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Abstract 

 Evolution is thought to drive the progression of populations, conferring advantages through 

alterations in structure and form. However, the corollary to this theory would dictate that the things 

that do not change, those which are evolutionarily conserved, would imply some importance to 

their existence. Though many examples of this type of conserved phenomena have been observed, 

the underlying purposes for their existence remain poorly explored or understood.  

 Two ubiquitous features of germ cells in nearly all metazoans are their development as a 

cyst of interconnected cells and the relative sensitivity of the germline to DNA damage. We show 

that in the Drosophila male germline, cysts of interconnected spermatogonia always die in unison 

even when only a subset of the cells within display cytologically detectable DNA damage. Our 

experiments showed that this all-or-none germ cell death depends upon the connectivity between 

members of a cyst, and is likely based on mitochondrial signals originating from the damaged 

cells. Interestingly, the relative sensitivity of spermatogonia at any given stage of development 

correlated to the number of interconnected germ cells contained within the cyst, suggesting that 

degree of connectivity dictates the robustness with which spermatogonia induce germ cell death 

in response to insult. This created a model where we propose that perhaps one reason germ cell 

connectivity has been so strongly conserved is to confer a robust quality control mechanism to 

germ cells, ensuring the fidelity of genomes that are passed on to the next generation. 

 Another general feature of nearly all eukaryotic genomes is the organization of the 

ribosomal RNA genes into highly-transcribed cistrons and large tandem arrays known as the 

rDNA. In yeast, instability of the rDNA due to its arrangement has been shown to play a central 
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role in replicative aging, but little was known about its role in higher eukaryotes. We speculated 

that if similar instability would manifest during aging of multicellular organisms, it would be likely 

to occur in long-lived, mitotically-active tissue stem cells. We show that germline stem cells 

exhibit ectopic activation of normally-silent rDNA loci during aging, and germ cells experience a 

dramatic reduction of rRNA gene copy number on the actively transcribed array. Furthermore, 

these phenotypes present in the old parents (from abnormal rDNA activation to reduced gene copy 

number) are heritable and able to be observed in the subsequent generation. Thus our work 

suggests that there may be a conserved role for dynamicity of the rDNA and rDNA instability 

during aging. 

 The work contained in this dissertation attempts to reconcile recurring themes observed in 

evolution by leveraging the powerful tools of the Drosophila model system. The results in the first 

part offer one possible explanation for why pre-meiotic germ cells are connected to one another, 

linking it to their well-documented sensitivity to DNA damage and speculating that the driving 

force behind it all is a desire to increase genomic quality control for gametes. The second half of 

this dissertation looks at a unique genomic element shared by most eukaryotes, the rDNA, and 

suggests that this remarkable conservation underlies a more fundamental role in replicative aging 

in multicellular organisms. 
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Chapter 1 

Introduction 

1.1 Germ cell development in the Drosophila testis 

1.1.1 Germline stem cells 

 In males of many species (and non-mammalian females), adult gamete production is 

supported by a germline stem cell (GSC) population which is responsible for populating the 

germline1,2. These stem cell populations must balance self-renewal with differentiation; excessive 

self-renewal can result in tumorigenesis, whereas differentiation at the expense of self-renewal can 

result in stem cell depletion and manifest as tissue aging3. Most stem cells, including GSCs, reside 

in a specialized microenvironment (the stem cell niche) that provides extrinsic signals and supports 

stem cell division and self-renewal4–6. Because a combination of cell-intrinsic and cell-extrinsic 

(niche dependent) factors control stem cell differentiation and self-renewal, it is necessary to study 

stem cell biology in situ in the context of its native tissue. 

 One of the best-understood populations of stem cells are Drosophila adult GSCs, owing to 

the well-defined cell biology and strong genetic tools of the system. In the Drosophila testis, 

approximately 8-10 GSCs are known to reside in the apical tip adjacent to a cluster of somatic 

niche cells called the hub1,2,7 (Figure 1.1). The hub provides a source of ligand for JAK-STAT 

and BMP signaling in GSCs, which are necessary for GSC self-renewal and maintenance4,5,8. 

Drosophila male GSCs divide in a characteristically asymmetric manner, where one product of 

cell division remains attached to the hub and retains its stem cell identity while the other daughter 



2	
	

cell is displaced away and proceeds to differentiate as a gonialblast (GB)9. This is achieved by a 

stereotypical orientation of the GSC centrosomes to a plane perpendicular to the hub during 

interphase, which results in assembly of the mitotic spindle in a similarly perpendicular plane10,11. 

 Beyond their stereotypical asymmetric division, Drosophila GSCs also possess another 

unique feature: delayed cellular abscission. Following GSC mitosis, the GSC and GB remain 

connected through the next S-phase by a transient ring canal (midbody ring) generated from the 

contractile ring. A membranous, germline-specific aggregate of endoplasmic reticulum-like 

vesicles known as the spectrosome runs through this transient ring canal, physically connecting a 

GSC to its immediate daughter cell12–16. These two features of Drosophila male GSCs allow the 

Drosophila testis to be an ideal model system for studying the cell biology of stem cells and 

asymmetric stem cell division. 

 
1.1.2 Spermatogonial divisions and spermatogenesis 

 Following displacement from the niche, the GB undergoes four more transit-amplifying 

mitoses to produce a 16-cell spermatogonia (SG) cyst (Figure 1.1). These transit-amplifying 

mitoses always occur in synchrony and, like the initial GSC division, results in incomplete 

cytokinesis7. However unlike during GSC division, cellular abscission is never completed and all 

SG within a cyst remain connected by cytoplasmic bridges throughout all gonial divisions. During 

these divisions, the spectrosome inherited in the GB proceeds to grow in size and runs through the 

ring canals of interconnected SG within a cyst, growing into a membranous germline-specific 

organelle known as the fusome17. 

 As the SG divisions occur, growing SG cysts proceed down the length of the testes away 

from the apical tip7,18. What results is the organization of developing SG cysts in a spatiotemporal 

manner, with GBs the closest gonial cells to the somatic hub and the 16-SG cysts the furthest. 
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Developing spermatogonia are encapsulated by non-dividing somatic cyst cells, which expand 

with the growing cyst and provide a source of extrinsic signals that control germ cell differentiation 

and division5,19,20. The gonial divisions proceed at a consistent rate, and the process of SG transit-

amplification takes approximately 4-5 days. Transit-amplifying divisions are eventually repressed 

by germ cell autonomous expression of the genes bag-of-marbles (bam) and benign gonial cell 

neoplasm (bgcn)21. 

 Following the last transit-amplifying division, a 16-cell SG cyst is produced. Soon 

thereafter, the 16-cell SG cyst becomes primary spermatocytes (SCs), which are morphologically 

distinguishable by their larger size. Primary spermatocytes initiate an extended period of 

developmental growth and activation of the spermatocyte transcriptional program before 

eventually entering meiosis further down the length of the testis7. The morphological changes that 

occur from primary spermatocytes to mature spermatids involve dramatic cellular and nuclear 

remodeling and have been well-characterized at an ultrastructural and genetic level7,18,22,23. Taken 

together, the Drosophila testis provides a powerful and well-defined system for studying all stages 

of spermatogenesis and germ cell development, from germline stem cells to mature spermatids. 
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Figure 1.1. Model of Drosophila spermatogenesis. The apical tip of the testis contains the mitotic 
region of transit-amplifying germ cells. A germline stem cell (GSC) divides to produce a single-
celled gonialblast (GB). The GB proceeds to undergo four more transit-amplifying divisions, 
finally resulting in a 16-cell spermatogonia cyst (16-SG). Two somatic cyst stem cells (CySC) 
encase each GSC and grow in size as germ cell cysts expand. The hub is a cluster of somatic cells 
that act as the stem cell niche, and provides a landmark for spatial identification of the GSCs, 
which are arranged in a rosette pattern around it.  
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1.2 Germ cell connectivity: a conserved phenomenon*  

1.2.1 The structure of and mechanisms for achieving germ cell connectivity 

 As early as the 19th century, cysts of interconnected germ cells were described by 

biologists of the time including Sertoli (1877) and von Ebner (1878)24. Since then, it became 

evident that stable intercellular bridges connecting the cytoplasm of germ cells is a common feature 

of developing germ cells in both female and male metazoans25–27. The mechanisms that underlie 

the formation of interconnected germ cell cysts have been intensively investigated.  

The structure of germ cell intercellular bridges has been best studied in the Drosophila 

female germline. Much like described in males in the previous section, asymmetric division of 

germline stem cells (GSCs) produces one self-renewing GSC and one cystoblast, the latter of 

which proceeds to differentiate. The cystoblast undergoes four mitotic divisions with incomplete 

cytokinesis, resulting in formation of a cyst with 16 interconnected germ cells28. During these 

mitotic divisions, the contractile ring is stabilized without completely pinching off sister cells. 

These stabilized contractile rings result in intercellular bridges referred to as ring canals. Ring 

canals are outlined by the actin cytoskeleton, which grow considerably in size from 0.5 µm to ~10 

µm in diameter29. The first step in ring canal formation is the appearance of phospho-tyrosine 

residues along the contractile ring during mitosis30,31. The ring canal is initially composed of 

contractile ring components such as anillin, kinesin MKLP (Pavarotti) and myosin II. As ring 

canals grow, these initial components disappear, whereas the core components of mature ring 

canals, such as Hts-RC and Kelch, are loaded onto the ring canals32–34. The expansion of ring 

*a part of this chapter is submitted for publication as 
Lu KL, Jensen L, Lei L, Yamashita YM. 2017. Stay connected: A germ cell strategy. Trends in 
Genetics. 
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canals is critical for oocyte development by allowing for the intercellular transport of cytoplasmic 

materials. 

 In the Drosophila male germline, four gonial divisions with incomplete cytokinesis yields 

a cyst of 16 interconnected spermatogonia. Ring canals do not grow in size, likely reflecting the 

lack of need for the large scale cytoplasmic transport that is observed during oocyte development. 

Accordingly, male ring canals do not have Hts-RC or Kelch, a critical ring canal component in the 

female germline. Instead, male ring canals remain associated with contractile ring components 

such as anillin, septins (Peanut, Sep1, Sep2), and Pavarotti17,35. 

 In mammals, germ cells also develop intercellular bridges during gametogenesis in males 

and females24,26. Germ cell intercellular bridges are observed in both fetal mouse ovaries and testes, 

forming germ cell cysts24,36,37. These cysts subsequently fragment in neonatal gonads, resulting in 

individual primary oocytes or prospermatogonia38. In adult testes, germ cells again undergo 

incomplete cytokinesis through spermatogonial and meiotic divisions, and these spermatogonial 

populations undergo repeated cycles of cyst fragmentation and branching39. The molecular 

composition of the intercellular bridges in adult testes was revealed by proteomic analysis. Several 

proteins that are involved in somatic cytokinesis, such as MKLP1, RacGap, SEPT2, SEPT7, 

SEPT9, and anillin were shown to localize to intercellular bridges in adult mouse testes40. 

Germline-specific components of intercellular bridges were also discovered, such as TEX14 and 

RBM4441,42. TEX14 was identified as a key protein that blocks the cytokinesis machinery 

containing CEP55, TSG101 and ALIX, thus leading to stable intercellular bridges generated from 

the contractile ring in germ cells in adult testes41,43. 

As mentioned earlier, in Drosophila, ring canals are filled with a membranous organelle 

called the fusome. The fusome, found in both males and females, is a germline-specific 
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membranous organelle that is considered to be a derivative of the endoplasmic reticulum44. The 

fusome adopts a branched morphology that runs through all germ cells within a cyst. The core 

fusome components are Hts-Fus/Adducin-like (a product of the hu li tai shao gene, which produces 

a peptide that is cleaved into Hts-Fus and Hts-RC, a component of ring canals as described above), 

α- and β-Spectrin, and Ankyrin45–47.  

Fusome-like structures have been observed in germ cells of multiple vertebrate systems, 

including the Xenopus ovary48 and the dogfish testis49, suggesting that ring canals and fusomes 

could be ubiquitous mechanisms for achieving germ cell connectivity. However, EM studies 

suggest that there may not be a spectrin-rich structure that would be equivalent to a fusome in 

mouse ovaries37. Regardless, it remains possible that germ cells across species utilize alternative 

means to supplement germ cell connectivity beyond actin-based ring canals/intercellular bridges, 

much like the role the fusome serves in Drosophila and other insects. 
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Organism Known protein components Diameter References 

Female Germline 

Fruit fly (Drosophila) Actin, Hts-RC, Kelch, Cheerio, 
Pav-MKLP, Tec29, mucin-D, 
myosin II, Cindr, Anillin 

0.5-10 µm 
(with an inner and 
outer rim) 

29–34,50–56 

Mouse (Mus musculus) TEX14, MKLP1 0.5-1 µm 37,57 
Frog (Xenopus) Actin, Hts-RC, Kelch 0.5-1 µm 48 
Mammals (Humans, 

rabbits, rats, etc.) 

Actin 0.5-1 µm 58,59 

Male Germline 

Fruit fly (Drosophila) Anillin, Cindr, septins, Pav-
MKLP, pTyr, mucin-D 

1-2 µm 17,35,53,60–62 
Mouse (Mus musculus) Actin, TEX14, MKLP1, 

CEP55, RBM44, Anillin, 
septins, RacGap 

1-2 µm 24,26,40–43 

Mammals (Humans, 

rats, squirrels, etc.) 

Actin 1-2 µm 25,63–66 

 

Table 1.1 Known components of germ cell intercellular bridges in various species.  

Provided above is a list of proteins known to be associated with germ cell intercellular bridges or 

involved in their formation. Species listed were selected based on amount of information available 

and potential interest in terms of biological relevance. Note that not much investigation has been 

done in human germ cells. 
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1.2.2 Functions of germ cell connectivity 

The purpose for germ cell connectivity is best understood in meroistic ovaries where a 

subset of all germ cells are chosen to become oocytes while the remaining germ cells differentiate 

as supporting nurse cells. In the Drosophila ovary, following four mitotic divisions, only one germ 

cell develops as the oocyte whereas the remaining 15 germ cells become nurse cells. During and 

soon after the mitotic divisions, a polarity within connected germ cells is set up such that the oocyte 

can collect materials (e.g. mRNAs and organelles like mitochondria and centrosomes) from nurse 

cells67,68. This large-scale cytoplasmic trafficking into the oocyte is referred to as the “oocyte 

nursing mechanism,” and depends upon the stable intercellular bridges between members of a 

germ cell cyst. Failure to set up this cyst polarity or in early transport of oocyte fate determinant(s) 

results in defective oocyte specification, leading to 16 nurse cells and no oocyte. Even if oocyte 

fate is correctly specified, later defects in transporting nurse cell contents into oocyte results in 

defective oocyte growth, leading to underdeveloped oocytes and thus sterility.  Ring canals 

normally grow from <1 µm to 10 µm in preparation for oocyte nursing, and inhibition of the 

expansion of mature ring canals results in sterility29.  

Recent studies have demonstrated that fetal mouse ovaries also follow similar processes, 

where some germ cells function as nurse cells to donate their cytoplasm to their sister cells that 

will develop into oocytes69. The function of intercellular bridges in allowing cytoplasmic transport 

during mammalian oocyte differentiation was initially suggested by studies using EM. Organelles 

such as mitochondria, ER and free ribosomes were found within the bridge in rabbit and mouse 

fetal ovaries37,58,70. A recent study of lineage-labeled sister cyst cells further revealed that 

organelles (centrosomes, Golgi complexes and mitochondria) redistribute extensively within 

germline cysts during mouse oocyte differentiation.  In the neonatal mouse ovary, cysts fragment 
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into individual germ cells after cytoplasmic transport/enrichment occurs and the individual cells 

that inherited a Balbiani body (B-body) become the primary oocytes. The germ cells that lack a B-

body undergo apoptosis. When cytoplasmic transport was blocked by inhibitors of microtubule 

polymerization or dynein in in vitro cultured mouse fetal ovaries, primary oocytes contain less 

cytoplasm and are defective in their ability to develop into later stage oocytes69.  

The fusome in Drosophila and other insects connecting germ cells likely plays a different 

and complementary role to the connectivity achieved by ring canals. One likely function of the 

fusome is to facilitate and enhance communication among germ cells within a cyst, beyond what 

would be achieved through undirected cytoplasmic diffusion via ring canals. In the Drosophila 

ovary, the fusome is known to associate with cell cycle regulators (Cyclin A, B, E, Cdk1, and 

cyclin degradation factors)71–74, and loss of the fusome results in disruption of the characteristic 

cell cycle synchronization within the cyst. These results show that the fusome plays a critical role 

in facilitating the sharing of specific information among the germ cells within a cyst. At the same 

time, the fusome likely also acts as a selective barrier that plugs the ring canals to prevent the 

ubiquitous sharing of cytoplasmic contents between germ cells, including organelles. For example, 

mitochondria and centrosomes move from nurse cells to the oocyte only after the fusome 

disintegrates75,76. Exactly what is shared between germ cells via ring canals as opposed to the 

fusome (and vice versa) has not been comprehensively established, and remains an intriguing topic 

of research. 

Our knowledge regarding the function of germ cell connectivity has been framed around 

the idea of a “nursing mechanism” carried out by nurse cells to nurture developing oocytes. 

However, germ cell connectivity has been conserved in biological contexts where a nursing 

mechanism does not apply, like in panoistic ovaries (where all germ cells become oocytes without 
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the development of any nurse cells) or in the male germline (where all germ cells become mature 

sperm). In the male germline it has been proposed that germ cell connectivity allows for 

genotypically haploid post-meiotic spermatids to remain phenotypically diploid, particularly in the 

context of sex chromosome gene products77. Nevertheless, this does not explain the existence and 

conservation of extensive germ cell connectivity in pre-meiotic diploid spermatogonia. 

