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Abstract 

Pancreatic cancer is one of the deadliest human malignancies, and is expected 

to become the second leading cause of cancer related death in the United States by the 

year 2020. Standard chemotherapy approaches have proven ineffective in the treatment 

of pancreatic cancer, highlighting the need to understand the basic biology of the 

disease in order to identify future therapeutic targets. In humans, pancreatic tumors 

almost universally display activating mutations in the oncogene Kras, which are 

considered to be the initiating factor in carcinogenesis. Pancreatic cancer is also 

associated with later mutations in tumor suppressors, most commonly point mutations in 

the gene p53. This information from human tumors can be used to model pancreatic 

cancer in mice, where expression of oncogenic Kras recapitulates the precursor lesions 

seen in humans. Addition of tumor suppressor mutations leads to mice that reliably 

mimic all the stages of human disease. The overarching goal of this work is to use 

existing mouse models, as well as develop new ones, in order to further our 

understanding of the initiation and progression of pancreatic cancer.  

In the first part of this dissertation, I focus on the initiation of pancreatic cancer 

and the role that the epigenetic regulator Bmi1 plays in this process. Using a mouse 

model of early pancreatic carcinogenesis, I show that pancreatic expression of Bmi1 is 

required for the development of precancerous lesions, and therefore the initiation of 

pancreatic cancer. I showed that Bmi1 knockdown in pancreatic cancer cell lines 
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increased levels of reactive oxygen species (ROS), indicating that the requirement of 

Bmi1 expression during pancreatic cancer initiation may be due to its control of cellular 

ROS levels. Next, I explore the mechanism for Bmi1 requirement in pancreatic cancer 

initiation. I find that when Bmi1 is knocked down in pancreatic cancer cells, HIF1a is 

also down, suggesting that Bmi1 may be regulating HIF1a. In vivo, pancreatic HIF1a 

stabilization recovers the lack of precancerous lesion phenotype seen in animals lacking 

Bmi1 expression, indicating that the reason for Bmi1 requirement in pancreatic cancer 

initiation is through its regulation of HIF1a levels.  

In the next sections of this dissertation work, I develop new mouse models that 

will help in the understanding of the basic biology of pancreatic cancer. First, I analyze 

HIF2a stabilization in the murine pancreas. Pancreatic HIF2a stabilization results in a 

phenotype that resembles human chronic pancreatitis, including inflammatory infiltrates 

and extensive fibrosis. In the context of oncogenic Kras expression, HIF2a stabilization 

leads to the development of large cystic lesions that resemble human mucinous cystic 

neoplasm (MCN), a less common precancerous lesion of pancreatic cancer. This work 

provides new mouse models of chronic pancreatitis and MCN, which can be of use in 

the future to study these conditions. Next, I create a new mouse model to study the role 

of tumor suppressor mutations in pancreatic cancer. Previously, only the most common 

point mutation in the tumor suppressor p53 has been modeled in mice, however in 

human pancreatic tumors a spectrum of p53 mutations is observed. In this work I create 

a new model that uses the second most common point mutation in p53, as well as 

models the sequence of events that occur in human tumors.  I use these mice to 
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determine that mutant p53 expression promotes formation of precancerous lesions, but 

it is not necessary for the growth of established tumors.  

Taken together, this dissertation work utilizes both existing and newly developed 

mouse models in order to provide new insights into the initiation and progression of 

pancreatic cancer. Overall, the use of mouse models provides an important scientific 

basis for experimentation that will eventually lead to new therapeutic options for 

pancreatic cancer, a truly devastating disease.
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Chapter One 

Introduction 

 

Pancreatic cancer overview 

Pancreatic cancer is one of the deadliest malignancies, with a five-year-survival 

rate of just 8% (SEER Database – www.seer.cancer.gov). It is expected to become the 

second leading cause of cancer-related death in the United States by the year 2020 

(Rahib, Smith et al. 2014). Few specific symptoms of pancreatic cancer exist, and 

therefore most patients present with metastatic and unresectable lesions (Gillen, 

Schuster et al. 2010, Teague, Lim et al. 2015). Unfortunately, even those patients that 

undergo potentially curative resection have a median survival of less than two years 

(Katz, Wang et al. 2009). Standard chemotherapy approaches have proven 

unsuccessful in the treatment of pancreatic cancer (Hidalgo 2010), highlighting the need 

to understand the underlying biology of the disease in order to identify potential new 

therapeutic options. 

