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ABSTRACT

The seasonal terrestrial snowpack is an important source of water for many parts

of the globe. The global quantification of the amount of water in the snowpack

reservoir has been a long term objective of most remote sensing applications. Thus

far, the primary means of quantifying the amount of snow on the ground has been

via the differential scatter-darkening mechanism, such as 19 and 37 GHz brightness

difference. This technique is region specific and depends on the statistics of snow

grain sizes. While a time series of more than 35 years of passive microwave data has

been made, progress in understanding the scatter-darkening brightness signature of

snow continues, especially for forested areas where vegetation scattering confounds

the signature.

In addition, monitoring the ice thickness is important in analyzing the pressure

exerted to off-shore structures such as wind farms. It is also an essential parameter

for the safety of ice fishing and ice skating activities. The current and traditional

method of ice thickness measurement is by drilling holes through the ice, which is not

only cumbersome but also dangerous. Hence, an accurate remote sensing technique

is needed to safely and non-destructively measure the ice and snow thickness.

In this work, a novel microwave radiometric technique, wideband autocorrelation

radiometry (WiBAR), is introduced. The radiometer offers a direct method to re-

motely measure the microwave propagation time difference of multipath microwave

emission from low-loss layered surfaces, such as a dry snowpack and a freshwater lake

icepack. The microwave propagation time difference through the pack yields a mea-

xvii



sure of its vertical extent; thus, this technique provides a direct measurement of depth.

It is also a low-power sensing method since there is no transmitter. A simple geo-

physical forward model for the multipath interference phenomenon is presented, and

the system requirements needed to design a WiBAR instrument are derived. Three

different versions of WiBAR instruments operating at L-, S-, and X-band are fab-

ricated from commercial-off-the-shelf (COTS) components. To validate the WiBAR

method, simulated laboratory measurements are first performed using a microwave

scene simulator circuit. Finally, to prove the potential of this technique as an inver-

sion algorithm, many field measurements were conducted in different winter seasons

in the Upper Midwest region, Michigan and Minnesota. It is demonstrated that a

WiBAR instrument operating in the frequency range of 7-10 GHz (X-band) can di-

rectly measure the icepack thicknesses from nadir to 59 degree of incidence angles.

The WiBAR was able to measure the lake icepack thicknesses in the range of 22-59 cm

with an accuracy of about 2 cm over this range of incidence angles.

xviii



CHAPTER I

Introduction

Snow cover plays a vital role in providing the water supplies for domestic, indus-

trial, and agricultural purposes. The extent and duration of snow cover are important

factors for studying the global climate [21, 46]. Study of snowpacks is also important

in water resource management as well as flood and avalanche events [65, 77, 92]. An-

other important remote sensing problem is determination of ice layer thickness over

open bodies of water. The knowledge of the ice thickness is important in analyzing

the pressure exerted to off-shore structures such as wind farms [47]. Ability to map

ice layer thickness can be utilized for the safety of ice fishing and ice skating activ-

ities. Thus, monitoring snow and ice are two of the most important remote sensing

objectives.

With the rapid industrial and human population growth, the demand for accurate

remote sensing instruments and techniques for monitoring the environmental changes

and management of natural sources is increasing. Environmental changes such as

global warming have been imposing rapid changes upon the cryosphere [79]; as a

result, the statistics which describe the extent, timing, and snow water equivalent

(SWE) of seasonal snowpacks on prairie and alpine terrains are no longer stationary

[53]. Effective management of freshwater reservoir in glaciers and mountainous regions

requires almost daily monitoring of the spatial and temporal distribution of SWE and
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snowpack wetness. Such tasks are appropriate for satellite sensors or sensors on long

duration solar powered autonomous airborne vehicles, but the current remote sensors

and technologies are not adequate to retrieve the required snow and ice parameters

with desired accuracy. Hence, in any forward and inverse model, the icepack and

snowpack growth, metamorphism, and melting must be first understood. Then, their

microwave proprieties affected by wetness, and finally the effect of terrain, such as

slope and vegetation coverage, must be studied.

Due to their all-weather operation capability, both microwave radar and radiome-

ter systems have long been proposed and implemented as powerful remote sensing

tools in retrieving the physical parameters of interest. For most remote sensing

applications, the gross parameters of the target, such as vertical extent of snow-

pack/icepack and SWE, are often the parameters of interest. Current microwave

remote sensing of dry snowpack is based on frequency-dependent differential scatter-

ing by the ice grains that comprise snowpacks. In the case of microwave radiometry,

this phenomenon referred to as scatter darkening [14, 13, 8, 42, 18, 70, 94, 71, 10,

23, 39, 12, 81, 44]. It was first recognized by England [14, 13] as contributing to

the microwave brightness of snowpacks, sea ice, frozen soils, and planetary regolith.

This scatter darkening based technique has been developed as a SWE remote sens-

ing technology over the last three decades [8, 27, 42]. At higher frequencies (shorter

wavelengths), upwelling microwave radiation experiences greater scattering; thus, the

spectral gradient of microwave brightness temperature becomes significantly more

negative as the snow on the ground accumulates. For example, differences between

microwave brightness temperatures at two different frequencies, namely 19 and 37

GHz, are used in an empirical algorithm by Environment Canada to estimate the

SWE of snowpacks on the Canadian Great Plains reported on Canadian Cryospheric

Information Network (CCIN) URL (https://www.ccin.ca/home/ccw/snow/current).

The current microwave remote sensing of dry snowpack, scatter darkening based
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technique, is region specific and depends on the statistics of snow grain sizes. In ad-

dition, the current and traditional method of ice thickness measurement is by drilling

holes through the ice, which is not only cumbersome but also dangerous. An alterna-

tive approach is to focus on the layer’s macroscopic properties and measure the travel

time through the layer. Altimeters and ground penetrating radars (GPRs) have been

used to measure the snow and ice thickness [19]. However, active techniques are

hungry for power, which can make radar space missions expensive. To address this

issue, a passive microwave remote sensing technique that measures the travel time

is developed in this work. This technique is first introduced in Chapter II, which is

known as wideband autocorrelation radiometry (WiBAR).

1.1 Microwave Radiometry

The term radiometry means the incoherent measurement of electromagnetic ra-

diation, and the term microwave describes a form of electromagnetic radiation with

frequencies (wavelengths) between 300 MHz (100 cm) and 300 GHz (0.1 cm). As

it will be discussed in the next section, all matter at a finite absolute temperature

radiates electromagnetic energy at a level that depends on its electrical property and

geometrical features. A material may also absorb and/or reflect the energy incident

upon it. By measuring the electromagnetic energy radiated by a material, it is pos-

sible to infer some of material’s properties, such as its temperature and dielectric

properties.

1.1.1 Blackbody Radiation

In general, of the radiation incident upon a material, a portion of it is absorbed,

while the other portion is scattered. A blackbody is an ideal opaque material that

absorbs all the incident radiation at all frequencies and reflects none. Based on the

thermodynamic equilibrium theorem, which states that the emission is equal to the
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absorption, a blackbody is also a perfect emitter. According to the Planck’s radiation

law, a blackbody radiates energy in all direction and all frequencies, as given by (1.1)

[89].

If =
2hf 3

c2

(

1

ehf/kT − 1

)

(1.1)

where If is the spectral specific intensity in Wm−2sr−1Hz−1, h = 6.63×10−34 joules.s

is the Planck’s constant, f is the frequency in Hz, c = 3 × 108 m/s is the speed of

light in free space, k = 1.38 × 10−23 joule/K is the Boltzmann’s constant, and T is

the blackbody’s absolute temperature in K. In the microwave frequency range where

hf/kT ≪ 1, (1.1) can be approximated by If ≈ 2KTf2

c2
. This low-frequency approx-

imation is known as the Rayleigh-Jeans law [90, 91, 89]. The fractional deviation of

this approximation is less than 1% if f/T < 3.9 × 108 Hz K−1 [89]. As an example,

at a room temperature 300 K, this inequality will hold if f < 117 GHz, which covers

most of the useful microwave frequencies.

1.1.2 Brightness Temperature

While a blackbody is a perfect absorber/emitter, real material are referred to as

grey bodies, which means that they emit less than a blackbody at the same tempera-

ture and do not absorb all the incident energy. The brightness temperature, TB(θ, φ),

of an object is the temperature of an equivalent blackbody in thermal equilibrium

that has the same observed specific intensity as the object. The emissivity, e(θ, φ),

is the ratio of the specific intensity of the object to that of a blackbody at the same

temperature, T . The angular pair (θ, φ) is introduced since emission from an object

is direction dependent.

e(θ, φ) =
TB(θ, φ)

T
(1.2)
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Since the observed specific intensity of an object is equal or less than that of a

blackbody at the same temperature, it is obvious that the emissivity is in the range

0 ≤ e(θ, φ) ≤ 1; as a result, the brightness temperature of an object is smaller than

or equal to its physical temperature.

1.1.3 Statistics of the Brightness Temperature

Spontaneous emission is due to random oscillatory motion of atomic charges inside

a material manifested by its physical temperatures. This can be viewed as the collec-

tive radiation of many infinitesimal dipole radiators in the material. One approach

to analyze the statistics of the brightness temperature is the fluctuation dissipation

theorem [75, 76, 88].

Assuming that the fluctuations are uncorrelated between neighboring volume el-

ements, the thermal radiation is generated by an equivalent current source J(r, ω) =

−iωP (r, ω), with expected value of zero and correlation as given by

〈

J(r, ω)J
∗
(r′, ω′)

〉

=
4

π
ωǫ′′(r)KT (r)Iδ(ω − ω′)δ(r − r′) (1.3)

where P is the fluctuating electric dipole moment whose time average is zero, ǫ′′(r)

is the imaginary part of the permittivity. It is noted that in (1.3) only positive

frequencies are considered. The detailed derivation of (1.3) is explained in Chapter

2 of [88]. Since there are many independent sources of radiation, according to the

central limit theorem [67], the thermal radiation of an isotropic and homogeneous

medium has a Gaussian distribution.

1.2 Common Earth Materials

In this section, the electrical properties of some common natural materials are

discussed. The focus is on the freshwater, lake ice, dry snow, and soil (wet or dry)

5



since they will be used in the forward modeling of snow/ice layer over a layer of soil

or water.

1.2.1 Fresh Water

Out of all water forms on Earth, only 2.5% is freshwater. Out of this freshwater,

only 1.2% is surface water, which supports most of life on land, and the rest is locked

up in ice and in the ground. Out of this surface freshwater, 20.9% is in lakes. The

distribution of Earth’s water is shown in Fig. 1.1 [20].

Figure 1.1: Distribution of Earth’s water.
Source: Igor Shiklomanov’s chapter ”World fresh water resources” in Peter H. Gleick
(editor), 1993, Water in Crisis: A Guide to the World’s Fresh Water Resources.
NOTE: Numbers are rounded, so percent summations may not add to 100.

For pure and fresh (distilled) water with no dissolved salts, the dielectric constant

of water obeys the single-relaxation Debye model for polar molecules [31].

ǫw = ǫw∞ +
ǫw0 − ǫw∞

1 + j2πfτw
(1.4)

ǫw0 is the static dielectric constant (at f = 0, dimensionless), ǫw∞ is the high frequency
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dielectric constant (f → ∞, dimensionless), τw is the relaxation time constant (s),

and f is the frequency in Hz. We can write the dielectric constant with separate real

and imaginary parts ǫw = ǫ′w − jǫ′′w.

ǫ′w = ǫw∞ +
ǫw0 − ǫw∞

1 + (2πfτw)2

ǫ′′w =
2πfτw(ǫw0 − ǫw∞)

1 + (2πfτw)2
(1.5)

In addition to their dependence on frequency, ǫ′w and ǫ′′w are also temperature depen-

dent since ǫ′w0, τw, and possibly ǫ′w∞ are all functions of the water temperature. The

magnitude of the high frequency dielectric constant ǫ′w∞ was detertmined in [43]. Its

dependence on temperature is weak; hence, it is considered to be a constant value of

ǫ′w∞ = 4.9. The relaxation time of pure water was obtained by Stogryn [82] by fitting

a polynomial to experimental data.

2πτw(T ) = 1.1109× 10−10 − 3.824× 10−12T

+ 6.938× 10−14T 2 − 5.096× 10−16T 3 (1.6)

where T is in ◦C. The relaxation frequency of pure water lies in the microwave region;

f0 ≈ 8.9 GHz at T = 0 ◦C and f0 ≈ 16.7 GHz at T = 20 ◦C. Klein and Swift [41]

generated the following regression fit for ǫw0(T ).

ǫw0(T ) = 88.045− 0.4147T + 6.295× 10−14T 2 + 1.075× 10−5T 3 (1.7)

The dielectric constant of the pure water is shown in Fig. 1.2 from 7 GHz up to 10

GHz, which is the frequency range we used in our measurements. The temperature

of the freshwater is chosen as 4 ◦C. However, there is a weak dependence on the

temperature.

7



7 7.5 8 8.5 9 9.5 10

Frequency (GHz)

35

40

45

50

55

60

65

F
re

s
h

w
a

te
r 

D
ie

le
c

tr
ic

 C
o

n
s

ta
n

t 
(ǫ

w
) Real

Imaginary

Figure 1.2: Dielectric constant of freshwater at 4 ◦C as a function of frequency.

1.2.2 Pure Ice

Unlike the liquid water , whose relaxation frequency lies in the microwave region,

the relaxation frequency of pure ice fi0 occurs in the kilohertz region. Hence in the

microwave region (f is in the order of GHz), 2πfτi =
f
fi0

≫ 1. Therefore the Debye

model expression for the ice simplifies as follow.

ǫ′i ≈ ǫi∞ (1.8a)

ǫ′′i ≈ ǫi0 − ǫi∞
2πfτi

=
α0

f
(1.8b)

where α0 = (ǫi0−ǫi∞)/2πτi. According to Mätzler and Wegmüller [51], ǫ′i is essentially

independent of frequency from 10 MHz to 300 GHz.

ǫ′i = 3.1884 + 9.1× 10−4T (1.9)
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where −40◦C ≤ T ≤ 0. In equation 1.8b, ǫ′′i varies as 1/f and the coefficient α0

is only function of the temperature T . However, ice exhibits an infrared absorption

spectrum that includes a nonresonant term varying as f [89]

ǫ′′i =
α0

f
+ β0f (1.10)

α0 and f are in GHz and β0 is in (GHz)−1. The coefficients α0 and β0 are given by

[50]

α0 = (0.00504 + 0.0062θ) · exp(−22.1θ) (GHz) (1.11)

β0 =
B1

Tk

exp(b/Tk)

[exp(b/Tk)− 1]2
+B2f

2 (1.12)

+ exp[−9.963 + 0.0372(Tk − 273.16)] (GHz)−1

Tk is in Kelvin (K), θ = 300
Tk

− 1, B1 = 0.0207 K/GHz, B2 = 1.16× 10−11GHz−3, and

b = 335 K. The dielectric constant of pure ice is shown in Fig. 1.3 from 7 GHz up to

10 GHz, which is the frequency range we used in our measurements. The temperature

of the pure ice is considered to be -20◦C. It can be observed that the imaginary part

of the dielectric constant of freshwater ice is very small, while its real part has an

almost constant value. Evans [17] has also shown that the dielectric constant of the

freshwater lake ice is constant and equals to 3.15 over microwave frequencies.

1.2.3 Dry Snow

Snow is the source of water we drink and use to grow food to eat. Mountains store

snow in winter, and by slowly melting during the spring, they feed the streams and

reservoirs and supply water to humans and crops. Snow also drives climate processes
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Figure 1.3: Dielectric constant of pure ice as a function of frequency. The temperature
of the ice is -20◦C.

and cools our planet; thus, understanding and monitoring the snow is essential.

Dry snow is composed of ice and air and contains no liquid water. The real part

of the dielectric constant of dry snow, ǫ′ds, may depend on the vertical extent of the

snow accumulation, while the imaginary part is ǫ′′ds ≈ 0. An estimate of ǫ′ds for the

dry snow can be obtained by the empirical relationships, such as [91]

ǫ′ds =















1 + 1.9ρs, ρs ≤ 0.5 g · cm−3

0.51 + 2.88ρs, ρs ≥ 0.5 g · cm−3

(1.13)

where ρs is the density of dry snowpack. The average density 〈ρs〉 relates the snow

depth (d) to the SWE, which is the depth of water that would result from complete

melt of the snowpack in the absence of infiltration or runoff, as given by

SWE =

(〈ρs〉
ρw

)

d (1.14)
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where the freezing point density of water is ρw = 1.00 g/cm3. It follows from (1.13)

that ǫ′ds is not strongly dependent on frequency or temperature.

1.2.4 Soil

Soil is the underlying medium beneath the snowpack; hence, its dielectric proper-

ties is required in the forward modeling of snowpack. The dielectric constant of soil

is investigated in more detail in [89].

1.2.4.1 Dry Soil

The dielectric constant of dry soil is essentially independent of both temperature

and frequency. Dobson et al. [11], based on experiments on several soil types, de-

termined that ǫsoil for soils having extremely low moisture contents can be modeled

as

ǫsoil ≈ (1 + 0.44ρb)
2 − 0.062 (1.15)

where ρb is the soil bulk density.

1.2.4.2 Wet Soil

The presence of liquid water in soil can make the dielectric constant of soil depen-

dent on frequency and temperature. The dielectric constant of wet soil is investigated

in detail in [89, 93, 11, 28, 74, 68]. Above 0◦C, the real and imaginary parts of the

dielectric constant of soil are weakly dependent on temperature, while they decrease

drastically as temperature crosses below the freezing temperature of water [25]. In

addition, Hallikainen et al. [28] illustrated for one of the measured soil types that ǫ′soil

decreases with increasing frequency between 1.4 and 18 GHz, whereas ǫ′′soil increases

with increasing frequency.
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1.3 Structure of the Thesis

The thesis introduces a novel microwave radiometric technique, known as wide-

band autocorrelation radiometry (WiBAR), to measure the lake ice and dry snow

packs. In Chapter II, the autocorrelation radiometry background as well as WiBAR’s

physics of operation are fully discussed. The rest of Chapter II presents the forward

modeling of a single layer of snow/ice over soil/water, an icepack with a top snow

layer, and a low-loss layer with variable thickness.

The implemented first and second generations of WiBAR X-band and first gen-

eration of WiBAR L- and S-band are discussed in Chapter III. The measurement

approach and the system requirements needed to design a WiBAR instrument are

also fully explained. The rest of Chapter III presents snow/ice pack simulated mea-

surement as well as field measurements using WiBAR instruments.

The error analysis of the measured time delay by WiBAR for a single and multi

layer media are discussed in Chapter IV. Finally, Chapter V concludes the thesis,

and the future directions are also explained in this chapter.
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CHAPTER II

Wideband Autocorrelation Radiometry

2.1 Introduction

More than one-sixth of the world’s population (1.2 billion people) relies on sea-

sonal snowpack and glaciers for their water source [5]. The changes in snow quantity

and snowmelt timing are underway and have serious consequences (https://snow.

nasa.gov/), so monitoring these changes would be beneficial and is needed. Cur-

rent microwave remote sensing of snow is based on the scatter darkening method

[14, 13, 12, 81]. Estimating the snow thickness and SWE via microwave scatter dark-

ening is not robust since the scattering theory yields only the form of the frequency-

dependent scatter darkening but not a reliable amplitude estimation. It is highly

dependent on the microscopic properties of the snowpack (e.g. grain size), which

varies considerably from place to place and time to time. Thus, the algorithm should

be empirically tuned to a region’s typical snowpack [26]. However, non-seasonably

warm weather and early and late season diurnal heating cause metamorphic growth

of the ice grains in the snowpacks, which turns into a greater scatter darkening [48],

and the snowpack looks deeper when in fact it is compressing. In addition, tuning

algorithms become very complicated or even unworkable for terrains that are more

complex than the Canadian Great Plains.

