity Resolution and SPM—our

two largest benchmarks—fit within the hardware constraints when synthesized

with debugging hardware. We support these two benchmarks by partitioning the

automata. Most applications in ANMLZoo, including these two, are collections of

many small automata or rules. By splitting the applications into two pieces, we

still support debugging on an FPGA, but throughput is halved if run serially on a

single FPGA. The numbers presented in Table 5.2 include this overhead.

Our additional debugging hardware has average LUT and FF overheads of

2.82× and 6.09×, respectively. The overheads vary significantly between applica-

tions, and we suspect that this is due to aggressive optimization during synthesis.

The area overhead of state capture is unknown in the AP (area details for struc-

tures are not published), but since it is provided for context switching, using it

for debugging incurs no extra hardware cost. For FPGAs, the area overhead of

142

Ta
bl

e
5
.2

:F
PG

A
-B

as
ed

de
bu

gg
in

g
sy

st
em

pe
rf

or
m

an
ce

re
su

lt
s

b
e

n
c

h
m

a
r

k

w
i
t

h
o

u
t

d
e

b
u

g
g

i
n

g
w

i
t

h
d

e
b

u
g

g
i
n

g

n
u

m
.

v
i
o

s

l
u

t

o
v

e
r

h
e

a
d

f
f

o
v

e
r

h
e

a
d

p
e

r
c

e
n

t

o
r

i
g

.
f

r
e

q
.

p
o

w
e

r

o
v

e
r

h
e

a
d

LU
Ts

FF
s

C
lo

ck
Po

w
er

LU
Ts

FF
s

C
lo

ck
Po

w
er

(M
H

z)
(W

)
(M

H
z)

(W
)

Br
ill

2
7
,6

2
1

2
7

,7
8

2
1

6
6

.6
7

0
.8

1
7

8
9

,6
0

5
1

6
9

,3
2

3
1

6
6

.6
7

1
.9

7
3

1
3
.2

4
6
.0

9
1

0
0
.0

0
%

2
.4

1

C
la

m
A

V
4

2
,1

7
8

4
2

,0
6

7
2

0
4

.0
8

0
.9

2
3

9
5

,8
9

1
1

9
9

,3
3

6
1

2
1

.9
5

1
.2

5
7

1
2
.2

7
4
.7

4
5
9
.7

5
%

1
.3

6

D
ot

st
ar

4
9

,7
7

4
4

6
,9

6
5

1
6

9
.4

9
0
.9

3
8

1
7

2
,3

5
0

3
7

2
,0

7
4

1
4

2
.8

6
2

.6
2

2
1

3
.4

6
7
.9

2
8

4
.2

9
%

2
.8

0

Po
w

er
EN

3
5
,3

5
9

3
1
,5

3
0

1
6

3
.9

3
0
.8

3
2

7
7

,9
0

0
1

6
1

,1
5

6
1

4
9

.2
5

1
.3

0
2

1
2
.2

0
5
.1

1
9

1
.0

5
%

1
.5

6

Pr
ot

am
at

a
4

9
,7

9
1

3
6
,2

8
5

1
2

6
.5

8
0
.8

3
8

8
5

,6
0

4
1

6
7

,6
4

6
1

0
8

.7
0

1
.2

0
6

1
2
.1

0
4
.6

2
8

5
.8

7
%

1
.4

4

Sn
or

t
4

3
,0

6
1

2
8
,0

4
7

9
8

.0
4

0
.7

8
3

1
2

8
,6

8
4

2
6

6
,6

0
0

9
1

.7
4

1
.4

7
8

2
2
.9

9
9
.5

1
9

3
.5

8
%

1
.8

9

H
am

m
in

g
5
,6

0
2

6
,6

3
7

3
1

2
.5

0
0

.7
0

1
2

5
,1

7
0

4
6

,0
8

0
3

1
2

.5
0

1
.0

6
5

1
4
.4

9
6
.9

4
1
0

0
.0

0
%

1
.5

2

Le
ve

ns
ht

ei
n

2
,5

3
8

2
,2

4
2

4
3

4
.7

8
0

.6
6

6
4

,2
1

8
1

1
,2

6
3

4
0

0
.0

0
0
.7

3
7

1
1
.6

6
5
.0

2
9
2
.0

0
%

1
.1

1

ER
∗

5
0
,3

4
9

4
7

,1
0

2
2

1
2

.7
7

1
.0

6
6

2
1

,3
4

6
1

3
8

,1
2

5
8

5
6

.8
2

1
.4

4
7

2
4
.2

4
8
.0

9
2
6
.7

0
%

1
.3

6

Fe
rm

i
3

6
,3

1
4

3
2

,2
6

1
1

1
6

.2
8

0
.9

9
1

8
6

,8
7

9
1

6
7

,0
8

9
9

9
.0

1
1
.5

3
7

1
2
.3

9
5
.1

8
8
5
.1

5
%

1
.5

5

R
F

3
1
,0

6
0

2
5
,7

6
9

2
0

0
.0

0
0
.9

9
0

6
6

,6
8

6
1

3
0

,0
0

7
1

9
2

.3
1

1
.6

1
1

1
2
.1

5
5
.0

5
9

6
.1

5
%

1
.6

3

SP
M
∗

6
4
,6

1
5

5
9
,1

0
6

1
2

6
.5

8
1
.0

1
7

2
2

5
,3

1
5

4
0

6
,2

4
1

6
0

.2
4

2
.6

0
5

2
3
.4

9
6
.8

7
4

7
.5

9
%

2
.5

6

Bl
oc

kR
in

gs
4

4
,4

4
6

4
4

,1
8

5
2

5
6

.4
1

1
.2

1
5

9
0

,3
3

3
1

7
8

,9
0

5
2

5
6

.4
1

2
.1

1
9

1
2
.0

3
4
.0

5
1

0
0
.0

0
%

1
.7

4

C
or

eR
in

gs
†

−
−

−
−

−
−

−
−

−
−

−
−

−

a
v

e
r

a
g

e
2
.8

2
6
.0

9
8
1
.7

0
%

1
.7

6

∗
Be

nc
hm

ar
k

m
us

t
be

pa
rt

it
io

ne
d

to
fit

w
it

hi
n

FP
G

A
re

so
ur

ce
lim

it
s

w
it

h
ad

de
d

de
bu

gg
in

g.
Th

e
cl

oc
k

fr
eq

ue
nc

y
re

fle
ct

s
th

is
pa

rt
it

io
ni

ng
.

†
Th

e
cu

rr
en

t
co

m
m

er
ci

al
X

ili
nx

to
ol

ch
ai

n
te

rm
in

at
es

w
it

h
a

se
gm

en
ta

ti
on

fa
ul

t
du

ri
ng

sy
nt

he
si

s.

143

our approach is 2–3× for LUTs (except for Hamming) and 5–10× for FFs. This

area overhead is high. For complex programs, the compiled automata may need

to be partitioned, which is straightforward and supported by our infrastructure.

However, partitioning requires either running multiple passes over the input

(end-to-end latency increases as passes are added) or using multiple FPGAs

(increasing hardware costs, but as of August 2018 cloud computing providers

offer instances with up to eight FPGAs4 for $13.20 an hour5). We believe this is a

small price to pay for debugging support: any extra costs (e.g., FPGA overheads)

are small compared to the value of a programmer’s time, and the presence and

quality of debugging support can increase accuracy (see Section 5.3) and reduce

maintenance time (e.g., [171, Sec. 5.1]). Lowering the area cost, either via more

selective state monitoring or more optimized synthesis, remains future work.

Adding VIOs to a design can reduce operating clock frequencies (see Sec-

tion 5.1.4) and increase power usage. For our benchmarks, the average power

overhead is 1.76×, and we are able to achieve an average of 81.70% of the baseline

clock frequencies. Even with the partitioned automata, the throughput of our

prototype remains at least an order of magnitude greater than the throughput

reported by Wadden et al. for a CPU-based automata processing engine [231].

Therefore, we expect our FPGA-accelerated system to provide better performance

than a CPU-only approach.

4 https://aws.amazon.com/ec2/instance-types/f1/
5 https://aws.amazon.com/ec2/pricing/on-demand/

144

https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/pricing/on-demand/

Despite high resource overheads, our debugging system achieves an average of

81.70% of the baseline clock frequencies for all benchmarks. Our system remains

an order of magnitude faster than a CPU-based automata processing engine.

5.3 human study evaluation

In this section we evaluate our debugging system using a human study by

presenting participants with code snippets and asking them to localize seeded

defects. We measure their accuracy and the time taken to answer questions. This

section characterizes our study protocol and participant selection and presents a

statistical analysis of our results.

5.3.1 Experimental Methodology

Our IRB-approved human study6 was formulated as an online survey that pre-

sented participants with a sequence of fault localization tasks. Participants were

provided with a written tutorial on the RAPID programming language and sam-

ple programs. These resources were made available to the participants for the

duration of the survey. We presented each participant with ten randomly selected

and ordered fault localization tasks from a pool of twenty. For each task, partici-

pants were asked to identify faulty lines in the code and justify their answer. We

6 University of Virginia IRB for Social and Behavioral Sciences #2016-0358-00.

145

recorded the participants’ responses and the total time taken for each question.

Participants were given the opportunity to receive extra credit (for students) and

enter a raffle for a $50 gift certificate.

Each fault localization task consisted of a description of the program and fault,

the code for the program with a seeded defect, and an input data stream. On

half of the tasks, our debugging information was also displayed. The description

of the program detailed the purpose of the presented code and also provided

the expected output. Code for each task ranged from 15–30 lines and was based

on real-world use cases [231]. Similar to GPGPU programs, RAPID programs

accelerate a kernel computation within a larger program. While our selected

programs are relatively small in terms of line count, they are both complete and

also indicative: we adapted automata processing kernels to RAPID programs

from various published applications, such as Brill tagging [267], frequent subset

mining [239], and string alignment for DNA/Protein sequencing [40, 186]. We

seeded a variety of defects into the code for our fault localization tasks, based on

RAPID developer mistakes discovered by our initial study of RAPID in Chapter 4.

When provided, the debugging information included buttons to step forward

and backward in the data stream. For a given offset in the input stream, our tool

highlights lines of code corresponding to the current locus of control. We also

provided variable state information for each of the loci. Figure 5.3 provides an

example fault localization task presented to survey participants.

Participants were all voluntary and predominantly from the University of

Virginia. We advertised in Data Structures, Theory of Computation, and Program-

146

Figure 5.3: A question from the human study including generated debugging information.
Task text and program state information are elided for space.

ming Language undergraduate CS courses, in a graduate software engineering

seminar, and to members of the D480 AP professional development team. Partici-

pants are enumerated in Table 5.3.

5.3.2 Statistical Analysis

Next, we present statistical analyses of the responses to our human study with

an eye toward understanding the ease of use of our debugger. We address the

following research questions:

1. Does our technique improve fault localization accuracy?

147

Table 5.3: Participant subsets and average accuracies. The study involved n = 61 partici-
pants. Average completion times are for individual fault localization tasks.

average average

subset time (min.) accuracy participants

All 8.17 50.3% 61

Intermediate Undergraduate Students 7.3 49.2% 37

Advanced Undergraduate Students 10.14 50.0% 21

Grad Students and Prof. Developers 5.07 66.7% 3

2. Is there an interaction between programming experience and ability to

interpret RAPID debugging information?

In total, 61 users participated in our survey each completing ten fault localization

tasks, resulting in over 600 individual data points. Table 5.3 provides average

accuracy rates and task completion times for subpopulations in our study.

Does our debugging information improve fault localization in RAPID programs?

To measure the effect of debugging information on programmer performance,

we used the following metrics: accuracy and time taken. We defined accuracy

as the number of correctly identified faults. We manually assessed correctness

after the completion of the survey, taking into account both the marked fault

location and justification text provided. Using Wilcoxon signed-rank tests, we did

not observe a statistically significant difference in time taken to localize faults

(p = 0.55); however, we determined that there is a statistically significant increase

in accuracy when participants were given debugging information (p = 0.013).

148

Mean accuracy increased from 45.1% to 55.1%, meaning participants were 22%

more accurate when using our tool.

Fault localization improvements can be difficult to evaluate: researchers must be

careful to avoid simply reporting the fraction of lines implicated [171, Sec. 6.2.1]

rather than the actual impact on developers. Independent of time, accuracy is

important because even in mature, commercial projects, 15–25% of bug fixes are

incorrect and impact end users [260]. The improvement in accuracy provided by

our information is modest but significant and is orthogonal to other approaches.

Our debugging tool improves a user’s fault localization accuracy for RAPID

programs in a statistically significant manner (p = 0.013).

Is there an interaction between programmer experience and our tool?

Previous studies (cf. Parnin and Orso [171]) have found that the effectiveness

of debugging tools can vary with programmer experience. We examined our

data for similar trends. Following an established practice from previous software

engineering human studies (e.g., Fry and Weimer [86]), we partitioned our data

between experienced (students in final-year undergraduate electives or above) and

inexperienced (students not yet in final-year undergraduate classes) programmers.

Such a partitioning likens final-year undergraduates to entry-level developers.

To measure the interaction between programmer experience and our debugging

tool, we used Aligned Rank Transform (ART) analyses. This technique allows

us to perform factorial nonparametric analyses with repeated measures (such

149

as the interaction between experience and debugging information in our study)

using only ANOVA procedures after transformation [249]. We found that there

was no statistically significant interaction between experience and our debugging

tool with respect to either accuracy (p = 0.92) or time (p = 0.38). This suggests

that novices and experts alike benefit from our tool. Due to the limited number

of professional developers in our initial study, we leave investigation of further

partitions for future work.

There is no statistically significant interaction between experience and the

ability to interpret our debugging information: both novices and relative experts

benefit.

5.3.3 Threats to Validity

Our results may not generalize to industrial practices. In particular, our selection

of benchmarks may not be indicative of applications written by developers in in-

dustry. We attempt to mitigate this threat by selecting a diverse set of applications

from common automata processing tasks [231].

One threat to construct validity relates to our analysis of expertise. A different

partitioning of participants into inexperienced and experienced programmers

(i.e., a different definition of expertise) could yield different results; however,

testing multiple partitions requires adjustment for multiple analyses. Additionally,

our study recruited predominantly undergraduate students. A more balanced

150

participant pool may also provide additional insight into the interaction between

expertise and debugging information in automata processing applications. We

leave a larger-scale study including more professional developers for future work.

5.4 chapter summary

Debuggers aid developers in quickly localizing and analyzing defects in source

code. We present a technique for extending interactive debugging, including

breakpoints and variable inspection, to the domain of automata processing. We

describe the mappings needed to bridge the gap between the state of the executing

finite automata and the semantics of a high-level programming language. We

focus on the RAPID DSL, but our approach to exposing state from low-level

accelerators lays the groundwork for more general support. Our system provides

high-throughput data processing before transferring control to a debugger at

breakpoints by executing automata on either Micron’s D480 AP or a server-class

FPGA. Only one bit of information per automata state at a given breakpoint

must be copied to the host to support an interactive debugger. For FPGAs, we

automatically generate custom logic, leveraging virtual IO ports, and capture state

information from the executing automata. On the AP, we leverage built-in context

switching hardware.

We achieve an average of 81.70% of the original clock frequency across 13 bench-

marks while supporting interactive debugging. Despite high resource overheads,

our system provides a valuable tool for debugging at a level of abstraction higher

151

than hardware signals. Reducing these overheads with, for example, static or

dynamic analyses and innovative hardware, remain open challenges for future

work.

To analyze the utility of our debugging system, we conducted a human study

of 61 programmers tasked with localizing faults in RAPID programs. We observed

a statistically significant 22% increase (p = 0.013) in accuracy from our tool’s

debugging information and found that our tool helps both novices and experts

alike.

In summary, our debugging framework provides the performance and scalability

afforded by hardware accelerators while improving ease of use by aiding developers

in locating the source of bugs programs written for these accelerators. This

concludes our development of front-end programming tools. In the next chapter,

we consider architectural back-ends to support additional high-level applications.

152

chapter 6

Architectural Support for Automata-Based Computation

W
e now shift away from the development of software tools and

instead focus on building out additional architectural support

for automata-based computation. Current architectures have been

demonstrated to be suitable for a plethora of application domains [183, 184,

186, 220, 221, 232, 238, 240, 267]; however, these architectures do not support all

applications. In this chapter, we consider two case studies—detection of security

attacks and parsing of data—to develop both new system integrations of automata

architectures as well as expanding the expressive power of this hardware.

As described in Section 2.5, two trends point to the need for robust, low-

overhead detection of novel attacks: (1) the advent of attacks that exploit ar-

chitectural vulnerabilities, such as Spectre [130] or Meltdown [142], and (2)

the widespread use of embedded systems intended to run a set of authorized

programs but vulnerable to the injection of unauthorized code [63, 65]. These

problems, especially architectural vulnerabilities, are not easily and efficiently

mitigated with software patches. Thus, there is a need for solutions that can

be deployed with minimal modification to existing hardware, that impose min-

153

imal overhead on running software (cf. disabling hardware features to defeat

attacks [150, 237]), and that generalize to detect novel attacks.

In addition to considering security applications that are integral to most com-

puting platforms, we also address processing of tree-structured or recursively

nested data, which is intrinsic to many computational applications. Data serial-

ization formats such as XML and JSON are inherently nested (with opening and

closing tags or braces, respectively), and structures in programming languages,

such as arithmetic expressions, form trees of operations. Further, the grammatical

structure of English text is tree-like in nature [56]. Studies on data processing

and analytics in industry demonstrate both increased rates of data collection and

also increased demand for real-time analyses [62, 67, 211]. Therefore, scalable and

high-performance techniques for parsing and processing data are needed to keep

up with industrial demand. Unfortunately, parsing is an extremely challenging

task to accelerate and falls within the “thirteenth dwarf” in the Berkeley parallel

computation taxonomy, which characterizes important classes of computation [20].

Software parsing solutions often exhibit irregular data access patterns and branch

mispredictions, resulting in poor performance (see Section 2.5.1). Custom acceler-

ators exist for particular parsing applications (e.g., for parsing XML [68]), but do

not generalize to multiple important problems.

To tackle these two challenges, we develop two new automata-based architec-

tures. We choose to implement both of these architectures in the Last Level Cache

(LLC) of a CPU, which has two primary advantages. First, we are able to reuse

and repurpose existing hardware elements in the CPU, and second, embedding

154

these architectures in the CPU enable low-latency, tightly coupled execution with

other CPU-based processing. We briefly describe each architecture in turn.

First, we present Martini,1 a low-overhead, hardware-assisted anomaly-based

intrusion detection framework that detects anomalous and malicious program

execution at the memory access level, including cache side-channel attacks (Sec-

tion 6.1). Martini extends earlier behavior-based IDSs that typically operate

at the software level by focusing on memory access patterns (cf. system calls),

representing them in a way that is implementable in hardware with negligible

run-time overhead. In Martini, authorized behavior is modeled with dictionaries

that represent an n-gram, or sliding window, of short sequences of memory ac-

cesses, where each memory access is compressed into eight bits of information.

Because Martini uses n-grams rather than complex pattern matching, once the

dictionary is trained on indicative, authorized behavior, subsequent queries can be

formulated in terms of finite automata inputs. Thus, Martini can be deployed in

hardware with low overhead and latency by leveraging near-memory processing

and in-cache computation (Section 6.3). We develop a new functional unit with a

custom data path that can be deployed in the processor core or Last Level Cache

of modern CPUs, which admits real-time monitoring of memory accesses.

Next, we present ASPEN,2 for efficient parsing of data (Section 6.4). Our key

insight is that many parsing applications can be modeled using deterministic

pushdown automata (DPDA) as defined in Section 2.1.2. ASPEN implements a

DPDA processing engine in LLC, and our design is based on the insight that

1 Martini = Memory Address Representation To INfer Intrusions.
2 ASPEN = Accelerated in-SRAM Pushdown ENgine

155

much of the DPDA processing can be architected as LLC SRAM array lookups

without involving the CPU. By performing DPDA computation in-cache, ASPEN

avoids conventional CPU overheads such as random memory accesses and branch

mispredictions. Execution of a DPDA with ASPEN is divided into five stages:

(1) input symbol match, (2) stack symbol match, (3) state transition, (4) stack

action lookup, and (5) stack update, with each stage making use of SRAM arrays

to encode matching and transition operations. To support direct adaptation of

a large class of legacy parsing applications, we implement a compiler for con-

verting existing grammars for common parser generators to DPDAs executable

by ASPEN (Section 6.2). We develop two key optimizations for improving the

runtime of parsers on ASPEN, which work together to reduce stalls in input

symbol processing (Section 6.2.2.3).

Our evaluations of Martini and ASPEN measure the expressive power, scala-

bility, and performance of each design. We evaluate Martini with respect to two

benchmark suites and four recent exploits, finding an overall false positive rate

of 4.4% with a true positive rate of 100% (area-under-curve = 0.9954). In total,

we consider more than 2,400 program traces and more than 13 billion individual

memory accesses. We evaluate the expressive power of ASPEN by compiling

parsers for four different languages to demonstrate that our architecture supports

common data formats and that the resulting pushdown automata fit within the

hardware resources of the architecture. We evaluate the performance of ASPEN

on a benchmark suite of 23 XML files, observing that our approach is 14× faster

than a state-of-the-art software-based XML parser.

156

In summary, this chapter presents the following scientific contributions:

• Martini, an approach for detecting unauthorized program behavior, in-

cluding architectural side-channel attacks, using dictionaries of n-grams of

memory accesses. We develop a system integration of an automata process-

ing architecture to provide per-cycle monitoring of memory accesses.

• ASPEN, a scalable execution engine which re-purposes LLC slices for DPDA

acceleration. We design a custom data path for DPDA processing using

SRAM array lookups. ASPEN implements state matches, state transition,

stack updates, includes efficient multipop support, and can parse one token

per cycle.

• An optimizing compiler for transforming existing language grammars into

DPDAs. Our compiler optimizations reduce the number of stalled cycles

during execution. We demonstrate this compilation on four different lan-

guages: Cool (object-oriented programming), DOT (graph visualization),

JSON, and XML.

• An empirical evaluation of ASPEN on a tightly coupled XML tokenizer

and parser pipeline. Our results demonstrate an average of 704.5 ns per KB

parsing XML compared to 9983 ns per KB in a state-of-the-art XML parser

across 23 XML benchmarks.

• An empirical evaluation of Martini’s classification accuracy on over 2,400

program traces from two large benchmark suites and four exploits, including

157

Spectre and Meltdown proofs-of-concept. We find that Martini is able to

classify intrusive activity with high accuracy and precision (AUC 0.9954)

while requiring a very small chip area. Moreover, deploying Martini in

hardware would enable classification without runtime overhead.

We organize the remainder of this chapter as follows. In Section 6.1, we describe

our approach for detecting malicious program behavior by monitoring memory

accesses. Then, we describe the process of transforming parsing applications

into pushdown automata computation in Section 6.2. Next, we describe the

architectural designs of Martini and ASPEN in Section 6.3 and Section 6.4,

respectively. We then describe our unified experimental methodology in Section 6.5

and perform architectural evaluations in Section 6.6. Following the architectural

evaluation, we present application-specific evaluations of Martini in Section 6.7

and of ASPEN in Section 6.8.

6.1 detecting attacks with memory accesses

In this section, we present an application-level design and implementation of the

Martini framework. We present the micro-architectural design in Section 6.3.

158

6.1.1 The Memory Access Pattern Abstraction

Many abstractions have been proposed to compactly characterize program be-

havior, including the cadence of cache misses [254], program counters [192], taint

tracking in I/O inputs [210], and hardware performance counters [69, 197]. Despite

demonstrating their ability to accurately identify anomalous behavior, these mod-

els often require intrusive instrumentation that degrades system performance. We

aim for an abstraction of memory access patterns that is suitable for low-overhead,

high-accuracy real-time monitoring.

Programs are represented as data stored in memory, and program execution

proceeds by reading, modifying, and storing data in memory. Program behavior

therefore partially manifests as a sequence of memory accesses produced during

execution. These sequences are inherent to the underlying execution path and

structure of program code. That is, alterations to the way in which a program

processes information are revealed by its memory access patterns. For example,

a calculator program that parses and interprets expression strings will generate

distinct memory traces when multiplying vs. adding operands due to variations

in the execution’s control flow. By contrast, changing the operands (i.e., the

numerical data) will typically not result in a change in the trace of memory

addresses. The Martini design leverages this insight to characterize program

execution as either benign or malicious (i.e., either authorized or unauthorized by

the system operator) in a way that, ideally, generalizes to subsequent inputs.