 

Pancreatic cancer pathology 

 Pancreatic ductal adenocarcinoma, or PDAC, the most common pancreatic 

malignancy, arises from the exocrine pancreas and makes up the vast majority of 

pancreatic malignancies. The pancreas epithelium includes an exocrine and an 

endocrine component. The exocrine pancreas is comprised of acinar, centroacinar and 
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ductal cells. Acinar cells synthesize and secrete inactive precursors of digestive 

enzymes and ductal cells serve as a conduit for the passage of these enzymes into the 

intestine. The cell of origin of human PDAC is not confirmed, but animal studies suggest 

that PDAC arises primarily from acinar cells (Means, Meszoely et al. 2005, Morris, Cano 

et al. 2010, Kopp, von Figura et al. 2012), although other cells of origin have been 

identified (Gidekel Friedlander, Chu et al. 2009, Bailey, Hendley et al. 2016). PDAC 

proceeds through a series of well-defined histological stages, beginning with precursor 

lesions, termed pancreatic intraepithelial neoplasia (PanIN) and eventually progressing 

to frank carcinoma (Hruban, Goggins et al. 2000). PanINs are separated into low grade 

and high-grade lesions, a classification that corresponds with increased levels of celluar 

atypia (Hruban, Goggins et al. 2000). While PanINs are thought to be the most common 

precursor lesion to PDAC, other types of lesions do progress to carcinoma, although the 

underlying biology of those lesions is less well understood. These other types of 

precursors include intraductal papillary mucinous neoplasm (IPMN) and mucinous cystic 

neoplasm (MCN) (Hruban, Maitra et al. 2007, Yonezawa, Higashi et al. 2008).   

 

Genetics of pancreatic cancer 

 The histologic changes observed during the progression of pancreatic cancer are 

accompanied by genetic changes (Amundadottir, Kraft et al. 2009, Petersen, 

Amundadottir et al. 2010, Wu, Miao et al. 2011). The most common of these are 

activating mutations in the oncogene Kras, which are found in over 90% of human 

tumors (Smit, Boot et al. 1988, Pellegata, Sessa et al. 1994, Moskaluk, Hruban et al. 

1997, Jones, Zhang et al. 2008). Additionally, mutations in tumor suppressors, such as 
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p53, Ink4a/ARF, and BRCA2 are frequently observed (DiGiuseppe, Hruban et al. 1994, 

Wilentz, Geradts et al. 1998, Goggins, Hruban et al. 2000, Wilentz, Iacobuzio-Donahue 

et al. 2000). Kras is a small protein GTPase and a component of many cell signal 

transduction pathways (Khosravi-Far and Der 1994, Pylayeva-Gupta, Grabocka et al. 

2011). In normal cells, Kras activation is brief, and the protein predominantly exists in 

the inactive GDP bound form. Kras mutations, most commonly the G12D mutation, 

result in a Kras protein that favors the active GTP-bound state (Hezel, Kimmelman et al. 

2006). Therefore, mutant Kras can activate downstream effector pathways, including 

both MAP kinase and AKT signaling (Hezel, Kimmelman et al. 2006). It is the 

inappropriate activation of these cellular processes downstream of Kras that are thought 

to be the driving force behind the initiation of pancreatic cancer. 

While Kras activation is often the first mutation, progression of pancreatic cancer 

is associated with later mutations in tumor suppressor genes, including p53, Ink4a/ARF 

and BRCA2 (Moskaluk, Hruban et al. 1997, Wilentz, Geradts et al. 1998, Goggins, 

Hruban et al. 2000, Wilentz, Iacobuzio-Donahue et al. 2000, Jones, Zhang et al. 2008). 

Mutations in the tumor suppressor gene p53 are common, being present in up to 75% of 

human pancreatic tumors (Bailey, Chang et al. 2016). TP53 is a protein that plays a role 

in normal cells by protecting organs from carcinogenesis, being activated in response to 

cell stress in order to direct cells toward either DNA repair or apoptosis (Vousden and 

Lu 2002). Mutations in p53 are found commonly in all human cancers (Hollstein, 

Sidransky et al. 1991, Muller and Vousden 2013). These mutations disrupt the normal 

protective functions of wild type p53, leading to inappropriate cell growth and survival 

(Oren and Rotter 2010, Muller and Vousden 2014). Missense p53 mutations are the 



	 4	

most common type of alteration, with a spectrum of missense mutations observed in 

human pancreatic tumors (Jones, Zhang et al. 2008). Importantly, p53 missense 

mutations in human cancer fall into two main categories – those that contain changes in 

the amino acids that normally directly contact DNA (contact mutants, typified by the 

R273H mutation) and those that more generally disrupt the structure of the p53 protein 

(structural mutations, like R175H) (Freed-Pastor and Prives 2012). Both contact 

mutants and structural mutants are prominent in human pancreatic cancer (Bailey, 

Chang et al. 2016).  In general, TP53 missense mutants act as a dominant negative on 

the wild type, suppressing its function (de Vries, Flores et al. 2002, Willis, Jung et al. 

2004). Additionally, certain p53 mutants can have gain of function roles, activating 

downstream targets beyond those typically activated by the wild type version (Oren and 

Rotter 2010). Tp53 gain of function can be achieved through interaction with different 

groups of binding partners or transcriptional activation of unique downstream target 

genes. Many of these binding proteins and target genes were identified in the context of 

particular p53 mutations, indicating that different p53 mutations result in unique 

downstream effects (Freed-Pastor and Prives 2012). 

