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ABSTRACT

Technology scaling has driven the transistor to a smaller area, higher performance
and lower power consuming which leads us into the mobile and edge computing era.
However, the benefits of technology scaling are diminishing today, as the wire delay
and energy scales far behind that of the logics, which makes communication more
expensive than computation. Moreover, emerging data centric algorithms like deep
learning have a growing demand on SRAM capacity and bandwidth. High access
energy and huge leakage of the large on-chip SRAM have become the main limiter of
realizing an energy efficient low power smart sensor platform.

This thesis presents several architecture and circuit solutions to enable intelligent
mobile systems, including voltage scalable interconnect scheme, Compute-In-Memory
(CIM), low power memory system from edge deep learning processor and an ultra-low
leakage stacked voltage domain SRAM for low power smart image signal processor
(ISP).

Four prototypes are implemented for demonstration and verification. The first
two seek the solutions to the slow and high energy global on-chip interconnect: the
first prototype proposes a reconfigurable self-timed regenerator based global inter-
connect scheme to achieve higher performance and energy-efficiency in wide voltage
range, while the second one presents a non Von Neumann architecture, a hybrid in-
/near-memory Compute SRAM (CRAM), to address the locality issue. The next two
works focus on low-power low-leakage SRAM design for Intelligent sensors. The third

prototype is a low power memory design for a deep learning processor with 270KB

ix



custom SRAM and Non-Uniform Memory Access architecture. The fourth prototype
is an ultra-low leakage SRAM for motion-triggered low power smart imager sensor
system with voltage domain stacking and a novel array swapping mechanism. The
work presented in this dissertation exploits various optimizations in both architecture
level (exploiting temporal and spatial locality) and circuit customization to overcome
the main challenges in making extremely energy-efficient battery-powered intelligent
mobile devices. The impact of the work is significant in the era of Internet-of-Things
(IoT) and the age of AT when the mobile computing systems get ubiquitous, intelligent

and longer battery life, powered by these proposed solutions.



CHAPTER I

Introduction

1.1 Technology Scaling and Intelligent Mobile System

Guided by the Moore’s Law [1], the minimum feature size of transistor keeps
shrinking and the number of transistors on chip increases exponentially. As predicted
by the Bell’s Law [2], in the first two decades of the 21st century, we have witnessed a
shifted from the PC era to the smart phone and ubiquitous computer era (Figure 1.1).
Now we all get used to the convenience of fast wireless communication and excellent
computing power brought by these battery-powered mobile systems. Tablet is as
powerful as a PC with a touch-screen which allows us to continue the work even on
the feet. Smart phone has become a indispensable part of our life, a personal assistant
and a second brain. Smart watch and other wearable device monitor our health data
and offload many frequently used functions to a smaller screen. Besides the ever
growing demand in the handheld devices, many foresee the coming of Internet-of-
Things (IoT) driven by the faster 5G communication and the advances in low power
techniques. Wireless sensor nodes will get a large-scale deployment in many areas of
life. For example, an interocular pressure sensor can be implanted in human eyes to
prevent glaucoma [3], and infrastructure monitoring sensor can measure vibrations
and material conditions in buildings, bridges and historical monuments to prevent

accidents. The number of smart sensors is estimated to increase by 3X and reaches 1



trillion by 2023 [4].
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Figure 1.1: Bell’s Law on scaling of computing platforms [5].

At the same time, benefiting from the high performance computing and "Big
Data" driven by the technology scaling, artificial intelligence has embraced the "Sec-
ond Wave" as described by DARPA’s John Launchbury [6]: a shift from Handcrafted
Knowledge to Statistical Learning. The recent advance in deep learning has led to
many revolutionary improvements in various application domains, including com-
puter vision, speech recognition, and nature language processing. Nowadays, Al has
become the most promising and popular applications to both consumers and enter-
prises. With the explosive growth in demand, Al empowered intelligent system has
become the hottest research and development topic (Figure 1.2), from the 8-Core
neural engine in Apple’s high performance System on Chip (SoC) [7] to the Edge
TPU in Google’s purpose-built ASIC [8], and the heterogeneous integrations of image

sensor and object recognition processor [9).
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Figure 1.2: Apple A12 SoC with 8-Core Neural Engine (top-left), Google Edge TPU
ASIC (top-right), KAIST 3D-stacked gaze-activated object-recognition system (bot-
tom).

1.2 Challenges for Intelligent Mobile System

Thanks to technology scaling, more transistors can be integrated into a smaller
chip area with increased performance, which helps the development of a more powerful
and smaller battery-operated intelligent system. However, even though the minimum
feature size of the transistor continues decreasing, today a number of factors have
made the benefits of technology scaling diminishing. The first barrier we hit is the
"Power Wall". To combat the sub-threshold leakage, the scaling of threshold voltage
and supply voltage has been greatly slowed down, but the number of transistors
continue to scale exponentially with a constant die size, resulting in an exponential
increase in both active and leakage power [10], as shown in Figure 1.3. The small form
factor of the mobile devices limits the size of the battery, but many Al applications like
keyword spotting and face ID requires part of the system to be always-on. To extend

the battery life, ultra-low power and energy-efficient circuits needs to be specially



optimized for the intelligent mobile system.
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Figure 1.3: Processor power scales exponentially (Moore, ISSCC Keynote, 2003) [10].

1.2.1 Slow and High Energy Interconnect

The first challenge comes from the slow and high energy global interconnect. Even
though technology scaling improves the driving strength and reduces the parasitic ca-
pacitance of the transistor, which generally results in higher performance and lower
energy cost, the delay and energy scaling of interconnect fall far behind that of the
logic. The reducing minimum width and pitches increase the wire resistance and
inter-wire capacitance. Even with the deployment of low-K dielectric materials, unit
length resistance and capacitance of wire doesn’t scale much with the technology
nodes. Therefore, the RC delay dominates the logic delay and becomes the main
bottleneck of high-speed circuit, as shown in Figure 1.4. Technology scaling also
non-uniformly improves the energy efficiency of computation and communication.
As shown in Figure 1.5, the energy of a standard-cell-based double-precision fused-
multiply-and-add (DFMA) is reduced from 50pJ in 40nm to 8.7pJ in 10nm, while the
energy of 10mm 256-bit bus only scales from 310pJ to 200pJ. The cost of accessing

256 bits of operands from a distant memory is 6 times greater than the cost of com-



puting in 40nm. This ratio goes up to 23 times in 10nm. Scaling makes locality even
more important, since fetching the operands is getting much more expensive than
computing it. One solution to this challenge is to find a interconnect scheme that
improves both the delay and energy-efficiency of communication, which will be intro-
duced in Chapter II. Another solution is to exploit locality and reduce the amount of
data movement per operation as much as possible, which leads to the proposal of a

non Von Neumann Architecture, Compute-in-Memory (CIM), introduced in Chapter

I11.
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Figure 1.4: Delay scaling trend of logic and interconnect without (left) and with
repeater (right) [11].
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add (DFMA) energy
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Figure 1.5: Energy scaling trend of logic, SRAM, and interconnect [12].



1.2.2 Large On-Chip Memory

The growing size and power of on-chip memory has become one of the biggest
challenges for low power Machine Learning and modern DSP chip design. Static ran-
dom access memory (SRAM) is an indispensable part of Very-Large-Scale Integration
(VLSI) system since it dominates most chip area and power consumption. Figure 1.6
shows that in the 45nm 8-core Enterprise Xeon Processor, more than 60% of the chip
area is occupied by L1/2/3 cache [13]. And the power breakdown of a recent 40nm,
8-core server processor shows that over 50% of the active energy is dissipated in the
caches and register files. What’s more, the leakage power of a modern last-level cache

(LLC) can be comparable to the active power of one simple core running in full speed

[14].

M 8 cores
L1/reg/TLB
L2

|
, ~
]

Figure 1.6: Die photo of 45nm 8-core Enterprise Xeon Processor (left and top-right)
and power breakdown of an 8 core server chip (bottom-right) [13, 14].

This problem is exacerbated by deep learning algorithm. Since the complex train-
ing part of the neural network is usually done off-line in the cloud, hardware accel-
erator in the mobile SoC is only responsible for real-time inference. Compared to
many traditional DSP algorithms, the core arithmetic computation of deep learning
inference is very simple, mostly just matrix multiplication and accumulation (MAC)

operation on 8-bit precision data. In contrast to the low requirement of computa-



tion, deep neural networks requires huge amount of parameters/weights storage. For
example, AlexNet, that won the ImageNet competition in 2012, has 60 Million pa-
rameters, around 240MB of memory storage [15]. Even a keyword spotting network
has 2.1 Million parameters, around 8.4MB of memory [16]. Many studies have shown
that most of the energy and latency in the neural network accelerator is consumed
by the data transfer. For example, in a conventional fully connected neural network
(FCNN) accelerator, 62% of the energy and 97% of the latency is due to weight trans-
fer, as shown in Figure 1.7 [17]. One of the reason is that memory access energy is
way higher than arithmetic operation energy. In 45nm, DRAM access energy is 5000
times higher than a 8-bit MAC operation and SRAM access energy of a small 8KB
bank is still 40 times higher (Figure 1.8).

[ Computation [] Computation
[ Weight Transfer B weight Transfer

Figure 1.7: Energy and latency breakdown of a conventional FCNN accelerator [17].

integer | JNMFP | B Memory | |
Add

. FAdd Cache (64bit)
8 bit 0.03pJ 16 bit 0.4pJ 8KB 10pJ
32 bit 0.1pJ 32 bit 0.9pJ 32KB 20pJ

Mult FMult 1MB 100pJ
8 bit 0.2pJ 16 bit 1.1pJ DRAM 1.3-2.6nJ
32 bit 3.1pJ 32 bit 3.7pJ

Figure 1.8: Energy costs for various operations in 45nm at 0.9V [14].

Since edge devices can’t afford to have high power off-chip DRAM, people try



to squeeze all the weights into on-chip SRAM by pruning the network and com-
press the weights. Still a deep learning accelerator requires hundreds of Kilo-bytes of
memory. A good example is Standford’s Efficient Inference Engine (EIE) for "Deep
Compressed" network. The layout photo in Figure 1.9 shows that 162KB SRAM

takes 93% of the total area [18].

Power Area

—=; (mW) (%) (wm?) (%)

Act_ 0 Act 1 Total 9.157 638,024
vénf— Arithm- Ptr Odd memory 5.416  (59.15%) 594,786  (93.22%)
| £ = clock network 1.874  (20.46%) 866 (0.14%)
register 1026 (11.20%) 9,465  (1.48%)
S combinational 0.841 (9.18%) 8,946 (1.40%)
Sp Mat filler cell 23,961 (3.76%)

Figure 1.9: SRAM takes 93% of total area of the Efficient Inference Engine (EIE) for
Deep Compressed Network [18].

However, huge amount of on-chip SRAM brings another two challenges: low leak-
age and high yield. Customized low leakage SRAM become more crucial in neural
network based intelligent sensor. Usually a battery-powered sensor node can fre-
quently shut down the supply during sleep mode to extend battery life. However,
since neural network requires all the weights to be retained after sleep, SRAM, now
the largest portion of the system, has to stay on in standby mode. Due to the ex-
tremely low activity ration of a sensor-based system, the leakage power can even be
higher than active power. Low voltage operation is one of the most effective ways to
reduce both active power, due to its quadratic relationship with supply voltage, and
leakage power, due to the Drain-Induced-Barrier-Lowering (DIBL) effect. However,
low supply voltage greatly compromises the stability of SRAM operations. What’s
more, technology scaling makes it even harder to design robust SRAM, since process
variation like Random Dopant Fluctuation (RDF) [19] and Line Edge Roughness

(LER) [20] gets worse with reduced bitcell size. In Chapter IV and V, we are going



to focus on the issues in low power SRAM design for intelligent sensor nodes.

1.3 Contribution of This Work

This work contributes some solutions to the interconnect and memory challenges
in development of intelligent mobile and edge devices. This proposal presents four
works in detail.

Dynamic Voltage and Frequency Scaling (DVFS) is a frequently used low power
technique in many mobile systems. The supply voltage may drop to near-threshold
when the chip is in low workload and suddenly rise to full VDD when a burst of
high workload appears. To make the slow RC delay of global interconnect go linear
instead of quadratic with the wire length, repeater is usually inserted with carefully
designed number and size based on the wire and repeater delay properties. However,
the relative delay between wire and repeater is greatly affected by the voltage causing
the optimal number and size of the repeaters at one voltage become sub-optimal at
another voltage. In Chapter II, this proposal presents a reconfigurable self-timed
regenerator based global interconnect scheme which enables graceful degradation of
performance and power in wide range dynamic voltage/frequency scaled systems.
A test chip demonstrates up to 40% and 25% better performance scaling than a
traditional repeater based interconnect at 1V and 0.5V, respectively, in 45nm SOI
CMOS. This work resulted in publications in ASSCC’15|21].