159

0x17 0xB2 0xC3 0xC4 0xDF 0xC8
...Window 1

Sliding Window
−→

0xB2 0xC3 0xC4 0xDF 0xC8
...Window 2

0xC3 0xC4 0xDF 0xC8
...

Window 3

Figure 6.1: Example of a four-address, fixed-width window. Here, an executing program
accesses addresses 0x17, 0xB2, 0xC3, etc. Each window (n-gram) thus represents
a local snapshot of accessed memory locations as the window slides across all
memory accesses.

Instead of considering a program’s unique sequence of memory accesses as

a whole, we present a stream-based approach that can scale to arbitrary-size

programs, observing a fixed-width window of the n most recently accessed

memory addresses. This window acts as a shift register, allowing Martini to

observe a sliding window of memory addresses as program execution proceeds.

This provides a localized, contextual view of a program’s recent memory behavior

that can be monitored during the execution of the program. Figure 6.1 provides an

example of the construction of windows of width four from a stream of memory

addresses.

While individual n-grams are likely shared across the execution of different

programs, we hypothesize that the set of all windows for a given program pro-

160

cal dmesg

Figure 6.2: Visualization of n-gram representation for two programs. Sets of windows
of size three are shown for memory accesses of cal and dmesg. Each point
(a0, a1, a2) in three-dimensional space represents a unique window recorded
during the execution of the program, where an represents the nth address in
the window. The plots are structurally different between the two programs
indicating significant differences in their behavior. We consider such windows
in 8 dimensions.

vides a unique signature that is difficult to spoof. This is the intuition behind

our approach—programs are characterized by the pattern of memory addresses

accessed during execution. As an example, consider three-address windows: Fig-

ure 6.2 plots windows for the Linux utilities cal and dmesg in three-dimensional

space, where each dimension represents one bit of the address. Each point repre-

sents a unique sequence of three memory addresses recorded during the execution

of the program. The two plots are structurally dissimilar (e.g., the dense behavior

on the “center-left,” a0–a2 region, for cal), which suggests that simply compar-

ing fixed-width memory access window sets will differentiate the execution of

individual programs. We rigorously evaluate this hypothesis in Section 6.7.

161

6.1.2 Dictionaries of Program Behavior

Next, we extend the notion of memory access windows to (1) allow a system

operator to define a collection of authorized programs and (2) compactly represent

sets of valid windows.

Statically determining the exact execution path of a program is undecidable.

Instead, we sample many indicative memory traces from each authorized program.

We next construct a dictionary with all of the windows generated by this training

set. The dictionary is an abstract model of authorized program behavior. New

programs and traces can be added to a dictionary without retraining from scratch.

Similar to other IDS approaches, the quality of the model is determined by the

extent to which the training set generalizes to all normal behaviors. However, pre-

vious experience has shown that most programs have highly conserved execution

patterns under benign inputs.

Two related challenges in offline learning of labeled training data include over-

fitting and model size [54, 100]. We require a solution that avoids overfitting (so

that it will generalize to untrained benign program input data for high-assurance

whitelisting) and that admits a compact representation (so that it can be efficiently

deployed in hardware, such as in a compact, automata-derived functional unit).

To address these challenges, we introduce three additional refinements:

162

31 30 ... 07 06 05 04 03 02 01 00

1 1 ... 1 1 0 1 0 0 1 0Address Delta
1 0 ... 0 1 1 1 1 1 1 1Truncation Mask
0 0 ... 1 1 0 1 0 0 1 0Truncated Delta

Figure 6.3: Example of address truncation. Memory address deltas are bitwise AND’d
with a truncation mask and packed into 8-bit values. In practice, a sign bit and
the seven least significant bits produce accurate results.

6.1.2.1 ∆-Windows

Defensive techniques such as address space layout randomization (ASLR) random-

ize important memory locations of processes to harden systems against classes of

exploits [193]. For Martini, the execution of identical processes could produce

significantly different absolute memory traces. We generalize otherwise identical

memory traces by storing the distance between consecutively accessed memory

addresses rather than absolute locations. While absolute addresses can vary across

executions, we hypothesize that these distances, or deltas, likely remain constant

and generalize. We refer to windows of address deltas as ∆-windows.

6.1.2.2 Truncation

∆-windows mitigate some of the risk of overfitting due to address randomization,

but differences between physical and virtual addresses remain. We mitigate this by

truncating the address delta values to b bits, excluding bits in the delta that may be

specific to the physical page selected at runtime. This also significantly reduces the

address space represented by our model, helping generalize the model and reduce

163

overfitting. Martini supports general masking of the address deltas. Although a

full parameter sweep falls outside the scope of this work, our experimentation

showed that storing a sign bit and the seven least significant bits of the address

deltas produces good results. An example of address delta truncation is given in

Figure 6.3.

6.1.2.3 Compression

Simply truncating deltas (e.g., to 8 bits) improves the model, but is still insufficient

for our needs. For example, for ∆-windows of length 8 containing 8-bit truncated

deltas, there are 28·8 = 264 unique values that could be stored in a dictionary. Even

when storing fewer than half of these values, we found that a dictionary trained on

a subset of Linux Coreutils contained approximately 40 million windows, which

is several orders of magnitude larger than what Martini can efficiently support

(Section 6.3).

To address this scalability challenge, we compress dictionaries using a method

similar to earlier work on system calls [84]. In this scheme, the first element

of a window is stored exactly, but each subsequent position is represented by

the unordered set of all observed values at that offset from that starting element.

For example, if the windows 〈c, a, t〉, 〈c, o, w〉, and 〈d, o, g〉 were observed, the

compressed dictionary would store 〈c, {a, o}, {t, w}〉 and 〈d, {o}, {g}〉. Note that

this compressed dictionary accepts the original three windows as well as “caw”

and “cot”; the compression is not lossless. Additionally, “dog” is stored separately

in the compressed dictionary because its first element is distinct. Thus, while the

164

compression generalizes a dictionary, it also reduces the size, admitting efficient

hardware implementation.

For windows of length k consisting of b-bit deltas, the number of possible values

stored in the compressed dictionary reduces from 2k·b to k · 2b. Our empirical eval-

uation in Section 6.7 demonstrates that compressed dictionaries retain sufficient

fidelity to detect unauthorized program execution, including difficult-to-observe

hardware side-channel attacks.

6.1.3 Detecting Anomalous Program Execution

During the training phase, Martini records all of the memory traces associ-

ated with runs of authorized programs on indicative workloads. We consider

fixed-width sliding windows of addresses from those traces, convert adjacent ad-

dresses to ∆-windows, truncate each delta to a smaller number of bits, and finally

generate a compressed dictionary to store (an over-approximation of) the set of

truncated ∆-windows associated with those program and runs. Our experimental

results show that such sets of abstracted memory addresses characterize program

behavior in a way that is sensitive to the classes of anomalies in which we are

interested.

After training, we determine whether a new sequence of memory accesses

matches the model by converting incoming accesses to a truncated ∆-window and

querying the dictionary for membership. If observations fall outside the dictionary,

Martini flags the sequence as anomalous (and possibly malicious). We refer to

165

these anomalous sequences as mismatches. A mismatch counter c, initialized to zero,

increments by one whenever Martini detects a mismatch. The mismatch counter

is multiplied by a decay coefficient d (0 6 d < 1) every N windows to retain local

context and eventually forgive past mismatches. The mismatch rate r (0 6 r < 1) is

defined as r = (1− d)c/N. An alarm triggers when the mismatch rate exceeds

a predefined threshold t. Briefly, the mismatch rate reflects the concentration

of mismatches at any point in time. This allows the system to tolerate some

false positives, while still responding to legitimate deviations. t controls the

sensitivity of the system and allows Martini to be configured to optimize the

trade-off between false- and true-positives in different settings. Proper tuning

of thresholds has been demonstrated to mitigate many false positives [202]. We

evaluate mismatch rate thresholds in Section 6.7.

This work focuses on detecting anomalies. Responses to anomalies could be

incorporated in various ways: (1) alarm signals could be used by the OS to

terminate the process or (2) the memory system could delay completion of the

memory transaction. Termination would require careful implementation to avoid

denial of service and livelock. Delay-based approaches are effective in some OS

settings because users can often tolerate an occasional, slight delay [202]. For some

versions of Spectre and Meltdown, delays would explicitly defeat relevant timing-

based calculations. We leave the development of robust response mechanisms for

future work.

166

6.2 compiling grammars to pushdown automata

In this section, we describe context-free grammars, our algorithms to compile

such grammars to pushdown automata, and our prototype implementation.

6.2.1 Context-Free Grammars

While DPDAs provide a functional definition of computation, it can often be

helpful to use a higher-level representation that generates the underlying machine.

Just as regular expressions can be used to generate finite automata, context-

free grammars (CFGs) can be used to generate pushdown automata. We briefly

review relevant properties of these grammars (the interested reader is referred to

references such as [87, 93, 99, 199] for additional details).

CFGs allow for the definition of recursive, tree-like structures using a collection

of substitution rules or productions. A production defines how a symbol in the

input may be legally rewritten as another sequence of symbols (i.e., the right-hand

side of a production may be substituted for the symbol given in the left-hand

side). Symbols that appear on the left-hand side of productions are referred to as

non-terminals while symbols that do not are referred to as terminals. The language of

a CFG is the set of all strings produced by recursively applying the productions to

a starting symbol until only terminal symbols remain. The sequential application

167

S

Exp

Term

int * Term

(Exp

Term

int

+ Exp

Term

int

)

a

(b)

S→ Exp a
Exp→ Term + Exp

| Term
Term→ int * Term

| (Exp)

| int

(a)

Figure 6.4: An example CFG (a) and parse tree (b). The grammar represents a subset of
arithmetic expressions. We use a to signify the endmarker for a given token
stream, which is needed for transformation to a DPDA. The parse tree given in
(b) is for the expression 3 ∗ (4 + 5). Note that integer numbers are transformed
to int tokens prior to deriving the parse tree.

of these productions to an input produces a derivation or parse tree, where all

internal nodes are non-terminals and all leaf nodes are terminals.

An example CFG for a subset of arithmetic operations is given in Figure 6.4 (a).

This particular grammar demonstrates recursive nesting (balanced parentheses),

operator precedence (multiplication is more tightly bound than addition), and

associativity (multiplication and addition are left-associative in this grammar).

Figure 6.4 (b) depicts the parse tree given by the grammar for the equation

3 ∗ (4 + 5).

168

6.2.2 Compiling Grammars to DPDAs

Next, we consider the process of compiling an input CFG to a DPDA. As noted

in Section 2.1.2, PDAs and DPDAs do not have equal representative power.

Therefore, there are CFGs that cannot be recognized by a DPDA. We focus on

support for a strict subset of CFGs known as LR(1) grammars, which are of

practical importance and supported by DPDAs. Most programming language

grammars have a deterministic representation [199], and many common parser

generator tools focus on supporting LR(1) grammars [26, 108, 138]. By targeting

this class of grammars, we can therefore support parsing common languages such

as XML, JSON, and ANSI C.

Existing parser generators (e.g., YACC or PLY) are unsuitable for compiling to

ASPEN because these tools do not produce hDPDAs (or even DPDAs!). Instead,

they generate source code that makes use of the richer set of operations supported

by CPUs. We do, however, demonstrate how existing tools may be leveraged for a

portion of our compilation process.

This transformation from grammar to hDPDA is broken down into three stages:

(1) parsing automaton generation, (2) hDPDA generation, and (3) optimization.

6.2.2.1 Parsing Automaton Generation

Parsing of input according to an LR(1) grammar makes use of a DFA known as a

parsing automaton,3 a state machine that processes input symbols and determines

3 Also referred to as DK in the literature after its creator, Donald Knuth [199].

169

the next production to apply. This machine encodes shift and reduce operations.

Shifts occur when another input token is needed to determine the next production

and are encoded as transitions between states in the parsing automaton. Reduce

operations (the reverse applications of productions) occur when the machine has

seen enough input to determine which substitution rule in the grammar to apply

and are encoded as accepting states in the DFA. Each accepting state represents

a different production. Determining the correct shift or reduce operation may

require inspecting the current input symbol and also a subsequent lookahead

symbol.

We leverage off-the-shelf tools to generate parsing automata. Concretely, we

support parsing automata generated by the GNU Bison4 and PLY5 parser generator

tools. These two tools produce CPU-based parsers and generate parsing automata

as an intermediate output.

Conceptually, parsing proceeds by processing input symbols using the parsing

automaton and pushing symbols to the stack until an accepting state is reached.

The input string is rewritten by popping symbols from the stack. The most

recently pushed symbols are replaced by the left-hand-side of the discovered

substitution rule. Processing is then restarted from the beginning of the rewritten

input, repeating until only the starting non-terminal symbol remains. With this

classical approach, parsing requires multiple iterations over (and transformations

to) the input symbols.

4 https://www.gnu.org/software/bison/
5 http://www.dabeaz.com/ply/

170

https://www.gnu.org/software/bison/
http://www.dabeaz.com/ply/

6.2.2.2 hDPDA Generation

To improve the efficiency of parsing, we simulate the execution of the parsing

automaton using a DPDA [199, Lemmas 2.58, 2.67] to process input tokens in

a single pass with no transformations to the input. With this approach, input

symbols are not pushed to the stack. Instead, the stack of the hDPDA is used to

track the sequence of states visited in the parsing automaton. Shift operations

push the destination parsing automaton state to the stack (shifts are transitions

to other states in the parsing automaton). When a reduce operation rewriting n

symbols to a single non-terminal symbol is performed by the parsing automaton,

the hDPDA pops n symbols off the stack. The symbol at the top of the hDPDA

stack is the state of the parsing automaton that immediately preceded the shift

of the first token from the reduced rule. In other words, popping the stack for a

reduction “runs the parsing automaton in reverse” to undo shifting the symbols

from the matched rule. The hDPDA then continues simulation of the parsing

automaton from this restored state.

Our prototype compiler generates an hDPDA by first reading in the textual

description of the parsing automaton generated by Bison or PLY. Next, for each

state in the parsing automaton, we generate hDPDA states for each terminal and

non-terminal in the grammar. A separate state is needed for each terminal and

non-terminal symbol because the homogeneity property only supports a single

pushdown automata operation per state, as defined in Equation (2.1):

171

• For each terminal symbol, we generate two states: one state matches the

lookahead symbol (i.e., lookahead symbols are stored in “positional” mem-

ory) and one state encodes the relevant shift or reduce operation. A shift

operation pushes parsing automaton states on the stack, while a reduce

operation pops a symbol from the stack and generates an output signal.

• For each non-terminal symbol, only one state is generated: the state perform-

ing the shift/reduce operation. In addition, this state must also match the

top of the stack to validate undoing shift operations.

Then, we add additional states to perform stack pop operations for the reduce

operations, one pop for each symbol reduced from the right-hand side of a

production. Finally, we connect the states with transitions according to transition

rules from the parsing automaton.

The final hDPDA is emitted in the MNRL file format. MNRL is an open-

source JSON-based state machine serialization format that is used within the

MNCaRT automata processing and research ecosystem [16]. We extend the MNRL

schema to support hDPDA states, encoding the stack operations with each state.

Using MNRL admits the reuse of many analyses from MNCaRT with minimal

modification.

6.2.2.3 Optimization

While our algorithm to transform the parsing automaton to a DPDA is direct, the

resulting DPDA contains a large number of ε-transitions and extraneous states.

172

· · ·

[A-Z]
∗

Pop 0
No Push

ε

∗
Pop 1

Push ‘a′

· · · ⇒ · · ·

[A-Z]
∗

Pop 1
Push ‘a′

· · ·

(a)

· · ·

ε

∗
Pop 1

No Push

ε

∗
Pop 1

No Push

ε

∗
Pop 1

No Push

ε

∗
Pop 1

No Push

· · ·

⇓

· · ·

ε

∗
Pop 4

No Push

· · ·

(b)

Figure 6.5: Two compiler optimizations for reducing the number stalls incurred by ε-
transitions. Epsilon merging (a) attempts to combine states to perform non-
overlapping operations. Multipop (b) allows for the stack pointer to be moved
a configurable distance in one operation.

First, we remove all unreachable states (states with no incoming transitions). Then,

we perform optimizations to reduce the total number of ε-transitions within the

hDPDA. Recall that ε-transitions occur when stack operations take place without

reading additional input (e.g., when popping the stack during a reduce operation

and transitioning to another state). We make two observations about the hDPDA

produced by our compilation algorithm.

First, the algorithm produces separate states to “read in” input symbols and

to perform stack operations. In many cases, these states may be combined, or

173

merged, to match the input and perform stack operations simultaneously. After

producing the initial hDPDA, we perform a post-order depth-first traversal of the

machine and merge such connected states when possible. We call this optimization

epsilon merging and apply it conservatively: only states that occur on a linear chain

are merged. Figure 6.5 (a) shows an example in which a state performing input

matching on capital letters and a state (with no input comparison) performing a

pop and a push are merged.

Second, our basic algorithm assumes a computational model that only supports

popping one symbol at a time. On reduction operations for productions containing

several symbols on the right-hand side, this results in long-duration stalls. Note,

however, that no comparisons are made with these intermediate stack symbols.

If our architecture can support moving the stack pointer by a variable amount,

then a reduction may be performed in one step. We refer to this as multipop.

Figure 6.5 (b) demonstrates a reduction of four states to one state with multipop.

6.2.3 Compilation Summary

We presented an overview of CFGs, a high-level language representation that

may be used to generate pushdown automata. Then, we described an algorithm

for compiling an important subset of CFGs (LR(1) grammars) to hDPDAs. We

leverage existing tools to produce an intermediate parser representation (the

parsing automaton), which we then encode in an hDPDA for execution with

ASPEN. We also introduce two optimizations, epsilon merging and multipop,

174

to reduce stalls while processing input. Our approach supports and accelerates

existing parser specifications without modification. This means that parsers do

not have to be redesigned to take advantage of ASPEN’s increased parsing

performance.

6.3 martini architectural design

Having detailed both Martini’s and ASPEN’s application-level design, we now

describe the microarchitectural design and efficient implementation of Martini.

We describe the design of ASPEN in the following section. First, we present the

homogeneous finite automaton compressed dictionary representation. Then, we

describe our architecture for monitoring memory accesses, which is embedded in

the Last Level Cache (LLC) of the CPU.

6.3.1 From Dictionaries to Automata

We represent compressed dictionaries as homogeneous NFAs (as defined in

Section 2.1.1) to facilitate hardware implementation and execution. A separate

automaton, or connected component [209], is created for each ∆-window in the

trained dictionary. Because there is a single entry in the compressed dictionary for

175

0x00
[0x00-
0xFF]

[0x00-
0xFF]

[0x00-
0xFF]

[0x00-
0xFF]

[0x00-
0xFF]

[0x00-
0xFF]

[0x00-
0xFF]

0x01
[0xA0-
0xED]

[0x09-
0x1C]

[0x99-
0x9F]

[0x55-
0x7D]

[0x00-
0xFF]

[0x71-
0xFF]

[0x23-
0x32]

0xFF [0x00-
0xFF]

[0x00-
0xFF]

[0x00-
0xFF]

[0x12-
0xDC]

[0x55-
0x58]

[0xAA-
0xAF]

[0x00-
0xFF]

...

Figure 6.6: Homogeneous NFA representation of a dictionary. The NFA consists of 256

connected components, each containing a chain of eight STEs. The initial STE
for each component matches a unique value; all subsequent STEs match a set
of possible values. Training determines the values within.

each unique address delta that begins a window, b-bit deltas result in 2b connected

components.

Within a given automaton, we allocate one STE for each window offset, which

forms a linear chain. The symbol match conditions are taken directly from the

compressed dictionary. Additionally, each initial STE contains a self-loop to

account for the sliding window comparison. The last state in each chain (equivalent

to the final position in the window) generates a report signal if activated. In

Martini Figure 6.6 illustrates the automata layout. When a new dictionary is

trained, the overall automata topology is unchanged; only the symbols within

individual STEs change. This insight allows us to simplify hardware-level routing

to save space in silicon.

176

Processor Core
Private Cache
Last Level Cache (LLC)

Core

Core

Core

Core

Private
Cache

Private
Cache

Private
Cache

Private
Cache

LLC

LLC

LLC

LLC

Address
Delta Unit

Trigger
Arbitration

Unit

Martini

AP Core

Address
Input

Anomaly
Output

(a) (b) (c)

Figure 6.7: High-level architectural design of Martini. An 8-core Xeon processor, each
with private L1 and L2 caches and shared 2.5MB Last Level Cache (LLC)
slice with embedded Martini processor, and a block diagram of the Martini

processor (shown in pink). Note that regions are not to scale.

The automata input is the sequence of truncated memory address deltas gen-

erated by the execution of a program. The automata generate a report for every

input ∆-window that matches the encoded dictionary.

6.3.2 Martini Address Monitor

To support real-time monitoring of memory accesses, we embed Martini in the

Last Level Cache (LLC) region of the CPU. Figure 6.7 shows an enterprise 8-core

Intel Xeon-E5 processor. The Xeon family of processors typically includes 8–16

slices of LLC (one slice per core) [42, 53, 105]. In our prototype, each processor

core is allocated a dedicated Martini unit (the pink rectangles within each private

cache in the Figure). Our Martini unit consists of three components: the Address

Delta Unit, Automata Processing (AP) Core, and Trigger Arbitration Unit.

177

The Address Delta Unit snoops the memory address lines of the core and

calculates the truncated delta between two consecutive addresses (as described in

Section 6.1.2). In its simplest form, this unit performs two’s complement arithmetic

on 8-bit values; however, a more sophisticated unit could support dynamically

masking and truncating address deltas.

The generated address deltas are then fed into the AP core, described in the

next subsection. This core executes the automata computation, producing triggers

when a window of address deltas is not found in the loaded dictionary.

The Trigger Arbitration Unit tracks triggers and generates an alarm signal when

a pre-defined threshold is exceeded. Our prototype implementation consists of

two counters. The first counter tracks the number of windows processed, while the

second counter tracks the number of triggers produced by the AP core. Whenever

the window counter reaches its threshold, the trigger counter is shifted to decay

the value and favor local context. If the trigger counter reaches its threshold (i.e.,

the mismatch rate from Section 6.1.3), the Trigger Arbitration Unit produces a

hardware signal indicating an anomaly, which is handled by the OS or memory

system.

6.3.3 Automata Processing Core

The AP Core is responsible for taking an input ∆-window and determining

whether it is present in the dictionary. We next describe our prototype design for

178

...

...

...

8-Bit
address

delta
R

ow
D

ec
od

er

Routing and
activation bits

Connected Component (CC0) CC1 CC31

To trigger
arbitration

Figure 6.8: Specialized Martini automata processing architecture. Routing of activation
signals is simplified because connected components in the automata consist
of chains of eight STEs (shown in the dashed region). A single 256 × 256
SRAM Array contains 32 connected components. We require eight arrays (256

connected components) in total. Masked address deltas are fed as input to the
row decoders, and outputs from each connected component are fed to trigger
arbitration.

implementing Martini in a current-generation Intel Xeon CPU, which represents

a novel, system-level integration of automata processing.

Our AP Core follows much of the implementation of the Cache Automaton [209];

however, we make several application-specific modifications to reduce space over-

head and improve performance. Each 2.5 MB slice of LLC in the Xeon processor

is organized into 20 ways, each of which is subdivided into five 32 kB banks.

Four of these banks constitute data arrays, while the fifth is used for storing

cache state [42, 53, 105]. Internally, the banks used for data arrays are made

179

up of four 8 kB (256× 256) SRAM arrays. We repurpose these SRAM arrays to

perform automata computation. A single SRAM array can accommodate 256 STEs,

meaning that to accommodate all 2048 STEs of the compressed dictionary, eight

arrays—two banks—are repurposed for the AP Core.

Figure 6.8 depicts the repurposed SRAM array. As described in Section 2.2, each

column encodes the input matching rule for an STE following the state-match

design of previous memory-centric AP models [75, 209]. The row decoder converts

the current address delta to a 256-bit one-hot encoding. The homogeneity property

of the automata ensures that STEs can be represented by a single column of SRAM.

Each STE also has a corresponding activation bit. An STE must both match the

input symbol and also be active to generate a transition signal. One exception is

the initial STE in each connected component: this STE is always active (every cycle

is also the start of a new sliding window).

In general-purpose automata processing, a second SRAM array is used to

support a reconfigurable routing matrix for transition signals. For Martini, this

is not needed; the topology of the automata is fixed, consisting of chains of

eight STEs. This allows for static routing in which the transition signal from the

previous STE feeds into the activation bit register of the next STE, resulting in a

more compact design. The transition signal out of the last STE in each connected

component chain feeds into a NOR gate, which aggregates signals from all of the

connected components and produces a trigger for the Trigger Arbitration Unit.