Nonetheless, microwave remote sensing is ideal for spaceborne observations of
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snow packs because it is independent of daylight and can penetrate the atmosphere

regardless of weather. To change the focus from the microscopic properties of the

snow to the macroscopic properties, there have been a number of investigations of

techniques that measure the travel time through the snow pack. At the plot scale,

Frequency Modulated Continuous Wave (FMCW) radar has been used both looking

down from above [49] and up from below [64]. Repeat pass Interferometric Synthetic

Aperture Radar (InSAR) uses phase differences to measure the propagation time

from space [22, 45]. While radar has the potential for very high spatial resolution, it

is hungry for power, which can make radar space missions expensive. To address this

issue, we are initiating an exploration of a passive microwave technique, known as

wideband autocorrelation radiometry (WiBAR), that measures the travel time. To

demonstrate the concepts developed here, we directly measure the vertical extent of

a lake ice pack at different observation angles away from nadir by passively sensing

the microwave propagation time through the pack. We expect that the technique and

principles presented here will also be applicable for quantifying the accumulation of

dry snowpack as an ultimate objective of this research.

2.2 Autocorrelation Radiometry Background

Passive microwave remote sensing of icepack and snowpack parameters, such as

vertical extent of the pack, have been investigated by researchers using various mi-

crowave sensors [29, 85, 24]. Swift et al. [85] discussed the microwave radiometer

measurements of the emission from saline ice as a function of ice thickness. They

used a C-band stepped-frequency microwave radiometer (SFMR) with tunable center

frequency between 4 and 8 GHz with a bandwidth of 100 MHz. They derived the
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emissivity for an ice layer over water, as given by

e =
(1− |R01|2)(1− Lv |R12|2)

1 + Lv |R01|2 |R12|2 + 2
√
LvR01R12 cos (2k1zdice)

(2.1)

where R01 is the Fresnel reflection coefficient of air to ice, R12 is the Fresnel reflection

coefficient of ice to water, k1z is the vertical component of the phase constant for ice,

dice is the ice thickness, and Lv is an attenuation factor due to volume scattering. The

term Lv depends on the nature of the scatterers and on dice, but the rest of the terms

have no variation with respect to dice. If the ice layer has negligible loss, Lv = 1 and

a radiometer would observe a maximum and a minimum in brightness temperature

at every quarter wavelength in thickness. However, they were rarely able to observe

the quarter-wave resonance from the experimental results. They concluded that all

quarter-wave resonances are suppressed as a result of surface roughness destroying the

coherence of the slab if the rms surface roughness is of the order of an electromagnetic

wavelength [2]. Swift et al. [86] applied (2.1) to the emissivity of ice on Lake Erie,

and attributed their inability to observe the interference fringes in the measurements

to surface roughness caused by ship traffic. On the other hand, Harrington et al. [29]

reported various observations of the interference fringes using SFMR, such as on a

flight flown over smooth ice on Claytor Lake in Virginia on March 7, 1978 and for a

sea ice observation in an area north of Prudhoe Bay in the Beaufort Sea on March

20, 1979. Some narrowband observations of this coherent emissivity include those of

lake ice by England and Johnson [16] and in soil by Jackson et al. [33]. Jackson et al.

reported an oscillatory behavior of the brightness temperature of smooth, bare soil

after irrigation, which they modeled as the downward propagation of a wetting front.

Johnson et al. [37] also reported the oscillatory behavior in brightness temperature

of dry soil with respect to frequency in the presence of buried objects.

Although the measurement of the coherent effect from snow and ice packs has
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been abandoned for decades, we feel it is worth investigating given the technological

advancements since the development of SFMR. Our initial measurements use a process

similar to that of SFMR: we measure the emissivity as a function of frequency, and

extract the coherent effect from the spectrum. England [15] has shown that a time-

domain approach is superior in terms of reduced integration times, but commercial-

off-the-shelf (COTS) hardware is not as readily available for that approach.

2.3 Wideband Autocorrelation Radiometry (WiBAR): Physics

of Operation

Figure 2.1: Remote sensing of microwave travel time through the pack with thickness
dice. The first delayed ray is delayed by τdelay = 2τp − τair relative to the direct ray.

Wideband autocorrelation radiometry (WiBAR) of dry snowpacks and lake icepacks

was proposed by England in [15, 16]. It is a remote sensing method that can di-

rectly measure the microwave propagation time τdelay through low loss terrain covers

and other layered surfaces. Terrestrial examples are snow packs and lake ice packs.

Presuming these geophysical features are accurately described by (2.1), the thermal

radiation emitted from below the pack traverses the pack and is split at the upper

interface into two rays that travel towards the radiometer’s antenna, as shown in
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Fig. 2.1. The portion of power that is transmitted across the upper interface towards

the radiometer’s antenna constitutes the direct ray. The portion of power that is

reflected from the upper interface is the delayed ray. It traverses the pack twice upon

reflection from the lower interface before traveling to the radiometer’s antenna, with

a one-way transit time in the pack of τp. Thus, there are two rays received by the

radiometer, the direct ray and a delayed copy of it. The delayed ray arrives at the

radiometer with the time delay τdelay, relative to the direct ray, where [15, 60]

τdelay = 2τp − τair

τair =
2d tan θp sin θ

c

τp =

(

d

cos θp

)

(np

c

)

(2.2)

τair is the travel time in the air between points P1 and P2, θ is the incidence angle,

np is the refractive index of the pack, and c is the speed of light in free space. The

microwave propagation time τdelay through the pack yields a measure of its vertical

extent, d, since the argument of the cosine in (2.1) is 2kz1d = 2πfτdelay. The incidence

angle θ and the angle θp are related by Snell’s law.

np sin θp = sin θ (2.3)

In case of homogeneous and isotropic pack, (2.2) can be simplified using (2.3).

τdelay =
2d

c

√

n2
p − sin2 θ (2.4)

This expression is valid for freshwater lake icepack, which has an almost constant

refractive index, np = nice =
√
3.15, over microwave frequencies [17].

On the other hand, the refractive index of the dry snowpack (np(z) = nsnow(z))
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may depend on the vertical extent of the pack [59].

τdelay =
2

c

d
∫

0

√

np(z)2 − sin2 θdz (2.5)

However, the refractive index of snow can be estimated using the result obtained in

Section 1.2.3 for its dielectric constant , as given by

nsnow =
√

1.0 + 1.9ρs, for ρs ≤ 0.5 g · cm−3

=
√

0.51 + 2.88ρs, for ρs ≥ 0.5 g · cm−3 (2.6)

Painter et al. [66] have shown with their Airborne Snow Observatory (ASO) that

measurements of snow depth (via lidar) coupled with snow density provided by a

model are sufficient for retrieving SWE. We expect a similar approach will be nec-

essary for applying WiBAR to snow. It should be noted that wetness in the pack

will introduce an attenuation in the wave propagating through the pack, which will

reduce the amplitude of the autocorrelation peak.

2.4 Forward Modeling of Dry Snowpack or Lake Icepack

A layered medium with boundaries at z = −d0, −d1, ..., −dN with d0 = 0 is shown

in Figure 2.2. It is assumed that the top (region 0) and the bottom (region N + 1)

layers are semi-infinite. It is assumed that the temperature profile of the layers

is uniform, the layers are homogeneous, and the interfaces between the layers are

electrically smooth. Hence, the Fresnel reflection coefficients can be used in order to

obtain the reflectivity and emissivity of the layered medium. The plane of incidence

is determined by the z-axis and the incident k vector. The horizontally polarized

(TE) configuration is discussed in this section since the outdoor measurements were

conducted with horizontally polarized (TE) configuration. However, the solutions for
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the vertically polarized (TM) configuration can be readily obtained using the duality

relationship E → H, H → −E, and µ ↔ ǫ.

Figure 2.2: Configuration of N+1 layered medium.

For a horizontally polarized (TE) incident wave, the reflection coefficient in region

l at the interface separating regions l and l + 1 is given by

Rl(l+1) =
µl+1klz − µlk(l+1)z

µl+1klz + µlk(l+1)z

(2.7)

where Al and Bl are the coefficients of the upward and downward going wave in region

l, respectively. In addition, klz is the propagation constant along the z-axis in each

region l. By forcing the boundary condition at each interface, it can be shown that

[87]

Al

Bl
e−i2klzdl =

Al+1

Bl+1
e−i2k(l+1)zdl+1ei2k(l+1)z(dl+1−dl) +Rl(l+1)

Al+1

Bl+1
e−i2k(l+1)zdl+1Rl(l+1)e

i2k(l+1)z(dl+1−dl) + 1
(2.8)

This is a recurrence relation which can be used to find Rh = A0/B0 starting from
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Figure 2.3: Configuration of the lake icepack without a snowpack on top over fresh-
water or a snowpack over soil.

AN+1/BN+1 = 0, since there is no upward going wave (AN+1 = 0) in the semi-infinite

region N + 1. The emissivity e can now be obtained from the reflectivity r by

e = 1− r (2.9)

and the reflectivity is given by

r = |R|2 (2.10)

where R is the reflection coefficient of the layered medium in either horizontally (TE)

or vertically (TM) polarized configuration.

2.4.1 Forward Modeling of a Single Layer of Snow/Ice over Soil/Water

For the case of a lake icepack without a snowpack on top over freshwater or a

snowpack over soil, the configuration is shown in Figure 2.3, which is similar to Figure

2.1. Using the recurrence relation (2.8), the reflection coefficient of this medium is
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given by

R =
R01 +R12e

i2k1zd1

1 +R01R12ei2k1zd1
(2.11)

R01 and R12 are the Fresnel reflection coefficients at the air-snow/ice and snow/ice-

soil/freshwater interfaces, respectively, and is given by the equation (2.7). Using the

equation (2.9), the emissivity can be obtained as follow

e =
(1− |R01|2)(1− |R12|2)

1 + (|R01| |R12|)2 + 2R01R12 cos(2k1zd1)
(2.12)

The system design parameters are discussed in Chapter III.

2.4.2 Forward Modeling of an Icepack with a Top Snow Layer

The presence of a snowpack on the icepack adds another multipath. The con-

figuration is as shown in Figure 2.4. The first delayed ray of icepack and snowpack

arrives at the radiometer with the time delays τice and τsnow, respectively, relative to

the direct ray. These time delays are given by (2.4) and (2.5). Using the recurrence

relation (2.8), the reflection of this medium is given by

R =

R01 +

[

R23ei2k2z (d2−d1)+R12

R23R12ei2k2z(d2−d1)+1

]

ei2k1zd1

[

R23ei2k2z(d2−d1)+R12

R23R12ei2k2z (d2−d1)+1

]

R01ei2k1zd1 + 1

(2.13)

In this equation, R12 and R23 are the reflection coefficients at the snow-ice and ice-

freshwater interfaces, respectively. In addition, R01 is the reflection coefficient at the
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air-snow interface. Similarly, the emissivity of this medium is given by [87, 61, 54]

e(f) =
ē















1 + 2

[

Ai cos(ωτice) + As cos(ωτsnow) + AΣ cos
(

ω
(

τsnow + τice
)

)

+ A∆ cos
(

ω
(

τsnow − τice
)

)

]















(2.14)

where 2k1zdsnow and 2k2zdice are substituted with ωτsnow and ωτice, respectively, ω =

2πf , ē is the mean emissivity over frequency, Ai, As, AΣ, and A∆ are one half of

the amplitudes of the ripple due to icepack time delay, snowpack time delay, sum of

the time delays, and difference of the time delays, respectively, in the emissivity as a

function of frequency. They are given by

ē =(1− |R01|2)(1− |R12|2)(1− |R23|2) /C0 (2.15a)

Ai =R12R23(1 + |R01|2) /C0 (2.15b)

As =R01R12(1 + |R23|2) /C0 (2.15c)

AΣ =R01R23 /C0 (2.15d)

A∆ =R01R23 |R12|2 /C0 (2.15e)

where C0 = 1 + |R01|2 |R12|2 + |R01|2 |R23|2 + |R12|2 |R23|2.

It can be observed from equation (2.14) that time delays proportional to the

summation and difference of the layer thicknesses have also been introduced. The

presence of a snowpack on the icepack adds another multi-path interference, which

can effect the lake icepack thickness measurement.

2.4.3 Forward Modeling of a Low Loss Layer with Variable Thickness

The presence of variable layer thicknesses in a footprint of the radiometer’s an-

tenna will add different microwave propagation times through the layer under investi-
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Figure 2.4: Configuration of the lake icepack with thickness dice in the presence of a
snow cover with thickness dsnow.

gation. This scenario becomes more likely the higher the WiBAR instrument is above

the surface of the layer. If this variable thickness takes the form of a finite number

of distinct thicknesses, we can divide the footprint observed by the antenna to m× n

sub-pixels each with different but uniform thicknesses, as shown in Figure 2.5. Then,

we can use the model described in [57] to find the emissivity of each sub-pixel, as

given by [56]

eij(f, θ0) =
(1− |R01|2)(1− |R12|2)

1 + (|R01| |R12|)2 + 2R01R12 cos(2k1zdij)
(2.16)

where R01 is the Fresnel reflection coefficient of air to ice (snow), R12 is the Fresnel

reflection coefficient of ice (snow) to water (soil), k1z is the vertical component of the

wavenumber in ice (snow), dij is the thickness of each sub-pixel, and i = 1, ..., m and

j = 1, ..., n are the indices for each sub-pixel in the x or y directions.

As a first step towards understanding the signature of a single layer with con-

tinuously varying thickness within the field of view, this thesis shows the ability of

WiBAR in measuring a layer having distinct thickness values within the antenna’s

footprint. This can be distinguished from the multi-layer medium scenario [54] by

the fact that the multi-layer contains time lags corresponding not only to the indi-

vidual layers, but also to the linear combinations of those time lags (eg. sums and
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Figure 2.5: The observed footprint of the radiometer’s antenna. The footprint area
is divided to m× n sub-pixels. The pack’s thickness is different but uniform in each
sub-pixel.

differences), while the case under consideration has distinct time lags but no linear

combination of them.

Each sub-pixel can have a different contribution to the received power by the

radiometer, P (f, θ0), due to non-uniformity of the antenna’s gain pattern, g(θ, φ).

Hence, we can define a constant 0 < aij ≤ 1, which is ratio of the antenna’s gain

pattern integrated over the solid angle confined by each sub-pixel to that integrated

over all solid angles, as given by

aij =

∫ θi+1

θi

∫ φj+1

φj
g(θ − θ0 +

βe

2
, φ+ βa

2
)dΩ

∫∫

4π
g(θ, φ)dΩ

(2.17)

where βe and βa are the half-power beamwidths in elevation and azimuth planes,

respectively, θi =
(xi−1−x0)

R
, φj =

(yj−1−y0)

R
, xi and yj are the locations of the borders

of each sub-pixel in x and y directions, respectively, and R is the slant range. Because
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the delayed path is horizontally displaced from the direct path, we assume that the

extent of each sub-pixel in either x or y directions is such that at least the first delayed

path from each sub-pixel can be observed; otherwise, the thickness of that sub-pixel

cannot be detected with (2.4).

The total received power, P , by the WiBAR is given by

P (f, θ0) = K
[

(

Σm
i=1Σ

n
j=1aijeij(f)

)

T0 + TREC(f)
]

BG(f) (2.18)

where K is Boltzmann’s constant, TREC(f) is the receiver noise temperature, T0 is

the physical temperature of the target, B is the noise bandwidth, and G(f) is the

radiometer’s gain. To remove the frequency dependencies of the gain and receiver tem-

perature and extract the total emissivity, we use the calibration procedure explained

in [57]. Using the Wiener-Khinchin theorem, the autocorrelation function (ACF)

of the received power spectrum is the inverse fast Fourier transform (IFFT) of the

emissivity spectrum [57]. Because the IFFT is a linear operation, the arithmetic av-

eraging in (2.18) applies also to the ACFs that can be attributed to the sub-pixels.

As a result, for each sufficiently distinct dij in (2.12), the ACF will have a distinct

peak corresponding to it. Nonetheless, while it is at least theoretically possible to

extract the sub-pixel thicknesses from the observed ACF, it is not possible from a

single measurement to locate those sub-pixel thicknesses except to say that they are

somewhere within the footprint.
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CHAPTER III

Design and Implementation of WiBAR

Instruments

3.1 Introduction

In the search for an alternative way to traditional scatter darkening techniques for

microwave remote sensing of snowpack or icepack, we developed a new and low-cost

passive microwave remote sensing technique, known as wideband autocorrelation ra-

diometry (WiBAR) [57, 15, 58, 59, 60], as explained in Chapter II. This technique

offers a direct method to remotely measure the microwave propagation time differ-

ence of multipath microwave emission from low-loss layered surfaces, such as a dry

snowpack and a freshwater lake icepack. The microwave propagation time difference

through the pack yields a measure of its vertical extent; thus, this technique provides

a direct measurement of depth. In this chapter we are discussing the design of a

WiBAR instrument in frequency domain approach. We also show the measurement

results that we have done so far for lake icepack.
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3.2 Frequency Domain Wideband Autocorrelation Radiome-

ter (FD-WiBAR)

Our WiBAR instrument is designed for observing the coherent effect in lake

icepack or dry snowpack. We introduce the radiometer design to measure the ice

and snow thicknesses in different scenarios of a single layer of snow/ice, two layer of

ice with snow cover, and a single layer of snow/ice with variable thicknesses. We in-

troduce the radiometer design to measure the pack thickness using frequency domain

approach.

3.2.1 FD-WiBAR Instruments for Ice Thickness Measurement

3.2.1.1 First Version

The operating frequency is chosen to be 7-10 GHZ for measuring the lake icepack.

This bandwidth is high enough to permit 3 GHz bandwidth operation with an Ad-

vanced Technical Materials (ATM) standard gain X-band horn antenna with 24 dBi

gain (ATM Microwave 112-443-6) yet low enough to avoid much extinction in the ice.

This antenna has an E-plane aperture of av = 19.1 cm and an H-plane aperture of

aH = 27.9 cm. The receiver is a field-portable spectrum analyzer (Agilent N9344C),

which produces a fixed number of frequency samples in the spectrum (Nf = 461),

much greater than that of SFMR. The antenna and the spectrum analyzer are joined

with isolators, low noise amplifiers (LNAs), and a band pass filter (BPF), which pro-

vide appropriate low-noise amplification and filtering of the Planck power to levels

that can be measured by the spectrum analyzer. The noise figure of the LNA is 2

dB, and the receiver’s noise figure, F , is estimated at 2.38 dB. The receiver’s return

loss is also about 17 dB. The schematic of the receiver gain chain of the first version

of X-band WiBAR is shown in Fig. 3.1. The X-band WiBAR system is also shown is

Fig. 3.2. This instrument was used at the Keweenaw Waterway South Entry Light in
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Figure 3.1: The schematic of the receiver gain chain of the first version of X-band
WiBAR radiometer. The antenna is an ATM (112-443-6) standard gain horn with
aperture dimension of 19.1 cm by 27.9 cm, and an elevation beamwidth of 8.7◦. The
isolators are UTE (CT-5155-OT). The LNAs are WanTcom (WBA80180B) with 35.0
dB gain and 2.0 dB noise figure. The filter is a custom 7 - 10 GHz bandpass filter
made by K&L Microwave.