 

1.2.3 The phylogenetic evolution of intercellular connectivity 

As mentioned above, there are contexts in which germ cell connectivity exists where oocyte 

nursing is non-existent, suggesting that connectivity may have evolved for even more fundamental 

purposes. Primitive insects such as grasshoppers, cockroaches, and stoneflies have panoistic 

ovaries where all germ cells develop as oocytes without ever developing nurse cells. This implies 

that oocyte development does not always require intercellular bridges to aid cytoplasmic transport 

from nurse cells. Yet curiously, in several species with panoistic ovaries, mitotic germ cells are 

interconnected with cytoplasmic bridges, followed by separation of individual germ cells, each of 

which becomes an oocyte78–80.  

These observations clearly point to the possibility that germ cell cytoplasmic connectivity 

might have more functions beyond ‘oocyte nursing’. Although no comprehensive effort has been 

made to determine when germ cell connectivity arose during evolution, there are several examples 

where researchers have described germ cell connectivity in diverse species, including early-

diverging animals such as Cnidarians, Ctenophores, and Poriferans. In hydra (belonging to 

Cnidaria), germ cells are connected both in spermatogenesis and oogenesis, and the utilization of 

a nurse cell mechanism during oocyte development already makes an appearance81,82. In Poriferans 

(e.g. sponges, calcarea), germ cells are often generated from somatic cells. However, when they 
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undergo gametogenesis, it appears that post-meiotic spermatids are connected by cytoplasmic 

bridges without evidence for connectivity in earlier spermatogonial stages83,84, an observation 

consistent with the hypothesis that male germ cells need to complement their haploid genome by 

connectivity77. 

Interestingly, evidence of mitotic cell interconnectivity goes back possibly before the 

emergence of metazoans. Choanoflagellates are believed to be the closest relative of animals, 

diverging over 760 million years ago85. During their life cycle, they alternate between a unicellular 

phase as swimming cells and a colony-forming phase. During the colony-forming phase of the 

choanoflagellate S. rosetta, a single cell undergoes multiple rounds of cell divisions with 

incomplete cytokinesis, leading to the formation of a colony of up to ~50 cells86,87. It was shown 

that cells within the colony are connected by intercellular bridges, although it remains entirely 

unknown what purposes these bridges may serve. However, this suggests that stable intercellular 

bridges connecting mitotic cells emerged fairly early during evolution, likely predating the 

emergence of metazoans and before the evolution of an oocyte nursing mechanism. This makes 

the near-ubiquitous evolutionary conservation of cellular connectivity in germ cells (but not most 

somatic cells) even more mysterious. 

 

1.3 Ribosomal DNA: a unique genomic element 

1.3.1 Structure and maintenance of the ribosomal DNA 

 Ribosomal RNA (rRNA) genes encode for the RNA component of mature ribosomes, and 

are present in hundreds of copies arranged in tandem arrays on the eukaryotic chromosome that 

can span megabases in length88,89. These arrays of rRNA genes are referred to collectively as the 

ribosomal DNA (rDNA), and its transcription is responsible for the organization of the nucleolus 
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where mature ribosomes are assembled within the nucleus90–92. The number of rDNA arrays and 

their chromosomal locations vary across species. For example, in humans the rDNA arrays are 

located on the short arms of all the acrocentric chromosomes93,94, and in Drosophila they are found 

adjacent to the centromere on the sex chromosomes95–97 (Figure 1.2). The presence of hundreds 

of copies of rRNA genes is thought to be reflective of the cellular requirement for rRNA and 

ribosome synthesis, reflecting over 50-80% of the cell’s total transcription98. In Saccharomyces 

cerevisiae, a single rRNA gene unit consists of a cistronic 35S rRNA transcript transcribed by 

RNA polymerase I from which the 18S, 5.8S, and 28S rRNAs are processed and cleaved99,100. The 

arrangement of the rDNA into similar tandem cistrons is almost ubiquitously conserved in higher 

eukaryotes like Drosophila and mammals, where the 45S precursor rRNA is cleaved and processed 

into equivalent mature 18S, 5.8S, and 28S rRNAs89,101. In addition to the coding rRNA genes, the 

rDNA also contains various genomic spacers that may have non-ribosomal functions. Within an 

rRNA gene, the coding regions are separated by internal transcribed spacers (ITS) that separate 

the mature rRNA ORFs as well as external transcribed spacers (ETS) that contain the rRNA 

promoter. In addition, individual rRNA genes within the rDNA array are separated by intergenic 

spacers (IGS) that vary in length88,102 (Figure 1.2). 

The coding region of the mature rRNA genes demonstrate remarkable sequence 

conservation, with human and mouse 18S rRNA showing a divergence rate of only 0.1-1%103. This 

is thought to be a result of exceedingly high selective pressure on these coding regions relating to 

their roles in mature ribosomes bridging interactions with proteins, mRNA, and tRNA102, though 

evolutionary studies have been understandably difficult. While the structure of the rDNA array 

and the coding regions are highly conserved across all eukaryotes, the noncoding portions of the 

rDNA (the IGS, ETSs, ITSs, and promoters) evolve and diverge rapidly. In fact, it has been shown 
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that mouse and human rDNA and Pol I transcriptional machinery are incompatible104,105. And even 

within closely related Drosophila species, spacer regions diverge greatly in sequence, size, and 

arrangement106. Recently, synthetic biology experiments have shown that replacing just the 

internal transcribed spacer (while leaving the original coding regions) of S. cerevisiae with that of 

two other yeast species, Schizosaccharomyces pombe or Candida albicans, is lethal107. All of this 

is suggestive of an essential and ubiquitous role for the genomic arrangement of the rDNA, and 

possible species-specific (or other as-yet-unknown) roles for the noncoding regions contained 

within. 

 In S. cerevisiae, replication of the rDNA array is tightly intertwined with its maintenance. 

Because the rRNA genes are among the most highly transcribed in the genome and are not shut 

off during S-phase, a replication fork block protein, Fob1, is critical for blocking expansion of a 

replication fork to prevent collision with oncoming transcriptional machinery108,109. In addition to 

acting to reduce replication-transcription conflicts by blocking bidirectional expansion of 

replication forks, Fob1 also plays an active role in maintenance of the rDNA array. Fob1 binding 

causes DNA double strand breaks at stalled replication forks, and are repaired by unequal sister 

chromatid exchange resulting in gene copy number expansion on one sister chromatid110–113. The 

evolutionarily-conserved SIR2 was also shown to play a role in this process114. This mechanism is 

critical in yeast for rDNA amplification and maintenance over successive replicative cycles. 

Evidence for a replication fork barrier in rDNA was recently identified in human cells115, 

suggesting the potential for conservation of this mode of rDNA maintenance and amplification in 

higher eukaryotes. 
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Figure 1.2. Diagram of the arrangement of the coding regions for the 45S rRNA genes and the 
intergenic spacers (IGS). Spacers can consist of duplications of various lengths, and can vary in 
total size between each rRNA gene repeat. Chromosomal locations of the rDNA arrays (red bands) 
in S. cerevisiae, D. melanogaster, and humans. 
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1.3.2 Silencing of rDNA and nucleolar dominance 

 The rDNA is typically present in excess numbers, and in fact it has been shown that usually 

less than half of the normal rRNA gene copy number is enough to support cell or organismal 

viability116–118. Because rRNA genes are typically present in hundreds of copies in the eukaryotic 

genome and make up the bulk of cellular transcription, some of the rDNA must be actively silenced 

to match the metabolic and translational demand of the cell119. In addition, its tandem repetitive 

arrangement makes the rDNA array an inherently unstable part of the genome120–122, and because 

of this, proper repression of rRNA genes is thought to be important in maintaining the stability of 

the rDNA (detailed below). 

In mammalian cells, rDNA is silenced by large-scale DNA methylation and 

heterochromatin-mediated repression by the nucleolar remodeling complex NoRC123–126. NoRC 

components act to recruit DNMT1, DNMT3b, and HDACs to rRNA genes targeted for 

silencing125,126. Intriguingly, the majority of epigenetic modifications for silencing mammalian 

rDNA is targeted to the promoter region, which is sufficient to repress expression124. Accordingly, 

DNA methylation and histone modification appear to be interdependent processes, where 

inhibition of histone deacetylation prevents efficient DNA methylation127. Deletion of a critical 

NoRC component in mammals results in loss of heterochromatin, rDNA stability, and premature 

cellular senescence125,128. In Drosophila, repression of rDNA is achieved by a combination of 

heterochromatin-mediated repression and RNA interference. Disruption of either results in rDNA 

instability and formation of extrachromosomal rDNA circles129.  

A special case of rDNA silencing is known as nucleolar dominance, where entire rDNA 

arrays on individual chromosomes are actively repressed (as opposed to the silencing which targets 

individual rRNA genes within an array). In this case, rDNA arrays on some chromosomes are 



17	
	

“dominant,” actively transcribed and organizing the nucleolus, while rDNA on other chromosomes 

is repressed. The phenomenon was first observed almost a hundred years ago in interspecies plant 

hybrids, where rDNA arrays can contain thousands of rRNA genes and their active transcription 

appears as secondary constrictions on chromosome spreads. It was noted when crossing two 

closely-related species within a plant genus that the resulting hybrid progeny only contained 

secondary constrictions from one set of parental chromosomes130. Since then, nucleolar dominance 

has been described in interspecies hybrids of multiple plant species, where it has been best 

studied131–133. In plants, both nucleolar dominance between interspecies hybrids and control of 

normal rRNA transcription levels (in non-hybrids) are accomplished by extensions of the same 

mechanisms, extensive DNA methylation and HDAC-mediated histone modifications133–136. 

These observations demonstrated that a clear hierarchy for species-specific rDNA exists in 

hybrids, but what remains unknown is why this is the case or how such large-scale, selective 

chromosomal repression is achieved. 

Nucleolar dominance between interspecies hybrids is not restricted to just plants, and 

appears to be the rule rather than the exception. In hybrid progeny from Drosophila melanogaster 

and Drosophila simulans, it was found that the D. melanogaster rDNA was always active while 

the D. simulans rDNA was silenced137. Likewise, interspecies hybrids of Xenopus also demonstrate 

nucleolar dominance138. Interspecies nucleolar dominance may also extend to hybrids from 

separate genuses as well, as human-mouse hybrid cell lines appear to express rRNA from only one 

species139,140. However, the meaning behind and/or purpose for interspecies nucleolar dominance 

is still mostly unclear, as it seems it may be dispensable without necessarily compromising hybrid 

viability.  In Drosophila interspecies crosses, if the D. melanogaster rDNA was lost (along with 
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the chromosome containing it), then the normally-inactive D. simulans rDNA is able to begin 

expressing, suggesting that it can be used to support hybrid viability if needed137.   

Fascinatingly, even within a species, silencing of rDNA may extend beyond just the 

silencing of individual rRNA genes within an array to large-scale silencing of entire chromosomal 

arrays in a phenomenon that could be considered nucleolar dominance. It has long been 

documented in humans that different cell types have different numbers of nucleoli, which likely 

reflects their different translational demands. In fact, within each cell type, the number of rDNA 

arrays that appear transcriptionally active based on silver staining and secondary constrictions is 

variable, reflecting complete inactivation of arrays on specific chromosomes141,142. Whether or not 

a specific hierarchy of chromosomal rDNA arrays exists like in interspecies hybrids has not been 

determined. In Drosophila melanogaster, however, the hierarchy of nucleolar dominance has been 

easier to establish owing to the fact that only two rDNA arrays exist, one on each of the sex 

chromosomes95–97. Through cytogenetic mapping, transcription-dependent incorporation of H3.3, 

and assessment of relative transcript levels all in larval brains, it was shown that rDNA from the 

Y chromosome is active in males and the X chromosome is inactive143,144.  
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1.3.3 Links between ribosomal DNA biology and aging 

 As mentioned above, disrupting repression of the rDNA and inducing array instability 

results in cellular senescence125,128. In fact, the highly repetitive, tandem arrangement of rRNA 

genes makes the rDNA array one of the most unstable regions in the genome, prone to homologous 

recombination and replication mishaps over time121. To this end, the links between the biology of 

rDNA and replicative aging (the number of divisions a cell has gone through) are strong, and were 

first established in the budding yeast Saccharomyces cerevisiae145,146. 

 In budding yeast, cell division is asymmetric and characterized by a smaller daughter cell 

budding off of a larger mother cell. The mother cell’s replicative lifespan is finite and results in 

only ~20-30 daughter cells, but the daughter cells generated from these mothers almost always 

begin with a renewed replicative lifespan147,148. It was initially shown that as mother cells advance 

in replicative age, their nucleoli undergo drastic morphological changes that reflect underlying 

instability in the rDNA, resulting in intrachromosomal recombination that generates 

extrachromosomal rDNA circles (ERCs)149. ERCs are asymmetrically retained in the mother cell 

in a septin/nuclear pore dependent manner, potentially explaining the asymmetric partitioning of 

replicative age between mother and daughter149,150. Importantly, introduction of an artificial ERC 

with an ARS significantly reduced replicative lifespan149. Following the initial discovery of ERCs 

in aging yeast, many studies of mutants have found a correlation between perturbation of nucleolar 

morphology, accumulation of ERCs, and replicative senescence146,151,152. Notably, these studies 

also resulted in the discovery of the role of the evolutionarily-conserved histone deacetylase SIR2 

in aging, which acts in part by repressing rDNA recombination, suppressing ERC formation, and 

extending replicative lifespan153–155.  ERCs have also been detected in multiple higher eukaryotes 

including Drosophila and human cells, but their role in aging in those organisms has not been 
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carefully tested156,157. Nonetheless, these studies provided the basis for the “ERC theory of aging” 

in yeast as the rDNA-based determinant of lifespan, and suggested the potential for a universal 

link between rDNA and aging in other organisms. 

 An alternative theory, the “rDNA theory of aging,” arose as an evolution of and alternative 

viewpoint to the “ERC theory of aging”145. It proposes that underlying instability of the rDNA 

itself is the source of replicative aging in yeast, and that ERCs are a consequence of that rather 

than causal. There are several lines of evidence that suggest this theory may more accurately reflect 

the underlying rDNA biology. First, some mutants that result in increased rDNA recombination 

and decreased lifespan do not produce an increase in ERCs, best exemplified by the RNA pol II 

complex hpr1Δ mutant158. Conversely, in yeast sgs1 mutants that are known to result in perturbed 

nucleolar morphology, ERC formation, and reduced lifespan, expression of the human homolog 

BLM helicase gene restored lifespan without reducing ERC levels159. When the rDNA replication 

origin was mutated to impair initiation, ERC production was reduced but replicative lifespan was 

also reduced160. Lastly, elegant work by the Amon lab showed that activation of the meiotic 

program during sporulation resets replicative age, and that inducible expression of a meiotic 

transcription factor, Ndt80, could extend lifespan in both young and old vegetative cells161. 

However, ERC levels were the same in old cells with and without lifespan extension by NDT80 

expression, suggesting that merely the cellular presence of ERCs is not sufficient for inducing 

cellular senescence. Regardless of the “ERC theory” versus the “rDNA theory,” the evidence for 

changes in rDNA playing a role in aging of yeast is unequivocal. 

 Additionally, evidence has emerged that links the rDNA to other well-studied and 

evolutionarily-conserved aging pathways, including dietary restriction and TOR signaling. It was 

noted that dietary restriction and rapamycin inhibition of the TOR pathway in yeast, both known 
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to extend lifespan, result in nucleolar changes162,163. Mechanistically, it was shown that dietary 

restriction and TOR inhibition acts at least partially through recruitment of Sir2 to the rDNA, 

decreasing rDNA instability163–166. Because the role that dietary restriction and TOR signaling play 

in aging has been conserved from yeast to higher eukaryotes146,167,168, it stands to reason that some 

of the intertwined rDNA biology during aging may have been conserved as well. 

 

1.4 Summary and aims of dissertation 

 The evolutionary conservation of a phenomenon implies a fundamental meaning for it that 

merits conservation in the first place. However, the underlying meanings of many such phenomena 

have remained poorly explored or understood. Outlined above are excellent examples of two such 

phenomena: evolutionary conservation of germ cell connectivity and the genomic organization of 

the rDNA. 

 The mechanisms by which germ cells are connected via stable intercellular bridges have 

been well-studied over the past five decades. We now know many of the molecular components 

of bridges in the Drosophila and mouse germlines, including a few germline-specific proteins and 

accessory means of achieving connectivity like the fusome. However, our understanding of why 

germ cell connectivity exists in the first place is framed around the idea of oocyte nursing, which 

is not applicable in females of some species or in all males. The first half of my thesis was 

motivated by a surprising discovery in the Drosophila male germline (detailed in subsequent 

chapters), and led to the hypothesis that germ cell connectivity might serve to enhance DNA 

damage sensitivity in the germline versus the soma.  

 The conservation of the arrangement of rRNA genes into similar cistronic units and on a 

larger scale into rDNA arrays is striking across almost all eukaryotic organisms. This structure and 
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its transcriptional activity is what leads to genomic instability in yeast, and I hypothesized that 

comparable challenges could be encountered in the rDNA of higher eukaryotes during aging. 

Specifically, my hypothesis was that male germline stem cells (GSCs) in Drosophila, which 

continuously divide asymmetrically, would undergo rDNA-related changes during aging like what 

was observed in asymmetrically-dividing budding yeast. The second goal of my thesis was to 

determine whether these changes occurred, and characterize them if they were. 