180

6.3.4 System Integration

Compressed automata dictionaries are (1) placed and routed for hardware re-

sources and (2) stored as a bitmap containing STE input match symbols and the

thresholds for the Trigger Arbitration Unit. At runtime, the OS loads the bitmap

into the monitoring unit using standard load instructions and Intel Cache Allo-

cation Technology [110]. Anomaly alarms trigger a hardware interrupt, allowing

the OS to implement custom mitigation strategies. The configuration overheads

are small (roughly equivalent to loading 2 kB of data into the LLC) and typically

only occur once. The unit only needs to be reconfigured when loading a new

dictionary.

6.4 aspen architectural design

Having described the architectural design of Martini, we now focus on describ-

ing the ASPEN architecture that augments LLC slices with support for DPDA

processing. We also discuss the design of a DPDA processing pipeline based on

ASPEN and the trade-offs involved.

181

CBOX

Way 20

16kB
Subarray
(x 2)

32kB
data
bank

Tag,
State,
LRU

Way 2 Way 1

AP AP

AP APAP AP

AP APAP AP

AP AP AP AP

(a)

R
o

w
 D

e
co

de
r

S0 S1 S2 S239
0

255

8-bit
input

IM Vector

R
o

w
 D

ec
o

de
r

0

255

Local
TOS

SM Vector

256b 256b
Active State Vector 256b

Input
Match (IM)

Stack
Match (SM)

From G-switch
32b

Stack Action
Lookup (AL)

8b8b

Push
symbol

Pop #

240b

255240 S0 S1 S2 S239 255240

Stack
Update (SU)

TOS + 1

Stack pointer

8b
8b

EN

TOS

Global
TOS

240b
4:1 column mux 4:1 column mux

288 x 256
6-T SRAM
L-switch

256b To G-switch
32b

} }

256b

ε-mask
ε-stall

To C-BOX

G-switch (256 x 256) G-stack

(b) (c)

AP AP

Figure 6.9: Xeon processor with SRAM arrays repurposed for DPDA processing. The
figure shows (a) 8-core Xeon processor, (b) one 2.5MB Last Level Cache (LLC)
slice and (c) Internal organization of one 32kB bank with two 8kB SRAM arrays
repurposed for DPDA processing.

6.4.1 Cache Slice Design

The ASPEN architecture augments the Last Level Cache slices of a general purpose

processor to support in-situ DPDA processing. Figure 6.9 (a) shows an 8-core

enterprise Xeon-E5 processor with LLC slices connected using a ring interconnect

(not shown in figure). Typically, the Intel Xeon family includes 8-16 such slices [42,

53, 105]. Each Last Level Cache slice macro is 2.5 MB and consists of a centralized

cache control box (C-BOX). A slice is organized into 20 ways, with each way

further organized as five 32 kB banks, four of which constitute data arrays, while

the fifth one is used to store the tag, valid and LRU state (Figure 6.9 (b)). All

the ways of the cache are interconnected using a hierarchical bus supporting a

bandwidth of 32 bytes per cycle. Internally, each bank consists of four 8 kB SRAM

arrays (256× 256).

182

A bank can accommodate up to 256 states and a DPDA can span several banks.

We repurpose two of the four arrays in each bank to perform the different stages

of DPDA processing. The remaining two arrays (addressed by the PA[16] bit) can

be used to store regular cache data. State-transitions are encoded in a hierarchical

memory-based interconnect, consisting of local and global crossbar switches (L-

switch, G-switch). A 256-bit register is used to track the active states in each cycle

(Active State Vector in Figure 6.9 (c)). We provision input buffers in the C-BOX

to broadcast input symbols or tokens to different banks. Output buffers are also

provided to track the report events generated every processing cycle.

6.4.2 Operation

This subsection provides the details of DPDA processing. Recall that, in a DPDA,

only a single state is active in every processing cycle, and initially, only the start

state is active. Each input symbol from the DPDA input buffer is processed in five

phases. In the input match and stack match phases, we identify the active DPDA

state which has the same label as that of the input symbol and the top of stack

(TOS) symbol respectively. In the stack action lookup phase, the stack action defined

for that state is determined (i.e., push symbol or number of symbols to pop from

the stack). The stack is updated in the following phase (stack update). Finally, in

the state-transition phase, a hierarchical transition interconnect matrix determines

the next active state.

183

Cycles in which states with an ε-transition are active require special handling.

These states do not consume an input symbol but perform a stack action in that

cycle (i.e., push or pop). A 256-bit ε-mask register tracks the ε-states in each bank.

A logical AND of the ε-mask register and Active State Vector is used to determine

if an ε-state is active in the next processing cycle. If an ε-state is active, a 1-bit

ε-stall signal is sent to the C-BOX to stall the input for the next processing cycle.

While a single stack action per cycle is sufficient to support DPDA functionality,

reducing stalls to the input stream can significantly improve performance. The mul-

tipop optimization, discussed in Section 6.2.2.3, reduces stalls due to ε-transitions

and is supported in hardware by manipulating the stack pointer and encoding

the number of popped symbols in the stack action lookup phase. We now proceed

to discuss the different stages involved in DPDA processing.

(1) input-match (im): We adapt the state-match design of memory-centric

automata processing models [75, 209] for the input-match phase. Each state is

mapped to a column of an SRAM array as shown in Figure 6.9 (c). A state is given

a 256-bit input symbol label which is the one-hot encoding of the ASCII symbol

that it matches against. The homogeneous representation of DPDA states ensures

that each state matches a single input symbol and each state can be represented

using a single SRAM column. The input symbol is broadcast as the row address

to the SRAM arrays using 8-bits of global wires. By reading out the contents of

the row into the Input Match Vector, the set of states with the same label as the

input symbol can be determined in parallel.

184

(2) stack-match (sm): In contrast to NFAs, where all active states that match

the input symbol are candidates for state-transition, DPDA states have valid

transitions defined only for those states that match both the input symbol and

the symbol on the top of the stack (8-bit TOS in Figure 6.9). We re-purpose an

SRAM array in each bank to determine the set of DPDA states that match the top

of stack (TOS) symbol. Similar to Input-Match, we provision 8 bits of global wires

to broadcast the TOS symbol as the row address to SRAM arrays. By reading out

the contents of the row into the TOS Match Vector and performing a logical AND

with the Input Match Vector and the Active State Vector, the candidate states for

state-transition are determined. We refer to these candidate states simply as active

states.

We leverage sense-amplifier cycling techniques [209] to accelerate the IM and

SM stages.

(3) stack action lookup (al): Each DPDA state is also associated with

a corresponding stack action. The supported stack actions are push, pop and

multipop. The stack action is encoded with 16 bits. Each push action uses 8 bits to

indicate the symbol to be pushed onto the stack. The remaining 8 bits are used by

the pop action to indicate the number of symbols to be popped from the stack (>

1 for multipop).

The stack action corresponding to each state is packed along with the IM SRAM

array in each bank. However, in the AL stage, we lookup this SRAM array using

the 256-bit result vector obtained after logical AND in the previous step (see

Figure 6.9). This removes the decoding overhead from the array access time. We

185

reserve 16 bits of global wires to communicate the stack action results from each

bank to the stack control logic in the C-BOX.

(4) state transition (st): The state-transition phase determines the set of

states to be activated in the next cycle. We observe that the state transition function

can be compactly encoded using a hierarchy of local and global memory-based

crossbar switches. The state transition interconnect is designed to be flexible

and scales to several thousand states. The L-switches provide dense connectivity

between states mapped to the same bank while the G-switch provides sparse

connectivity between states mapped to multiple banks. A graph partitioning based

algorithm [121] is used to satisfy the local and global connectivity constraints

while maximizing space utilization.

The crossbar switches consisting of N input and output ports and N×N cross-

points are implemented using regular 6-T SRAM arrays (e.g., L-switch in Figure 6.9

(c)). The 6-T bitcell holds the state of each cross-point. A flip-flop or register can

also be used for this purpose, but these are typically implemented using 24

transistors making them area inefficient. A ‘1’ is stored in bitcell (i, j) if there is a

valid transition defined from state i to state j. All the cross-points are programmed

once during initialization and used for processing several MBs to GBs of input

symbols. The set of active states from the previous phase serve as inputs to the

crossbar switch. For DPDAs, only a single state can be active every cycle and we

can use 6-T SRAM arrays for state transition, since only a single row is activated.

(5) stack update (su): To allow for parallel processing of small DPDAs,

(e.g., in non-parsing applications, such as subtree mining), we provide a local

186

stack in each bank. We repurpose 8 columns of the SM array to accommodate the

local stack. Larger DPDAs (e.g., in XML parsing) make use of a global stack to

keep track of parsing state. The global stack is implemented in the C-BOX using

a 256×8 register file and is shared by all the DPDAs mapped to two adjacent

ways. Providing a stack depth of 256 is sufficient for our parsing applications

(see Section 6.8). Note that only one sort of stack (local or global) is enabled at

configuration time based on the DPDA size. The stack pointer is stored in an

8-bit register and is used to address the stack. We also store the symbols at stack

positions TOS and TOS+1 in separate 8-bit registers. This optimization saves a

write and read access to the larger stack register file and ensures early availability

of the top-of-stack symbol for the next processing cycle. The push operation writes

the stack symbol to TOS+1. A lazy mechanism is used to update the stack with the

contents of TOS. Similarly, the pop operation copies TOS to TOS+1, while lazily

reading the stack register file to update TOS.

6.4.3 Critical Path

ASPEN’s performance depends on two critical factors: (1) the time taken to process

each symbol in the input stream (i.e., clock period) and (2) the time spent stalling

due to ε-transitions. The multipop optimization reduces stalls due to ε-transitions.

We now consider the clock period.

187

SM IM

AL ST

SU

Inputx

SM IM

AL ST

SU

Inputx+1

(a)

IM
SM

ST
AL SU

IM
SM

ST
AL SU

Inputx

Inputx+1

(b)

Time (Cycle)

Figure 6.10: DPDA processing on ASPEN. (a) Dependency graph between stages. (b)
Serial processing of input symbols.

In a naïve approach, each input symbol would be processed sequentially in five

phases, leading to a significant increase in the clock period. However, not all phases

are dependent on each other and need to be performed sequentially. Figure 6.10

(a) shows the dependency graph for the DPDA processing stages. The intra-

symbol dependencies are shown in black, while the inter-symbol dependencies

are marked in red. Using the dependency graph, each of the five stages can

be scheduled as shown in Figure 6.10 (b), where the propagation through the

interconnect (wire and switches) for state-transition is overlapped with stack

action lookup and stack update. Since the top of stack cannot be determined until

the stack has been updated based on the previous input symbol, DPDA processing

is serial. We contrast this with NFA processing, which has two independent stages

(input-match and state-transition) that can be overlapped to design a two-stage

pipeline [209]. We find that the critical path delay (clock period) of ASPEN is

the time spent for input/stack-match and the time taken for stack action lookup

and update. The time spent in state-transition is fully overlapped with stack

188

related operations. Section 6.6.3 discusses the pipeline stage delays and operating

frequency.

6.4.4 Support for Lexical Analysis

Two critical steps in parsing are lexical analysis, which partitions the input character

stream to generate a token stream, and parsing, where different grammar rules

are applied to verify the well-formedness of the input tokens (see Section 2.5.1).

ASPEN can accelerate both these phases. We leverage the NFA-computing capabil-

ities of the Cache Automaton architecture [209] for lexical analysis. To identify the

longest matching token, we run each NFA until there are no active states. When

the Active State Vector is zero, a state exhaustion signal is sent to the lexer control

logic in the C-BOX. The symbol cycle and reporting state ID of the most recent

report are tracked in a 64-bit report register in the C-BOX. A 256-bit reporting

mask register is used to mask out certain reports based on lexer state. On receiving

the state exhaustion signal from all banks, the lexer control logic resets the reporting

mask, reloads the NFA input buffer for the next token and generates a token

stream to be written into the DPDA input buffer (using a lookup table to convert

report codes to tokens).

189

6.4.5 System Integration

ASPEN shares the Last Level Cache with other CPU processes. By restricting

DPDA computation to only 8 ways of an LLC slice, we allow for regular operation

in other ways. Furthermore, the cache ways dedicated to ASPEN may be used as

regular cache ways for non-parsing workloads. Cache access latency is unaffected

since DPDA-related routing logic uses additional wires in the global metal layers.

DPDAs are (1) placed and routed for ASPEN’s hardware resources, and (2)

stored as a bitmap containing states and stack actions. At runtime, the driver loads

these binaries into cache arrays and memory mapped switches using standard

load instructions and Intel Cache Allocation Technology [110]. The input/output

buffers for ASPEN are also memory-mapped to facilitate input streaming and

output reporting, and ISA extensions are used to start/stop DPDA functions. We

disable LLC slice hashing at configuration time. The configuration overheads are

small, especially when processing MBs or GBs of input, but are included in our

reported results. To support automata-based applications that require counting,

we provision four 16-bit counters per way of the LLC.

Post-processing of output reports takes place on the CPU. For XML parsing

pipelines, a DOM tree representation (see Section 2.5.1) can be constructed by

performing a linear pass over the DPDA reports. Richer analyses (such as verifying

opening and closing tags match for XML parsing supporting arbitrary tags) may

be implemented as part of tree construction. Although the CPU-ASPEN pipeline

can support this, we leave evaluation of DOM tree construction for future work.

190

6.5 experimental methodology

In this section, we describe our methodology for evaluating both Martini and

ASPEN. Although we have not fabricated the custom data paths described in

Section 6.3 or in Section 6.3, we evaluate both using cycle-accurate simulation. We

first describe our methodology for collecting data for our evaluation of Martini.

Then, we describe the benchmark suites used in each of our evaluations.

6.5.1 Recording Memory Traces to Evaluate Martini

We built two helper tools to collect memory access traces of target programs.

First, we leverage an extension to QEMU [30] called PANDA (the Platform for

Architecture-Neutral Dynamic Analysis) [76]. Since QEMU is a full-system emu-

lator, this approach has the advantage that we can instrument every instruction

executed by the guest system without perturbing its behavior. Second, we used

Intel’s Pin tool [144] to collect memory traces of userspace programs. In contrast

to the QEMU-based approach, Pin can collect memory traces much more quickly,

where faithful modeling of the cache hierarchy is necessary. However, the primary

disadvantage to Pin is the need to statically modify a target binary, potentially

changing memory addresses that are accessed at runtime.

These PANDA and Pin instrumentations are used only in our simulation evalu-

ation to establish a ground truth; they are not part of our proposed deployment.

We use both approaches to collect memory traces of a suite of benchmark pro-

191

grams. While Pin instrumentation modifies the software under test, we observed

a difference of less than 1%.

6.5.2 Building and Testing Dictionaries

We next construct a dictionary from the recorded memory traces by applying the

refinements described in Section 6.1.2. First, we calculate the differences between

consecutive memory accesses in the traces. Next, we slide a fixed-width window

across this data to form 8-delta-long ∆-windows while simultaneously truncating

each value to 8 bits. Finally, we construct a dictionary by creating sets of address

deltas for each window offset.

We use MNRL to generate automata from a compressed dictionary. MNRL is an

open-source state machine representation language and language API intended

for large-scale automata processing applications [12, 16]. To simulate the execution

of our accelerator architecture, we use VASim, a cycle-accurate simulator for

automata processing architectures [235]. We extend the simulation to support the

operations of the Address Delta and Trigger Arbitration units. In our evaluation,

we load memory traces from the testing set into VASim and process the data using

the compressed dictionary NFA, producing a list of generated alarms.

192

6.5.3 Benchmarks

We next describe the benchmarks we use to evaluate the performance of both

Martini and ASPEN. Because these two architectures are designed to perform

disjoint tasks, we consider different workloads for each.

martini benchmarks . We use multiple software benchmarks as indicative

examples of both benign and malicious behavior. Table 6.1 shows these programs

aggregated into one of three benchmark suites based on general behavior. In total,

we collect and test on over 2,400 program traces and over 13 billion memory

accesses.

The Coreutils Subset features a subset of 16 of the Linux coreutils programs,

commonly used as benchmarks (e.g., [158, 250]). Programs in this suite repre-

sent a wide range of benign applications; we executed each with a variety of

command-line arguments to gather memory access traces. The PARSEC bench-

mark [36] is composed of larger multithreaded programs that are designed to

simulate a diverse set of highly parallelizable programs (e.g., ray tracing, fluid

simulation, video compression, etc.). We use these programs as a test set for eval-

uating whether our technique can successfully detect execution that is not part of

a trained dictionary. The Security benchmarks include representative malicious

behavior: Spectre, Meltdown and two recent CVEs associated with Linux pro-

grams: dnstracer and objdump. The additional “Detect” column indicates whether

193

Table 6.1: Summary of benchmarks used to evaluate Martini

Coreutils Subset Suite

Program Version Traces Avg. Trace
Length

cal N/A 269 307,994

cat coreutils 8.25 227 133,667

cp coreutils 8.25 175 274,652

date coreutils 8.25 29 102,393

diff coreutils 3.3 50 266,856

dmesg util-linux 2.27.1 50 7,077,967

dnstracer 1.8.1 100 107,111

du coreutils 8.25 257 6,498,869

grep 2.25 266 429,125

ls coreutils 8.25 260 884,068

objdump Binutils 2.26.1 150 1,066,007

ps procps-ng 3.3.10 30 2,112,550

readelf Binutils 2.26.1 50 8,911,505

sed 4.2.2 50 370,897

tar 1.28 232 458,187

uname coreutils 8.25 57 93,281

PARSEC Suite

Program Version Traces Avg. Trace
Length

blackscholes 3.0 1 233,020,782

bodytrack 3.0 1 614,815,076

canneal 3.0 1 946,425,872

dedup 3.0 1 1,005,640,971

facesim 3.0 1 232,921,684

ferret 3.0 1 766,278,169

fluidanimate 3.0 1 640,500,257

freqmine 3.0 1 1,287,177,742

raytrace 3.0 1 1,005,358,609

streamcluster 3.0 1 473,597,488

swaptions 3.0 1 786,879,131

vips 3.0 1 1,596,912,331

x264 3.0 1 233,132,151

Security Suite

Program Version CVE Traces Avg. Trace Length Detect

Meltdown N/A N/A 64 13,361,880 3

Spectre N/A N/A 52 3,614,351 3

dnstracer 1.8.1 2017-9430 52 227,616 3

objdump Binutils 2.26 2018-6323 50 814,034 3

Martini can successfully detect the execution of these CVEs using a dictionary of

indicative benign programs (see Section 6.7).

We trained dictionaries in our evaluation using a random 60% of the corre-

sponding program’s traces. For example, a dictionary containing diff would be

trained using 30 of its traces, randomly selected.

194

aspen benchmarks . We evaluate ASPEN against the widely used open-

source XML tools Expat (v.2.0.1) [58], a non-validating parser, and Xerces-C

(v.3.1.1) [18], a validating parser and part of the Apache project. The validation

application used is SAXCount, which verifies the syntactic correctness of the input

XML document and returns a count of the number of elements, attributes and

content bytes. We restrict our analysis to the SAX interface and WFXML scanner

of Xerces-C and filter out all non-ASCII characters in the input document. We do

not include DOM tree generation in our evaluation. This is consistent with prior

work and evaluations (e.g., Parabix, Xerces SAX, and Expat). We assume that input

data is already loaded into main memory. Our XML benchmark dataset is derived

from Parabix [141], Ximpleware [253] and the UW XML repository [251]. We only

evaluate XML files larger than 512 kB in size, as we were unable to obtain reliable

energy estimations when baseline benchmark execution time was under 1 ms. To

evaluate the lexing-parsing pipeline, we extend the open-source, cycle-accurate

virtual automata simulator, VASim [235], to support DPDA computation and

derive per-cycle statistics. The tight integration of the lexer and parser in the LLC

enables ASPEN to largely overlap the parsing time. Each lexing report can be

processed and used to generate the token stream for the DPDA in 2 cycles.

All CPU-based evaluations use a 2.6 GHz dual-socket Intel Xeon E5-2697-v3

with 28 cores in total. We used PAPI [214] and Intel’s RAPL tool [70] to obtain

performance and power measurements. We utilize the METIS graph partitioning

framework [121] to map DPDA states to cache arrays.

195

Table 6.3: Runtime overhead of reducing LLC capacity

full cache reduced cache

program Runtime (ms) Std. Dev. Runtime (ms) Std. Dev. change

blackscholes 152.7 4.7 154.8 3.7 1.42%
bodytrack 457.2 25.5 455.2 30.1 -0.43%
canneal 2774.9 24.3 2809.4 26.1 1.24%
dedup 3236.1 25.3 3242.9 33.8 0.21%
facesim 11.4 0.6 11.5 0.5 0.92%
ferret 467.9 18.4 463.2 12.2 -1.02%
fluidanimate 3.1 0.3 3.1 0.3 -2.00%
freqmine 1053.8 78.5 1042.6 71.5 -1.07%
raytrace 2798.6 10.8 2794.5 11.2 -0.15%
streamcluster 35375.0 8428.7 32491.0 8015.4 -8.15%
swaptions 3.7 0.5 3.8 0.4 0.45%
vips 259.0 10.1 259.7 10.1 0.27%
x264 718.9 8.9 717.2 9.8 -0.23%

6.6 architectural evaluation

In this section, we evaluate the runtime performance, chip area, and energy

consumption of our hardware units.

6.6.1 System Performance Impact

Because computation in Martini is decoupled from cache operations, perfor-

mance impacts are predominantly the result of reduced LLC capacity. ASPEN does

couple tightly with CPU operations but does also reduce LLC capacity in a similar

fashion. We therefore evaluate the performance impact incurred by repurposing

196

part of the LLC for the hardware address monitor using the PARSEC benchmark

suite. We collected runtime performance metrics using a server running Ubuntu

16.04 with 192 GB of RAM and two Intel Xeon Platinum 8275CL CPUs, each

with 36 cores running at 3 GHz. Each processor has 36 MB of LLC, subdivided

into eleven cache ways. We execute each benchmark twenty times, recording wall

clock execution time. Then, using Intel Cache Allocation Technology [110], we

reduce the number of cache ways from eleven to ten and execute each benchmark

an additional twenty times. We note that one cache way exceeds the resources

required by our design of Martini for each processor core; the results here present

an upper bound for the runtime overhead. ASPEN will generally consume more

cache ways and may thus incur a larger overhead. Aggregate results are presented

in Table 6.3.

In general, we find that the runtime overhead of our hardware is negligible. In

the worst case (blackscholes), we observed a 1.42% increase. The largest change

in performance (streamcluster) actually ran 8.15% faster with the reduced cache

size. We hypothesize that this performance gain is caused by improved cache

data alignment. However, any observed performance gain or loss is negligible:

using a Wilcoxon signed-rank test, we are unable to find a significant difference

in the average execution times for the full and reduced cache configurations

(p = 0.1536).

197

6.6.2 Martini Parameters

Next, we study the feasibility of deploying Martini in real silicon by considering

a current-generation Intel Xeon CPU. The 256× 256 SRAM arrays in the Xeon

LLC can operate at 4GHz [53, 105]. We estimate the area overhead for in-memory

automata processing accelerators [17, 209]. We model the area overhead of the AP

core with IBM’s 45 nm soi12s0 cell library and Synopsys Design Compiler. The

total area is 0.016mm2. For comparison, an 8-core Intel Xeon E5 processor has a

die size of 354mm2 [42] in a 22nm manufacturing process. Thus, our architectural

changes would increase the overall die size by less than 0.04%. The synthesis

results also shows that all the additional circuits achieve a 4GHz frequency after

technology scaling to 22nm, thus maintaining existing frequencies.

Our AP core is built by adapting an SRAM array, which we use to estimate

energy consumption. In the absence of publicly available data on array area and

energy, we use the standard foundry memory compiler at 0.9 V in the 28nm

technology node to estimate the power and area of a 256× 256 6-T SRAM array.

The energy to read out all 256 bits was calculated as 22 pJ. Since Martini is based

on a Xeon-E5 processor modeled at 22nm, we scale down the energy per access to

13.6 pJ. As there are eight arrays used in an AP Core, the peak power of our AP

Core is estimated at 0.435W. The peripherals of AP Core, the Address Delta Unit,

and the Trigger Arbitration Unit together consumes 0.035W of power based on

the synthesis results with IBM’s 45nm cell library. In total, these sum to 0.470W,

198

Table 6.4: Stage delays and operating frequencies in ASPEN

design im/sm st al su max freq . freq oper .

