
Interconnect and Memory Design for Intelligent
Mobile System

by

Jingcheng Wang

A dissertation submitted in ful�llment
of the requirements for the degree of

Doctor of Philosophy
(Electrical and Computer Engineering)

in The University of Michigan
2020

Doctoral Committee:

Professor Dennis Sylvester, Chair
Professor David Blaauw
Professor Reetuparna Das
Professor Hun-Seok Kim

Jingcheng Wang

jiwang@umich.edu

ORCID iD: 0000-0001-5831-9063

© Jingcheng Wang 2020

To my family and friends

ii

TABLE OF CONTENTS

DEDICATION . ii

LIST OF FIGURES . v

LIST OF TABLES . viii

ABSTRACT . ix

CHAPTER

I. Introduction . 1

1.1 Technology Scaling and Intelligent Mobile System 1
1.2 Challenges for Intelligent Mobile System 3

1.2.1 Slow and High Energy Interconnect 4
1.2.2 Large On-Chip Memory 6

1.3 Contribution of This Work 9

II. Recon�gurable Self-Timed Regenerators for Wide-Range Volt-
age Scaled Interconnect . 12

2.1 Introduction . 12
2.2 Proposed Approach . 14
2.3 Measurements and Results 19
2.4 Summary . 21

III. A 28-nm Compute SRAM with Bit-Serial Arithmetic Oper-
ations for Programmable In-Memory Vector Acceleration . . 24

3.1 Introduction . 24
3.2 Overview of Bit-serial Arithmetic and CRAM Architecture . . 28

3.2.1 Bit-serial Arithmetic 28
3.2.2 CRAM Architecture 29

3.3 CRAM Circuitry . 31

iii

3.3.1 8T transposable bit cell 31
3.3.2 Computing Peripherals 33

3.4 Multi-cycle Arithmetic . 35
3.4.1 Integer Addition and Subtraction 36
3.4.2 Unsigned Integer Multiplication 37
3.4.3 Unsigned Integer Division 38
3.4.4 Comparison and Search 38
3.4.5 Floating-point Arithmetic 39

3.5 Measurements and Results 41
3.6 Summary . 44

IV. 288µW Deep-Learning Accelerator with 270KB Custom Low
Power SRAM and Non-Uniform Memory Hierarchy for Mo-
bile Intelligence . 47

4.1 Introduction . 47
4.2 Deep Learning Algorithm and Processor 50
4.3 Non-Uniform Memory Access Architecture 54
4.4 Low Power Custom SRAM 57

4.4.1 8T HVT Bit-cell and Noise Margin 57
4.4.2 Active Power Reduction Techniques 59
4.4.3 Leakage Power Reduction Techniques 62

4.5 Measurements and Results 63
4.6 Summary . 65

V. 1.03pW/bit Ultra-low Leakage Voltage-Stacked SRAM for
Intelligent Edge Processors . 67

5.1 Introduction . 67
5.2 Ultra Low Leakage SRAM for Low Power ISP 67

5.2.1 Di�erential 8T Bit-cell 69
5.2.2 Stacked SRAM Array 71

BIBLIOGRAPHY . 78

iv

LIST OF FIGURES

Figure

1.1 Bell's Law on scaling of computing platforms 2
1.2 Apple A12 SoC with 8-Core Neural Engine (top-left), Google Edge

TPU ASIC (top-right), KAIST 3D-stacked gaze-activated object-
recognition system (bottom). 3

1.3 Processor power scales exponentially (Moore, ISSCC Keynote, 2003) 4
1.4 Delay scaling trend of logic and interconnect without (left) and with

repeater (right) . 5
1.5 Energy scaling trend of logic, SRAM, and interconnect 5
1.6 Die photo of 45nm 8-core Enterprise Xeon Processor (left and top-

right) and power breakdown of an 8 core server chip (bottom-right) 6
1.7 Energy and latency breakdown of a conventional FCNN accelerator 7
1.8 Energy costs for various operations in 45nm at 0.9V 7
1.9 SRAM takes 93% of total area of the E�cient Inference Engine (EIE)

for Deep Compressed Network . 8
2.1 Di�ering optimal repeater designs for high and low supply voltages

lead to sub-optimality in wide-range voltage scaled systems. 13
2.2 RSTR schematic with transistor sizing. Transistors with unlabeled

sizes are minimum width (152nm). Enable signal and header/footer
transistors provide recon�gurability. 16

2.3 Simulated energy versus delay curves for RSTR. Optimal inverter
and RSTR designs are chosen from the frontier curves at each voltage. 18

2.4 Reported delays are measured based on the frequency of a ring os-
cillator structure. Each interconnect design is in a separate voltage
domain to measure energy. Each interconnect under test has adjacent
neighbors with 140nm spacing (1× min.). 19

2.5 Die photo of 45nm SOI test chip. The 7.5mm interconnect is folded
ten times. 20

2.6 Measured energy versus delay curves showing RSTR and repeater
performance. Green triangles represents di�erent RSTR con�gura-
tions (i.e., di�erent number of RSTR enabled). 21

2.7 Simulated energy versus delay curves for RSTR. Optimal inverter
and RSTR designs are chosen from the frontier curves at each voltage. 22

v

2.8 RSTR speed scales more similarly to digital logic than inverter-based
repeated wires. 22

3.1 Bottlenecks in conventional von Neumann architecture: (a) low on-
chip network bandwidth and (b) high data movement energy. 26

3.2 Proposed CRAM Architecture. 30
3.3 Schematic and layout of 8T transposable bit cell. 32
3.4 CRAM Array Architecture (Top-left), computation control signal

timing diagram (Top-right), and in/near-memory computing periph-
erals (Bottom). 34

3.5 3-bit Addition Cycle-by-Cycle Demonstration (left), 2-bit Multipli-
cation Cycle-by-Cycle Demonstration (right). 37

3.6 Test chip architecture with sample memory bank con�guration. . . . 41
3.7 Layout of CRAM bank and die photo. 42
3.8 Frequency and energy e�ciency of 8-bit multiplication and addition

at di�erent VDD. 43
3.9 Maximum frequency and leakage power distribution of 21 dies at 1.1V. 44
3.10 Performance comparison between CRAM and baseline scenario (top),

workload breakdown (bottom). 45
4.1 Hierachical deep neural network. 48
4.2 1mm3 die-stacked sensing platform. 49
4.3 Minimum bit-width in di�erent layers and networks for error toler-

ance between 1% and 10%. (I: integer bits; F: fractional bits) 51
4.4 Available precisions for di�erent data types (top) and programmable

ping-pong bu�er to unpack and pack data (bottom). 52
4.5 One big PE and memory (left), four PE surrounded by its own mem-

ory sector to exploit spatial locality (right). 53
4.6 Top-level diagram of proposed deep learning accelerator (DLA) (left).

DLA PE instruction example (top). DLA PE block diagram (right). 54
4.7 Trends in SRAM density and access energy with di�erent bank size. 55
4.8 The number of NUMA hierarchical levels and the memory size of

each hierarchy (top), and signal gating circuit to unnecessary signal
switching (bottom). 56

4.9 Area and energy comparison with UMA & NUMA and proposed tech-
niques. 57

4.10 Compiler 6T push-rule bit-cell (top-left), 8T HVT bit-cell schematic
(top-right) and layout (bottom). 58

4.11 Active and leakage power breakdown of a SRAM array. 59
4.12 Long bit-line length of a dual-array bank (left) versus short bit-line

length of a qual-array bank (right). 60
4.13 Replica bit-cell and bit-line to provide the reference voltage for dif-

ferential sense ampli�er. 60
4.14 Di�erential Sense Ampli�er Schematic. 61
4.15 Energy comparison between Random Decoder (top-left) and Sequen-

tial decoder (bottom). 62
4.16 PMOS power header and NMOS clamping headers. 63

vi

4.17 Diode stack for on-chip reference voltage generation. 63
4.18 Die photo of Deep Learning Processor. 64
4.19 Memory access power consumption (top left). Memory leakage power

comparison (top right). SRAM bank leakage break-down (bottom
left). Performance and e�ciency across voltage (bottom right). . . . 65

4.20 Performance summary for neural networks with a variety of layer
speci�cation (top). Comparison table (bottom). 66

5.1 3D-stacked smart sensor system with low power imager, radio, �ash,
and ISP. 68

5.2 ISP Chip Layout shows that 90% area is memory. 68
5.3 Bit-cell hold noise margin at di�erent channel width and supply voltage. 70
5.4 Schematic of the di�erential 8T bit-cell. 70
5.5 SRAMs on an image processing IoT chip (top-left), leakage power

across voltage (top-right), proposed array stacking and swapping
technique (bottom). 72

5.6 Bitcell schematic and layout (top), hold noise margin (HNM) and
leakage versus bitcell sizing (bottom-left), currents on the bitline dur-
ing read operation (bottom-right). 74

5.7 SRAM bank architecture and timing diagram (left), array swapping
algorithm (right). 75

5.8 Leakage across temperature and voltage (top), Mid-rail voltage and
leakage with temperature (bottom-left), leakage reduction e�ects.
(bottom-right). 76

5.9 Mid-rail variation with temperature (top-left), voltage drop due to
various memory activities (right), shmoo plot (bottom-left). 76

5.10 Comparison table and design space landscape. 77
5.11 Die photograph in 40nm CMOS. 77

vii

LIST OF TABLES

Table

2.1 Simulated optimal repeater design. 15
3.1 CRAM Instruction Set. 35
3.2 Sample of supported operations and cycle counts. 36
3.3 Pseudo-code: Unsigned Integer Division. 39
3.4 Pseudo-code: Floating Point Addition. 40
3.5 Performance of Test Chip at 475MHz. 45
3.6 Comparison with Previous In-memory Computing Work. 46

viii

ABSTRACT

Technology scaling has driven the transistor to a smaller area, higher performance

and lower power consuming which leads us into the mobile and edge computing era.

However, the bene�ts of technology scaling are diminishing today, as the wire delay

and energy scales far behind that of the logics, which makes communication more

expensive than computation. Moreover, emerging data centric algorithms like deep

learning have a growing demand on SRAM capacity and bandwidth. High access

energy and huge leakage of the large on-chip SRAM have become the main limiter of

realizing an energy e�cient low power smart sensor platform.

This thesis presents several architecture and circuit solutions to enable intelligent

mobile systems, including voltage scalable interconnect scheme, Compute-In-Memory

(CIM), low power memory system from edge deep learning processor and an ultra-low

leakage stacked voltage domain SRAM for low power smart image signal processor

(ISP).

Four prototypes are implemented for demonstration and veri�cation. The �rst

two seek the solutions to the slow and high energy global on-chip interconnect: the

�rst prototype proposes a recon�gurable self-timed regenerator based global inter-

connect scheme to achieve higher performance and energy-e�ciency in wide voltage

range, while the second one presents a non Von Neumann architecture, a hybrid in-

/near-memory Compute SRAM (CRAM), to address the locality issue. The next two

works focus on low-power low-leakage SRAM design for Intelligent sensors. The third

prototype is a low power memory design for a deep learning processor with 270KB

ix

custom SRAM and Non-Uniform Memory Access architecture. The fourth prototype

is an ultra-low leakage SRAM for motion-triggered low power smart imager sensor

system with voltage domain stacking and a novel array swapping mechanism. The

work presented in this dissertation exploits various optimizations in both architecture

level (exploiting temporal and spatial locality) and circuit customization to overcome

the main challenges in making extremely energy-e�cient battery-powered intelligent

mobile devices. The impact of the work is signi�cant in the era of Internet-of-Things

(IoT) and the age of AI when the mobile computing systems get ubiquitous, intelligent

and longer battery life, powered by these proposed solutions.

x

CHAPTER I

Introduction

1.1 Technology Scaling and Intelligent Mobile System

Guided by the Moore's Law [1], the minimum feature size of transistor keeps

shrinking and the number of transistors on chip increases exponentially. As predicted

by the Bell's Law [2], in the �rst two decades of the 21st century, we have witnessed a

shifted from the PC era to the smart phone and ubiquitous computer era (Figure 1.1).

Now we all get used to the convenience of fast wireless communication and excellent

computing power brought by these battery-powered mobile systems. Tablet is as

powerful as a PC with a touch-screen which allows us to continue the work even on

the feet. Smart phone has become a indispensable part of our life, a personal assistant

and a second brain. Smart watch and other wearable device monitor our health data

and o�oad many frequently used functions to a smaller screen. Besides the ever

growing demand in the handheld devices, many foresee the coming of Internet-of-

Things (IoT) driven by the faster 5G communication and the advances in low power

techniques. Wireless sensor nodes will get a large-scale deployment in many areas of

life. For example, an interocular pressure sensor can be implanted in human eyes to

prevent glaucoma [3], and infrastructure monitoring sensor can measure vibrations

and material conditions in buildings, bridges and historical monuments to prevent

accidents. The number of smart sensors is estimated to increase by 3X and reaches 1

1

trillion by 2023 [4].

Figure 1.1: Bell's Law on scaling of computing platforms [5].

At the same time, bene�ting from the high performance computing and "Big

Data" driven by the technology scaling, arti�cial intelligence has embraced the "Sec-

ond Wave" as described by DARPA's John Launchbury [6]: a shift from Handcrafted

Knowledge to Statistical Learning. The recent advance in deep learning has led to

many revolutionary improvements in various application domains, including com-

puter vision, speech recognition, and nature language processing. Nowadays, AI has

become the most promising and popular applications to both consumers and enter-

prises. With the explosive growth in demand, AI empowered intelligent system has

become the hottest research and development topic (Figure 1.2), from the 8-Core

neural engine in Apple's high performance System on Chip (SoC) [7] to the Edge

TPU in Google's purpose-built ASIC [8], and the heterogeneous integrations of image

sensor and object recognition processor [9].

2

Figure 1.2: Apple A12 SoC with 8-Core Neural Engine (top-left), Google Edge TPU
ASIC (top-right), KAIST 3D-stacked gaze-activated object-recognition system (bot-
tom).

1.2 Challenges for Intelligent Mobile System

Thanks to technology scaling, more transistors can be integrated into a smaller

chip area with increased performance, which helps the development of a more powerful

and smaller battery-operated intelligent system. However, even though the minimum

feature size of the transistor continues decreasing, today a number of factors have

made the bene�ts of technology scaling diminishing. The �rst barrier we hit is the

"Power Wall". To combat the sub-threshold leakage, the scaling of threshold voltage

and supply voltage has been greatly slowed down, but the number of transistors

continue to scale exponentially with a constant die size, resulting in an exponential

increase in both active and leakage power [10], as shown in Figure 1.3. The small form

factor of the mobile devices limits the size of the battery, but many AI applications like

keyword spotting and face ID requires part of the system to be always-on. To extend

the battery life, ultra-low power and energy-e�cient circuits needs to be specially

3

optimized for the intelligent mobile system.