Conventional Von Neumann architecture involves frequently data transfer between
memory and computation unit incurring significant energy and latency cost. This
problem is amplified by technology scaling and "Data Centric" application like deep
learning. In Chapter III, this proposal presents a non Von Neumann architecture —a
hybrid in-/near-memory Compute SRAM (CRAM) that uses 8T transposable bit-cell
and vector-based, bit-serial arithmetic to accomplish a wide range of operations with

flexible bit-width. The proposed design was implemented in a small IoT processor



in 28-nm CMOS consisting of a Cortex-M0 CPU and 8 CRAM banks of 16 kB each
(128 kB total). The system achieves 475 MHz operation at 1.1 V and, with all
CRAMSs active, produces 30 GOPS or 1.4 GFLOPS on 32-bit operands. It achieves
the energy efficiency of 0.56 TOPS/W for 8-bit multiplication and 5.27 TOPS/W
for 8-bit addition at 0.6 V and 114 MHz. This work resulted in publications in
ISCA’18]22], ISSCC’19[23], MICRO’19]24] and JSSC’19 (to appear).

In Chapter IV, this proposal presents a Deep Learning Accelerator (DLA) with
all weights stored in 270KB custom low power SRAM and non-uniform memory ar-
chitecture for intelligent edge computing, like keyword spotting and face detection.
Implemented in 40nm CMOS, the DLA achieves 288pW power consumption of and
374 GOPS/W energy efficiency with the following techniques: 1) Flexible and com-
pact memory storage for highly truncated fixed-point network weights ranging from
6-32 bit precision via programmable control; 2) All weights stored in 270KB on-chip
SRAMs with four processing elements (PEs) located amidst them, minimizing data
movement energy; 3) A non-uniform memory architecture provides optimal energy-
density trade-off between small, low power memory banks for frequently used data
(e.g., input neurons) and large, high density banks for the large amount of infrequently
accessed data (e.g., synaptic weights); 4) A 0.6V custom 8T SRAM with both ac-
tive power reduction techniques like low-swing bit-line and sequential decoder, and
leakage reduction techniques like peripheral power-gating, array voltage clamping
and bank-by-bank drowsy mode. This work resulted in publications in SiPS’15[25],
[SSCC’17|26] and JSPS’18|27].

In Chapter V, this proposal presents an ultra-low leakage SRAM in a smart im-
age signal processor (ISP) for an energy-efficient low-noise CMOS image sensor [28].
The system is designed for motion-triggered Io'T applications empowered by change
detection and three dedicated neural networks to do human detection, face detection,

and face recognition respectively. Including main memory, frame buffer, and memory
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for neural network weights, the system requires 6.4 Mbit of on chip SRAM in total.
With a special designed differential 8T bitcell, we are able to bring down total leakage
power of SRAM array to 2uW by retaining the data at 0.3V, and still achieve a good
stability. What’s more, 0.3V supply is generated directly on chip using a novel stack-
ing array technique instead of a DC-DC converter. The proposed design is taped-out

using TSMC 40nm Low Power technology in April 2019.
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CHAPTER II

Reconfigurable Self-Timed Regenerators for

Wide-Range Voltage Scaled Interconnect

2.1 Introduction

Near-threshold (NT) operation has been shown to provide a reasonable balance
between energy efficiency and performance demands for a wide range of applications
[29, 30|, particularly in the mobile space. However, even with the recent focus on en-
ergy efficiency, high single-thread performance demands still dictate nominal voltage
operation at times. Wide-range dynamic voltage and frequency scaling (DVFES) en-
ables operation across the energy/performance design space, but requires underlying
circuits to scale across voltage in a robust and predictable manner. Without this, the
ability to adapt to dynamic runtime constraints will be limited.

Recent work has shown how to optimize logic [31, 32] and memory [33| across
both near-threshold and full voltage regimes. However, little work has addressed
interconnect optimization across this wide voltage range. Unlike logic delay, which
changes dramatically with supply voltage, interconnect RC delay is insensitive to
voltage scaling. This leads to different optimization approaches in comparison to
logic and memory. As designs are limited by their critical path, interconnections that

are poorly optimized for certain voltage modes cause the entire design to suffer.
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Optimal repeater insertion for a long interconnect differs significantly at full and
near-threshold (NT) voltages. The optimal repeater count Ny, and size w,p, are
given by the well-known equations [34] in Fig. 2.1. As supply voltage reduces, the
effective repeater driver resistance Rq increases relative to the interconnect resistance
Iy, which remains constant. Wire capacitance c,, and gate capacitance C, also remain

constant as voltage scales. Therefore, Nop, o< 1/4/Rq(1+ ) and wop, o< v/ Rq, such

that at low VDD fewer, yet larger, repeaters are optimal.

4 1V 0.38%;c5
Nopt = L 1560RC. (v + 1)
. d“g Y

Rde

Wopt = = ~
0.5V TwCg

Energy

Rg: equivalent resistance of transistor
. gate capacitance of repeater

Iy . wire resistance of unit length
p  Cy: wire capacitance of unit length
De|ay y: proportionality factor

1 2 3 N

@ 1V Optimal Design -DO—M—DO—%—DO—M—DO—%&—

*05V0pt|mal Design p WA p o

Figure 2.1: Differing optimal repeater designs for high and low supply voltages lead
to sub-optimality in wide-range voltage scaled systems.

For the 45nm SOI technology used in this work, nominal voltage is 1V while
0.5V can be considered near threshold, hence we consider this range during optimiza-
tion. In this technology, Rq increases by roughly 4x from 1V to 0.5V, therefore an

optimized interconnect at 0.5V uses half as many repeaters of twice the size as an in-
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terconnect optimized for 1V. Operating repeated interconnects at a voltage they were
not targeted for leads to large sub-optimality in energy and delay, shown conceptually
in Fig. 2.1.

On-chip interconnect has been studied in-depth by the circuit community with
many specialized designs, such as low-swing transceivers, being proposed to save en-
ergy and increase throughput. However, within circuit blocks, long wires are repeated
with inverters and buffers by commercial place and route tools. While specialized
transceivers are desirable for well-defined interconnections spanning long distances,
we propose using regenerators for shorter, within-block, wired interconnects in voltage
scaled systems when simplicity, low overhead, and ease of integration into a design is
valued over absolute performance and energy improvements. This proposed technique
does not replace specialized interconnect techniques, but instead is meant to replace

repeaters for general purpose use.

2.2 Proposed Approach

The poor voltage scalability of repeater-based interconnect currently forces the
designer to choose between a design that is optimal at either full or NT voltages, but
not both. Furthermore, the interconnect delay does not track the fanout-of-4 (FO4)
inverter delay, characteristic of how digital circuits scale with voltage, and hence
the interconnect will become performance-limiting for the entire design during either
full or NT operation if traditional design methodologies are followed. SPECTRE
simulations of industrial wire and device models provided by a 45nm foundry are
shown in Table 2.1 with results matching the analytical predictions of Figure 2.1.
The baseline repeaters were inverters in this simulation. As expected, NT favored
fewer, larger repeaters as compared to nominal voltage.

An obvious approach to overcome the N, discrepancy between VDD and NT

operation is to selectively disable repeaters along an interconnect. However, this
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VDD (V) Optimal Optimal Size  Optimal #

Delay (ps/mm) Wope (Um) Nope
0.5 (NT) 1680 2.6 35
1.0 (Nom.) 740 6.3 49

*Interconnect configuration: 10mm length with minimum width
and spacing.

Table 2.1: Simulated optimal repeater design.

only shifts the problem from drivability of the repeater to drivability of the bypass
devices, amounting to a zero sum game. For instance, if transmission gates are used
to bypass repeaters then they suffer similar Rd degradation to that of the repeater,
unless driven by a separate nominal voltage supply, which incurs considerable level
shifting and power delivery overheads.

We propose using single-ended regenerators based on [35, 36] which, unlike con-
ventional repeaters, are single-ended gates attached along a wire. Instead of discrete
input and output pins, regenerators rely on detection circuits to sense partial transi-
tions along the wire, triggering a temporary regenerative drive of the wire until it has
fully transitioned to a new value. Regenerators have the unique property of not par-
titioning a long interconnect into separate wire segments. If a regenerator is enabled,
it acts as a repeater passively monitoring the interconnect and then actively driving it
to transition. Disabling the regenerator in effect extends the repeated distance, as the
inactive regenerator does not change the characteristics of the wire other than added
parasitic capacitance. Using regenerators addresses the scalability of the number of
inserted repeaters, but to address repeater size we also add regenerators in parallel
and selectively enable them.

Fig. 2.2 shows a circuit schematic for our proposed regenerator, named Reconfig-
urable Self-Timed Regenerator (RSTR), which is based on [35] but with extensions

for reconfiguration. The new reconfigurable components are highlighted in red.
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Figure 2.2: RSTR schematic with transistor sizing. Transistors with unlabeled sizes
are minimum width (152nm). Enable signal and header/footer transistors provide
reconfigurability.
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The circuit operates by early detection of a transition along the interconnect wire
at point A. The transition is then aided by turning on either the PMOS or NMOS
driving transistor, P6 and N6, to supply additional current in driving the wire. To
avoid global control signals a self-timed delay chain (I1-3 and 14-6) turns off the driving
transistors and awaits the next transition. The regenerator is enabled through the
En signal that, when asserted, activates N1-2 and P3-4 forming a NAND structure
to sense the low-to-high transition and turn on driver P6, while remaining insensitive
to high-to-low transitions. Similarly, high-to-low transitions are detected by a NOR
(P1-2, N3-4) that controls N6. To allow for this hysteresis, I7 and I8 form a latch to
store the previous value on the wire. Lastly, N7 and P7 in the NAND/NOR detection
circuits disable the sensing of transitions while P8 and N8& disable the output drivers.

Because of the internal delay chain, RSTR controls its own pulse width, namely
the duration of the pull-up/pull-down time, hence careful delay selection is needed
to ensure that the wire transitions substantially before the RSTR resets itself across
a range of Vdd. Also the delay should not be so long that it interferes with the
next signal transition. The delay chain consists of three SVT minimum-sized stacked
inverters; simulation across design corners and process variation ensures all these
requirements are met.

Fig. 2.3 shows the energy-delay curve for repeaters and RSTR at 0.5V and 1V,
simulated with the industrial 45nm SOI CMOS models. The driven interconnect is a
7.5mm intermediate (2x thickness) wire with 140nm spacing (1x min.) and 280nm
width (2x min.), chosen to represent a reasonably long within-block interconnect.
At both voltages, the size and number of repeaters are swept to find the optimal
energy /delay points, marked as the Pareto frontier curve in Fig. 2.3. On the 1V fron-
tier, we chose "INV #23" to represent the 1V-optimized design containing Nyp—23
inverter repeaters, each with size wopy = 12umPMOS and 6pmNMOS. On the 0.5V

frontier, design "INV #9" is selected with Ny =9 inverters (wopy = 24umPMOS,
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Figure 2.3: Simulated energy versus delay curves for RSTR. Optimal inverter and
RSTR. designs are chosen from the frontier curves at each voltage.

12umNMOS). All repeaters are placed evenly along the interconnect.

The RSTR design space is similarly swept and we observed that some configura-
tions on its 1V frontier also appeared on the 0.5V frontier. One such design "RSTR
#6" uses Nyp—=6 RSTRs which are evenly distributed along the 7.5mm wire with
device sizes given in Fig. 2.2. This RSTR design is labeled on both plots of Fig. 2.3
for comparison. Unlike traditional repeated interconnects, RSTR can achieve better
performance and energy characteristics over a wide voltage range, such as 0.5V to 1V
as demonstrated in this simulation.

Despite the simplicity of the proposed RSTR scheme (the regenerator topology
adds only small overhead beyond the design in [35]) it provides the following important
benefits over traditional repeated interconnects:

1) RSTR remains optimal (in energy/delay space) across the full VDD range.

2) RSTR reconfigurability provides a new knob for adaptive designs to compensate
for variability at NT operation. This is achieved by selectively turning on/off RSTRs
along a wire to trade performance for power (e.g., 24% performance loss for 40% lower
energy).

3) RSTR is faster than an optimal repeater design at both full and NT supply
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while maintaining energy efficiency.

4) RSTR does not partition the wire, allowing for bi-directionality.

2.3 Measurements and Results

VDD5
DD4
L Ypp2 YOR3 === |
........................................................... X6

7.5mm interconnect VDDH

7.5mm interconnect Level | | Clock

Converter Divider
7.5mm interconnect \)

bypass

L »-0ff Chip

Figure 2.4: Reported delays are measured based on the frequency of a ring oscillator
structure. Each interconnect design is in a separate voltage domain to measure energy.
Each interconnect under test has adjacent neighbors with 140nm spacing (1x min.).

A test chip was fabricated in 45nm SOI CMOS to evaluate the efficacy of RT'SRs
in silicon and validate simulation predictions. A total of four inverter repeater (INV)
designs and two proposed RSTR designs were included on the test chip, which mea-
sured 1x1mm (Fig. 2.4). Fig. 2.5 shows the test harness; the interconnect matches
the structure simulated above and is implemented as a bypassable delay chain within
a ring oscillator. After level conversion and a clock divider, frequency is measured off
chip both with and without interconnect to assess delay.