ASPEN 438 ps 573 ps 349 ps 349 ps 880 MHz 850 MHz
CA 250 ps 250 ps - - 4 GHz 3.4 GHz

which is far below the TDP of the Xeon E5 processor core (160 W). Therefore, the

architecture does not incur any significant power overhead to the system.

6.6.3 ASPEN Parameters

We use the same 13.6 pJ calculation to estimate the energy to read out all 256

bits from the SRAM arrays in ASPEN. The area of each array and 6-T crossbar

switch were estimated to be 0.015 mm2 and 0.017 mm2 respectively. Each LLC

slice contains 32 L-switches and 4 G-switches to support DPDA computation

in up to 8 ways. These switches can leverage standard 6-T SRAM push-rules to

achieve a compact layout and have low area overhead (∼6.4% of LLC slice area).

Being 6-T SRAM based, these switches can also be used to store regular data when

not performing DPDA computation. Similar to the Cache Automaton [209], we

use global wires to broadcast input/stack symbols and propagate state transition

signals. These global wires with repeaters have a 66ps/mm delay and an energy

consumption of 0.07pJ/mm/bit.

Table 6.4 shows the stage delays for DPDA processing on ASPEN. The IM/TM

phases leverage sense-amplifier cycling [209] and take 438 ps. The ST stage requires

573 ps, composed of 198 ps wire delay and 375 ps due to local and global switch

199

traversal. AL and SU each take 349 ps, composed of 99 ps wire delay and 250 ps

for array access. Thus, when evaluating ASPEN in Section 6.8, we consider a CA

running at 3.4GHz feeding tokens to our DPDA engine executing at 850MHz.

6.7 attack detection evaluation

In this section, we present an empirical evaluation of the Martini framework

for detecting anomalous and malicious program execution at the memory access

level. We focus primarily on expressive power and performance. In particular, we

consider the following four research questions to validate design assumptions

and investigate system-level hypotheses:

1. Can Martini identify program executions and differentiate between them?

2. What are the effects of compressing dictionaries?

3. Can Martini tell malicious from benign inputs?

4. Can Martini detect anomalous/malicious programs?

6.7.1 Differentiating Programs

We collected traces of memory accesses for each program in the Coreutils Subset

(Table 6.1) and constructed a dictionary for each utility using 8-access windows

from the traces (see Section 6.1.2). Then, we used execution traces from the other

200

cal

ca
l

ca
t cp dat

e
diff

dm
es

g du
gre

p ls

objd
um

p ps

re
ad

elf se
d ta

r

unam
e

0.8

0.9

1

H
it

 R
at

e

cat

ca
l

ca
t cp dat

e
diff

dm
es

g du
gre

p ls

objd
um

p ps

re
ad

elf se
d ta

r

unam
e

0.8

0.9

1

H
it

 R
at

e

cp

ca
l

ca
t cp dat

e
diff

dm
es

g du
gre

p ls

objd
um

p ps

re
ad

elf se
d ta

r

unam
e

0.8

0.9

1

H
it

 R
at

e

date

ca
l

ca
t cp dat

e
diff

dm
es

g du
gre

p ls

objd
um

p ps

re
ad

elf se
d ta

r

unam
e

0.8

0.9

1

H
it

 R
at

e

diff

ca
l

ca
t cp dat

e
diff

dm
es

g du
gre

p ls

objd
um

p ps

re
ad

elf se
d ta

r

unam
e

0.8

0.9

1

H
it

 R
at

e

dmesg

ca
l

ca
t cp dat

e
diff

dm
es

g du
gre

p ls

objd
um

p ps

re
ad

elf se
d ta

r

unam
e

0.8

0.9

1

H
it

 R
at

e

du

ca
l

ca
t cp dat

e
diff

dm
es

g du
gre

p ls

objd
um

p ps

re
ad

elf se
d ta

r

unam
e

0.8

0.9

1

H
it

 R
at

e

grep

ca
l

ca
t cp dat

e
diff

dm
es

g du
gre

p ls

objd
um

p ps

re
ad

elf se
d ta

r

unam
e

0.8

0.9

1
H

it
 R

at
e

ls

ca
l

ca
t cp dat

e
diff

dm
es

g du
gre

p ls

objd
um

p ps

re
ad

elf se
d ta

r

unam
e

0.8

0.9

1

H
it

 R
at

e

objdump

ca
l

ca
t cp dat

e
diff

dm
es

g du
gre

p ls

objd
um

p ps

re
ad

elf se
d ta

r

unam
e

0.8

0.9

1

H
it

 R
at

e

ps

ca
l

ca
t cp dat

e
diff

dm
es

g du
gre

p ls

objd
um

p ps

re
ad

elf se
d ta

r

unam
e

0.8

0.9

1

H
it

 R
at

e

readelf

ca
l

ca
t cp dat

e
diff

dm
es

g du
gre

p ls

objd
um

p ps

re
ad

elf se
d ta

r

unam
e

0.8

0.9

1

H
it

 R
at

e

sed

ca
l

ca
t cp dat

e
diff

dm
es

g du
gre

p ls

objd
um

p ps

re
ad

elf se
d ta

r

unam
e

0.8

0.9

1

H
it

 R
at

e

tar

ca
l

ca
t cp dat

e
diff

dm
es

g du
gre

p ls

objd
um

p ps

re
ad

elf se
d ta

r

unam
e

0.8

0.9

1

H
it

 R
at

e

uname

ca
l

ca
t cp dat

e
diff

dm
es

g du
gre

p ls

objd
um

p ps

re
ad

elf se
d ta

r

unam
e

0.8

0.9

1

H
it

 R
at

e

Figure 6.11: Comparison of memory traces between pairs of Linux utilities. We train a
dictionary using each utility, then measure the ratio of similarities between
additional traces of that utility and traces of the other utilities. Each red bar
shows the result of comparing the trained utility to a subsequent execution
of that same utility. Note that the red bar is approximately one for all utilities
while all blue bars are less than one, demonstrating that memory traces can
effectively identify programs.

utilities and measured the fraction of tested 8-access windows that are found in

the trained dictionary. This experiment measures sequences of memory accesses

that are the same between a trained dictionary and some subsequent test program

execution. For example, we expect that a dictionary constructed from ls will

match a high number of memory accesses in a subsequent run of ls on different

201

arguments, but will match a low number of accesses from a trace of cat, an

entirely different program.

Figure 6.11 summarizes our findings, showing a different bar graph for each

utility (the remainder show similar results and are elided for space). For each

bar graph, the x-axis shows the testing program and the y-axis shows the “hit

rate,” or fraction of 8-access sequences in the testing program trace that matches

the dictionary. We gain confidence in our assumptions if (1) testing and training

on the same program shows a high hit rate (i.e., the red bar is near 1.0), and (2)

testing and training on separate programs shows a low hit rate. The figure shows

clear separation between these two measurements, which establishes that we can

set a threshold to distinguish between different programs, based only on 8-access

sequences of memory accesses.

Martini is able to differentiate programs from each other by observing

sequences of abstracted memory accesses.

6.7.2 Effects of Dictionary Compression

Next, we evaluate the effectiveness of dictionary compression (Section 6.1.2.3).

Recall that (1) the primary goal for the compression is minimizing the chip area

required for implementation, and (2) we hypothesize that we can compress the

model without significantly increasing collisions of ∆-windows, which would

cause false negatives. To study this question, we compare Martini’s accuracy at

202

classifying authorized vs. unauthorized program behavior, both for uncompressed

and compressed dictionaries.

We built compressed and uncompressed dictionaries from traces of 12 of the

Coreutils Subset programs. We then used traces from the four CVE proofs-of-

concept and the four held-out Coreutils Subset to determine whether those pro-

grams would trigger alarms. In this setup, traces from the in-dictionary programs

should not trigger alarms, while traces from the out-of-dictionary programs should.

We measured true- and false-positive and -negative data (these results are detailed

in Section 6.7.4). We found that the uncompressed dictionary yielded an AUC

of 0.9995, while the compressed dictionary yielded an AUC of 0.9928, a trivial

decrease in performance. Thus, we conclude that compressing dictionaries does

not significantly influence classification performance.

Dictionary compression introduces minimal error in program classification,

while allowing a dictionary to fit within the resource constraints of the Martini

data path.

6.7.3 Distinguishing Malicious from Benign Inputs

Having established that Martini separates benign from anomalous behavior

(e.g., cal from objdump) and validated that compression is effective, we consider

malicious program inputs (e.g., objdump normal operation vs. an objdump exploit).

CVE-2018-6323 describes an unsigned integer overflow in the elf_object_p func-

203

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Threshold

Pa
ss

 ra
te

Pass rate vs. threshold (Interval size: 20000, decay: 0.50)

objdump
CVE-2018-6323

1

0.8

0.6

0.4

0.2

0

Figure 6.12: Martini performance on objdump CVE-2018-6263, as a function of threshold
for benign and malicious inputs. The dictionary was trained on traces from
objdump running on benign inputs; the vulnerability was exploited using the
malicious input, and Martini classified the runs as benign or malicious. True
negatives are shown in solid blue and false negatives in dashed red. Note that
thresholds of 0.01–0.05 allow all benign runs to pass, while raising alarms on
100% of malicious runs.

tion of objdump that can be triggered when it reads a specially crafted ELF file.

We generated a training dictionary by running objdump over 34 different ELF files.

We evaluated with respect to three traces each of 16 benign ELF inputs and traces

of the malicious ELF.

We used these to evaluate the detector’s performance as a function of the

threshold t chosen (see Section 6.1.3). We say that a trace passes if it does not trigger

any alerts. Figure 6.12 plots the pass rate of the held-out benign objdump dictionary

(i.e., true negatives, shown in solid blue) and the held-out malicious CVE (i.e.,

false negatives, shown in dashed red), both as a function of threshold. Note that

204

interval size and decay are configurable parameters discussed in Section 6.1.3.

Thresholds from 0.01 to 0.05 catch all malicious behavior with no false positives.

Martini distinguishes malicious from benign program behavior resulting

from input given to the program with accuracy and precision.

6.7.4 Detecting Anomalous and Malicious Programs

We also investigate Martini’s ability to detect anomalous and malicious programs,

such as novel (unauthorized) programs or multiple exploits and attacks.

In this evaluation, we train a dictionary with 60% of all traces of 12 of our

Coreutils Subset programs. The resulting model is then simultaneously subjected

to four types of testing traces: (1) trained programs, (2) untrained Linux utilities

(i.e., the remaining held-out Coreutils), (3) exploits of trained programs, and (4)

Spectre and Meltdown proofs-of-concept. In our use case, only trained programs

are considered normal; all the others are anomalous and should cause Martini

to raise an alarm. We find that we can detect anomalous behaviors with a high

true positive rate and a low false positive rate.

Figure 6.13 shows the receiver operating characteristic (ROC) curve of the results.

The curve plots the true positive rate and false positive rate parametrically as a

function of the threshold: each point on the curve represents a different threshold

that can be chosen and thus a different trade-off in the space. A common metric

to evaluate such figures is the Area Under the ROC Curve (AUC); an effective

205

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e
ROC

1

0.9

0.8

0.7

0.6

0.5

Figure 6.13: Experimental Martini results for tested anomalies. The ROC curve reports
data for all our benchmarks (they are combined as they share identical
shape). Martini’s dictionary was trained using 60% of traces collected from
12 Coreutils programs, then evaluated against the held-out traces of those
programs, all traces of held-out Coreutils programs, and traces from Spectre,
Meltdown, and the two CVE traces. The blue line reports the average detection
rate across all data points using the 12 Coreutils dictionary with 2400 program
traces. AUC=0.9954.

classifier that admits many true positives and few false positives has a high

AUC. Our results demonstrate that when trained on Linux utilities, Martini

distinguishes them from other utilities, and all of our other benchmark security

exploits and side-channel attacks powerfully, with an area-under-curve (AUC) of

0.9954. At 100% true positive rate, our smallest false positive rate was 4.4%.

We also collected PARSEC traces to act as indicative long-running processes

that could be considered anomalous with respect to our Coreutils dictionary.

We test if Martini detects anomalous behavior early, regardless of the trace

size (i.e., detection soon after an attack, rather than minutes later). For this

206

0 10 20 30 40 50 60 70 80 90

Block index

0

1

2

3

M
R

10-3 blackscholes

0 50 100 150 200

Block index

0

1

2

3

M
R

10-3 bodytrack

0 50 100 150 200 250 300 350

Block index

0

1

2

3

M
R

10-3 canneal

0 50 100 150 200 250 300 350 400

Block index

0

1

2

3

M
R

10-3 dedup

0 10 20 30 40 50 60 70 80 90

Block index

0

1

2

3

M
R

10-3 facesim

0 50 100 150 200 250 300

Block index

0

1

2

3

M
R

10-3 ferret

0 50 100 150 200 250

Block index

0

1

2

3

M
R

10-3 fluidanimate

0 50 100 150 200 250 300 350 400 450 500

Block index

0

1

2

3

M
R

10-3 freqmine

0 50 100 150 200 250 300 350 400

Block index

0

1

2

3

M
R

10-3 raytrace

0 20 40 60 80 100 120 140 160 180

Block index

0

1

2

3

M
R

10-3 streamcluster

0 50 100 150 200 250 300

Block index

0

1

2

3

M
R

10-3 swaptions

0 100 200 300 400 500 600

Block index

0

1

2

3

M
R

10-3 vips

0 10 20 30 40 50 60 70 80 90

Block index

0

1

2

3

M
R

10-3 x264

Figure 6.14: Detection of anomalous, out-of-dictionary program execution. We trained a
dictionary using our Coreutils subset of 16 Linux utilities. Then, we ran each
of the PARSEC benchmarks to determine if our approach would correctly
identify such execution as anomalous. Because the PARSEC benchmarks
are long-running, we broke their traces into blocks of 250 million memory
accesses each. On each graph, the x-axis represents execution time in terms
of these blocks, and the y-axis shows the mismatch rate, or the fraction
of blocks that were not contained in the trained dictionary. The horizontal
line represents a configurable threshold (set to 0.00068 in the figure). These
plots suggest that we can use our approach along with a simple counter for
mismatches between memory access sequences and the trained dictionary to
determine when behavior is anomalous. In particular, across all benchmarks,
we detect the anomalous execution within an average of 85,000 memory
references. Using this simple thresholding approach, we can correctly identify
all benchmarks as anomalous very early in their execution.

experiment, PARSEC traces are split into blocks with 2.5 million memory accesses

each and assigned a reasonable threshold. The result is shown in Figure 6.14. The

x-axis of each graph shows execution time (in block index units) and the y-axis

shows the mismatch rate. The programs generally fall into two categories. Some,

like bodytrack or vips, consistently trigger alarms. Others, like fluidanimate or

streamcluster, trigger alarms sporadically, likely due to coincidental overlap with

address sequences in the dictionary. For example, blackscholes and facesim show

identical behavior because these benchmarks shared a common helper binary that

207

produced very similar memory access traces. Across all benchmarks, we correctly

identified anomalous execution within an average of 85,000 memory references

(minimum 20,000, maximum 360,000, stdev 48,400).

For this benchmark suite, we first note that in each case, anomalous behavior is

detected almost immediately (i.e., the blue bar crosses the red line very far to the

left on each subgraph). Second, the overall performance is quite high: 91.87% true

positive rate and 2.39% false positive rate.

Martini is able to distinguish anomalous and malicious program execution—

including Spectre and Meltdown—with high accuracy. Further, Martini is

capable of detecting abnormal behavior early in program execution.

6.7.5 Martini Evaluation Summary

In this section, we evaluated the Martini framework with respect to expressive

power and performance. Our experiments provide evidence that our dictionary-

based approach of modeling abstracted memory accesses provides sufficient

expressiveness to differentiate programs. Further, Martini is able to quickly and

accurately detect both malicious inputs to trained programs as well as unseen,

malicious programs. Next, we evaluate our architecture for in-memory processing

of DPDA.

208

Table 6.5: Description of grammars

token grammar parsing aut.
language description types productions states

Cool Programming language 42 61 147

DOT Graph visualization 22 53 81

JSON Data interchange 13 19 29

XML Data interchange 13 31 64

6.8 dpda processing engine evaluation

In this section, we evaluate ASPEN on real-world applications with indicative

workloads. We focus on a study of parsing (one of our motivating applications

from Section 2.5.1) to evaluate ASPEN with respect to expressive power, scalability,

and performance. In particular, we are guided by the following research questions:

1. Does the underlying hDPDA computational model of ASPEN generalize to

real-world parsers?

2. Do the multipop and epsilon merging optimizations improve performance?

3. What is the end-to-end performance improvement of ASPEN of state-of-the-

art parsers?

209

Table 6.6: Grammar compilation results. Our optimizations reduce the number of epsilon
states by an average of 65%.

hdpda epsilon average compilation

language optimizations states states time (sec)

Cool None 3505 2733 0.88

Mutlipop + Eps 1666 894 2.75

DOT None 1690 1494 0.34

Mutlipop + Eps 1062 866 0.98

JSON None 764 619 0.16

Mutlipop + Eps 461 316 0.5

XML None 2068 1653 0.36

Mutlipop + Eps 865 450 0.88

6.8.1 Parsing Generality

We first demonstrate compilation of four different languages: Cool, an object-

oriented programming language6; DOT, the language used by the GraphViz

graph visualization tool [78]; JSON; and XML. We selected these benchmarks

because grammar specifications (for either PLY or Bison) were readily available. Im-

portantly, no modification to existing legacy grammars was necessary to support

compilation to ASPEN. The architecture is general-purpose enough to support

these diverse applications, and our prototype compiler supports a large class of

existing parsers. Details for each of these languages, including number of token

types, number of grammar rules, and the size of the parsing automaton, are

provided in Table 6.5. Higher numbers of parsing automata states (see Section 6.2)

6 https://en.wikipedia.org/wiki/Cool_(programming_language)

210

https://en.wikipedia.org/wiki/Cool_(programming_language)

indicate more complex computation for determining which grammar production

rule to apply. This complexity is related both to the number of token types as well

as the total number of productions in the grammar.

In Table 6.6, we present compilation statistics using our prototype compiler.

We report the average time across ten runs of our compiler and optimizations.

Compilation of all grammars, including optimization, is well below 5 seconds,

meaning that compilation of grammars is not a significant bottleneck with ASPEN.

With both our multipop and epsilon reduction optimizations enabled, we observe

a 47%, on average, decrease in the number of states. The number of epsilon states

is reduced by 65% on average. As noted in Section 6.2, reducing epsilon states

reduces input stalls. Note that the numbers reported here are prior to placement

and routing of the design for ASPEN. The final hDPDA may contain more states

to reduce fan-in or fan-out complexity; however, the length of epsilon chains will

neither increase nor decrease.

Next, we evaluate the performance of XML parsing using our compiled XML

grammar. While we expect performance results to generalize, for space considera-

tions, we do not evaluate the other parsers in detail.

The hDPDA computational model is sufficiently rich to support parsing of

common serialization formats, such as JSON and XML. Further, our multipop

and epsilon merging optimizations reduce the number of epsilon states in

compiled hDPDA by an average of 65%.

211

0

2500

5000

7500

10000

12500

15000

17500

20000

de
w

ja
w

ar
w

bl
og

pa
rt

su
pp

na
sa

or
de

rs
ro

ad
s-

2
uw

m
bi

oi
nf

o-
bi

g
ad

dr
es

s
cu

st
om

er
pa

rt cd
Sw

iss
Pr

ot
w

su
m

on
di

al
-3

.0
po

1m po
lin

ei
te

m
so

ap
SU

AS
O

RT
CA

Av
er

ag
e

Pe
rfo

rm
an

ce
 (

ns
/k

B)
Xerces Expat ASPEN ASPEN-MP

Low
Markup
Density
< 30 %

Medium
Markup
Density
30-70 %

High
Markup
Density
> 70%

(a) ASPEN performance (in ns/kB)

0

100

200

300

400

500

600

700

800

900

de
w

ja
w

ar
w

bl
og

pa
rt

su
pp

na
sa

or
de

rs
ro

ad
s-

2
uw

m
bi

oi
nf

o-
bi

g
ad

dr
es

s
cu

st
om

er
pa

rt cd
Sw

is
sP

ro
t

w
su

m
on

di
al

-3
.0

po
1m po

lin
ei

te
m

so
ap

SU
AS

O
RT

CA

Av
er

ag
e

En
er

gy
 (

µJ
/k

B)

Xerces Expat ASPEN ASPEN-MP

Low
Markup
Density
<30 %

Medium
Markup
Density
30-70%

High
Markup
Density
> 70%

(b) ASPEN energy on SAXCount compared
to Expat and Xerces

Figure 6.15: Performance and energy evaluation of ASPEN.

6.8.2 XML Parsing Performance

Using the graph partitioning framework METIS, we find that the XML parser

hDPDA (with optimizations) maps to 8 cache arrays and results in an LLC cache

occupancy of 128KB.

Figure 6.15 compares ASPEN’s performance and energy against Expat and

Xerces on the SAXCount application (lower is better). We evaluate two DPDA

configurations: (1) ASPEN-MP has both multipop and epsilon merging optimiza-

tions enabled and (2) ASPEN, which only enables epsilon merging. We group our

XML datasets based on markup density which is an indirect measure of XML

document complexity. Performance of Expat and Xerces drops as the markup

density of the input XML document increases, because complex documents tend

to produce a large number of tokens for verification. ASPEN also sees a slight

increase in runtime with increase in markup density, but the dependence is less

212

pronounced. There is a noticeable trend in performance and energy benefits of

ASPEN-MP over ASPEN as markup density increases. As the density increases,

tokens are generated more frequently, and ε-transition stalls are less likely to be

masked by the tokenization stage of the pipeline. ASPEN-MP reduces the number

of stalling cycles during parsing, thus improving performance with high markup

density. ASPEN-MP achieves 30% improvement in both performance and energy

over ASPEN.

Overall, averaged across the datasets evaluated, ASPEN-MP takes 704.5 ns/kB

and consumes 20.9 µJ/kB energy. When compared with Expat, a 14.1× speedup

and 13.7× energy saving is achieved. ASPEN-MP also achieves 18.5× speedup and

consumes 16.9× lower energy than Xerces for SAXCount. Even after considering

the idle power of the CPU core, XML parsing on ASPEN takes 20.15 W, which

is well within the TDP of the Xeon-E5 processor core (160 W). The low power

consumed can be attributed to: (1) removal of data movement and instruction

processing overheads present in a conventional core, and (2) only a single bank of

the cache being active in any processing cycle, due to the deterministic nature of

the automaton, resulting in energy savings.

ASPEN achieves a 14.1× speedup and 13.7× energy savings over Expat, a

state-of-the-art XML parser. Further, our multipop optimization results in a 30%

improvement in performance and energy over a baseline design of ASPEN.

213

6.8.3 ASPEN Evaluation Summary

In this section, we evaluated ASPEN, an architecture that repurposes a portion of

LLC to support high-performance processing of DPDA. Our evaluation demon-

strates that ASPEN provides sufficient expressive power to support parsing of

popular data formats such as JSON and XML. Further, we demonstrate that our

DPDA optimizations reduce the required hardware resources and improve run-

time performance by at least 30%. Finally, ASPEN outperforms state-of-the-art

XML parsers on representative workloads by a factor of at least 14×.

6.9 chapter summary

In this chapter, we provide additional architectural support for automata-based

computation. As part of our hardware/software co-design approach to addressing

the challenges of programming hardware accelerators, we strive to ensure that the

underlying architectures support common applications. In particular, we focus on

case studies of detecting security attacks and parsing data, which are two common

and wide-reaching application domains that benefit from hardware acceleration.

Architectural side-channel attacks such as Spectre and Meltdown potentially

impact billions of devices. There is a need for techniques that efficiently and

precisely identify when such attacks occur. In this chapter, we present Martini,

an algorithmic approach for leveraging memory accesses of programs to classify

behavior as authorized or anomalous. We also describe an implementation strategy

214

using NFAs appropriate for in-cache computation and demonstrate that Martini

accurately and precisely classifies benign and malicious program execution using

a suite of Coreutils programs, PARSEC benchmarks, and four CVEs.

We also present ASPEN, a general-purpose, scalable, and reconfigurable memory-

centric architecture that supports rich push-down automata processing for tree-like

data. We design a custom data path that performs state matching, stack update,

and transition routing using memory arrays. We also develop a compiler for trans-

forming large classes of existing grammars to pushdown automata executable

on ASPEN. Our evaluation against state-of-the-art CPU tools shows that our

approach is general (supporting multiple languages and serialization formats),

highly performant (up to 18.5× faster for parsing), and energy efficient (up to

16.9× lower for parsing). By providing hardware support for DPDA, ASPEN

brings the efficiency of recent automata acceleration approaches to a new class of

applications.