Figure 1.3: Processor power scales exponentially (Moore, ISSCC Keynote, 2003) [10].

1.2.1 Slow and High Energy Interconnect

The �rst challenge comes from the slow and high energy global interconnect. Even

though technology scaling improves the driving strength and reduces the parasitic ca-

pacitance of the transistor, which generally results in higher performance and lower

energy cost, the delay and energy scaling of interconnect fall far behind that of the

logic. The reducing minimum width and pitches increase the wire resistance and

inter-wire capacitance. Even with the deployment of low-K dielectric materials, unit

length resistance and capacitance of wire doesn't scale much with the technology

nodes. Therefore, the RC delay dominates the logic delay and becomes the main

bottleneck of high-speed circuit, as shown in Figure 1.4. Technology scaling also

non-uniformly improves the energy e�ciency of computation and communication.

As shown in Figure 1.5, the energy of a standard-cell-based double-precision fused-

multiply-and-add (DFMA) is reduced from 50pJ in 40nm to 8.7pJ in 10nm, while the

energy of 10mm 256-bit bus only scales from 310pJ to 200pJ. The cost of accessing

256 bits of operands from a distant memory is 6 times greater than the cost of com-

4

puting in 40nm. This ratio goes up to 23 times in 10nm. Scaling makes locality even

more important, since fetching the operands is getting much more expensive than

computing it. One solution to this challenge is to �nd a interconnect scheme that

improves both the delay and energy-e�ciency of communication, which will be intro-

duced in Chapter II. Another solution is to exploit locality and reduce the amount of

data movement per operation as much as possible, which leads to the proposal of a

non Von Neumann Architecture, Compute-in-Memory (CIM), introduced in Chapter

III.

Figure 1.4: Delay scaling trend of logic and interconnect without (left) and with
repeater (right) [11].

Figure 1.5: Energy scaling trend of logic, SRAM, and interconnect [12].

5

1.2.2 Large On-Chip Memory

The growing size and power of on-chip memory has become one of the biggest

challenges for low power Machine Learning and modern DSP chip design. Static ran-

dom access memory (SRAM) is an indispensable part of Very-Large-Scale Integration

(VLSI) system since it dominates most chip area and power consumption. Figure 1.6

shows that in the 45nm 8-core Enterprise Xeon Processor, more than 60% of the chip

area is occupied by L1/2/3 cache [13]. And the power breakdown of a recent 40nm,

8-core server processor shows that over 50% of the active energy is dissipated in the

caches and register �les. What's more, the leakage power of a modern last-level cache

(LLC) can be comparable to the active power of one simple core running in full speed

[14].

Figure 1.6: Die photo of 45nm 8-core Enterprise Xeon Processor (left and top-right)
and power breakdown of an 8 core server chip (bottom-right) [13, 14].

This problem is exacerbated by deep learning algorithm. Since the complex train-

ing part of the neural network is usually done o�-line in the cloud, hardware accel-

erator in the mobile SoC is only responsible for real-time inference. Compared to

many traditional DSP algorithms, the core arithmetic computation of deep learning

inference is very simple, mostly just matrix multiplication and accumulation (MAC)

operation on 8-bit precision data. In contrast to the low requirement of computa-

6

tion, deep neural networks requires huge amount of parameters/weights storage. For

example, AlexNet, that won the ImageNet competition in 2012, has 60 Million pa-

rameters, around 240MB of memory storage [15]. Even a keyword spotting network

has 2.1 Million parameters, around 8.4MB of memory [16]. Many studies have shown

that most of the energy and latency in the neural network accelerator is consumed

by the data transfer. For example, in a conventional fully connected neural network

(FCNN) accelerator, 62% of the energy and 97% of the latency is due to weight trans-

fer, as shown in Figure 1.7 [17]. One of the reason is that memory access energy is

way higher than arithmetic operation energy. In 45nm, DRAM access energy is 5000

times higher than a 8-bit MAC operation and SRAM access energy of a small 8KB

bank is still 40 times higher (Figure 1.8).

Figure 1.7: Energy and latency breakdown of a conventional FCNN accelerator [17].

Figure 1.8: Energy costs for various operations in 45nm at 0.9V [14].

Since edge devices can't a�ord to have high power o�-chip DRAM, people try

7

to squeeze all the weights into on-chip SRAM by pruning the network and com-

press the weights. Still a deep learning accelerator requires hundreds of Kilo-bytes of

memory. A good example is Standford's E�cient Inference Engine (EIE) for "Deep

Compressed" network. The layout photo in Figure 1.9 shows that 162KB SRAM

takes 93% of the total area [18].

Figure 1.9: SRAM takes 93% of total area of the E�cient Inference Engine (EIE) for
Deep Compressed Network [18].

However, huge amount of on-chip SRAM brings another two challenges: low leak-

age and high yield. Customized low leakage SRAM become more crucial in neural

network based intelligent sensor. Usually a battery-powered sensor node can fre-

quently shut down the supply during sleep mode to extend battery life. However,

since neural network requires all the weights to be retained after sleep, SRAM, now

the largest portion of the system, has to stay on in standby mode. Due to the ex-

tremely low activity ration of a sensor-based system, the leakage power can even be

higher than active power. Low voltage operation is one of the most e�ective ways to

reduce both active power, due to its quadratic relationship with supply voltage, and

leakage power, due to the Drain-Induced-Barrier-Lowering (DIBL) e�ect. However,

low supply voltage greatly compromises the stability of SRAM operations. What's

more, technology scaling makes it even harder to design robust SRAM, since process

variation like Random Dopant Fluctuation (RDF) [19] and Line Edge Roughness

(LER) [20] gets worse with reduced bitcell size. In Chapter IV and V, we are going

8

to focus on the issues in low power SRAM design for intelligent sensor nodes.

1.3 Contribution of This Work

This work contributes some solutions to the interconnect and memory challenges

in development of intelligent mobile and edge devices. This proposal presents four

works in detail.

Dynamic Voltage and Frequency Scaling (DVFS) is a frequently used low power

technique in many mobile systems. The supply voltage may drop to near-threshold

when the chip is in low workload and suddenly rise to full VDD when a burst of

high workload appears. To make the slow RC delay of global interconnect go linear

instead of quadratic with the wire length, repeater is usually inserted with carefully

designed number and size based on the wire and repeater delay properties. However,

the relative delay between wire and repeater is greatly a�ected by the voltage causing

the optimal number and size of the repeaters at one voltage become sub-optimal at

another voltage. In Chapter II, this proposal presents a recon�gurable self-timed

regenerator based global interconnect scheme which enables graceful degradation of

performance and power in wide range dynamic voltage/frequency scaled systems.

A test chip demonstrates up to 40% and 25% better performance scaling than a

traditional repeater based interconnect at 1V and 0.5V, respectively, in 45nm SOI

CMOS. This work resulted in publications in ASSCC'15[21].

Conventional Von Neumann architecture involves frequently data transfer between

memory and computation unit incurring signi�cant energy and latency cost. This

problem is ampli�ed by technology scaling and "Data Centric" application like deep

learning. In Chapter III, this proposal presents a non Von Neumann architecture �a

hybrid in-/near-memory Compute SRAM (CRAM) that uses 8T transposable bit-cell

and vector-based, bit-serial arithmetic to accomplish a wide range of operations with

�exible bit-width. The proposed design was implemented in a small IoT processor

9

in 28-nm CMOS consisting of a Cortex-M0 CPU and 8 CRAM banks of 16 kB each

(128 kB total). The system achieves 475 MHz operation at 1.1 V and, with all

CRAMs active, produces 30 GOPS or 1.4 GFLOPS on 32-bit operands. It achieves

the energy e�ciency of 0.56 TOPS/W for 8-bit multiplication and 5.27 TOPS/W

for 8-bit addition at 0.6 V and 114 MHz. This work resulted in publications in

ISCA'18[22], ISSCC'19[23], MICRO'19[24] and JSSC'19 (to appear).

In Chapter IV, this proposal presents a Deep Learning Accelerator (DLA) with

all weights stored in 270KB custom low power SRAM and non-uniform memory ar-

chitecture for intelligent edge computing, like keyword spotting and face detection.

Implemented in 40nm CMOS, the DLA achieves 288µW power consumption of and

374 GOPS/W energy e�ciency with the following techniques: 1) Flexible and com-

pact memory storage for highly truncated �xed-point network weights ranging from

6�32 bit precision via programmable control; 2) All weights stored in 270KB on-chip

SRAMs with four processing elements (PEs) located amidst them, minimizing data

movement energy; 3) A non-uniform memory architecture provides optimal energy-

density trade-o� between small, low power memory banks for frequently used data

(e.g., input neurons) and large, high density banks for the large amount of infrequently

accessed data (e.g., synaptic weights); 4) A 0.6V custom 8T SRAM with both ac-

tive power reduction techniques like low-swing bit-line and sequential decoder, and

leakage reduction techniques like peripheral power-gating, array voltage clamping

and bank-by-bank drowsy mode. This work resulted in publications in SiPS'15[25],

ISSCC'17[26] and JSPS'18[27].

In Chapter V, this proposal presents an ultra-low leakage SRAM in a smart im-

age signal processor (ISP) for an energy-e�cient low-noise CMOS image sensor [28].

The system is designed for motion-triggered IoT applications empowered by change

detection and three dedicated neural networks to do human detection, face detection,

and face recognition respectively. Including main memory, frame bu�er, and memory

10

for neural network weights, the system requires 6.4 Mbit of on chip SRAM in total.

With a special designed di�erential 8T bitcell, we are able to bring down total leakage

power of SRAM array to 2uW by retaining the data at 0.3V, and still achieve a good

stability. What's more, 0.3V supply is generated directly on chip using a novel stack-

ing array technique instead of a DC-DC converter. The proposed design is taped-out

using TSMC 40nm Low Power technology in April 2019.

11

CHAPTER II

Recon�gurable Self-Timed Regenerators for

Wide-Range Voltage Scaled Interconnect

2.1 Introduction

Near-threshold (NT) operation has been shown to provide a reasonable balance

between energy e�ciency and performance demands for a wide range of applications

[29, 30], particularly in the mobile space. However, even with the recent focus on en-

ergy e�ciency, high single-thread performance demands still dictate nominal voltage

operation at times. Wide-range dynamic voltage and frequency scaling (DVFS) en-

ables operation across the energy/performance design space, but requires underlying

circuits to scale across voltage in a robust and predictable manner. Without this, the

ability to adapt to dynamic runtime constraints will be limited.

Recent work has shown how to optimize logic [31, 32] and memory [33] across

both near-threshold and full voltage regimes. However, little work has addressed

interconnect optimization across this wide voltage range. Unlike logic delay, which

changes dramatically with supply voltage, interconnect RC delay is insensitive to

voltage scaling. This leads to di�erent optimization approaches in comparison to

logic and memory. As designs are limited by their critical path, interconnections that

are poorly optimized for certain voltage modes cause the entire design to su�er.

12

Optimal repeater insertion for a long interconnect di�ers signi�cantly at full and

near-threshold (NT) voltages. The optimal repeater count Nopt and size wopt are

given by the well-known equations [34] in Fig. 2.1. As supply voltage reduces, the

e�ective repeater driver resistance Rd increases relative to the interconnect resistance

rw, which remains constant. Wire capacitance cw and gate capacitance Cg also remain

constant as voltage scales. Therefore, Nopt ∝ 1/
√
Rd(1 + γ) and wopt ∝

√
Rd, such

that at low VDD fewer, yet larger, repeaters are optimal.

Figure 2.1: Di�ering optimal repeater designs for high and low supply voltages lead
to sub-optimality in wide-range voltage scaled systems.

For the 45nm SOI technology used in this work, nominal voltage is 1V while

0.5V can be considered near threshold, hence we consider this range during optimiza-

tion. In this technology, Rd increases by roughly 4× from 1V to 0.5V, therefore an

optimized interconnect at 0.5V uses half as many repeaters of twice the size as an in-

13

terconnect optimized for 1V. Operating repeated interconnects at a voltage they were

not targeted for leads to large sub-optimality in energy and delay, shown conceptually

in Fig. 2.1.

On-chip interconnect has been studied in-depth by the circuit community with

many specialized designs, such as low-swing transceivers, being proposed to save en-

ergy and increase throughput. However, within circuit blocks, long wires are repeated

with inverters and bu�ers by commercial place and route tools. While specialized

transceivers are desirable for well-de�ned interconnections spanning long distances,

we propose using regenerators for shorter, within-block, wired interconnects in voltage

scaled systems when simplicity, low overhead, and ease of integration into a design is

valued over absolute performance and energy improvements. This proposed technique

does not replace specialized interconnect techniques, but instead is meant to replace

repeaters for general purpose use.

2.2 Proposed Approach

The poor voltage scalability of repeater-based interconnect currently forces the

designer to choose between a design that is optimal at either full or NT voltages, but

not both. Furthermore, the interconnect delay does not track the fanout-of-4 (FO4)

inverter delay, characteristic of how digital circuits scale with voltage, and hence

the interconnect will become performance-limiting for the entire design during either

full or NT operation if traditional design methodologies are followed. SPECTRE

simulations of industrial wire and device models provided by a 45nm foundry are

shown in Table 2.1 with results matching the analytical predictions of Figure 2.1.

The baseline repeaters were inverters in this simulation. As expected, NT favored

fewer, larger repeaters as compared to nominal voltage.

An obvious approach to overcome the Nopt discrepancy between VDD and NT

operation is to selectively disable repeaters along an interconnect. However, this

14

Table 2.1: Simulated optimal repeater design.

only shifts the problem from drivability of the repeater to drivability of the bypass

devices, amounting to a zero sum game. For instance, if transmission gates are used

to bypass repeaters then they su�er similar Rd degradation to that of the repeater,

unless driven by a separate nominal voltage supply, which incurs considerable level

shifting and power delivery overheads.

We propose using single-ended regenerators based on [35, 36] which, unlike con-

ventional repeaters, are single-ended gates attached along a wire. Instead of discrete

input and output pins, regenerators rely on detection circuits to sense partial transi-

tions along the wire, triggering a temporary regenerative drive of the wire until it has

fully transitioned to a new value. Regenerators have the unique property of not par-

titioning a long interconnect into separate wire segments. If a regenerator is enabled,

it acts as a repeater passively monitoring the interconnect and then actively driving it

to transition. Disabling the regenerator in e�ect extends the repeated distance, as the

inactive regenerator does not change the characteristics of the wire other than added

parasitic capacitance. Using regenerators addresses the scalability of the number of

inserted repeaters, but to address repeater size we also add regenerators in parallel

and selectively enable them.