Figure 3.2: The first version of the X-band WiBAR system in frequency domain ap-
proach. The spectrum analyzer is strapped to one side of the antenna, and the receiver
is attached to the other side. This system was used for lake icepack measurement
only in Winter 2016.

Winter 2014 [63] and the University of Michigan Biological Station in Winter 2016.

3.2.1.2 Second Version

The first version of X-band WiBAR suffers from the heavy weight of the spectrum

analyzer on one side of the antenna. It also has a fixed number of frequency points,

which limits us from investigating the effect of the number of frequency points in
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Figure 3.3: The Signal Hound USB-SA44B spectrum analyzer. The frequency oper-
ation range is from 1 Hz to 4.4 GHz. The resolution bandwidth (RBW) can be any
value from 0.1 Hz up to 250 kHz (https://www.signalhound.com).

the spectrum. To address these issues and make the system more robust and easy

to use, we have used the USB-SA44B spectrum analyzer from Signal Hound, which

weighs much less and gives us the ability to control the number of frequency points.

This spectrum analyzer is shown in Fig. 3.3. Since this spectrum analyzer goes up

only to 4.4 GHz, we have used a fixed frequency synthesizer (Z-Comm RFS5900A-LF)

operating at 5900 MHz with a mixer to down convert the received signal before it was

fed to the spectrum analyzer. The typical phase noise of the frequency synthesizer

is -80 dBc/Hz, -85 dBc/Hz, and -103 dBc/Hz at the 1 kHz, 10 kHz, and 100 kHz

offsets, respectively. The receiver’s noise figure and return loss are the same as the

first version of X-band WiBAR since the RF front-end stage has not been changed.

A Raspberry Pi was used to control the WiBAR data acquisition. The schematic of

the receiver gain chain of the second version of X-band WiBAR is shown in Fig. 3.4.

The X-band WiBAR system is also shown is Fig. 3.2. This instrument has been

operational since Winter 2018.
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Figure 3.4: The schematic of the receiver gain chain of the second version of the
X-band WiBAR radiometer. The antenna is an ATM (112-443-6) standard gain horn
with aperture dimension of 19.1 cm by 27.9 cm, and an elevation beamwidth of 8.7◦.
The isolator is UTE (CT-5155-OT). The LNAs are WanTcom (WBA80180B) with
35.0 dB gain and 2.0 dB noise figure. The filter is a custom 7 - 10 GHz bandpass
filter made by K&L Microwave. The frequency synthesizer is Z-comm (RFS5900A-
LF) operating at 5900 MHz. A Raspberry Pi is used to control the data acquisition.

Figure 3.5: The second version of the X-band WiBAR system in frequency domain
approach. The Signal Hound spectrum analyzer as well as the receiver gain chain
is attached to the plate on one side of the antenna. This system was used for lake
icepack measurement and has been operational since Winter 2018.
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3.2.2 FD-WiBAR Instruments for Snow Thickness Measurement

The WiBAR instrument to measure the travel time in a dry snowpack operates

in the frequency range 1-2 GHz (L-band). This bandwidth is high enough to permit

the operation of a wide-band antenna and low enough to avoid much extinction in

the snowpack. The schematic of this receiver gain chain is shown in Fig. 3.6. It

can be observed that there is no mixer and IF stage in this receiver compared to

the second version of the X-band WiBAR receiver, as shown in Fig. 3.5, since the

received signal is in the frequency range of the Signal Hound spectrum analyzer. The

noise figure of the LNA is 0.38 dB, and the receiver’s noise figure, F , is estimated at

1.87 dB. The receiver’s return loss is also about 12 dB. The L-band WiBAR is also

shown in Fig. 3.7. This system has been operational since Winter 2018. In order to

increase the bandwidth of operation, we also designed and built a S-band WiBAR.

This system is similar to the L-band WiBAR except the instruments are operating

in S-band, and its schematic is similar to Fig. 3.6. The antenna is an ATM gain

horn antenna (340-442-2) with aperture dimension of 29.99 cm by 47.72 cm, and an

elevation beamwidth of about 16.3◦. The isolator is MCLI (IS-9). The LNAs are

WanTcom (WZA305) with 27 dB gain and 1.2 dB noise figure. The receiver’s noise

figure is estimated at 1.7 dB, and its return loss is about 16 dB. The S-band WiBAR

is also shown in Fig. 3.8. This system has been operational since Winter 2019.

3.2.3 Measurement Approach

In the frequency domain approach, the data are collected in frequency domain

similar to SFMR. The received power, P , at the spectrum analyzer is given by

P (f) = KTSY S(f)B G(f) (3.1)

= K (e(f)T0 + TREC(f))B G(f) (3.2)
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Figure 3.6: The schematic of the receiver gain chain of the L-bandWiBAR radiometer.
The antenna is a Seavey horn antenna (9804-800) with aperture dimension of 73.66 cm
by 78.74 cm, and an elevation beamwidth of about 23◦. The isolator is MCLI (IS-
1-1). The LNAs are MiniCircuits (ZX60-P33ULN+) with 17.3 dB gain and 0.38 dB
noise figure. The filters are 910-3000 MHz high-pass (SHP-900+) and DC-2000 MHz
low-pass (VLP-24) filters made by Mini-Circuits. A Raspberry Pi is used to control
the data acquisition.

where K is Boltzmann’s constant, TSY S(f) is the radiometer system temperature, B

is the noise bandwidth, and G(f) is the radiometer’s gain. The system temperature

itself is composed of the sum of the receiver noise temperature, TREC(f), and the

product of the target emissivity, e(f), and the physical temperature of the target, T0.

Those terms which are expected to have variations with frequency are indicated as

being functions of frequency.

To remove the frequency dependencies of the gain and receiver temperature, spec-

tra are calibrated to emissivity with beam-filling measurements of absorber and the

sky, as given by (3.3), which approximate emissivities of unity and zero, respectively.

ê(f) =
Ppack(f)− Psky(f)

Pabs(f)− Psky(f)
(3.3)

where Ppack is the power received from the pack, Psky is the power received from sky,

and Pabs is the power received from microwave absorber. This emissivity spectrum

demonstrates a periodic interference pattern in frequency domain, which corresponds

to a peak in the autocorrelation domain [15]. Using the Wiener Khinchin theorem,

the autocorrelation response, Φ(τ), of the power spectrum is equal to the inverse
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Figure 3.7: The L-band WiBAR system in frequency domain approach. The Signal
Hound spectrum analyzer as well as the receiver gain chain is attached to a plate
inside a box enclosure, and the throat of the antenna in the box is also shown. This
system was used for snowpack measurement and has been operational since Winter
2019.
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Figure 3.8: The S-band WiBAR system in frequency domain approach. The Signal
Hound spectrum analyzer as well as the receiver gain chain is attached to a plate
inside a box enclosure, and one side of the antenna in the box is also shown. This
system was used for snowpack measurement and has been operational since Winter
2019.
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Fourier transform of the power spectrum:

Φ(τ) =

∫

ê(f)w(f)e−j2πfτdf (3.4)

where w(f) is an appropriate window function.

The autocorrelation function (ACF) separates the coherent effect, at τ = τdelay,

from the incoherent signal, at τ = 0. Because our main measurement objective

is to passively measure a time delay, and not a brightness amplitude, a number of

traditional radiometry techniques have not been employed. In particular, we did

not implement a thermal control system to stabilize the radiometer gain, despite

the minutes-long integration times in total power mode. As such, our amplitude

measurements contain additional noise that appears as incoherent signals at τ = 0

and an increased noise floor at non-zero delays. We expect our measured delays to

be quite accurate, however, because the spectrum analyzer maintains a stabilized

frequency source.

The spectrum analyzer used in our measurements is a super-heterodyne receiver,

in which the intermediate frequency (IF) filter is swept over the entire bandwidth.

This filter is also called the resolution bandwidth (RBW) filter. The filtered signal

then enters a square-law envelope detector. The output of the envelope detector is

then fed to a low-pass filter with a bandwidth known as the video bandwidth (VBW).

This filter provides a smoothed version of the detected signal. The ratio of the RBW

to the VBW determines the noise floor in the measurements [6]. There are some

parameters that should be set in the spectrum analyzer prior to data collection. These

parameters are the center frequency, fc, frequency span, Fs, number of frequencies,

Nf , sweep time, Ts, resolution bandwidth, RBW, and video bandwidth, VBW. By

employing a COTS spectrum analyzer, the selection of some of these parameters is

limited by the hardware. For example, using the Agilent Spectrum Analyzer, our
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maximum RBW is 3 MHz, and the number of frequencies is fixed at Nf = 461.

3.2.4 Single Layered Media

A single layer of ice or snow is shown in Fig. 2.1, and its emissivity was derived

as given by (2.12). The coherent interference of rays traversing the slab different

number of times gives rise to an emissivity spectrum that oscillates around a mean

value, with local maxima at wavelengths of constructive interference, and minima at

wavelengths of destructive interference.

3.2.4.1 Minimum and Maximum Detectable Time Delay

The lower limit of the sensed time delay depends on the WiBAR ability to distin-

guish an autocorrelation peak at τdelay from the peak at τ = 0. This lower limit de-

pends on the requirement that τdelay > τc, where τc is the radiometer correlation time,

and is the half power width of the autocorrelation peak at τ = 0, ie. Φ(τc) =
1
2
Φ(0).

τc is inversely related to the WiBAR bandwidth Fs as given by [15]

τc =
ζ

Fs
(3.5)

where ζ is a factor depending on the Fourier window w(f) since the autocorrelation

peak shape depends on the window function. For instance, ζ is equal to one for the

rectangular window, while it is equal to 2 for the Hamming window, as the width

of the main lobe of the Fourier transform of the Hamming window function is about

twice that of the rectangular window function. As a case in point, the microwave

propagation time delay τdelay using equation (2.4) at an incidence angles of θ = 0◦,

15◦, 30◦, 45◦, 60◦, and 75◦ as function of icepack thickness 0 < dice < 2m and

index of refraction nice =
√
3.15 is shown in Fig. 3.9. Detecting minimum icepack

thicknesses approaching 10 cm presents a challenge in that it requires resolving τdelay
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at autocorrelation lag times of around 1 ns from the spread of the peak at τ = 0 due

to τc. Thus, for this objective, the system’s bandwidth from (3.5) should be greater

than 1 GHz for the rectangular and 2 GHz for the Hamming window functions. This

effect is shown in Fig. 3.10, where the 1 GHz ACF does not show the simulated delay

at 1.18 ns at all, while the 2 GHz ACF does show a peak corresponding to this delay,

albeit contaminated with the sidelobes of the peak at zero delay. Thus, the lower

limit of the detectable time delay is approximately given by

ζ

Fs
< τdelay (3.6)

Conversely, (3.6) determines the minimum WiBAR frequency span needed to measure

a desired minimum pack thickness.
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Figure 3.9: Simulated τdelay as a function of icepack thickness with refractive index
of nice =

√
3.15 over fresh water for six different incidence angles (θ = 0◦, 15◦, 30◦,

45◦, 60◦, and 75◦).
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Figure 3.10: Simulated autocorrelation response of a 10 cm icepack using rectangular
and Hamming window functions. The system’s bandwidth should be greater than
about 2 GHz in order to detect a 10 cm icepack using a Hamming window function,
while a bandwidth greater than about 1 GHz should be used with a rectangular
window function (θ = 0◦ and τdelay = 1.18 ns).

The upper limit of the sensed time delay is contingent upon rays that traverse

the pack be not significantly absorbed or scattered. For example, it has been shown

by experiment that 10 GHz rays would not be excessively absorbed or scattered

by a 2 meter dry snowpack which had not undergone significant stratification or

metamorphism [91]. A theoretical upper limit to the maximum detectable time delay

is determined by the resolution bandwidth (RBW) of the spectrum analyzer and the

number of frequency bins as given by equation (3.7). For instance, one can increase

the upper limit by either increasing the number of frequency bins while the frequency

span is fixed, or by decreasing the resolution bandwidth.

τdelay <
1

2
min

{Nf

Fs

,
1

RBW

}

(3.7)
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where Nf is the number of frequency bins. The transition between the two conditions

occurs when adjacent frequency bins touch each other. For a custom WiBAR receiver,

(3.7) can be used to determine the requirements for the instantaneous bandwidth and

the number of frequency bins. When using a spectrum analyzer as a receiver, however,

Nf is sufficiently high and RBW sufficiently small that the upper limit is dictated by

the extinction in the pack.

Within these limits, the measurement of τdelay can be made arbitrarily precise in

post processing. While the resolution of the ACF created from Nf spectral points

over Fs frequency span is 1
Fs
, the creation of the ACF from the emissivity spectrum

can be performed with zero-padding of the spectrum, increasing the precision of the

ACF in the time-domain to · Nf

Fs (Nf+Nz)
, where Nz is the number of zeros added to

the spectrum prior to its inverse Fourier transform. The radiometer correlation time

does, however, limit the ability of the WiBAR technique to resolve multiple interfaces.

This topic, however, is further discussed in Section 3.2.5.1.

3.2.4.2 Autocorrelation Function Expectation

In this section, we first look at the emissivity of a single layer of snow or ice pack,

and the case of a presence of another layer, such as presence of a snow layer on an

icepack, will be further discussed in final thesis. By considering the typical values for

the reflection coefficients of ice and dry snow layers, the denominator in (2.12) is very

close to unity and can be approximated by its Taylor expansion around one:

e(f) ≈ e
(

1− 2Ae cos(2πfτdelay)
)

(3.8)

where e is the mean emissivity over frequency, Ae is one half of the amplitude of

the ripple in the emissivity as a function of frequency, and 2k1zd is substituted with

2πfτdelay to emphasize the frequency dependence. It is assumed that the calibration
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(3.3) produces an emissivity with features faithful to (2.1). The n th order term of the

Taylor expansion captures the delay of nτdelay, and so as long as τdelay > τc, (3.8) is

sufficient for unambiguous measurement of the delay. Explicitly, the mean emissivity

and the ripple amplitude are given by

e =
(1− |R01|2)(1− |R12|2)

1 + (|R01| |R12|)2
(3.9a)

Ae =
R01R12

1 + (|R01| |R12|)2
(3.9b)

where the volume extinction has been assumed negligible. As an example, for ice over

water and θ = 0◦, e = 0.490 and Ae = 0.181. When absorption and scattering are

included, the form of (3.8) will be still applicable, but (3.9) will need to be modified to

incorporate such effects. Thus, we will continue the analysis with ē and Ae rather than

with reflection coefficients. In the presence of multiple layers, the Taylor expansion

(3.8) will become more complicated in a way that there will be more cosine terms

due to the coherent interference introduced by the new boundaries.

With the simplification (3.8), the expected value of the ACF is

E [Φ(τ)] = e

fc+Fs/2
∫

fc−Fs/2

w(f)e−j2πfτ
(

1− 2Ae cos(2πfτdelay)
)

df (3.10)

The only dependency on the frequency, f , will be through the cos(2πfτdelay) and

w(f) terms since R01 and R12 are approximately constant with respect to frequency.

Therefore, the expected value is given by

E [Φ(τ)] = eFse
−j2πfcτ

{

W1(τ)− Ae

[

ej2πfcτdelayW1(τ − τdelay)

+ e−j2πfcτdelayW1(τ + τdelay)

]

}

(3.11)
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where Wn(τ) is the impulse response of the nth power of the window function, and

is given by

Wn(τ) =
1

Fs

fc+Fs/2
∫

fc−Fs/2

wn(f)e−j2π(f−fc)τdf (3.12)

Considering only the positive time delays, it can be observed from (3.11) that the

local maxima of the expected value of autocorrelation response are at specific values

of τ = 0 and τ = τdelay. For a rectangular window, w(f) will be constant and equal

to one in the frequency range of operation, and its impulse response is given by

W1(τ) = sinc(Fsτ) (3.13)

where sinc(x) = sin (πx) /πx.

As a typical alternative, a cosine window can be used instead of a rectangular

window. In this case, the frequency response, w(f), and the impulse response, W1(τ),

of the window function are given by

w(f) =















α + (1− α) cos(2π
Fs
(f − fc)), fc − Fs

2
≤ f ≤ fc +

Fs

2

0, otherwise

(3.14)

W1(τ) =
{

α sinc(Fsτ) +

(

1− α

2

)

[

sinc(1− Fsτ) + sinc(1 + Fsτ)
]

}

(3.15)

where α = 0.54 is for the Hamming window, α = 0.5 is for the Hann window, and

α = 1 is for the rectangular window. The benefit of this cosine tapered window

function is lower side-lobes; in fact, the first side lobe level (SLL) of the Hamming

window is about 21 dB down from the main lobe peak while it is only 6.5 dB down

from the main lobe peak in the rectangular window. The price for this benefit is that
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the main lobe is roughly twice as wide as the rectangular window. These effects can

be observed in Fig. 3.11, where the expected value of the autocorrelation response of

36.8 cm lake icepack over freshwater is shown using the rectangular and Hamming

window functions.
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Figure 3.11: The expected value of the autocorrelation response using rectangular
(solid blue line) and Hamming (dashed red line) window function as a function of
time delay (θ = 0◦, dice = 36.8 cm, and τdelay = 4.35 ns).

3.2.4.3 Measurement Uncertainty

This instrument resembles a total power radiometer, for which the noise level can

be given by [90]

(

∆P

P

)2

=

(

∆T

TSY S

)2

=
1

Bτ ′
+

(

∆G

G

)2

(3.16)
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where ∆G, ∆P and ∆T are the standard deviations of the radiometer’s gain, power

and brightness temperature, and τ ′ is the integration time. While WiBAR does not

measure brightness, but rather a time delay, this noise impacts the ability to observe

the delay, which is explained in this and the next two subsections.

In the WiBAR, we use a spectrum analyzer for the receiver back-end, and do not

use thermal control on the RF electronics. The lack of thermal control makes the

gain variations typically slow relative to the spectrum analyzer sweep time. As a

result, ∆G is a minimal contribution to random errors of the calibrated emissivity,

while it does contribute substantially to the systematic errors that apply to the entire

spectrum. Indeed, we have sometimes seen calibrated emissivities exceeding unity,

but the random variations, manifest as noise in adjacent frequencies in the emissivity

spectra, are dominated by the time-bandwidth product. We now look at the time-

bandwidth product applied to WiBAR.

The spectrum analyzer resolution bandwidth is the 3dB bandwidth of the spec-

trum analyzer’s IF bandpass filter, and determines the noise bandwidth, B. As

the spectrum analyzer employs a Gaussian filter for the resolution bandwidth, B =

1
2

√

π
ln 2

RBW ≈ 1.06 RBW. The time that the spectrum analyzer spends in each

RBW is τ ′. Hence, τ ′ would be equal to TsRBW
Fs

. In a spectrum analyzer, the sweep

time, Ts, is determined by the RBW, VBW, and the frequency span, Fs, as given by

Ts =
κFs

RBW× VBW
(3.17)

where κ is a dimensionless proportionality constant, and it is in the 2 to 3 range for

the synchronously-tuned, and near-Gaussian filters [1]. Equation (3.17) is valid when

VBW < RBW.

Therefore, neglecting the systematic errors that only impact ē and focusing on
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the random errors that will impact Ae, (3.16) is simplified to (3.18).