Martini and ASPEN provide architectural support for the key application

areas of security and data parsing, achieving improvements over the current

state of the art. These architectures provide sufficient expressive power, performance,

and scalability to support new applications. We successfully leverage automata

abstractions in both architectures to bridge the gap between these high-level

applications and the underlying hardware resources available in LLCs of modern

CPUs.

215

chapter 7

Conclusions

D
ata is being collected and analyzed at ever increasing rates, and

hardware component scaling trends have resulted in a shift toward

adoption of hardware accelerators in data processing pipelines. The

state of support for these devices, however, is such that programming and debug-

ging are difficult. In this dissertation, we leverage hardware/software co-design

principles to develop a programming model that leverages automata abstractions

to ease the adoption of hardware accelerators. We consider the thesis that:

Finite automata provide a suitable abstraction for bridging the gap be-

tween high-level programming models and maintenance tools familiar

to developers and the low-level representations that execute efficiently

on hardware accelerators.

We provide evidence in support of this thesis by evaluating prototype tools lever-

aging the following insights. First, finite automata computation applies to a broad

class of applications, including: natural language processing [267], network secu-

rity [184], graph analytics [183], high-energy physics [240], bioinformatics [185, 186,

220], pseudo-random number generation and simulation [232], data-mining [238,

216

239], and machine learning [221]. Second, the compact state of finite automata

enables efficient inspection and capture of relevant program state on hardware

accelerators for debugging tasks. Third, finite automata map naturally, and are

performant on, reconfigurable architectures [75, 209, 252]. Finally, techniques from

machine learning [10], software engineering [33, 37], and formal methods [31, 222]

can be combined to aid in the design of automata that bridge the gap between

high-level languages and low-level hardware.

7.1 summary of contributions

This dissertation makes five primary contributions: two front-end programming

interfaces, an interactive debugger, and two automata-derived architectures. We

briefly summarize each.

In Chapter 3 we develop AutomataSynth, a framework for porting certain

classes of legacy source code to execute on hardware accelerators, with a focus

on FPGAs. AutomataSynth is a fundamentally new approach to solving this

problem and overcomes some of the von Neumann-centric limitations of cur-

rent high-level synthesis techniques. We develop a novel combination of state

machine learning algorithms, software verification algorithms, string decision

procedures, and high-performance automata processing architectures to learn

behaviorally equivalent FPGA hardware descriptions of functions deciding regular

expressions. For functions with more expressive power, AutomataSynth will

produce an approximate solution that is correct for all inputs shorter than some

217

fixed bound. Using a benchmark suite of real-world string functions mined from

open-source repositories, we find that AutomataSynth constructs equivalent (or

near-equivalent) hardware descriptions for more than 80% of benchmarks.

Next, we consider the problem of writing new software for hardware accelera-

tors in Chapter 4. We develop a new, high-level programming language, RAPID,

which allows developers to concisely write pattern searches over streams of input

data. RAPID extends standard syntax of an imperative programming language

with three domain-specific control structures. RAPID programs compile to a set

of finite automata, which can then be executed efficiently across a plethora of

hardware platforms. We describe mechanisms for executing RAPID programs

on FPGAs, Micron’s D480 AP, CPUs, and GPUs. We also provide empirical evi-

dence that automata enable portable programming, producing fewer performance

inversions across architectures than OpenCL. Using a suite of real-world appli-

cations taken from recent publications, we demonstrate that RAPID programs

are significantly more compact than hand-crafted and optimized automata while

maintaining similar performance and hardware resource characteristics.

We then tackle the challenge of debugging applications executing on hardware

accelerators in Chapter 5. For this dissertation, we restrict attention to RAPID pro-

grams executing on Micron’s AP and FPGAs. By leveraging the automata-based

intermediate representation of the RAPID language, we develop (1) a compila-

tion strategy that constructs a mapping from automata states to statements and

expressions in the RAPID program, (2) mechanisms to automatically generate

logic on FPGAs and repurpose hardware on the AP to extract the set of currently

218

active automata states on any given clock cycle, and (3) an interactive debugger

that combines the previous two developments, thereby allowing a developer to

set breakpoints in RAPID programs, pause and single-step RAPID programs,

and inspect program variables. Using a suite of common automata processing

applications, we find that our debugging hardware requires significant additional

hardware resources, but maintains around 80% of clock frequencies, thus support-

ing high-performance processing during debugging tasks. Additionally, a human

subjects study of 61 programmers each debugging ten RAPID applications found

a statistically significant improvement in fault localization accuracy when using

our debugger (p = 0.013).

Finally, in Chapter 6, we develop two new automata-based architectures to

support computer security and data parsing applications. Recent discovery of

hardware bugs in Intel CPUs leave millions of computers vulnerable to attacks that

can leak critical system- and user-information. We design Martini, a novel system

integration of an automata processing core to monitor memory accesses to detect

such hardware attacks. We demonstrate that the automata abstraction enables

real-time monitoring with sufficient fidelity to detect recent hardware attacks

as well as traditional, software-based attacks. In addition to security concerns,

recent trends in data processing mean that significant quantities of structured data

must be parsed and analyzed. We design ASPEN, a new in-memory automata

accelerator that supports parsing of recursively nested and tree-structured data.

We observe that deterministic pushdown automata (DPDA) provide a suitable

abstraction for representing many common serialization formats. We develop a

219

new, five-stage data path for executing DPDA in a tightly coupled data processing

loop with a cache automaton (for tokenization) and CPU cores (for later stages of

the processing pipeline). Our evaluations of Martini and ASPEN demonstrate

that our new architectures (1) can detect attacks with high accuracy and (2) can

parse serialized data an average of 14× more quickly than the current state of

the art. We also find that reduction in cache capacity needed to implement these

architectures has a statistically negligible impact on runtime performance.

Taken collectively, these contributions represent a programming model that

can help ease the adoption and use of hardware accelerators for data analysis

applications, while also supporting high-performance computation. We argue that

the work presented in this dissertation satisfies the requirements for a suitable

programming model laid out in Section 1.1:

• performance and scalability. Programs written in RAPID as well

as hardware descriptions produced by AutomataSynth maintain the per-

formance of hardware accelerators by introducing minimal overhead. Addi-

tionally, our proposed languages, tools, and architectures scale to support

real-world applications.

• ease of use . The RAPID debugger improves developers’ accuracy in

localizing common bugs. Further, RAPID extends a familiar programming

language with constructs that are natural for pattern-matching applications.

Critically, our model allows developers to reuse and port existing code with

AutomataSynth.

220

• expressive power . Both AutomataSynth and RAPID provide the full

expressive power of the underlying automata abstraction, which has been

demonstrated to be sufficient for many applications. We also develop a

hardware data path to support parsing of tree-structured data, a more

expressive computational model.

• legacy support. AutomataSynth explicitly supports porting legacy

applications to hardware accelerators, such as FPGAs. Additionally, the

compiler we develop for ASPEN allows developers to use existing parser

grammar descriptions.

7.2 a look to the future

While the work presented in this dissertation provides improved programming

support for hardware accelerators, significant room remains for understanding

and characterizing the design space as well as supporting even broader classes of

applications. Throughout this thesis, we have noted open challenges and future

directions; we provide a high-level summary here.

We believe that programming techniques that compile or transform programs

written in existing languages to current commodity hardware accelerators (e.g., FP-

GAs) can have high impact. For techniques that adopt a model learning approach,

such as AutomataSynth in Chapter 3, we identified several open challenges. In

this dissertation, we chose to learn models represented as finite automata, but

there is significant opportunity to study more expressive models as well as the

221

principled application of approximation to this problem. Further, we exposed

new opportunities for string solver optimizations and richer constraint languages.

Improvements to the tooling that supports our approach can result in significantly

improved performance, applicability, and scalability.

While developing debugging support for FPGAs in Chapter 5, we observed that

hardware resource overheads can be nontrivial. This presents new opportunities

for optimized logic design as well as potential for new FPGA architectures. Open

challenges on the hardware side include dynamic selection of signals to monitor,

decoupling of clocks between debugging and runtime hardware, and dedicated

signal monitoring hardware to reduce overheads. On the software side, efforts to

analyze programs to minimize capture and inspection of program state as well as

building out support for more sophisticated debugging features (e.g., watchpoints)

can further improve support for debugging on hardware accelerators. There is

a need for additional scientific understanding of human factors associated with

debugging on these new platforms. Better understanding of how developers use

and perceive tools can help guide the development and design of future iterations

of programming support.

Automata-derived architectures have been the subject of significant study in

recent years. In particular, there has been interest in embedding such architectures

in the memory of a system, and we presented two such architectures in Chapter 6.

The work presented in this dissertation represents only an initial foray into

understanding the implications of such a system design. There may be many

applications that this design approach renders tractable or accelerates. Further, this

222

Table 7.1: Major Publications Supporting This Dissertation

venue title

ASPLOS ’16 RAPID Programming of Pattern- Recognition Processors [15]

ASPLOS ’19 Debugging Support for Pattern-Matching Languages and Accelerators [49]

ASPLOS ’20 Accelerating Legacy String Kernels via Bounded Automata Learning [14]

CAL ’18 MNCaRT: An Open-Source, Multi-Architecture Automata-Processing Research and Execution Ecosys-
tem [12]

MICRO 51 ASPEN: A Scalable In-SRAM Architecture for Pushdown Automata [17]

TPDS ’19 Portable Programming with RAPID [13]

In Preparation Martini: Memory Access Traces to Detect Attacks

dissertation presented an initial analysis of the whole system performance impact

of reducing cache capacity to embed an automata processing core. However, a

systematic exploration of the design space—including prototyping—could reveal

key performance trade-offs, improvements, and impacts.

7.3 final remarks

As the adoption of hardware accelerators into data processing pipelines continues

to grow, we believe that the work in this dissertation represents only a subset of

the exciting area of programming support for emerging technologies. The primary

findings of our work have been (or are currently being) published in prominent

computer architecture, programming languages, and parallel and distributed

systems research venues and journals. Table 7.1 provides a summary of these

manuscripts in chronological order. As we consider the results of our research

efforts, it is quite phenomenal that the lowly finite automaton—often overlooked

due to its perceived limited expressive power—has such a profound and broadly

223

applicable benefit for bridging the gap between high-level programming languages

and the low-level resources of many hardware accelerators. Researchers are only

just beginning to understand how we might leverage such abstractions to ease the

adoption of accelerators, and we believe there is a bright and bountiful future in

their continued study.

224

appendix a

MNCaRT: An Open-Source, Multi-Architecture Automata-Processing Research

and Execution Ecosystem

Y
ears of research and development have resulted in high-throughput

automata processing architectures and software engines [75, 79, 111, 133,

204, 218, 235, 241]. This has led to the discovery of new use-cases and

application domains for finite automata, such as natural language processing [267],

network security [184], graph analytics [183], high-energy physics [240], bioinfor-

matics [185, 186, 220], pseudo-random number generation and simulation [232],

data-mining [238, 239], and machine learning [221].

Unfortunately, the software frameworks for the construction, manipulation, and

translation of automata are frustratingly fractured (e.g. have inconsistent serial-

ization formats) and restrictively licensed (e.g., Micron licenses a comprehensive

SDK, but it is closed-source and specifically targets their D480 Automata Processor,

or AP [75]). While these tools are useful for developing applications for the AP,

the tools do not allow researchers to easily evaluate designs across hardware plat-

forms, such as CPUs, GPUs, and FPGAs. The tools also cannot be easily extended

to support new architectures and automata paradigms. Instead, a general and ex-

225

tensible framework is needed to enable the development of platform-independent

applications and to support experimental automata designs.

Therefore, we have developed a suite of tools for creating, manipulating, and

executing finite automata, which we refer to as MNCaRT (the MNRL Network

Computation and Research Testbed, pronounced “minecart”).1 MNCaRT collects

a diverse set of automata processing tools and algorithms into a central location

and will grow as new tools are developed. We currently provide support for

compiling state machines from Perl compatible regular expressions (PCRE) to

automata, high-speed execution of NFAs and DFAs using Intel Hyperscan [111],

and optimization and simulation of experimental automata designs with the

Virtual Automata Simulator (VASim) [235]. Further, we provide back-ends for

executing on GPUs [231], FPGAs [252], and the AP [75]. Finally, we allow users to

explore routing constraints for experimental spatial architectures via the Automata-

to-Routing (ATR) tool [234].

To support our ecosystem, we have created MNRL, the MNRL Network Repre-

sentation Language (pronounced “mineral”), a JSON-based, open-source language

to support the development of, and experimentation with, new automata-based

applications and architectures. MNRL allows a user to define a network (or col-

lection) of MNRL nodes, which represent the states within automata. Each node

stores configuration information (such as node type, name, etc.) and connections

to other nodes within the network. The language specification is general, allowing

state machines other than finite automata to be represented. We provide initial

1 https://github.com/kevinaangstadt/mncart

226

https://github.com/kevinaangstadt/mncart

definitions for traditional finite automata states, homogeneous states, up-counters,

and Boolean logic in the MNRL specification; additional node types may be de-

fined by the user for specific applications. Both MNRL and the tools in MNCaRT

are publicly available (typically under BSD licenses), allowing both academics

and industry experts to contribute to, and use, the ecosystem.

In summary, this appendix presents the following:

• MNCaRT, an comprehensive repository of compatible tools for developing

and experimenting with automata processing on CPUs, GPUs, and FPGAs.

• MNRL, an extensible, open-source JSON specification for representing state

machines.

• Python and C++ APIs for reading, creating, manipulating, and writing

MNRL files.

• Extensions to Intel’s Hyperscan PCRE engine, supporting compilation to

and execution of MNRL files.

• An extended version of VASim, which supports reading and writing of

MNRL files.

a.1 mnrl : a new automata language

We have developed MNRL, an extensible, open-source automata representation

language, which allows for the topological specification of a collection of finite

227

state machines using JSON syntax. While JSON is supported by most common

general-purpose programming languages, we provide C++ and Python bindings

to support additional validation checks.

It is important to note that the MNRL format specifies the layout of a machine

but does not specify how elements behave, allowing many types of state machines

to be represented, including traditional NFAs [199] and homogeneous NFAs [48].2

Behavior is left for the execution engine to specify and implement (allowing

MNRL to be an extremely flexible file format). Therefore, MNRL is similar in

intent to the Unified Modeling Language (UML), in which developers describe

and design software systems while eliding implementation details [85].

a.1.1 MNRL Format

A MNRL file contains a single MNRL network—a collection of one or more state

machines that are executed in parallel using the same input. The file contains an

array of MNRL nodes, which define each element in the network. A node consists

of:

• A unique identifier

• A node type (state, homogeneous state, up counter, boolean, etc.)

• How the node is enabled

2 MNRL is general enough to represent more powerful machines (e.g. push-down automata, cellular
automata, and Turing machines).

228

• Whether the node reports (generates an output signal) when activated

• An array of input ports, each with a unique ID and specified width (number

of wires)

• An array of output ports, each with a unique ID, specified width, and list of

connected nodes

• Custom attributes, specific to each element type

A developer can encode the topological layout of the state machines within

the network and to specify the sort of behavior the underlying execution engine

should assign to each node. The implementation of behavior is not defined in the

MNRL file; instead, the computation engine that processes a MNRL network is

responsible for specifying the semantics for each node type. Therefore, node types

and execution engines are typically co-designed. If an engine needs information

(e.g. symbol sets for matching against an input stream) to process a node, this

configuration can be embedded in a MNRL node’s attributes. For the standard

node types, we have specified additional attributes to support their respective

expected behaviors.

We provide the specification of MNRL as a JSON schema [112], which allows

for validation of file syntax. The MNRL schema defines four node types: standard

automata states (state), homogeneous automata states (hState), saturating up-

counters (upCounter), and combinatorial logic (boolean). Custom attributes for

each of these node types are described in Table A.1. Each of these node types

defines a reportId attribute, which allows an additional string or integer to be

229

1 {

2 "id": "0t_15l_5r",

3 "type": "hState",

4 "enable": "onActivateIn",

5 "report": true,

6 "inputDefs": [

7 {

8 "width": 1,

9 "portId": "i"

10 }

11],

12 "outputDefs": [

13 {

14 "width": 1,

15 "activate": [],

16 "portId": "o"

17 }

18],

19

20 "attributes": {

21 "reportId": 5,

22 "latched": false,

23 "symbolSet": "[\\xFF]"

24 }

25 }

Listing A.1: Sample MNRL homogeneous hState node. The node is enabled (performs
computation) only after an incoming edge is active (line 4), and this node
matches against the input character \xFF (line 23). When this occurs, the
node generates a report signal (line 5). Lines 6-11 define a single input port
for incoming edges. Lines 12-18 define a single output port for outgoing
edges. The array on line 15 is empty, indicating that there are no outgoing
edges.

230

Table A.1: Custom Attributes for MNRL Node Types

Node Type Attribute Required? Attribute Type Description

state symbolSet YES object Mapping from each output port
name to a symbol set string repre-
senting the matched character set
that enables the outgoing connec-
tions from the given port

latched NO Boolean Determines whether a state remains
enabled after the first enable signal

hState symbolSet YES string Represents the matched character
set that enables the outgoing con-
nections

latched NO Boolean Determines whether a state remains
enabled after the first enable signal

upCounter threshold YES number The internal value at which the
counter enables outgoing connec-
tions

mode YES enum “trigger”: enable the outgoing con-
nections for one clock cycle when
the threshold is reached
“high”: enable the outgoing connec-
tions for all subsequent clock cycles
while the internal value if at the
threshold
“rollover”: similar to trigger, but
also reset the internal value

boolean gateType YES enum Must be one of the following values:
‘and’, ‘or’, ‘nor’, ‘not’, or ‘nand’

231

Table A.2: Modes for Enabling MNRL Nodes

Enable Mode Description

always The node is enabled on every cycle
onActivateIn The node is enabled on the clock cycle following a high signal to an

input port
onStartAndActivateIn The node is enabled on the first clock cycle and then follows the

“onActivateIn” mode
onLast The node is only enabled for the final clock cycle

associated and returned with any reporting event during execution. MNRL states

and hStates map directly to notions of NFA states and homogeneous NFA states.

We provide upCounter and boolean node types to maintain compatibility with

Micron’s D480 Automata Processor [75]; however these element types are general

and similar elements are in use in other engines and automata styles [29, 166].

Additionally, the MNRL schema defines four valid modes for enabling a node,

which are similar to those used by both the AP [75] and Intel Hyperscan [111]. An

enabled node performs a predefined computation on a given clock cycle. These

modes are described in Table A.2.

a.1.2 Extending the MNRL Schema

MNRL is designed to be extensible, enabling research on new, custom automata

functionality and allows researchers to quickly define custom attributes for new

node types. Because custom node types become part of the JSON schema, proto-

type extensions to the MNRL format can still be statically checked with minimal

232

effort from the developer. The MNRL file format could easily be extended to

support additional node types such as non-deterministic counters [29], and stacks

(to support push-down automata). Because MNRL supports variable-width ports,

it is also possible to represent elements that share more than a single bit of data

with elements downstream.

a.2 the mncart ecosystem

Our goal with the MNRL language is to enable the development of a rich, vibrant

ecosystem of compatible tools for manipulating and executing automata. We are

collecting these tools in an umbrella repository, the MNRL Network Computation

and Research Testbed (or MNCaRT). By keeping tools catalogued in a single

location, we hope to maintain the interoperability of tools and reduce fracturing

in the ecosystem. We also provide a Linux container configured to use all of the

MNCaRT tools.3

Figure A.1 describes the interaction between tools provided with MNCaRT.

Our ecosystem supports workflows beginning with high-level languages, such

as PCRE, and ending with execution on CPUs, GPUs, and FPGAs. We also

support execution on Micron’s Automata Processor via conversion to ANML.

Additionally, we provide compatible benchmarks for testing experimenting with

tools in MNCaRT. In this section, we briefly describe to tools that make up the

initial release of MNCaRT.

3 https://hub.docker.com/r/kevinaangstadt/mncart

233

https://hub.docker.com/r/kevinaangstadt/mncart

mncart ecosystem

PCRE RAPID
High-Level
Languages ANMLZoo

Benchmarks

MNRL ANML*
State Machine

Representations

hscompile REAPR VASim Automata
Lab ATR

Analysis
Compilation

Transformation

Hyperscan
CPU

Engine

FPGA
Engine

VASim
CPU

Engine

DFAGE
iNFAnt2
(GPU)

Execution
Engines

*While ANML is not officially part of MNCaRT, we indicate
where this alternate representation falls within the ecosystem
using dashed lines.

Figure A.1: Tools supplied as part of MNCaRT. These fall into four categories: front-end
representations (both high-level and representation languages), benchmarks,
transformation and compilation tools, and hardware and software execution
engines.

a.2.1 High-Level Languages

Our framework supports programming models that represent pattern searches at

a higher level of abstraction.

We compile PCRE to MNRL files using Intel Hyperscan’s parsing and com-

pilation routines [111]. Hyperscan is an open-source, high-performance regular

expression processing library supported by Intel. The tool returns a graph repre-

sentation of the compiled state machine, which we traverse to generate a MNRL

file. Our regular expression compiler (pcre2mnrl) reads a file of regular expres-

234

sions and compiles the given set of patterns to a single MNRL file. The line

number of each given PCRE pattern is used as the report ID to allow for easy

identification of matched patterns in processing output.

RAPID is a high-level programming language for execution of sequential

pattern-matching applications (see Chapter 4 for a full introduction to the lan-

guage). This C-like language is extended with three keywords to support parallel

matching of patterns against a single data stream as well as sliding window

pattern recognition. The RAPID compiler can emit MNRL files, allowing for

high-level programming within the MNCaRT ecosystem.

a.2.2 Benchmarks

The ANMLZoo benchmark suite contains a diverse set of automata applications

and associated input stimuli [231]. Applications range from configurable, synthetic

benchmarks to algorithms not easily represented by regular expressions and can

therefore demonstrate vastly different execution characteristics. We have generated

MNRL for all benchmarks in the suite.

a.2.3 Analysis, Transformation, and Compilation

hyperscan compilation. We provide an extension to Hyperscan (hscompile)

that parses MNRL files and compiles the finite automata to a serialized Hyperscan

pattern database, allowing offline compilation. Additionally, our tool serializes a

235

mapping from MNRL node IDs and report IDs to Hyperscan’s internal naming

for each state machine element. This mapping enables human-readable output

when processing input data using Hyperscan.

vasim . We have extended VASim [235] to support parsing of MNRL files.

VASim is a general-purpose framework for automata simulation, optimization,

transformation, and performance modeling. The tool enables prototyping, debug-

ging, simulation, and analysis of automata-based applications and architectures.

Additionally, VASim can parse Micron ANML files, allowing for conversion with

MNRL.

VASim also provides a common codebase for applying state-of-the-art opti-

mizations, transformations, and static and dynamic analyses to finite automata.

This platform allows researchers to easily and quickly share new algorithms and

perform fair apples-to-apples comparisons to prior work, accelerating automata

processing research. We provide several optimizations in the core of VASim,

including common prefix merging [28] and a literal matching engine [111].

automata lab . Automata Lab is a web-based graphical environment for

visualizing, editing, and simulating finite automata [132]. The tool uses VASim to

manipulate automata, and the resulting state machines are displayed graphically,

allowing for user interaction. Users may upload MNRL files or choose from

applications in the ANMLZoo benchmark suite.

236

reapr . We adapt REAPR [252], a tool for generating highly efficient FPGA

automata accelerator kernels, to support MNRL. The tool generalizes prior work

[75, 196, 255] to be applicable for automata processing applications other than

just regular expressions. Hardware automata accelerator engines such as REAPR

take advantage of the one-to-one mapping between the spatial distribution of

automaton states and hardware resources such as lookup tables (LUTs), block

RAM (BRAM), and wires.