Fig. 2.2 shows a circuit schematic for our proposed regenerator, named Recon�g-

urable Self-Timed Regenerator (RSTR), which is based on [35] but with extensions

for recon�guration. The new recon�gurable components are highlighted in red.

15

Figure 2.2: RSTR schematic with transistor sizing. Transistors with unlabeled sizes
are minimum width (152nm). Enable signal and header/footer transistors provide
recon�gurability.

16

The circuit operates by early detection of a transition along the interconnect wire

at point A. The transition is then aided by turning on either the PMOS or NMOS

driving transistor, P6 and N6, to supply additional current in driving the wire. To

avoid global control signals a self-timed delay chain (I1-3 and I4-6) turns o� the driving

transistors and awaits the next transition. The regenerator is enabled through the

En signal that, when asserted, activates N1-2 and P3-4 forming a NAND structure

to sense the low-to-high transition and turn on driver P6, while remaining insensitive

to high-to-low transitions. Similarly, high-to-low transitions are detected by a NOR

(P1-2, N3-4) that controls N6. To allow for this hysteresis, I7 and I8 form a latch to

store the previous value on the wire. Lastly, N7 and P7 in the NAND/NOR detection

circuits disable the sensing of transitions while P8 and N8 disable the output drivers.

Because of the internal delay chain, RSTR controls its own pulse width, namely

the duration of the pull-up/pull-down time, hence careful delay selection is needed

to ensure that the wire transitions substantially before the RSTR resets itself across

a range of Vdd. Also the delay should not be so long that it interferes with the

next signal transition. The delay chain consists of three SVT minimum-sized stacked

inverters; simulation across design corners and process variation ensures all these

requirements are met.

Fig. 2.3 shows the energy-delay curve for repeaters and RSTR at 0.5V and 1V,

simulated with the industrial 45nm SOI CMOS models. The driven interconnect is a

7.5mm intermediate (2× thickness) wire with 140nm spacing (1× min.) and 280nm

width (2× min.), chosen to represent a reasonably long within-block interconnect.

At both voltages, the size and number of repeaters are swept to �nd the optimal

energy/delay points, marked as the Pareto frontier curve in Fig. 2.3. On the 1V fron-

tier, we chose "INV #23" to represent the 1V-optimized design containing Nopt=23

inverter repeaters, each with size wopt = 12µmPMOS and 6µmNMOS. On the 0.5V

frontier, design "INV #9" is selected with Nopt=9 inverters (wopt = 24µmPMOS,

17

Figure 2.3: Simulated energy versus delay curves for RSTR. Optimal inverter and
RSTR designs are chosen from the frontier curves at each voltage.

12µmNMOS). All repeaters are placed evenly along the interconnect.

The RSTR design space is similarly swept and we observed that some con�gura-

tions on its 1V frontier also appeared on the 0.5V frontier. One such design "RSTR

#6" uses Nopt=6 RSTRs which are evenly distributed along the 7.5mm wire with

device sizes given in Fig. 2.2. This RSTR design is labeled on both plots of Fig. 2.3

for comparison. Unlike traditional repeated interconnects, RSTR can achieve better

performance and energy characteristics over a wide voltage range, such as 0.5V to 1V

as demonstrated in this simulation.

Despite the simplicity of the proposed RSTR scheme (the regenerator topology

adds only small overhead beyond the design in [35]) it provides the following important

bene�ts over traditional repeated interconnects:

1) RSTR remains optimal (in energy/delay space) across the full VDD range.

2) RSTR recon�gurability provides a new knob for adaptive designs to compensate

for variability at NT operation. This is achieved by selectively turning on/o� RSTRs

along a wire to trade performance for power (e.g., 24% performance loss for 40% lower

energy).

3) RSTR is faster than an optimal repeater design at both full and NT supply

18

while maintaining energy e�ciency.

4) RSTR does not partition the wire, allowing for bi-directionality.

2.3 Measurements and Results

Figure 2.4: Reported delays are measured based on the frequency of a ring oscillator
structure. Each interconnect design is in a separate voltage domain to measure energy.
Each interconnect under test has adjacent neighbors with 140nm spacing (1× min.).

A test chip was fabricated in 45nm SOI CMOS to evaluate the e�cacy of RTSRs

in silicon and validate simulation predictions. A total of four inverter repeater (INV)

designs and two proposed RSTR designs were included on the test chip, which mea-

sured 1Ö1mm (Fig. 2.4). Fig. 2.5 shows the test harness; the interconnect matches

the structure simulated above and is implemented as a bypassable delay chain within

a ring oscillator. After level conversion and a clock divider, frequency is measured o�

chip both with and without interconnect to assess delay.

Fig. 2.6 shows measured results con�rming the relatively poor voltage scalability

of repeater-based designs. A 1V optimal design is 31% slower than the 0.5V optimal

design when operating at 0.5V. Conversely, a 0.5V optimal design is 18% slower with

29% higher energy than a 1V optimal design when both operate at 1V. In contrast the

RSTR design shows good voltage scalability. Speci�cally at 1V it is 28% faster than

the 1V optimal INV design while consuming 5% less energy. At 0.5V, the "RSTR

19

Figure 2.5: Die photo of 45nm SOI test chip. The 7.5mm interconnect is folded ten
times.

#6" energy and delay essentially match the 0.5V optimal INV design. In addition to

being superior to INV-based designs, recall that "RSTR #6" appears along the Pareto

optimal frontier at both supply voltages. This indicates that excellent performance

can be obtained across voltage scaling, relative to other RSTR designs.

Green triangles in Fig. 2.6 represent RSTR energy-delay points with varying num-

ber of RSTR enabled, representing dynamic recon�guration options depending on

real-time energy-performance priorities. This allows the RSTR design to also oper-

ate at lower energy with faster delay than "INV #23" at 0.5V, if desired. Also, if

interconnect was performance limiting for the design at full VDD (1V), turning on

six additional RSTR along the wire (recon�guring RSTR #6 into RSTR #12) of-

fers 10% faster performance, potentially rebalancing the overall design. In NT mode

(0.5V), regenerators can then be turned o� to achieve a minimal energy of 0.6pJ in

this example.

20

Figure 2.6: Measured energy versus delay curves showing RSTR and repeater per-
formance. Green triangles represents di�erent RSTR con�gurations (i.e., di�erent
number of RSTR enabled).

Fig. 2.7 shows measured delay scaling of repeater and RSTR designs across VDD,

indicating the sub-optimality of using a single inverter-based repeater design in wide-

range voltage scaling. RSTR is able to achieve better performance across the entire

0.5V to 1V range. Fig. 2.8 plots this measured data normalized to inverter FO4 delay

across a range of voltages. Ideally an interconnect scales identical to circuit delay,

which would be shown as a �xed line at 1.0 of FO4 in Fig. 2.8. Again, this supports

the more graceful scaling of delay o�ered by an RSTR design over a conventional

repeater-based approach.

2.4 Summary

Today's emerging mobile applications require high energy e�ciency, which is often

provided by scaling supply voltage across a wide range according to real-time workload

variation. We present a recon�gurable, self-timed, regenerator-based interconnect

scheme that remains optimal in terms of energy-delay e�ciency at both full and near-

threshold voltages. RSTR interconnect delay tracks FO4 logic delay more closely than

repeated wires. In addition, RSTR o�ers higher speed and better energy e�ciency

21

Figure 2.7: Simulated energy versus delay curves for RSTR. Optimal inverter and
RSTR designs are chosen from the frontier curves at each voltage.

Figure 2.8: RSTR speed scales more similarly to digital logic than inverter-based
repeated wires.

22

overall compared to traditional repeater approaches.

23

CHAPTER III

A 28-nm Compute SRAM with Bit-Serial

Arithmetic Operations for Programmable

In-Memory Vector Acceleration

3.1 Introduction

In the conventional von Neumann architecture, a clear gap lies between data

storage and processing: memories store data, while processors compute on data.

Thanks to Moore's Law, in the past few decades, the computing power of integrated

circuits has rapidly scaled as logic gates became faster and faster and the number

of processing cores increased steadily until we hit the �Memory Wall� [37]. But the

on-chip global interconnects latency and energy cannot keep up with the scaling of

logic gates. Thus, the computation throughput and energy have become dominated

by the memory bandwidth and data movement energy. As shown in Figure 3.1a,

the bandwidth at the I/Os of all SRAM banks inside a big memory macro such as

a 20 MB L3 cache is over a hundred TB per second [38, 39], which is comparable

to the theoretical maximum computation bandwidth of the state-of-the-art systolic

processing array [40]. Hence, the bottleneck is the local data network inside the

memory macro and the global data bus on chip. Furthermore, a large fraction of

energy consumption today is spent on moving data back and forth between memory

24

and compute units [14]. As shown in Figure 3.1b, it only takes sub-pico joules of

energy to do a 32-bit addition while tens of pico joules are spent on retrieving data

from far away memory banks.

Previously, people tried to overcome the �Memory Wall� by introducing more

memory hierarchies, in an e�ort to bring the data closer to the computation. How-

ever, the memory problem is further exacerbated by the advent of data-intensive

applications such as neural networks [41, 42], computer vision [43] and steam pro-

cessing [44]. The need to shift from computation-centric to data-centric architecture

has led to extensive research focused on the area of in-/near-memory computing,

which moves computation to where the data is located. Recently, we have seen many

studies that try to bring computation to di�erent levels of memory hierarchies, in-

cluding DRAM [45] and non-volatile memories like STT-MRAM [46], ReRAM [47],

and Flash [48]. This paper focuses on designing computational SRAM banks. Most

SRAM in today's chips is located in the caches of CPUs or GPUs. These large CPU

and GPU SRAMs present an opportunity for extensive in-memory computing and

have, to date, remained largely untapped.

There are two main types of emerging in-memory computing architectures for

SRAM. The �rst is analog in-memory computing. In this case, one of the operands is

pre-stored in the SRAM array. A multi-bit operand will have its bits spread into dif-

ferent word-lines, while the other operand is usually modulated into the analog voltage

level in the word-lines [49] or pulse width of the word-line enable signal [50, 51]. The

multiplication result of the two operands is then represented by the various discharge

currents of the bit cell. Often multiple word-lines are activated simultaneously, and

the multiplication results are accumulated on the bit-line as the total bit-line dis-

charge current is the sum of the each individual bit-cell current. The �nal multiply-

accumulate result is naturally represented by the analog bit-line voltage, which can be

sensed by an analog-to-digital converter. This approach can achieve very high energy

25

(a) (a) On-chip bandwidth comparison.

(b) (b) On-chip energy comparison.

Figure 3.1: Bottlenecks in conventional von Neumann architecture: (a) low on-chip
network bandwidth and (b) high data movement energy.

26

e�ciency and performance, but it requires expensive analog-to-digital and digital-to-

analog conversions at the array boundary. Also, the computation accuracy is highly

susceptible to noise and PVT variations, and therefore its functionality is limited to

low precision addition or multiplication. The second type is digital in-memory com-

puting, which usually activates two word-lines with full-rail voltage in the same cycle

and employs a sense ampli�er on each bit-line to give a binary result [52, 53, 54, 55].

This type of approach o�ers better accuracy and robustness than analog approaches

and can achieve a moderately high energy e�ciency and performance. However, its

functionality is limited to only bit-wise logic operation or low precision arithmetic in

Binary Neural Networks.

Although traditional computing architectures such as CPU and GPU show limi-

tations in energy e�ciency and memory bandwidth, their appeal lies in their general

functionality. They can perform a wide range of operations from bit-wise logic opera-

tion to Integer/Floating-Point Arithmetic. Not only are these computations accurate

and robust since the designs are fully digital, but they are highly �exible and can im-

plement many algorithms and neural network types and sizes. In this respect, both

current in-memory approaches su�er from the same major limitation: they accelerate

only one type of algorithm and are inherently restricted to a very speci�c application

domain due to their limited bit-width precision and non-programmable architecture.

On the other hand, software algorithms continue to evolve rapidly, especially in novel

application domains such as neural networks, vision and graph processing, which

makes rigid accelerators of limited use.

To address these limitations, we present a general purpose hybrid in-/near-memory

Compute SRAM (CRAM) [56] that combines the e�ciency of in-memory computation

with the �exibility and programmability necessary for evolving software algorithms.

It does part of the logic operations in SRAM bit-lines and most arithmetic opera-

tions in pitch-matched, near-memory peripherals at the end the each bit-line. It can

27

accommodate a wide range of bit-widths, from single to 32 or 64 bits, and operation

types, including integer and �oating point addition, multiplication and division, with

a small amount of hardware overhead. Its high-throughput computation is accurate

and robust, and the design o�ers good energy e�ciency. CRAM tries to repurpose the

large existing on-chip memory storage by augmenting a conventional SRAM bank in a

cache with vector-based, bit-serial in-memory/near-memory arithmetic. To maintain

compatibility with current CPU/GPU architecture, CRAM writes/reads operands

conventionally with horizontal word-lines and vertical bit-lines, which is made possi-

ble by the 8T transposable bit cell.

The remainder of this paper is organized as follows. Section II generally introduces

the bit-serial operation and the architecture of the proposed Computational SRAM.

Section III describes the 8T transposable bit cell and the computing peripheral in

detail. Section IV presents the algorithm of multi-bit arithmetic operations. Section V

discusses the measurement results of the proposed design, and �nally, the conclusions

are presented in Section VI.

3.2 Overview of Bit-serial Arithmetic and CRAM Architec-

ture

3.2.1 Bit-serial Arithmetic

Several previous digital in-memory computing works [53, 54, 55] supported some

simple bit-parallel operations such as bit-wise logic and copy. However, these are

carry-less operations that do not require interaction between bit-lines. In order to

make in-memory computing as general purpose as the ALU in a CPU, support is

needed for more complex arithmetic operations such as addition, multiplication, and

even �oating point operation. The critical challenge in supporting these complex

computing primitives is facilitating carry propagation between bit-lines. We propose

28

bit-serial implementation with a transposable bit cell to address this challenge.