 Studies that aim to understand the underlying design of nature can be broadly separated 

into wanting to know “how” a phenomenon is achieved and “why” it exists in the first place. The 

former is descriptive and evidence is direct, whereas the latter is more difficult because evidence 

can be indirect and often must be inferred. The goal of the experiments in this dissertation sought 

to leverage the power of the Drosophila testis system to test the aforementioned hypotheses: 1) 

understand the sensitivity of the germline to direct DNA damage and if/how germ cell connectivity 

plays a role and 2) determine whether changes in rDNA occur during replicative aging of GSCs 

and the germ cells they produce. However, the overarching idea that ties together these distant 

topics is the act of attempting to understand the design of nature through the lens of evolutionary 

hints. Though conservation of the features of the rDNA between species is obvious, it was not 

known “how” (or if) rDNA is involved in aging of multicellular organisms. On the other hand, 

though much is known about “how” germ cell connectivity is achieved in many species, obvious 

gaps exist in our understanding of “why” this is in the first place. What resulted from this 

dissertation is, hopefully, a better understanding of what occurs in the germline in response to 

various insults, be it direct DNA damage or aging. 
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Chapter 2 

Materials and Methods 

This chapter provides information on the materials and methods used in chapters 3 and 4.  

Protocols are presented roughly in the order in which they will appear in later chapters. 

 

2.1 Germ cell death protocols 

Fly husbandry and strains: 

All fly stocks were raised on standard Bloomington medium at 25°C, and young flies (0 to 

2-day old adults) were used for all experiments unless otherwise noted. The following fly stocks 

were used: hts01103 14, nos-gal4 169, UAS-a-spectrinRNAi (TRiP.HMC04371), c587-gal4 19, UAS-

Diap1, EndoGMB07150 170 (obtained from the Bloomington Stock Center), p535A-1-4 171,172, 

Df(2R)BSC26, Df(3R)ED6096, Df(2L)Exel7077, Df(3R)BSC699 (obtained from the 

Bloomington Stock Center), p53RE-GFP-nls reporter 173 (a gift of John Abrams, University of 

Texas Southwestern Medical Center), OmiΔ1, OmiDf1 174,175 (a gift of Eli Arama, Weizmann Institute 

of Science), mnk6006 176 (a gift of William Theurkauf, University of Massachusetts Medical 

School), Ubi-Pavarotti-GFP 52 (a gift of David Glover, University of Cambridge). 

 

Immunofluorescence staining and microscopy: 

Immunofluorescence staining of testes was performed as described previously 177. Briefly, 

testes were dissected in PBS, transferred to 4% formaldehyde in PBS and fixed for 30 minutes. 
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Testes were then washed in PBS-T (PBS containing 0.1% Triton-X) for at least 60 minutes, 

followed by incubation with primary antibody in 3% bovine serum albumin (BSA) in PBS-T at 

4°C overnight. Samples were washed for 60 minutes (three 20-minute washes) in PBS-T, 

incubated with secondary antibody in 3% BSA in PBS-T at 4°C overnight, washed as above, and 

mounted in VECTASHIELD with DAPI (Vector Labs). The following primary antibodies were 

used: mouse anti-Adducin-like 1B1 (hu-li tai shao – Fly Base) [1:20; Developmental Studies 

Hybridoma Bank (DSHB); developed by H.D. Lipshitz]; mouse anti-alpha-spectrin 3A9 (1:20; 

DSHB; developed by R. Dubreuil, T. Byers); rat anti-vasa (1:50; DSHB; developed by A. 

Spradling), rabbit anti-vasa (1:200; d-26; Santa Cruz Biotechnology), mouse anti-Fasciclin III 

(1:200; DSHB; developed by C. Goodman), anti-LaminDm0 (1:200; DSHB; developed by P. A. 

Fisher), rabbit anti-γ-H2AvD pS137 (1:100;Rockland), rabbit anti-Mnk (1:100; courtesy of Saeko 

Takada), rabbit anti-Cleaved Drosophila Dcp-1 (Asp216) (1:200; Cell Signaling Technology). 

Images were taken using a Leica TCS SP8 confocal microscope with 63x oil-immersion objectives 

(NA=1.4) and processed using Adobe Photoshop software. For detection of germ cell death, testes 

were stained with Lysotracker Red DND-99 in PBS (1:1000) for 30 minutes prior to formaldehyde 

fixation. Stages (GB, 2-, 4-, 8-, and 16-SGs) of dying SGs were identified by counting the number 

of nuclei within the cyst visualized by Lamin Dm0 and DAPI 178. Note that the number of 

‘stageable’ dying SGs underrepresents the total population of dying SGs, because nuclear 

structures disintegrate during later phases of cell death, making it impossible to count the number 

of SGs within a dying cyst 178. Such ‘unstageable’ SGs were not included in the scoring in this 

study. 

For observation of unfixed samples, testes were dissected directly into PBS and incubated 

in the dark with the desired dyes for 5 minutes, mounted on slides with PBS and imaged within 10 
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minutes of dissection. The dyes used in live imaging are: Lysotracker Red DND-99 (1:200) or 

Lysotracker Green DND-26 (1:200) (Thermo Fisher Scientific), Hoechst 33342 (1:200), and FM4-

64FX in PBS (1:200) (Thermo Fisher Scientific). SG stage (2-, 4-, 8-, or 16-SG) was assessed by 

number of Hoechst-stained nuclei. Note that the scoring of dying SGs is not directly comparable 

between fixed and unfixed samples (for example, results shown in Fig. 1 vs. Fig. 2), due to the 

difference in the method of SG staging and timing.  

 

Ionizing radiation 

 For radiation doses of 25-250 rad, a 137Cs source was used with a dose rate of 

approximately 100 rad per minute. Additionally, for radiation doses 100 rad and above, a Philips 

RT250 model or Kimtron Medical IC-320 orthovoltage unit was used (dose rates of 200 and 400 

rad per minute respectively). Dosimetry was carried out using an ionization chamber connected to 

an electrometer system directly traceable to National Institute of Standards and Technology 

calibration. The relative biological effectiveness of 137Cs and x-ray sources is comparable at lower 

doses 179, and experiments were repeated with both sources for 100-250 rad, which yielded 

essentially the same results irrespective of radiation source. 

 

TUNEL Assay 

 Larval heads with imaginal discs attached were dissected from third instar larvae into PBS, 

then fixed in 4% formaldehyde in PBS for 30 minutes. Samples were then washed in PBS-T (PBS 

containing 0.1% Triton-X) for at least 20 minutes, transferred to 100% methanol for 6 minutes 

with rocking, and washed again for at least 20 minutes in PBS-T. TUNEL assay was then carried 

out according to manufacturer’s instructions using a Millipore ApopTag Red In Situ Apoptosis 
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Detection Kit (S7165). Following washes with PBS-T for 20 minutes, wing imaginal discs were 

dissected from larval heads and mounted in VECTASHIELD with DAPI (Vector Labs). 

Dose-response best fit regressions 

 Best fit functions and lines for radiation dose-cell death response curves were generated by 

using GraphPad Prism 7 and the means-only values at all doses. Non-linear regressions were 

determined using a four-parameter logistic curve with no constraints on bottom, top, or hillslope 

and >1500 iterations. Standard linear regression was performed using cell death as a function of 

radiation dose. Goodness of fit, unadjusted R2 value, was determined by 1.0 less the ratio of the 

regression sum of squares to the total sum of squares, 1 – SSreg/SStot.  

Statistics for comparison of 16-SG death distributions 

 Distribution of number of dying SGs per 16-SG cyst between mutant and control conditions 

at every dose of radiation were compared using a 2x3 Pearson’s chi-squared test. Data were 

transformed into three categories: 0 SGs dying, all 16 SGs dying, or 1-15 (partial cyst) SGs dying.  

 

 

2.2 rDNA and nucleolar fragmentation protocols 

Fly husbandry and strains: 

All fly stocks were raised on standard Bloomington medium at 25°C. Unless otherwise 

stated, flies used for wild-type experiments were the standard lab wild-type strain yw (y1 w1). 

C(1)RM/C(1;Y)6, y1w1f1/0 (Bloomington Stock Center, #9460), FM6/C(1)DX, y*f1 (Bloomington 

Stock Center, #784)180, Df(YS)bb/w1sn1bb*/C(1)RM, y1v1f1 (Bloomington Stock Center, #4491).  

Nopp140-GFP181 (a gift of Pat DiMario, Louisiana State University).  
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Immunofluorescence staining and microscopy: 

Immunofluorescence staining of testes was performed as described previously 177. Briefly, 

testes were dissected in PBS, transferred to 4% formaldehyde in PBS and fixed for 30 minutes. 

Testes were then washed in PBS-T (PBS containing 0.1% Triton-X) for at least 60 minutes, 

followed by incubation with primary antibody in 3% bovine serum albumin (BSA) in PBS-T at 

4°C overnight. Samples were washed for 60 minutes (three 20-minute washes) in PBS-T, 

incubated with secondary antibody in 3% BSA in PBS-T at 4°C overnight, washed as above, and 

mounted in VECTASHIELD with DAPI (Vector Labs). The following primary antibodies were 

used: mouse anti-Adducin-like 1B1 (hu-li tai shao – Fly Base) [1:20; Developmental Studies 

Hybridoma Bank (DSHB); developed by H.D. Lipshitz]; rat anti-vasa (1:20; DSHB; developed by 

A. Spradling), rabbit anti-vasa (1:200; d-26; Santa Cruz Biotechnology), mouse anti-Fasciclin III 

(1:200; DSHB; developed by C. Goodman), rabbit anti-fibrillarin (1:200; Abcam ab5821), mouse 

anti-fibrillarin (1:200; Abcam [38F3] ab4566), rabbit anti-H3K9 dimethyl (1:100; Abcam [Y49] 

ab32521). Images were taken using a Leica TCS SP8 confocal microscope with 63x oil-immersion 

objectives (NA=1.4) and processed using Adobe Photoshop software. 

DNA fluorescence in situ hybridization 

Testes were prepared as in above, and optional immunofluorescence staining protocol was 

carried out first. Subsequently, fixed samples were incubated with 2 mg/ml RNase A solution at 

37°C for 10 minutes, then subsequently washed with PBS-T+1mM EDTA. Subsequently, samples 

were washed in 2xSSC-T (2xSSC containing 0.1% Tween-20) containing increasing formamide 

concentrations (20%, 40%, then 50% formamide) for 15 minutes apiece. Hybridization buffer 

(50% formamide, 10% dextran sulfate, 2x SSC, 1mM EDTA, 1 µM probe) was added to washed 

samples, denatured at 91°C for 2 minutes, then incubated overnight at 37°C. Probes used included 
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(AATAAAC)6-Cy5 for detection of the Y chromosome and 

CCACATTTTGCAAATTTTGATGACCCCCCTCCTTACAAAAAATGCG-Cy3 for detection 

of the X chromosome. 

Determination of X and Y chromosome SNPs 

 The X chromosome was isolated by crossing experimental XY males with C(1)RM 

females, generating X/O males lacking the Y chromosome (and the Y rDNA). The Y chromosome 

rDNA was isolated by crossing experimental XY males with C(1)DX/Y females, which generated 

C(1)DX/Y females containing our experimental Y (and no rDNA on the compound X 

chromosome). 45S rRNA genes were sequenced using the following primers to identify single 

nucleotide variants between the two consensus sequences: 

Name 5’-Sequence-3’ 

ITS sequencing-F CTTGCGTGTTACGGTTGTTTC 
ITS sequencing-R ACAGCATGGACTGCGATATG 
18S sequencing-F GAAACGGCTACCACATCTAAGG 
18S sequencing-R GGACCTCTCGGTCTAGGAAATA 
28S sequencing-F AGCCCGATGAACCTGAATATC 
28S sequencing-R CATGCTCTTCTAGCCCATCTAC 

 

Sequence alignment was done using ClustalW2. 

RNA fluorescence in situ hybridization 

 For RNA FISH, all solutions used are RNase-free. Testes were collected in PBS and fixed 

in 4% formaldehyde in PBS for 30 minutes. Then testes were washed briefly in PBS, and 

permeabilized in 70% ethanol overnight at 4°C. Following overnight permeabilization, testes were 

briefly rinsed in 2xSSC with 10% formamide. Hybridization buffer (prepared according to 

protocol by LGB Biosearch for Stellaris probes) was prepared with probe (50 nM final 

concentration) and incubated overnight at 37°C. Following hybridization, samples were washed 



29	
	

twice in 2x SSC with 10% formamide for 30 minutes each and mounted in VECTASHIELD with 

DAPI (Vector Labs). Sequences of Stellaris probe sets used to detect R1 and R2 retrotransposons 

are below: 

R1 probe# 5’-Sequence-3’-570 R2 probe # 5’-Sequence-3’-670 

1 cagatggcttcctgatgatc 1 cgcttcagtgatggaatctc 
2 accagacatacgccataatc 2 gcagtgaagttgatgcctaa 
3 tgcatcgaactggcagtatg 3 cctttgtcaatctttgtagc 
4 atgtaccggaggtacggttc 4 aacaacctctgttgtggttt 
5 acatgggggacactgcattc 5 gataaggacagtccgaaggg 
6 gctctgtgattatcgaacgt 6 ctaacttgtggtagagctgt 
7 cattgacgattgtcacgtcg 7 tttttcttaggacgcctatc 
8 atatgtggcccacatagatg 8 gccatcttcgcacataatat 
9 gatgttgtggtcactcaatt 9 aatgctatcggcacatccag 
10 acaggagctatgctctcaac 10 actttttgggggtgcatgaa 
11 aaagttttccggaagttcgg 11 acccatcttagtgatggaat 
12 tatgtactatactgcgcagg 12 gtcttagccttaacattgga 
13 cgatcgagtcaacttccttc 13 ggtgaggccatttaatgtta 
14 cgacgaagtcttcggacttc 14 gtttttcggcttcgaggaaa 
15 gaccactacaagctctacag 15 ctaataatctatctcgggcc 
16 acgaagcgtttccagtcatc 16 cggacgcgataacagttcat 
17 tcggcaaatcttgtagacgc 17 ttgttcgcccaatatttttc 
18 aaattgcggaggagcactcg 18 accatcaactgagaggtaca 
19 aacctcgaatacttcgaggg 19 aaacgcgtgggttgactaac 
20 tgcagatagtgccattgatg 20 catatattcctttcctgtta 
21 caatcggatgcatcgggaaa 21 tttatccgcagacgaatacc 
22 ctcacacttgtccttatctg 22 tacgagactttgtgggtagg 
23 aaattgccatctgcagcctt 23 acgacactgtcgttccaatt 
24 cacatcgtccttggcgaaat 24 ttgtttcgggagcatcacat 
25 caacactgctcttcacgtgc 25 gcatttttgcattatgtggt 
26 tccattcgacgttgtcgaat 26 ccgcttgattcgatttacta 
27 ggaactgcttcggatcactg 27 gttcaacaatgaccacgcag 
28 tatgcactcagctggcaata 28 ccaggtctggtttattaagg 
29 tcgacgagaagcagcaagtc 29 atgtgattttgtcgtagtgc 
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30 tagcacagctcgggaatttc 30 ctgtcacaatttgtgtgtcg 
31 cacgtttctacgatggacat 31 cgcatcatccatagagtgtc 
32 catgattaccgtcttgctgg 32 ggtctgtcgtatctattgat 
33 gaaggttcgctccagcaaac 33 aatctgcgacgcaattcagt 
34 tgatgccaaggtaccgacag 34 cagggtggcagaatggaatt 
35 aggaatttcattccttcact 35 tttaacggattgaccactcc 
36 atgagtccgtcatatatggt 36 tcatatttgctgaggagacc 
37 caccaaacagcacacaaggt 37 cctggacgctaatgatatga 
38 caagcaggattagcctctgg 38 aaaacaaccgagactgcctc 
39 actgttcggcataccgaaag 39 cgctcaggtacatgaactgt 
40 cgctaataacttagcagcca 40 ttagctaagtccaatctcgg 
41 attaaacactcctctaggcg 41 gatgttatgccaagacagca 
42 gacgtatgggataaacctat 42 ttgcgatgtttatgccttta 
43 gtcctcatcgagaatccaaa 43 catcctcatagccatttaat 
44 aatgcattgaacgacccgtg 44 cgcaacgcctacgtactaaa 
45 caagcagtggtatcgctgag 45 atgcacgattcattgctcta 
46 ctcatatggatctccacatg 46 actgtgtgtggtcagttttc 
47 aagatccagttttcgccaag 47 gaaagatactaggtctgcca 
48 cgttgagtcttctcttgatc 48 tcgcggaggtatggaaatct 

 

SNP-FISH 

 The protocol for RNA FISH was followed exactly as written above, except for probe 

concentrations. Final concentration of each SNP probe was 100 nM, and each mask oligo was 300 

nM. Sequences of SNP probes and oligos are below: 

Probe Set 5’-Sequence-3’-Quasar 570/670   
X SNP1 AAAAAATACAAGTATTTAATCACATA   
Y SNP1 AAAAGATACAAGTATTTAATCACATA   
SNP1 Mask TATGTGATTAAATACT   
      
X SNP2 GTTTCTTCGATTTTCATGTTCGAAAC   
Y SNP2 GTTTTTTCGATTTTCATGTTCGAAAC   
SNP2 Mask GTTTCGAACATGAAAA   
      
X SNP3 AAATATTTATTAACGGTAAGGATATT   
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Y SNP3 AAATGTTTATTAACGGTAAGGATATT   
SNP3 Mask AATATCCTTACCGTTA   
      
X SNP4 TTAGGCATTTTTGTTTTACTTGAAAA   
Y SNP4 TTAGCCATTTTTGTTTTACTTGAAAA   
SNP4 Mask TTTTCAAGTAAAACAA   
      

EdU incorporation and staining 

 Testes were dissected into room temperature Schneider’s media for insect cell culture 

containing 10 nM EdU and incubated for 45 minutes with rocking. Then testes were rinsed with 

PBS and fixed in 4% formaldehyde for 15 minutes, and afterwards washed 3x with PBS-T for 15 

minutes. Primary antibody incubation was carried out as normal. Following overnight antibody 

incubation, EdU fluorophore conjugation was carried out according to Click-iT Plus EdU imaging 

kit protocol (Invitrogen, C10640). After EdU fluorophore conjugation, secondary antibody 

staining was carried out as described earlier. 

qPCR 

Quantitative PCR was carried out using cycling conditions previously described182 and 

Power SYBR Green reagent (Applied Biosystems). All numbers were normalized to tRNA-K-

CTT, a multicopy tRNA gene known to be interspersed throughout the genome, and Gapdh.  