 

Pancreatic cancer subtypes 

 Several research groups have further classified genetic alterations in PDAC 

using human tumor data, leading to the definition of several subtypes of pancreatic 

cancer (Collisson, Sadanandam et al. 2011, Moffitt, Marayati et al. 2015, Waddell, Pajic 

et al. 2015, Bailey, Chang et al. 2016, Makohon-Moore, Zhang et al. 2017). Each of 

these groups uses different criteria, and so define different numbers of subtypes. 
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However, each group uses the common method of a genetic signature in the tumors to 

define each of the subtypes. Importantly, differences in underlying tumor biology and 

responses to therapy are still poorly defined. Given the advent of personalized medicine 

techniques, understanding the differences that arise in human pancreatic cancer with 

different mutational profiles will be important in the development of future treatments. 

However, without understanding the underlying biology of pancreatic cancer, the ease 

of development and testing of potential therapeutics is limited. Therefore, the 

development of proper mouse models of disease is paramount for the advancement of 

future treatment options.  

 

Modeling pancreatic cancer in mice 

KrasG12D in pancreatic cancer initiation 

 Mouse models of pancreatic cancer have been an essential tool in the study of 

the initiation and progression of PDAC. The well-defined genetics of human pancreatic 

tumors have provided the basis for modeling the disease in mice. Mouse models of 

pancreatic cancer that dependably recapitulate the human disease rely on pancreas-

specific expression of oncogenic Kras, most commonly the KrasG12D allele. The most 

widely used of the models expressing oncogenic Kras, termed KC, uses a pancreas-

specific cre recombinase (either Ptf1aCre/+ or Pdx1-Cre) to drive expression of an LSL-

KrasG12D cassette (Aguirre, Bardeesy et al. 2003, Hingorani, Petricoin et al. 2003). This 

results in animals that express KrasG12D specifically in the pancreas, starting at 

embryonic stages. Despite KrasG12D expression during embryogenesis, KC animals are 

born with a normal pancreas and PanINs develop over time. PanIN formation and 
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progression in KC mice can be accelerated by the induction of pancreatitis (Guerra, 

Schuhmacher et al. 2007, Carriere, Young et al. 2009, Morris, Cano et al. 2010). 

Pancreatitis is induced in animals by administration of the cholecystokinin orthologue 

caerulein, which results in acinar cell necrosis and a fibroinflammatory response. In KC 

animals, caerulein-induced damage synergizes with the expression of oncogenic Kras, 

driving the rapid development of PanIN formation. Consequently, caerulein treated KC 

mice will typically have pancreata in which normal tissue is entirely replaced by PanIN 

lesions three weeks after pancreatitis (Guerra, Schuhmacher et al. 2007, Morris, Cano 

et al. 2010). KC animals, with or without pancreatitis treatment, reliably develop PanINs 

over time, however progression to frank carcinoma is infrequent.   

 

KrasG12D in pancreatic cancer maintenance 

 While KC mice are useful to study the initiation of PanINs in mice, direct 

investigation of the mechanism of oncogenic Kras action in the pancreas is difficult due 

to the fact that KC mice permanently express oncogenic Kras starting from embryonic 

stages. iKras* mice express the KrasG12D mutation in an inducible and reversible 

manner, and are thus suitable to study the role of this oncogene in tumor maintenance 

(Collins, Bednar et al. 2012). iKras mice are generated using a pancreas-specific Cre 

recombinase (Ptf1aCre/+ or Pdx1-Cre) that drives excision of a stop cassette from the 

Rosa26-LSL-rtTa allele, thus activating the expression of rtTa. rtTa, a bacterial 

transcription factor, is active in presence of doxycycline (dox) and inactive in absence of 

the antibiotic (Belteki, Haigh et al. 2005). The third transgene in the iKras* model is 

TetO- KrasG12D. Thus, in the presence of dox, mutant Kras expression is induced at will. 
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In contrast, removal of dox reverses Kras expression. Similar to KC animals, the 

induction of KrasG12D expression (by dox administration) during embryonic stages 

results in the extensive formation of PanINs in iKras animals. KrasG12D expression in 

iKras animals can be induced in adult mice, more closely mimicking the mutation timing 

observed in human pancreatic tumors. When KrasG12D is activated in adult animals 

using dox, there is a long latency to PanIN development, and induction of pancreatitis 

can accelerate and increase the penetrance of these lesions (Collins, Bednar et al. 

2012). Once dox is removed from iKras mice, turning off expression of KrasG12D, PanINs 

regress and the pancreas is replaced by normal appearing acinar cells after two weeks. 

While the development of KC animals showed that KrasG12D expression is sufficient to 

promote PanIN formation, iKras mice demonstrated that continued KrasG12D expression 

is sufficient for PanIN initiation and necessary for their maintenance.   

 

Using KrasG12D mouse models to research pancreatic cancer initiation 

 Oncogenic Kras expression is frequently combined with pancreas-specific 

deletion of a gene of interest in order to identify the importance of that gene during 

PanIN formation (Zhang, Morris et al. 2013, Wu, Carpenter et al. 2014, Bednar, 

Schofield et al. 2015). For example, KC mice with pancreas specific deletion of the 

Polycomb group protein Bmi1 do not develop PanINs, demonstrating the necessity for 

Bmi1 expression for pancreatic cancer initiation (Bednar, Schofield et al. 2015). These 

types of studies have allowed numerous scientific insights into the biology of the early 

stages of pancreatic cancer. Depending on the gene of interest, a diverse array of 

cancer related processes can be explored using mice that express oncogenic Kras, 
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including the roles of hypoxia (Criscimanna, Duan et al. 2013, Lee, Spata et al. 2016), 

epigenetics (Mallen-St Clair, Soydaner-Azeloglu et al. 2012, Bednar, Schofield et al. 