Since the 1980s, bit-serial computing architectures have been widely used for dig-

ital signal processing because it can usually provide the most area-e�cient design in

the presence of a massive bit-level parallelism [57, 58]. The key idea is to process

one bit of multiple data elements every cycle. This model is particularly useful in

scenarios where the same operation is applied to the same bit of all data elements in

a vector, like in SIMD architectures. For example, in order to compute the element-

wise sum of two arrays with 512 32-bit elements, a conventional processor would take

at least 512 cycles to get the operands element-by-element from the SRAM and then

perform the operation. A bit-serial processor, on the other hand, would complete the

operation in 32 steps as it processes the arrays bit-slice by bit-slice instead of element-

by-element. Note that a bit-slice is composed of bits from the same bit position but

corresponding to di�erent elements of the array. Since the number of elements in

arrays is typically much greater than the bit-precision for each element stored in

them, bit-serial computing architectures can provide much higher throughput than

bit-parallel arithmetic. Note also that bit-serial operation allows for �exible operand

bit-width, which can be especially advantageous in DNN hardware designs where the

required bit width can vary from layer to layer [59, 60].

3.2.2 CRAM Architecture

Figure 3.2 shows the overall architecture of one 16-KB CRAM bank. Each CRAM

bank consists of 4 128x256 arrays that load or store data conventionally using hori-

zontal word-lines and vertical bit-lines. The normal SRAM peripherals, such as a row

decoder, column mux, and sense amp, are shown in blue. In this diagram, the array

has been preloaded with two vectors of data, vectors A and B. Data elements from

the same vector are placed into di�erent rows and aligned by the column, while the

corresponding elements from the two vectors that are going to be operated must be

29

Figure 3.2: Proposed CRAM Architecture.

aligned on the same word-line. To perform bit-serial operation, we need to activate

the same bit position from two vectors. Therefore, column decoder and pitch-matched

compute logic are added so that in-memory computing can be performed using ver-

tical compute word-lines and horizontal compute bit-lines. For example, in the �rst

cycle, we simultaneously activate the vertical word-lines of the Least Signi�cant Bits

(LSB) from the two vectors. Then the computation is performed in both horizontal

bit-lines and the compute logics at the end of the bit-lines. Near the end of the cycle,

the result is then stored back in the array at some destination bit location selected

by a third vertical word-line. In the next cycle, other bits of each operand are acti-

vated to continue the computation. Again, the result is stored back at the designated

position at the end of the cycle. By repeating single bit operations cycle-by-cycle, we

can perform any complex multi-bit arithmetic with carry-propagation. For example,

a 32-bit adder will take 32 cycles to �nish. Note that although bit-serial computa-

tion is expected to have high latency per operation, it gains signi�cantly in terms of

throughput. A 16-KB SRAM bank contains 256 vertical compute bit-lines in total,

and a 35-MB Last Level Cache (LLC) in the Haswell server processor can accom-

30

modate 2240 such 16-KB banks [2], which means a total of 573,440 bit-lines can do

computations in parallel. In this case, maximum throughput would be equivalent to

17,920 32-bit adders or 71,680 8-bit adders. The computing logic is shared between

the arrays on the left and right and takes 4.5% of the CRAM bank area. The instruc-

tion decoder and controller in the middle of the bank, shared by all 4 arrays, take

32-bit instruction and generate control signals for the computing logic. They occupy

5.2% of the bank area. The details of the controller instructions will be presented in

Section III.

3.3 CRAM Circuitry

3.3.1 8T transposable bit cell

Many previous in-memory computing works [51, 55, 61] choose to store each word

unconventionally by spreading bits into di�erent rows of the same vertical bit-line.

This approach makes the computation much easier and can directly use 6T bit cell for

minimizing area. But the normal SRAM read/write operation gets much more com-

plicated and becomes incompatible with current computer architecture since in one

cycle, we can't read out a complete word but only the same bit position from multiple

di�erent words. Therefore, we propose to use an 8T transposable bit cell. Figure 3.3

shows the schematic and the layout of the bit cell [62]. Four of the transistors form

the cross-coupled inverter pair to hold the data, and there are two pairs of access

transistors for read/write. The structure is similar to the conventional 8T dual port

SRAM bit cell except that it provides bidirectional access: the bit cell can be read

or written from either vertical bit-line or horizontal bit-line. Therefore, CRAM can

operate directly on the stored operands in memory by enabling the same bit position

from two vector elements with vertical word-lines and perform the computation on

horizontal bit-lines. Furthermore, it can also directly read a complete word by en-

31

Figure 3.3: Schematic and layout of 8T transposable bit cell.

32

abling the horizontal word-line and sense the result from vertical bit-lines. With the

logic rule transistor in 28-nm CMOS, the bit cell size is 0.405 um by 1.93 um, which

is 638F2 when normalized to technology node feature size (F).

3.3.2 Computing Peripherals

Figure 3.4 gives a detailed view of one row in the bit cell array. Logic operations

are performed on the bit-line (in-memory), while small additional in-row logic (near-

memory) enables carry-propagation between successive bit-serial calculations. An

example of 1-bit addition will be used to illustrate the CRAM single cycle operation

and computing peripherals. Here we add the second bit of vector A (A1) and vector B

(B1) with carry-in (Cin) from the previous cycle and store the sum back to the second

bit of vector D (D1) and latch the carry-out (Cout) for the next cycle. First, the

CRAM instruction decoder receives the ADD instruction with the 3 column addresses

for bits A1, B1 and D1. After pre-charging the compute bit-line (CBL) and compute

bit-line bar (CBLB), we activate the vertical compute word-lines (CWL) of A1 and

B1 simultaneously to generate 'A AND B' on CBL and 'A AND B' on CBLB. We use

a separate voltage rail for the driver of CWLA/B, so that we can lower the word-line

voltage to prevent the read disturbance issue when necessary. This is the in-memory

part of the computation. Next, after the dual sense amps are enabled, the in-memory

logic operation results propagate into the near-memory region located at the end of

each CBL. The NOR gate generates 'A XOR B,' which combined with Cin from the

C latch produces Sum and Cout. Then CWLDD is activated, and the sum is written

back to destination bit D1. Finally, near the end of the cycle, Cout updates the C

latch, which provides Cin for the next cycle.

When we activate the CWL, all 256 CBLs in the 16-KB CRAM banks are perform-

ing the same single bit instruction in a SIMD fashion. In order to support complex

multibit arithmetic, CRAM has to be able to execute instructions only on certain

33

Figure 3.4: CRAM Array Architecture (Top-left), computation control signal timing
diagram (Top-right), and in/near-memory computing peripherals (Bottom).

selected CBLs; and therefore, we add the Tag (T) latch to enable conditional oper-

ation. Tag latch is used as the enable signal of the write-back driver. Therefore, for

the CBL whose Tag latch stores 0, the computation result will not be written-back

to the memory, as if the instruction is not executed at all. The content of the Tag

latch can be loaded from or written into the memory array. In addition to the logics

introduced before, we also add a multiplexer to allow for the write-back of signals

besides the Sum, such as A AND B, A OR B, Cout, or Tag.

With the computing peripherals shown in Figure 3.4, the CRAM controller can

support up to 16 single-cycle instructions, shown in Table 3.1. Besides the logic and

add operation, it includes copy, inversion, load/store of carry or tag, comparison, and

set/reset carry. The CRAM controller takes 32-bit instruction. Four bits ([31:28])

are used for various enable signals for di�erent features. Four bits ([27:24]) are used

34

for the opcode for the 16 instructions. Eight bits are used for the address since

every memory array contains 256 compute word-lines. Bits [23:16], [15:8], and [7:0]

represent the address of operand A, the address of operand B and the destination

location D, respectively. Using these single-cycle micro instructions, we can build

complex multi-cycle macro instructions, including search, multiplication, division,

and �oating point arithmetic.

Table 3.1: CRAM Instruction Set.

3.4 Multi-cycle Arithmetic

Users can program CRAM to achieve many complex computations. Table 3.2

shows a sample list of the supported multi-cycle operations and the number of single-

cycle instructions each takes. Next, we will introduce some commonly used arithmetic

operations and the way to program them in CRAM.

35

Table 3.2: Sample of supported operations and cycle counts.

3.4.1 Integer Addition and Subtraction

We use the addition of two vectors of 3-bit numbers (A and B) to explain how

the addition algorithm is carried out bit-by-bit starting from the least signi�cant bit

(LSB) (Figure 3.5). The two vectors each occupying 3 columns need to be placed

in the same array with their corresponding elements aligned on the same row but

not necessarily abutted. In cycle 0, we �rst initialize the entire carry latch to 0 by

using instruction 'Reset C.' In cycle 1, we apply instruction 'ADD' and provide the

column address of the LSBs for RA and RB. We can either write the sum to an empty

column of the array or one of the operand LSBs can be directly overwritten by the

result depending on the destination address, RD, we give in the instruction. Carry

36

latch is automatically updated with Cout at the end of the cycle. In cycles 2 and 3,

we add the second and third bit location the same way as we did in cycle 1. Thus,

an N-bit addition takes N+1 cycles. Subtraction can be performed by �rst inverting

vector B and then adding to A with carry latch initialized to 1.

Figure 3.5: 3-bit Addition Cycle-by-Cycle Demonstration (left), 2-bit Multiplication
Cycle-by-Cycle Demonstration (right).

3.4.2 Unsigned Integer Multiplication

One way to perform multiplication is using shift and add. It requires the con-

ditional copy and addition instruction enabled by the tag latch. As explained in

Section 3.3.2, if we enable the conditional execution feature, the tag latch becomes

the local write bit-line enable signal of the row, and the result of any instruction will

only be written back into the destination bit RD if the tag latch stores 1. Figure 3.5

demonstrates the example of a 2-bit multiplication. Suppose that vector A is the

multiplicands and vector B is the multipliers. Initially, four columns in the array are

reserved for the product and initialized to zero by setting all carry latches to 0 �rst

37

using 'Reset C' and then writing the carry latch back to product columns in 4 cycles

using 'Store C.' In the �rst computing cycle, the LSB of the multiplier is loaded to

the tag latch using 'Load T' instruction. In cycles 2 and 3, the multiplicands are

copied to product columns only if the tag latch in that row equals 1. In cycle 4, the

second bit of the multiplier is loaded to the tag latch. In the next 2 cycles, for rows

with tag equals 1, the multiplicands are added to the second and third bits of the

product, shifting the multiplicands by 1 to account for the multiplier bit position.

Finally, we store Cout in the most signi�cant bit (MSB) of the product to complete

the multiplication. Note that partial products are implicitly shifted as they are added

using appropriate bit addressing in the bit-serial operation, and no explicit shift is

performed.

3.4.3 Unsigned Integer Division

Division is conducted similarly by implicit shifting and subtracting from a partial

result. The pseudo-code for CRAM is shown in Table 3.3. The quotient is computed

starting from the MSB. First, we copy the MSB of dividend to the partial result

(remainder). Then, we subtract the divisor from the partial result, put the result into

a temporary location and check whether the result is positive or negative by looking

at the over�ow bit Cout in the carry latch. A positive result from subtraction means

the partial result is greater than the divisor, and the tag latch of that row will be set

to 1. We conditionally update the corresponding bit in the quotient and remainder

if the tag is 1. We repeat the previous steps N times until all the bits of the quotient

are computed.

3.4.4 Comparison and Search

Comparison operations like "greater/less than" or "equal to" can be performed

by using subtraction or XOR logic operation. CRAM also provides a multi-bit search

38

Table 3.3: Pseudo-code: Unsigned Integer Division.

operation like those in content addressable memory (CAM) by repeatedly using the

CRAM single-cycle instruction 'Equal.' A given pattern is compared with the memory

content within a speci�ed range of columns, and the matched memory row will have

its Tag latch stored as 1. The pattern is given cycle by cycle into the memory as the

8th bit of CRAM instruction (the LSB of address RB �led) and is compared to all

the bits in the column speci�ed by address RA of the instruction. Therefore, N-bit

search operation takes N cycles.

3.4.5 Floating-point Arithmetic

Taking 32-bit IEEE-754 �oating point as an example, we will demonstrate one

way to implement �oating point arithmetic on the CRAM using repeated conditional

integer addition, subtraction, multiplication, division and search operation. A 32-bit

�oating number is represented by one sign bit in the MSB followed by 8-bit exponent

and 23-bit mantissa. During computation, we always use one extra memory column

of all 1s to represent the implicit 24th bit of mantissa. Floating point multiplication

and division is relatively simple. First, the result sign bit can be determined by

XOR the operand sign bits. Then an eight-bit addition between the two exponents is

39

Table 3.4: Pseudo-code: Floating Point Addition.

performed if it is multiplication or eight-bit subtraction if it is division. Then a 24-bit

multiplication or division between the mantissa is performed. However, �oating point

addition and subtraction is much more complicated. Table 3.4 shows the pseudo-code

for �oating point addition. First, we equalize the exponents of the operands by shifting

the one of the mantissa. If the operand A has a larger exponent, we right-shift the

mantissa of operand B by the di�erence of the two exponents. Since the mantissa has

at most 24 bits, we shift at most 24 times. Next, we add the mantissa if the signs of

A and B are the same. Otherwise, we subtract B from A if A has a larger mantissa

or subtract A from B if mantissa B is larger. Finally, we need to normalize the result

by left-shifting the result until the 24th bit of mantissa is 1.

40

3.5 Measurements and Results

Figure 3.6: Test chip architecture with sample memory bank con�guration.

To test the proposed in-/near-memory concept, we incorporate CRAM into an

IoT processor. The chip consists of a Cortex-M0 CPU [63], a separate CRAM control

bus, and eight 16-KB Compute SRAM banks (in total 128 kB memory with 2048

computing rows). These memories can function either as traditional or compute

memories. Both the ARM core and CRAM control bus can access all eight memory

banks, load or store data using standard memory IO, and perform computation in

memory by sending 32-bit CRAM instruction to the CRAM controller IO in each

bank. The diagram in Figure 3.6 shows an example memory bank con�guration: two

memory banks are used as CPU instruction and data memory while the rest are used

for CRAM computation. Complex multi-cycle instructions are stored in one of the

6 banks and streamed or broadcasted to other 5 compute-con�gured banks by the

CRAM control bus with all �ve banks performing CRAM operations in parallel. At

the same time, the M0 can perform other processing with the remaining two memory

banks through the standard AHB bus.

41

Figure 3.7: Layout of CRAM bank and die photo.