Primers used are listed below: 

Primer Name 5’-Sequence-3’ Reference 

tRNA-K-CTT-qF CTAGCTCAGTCGGTAGAGCATGA 183,184 
tRNA-K-CTT-qR CCAACGTGGGGCTCGAAC  
18S-qF AGCCTGAGAAACGGCTACCA 183,184 
18S-qR AGCTGGGAGTGGGTAATTTACG  
28S-qF AATGGATGTGATGCCAATGTA 144 
28S-qR TTCAGTGGATCGCAGTATGG  
5.8S-qF GCTCATGGGTCGATGAAGAA  

5.8S-qR GGACTGCGATATGCGTTCA  

Gapdh-qF TAAATTCGACTCGACTCACGGT DRSC 
FlyPrimerBank 
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Gapdh-qR CTCCACCACATACTCGGCTC DRSC 
FlyPrimerBank 

R1 qPCR2 fw TAGAGCTTGTAGTGGTCGAG  
R1 qPCR2 rv ATGGGTCGTCGGCATGATCT  
R2 qPCR fw ATGAACTGTTATCGCGTCCG  
R2 qPCR rv AAACGCGTGGGTTGACTAAC  

 

Mitotic chromosome spreads and fluorescence quantification 

 Testes were squashed according to previously described methods185. Briefly, testes were 

dissected into 0.5% sodium citrate for 5-10 minutes and fixed in 45% acetic acid/2.2% 

formaldehyde for 4-5 minutes. Fixed tissues were firmly squashed with a cover slip then slides 

were submerged in liquid nitrogen. Following liquid nitrogen, slides were dehydrated in 100% 

ethanol for at least 5 minutes. Slides were then treated with 0.1 µg/ml RNase A for 1 hour at room 

temperature, then dehydrated in 100% ethanol again. Hybridization mix (50% formamide, 2x SSC, 

10% dextran sulfate) with 100 ng each probe was applied directly to the slide and allowed to 

hybridize overnight at room temperature. Then slides were washed 3x for 15 minutes in 0.2x SSC, 

and mounted with VECTASHIELD with DAPI (Vector Labs). Sequences for probes used are 

below: 

Probe Target 5’-Sequence-3’ 

Y chromosome (AATAAAC)6-Cy5 

240-bp IGS TCCATTCACTAAAATGGCTTTTCTCTATAATACTTA 
GAGAATATGGGAATATTTCAACATTTTTCACT-Alexa488 

 

18S rDNA Probe# 5’-Sequence-3’-Quasar 570 

1 tataactactggcaggatcaac 
2 catggcttaatctttgagacaa 
3 tcacttttaattcgtgtgtact 
4 actgatataatgagccttttgc 
5 ctgttaacgatctaaggaacca 
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6 agaattaccacagttatccaag 
7 aggttcatgttttaattgcatg 
8 tagcctaataaaagcacacgtc 
9 aatataacgatcttgcgatcgc 
10 atacgatctgcatgttatctag 
11 acatttgaaagatctgtcgtcg 
12 gtcctagatactaccatcaaaa 
13 gatatgagtcctgtattgttat 
14 agtgtactcattccaattacag 
15 caattggtccttgttaaaggat 
16 ccgcaacaactttaatatacgc 
17 agcacaagttcaactacgaacg 
18 acaattgtaagttgtactaccc 
19 atataagaactccaccggtaat 
20 tgcaggtttttaaataggagga 
21 cccacaataacactcgtttaag 
22 tgctttaagcactctaatttgt 
23 cacagaatattcaggcatttga 
24 cagaacagaggtcttatttcat 
25 cctcttgatctgaaaaccaatg 
26 ccaaactgcttctattaatcat 
27 ttaagttagtcttacgacggtc 
28 aacatctttggcaaatgctttc 
29 ctctaactttcgttcttgatta 
30 tcgtttatggttagaactaggg 
31 gagagagccataaaagtagcta 
32 aattcctttaagtttcagcttt 
33 aatctgtcttacacacttatgt 
34 ccatagattcgagaaagagcta 
35 atcactccacgaactaagaacg 
36 ttcgttatcggaattaaccaga 
37 caccataatcctgaagatatct 
38 gaatgaaggctacataagcttc 
39 acacaataagcattttactgcc 
40 gctccacttacataaacacatt 
41 gtgtccttataatgggacaaac 
42 gcaatttgtccatttaagaagc 
43 ctgttattgctcaatctcatta 
44 ggtctaggaaatacacgttgat 
45 ttcacaatcccaagcatgaaag 
46 gaattccaagttcatcgtgaac 
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47 caatgcgagttaatgactcaca 
48 taattcaatcggtagtagcgac 

 

Fluorescence quantification was done on merged z-stacks using ImageJ using the Maximum 

Entropy plugin for automatic thresholding based on the histogram to automatically determine real 

signal from noise. Using this method, fluorescent probe signal was measured as Integrated Density 

and compared between the X and Y chromosomes. 

Statistical analysis 

 For comparison of nucleolar morphologies, significance was determined by chi-squared 

test using a 2x3 contingency table (Normal; Deformed; Fragmented). For GSC-GB nucleolar 

morphologies, a 2x4 contingency table was used (four possible conformations in Figure 4.2A-D). 

For X rDNA activation by SNP-FISH, because X-only transcription was virtually never detected 

we simplified the comparison to Y-only rRNA vs both X&Y-rRNA and performed t-tests.  
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Chapter 3 

Germ Cell Connectivity Enhances Cell Death in Response to DNA 

Damage in the Drosophila Testis* 

3.1 Abstract 

Two broadly known characteristics of germ cells in many organisms are their development 

as a ‘cyst’ of interconnected cells and their high sensitivity to DNA damage. Here we provide 

evidence that in the Drosophila testis, connectivity serves as a mechanism that confers to 

spermatogonia a high sensitivity to DNA damage. We show that all spermatogonia within a cyst 

die synchronously even when only a subset of them exhibit detectable DNA damage. Mutants of 

the fusome, an organelle known to facilitate intracyst communication, compromise synchronous 

spermatogonial death and reduces overall germ cell death following DNA damage. Our data 

indicate that a death-promoting signal is shared within the cyst, leading to death of the entire cyst. 

Taken together, we propose that intercellular connectivity supported by the fusome uniquely 

increases the sensitivity of the germline to DNA damage, thereby protecting the integrity of gamete 

genomes that are passed on to the next generation. 

 

 

*this chapter appears in publication as 
Lu KL, Yamashita YM. 2017. Germ cell connectivity enhances cell death in response to DNA 
damage in the Drosophila testis. eLife. 
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3.2 Introduction 

A prevalent feature of germ cell development across species is their proliferation as an 

interconnected cluster of cells, widely known as a germ cell cyst. In many organisms from insects 

to humans, germ cells divide with incomplete cytokinesis that results in interconnected cells with 

shared cytoplasm, leading to cyst formation24,26,186. During oogenesis of many species from flies 

to mammals, this intercellular connectivity is critical for the process of oocyte specification, 

allowing only some of the developing germ cells to become oocytes while the others adopt a 

supportive role69,186,187. For example, in the Drosophila ovary, four rounds of germ cell divisions 

with incomplete cytokinesis results in a cyst of 16 interconnected germ cells, where only one 

becomes an oocyte while the remaining 15 germ cells become nurse cells. During this process, 

nurse cells support oocyte development by providing their cytoplasmic contents to oocytes via 

intercellular trafficking75,187,188. In contrast to oogenesis, where cytoplasmic connectivity has a 

clear developmental role in oocyte development, spermatogenesis is a process where all germ cells 

within a cyst are considered to be equivalent and become mature gametes7,189. Despite the lack of 

a ‘nursing mechanism’ during spermatogenesis, intercellular connectivity is widely observed in 

spermatogenesis in a broad range of organisms24,189. While a function for this connectivity has 

been proposed in post-meiotic spermatids77, the biological significance of male germ cell 

connectivity during pre-meiotic stages of spermatogenesis remains unknown. 

            Another well-known characteristic of the germline is its extreme sensitivity to DNA 

damage compared to the soma, with clinical interventions such as radiation or chemotherapy often 

resulting in impaired fertility190–192. It has been postulated that the high sensitivity of the germline 

to DNA damage is part of a quality control mechanism for the germ cell genome, which is passed 
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onto the next generation193. However, the means by which the germline achieves such a high 

sensitivity to DNA damage remains unclear. 

Here we provide evidence that germ cell connectivity serves as a mechanism to sensitize 

the spermatogonia (SGs) to DNA damage in the Drosophila testis. We show that an entire SG cyst 

undergoes synchronized cell death as a unit even when only a subset of SGs within the cyst exhibit 

detectable DNA damage. Disruption of the fusome, a germline-specific organelle that facilitates 

communication amongst germ cells within a cyst, compromises synchronized germ cell death 

within a cyst in response to DNA damage. The sensitivity of a germ cell cyst to DNA damage 

increases as the number of interconnected germ cells within increases, demonstrating that 

connectivity serves as a mechanism to confer higher sensitivity to DNA damage. Taken together, 

we propose that germ cell cyst formation serves as a mechanism to increase the sensitivity of 

genome surveillance, ensuring the quality of the genome that is passed onto the next generation. 

 

3.3 Results 

3.3.1 Ionizing radiation induces spermatogonial death preferentially at the 16-cell stage 

The Drosophila testis serves as an excellent model to study germ cell development owing 

to its well-defined spatiotemporal organization, with spermatogenesis proceeding from the apical 

tip down the length of the testis. Germline stem cells (GSCs) divide to produce gonialblasts (GBs), 

which undergo transit-amplifying divisions to become a cyst of 16 interconnected spermatogonia 

(16-SG) before entering the meiotic program as spermatocytes (Figure 3.1A). In our previous 

study we showed that protein starvation induces SG death, predominantly at the early stages (~4-

SG stage) of SG development194 (Figure 3.1A). Starvation-induced SG death is mediated by 

apoptosis of somatic cyst cells encapsulating the SGs194, which breaks the ‘blood-testis-barrier’ 
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and leads to SG death195,196. Though we also noted significant SG death at the 16-SG stage in the 

course of our previous work, it was independent of nutrient conditions and thus was not the focus 

of the study194. 

In search of the cause of this 16-SG death, we discovered that it can be induced by ionizing 

radiation. When adult flies were exposed to ionizing radiation that causes DNA double strand 

breaks (DSBs), a dramatic induction of SG death was observed (Figure 3.1B and 3.1C). Dying 

SGs induced by ionizing radiation were detected by Lysotracker staining as described by previous 

studies, showing characteristic acidification of the entire cell175,178,194. SG death in control and 

irradiated flies proceeded in the same manner, where all of the SGs within a cyst die 

simultaneously by becoming Lysotracker-positive (Figure 3.1B). Importantly, in contrast to 

starvation-induced SG death which was dependent on somatic cyst cell apoptosis, radiation-

induced SG death was not suppressed by inhibiting cyst cell apoptosis (Figure 3.2), suggesting 

that radiation-induced SG death is a germ cell-intrinsic response. 

The frequency of dying SG cysts peaked around 3 to 6 hours after irradiation and decreased 

by 24 hours post-irradiation (Figure 3.1C). Interestingly, we found that ionizing radiation robustly 

induces cell death at the 16-SG stage, although death of other stages (2-, 4-, 8-cell SGs) was also 

induced (Figure 3.1C). This pattern of SG death held true regardless of the ionizing radiation dose 

(Figure 3.3). While testing multiple doses of ionizing radiation, we noticed that exposure to even 

a very low dose of ionizing radiation could dramatically induce death of 16-SGs. By measuring 

dose-dependent death of 16-SGs at six hours post-irradiation, we found that the 16-SG death 

induced by increasing radiation was a distinctly non-linear response, quickly reaching a plateau of 

~3 dying 16-SG cysts per testis (Figure 3.1D). In comparison, cell death in a defined area of the 

irradiated wing imaginal disc (a mitotically-active somatic tissue with unconnected cells) followed 
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a linear dose-response relationship where an increase in radiation resulted in a proportional 

increase in cell death (Figure 3.1D). These results demonstrate a remarkable sensitivity of 16-SGs 

to ionizing radiation compared to somatic cells. 
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Figure 3.1. A high level of SG death in response to ionizing radiation.  
(A) Illustration of SG development and germ cell death in the Drosophila testis. (B) An example 
of the testis apical tip (left panels) with dying SGs marked by Lysotracker staining in control and 
irradiated flies. High magnification images of dying 16-SGs (dotted outline) are shown in right 
panels. Lysotracker (red), Vasa (white), FasIII and Lamin Dm0 (green), and DAPI (blue). Bars: 
25µm (left panels), 5 µm (right panels). (C) Quantification of dying SG cysts by stage from 3 to 
24 hours after 3000 rad (Mean ± SD). n ≥ 17 testes, repeated in triplicate. It should be noted that 
the SG death frequency was scored as ‘number of dying SG cysts at each stage per testis’. We 
have shown that the number of SG cysts is consistently ~5-6 cysts per stage per testis 194, 
justifying the use of ‘number of dying SG cysts/testis’ as a proxy for frequency of SG cyst death. 
(D) Number of Lysotracker-positive 16-SG cysts (red) and TUNEL-positive wing imaginal disc 
cells (black) 6 hours post-irradiation as a function of radiation dose (Mean ± SD). n ≥ 17 testes, 
and n ≥ 3 wing discs, repeated in triplicate. Best fit lines shown determined by non-linear 
regression. 
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Figure 3.2. Radiation-induced SG cyst death is independent of somatic cyst cell apoptosis. 
(A) Representative images of testes apical tips from wild type, c587-gal4>UAS-Diap1, and nos-
gal4>UAS-Diap1 expressing flies (suppressing apoptosis in somatic and germ cells 
respectively) six hours after 2000 rad. Lysotracker (red), Vasa (white), FasIII and Lamin Dm0 
(green), DAPI (blue). Bars: 25 µm. (B) Quantification of dying SG cysts by stage from above 
(Mean ± SD). No significant differences at any SG stage between WT vs. c587>Diap1 or 
nos>Diap1 (p-value * <0.05 t-test). 
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Figure 3.3. SG death in response to ionizing radiation. 
Quantification of SG death by stage and time following varying doses of ionizing radiation.  
(A) 25 rad (n = 66 testes), (B) 2000 rad (n = 84 testes), (C) 4000 rad (n = 68 testes). 
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3.3.2 All SGs within a cyst die even when only a subset of cells exhibit detectable DNA 

damage 

To gain insight into the cause of the unusual sensitivity of 16-SGs to DNA damage, we 

evaluated the response of SGs to ionizing radiation at a cell biological level. DSBs result in 

phosphorylation of the histone H2A variant (γ-H2Av), the Drosophila equivalent of mammalian 

γ-H2AX, reflecting the very early cellular response to DSBs197. Using an anti-γ-H2Av antibody 

(pS137), we confirmed that γ-H2Av can be robustly detected in SGs following a high dose of 

ionizing radiation (Figure 3.4A). When a low dose of ionizing radiation was used (≤100 rad), we 

frequently observed 16-SG cysts in which only a subset of cells within the cyst exhibited detectable 

γ-H2Av signal but all 16 cells were Lysotracker-positive and dying (Figure 3.4B). 

The fraction of γ-H2Av-positive SGs within each cyst increased gradually with increasing 

radiation dose irrespective of SG stage (Figure 3.4C and Figure 3.5), consistent with the linear 

nature in which ionizing radiation damages DNA molecules198. However, Lysotracker staining 

showed that SGs within a cyst were always either all Lysotracker-positive or -negative (Figure 

3.4D). These results suggest that while DNA damage is induced in individual SGs within a cyst 

proportional to the dose of radiation, cell death is induced in all of the SGs within the entire cyst, 

leading to elevated SG death that follows a non-linear response with increasing dose. 
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Figure 3.4. All SGs within a cyst die even when only a fraction of cells exhibit detectable 
DNA damage. 
(A) Representative images of testes apical tips from unirradiated and irradiated flies. Vasa 
(white), FasIII and γ-H2Av (green). Bar: 25 µm. (B) An example of a dying 16-SG cyst (yellow 
dotted outline) with only a subset of SGs containing detectable DNA damage (arrowhead). γ-
H2Av (green), Lysotracker (red), Vasa (white). Bar: 5 µm. (C) Number of γ-H2Av-positive cells 
within each 16-SG cyst at various radiation doses. Blue circles, individual data points. Red line, 
mean. n = number of 16-SG cysts scored. (D) Number of Lysotracker-positive cells within each 
16-SG cyst. Blue circles, individual data points. Red line, mean. n = number of 16-SG cysts 
scored. 
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Figure 3.5. All SG stages show gradual accumulation of γ-H2Av-positive cells with 
increasing radiation. 
Number of γ-H2Av-positive cells per cyst at increasing radiation doses in (A) germline stem cells 
(B) gonialblasts (C) 2-SG (D) 4-SG (E) 8-SG. Red line, mean.  
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3.3.3 The fusome is required for synchronized all-or-none SG death within the cysts 

The above results led us to hypothesize that all SGs within a cyst might be triggered to die 

together even when only a subset of SGs within the cyst have detectable DNA damage, explaining 

the extremely high sensitivity of the germline to DNA damage. In Drosophila and other insects, 

the fusome is a germline-specific membranous organelle that connects the cytoplasm of germ cells 

within a cyst and mediates intracyst signaling amongst germ cells 45,71. We speculated that if germ 

cell cysts undergo synchronized cell death by sharing the decision to die, the fusome might mediate 

the ‘all-or-none’ mode of SG death upon DNA damage. 