2015) and many other mechanistic aspects of disease development.   

 

Tumor suppressor mutations in pancreatic cancer mouse models 

 While the KC and iKras mice have been vital in establishing the role of oncogenic 

KrasG12D mutation in precancerous lesion initiation and maintenance, neither of these 

models reliably progress to frank carcinoma. Similar to the genetic changes seen in 

human tumors, the addition of a tumor suppressor mutation to the KC or iKras animals 

leads to the formation of pancreatic cancer. Several tumor suppressor mutations have 

been used in the mice, guided by the spectrum of mutations seen in human cancer, 

including p53, Ink4a/ARF and BRCA2 (Aguirre, Bardeesy et al. 2003, Hingorani, Wang 

et al. 2005, Skoulidis, Cassidy et al. 2010). In the most extensively studied of these 

models, Kras mutation is combined with alterations in the tumor suppressor p53, termed 

KPC (Hingorani, Wang et al. 2005). KPC animals reliably develop pancreatic tumors 

with invasive cancer, similar to what is seen in human patients, and so are commonly 

used to explore the biology of the disease as well as in drug treatment experiments. 

Multiple versions of the KPC mouse model exist, using different alterations in p53. 

Some KPC animals express a floxed version of the p53 gene (KP(fl)C), resulting in a 

null allele of p53 in the pancreas, along with oncogenic Kras (Morton, Timpson et al. 

2010). These mice develop pancreatic tumors quickly, within 4-5 months of life, but 

show few metastatic lesions, due to the rate at which they succumb to the disease. 

KP(fl)C animals are frequently used in drug studies given that they quickly and reliably 
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develop pancreatic tumors. However, null mutations are rarely seen in human 

pancreatic tumors, potentially limiting the applicability of the KP(fl)C system to human 

tumor biology.  

Point mutations in p53 are more common in human pancreatic cancer than null 

alleles (Bailey, Chang et al. 2016). Additionally, these p53 point mutants can have gain-

of-function effects (Olive, Tuveson et al. 2004, Oren and Rotter 2010), making it 

important to study these mutations instead of only null alleles of p53. The most common 

p53 point mutant in human pancreatic tumors is R175H, which corresponds to R172H in 

mice (Olivier, Eeles et al. 2002). KPC mice that express oncogenic Kras along with 

p53R172H reliably develop pancreatic tumors with metastatic lesions particularly in the 

liver. 

 KPC animals are a vital tool for studying the cellular processes involved in the 

later stages of cancer development. For example, epithelial-to-mesenchymal transition 

(EMT) and metastasis occur late in cancer progression (Kalluri and Weinberg 2009), 

and given that most human pancreatic cancer patients have metastatic lesions at the 

time of diagnosis, understanding the process of metastasis is vital for cancer treatment. 

KPC animals reliably develop metastases in a similar pattern to human tumors, and so 

serve as a tool for studying this step in cancer progression. In fact, cell lines made from 

KPC mice were used to show that mutant p53 helps drive metastasis of pancreatic 

cancer through expression of PDGFRβ (Weissmueller, Manchado et al. 2014). In 

addition to their utility for EMT and metastasis studies, KPC animals are useful in 

designing experiments to test new therapeutic options for pancreatic cancer. KPC 

animals reliably develop metastatic tumors similar to those seen in humans, over a 
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relatively short time frame. Therefore, treatment studies can easily be designed that 

may help mirror what reaction to the drugs would be seen in human tumors.  

 Overall, the development and use of KC, iKras and KPC mice has been 

instrumental in beginning to understand and treat pancreatic cancer in humans 

(Westphalen and Olive 2012, Gopinathan, Morton et al. 2015). These mice recapitulate 

genetic lesions seen in human pancreatic tumors and serve as a tool to probe their 

underlying biology.  

 

Emerging mouse models in pancreatic cancer 

Using multiple recombinase systems to target separate cellular compartments 

 There are intrinsic shortcomings in using embryonic transcription factor driven 

cre-mediated recombination to study carcinogenesis. New mouse model technologies 

help circumvent these shortcomings and expand the scope of animal model research in 

pancreatic cancer. One such example is a mouse model that expresses oncogenic Kras 

driven by flp recombinase instead of the more widely used cre recombinase. In these 

animals, termed KF, transgenic flp recombinase under the control of the Pdx1 promoter 

drives excision of the stop cassette from an FSF-KrasG12D allele, resulting in pancreas 

specific expression of KrasG12D. Importantly, cre recombinase can be used for other 

functions in the model. For example, mast cells are present in the pancreas during 

PanIN initiation, but their function there is unknown. KF animals were combined with a 

cre-driven system to delete the entire mast cell lineage. Histologic analysis at 9 months 

of age showed similar PanIN burden in KF animals with or without mast cells, indicating 

that mast cell presence is dispensable for pancreatic cancer initiation and progression 
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(Schonhuber, Seidler et al. 2014). KF mice can be used in this manner to investigate 

the functional role of genes during pancreatic cancer development in non-epithelial 

compartments.  