Figure 3.7 shows the layout of the CRAM bank and die photo of the prototype

chip fabricated in 28-nm CMOS. A single memory bank is 245 x 625 um with 70%

array e�ciency. The chip size is 1.5 mm by 1.7 mm. Figure 3.8 shows the measured

frequency and energy e�ciency of 8-bit addition and multiplication across the supply

voltage. The best energy e�ciency is achieved at 0.6 V and 114 MHz, resulting in 0.56

TOPS/W for 8-bit multiplication and 5.27 TOPS/W for 8-bit addition. At 1.1 V, the

frequency of 475 MHz results in 122 GOPS for 8-bit addition and 9.4 GOPS for 8-bit

multiplication. If the memory size is scaled to 35MB, which is a similar capacity

to an L3 cache in a modern server-class processor, CRAM is estimated to provide

34.2 TOPS of 8-bit additions while consuming 51.2 W. Figure 3.9 gives measured

frequency and leakage power distributions for 21 measured dies. The performance of

di�erent multi-cycle operations is summarized in Table 3.5.

Figure 3.10 shows the performance of the test chip for diverse computationally

intensive tasks ranging from neural networks to graph and signal processing. The total

latency in cycles is compared with a baseline operation where CRAMs are only used

42

Figure 3.8: Frequency and energy e�ciency of 8-bit multiplication and addition at
di�erent VDD.

as data memories and the computation is entirely performed on the ARM CPU. The

�rst benchmark is the 1st convolutional layer from Cuda-convnet [64], and the second

is the last fully connected layer from Alex-net [15]. Due to their size, these layers

must be executed in multiple smaller sub-sections. The third application consists of

512 simultaneous 32-tap FIR �lters and the fourth application performs traversal of a

directed graph represented by a 192Ö192 adjacency matrix. The workload breakdown

shows the percentage of time spent on input loading and output storing vs. in-

memory computation. Speedup, compared to executing the same workload with the

ARM Cortex-M0, varies from 7.2 to 114Ö with the greatest gains obtained when the

operation is compute-heavy and low on input/output movement.

In Table 3.6, we compare the proposed approach with other state-of-the-art in-

memory accelerators. We have by far the largest computing memory size. Further-

more our proposed work is the only solution to provide a wide range of instructions

and �exible bit-widths. It repurposes the memory storage already available in pro-

cessors, thereby accelerating computation while maintaining programmability.

43

Figure 3.9: Maximum frequency and leakage power distribution of 21 dies at 1.1V.

3.6 Summary

To summarize, we proposes a general purpose hybrid in-/near-memory compute

SRAM (CRAM) that combines an 8T transposable bit cell with vector-based, bit-

serial in-memory arithmetic to accommodate a wide range of bit-widths, from single

to 32 or 64 bits, as well as a complete set of operation types, including integer and

�oating point addition, multiplication and division. This approach provides the �ex-

ibility and programmability necessary for evolving software algorithms ranging from

neural networks to graph and signal processing. CRAM is an area-e�cient and low

invasive technique that exploits vector-based bit-serial in-/near-memory arithmetic.

It achieves both high throughputs by exploiting the massive bandwidth inside SRAM

banks and good energy e�ciency by suppressing data movement energy. The pro-

posed design was implemented in a small IoT processor in 28-nm CMOS consisting

of a Cortex-M0 CPU and 8 CRAM banks of 16 kB each (128 kB total). The system

achieves 475 MHz operation at 1.1 V and, with all CRAMs active, produces 30 GOPS

or 1.4 GFLOPS on 32-bit operands. It achieves the energy e�ciency of 0.56 TOPS/W

for 8-bit multiplication and 5.27 TOPS/W for 8-bit addition at 0.6 V and 114 MHz.

44

Table 3.5: Performance of Test Chip at 475MHz.

Figure 3.10: Performance comparison between CRAM and baseline scenario (top),
workload breakdown (bottom).

45

Table 3.6: Comparison with Previous In-memory Computing Work.

46

CHAPTER IV

288µW Deep-Learning Accelerator with 270KB

Custom Low Power SRAM and Non-Uniform

Memory Hierarchy for Mobile Intelligence

4.1 Introduction

Deep learning has proven to be a powerful tool for a wide range of applications such

as speech recognition and object detection, among others. Right now, many try to

deploy deep learning applications to mobile phone, wearable device, and even Internet-

of-Things (IoT) sensor node to enable �mobile intelligence�. Typically, these mobile

devices just send data (e.g. image or sound) to the server, and the server executes

the deep learning algorithm; then, the server sends results back. This way, even

simple computation can result in latency, and energy overhead due to communication.

Recently there has been increased interest in designing deep learning accelerator for

mobile IoT [65] to enable intelligence at the edge and shield the cloud from a deluge

of data by only forwarding meaningful events.

Therefore, some people propose a hierarchical deep neural network (DNN). As

shown in Figure 4.1 di�erent-scale DNNs is computed at di�erent hardware platform.

Small DNNs with computation power less than tens of mW, like voice activity de-

tection (VAD), keyword spotting (KWS), face detection should be processed locally

47

Figure 4.1: Hierachical deep neural network.

on always-on IoT and wearable devices, because the communication power of these

device (usually bluetooth) costs around 20mW. Likewise, medium DNNs with com-

putation power less than hundreds of mW can be processed on portable devices to

handle time-critical tasks. And, only for complicated tasks, data is sent to servers.

This hierarchical intelligence thereby enhances both radio bandwidth and power e�-

ciency by trading-o� computation and communication at edge devices. In this way, we

extend battery life time of mobile and edge device by saving communication energy.

In this work, we focus on building a low-power programmable deep learning accel-

erator (DLA) to run �always-on� applications (e.g., voice commands or face detection)

in IoT platform like [66, 67] with power budget less than tens of mW. These applica-

tions are crucial to the battery-powered device in that the chip can sleep most of the

time and wake up by the always-on DLA only when meaningful activity is detected.

Therefore, low power is a critical design constraint for this type of DLA. However,

prior works [68, 69] have focused on high performance recon�gurable processors op-

timized for large-scale deep neural networks that consume >50mW. O�-chip weight

storage in DRAM is also common in prior works [68, 69], which implies signi�cant

48

additional power consumption due to intensive o�-chip data movement. Therefore,

we need a new design for low power DLA that can run small DNNs e�ciently in edge

devices.

Figure 4.2: 1mm3 die-stacked sensing platform.

In summary, we propose a low-power, programmable deep learning accelerator

with all weights stored in 270KB on-chip SRAM for mobile intelligence. Low power

(less than 300µW) is achieved through the following 4 techniques:

1) Highly �exible and compact memory storage is realized via independent control

of recon�gurable �xed-point bit precision ranging from 6�32 bits for neurons and

weights.

2) Four processing elements (PEs) are located amidst the weight storage memory

of 270kB, minimizing data movement energy;

3) A non-uniform memory hierarchy provides a trade-o� between small, low power

memory banks for frequently used data (e.g., input neurons) and larger, high density

banks with higher power for the large amount of infrequently accessed data (e.g.,

49

synaptic weights).

4) A 0.6V 8T custom memory is speci�cally designed for DNNs with low-swing

and replica bit-line, a sequential access mode, bank-by-bank drowsy mode control,

power-gating for peripheral circuits, and voltage clamping for data retention;

These techniques were implemented into a complete deep learning processor in

40nm CMOS, including the DLA, an ARM Cortex-M0 processor, and MBus [66]

interface to enable integration into a complete sensor system (Figure 4.2). The DLA

consumes 288µW and achieves 374 GOPS/W e�ciency. We demonstrate full system

operation for two mobile-oriented applications, keyword spotting and face detection.

4.2 Deep Learning Algorithm and Processor

As mentioned before, edge devices can't a�ort to have high power o�-chip DRAM,

and we have to try �tting all the neural network weights on chip. However, even a

state-of-art keyword spotting network [16] requires 2.1M parameters, 8.4MB of SRAM

storage using 32-bit �oating points number, which is still impossible for many small

IoT sensors. Therefore, we �rst need to optimize these algorithms for better energy

and area e�ciency. We �nd that the only thing software designers care about is the

accuracy, and they usually trade a lot storage and computation cost for only small

gain in accuracy, which means in reverse, we can reduce the network size a lot with

only mild degradation in accuracy [25, 27]. First, the bit-precison in DNN inference

engine doesn't not have to be �oating points or 32-bit �x-point. It may vary across

di�erent layers and networks from 3 bits to 16 bits [70, 71]. Figure 4.3 the minimum

bit-width required for di�erent layers in the well-known networks and corresponding

the error tolerance. With variable precision �x-point representation, we can save at

least 2-6× weight storage.

To take fully advantage of the variable bit precision and make memory storage

more e�cient, the processor hardware supports 4 di�erent short data representations

50

Figure 4.3: Minimum bit-width in di�erent layers and networks for error tolerance
between 1% and 10%. (I: integer bits; F: fractional bits) [70].

for weight, input, output and temporary output. As shown in Figure 4.4, we can

choose 6/8/12/16 bits for weight/input/output. Since temporary output is the inter-

mediate accumulation result and has a higher dynamic range, they can be 16/24/32

bits. And we choose one word of SRAM to be 96 bits so that we can group integer

numbers of weights/inputs/outputs/temporary outputs into one word without wast-

ing the precious memory capacity. What's more, long memory word can also reduce

the number memory accesses to save expensive data movement energy. Inside each

processing elements (PE), we have programmable ping-pong bu�er to unpack incom-

ing 96-bit data to selected precision and pack out-going data till 96-bit before storing

it back.

Second, we �nd that many weights in the neural networks are close to zero, which

means network size can be greatly reduced by pruning zero-like weights and re-training

the network to gain accuracy [18]. For example, we successfully reduced the keyword

spotting network size from 2.1M to 300K, about 200KB of memory storage with

average 6-bit precision [25], which is now a�ordable to a sensor node. In contrast

51

Figure 4.4: Available precisions for di�erent data types (top) and programmable
ping-pong bu�er to unpack and pack data (bottom).

to the big storage, the throughput requirement of such small DNN is extremely low

�only 300K multiply-and-accumulate operations (MAC) per 10ms. A systolic array

of Multiply-and-Accumulate (MAC) unites like [72, 73] is completely unnecessary.

Just 16 multipliers running at 2MHz rate is su�cient for the job like keyword spotting.

High memory and small processing elements (PE) will make data movement very

ine�ciency. Since communication energy is more expensive than computation, we

break one big PE into 4 smaller ones and surrounding each one by one-fourth of the

52

total memory to shrink the average distance between data and computation as shown

in Figure 4.5. Though each PE can still access all 270KB memory, we will try to

minimize data sharing and put most data one PE needs in its own memory sector to

full exploit spatial locality.

Figure 4.5: One big PE and memory (left), four PE surrounded by its own memory
sector to exploit spatial locality (right).

Figure 4.6 shows the overall DLA architecture. The DLA has four PEs surrounded

by their memory. Each PE has an ALU, instruction bu�er, status register, data

bu�ers, controller, memory address mapping unit, and memory arbitration unit. The

ALU contains 4 8-bit multipliers, 4 16-bit multipliers, and 10 adders. The PE is

programmed by two ping-pong CISC instruction bu�er, which are 192b long including

start address, size, precision, and operation-speci�c �ags. The recon�gurable PE

CISC operations are: 1) Fully Connected Layer (FCL) processing, 2) Fast Fourier

Transfer (FFT), 3) data-block move, and 4) Look-Up Table(LUT)-based non-linear

activation function. The memory address mapping unit and memory arbitration unit

in each PE governs prioritized memory access arbitration, enabling PEs to access

other PEs memory space. PEs can be programmed via o�ine scheduling optimization

to avoid memory access collisions and contamination. The DLA operation sequence

is controlled by the Cortex-M0, which loads data and instructions into PE memory.

53

As a PE instruction can take many cycles to complete, the Cortex-M0 supports clock-

gating and it wakes upon PE completion. An external host processor can program

the Cortex-M0 and DLA using a serial bus interface.

Figure 4.6: Top-level diagram of proposed deep learning accelerator (DLA) (left).
DLA PE instruction example (top). DLA PE block diagram (right).

4.3 Non-Uniform Memory Access Architecture

We exploit temporal and spatial locality by using a cache-like hierarchical non-

uniform memory access (NUMA) architecture. Since the DLA is optimized for im-

plementing fully-connected layer (FCL) in deep neural networks and the FCL mainly

performs matrix-vector multiplication, we observe that small inputs vector needs to

be assessed multiple times per inference while large weight matrix has no data reuse

54

Figure 4.7: Trends in SRAM density and access energy with di�erent bank size.

at all. Besides, we observe that smaller SRAM banks have lower access energy with

relatively worse area density, while the opposite is true for larger banks as shown

in Figure 4.7. Therefore, we can strategically map the input vector to the nearest

local memory like L1 cache so that the DLA can reuse it as many times as possible

once loaded, while the infrequently accessed weight matrix is loaded from dense (but

higher access energy) upper hierarchy memory like L3 cache. However, di�erent from

caches, we don't need to pay signi�cant power/area overhead for the content address-

able memory and complicated controller. Instead, we just need SRAM banks will

small ones closest to the PE and large banks in the distance. Because deep learning

algorithms can be deterministically scheduled at compilation time, predetermining

optimal memory assignments.

NUMA is carefully designed to strike a balance between memory area and access

energy. The number of NUMA hierarchical levels and the memory size of each hier-

archy in Figure 4.8 were determined via extensive simulations that analyzed NUMA

con�gurations for various DNN topologies. In the proposed architecture, NUMA

memory has 67.5kB in total with four banks in each level of hierarchy. Unit bank

55

sizes are 0.375, 1.5, 3, and 12kB. What's more, PE memory uses gating circuits to

prevent unnecessary signal switching in hierarchical memory accesses. That is, lower

level memory access signals do not propagate to higher levels. Simulations show that

combining NUMA with the tiling strategy for 4 PEs leads to >40% energy saving

with 2% area overhead compared to UMA (unit bank = 16kB) for the same tasks

and total memory capacity (Figure 4.9).

Figure 4.8: The number of NUMA hierarchical levels and the memory size of each
hierarchy (top), and signal gating circuit to unnecessary signal switching (bottom).

56

Figure 4.9: Area and energy comparison with UMA & NUMA and proposed tech-
niques.

4.4 Low Power Custom SRAM

As mentioned before, in such a DNN computation unit area and power is not

comparable to the memory storage. If all 16 multipliers on chip work at the same

time, the computation power is about 31uW. If using the SRAM compiler provided

by TSMC, the read active power of the compiled SRAM is 528uW and the total

leakage power of 270KB memory is 8.27mW. Therefore, to reduce both system active

and leakage power, it's crucial to have a custom low power SRAM.

4.4.1 8T HVT Bit-cell and Noise Margin

The compiled SRAM use push-rule 6T bitcell and requires a pretty high minimum

operating voltage (Vmin) to ensure functional correctness. Traditional 6T SRAM

bitcell is good for density, but bad for low voltage operation because of the contention

between the read static noise margin (SNM) and write noise margin (WNM) [74].