To examine the role of the fusome in all-or-none SG death upon irradiation, we used RNAi-

mediated knockdown of α-spectrin and a mutant of hts, core components of the fusome 17,45–47,71 

(Figure 3.6). Mutant and control flies were irradiated and their testes were stained with 

Lysotracker to identify dying SGs in combination with the lipophilic dye FM 4-64 to mark cyst 

cell membranes, demarcating the boundaries of SG cysts178. In control testes, 16-SG cysts were 

almost always found to be either completely Lysotracker-positive or -negative under all conditions 

tested as described above, indicating that 16-SG cysts make an all-or-none death decision (Figure 

3.7A, B, E, F). Of particular importance, even at a lower dose of radiation (e.g. 100 rad) where 

only a subset of germ cells exhibit visible γ-H2Av staining, the 16-SG cyst was either entirely 

Lysotracker-negative or -positive. In contrast, α-spectrin RNAi and hts mutant testes frequently 

contained 16-SG cysts with a mixture of individual Lysotracker-positive and -negative SGs 

(Figure 3.7C, D, G, H), suggesting that the all-or-none mode of SG death was compromised. 

Importantly, the mean fraction of 16-SG that died in response to radiation exposure at any dose 

was reduced when the fusome was disrupted (Figure 3.7B, D, F, H). These data show that the 

fusome is required for the coordinated death of all SGs within a cyst, and suggests that the intracyst 
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communication increases overall SG death in response to radiation-induced DNA damage. 

Moreover, the fact that loss of germ cell communication in fusome mutants allows for the survival 

of some SGs strongly argues against the possibility that SGs without cytologically detectable g-

H2Av are sufficiently damaged to trigger cell death on their own, and that SGs are individually 

dying. Instead, the death of SGs without detectable g-H2Av in wild type/control can likely be 

attributed to a shared death signal from other cells, as blockade of intercellular communication in 

fusome mutants allows for their survival. 

It should be noted that the fusome mutants appeared to maintain ring canals, as evidenced 

by the intact ring shape of Pavarotti-GFP, a marker for ring canals52 (Figure 3.8). Therefore, 

intracyst communication triggering SG death is likely mediated by the fusome, rather than physical 

openings between SGs within the cyst (see Discussion). Consistent with this idea, somatic follicle 

cells of the egg chamber, which are known to be connected by ring canals but without a fusome199, 

were observed to die individually by becoming positive for cleaved caspase (Dcp-1) (Figure 

3.9A). Additionally, these cells did not exhibit acute sensitivity to low doses of radiation like 

interconnected SG do and displayed an essentially linear dose-response (Figure 3.9B, C). 
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Figure 3.6. Validation of fusome elimination in hts mutant and α-spectrinRNAi testes. 
(A, B) Hts/Adducin staining (red) in control (A) and hts01103/Df(2R)BSC26 mutant (B) testes. 
Red: Hts/Add and FasIII. Green: Vasa (germ cells). Bars: 25 µm. Note that hts mutation 
eliminates fusome staining (leaving FasIII staining of the hub cells).  
(C, D) a-Spectrin staining (red) in control (C) and nos-gal4>UAS-spectrinRNAi (D) testes.  a-
Spectrin and FasIII (red), Vasas (green), DAPI (blue). 
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Figure 3.7. The fusome is required for synchronized all-or-none SG death within a cyst. 
(A) A Lysotracker-positive 16-SG cyst (green, dotted outline) in unfixed control testes, with cyst 
borders marked by FM 4-64 (red) and SG nuclei marked by Hoechst 33342 (blue). Bar: 7.5 µm. 
(B) Number of Lysotracker-positive cells within each 16-SG cyst of control testes at varying 
radiation doses. Black line, mean. n = number of 16-SG cysts scored. (C) A 16-SG cyst (dotted 
outline) in nos-gal4>UAS-α-spectrinRNAi testes containing a single Lysotracker-positive SG 
(arrowhead). Bar: 10 µm. (D) Number of Lysotracker-positive cells within each 16-SG cyst of 
nos-gal4>UAS-α-spectrinRNAi testes at varying radiation doses. Black line, mean. n = number of 
16-SG cysts scored. P-values (comparing the corresponding radiation doses between control and 
mutant) determined by chi-squared test (See methods). (E, F) hts01103/+ control testes. Bar: 5 
µm. (G, H) hts01103/Df(2R)BSC26 mutant testes. Bar: 7.5 µm. 
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Figure 3.8. SG ring canals are maintained in fusome mutants. 
Apical tip of testes from (A) control and (C) nos-gal4>UAS-α-spectrinRNAi flies stained for DAPI 
(blue), Vasa (white), FasIII and a-Spectrin (red), and Pavarotti-GFP (green). Bars: 25 µm. SG 
cysts (outlined) from (B) control and (D) nos-gal4>UAS-α-spectrinRNAi flies. Bars: 5 µm. 
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Figure 3.9. Follicle cell death in response to ionizing radiation exposure. 
(A) Dcp-1 staining (red) in interconnected ‘clone’ of follicle cells (dotted outline). The boundary 
of follicle cell clone was determined by following the connectivity visualized by Pavarotti-
GFP199 (green). DAPI (blue), FasIII (white). Bar: 5 µm. (B) Cleaved caspase Dcp-1 staining 
(green) in stage 5 egg chambers at 6 hours following low or high dose radiation. Lysotracker 
(red), DAPI (blue), FasIII (white). Bars: 25 µm. Note that follicle cells die via apoptosis, 
exhibiting cleaved caspase signal. Lysotoracker did not overlap with cleaved caspase, and was 
not distributed evenly in the cytoplasm as is the case for germ cell death. Thus, Lysotracker 
signal in follicle cells might represent phagocytosis to engulf dead follicle cells. (C) Number of 
Dcp-1-positive follicle cells in stage 5 egg chambers 6 hours post-irradiation as a function of 
radiation dose (Mean ± SD). n ≥ 6 egg chambers, repeated in triplicate. Although the data fits a 
non-linear regression (R2=0.999) slightly better than a linear regression (R2=0.927), follicle cell 
death does not exhibit a steep increase in cell death at low doses (≤100 rad) as in SG.   
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3.3.4 The mitochondrial proteins HtrA2/Omi and Endonuclease G are required for all-or-

none SG death 

The above results suggest that intercellular communication mediated by the fusome plays 

a critical role in allowing for all-or-none commitment of SGs to death or survival. Based on these 

results, we hypothesized that a signal to promote cell death exists that is rapidly transmitted from 

damaged SGs to others via their intercellular connections.   

It has previously been shown that germ cell death in the Drosophila testis depends on 

mitochondria-associated factors rather than effector caspases175. The Drosophila homolog of the 

mitochondrial serine protease HtrA2/Omi is cleaved and released from the mitochondrial 

compartment as part of the mitochondria-associated death pathway to promote cell death in 

response to nuclear DNA damage174,200–202. The catalytic function of released HtrA2/Omi is known 

to control the death of SGs in the testis in a non-apoptotic pathway. Yacobi-Sharon et al. further 

showed that Endonuclease G (EndoG) is also involved in germ cell death175. EndoG normally 

resides in mitochondria but is released to promote degradation of nuclear chromatin and induce 

cell death203.  

In HtrA2/Omi mutant flies, we frequently observed a mix of Lysotracker-positive and -

negative SGs within a single cyst, similar to what was seen in fusome mutants (Figure 3.10A). 

Disruption of the all-or-none mode of SG death within the cyst was observed at any dose of 

radiation tested (Figure 3.10B). Disrupted all-or-none SG death occurred in both heterozygous 

(OmiD1/+) and transheterozygous (OmiD1/OmiDf1) conditions, consistent with the previous report 

that heterozygous conditions exhibit haploinsufficiency in inducing SG death 175. In contrast, wild 

type control 16-SG cysts maintained their all-or-none mode of SG death (Figure 3.10B). Likewise, 

a loss-of-function EndoGMB07150 mutant allele170 also showed disruption of all-or-none SG death 
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in both heterozygous (EndoGMB07150/+) and transheterozygous (EndoGMB07150/Df(3R)BSC699) 

conditions (Figure 3.10C, D). Taken together, these data show the involvement of mitochondrial 

cell death pathway components HtrA2/Omi and EndoG in the all-or-none mode of SG death. 

Considering that these proteins are released from mitochondria to induce cell death, it is tempting 

to speculate that these proteins (or their downstream molecules/signals) are shared among SGs via 

the fusome to trigger synchronized SG death. 
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Figure 3.10. The mitochondrial proteins HtrA2/Omi and Endonuclease G are required for 
all-or-none SG death. 
(A) SG cysts (dotted outlines) in OmiΔ1/OmiDf1 mutant testes containing individual Lysotracker-
positive SGs (arrows). Hoechst 33342 (blue), FM 4-64 (red), Lysotracker (green). Bar: 10 µm.  
(B) Number of Lysotracker-positive SGs in each 16-SG cyst in OmiΔ1/OmiDf1, OmiΔ1/+, and wild 
type testes. Black line, mean. n ≥43 cysts per dose. (C) 16-SG cyst (dotted outline) in 
EndoGMB07150/Df(3R)BSC699 testes containing individual Lysotracker-positive SGs. Hoechst 
33342 (blue), FM 4-64 (red), Lysotracker (green). Bar: 10 µm. (D) Number of Lysotracker-
positive SGs in each 16-SG cyst in EndoGMB07150/Df(3R)BSC699 and EndoGMB07150/+ testes. 
Black line, mean. n ≥37 cysts per dose. 
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3.3.5 The DNA damage response pathway proteins p53 and mnk/chk2 do not regulate the all-

or-none mode of SG death 

 The DNA damage response is a highly conserved pathway controlling cell death and DNA 

repair204,205. We thus examined the potential involvement in radiation-induced SG death of the 

universal DNA damage response pathway components, mnk/chk2 and p53, whose conserved 

function in DNA damage response in Drosophila has been shown206,207. By using well-

characterized loss-of-function alleles (mnk6006 and p535A-1-4)171,172,176, we found that these mutants 

broadly suppress SG death at high and low doses of radiation (Figure 3.11D). However, SG death 

in these mutants maintained an all-or-none pattern (Figure 3.11A-C, E). These results suggest that 

while p53 and mnk/chk2 may contribute to SG death via their general role in controlling the DNA 

damage response as has been described in somatic cells, they do not play a role in mediating the 

all-or-none pattern of SG death within a cyst that is unique to interconnected germ cells.  

 Consistent with the idea that neither mnk/chk2 nor p53 is responsible for a germline-

specific all-or-none mode of cell death in response to DNA damage, Mnk/Chk2 or p53 was barely 

upregulated in the germline in response to a low dose of radiation (100 rad), which is sufficient to 

induce robust SG death. Using a polyclonal anti-Mnk/Chk2 antibody208, we barely detected any 

signal in germ cells, although some level of signal was seen in the surrounding somatic cyst cells 

(Figure 3.12). Likewise, a p53 transcriptional reporter 173 showed only a slight increase in the 

signal in response to a low dose of radiation (Figure 3.13). Even at a high dose, robust expression 

of the reporter was observed only at 24 hours after irradiation, much later than the peak of SG 

death, which typically happens within a few hours. Collectively, these data (i.e. mnk/chk2 and p53 

mutants maintaining all-or-none cell death and the lack of robust Mnk/Chk2 and p53 expression 
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in response to DNA damage) indicate that expression of p53 or Mnk/Chk2 in SGs is unlikely to 

account for the all-or-none mode of germ cell death in response to DNA damage. 
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Figure 3.11. p53 and Chk2/mnk suppress SG death but do not regulate the all-or-none 
mode of SG death. 
(A-C) Examples of dying 16-SGs (dotted outline) in wild-type (A), mnk6006/Df(2L)Exel7077 
mutant (B), and p535A-1-4/Df(3R)ED6096 mutant (C) testes. Lysotracker (red), Lamin Dm0 
(green), DAPI (blue) and Vasa (white). Bars: 5 µm. (D) SG cyst death by stage in mnk/chk2 and 
p53 mutants 6 hours after irradiation with 100 rad and 2000 rad (Mean ± SD, p-value * <0.05 t-
test). Fixed, stained samples were used for scoring. Testes sample n ≥ 11 for each genotype, 
repeated in triplicate. (E) Number of Lysotracker-positive SG per 16-SG cyst in mnk/chk2 and 
p53 mutants following 100 rad. Red line, mean. Unfixed samples stained with Lysotracker, FM 
4-64, and Hoechst 33342 were used for scoring. 
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Figure 3.12. Expression of Mnk/Chk2 in response to ionizing radiation. 
Testes from unirradiated flies (A), flies irradiated with 100 rad (B-D), or with 4000 rad (E-G), 
stained for Mnk/Chk2 (red), Vasa (white), Hts (green), and DAPI (blue). Bars: 25 µm. 
Mnk/Chk2 was detected only after a high dose of radiation, predominantly in the somatic cyst 
cells surrounding the Vasa-positive germ cells.  
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Figure 3.13. Expression of p53 reporter in response to ionizing radiation. 
Testes from unirradiated flies (A), flies irradiated with 100 rad (B-D), or with 4000 rad (E-G), 
stained for p53RE-GFPnls (green), Vasa (blue), Hts/Adducin and FasIII (red). Bars: 25 µm. 
p53RE-GFPnls was only detectable 24 hours following irradiation at a high dose (4000 rad). 
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3.3.6 Increasing connectivity of SGs increases sensitivity to DNA damage  

The above results suggest that the ability of SGs to trigger cell death in response to DNA 

damage is facilitated by the sharing of death-promoting signals amongst SGs within a cyst, killing 

SGs that are not sufficiently damaged to commit to cell death on their own. This sharing of death-

promoting signals is mediated by and dependent on the fusome, which facilitates intracyst 

communication. If this is the case, it would be predicted that increasing the connectivity of a SG 

cyst (the number of interconnected SGs within the cyst) would increase its sensitivity to DNA 

damage, because increased SG number per cyst will increase the probability of any cells being 

sufficiently damaged to trigger death. Indeed, as mentioned above, we observed a trend of 16-SG 

cysts dying more frequently than 2-, 4-, or 8-SGs (Figure 3.1 and Figure 3.3). By plotting cell 

death frequency of all SG stages as a function of increasing radiation dose (Figure 3.14), it 

becomes clear that the sensitivity of SG cysts correlates with their connectivity, where 8-SGs are 

less sensitive than 16-SGs but more sensitive than 4-SGs and so on. Interestingly, single-celled 

GBs, the immediate daughter of GSCs that have not formed any intercellular connections, 

exhibited an essentially linear increase in death in response to radiation dose, which is reminiscent 

of somatic imaginal disc cells (Figure 3.1D). These results support the idea that germ cell 

connectivity plays a key role in increasing the sensitivity of the germline to DNA damage.  
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Figure 3.14. Increasing connectivity confers higher sensitivity to DNA damage 
(A) Dose-dependent SG death in 2-, 4-, 8-, and 16-SG cysts (Mean ± SD). Best fit lines shown 
determined by non-linear regression. n ≥ 17 testes, repeated in triplicate. (B) Model of SG death 
enhanced by connectivity.  
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3.4 Discussion 

 Our present study may provide a link between two long-standing observations in germ cell 

biology: 1) the broad conservation of intercellular connectivity (cyst formation) of germ cells and 

2) the sensitivity of the germline to DNA damage. The purpose for germ cell cyst formation outside 

of the meroistic ovary (i.e. the oocyte nursing mechanism) remained unclear. Our study shows that 

the connectivity of germ cells can serve as a key mechanism for their ability to robustly induce 

cell death, providing an explanation for cyst formation outside of the oocyte nursing mechanism. 

However, there are many cell types that are known to be connected to sibling cells, where 

synchronized cell death among the connected cells is not observed or does not make any biological 

sense. For example, early-stage embryos of Drosophila develop as syncytia, where the embryo 

could be considered a single cell with multiple nuclei (before cellularization occurs to separate 

nuclei into individual cells). The C. elegans germline is topologically similar to Drosophila early 

embryos in that all cells share the same cytoplasm. In these two examples, damaged nuclei die 

individually and synchronized cell death is not observed176,209. In Drosophila oogenesis, 16 

interconnected cystocytes have distinct fates (one oocyte and 15 nurse cells), and it would not be 

beneficial to kill the oocyte when just one dispensable nurse cell is damaged. Moreover, nurse 

cells undergo programmed apoptosis later in oogenesis to finalize the cytoplasmic transport into 

the oocyte, yet this apoptosis does not kill oocytes. These examples have two important 

implications. First, openness via ring canals/intercellular bridges alone is likely insufficient to 

mediate synchronized cell death. Second, there are likely additional purposes for intercellular 

connectivity to be discovered other than the sharing of death-promoting signals.  

Regarding the first point that physical openness alone is likely insufficient to induce cell 

death in undamaged sibling cells, we speculate that the fusome plays a key role in facilitating 
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intercellular communication of death-promoting signals. Because fusome mutants apparently 

maintain cytoplasmic openings (ring canals) between SGs (Figure 3.8), it suggests that the 

intercellular bridges/openings are not sufficient to allow intracyst communication of death-

promoting signals. Consistent with this idea, we found that follicle cells of the egg chamber do not 

exhibit synchronized cell death in response to irradiation (Figure 3.9), even though these cells are 

known to maintain intercellular bridges/ring canals among multiple sibling cells, through which 

proteins (e.g. GFP) can be transported199. The lack of synchronized cell death in the follicle cells 

coincided with a proportional/linear increase in cell death with the increasing dose of radiation. 