 

Methods to temporally regulate the expression of multiple transgenes 

 In addition to targeting separate compartments, KF animals have the advantage 

of allowing cre-mediated gene editing after tumor formation by the use of a CreER 

system. In this system, cre recombinase is only active in the presence of tamoxifen 

treatment, which can allow deletion or expression of floxed genes after PanINs have 

already been formed in KF mice. Thus, cre-mediated gene ablation can occur in a 

temporal fashion instead of simultaneously with KrasG12D activation, as required in KC 

animals. This allows study of the role of genes at later time points during pancreatic 

cancer development, which is likely to be more analogous to human tumor biology. As 

an example of this system, Pdpk1 expression was known to be required for PanIN 

initiation (Eser, Reiff et al. 2013), however its role in later tumor stages remained 

unknown. To answer this question, KF mice were allowed to develop PanINs, and then 

the CreER system was used to delete Pdpk1 specifically in the pancreas, including in 

these established lesions. At 9 months of age, animals with Pdpk1 deletion lacked 

PanINs, while KF controls had pancreata almost entirely replaced by lesions, 

demonstrating that continued Pdpk1 expression is required after PanIN initiation. 

Treatment of human pancreatic cancer begins after tumor establishment, making these 

studies more analogous to human pancreatic caner treatment than genetic deletion in 

traditional mouse models (KC or KPC) (Schonhuber, Seidler et al. 2014).  
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Tumor suppressors in multiple recombinase systems 

KF animals can be combined with a null allele of p53, creating KPF mice (Lee, 

Moding et al. 2012, Schonhuber, Seidler et al. 2014). Importantly, KPF mice have cre 

recombinase available for use in other capacities than expression of KrasG12D and p53 

null. This confers similar advantages to KF mice, such as analysis of multiple cell 

compartments or temporal regulation, but in later tumor stages. This allows study of 

aspects of carcinogenesis that are unique to later tumor stages, such as EMT and 

metastasis. Given the complexity of pancreatic cancer biology, this flexibility in mouse 

models is an exciting new development that will allow many new types of experiments 

that were impossible with the use of only cre recombinase.       

 

CRISPR/Cas9 in mouse models of pancreatic cancer 

 Other biological technologies are becoming useful in pancreatic cancer mouse 

model research (Sanchez-Rivera and Jacks 2015). CRISPR/Cas9 is a system that 

creates specific, permanent changes in cellular DNA (Doudna and Charpentier 2014). 

The CRISPR/Cas9 system can make changes in any region of DNA, which can be 

designed to produce many types of effects, including deletions, mutations, or 

overexpression. There are several ways that the CRISPR/Cas9 system can be useful in 

pancreatic cancer research. First, the DNA of mouse embryos can be modified by this 

technology (Wang, Yang et al. 2013, Yang, Wang et al. 2013). Wild type embryos can 

be engineered to express both oncogenic Kras and mutant p53, creating KPC animals. 

Given that these can be created from wild type embryos, large numbers of KPC mice 
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can be created at once without using a traditional breeding system. This allows the set 

up of large experiments using many mice at once that would be difficult to perform with 

typical mouse breeding. Using larger numbers of animals in research studies improves 

the reliability of research findings.  

 Given that CRISPR/Cas9 can edit any cellular DNA, pancreatic cancer mouse 

models can also be developed from adult wild type mice (Chiou, Winters et al. 2015, 

Mazur, Herner et al. 2015, Maresch, Mueller et al. 2016). Mutations that lead to or 

modify pancreatic cancer can be engineered into the adult pancreas through a delivery 

method in order to initiate the development of pancreatic cancer. One delivery method 

is injection directly into the pancreas, with subsequent development of a tumor at that 

site. Again, this method may be superior to traditional breeding schemes because it 

allows the use of wild type mice, making it easier to obtain the correct animals. 

Additionally, traditional mouse models (KC and KPC) induce mutations into the 

embryonic pancreas, a situation that is not analogous to a human tumor. Tumor 

initiation in the adult murine pancreas may be more similar to human tumor biology, and 

the study of how a tumor develops in an adult mouse may be a more close parallel.  

 Third, CRISPR/Cas9 is used to create specific, desired mutations and deletions. 

So far, the number of mutations created in typical pancreatic cancer mouse model 

research is quite small compared to the breadth of mutations observed in human 

pancreatic tumors (Bailey, Chang et al. 2016). Given that CRISPR/Cas9 is a fast way to 

induce mutation in mice, it could be used to recapitulate the spectrum of mutations seen 

in humans. Given the rise of personalized medicine, it is possible that CRISPR/Cas9 

could eventually be used to develop mouse models of the tumors of specific human 
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patients, according to their mutation profile. These mouse models could then be used to 

determine which treatment options were most appropriate for that specific tumor, and to 

eventually be used in that patient. There is a vast array of combinations of mutations 

that are seen in human pancreatic tumors, and the development of CRISPR/Cas9 

raises the possibility that in the near future many more of these types of tumors could 

be studied and potentially treated more specifically than has been previously possible.  