∆P

P
=

∆T

TSY S
=

1
√

1.06κRBW
VBW

(3.18)

In our measurements which we have done in Winter 2016, RBW = 3 MHz,

VBW = 1 kHz, Fs = 3 GHz, and the resulting sweep time was Ts = 2.9641 s. There-

fore, using (3.17), κ is 2.96, and using (3.18), the sensitivity of a single sweep of the

radiometer is -19.88 dB (1.03%). Sometimes, one sweep of the spectrum analyzer

is not enough to keep the measurement uncertainty sufficiently small. In situations

where we employ Ntrace sweeps of a single target averaged together, the total number

of effective samples, Nind, at each frequency is given by the product of the number of

sweeps and the time-bandwidth product: Nind = κNtraceRBW/VBW.

3.2.4.4 Autocorrelation Function (ACF) Variance

The variance of the autocorrelation response is needed to determine the likelihood

of measuring the delay associated with the snow or ice pack.

V ar[Φ(τ)] =

fc+Fs/2
∫

fc−Fs/2

fc+Fs/2
∫

fc−Fs/2

Cov[e(f), e(f ′)]w(f)w(f ′) exp (−j2π(f − f ′)τ) dfdf ′

(3.19)

Since we measured the emissivity at each frequency by sweeping over each RBW in

time, e(f) and e(f ′) are independent and uncorrelated. Therefore, Cov[e(f), e(f ′)]

would be zero unless f = f ′, where it is equal to the V ar[e(f)]. Therefore, (3.19) can

be simplified to (3.20).

V ar[Φ(τ)] = RBW

fc+Fs/2
∫

fc−Fs/2

V ar[e(f)]w2(f)df ≈ RBW Fs V ar[e(f)] W2(0) (3.20)
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The approximation is because Ae ≪ e, ie. the variance of the emissivity is approxi-

mately independent of the frequency. As a consequence, the variance of the ACF is

also independent of τ and τdelay in the case of a slab target. For the cosine windows

considered here, W2(0) = (α2 + (1− α)2/2). Specifically, W2(0) = 1 for the rectan-

gular window, 0.3972 for the Hamming window, and 0.375 for the Hann window.

However, the variance of the emissivity depends on the number of samples mea-

sured, and how these measurements are used. Using a standard error analysis [7] on

the calibration equation (3.3), it can be shown that the variance of the emissivity

(V ar[e]) is related to its expected value (E[e]) as given by (3.21).

V ar[e(f)] =
(E[e])2

Nind









(TBp + TREC)
2(TBa − TBs)

2 + (TBa + TREC)
2(TBp − TBs)

2

+ (TBs + TREC)2(TBa − TBp)2

(TBp − TBs)2(TBa − TBs)2









(3.21)

where TBp, TBs, and TBa are the brightness temperature of the ice/snow pack, sky,

and the microwave absorber, respectively. Since the microwave absorber, the pack,

and the radiometer have been in the same environment for enough time to be at an

equilibrium temperature, T0, we will simplify (3.21) with TREC ≈ T0(F −1), TBs ≈ 0,

TBp ≈ eT0, and TBa ≈ T0, where F is the noise figure of the radiometer. Hence,

V ar[e(f)] ≈ (e + F − 1)2 + (e− 1)2(F − 1)2 + e2F 2

Nind
(3.22)

For an icepack or snowpack with some surface roughness, the emissivity is quite

high, approaching 1. When e ≈ 1, V ar[e(f)] is maximized over e, and thus e = 1

corresponds to a worst case variance. For these reasons, we will assume e = 1, and
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(3.22) and (3.20) are simplified to

V ar[e(f)] ≈ 2F 2

Nind
(3.23)

V ar[Φ(τ)] =
2W2 (0)F

2 RBW Fs

Nind
(3.24)

On the other hand, in the absence of an icepack, the mean of the emissivity of

freshwater would be quite low, but roughness is very likely; therefore, we can also use

the worst case scenario of the V ar[e(f)] in this case, and the variance of the emissiv-

ity and its autocorrelation response are the same as (3.23) and (3.24), respectively.

Moreover, in the absence of a snowpack, the mean of the emissivity of land would be

quite high, e ≈ 1, and the variance of the emissivity and its autocorrelation response,

using the worst case of the V ar[e(f)], are again the same as equations (3.23) and

(3.24), respectively. Thus, because it is representative and a worst-case, we will use

(3.24) regardless of the target in the following analyses.

3.2.4.5 Limits of Detection

Provided that the number of independent samples Nind is sufficiently high, the

central limit theorem will apply and the distribution of Φ(τ) will be Gaussian. Under

these conditions, if the absolute value of the expected value plus a constant (ZFA)

times the standard deviation of the autocorrelation response in the absence of a pack

is less than the absolute value of the expected value minus a constant (ZPD) times

the standard deviation of the autocorrelation response in the presence of a pack, as

given by (3.25), the technique will be able to detect a delay peak.

|E[Φabsence(τ)]|+ ZFA

√

V ar[Φabsence(τ)] < |E[Φpresence(τ)]| − ZPD

√

V ar[Φpresence(τ)]

(3.25)
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The Z parameters determine the False Alarm Rate (FAR) and Probability of Detec-

tion (PD) as given by [9].

FAR =
1

2

(

1− erf(ZFA/
√
2)
)

(3.26a)

PD =
1

2

(

1 + erf(ZPD/
√
2)
)

(3.26b)

where erf(Z) is the error function encountered in integrating the normal distribution,

as given by

erf(Z) =
2√
π

Z
∫

0

e−t2dt (3.27)

For example, the FAR will be about 2.2% and 15.8% for ZFA = 2 and ZFA = 1,

respectively. Higher ZFA or ZPD will result in better performance, and the system

parameters need to be designed so as to provide sufficient number of independent

samples. Below, the effect of the number of independent samples with fixed Z pa-

rameters in time delay detection is shown. In addition, using the expected value and

variance of the autocorrelation function derived in Sections 3.2.4.2 and 3.2.4.4, re-

spectively, along with (3.25), the minimum number of required independent samples

Nind for lake icepack and dry snowpack detection is derived.

The FAR in (3.26a) is that of detecting a single peak at a single delay time, but we

need to keep the FAR down throughout the autocorrelation response in a region from

τmin to τmax, where these are the minimum and maximum detectable time delays of

interest bounded by (3.6) and (3.7), respectively. Without zero-padding the spectrum

for enhanced resolution, the number of time bins in which a peak could occur is given

by nτ = Fs (τmax − τmin). This result is not affected by zero padding: while the

temporal precision is improved, there is no additional information. Since the FAR for

detecting a peak at each time bin is independent of other time bins, the FAR for all
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τ in (τmin, τmax) are related to the FAR for a single τ , as given by (3.28).

1− FAR(for all τ in (τmin, τmax)) =
(

1− FAR(for one τ)
)nτ

(3.28)

Since we want to keep the FAR small, we can assume ZFA will be selected such that

FAR ≪ 1. Hence, (3.28) can be simplified to (3.29).

FAR(for all τ in (τmin, τmax)) = nτFAR(for one τ )

=
Fs(τmax − τmin)

2

(

1− erf(ZFA/
√
2)
)

(3.29)

For example, if we have Fs = 1 GHz, and we expect τdelay to be in the range of 1 ns

to 11 ns, then nτ = 10, and with ZFA = 4, FAR(for one τ)=0.0032%, and FAR(for

all τ in (1 ns,10 ns))=0.032%.

In the presence of a pack, where τdelay > τc, the magnitude of the expected value

of the peak of the autocorrelation response is given by

|E[Φpresence(τ)]| = |Ae| e Fs W1(0) (3.30)

where we assume that the peak rises above the level of the surrounding noise floor.

A number of situations constitute the absence of the pack. In all of these situa-

tions, the expected value of the autocorrelation function is determined by the noise

floor of the ACF. We will denote this ACF noise floor, relative to the peak at τ = 0,

as SNRΦ. Especially for small pack thicknesses, this floor may be the sidelobes

of the window function applied to the incoherent emissivity of the scene, so that

SNRΦ ≥ SLL. In any event, the expected value in the absence of the pack is

|E[Φabsence(τ)]| = SNRΦ eabsence Fs W1(0) (3.31)
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For example, if the pack is not present and the underlying surface is smooth, eabsence =

1 − |R02|2, where R02 is the Fresnel reflection coefficient between air and water, or

air and land. For the purpose of unambiguous measurement of the delay, however,

the most relevant absence is the case where the pack is present, but |τ − τdelay| > τc.

In other words, to detect the pack time delay, the delayed peak must rise above

the surrounding floor of the autocorrelation function. In this case, eabsence = e.

The autocorrelation response of the lake icepack with thickness dice = 36.8 cm,

the expected value (E[Φabsence(τ)]), the expected value plus one standard deviation

(|E[Φabsence(τ)]|+
√

V ar[Φabsence(τ)]), and the expected value plus two standard de-

viations (|E[Φabsence(τ)]|+ 2×
√

V ar[Φabsence(τ)]) of the autocorrelation response in

the absence of the pack using rectangular and Hamming window functions are shown

in Figs. 3.12 and 3.13, respectively. The number of independent samples, Nind, in

these figures is 100. It can be observed that there is one peak after the zero delay

peak. This peak, which is higher than the summation of the expected value and the

standard deviation at any single point of time, is considered a detected peak, and it

corresponds to the microwave propagation time within the icepack. It can also be

observed that the side lobe levels have been decreased in Fig. 3.13 due to the Ham-

ming window function. On other hand, if we decrease Nind to 5, it will get harder to

detect a peak, as it can be observed in Fig. 3.14. The Hamming window function is

used in Fig. 3.14.

Using equations (3.24), (3.30), and (3.31), equation (3.25) for lake icepack and

dry snowpack can be written to show the dependence of the minimum number of

independent samples Nind on the receiver operating characteristics, noise figure, and

detection scenario as

Nind =
κNtraceRBW

VBW
> 2

(ZFA + ZPD)
2

Nf
·D2(θ) · F 2 (3.32)
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Figure 3.12: Simulation of the autocorrelation response of a lake icepack over fresh-
water (θ = 0◦ and dice = 36.8 cm). The expected value, the expected value plus
one standard deviation, and the expected value plus two standard deviations of the
autocorrelation response in the absence of an icepack are also simulated. Fs = 3 GHz,
and the number of independent samples, Nind is 100. The rectangular window was
used.

where D(θ) is a discrimination function which depends only on the detection scenario

(lake icepack or snowpack), the window function, and the incidence angle, as given

by

D (θ) =

(

√

W2(0)

W1(0)

)

/(

|Ae| e− SNRΦeabsence

)

(3.33)

Neither (3.32) nor (3.33) depends on the pack depth or τdelay due to our assumption

that Ae ≪ e.

Equation (3.32) is valid only when D(θ) > 0, i.e., when the delayed peak rises

above the autocorrelation noise floor. The square of the positive values of this dis-

crimination function for lake icepack and dry snowpack is shown in Fig. 3.15(a) and

Fig. 3.15(b), respectively, assuming that SNRΦ = SLL. In both figures, D2(θ) is
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Figure 3.13: Simulation of the autocorrelation response of a lake icepack freshwater
(θ = 0◦, dice = 36.8 cm, and τdelay = 4.35 ns). The expected value, the expected value
plus one standard deviation, and the expected value plus two standard deviations of
the autocorrelation response in the absence of an icepack are also simulated. Fs = 3
GHz, and the number of independent samples, Nind is 100. The Hamming window
was used.

shown in both H and V polarization and for both rectangular and Hamming windows.

For the snowpack we used ρs = 0.3 g/cm3; hence, the refractive index of the snowpack

is nsnow = 1.253, using (2.6). The typical value of frozen soil is nsoil = 2− j0.05.

It can be observed from these figures that the number of independent samples,

Nind, needed to detect τdelay for both lake icepack and dry snowpack is lower in

H-pol configuration compared to the V-pol configuration regardless of the window

function. Moreover, we are only able to detect the time delay at few angles in V-

pol configuration due to the Brewster angle between the air and icepack while we

can detect the time delay at nearly all incidence angles in H-pol regardless of the

window function. The choice of the Hamming window function in post processing is

also superior to the rectangular window with respect to Nind for both lake icepack

and dry snowpack regardless of the polarization. Finally, Fig. 3.15 predicts that the
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microwave propagation times in both lake icepack and dry snowpack are detectable at

angles away from nadir to close to grazing with the appropriate choice of polarization

and window function.

As an example, for a lake icepack, Nind = 3×105 satisfies (3.32) with (τmax−τmin)

= 10 ns, Fs = 3 GHz, Z = 3 (FAR(for all τ) = 4.05%), RBW = 3 MHz, VBW = 1

KHz, Nf = 461, Ntrace = 100, and F = 10 dB using both rectangular and Hamming

window functions at 10◦ incidence angle for both H- and V-pol configurations.

3.2.4.6 Effect of Antenna Elevation Beamwidth

Thus far we have assumed a pencil-beam antenna (ie. a hypothetical antenna with

infinitesimal beamwidth) is used to observe the delay. However, the delay as given

by (2.4) has an incidence angle dependence, and thus any real antenna with elevation

beamwidth will smear the delay in the time domain via a process akin to frequency

dispersion. For simplicity, we will assume a 2D problem (the plane of incidence) and

that the overall gain pattern for the antenna can be modelled as a product of an

elevation pattern and an azimuth pattern. This assumption about the gain pattern

is often used for the analysis of standard gain horns (eg. [90]). Also, since we assume

that the calibration targets used to implement (3.3) will be beamfilling, the measured

emissivity spectra at boresight angle θ0 will be equivalent to

em(f, θ0) =
1

βe

∫

e(f, θ)g(θ; θ0)dθ (3.34)

where βe =
∫

g(θ; θ0)dθ is the elevation beamwidth and g(θ; θ0) is the elevation an-

tenna gain in the direction θ when the antenna boresight is θ0. Presuming that

the elevation gain pattern is symmetric around boresight, the mean emissivity, e, is

unchanged, but the amplitude of the ripples in the observed emissivity spectra are

reduced.
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If we can assume the beam pattern is approximately independent of frequency,

and since the inverse Fourier transform is a linear operation, we can further say that

Φm (τ) =
1

βe

∫

Φ (τ) g(θ; θ0)dθ (3.35)

where the dependence of Φ on the local incidence angle θ is through τdelay .

In the previous section we have shown that H-pol (TE) is preferred over V-pol

(TM) because the reflection coefficients that create the delayed ray are larger, re-

sulting in fewer samples needed to extract the delayed peak in the autocorrelation

function from the noise floor. As our system utilizes a standard gain horn for the

measurements, we can model the elevation gain pattern as done in [90]:

ge,H =

∣

∣

∣

∣

∣

cosuH

1−
(

2
π
uH

)2

∣

∣

∣

∣

∣

2

(3.36)

ge,V = |sinc uV |2 (3.37)

where uq = (πaq/λ) sin (θ − θ0), λ is the wavelength, and aq is the standard gain

horn aperture dimension for the H-plane (q = H) and E-plane (q = V ), respectively.

The half-power beamwidths for these gain patterns are βH = 1.20λ/aH and βV =

0.88λ/aV .

The effects of these beamwidths on the magnitude of the delayed peak are shown

in Fig. 3.16 by directly convolving these antenna patterns with the autocorrlation

function per (3.35). The reduction is most severe near θ0 = 45◦ because that is where

the magnitude of dτdelay/dθ is the largest, while it approaches zero at both nadir and

grazing. Thus, downward looking WiBAR and possibly side-looking WiBAR may

be more practical than one that looks at more traditional radiometer angles around

40◦. A beamwidth of βe = 8.7◦ was chosen for Fig. 3.16 because it corresponds to

measurements that will be discussed in the next section.
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Figure 3.16: The effect of the antenna elevation beamwidth on the magnitude of
the delayed peak, relative to the peak at zero lag, for H-pol and as a function of
incidence angle for freshwater ice 36.8 cm thick. The curves for the pencil beam
is from equation (3.30), convolved employs a numerical analysis of (3.35), and the
approximation employs (3.39).

To see the effect of the frequency dependence of the antenna pattern, Fig. 3.16

also includes an approximate analytical expression that can be derived by expanding

the square root in (2.4) in a Taylor series around θ0, retaining zeroth order every-

where except in the complex exponential in (3.11), where it is retained to first order,

approximating the gain pattern with

ge (θ; θ0) ≈ cos2
(

π

2βe

(θ − θ0)

)

(3.38)

and integrating between the first nulls on either side of the main lobe. The result is

that the ACF delayed peak is reduced by a factor of

Lβ =
sinc χ

1− χ2
(3.39)
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where

χ = −2βe f
dτdelay
dθ

(3.40)

Since βe is proportional to the ratio of wavelength to aperture size, χ is approximately

constant across the spectrum, and proportional to the ratio of pack thickness to

antenna elevation aperture. Thus, the discrimination function (3.33) becomes

D (θ0) =

(

√

W2(0)

W1(0)

)

/(

|Ae| eLβ − SNRΦeabsence

)

(3.41)

and now also includes dependence on the pack thickness and the antenna. As seen

in Fig. 3.16, the analytical approximation using Lβ underestimates the peak magni-

tude where the magnitude is reduced the most, relative to the more complete integral

expression given by (3.35). Thus, the results using (3.39) are a conservative approxi-

mation for the beamwidth effects.

We can derive a requirement on the antenna aperture size by inserting the H-pol

beamwidth βe,H = 1.20λ/aH into χ, expanding the sinc function, and maintaining

the requirement that D(θ) > 0:

aH > 1.20 d sin 2θ0

√

|Ae| e
|Ae| e− SNRΦeabsence

· 2 (π
2/6− 1)

n2
p − sin2 θ0

(3.42)

For strong signals (Aee > SNRΦeabsence) from an ice pack (n2
ice = 3.15), the radical

evaluates to close to unity. For 0.3 g/cm3 snow pack, it is about 50% larger. Due to

the sin 2θ0 term, measurements at θ0 = 45◦ appear to require the largest aperture,

approximately the size of the pack thickness, with less stringent requirements at

incidence angles both larger and smaller. Fortunately, much smaller antennas will

suffice for measurements closer to nadir or to grazing than 45◦. These conclusions

about the antenna apply regardless of the center frequency, fc, and the frequency
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span, Fs, chosen for observation since the frequency dependent angular dispersion for

τdelay is corrected by the frequency dependence of the gain pattern of the antenna.

Of course, the choice of Fs impacts the minimum measurable depth, and the choice

of fc will affect the amount of scattering seen.

3.2.5 Two Layered Media

Wideband autocorrelation radiometry (WiBAR) of single layer of ice over water

has been previously discussed and investigated in Section 3.2.4 [57]. In this section,

we want to investigate the ability of the WiBAR instrument in detecting the snow

and ice layers in a two layered media of lake icepack with dry snow cover, which

introduces another multipath interference. The measurement uncertainty and the

effect of the antenna elevation beamwidth are the same as Sections 3.2.4.3 and 3.2.4.6.

The variance of the ACF is the same as (3.24). The mean of the ACF is also similar

to Section 3.2.4.2 since both the IFFT and expected value expressions are linear.

3.2.5.1 Resolving the Time Delays of the Snow and Ice Layers

For two equal amplitude delay peaks in time, τ1 and τ2, the classic criterion for

the resolution is the width of the window at the half power points, as explained

in [57],[30]. However, since the amplitudes of the two delay peaks of ice and snow

are not equal, this criteria to resolve two equal amplitude peaks is not accurate. An

alternative criteria is to resolve two unequal amplitude delay peaks with an amplitude

difference, |∆A|. If the weak amplitude delay peak resides after the first side lobe

level of the strong amplitude delay peak, in order to resolve the two peaks, the time

difference between the two delay peaks |∆τ | should satisfy

|∆τ | > max
{τmain lobe

2
,
(

τFSLL × 2(
|∆A|−|FSLL|

|SLF| )
)}

, (3.43)
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where SLF (dB/Octave) is the side lobe fall-off (SLF) of the window function,FSLL

(dB) is the first side lobe level of the window function, and τFSLL = 1
2
(τmain lobe + τside lobe)

is the location of the FSLL peak, where τmain lobe =
2ζmain lobe

Fs
is the main lobe width

between the first zero crossings, ζmain lobe is a factor depending on the window func-

tion, Fs is the frequency bandwidth, and τside lobe is the width of the first side lobe.