Therefore, we propose that the fusome functions to transmit the death-triggering signals, similar 

to its known role in cell cycle synchronization within the germ cell cyst 71.  

We imagine two possibilities to explain how the signals are shared within a cyst, leading 

to cell death: when one SG within a cyst decides to die, this ‘decision of death’ might be sent to 

all the other SGs within the cyst, leading to all-or-none SG death. Alternatively, the signal shared 

among SGs may be ‘additive’ in nature. In such a scenario, even when none of the individual SGs 

have sufficient DNA damage to trigger cell death on its own, addition of all damage signaling 

within the cyst might reach a level sufficient to induce cell death. Either way, such responses would 

effectively lower the threshold of DNA damage per cell needed to trigger germ cell death. 

Consequently, the sharing of signals between SGs through intercellular connections increases their 

likelihood to die following DNA damage, explaining the unusually high sensitivity of the germline 

to DNA damage.  

According to this model, higher connectivity would confer higher sensitivity to DNA 

damage: as the connectivity increases, more cells would contribute to detecting any DNA damage 

the germline may be experiencing. Indeed, our data show a positive correlation between sensitivity 
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to radiation and the increasing connectivity of SG cysts (Figure 3.14). Remarkably, the fact that 

single-celled, unconnected GBs exhibit an essentially linear death response to increasing radiation 

suggests that individual germ cells do not necessarily have an intrinsically different DNA damage 

response that accounts for their high sensitivity to DNA damage. 

A connectivity-based increase in sensitivity to DNA damage also has an important 

implication in the development of multicellular organisms. To pass on genomes to the next 

generation, it is critically important for germ cells to have the most stringent mechanisms to 

prevent deleterious mutations. However, as genome size increases in multicellular organisms, 

ubiquitously increasing the stringency of genome quality control could result in a high rate of cell 

death in all tissues, which could compromise the development or survival of organisms. Thus, a 

multicellular organism may require differential sensitivities to DNA damage between the soma 

and the germline: a more sensitive genome surveillance mechanism to protect the germline, 

whereas the priority of the soma shifting toward survival to support development/maintenance of 

somatic organs. A connectivity-based increase in sensitivity to DNA damage might be a simple 

method for multicellular organisms to achieve drastically different sensitivities to DNA damage 

between the soma and germline without having to alter intrinsic damage response pathways, 

although additional germline-specific DNA damage response mechanisms cannot be excluded. We 

speculate that one reason germ cell connectivity has arisen during evolution and been so widely 

conserved might be to confer higher sensitivity to DNA damage specifically in the germline. It 

awaits future studies to understand whether germ cells from other organisms exhibit high 

sensitivity to DNA damage in a manner dependent on intracyst communication.  
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Chapter 4 

Dynamic Changes in the rDNA During Aging in the Drosophila 

Male Germline 

4.1 Abstract 

The repetitive ribosomal DNA (rDNA) is a unique genomic element whose biology has 

been implicated in aging-related changes and heterochromatin biology across species, but has 

never been comprehensively studied in the context of adult stem cells or across generations. To 

gain insight into these questions, we adapted a technique for RNA fluorescence in situ 

hybridization with single nucleotide polymorphisms (SNP-FISH) to distinguish rRNA transcripts 

from different chromosomal arrays within a single cell. We discovered that Drosophila male 

germline stem cells (GSCs), which contain rDNA arrays on the X and Y chromosomes, normally 

transcribe only from the Y chromosome and suppress the array on the X chromosome. However, 

the X chromosome rDNA becomes progressively activated during aging and we present evidence 

that suggests this is secondary to the age-related destabilization and loss of gene copy number in 

the Y rDNA array. Functionally, X rDNA activation is associated with perturbations in GSC cell 

cycle and activation of normally-repressed genomic elements that may be harmful to the cell. A 

strong transgenerational effect is also observed where male progeny bred from older parents with 

GSCs exhibiting X rDNA activation have an increased rate of GSC X rDNA activation at an early 

age and reduced ribosomal gene copy number in germ cells. Our work suggests that the rDNA is 
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a dynamic genomic element in germline stem cells that undergoes previously uncharacterized 

changes during aging, which has genetic and epigenetic implications for subsequent generations. 

 

4.2 Introduction 

The ribosomal DNA (rDNA) consists of tandem repetitive arrays of tens to hundreds of 

copies of the rRNA genes, which code for the mature RNA components of ribosomes (see Chapter 

1.3.1 for an in-depth description). In S. cerevisiae, it is known that the rDNA is one of the most 

unstable parts of the genome, prone to intrachromosomal recombination and replication conflicts 

that can result in gene copy number loss110,111,114,117,149,160 (Figure 4.1B). Accordingly, many 

mechanisms have evolved to stabilize the rDNA and linked to these events an ability to amplify 

gene copy number following loss108,112,113,154,210–214.  What results is the picture of the yeast rDNA 

locus as an extremely dynamic genomic element that can contract and expand with time.  

Numerous links have been drawn between changes in the rDNA during aging and perturbed 

morphology of the nucleolus, a subnuclear organelle organized by active transcription of the rRNA 

genes. Initially, changes in nucleolar morphology were observed in old yeast mother cells, 

manifesting as progressive fragmentation or expansion of the nucleolus thought to be reflective of 

destabilization and intrachromosomal recombination (“looping out”) of the rDNA149,152. These 

changes in nucleolar morphology presage replicative senescence, and subsequently many mutants 

were identified that perturbed nucleolar morphology and resulted in accelerated aging146,151,152. A 

similar correlation between altered nucleolar morphology and senescence has also been observed 

in mammalian cells215.  

The structure of the individual rRNA genes and their arrangement into large rDNA arrays 

has been exceptionally conserved from yeast to higher eukaryotes, but direct studies of the age-
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related changes of the rDNA in multicellular organisms have been limited. It remains unclear 

whether analogous rDNA instability occurs with time. One line of evidence that suggests higher 

eukaryotes experience similar challenges in dealing with the dynamic plasticity of the rDNA is 

that significant copy number variation has been observed within species216,217 and even from cells 

within individual organisms218. If changes in the rDNA govern replicative age in multicellular 

organisms like it does in yeast, it stands to reason that the longest-living mitotically active 

populations of cells would be the strongest candidate to manifest these changes. To this end, we 

directed our studies towards Drosophila male germline stem cells (GSCs), which are known to be 

highly mitotically active throughout the lifespan of the adult fruit fly and are responsible for 

continuously repopulating the testis. 

 

4.3 Results 

Note that all experiments were carried out with the standard lab wild-type strain yw (y1 w1) unless 

otherwise noted. See methods (Chapter 2) for more details. 

4.3.1 Drosophila male GSCs show perturbations in nucleolar morphology with age 

 In Drosophila melanogaster, the rDNA is known to be organized into arrays found on the 

sex chromosomes, each of which spans approximately 2-3 Mb95–97 (Figure 4.1A). First, we carried 

out immunofluorescence staining in whole-mount adult testes from wild-type flies for fibrillarin, 

an evolutionarily-conserved component of the nucleolus responsible for processing pre-

rRNA92,219,220, to assess nucleolar morphology in GSCs. In most of the cells in the testis, the 

appearance of the nucleolus was of a single round, compact structure within the nucleus. 

Specifically in GSCs, the nucleolus in the majority of cells was a single round structure that was 

approximately ≤2 µm in diameter (Figure 4.1C). This morphology was as expected per previous 
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descriptions of the nucleolus in other Drosophila tissues129, and was considered “Normal.” 

However, other abnormal nucleolar morphologies also appeared to be present in a small number 

of GSCs: nucleoli were “Fragmented” when more than one fibrillarin focus could be observed, or 

“Deformed” when nucleolar morphology was grossly abnormal in size or shape but ectopic 

fibrillarin foci could not be distinguished (Figure 4.1C).   

 When nucleolar morphology was scored, it was found that 89.2% of total GSCs in newly-

eclosed flies possessed normal nucleoli. Strikingly, the percentage of GSCs with normal nucleoli 

gradually dropped to 64.1% as flies aged to 40 days (Figure 4.1D). The distribution of nucleolar 

morphology in GSCs showed a significant accumulation of abnormal nucleoli at every age point, 

with the most significant increases at later ages). The average number of GSCs per testis also 

dropped from 9.27±1.23 at 0-1 days old to 6.24±1.56 at 40 days. Reports of the median lifespan 

of male Drosophila vary from 30 to 50 days depending on their genetic background and the 

conditions they are maintained in221–223, but we were confident that 40 days was a time point of 

sufficiently advanced experimental age. 

 In S. cerevisiae, cell division is asymmetric and produces a mother and a daughter cell, 

where mother cells preferentially accumulate abnormal nucleoli while their daughter cells inherit 

normal nucleoli149,161.  Drosophila male GSCs also divide in a characteristically asymmetric 

manner, where one daughter cell remains attached to the hub and retains its stem cell identity while 

the other daughter cell is displaced away and proceeds to differentiate as a gonialblast (GB)9. The 

GSC and GB remain transiently connected via the spectrosome, marked by the Hts/Adducin-like 

protein14–16 (see Chapter 3 for more detail), and GSC-GB pairs can be readily identified reflecting 

the direct products of an asymmetric GSC division. To determine whether age-associated changes 

in GSC nucleolar morphology are reflected in their daughter cells, we performed fibrillarin 
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staining on GSC-GB pairs. With two cells (GSC and GB) and two possible nucleolar morphologies 

(normal and abnormal/fragmented), four possible GSC-GB configurations can be observed 

(Figure 4.2A-D). In newly-eclosed flies (0-1 days old), 82.5% of GSC-GB pairs were 

symmetrically normal in nucleolar morphology, decreasing to 56.8% by 40 days old (Figure 4.2A, 

E). This was mostly accounted for by an increase in GSCs with abnormal nucleoli paired with GBs 

that retained normal nucleoli, from 12.9% to 30.9% (Figure 4.2B, E). However, GBs with 

abnormal nucleoli did also increase in frequency with age, though to a lesser degree than GSCs 

(Figure 4.2C, D, E). These results demonstrate that a clear perturbation of nucleolar morphology 

occurs in GSCs with age, and appears to preferentially affect GSCs before their daughter cells.  
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Figure 4.1. Drosophila male GSCs show perturbations in nucleolar morphology with age 
(A) Graphical representation of the arrangement of Drosophila rRNA genes and the location of 
the rDNA on the sex chromosomes. (B) A model for how intra-chromatid homologous 
recombination (because GSCs spend the majority of their cell cycle in G2) can potentially result 
in endogenous copy number loss as well as generation of extrachromosomal circles. 
(C) Immunofluorescence staining in whole-mount testes for the nucleolus in GSCs, marked by 
Fibrillarin (red). DAPI (blue), Vasa (green), FasIII (white). The hub is denoted by (*). GSCs 
with representative nucleolar morphologies are outlined. Bar: 5 µm. (D) Distribution of GSC 
nucleolar morphology during aging, graphed as a percentage of total GSCs scored (n listed 
underneath time point). For purposes of statistical analysis, values within the distribution were 
retained as whole counts to compare by chi-squared test (see methods), p-values listed. 
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Figure 4.2. GSCs with fragmented nucleoli accumulate before their daughter GBs  
(A-D) Representative images of all possible nucleolar morphologies for GSC-GB pairs (dotted 
outlines), identified by the presence of the bridging spectrosome (Hts/Adducin-like, white). 
DAPI (blue), Vasa (green), FasIII (also white), Fibrillarin (red). The hub is denoted by (*). (E) 
Distribution of GSC-GB nucleolar morphologies corresponding to the categories shown in A-D, 
graphed as percentage of total GSC-GBs scored (n listed underneath time point). For purposes of 
statistical analysis, values within the distribution were retained as whole counts to compare by 
chi-squared test (see methods), p-values listed. 
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4.3.2 Nucleolar fragmentation in GSCs reflects activation of X chromosome rDNA 

 The rDNA is also referred to as the nucleolar organizer region (NOR) because it was 

originally observed that within a cell, specific chromosomal regions were always associated with 

the nucleolus90. Eventually the identity of the NORs was discovered to be the rDNA arrays97, and 

specifically the actively transcribed ones. A special type of rDNA silencing referred to as 

“nucleolar dominance” is known to occur, where entire chromosomal rDNA arrays are inactive 

and have no nucleolar organizing capability105. Typically in Drosophila melanogaster males, 

nucleolar dominance occurs where the Y chromosome rDNA is active and the X chromosome is 

inactive143,144. 

 To examine the location of the NORs relative to the nucleolus, we carried out DNA 

fluorescence in situ hybridization combined with IF staining in whole-mount testes with probes 

complementary to unique satellite repeats known to be directly adjacent to the X and Y 

chromosome rDNA (Figure 4.3A). The 1.669 satellite consists of a simple (AATAAAC)n repeat 

specific to the Y chromosome, and the 1.688 satellite consists of a 359-bp sequence repeat unique 

to the X chromosome224. In GSCs with normal nucleoli, regardless of age, we observed a tight 

association of the Y chromosome with the nucleolus, with the X chromosome freely occupying 

nuclear territory near or away from the nucleolus (Figure 4.3B). This is consistent with the 

previously-published idea that the Y chromosome rDNA exerts nucleolar dominance over the X 

chromosome, and is solely responsible for rRNA transcription and for organizing the nucleolus in 

Drosophila male cells. However, in GSCs with nucleolar fragmentation, ectopic nucleoli were 

tightly associated with the X chromosome in 46/46 GSCs from 0-1 day old flies and 46/47 GSCs 

from 40 day old flies, suggesting that in these cases the X chromosome has gained some nucleolar 

organizing activity. 
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 To directly test for rRNA transcription from the X chromosome, we genetically isolated 

the rDNA arrays from the X and Y chromosomes and identified four single nucleotide variants in 

their consensus coding and ITS sequences (see methods). From these, we generated pairs of 

fluorescently-labeled probes with all four variants and adapted a technique for detection of 

chromosome-specific rRNA in situ that we call SNP-FISH (single nucleotide polymorphism RNA 

fluorescence in situ hybridization) (Figure 4.4A). A variation of this technique has been used to 

detect SNVs from maternal versus paternal chromosomes in human cell culture225. In testes from 

X/O males that contain only the X rDNA, transcription of X rRNA is robustly detected and 

minimal cross-hybridization is observed from the probes designed to detect Y rRNA. Likewise in 

ovarioles from C(1)Dx/Y females that contain only the Y rDNA, Y rRNA is robustly detected but 

not X rRNA (Figure 4.4B). These experiments show that SNP-FISH has incredible specificity for 

detecting rRNA transcribed from the X versus Y chromosomes. 

 In order to directly assess rRNA transcription in GSCs with nucleolar fragmentation, we 

combined SNP-FISH with a fluorescent nucleolar marker, Nopp140-GFP, that co-localizes with 

fibrillarin and is possibly involved in pre-rRNA transcription or processing181,226. We found that 

in GSCs with normal nucleolar morphology as determined by Nopp140-GFP, the only detectable 

rRNA was from the Y chromosome. However in GSCs with fragmented nucleoli, one Nopp140-

GFP focus was derived from the transcription of Y rRNA while the secondary Nopp140-GFP 

focus was composed entirely of X rRNA (Figure 4.5A). This clearly shows that nucleolar 

fragmentation in GSCs reflects activation of the X chromosome rDNA, which is normally 

repressed. The percentage of GSCs with active X and Y rRNA transcription also increased with 

age in a pattern that corresponds to the observed changes in GSC nucleolar morphology (Figure 

4.5B, C). Note that GSCs with only X rRNA transcription were never observed, so for purposes 
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of statistical analysis only the categories of Y-only and XY-both transcription were considered. 

What these results show is that GSC nucleolar fragmentation reflects X rDNA activation on top 

of standard Y rDNA transcription, which occurs progressively in GSCs with age. 
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Figure 4.3. Association of ectopic nucleoli with the X chromosome 
(A) Illustration of the location of the Drosophila melanogaster rDNA arrays on the sex 
chromosomes, with the adjacent chromosome-specific satellites. (B) DNA FISH for the X and Y 
chromosome and IF staining for nucleolar morphology in whole mount testes. GSCs with normal 
nucleoli (yellow outlines) and abnormal nucleoli (white outlines). Primary and ectopic nucleoli 
in fragmented GSCs (arrowheads). DAPI (blue), Vasa (white), FasIII and Fibrillarin (green), Y 
chromosome [1.669 satellite (AATAAAC)n] (cyan), and X chromosome (1.688 satellite) (pink). 
The hub is denoted by (*).  
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Figure 4.4. SNP-FISH is highly specific for rRNA transcribed from the Y vs. X 
chromosomes 
(A) Schematic of the principle behind SNP-FISH for detecting rRNA transcripts. Shown as an 
example is a SNV in the 18S coding region of the X and Y rDNA. (B) Detection of X and Y 
rRNA using SNP-FISH in X/O and C(1)Dx/Y flies shows minimal cross-hybridization between 
probes. DAPI (blue), Y rRNA (green), X rRNA (red). Bars: 25 µm. 
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Figure 4.5. Fragmented nucleoli in GSCs reflects activation of X chromosome rDNA 
(A) SNP-FISH with Nopp140-GFP, a fluorescent marker for the nucleolus. GSC with 
fragmented nucleolus (red outline), active X rRNA transcription (arrowhead). DAPI (blue), 
Nopp140-GFP (white), Y rRNA (green), X rRNA (red). The hub is denoted by (*). Bar: 7.5 µm. 
(B) SNP-FISH in GSCs from testes of flies at 0 and 40 days. GSCs transcribing Y rRNA (yellow 
outlines), GSCs transcribing both X and Y rRNA (red outlines). DAPI (blue), Y rRNA (green), 
X rRNA (red). The hub is denoted by (*). Bars: 7.5 µm. (C) GSC rRNA transcription during 
aging. Note that X-only transcription is never observed. 
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4.3.3 Transposon activation and replication delay in GSCs with activated X rDNA 

 While X chromosome rDNA activation in GSCs is clearly an age-associated phenotype, 

the biological implication was still unclear. Furthermore, the reason for nucleolar dominance of 

the Y rDNA and repression of the X rDNA in the first place was unknown. We hypothesized that 

the preference for the Y rDNA might reflect some detrimental effect of X rDNA transcription.  