In REAPR, there are two main types of RTL elements to consider: 1) the

state transition element (STE), which contains state activation information and

transition logic; and 2) the wiring between all of the STEs in the automaton. Von

Neumann automata engines iterate over every active STE and check whether the

current input symbol will activate outgoing transition(s). If so, the next cycle’s

activation state is updated with the list of STEs that the current state affects. In

an FPGA circuit generated by REAPR, STEs that affect each other are physically

connected with wires, and if a single STE has multiple incoming transitions, they

are combined in an OR gate so that any incoming transition can change the

activation state of an STE.

automata-to-routing . We extend the Automata-to-Routing (ATR) [234]

tool to support placement and routing of MNRL state machines. ATR utilizes

the Versatile Place and Route (VPR) tool to model spatial automata-processing

architectures [32]. We use VASim to emit VPR-readable circuits of MNRL networks

and provide guidance to construct custom, parameterizable, spatial architecture

237

description files to accept these custom state machine circuits. ATR is thus capable

of modeling spatial architectures that are purpose-built to accept MNRL state

machines.

a.2.4 Execution Engines

hyperscan cpu engine . We provide a tool (hsrun) for processing MNRL

files against an input stream using the Hyperscan execution core. This tool

deserializes the Hyperscan pattern database and node mapping produced by

hscompile. The tool then scans the given input file against the database and

prints out human-readable reporting information (e.g. MNRL ID and input stream

offset). If multiple compiled MNRL files and/or input files are passed to hsrun,

the tool will execute all pairings of the files using a supplied number of threads.

vasim cpu engine . In addition to support for transformation and analysis

of finite automata, VASim supports simulation of a diverse set of finite automata

models. While Hyperscan achieves higher throughput, VASim’s modular design

allows for quick prototyping to test new automata elements and designs, such as

those including custom compute units.

fpga engine . In addition to generating hardware NFA kernels, REAPR can

also generate a full platform execution environment for certain automata applica-

tions. The REAPR platform has been demonstrated to offer up to 183× speedup

238

over best-effort CPU implementations[252]. We are also actively developing a

general-purpose reporting architecture to support execution environments for all

automata kernels.

gpu engines (dfage and infant2). MNCaRT contains both a GPU-

based DFA engine (DFAGE) and NFA engine (iNFAnt2). The NFA engine was

described previously by Wadden et al.[231]; we therefore focus on describing

DFAGE in this article. Use of DFAGE first requires compilation to one or more

DFAs using VASim. Note that the compilation process is performed offline by

the CPU. Often, compiling to a single DFA is inefficient. Therefore, users may

partition rulesets into several DFAs, and each DFA consists of a state transition

table and an acceptance vector. State transition tables corresponding to different

DFAs are stored consecutively in the GPU’s global memory. The same layout is

applied for acceptance vectors. It should be noted that each transition table is

represented by a 2-D array containing the next state identifiers for every pair of

current state identifier and input symbol. Similar to previous implementations,

our DFA matching engine supports multi-packets processing to take advantage

of the extreme parallelism of GPU architectures. Input packets also reside in the

GPU’s global memory.

Workloads are mapped to a 2-D grid of threads. Similar to Yu et al. [261],

different packets are mapped to different blocks on the x-dimension of grid.

Each thread within the block processes a different DFA for the assigned packet.

However, for large datasets in our benchmark suite where the number of DFAs

239

can exceed the block size, different blocks on the y-dimension of the grid will also

be used.

a.3 appendix summary

MNRL is a general and extensible format for representing state machines. The

language specification and associated tools are released with open-source licenses

to promote collaboration and usage within both academia and industry. MNRL is

supported by general-purpose programming languages because it is based off of

the JSON format. Further, we provide MNRL-specific APIs for Python and C++ to

perform more direct manipulation and validation of networks.

MNRL is a component of MNCaRT, a suite of tools for analyzing, executing,

and transforming automata processing applications. We support execution of

MNRL networks on CPUs, GPUs, and FPGAs, and we provide a workflow for

execution on Micron’s AP. Support for high-level pattern-matching languages,

such as PCRE and RAPID is also provided as part of MNCaRT. Finally, we allow

for design space exploration through analysis functionality in the VASim and ATR

tools.

In this dissertation, we leverage aspects of MNRL and MNCaRT for each of our

main contributions. We use the MNRL format internally and as the output from

AutomataSynth in Chapter 3, as output of the RAPID compiler in Chapter 4,

and in an extended form to represent hDPDA in Chapter 6. We employ several

resources from MNCaRT to evaluate our FPGA-based debugging framework in

240

Chapter 5, including the ANMLZoo benchmark suite and a customized version

of REAPR. Further, research challenges encountered representing non-traditional

finite automata (e.g., hDPDA in Chapter 6) informed the design of MNRL. In

summary, the success of the research detailed in this dissertation was significantly

supported by the development of MNRL and MNCaRT.

241

bibliography

[1] 2017 IEEE International Workshop on Program Debugging (IWPD), Sympo-
sium on Software Reliability Engineering Workshops, ISSRE Workshops. IEEE
Computer Society. Toulouse, France: IEEE, 2017.

[2] F. Aarts, J. De Ruiter, and E. Poll. “Formal Models of Bank Cards for
Free.” In: Sixth International Conference on Software Testing, Verification and
Validation Workshops. 2013, pp. 461–468.

[3] Alfred V. Aho and Margaret J. Corasick. “Efficient String Matching: An Aid
to Bibliographic Search.” In: Commun. ACM 18.6 (June 1975), pp. 333–340.

[4] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Com-
pilers: Principles, Techniques, and Tools (2nd Edition). USA: Addison-Wesley
Longman Publishing Co., Inc., 2006.

[5] Gustavo Alonso. “FPGAs in Data Centers.” In: Queue 16.2 (Apr. 2018),
60:52–60:57.

[6] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A.
Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. “Syntax-guided
synthesis.” In: Formal Methods in Computer-Aided Design. 2013, pp. 1–8.

[7] Rajeev Alur, Pavol Černý, P. Madhusudan, and Wonhong Nam. “Synthesis
of Interface Specifications for Java Classes.” In: Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. Long
Beach, California, USA, 2005, pp. 98–109.

[8] H. Angepat, G. Eads, C. Craik, and D. Chiou. “NIFD: Non-intrusive FPGA
Debugger – Debugging FPGA ‘Threads’ for Rapid HW/SW Systems Pro-
totyping.” In: International Conference on Field Programmable Logic and Appli-
cations. 2010, pp. 356–359.

[9] Dana Angluin. “A note on the number of queries needed to identify regular
languages.” In: Information and Control 51.1 (1981), pp. 76 –87.

[10] Dana Angluin. “Learning Regular Sets from Queries and Counterexam-
ples.” In: Information and Computation 75.2 (Nov. 1987), pp. 87–106.

[11] Dana Angluin. “Computational Learning Theory: Survey and Selected
Bibliography.” In: Symposium on Theory of Computing. 1992, pp. 351–369.

242

[12] K. Angstadt, J. Wadden, V. Dang, T. Xie, D. Kramp, W. Weimer, M. Stan, and
K. Skadron. “MNCaRT: An Open-Source, Multi-Architecture Automata-
Processing Research and Execution Ecosystem.” In: IEEE Computer Archi-
tecture Letters 17.1 (2018), pp. 84–87.

[13] K. Angstadt, J. Wadden, W. Weimer, and K. Skadron. “Portable Program-
ming with RAPID.” In: IEEE Transactions on Parallel and Distributed Systems
30.4 (2019), pp. 939–952.

[14] Kevin Angstadt, Jean-Baptiste Jeannin, and Westley Weimer. “Accelerating
Legacy String Kernels via Bounded Automata Learning.” In: Proceedings of
the Twenty-Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ASPLOS ’20. Lausanne, Switzerland:
ACM, 2020.

[15] Kevin Angstadt, Westley Weimer, and Kevin Skadron. “RAPID Program-
ming of Pattern-Recognition Processors.” In: Architectural Support for Pro-
gramming Languages and Operating Systems. 2016, pp. 593–605.

[16] Kevin Angstadt, Jack Wadden, Westley Weimer, and Kevin Skadron. MNRL
and MNCaRT: An Open-Source, Multi-Architecture State Machine Research and
Execution Ecosystem. Tech. rep. CS2017-01. University of Virginia, 2017.

[17] Kevin Angstadt, Arun Subramaniyan, Elaheh Sadredini, Reza Rahimi,
Kevin Skadron, Westley Weimer, and Reetuparna Das. “ASPEN: A Scalable
in-SRAM Architecture for Pushdown Automata.” In: Proceedings of the 51st
Annual IEEE/ACM International Symposium on Microarchitecture. MICRO-51.
Fukuoka, Japan: IEEE Press, 2018, pp. 921–932.

[18] Apache Software Foundation. Xerces C++ XML Parser. http://xerces.
apache.org/xerces-c/.

[19] Krzysztof R. Apt, Jacob Brunekreef, Vincent Partington, and Andrea
Schaerf. Alma-0: An Imperative Language That Supports Declarative Program-
ming. Tech. rep. 1997.

[20] Krste Asanović et al. The Landscape of Parallel Computing Research: A View
from Berkeley. Tech. rep. UCB/EECS-2006-183. EECS Department, University
of California, Berkeley, 2006.

[21] Z. K. Baker and J. S. Monson. “In-situ FPGA Debug Driven by On-Board
Microcontroller.” In: 2009 17th IEEE Symposium on Field Programmable Cus-
tom Computing Machines. 2009, pp. 219–222.

243

http://xerces.apache.org/xerces-c/
http://xerces.apache.org/xerces-c/

[22] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. “Relative Com-
pleteness of Abstraction Refinement for Software Model Checking.” In:
Tools and Algorithms for the Construction and Analysis of Systems, TACAS.
2002, pp. 158–172.

[23] Thomas Ball and Sriram K. Rajamani. “Automatically Validating Temporal
Safety Properties of Interfaces.” In: Proceedings of the 8th International SPIN
Workshop on Model Checking of Software. SPIN ’01. Toronto, Ontario, Canada:
Springer-Verlag, 2001, pp. 103–122.

[24] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani. “SLAM
and Static Driver Verifier: Technology Transfer of Formal Methods inside
Microsoft.” In: Integrated Formal Methods. Ed. by Eerke A. Boiten, John
Derrick, and Graeme Smith. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 1–20.

[25] S. W. Beal. “Rapid design implementation with field-programmable gate
arrays.” In: Digest of Papers. COMPCON Spring 89. Thirty-Fourth IEEE
Computer Society International Conference: Intellectual Leverage. 1989, pp. 487–
490.

[26] David Beazley. PLY (Python Lex-Yacc). http://www.dabeaz.com/ply/index.
html.

[27] Michela Becchi. Retular Expression Processor. http://regex.wustl.edu.
Accessed 2017-04-06. 2011.

[28] Michela Becchi and Patrick Crowley. “Efficient Regular Expression Evalua-
tion: Theory to Practice.” In: Proceedings of Architectures for Networking and
Communications Systems. ANCS ’08. San Jose, California, 2008, pp. 50–59.

[29] Michela Becchi and Patrick Crowley. “Extending Finite Automata to Ef-
ficiently Match Perl-compatible Regular Expressions.” In: Proceedings of
the ACM International Conference on emerging Networking EXperiments and
Technologies. CoNEXT ’08. Madrid, Spain, 2008, 25:1–25:12.

[30] Fabrice Bellard. “QEMU, a fast and portable dynamic translator.” In:
USENIX Annual Technical Conference, FREENIX Track. Vol. 41. 2005, p. 46.

[31] Murphy Berzish, Vijay Ganesh, and Yunhui Zheng. “Z3str3: A string solver
with theory-aware heuristics.” In: Formal Methods in Computer Aided Design.
FMCAD 2017. 2017, pp. 55–59.

244

http://www.dabeaz.com/ply/index.html
http://www.dabeaz.com/ply/index.html
http://regex.wustl.edu

[32] Vaughn Betz and Jonathan Rose. “VPR: A new packing, placement and
routing tool for FPGA research.” In: Proceedings of the International Workshop
on Field Programmable Logic and Applications. Springer. 1997, pp. 213–222.

[33] Dirk Beyer and M. Erkan Keremoglu. “CPAchecker: A Tool for Config-
urable Software Verification.” In: Computer Aided Verification. Ed. by Ganesh
Gopalakrishnan and Shaz Qadeer. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 184–190.

[34] Dirk Beyer, M. Erkan Keremoglu, and Philipp Wendler. “Predicate Abstrac-
tion with Adjustable-block Encoding.” In: Proceedings of the 2010 Conference
on Formal Methods in Computer-Aided Design. FMCAD ’10. Lugano, Switzer-
land: FMCAD Inc, 2010, pp. 189–198.

[35] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar.
“The software model checker Blast.” In: International Journal on Software
Tools for Technology Transfer 9.5 (2007), pp. 505–525.

[36] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. “The
PARSEC Benchmark Suite: Characterization and Architectural Implica-
tions.” In: Proceedings of the 17th International Conference on Parallel Archi-
tectures and Compilation Techniques. PACT ’08. Toronto, Ontario, Canada:
ACM, 2008, pp. 72–81.

[37] Armin Biere. “Bounded Model Checking.” In: Handbook of Satisfiability.
2009, pp. 457–481.

[38] M. Bishop. “What is computer security?” In: IEEE Security Privacy 1.1
(2003), pp. 67–69.

[39] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles
E. Leiserson, Keith H. Randall, and Yuli Zhou. “Cilk: An Efficient Mul-
tithreaded Runtime System.” In: Proceedings of the Fifth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. PPOPP ’95.
Santa Barbara, California, USA: ACM, 1995, pp. 207–216.

[40] Chunkun Bo, Ke Wang, Yanjun Qi, and Kevin Skadron. “String Kernel
Testing Acceleration using the Micron Automata Processor.” In: Workshop
on Computer Architecture for Machine Learning. 2015.

[41] Benedikt Bollig, Peter Habermehl, Carsten Kern, and Martin Leucker.
“Angluin-Style Learning of NFA.” In: International Joint Conference on Artifi-
cial Intelligence. 2009.

245

[42] William J. Bowhill et al. “The Xeon R© Processor E5-2600 v3: a 22 nm 18-Core
Product Family.” In: J. Solid-State Circuits 51.1 (2016), pp. 92–104.

[43] Aaron R. Bradley. “SAT-Based Model Checking without Unrolling.” In:
Verification, Model Checking, and Abstract Interpretation. Ed. by Ranjit Jhala
and David Schmidt. 2011, pp. 70–87.

[44] David Brumley and Dan Boneh. “Remote Timing Attacks Are Practical.” In:
Proceedings of the 12th Conference on USENIX Security Symposium - Volume
12. SSYM’03. Washington, DC: USENIX Association, 2003, p. 1.

[45] Randal E. Bryant and David R. O’Hallaron. Computer Systems: A Program-
mer’s Perspective. 2nd. USA: Addison-Wesley Publishing Company, 2010.

[46] Janusz A. Brzozowski. “Derivatives of Regular Expressions.” In: Journal of
the ACM 11.4 (Oct. 1964), pp. 481–494.

[47] Cristian Cadar, Daniel Dunbar, and Dawson Engler. “KLEE: Unassisted
and Automatic Generation of High-coverage Tests for Complex Systems
Programs.” In: Proceedings of the 8th USENIX Conference on Operating Sys-
tems Design and Implementation. OSDI’08. San Diego, California: USENIX
Association, 2008, pp. 209–224.

[48] Pascal Caron and Djelloul Ziadi. “Characterization of Glushkov automata.”
In: Theoretical Computer Science 233.1 (2000), pp. 75–90.

[49] Matthew Casias, Kevin Angstadt, Tommy Tracy II, Kevin Skadron, and
Westley Weimer. “Debugging Support for Pattern-Matching Languages and
Accelerators.” In: Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems.
ASPLOS ’19. Providence, RI, USA: ACM, 2019, pp. 1073–1086.

[50] Sofia Cassel, Falk Howar, Bengt Jonsson, and Bernhard Steffen. “Active
Learning for Extended Finite State Machines.” In: Form. Asp. Comput. 28.2
(Apr. 2016), pp. 233–263.

[51] Adrian M. Caulfield et al. “A Cloud-scale Acceleration Architecture.” In:
The 49th Annual IEEE/ACM International Symposium on Microarchitecture.
MICRO-49. Taipei, Taiwan: IEEE Press, 2016, 7:1–7:13.

[52] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee, and K.
Skadron. “Rodinia: A benchmark suite for heterogeneous computing.” In:
International Symposium on Workload Characterization. 2009, pp. 44–54.

246

[53] Wei Chen, Szu-Liang Chen, Siufu Chiu, Raghuraman Ganesan, Venkata
Lukka, Wei Wing Mar, and Stefan Rusu. “A 22nm 2.5 MB slice on-die L3

cache for the next generation Xeon R© processor.” In: Symposium on VLSI
Technology. 2013, pp. C132–C133.

[54] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. “A survey of model
compression and acceleration for deep neural networks.” In: arXiv preprint
arXiv:1710.09282 (2017).

[55] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. “Optimizing
Database-Backed Applications with Query Synthesis.” In: Proceedings of the
34th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. PLDI ’13. Seattle, Washington, USA: Association for Computing
Machinery, 2013, pp. 3–14.

[56] Noam Chomsky and George A. Miller. “Introduction to the Formal Analy-
sis of Natural Languages.” In: Handbook of Mathematical Psychology. Vol. 2.
1963. Chap. 11, pp. 269–322.

[57] Robert G. Clapp, Haohuan Fu, and Olav Lindtjorn. “Selecting the right
hardware for reverse time migration.” In: The Leading Edge 29.1 (2010),
pp. 48–58. eprint: https://doi.org/10.1190/1.3284053.

[58] James Clark. The Expat XML Parser. http://expat.sourceforge.net.

[59] Shane S. Clark, Benjamin Ransford, Amir Rahmati, Shane Guineau, Jacob
Sorber, Wenyuan Xu, and Kevin Fu. “WattsUpDoc: Power Side Channels
to Nonintrusively Discover Untargeted Malware on Embedded Medical
Devices.” In: Presented as part of the 2013 USENIX Workshop on Health
Information Technologies. Washington, D.C.: USENIX, 2013.

[60] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
“Counterexample-guided Abstraction Refinement for Symbolic Model
Checking.” In: Journal of the ACM 50.5 (Sept. 2003), pp. 752–794.

[61] Alexei Colin, Graham Harvey, Brandon Lucia, and Alanson P. Sample.
“An Energy-interference-free Hardware-Software Debugger for Intermit-
tent Energy-harvesting Systems.” In: Architectural Support for Programming
Languages and Operating Systems. 2016, pp. 577–589.

[62] Computer Sciences Corporation. Big Data Universe Beginning to Explode.
http:/ / www . csc . com / insights / flxwd / 78931 - big _ data _ universe _

beginning_to_explode. 2012.

247

https://doi.org/10.1190/1.3284053
http://expat.sourceforge.net
http://www.csc.com/insights/flxwd/78931-big_data_universe_beginning_to_explode
http://www.csc.com/insights/flxwd/78931-big_data_universe_beginning_to_explode

[63] Nassim Corteggiani, Giovanni Camurati, and Aurélien Francillon. “In-
ception: System-Wide Security Testing of Real-World Embedded Systems
Software.” In: 27th USENIX Security Symposium (USENIX Security 18). Bal-
timore, MD: USENIX Association, 2018, pp. 309–326.

[64] CortexTM-M1 Technical Reference Manual. r1p0. ARM Limited. 2008.

[65] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide Balzarotti.
“A Large-scale Analysis of the Security of Embedded Firmwares.” In:
Proceedings of the 23rd USENIX Conference on Security Symposium. SEC’14.
San Diego, CA: USENIX Association, 2014, pp. 95–110.

[66] William Craig. “Three Uses of the Herbrand-Gentzen Theorem in Relating
Model Theory and Proof Theory.” In: The Journal of Symbolic Logic 22.3
(1957), pp. 269–285.

[67] DNV GL. Are you able to leverage big data to boost your productivity and
value creation? https://www.dnvgl.com/assurance/viewpoint/viewpoint-
surveys/big-data.html. 2016.

[68] Zefu Dai, Nick Ni, and Jianwen Zhu. “A 1 cycle-per-byte XML parsing
accelerator.” In: Proceedings of the 18th annual ACM/SIGDA international
symposium on Field programmable gate arrays. ACM. 2010, pp. 199–208.

[69] Sanjeev Das, Jan Werner, Manos Antonakakis, Michalis Polychronakis,
and Fabian Monrose. “SoK: The Challenges, Pitfalls, and Perils of Using
Hardware Performance Counters for Security.” In: 40th IEEE Symposium on
Security and Privacy (S&P’19). 2019.

[70] Howard David, Eugene Gorbatov, Ulf R Hanebutte, Rahul Khanna, and
Christian Le. “RAPL: Memory power estimation and capping.” In: Interna-
tional Symposium on Low-Power Electronics and Design. 2010.

[71] Leonardo De Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver.”
In: Proceedings of the Theory and Practice of Software, 14th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems.
TACAS’08/ETAPS’08. Budapest, Hungary: Springer-Verlag, 2008, pp. 337–
340.

[72] Joeri De Ruiter and Erik Poll. “Protocol State Fuzzing of TLS Implementa-
tions.” In: Proceedings of the 24th USENIX Conference on Security Symposium.
SEC’15. Washington, D.C.: USENIX Association, 2015, pp. 193–206.

248

https://www.dnvgl.com/assurance/viewpoint/viewpoint-surveys/big-data.html
https://www.dnvgl.com/assurance/viewpoint/viewpoint-surveys/big-data.html

[73] John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam Waks-
man, Simha Sethumadhavan, and Salvatore Stolfo. “On the feasibility of
online malware detection with performance counters.” In: ACM SIGARCH
Computer Architecture News 41.3 (2013), pp. 559–570.

[74] Edsger W. Dijkstra. “Guarded commands, nondeterminacy and formal
derivation of programs.” In: Communications of the ACM 18.8 (1975), pp. 453–
457.

[75] Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal, and
Harold Noyes. “An Efficient and Scalable Semiconductor Architecture
for Parallel Automata Processing.” In: IEEE Transactions on Parallel and
Distributed Systems 25.12 (2014), pp. 3088–3098.

[76] Brendan Dolan-Gavitt, Tim Leek, Josh Hodosh, and Wenke Lee. “Tappan
zee (north) bridge: mining memory accesses for introspection.” In: Pro-
ceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. ACM. 2013, pp. 839–850.

[77] ECMA Technical Committee 39. The JSON Data Interchange Format. Tech.
rep. ECMA-404 1st Edition. ECMA, Oct. 2013.

[78] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen North, Gordon
Woodhull, Short Description, and Lucent Technologies. “Graphviz — open
source graph drawing tools.” In: Lecture Notes in Computer Science. Springer-
Verlag, 2001, pp. 483–484.

[79] Yuanwei Fang, Tung T. Hoang, Michela Becchi, and Andrew A. Chien. “Fast
support for unstructured data processing: the unified automata processor.”
In: Proceedings of the ACM International Symposium on Microarchitecture.
Micro ’15. 2015, pp. 533–545.

[80] Yuanwei Fang, Chen Zou, Aaron J Elmore, and Andrew A Chien. “UDP:
a programmable accelerator for extract-transform-load workloads and
more.” In: International Symposium on Microarchitecture. ACM. 2017, pp. 55–
68.

[81] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire, and Dejan Kostiun-
defined. “Make the Most out of Last Level Cache in Intel Processors.” In:
Proceedings of the Fourteenth EuroSys Conference 2019. EuroSys ’19. Dresden,
Germany: Association for Computing Machinery, 2019.

249

[82] Paul Fiterău-Broştean, Ramon Janssen, and Frits Vaandrager. “Combining
Model Learning and Model Checking to Analyze TCP Implementations.”
In: Computer Aided Verification. Ed. by Swarat Chaudhuri and Azadeh
Farzan. Cham: Springer International Publishing, 2016, pp. 454–471.

[83] Michael Flynn. “Flynn’s Taxonomy.” In: Encyclopedia of Parallel Computing.
Ed. by David Padua. Boston, MA: Springer US, 2011, pp. 689–697.

[84] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and Thomas A.
Longstaff. “A Sense of Self for Unix Processes.” In: Proceedings of the IEEE
Symposium on Security and Privacy. SP ’96. Washington, DC, USA: IEEE
Computer Society, 1996, pp. 120–.

[85] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling
Language. Object Technology Series. Addison-Wesley, 2004.

[86] Z. P. Fry and W. Weimer. “A human study of fault localization accuracy.”
In: International Conference on Software Maintenance. 2010, pp. 1–10.

[87] Matthew M. Geller, Michael A. Harrison, and Ivan M. Havel. “Normal
forms of deterministic grammars.” In: Discrete Mathematics 16.4 (1976),
pp. 313 –321.

[88] Daniel Genkin, Adi Shamir, and Eran Tromer. “RSA Key Extraction via
Low-Bandwidth Acoustic Cryptanalysis.” In: Advances in Cryptology –
CRYPTO 2014. Ed. by Juan A. Garay and Rosario Gennaro. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2014, pp. 444–461.

[89] Philip Ginsbach, Toomas Remmelg, Michel Steuwer, Bruno Bodin, Christophe
Dubach, and Michael F. P. O’Boyle. “Automatic Matching of Legacy Code
to Heterogeneous APIs: An Idiomatic Approach.” In: Proceedings of the
Twenty-Third International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ASPLOS ’18. Williamsburg, VA, USA:
Association for Computing Machinery, 2018, pp. 139–153.