Fig. 2.6 shows measured results confirming the relatively poor voltage scalability
of repeater-based designs. A 1V optimal design is 31% slower than the 0.5V optimal
design when operating at 0.5V. Conversely, a 0.5V optimal design is 18% slower with
29% higher energy than a 1V optimal design when both operate at 1V. In contrast the
RSTR design shows good voltage scalability. Specifically at 1V it is 28% faster than

the 1V optimal INV design while consuming 5% less energy. At 0.5V, the "RSTR
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Figure 2.5: Die photo of 45nm SOI test chip. The 7.5mm interconnect is folded ten
times.

#6" energy and delay essentially match the 0.5V optimal INV design. In addition to
being superior to INV-based designs, recall that "RSTR #6" appears along the Pareto
optimal frontier at both supply voltages. This indicates that excellent performance
can be obtained across voltage scaling, relative to other RSTR designs.

Green triangles in Fig. 2.6 represent RSTR energy-delay points with varying num-
ber of RSTR enabled, representing dynamic reconfiguration options depending on
real-time energy-performance priorities. This allows the RSTR design to also oper-
ate at lower energy with faster delay than "INV #23" at 0.5V, if desired. Also, if
interconnect was performance limiting for the design at full VDD (1V), turning on
six additional RSTR along the wire (reconfiguring RSTR #6 into RSTR #12) of-
fers 10% faster performance, potentially rebalancing the overall design. In NT mode
(0.5V), regenerators can then be turned off to achieve a minimal energy of 0.6pJ in

this example.
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Figure 2.6: Measured energy versus delay curves showing RSTR and repeater per-
formance. Green triangles represents different RSTR configurations (i.e., different
number of RSTR enabled).

Fig. 2.7 shows measured delay scaling of repeater and RSTR designs across VDD,
indicating the sub-optimality of using a single inverter-based repeater design in wide-
range voltage scaling. RSTR is able to achieve better performance across the entire
0.5V to 1V range. Fig. 2.8 plots this measured data normalized to inverter FO4 delay
across a range of voltages. Ideally an interconnect scales identical to circuit delay,
which would be shown as a fixed line at 1.0 of FO4 in Fig. 2.8. Again, this supports
the more graceful scaling of delay offered by an RSTR design over a conventional

repeater-based approach.

2.4 Summary

Today’s emerging mobile applications require high energy efficiency, which is often
provided by scaling supply voltage across a wide range according to real-time workload
variation. We present a reconfigurable, self-timed, regenerator-based interconnect
scheme that remains optimal in terms of energy-delay efficiency at both full and near-
threshold voltages. RSTR interconnect delay tracks FO4 logic delay more closely than

repeated wires. In addition, RSTR offers higher speed and better energy efficiency
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overall compared to traditional repeater approaches.
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CHAPTER III

A 28-nm Compute SRAM with Bit-Serial
Arithmetic Operations for Programmable

In-Memory Vector Acceleration

3.1 Introduction

In the conventional von Neumann architecture, a clear gap lies between data
storage and processing: memories store data, while processors compute on data.
Thanks to Moore’s Law, in the past few decades, the computing power of integrated
circuits has rapidly scaled as logic gates became faster and faster and the number
of processing cores increased steadily until we hit the “Memory Wall” [37]. But the
on-chip global interconnects latency and energy cannot keep up with the scaling of
logic gates. Thus, the computation throughput and energy have become dominated
by the memory bandwidth and data movement energy. As shown in Figure 3.1a,
the bandwidth at the I/Os of all SRAM banks inside a big memory macro such as
a 20 MB L3 cache is over a hundred TB per second [38, 39|, which is comparable
to the theoretical maximum computation bandwidth of the state-of-the-art systolic
processing array [40]. Hence, the bottleneck is the local data network inside the
memory macro and the global data bus on chip. Furthermore, a large fraction of

energy consumption today is spent on moving data back and forth between memory
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and compute units [14]. As shown in Figure 3.1b, it only takes sub-pico joules of
energy to do a 32-bit addition while tens of pico joules are spent on retrieving data
from far away memory banks.

Previously, people tried to overcome the “Memory Wall” by introducing more
memory hierarchies, in an effort to bring the data closer to the computation. How-
ever, the memory problem is further exacerbated by the advent of data-intensive
applications such as neural networks [41, 42|, computer vision [43] and steam pro-
cessing [44]. The need to shift from computation-centric to data-centric architecture
has led to extensive research focused on the area of in-/near-memory computing,
which moves computation to where the data is located. Recently, we have seen many
studies that try to bring computation to different levels of memory hierarchies, in-
cluding DRAM [45] and non-volatile memories like STT-MRAM [46], ReRAM [47],
and Flash [48|. This paper focuses on designing computational SRAM banks. Most
SRAM in today’s chips is located in the caches of CPUs or GPUs. These large CPU
and GPU SRAMs present an opportunity for extensive in-memory computing and
have, to date, remained largely untapped.

There are two main types of emerging in-memory computing architectures for
SRAM. The first is analog in-memory computing. In this case, one of the operands is
pre-stored in the SRAM array. A multi-bit operand will have its bits spread into dif-
ferent word-lines, while the other operand is usually modulated into the analog voltage
level in the word-lines [49] or pulse width of the word-line enable signal [50, 51]. The
multiplication result of the two operands is then represented by the various discharge
currents of the bit cell. Often multiple word-lines are activated simultaneously, and
the multiplication results are accumulated on the bit-line as the total bit-line dis-
charge current is the sum of the each individual bit-cell current. The final multiply-
accumulate result is naturally represented by the analog bit-line voltage, which can be

sensed by an analog-to-digital converter. This approach can achieve very high energy
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network bandwidth and (b) high data movement energy.
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efficiency and performance, but it requires expensive analog-to-digital and digital-to-
analog conversions at the array boundary. Also, the computation accuracy is highly
susceptible to noise and PV'T variations, and therefore its functionality is limited to
low precision addition or multiplication. The second type is digital in-memory com-
puting, which usually activates two word-lines with full-rail voltage in the same cycle
and employs a sense amplifier on each bit-line to give a binary result [52, 53, 54, 55].
This type of approach offers better accuracy and robustness than analog approaches
and can achieve a moderately high energy efficiency and performance. However, its
functionality is limited to only bit-wise logic operation or low precision arithmetic in
Binary Neural Networks.

Although traditional computing architectures such as CPU and GPU show limi-
tations in energy efficiency and memory bandwidth, their appeal lies in their general
functionality. They can perform a wide range of operations from hit-wise logic opera-
tion to Integer/Floating-Point Arithmetic. Not only are these computations accurate
and robust since the designs are fully digital, but they are highly flexible and can im-
plement many algorithms and neural network types and sizes. In this respect, both
current in-memory approaches suffer from the same major limitation: they accelerate
only one type of algorithm and are inherently restricted to a very specific application
domain due to their limited bit-width precision and non-programmable architecture.
On the other hand, software algorithms continue to evolve rapidly, especially in novel
application domains such as neural networks, vision and graph processing, which
makes rigid accelerators of limited use.

To address these limitations, we present a general purpose hybrid in-/near-memory
Compute SRAM (CRAM) [56] that combines the efficiency of in-memory computation
with the flexibility and programmability necessary for evolving software algorithms.
It does part of the logic operations in SRAM bit-lines and most arithmetic opera-

tions in pitch-matched, near-memory peripherals at the end the each bit-line. It can
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accommodate a wide range of bit-widths, from single to 32 or 64 bits, and operation
types, including integer and floating point addition, multiplication and division, with
a small amount of hardware overhead. Its high-throughput computation is accurate
and robust, and the design offers good energy efficiency. CRAM tries to repurpose the
large existing on-chip memory storage by augmenting a conventional SRAM bank in a
cache with vector-based, bit-serial in-memory /near-memory arithmetic. To maintain
compatibility with current CPU/GPU architecture, CRAM writes/reads operands
conventionally with horizontal word-lines and vertical bit-lines, which is made possi-
ble by the 8T transposable bit cell.

The remainder of this paper is organized as follows. Section II generally introduces
the bit-serial operation and the architecture of the proposed Computational SRAM.
Section III describes the 8T transposable bit cell and the computing peripheral in
detail. Section IV presents the algorithm of multi-bit arithmetic operations. Section V
discusses the measurement results of the proposed design, and finally, the conclusions

are presented in Section VI.

3.2 Overview of Bit-serial Arithmetic and CRAM Architec-

ture

3.2.1 Bit-serial Arithmetic

Several previous digital in-memory computing works [53, 54, 55| supported some
simple bit-parallel operations such as bit-wise logic and copy. However, these are
carry-less operations that do not require interaction between bit-lines. In order to
make in-memory computing as general purpose as the ALU in a CPU, support is
needed for more complex arithmetic operations such as addition, multiplication, and
even floating point operation. The critical challenge in supporting these complex

computing primitives is facilitating carry propagation between bit-lines. We propose
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bit-serial implementation with a transposable bit cell to address this challenge.
Since the 1980s, bit-serial computing architectures have been widely used for dig-
ital signal processing because it can usually provide the most area-efficient design in
the presence of a massive bit-level parallelism [57, 58]. The key idea is to process
one bit of multiple data elements every cycle. This model is particularly useful in
scenarios where the same operation is applied to the same bit of all data elements in
a vector, like in SIMD architectures. For example, in order to compute the element-
wise sum of two arrays with 512 32-bit elements, a conventional processor would take
at least 512 cycles to get the operands element-by-element from the SRAM and then
perform the operation. A bit-serial processor, on the other hand, would complete the
operation in 32 steps as it processes the arrays bit-slice by bit-slice instead of element-
by-element. Note that a bit-slice is composed of bits from the same bit position but
corresponding to different elements of the array. Since the number of elements in
arrays is typically much greater than the bit-precision for each element stored in
them, bit-serial computing architectures can provide much higher throughput than
bit-parallel arithmetic. Note also that bit-serial operation allows for flexible operand
bit-width, which can be especially advantageous in DNN hardware designs where the

required bit width can vary from layer to layer [59, 60].

3.2.2 CRAM Architecture

Figure 3.2 shows the overall architecture of one 16-KB CRAM bank. Each CRAM
bank consists of 4 128x256 arrays that load or store data conventionally using hori-
zontal word-lines and vertical bit-lines. The normal SRAM peripherals, such as a row
decoder, column mux, and sense amp, are shown in blue. In this diagram, the array
has been preloaded with two vectors of data, vectors A and B. Data elements from
the same vector are placed into different rows and aligned by the column, while the

corresponding elements from the two vectors that are going to be operated must be
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Figure 3.2: Proposed CRAM Architecture.

aligned on the same word-line. To perform bit-serial operation, we need to activate
the same bit position from two vectors. Therefore, column decoder and pitch-matched
compute logic are added so that in-memory computing can be performed using ver-
tical compute word-lines and horizontal compute bit-lines. For example, in the first
cycle, we simultaneously activate the vertical word-lines of the Least Significant Bits
(LSB) from the two vectors. Then the computation is performed in both horizontal
bit-lines and the compute logics at the end of the bit-lines. Near the end of the cycle,
the result is then stored back in the array at some destination bit location selected
by a third vertical word-line. In the next cycle, other bits of each operand are acti-
vated to continue the computation. Again, the result is stored back at the designated
position at the end of the cycle. By repeating single bit operations cycle-by-cycle, we
can perform any complex multi-bit arithmetic with carry-propagation. For example,
a 32-bit adder will take 32 cycles to finish. Note that although bit-serial computa-
tion is expected to have high latency per operation, it gains significantly in terms of
throughput. A 16-KB SRAM bank contains 256 vertical compute bit-lines in total,

and a 35-MB Last Level Cache (LLC) in the Haswell server processor can accom-
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modate 2240 such 16-KB banks [2], which means a total of 573,440 bit-lines can do
computations in parallel. In this case, maximum throughput would be equivalent to
17,920 32-bit adders or 71,680 8-bit adders. The computing logic is shared between
the arrays on the left and right and takes 4.5% of the CRAM bank area. The instruc-
tion decoder and controller in the middle of the bank, shared by all 4 arrays, take
32-bit instruction and generate control signals for the computing logic. They occupy
5.2% of the bank area. The details of the controller instructions will be presented in

Section III.