 

Dissertation Overview 

Bmi1 and HIF1α in pancreatic cancer 

 In this dissertation, I use existing mouse models as well as develop new tools in 

order to further understand the mechanisms the underlie the initiation and progression 

of pancreatic cancer. In Chapter Two, which has been published (Bednar, Schofield et 

al. 2015), I explore the role of the epigenetic regulator and known oncogene Bmi1 in the 

initiation of pancreatic cancer. I generated KC mice with pancreas specific deletion of 

Bmi1. These mice fail to develop PanINs, indicating an absolute requirement for Bmi1 in 

pancreatic cancer initiation. I endeavored to investigate the mechanism underlying the 

requirement for Bmi1. For this purpose, I followed a candidate approach. The 

requirement for Bmi1 expression in the initiation of pancreatic cancer was not due to the 

known ability of Bmi1 to regulate the tumor suppressors Ink4a and ARF. I did determine 

that Bmi1 is required for the regulation of reactive oxygen species (ROS) levels in 

pancreatic cancer cells. Notably, regulation of ROS accumulation is a prerequisite for 

PanIN formation (DeNicola, Karreth et al. 2011). Confusingly, however, none of the 

“classic” regulators of intracellular ROS accumulation, namely Nrf2 and Keap1, were 
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affected by Bmi1 inactivation. In Chapter Three, I deepened my investigation into the 

interplay between Bmi1, ROS accumulation and pancreatic carcinogenesis. I found that 

Bmi1 expression regulates levels of HIF1α and HIF2α in pancreatic cancer cells. 

Although their best-known function is the regulation of response to hypoxia, HIF factors 

are also important to modulate ROS accumulation (Galanis, Pappa et al. 2008). I thus 

tested whether expression of an oxygen stable form of HIF1α in the pancreas could 

rescue Kras-driven carcinogenesis in absence of Bmi1. KC mice lacking Bmi1 do not 

develop PanINs, but the additional expression of HIF1α in these animals recovers 

PanIN formation. This recovery of lesion formation suggests that Bmi1 regulation of 

HIF1α in the precancerous pancreas may be the reason for the requirement for Bmi1 

expression during pancreatic cancer initiation. 

 

HIF2α stabilization as a mouse model for chronic pancreatitis and MCN 

 In Chapter Four, I focus on the role of HIF2α in both the normal and neoplastic 

pancreas. I find that expression of an oxygen stable form of HIF2α specifically in the 

pancreas causes a phenotype that resembles human chronic pancreatitis. Mice 

expressing HIF2α display pancreata with increased fibrosis, inflammation and ductal 

structures. There are very few mouse models of chronic pancreatitis that closely 

resemble the human disease, and so the finding that pancreata with HIF2α stabilization 

recreate this phenotype could lead to its use as a tool to study pancreatitis. Given that 

chronic pancreatitis is a risk factor for development of pancreatic cancer, I also studied 

pancreatic HIF2α stabilization in the context of mutant Kras expression. Mice with 

KrasG12D and HIF2α expression do not develop PanINs, but instead display a phenotype 
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resembling human mucinous cystic neoplasm (MCN). MCN is a pancreatic cystic lesion 

that, while less common than PanINs, also serves as a precursor lesion to pancreatic 

cancer. MCN biology is much less well understood than that of PanINs, and so mice 

that model MCN are important in studying this type of pancreatic lesion. Overall, in 

Chapter Four I show that HIF2α stabilization in the pancreas causes chronic pancreatitis 

and leads to MCN in the context of mutant Kras expression. Both of these conditions 

serve as new mouse models for human diseases that are currently lacking viable 

research tools.  

 

Creating a mouse model of mutant p53R270H expression in pancreatic cancer 

 In Chapter Five, I use what we know about human pancreatic cancer genetics to 

create a new model of the disease. While KPC mice recapitulate the stages of human 

pancreatic cancer, they only employ one specific p53 mutation. However, in humans a 

spectrum of p53 mutations is observed. Here I created a model, termed KCip53, which 

expresses a p53 mutation that is common in human pancreatic cancer but has not been 

studied in mice. Additionally, in KCip53 animals I can turn on and off p53 mutation at 

will, allowing study specifically of mutant p53 action in pancreatic cancer initiation and 

progression. Using these mice, I find differential roles for mutant p53 during 

carcinogenesis, with mutant p53 expression promoting pancreatic cancer initiation but 

being dispensable for established tumor growth.  