It is known that two retrotransposable elements, R1 and R2, selectively integrate into the 

rDNA227–229. While the rDNA arrays on the X and Y chromosomes are thought to be genetically 

identical, it was shown that the retrotransposable elements are eliminated more slowly from the X 

chromosome rDNA and as a result a greater fraction of the X rDNA is believed to be inserted230–

232. We confirmed in our stocks by qPCR that the rate of R1 element insertion was approximately 

ten times higher in X rDNA than the Y rDNA (Figure 4.7A). We performed RNA fluorescence in 

situ hybridization to detect expression of R1 and R2 elements in GSCs, combined with Nopp140-

GFP to determine nucleolar morphology (Figure 4.6A). GSCs with fragmented nucleoli were 

frequently found to have cytologically detectable expression of R1 and R2 retrotransposons; 

compared to GSCs with normal nucleoli, the rate of R1 and R2 expression in fragmented GSCs 

was approximately 3 and 5 times higher respectively (Figure 4.6B). These results show that X 

rDNA-activated GSCs also activate retrotransposable elements. Based on this, it is tempting to 

speculate that the nucleolar dominance of Y rDNA might reflect the preference of GSCs to first 

transcribe uninserted copies of rRNA genes found on the Y chromosome. 

 Assessing stem cell function can be broadly broken into determining their abilities to 

divide, self-renew, and differentiate. To determine whether nucleolar fragmentation/X rDNA 

activation affect the ability of GSCs to divide, we pulsed testes ex vivo with EdU to assess S-phase 

index. EdU is a thymidine analog incorporated into newly-replicated DNA233,234 and, depending 
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on the length and beginning/end of the pulse relative to the total length of S-phase in a cell, can 

reflect the portions of the cell’s genome that were successfully replicated during the pulse (see 

methods). An interesting observation was that during S-phase in GSCs, the heterochromatin, 

marked by H3K9 dimethylation, clusters around the nucleolus. Because of this discrete 

organization during replication and since our EdU pulse was significantly shorter than the duration 

of S-phase, the completion of distinct phases of euchromatin and heterochromatin replication could 

be observed (Figure 4.6C). It is generally accepted that euchromatin is replicated during early S-

phase and the genomic heterochromatin, including the inactive rDNA, is replicated during late S-

phase235–237. Thus a temporal order of genome replication in GSCs can be tentatively inferred, 

where completion of early S-phase euchromatin replication is reflected by a lack of EdU on the 

H3K9 dimethyl (H3K9me2 EdU-), late S-phase heterochromatin replication completion is 

reflected by presence of EdU only on the H3K9 dimethyl (H3K9me2 EdU+), and the successful 

transition between early and late S-phase is seen in GSCs where the entire nucleus is EdU-positive 

(All EdU+).  In GSCs with fragmented nucleoli, an accumulation of GSCs was observed where 

euchromatin replication was occurring but heterochromatin replication had not begun (Figure 

4.6D).  This suggests that in GSCs that display nucleolar fragmentation and X rDNA activation, 

an underlying event is causing either an extension of euchromatin replication or a significant delay 

in the initiation of heterochromatin replication. From these data it is difficult to determine what 

that insult is, but it does suggest the occurrence of large-scale genomic changes that affect the 

timing of replication. One possible link is that the rDNA has been shown to influence global 

chromatin states across the genome, with rDNA deletion resulting in loss of heterochromatin-

mediated gene silencing at distant loci183. Thus it is conceivable that what we observe as alterations 
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in genome replication in X rDNA-activated GSCs reflects rDNA disruption that affect the balance 

between heterochromatin and euchromatin in the nucleus.  
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Figure 4.6. Transposon activation and replication delay in GSCs with activated X rDNA 
(A) Detection of R2 retrotransposon expression by RNA FISH. GSC with fragmented nucleolus 
(dotted outline), R2 transcript (arrow). DAPI (blue), Nopp140-GFP (green), R2 (red). The hub is 
noted by the (*). (B) R1 and R2 retrotransposon activation in GSCs with normal and fragmented 
nucleoli (Mean ± SD, p-value * ≤0.05 t-test). (C) EdU staining can visualize the completion of 
early and late S-phase in GSCs. EdU (white), Vasa (blue), Fibrillarin and FasIII (red), H3K9 
dimethyl (green). (D) Distribution of time within S-phase in GSCs with normal and fragmented 
nucleoli (Mean ± SD, p-value * ≤0.05 t-test). 
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4.3.4 rRNA gene copy number is lost in germ cells during aging 

 In Drosophila, individual rRNA genes that are inserted with R1/R2 elements are typically 

repressed when there are an excess number of functional gene copies, but it is thought that if the 

uninserted gene copies are somehow unable to produce sufficient rRNA, the R1/R2 inserted copies 

must be activated238. It has been extensively shown in yeast that stability of the rDNA is 

compromised during aging, with increased rates of recombination that likely produces loss of 

rDNA on the endogenous chromosome as well as extrachromosomal rDNA circles120,121,145. As a 

result, rDNA instability can manifest as variation in gene copy number and rDNA array size. In 

yeast, it was shown by pulsed field gel electrophoresis that chromosome XII size varied greatly 

between old mothers and young daughters, the size variation of which is mostly due to changes in 

the length of the rDNA array present on that chromosome160. Thus, we hypothesized that similar 

rDNA instability may occur in GSCs during aging, and that activation of the normally-repressed 

X rDNA is a compensatory response to this instability in the active rDNA. 

 First, we again genetically isolated the X and Y chromosome to compare their rDNA 

arrays. Using a previously published qPCR-based method for quantifying repetitive sequences and 

rRNA gene copy number182,184, we found that the distribution of the rRNA genes was comparable 

between the X and Y chromosomes, as expected (Figure 4.7A). The Y chromosome contains a 

slightly higher relative copy number of rRNA genes. An approximately 10x greater rate of R1 

element insertion in the X rDNA was also observed, consistent with previous reports230,231. 

Surprisingly, we found an unequal distribution in the 240-bp intergenic spacer (240-IGS) that is in 

between the individual rRNA genes within the rDNA array. As a control for whether successful 

isolation of the sex chromosomes had occurred, we used the 359-bp repeating 1.688 satellite which 
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is present only on the X chromosome and in small quantities on the compound X used to isolate 

the Y chromosome224. 

 A significant reduction in rRNA gene copy number was observed by qPCR when 

comparing whole testes genomic DNA from 0-1 day and 40 day old flies (Figure 4.7B). This copy 

number loss was observed across all the mature rRNA genes encoded for in the 45S cistron, 

suggesting that the loss of rDNA in germ cells occurs in whole gene units rather than selectively 

in certain segments. Interestingly, the copy number of R1 and R2 retrotransposable elements was 

not seen to decrease with age, suggesting that the rDNA copy number loss primarily occurs in 

uninserted, actively-transcribed rRNA genes (Figure 4.7B). While this quantification data was 

from bulk germ cells, we attempted to improve our resolution by measuring relative rDNA quantity 

on the Y and X chromosomes from individual germ cells. Using DNA FISH on chromosome 

spreads from mitotic spermatogonia and meiotic spermatocytes (identified based on chromosome 

condensation patterns), we were able to clearly distinguish the rDNA arrays from the Y versus the 

X chromosome (Figure 4.7C). Quantification of fluorescence signal (see methods) revealed that 

at 0 days, the ratio of Y:X 18S rDNA was 1.38 ± 0.35 but this ratio dropped to 0.70 ± 0.25 by 40 

days (Figure 4.7D). The Ybb- chromosome, a variant Y chromosome with a known partial rDNA 

deletion, was crossed with our X chromosome to serve as a positive control (mean Ybb-:X rDNA 

ratio 0.46 ± 0.08). Signal intensity for the 240-IGS was also quantified, and at 0 days showed a 

Y:X ratio of 2.83 ± 0.63 (Figure 4.7E), a result that corresponded remarkably well to the 

quantification by qPCR (Figure 4.7A). Unfortunately, we were only capable of achieving single 

cell rDNA quantification in spermatogonia, and not their progenitor GSCs. 

 These data demonstrate a remarkable loss of rRNA gene copy number in Drosophila male 

germ cells during aging, and specifically reduction of Y chromosome rDNA can be seen in 
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individual spermatogonia. In addition, we see that this loss likely involves only the rRNA gene 

copies that are not inserted by R1 or R2 elements. Thus, we propose that the age-associated 

activation of X rDNA in GSCs likely represents an attempt to compensate for the loss of functional 

rDNA on the Y chromosome due to rDNA instability in the active array. 
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Figure 4.7. rRNA gene copy number is lost in germ cells during aging 
(A) qPCR comparing features of the X and Y chromosome rDNA arrays. Mean ± SD. (B) rRNA 
gene copy number quantification by qPCR from 0 day and 40 day old testes (Mean ± SD, p-
value * ≤0.05 t-test). (C) Chromosome spreads from mitotic spermatogonia. X chromosome 
(yellow outline), Y chromosome (cyan outline). DAPI (white), 18S rDNA (red), 240-bp IGS 
(green), (AATAAAC)n (blue). Bar: 2.5 µm. (D) Relative Y:X signal intensity for the 18S rDNA. 
Mean ± SD, t-test. (E) Relative Y:X signal intensity for the 240-bp IGS. Mean ± SD, t-test. 
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4.3.5 GSC nucleolar morphology and rDNA loss is heritable 

If gametogenesis is completed unimpaired, then large-scale changes in genomic rDNA 

content in germ cells during aging should be inherited in the next generation. To test this, we aged 

flies until they were 40 days old and allowed them to mate, collecting their progeny (the new F1 

generation, derived from old parents) (Figure 4.8A). qPCR on testes genomic DNA collected from 

newly-eclosed F1 flies showed a significant reduction in the copy number of mature rRNA genes 

encoded for in the 45S cistron when compared to newly-eclosed flies from the previous P0 

generation (Figure 4.8B). The number of R1 and R2-inserted gene copies was not reduced. When 

comparing the 0 day old F1 rDNA content to the 40 day old P0 which were their parents, there was 

no significant difference. This suggests that the bulk germ cells that experience reduction of rDNA 

copy number in old flies complete gametogenesis, and this copy number reduction is heritable. 

Nucleolar morphology in F1 GSCs at 0 days is also perturbed, with only 59.1% of GSCs 

displaying normal nucleolar morphology (Figure 4.8C). Compared to P0 GSCs at 0 days (89.1% 

normal) this is a significant four-fold increase in GSCs with abnormal nucleolar morphology at 

the same age. However, distribution of GSC nucleolar morphologies in newly-eclosed F1 and their 

40 day old parents was nearly identical. X rRNA transcription in P0 and F1 GSCs by SNP-FISH 

recapitulated what was seen by nucleolar morphology (Figure 4.8D). Surprisingly though, as F1 

flies were aged, their GSCs underwent an unexpected recovery of nucleolar morphology between 

0 and 10 days before starting to worsen again (Figure 4.8E). By 40 days, nucleolar morphology 

in F1 GSCs is comparable to their appearance at 0 days (p = 0.599). These results show that GSC 

nucleolar morphology and rDNA copy number in germ cells are both heritable, and F1 progeny 

from 40 day old parents resemble their parents in both reduced rDNA quantity and perturbed GSC 

nucleolar morphology and X rDNA activation.  
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Figure 4.8. GSC nucleolar morphology and rRNA gene copy loss is heritable 
(A) Scheme for aging of flies and collection of F1 progeny from old parents. (B) rDNA 
quantification by qPCR in 0 day P0, 40 day P0, and 0 day F1. Mean ± SD, * ≤ 0.05, t-test. (C) 
GSC nucleolar morphology in newly-eclosed F1 flies is comparable to that of old P0. Chi-squared 
test, * ≤ 0.05. (D) rRNA transcription by SNP-FISH. Mean ± SD, * ≤0.05, t-test. (E) Distribution 
of F1 GSC nucleolar morphology during aging, graphed as a percentage of total GSCs scored (n 
listed underneath time point). For purposes of statistical analysis, values within the distribution 
were retained as whole counts to compare by chi-squared test (see methods), p-values listed. 
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4.4 Discussion 

 Here we show at both the single cell and whole tissue level that rDNA loss occurs in 

Drosophila male germ cells during aging. To the best of our knowledge, this is the first time such 

changes have been shown to occur, and provides the first direct evidence for a role for rDNA 

instability during aging in a multicellular organism.  

 In germline stem cells, we showed that nucleolar fragmentation occurs during aging like it 

does in yeast. However the nature of this nucleolar fragmentation seems to be inherently different, 

reflecting activation of dormant nucleolar organizers on the X chromosome rDNA rather than the 

formation of extrachromosomal rDNA, which is thought to underlie fragmentation in yeast. It is 

possible that extrachromosomal circles of rDNA are also “looped out” in GSCs, but it is currently 

impossible to specifically collect enough GSCs for biochemical verification. In addition, any 

experiments involving GSCs are technically limited to those that maintain the testis tissue 

architecture, which is necessary for identifying GSCs from their daughter cells. However, we 

imagine that the fundamental cause of nucleolar fragmentation is likely still the same: the inherent 

instability of the tandem repetitive rDNA array. 

 Our data suggests that this rDNA instability is primarily occurring with the Y chromosome 

rDNA, as the ratio of Y:X 18S rDNA drops significantly in spermatogonia with age and reflects 

the loss in total rRNA gene copy number in bulk germ cells. However, why the Y chromosome 

rDNA is affected moreso than the X chromosome is an unanswered question. The rDNA is known 

to be a difficult genomic region to replicate, owing to its repetitive nature and high rate of 

transcription. Collisions between the replication and transcription machinery can result in DNA 

double strand breaks and chromosome instability241. In yeast, a replication fork block protein, 

Fob1, exists to ensure that rDNA replication is unidirectional and in the same direction as 
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transcription to minimize the likelihood of these collisions occurring108,242,243. However, no Fob1 

homolog appears to exist in Drosophila and it is unknown whether alternative methods of 

protecting against replication-transcription conflicts have evolved. Therefore, it is conceivable that 

the preferential loss of Y rDNA is linked to the fact that it is the actively transcribed array in 

Drosophila, opening it up to potential replication-transcription conflicts during S-phase. Thus we 

can imagine a “use it and lose it” scenario when it comes to rDNA in GSCs and germ cells with 

age. Also, since the number of genes with inserted R1 and R2 retrotransposable elements does not 

decrease while the total rRNA gene copies do, that means the relative fraction of inserted genes 

increases with age, which is likely to have important implications. 

 While we have shown that large-scale changes in rDNA quantity occur in germ cells during 

aging and corresponds to alterations in rRNA transcription, it is possible that existing rDNA is 

being modified or controlled epigenetically as well. In fact, it is known that silencing of individual 

rRNA genes in Drosophila is epigenetically controlled by a combination of heterochromatin-

mediated repression and RNA interference129. Though it is unclear whether individual rRNA gene 

silencing and chromosome-wide repression of rDNA (nucleolar dominance) are established using 

the same mechanisms, it is almost certain that activation of the X rDNA during aging involves 

changes in its epigenetic state. While we propose that the impetus for these epigenetic changes is 

a reduction in functional rDNA on the Y chromosome, it is also possible that X rDNA activation 

simply reflects a global loss of constitutive heterochromatin that has been observed in 

aging/senescent cells, including in pericentromeric satellite DNA similar to the types of sequences 

that flank the rDNA244–246. Whether activation of the X rDNA is selectively carried out or simply 

a byproduct of global changes to chromatin structure during aging is a question that requires further 

study. 
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 A fascinating and unexpected discovery was the apparent recovery in nucleolar 

morphology in GSCs from F1 flies that start with a reduced quantity of rDNA (Figure 4.8E). What 

that suggests is that the activated X rDNA is re-repressed in GSCs, and it is tempting to speculate 

that this is because at least partial recovery of the Y rDNA has occurred. In fact, amplification of 

deficient rDNA arrays has been observed to occur in the pre-meiotic population of the Drosophila 

male germline from classical genetics studies247–249. More specifically, the mechanism of this 

rDNA amplification has been thought to be unequal mitotic sister chromatid exchange249, which 

is the exact mode by which rRNA gene copy number is increased in S. cerevesiae110–113,250. Thus 

it is conceivable that rDNA magnification and unequal sister chromatid exchange is occurring at 

the level of the GSC. In fact, our lab has previously shown that GSCs selectively retain one sister 

chromatid of the X and Y chromosomes during cell division251, and it is possible the choice of 

which sister chromatid is retained has to do with the rDNA. The asymmetry in nucleolar 

morphology between GSCs and GBs is certainly suggestive of asymmetric segregation of rDNA 

quantity/rDNA stability between the two (Figure 4.2). However, single-cell rDNA quantification 

must be achieved in GSCs and GBs before definitive conclusions can be drawn. 

 The unique genomic organization and structure of the rDNA has been remarkably 

conserved between eukaryotes, but these unique features are also known to present challenges and 

are a notoriously fragile chromosomal site252. The changes that occur in the rDNA in yeast during 

aging due to this fragility have been well-documented, and now we present evidence for similar 

dynamicity in the rDNA of Drosophila male germline stem cells and germ cells, suggesting that 

the role that rDNA instability plays during replicative aging may have been conserved as well. 