3.3 CRAM Circuitry

3.3.1 8T transposable bit cell

Many previous in-memory computing works [51, 55, 61] choose to store each word
unconventionally by spreading bits into different rows of the same vertical bit-line.
This approach makes the computation much easier and can directly use 67T bit cell for
minimizing area. But the normal SRAM read/write operation gets much more com-
plicated and becomes incompatible with current computer architecture since in one
cycle, we can’t read out a complete word but only the same bit position from multiple
different words. Therefore, we propose to use an 8T transposable bit cell. Figure 3.3
shows the schematic and the layout of the bit cell [62]. Four of the transistors form
the cross-coupled inverter pair to hold the data, and there are two pairs of access
transistors for read/write. The structure is similar to the conventional 8T dual port
SRAM bit cell except that it provides bidirectional access: the bit cell can be read
or written from either vertical bit-line or horizontal bit-line. Therefore, CRAM can
operate directly on the stored operands in memory by enabling the same bit position
from two vector elements with vertical word-lines and perform the computation on

horizontal bit-lines. Furthermore, it can also directly read a complete word by en-
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Figure 3.3: Schematic and layout of 87T transposable bit cell.
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abling the horizontal word-line and sense the result from vertical bit-lines. With the
logic rule transistor in 28-nm CMOS, the bit cell size is 0.405 um by 1.93 um, which

is 638F? when normalized to technology node feature size (F).

3.3.2 Computing Peripherals

Figure 3.4 gives a detailed view of one row in the bit cell array. Logic operations
are performed on the bit-line (in-memory), while small additional in-row logic (near-
memory) enables carry-propagation between successive bit-serial calculations. An
example of 1-bit addition will be used to illustrate the CRAM single cycle operation
and computing peripherals. Here we add the second bit of vector A (A;) and vector B
(B1) with carry-in (Cy,) from the previous cycle and store the sum back to the second
bit of vector D (D;) and latch the carry-out (Coy) for the next cycle. First, the
CRAM instruction decoder receives the ADD instruction with the 3 column addresses
for bits A, B; and D,. After pre-charging the compute bit-line (CBL) and compute
bit-line bar (CBLB), we activate the vertical compute word-lines (CWL) of A; and
B, simultaneously to generate '’A AND B’ on CBL and A AND B’ on CBLB. We use
a separate voltage rail for the driver of CWL, /g, so that we can lower the word-line
voltage to prevent the read disturbance issue when necessary. This is the in-memory
part of the computation. Next, after the dual sense amps are enabled, the in-memory
logic operation results propagate into the near-memory region located at the end of
each CBL. The NOR gate generates 'A XOR B,” which combined with C;j, from the
C latch produces Sum and C,;;. Then CWLDy, is activated, and the sum is written
back to destination bit D;. Finally, near the end of the cycle, Cout updates the C
latch, which provides C;, for the next cycle.

When we activate the CWL, all 256 CBLs in the 16-KB CRAM banks are perform-
ing the same single bit instruction in a SIMD fashion. In order to support complex

multibit arithmetic, CRAM has to be able to execute instructions only on certain
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Figure 3.4: CRAM Array Architecture (Top-left), computation control signal timing
diagram (Top-right), and in/near-memory computing peripherals (Bottom).

selected CBLs; and therefore, we add the Tag (T) latch to enable conditional oper-
ation. Tag latch is used as the enable signal of the write-back driver. Therefore, for
the CBL whose Tag latch stores 0, the computation result will not be written-back
to the memory, as if the instruction is not executed at all. The content of the Tag
latch can be loaded from or written into the memory array. In addition to the logics
introduced before, we also add a multiplexer to allow for the write-back of signals
besides the Sum, such as A AND B, A OR B, C,, or Tag.

With the computing peripherals shown in Figure 3.4, the CRAM controller can
support up to 16 single-cycle instructions, shown in Table 3.1. Besides the logic and
add operation, it includes copy, inversion, load /store of carry or tag, comparison, and
set/reset carry. The CRAM controller takes 32-bit instruction. Four bits (|31:28])

are used for various enable signals for different features. Four bits (|27:24]) are used
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for the opcode for the 16 instructions. Eight bits are used for the address since
every memory array contains 256 compute word-lines. Bits [23:16], [15:8], and [7:0]
represent the address of operand A, the address of operand B and the destination
location D, respectively. Using these single-cycle micro instructions, we can build
complex multi-cycle macro instructions, including search, multiplication, division,

and floating point arithmetic.

bit 31 28 27 24 23 16 15 8 7 0
Instruction I enable |opc0de| RA I RB RD
Single-Cycle Primitives
Type Opcode RA RB RD Comments
e | ol [ v [ v [ v i e i
Arithmetic ADD v v v |Add RA and RB, write back to RD
Shift Copy Y ¥ [Copy RAtoRD
INV Y v [NV RA and write back to RD
Comparison Equal v Write “RA == AddrRB[0]” to Tag latch
LOAD T v Load RA to Tag latch
STORE C/T & |Write Carry/Tag latch back to RD
Utility Set C Set Carry Latch to 1
Reset C Reset Carry Latch to 0
CtoT Write Carry Latch to Tag Latch

Table 3.1: CRAM Instruction Set.

3.4 Multi-cycle Arithmetic

Users can program CRAM to achieve many complex computations. Table 3.2
shows a sample list of the supported multi-cycle operations and the number of single-
cycle instructions each takes. Next, we will introduce some commonly used arithmetic

operations and the way to program them in CRAM.
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3.4.1

Sample Multi-Cycle Operations
Type Operation # Cycles
AND N
NOR N
Losi XOR N
e NAND N
OR N
XNOR N
Add N+1
Sub 2N+1
Integer Mult N2+ SN .2
UDiv 1.5N* + 5.5N
32-bit Add/Sub 4978
Float Point AR o7
Div 697
Equal 2N+1
Comparison Greater/Less 2N+1
Search N
N is the bit-width of data

Table 3.2: Sample of supported operations and cycle counts.

We use the addition of two vectors of 3-bit numbers (A and B) to explain how

Integer Addition and Subtraction
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the addition algorithm is carried out bit-by-bit starting from the least significant bit
(LSB) (Figure 3.5). The two vectors each occupying 3 columns need to be placed
in the same array with their corresponding elements aligned on the same row but
not necessarily abutted. In cycle 0, we first initialize the entire carry latch to 0 by
using instruction 'Reset C.” In cycle 1, we apply instruction ’ADD’ and provide the
column address of the LSBs for RA and RB. We can either write the sum to an empty
column of the array or one of the operand LSBs can be directly overwritten by the

result depending on the destination address, RD, we give in the instruction. Carry




latch is automatically updated with Cout at the end of the cycle. In cycles 2 and 3,
we add the second and third bit location the same way as we did in cycle 1. Thus,
an N-bit addition takes N+1 cycles. Subtraction can be performed by first inverting

vector B and then adding to A with carry latch initialized to 1.

3-bit Addition 2-bit Multiplication
Cycle0: Initialization Cycle 0: Initialization Cycled: Load Tag
VectorA  Vector B Sum VectorA  VectorB  Product VectorA  Vector B Sum
—A—~— " C T A A —A— . T ——*—— ~— RWL T
Word 1 1/10{1] |0j0O|1 0 Word 1 1[1 1/1jojojo|0jO|0O Word 1 1[1 1§1]0/0[{1{1}0 [~
Word 3 \ Word 2 1[1 1]/0]ojo]o]ojo |0 word2 | [1]1 1foJojo]o[o]o -1
Word J} Word J] 1|0 0l1]jojojo|o]jo|O Word 3 1/0 0§1]0/0{1/0]0 [+0Q
Cycle1: ADD Cycle1: Load Tag Cycle5: Conditional ADD
Wi Wi WW W RWI WL/ WWL
Word 1] 1(0]1 0|0j1 0fo+1 Word 1 11 1J14§0(0|0(0] 0 [o+1 Word 1 1]1 1/1]0|of=l1f-1 1
Word 24 Word 21 1|1 1jojofojo]o0]0|e-q wordd | [1]1 1/0]0]ofe-1fo -0 1
Word 3 Word 3 1lo of1]ololo]o] o fe-1] Word 3 1fo o[1]o/of1]Jo]o |0
Cycle2: ADD Cycle2: Conditional Copy Cycle6: Conditional ADD
W WL — W RW WL RWL— —aRWL/WWL
Word 1 1joj1| |ojoj1 1§0}:+0 Word 1 1j1 1/1|0/0|0Of+180 |1 Word 1 1]1 1/1[Ce-080(1]-11
Word 2} \ Wword 3 11 1[o]o[o[ofofjo |0 word2 | [1]1 1]0[db-W1]0f-01
Word 3 Word 3 1j0 0|1]|o/0|Of-Cfo |1 Word 3 110 Oj|1|qoji|ojo|0
Cycle3: ADD Cycle3: Conditional Copy Cycle7: Conditional Store C
| WL ——~aWW Wi WL W
Word 1 1j0/1{ Jojo|1 1]1]0]o-0 Word 1 1j1 1{1({0|0f-1§1|0|1 Word 1 1)1 1/1p-q0/0|1)1{1
Word 2 word2 | J1]1 1]o]o]ofofo]o |0 Word 2 1]1 1lop-di[1]ofo|1
Word 3} Word 3 1jo UlDOo»lIDO 1 Word 3 10 O|1jojoj1i|{ojojo

Figure 3.5: 3-bit Addition Cycle-by-Cycle Demonstration (left), 2-bit Multiplication
Cycle-by-Cycle Demonstration (right).

3.4.2 Unsigned Integer Multiplication

One way to perform multiplication is using shift and add. Tt requires the con-
ditional copy and addition instruction enabled by the tag latch. As explained in
Section 3.3.2, if we enable the conditional execution feature, the tag latch becomes
the local write bit-line enable signal of the row, and the result of any instruction will
only be written back into the destination bit RD if the tag latch stores 1. Figure 3.5
demonstrates the example of a 2-bit multiplication. Suppose that vector A is the
multiplicands and vector B is the multipliers. Initially, four columns in the array are

reserved for the product and initialized to zero by setting all carry latches to 0 first
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using 'Reset C’ and then writing the carry latch back to product columns in 4 cycles
using 'Store C.” In the first computing cycle, the LSB of the multiplier is loaded to
the tag latch using 'Load T’ instruction. In cycles 2 and 3, the multiplicands are
copied to product columns only if the tag latch in that row equals 1. In cycle 4, the
second bit of the multiplier is loaded to the tag latch. In the next 2 cycles, for rows
with tag equals 1, the multiplicands are added to the second and third bits of the
product, shifting the multiplicands by 1 to account for the multiplier bit position.
Finally, we store Cout in the most significant bit (MSB) of the product to complete
the multiplication. Note that partial products are implicitly shifted as they are added
using appropriate bit addressing in the bit-serial operation, and no explicit shift is

performed.

3.4.3 Unsigned Integer Division

Division is conducted similarly by implicit shifting and subtracting from a partial
result. The pseudo-code for CRAM is shown in Table 3.3. The quotient is computed
starting from the MSB. First, we copy the MSB of dividend to the partial result
(remainder). Then, we subtract the divisor from the partial result, put the result into
a temporary location and check whether the result is positive or negative by looking
at the overflow bit Cout in the carry latch. A positive result from subtraction means
the partial result is greater than the divisor, and the tag latch of that row will be set
to 1. We conditionally update the corresponding bit in the quotient and remainder
if the tag is 1. We repeat the previous steps N times until all the bits of the quotient

are computed.

3.4.4 Comparison and Search

Comparison operations like "greater/less than" or "equal to" can be performed

by using subtraction or XOR logic operation. CRAM also provides a multi-bit search
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Input: Divisor A[N-1:0], Dividend B[N-1:0]
Output: Quotient Q[N-1:0], Remainder R[N-1:0]

[Note: extra N columns (TEMP) is used for temporary result]

0: initialize Q and R to 0
l:fori=0to N-1 do

2:  copy B[N-1-i] - R[N-1-i]

3:  R[N-1:N-1-i] - A[N-1:0] - {Coy, TEMP|N-1:0]}
4: if {Coum, TEMP[N-1:0]} is positive, update Tag to 1
5: (if Tag = 1) write 1 into bit Q[N-1-i]

6: (if Tag =1) copy TEMP[i:0] to R[N-1:N-1-i]

7: end for

8: return Q, R

Table 3.3: Pseudo-code: Unsigned Integer Division.

operation like those in content addressable memory (CAM) by repeatedly using the
CRAM single-cycle instruction ’Equal.” A given pattern is compared with the memory
content within a specified range of columns, and the matched memory row will have
its Tag latch stored as 1. The pattern is given cycle by cycle into the memory as the
8th bit of CRAM instruction (the LSB of address RB filed) and is compared to all
the bits in the column specified by address RA of the instruction. Therefore, N-bit

search operation takes N cycles.