One of the most e�ective way to reduce both active and leakage power is lowering the

supply voltage. To ensure SRAM robustness under low voltage (0.6V), we choose to

scari�es some area density and use 8T bitcell [75, 76] whose read and write operation

57

can be separately optimized at low voltage. But half-select issue still remains if the

bank has column-mux or is bit-interleaved, which may limit our freedom to optimize

WNM. Since one word of our SRAM has 96 bits, considering the aspect ratio of the

array layout , we choose not to have column-mux or bit-interleaving. Besides, we

choose high threshold (HVT) transistor for 6 out of the 8 transistors, which reduce

the leakage power of the array by an order of magnitude. The rest two transistors in

the read port is still normal threshold (SVT) transistor for a faster read speed. The

bitcell schematic and layout is shown in Figure 4.10.

Figure 4.10: Compiler 6T push-rule bit-cell (top-left), 8T HVT bit-cell schematic
(top-right) and layout (bottom).

58

4.4.2 Active Power Reduction Techniques

We proposed several techniques to reduce the SRAM access energy to 5-6fJ/bit.

Through the spice simulation of a medium size SRAM bank with 128 word-lines and

32 bit-lines, we �nd that over 80% of the access energy is consumed by the bit-line

charge and discharge, and peripheral takes over 70% of the total leakage as shown in

Figure 4.11.

Figure 4.11: Active and leakage power breakdown of a SRAM array.

4.4.2.1 Low-Swing and Replica Bit-line

The high bit-line discharge energy is due to the large bit-line capacitance and volt-

age swing. We reduce the bit-line capacitance by using a qual-array bank structure.

Each bank consists of 4 (instead of 2) sub-arrays to share address decoder and readout

circuits so that the bit-line length and capacitance is halved as shown in Figure 4.12.

Since 8T bitcell has only one read bit-line, most SRAM designs use a single-ended

sense ampli�er, skewed inverter, for large signal / full swing sensing. To reduce the

bit-line voltage swing, we use the di�erential sense ampli�er for small signal sensing.

And we use replica bit-cell and bit-line to generate the reference voltage for the

di�erential sense ampli�er. Our normal 8T bit-cell use SVT transistors for the read

port. The replica bitcell has only the read port, consisting of one HVT transistor

and one SVT transistor with a smaller size. And a replica bit-line made up with a

column of the replica bit-cells is placed in the middle of each sram array to generate

the reference voltage for all other columns in the array. The area overhead of the

59

Figure 4.12: Long bit-line length of a dual-array bank (left) versus short bit-line
length of a qual-array bank (right).

replica bitline is amortized to only 0.5%. Figure 4.13 and 4.14 shows the replica

bit-cell/bit-line and the di�erential sense ampli�er.

Figure 4.13: Replica bit-cell and bit-line to provide the reference voltage for di�eren-
tial sense ampli�er.

60

Figure 4.14: Di�erential Sense Ampli�er Schematic.

4.4.2.2 SR-Latch Gated Sequential Address Decoder

From the DNN algorithm study, we found that memory access pattern is pre-

dictable and most of the time is sequential. Therefore, we propose a shift-register

based sequential decoder with SR-latch clock gating to save the energy in local ad-

dress generation. First, each SRAM bank still has the traditional address decoder to

generate the one-hot code and then use it to initialize the shift-register. Later, if the

central memory address controller �nd the new address is just the previous address

incremented by one, it will only send 1 bit sequential enable signal instead of 15-bit

address signal. To save the energy in clock tree, sixteen shift registers are grouped

into one clock group and gated by a SR-latch like Figure 4.15. Therefore, each time

only one register group may see the clock signal. From the energy break down in

Figure 4.15, sequential decoder costs only half power than random decoder. What's

more, the main energy saving of sequential decoder comes from the reduced switching

activity in the long address bus.

61

Figure 4.15: Energy comparison between Random Decoder (top-left) and Sequential
decoder (bottom).

4.4.3 Leakage Power Reduction Techniques

Memory access of DNN algorithm can be deterministically scheduled. Given that

only a few banks are actively accessed in a speci�c PE while the others stay idle

during the majority of processing time, we employ a dynamic drowsy mode for SRAM

leakage reduction. Each PE dynamically controls power gating and clamping headers

of SRAM peripheral circuits and arrays, bank-by-bank based on the schedule. During

drowsy mode, peripherals are power-gated using large HVT PMOS header, while

array voltage is clamped with an small LVT NMOS source follower (Figure 4.16).

The reference voltage to the gate of NMOS clamping header is generated on-chip by

a diode stack and a programmable analog-mux array to ensure data retention (Figure

4.17).

62

Figure 4.16: PMOS power header and NMOS clamping headers.

Figure 4.17: Diode stack for on-chip reference voltage generation.

4.5 Measurements and Results

The test chip is fabricated in TSMC 40nm Low Power CMOS technology. Fig-

ure 4.18 shows the die photo. As expected, the memory takes over 70% of total chip

area. Measurement results con�rm e�ectiveness of the proposed NUMA and drowsy

63

Figure 4.18: Die photo of Deep Learning Processor.

mode operation (Figure 4.19). Measured data access power consumption in L1 is

60% less than in L4. Memory drowsy mode operation reduces leakage by 54%, which

is mainly attributed to peripheral circuits as the bit-cell is inherently low leakage.

The test chip achieves peak e�ciency of 374GOPS/W while consuming 288µW at

0.65V and 3.9MHz. Keyword spotting (10 keywords) and face detection (binary de-

cision) DNNs are successfully ported onto the proposed DLA with layer dimensions

and precision mapping speci�ed in Figure 4.20. Both DNN classi�cations �t into the

270kB on-chip memory and exhibit <7ms latency, allowing for real-time operation.

Figure 4.20 compares against state-of-the-art prior work.

64

Figure 4.19: Memory access power consumption (top left). Memory leakage power
comparison (top right). SRAM bank leakage break-down (bottom left). Performance
and e�ciency across voltage (bottom right).

4.6 Summary

To summarize, we proposes a a low-power, programmable deep learning acceler-

ator with all weights stored in 270KB on-chip SRAM for mobile intelligence. Less

than 300µW power is achieved through: 1) highly �exible and compact memory stor-

age realized via recon�gurable �xed-point bit precision ranging from 6�32 bits; 2)

minimizing data movement energy by locating four PEs amidst the 270kB memory;

3) NUMA architecture fully exploiting temporal and spatial locality; 4) custom low

power memory specially designed for DNNs with 8T HVT bit-cell, low-swing bit-line,

65

Figure 4.20: Performance summary for neural networks with a variety of layer speci-
�cation (top). Comparison table (bottom).

sequential decoder, peripheral power-gating, voltage clamping for data retention, and

bank-by-bank drowsy mode control. The proposed design was implemented into a

complete deep learning IoT processor in 40nm CMOS, including the DLA, an ARM

Cortex-M0 processor, and MBus interface to enable integration into a complete sen-

sor system. The DLA consumes 288µW at at 0.65V and 3.9MHz, and achieves 374

GOPS/W peak energy e�ciency. We demonstrate full system operation for two

mobile-oriented applications, keyword spotting and face detection.

66

CHAPTER V

1.03pW/bit Ultra-low Leakage Voltage-Stacked

SRAM for Intelligent Edge Processors

5.1 Introduction

As is discussed in chapter IV, SRAM area and leakage power have now dominated

the smart sensor. In the previous project, we designed a deep learning processor

targeting at small neural network to do simple tasks like keyword spotting. But in

this project, we try to design a image signal processor (ISP) for an energy-e�cient

low-noise CMOS image sensor. Figure 5.1 shows the expected 3D-stacked system

with a lens, imager, radio, �ash storage, and image processor. The ISP is designed to

run at least three di�erent neural networks for human detection, face detection, and

face recognition. Including main memory, image frame bu�er, and data memory for

neural network weights, ISP requires at least 6.4 Mbit of on-chip SRAM, which takes

around 90% of the chip area as shown in Figure 5.2. Therefore, a custom ultra low

leakage SRAM becomes crucial to the low power ISP.

5.2 Ultra Low Leakage SRAM for Low Power ISP

The sensor system is target for smart surveillance camera type of application and

the imager is motion-triggered to save power. It means that the system has a very low

67

Figure 5.1: 3D-stacked smart sensor system with low power imager, radio, �ash, and
ISP.

Figure 5.2: ISP Chip Layout shows that 90% area is memory.

68

activity, and most of the time, it will stay in sleep. However, over 5Mbit of SRAM in

the neural engine of ISP cannot go to sleep even in idle mode since they retains the

parameters of three neural networks. Leakage power of the on-chip SRAM is going

to be a big burden for such a low activity sensor system. Therefore, we propose an

ultra low leakage SRAM that is specially optimized to retain the data with the lowest

power possible by sacri�cing some area and active power.

5.2.1 Di�erential 8T Bit-cell

After increasing the channel length and using HVT transistor to bring us 18%

and 8× leakage reduction respectively, in order to further reduce the leakage power,

we found nothing is more e�ective than drop the supply voltage. If the array voltage

drop from 0.6V to 0.3V, the leakage power can be reduced by another 11×. However,

low supply voltage will greatly compromise the stability of SRAM bit-cell. And

technology scaling has made it even harder to design robust SRAM, since process

variation like Random Dopant Fluctuation (RDF) [19] and Line Edge Roughness

(LER) [20] gets worse with reduced minimum feature size. Also the large on-chip

SRAM requirement poses a bit challenge on maintaining a high yield even at low

voltage. Therefore, we decide to trade the area for robustness and leakage reduction.

By simulation, we �nd all channel width and array voltage pairs that has a hold noise

margin of 8 mean-over-sigma as shown in Figure 5.3. Then we pick 220nm and 0.3V

as the bit-cell size and array supply voltage, since it has both very low leakage and

a reasonable size. However, we still use 0.6V for the peripheral and bit-line voltage

to faster read/write speed and higher read/write margin. For low voltage operation,

we still want to decouple the read and write ports, and therefore choose a di�erential

8T bit-cell design like [77]. It is very similar to a traditional 7T bit-cell except that

one extra read transistor enables low swing di�erential read. Since we use 0.3V for

array VDD and 0.6V for peripheral/bit-line voltage, during the read operation, bit-

69

cells in the unselected rows will have their read transistors in the super-cuto� region

which can perfectly avoid the sneaking current issue in the traditional 7T SRAM

[33]. Figure 5.4 shows the schematic of the bit-cell. We use HVT transistor for

PU/PD/PG transistors for low leakage and LVT transistor for read access transistor

for read speed.

Figure 5.3: Bit-cell hold noise margin at di�erent channel width and supply voltage.

Figure 5.4: Schematic of the di�erential 8T bit-cell.

70

5.2.2 Stacked SRAM Array

There is substantial recent interest in implementing deep learning techniques

within IoT devices to enable intelligence in edge devices and avoid the need for expen-

sive wireless communication to the cloud. In addition, o�-chip DRAM accesses are

costly for highly miniaturized and power-constrained devices. As a result, it is ben-

e�cial to �t complete neural network models into on-chip memories, most commonly

SRAM; given their relatively low density these memories can easily consume >80% of

total chip area [18]. As a result, standby power of these battery-powered devices be-

comes dominated by SRAM leakage. For example, in the low-power, motion-triggered

smart image sensor considered in this work, the �rmware, reference frame, and neu-

ral network weights require an 8.9Mb SRAM that consumes up to 90% of the chip's

standby power, dictating battery life. In this paper, we propose a stacked voltage

domain SRAM where arrays are split into two sets (top and bottom) with their sup-

plies connected in series. As a result, the system supply current is reused by top and

bottom sets, and supply voltage is split between the two sets of arrays. This enables

seamless integration of very low voltage SRAM retention in a larger system with a

nominal supply, without resorting to a low e�ciency LDO. A new array swapping

approach (from top to bottom) provides stable access to arbitrary banks within one

system clock cycle. We also employ a comprehensive sizing strategy (W and L) to

optimally balance hold stability and bitcell size. Integrated in an imager IoT system

in 40nm CMOS, the proposed 8.9Mb SRAM achieves 1.03pW leakage per bit marking

over 100Ö reduction over conventional SRAM in the same technology.

Prior work has focused on reducing SRAM leakage via various techniques such

as HVT/thick-oxide device [78, 79], reverse body bias [80, 81], �oating bitline [82],

raising VSS [83, 84], and lowering VDD [85, 86]. Apart from the use of HVT device,

which enables an order of magnitude leakage reduction and is readily deployed, supply

voltage lowering is one of the most e�ective approaches to reduce leakage due to the

71

Figure 5.5: SRAMs on an image processing IoT chip (top-left), leakage power across
voltage (top-right), proposed array stacking and swapping technique (bottom).

DIBL e�ect. Figure 5.5 shows that lowering the array voltage to 0.3V, which is

half of our system VDD, reduces leakage by 11×. However, this raises two issues:

1) Commercial bitcell sizing is not optimized for holding data at very low voltages

(e.g., subthreshold regime) and requires a careful hold margin / density tradeo�

analysis; 2) Additional voltage regulation and level conversion is required to generate

and interface with the separate voltage level of the SRAM array. Conventionally an

LDO is used, incurring area overhead and extra power consumption due to e�ciency

loss. Voltage stacking is an alternative way to generate an intermediate voltage level

by placing voltage domains in series, which has been shown to provide substantial

bene�ts in power delivery for microprocessors [87] and high bandwidth data buses

[88]. The biggest challenge in voltage stacking is balancing the active current between

top and bottom levels and maintaining a stable mid-rail voltage level. This often

requires an additional Voltage Regulator, negating some of the bene�ts under di�erent

top/bottom load conditions. However, we observe that SRAM arrays present a near-

72

ideal load for voltage stacking in that they draw mainly leakage current, and hence

total current drawn does not change dramatically with circuit activity (writing a bit

draws 10s of pA average current, which is negligible compared to µA-level background

leakage current).

To allow access to arbitrary arrays during operation while avoiding insertion of

complex level conversion, we propose a novel array swap mechanism. As shown

in Figure 5.5, the SRAM peripherals are not stacked and therefore wordline and

bitline voltages remain at VDDcore (2VDDmid) for faster operation speed, inherent

write/read noise margin enhancement, and removing the need for level converters.

Only bottom arrays are read/written directly. When an access is required to an array

located in the top voltage domain, the memory controller �rst swaps a bottom array

in the same quad-array SRAM bank with the desired top array (Figure 5.7). This

swap mechanism ensures the leakage current remains balanced and can be completed

in one system clock cycle due to the relatively low IoT processer clock frequency.