This has an important implication for organismal aging of multicellular organisms, where some of 

the longest-lived and mitotically-capable cells are tissue stem cells. Perturbations in nucleolar 
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morphology, decondensation of rDNA foci, and accumulation of double strand break markers 

within nucleoli were observed in old hematopoietic stem cells from mice253. In human peripheral 

white blood cells, which are derived from HSCs, wide variation in rDNA copy number was 

observed within individuals218. Thus we speculate that rDNA instability during aging might occur 

in adult tissue stem cells from any multicellular organism that has organized its rRNA genes into 

tandem arrays. It awaits future studies to determine whether this rDNA instability is a direct cause 

of cellular senescence like it is in yeast, and contributes to organismal aging.  
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Chapter 5 

Conclusions and Future Directions 

 The results described in this dissertation provide insights into germ cell biology from two 

very different viewpoints. The first is a role for germ cell connectivity in sensitizing the germline 

to DNA damage, allowing for sharing of a death-promoting signal between members of an 

interconnected germ cell cyst when a cell is damaged. This result offers that two broadly observed 

but unexplained features of germ cells in most organisms, interconnected germ cells and a greater 

sensitivity to DNA damage in the germline than the soma, may actually provide reasons for one 

another. This idea assigns a new function for why such robust conservation of connectivity has 

occurred, and explains it in a way that potentially applies to all sexes instead of just in females that 

use oocyte nursing. The way in which this question was conceived revolves around the idea that if 

something is conserved (germ cell connectivity), why is it conserved in the first place? 

The second insight contained in this dissertation is that the rDNA is a dynamic genomic 

element in Drosophila germ cells, experiencing changes in transcription, chromosome-wide 

silencing, and genomic quantity during aging. rDNA instability had been well-documented in 

replicative aging in yeast, but had never been thoroughly explored in multicellular organisms. My 

work suggests that rDNA instability may be a conserved feature of replicative aging in eukaryotes, 

with particular relevance to stem cell aging. In this case, evolution was used as a hint to frame our 

question: if one thing is conserved (the genomic organization of the rDNA in eukaryotes), then are 
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the consequences of it also conserved (rDNA instability)? Or have alternative ways to compensate 

evolved? 

The studies described in this dissertation have provided insight into what happens to the 

Drosophila male germline in response to various insults, like DNA damage and aging. More 

broadly, though, they are based on conserved phenomenon across eukaryotic species and therefore 

have implications for more than just Drosophila. At the same time, there are many questions left 

to be answered that can be addressed in the experimental system. In this chapter, I will outline 

what I see as outstanding questions stemming from this work and important opportunities for 

future studies. 

 

5.1 Identification of proteins trafficked between germ cells 

 As briefly described in Chapter 1.2.2, germ cell connectivity likely serves many functions 

beyond oocyte nursing. The propagation of a death-promoting signal via the fusome in response 

to DNA damage is an example of a previously unidentified role for connectivity, but the other 

functions that connectivity provide have yet to be elucidated. At the same time, propagation of 

death between interconnected germ cells also illustrates another intriguing subject for future study: 

determining what is and is not transmitted between connected germ cells, and through what means. 

 I showed in Chapter 3 that propagation of the death-promoting signal between connected 

germ cells is achieved through the fusome, and that the presence of ring canals alone (the physical 

openings/bridges between the germ cells) was insufficient to mediate synchronized all-or-none 

death. This is consistent with reports of how the fusome facilitates cell cycle synchronization 

within a cyst in the Drosophila ovary, sharing cell cycle regulators71. Because cytoplasmic 

connections in the form of ring canals are insufficient to allow for cell cycle synchronization or 
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all-or-none death, these data suggest that the fusome not only supports germ cell connectivity, but 

may actually increase the efficiency of sharing of the signals it does allow through. On the other 

hand, the fusome runs through the openings provided by the ring canals and likely also acts as a 

selective barrier; organelles like mitochondria and centrosomes from nurse cells cannot migrate 

into the developing oocyte until the fusome disintegrates75,76. These examples highlight the need 

for further studies to determine what is and is not shared between interconnected germ cells, and 

what is specifically allowed by the fusome versus ring canals. Determining what is communicated 

between germ cells will also provide us hints as to what other purposes germ cell connectivity 

serve. 

 The advantage of the Drosophila system is that germline-specific components of the 

fusome and ring canals exist, like the Ovhts protein produced from the hu-li tai shao gene which 

is cleaved to Hts-Fus/Hts-RC (see Chapter 2). While expression of hu-li tai shao can be found in 

muscle, central nervous, and other tissues of the adult fly, Ovhts is restricted to the ovary254,255. 

Several studies of other proteins in somatic tissues have identified Hts/Adducin (not the Ovhts 

isoform) as an interacting partner by mass spectrometry and biochemical methods256,257, but there 

has been no systematic study looking for Hts-interactors in the germline that could identify 

candidate proteins that associate with the fusome. The Drosophila ovary would be an ideal system 

to do this in, because the fusome (and Hts-Fus) is only present in the germarium and mitotic 

cystocytes, while Hts-RC on ring canals is the only hts gene product in later egg chambers. 

However, many proteins that localize to the fusome have been seen to do in a cell-cycle dependent 

manner; cyclin A accumulates on the fusome in the cystocytes during G271 and the centrosomes 

and mitotic spindles orient towards the fusome in spermatogonia specifically during metaphase258. 

These examples simply illustrate the need to confirm spatial and temporal localization of potential 
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fusome and ring canal interacting proteins following identification by large-scale methods. The 

possibility also exists that some fusome/ring canal-associated proteins may differ between males 

and females, and almost certainly between developmental stages during gametogenesis. However, 

the reagents needed to carry out these studies are excellent and readily-available. 

 By and large, the most definitive experiments showing whether a protein is trafficked 

between germ cells have not been done. These would certainly involve live tissue imaging of germ 

cell cysts in conjunction with fluorescently-labeled or photoactivatably-tagged candidate proteins. 

The principle has been demonstrated to work in the Drosophila ovary, where PA-GFP was shown 

to be able to diffuse to sister cells within a stem cell cyst under conditions of delayed abscission 

between the GSC and the cystoblast72,259.  

 All of these lines of study would provide pieces toward attempting to answer a more 

fundamental question: if germ cell connectivity exists to share things between germ cells, why 

must it be shared in the first place? Or in other words, what is it about synchronization (of cell 

cycle, meiotic entry, etc.) or equalization (levels of certain proteins, signaling) amongst a cyst that 

is needed so badly that promotes the conservation of germ cell connectivity? Germ cell cysts form 

almost universally during the pre-meiotic stages of gametogenesis, and connectivity is maintained 

through meiosis in males but broken down in females186. Based on this, it is not unreasonable to 

suspect that the fundamentally “germ cell” reason for the existence of syncytial germ cell cysts is 

in these pre-meiotic stages, and its maintenance through male meiosis is reflective of a male-

specific need (like haploid genome complementation in spermatids77) rather than a universal role 

for all germ cells. An interesting idea to think about is that, while all germ cells within a cyst are 

thought to be genetically identical, genomic content is only one of many factors that could 

contribute to a gamete’s overall fitness. Likewise, each round of genome replication that occurs 
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during germ cell expansion presents an opportunity for the genetic equivalence of cyst members 

to diverge. Remaining connected during the proliferative mitotic phases of gametogenesis could 

ensure that no sister cell gets too far ahead of the others, essentially leveling the playing field 

amongst siblings. This could reduce the ability of a spontaneous germline mutation to gain an early 

competitive advantage and propagate. Furthermore, because fusome mutants in Drosophila and 

TEX14 mutant male mice are all sterile41,260, it implies that germ cell connectivity plays a role in 

normal gametogenesis that is completely indispensable. Regardless, why germ cells are connected 

to one another remains an interesting question and provides direction for future studies. 

 

5.2 Outstanding questions regarding the rDNA in Drosophila male germ cells 

 I showed in Chapter 4 that nucleolar fragmentation and X rDNA activation occurs in 

germline stem cells during aging, and that rDNA quantity is decreased in differentiating germ 

cells. Because of that, I speculated that rDNA instability and loss was occurring in aging GSCs, 

which is the underlying reason why X rDNA was being activated in GSCs and total rDNA quantity 

was seen to decrease in spermatogonia. However, at least two direct questions arise from the results 

presented and offer evident topics to be addressed in the immediate future. 

 The first question that arises is the classic discrimination between correlation and 

causation; a decrease in Y chromosome rDNA is observed in germ cells and I speculated but did 

not definitively show that this is why the X chromosome rDNA is activated in GSCs, likely as a 

compensatory response to this loss. Thus, to close the gap in this scientific logic, it becomes 

important to show that by reducing Y rDNA quantity, X rDNA activation and nucleolar 

fragmentation can be directly induced in GSCs. In S. cerevisiae, homologous recombination is 

much more efficient than in complex eukaryotes and is capable of readily inserting reporters and 
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other elements into the rDNA149,250,261, which could potentially allow for inducible deletions. 

However, in Drosophila it is much harder to selectively target a repetitive region for specific 

insertions or deletions, which has been one longstanding obstacle to studying the biology of rDNA 

and other repetitive genomic elements. However, one of the most powerful aspects of Drosophila 

as a system is its assembly of genetic tools, and historical collection of Y chromosomes with 

complete or partial rDNA deletions have been previously generated by ionizing radiation-induced 

deletions and rearrangements. Experiments are already underway to introduce the same Y rDNA 

partial deletion chromosome as in Figure 4.7 to our wild-type X chromosome to see if nucleolar 

fragmentation and X rDNA activation in GSCs is increased. Thus a Y chromosome with specific 

disruption of rDNA reminiscent of what is seen in old germ cells can be introduced into a young 

background, while eliminating other possible extrinsic contributors like age-associated decline in 

niche signaling262,263 or intrinsic cellular changes264. These experiments are already underway. 

However, the ideal scenario to test for the role of rDNA instability in aging of GSCs would involve 

being able to inducibly delete or destabilize rDNA in clones in the testis, creating a mosaic tissue 

where nucleolar fragmentation and X rDNA activation can be compared as well as other metrics 

of “stem cell function” like division and maintenance with age. 

  The second question that arises from the observation of large-scale rDNA changes in germ 

cells during aging is what the transgenerational outcomes are. In yeast, activation of the meiotic 

program has been shown to renew replicative lifespan in aging mother cells, thought to be caused 

by rDNA instability161. However, we observed that this may not be the case in Drosophila males, 

since progeny produced from old parents still have reduced rDNA quantity and unusual rRNA 

transcription patterns (Figure 4.8). However, nucleolar morphology is seen to transiently recover 

in the same F1 implying re-repression of the X rDNA, which begs the question to be asked why 
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this is the case. The logical conclusion would be that the Y chromosome rDNA is reestablishing 

its nucleolar dominance because it has corrected whatever insult (i.e. decrease of functional rRNA 

gene numbers) that induced the change during aging of its parents. 

 As mentioned in Chapter 4.4, this brings to mind the historically-observed phenomenon of 

“rDNA magnification” in Drosophila stocks that were originally deficient for rDNA but were 

found to recover within one or two generations. Combining this historical observation with the 

data presented in this dissertation, it is not farfetched to suspect that this “rDNA magnification” 

may be occurring at the level of the stem cell, and is reflected in the F1 recovery of nucleolar 

morphology. We can imagine three possible scenarios for how this could happen in the GSC: 1) 

chromosomal exchange between the X and Y chromosome rDNA arrays 2) unequal sister 

chromatid exchange among the Y chromosome, resulting in rDNA expansion in one chromatid 

and contraction in the other, or 3) expansion of the Y rDNA array during genome replication. 

Unequal sister chromatid exchange and inheritance of GSC rDNA array length would suggest the 

stem cell has a mechanism for selectively identifying sister chromatids with more or less rDNA, 

and is interesting to think about when taking into consideration the finding that GSCs non-

randomly segregate sister chromatids from the X and Y chromosomes251. In yeast, substantial 

evidence exists to support unequal sister chromatid exchange as the primary mode of increasing 

rRNA gene copy number113,114,250, but at the same time there is only one chromosomal rDNA array 

in yeast so interchromosomal exchange is not an option. In humans, frequent recombination 

between chromosomal arrays is suspected to occur between the five acrocentromeric chromosomes 

based on sequence similarity in the regions flanking the rDNA93. If interchromosomal exchange is 

happening between the X and Y rDNA in Drosophila GSCs, that presents an intriguing scenario 

where homogenization is occurring between the two arrays over evolutionary time. In Drosophila 
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melanogaster, one of the few known differences between the X and Y rDNA is the heavier 

transposable element burden within the X rDNA230–232 . What would the effect of equalizing 

transposon burden be on genomic stability? Alternatively, what if interchromosomal 

recombination between the X and Y chromosomes at the rDNA are a normal and necessary 

occurrence in Drosophila, and rDNA magnification is simply a side effect? For example, it is 

known that the rDNA (and specifically the intergenic spacer region) is needed for proper meiotic 

pairing of the sex chromosomes239,240. Regular exchange between rDNA arrays could ensure that 

these loci retain adequate similarity. Studies designed to address the nature of GSC nucleolar 

morphology recovery promise to reveal insights into the nature of rDNA array plasticity. And 

because flies are multicellular organisms with rDNA arrays on multiple chromosomes, findings 

would more readily extrapolate to higher eukaryotes like humans and mice than previous research 

in yeast.  

 

5.3 Lessons from rDNA instability: A paradigm for other repetitive genomic 

regions? 

 It has been well-established that the rDNA in S. cerevisiae is a fragile genomic site owing 

to its tandem repetitive nature, and likely exacerbated by its high transcriptional activity. However, 

the S. cerevisiae genome is also relatively devoid of repetitive DNA other than the rDNA, with all 

other repetitive sequences accounting for approximately 1% of the genome, with all of it appearing 

to be dispensable265. On the other hand, it has been known for decades that the bulk of the genomes 

in most higher eukaryotes consists of repetitive DNA266, which is thought to account for the 

majority of the diversity in eukaryotic genome sizes267. For example, over half of the human 

genome is believed to be comprised of various kinds of repetitive DNA sequences268,269. The 
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smallest autosome, chromosome 21, consists of annotated sequences on only 26.2% of its length, 

and the rest of it (including the rDNA on the acrocentric short arm) is considered “genomic dark 

matter”270. If the tandem repetitive nature of the rDNA is largely responsible for its genomic 

instability, it stands to reason that other repetitive regions of the genome could face similar 

challenges. 

 In Drosophila, the rDNA accounts for approximately 2-3% of the genome. On the other 

hand, satellite DNAs (simple sequence tandem repeats) have been estimated to comprise over 20% 

of the genome, with many unique satellites present on multiple chromosome224,271. While most of 

the repetitive DNA is thought to be located in constitutive heterochromatin, transcription of many 

of these satellites has been observed to occur in embryos by microarray, with some of them being 

transcribed at extremely high levels272. Thus, the two primary factors thought to contribute to the 

instability of the rDNA, its repetitive nature and transcriptional activity, may be shared by other 

repetitive elements in the genome. While the work in this dissertation has specifically focused on 

the rDNA because of the body of literature in yeast and its clearly-established cell biological role 

(organization of the nucleolus), the possibility should be considered that age-related destabilization 

of repeats could occur on a genome-wide scale. In fact, accumulation of extrachromosomal circles 

of satellite DNAs have been observed in Drosophila156, suggesting that intrachromosomal 

recombination (Figure 4.1B) can readily occur. This is analogous to the formation of ERCs in 

yeast. If age-related destabilization of repetitive regions extends beyond the rDNA, it is 

conceivable these changes may have been previously missed or neglected due to the lack of a well-

established readout of function (like nucleolar organization for the rDNA). On the other hand, if 

age-related destabilization does not apply to other genomic repeats, it points towards the 
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uniqueness of the role the rDNA plays in aging. But then the question that begs to be asked is what 

is it about the rDNA that confers its unique role in aging? 

 An aspect of the rDNA that is beginning to become clearer is that the coding rRNA genes 

are not the only residents of the rDNA, and that a plethora of functional non-coding elements exist 

within the array itself. In yeast, a bidirectional non-coding promoter exists within the rRNA coding 

sequence whose transcription is thought to dissociate cohesin molecules holding sister chromatids 

together, allowing for recombination between sister chromatids at the rDNA array114,273. In  mice, 

a non-coding RNA derived from the rRNA promoter is believed to recruit DNMT3b and NoRC to 

actively silence other genes274,275. A similar promoter-associated non-coding transcript has been 

found to be transcribed in a subset of human cancer cells276. Possibly related, it has been observed 

that large scale rearrangements and recombination events occurring at the rDNA is a feature of 

many solid tumors122. However, little is known about potential functional non-coding elements in 

the human rDNA outside of the rRNA genes. If it becomes apparent that the rDNA occupies a 

special position relative to other repetitive DNA in its age-related destabilization, the key to 

understanding why may be derived from the discovery of more of the unique elements that exist 

within the rDNA. 

 In summary, much remains to be understood about the repetitive genome in higher 

eukaryotes. Studies in S. cerevisiae have focused on rDNA instability, but most eukaryotic 

organisms contain other types of repetitive DNA that are many times more abundant. Based on 

our understanding of what contributes to rDNA instability during aging, other repetitive portions 

of the genome should suffer similar insults. The results presented in this dissertation on rDNA 

instability in germline stem cells and germ cells during aging could present a paradigm for genomic 
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stability that has implications beyond the rDNA itself. Proper investigation could determine if the 

rDNA’s role in aging is unique, or if principles extend to the entirety of the repeatome. 
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