3.4.5 Floating-point Arithmetic

Taking 32-bit IEEE-754 floating point as an example, we will demonstrate one
way to implement floating point arithmetic on the CRAM using repeated conditional
integer addition, subtraction, multiplication, division and search operation. A 32-bit
floating number is represented by one sign bit in the MSB followed by 8-bit exponent
and 23-bit mantissa. During computation, we always use one extra memory column
of all 1s to represent the implicit 24th bit of mantissa. Floating point multiplication
and division is relatively simple. First, the result sign bit can be determined by

XOR the operand sign bits. Then an eight-bit addition between the two exponents is
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Input: A[31:0], B[31:0]

Output: S[31:0]

[Note: extra 32 columns (TEMP) is used for temporary result]
[Note: Samss : sign bit, Eamss: exponent, Mags: Mantissa]

I. Equalize exponent: (first consider the case Ex = Ep)

0: EA — EB —> ETEM_P

1: compare & if(Ex = Eg) copy Ex — Es

2:fori=11t024 do

3 Search for row with Ergyvp = 1, right shift Mg by 1 &> Mevp
4: end for

5: compare & if(Erpyp = 24), clear Mrpyp to all 0

II: Add Mantissa

6: XOR SA, SB —> Tag

7 1f(Tag e 0) MA o MTEMP —> Ms, SA —> SS

8: 1f(Tag =1& M, > MTEMP) M - Mreve — Ms, SA —> Ss

9: 1f(Tag =] &M, < MTEMP) Mteve - Ma — Ms, Sg — S
III: Normalize result

10: fori=1 to 24 do

11:  Search Mg with #i leading 0, left shift Ms by i, Es-1— Es
12: end for

(Repeat previous steps again for Eg = E, case)

13: EB = EA —> ETEMP

14: ...

Table 3.4: Pseudo-code: Floating Point Addition.

performed if it is multiplication or eight-bit subtraction if it is division. Then a 24-bit
multiplication or division between the mantissa is performed. However, floating point
addition and subtraction is much more complicated. Table 3.4 shows the pseudo-code
for floating point addition. First, we equalize the exponents of the operands by shifting
the one of the mantissa. If the operand A has a larger exponent, we right-shift the
mantissa of operand B by the difference of the two exponents. Since the mantissa has
at most 24 bits, we shift at most 24 times. Next, we add the mantissa if the signs of
A and B are the same. Otherwise, we subtract B from A if A has a larger mantissa
or subtract A from B if mantissa B is larger. Finally, we need to normalize the result

by left-shifting the result until the 24th bit of mantissa is 1.
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3.5 Measurements and Results

Bank0 Bankl Bank2 Bank3
CPU CPU CRAM CRAM
INST. DATA INST. DATA

A |

S
ARI\/¥‘Cortex MO »{ CRAM CTRL Blhs
I/ 1/ I/
¢ i Il 2
CRAM CRAM CRAM CRAM
DATA DATA DATA DATA
Bank4 Bank5 Bank6 Bank7

Figure 3.6: Test chip architecture with sample memory bank configuration.

To test the proposed in-/near-memory concept, we incorporate CRAM into an
[oT processor. The chip consists of a Cortex-M0 CPU [63], a separate CRAM control
bus, and eight 16-KB Compute SRAM banks (in total 128 kB memory with 2048
computing rows). These memories can function either as traditional or compute
memories. Both the ARM core and CRAM control bus can access all eight memory
banks, load or store data using standard memory 1O, and perform computation in
memory by sending 32-bit CRAM instruction to the CRAM controller 1O in each
bank. The diagram in Figure 3.6 shows an example memory bank configuration: two
memory banks are used as CPU instruction and data memory while the rest are used
for CRAM computation. Complex multi-cycle instructions are stored in one of the
6 banks and streamed or broadcasted to other 5 compute-configured banks by the
CRAM control bus with all five banks performing CRAM operations in parallel. At
the same time, the M0 can perform other processing with the remaining two memory

banks through the standard AHB bus.
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Figure 3.7: Layout of CRAM bank and die photo.
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Figure 3.7 shows the layout of the CRAM bank and die photo of the prototype
chip fabricated in 28-nm CMOS. A single memory bank is 245 x 625 um with 70%
array efficiency. The chip size is 1.5 mm by 1.7 mm. Figure 3.8 shows the measured
frequency and energy efficiency of 8-bit addition and multiplication across the supply
voltage. The best energy efficiency is achieved at 0.6 V and 114 MHz, resulting in 0.56
TOPS/W for 8-bit multiplication and 5.27 TOPS/W for 8-bit addition. At 1.1 V| the
frequency of 475 MHz results in 122 GOPS for 8-bit addition and 9.4 GOPS for 8-bit
multiplication. If the memory size is scaled to 35MB, which is a similar capacity
to an L3 cache in a modern server-class processor, CRAM is estimated to provide
34.2 TOPS of 8-hit additions while consuming 51.2 W. Figure 3.9 gives measured
frequency and leakage power distributions for 21 measured dies. The performance of
different multi-cycle operations is summarized in Table 3.5.

Figure 3.10 shows the performance of the test chip for diverse computationally
intensive tasks ranging from neural networks to graph and signal processing. The total

latency in cycles is compared with a baseline operation where CRAMs are only used
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Figure 3.8: Frequency and energy efficiency of 8-bit multiplication and addition at
different VDD.

as data memories and the computation is entirely performed on the ARM CPU. The
first benchmark is the 1st convolutional layer from Cuda-convnet [64], and the second
is the last fully connected layer from Alex-net [15]. Due to their size, these layers
must be executed in multiple smaller sub-sections. The third application consists of
512 simultaneous 32-tap FIR filters and the fourth application performs traversal of a
directed graph represented by a 192x192 adjacency matrix. The workload breakdown
shows the percentage of time spent on input loading and output storing vs. in-
memory computation. Speedup, compared to executing the same workload with the
ARM Cortex-MO0, varies from 7.2 to 114x with the greatest gains obtained when the
operation is compute-heavy and low on input/output movement.

In Table 3.6, we compare the proposed approach with other state-of-the-art in-
memory accelerators. We have by far the largest computing memory size. Further-
more our proposed work is the only solution to provide a wide range of instructions
and flexible bit-widths. It repurposes the memory storage already available in pro-

cessors, thereby accelerating computation while maintaining programmability.
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Figure 3.9: Maximum frequency and leakage power distribution of 21 dies at 1.1V.
3.6 Summary

To summarize, we proposes a general purpose hybrid in-/near-memory compute
SRAM (CRAM) that combines an 8T transposable bit cell with vector-based, bit-
serial in-memory arithmetic to accommodate a wide range of bit-widths, from single
to 32 or 64 bits, as well as a complete set of operation types, including integer and
floating point addition, multiplication and division. This approach provides the flex-
ibility and programmability necessary for evolving software algorithms ranging from
neural networks to graph and signal processing. CRAM is an area-efficient and low
invasive technique that exploits vector-based bit-serial in-/near-memory arithmetic.
It achieves both high throughputs by exploiting the massive bandwidth inside SRAM
banks and good energy efficiency by suppressing data movement energy. The pro-
posed design was implemented in a small ToT processor in 28-nm CMOS consisting
of a Cortex-M0 CPU and 8 CRAM banks of 16 kB each (128 kB total). The system
achieves 475 MHz operation at 1.1 V and, with all CRAMs active, produces 30 GOPS
or 1.4 GFLOPS on 32-bit operands. It achieves the energy efficiency of 0.56 TOPS/W
for 8-bit multiplication and 5.27 TOPS/W for 8-bit addition at 0.6 V and 114 MHz.

44



T o i 32-bit 8-bit
ype peration 1y . -formance! |Performance
AND
NOR
. XOR
Logic NAND 30.4GOPS 122 GOPS
OR
XNOR
Add 30.4 GOPS 122 GOPS
Sub 15.2 GOPS 60.8 GOPS
Integer Mult 0.83 GOPS 9.40 GOPS
UDiv 0.57 GOPS 6.97 GOPS
. Add/Sub 0.20 GFLOPS /
ShALIE Mult 1.43 GFLOPS /
UL Div 1.40 GFLOPS /
. el 14.9 GOPS 57 GOPS
Comparlson Greater/Less
Search 30.4 GOPS 122 GOPS
1. Measured performance on 128KB CRAM test chip at 475MHz

Table 3.5: Performance of Test Chip at 475MHz.

CONV FC FIR GRAPH
Testbench Cuda-Convnet 1st layer AlexNet last layer 512 32-Tap Filter Nearest Neighbor Traversal
Input Size 24x24x3 24x1 32x10 192x192
Parameter Size 5x5x3x64 1000x24 512x32 0
Output Size 1x1x64 1000x1 512x10 192x192
Bit Precision 8 8 4 1
# Array used for compute 3 6 2 2
# Wordline for computation 375 1000 512 192
cycle# percentage [ cycle# percentage | cycle# percentage cycle#  percentage
Total Latency 39,628 100 33,434 100 251,290 100 1,572,628 100
Input loading 18,323 46.2 24 0.07 320 0.13 1,152 0.07
CRAM Compute 3,459 8.7 21,267 63.6 184,020 73:2 1,556,458 99.0
output readout 17,846 45.0 12,143 36.3 66,950 26.6 15,018 0.95
cycle# speedup cycle# speedup cycle# speedup cycle# speedup
Baseline 287,073 7.24x 1,174,032 35.1x 8,120,415 32.3x 164,456,448 114x
100%
120 114x o % -
100 - E 80% - |
o 80 4 g 1% —
% o 0% 4 @ Output readout
3 60 Q. 50%
a T 400 @ CRAM Compute
“ % 35.4x —32.3x g o% @ Input loadi
1 - 3 ‘_E 30% 4 | 3 Input loading
O 2% -
2 7.24x I . = 10% 4
0 '_- 0% -
CONV FC FIR GRAPH CONV FC FIR GRAPH

Figure 3.10: Performance comparison between CRAM and baseline scenario (top),
workload breakdown (bottom).
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This Work JSSC2017 |ISSCC2018 | ISSCC2018 |ISSCC2018| VLSI2017
1 [2] [31 [41 [51
Technology 28nm 130nm 65nm 65nm 65nm 40nm
Supply Voltage 0.6~1.1V 1.2V 0.9~1.2V 0.65~1V 0.6~1V 0.65~0.9V
SRAM size 128KB(8x16) 2KB 2KB 16KB 1KB (2x0.5) | 24KB(3x8)
SRAM bitcell 8T 6T 10T 6T 6T 10T
Method of Computing Digital Analog Analog Analog Digital Digital
Type of Supported Functions Logic/hadd ?;b/ MUDV/ | pqaMult | Add/Mult | Add/Mult | Add/Mult | Logic
. oo . 5b (input) | 7b (input) | 16b (train) 1b (input) p
Bitipreciston Aty 1Bi(weight) | 16 (weight)| @b (infer] | Thiwelghty| ~ a0
Die Area (mm2) 2.7 0.36 0.067 1.44 - 1.28
Max Fregency (MHz) 475 50 6.7 1000 435 90
Normalized Performance (GOPS)* 327 40.5 187 - - -
Performance per unit Area (GOPS/mm?)** 27.3 114 17.5 - - -
] . . 0.55 (mult) 0.16 (mult)
Normalized Energy Efficiency (TOPS/W) 5.27 (add) 4,58 (add) 3.07 3.12 0.87 -

*All normalized to 8-by-8 bit Multiply and Add Operation

** Using SRAM area only

Table 3.6: Comparison with Previous In-memory Computing Work.
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CHAPTER IV

288pnW Deep-Learning Accelerator with 270KB
Custom Low Power SRAM and Non-Uniform

Memory Hierarchy for Mobile Intelligence

4.1 Introduction

Deep learning has proven to be a powerful tool for a wide range of applications such
as speech recognition and object detection, among others. Right now, many try to
deploy deep learning applications to mobile phone, wearable device, and even Internet-
of-Things (IoT) sensor node to enable “mobile intelligence”. Typically, these mobile
devices just send data (e.g. image or sound) to the server, and the server executes
the deep learning algorithm; then, the server sends results back. This way, even
simple computation can result in latency, and energy overhead due to communication.
Recently there has been increased interest in designing deep learning accelerator for
mobile ToT [65] to enable intelligence at the edge and shield the cloud from a deluge
of data by only forwarding meaningful events.

Therefore, some people propose a hierarchical deep neural network (DNN). As
shown in Figure 4.1 different-scale DNNs is computed at different hardware platform.
Small DNNs with computation power less than tens of mW, like voice activity de-

tection (VAD), keyword spotting (KWS), face detection should be processed locally
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¢ Time-critical, simple tasks e Complicated tasks

¢ Send data to high performance machines
to process more complicated tasks

Figure 4.1: Hierachical deep neural network.

on always-on IoT and wearable devices, because the communication power of these
device (usually bluetooth) costs around 20mW. Likewise, medium DNNs with com-
putation power less than hundreds of mW can be processed on portable devices to
handle time-critical tasks. And, only for complicated tasks, data is sent to servers.
This hierarchical intelligence thereby enhances both radio bandwidth and power effi-
ciency by trading-off computation and communication at edge devices. In this way, we
extend battery life time of mobile and edge device by saving communication energy.

In this work, we focus on building a low-power programmable deep learning accel-
erator (DLA) to run “always-on” applications (e.g., voice commands or face detection)
in ToT platform like [66, 67] with power budget less than tens of mW. These applica-
tions are crucial to the battery-powered device in that the chip can sleep most of the
time and wake up by the always-on DLA only when meaningful activity is detected.
Therefore, low power is a critical design constraint for this type of DLA. However,
prior works [68, 69| have focused on high performance reconfigurable processors op-
timized for large-scale deep neural networks that consume >50mW. Off-chip weight

storage in DRAM is also common in prior works |68, 69|, which implies significant
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additional power consumption due to intensive off-chip data movement. Therefore,
we need a new design for low power DL A that can run small DNNs efficiently in edge

devices.