Finally, in Chapter Six I discuss further questions and directions that are raised 

by this work. I will discuss how this work fits into the greater field of pancreatic cancer 

mouse modeling and research, and what further questions this dissertation work raises. 
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This work will create opportunities to help move the understanding of pancreatic cancer 

forward, which will be highlighted in the final chapter.  
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Chapter Two 

 

Bmi1 is required for the initiation of pancreatic cancer through an Ink4a-

independent mechanism 

 

Abstract 

 Epigenetic dysregulation is involved in the initiation and progression of many 

epithelial cancers. BMI1, a component of the Polycomb protein family, plays a key role 

in these processes by controlling the histone ubiquitination and long-term repression of 

multiple genomic loci. BMI1 has previously been implicated in pancreatic homeostasis 

and the function of pancreatic cancer stem cells. However, no work has yet addressed 

its role in the early stages of pancreatic cancer development. Here, we show that BMI1 

is required for the initiation of murine pancreatic neoplasia using a novel conditional 

knockout of Bmi1 in combination with a KrasG12D-driven pancreatic cancer mouse 

model. We also demonstrate that the requirement for Bmi1 in pancreatic carcinogenesis 

is independent of the Ink4a/Arf locus and at least partially mediated by dysregulation of 

reactive oxygen species (ROS). Our data provide new evidence of the importance of 

this epigenetic regulator in the genesis of pancreatic cancer. 

 

Introduction 
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Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal malignancies, 

with a 5-year survival rate of 6%. The National Cancer Institute estimated that 45,220 

patients would be diagnosed with the disease in 2013 in the United States and 38,460 

would die from it (SEER database). Although systemic chemotherapeutic options exist, 

these have limited efficacy in pancreatic cancer. The development of high-fidelity 

genetically engineered mouse models of PDA that recapitulate the developmental and 

pathologic characteristics of the human disease has led to remarkable insights into the 

biology of pancreatic cancer over the last decade (Aguirre, Bardeesy et al. 2003, 

Hingorani, Petricoin et al. 2003, Hingorani, Wang et al. 2005, Guerra, Schuhmacher et 

al. 2007). Complementary systems biology and genomic approaches using human 

samples have begun to shed some light on the mutational complement of human PDA 

and the pathways potentially involved in pancreatic tumorigenesis (Jones, Zhang et al. 

2008). Together with genetic mutations, epigenetic dysregulation has also been 

implicated in the pathogenesis of multiple hematopoietic and epithelial cancers 

(Berdasco and Esteller 2010). However, less is known about the contribution of 

epigenetic regulators such as the Polycomb repressive complexes (PRCs) in pancreatic 

cancer initiation and progression. 

B-cell-specific Moloney murine leukemia virus insertion site 1 (BMI1) belongs to 

the Polycomb group (PcG) of proteins that comprise the Polycomb repressive complex 

1 (PRC1) (Schuettengruber, Chourrout et al. 2007) and was originally identified as a 

cooperating oncogene with c-Myc in the Em-myc transgenic mouse model of B-cell 

lymphoma (van Lohuizen, Verbeek et al. 1991). Bmi1 regulates murine embryonic 

fibroblast proliferation and senescence by suppressing the expression of the tumor 
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suppressor genes p16Ink4a and p19Arf, which are both encoded by the Ink4a locus 

(Jacobs, Kieboom et al. 1999). Bmi1-/- mice have severe neurologic and hematopoietic 

developmental defects (van der Lugt, Domen et al. 1994), which are at least partially 

reversed when the BMI1-deficient mice are bred onto an Ink4a/Arf- null background 

(Jacobs, Kieboom et al. 1999). Derepression of p16Ink4a and p19Arf each individually 

contribute to the phenotypes observed in Bmi-1 deficient mice (Bruggeman, Valk-

Lingbeek et al. 2005, Molofsky, He et al. 2005). More recently, BMI1 has been 

implicated in the regulation of reactive oxygen species (ROS) accumulation. Deletion of 

Bmi1 induces the upregulation of several genes involved in redox homeostasis leading 

to increased ROS generation, DNA oxidative damage, and activation of the DNA 

damage response pathways (Liu, Cao et al. 2009). Deletion of Chk2, a mediator of the 

DNA damage response, in BMI1-deficient mice leads to increased thymocyte survival 

and differentiation, improved hematopoietic progenitor function, partial rescue of 

cerebellar development, and overall increased survival (Liu, Cao et al. 2009). Notably, 

all of these effects appear to be independent of the upregulation of Ink4a/Arf. 

BMI1 plays a key role in pancreatic biology through the regulation of both 

pancreatic β cell proliferation and acinar regeneration following injury. Bmi1 null mice 

demonstrate impaired glucose tolerance and decreased β cell mass due to the 

increased expression of the Ink4a/Arf locus (Dhawan, Tschen et al. 2009). In addition, 

Bmi1-expressing cells are found in murine pancreatic islets and acini, where BMI1 is 

required for proper regeneration after pancreatitis or toxin-mediated cellular ablation 

(Dhawan, Tschen et al. 2009, Sangiorgi and Capecchi 2009, Fukuda, Morris et al. 

2012). Importantly, BMI1 is highly expressed in human and murine PDA compared to 
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normal pancreatic tissues (Tateishi, Ohta et al. 2006, Martinez-Romero, Rooman et al. 

2009, Song, Tao et al. 2010, Proctor, Waghray et al. 2013) and its overexpression in 

tumors correlates with poorer prognosis in pancreatic cancer patients (Song, Tao et al. 

2010). Recent work has also implicated Bmi1 in the maintenance of the cancer stem 

cell compartment in human PDA (Proctor, Waghray et al. 2013). Despite these results, it 

is still unknown if BMI1 plays a role in the initiation of pancreatic cancer. 