[90] J. Goeders and S. J. E. Wilton. “Effective FPGA debug for high-level synthe-
sis generated circuits.” In: 24th International Conference on Field Programmable
Logic and Applications (FPL). 2014, pp. 1–8.

[91] Vaibhav Gogte, Aasheesh Kolli, Michael J. Cafarella, Loris D’Antoni, and
Thomas F. Wenisch. “HARE: Hardware accelerator for regular expressions.”
In: International Symposium on Microarchitecture. 2016, pp. 1–12.

250

[92] P. Graham, B. Nelson, and B. Hutchings. “Instrumenting Bitstreams for
Debugging FPGA Circuits.” In: Field-Programmable Custom Computing Ma-
chines, 2001. FCCM ’01. The 9th Annual IEEE Symposium on. 2001, pp. 41–
50.

[93] Sheila A. Greibach. “A New Normal-Form Theorem for Context-Free
Phrase Structure Grammars.” In: J. ACM 12.1 (Jan. 1965), pp. 42–52.

[94] Sumit Gulwani. “Programming by Examples: Applications, Algorithms,
and Ambiguity Resolution.” In: Proceedings of the 8th International Joint
Conference on Automated Reasoning. Berlin, Heidelberg: Springer-Verlag,
2016, pp. 9–14.

[95] Kaiyuan Guo, Shulin Zeng, Jincheng Yu, Yu Wang, and Huazhong Yang.
“A Survey of FPGA-Based Neural Network Inference Accelerators.” In:
ACM Trans. Reconfigurable Technol. Syst. 12.1 (2019).

[96] D. Hao, L. Zhang, L. Zhang, J. Sun, and H. Mei. “VIDA: Visual interac-
tive debugging.” In: International Conference on Software Engineering. 2009,
pp. 583–586.

[97] Tegze P. Haraszti. “Sense Amplifiers.” In: CMOS Memory Circuits. Boston,
MA: Springer US, 2002, pp. 163–275.

[98] Elliotte Rusty Harold and W. Scott Means. XML in a Nutshell, Third Edition.
O’Reilly Media, Inc., 2004.

[99] Michael A. Harrison and Ivan M. Havel. “Real-Time Strict Deterministic
Languages.” In: SIAM Journal on Computing 1.4 (1972), pp. 333–349. eprint:
https://doi.org/10.1137/0201024.

[100] Douglas M. Hawkins. “The Problem of Overfitting.” In: Journal of Chemical
Information and Computer Sciences 44.1 (2004). PMID: 14741005, pp. 1–12.
eprint: https://doi.org/10.1021/ci0342472.

[101] Urs Hölzle, Craig Chambers, and David Ungar. “Debugging Optimized
Code with Dynamic Deoptimization.” In: Programming Language Design
and Implementation. San Francisco, California, USA, 1992, pp. 32–43.

[102] Chuntao Hong, Dehao Chen, Wenguang Chen, Weimin Zheng, and Haibo
Lin. “MapCG: Writing Parallel Program Portable Between CPU and GPU.”
In: Parallel Architectures and Compilation Techniques. Vienna, Austria, 2010,
pp. 217–226.

251

https://doi.org/10.1137/0201024
https://doi.org/10.1021/ci0342472

[103] Pieter Hooimeijer and Westley Weimer. “A decision procedure for subset
constraints over regular languages.” In: Programming Language Design and
Implementation (PLDI). 2009, pp. 188–198.

[104] Qiming Hou, Kun Zhou, and Baining Guo. “Debugging GPU Stream
Programs Through Automatic Dataflow Recording and Visualization.” In:
SIGGRAPH Asia. 2009, 153:1–153:11.

[105] Min Huang, Moty Mehalel, Ramesh Arvapalli, and Songnian He. “An
Energy Efficient 32-nm 20-MB Shared On-Die L3 Cache for Intel R© Xeon R©
Processor E5 Family.” In: J. Solid-State Circuits 48.8 (2013), pp. 1954–1962.

[106] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai
Lee, and Sy-Yen Kuo. “Verifying web applications using bounded model
checking.” In: International Conference on Dependable Systems and Networks.
IEEE. 2004, pp. 199–208.

[107] Jennifer Huffstetler. Intel Processors and FPGAs—–Better Together. https://
itpeernetwork.intel.com/intel-processors-fpga-better-together.
Accessed 2020-02-04. 2018.

[108] INRIA. Lexer and parser generators (ocamllex, ocamlyacc). http://caml.inria.
fr/pub/docs/manual-ocaml-4.00/manual026.html. accessed 2018-04-06.

[109] Integrated Logic Analyzer v6.2: LogiCORE IP Product Guide. PG172. Xilinx Inc.
San José, CA, 2016.

[110] Intel. Cache Allocation Technology. 2017.

[111] Intel. Hyperscan. https://01.org/hyperscan. Accessed 2017-04-07. 2017.

[112] Internet Engineering Task Force. JSON Schema: core definitions and terminol-
ogy. json-schema-core. Jan. 2013.

[113] M Isberner. “Foundations of active automata learning: an alorithmic per-
spective.” PhD thesis. Technical University of Dortmund, 2015.

[114] Malte Isberner, Falk Howar, and Bernhard Steffen. “The TTT Algorithm: A
Redundancy-Free Approach to Active Automata Learning.” In: Runtime
Verification. Ed. by Borzoo Bonakdarpour and Scott A. Smolka. Cham:
Springer International Publishing, 2014, pp. 307–322.

[115] Ranjit Jhala and Rupak Majumdar. “Software Model Checking.” In: ACM
Computing Surveys 41.4 (Oct. 2009), 21:1–21:54.

252

https://itpeernetwork.intel.com/intel-processors-fpga-better-together
https://itpeernetwork.intel.com/intel-processors-fpga-better-together
http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual026.html
http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual026.html
https://01.org/hyperscan

[116] Joint Task Force on Computing Curricula, Association for Computing
Machinery (ACM) and IEEE Computer Society. Computer Science Curricula
2013: Curriculum Guidelines for Undergraduate Degree Programs in Computer
Science. New York, NY, USA: Association for Computing Machinery, 2013.

[117] Norman P. Jouppi et al. “In-Datacenter Performance Analysis of a Tensor
Processing Unit.” In: Proceedings of the 44th Annual International Symposium
on Computer Architecture. ISCA ’17. Toronto, ON, Canada: ACM, 2017,
pp. 1–12.

[118] Shoaib Kamil, Alvin Cheung, Shachar Itzhaky, and Armando Solar-Lezama.
“Verified Lifting of Stencil Computations.” In: Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implementation.
PLDI ’16. Santa Barbara, CA, USA: Association for Computing Machinery,
2016, pp. 711–726.

[119] Yusaku Kaneta, Shingo Yoshizawa, SI Minato, and Hiroki Arimura. “High-
Speed String and Regular Expression Matching on FPGA.” In: Proceedings
of the Asia-Pacific Signal and Information Processing Association. 2011.

[120] Egor George Karpenkov, Karlheinz Friedberger, and Dirk Beyer. “JavaSMT:
A Unified Interface for SMT Solvers in Java.” In: Verified Software. Theories,
Tools, and Experiments. Ed. by Sandrine Blazy and Marsha Chechik. Cham:
Springer International Publishing, 2016, pp. 139–148.

[121] George Karypis and Vipin Kumar. “A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs.” In: SIAM J. Scientific Computing
20.1 (1998), pp. 359–392.

[122] Mikhail Kazdagli, Vijay Janapa Reddi, and Mohit Tiwari. “Quantifying and
improving the efficiency of hardware-based mobile malware detectors.”
In: The 49th Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE Press. 2016, p. 37.

[123] Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational
Learning Theory. Cambridge, MA, USA: MIT Press, 1994.

[124] Peter B. Kessler. “Fast Breakpoints: Design and Implementation.” In: Pro-
gramming Language Design and Implementation. White Plains, New York,
USA, 1990, pp. 78–84.

253

[125] Ahmed Khawaja, Joshua Landgraf, Rohith Prakash, Michael Wei, Eric
Schkufza, and Christopher J. Rossbach. “Sharing, Protection, and Com-
patibility for Reconfigurable Fabric with Amorphos.” In: Proceedings of the
12th USENIX Conference on Operating Systems Design and Implementation.
OSDI’18. Carlsbad, CA, USA: USENIX Association, 2018, pp. 107–127.

[126] Yit Phang Khoo, Jeffrey S. Foster, and Michael Hicks. “Expositor: Scriptable
Time-travel Debugging with First-class Traces.” In: International Conference
on Software Engineering. San Francisco, CA, USA: IEEE Press, 2013, pp. 352–
361.

[127] Adam Kiezun, Vijay Ganesh, Philip J Guo, Pieter Hooimeijer, and Michael
D Ernst. “HAMPI: a solver for string constraints.” In: Proceedings of the
eighteenth international symposium on Software testing and analysis. ACM. 2009,
pp. 105–116.

[128] G. Knittel, S. Mayer, and C. Rothlaender. “Integrating Logic Analyzer
Functionality into VHDL Designs.” In: 2008 International Conference on
Reconfigurable Computing and FPGAs. 2008, pp. 127–132.

[129] Andrew J. Ko and Brad A. Myers. “Debugging Reinvented: Asking and
Answering Why and Why Not Questions About Program Behavior.” In:
International Conference on Software Engineering. Leipzig, Germany, 2008,
pp. 301–310.

[130] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Execution.” In:
40th IEEE Symposium on Security and Privacy (S&P’19). 2019.

[131] Ron Kohavi. “A Study of Cross-Validation and Bootstrap for Accuracy
Estimation and Model Selection.” In: Proceedings of the 14th International Joint
Conference on Artificial Intelligence—Volume 2. IJCAI’95. Montreal, Quebec,
Canada: Morgan Kaufmann Publishers Inc., 1995, pp. 1137–1143.

[132] Dan Kramp, Jack Wadden, and Kevin Skadron. Automata Lab: An Open-
Source Automata Visualization, Simulation, and Manipulation Tool. Tech. rep.
CS2017-03. University of Virginia, 2017.

[133] Anil Krishna, Timothy Heil, Nicholas Lindberg, Farnaz Toussi, and Steven
VanderWiel. “Hardware acceleration in the IBM PowerEN processor: Archi-
tecture and performance.” In: Proceedings of the 21st International Conference
on Parallel Architectures and Compilation Techniques. 2012, pp. 389–400.

254

[134] S. Lahti, P. Sjövall, J. Vanne, and T. D. Hämäläinen. “Are We There Yet?
A Study on the State of High-Level Synthesis.” In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 38.5 (2019), pp. 898–
911.

[135] A. C. Lear. “XML seen as integral to application integration.” In: IT Profes-
sional 1.5 (1999), pp. 12–16.

[136] T. J. Leblanc and J. M. Mellor-Crummey. “Debugging Parallel Programs
with Instant Replay.” In: IEEE Transactions on Computers C-36.4 (1987),
pp. 471–482.

[137] D. Lee and M. Yannakakis. “Principles and methods of testing finite state
machines-a survey.” In: Proceedings of the IEEE 84.8 (1996), pp. 1090–1123.

[138] John Levine and Levine John. Flex & Bison. 1st. O’Reilly Media, Inc., 2009.

[139] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-Yuan
Tung. “Intrusion detection system: A comprehensive review.” In: Journal of
Network and Computer Applications 36.1 (2013), pp. 16 –24.

[140] Anthony W Lin and Pablo Barceló. “String solving with word equations
and transducers: towards a logic for analysing mutation XSS.” In: ACM
SIGPLAN Notices. Vol. 51. 1. ACM. 2016, pp. 123–136.

[141] Dan Lin, Nigel Medforth, Kenneth S. Herdy, Arrvindh Shriraman, and
Robert D. Cameron. “Parabix: Boosting the efficiency of text processing on
commodity processors.” In: International Symposium on High Performance
Computer Architecture. 2012, pp. 373–384.

[142] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. “Meltdown.” In: arXiv preprint arXiv:1801.01207 (2018).

[143] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. “Last
Level Cache side-channel attacks are practical.” In: 2015 IEEE Symposium
on Security and Privacy. IEEE. 2015, pp. 605–622.

[144] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood.
“Pin: building customized program analysis tools with dynamic instru-
mentation.” In: ACM SIGPLAN Notices. Vol. 40. 6. ACM. 2005, pp. 190–
200.

255

[145] Robert W.P. Luk, H.V. Leong, Tharam S. Dillon, Alvin T.S. Chan, W. Bruce
Croft, and James Allan. “A survey in indexing and searching XML docu-
ments.” In: Journal of the American Society for Information Science and Technol-
ogy 53.6 (2002), pp. 415–437. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1002/asi.10056.

[146] Jan van Lunteren, Christoph Hagleitner, Timothy Heil, Giora Biran, Uzi
Shvadron, and Kubilay Atasu. “Designing a Programmable Wire-Speed
Regular-Expression Matching Accelerator.” In: International Symposium on
Microarchitecture. 2012, pp. 461–472.

[147] Advait Madhavan, Timothy Sherwood, and Dmitri Strukov. “Race Logic:
A Hardware Acceleration for Dynamic Programming Algorithms.” In: Pro-
ceeding of the 41st Annual International Symposium on Computer Architecuture.
ISCA ’14. Minneapolis, Minnesota, USA: IEEE Press, 2014, pp. 517–528.

[148] T. Margaria, O. Niese, H. Raffelt, and B. Steffen. “Efficient Test-based Model
Generation for Legacy Reactive Systems.” In: Proceedings of the High-Level
Design Validation and Test Workshop, 2004. Ninth IEEE International. HLDVT
’04. Washington, DC, USA: IEEE Computer Society, 2004, pp. 95–100.

[149] Norman Matloff and Peter Jay Salzman. The Art of Debugging with GDB,
DDD, and Eclipse. San Francisco, CA, USA: No Starch Press, 2008.

[150] Sergey Maximov. Performance Implications of the Meltdown and Spectre Fixes.
https://www.virtuozzo.com/connect/details/blog/view/performance-
implications-of-the-meltdown-and-spectre-fixes.html. 2018.

[151] Kenneth L. McMillan. “Lazy Abstraction with Interpolants.” In: Proceedings
of the 18th International Conference on Computer Aided Verification. CAV’06.
Seattle, WA: Springer-Verlag, 2006, pp. 123–136.

[152] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. “Angelix: Scalable
Multiline Program Patch Synthesis via Symbolic Analysis.” In: Proceedings
of the 38th International Conference on Software Engineering. ICSE ’16. Austin,
Texas: ACM, 2016, pp. 691–701.

[153] Charith Mendis, Jeffrey Bosboom, Kevin Wu, Shoaib Kamil, Jonathan
Ragan-Kelley, Sylvain Paris, Qin Zhao, and Saman Amarasinghe. “Helium:
Lifting High-Performance Stencil Kernels from Stripped X86 Binaries to
Halide DSL Code.” In: Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI ’15. Portland, OR,
USA: Association for Computing Machinery, 2015, pp. 391–402.

256

https://onlinelibrary.wiley.com/doi/pdf/10.1002/asi.10056
https://onlinelibrary.wiley.com/doi/pdf/10.1002/asi.10056
https://www.virtuozzo.com/connect/details/blog/view/performance-implications-of-the-meltdown-and-spectre-fixes.html
https://www.virtuozzo.com/connect/details/blog/view/performance-implications-of-the-meltdown-and-spectre-fixes.html

[154] MicroBlaze Micro Controller System v3.0. PG116. Xilinx Inc. San José, CA,
2019.

[155] Micron Technoloy. Calculating Hamming Distance. http://www.micronautomata.
com/documentation/cookbook/c_hamming_distance.html.

[156] Sparsh Mittal. “A Survey of Techniques for Approximate Computing.” In:
ACM Comput. Surv. 48.4 (Mar. 2016), 62:1–62:33.

[157] Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin, and
Michal Szynwelski. “Learning nominal automata.” In: Principles of Program-
ming Languages (POPL). 2017, pp. 613–625.

[158] Martin Monperrus. “Automatic software repair: a bibliography.” In: ACM
Computing Surveys (CSUR) 51.1 (2018), p. 17.

[159] J. S. Monson. “Using Source-to-Source Transformations to Add Debug
Observability to HLS-Synthesized Circuits.” PhD thesis. Brigham Young
University, 2016.

[160] Thierry Moreau, Joshua San Miguel, Mark Wyse, James Bornholt, Armin
Alaghi, Luis Ceze, Natalie D. Enright Jerger, and Adrian Sampson. “A
Taxonomy of General Purpose Approximate Computing Techniques.” In:
Embedded Systems Letters 10.1 (2018), pp. 2–5.

[161] R. Nane et al. “A Survey and Evaluation of FPGA High-Level Synthesis
Tools.” In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 35.10 (2016), pp. 1591–1604.

[162] R. Nathuji, C. Isci, and E. Gorbatov. “Exploiting Platform Heterogeneity
for Power Efficient Data Centers.” In: Fourth International Conference on
Autonomic Computing (ICAC’07). 2007, pp. 5–5.

[163] George C. Necula, Scott McPeak, Shree P. Rahul, and Westley Weimer.
“CIL: Intermediate Language and Tools for Analysis and Transformation
of C Programs.” In: Compiler Construction. Ed. by R. Nigel Horspool. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2002, pp. 213–228.

[164] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish
Chandra. “SemFix: Program Repair via Semantic Analysis.” In: Proceedings
of the 2013 International Conference on Software Engineering. ICSE ’13. San
Francisco, CA, USA: IEEE, 2013, pp. 772–781.

[165] Zhenyu Ning and Fengwei Zhang. “Understanding the security of ARM
debugging features.” In: Proceedings of the 40th IEEE Symposium on Security
and Privacy (S&P’19). 2019.

257

http://www.micronautomata.com/documentation/cookbook/c_hamming_distance.html
http://www.micronautomata.com/documentation/cookbook/c_hamming_distance.html

[166] Marziyeh Nourian, Xiang Wang, Xiaodong Yu, Wu-chun Feng, and Michela
Becchi. “Demystifying Automata Processing: GPUs, FPGAs, or Micron’s
AP?” In: Proceedings of the International Conference on Supercomputing. ICS
’17. Chicago, Illinois: ACM, 2017, 1:1–1:11.

[167] Oracle. OpenSPARC T1. https://www.oracle.com/technetwork/systems/
opensparc/opensparc-t1-page-1444609.html. Accessed 2020-02-04.

[168] Dag Arne Osvik, Adi Shamir, and Eran Tromer. “Cache attacks and coun-
termeasures: the case of AES.” In: Cryptographers’ track at the RSA conference.
Springer. 2006, pp. 1–20.

[169] Peizhao Ou and Brian Demsky. “Checking Concurrent Data Structures
Under the C/C++11 Memory Model.” In: Proceedings of the 22nd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming.
PPoPP ’17. Austin, Texas, USA: Association for Computing Machinery,
2017, pp. 45–59.

[170] Jongse Park, Hadi Esmaeilzadeh, Xin Zhang, Mayur Naik, and William
Harris. “FlexJava: language support for safe and modular approximate
programming.” In: Foundations of Software Engineering (ESEC/FSE). 2015,
pp. 745–757.

[171] Chris Parnin and Alessandro Orso. “Are Automated Debugging Tech-
niques Actually Helping Programmers?” In: International Symposium on
Software Testing and Analysis. Toronto, Ontario, Canada, 2011, pp. 199–209.

[172] David A. Patterson and John L. Hennessy. Computer Organization and De-
sign: The Hardware/Software Interface. 4th. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2008.

[173] Douglas L. Perry. VHDL (2nd Ed.) USA: McGraw-Hill, Inc., 1993.

[174] Shari Lawrence Pfleeger. Software Engineering: Theory and Practice. 2nd.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 2001.

[175] Andrew Putnam et al. “A Reconfigurable Fabric for Accelerating Large-
scale Datacenter Services.” In: Proceeding of the 41st Annual International
Symposium on Computer Architecuture. ISCA ’14. Minneapolis, Minnesota,
USA: IEEE Press, 2014, pp. 13–24.

[176] B. Reagen, R. Adolf, Y. S. Shao, G. Y. Wei, and D. Brooks. “MachSuite:
Benchmarks for accelerator design and customized architectures.” In: Inter-
national Symposium on Workload Characterization. 2014, pp. 110–119.

258

https://www.oracle.com/technetwork/systems/opensparc/opensparc-t1-page-1444609.html
https://www.oracle.com/technetwork/systems/opensparc/opensparc-t1-page-1444609.html

[177] David Reinsel, John Gantz, and John Rydning. Data Age 2025: The Digitiza-
tion of the World from Edge to Core. White Paper US44413318. IDC, 2018.

[178] Martin C. Rinard. “Acceptability-oriented computing.” In: Object-Oriented
Programming, Systems, Languages, and Applications, (OOPSLA). 2003, pp. 221–
239.

[179] R.L. Rivest and R.E. Schapire. “Inference of Finite Automata Using Homing
Sequences.” In: Information and Computation 103.2 (1993), pp. 299 –347.

[180] J. J. Rodriguez-Andina, M. J. Moure, and M. D. Valdes. “Features, De-
sign Tools, and Application Domains of FPGAs.” In: IEEE Transactions on
Industrial Electronics 54.4 (2007), pp. 1810–1823.

[181] Antonio Roldao and George A. Constantinides. “A High Throughput
FPGA-Based Floating Point Conjugate Gradient Implementation for Dense
Matrices.” In: ACM Trans. Reconfigurable Technol. Syst. 3.1 (Jan. 2010).

[182] P. Romero, B. du Boulay, R. Lutz, and R. Cox. “The effects of graphical and
textual visualisations in multi-representational debugging environments.”
In: Symposium on Human Centric Computing Languages and Environments,
2003. Proceedings. 2003. 2003, pp. 236–238.

[183] I. Roy, N. Jammula, and S. Aluru. “Algorithmic Techniques for Solving
Graph Problems on the Automata Processor.” In: Proceedings of the IEEE
International Parallel and Distributed Processing Symposium. IPDPS ’16. 2016,
pp. 283–292.

[184] I. Roy, A. Srivastava, M. Nourian, M. Becchi, and S. Aluru. “High Perfor-
mance Pattern Matching Using the Automata Processor.” In: Proceedings of
the IEEE International Parallel and Distributed Processing Symposium. IPDPS
’16. 2016, pp. 1123–1132.

[185] Indranil Roy. “Algorithmic Techniques for the Micron Automata Proces-
sor.” PhD thesis. Georgia Institute of Technology, 2015.

[186] Indranil Roy and Srinivas Aluru. “Finding Motifs in Biological Sequences
Using the Micron Automata Processor.” In: Proceedings of the 28th IEEE
International Parallel and Distributed Processing Symposium. 2014, pp. 415–424.

[187] S. Sarkar, T. Majumder, A. Kalyanaraman, and P. P. Pande. “Hardware
accelerators for biocomputing: A survey.” In: International Symposium on
Circuits and Systems. 2010, pp. 3789–3792.

[188] E. Satterthwaite. “Debugging tools for high level languages.” In: Software:
Practice and Experience 2.3 (1972), pp. 197–217.

259

[189] Mathijs Schuts, Jozef Hooman, and Frits Vaandrager. “Refactoring of
Legacy Software Using Model Learning and Equivalence Checking: An
Industrial Experience Report.” In: Proceedings of the 12th International Con-
ference on Integrated Formal Methods - Volume 9681. IFM 2016. Reykjavik,
Iceland: Springer-Verlag, 2016, pp. 311–325.

[190] M.L. Scott. Programming Language Pragmatics. Elsevier Science, 2015.

[191] Robert C. Seacord, Daniel Plakosh, and Grace A. Lewis. Modernizing Legacy
Systems: Software Technologies, Engineering Process and Business Practices.
Addison-Wesley Longman Publishing Co., Inc., 2003.

[192] R. Sekar, M. Bendre, P. Bollineni, and D. Dhurjati. “A Fast Automaton-
Based Method for Detecting Anomalous Program Behaviors.” In: Proceed-
ings of the 2001 IEEE Symposium on Security and Privacy. Oakland, 2001.

[193] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. “On the Effectiveness of Address-space Randomization.”
In: Proceedings of the 11th ACM Conference on Computer and Communications
Security. CCS ’04. Washington DC, USA: ACM, 2004, pp. 298–307.

[194] J. M. Shalf and R. Leland. “Computing beyond Moore’s Law.” In: IEEE
Computer 48.12 (2015), pp. 14–23.