- Die-stacked loT system ~
[VLSIC 2014, Kim]
B

A -
o~
. G
AL
e -
+ e S i .
S‘.x\‘-"“

E N

[ISSCC 2012, Lee]
o ,

R

Figure 4.2: 1mm? die-stacked sensing platform.

In summary, we propose a low-power, programmable deep learning accelerator
with all weights stored in 270KB on-chip SRAM for mobile intelligence. Low power
(less than 300pW) is achieved through the following 4 techniques:

1) Highly flexible and compact memory storage is realized via independent control
of reconfigurable fixed-point bit precision ranging from 6-32 bits for neurons and
weights.

2) Four processing elements (PEs) are located amidst the weight storage memory
of 270kB, minimizing data movement energy;

3) A non-uniform memory hierarchy provides a trade-off between small, low power
memory banks for frequently used data (e.g., input neurons) and larger, high density

banks with higher power for the large amount of infrequently accessed data (e.g.,
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synaptic weights).

4) A 0.6V 8T custom memory is specifically designed for DNNs with low-swing
and replica bit-line, a sequential access mode, bank-by-bank drowsy mode control,
power-gating for peripheral circuits, and voltage clamping for data retention;

These techniques were implemented into a complete deep learning processor in
40nm CMOS, including the DLA, an ARM Cortex-M0 processor, and MBus [66]
interface to enable integration into a complete sensor system (Figure 4.2). The DLA
consumes 288uW and achieves 374 GOPS/W efficiency. We demonstrate full system

operation for two mobile-oriented applications, keyword spotting and face detection.

4.2 Deep Learning Algorithm and Processor

As mentioned before, edge devices can’t affort to have high power off-chip DRAM,
and we have to try fitting all the neural network weights on chip. However, even a
state-of-art keyword spotting network [16] requires 2.1M parameters, 8.4MB of SRAM
storage using 32-bit floating points number, which is still impossible for many small
[oT sensors. Therefore, we first need to optimize these algorithms for better energy
and area efficiency. We find that the only thing software designers care about is the
accuracy, and they usually trade a lot storage and computation cost for only small
gain in accuracy, which means in reverse, we can reduce the network size a lot with
only mild degradation in accuracy [25, 27|. First, the bit-precison in DNN inference
engine doesn’t not have to be floating points or 32-bit fix-point. It may vary across
different layers and networks from 3 bits to 16 bits |70, 71]. Figure 4.3 the minimum
bit-width required for different layers in the well-known networks and corresponding
the error tolerance. With variable precision fix-point representation, we can save at
least 2-6x weight storage.

To take fully advantage of the variable bit precision and make memory storage

more efficient, the processor hardware supports 4 different short data representations
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Tolerance \ Bits per layer (I+F)

AlexNet (F=0)

1% 10-8-8-8-8-8-6-4

2% 10-8-8-8-8-8-5-4

5% 10-8-8-8-7-7-5-3

10% 9-8-8-8-7-7-5-3

NiN (F=0)

1% 10-10-9-12-12-11-11-11-10-10-10-9
2% 10-10-9-12-12-11-11-11-10-10-10-9
5% 10-10-10-11-10-11-11-11-10-9-9-8
10% 9-10-9-11-11-10-10-10-9-9-9-8
GoogleNet (F=2)

1% 14-10-12-12-12-12-11-11-11-10-9
2% 13-11-11-10-12-11-11-11-11-10-9
5% 12-11-11-11-11-11-10-10-10-9-9
10% 12-9-11-11-11-10-10-10-10-9-9

Figure 4.3: Minimum bit-width in different layers and networks for error tolerance
between 1% and 10%. (I: integer bits; F: fractional bits) [70].

for weight, input, output and temporary output. As shown in Figure 4.4, we can
choose 6/8/12/16 bits for weight/input/output. Since temporary output is the inter-
mediate accumulation result and has a higher dynamic range, they can be 16/24/32
bits. And we choose one word of SRAM to be 96 bits so that we can group integer
numbers of weights/inputs/outputs/temporary outputs into one word without wast-
ing the precious memory capacity. What’s more, long memory word can also reduce
the number memory accesses to save expensive data movement energy. Inside each
processing elements (PE), we have programmable ping-pong buffer to unpack incom-
ing 96-bit data to selected precision and pack out-going data till 96-bit before storing
it back.

Second, we find that many weights in the neural networks are close to zero, which
means network size can be greatly reduced by pruning zero-like weights and re-training
the network to gain accuracy [18|. For example, we successfully reduced the keyword
spotting network size from 2.1M to 300K, about 200KB of memory storage with

average 6-bit precision [25], which is now affordable to a sensor node. In contrast
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. . . Number of
Data type Auvailable precisions Precision
¢lements per word
Weight 6b, 8b, 12b, 16b 6b 16
Input 6b, 8b, 12b, 16b 8b 12
Output 6b, 8b, 12b, 16b 12b 8
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‘
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Figure 4.4: Available precisions for different data types (top) and programmable

ping-pong buffer to unpack and pack data (bottom).

to the big storage, the throughput requirement of such small DNN is extremely low

—only 300K multiply-and-accumulate operations (MAC) per 10ms. A systolic array

of Multiply-and-Accumulate (MAC) unites like [72, 73] is completely unnecessary.

Just 16 multipliers running at 2MHz rate is sufficient for the job like keyword spotting.

High memory and small processing elements (PE) will make data movement very

inefficiency. Since communication energy is more expensive than computation, we

break one big PE into 4 smaller ones and surrounding each one by one-fourth of the
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total memory to shrink the average distance between data and computation as shown
in Figure 4.5. Though each PE can still access all 270KB memory, we will try to
minimize data sharing and put most data one PE needs in its own memory sector to

full exploit spatial locality.

hem.Hde Mem, Hi
Mem.H3 Mem H3
M. HE P H2

MEM MEM

MEM MEM PE E

Mem, HI Mem H3
Klem.Hd Bem, H4

Figure 4.5: One big PE and memory (left), four PE surrounded by its own memory
sector to exploit spatial locality (right).

Figure 4.6 shows the overall DLA architecture. The DLA has four PEs surrounded
by their memory. Each PE has an ALU, instruction buffer, status register, data
buffers, controller, memory address mapping unit, and memory arbitration unit. The
ALU contains 4 8-bit multipliers, 4 16-bit multipliers, and 10 adders. The PE is
programmed by two ping-pong CISC instruction buffer, which are 192b long including
start address, size, precision, and operation-specific flags. The reconfigurable PE
CISC operations are: 1) Fully Connected Layer (FCL) processing, 2) Fast Fourier
Transfer (FFT), 3) data-block move, and 4) Look-Up Table(LUT)-based non-linear
activation function. The memory address mapping unit and memory arbitration unit
in each PE governs prioritized memory access arbitration, enabling PEs to access
other PEs memory space. PEs can be programmed via offline scheduling optimization
to avoid memory access collisions and contamination. The DLA operation sequence

is controlled by the Cortex-M0, which loads data and instructions into PE memory.
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As a PE instruction can take many cycles to complete, the Cortex-MO supports clock-

gating and it wakes upon PE completion. An external host processor can program

the Cortex-M0 and DLA using a serial bus interface.

— Deep Learning Accelerator (DLA

Ot

DLA PE Instruction Example {when compiled for weight matrix dim. = 96 x 96)
op I data 0 data W data
Address|  Size Address|  Size .| Address| Size
code start | (in word) e start | [inword} Prec. | Sign start | {in word) Prees
FCL 5632 8 8hb 5120 16 16b 1 o 576 6b
ccceccccccccccccccccnns PI] cccccccccccccccccccaas
Instruction Buffer
Instruction from CAU Data Buffers
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T W
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Figure 4.6: Top-level diagram of proposed deep learning accelerator (DLA) (left).
DLA PE instruction example (top). DLA PE block diagram (right).

4.3 Non-Uniform Memory Access Architecture

We exploit temporal and spatial locality by using a cache-like hierarchical non-

uniform memory access (NUMA) architecture. Since the DLA is optimized for im-

plementing fully-connected layer (FCL) in deep neural networks and the FCL mainly

performs matrix-vector multiplication, we observe that small inputs vector needs to

be assessed multiple times per inference while large weight matrix has no data reuse
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Figure 4.7: Trends in SRAM density and access energy with different bank size.

at all. Besides, we observe that smaller SRAM banks have lower access energy with
relatively worse area density, while the opposite is true for larger banks as shown
in Figure 4.7. Therefore, we can strategically map the input vector to the nearest
local memory like L1 cache so that the DLA can reuse it as many times as possible
once loaded, while the infrequently accessed weight matrix is loaded from dense (but
higher access energy) upper hierarchy memory like L3 cache. However, different from
caches, we don’t need to pay significant power /area overhead for the content address-
able memory and complicated controller. Instead, we just need SRAM banks will
small ones closest to the PE and large banks in the distance. Because deep learning
algorithms can be deterministically scheduled at compilation time, predetermining
optimal memory assignments.

NUMA is carefully designed to strike a balance between memory area and access
energy. The number of NUMA hierarchical levels and the memory size of each hier-
archy in Figure 4.8 were determined via extensive simulations that analyzed NUMA
configurations for various DNN topologies. In the proposed architecture, NUMA

memory has 67.5kB in total with four banks in each level of hierarchy. Unit bank
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sizes are 0.375, 1.5, 3, and 12kB. What’s more, PE memory uses gating circuits to
prevent unnecessary signal switching in hierarchical memory accesses. That is, lower
level memory access signals do not propagate to higher levels. Simulations show that
combining NUMA with the tiling strategy for 4 PEs leads to >40% energy saving
with 2% area overhead compared to UMA (unit bank = 16kB) for the same tasks

and total memory capacity (Figure 4.9).
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Figure 4.8: The number of NUMA hierarchical levels and the memory size of each
hierarchy (top), and signal gating circuit to unnecessary signal switching (bottom).
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Figure 4.9: Area and energy comparison with UMA & NUMA and proposed tech-
niques.

4.4 Low Power Custom SRAM

As mentioned before, in such a DNN computation unit area and power is not
comparable to the memory storage. If all 16 multipliers on chip work at the same
time, the computation power is about 31uW. If using the SRAM compiler provided
by TSMC, the read active power of the compiled SRAM is 528uW and the total
leakage power of 270KB memory is 8.27mW. Therefore, to reduce both system active

and leakage power, it’s crucial to have a custom low power SRAM.

4.4.1 8T HVT Bit-cell and Noise Margin

The compiled SRAM use push-rule 6T bitcell and requires a pretty high minimum
operating voltage (Vi) to ensure functional correctness. Traditional 6T SRAM
bitcell is good for density, but bad for low voltage operation because of the contention
between the read static noise margin (SNM) and write noise margin (WNM) [74].
One of the most effective way to reduce both active and leakage power is lowering the
supply voltage. To ensure SRAM robustness under low voltage (0.6V), we choose to

scarifies some area density and use 8T bitcell |75, 76] whose read and write operation
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can be separately optimized at low voltage. But half-select issue still remains if the
bank has column-mux or is bit-interleaved, which may limit our freedom to optimize
WNM. Since one word of our SRAM has 96 bits, considering the aspect ratio of the
array layout , we choose not to have column-mux or bit-interleaving. Besides, we
choose high threshold (HVT) transistor for 6 out of the 8 transistors, which reduce
the leakage power of the array by an order of magnitude. The rest two transistors in
the read port is still normal threshold (SVT) transistor for a faster read speed. The

bitcell schematic and layout is shown in Figure 4.10.

vDD vDbD

_|_ 60/55 P cl 50;55_'-L-|__ _|_ ;:'P 20}40 W_EL T

115/65

200/40 ?BL
115,:‘55 j II:' .ﬂl N1 160/40
140/55 I‘ 'I 140/55 PD |— 20!411—' N2 200/40

Figure 4.10: Compiler 6T push-rule bit-cell (top-left), 8T HVT bit-cell schematic
(top-right) and layout (bottom).

28



4.4.2 Active Power Reduction Techniques

We proposed several techniques to reduce the SRAM access energy to 5-6fJ/bit.
Through the spice simulation of a medium size SRAM bank with 128 word-lines and
32 bit-lines, we find that over 80% of the access energy is consumed by the bit-line

charge and discharge, and peripheral takes over 70% of the total leakage as shown in

Figure 4.11.

Array Decoder WL driver BL & SA Total
Read Energy/bit (f)) | 0.00005 0.2 0.413 3.26/0.87 4.75

Percent 0% 4.2% 8.7% 87.1%
128x32 Wit Energy/bit (f) | 0.0873 0.162 0.419 5.55 6.22

Percent 1.4% 2.6% 6.7% 89.2%
Power(pw) 3.573 3.433 3.705 1.83 12.54

Leakage
Percent 28.5% 27.3% 29.5% 14.6%

Figure 4.11: Active and leakage power breakdown of a SRAM array.