In addition to leakage reduction from reduced supply voltage, the approach o�ers

an additional 2× leakage reduction in top arrays due to their inherent reverse body

bias and reduced bitline leakage e�ects. As a result, total leakage is minimized by

increasing the % of top arrays to greater than half (i.e., to 75%); this is analyzed in

measurement later and the optimal ratio can be set by a memory controller.

Figure 5.6 shows the bitcell schematic and layout. The cross-coupled 4T uses HVT

devices to minimize hold leakage while LVT devices in the read port provide faster

sensing speed. The bitcell is upsized for improved hold noise margin (HNM). Channel

length is increased to the point where leakage is minimum, also improving HNM while

incurring 8% cell density loss. Channel width is increased, initially improving HNM

faster than leakage power, providing a favorable tradeo�. The �nal sizes are chosen

to balance among density, HNM, and leakage. To decouple the read/write operation,

we use a Z8T structure [77] instead of a traditional 8T, as di�erential sensing provides

73

Figure 5.6: Bitcell schematic and layout (top), hold noise margin (HNM) and leak-
age versus bitcell sizing (bottom-left), currents on the bitline during read operation
(bottom-right).

faster read speed and larger sensing margin. Since in our stacked SRAM the array

voltage is around 1/2 the bitline voltage, it inherently avoids the clamping current

problem in the original Z8T as all unselected cells are super-cuto� with negative VGS.

Further, the write noise margin is greatly increased due to the word-line overdrive of

the stacked con�guration.

Each SRAM bank has 4 arrays with power switches that connect an array to either

top or bottom voltage domains (Figure 5.7). The power switch settings are retained

in latches under an always-on voltage domain. Each bank can have 0-3 top arrays but

at least one array must be in the bottom domain. When accessing a top array, the

SRAM controller swaps this array with a bottom array in the same bank in two steps:

First, the two arrays (target and swapping) are expanded to full voltage (0:0.6V),

after which they are collapsed to the appropriate half range. Since the two arrays are

physically close, local charge sharing minimizes the disturbance to the mid-rail. All

on-chip SRAM arrays in the system are connected to the same power/ground/mid-

74

Figure 5.7: SRAM bank architecture and timing diagram (left), array swapping al-
gorithm (right).

rail, resulting in a large amount of innate decoupling capacitance and background load

current to suppress transient noise. To smooth transitions and reduce coupling noise,

each power switch consists of both small and large headers/footers that are turned on

in sequence. Each swap consumes around 8pJ, which is comparable to a single 128-bit

read. To minimize the frequency of swaps, instruction memories (exhibiting mainly

random accesses) are placed in the bottom domain, whereas neural engine memories

with mostly sequential access patterns are primarily placed in the top domain. SRAM

peripherals are power gated immediately after each access to reduce leakage.

The proposed stack SRAM approach was implemented in a 40nm CMOS image

processing IoT chip with 8.9Mb memories. Figure 5.8 shows measured leakage across

voltage and temperature. As the number of top arrays increases, the mid-rail voltage

raises while the leakage keeps decreasing. Figure 5.9 shows excellent mid-rail voltage

stability; VDDmid varies only ±16mV across 100°C, drops at most 1.74mV when ar-

rays swap every 11 cycles, and is una�ected by read/write every cycle at full speed.

It achieves 438kHz frequency at 0.7V (enabling 14fps in the supported image process-

75

Figure 5.8: Leakage across temperature and voltage (top), Mid-rail voltage and leak-
age with temperature (bottom-left), leakage reduction e�ects. (bottom-right).

Figure 5.9: Mid-rail variation with temperature (top-left), voltage drop due to various
memory activities (right), shmoo plot (bottom-left).

76

ing system) and 67fJ/bit access energy at 0.6V. Figure 5.10 compares this work to

other state-of-the-art low leakage SRAMs. The proposed work achieves low leakage

of 1.03pW/bit at 0.58V without extra supply levels or body bias voltage generation.

Figure 5.10: Comparison table and design space landscape.

Figure 5.11: Die photograph in 40nm CMOS.

77

BIBLIOGRAPHY

78

BIBLIOGRAPHY

[1] Gordon E. Moore. Cramming more components onto integrated circuits. Elec-
tronics, 38(8), April 1965.

[2] Gordon Bell. Bell's law for the birth and death of computer classes. Commun.
ACM, 51(1):86�94, January 2008.

[3] G. Chen, H. Ghaed, R. Haque, M. Wieckowski, Y. Kim, G. Kim, D. Fick, D. Kim,
M. Seok, K. Wise, D. Blaauw, and D. Sylvester. A cubic-millimeter energy-
autonomous wireless intraocular pressure monitor. In 2011 IEEE International
Solid-State Circuits Conference, pages 310�312, Feb 2011.

[4] ITRS. 2015 international technology roadmap for semiconductors.
http://www.itrs2.net/itrs-reports.html. Accessed: July 1, 2019.

[5] Y. Lee, D. Sylvester, and D. Blaauw. Circuits for ultra-low power millimeter-scale
sensor nodes. In 2012 Conference Record of the Forty Sixth Asilomar Conference
on Signals, Systems and Computers (ASILOMAR), pages 752�756, Nov 2012.

[6] John Launchbury. A darpa perspective on arti�cial intelligence.
://www.darpa.mil/attachments/AIFull.pdf.

[7] TechInsights. Apple iphone xs max teardown. https://www.techinsights.

com/blog/apple-iphone-xs-max-teardown. Accessed: July 1, 2019.

[8] Google. Edge tpu google's purpose-built asic designed to run inference at the
edge. https://cloud.google.com/edge-tpu/. Accessed: July 1, 2019.

[9] I. Hong, K. Bong, D. Shin, S. Park, K. Lee, Y. Kim, and H. Yoo. 18.1 a
2.71nj/pixel 3d-stacked gaze-activated object-recognition system for low-power
mobile hmd applications. In 2015 IEEE International Solid-State Circuits Con-
ference - (ISSCC) Digest of Technical Papers, pages 1�3, Feb 2015.

[10] G. E. Moore. No exponential is forever: but "forever" can be delayed! [semicon-
ductor industry]. In 2003 IEEE International Solid-State Circuits Conference,
2003. Digest of Technical Papers. ISSCC., pages 20�23 vol.1, Feb 2003.

[11] J. Kil, J. Gu, and C. H. Kim. A high-speed variation-tolerant interconnect tech-
nique for sub-threshold circuits using capacitive boosting. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 16(4):456�465, April 2008.

79

[12] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco. Gpus and
the future of parallel computing. IEEE Micro, 31(5):7�17, Sep. 2011.

[13] S. Rusu, S. Tam, H. Muljono, J. Stinson, D. Ayers, J. Chang, R. Varada,
M. Ratta, S. Kottapalli, and S. Vora. A 45 nm 8-core enterprise xeon¯ pro-
cessor. IEEE Journal of Solid-State Circuits, 45(1):7�14, Jan 2010.

[14] M. Horowitz. 1.1 computing's energy problem (and what we can do about it).
In 2014 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), pages 10�14, Feb 2014.

[15] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. Imagenet classi�cation
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bot-
tou, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 25, pages 1097�1105. Curran Associates, Inc., 2012.

[16] G. Chen, C. Parada, and G. Heigold. Small-footprint keyword spotting using
deep neural networks. In 2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 4087�4091, May 2014.

[17] F. Su, W. Chen, L. Xia, C. Lo, T. Tang, Z. Wang, K. Hsu, M. Cheng, J. Li,
Y. Xie, Y. Wang, M. Chang, H. Yang, and Y. Liu. A 462gops/j rram-based
nonvolatile intelligent processor for energy harvesting ioe system featuring non-
volatile logics and processing-in-memory. In 2017 Symposium on VLSI Technol-
ogy, pages T260�T261, June 2017.

[18] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally.
Eie: E�cient inference engine on compressed deep neural network. In 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA), pages 243�254, June 2016.

[19] T. Mizuno, J. Okumtura, and A. Toriumi. Experimental study of threshold volt-
age �uctuation due to statistical variation of channel dopant number in mosfet's.
IEEE Transactions on Electron Devices, 41(11):2216�2221, Nov 1994.

[20] M. Hane, T. Ikezawa, and T. Ezaki. Atomistic 3d process/device simulation
considering gate line-edge roughness and poly-si random crystal orientation ef-
fects [mosfets]. In IEEE International Electron Devices Meeting 2003, pages
9.5.1�9.5.4, Dec 2003.

[21] J. Wang, N. Pinckney, D. Blaauw, and D. Sylvester. Recon�gurable self-timed
regenerators for wide-range voltage scaled interconnect. In 2015 IEEE Asian
Solid-State Circuits Conference (A-SSCC), pages 1�4, Nov 2015.

[22] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester,
D. Blaaauw, and R. Das. Neural cache: Bit-serial in-cache acceleration of deep
neural networks. In 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA), pages 383�396, June 2018.

80

[23] J. Wang, X. Wang, C. Eckert, A. Subramaniyan, R. Das, D. Blaauw, and
D. Sylvester. 14.2 a compute sram with bit-serial integer/�oating-point oper-
ations for programmable in-memory vector acceleration. In 2019 IEEE Interna-
tional Solid- State Circuits Conference - (ISSCC), pages 224�226, Feb 2019.

[24] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, D. Sylvester, D. Blaauw, R. Das,
and R. Iyer. Neural cache: Bit-serial in-cache acceleration of deep neural net-
works. IEEE Micro, 39(3):11�19, May 2019.

[25] M. Shah, J. Wang, D. Blaauw, D. Sylvester, H. Kim, and C. Chakrabarti. A �xed-
point neural network for keyword detection on resource constrained hardware.
In 2015 IEEE Workshop on Signal Processing Systems (SiPS), pages 1�6, Oct
2015.

[26] S. Bang, J. Wang, Z. Li, C. Gao, Y. Kim, Q. Dong, Y. Chen, L. Fick, X. Sun,
R. Dreslinski, T. Mudge, H. S. Kim, D. Blaauw, and D. Sylvester. 14.7 a 288µw
programmable deep-learning processor with 270kb on-chip weight storage using
non-uniform memory hierarchy for mobile intelligence. In 2017 IEEE Interna-
tional Solid-State Circuits Conference (ISSCC), pages 250�251, Feb 2017.

[27] Mohit Shah, Sairam Arunachalam, Jingcheng Wang, David Blaauw, Dennis
Sylvester, Hun-Seok Kim, Jae-Sun Seo, and Chaitali Chakrabarti. A �xed-point
neural network architecture for speech applications on resource constrained hard-
ware. J. Signal Process. Syst., 90(5):727�741, May 2018.

[28] K. D. Choo, L. Xu, Y. Kim, J. Seol, X. Wu, D. Sylvester, and D. Blaauw. 5.2
energy-e�cient low-noise cmos image sensor with capacitor array-assisted charge-
injection sar adc for motion-triggered low-power iot applications. In 2019 IEEE
International Solid- State Circuits Conference - (ISSCC), pages 96�98, Feb 2019.

[29] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge. Near-
threshold computing: Reclaiming moore's law through energy e�cient integrated
circuits. Proceedings of the IEEE, 98(2):253�266, Feb 2010.

[30] S. Jain, S. Khare, S. Yada, V. Ambili, P. Salihundam, S. Ramani, S. Muthuku-
mar, M. Srinivasan, A. Kumar, S. K. Gb, R. Ramanarayanan, V. Erraguntla,
J. Howard, S. Vangal, S. Dighe, G. Ruhl, P. Aseron, H. Wilson, N. Borkar, V. De,
and S. Borkar. A 280mv-to-1.2v wide-operating-range ia-32 processor in 32nm
cmos. In 2012 IEEE International Solid-State Circuits Conference, pages 66�68,
Feb 2012.

[31] S. K. Hsu, A. Agarwal, M. A. Anders, S. K. Mathew, H. Kaul, F. Sheikh, and
R. K. Krishnamurthy. A 280 mv-to-1.1 v 256b recon�gurable simd vector permu-
tation engine with 2-dimensional shu�e in 22 nm tri-gate cmos. IEEE Journal
of Solid-State Circuits, 48(1):118�127, Jan 2013.

[32] G. Chen, M. A. Anders, H. Kaul, S. K. Satpathy, S. K. Mathew, S. K. Hsu,
A. Agarwal, R. K. Krishnamurthy, S. Borkar, and V. De. 16.1 a 340mv-to-0.9v

81

20.2tb/s source-synchronous hybrid packet/circuit-switched 16Ö16 network-on-
chip in 22nm tri-gate cmos. In 2014 IEEE International Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), pages 276�277, Feb 2014.

[33] M. Chen, L. Chen, M. Chang, S. Yang, Y. Kuo, J. Wu, M. Ho, H. Su, Y. Chu,
W. Wu, T. Yang, and H. Yamauchi. A 260mv l-shaped 7t sram with bit-line
(bl) swing expansion schemes based on boosted bl, asymmetric-vthread-port,
and o�set cell vdd biasing techniques. In 2012 Symposium on VLSI Circuits
(VLSIC), pages 112�113, June 2012.

[34] Neil Weste and David Harris. CMOS VLSI Design: A Circuits and Systems
Perspective. Addison-Wesley Publishing Company, USA, 4th edition, 2010.

[35] P. Singh, J. Seo, D. Blaauw, and D. Sylvester. Self-timed regenerators for high-
speed and low-power on-chip global interconnect. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 16(6):673�677, June 2008.

[36] A. Nalamalpu, S. Srinivasan, and W. P. Burleson. Boosters for driving long
onchip interconnects - design issues, interconnect synthesis, and comparison with
repeaters. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 21(1):50�62, Jan 2002.

[37] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: Implications of the
obvious. SIGARCH Comput. Archit. News, 23(1):20�24, March 1995.

[38] M. Huang, M. Mehalel, R. Arvapalli, and S. He. An energy e�cient 32-nm 20-mb
shared on-die l3 cache for intel® xeon® processor e5 family. IEEE Journal of
Solid-State Circuits, 48(8):1954�1962, Aug 2013.

[39] D. G. Elliott, W. M. Snelgrove, and M. Stumm. Computational ram: A memory-
simd hybrid and its application to dsp. In 1992 Proceedings of the IEEE Custom
Integrated Circuits Conference, pages 30.6.1�30.6.4, May 1992.

[40] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gotti-
pati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt,
J. Ibarz, A. Ja�ey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch,
N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov,
M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian,
H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H.
Yoon. In-datacenter performance analysis of a tensor processing unit. In 2017
ACM/IEEE 44th Annual International Symposium on Computer Architecture
(ISCA), pages 1�12, June 2017.