For instance, SLF = -3 dB/Octave, FSLL = -6.5 dB, and ζmain lobe = 1 for the rect-

angular window, while SLF = -3 dB/Octave, FSLL = -21.5 dB, and ζmain lobe = 2 for

the Hamming window. The width of the first side lobe in both the Hamming and

the rectangular window is the same and equal to 1
Fs
. As a case in point, to detect a

delay peak 1 ns away from the zero delay peak with Fs = 3 GHz, |∆A| < 9.5 dB and

|∆A| < 22.2 dB are required for the rectangular and the Hamming window functions,

respectively. This effect is shown in Fig. 3.17 for which the stronger delay peak is

that at τ = 0 ns.

On the other hand, if the weak amplitude delay peak resides between the 1
2
τmain lobe

and τFSLL of the strong amplitude delay peak, the two peaks can be resolved if |∆A| <

|FSLL|. As an example, to detect a delay peak at 0.4 ns using the rectangular window,

|∆A| should be less than 6.5 dB, while to detect a delay peak at 0.8 ns using the

Hamming window, |∆A| should be less than 21.5 dB, as shown in Fig. 3.18. In the

case of multiple delay peaks, (3.43) still holds for any two closely spaced peaks in

time, but the sidelobe parameters are set by the peak with the highest sidelobes at

the two close peaks, which is often the zero delay peak in the ACF.

If the autocorrelation delay peaks can be resolved, their amplitudes and positions

could be biased due to the side lobe leakage of both the zero delay and other peaks.

The bias from the zero delay peak is visible in both Figures 3.17 and 3.18. To reduce

the effects of this bias on amplitude and time delay detection, the window function

should exhibit low-amplitude sidelobes far from the main lobe, and the transition to

the low sidelobes should be very rapid [30]. On the other hand, if the autocorrelation
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Figure 3.17: Simulated autocorrelation response with a delay peak at 1 ns. The
bandwidth is 3 GHz. The delay peak has an amplitude of -3 dB for the rectangular
window (black solid line) and -15 dB for the Hamming window (dashed red line).
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Figure 3.18: Simulated autocorrelation response with delay peaks at 0.4 ns with -2 dB
amplitude for the rectangular window (black solid line) and at 0.8 ns with -15 dB
amplitude for the Hamming window (red dashed line). The bandwidth is 3 GHz.

delay peaks cannot be resolved, we can only detect one of the two adjacent peaks with

biased amplitude and position. The position of the detected peak would be biased to

the crossover point (half-way between the two peaks) for two equal amplitude peaks

or to a point between the crossover point and the strong delay peak for two unequal

amplitude peaks, and it would get closer to the stronger peak as the |∆A| becomes

larger. For example, in the case of using a Hamming window with Fs = 3 GHz, the

time delay of a 35.5 cm icepack is shifted from 4.2 ns to 4.3 ns in the presence of a

thin 3 cm dry snowpack, as shown in Fig. 3.19.

61



Figure 3.19: Simulated autocorrelation response of a 35.5 cm icepack (nice =
√
3.15)

without (red dashed line) and with (solid black line) a 3 cm snowpack (ρs =
210 kg/m3, nsnow = 1.18) on top. The Hamming window was used, and the bandwidth
was 3 GHz (θ = 0◦, τice = 4.2 ns, τsnow = 0.2 ns, and |∆A| ≈ 1.4 dB).
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3.2.5.2 Limits of Detection

The emissivity can be approximated with a Taylor expansion [57], for which the

zeroth and first order terms are

e(f) ≈ e

(

1− 2

[

Ai cos(ωτice) + As cos(ωτsnow)

+ AΣ cos
(

ω
(

τsnow + τice
)

)

+ A∆ cos
(

ω
(

τsnow − τice
)

)

]

)

(3.44)

The absolute value of the ripple amplitudes are plotted with respect to the incident

angle in Fig. 3.20. In H-pol configuration, it can be observed that A∆ has the lowest

value at all the angles while Ai has the largest value from nadir up to 75◦. After

θ = 75◦, AΣ becomes dominant. All the ripple amplitudes in each detection scenario

are lower in V-pol configuration compared to H-pol configuration. Moreover, the

amplitude values become close to zero at some angles in V-pol configuration due to

the Brewster angles between the air and snow and between the snow and ice.

As in [57], the minimum Nind is dependent on the receiver operating characteris-

tics, noise figure, and the discrimination function, D(θ).

Nind > 2
(ZFA + ZPD)

2

Nf
·D2(θ) · F 2 (3.45)

where the F is the receiver noise figure, Nf is the number of frequency points, and

ZFA and ZPD are the number of standard deviations from the magnitude of the

expectation of the ACF in the absence and presence of a slab. They determine the

false alarm rate and probability of detection, respectively [57].

The discrimination function depends only on the detection scenario, the window

function, and the incidence angle, as given by [57]
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Dℓ (θ) =

(

√

W2(0)

W1(0)

)

/(

|Aℓ| e− SNRΦeabsence

)

(3.46)

where ℓ = i, s,Σ,∆. As explained in [57], D(θ) must be positive, so that the delayed

peak rises above the autocorrelation noise floor. The square of the positive values

of this discrimination function for lake icepack with top dry snowpack at τice, τsnow,

τice+τsnow, and τice−τsnow are shown in Figures 3.21(a), 3.21(b), 3.21(c), and 3.21(d),

respectively. For the snowpack, we used ρs = 210 kg/m3. It can be observed that

the Nind needed to detect the time delay for any of the four peaks is lower in H-pol

configuration compared to the V-pol configuration regardless of the window function

at most of the incidence angles. Moreover, similar to Fig. 3.20, we are only able to

detect the time delay at few angles in V-pol configuration due to the Brewster angle

between the air and snow and between the snow and ice while we can detect the

time delay at nearly all incidence angles in H-pol regardless of the window function.

The choice of the Kaiser-Bessel (αk = 3.02, FSLL = -35 dB, and ζmainlobe = 2.39)

window function in post processing could be helpful due to its lower sidelobes at

the expense of coarser resolution. The minimum Nind is inversely proportional to the

ripple amplitudes shown in Fig. 3.20, indicating that τice is the easiest lag to measure,

and τice − τsnow is the most difficult. Finally, Fig. 3.21 predicts that the microwave

propagation times in both lake icepack and the top dry snowpack are detectable at

angles away from nadir to close to grazing with appropriate choice of polarization

and window function, similar to the results from Fig. 3.20.

3.2.6 Singled Layered Media with Variable Thicknesses

The presence of variable pack thickness within a footprint of the radiometer’s

antenna will add complexity to the retrieved time delay. This issue is more severe
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for WiBAR on airborne and space-borne platforms than WiBAR on ground-based

platforms since the footprint for a given radiometer antenna is larger. In the follow-

ing section, using a simple forward model for a layer having distinct thickness values

within one footprint (pixel), the system requirements for resolving these distinct thick-

ness values are derived. The statistics of the ACF, measurement uncertainty, and the

effect of the antenna elevation beamwidth is similar to the single layered media as

discussed in Section 3.2.4.

3.2.6.1 Minimum and Maximum Resolvable Sub-Pixel’s Thickness

The ability of the WiBAR to detect multiple distinct time delays within a single

footprint depends on its ability to resolve two autocorrelation peaks in the time

domain. This situation was discussed in [54] for the case of snow over ice, and can be

readily adapted to a single layer with different thicknesses. The criteria for resolution
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Figure 3.21: The square of the positive values of the discrimination function D(θ)
for the delay peak at (a) τice (b) τsnow (c) τice + τsnow (d) τice − τsnow as a function of
incidence angle. The snowpack density is ρs = 210 kg/m3 (nsnow = 1.18).
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depends on the magnitude of ∆τ , the difference between the ACF peaks, relative to

1/Fs, where Fs is the WiBAR frequency span, and on the window function used in

the IFFT. Different window functions reveal different features of the ACF, typically

trading temporal resolution for sidelobe level. The choice of window function does

not need to be made prior to the measurements. Multiple window functions can be

used to discover the properties of the target.

The first criteria is when |∆τ | > τFSLL, where τFSLL = 1
2
(τmain lobe + τside lobe) is

the location of the first sidelobe peak, τside lobe = 1/Fs is the null-to-null width of the

window function sidelobe, τmain lobe = 2ζ/Fs is the null-to-null width of the window

function main lobe, and ζ is one plus the order of the cosine-sum window function

(ζrectangular = 1, ζHamming = 2, etc.). Under this circumstance, the maximum difference

between the sub-pixel solid angles (aij) for two distinct thicknesses is given by

|∆A| =
∣

∣

∣

∣

10 log10

(

min

{

aij
amn

, for mn 6= ij

})
∣

∣

∣

∣

< |FSLL|+
[

|SLF| × log2

( |∆τ |
τFSLL

)]

(3.47)

where FSLL (dB) is the first sidelobe level of the window function, SLF (dB/Octave)

is the side lobe fall-off of the window function, and |∆A| is the difference in the

amplitude of the delay peaks. As an example, to detect a 10 cm (|∆τ | = 1 ns at

θ0 = 75◦) sub-pixel thickness distinction with Fs = 3 GHz, the difference between the

delay peaks should be |∆A| < 9.5 dB and |∆A| < 22.3 dB for the rectangular and the

Hamming window functions, respectively. This effect is shown in Fig. 3.22, where it

is assumed there are two sub-pixels with a11 = 0.1 and a12 = 0.9, or, equivalently,

|∆A| = 9.5 dB. The delay peak at 40 cm (the weak amplitude) is shifted from 4.0 ns

to 3.9 ns, which is due to the side lobe leakage of the strong delay peak at 50 cm [54].

Nonetheless, resolution of the two thicknesses is very clear because |∆τ | > τFSLL.

On the other hand, if the sub-pixel thickness distinction is small such that the
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Figure 3.22: Simulated autocorrelation response of an icepack with two thicknesses
of 40 cm and 50 cm with different area size using rectangular and Hamming window
functions. The delay peaks are about 1 ns away from each other. The system’s
bandwidth is 3 GHz. The antenna’s gain pattern coefficients in each sub-pixel are
a11 = 0.1 and a12 = 0.9 (|∆A| = 9.5 dB). The sub-pixel difference can be resolved
using the Hamming window function, while it cannot be resolved using the rectangular
window function (θ0 = 75◦).

weak delay peak is between the 1
2
τmain lobe and τFSLL of the strong delay peak, the

sub-pixel variability can be resolved if |∆A| < |FSLL| [54]. For instance, to detect a

sub-pixel thickness distinction of 4 cm (0.4 ns) using the rectangular window, |∆A|

should be less than 6.5 dB, while to detect a sub-pixel thickness distinction of 8 cm

(0.8 ns) using the Hamming window, |∆A| should be less than 21.5 dB. Figure 3.23

demonstrates this effect for the rectangular window, and Fig. 3.24 shows it for the

Hamming window.

If the sub-pixel thickness distinction is less than 1
2
τmain lobe, the minimum de-

tectable thickness by WiBAR, there would be one delay peak in ACF. This one peak
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Figure 3.23: Simulated autocorrelation response of an icepack with two variable thick-
nesses of 40 cm and 44 cm using a rectangular window. The delay peaks are about
0.4 ns away from each other. The amplitude difference between the delay peaks should
be less than about 6.5 dB to be resolved (θ0 = 75◦).

will be wider in time and lower in amplitude than it would be for a single thickness.

This effect can be observed in Fig. 3.23 for the peak at 4.4 ns.

The upper limit to the maximum detectable time delay is similar to [57] and

determined by the resolution bandwidth (RBW) of the spectrum analyzer and the

number of frequency bins. Finally, limits of detection and the minimum number of

independent samples required to detect the time delays is explained in detail above

and in [57].
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Figure 3.24: Simulated autocorrelation response of an icepack with two variable thick-
nesses of 40 cm and 48 cm using a Hamming window. The delay peaks are about
0.8 ns away from each other. The amplitude difference between the delay peaks should
be less than about 21.5 dB to be detected (θ0 = 75◦).

3.3 Non-Destructive Dielectric Constant Measurement of Low-

Loss Dielectric Slabs using WiBAR

The knowledge of the interaction of electromagnetic waves with natural and man-

made materials is of great importance in today’s engineering and manufacturing ap-

plications. The behavior of electromagnetic waves in homogeneous media is mainly

dependent on medium’s macroscopic parameter, the relative dielectric constant. The

relative dielectric constant, or relative permittivity, of a material is an electrical prop-

erty of the material which changes the magnitude, phase, and direction of an applied

electric field. The dielectric constant is a complex quantity. The real part is related

to the dipole moment per unit volume of the material, while the imaginary part is
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related to the dissipated heat. For a low-loss material, where there is no significant

absorption or heat dissipation, the dielectric constant would be nearly a real quan-

tity. There are many techniques and procedures reported in the literature for the

measurement of the dielectric constant of materials, such as the resonant techqnique

and the transmission line method [36, 34, 35, 4]. However, these methods require

direct sampling of a material, which is mostly destructive and sometimes impossible

to perform for some materials, such as snowpacks on high altitude mountains. To ad-

dress these issues, we developed a new and non-destructive measurement technique of

the dielectric constant of a low-loss dielectric slab, such as dry snowpack or freshwater

lake icepack, using the wideband autocorrelation radiometry (WiBAR) [57, 15, 59].

This section shows the ability of the WiBAR in directly and non-destructively mea-

suring the dielectric constant and thickness of a loss-less slab. Here, we assume that

the environment provides ideal properties for our retrieval, and there is no radio fre-

quency interference (RFI) and target imperfections of absorption, volume scattering,

and surface scattering.

The measured time delay by WiBAR, τdelay, for a homogeneous and isotropic pack

is given by (2.4). If a delay peak can satisfy the detection criteria, as discussed above

and in [57], at two distinct incidence angles, ǫp and dp can be found using (2.4) at the

two incidence angles, as given by [55]

ǫp =
τ 21 sin

2 θ2 − τ 22 sin
2 θ1

τ 21 − τ 22
(3.48a)

dp =
cτi

2
√

ǫp − sin2 θi
(3.48b)

where i =1 or 2, and τ1 and τ2 are the measured time delay by WiBAR at incidence

angles θ1 and θ2, respectively. Assuming a pencil beam antenna, the error in the

measured ǫp and dp is mainly due to the error in the measured time delay by WiBAR,
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and it can be calculated using the error propagation rule, as given by

δǫp =

√

(

∂ǫp
∂τ1

· δτ1
)2

+

(

∂ǫp
∂τ2

· δτ2
)2

(3.49a)

δdp =

√

(

∂dp
∂τi

· δτi
)2

+

(

∂dp
∂ǫp

· δǫp
)2

(3.49b)

where i =1 or 2, and δτ1 = δτ2 = δτ , where δτ is the error in the measured time

delay by WiBAR, as discussed in Chapter IV. Using (3.48), (3.49) can be further

expanded, as given by

δǫp =
2δτ

∣

∣sin2 θ2 − sin2 θ1
∣

∣ τ1τ2

(τ 21 − τ 22 )
2 ·

√

τ 21 + τ 22 (3.50a)

δd = dm ·
√

(

δτi
τi

)2

+

(

δǫp
ǫp − sin2 θi

)2

(3.50b)

3.4 Simulated Laboratory Measurements

Before using the WiBAR instruments in the field measurements, we performed

simulated laboratory measurements to prove the concept of the WiBAR and test our

instruments. The block diagram of the microwave scene simulator is shown in Fig-

ure 3.25 [60]. The loops consisting of two 180 degree hybrid couplers, plays the role of

multiple reflection inside the pack. The upper hybrid coupler resembles snow-terrain

or ice-water interface, and the lower one models the snow-air or ice-air interface. The

length of the coaxial cables are equal the thickness of the pack, and the attenua-

tors account for attenuation in the pack as the microwave travels through it. The

noise source followed by the amplifiers accounts for the thermal radiation from the

semi-infinite medium beneath the pack. The receiver is the spectrum analyzer. The

laboratory setup is also shown in Figure 3.26.

The measured power spectrum is shown in Figure 3.27. Using (3.4), the ACF
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Figure 3.25: The schematic of the microwave scene simulator. Two coaxial cables
are used to connect the upper and lower 180 degree hybrid couplers representing the
roundtrip withing the pack.

Figure 3.26: The laboratory setup of the microwave scene simulator. The coaxial
cables’ length are 4 inches (10.16 cm).
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Figure 3.27: The measured power spectrum of the microwave scene simulator model
with 4 inches (10.16 cm) coaxial cables.

of the measured power spectrum can be found, as shown in Figure 3.28. Different

window functions, such as Kaiser, Blackman, and Hanning (Hann) were used. It can

be observed from Figure 3.28 that the measured timed delay by WiBAR for 4 inches

(10.16 cm) coaxial cables is 2.47 ns. The measured time delay by a vector network

analyzer (VNA) is 2.48 ns. This proves the ability of this technique in measuring the

microwave propagation time through the pack.

3.5 Field Measurements and Results

In this section, the potential of this technique as an inversion algorithm is demon-

strated using a limited set of field measurements of lake icepack. These measurements

are divided into different categories based on the target characteristics, such as single

layer of ice/snow, two layer media of ice with snow cover, and single layer media with

thickness variation within a footprint of the radiometer’s antenna.
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Figure 3.28: The ACF of the measured power spectrum of the microwave scene
simulator model with 4 inches (10.16 cm) coaxial cables. The measured time delay
by WiBAR is 2.47 ns.

3.5.1 Single Layer Media of Ice/Snow

The lake icepack measurements were conducted on Douglas Lake at the Univer-

sity of Michigan Biological Station (UMBS) on March 02, 2016. The first fabricated

X-band WiBAR instrument using the portable spectrum analyzer (Agilent N9344C)

was used (first version of X-band WiBAR). This instrument was explained in Sec-

tion 3.2.1.1. The lake ice was solid black ice (no air bubbles or frozen snow), and the

thin snow cover was removed prior to the measurements. The measurements were

conducted in H-pol, with an antenna with aH = 27.9 cm. The incidence angles ranged

from 0.9◦ to 59.1◦. At each angle, 461 frequency points were collected on a portable

spectrum analyzer, which was swept from 7 GHz to 10 GHz with Ntrace = 100. The

measurement setup is shown in Fig. 3.29(a). The icepack thickness was measured

with a tape measure after hand-coring the ice at the conclusion of the WiBAR mea-

surements, as shown in Fig. 3.29(b). The measurements reported here were conducted
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(a) (b)

Figure 3.29: (a) Measurement setup of the lake icepack measurement using a wide-
band autocorrelation radiometer (WiBAR) on a tripod (a motorcycle battery was
used as a power source) and (b) ground truth measurement of the lake icepack.

at one location and during one day.