4.4.2.1 Low-Swing and Replica Bit-line

The high bit-line discharge energy is due to the large bit-line capacitance and volt-
age swing. We reduce the bit-line capacitance by using a qual-array bank structure.
Each bank consists of 4 (instead of 2) sub-arrays to share address decoder and readout
circuits so that the bit-line length and capacitance is halved as shown in Figure 4.12.

Since 8T bitcell has only one read bit-line, most SRAM designs use a single-ended
sense amplifier, skewed inverter, for large signal / full swing sensing. To reduce the
bit-line voltage swing, we use the differential sense amplifier for small signal sensing.
And we use replica bit-cell and bit-line to generate the reference voltage for the
differential sense amplifier. Our normal 8T bit-cell use SVT transistors for the read
port. The replica bitcell has only the read port, consisting of one HVT transistor
and one SVT transistor with a smaller size. And a replica bit-line made up with a
column of the replica bit-cells is placed in the middle of each sram array to generate

the reference voltage for all other columns in the array. The area overhead of the
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Figure 4.12: Long bit-line length of a dual-array bank (left) versus short bit-line
length of a qual-array bank (right).

replica bitline is amortized to only 0.5%. Figure 4.13 and 4.14 shows the replica

bit-cell/bit-line and the differential sense amplifier.

. 1
T hve TL

L

160/40

% 200/40

Normal Bitcell
Read Port

L

160/40
—l 160740

Replica Bitcell
Read Port

Read1l

10n

—
I

10n

il
L
I
L
x96 T L—]
£
xo6 J |

Read0

10n

4
L
T
L]
x1 T L
N
x1 J

Figure 4.13: Replica bit-cell and bit-line to provide the reference voltage for differen-

tial sense amplifier.
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Figure 4.14: Differential Sense Amplifier Schematic.

4.4.2.2 SR-Latch Gated Sequential Address Decoder

From the DNN algorithm study, we found that memory access pattern is pre-
dictable and most of the time is sequential. Therefore, we propose a shift-register
based sequential decoder with SR-latch clock gating to save the energy in local ad-
dress generation. First, each SRAM bank still has the traditional address decoder to
generate the one-hot code and then use it to initialize the shift-register. Later, if the
central memory address controller find the new address is just the previous address
incremented by one, it will only send 1 bit sequential enable signal instead of 15-bit
address signal. To save the energy in clock tree, sixteen shift registers are grouped
into one clock group and gated by a SR-latch like Figure 4.15. Therefore, each time
only one register group may see the clock signal. From the energy break down in
Figure 4.15, sequential decoder costs only half power than random decoder. What’s
more, the main energy saving of sequential decoder comes from the reduced switching

activity in the long address bus.
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Figure 4.15: Energy comparison between Random Decoder (top-left) and Sequential
decoder (bottom).

4.4.3 Leakage Power Reduction Techniques

Memory access of DNN algorithm can be deterministically scheduled. Given that
only a few banks are actively accessed in a specific PE while the others stay idle
during the majority of processing time, we employ a dynamic drowsy mode for SRAM
leakage reduction. Each PE dynamically controls power gating and clamping headers
of SRAM peripheral circuits and arrays, bank-by-bank based on the schedule. During
drowsy mode, peripherals are power-gated using large HVT PMOS header, while
array voltage is clamped with an small LVT NMOS source follower (Figure 4.16).
The reference voltage to the gate of NMOS clamping header is generated on-chip by
a diode stack and a programmable analog-mux array to ensure data retention (Figure

4.17).
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Figure 4.16: PMOS power header and NMOS clamping headers.
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Figure 4.17: Diode stack for on-chip reference voltage generation.

4.5 Measurements and Results

The test chip is fabricated in TSMC 40nm Low Power CMOS technology. Fig-
ure 4.18 shows the die photo. As expected, the memory takes over 70% of total chip

area. Measurement results confirm effectiveness of the proposed NUMA and drowsy
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Figure 4.18: Die photo of Deep Learning Processor.

mode operation (Figure 4.19). Measured data access power consumption in L1 is
60% less than in L4. Memory drowsy mode operation reduces leakage by 54%, which
is mainly attributed to peripheral circuits as the bit-cell is inherently low leakage.
The test chip achieves peak efficiency of 374GOPS/W while consuming 283uW at
0.65V and 3.9MHz. Keyword spotting (10 keywords) and face detection (binary de-
cision) DNNs are successfully ported onto the proposed DLA with layer dimensions
and precision mapping specified in Figure 4.20. Both DNN classifications fit into the
270kB on-chip memory and exhibit <7ms latency, allowing for real-time operation.

Figure 4.20 compares against state-of-the-art prior work.
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Figure 4.19: Memory access power consumption (top left). Memory leakage power
comparison (top right). SRAM bank leakage break-down (bottom left). Performance
and efficiency across voltage (bottom right).

4.6 Summary

To summarize, we proposes a a low-power, programmable deep learning acceler-
ator with all weights stored in 270KB on-chip SRAM for mobile intelligence. Less
than 300pW power is achieved through: 1) highly flexible and compact memory stor-
age realized via reconfigurable fixed-point bit precision ranging from 6-32 bits; 2)
minimizing data movement energy by locating four PEs amidst the 270kB memory;
3) NUMA architecture fully exploiting temporal and spatial locality; 4) custom low

power memory specially designed for DNNs with 8T HVT bit-cell, low-swing bit-line,
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Performance Summary

App. Layer* i:::e Weight matrix [— P":c'sm tobm 1 Power (uw) l[‘::::’l" GOPS/W
General 1st 4 384 x 408 6 12 12 32 288 2.97 374
App. Layer® i:EEe Weight matrix — P":c'sm tobm ——| Power (uW) "(ar::;cl' GOPS/W
1st 4 384 x 408 6 12 12 32 360 2.98 316
:;’;::::; 2nd 4 384 x 384 6 | 12 | 12 | 32 312 2.80 365
3rd 1 24 x 384 6 12 12 32 189 0.72 140
Total 321 6.50 318
Face 1st 16 = 1032 8 8 16 32 208 170 113
detection 2nd 2x16 8 16 16 32 195 0.02 112
Total 208 1.72 113
@ 0.65V and 3.9MHz
*Fully-connected layer Comparison Table
This work [2] 3]
Technology 40nm 65nm 40nm
Chip area 7.1mm°* 16mm° 2.4mm°
Design target Fully-connected layer & FFT Convolutional layer Convolutional layer
Operating voltage 0.63-0.9V 0.82-1.17V 055-1.1V
Operating frequency 1.9-19.3 MHz 100 — 250 MHz 12 — 204 MHz
Efficiency 374 GOPS/W*" 9.6 GOPS/wW** 300 - 2600 GOPS/W*
Operating power 0.288 mWw’ 278 mw* 76 mw*
On-chip core SRAM size 270kB 181.5kB 144 kB
Off-chip memory requirement No Yes Yes
Variable precision 6/8/12/16/24/32-bit No 1 -16-bit

*0OPs = addition/multiplication/load/store. ‘Operating at 0.65V and 3.9MHz.
*DRAM access power not included. *Calculated based on reported GOPS and power.

Figure 4.20: Performance summary for neural networks with a variety of layer speci-

fication (top). Comparison table (bottom).

sequential decoder, peripheral power-gating, voltage clamping for data retention, and
bank-by-bank drowsy mode control. The proposed design was implemented into a
complete deep learning IoT processor in 40nm CMOS, including the DLA, an ARM
Cortex-MO processor, and MBus interface to enable integration into a complete sen-
sor system. The DLA consumes 288pW at at 0.65V and 3.9MHz, and achieves 374

GOPS/W peak energy efficiency. We demonstrate full system operation for two

mobile-oriented applications, keyword spotting and face detection.
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CHAPTER V

1.03pW /bit Ultra-low Leakage Voltage-Stacked

SRAM for Intelligent Edge Processors

5.1 Introduction

As is discussed in chapter IV, SRAM area and leakage power have now dominated
the smart sensor. In the previous project, we designed a deep learning processor
targeting at small neural network to do simple tasks like keyword spotting. But in
this project, we try to design a image signal processor (ISP) for an energy-efficient
low-noise CMOS image sensor. Figure 5.1 shows the expected 3D-stacked system
with a lens, imager, radio, flash storage, and image processor. The ISP is designed to
run at least three different neural networks for human detection, face detection, and
face recognition. Including main memory, image frame buffer, and data memory for
neural network weights, ISP requires at least 6.4 Mbit of on-chip SRAM, which takes
around 90% of the chip area as shown in Figure 5.2. Therefore, a custom ultra low

leakage SRAM becomes crucial to the low power ISP.

5.2 Ultra Low Leakage SRAM for Low Power ISP

The sensor system is target for smart surveillance camera type of application and

the imager is motion-triggered to save power. It means that the system has a very low
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Figure 5.1: 3D-stacked smart sensor system with low power imager, radio, flash, and

ISP.
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Figure 5.2: ISP Chip Layout shows that 90% area is memory.
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activity, and most of the time, it will stay in sleep. However, over 5Mbit of SRAM in
the neural engine of ISP cannot go to sleep even in idle mode since they retains the
parameters of three neural networks. Leakage power of the on-chip SRAM is going
to be a big burden for such a low activity sensor system. Therefore, we propose an
ultra low leakage SRAM that is specially optimized to retain the data with the lowest

power possible by sacrificing some area and active power.

5.2.1 Differential 8T Bit-cell

After increasing the channel length and using HVT transistor to bring us 18%
and 8x leakage reduction respectively, in order to further reduce the leakage power,
we found nothing is more effective than drop the supply voltage. If the array voltage
drop from 0.6V to 0.3V, the leakage power can be reduced by another 11x. However,
low supply voltage will greatly compromise the stability of SRAM bit-cell. And
technology scaling has made it even harder to design robust SRAM, since process
variation like Random Dopant Fluctuation (RDF) [19] and Line Edge Roughness
(LER) [20] gets worse with reduced minimum feature size. Also the large on-chip
SRAM requirement poses a bit challenge on maintaining a high yield even at low
voltage. Therefore, we decide to trade the area for robustness and leakage reduction.
By simulation, we find all channel width and array voltage pairs that has a hold noise
margin of 8 mean-over-sigma as shown in Figure 5.3. Then we pick 220nm and 0.3V
as the bit-cell size and array supply voltage, since it has both very low leakage and
a reasonable size. However, we still use 0.6V for the peripheral and bit-line voltage
to faster read/write speed and higher read /write margin. For low voltage operation,
we still want to decouple the read and write ports, and therefore choose a differential
8T bit-cell design like [77]. It is very similar to a traditional 7T bit-cell except that
one extra read transistor enables low swing differential read. Since we use 0.3V for

array VDD and 0.6V for peripheral /bit-line voltage, during the read operation, bit-
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cells in the unselected rows will have their read transistors in the super-cutoff region
which can perfectly avoid the sneaking current issue in the traditional 7T SRAM
[33]. Figure 5.4 shows the schematic of the bit-cell. We use HVT transistor for
PU/PD/PG transistors for low leakage and LVT transistor for read access transistor

for read speed.