82

[41] Yann LeCun, Yoshua Bengio, and Geo�rey Hinton. Deep learning. Nature,
521(7553):436�444, 5 2015.

[42] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. 2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 770�778, 2016.

[43] Z. Li, J. Wang, D. Sylvester, D. Blaauw, and H. Kim. A1920 Ö 1080 25fps,
2.4tops/w uni�ed optical �ow and depth 6d vision processor for energy-e�cient,
low power autonomous navigation. In 2018 IEEE Symposium on VLSI Circuits,
pages 135�136, June 2018.

[44] S. Smets, T. Goedemé, A. Mittal, and M. Verhelst. 2.2 a 978gops/w �exible
streaming processor for real-time image processing applications in 22nm fdsoi.
In 2019 IEEE International Solid- State Circuits Conference - (ISSCC), pages
44�46, Feb 2019.

[45] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie. Drisa: A
dram-based recon�gurable in-situ accelerator. In 2017 50th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 288�301, Oct
2017.

[46] M. N. Bojnordi and E. Ipek. Memristive boltzmann machine: A hardware accel-
erator for combinatorial optimization and deep learning. In 2016 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA), pages
1�13, March 2016.

[47] W. Chen, K. Li, W. Lin, K. Hsu, P. Li, C. Yang, C. Xue, E. Yang, Y. Chen,
Y. Chang, T. Hsu, Y. King, C. Lin, R. Liu, C. Hsieh, K. Tang, and M. Chang.
A 65nm 1mb nonvolatile computing-in-memory reram macro with sub-16ns
multiply-and-accumulate for binary dnn ai edge processors. In 2018 IEEE Inter-
national Solid - State Circuits Conference - (ISSCC), pages 494�496, Feb 2018.

[48] L. Fick, D. Blaauw, D. Sylvester, S. Skrzyniarz, M. Parikh, and D. Fick. Analog
in-memory subthreshold deep neural network accelerator. In 2017 IEEE Custom
Integrated Circuits Conference (CICC), pages 1�4, April 2017.

[49] J. Zhang, Z. Wang, and N. Verma. In-memory computation of a machine-learning
classi�er in a standard 6t sram array. IEEE Journal of Solid-State Circuits,
52(4):915�924, April 2017.

[50] A. Biswas and A. P. Chandrakasan. Conv-ram: An energy-e�cient sram with
embedded convolution computation for low-power cnn-based machine learning
applications. In 2018 IEEE International Solid - State Circuits Conference -
(ISSCC), pages 488�490, Feb 2018.

[51] S. K. Gonugondla, M. Kang, and N. Shanbhag. A 42pj/decision 3.12tops/w
robust in-memory machine learning classi�er with on-chip training. In 2018

83

IEEE International Solid - State Circuits Conference - (ISSCC), pages 490�492,
Feb 2018.

[52] W. Khwa, J. Chen, J. Li, X. Si, E. Yang, X. Sun, R. Liu, P. Chen, Q. Li, S. Yu,
and M. Chang. A 65nm 4kb algorithm-dependent computing-in-memory sram
unit-macro with 2.3ns and 55.8tops/w fully parallel product-sum operation for
binary dnn edge processors. In 2018 IEEE International Solid - State Circuits
Conference - (ISSCC), pages 496�498, Feb 2018.

[53] Y. Zhang, L. Xu, Q. Dong, J. Wang, D. Blaauw, and D. Sylvester. Recryp-
tor: A recon�gurable cryptographic cortex-m0 processor with in-memory and
near-memory computing for iot security. IEEE Journal of Solid-State Circuits,
53(4):995�1005, April 2018.

[54] Q. Dong, S. Jeloka, M. Saligane, Y. Kim, M. Kawaminami, A. Harada,
S. Miyoshi, D. Blaauw, and D. Sylvester. A 0.3v vddmin 4+2t sram for searching
and in-memory computing using 55nm ddc technology. In 2017 Symposium on
VLSI Circuits, pages C160�C161, June 2017.

[55] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw. A 28 nm con�gurable
memory (tcam/bcam/sram) using push-rule 6t bit cell enabling logic-in-memory.
IEEE Journal of Solid-State Circuits, 51(4):1009�1021, April 2016.

[56] J. Wang, X. Wang, C. Eckert, A. Subramaniyan, R. Das, D. Blaauw, and
D. Sylvester. 14.2 a compute sram with bit-serial integer/�oating-point oper-
ations for programmable in-memory vector acceleration. In 2019 IEEE Interna-
tional Solid- State Circuits Conference - (ISSCC), pages 224�226, Feb 2019.

[57] K. E. Batcher. Bit-serial parallel processing systems. IEEE Transactions on
Computers, C-31(5):377�384, May 1982.

[58] P. B. Denyer and David Renshaw. VLSI Signal Processing; A Bit-Serial Ap-
proach. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1985.

[59] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H. Yoo. Unpu: A 50.6tops/w
uni�ed deep neural network accelerator with 1b-to-16b fully-variable weight
bit-precision. In 2018 IEEE International Solid - State Circuits Conference -
(ISSCC), pages 218�220, Feb 2018.

[60] K. Ueyoshi, K. Ando, K. Hirose, S. Takamaeda-Yamazaki, J. Kadomoto, T. Miy-
ata, M. Hamada, T. Kuroda, and M. Motomura. Quest: A 7.49tops multi-
purpose log-quantized dnn inference engine stacked on 96mb 3d sram using
inductive-coupling technology in 40nm cmos. In 2018 IEEE International Solid
- State Circuits Conference - (ISSCC), pages 216�218, Feb 2018.

[61] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester,
D. Blaaauw, and R. Das. Neural cache: Bit-serial in-cache acceleration of deep
neural networks. In 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA), pages 383�396, June 2018.

84

[62] J. Seo, B. Brezzo, Y. Liu, B. D. Parker, S. K. Esser, R. K. Montoye, B. Rajendran,
J. A. Tierno, L. Chang, D. S. Modha, and D. J. Friedman. A 45nm cmos
neuromorphic chip with a scalable architecture for learning in networks of spiking
neurons. In 2011 IEEE Custom Integrated Circuits Conference (CICC), pages
1�4, Sep. 2011.

[63] ARM Inc. Arm cortex-m series. http://www.arm.com/products/processors/
cortex-m. Accessed: Oct. 2017.

[64] Google Inc. Arm cortex-m series. https://code.google.com/archive/p/

cuda-convnet/. Accessed: Sept. 2018.

[65] Nicholas D. Lane and Petko Georgiev. Can deep learning revolutionize mobile
sensing? In Proceedings of the 16th International Workshop on Mobile Computing
Systems and Applications, HotMobile '15, pages 117�122, New York, NY, USA,
2015. ACM.

[66] G. Kim, Y. Lee, Zhiyoong Foo, P. Pannuto, Ye-Sheng Kuo, B. Kempke, M. H.
Ghaed, Suyoung Bang, Inhee Lee, Yejoong Kim, Seokhyeon Jeong, P. Dutta,
D. Sylvester, and D. Blaauw. A millimeter-scale wireless imaging system with
continuous motion detection and energy harvesting. In 2014 Symposium on VLSI
Circuits Digest of Technical Papers, pages 1�2, June 2014.

[67] Y. Lee, G. Kim, S. Bang, Y. Kim, I. Lee, P. Dutta, D. Sylvester, and D. Blaauw.
A modular 1mm3die-stacked sensing platform with optical communication and
multi-modal energy harvesting. In 2012 IEEE International Solid-State Circuits
Conference, pages 402�404, Feb 2012.

[68] Y. Chen, T. Krishna, J. Emer, and V. Sze. 14.5 eyeriss: An energy-e�cient
recon�gurable accelerator for deep convolutional neural networks. In 2016 IEEE
International Solid-State Circuits Conference (ISSCC), pages 262�263, Jan 2016.

[69] B. Moons and M. Verhelst. A 0.3�2.6 tops/w precision-scalable processor for real-
time large-scale convnets. In 2016 IEEE Symposium on VLSI Circuits (VLSI-
Circuits), pages 1�2, June 2016.

[70] Patrick Judd, Jorge Albericio, Tayler H. Hetherington, Tor M. Aamodt, Natalie
D. Enright Jerger, Raquel Urtasun, and Andreas Moshovos. Reduced-precision
strategies for bounded memory in deep neural nets. CoRR, abs/1511.05236,
2015.

[71] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos. Stripes:
Bit-serial deep neural network computing. In 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 1�12, Oct 2016.

[72] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan. Axnn:
Energy-e�cient neuromorphic systems using approximate computing. In 2014
IEEE/ACM International Symposium on Low Power Electronics and Design
(ISLPED), pages 27�32, Aug 2014.

85

[73] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst. 14.5 envision: A
0.26-to-10tops/w subword-parallel dynamic-voltage-accuracy-frequency-scalable
convolutional neural network processor in 28nm fdsoi. In 2017 IEEE Interna-
tional Solid-State Circuits Conference (ISSCC), pages 246�247, Feb 2017.

[74] Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. Digital Integrated
Circuits. Prentice Hall Press, Upper Saddle River, NJ, USA, 3rd edition, 2008.

[75] L. Chang, D. M. Fried, J. Hergenrother, J. W. Sleight, R. H. Dennard, R. K.
Montoye, L. Sekaric, S. J. McNab, A. W. Topol, C. D. Adams, K. W. Guarini,
and W. Haensch. Stable sram cell design for the 32 nm node and beyond. In
Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005., pages
128�129, June 2005.

[76] L. Chang, Y. Nakamura, R. K. Montoye, J. Sawada, A. K. Martin, K. Kinoshita,
F. H. Gebara, K. B. Agarwal, D. J. Acharyya, W. Haensch, K. Hosokawa, and
D. Jamsek. A 5.3ghz 8t-sram with operation down to 0.41v in 65nm cmos. In
2007 IEEE Symposium on VLSI Circuits, pages 252�253, June 2007.

[77] J. Wu, Y. Chen, M. Chang, P. Chou, C. Chen, H. Liao, M. Chen, Y. Chu,
W. Wu, and H. Yamauchi. A largeσvth/vdd tolerant zigzag 8t sram with area-
e�cient decoupled di�erential sensing and fast write-back scheme. IEEE Journal
of Solid-State Circuits, 46(4):815�827, April 2011.

[78] G. Chen, M. Fojtik, D. Kim, D. Fick, J. Park, M. Seok, M. Chen, Z. Foo,
D. Sylvester, and D. Blaauw. Millimeter-scale nearly perpetual sensor system
with stacked battery and solar cells. In 2010 IEEE International Solid-State
Circuits Conference - (ISSCC), pages 288�289, Feb 2010.

[79] T. Fukuda, K. Kohara, T. Dozaka, Y. Takeyama, T. Midorikawa, K. Hashimoto,
I. Wakiyama, S. Miyano, and T. Hojo. 13.4 a 7ns-access-time 25µw/mhz 128kb
sram for low-power fast wake-up mcu in 65nm cmos with 27fa/b retention cur-
rent. In 2014 IEEE International Solid-State Circuits Conference Digest of Tech-
nical Papers (ISSCC), pages 236�237, Feb 2014.

[80] R. Ranica, N. Planes, O. Weber, O. Thomas, S. Haendler, D. Noblet, D. Croain,
C. Gardin, and F. Arnaud. Fdsoi process/design full solutions for ultra low leak-
age, high speed and low voltage srams. In 2013 Symposium on VLSI Technology,
pages T210�T211, June 2013.

[81] M. Yabuuchi, K. Nii, S. Tanaka, Y. Shinozaki, Y. Yamamoto, T. Hasegawa,
H. Shinkawata, and S. Kamohara. A 65 nm 1.0 v 1.84 ns silicon-on-thin-box
(sotb) embedded sram with 13.72 nw/mbit standby power for smart iot. In 2017
Symposium on VLSI Technology, pages C220�C221, June 2017.

[82] Y. Wang, U. Bhattacharya, F. Hamzaoglu, P. Kolar, Y. Ng, L. Wei, Y. Zhang,
K. Zhang, and M. Bohr. A 4.0 ghz 291mb voltage-scalable sram design in 32nm

86

high-k metal-gate cmos with integrated power management. In 2009 IEEE In-
ternational Solid-State Circuits Conference - Digest of Technical Papers, pages
456�457,457a, Feb 2009.

[83] J. Chang, M. Huang, J. Shoemaker, J. Benoit, S. Chen, W. Chen, S. Chiu,
R. Ganesan, G. Leong, V. Lukka, S. Rusu, and D. Srivastava. The 65-nm 16-mb
shared on-die l3 cache for the dual-core intel xeon processor 7100 series. IEEE
Journal of Solid-State Circuits, 42(4):846�852, April 2007.

[84] T. Kim, J. Liu, and C. H. Kim. A voltage scalable 0.26v, 64kb 8t sram with
vmin lowering techniques and deep sleep mode. In 2008 IEEE Custom Integrated
Circuits Conference, pages 407�410, Sep. 2008.

[85] F. Hamzaoglu, K. Zhang, Y. Wang, H. J. Ahn, U. Bhattacharya, Z. Chen, Y. Ng,
A. Pavlov, K. Smits, and M. Bohr. A 153mb-sram design with dynamic stability
enhancement and leakage reduction in 45nm high-K metal-gate cmos technology.
In 2008 IEEE International Solid-State Circuits Conference - Digest of Technical
Papers, pages 376�621, Feb 2008.

[86] N. Verma and A. P. Chandrakasan. A 256 kb 65 nm 8t subthreshold sram
employing sense-ampli�er redundancy. IEEE Journal of Solid-State Circuits,
43(1):141�149, Jan 2008.

[87] K. Blutman, A. Kapoor, A. Majumdar, J. G. Martinez, J. Echeverri, L. Sevat,
A. P. van der Wel, H. Fatemi, K. A. A. Makinwa, and J. P. de Gyvez. A low-
power microcontroller in a 40-nm cmos using charge recycling. IEEE Journal of
Solid-State Circuits, 52(4):950�960, April 2017.

[88] J. M. Wilson, M. R. Fojtik, J. W. Poulton, X. Chen, S. G. Tell, T. H. Greer, C. T.
Gray, and W. J. Dally. 8.6 a 6.5-to-23.3fj/b/mm balanced charge-recycling bus in
16nm �nfet cmos at 1.7-to-2.6gb/s/wire with clock forwarding and low-crosstalk
contra�ow wiring. In 2016 IEEE International Solid-State Circuits Conference
(ISSCC), pages 156�157, Jan 2016.

87