Measurements of sky and microwave absorber were also conducted to obtain spec-

tra for targets whose emissivity approximated 0 and 1, respectively. These were then

used to correct the averaged power spectra of the target to yield spectra of emis-

sivity. As an example, one of the power spectra of the sky, absorber, and lake ice

observations is shown in Fig. 3.30. The lake ice observations were made from about

noon until around 5:00 pm on March 02, 2016, and the sky and microwave absorber

measurements were made after all the measurements at around 5:15 pm on the same

day. The physical temperature of the absorber was not measured, but is affected by

the air temperature, which was about -5oC and -6oC at noon and 5:00 pm, respec-

tively. However, since our main measurement objective is to passively measure a time

delay and not a brightness amplitude, the time difference between the lake ice and

calibration targets (sky and microwave absorber) measurements should not impact
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Figure 3.30: Sky, absorber, and lake icepack observation on Douglas Lake on March
02, 2016 (θ = 59.1◦, dice = 35.5 cm).

the results. The emissivity is obtained using the calibration procedure given by (3.3).

The emissivity of the observation in Fig. 3.30 is shown in Fig. 3.31.

To find the time delay, the emissivity spectra were multiplied by a Hamming win-

dow, zero-padded to Nf+Nz = 214 to improve temporal precision, and inverse Fourier

transformed to yield an autocorrelation function. The autocorrelation response of the

measurement and the expected value of the autocorrelation response for a 35.5 cm

icepack with its expected value is shown in Fig. 3.32. The first delay peak after the

zero delay peak is at 3.84 ns. The incidence angle is 59.1◦. There is about 9 dB

difference in the first delay peak after zero between the model and measurement au-

tocorrelation response. Gain variations due to temperature drift of electronics, as

well as imperfections in the ice such as surface and volume scattering, can cause a

decrease in the delayed autocorrelation peak, and these effects are not considered in
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Figure 3.31: The spectral emissivity of the lake icepack measured on Douglas Lake
on March 02, 2016 (θ = 59.1◦, dice = 35.5 cm).
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Figure 3.32: The autocorrelation function of the lake icepack measured on Douglas
Lake on March 02, 2016 (blue solid line) with the expected value of the autocorrelation
response of the lake icepack model. The Hamming window was used (θ = 59.1◦,
dice = 35.5 cm).

the derivation of the expected value of the autocorrelation response. The magnitude

of the delayed peak in all of our measurements of the lake ice can be seen in Fig. 3.16.

These measurements, as well as those for the sky and absorber, each tookNtraceTs ≈

5 min, but the parameters for the measurements were set before the theory in the

previous sections was developed. To demonstrate that τdelay can be retrieved in sig-

nificantly less time, Fig. 3.33 shows the inversion with Nf reduced from 461 to 47

equally spaced frequencies, yet still spanning Fs = 3 GHz. This reduces the max-

imum alias-free lag to 8 ns. The peak associated with the expected delay is still

present, but the noise floor increases due to aliasing. By itself, this decimation in

81



0 5 10 15

Time Delay (ns)

-40

-35

-30

-25

-20

-15

-10

-5

0

A
u

to
c

o
rr

e
la

ti
o

n
 R

e
s

p
o

n
s

e
 (

d
B

)

Measurement with the Full Spectrum

Measurement with a Sparsely Sampled Spectrum

Measurement with a Reduced Spectrum

Figure 3.33: Measured autocorrelation function of the Douglas Lake icepack with
the full spectrum analyzer spectrum (Nf = 461, Fs = 3 GHz), with a spectrum
sparsely sampled (Nf = 47,Fs = 3 GHz), and with a reduced spectrum (Nf = 47,
Fs = 0.9 GHz). The incidence angle is θ = 0.9◦. The Hann window was used.

frequency (if the spectrum analyzer allowed it) would reduce the measurement time

to about 30 s. Further reductions in data acquisition time are possible by reducing

Ntrace. Figure 3.33 also demonstrates the effect of increasing τc by keeping Nf at 47

while decreasing the frequency span, Fs to 900 MHz. At this Fs, the peak is still

present but is distorted due to the poorer temporal resolution.

The retrieved microwave propagation times for the icepack with respect to obser-

vation angle from 0.9◦ to 59.1◦ is plotted in Fig. 3.34. The expected values for the

microwave propagation time through the icepack are obtained using (2.4) at incidence

angles from 0◦ to 90◦ for three different thicknesses, dice = 35.56, 36.83 and 38.10 cm,

and are also shown. We showed three different thicknesses with ±1.27 cm since our

ground truth measurement tools were not very accurate. While we measured an ice
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Figure 3.34: Measured and expected microwave propagation time using equation (2.4)
through the icepack with respect to the incidence angle.

thickness of 35.6 cm, a slightly better fit to the measured delays is for a thickness

of 36.8 cm. We suspect that the manual ice core tool caused chips of ice outside of

the cored cylinder at the bottom of the ice pack to break away, and thus our tape

measurement did not capture the full thickness of the ice. Nonetheless, it can be

observed that there is a good fit between the measured and theoretical values of time

delays as a function of incidence angle, and the time delay decreases with increasing

incidence angle, as it is expected using (2.4).

Figure 3.34 also shows the value of zero-padding in post-processing. The ACF was

created by zero-padding the spectrum up to Nf + Nz = 214, resulting in a temporal

precision of 0.01 ns. In the absence of zero-padding, the data would have been rounded

to the nearest 1/Fs = 0.33 ns. At this coarse precision, the angular dependence of

the delay would be barely visible.
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The most obvious outlier in Fig. 3.34, at 31◦, corresponds to the measurement

with lowest delayed peak magnitude in Fig. 3.16, and so suffers from a low signal to

noise ratio, and is thus affected by the sidelobes of the peak at τ = 0. As the null

to null width of a sidelobe is 1
Fs
, the largest deviation expected is 1

2Fs
≈ 0.16 ns, and

this peaks differs from the best-fit curve by about 0.10 ns.

Finally, Fig. 3.34 supports the prediction of (2.4) for the angular dependence of

the retrieved time delays of lake icepack using WiBAR. For this icepack, the WiBAR

accuracy is within 2 cm of the manually measured pack thickness.

Other measurements were also done at single incident angles at Argo Pond and

Barton Dam in Ann Arbor, MI, and South Sturgeon Lake in northern Minnesota.

These measurements were conducted using the second version of X-band WiBAR, as

explained in Section 3.2.1.2. All the measured time delays by WiBAR for a single

layer of lake icepack and a lake icepack with dry snow cover at all incident angles are

shown in Figures 3.35 and 3.36, respectively. The root mean squared error (RMSE)

of the measured time delay by WiBAR is about 0.09 ns and 0.1 ns for bare ice and

ice with dry snow cover, respectively. It can be observed that the presence of a dry

snow cover can affect the ability of WiBAR in accurately measuring the ice thickness.

The thinner the ice, the worse this effect would be, as discussed in Section 3.2.5.1.

3.5.2 Non-destructive Dielectric Measurement of a Single Layer of Ice

Using the results from the field measurement campaign explained in 3.5.1, the

dielectric constant and thickness of the icepack can be directly found, as explained

in Section 3.3. The ACF at two different incident angles θ1 = 0.9◦ and θ2 = 59.1◦,

obtained from the measured spectra after calibration [57], using the Hamming window

function is shown in Fig. 3.37. The measured time delays are τ1 = 4.35 ns and

τ2 = 3.83 ns at θ1 = 0.9◦ and θ2 = 59.1◦, respectively. Using (3.48), the measured

dielectric constant and thickness of the icepack are ǫp = 3.24 and dp = 36.24 cm,
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Figure 3.35: WiBAR measurement at all incident angles of bare lake icepacks at
different lakes. The RMSE is about 0.09 ns.
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Figure 3.36: WiBAR measurement at all incident angles of lake icepacks with dry
snow covers at different lakes. The RMSE is about 0.1 ns.
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Figure 3.37: The autocorrelation function of the lake icepack measured at θ1 = 0.9◦

(blue solid line) and θ2 = 59.1◦ (red dashed line) on Douglas Lake on March 02, 2016.
The Hamming window was used.

respectively. The measured thickness is less than 1 cm different from the ground

truth value of the icepack thickness ( δd
d

≈ 2%). In addition, the refractive index

of the freshwater icepack found using this technique is about 0.09 higher than the

reported value of 3.15 over microwave frequencies by Evans [17] and 0.06 higher than

the reported value by Matzler and Wegmuller [51].

3.5.3 Two Layer Media of Ice with Snow Cover

A snow-covered lake icepack on Lake Douglas at the University of Michigan Bio-

logical Station (UMBS) was measured as part of the same campaign as reported in

Section 3.5.1 and [57]. The H-pol measurements were made by a 7-10 GHz WiBAR

instrument with Nind = 3× 105 [57]. At these frequencies the ice and snow typically

have negligible volume and surface scattering. The lake ice observations by WiBAR
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were made from about 11:00 am until around 1:00 pm on March 03, 2016. The air

temperature was about −6◦C and −3◦C at 11:00 am and 1:00 pm, respectively. The

ground truth measurements of ice and snow thicknesses were done with a tape mea-

sure at the conclusion of the WiBAR measurements. The ground truth values of ice

and snow thicknesses are 35.5 cm and 3.9 cm, respectively. The snow was dry, and

its density was about ρs = 210 kg/m3.

Among the measurements at different incidence angles, only the one at the largest

incidence angle, 69.4◦, showed distiction between the two layers in the ACF. The auto-

correlation response obtained from the measured emissivity spectra after calibration

[57] using both rectangular and Hamming window functions is shown in Fig. 3.38.

The peaks in the ACF near 4 ns are considered detected because they rise at least two

standard deviations above the expectation of the ACF in the absence of a slab. Figure

3.20 shows that the ice peak is only slightly stronger than the sum peak at this inci-

dence angle. The two delay peaks related to the ice thickness at τice = 3.56 ns and the

sum of the ice and the snow thicknesses at τice+ τsnow = 3.77 ns are almost resolvable

using the rectangular window (corresponding to dice = 35.4 cm, dsnow = 4.3 cm) while

only one peak related to the ice thickness is resolved at τice = 3.66 ns using Hamming

window (corresponding to dice = 36.4 cm). There is about 0.1 ns (1 cm) difference

between the τice (dice) detected using rectangular and Hamming window functions.

This difference is due to bias of the position of the detected peak, as explained in

Section 3.2.5.1.

The next terms of the Taylor expansion in (3.44) can also be observed. The delay

peaks at 2τice = 7.24 ns and 2(τice+ τsnow) = 7.74 ns are detected using the Hamming

window function, and from these, the snow thickness is inferred to be about 5.1 cm.

This value is about 0.8 cm larger than the snow thickness measured using rectangular

window function. This difference is due to the leakage of the side lobes of the two

close delay peaks since the ratio of the peak amplitude to sidelobe level is lower. In
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Figure 3.38: The autocorrelation function of the lake icepack with top dry snowpack
measured on Douglas Lake on March 03, 2016 (θ = 69.4◦, dice = 35.5 cm, dsnow =
3.9 cm, ρs = 210 kg/m3).

contrast, the rectangular window has such high sidelobes that these peaks cannot be

detected.

3.5.4 Single Layer Media with Thickness Variation within a Footprint of

the Radiometer’s Antenna

Field measurements for lake icepack with thickness variation were conducted on

Douglas Lake at the University of Michigan Biological Station (UMBS) on March 03

and 04, 2018. The surface of the lake ice was snow ice as the snow had melted in the

warm weather the week before our measurements and refroze. There was no snow

on the ice. The measurements were conducted in H-pol using the second version of

the X-band WiBAR instrument, shown in Fig. 3.5. This instrument was explained

in Section 3.2.1.2. For the ground truth measurement, a tape measure was used after
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Figure 3.39: A side-view of the measurement location. The WiBAR was located at
location 1 where we were able to measure the sub-pixel variability at θ0 = 70◦. The
center of the footprint is at the center of the photo.

hand-coring the ice at the conclusion of the WiBAR measurements. The ground truth

value of the icepack thickness at the antenna’s location (location 1 in Fig. 3.39) was

about 39-40 cm, while it was about 37-38 cm at about 10 m away from the antenna

(location 2). The antenna height was 135 cm at its pivot point, and the incident

angle for the measurement exhibiting multiple thicknesses was 70◦.

To calibrate, measurements of the sky (approximating e = 0) and a matched

load (e ∼ 1) were also conducted. These measurements were then used to extract

the spectra of emissivity using the calibration method explained in [57] with one

additional step: because the resolution bandwidth (RBW) on the spectrum analyzer

is limited to a maximum of 250 kHz, we averaged adjacent spectral power points

together to create an effective RBW of 27.5 MHz. The sky, matched load, and lake

ice power spectra are shown in Fig. 3.40. The lake ice observation at incidence angle of
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Figure 3.40: Matched load, lake ice, and sky observations on Douglas Lake on March
03, 2018 (θ0 = 70◦, dice ≈ 40 cm).

70◦ was made at about 10:00 am on March 03, 2018, and the sky measurements were

made around noon. The physical temperature of the matched load was not monitored,

but is assumed to be near the air temperature, which was about −7.0◦C and −0.8◦C

at 9:28 am and 11:41 am, respectively. The extracted emissivity of the lake icepack

observation in Fig. 3.40 is shown in Fig. 3.41. Despite the low responsivity of the

instrument near 10 GHz, resulting in the non-physical values of the emissivity, we

used the entire spectrum to preserve temporal resolution.

The ACF is obtained from the inverse Fourier transform of the emissivity spectra.

Then the time delay is found from the local maxima of the ACF of the measured lake

icepack. The autocorrelation response of the emissivity in Fig. 3.31 using both the

rectangular and the Hamming windows are shown in Fig. 3.32. There are two peaks

in the ACF using the rectangular window corresponding to 38.5 cm and 42.2 cm
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Figure 3.41: The spectral emissivity derived from the power spectra in the previous
Figure.
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icepack, while there is only one broad peak in the ACF using the Hamming window

corresponding to about 40.5 cm due to the resolution limit of the Hamming window

[54]. In the ACF using the Hamming window, the minimum WiBAR resolution is

about 2
Fs

≈ 0.6 ns, and only one peak is resolved at the crossover point of the two peaks

from the rectangular window. However, the position in time and amplitude of the

delay peaks in the ACF using the rectangular window are biased due to the sidelobe

leakage of zero delay and the adjacent peak [54], and, as a result, the measured

thicknesses by the WiBAR are off by about 2 cm from the ground truth values.

Even though the amplitude difference of the two delay peaks in Fig. 3.32 is not large

(|∆A| = 1.49 dB), biases could be also due to the different aij values for each sub-

pixel for which we do not have measurements. We also used our WiBAR instrument

the next day on March 04, 2018 to measure the ice thickness at locations 1 and 2

at nadir in order to confirm the validity of the measured value by the WiBAR. The

nadir measurements have much smaller footprints than that at 70◦, so the likelihood

of a uniform target is higher. These measured ice thicknesses at location 1 and 2

are 40.8 cm (τdelay = 4.8 ns) and 39.2 cm (τdelay = 4.6 ns), respectively, as shown in

Fig. 3.39.
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Figure 3.42: The autocorrelation function of the lake icepack measured on Douglas
Lake on March 03, 2018 using the rectangular window (red solid line) and the Ham-
ming window (black dotted line). The antenna was at location 1. Two peaks are
detected at 38.5 cm and 42.2 cm in the ACF using the rectangular window, while
only one peak is detected at about 40.0 cm using the Hamming window (θ0 = 70◦).
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CHAPTER IV

Error Analysis of the Measured Time Delay Using

Wideband Autocorrelation Radiometry

4.1 Introduction

Detection and frequency (time) estimation of sinusoidal signals from a limited

number of noisy discrete time measurements have application in many fields, such as

moving target detection in radars [72]. A direct method for frequency (time) detection

is the standard inverse discrete Fourier transform (IDFT). The error in the measured

pack thickness by WiBAR stems from the error in the measured time delay using

the IDFT. In this chapter, we want to investigate the root mean square time delay

error (RMSTDE) using the IDFT approach.

The most useful approach in comparing the performance of any unbiased estimator

is by placing a lower bound on the variance of the estimator. This approach will allow

us to claim that an estimator is the minimum-variance unbiased (MVU) estimator.

Even if the desired unbiased estimator does not reach the minimum variance bound,

it provides a benchmark to analyze the performance of the unbiased estimator. There

are many such variance bounds [52, 40, 78, 95], but the easiest one to determine is the

Cramer-Rao lower bound (CRLB) [38]. Since the time delay estimation using IDFT

is a nonlinear problem, it will only reach the CRLB for signal to noise ratios (SNRs)
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higher than a threshold value. It is shown that the Hamming window works better

compared to the rectangular window in terms of having the variance closer to the

CRLB. It is also shown that the variance of the measured thickness is very high near

the Brewster angle.

4.2 Error Analysis of the Measured Time Delay by WiBAR

4.2.1 Single Layer Media

We first start with the simple single layer media and used the approximated emis-

sivity expression, as given by [57]

e(f) ≈ ē (1− 2Ae cos (2πfτdelay)) (4.1)

where ē is the mean emissivity over frequency, Ae is one half of the amplitude of the

ripple in the emissivity as a function of frequency, τdelay is the microwave propagation

time difference of multipath microwave emission from a pack with the thickness of d

[57]. We can rewrite (4.1) with the added white Gaussian noise (AWGN), w[n], with

zero mean and variance of σ2
w, as given by

e[n] ≈ ē (1− 2Ae cos [2πTdelayn]) + w[n] (4.2)

where n = 0, 1, 2, · · · , N − 1, and N is the number of frequency (data) points. For

simplicity, it is assumed that Tdelay, which is the normalized time delay bin number,

varies between 0 and 0.5 such that Tdelay = k0/N where k0 ∈ {0, 1, 2, · · · , N/2− 1}.

Using equations (4.1) and (4.2), it can be observed that fτdelay = Tdelayn, where

f = (Fs/N)n, τdelay = k0/Fs, and Fs is the total bandwidth of operation. Throughout
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this chapter, we used the upper case, Tdelay, for the time delay bin number notation

so that it can be distinguishable from the actual time delay τdelay in seconds.

We now need to find a lower bound on the variance of the unbiased estimator

using the IDFT approach. As discussed, the CRLB is the easiset to determine and is

given by [38]

V ar(χ̂i) ≥
[

I−1(χ)
]

ii
(4.3)

where χ is the vector of p unknowns such as τdelay, ē, Ae, etc., and I(χ) is the p× p

Fisher information matrix, as given by

[I(χ)]ij = −E

[

∂2 ln ρ(e;χ)

∂χi∂χj

]

(4.4)

where i = 1, 2, ..., p, j = 1, 2, ..., p, ρ(e;χ) is the probability density function (PDF)

of the measured data, E is the exepected value, and p is the number of unknowns. In

the scalar case, p = 1, and the CRLB would be scalar. An unbiased estimator may

be found that attains the CRLB if and only if [38]

∂ ln ρ(e;χ)

∂χ
= I(χ) (g(e)− χ) (4.5)

for some p-dimensional function g, and some p× p matrix I. That estimator, which

is the minimum-variance unbiased estimator (MVU), is χ̂ = g(e), and its covariance

matrix is I−1(χ).

Since it is common to assume signals in white Gaussian noise (WGN), it is worth-

while to derive the CRLB for this case, as given by [38]
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[I(χ)]ij =
1

σ2
w

N−1
∑

n=0

∂s[n;χ]

∂χi

∂s[n;χ]

∂χj
(4.6)

where s[n;χ] = ē (1− 2Ae cos [2πTdelayn]) is the signal only part of total received

signal with the WGN.