Width/VDD 0.2 ‘ 0.21 0.22 0.23 0.24 0.25 0.26 | 0.27 1 0.275 0.28 0.29 0.3 0.31 0.32 0.33
140 4.14 4.44 4.74 5.04 5.33 5.63 5.93 6.24 6.39 6.54 6.84 7.14 7.45 7.75 8.06
150 4.27 4.58 4.88 5.19 5.50 5.81 6.12 6.43 6.58 6.74 7.05 7.36 7.68 7.99 8.31
160 4.40 471 5.03 5.35 5.67 5.98 6.30 6.62 6.78 6.94 7.26 7.59 7.91 8.23 8.56
180 4.64 4.97 5.31 5.64 5.98 6.31 6.65 (BEF) 7.16 7.33 7.66 | 8.00 8.35 8.69 9.03
190 4.75 5.09 5.44 5.78 6.12 6.47 6.81 7.16 723 751  7.85 8.20 8.55 8.90 S5
200 4.87 5.22 5.57 5.92 6.27 6.62 6.98 7.33 7.51 7.69 8.04 | 8.40 8.76 9.12 9.48
220 5.08 5.45 5.82 6.18 6.55 692 | 7.29 7.66 7.84 8.03 8.40 8.78 9.15 9.53 9.90
240 5.27 5.66 6.04 6.42 6.80 7.18 7.57 /.95 8.15 8.34 8.73 9.11 9.50 9.89 10.28
260 5.47 5.86 6.26 6.66 7.05 I 7.45 7.85 8.25 8.45 8.65 9.05 9.45 9.86 10.26 10.67
280 5.66 6.07 6.48 6.89 7.30 7.71 8.13 8.54 8.75 8.96 9.37 9.79 10.21 10.63 11.05
300 5.86 6.28 6.70 | TlE | PG I 7.98 8.41 8.83 9.05 9.26 9.70 10.13 10.56 10.99 11.43
320 6.01 6.45 6.89 7.32 7.76 8.20 8.64 9.08 9.30 9.52 9.96 10.41 10.85 11.30 11.75
340 6.17 6.62 I 7.07 | 7.52 | 7.97 I 8.42 8.87 9.32 9.54 9.76 10.23 10.69 11.15 11.61 12.06
360 6.33 6.79 7.25 7.71 8.17 8.64 9.10 9.57 9.79 10.01 10.50 10.97 11.44 11.91 12.38
380 6.49 6.96 7.44 7.91 8.38 8.85 CL3E 9.81 10.03 10.25 10.77 A5 11.73 12.22 12.70
400 6.65 I /.13 I 7.62 | 8.10 ] 8.59 9.07 9.56 10.05 10.30 10.54 11.04 LES 12.03 12.52 13.02
420 6.79 7.28 7.78 8.27 8.77 9.27 9.77 10.27 10.52 10.77 11.27 11.78 12.28 12579 13.30
440 6.93 7.43 7.94 8.44 8.95 9.46 997 1048 10.73 10.99 11.50 12.02 12.54 13.05 13.57
460 7.07 I 7.58 I 8.10 | 8.62 9.13 9.65 10.17 10.69 10.95 11.21 11.74 12.27 12.79 13.32 13.85
480 7.21 7.73 8.26 8.79 9.31 9.84 10.37 1090 11.17 11.44 11.97 12.51 13.05 13.59 14.13
500 7.34 7.88 8.42 8.96 9.49 10.03 1057 11.12 11.39 11.66 12.21 12.75 13.30 13.85 14.40
520 7.47 I 8.02 I 8.56 9.11 9.66 10.20 10.75 1131 11.58 11.86 12.42 12.97 15 14.09 14.65
540 7.59 8.15 8.71 9.26 9.82 1037 1094 1150 11.78 12.06 12.63 13.19 13.76 14.33 14.90
560 7.72 8.28 8.85 9.42 9.98 10,55 11.12 11.69 11.98 12.26 12.84 13.41 1ZiEE) 14.57 15.15
580 7.84 8.42 8.99 9.57 10.14 1072 1130 11.88 12.17 12.46 13.05 13.63 14.22 14.81 15.40
600 7.97 I 8.55 9.14 9.72 10.31 10.89 1148 12.07 12.37 12.66 13.26 13.85 14.45 15.05 15.65

Figure 5.3: Bit-cell hold noise margin at different channel width and supply voltage.

0.6V WBL 0.6V WELB
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0.6V RBL 0.6V RBELB

Figure 5.4: Schematic of the differential 8T bit-cell.
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5.2.2 Stacked SRAM Array

There is substantial recent interest in implementing deep learning techniques
within IoT devices to enable intelligence in edge devices and avoid the need for expen-
sive wireless communication to the cloud. In addition, off-chip DRAM accesses are
costly for highly miniaturized and power-constrained devices. As a result, it is ben-
eficial to fit complete neural network models into on-chip memories, most commonly
SRAM; given their relatively low density these memories can easily consume >80% of
total chip area [18]. As a result, standby power of these battery-powered devices be-
comes dominated by SRAM leakage. For example, in the low-power, motion-triggered
smart image sensor considered in this work, the firmware, reference frame, and neu-
ral network weights require an 8.9Mb SRAM that consumes up to 90% of the chip’s
standby power, dictating battery life. In this paper, we propose a stacked voltage
domain SRAM where arrays are split into two sets (top and bottom) with their sup-
plies connected in series. As a result, the system supply current is reused by top and
bottom sets, and supply voltage is split between the two sets of arrays. This enables
seamless integration of very low voltage SRAM retention in a larger system with a
nominal supply, without resorting to a low efficiency LDO. A new array swapping
approach (from top to bottom) provides stable access to arbitrary banks within one
system clock cycle. We also employ a comprehensive sizing strategy (W and L) to
optimally balance hold stability and bitcell size. Integrated in an imager IoT system
in 40nm CMOS, the proposed 8.9Mb SRAM achieves 1.03pW leakage per bit marking
over 100x reduction over conventional SRAM in the same technology.

Prior work has focused on reducing SRAM leakage via various techniques such
as HVT /thick-oxide device |78, 79|, reverse body bias |80, 81|, floating bitline [82],
raising VSS [83, 84|, and lowering VDD [85, 86]. Apart from the use of HVT device,
which enables an order of magnitude leakage reduction and is readily deployed, supply

voltage lowering is one of the most effective approaches to reduce leakage due to the
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Figure 5.5: SRAMs on an image processing IoT chip (top-left), leakage power across
voltage (top-right), proposed array stacking and swapping technique (bottom).

DIBL effect. Figure 5.5 shows that lowering the array voltage to 0.3V, which is
half of our system VDD, reduces leakage by 11x. However, this raises two issues:
1) Commercial bitcell sizing is not optimized for holding data at very low voltages
(e.g., subthreshold regime) and requires a careful hold margin / density tradeoff
analysis; 2) Additional voltage regulation and level conversion is required to generate
and interface with the separate voltage level of the SRAM array. Conventionally an
LDO is used, incurring area overhead and extra power consumption due to efficiency
loss. Voltage stacking is an alternative way to generate an intermediate voltage level
by placing voltage domains in series, which has been shown to provide substantial
benefits in power delivery for microprocessors [87] and high bandwidth data buses
[88]. The biggest challenge in voltage stacking is balancing the active current between
top and bottom levels and maintaining a stable mid-rail voltage level. This often
requires an additional Voltage Regulator, negating some of the benefits under different

top/bottom load conditions. However, we observe that SRAM arrays present a near-
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ideal load for voltage stacking in that they draw mainly leakage current, and hence
total current drawn does not change dramatically with circuit activity (writing a bit
draws 10s of pA average current, which is negligible compared to pA-level background
leakage current).

To allow access to arbitrary arrays during operation while avoiding insertion of
complex level conversion, we propose a novel array swap mechanism. As shown
in Figure 5.5, the SRAM peripherals are not stacked and therefore wordline and
bitline voltages remain at VDDcore ( 2VDDmid) for faster operation speed, inherent
write /read noise margin enhancement, and removing the need for level converters.
Only bottom arrays are read /written directly. When an access is required to an array
located in the top voltage domain, the memory controller first swaps a bottom array
in the same quad-array SRAM bank with the desired top array (Figure 5.7). This
swap mechanism ensures the leakage current remains balanced and can be completed
in one system clock cycle due to the relatively low IoT processer clock frequency.
In addition to leakage reduction from reduced supply voltage, the approach offers
an additional 2x leakage reduction in top arrays due to their inherent reverse body
bias and reduced bitline leakage effects. As a result, total leakage is minimized by
increasing the % of top arrays to greater than half (i.e., to 75%); this is analyzed in
measurement later and the optimal ratio can be set by a memory controller.

Figure 5.6 shows the bitcell schematic and layout. The cross-coupled 4T uses HV'T
devices to minimize hold leakage while LVT devices in the read port provide faster
sensing speed. The bitcell is upsized for improved hold noise margin (HNM). Channel
length is increased to the point where leakage is minimum, also improving HNM while
incurring 8% cell density loss. Channel width is increased, initially improving HNM
faster than leakage power, providing a favorable tradeoff. The final sizes are chosen
to balance among density, HNM, and leakage. To decouple the read/write operation,

we use a Z8T structure [77] instead of a traditional 8T, as differential sensing provides
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Figure 5.6: Bitcell schematic and layout (top), hold noise margin (HNM) and leak-
age versus bitcell sizing (bottom-left), currents on the bitline during read operation
(bottom-right).

faster read speed and larger sensing margin. Since in our stacked SRAM the array
voltage is around 1/2 the bitline voltage, it inherently avoids the clamping current
problem in the original Z8T as all unselected cells are super-cutoff with negative VGS.
Further, the write noise margin is greatly increased due to the word-line overdrive of
the stacked configuration.

Each SRAM bank has 4 arrays with power switches that connect an array to either
top or bottom voltage domains (Figure 5.7). The power switch settings are retained
in latches under an always-on voltage domain. Each bank can have 0-3 top arrays but
at least one array must be in the bottom domain. When accessing a top array, the
SRAM controller swaps this array with a bottom array in the same bank in two steps:
First, the two arrays (target and swapping) are expanded to full voltage (0:0.6V),
after which they are collapsed to the appropriate half range. Since the two arrays are
physically close, local charge sharing minimizes the disturbance to the mid-rail. All

on-chip SRAM arrays in the system are connected to the same power/ground/mid-
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Figure 5.7: SRAM bank architecture and timing diagram (left), array swapping al-
gorithm (right).

rail, resulting in a large amount of innate decoupling capacitance and background load
current to suppress transient noise. To smooth transitions and reduce coupling noise,
each power switch consists of both small and large headers/footers that are turned on
in sequence. Each swap consumes around 8pJ, which is comparable to a single 128-bit
read. To minimize the frequency of swaps, instruction memories (exhibiting mainly
random accesses) are placed in the bottom domain, whereas neural engine memories
with mostly sequential access patterns are primarily placed in the top domain. SRAM
peripherals are power gated immediately after each access to reduce leakage.

The proposed stack SRAM approach was implemented in a 40nm CMOS image
processing loT chip with 8.9Mb memories. Figure 5.8 shows measured leakage across
voltage and temperature. As the number of top arrays increases, the mid-rail voltage
raises while the leakage keeps decreasing. Figure 5.9 shows excellent mid-rail voltage
stability; VDDmid varies only +16mV across 100°C, drops at most 1.74mV when ar-
rays swap every 11 cycles, and is unaffected by read/write every cycle at full speed.

It achieves 438kHz frequency at 0.7V (enabling 14fps in the supported image process-
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ing system) and 67f]/bit access energy at 0.6V. Figure 5.10 compares this work to
other state-of-the-art low leakage SRAMs. The proposed work achieves low leakage

of 1.03pW /bit at 0.58V without extra supply levels or body bias voltage generation.

This work 1sscC10 [2] 155CC14 [3] VLSI13 [4] VLsi17 [s] 155C09 [8] 155C08 [10]
Process 40nm 180nm 65nm Thick Oxide|  28nm FDSOI 65nm SOTB 130nm 65nm
Cell type 8T 10T 6T 6T 6T 8T 8T
Cell Area (uml) 0.82* 17.48 2.159 0.12 0.5408 0.61 -
On-chip SRAM Capacity 8.91Mb 24kb 128kb imb 8Mb 64kb 256kb
Leakage 1.03pW/bit (0.58V)| 3.3fW/bit (0.4V) | 32.4fW/bit (1.2V) | 300fW/bit (0.6V) | 13.7fW/bit (0.5V]| 70pW/bit (0.23V) |6.45pW/bit (0.3V)
Extra Supply Level Required No Yes No Yes No | Yes No
Body Bias Voltage Required No No No -1.5V -2V No No
Access time 143ns (0.7V) 13700ns (0.4V) Tns (1.2V) - 31.4ns (0.75V) 66.7ns (0.6V) 1250ns (0.6V)
Access Energy 67f)/bit (0.6V) - 195f)/bit (1.2V) - 224f)/bit (0.75V) | 25f)/bit (0.4V) -
*Logic design rule
JSSCC11 [13] VLSI17 [14] J55C11 [15] J55C13 [16] 1S5CC13 [17] 1S5CC14 [18] VLsI13 [19]
Process 90nm 55nm 40nm 28nm 28nm 28nm 20nm
Cell type 8T 6T T 6T 6T T 6T
Cell Area (um’) - 0.803 1.058 - 0.12 - -
On-chip SRAM Capacity 6akb 16kb 8kb 512kb 2Mb 32kb 128kb
Leakage 305pW/bit (0.23V) |97.6pW/bit (0.2v})|6.25pW/bit (0.4V) | 10.6pW/bit (0.8V) | 3.5pW/bit (0.7V) /bit (0.33V)|33.6pW/bit (0.6V),
Extra Supply Level Required No Yes No No Yes No No
Body Bias Voltage Required No No No No No No No
Access time 111ns (0.3V) 250ns (0.25V) 1000ns (0.4V) 0.42ns (1V) - - 1.16ns (0.9V)
Access Energy 1.15p!/bit (0.5V) | Sf1/bit (0.25v) | 11.3f1/bit (0.4V) - - 93f1/bit (0.6V) | 69fi/bit (0.6V)
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Figure 5.10: Comparison table and design space landscape.

. 5.6mm -~
Technology 40nm
Chip size 4.8mm x5.6mm
Neural Engine Memory Onchip SRAM -
Array Size 128x 128 x4
E Bank Area 163um x 618um
-t Bitcell Size 0.82um?
VDDcore 0.58V ~0.7%
Leakage 1.03pWibit (0.58V)
compressed Image Access time 143ns (0.7V)
Memory (1.9Mb) .
Access Energy 67fJbit (0.6V)

Figure 5.11: Die photograph in 40nm CMOS.
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