[195] Y. S. Shao, B. Reagen, G. Y. Wei, and D. Brooks. “Aladdin: A pre-RTL, power-
performance accelerator simulator enabling large design space exploration
of customized architectures.” In: International Symposium on Computer Ar-
chitecture. 2014, pp. 97–108.

[196] Reetinder Sidhu and Viktor K. Prasanna. “Fast Regular Expression Match-
ing Using FPGAs.” In: Proceedings of the the 9th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM). Washington, DC,
USA: IEEE Computer Society, 2001, pp. 227–238.

[197] Baljit Singh, Dmitry Evtyushkin, Jesse Elwell, Ryan Riley, and Iliano
Cervesato. “On the Detection of Kernel-Level Rootkits Using Hardware
Performance Counters.” In: Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security. ASIA CCS ’17. Abu Dhabi, United
Arab Emirates: ACM, 2017, pp. 483–493.

[198] Jawar Singh, Saraju P. Mohanty, and Dhiraj K. Pradhan. “Introduction to
SRAM.” In: Robust SRAM Designs and Analysis. New York, NY: Springer
New York, 2013, pp. 1–29.

260

[199] Michael Sipser. Introduction to the Theory of Computation. 2nd. Thomson
Course Technology, 2006.

[200] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik.
“Sketching Concurrent Data Structures.” In: Proceedings of the 29th ACM
SIGPLAN Conference on Programming Language Design and Implementation.
PLDI ’08. Tucson, AZ, USA: ACM, 2008, pp. 136–148.

[201] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and
Vijay Saraswat. “Combinatorial Sketching for Finite Programs.” In: Proceed-
ings of the 12th International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ASPLOS XII. San Jose, California,
USA: ACM, 2006, pp. 404–415.

[202] Anil Somayaji and Stephanie Forrest. “Automated Response Using System-
Call Delays.” In: Proceedings of the 9th USENIX Security Symposium. Denver,
CO, 2000.

[203] Tamim Sookoor, Timothy Hnat, Pieter Hooimeijer, Westley Weimer, and
Kamin Whitehouse. “Macrodebugging: Global Views of Distributed Pro-
gram Execution.” In: Conference on Embedded Networked Sensor Systems.
Berkeley, California, 2009, pp. 141–154.

[204] Ioannis Sourdis, João Bispo, João M. P. Cardoso, and Stamatis Vassiliadis.
“Regular Expression Matching in Reconfigurable Hardware.” In: Journal of
Signal Processing Systems 51.1 (2008), pp. 99–121.

[205] Eric Spishak, Werner Dietl, and Michael D. Ernst. “A Type System for Reg-
ular Expressions.” In: Proceedings of the 14th Workshop on Formal Techniques
for Java-like Programs. FTfJP ’12. Beijing, China, 2012, pp. 20–26.

[206] Richard Stallman, Roland Pesch, and Stan Shebs. Debugging with GDB. Free
Software Foundation, 2002.

[207] Bernhard Steffen, Falk Howar, and Maik Merten. “Introduction to Active
Automata Learning from a Practical Perspective.” In: Formal Methods for
Eternal Networked Software Systems: 11th International School on Formal Meth-
ods for the Design of Computer, Communication and Software Systems. Ed. by
Marco Bernardo and Valérie Issarny. SFM 2011. Bertinoro, Italy: Springer
Berlin Heidelberg, 2011, pp. 256–296.

[208] J. E. Stone, D. Gohara, and G. Shi. “OpenCL: A Parallel Programming
Standard for Heterogeneous Computing Systems.” In: Computing in Science
Engineering 12.3 (2010), pp. 66–73.

261

[209] Arun Subramaniyan, Jingcheng Wang, Ezhil R. M. Balasubramanian, David
Blaauw, Dennis Sylvester, and Reetuparna Das. “Cache Automaton.” In:
Proceedings of the 50th Annual IEEE/ACM International Symposium on Mi-
croarchitecture. MICRO-50. Cambridge, Massachusetts: ACM, 2017, pp. 259–
272.

[210] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. “Se-
cure Program Execution via Dynamic Information Flow Tracking.” In:
Proceedings of the 11th International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS XI. Boston, MA,
USA: ACM, 2004, pp. 85–96.

[211] Audie Sumaray and S. Kami Makki. “A Comparison of Data Serialization
Formats for Optimal Efficiency on a Mobile Platform.” In: Proceedings of
the 6th International Conference on Ubiquitous Information Management and
Communication. ICUIMC ’12. Kuala Lumpur, Malaysia: Association for
Computing Machinery, 2012.

[212] Prateek Tandon, Faissal M. Sleiman, Michael J. Cafarella, and Thomas F.
Wenisch. “HAWK: Hardware support for unstructured log processing.” In:
International Conference on Data Engineering. 2016, pp. 469–480.

[213] J. Teich. “Hardware/Software Codesign: The Past, the Present, and Pre-
dicting the Future.” In: Proceedings of the IEEE 100.Special Centennial Issue
(2012), pp. 1411–1430.

[214] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. “Collecting
Performance Data with PAPI-C.” In: Tools for High Performance Computing
2009. Ed. by Matthias S. Müller, Michael M. Resch, Alexander Schulz, and
Wolfgang E. Nagel. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 157–173.

[215] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. “StreamIt:
A Language for Streaming Applications.” In: International Conference on
Compiler Construction. Springer-Verlag, 2002, pp. 179–196.

[216] Donald Thomas and Philip Moorby. The Verilog R© Hardware Description
Language. Springer Science & Business Media, 2008.

[217] Cesare Tinelli, Clark Barrett, and Pascal Fontaine. SMT-LIB 2.6 Strings The-
ory: Draft 2.1. Tech. rep. Department of Computer Science, The University
of Iowa, 2019.

262

[218] Titan IC Systems. Helios RXPF Soft IP for FPGA Security Analytics Accelera-
tion. http://titan-ic.com/products/helios-rxpf. Accessed 2017-04-05.
2017.

[219] A. Tiwari and K. A. Tomko. “Scan-chain based watch-points for efficient
run-time debugging and verification of FPGA designs.” In: Proceedings of
the ASP-DAC Asia and South Pacific Design Automation Conference, 2003. 2003,
pp. 705–711.

[220] Tommy Tracy II, Mircea Stan, Nathan Brunelle, Jack Wadden, Ke Wang,
Kevin Skadron, and Gabe Robins. “Nondeterministic Finite Automata in
Hardware—the Case of the Levenshtein Automaton.” In: Architectures and
Systems for Big Data (ASBD), in conjunction with ISCA (2015).

[221] Tommy Tracy II, Yao Fu, Indranil Roy, Eric Jonas, and Paul Glendenning.
“Towards Machine Learning on the Automata Processor.” In: Proceedings of
ISC High Performance Computing. 2016, pp. 200–218.

[222] Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. “S3: A Symbolic String
Solver for Vulnerability Detection in Web Applications.” In: Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security.
CCS ’14. Scottsdale, Arizona, USA: ACM, 2014, pp. 1232–1243.

[223] L. Di Tucci, M. Rabozzi, L. Stornaiuolo, and M. D. Santambrogio. “The
Role of CAD Frameworks in Heterogeneous FPGA-Based Cloud Systems.”
In: 2017 IEEE International Conference on Computer Design (ICCD). 2017,
pp. 423–426.

[224] David Ungar, Henry Lieberman, and Christopher Fry. “Debugging and
the Experience of Immediacy.” In: Communications of the ACM 40.4 (Apr.
1997), pp. 38–43.

[225] Frits Vaandrager. “Model Learning.” In: Communications of the ACM 60.2
(Jan. 2017), pp. 86–95.

[226] L. G. Valiant. “A Theory of the Learnable.” In: Commun. ACM 27.11 (Nov.
1984), pp. 1134–1142.

[227] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and
Raoul Strackx. “Foreshadow: Extracting the keys to the intel {SGX} king-
dom with transient out-of-order execution.” In: 27th USENIX Security
Symposium (USENIX Security 18). 2018, pp. 991–1008.

[228] Virtex-4 Family Overview. DS112 (v3.1). Xilinx Inc. San José, CA, 2010.

263

http://titan-ic.com/products/helios-rxpf

[229] Virtual Input/Output v3.0: LogiCORE IP Product Guide. PG159. Xilinx Inc.
San José, CA, 2018.

[230] Vivado Design Suite User Guide: Programming and Debugging. UG908(v2018.1).
Xilinx Inc. San José, CA, 2018.

[231] J. Wadden et al. “ANMLzoo: a benchmark suite for exploring bottlenecks in
automata processing engines and architectures.” In: International Symposium
on Workload Characterization. IISWC ’16. 2016, pp. 1–12.

[232] J. Wadden, N. Brunelle, K. Wang, M. El-Hadedy, G. Robins, M. Stan, and K.
Skadron. “Generating efficient and high-quality pseudo-random behavior
on Automata Processors.” In: 2016 IEEE 34th International Conference on
Computer Design (ICCD). 2016, pp. 622–629.

[233] Jack Wadden, Kevin Angstadt, and Kevin Skadron. “Characterizing and
Mitigating Output Reporting Bottlenecks in Spatial Automata Processing
Architectures.” In: 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE. 2018, pp. 749–761.

[234] Jack Wadden, Samira Khan, and Kevin Skadron. “Automata-to-Routing:
An Open Source Toolchain for Design-Space Exploration of Spatial Au-
tomata Processing Architectures.” In: Proceedings of the IEEE International
Symposium on Field-Programmable Custom Computing Machines (FCCM). 2017.

[235] Jack Wadden and Kevin Skadron. VASim: An Open Virtual Automata Simula-
tor for Automata Processing Application and Architecture Research. Tech. rep.
CS2016-03. University of Virginia, 2016.

[236] Peter J. L. Wallis. “The design of a portable programming language.” In:
Acta Informatica 10.2 (1978), pp. 157–167.

[237] Steven Walton. Patched Desktop PC: Meltdown and Spectre Benchmarked.
https://www.techspot.com/article/1556- meltdown- and- spectre-
cpu-performance-windows/page4.html. 2018.

[238] Ke Wang, Elaheh Sadredini, and Kevin Skadron. “Sequential Pattern Min-
ing with the Micron Automata Processor.” In: Proceedings of the ACM
International Conference on Computing Frontiers. CF ’16. Como, Italy: ACM,
2016, pp. 135–144.

[239] Ke Wang, Mircea Stan, and Kevin Skadron. “Association Rule Mining
with the Micron Automata Processor.” In: Proceedings of the 29th IEEE
International Parallel & Distributed Processing Symposium. 2015.

264

https://www.techspot.com/article/1556-meltdown-and-spectre-cpu-performance-windows/page4.html
https://www.techspot.com/article/1556-meltdown-and-spectre-cpu-performance-windows/page4.html

[240] Michael H.L.S. Wang, Gustavo Cancelo, Christopher Green, Deyuan Guo,
Ke Wang, and Ted Zmuda. “Using the Automata Processor for fast pattern
recognition in high energy physics experiments — A proof of concept.” In:
Nuclear Instruments and Methods in Physics Research (2016).

[241] Xiang Wang. “Techniques for Efficient Regular Expression Matching Across
Hardware Architectures.” MA thesis. University of Missouri-Columbia,
2014.

[242] Z. Wang and R. B. Lee. “Covert and Side Channels Due to Processor Ar-
chitecture.” In: 2006 22nd Annual Computer Security Applications Conference
(ACSAC’06). 2006, pp. 473–482.

[243] Shijia Wei, Aydin Aysu, Michael Orshansky, Andreas Gerstlauer, and Mohit
Tiwari. “Using Power-Anomalies to Counter Evasive Micro-Architectural
Attacks in Embedded Systems.” In: 2019 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST). IEEE. 2019, pp. 111–120.

[244] Mark Weiser. “Programmers Use Slices when Debugging.” In: Communica-
tions of the ACM ACM 25.7 (July 1982), pp. 446–452.

[245] Gail Weiss, Yoav Goldberg, and Eran Yahav. “Extracting Automata from
Recurrent Neural Networks Using Queries and Counterexamples.” In:
Proceedings of the 35th International Conference on Machine Learning. Ed. by
Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning
Research. Stockholmsmässan, Stockholm Sweden: PMLR, 2018, pp. 5247–
5256.

[246] Timothy Wheeler, Paul Graham, Brent E. Nelson, and Brad Hutchings.
“Using Design-Level Scan to Improve FPGA Design Observability and
Controllability for Functional Verification.” In: Proceedings of the 11th In-
ternational Conference on Field-Programmable Logic and Applications. FPL ’01.
London, UK, UK: Springer-Verlag, 2001, pp. 483–492.

[247] Titus Winters, Hyrum Wright, and Tom Manshreck. Software Engineering at
Google: Lessons Learned from Programming over Time. O’Reilly Media, 2020.

[248] Loring Wirbel. Xilinx SDAccel: A Unified Development Environment for Tomor-
row’s Data Center. Tech. rep. The Linley Group, 2014.

[249] Jacob O. Wobbrock, Leah Findlater, Darren Gergle, and James J. Higgins.
“The Aligned Rank Transform for Nonparametric Factorial Analyses Using
Only Anova Procedures.” In: Conference on Human Factors in Computing
Systems. Vancouver, BC, Canada, 2011, pp. 143–146.

265

[250] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. “A
survey on software fault localization.” In: IEEE Transactions on Software
Engineering 42.8 (2016), pp. 707–740.

[251] XML Data Repository. http:/ / aiweb . cs . washington . edu / research /
projects/xmltk/xmldata/www/repository.html.

[252] T. Xie, V. Dang, J. Wadden, K. Skadron, and M. Stan. “REAPR: Reconfig-
urable engine for automata processing.” In: 27th International Conference on
Field Programmable Logic and Applications. FPL ’17. 2017, pp. 1–8.

[253] XimpleWare. Ximpleware XML dataset. http://www.ximpleware.com/xmls.
zip.

[254] Mengjia Yan, Yasser Shalabi, and Josep Torrellas. “ReplayConfusion: De-
tecting Cache-based Covert Channel Attacks Using Record and Replay.”
In: The 49th Annual IEEE/ACM International Symposium on Microarchitecture.
MICRO-49. Taipei, Taiwan: IEEE Press, 2016, 39:1–39:14.

[255] Y. H. Yang and V. Prasanna. “High-Performance and Compact Architec-
ture for Regular Expression Matching on FPGA.” In: IEEE Transactions on
Computers 61.7 (2012), pp. 1013–1025.

[256] Yi-Hua E. Yang, Weirong Jiang, and Viktor K. Prasanna. “Compact Archi-
tecture for High-throughput Regular Expression Matching on FPGA.” In:
Symposium on Architectures for Networking and Communications Systems. 2008,
pp. 30–39.

[257] Yuval Yarom and Katrina Falkner. “FLUSH+ RELOAD: a high resolution,
low noise, L3 cache side-channel attack.” In: 23rd {USENIX} Security
Symposium ({USENIX} Security 14). 2014, pp. 719–732.

[258] J. H. C. Yeung, C. C. Tsang, K. H. Tsoi, B. S. H. Kwan, C. C. C. Cheung,
A. P. C. Chan, and P. H. W. Leong. “Map-reduce as a Programming Model
for Custom Computing Machines.” In: International Symposium on Field-
Programmable Custom Computing Machines. 2008, pp. 149–159.

[259] Cemal Yilmaz, Amit Paradkar, and Clay Williams. “Time Will Tell: Fault
Localization Using Time Spectra.” In: Proceedings of the 30th International
Conference on Software Engineering. ICSE ’08. Leipzig, Germany: ACM, 2008,
pp. 81–90.

[260] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupathy, and Lak-
shmi N. Bairavasundaram. “How do fixes become bugs?” In: Foundations
of Software Engineering. 2011, pp. 26–36.

266

http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository.html
http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository.html
http://www.ximpleware.com/xmls.zip
http://www.ximpleware.com/xmls.zip

[261] Xiaodong Yu and Michela Becchi. “GPU Acceleration of Regular Expression
Matching for Large Datasets: Exploring the Implementation Space.” In:
Proceedings of the ACM International Conference on Computing Frontiers. CF
’13. Ischia, Italy: ACM, 2013, 18:1–18:10.

[262] Polle Trescott Zellweger. “Interactive Source-level Debugging for Opti-
mized Programs (Compilation, High-level).” PhD thesis. University of
California, Berkeley, 1984.

[263] F. Zhang, K. Leach, A. Stavrou, H. Wang, and K. Sun. “Using Hardware
Features for Increased Debugging Transparency.” In: 2015 IEEE Symposium
on Security and Privacy. 2015, pp. 55–69.

[264] Tianyi Zhang and Miryung Kim. “Automated Transplantation and Differ-
ential Testing for Clones.” In: Proceedings of the 39th International Conference
on Software Engineering. ICSE ’17. Buenos Aires, Argentina: IEEE Press,
2017, pp. 665–676.

[265] Qin Zhao, Rodric Rabbah, Saman Amarasinghe, Larry Rudolph, and Weng-
Fai Wong. “How to Do a Million Watchpoints: Efficient Debugging Using
Dynamic Instrumentation.” In: Compiler Construction. Berlin, Heidelberg,
2008, pp. 147–162.

[266] Hao Zhong, Suresh Thummalapenta, Tao Xie, Lu Zhang, and Qing Wang.
“Mining API Mapping for Language Migration.” In: Proceedings of the 32Nd
ACM/IEEE International Conference on Software Engineering - Volume 1. ICSE
’10. Cape Town, South Africa: ACM, 2010, pp. 195–204.

[267] Keira Zhou, Jeffrey J. Fox, Ke Wang, Donald E. Brown, and Kevin Skadron.
“Brill tagging on the Micron Automata Processor.” In: Proceedings of the 9th
IEEE International Conference on Semantic Computing. 2015, pp. 236–239.

[268] Hamid Reza Zohouri, Naoya Maruyama, Aaron Smith, Motohiko Matsuda,
and Satoshi Matsuoka. “Evaluating and Optimizing OpenCL Kernels for
High Performance Computing with FPGAs.” In: High Performance Com-
puting, Networking, Storage and Analysis. Salt Lake City, Utah, 2016, 35:1–
35:12.

[269] Colin de la Higuera. Grammatical Inference: Learning Automata and Grammars.
New York, NY, USA: Cambridge University Press, 2010.

267

	 Acknowledgments
	Table of Contents
	 List of Figures
	 List of Tables
	 List of Source Code Listings
	 List of Algorithms
	 List of Acronyms
	 Abstract
	1 Introduction
	1.1 Approach
	1.2 Contributions
	1.2.1 Adapting Legacy Code for Execution on Hardware Accelerators
	1.2.2 High-Level Languages for Automata Processing
	1.2.3 Interactive Debugging for High-Level Languages and Accelerators
	1.2.4 Architectural Support for Common Applications

	1.3 Methodology
	1.4 Summary and Organization

	2 Background
	2.1 Finite Automata
	2.1.1 Deterministic and Non-Deterministic Finite Automata
	2.1.2 Deterministic Pushdown Automata

	2.2 Accelerating Automata Processing
	2.2.1 Micron's D480 AP
	2.2.2 Cache Automaton
	2.2.3 Field-Programmable Gate Arrays

	2.3 Programming Models
	2.3.1 Automata Representations and Regular Expressions
	2.3.2 Languages for Streaming Applications
	2.3.3 Non-Deterministic Languages
	2.3.4 Programming Models for Portability
	2.3.5 Languages for Programming FPGAs
	2.3.6 State Machine Learning Algorithms
	2.3.7 Program Synthesis

	2.4 Maintenance Tools
	2.4.1 Debugging on Hardware Accelerators
	2.4.2 Understanding the Importance of Debugging
	2.4.3 Software Verification

	2.5 Applications Benefiting from Acceleration
	2.5.1 Parsing of XML Files
	2.5.2 Architectural Side-Channel Attacks
	2.5.3 Runtime Intrusion Detection Systems

	2.6 Chapter Summary

	3 Acceleration of Legacy String Functions
	3.1 Learning State Machines from Legacy Code
	3.1.1 L* Primer
	3.1.2 asProblem Description
	3.1.3 Using Source Code as a MAT
	3.1.4 Synthesizing Hardware Descriptions from Automata
	3.1.5 System Architecture

	3.2 Implementation and Correctness
	3.2.1 Bounded Model Checking
	3.2.2 Reasoning about Strings
	3.2.3 Verification for Termination Queries
	3.2.4 Correctness
	3.2.5 Implications.

	3.3 Experimental Methodology
	3.3.1 Benchmark Selection
	3.3.2 Experimental Setup

	3.4 Evaluation
	3.4.1 State Machine Learning
	3.4.2 Hardware Acceleration

	3.5 Discussion
	3.5.1 Learning More Expressive Models
	3.5.2 Expressive Power and Performance of String Solvers
	3.5.3 Scaling Termination Queries
	3.5.4 Characterizing and Taming Approximation

	3.6 Chapter Summary

	4 RAPID: A High-Level Language for Portable Automata Processing
	4.1 Automata Processing Stability
	4.1.1 Performance Stability
	4.1.2 Automata Processing Performance
	4.1.3 Discussion

	4.2 The RAPID Language
	4.2.1 Program Structure
	4.2.2 Types and Data in RAPID
	4.2.3 Parallel Control Structures

	4.3 Code Generation
	4.3.1 Converting Expressions
	4.3.2 Converting Statements
	4.3.3 Converting Counters

	4.4 Executing RAPID Programs
	4.4.1 Targeting the Automata Processor
	4.4.2 Targeting CPUs
	4.4.3 Targeting GPUs
	4.4.4 Targeting FPGAs

	4.5 Evaluation
	4.5.1 Expressive Power
	4.5.2 Empirical Evaluation

	4.6 Chapter Summary

	5 Interactive Debugging for High-Level Languages and Accelerators
	5.1 Hardware-Supported Debugging
	5.1.1 Example Program
	5.1.2 Breakpoints
	5.1.3 Hardware Abstractions for Debugging
	5.1.4 Accessing the State Vector
	5.1.5 Hardware Support for Breakpoints
	5.1.6 Debugging of RAPID Programs
	5.1.7 Time-Travel Debugging

	5.2 FPGA Evaluation
	5.2.1 Experimental Methodology
	5.2.2 FPGA Results

	5.3 Human Study Evaluation
	5.3.1 Experimental Methodology
	5.3.2 Statistical Analysis
	5.3.3 Threats to Validity

	5.4 Chapter Summary

	6 Architectural Support for Automata-Based Computation
	6.1 Detecting Attacks with Memory Accesses
	6.1.1 The Memory Access Pattern Abstraction
	6.1.2 Dictionaries of Program Behavior
	6.1.3 Detecting Anomalous Program Execution

	6.2 Compiling Grammars to Pushdown Automata
	6.2.1 Context-Free Grammars
	6.2.2 Compiling Grammars to DPDAs
	6.2.3 Compilation Summary

	6.3 Martini Architectural Design
	6.3.1 From Dictionaries to Automata
	6.3.2 Martini Address Monitor
	6.3.3 Automata Processing Core
	6.3.4 System Integration

	6.4 Aspen Architectural Design
	6.4.1 Cache Slice Design
	6.4.2 Operation
	6.4.3 Critical Path
	6.4.4 Support for Lexical Analysis
	6.4.5 System Integration

	6.5 Experimental Methodology
	6.5.1 Recording Memory Traces to Evaluate Martini
	6.5.2 Building and Testing Dictionaries
	6.5.3 Benchmarks

	6.6 Architectural Evaluation
	6.6.1 System Performance Impact
	6.6.2 Martini Parameters
	6.6.3 ASPEN Parameters

	6.7 Attack Detection Evaluation
	6.7.1 Differentiating Programs
	6.7.2 Effects of Dictionary Compression
	6.7.3 Distinguishing Malicious from Benign Inputs
	6.7.4 Detecting Anomalous and Malicious Programs
	6.7.5 Martini Evaluation Summary

	6.8 DPDA Processing Engine Evaluation
	6.8.1 Parsing Generality
	6.8.2 XML Parsing Performance
	6.8.3 ASPEN Evaluation Summary

	6.9 Chapter Summary

	7 Conclusions
	7.1 Summary of Contributions
	7.2 A Look to the Future
	7.3 Final Remarks

	 Appendix
	A MNCaRT: An Open-Source, Multi-Architecture Automata-Processing Research and Execution Ecosystem
	A.1 MNRL: A New Automata Language
	A.1.1 MNRL Format
	A.1.2 Extending the MNRL Schema

	A.2 The MNCaRT Ecosystem
	A.2.1 High-Level Languages
	A.2.2 Benchmarks
	A.2.3 Analysis, Transformation, and Compilation
	A.2.4 Execution Engines

	A.3 Appendix Summary

	 Bibliography