It is first assumed that Ae, ē, and Tdelay are the unknown parameters to be es-

timated, so we need to find the CRLB for each of the unknown parameters Ae, ē,

and Tdelay. In evaluating the CRLB, it is assumed that Tdelay is not near 0 or 1/2,

which allows us to make certain simplifications based on the following approximations

[83, 38]

1

N i+1

N−1
∑

n=0

ni sin (4πTdelayn) ≈ 0 (4.7a)

1

N i+1

N−1
∑

n=0

ni cos (4πTdelayn) ≈ 0 (4.7b)

for i = 0, 1, 2. Using these approximations, we can find the Fisher information matrix

for the single layer media with unknown matrix χ = [ē, Ae,Tdelay], as given by

I(χ) =

























N(1+2A2
e)

σ2
w

2NAeē
σ2
w

0

2NAeē
σ2
w

2Nē2

σ2
w

0

0 0 (4πAeē)2

2σ2
w

∑N−1
n=0 n2

























(4.8)

Using the geometric series formulas, as given by (4.9), the inverse of the Fisher matrix,

I−1(χ), is given by (4.10). Hence, the CRLB for each unknowns are given by (4.11).
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N−1
∑

n=0

n =
N(N − 1)

2
(4.9a)

N−1
∑

n=0

n2 =
N(N − 1)(2N − 1)

6
(4.9b)

I−1(χ) =

























σ2
w

N
−Aeσ2

w

Nē
0

−Aeσ2
w

Nē
(1+2A2

e)σ
2
w

2Nē2
0

0 0 3σ2
w

(2πAeē)
2N(N−1)(2N−1)

























(4.10)

V ar(ˆ̄e) ≥ σ2
w

N
(4.11a)

V ar(Âe) ≥ (1 + 2A2
e)σ

2
w

2Nē2
(4.11b)

V ar(T̂delay) ≥
3σ2

w

(2πAeē)
2 N(N − 1)(2N − 1)

(4.11c)

It is now assumed that the the mean of the emissivity, ē is known, and Ae and

Tdelay are the only unknowns. In this case, the 2 × 2 Fisher information matrix and

its inverse are given by (4.12) and (4.13), respectively. Hence, the CRLB for each of

the unknowns are given by (4.14).

I(χ) =













2Nē2

σ2
w

0

0 (4πAeē)2

2σ2
w

∑N−1
n=0 n2













(4.12)
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I−1(χ) =













σ2
w

2Nē2
0

0 3σ2
w

(2πAeē)
2N(N−1)(2N−1)













(4.13)

V ar(Âe) ≥ σ2
w

2Nē2
(4.14a)

V ar(T̂delay) ≥
3σ2

w

(2πAeē)
2 N(N − 1)(2N − 1)

(4.14b)

If Tdelay is the only unknown, I(χ) would be scalar and is given by (4.15). The

CRLB for the unknown parameter, τdelay, is given by (4.16).

I(χ) =
(4πAeē)

2

2σ2
w

N−1
∑

n=0

n2 (4.15)

V ar(T̂delay) ≥
3σ2

w

(2πAeē)
2 N(N − 1)(2N − 1)

(4.16)

So far, we have found the lower bound on the variance, CRLB, of an unbiased

estimator. We have to examine whether a time delay estimator exists, which is

unbiased and attains the CRLB. Such estimator is the minimum-variance unbiased

(MVU) estimator and should satisfy (4.5). Using (4.2) with assumption of Ae and ē

being known for simplicity, the PDF of the data is given by

ρ(e;χ) =
1

(2πσ2
w)

N/2
exp

{

− 1

2σ2
w

N−1
∑

n=0

[e[n]− ē+ 2Aeē cos(2πnTdelay)]
2

}

(4.17)
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The natural logarithm of (4.17) and the derivative of its natural logarithm are given

by

ln ρ(e;χ) = − ln(2πσ2
w)

N
2 − 1

2σ2
w

N−1
∑

n=0

[e[n]− ē + 2Aeē cos(2πnTdelay)]
2 (4.18a)

∂ ln ρ(e;χ)

∂Tdelay
=

4πAeē

σ2
w

N−1
∑

n=0

n sin(2πnTdelay) [e[n]− ē + 2Aeē cos(2πnTdelay)] (4.18b)

The direct method for time delay detection is the IDFT approach, as given by

T̂delay = arg max {S[k]} , for N/2 > k > 0 (4.19)

where S[k] is the IDFT formula, as given by

S[k] =
1

N

N−1
∑

n=0

e[n] exp

(

i
2π

N
kn

)

(4.20)

It can be observed that the IDFT estimator does not satisfy (4.5), so it’s not a MVU

estimator.

Now, let’s find the false alarm rate, PFA, and the probability of detection, PD,

using the IDFT approach. Given the received data e[n], a decision has to be made

between the two following hypothesis

H0 : e[n] = ē0 + w[n], n = 0, 1, . . . , N − 1 (4.21a)

H1 : e[n] = (ē− 2Aeē cos(2πnTdelay)) + w[n] (4.21b)

The first hypothesis H0 assumes that e[n] consists only of noise with a constant value

of the emissivity, ē0, while in H1 the sinusoidal signal is persumed to be present. The

goal is to find the PFA = P (D1|H0) and the PD = P (D1|H1), where D1 is the decision
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of hypothesis H1. Denote the auto-correlation function (ACF) coefficients at T = k
N

for the noise only case and the signal present case by Se0(k) and Se1(k), respectively.

The value of Se1(k0) at the Tdelay =
k0
N

is computed as

Se1(k0) =
√
a2 + b2 (4.22)

where

a ,
1

N

N−1
∑

n=0

(ē− 2Aeē cos(2πnTdelay) + w[n]) cos

(

2πnk0
N

)

(4.23a)

b ,
1

N

N−1
∑

n=0

(ē− 2Aeē cos(2πnTdelay) + w[n]) sin

(

2πnk0
N

)

(4.23b)

where a and b are Gaussian random variables. They are independent and of identical

variances of σ2 = σ2
w

2
, where σ2

w is the power of the noise w[n]. Using [69], the PDF

of Se1(k0) can be found, as given by

ρs(u) =
u

σ2
exp

(

−s2 + u2

2σ2

)

I0

(us

σ2

)

(4.24)

which is a Ricean-distributed random variable. The quantity s equals the square root

of the sum of the mean square of a and b, that is, s =
√
2Aeē, and I0 is the modified

Bessel function of the first kind of order zero.

Similarly, it can be shown that the remaining Se1(k) and all the Se0(k) are all of

Rayleigh distribution, as given by

ρw(u) =
u

σ2
exp

(

− u2

2σ2

)

(4.25)

The expressions similar to (4.24) and (4.25) can be found in [73, 80].

Assuming that the IDFT coefficients are independent which is valid when the
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time-bandwidth product of the signal is sufficiently large, then PFA is calculated as

PFA = 1−





VT
∫

0

ρw(u)du





(N
2
)−1

= 1−
(

1− exp

(

− V 2
T

2σ2

))(N
2
)−1

(4.26)

where VT is a threshold value of the ACF coefficient, which is set by the user. The

probability of detection is also derived as

PD = 1−





VT
∫

0

ρw(u)du





(N
2
)−2 VT
∫

0

ρs(u)du

= 1−
(

1− exp

(

− V 2
T

2σ2

))(N
2
)−2(

1−Q1

(

s

σ
,
VT

σ

))

(4.27)

where Q is the Marcum Q-function [32], as given by

QM(α, β) =
1

αM−1

∞
∫

β

xM exp

(

−x2 + α2

2

)

IM−1 (αx) dx (4.28)

It also has the series form, as given by

QM(α, β) = exp

(

−α2 + β2

2

) ∞
∑

k=1−M

(

α

β

)k

Ik (αβ) (4.29)

where in our case, M = 1, α = s
σ
, and β = VT

σ
.

In the time delay estimation problem, when the hypothesis H1 is chosen, we need

to estimate the Tdelay . The maximum likelihood time delay estimation of a pure

sinusoid is given by the location of the peak of the ACF, and this estimator reaches

the CRLB for this time delay, as given by (4.30), when SNR = (
√
2Aeē)/σw is greater

than some threshold value. We will show this threshold value for an example after
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we derive the RMSTDE in the following.

V arTdelay
(N) =

3

2π2N(N − 1)(2N − 1)SNR2
(4.30)

If Tdelay = k0
N
, the probability of occurrence of an anomaly in the IDFT is given

by

q = P
(

Se1(k0) ≤ at least one of the Se1(1)Se1(2), . . . , Se1(k0 − 1), Se1(k0 + 1),

. . . , Se1(N/2− 1)
)

=

∞
∫

0

P (Se1(k0) = u) ·






1−

(N
2 )−1
∏

k=1,k 6=k0

P (Se1(k) < u)






du

=

∞
∫

0

ρs(u)






1−

(N
2 )−1
∏

k=1,k 6=k0

u
∫

0

ρw(ν)dν






du (4.31)

which must be computed numerically. Assuming that the anomaly estimate is uni-

formly distributed between 0 and 0.5, the overall RMSTDE using the IDFT estimator

is given by

RMSTDE =

√

√

√

√

√(1− q)V arTdelay
(N) + q

0.5
∫

0

2 (u− Tdelay)
2 du (4.32)

The RMSTDE for an icepack at nadir incidence angle and the CRLB as a function

of SNR is shown in Fig. 4.1. The bandwidth is 3 GHz, N = 461, and dice = 40 cm.

The measured time delay at nadir for an icepack with a constant refractive index of

nice =
√
3.15 would be τdelay = 4.73 ns. It can be observed that at SNR≥ 9 dB, the

IDFT’s RMSTDE meets the CRLB. The RMSTDE in IDFT using both the Hamming
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Figure 4.1: Theoretical root mean square time delay error (RMSTDE) of IDFT for
a 40 cm icepack with respect to SNR of the delay peak. The CRLB is also shown in
the figure for comparison. The bandwidth is 3 GHz with N = 461, and the incidence
angle is θ = 0◦ (τdelay = 4.73 ns).

and rectangular windows are shown in Figures 4.2(a) and 4.2(b), respectively. The

RMSTDE meets the CRLB using Hamming window in H-pol for most of the incidence

angles. In V-pol RMSTDE gets larger, mostly around the Brewster angles. On the

other hand, RMSTDE does not meet the CRLB using the rectangular window. The

SNR of the delay peak using the Hamming and rectangular windows are also shown

Fig. 4.3.

So far, we have assumed the noise floor of the ACF is a constant value of the first

side lobe level (FSLL). In reality, any window function has some roll-off for the side

lobe levels. Assuming this, we can take into account the effect of the location of the

delay peak with respect to the other peaks. It can be shown that the side lobe level
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Figure 4.2: The root mean square time delay error (RMSTDE) of IDFT using both
(a) the Hamming and (b) the rectangular window as a function of incidence. The
bandwidth is 3 GHz with N = 461, and dice = 40 cm.
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Figure 4.3: The SNR of the delay peak in ACF using both the Hamming and the
rectangular window functions. The bandwidth is 3 GHz with N = 461, and dice =
40 cm.
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at a distance ∆τ from the zero delay peak is given by [54]

SLL(∆τ) = FSLL + SLF× log2

(

∆τ

τFSLL

)

(dB) (4.33)

where SLF (dB/Octave) is the side lobe fall-off of the window function, FSLL (dB)

is the first side lobe level of the window function, and τFSLL = 1
2
(τmain lobe + τside lobe)

is the location of the FSLL peak, where τmain lobe =
2ζmain lobe

Fs
is the main lobe width

between the first zero crossings, ζmain lobe is a factor depending on the window function,

Fs is the frequency bandwidth, and τside lobe is the width of the first side lobe. For

instance, SLF = -3 dB/Octave, FSLL = -6.5 dB, and ζmain lobe = 1 for the rectangular

window, while SLF = -3 dB/Octave, FSLL = -21.5 dB, and ζmain lobe = 2 for the

Hamming window. The width of the first side lobe in both the Hamming and the

rectangular window is the same and equal to 1
Fs
. It can be observed from (4.33),

that the SLL value would be smaller for larger time delays (thicker loss-less pack);

hence the SNR would be higher, and the RMSTDE would be lower. For example,

the RMSTDE at different time delays at nadir using both the Hamming and the

rectangular window functions are shown in Figures 4.4(a) and 4.4(a), respectively. It

can be observed that the RMSTDE and CRLB meets at longer time delays (thicker

packs). The SNR of the delay peak as a function of time delay using both the

Hamming and rectangular window functions are also shown in Fig. 4.5. It should be

noted that the time delay varied from 1 ns, which is just after the τFSLL of the both

window functions.

So far, it was assumed that the we have a sufficient number frequency points, N ,

over the frequency span, Fs, such that the precision of the ACF in the time domain

is high enough that the RMSTDE in (4.32) dictates the error in the measured time

delay. If this was not the case, an independent source of error due to the number

of time bins would be added to the radicand in (4.32). This correction is called
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Figure 4.4: The root mean square time delay error (RMSTDE) of IDFT using both
(a) the Hamming and (b) the rectangular window as a function of the microwave
propagation time through the pack. The bandwidth is 3 GHz with N = 461, and
θ = 0◦.
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Figure 4.5: The SNR of the delay peak in ACF using both the Hamming and the
rectangular window functions as a function of time delay. The bandwidth is 3 GHz
with N = 461, and θ = 0◦.
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Figure 4.6: The measured root mean square time delay error (RMSTDE) of IDFT
for a 40 cm icepack with respect to SNR of the delay peak with different number of
zeros in the zero-padding prior to the inverse Fourier transform. The CRLB is also
shown in the figure for comparison. The bandwidth is 3 GHz with N = 461, and the
incidence angle is θ = 0◦ (τdelay = 4.73 ns).

Sheppard’s correction [84], and it is h2

12
for the second moment about the mean, where

h = N/Fs(N +Nz) is the class interval, and Nz is the number of zeros added to the

spectrum prior to its inverse Fourier transform. This effect is shown in Fig. 4.6. The

bandwidth is 3 GHz, N = 461, and dice = 40 cm (θ = 0◦, τdelay = 4.73 ns). It can

be observed by adding sufficient number of zeros, Nz, the measured RMSTDE gets

closer to the true RMSTDE in (4.32). It can be observed that with Nz = 0 and

Nz = 214−N , the RMSTDE can only get to a minimum of about 0.1 ns and 0.003 ns,

receptively, while it can reach reaches the CRLB with Nz = 221 −N for SNR≥ 9 dB.
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4.2.2 Multi Layer Media

So far, we have discussed the error in the measured timed for single layer media.

For a two-layer medium, we start with the approximated emissivity formula, as given

by [54]

e(f) ≈ e

(

1− 2

[

Ai cos(2πnTice) + As cos(2πnTsnow) + AΣ cos
(

2πn
(

Tsnow + Tice

)

)

+ A∆ cos
(

2πn
(

Tsnow − Tice

)

)

]

)

+ w[n] (4.34)

where ē is the mean emissivity over frequency, Ai, As, AΣ, and A∆ are one half of

the amplitudes of the ripple due to icepack time delay, snowpack time delay, sum

of the time delays, and difference of the time delays, respectively, in the emissiv-

ity as a function of frequency [54]. For simplicity, we use TΣ = Tice + Tsnow and

T∆ = |Tsnow − Tice|. Let’s first assume that we want to estimate Tice and Tsnow, and

the standard deviation (SD) of TΣ and T∆ can be easily found. Hence, the Fisher

information matrix and it inverse are given by (4.35) and (4.36), respectively.

I(χ) =
(4πē)2

∑N−1
n=0 n2

2σ2
w













A2
i + A2

Σ + A2
∆ A2

Σ − A2
∆

A2
Σ −A2

∆ A2
s + A2

Σ + A2
∆













(4.35)

I−1(χ) =
2σ2

w

(4πē)2D
∑N−1

n=0 n2
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∆ A2

∆ −A2
Σ
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Σ A2
i + A2

Σ + A2
∆













(4.36)

where D = A2
s (A

2
i + A2

Σ + A2
∆) +A2

i (A
2
Σ + A2

∆)+ 4A2
ΣA

2
∆ is the determinant of I(χ).

Hence, we have the CRLB for Tice and Tsnow, as given by
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V ar(Tice) ≥ 3σ2
w (A2

s + A2
Σ + A2

∆)

(2πē)2DN(N − 1)(2N − 1)
(4.37a)

V ar(Tsnow) ≥
3σ2

w (A2
i + A2

Σ + A2
∆)

(2πē)2DN(N − 1)(2N − 1)
(4.37b)

Since the variables Tice and Tsnow are not independent (their co-variance is not

zero), V ar(|Tsnow ± Tice|) = V ar(Tice)+V ar(Tsnow)±2Cov(Tice,Tsnow). Hence, the

CRLB for Tsnow + Tice and |Tsnow − Tice| are given by

V ar(Tice + Tsnow) ≥ 3σ2
w (A2

s + A2
i + 4A2

∆)

(2πē)2DN(N − 1)(2N − 1)
(4.38a)

V ar(|Tsnow − Tice|) ≥
3σ2

w (A2
s + A2

i + 4A2
Σ)

(2πē)2DN(N − 1)(2N − 1)
(4.38b)

Similar to the single layer medium, we will use IDFT to find the delay peaks in

ACF, as given by (4.20). We will also have similar hypothesis, as given by

H0 : e[n] = ē0 + w[n], n = 0, 1, . . . , N − 1 (4.39a)

H1 : e[n] = e

(

1− 2

[

Ai cos(2πnTice) + As cos(2πnTsnow)

+ AΣ cos
(

2πn
(

Tsnow + Tice

)

)

+ A∆ cos
(

2πn
(

|Tsnow − Tice|
)

)

]

)

+ w[n]

(4.39b)

The first hypothesis H0 assumes that e[n] consists only of noise with a constant

value of emissivity, ē0, while in H1 the sinusoidal signal is persumed to be present.

The goal is to find the PFA = P (D1|H0) and the PD = P (D1|H1) for each delay peak,

where D1 is the decision of hypothesis H1. Denote the auto-correlation function

(ACF) coefficients at T = k
N

for the noise only case and the signal present case by
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Se0(k) and Se1(k), respectively. The value of Se1(kℓ) at the Tℓ = kℓ
N
, where ℓ =

i, s,Σ,∆, is computed as

Se1(kℓ) =
√

a2ℓ + b2ℓ (4.40)

where

aℓ ,
1

N

N−1
∑

n=0

{

e

(

1− 2

[

Ai cos(2πnTice) + As cos(2πnTsnow)

+ AΣ cos
(

2πn
(

Tsnow + Tice

)

)

+ A∆ cos
(

2πn
(

|Tsnow − Tice|
)

)

])

}

cos

(

2πnkℓ
N

)

(4.41a)

bℓ ,
1

N

N−1
∑

n=0

{

e

(

1− 2

[

Ai cos(2πnTice) + As cos(2πnTsnow)

+ AΣ cos
(

2πn
(

Tsnow + Tice

)

)

+ A∆ cos
(

2πn
(

|Tsnow − Tice|
)

)

])

}

sin

(

2πnkℓ
N

)

(4.41b)

where aℓ and bℓ are Gaussian random variables. They are independent and of identical

variances of σ2 = σ2
w

2
, where σ2

w is the power of the noise w[n].

Similarly, the PDF of Se1(kℓ) is a Ricean distribution, as given by

ρsℓ(u) =
u

σ2
exp

(

−s2ℓ + u2

2σ2

)

I0

(usℓ
σ2

)

(4.42)

where the quantity sℓ equals the square root of the sum of the mean square of aℓ and bℓ,

that is, sℓ =
√
2Aℓē. Similarly, the remaining Se1(k), except for those that correspond

to one of the other three paths, and all the Se0(k) are of Rayleigh distribution, as

given by

ρw(u) =
u

σ2
exp

(

− u2

2σ2

)

(4.43)
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Similarly, assuming that the IDFT coefficients are independent, PFA is the same

as (4.26), as given by

PFA = 1−
(

1− exp

(

−
V 2
Tℓ

2σ2

))(N
2
)−1

(4.44)

where VTℓ
is a threshold value of the ACF coefficient at each delay peak. The proba-

bility of detection for each peak is also similar to (4.27), as given by

PDℓ
= 1−

(

1− exp

(

−
V 2
Tℓ

2σ2

))(N
2
)−5(

1−Q1

(

sℓ
σ
,
VTℓ

σ

))

(4.45)

Similar to the single layer medium case, the RMSTDEℓ for each delay peak,Tℓ =

kℓ
N
, can be found by first calculating the probability of occurrence of an anomaly in

the IDFT, as given by

qℓ = P
(

Se1(kℓ) ≤ at least one of the Se1(1)Se1(2), . . . , Se1(kℓ − 1), Se1(kℓ + 1),

. . . , Se1(N/2− 1)
)

=

∞
∫

0

P (Se1(kℓ) = u) ·






1−

(N
2 )−1
∏

k=1,k 6=ki,ks,kΣ,k∆

P (Se1(k) < u)






du

=

∞
∫

0

ρsℓ(u)






1−

(N
2 )−1
∏

k=1,k 6=ki,ks,kΣ,k∆

u
∫

0

ρw(ν)dν






du (4.46)

which must be again computed numerically. It is noted in (4.46) that all the other

values of ℓ are excluded. Assuming that the anomaly estimate is uniformly distributed

between 0 and 0.5, the overall RMSTDEℓ using the IDFT estimator is given by

RMSTDEℓ =

√

√

√

√

√(1− qℓ)V arTℓ
(N) + qℓ

0.5
∫

0

2 (u− Tℓ)
2 du (4.47)
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RMSTDEℓ for each delay peak in a two layer medium of an icepack with a dry snow

cover at nadir incidence angle and the CRLB as a function of SNRℓ = (
√
2Aℓē)/σw

are shown in Fig. 4.7. The bandwidth is 3 GHz, N = 461, dice = 40 cm, and

dsnow = 15 cm. The measured time delay at nadir for an icepack (nice =
√
3.15) and a

dry snowpack (ρs = 210 kg/m3, nsnow = 1.18) are τice = 4.73 ns and τsnow = 1.18 ns,

respectively. It can be observed that for SNRice ≥ 7.5 dB, SNRsnow ≥ 7.5 dB,

SNRΣ ≥ 7.5 dB, and SNR∆ ≥ 3.5 dB, the IDFT’s RMSTDE meets the CRLB for

each delay peak. The effect of the number of zeros, Nz, for zero padding on the

RMSTDEℓ for each delay peak would be similar to the single layer scenario as shown

in Fig. 4.6.

The RMSTDE in IDFT for τice, τsnow, τΣ, and τ∆ delay peaks using both the

Hamming and rectangular windows are shown in Figures 4.8, 4.9, 4.10, and 4.11,

respectively. The RMSTDE at τice and τΣ meets the CRLB using Hamming window

in H-pol, while at τsnow and τ∆, it only meets the CRLB at grazing incidence angles

(θ > 70◦) using Hamming window in H-pol. In V-pol the RMSTDE gets larger, mostly

around the Brewster angles. On the other hand, the RMSTDE does not the CRLB

using the rectangular window. The SNR of the τice, τsnow, τΣ, and τ∆ delay peaks using

the Hamming and rectangular windows are also shown Figures 4.12, 4.13, 4.14, and

4.15, respectively.

4.3 Field Measurements

Due to the freedom of access to single traces in the new X-band WiBAR instru-

ment, we were only able to extract the measured RMSTDE from the Winter 2018

measurement campaign as reported in [56]. The incidence angles ranged from 9.2◦

to 70.2◦. The frequency range was 7-10 GHz. At these frequencies, the ice and snow

may typically have negligible volume and surface scattering. The ice observations

by WiBAR were made from about 10:00 AM untill around 1:00 PM on March 03,
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Figure 4.7: Theoretical RMSTDE of IDFT for (a) τice, (b) τsnow, (c) τΣ, and (d) τ∆
in the case of a lake icepack with dry snow cover with respect to SNR of the delay
peaks. The CRLB is also shown in the figures for comparison. The bandwidth is
3 GHz with N = 461, dice = 40 cm, dsnow = 15 cm (ρs = 210 kg/m3, nsnow = 1.18)
and the incidence angle is θ = 0◦ (τice = 4.73 ns, τsnow = 1.18 ns).
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Figure 4.8: The mean square time delay error (MSTDE) of IDFT at τice delay peak
using both (a) the Hamming and (b) the rectangular window as a function of inci-
dence. The bandwidth is 3 GHz with N = 461, dice = 40 cm, and dsnow = 15 cm
(ρs = 210 kg/m3, nsnow = 1.18).
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Figure 4.9: The root mean square time delay error (RMSTDE) of IDFT at τsnow delay
peak using both (a) the Hamming and (b) the rectangular window as a function of
incidence. The bandwidth is 3 GHz with N = 461, dice = 40 cm, and dsnow = 15 cm
(ρs = 210 kg/m3, nsnow = 1.18).
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Figure 4.10: The root mean square time delay error (RMSTDE) of IDFT at τΣ delay
peak using both (a) the Hamming and (b) the rectangular window as a function of
incidence. The bandwidth is 3 GHz with N = 461, dice = 40 cm, and dsnow = 15 cm
(ρs = 210 kg/m3, nsnow = 1.18)
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Figure 4.11: The root mean square time delay error (RMSTDE) of IDFT at τ∆ delay
peak using both (a) the Hamming and (b) the rectangular window as a function of
incidence. The bandwidth is 3 GHz with N = 461, dice = 40 cm, and dsnow = 15 cm
(ρs = 210 kg/m3, nsnow = 1.18).
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Figure 4.12: The SNR of the τice delay peak in ACF using both the Hamming and the
rectangular window functions. The bandwidth is 3 GHz with N = 461, dice = 40 cm,
and dsnow = 15 cm (ρs = 210 kg/m3, nsnow = 1.18).
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Figure 4.13: The SNR of the τsnow delay peak in ACF using both the Hamming
and the rectangular window functions. The bandwidth is 3 GHz with N = 461,
dice = 40 cm, and dsnow = 15 cm (ρs = 210 kg/m3, nsnow = 1.18).
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Figure 4.14: The SNR of the τΣ delay peak in ACF using both the Hamming and the
rectangular window functions. The bandwidth is 3 GHz with N = 461, dice = 40 cm,
and dsnow = 15 cm (ρs = 210 kg/m3, nsnow = 1.18).

125



0 20 40 60 80

Incidence Angle (deg)

-80

-60

-40

-20

0

20

S
N

R
 (

d
B

)

H-pol (Hamming)

V-pol (Hamming)

H-pol (rectangular)

V-pol (rectangular)

Figure 4.15: The SNR of the τ∆ delay peak in ACF using both the Hamming and the
rectangular window functions. The bandwidth is 3 GHz with N = 461, dice = 40 cm,
and dsnow = 15 cm (ρs = 210 kg/m3, nsnow = 1.18).
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2018 on Lake Douglas at the University of Michigan Biological Station (UMBS). The

air temperature was about -7.0 ◦C and -0.8 ◦C at around 10:00 AM and noon. The

ground truth measurements of ice thickness were done with a tape measure at the

conclusion of the WiBAR measurements. The ground truth value of ice thickness was

about 39-40 cm.

As an illustrative example, the RMSTDE and the SNR of the the successful mea-

sured delay peak in the ACF as a function of the number of traces (Ntrace) used in

the delay peak’s retrieval process are shown in Figs. 4.16(a) and 4.16(b), respectively.

The total number of acquired traces are 50. The number of frequency points used

in these figures are N = 14999 and N = 3000, and the number of zeros added for

zero padding prior to the inverse Fourier transform are Nz = 221 − N . The incident

angle is θ = 9.2◦, and the Hamming window was used. It can be observed that the

RMSTDE is inversely proportional to both number of frequency points and number

of traces used in the post processing. The SNR is also directly proportional to the

number of frequency points and is independent of Ntrace, as Ntrace does not change

the power of the ACF noise floor. The SNR is about 9.4 dB and 8.2 dB for N = 14999

and N = 3000, respectively.

The RMSTDE and the SNR of the measured delay peak at nadir (θ = 9.2◦) as

a function of number of added zeros, Nz, are shown in Figs. 4.17(a) and 4.17(b),

respectively. The number of traces used for each data point is Ntrace = 5. The

Hamming window was used. It can be observed that the RMSTDE is inversely

proportional to the number of zeros, while the SNR is independent of Nz. The SNR

is about 9.4 dB and 8.2 dB for N = 14999 and N = 3000, respectively.

To compare the measured and theoretical curves for RMSTDE, they are both

illustrated on a same plot as shown in Fig. 4.18. It can be observed that the measured

RMSTDE values are about 0.011 ns and 0.003 ns with N = 3000 and N = 14999

frequency points, respectively, and they are close to their corresponding theoretical
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Figure 4.16: (a) The root mean square time delay error (RMSTDE) and (b) the SNR
of the measured delay peak as a function of the number of traces Ntrace. The number
of added zeros for zero padding prior to the inverse Fourier transform is Nz = 221−N .
The bandwidth was 3 GHz, and the Hamming window was used. The measurements
were performed on Douglas Lake on March 03, 2018 (θ = 9.2◦, dice = 39− 40 cm).
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Figure 4.17: (a) The root mean square time delay error (RMSTDE) and (b) the SNR
of the measured delay peak as a function of the number of added zeros (Nz). The
number of traces used for each data point is Ntrace = 5. The bandwidth was 3 GHz,
and the Hamming window was used. The measurements were performed on Douglas
Lake on March 03, 2018 (θ = 9.2◦, dice = 39− 40 cm).
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Figure 4.18: The theoretical and the measured RMSTDE of the delay peak of a
40 cm icepack as a function of the SNR of the delay peak. The number of traces used
for each measurement is Ntrace = 5. The bandwidth was 3 GHz, and the Hamming
window was used (θ = 9.2◦).

curves. The measured SNR values are also 8.2 dB and 9.4 dB with N = 3000 and

N = 14999 frequency points, respectively. Based on the 2017-2027 decadal survey

for Earth Science and Applications from Space (ESAS) [62], the required snow depth

accuracy is 2-20 cm, which is equal to the time delay accuracy of 0.15-1.57 ns for a

snow with ρs = 210kg/m3; thus, a WiBAR instrument would be able to satisfy this

requirement with the right selection of parameters.

The errors in the measured dielectric constant and thickness of the pack using

the two distinct incident angles are related to the error in the measured time delay

by WiBAR, as discussed in Section 3.3. Since these measurements were done during

the Winter 2016 campaign, we do not have access to single traces of the WiBAR

measurements. However, as it can be observed from Fig. 3.37 in Section 3.5.2, the

average of the SNRs of these two delay peaks is about 8 dB, and using Fig. 4.1 for a
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single layer of ice with N = 461, the RSMTDE would be around δτ = 0.01 ns. Hence,

using this estimate value of the RMSTDE and (3.50), the errors in the measured

dielectric constant and thickness of the pack using this approach are δǫp ≈ 0.1 and

δdp ≈ 1.7 cm, respectively, which are close to the reported values of δǫp ≈ 0.09 and

δdp ≈ 1 cm in Section 3.5.2.
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CHAPTER V

Conclusions and Future Directions

5.1 A Brief Overview

Wideband autocorrelation radiometry is a passive remote sensing method of mea-

suring the round trip propagation time, τdelay, of microwaves through a low-loss di-

electric slab, such as a freshwater lake icepack or terrestrial snowpack. This work

describes a method of achieving the measurement by measuring the emissivity of the

slab as a function of frequency. The coherent interference of rays traversing the slab

different numbers of times gives rise to an emissivity spectra that oscillates around

a mean value, with local maxima at wavelengths of constructive interference, and

minima at wavelengths of destructive interference. This spectrum is inverse Fourier

transformed to obtain an autocorrelation function, in which the mean propagation

time manifests itself as a local maximum at a time lag greater than zero.

The minimum instrument requirements to retrieve τdelay are derived, given an ideal

slab, ie. smooth interfaces with no absorption or volume scattering. The bandwidth

required is inversely related to the desired minimum measurable propagation time,

but above this minimum, the temporal precision of the measurement can be made

arbitrarily fine. While the superiority of H-polarized observations over V-pol can

be easily seen from the fact that the reflection coefficients that cause the coherent

interference are stronger at H-pol, the impact of polarization is quantified by the
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number of samples needed to observe the propagation time for a given probability of

detection and false alarm rate. The expected value of τdelay depends on the incidence

angle, θ. As such, an observation of a uniform target is adversely affected by an

antenna’s finite beamwidth, in proportion to the beamwidth and the slab thickness.

This effect is a function of the incidence angle, with a maximum at 45◦ and minima

at both nadir and grazing.

To demonstrate the technique, measurements of lake ice 36 cm thick were made

with a simple instrument made from a standard gain horn, a portable spectrum

analyzer, and a few RF components in between. The measurements were performed

at incidence angles from nadir to 59◦, and these measurements conformed to the

elevation angular dependence expected from theory. The retrieved propagation times

correspond to values of ice thickness within 2 cm of the ground truth. Thus, Wideband

Autocorrelation Radiometry is a passive remote sensing method measuring freshwater

lake ice thickness directly.

5.2 Contributions

Our contributions in this thesis are listed below:

• We demonstrated the potential of wideband autocorrelation radiometry (WiBAR)

as a passive remote sensing method of measuring the thickness of a low-loss di-

electric slab, such as freshwater lake icepack or terrestrial dry snowpack.

• We fully discussed the forward modeling of snow and ice layer.

• We derived the minimum instrument requirements to measure the pack thick-

ness, given an ideal slab, i.e., smooth interfaces with no absorption or volume

scattering.

• We fully discussed the effect of the presence of a snow layer on the lake ice
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thickness measurement using WiBAR.

• We investigated the effect of the presence of variable layer thickness in a foot-

print of the radiometer’s antenna.

• We demonstrated the ability of WiBAR in non-destructively measuring the

dielectric constant and thickness of a low-loss dielectric layer. It is shown that

the dielectric constant and the thickness of the pack can be directly measured

using the measured time delays by WiBAR at two distinct incident angles.

• We modeled and designed three different versions of WiBAR instrument to

measure the lake icepack and snowpack thickness. The WiBAR instrument is

fabricated from commercial-off-the-shelf (COTS) components.

• We conducted field measurements for lake icepack on Douglas Lake at the Uni-

versity of Michigan Biological Station (UMBS), Argo Pond and Barton Dam in

Ann Arbor, MI, and South Sturgeon Lake in Minnesota.

• We demonstrated elevation angular dependence of the measured thickness by

the WiBAR as it was expected from theory.

5.3 Future Directions

We have fully discussed the physics of operation and system requirements of

WiBAR. However, for any scientific work, there would be several directions that

can be continued to further develop the concept. As such, below are some immediate

and primary paths to further continue this work.

5.3.1 Time Domain Wideband Autocorrelation Radiometer (TD-WiBAR)

The instruments so far have all been operating in frequency domain using a field-

portable spectrum analyzer as the radiometer receiver back-end. While this method
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can be rapidly implemented, it suffers from high data acquisition time if this method

is to move beyond plot-scale measurement to airborne or spaceborne platforms. In

fact, the instantaneous bandwidth being observed by this instrument is determined by

the 3 MHz resolution bandwidth (RBW) of the spectrum analyzer. As such, the time

required to observe a 3 GHz frequency span is at least 1000 times that strictly needed:

each lake icepack observation takes about 5 minutes, or one would need to implement

a reciever with N receivers, each looking at a distinct resolution bandwidth.

An alternative back-end architecture is a digital oscilloscope. In this architecture,

the autocorrelation function (ACF), Φ(τ), is acquired directly in time-domain, by

collecting a time-series of predetected voltages, V (t), and correlating them at different

time lags, τ , as given by

Φ(τ) =
1

N

N
∑

t=1

V (t)V (t+ τ) (5.1)

where N is the total number of measurements. As the time lag is varied, the real part

of the complex ACF is built up. The imaginary part is reconstructed by applying

a Hilbert transform to the real part (mirrored about the zero lag), and the ACF is

complete. This approach drastically speeds up the observation of τdelay. Part of the

speed-up is due to the fact that the entire frequency band is being observed at once.

Another part is that the data does not need to be collected to calculate the ACF for

all possible time delays, only those where a time delay would be expected.

5.3.2 Detail Analysis of a Lossy Layer of Snow or Ice

Microwave signals are very sensitive to the presence of any liquid water, which is

always present during the snow melt period. As a result, microwave remote sensing

instruments become blind during this period. One suggested approach is to use the

radiative transfer method, which is based on the law of conservation of energy. This
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method would be similar to the analysis of atmosphere, in which several horizontal

layers with different refractive index and loss in each layer. This technique can be

used to include the inter-layer emission in the autocorrelation response of the system.

This future work will allow us to monitor the wetness in the snow, which is important

in flood and avalanche prediction as one of the main reasons of avalanche formation

is due to the very fast melting rate of snowpacks in sloped mountain regions. On

the other hand, it will also give us the ability to monitor the lossy sea ice thickness,

which can be used to see if the ice is thin enough to navigate ships.

5.3.3 Dual-Polarized Wideband Autocorrelation Radiometry (WiBAR)

When multi-layer structures exist, such as a snowpack over a lake icepack, multiple

paths exists, which may confound the interpretation of the autocorrelation function

(ACF). Dual-polarized WiBAR measurements can be used to resolve the amplitudes.

Due to its significantly higher reflection coefficients, H-pol often has observable delays

regardless of incidence angle (nadir to at least 85 degrees), while V-pol often has no

observable delays. However, near grazing, the V-pol reflection coefficients become

sufficiently large for some of the interfaces in a snow over ice scene, while H-pol

reflection coefficients remain sufficiently large for most interfaces. As a result, the

two polarizations provide complimentary information about the scene, and the snow

depth, which could be difficult to observe in the single polarization WiBAR, can be

retrieved from dual polarization observations. On the other extreme, for example,

this idea will allow the dual-pol WiBAR to be adapted into a product to put on

automobiles to detect the presence of an ice patch and alert the driver well ahead

of time since it works much better at higher incidence angles and can detect the ice

much further away from the vehicle.
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5.3.4 Imaging with Wideband Autocorrelation Radiometry

The objective is to develop and demonstrate the mapping/imaging of the thickness

of a cryospheric slab with spatially varying thickness using a Wideband Autocorre-

lation Radiometer at a spatial resolution better than the footprint of that WiBAR

instrument. The technology proposed in this project is designed to enable a fu-

ture Cold Lands observing mission using WiBAR with adaptive RFI Mitigation for

snowpack and freshwater ice sensing from airborne or space borne platforms. The in-

strument architecture, including hardware and software, particularly the software for

disaggregation of the WiBAR images, will be designed to readily scale to an airborne

and space borne, conically scanning instrument.

One possible approach is to use the Backus-Gilbert algorithm [3]. The Backus-

Gilbert re-sampling scheme for traditional microwave radiometry is an appropriately

weighted sum of brightness temperature observations in region local (i.e. within a

footprint or so) of the desired location. Since one representation of the WiBAR data

is as a spectrum of brightness temperatures, this algorithm will work for WiBAR

data, although the weight for a particular desired location given a nearby observation

will not be a single number, but a slowly varying function of frequency, due to the fact

that wideband antenna pattern typically gets narrower as the frequency increases.
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