 Here, we utilize the Pdx1-Cre;KrasLSL-G12D (KC) murine model of pancreatic 

cancer (Hingorani, Petricoin et al. 2003) in combination with pancreas-specific 

inactivation of Bmi1 (Bmi1fl/fl) to generate Pdx1-Cre;KrasLSL-G12D/+;Bmi1fl/fl (KC;Bmi1fl/fl) 

mice. We demonstrate that BMI1 is required for murine pancreatic cancer initiation. This 

process is Ink4a/Arf-independent, as the lack of carcinogenesis is not rescued in 

KC;Bmi1fl/fl;Ink4a-/- mice, which lack the Ink4a/Arf locus. We also show that inhibition of 

Bmi1 in primary mouse pancreatic cancer cells leads to the upregulation of ROS. Our 

data suggest that BMI1 regulates the protection from excess ROS in pancreatic cells 

undergoing neoplastic transformation, which is required for their survival and 

subsequent pancreatic neoplasia development (DeNicola, Karreth et al. 2011). 

 

Materials and Methods 

Mice Mice were housed in the specific pathogen free facilities of the University of 

Michigan Comprehensive Cancer Center. This study was approved by the University of 

Michigan University Committee on Use and Care of Animals (UCUCA). The Pdx1-Cre, 

p48-Cre, KrasLSL-G12D, Trp53R172H/+, Ink4a-/-, R26lacZ, and Bmi1CreER/+ strains have been 

previously described (Hingorani, Petricoin et al. 2003, Hingorani, Wang et al. 2005, 
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Bardeesy, Aguirre et al. 2006, Sangiorgi and Capecchi 2009). Bmi1fl/fl mice were 

developed in the Morrison lab at the University of Michigan (Mich, Signer et al. 2014). 

All mice were genotyped by PCR analysis. Caerulein and tamoxifen were administered 

as previously described (Sangiorgi and Capecchi 2009, Collins, Bednar et al. 2012). 

Caerulein was intraperitoneally injected at a dose of 75ug/kg hourly for 8 hours, two 

days in a row, for a total of 16 injections. Tamoxifen was administered by intraperitoneal 

injection at a dose of 9mg per 40g body weight, in 3 to 6 week-old mice. 

 

β-galactosidase Staining We stained cryosections of mouse pancreas or intestine for 

β-galactosidase activity as previously described(Collins, Bednar et al. 2012). 

 

Immunohistochemistry Histology and immunohistochemistry were performed as 

previously described (Collins, Bednar et al. 2012). Images were acquired with an 

Olympus BX-51 microscope, Olympus DP71 digital camera, and DP Controller 

software. For histopathological analysis, a minimum of 50 acinar or ductal clusters were 

scored from at least 3 independent animals per experimental condition. Five non-

overlapping, high power images were selected from each slide, and each cluster was 

classified based on the classification consensus (Hruban, Rustgi et al. 2006). A list of 

antibodies used is included in Table 3.1. 

 

Western Blotting Western blots were performed as previously described (Collins, 

Bednar et al. 2012). Antibodies used for Western blotting are described in 

Supplementary Table 1. 
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Quantitative RT-PCR RNA extraction, cDNA preparation, and quantative PCR was 

performed as previously described (Collins, Bednar et al. 2012). RNA was isolated 

using RNeasy protect (QIAGEN) according to the manufacturer’s instructions. Reverse 

transcription reactions were conducted using a High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems). Quantative PCR was performed using 1x SYBR 

Green PCR Master Mix (Applied Biosystems). The primer sequences used were: Bmi1 

F- 5’ ATGGCCGCTTGGCTCGCATT 3’, R- 5’ GATAAAAGATCCCGGAAAGAGCGGC 

3’; Ezh2  - 5’ CCCTTCCATGCAACACCCAACACA 3’, R- 5’ 

ACGCTCAGCAGTAAGAGCAGCA 3’; p16 F- 5’ TTTCGCCCAACGCCCCGAAC 3’, R- 

5’ CACCGGGCGGGAGAAGGTAGT 3’; p19 F- 5’ CACCGGAATCCTGGACCAG 3’, R- 

5’ GCAGTTCGAATCTGCACCGT 3’; Chk2 F- 5’ TGACAGTGCTTCCTGTTCACA 3’, R- 

5’ GAGCTGGACGAACCCTGATA 3’; Nrf2 F- 5’ CTCGCTGGAAAAAGAAGTG 3’, R- 5’ 

CCGTCCAGGAGTTCAGAGG 3’; ATM F-5’ GATCTGCTCATTTGCTGCCG 3’, R-5’ 

GTGTGGTGGCTGATACATTTGAT 3’; BRCA1 F-5’ 

CGAATCTGAGTCCCCTAAAGAGC 3’, R- 5’ AAGCAACTTGACCTTGGGGTAC 3’. 

Gapdh or cyclophilin was used as the housekeeping gene expression control.  These 

sequences were: Gapdh F- 5’ TTGATGGCAACAATCTCCAC 3’, R- 5’ 

CGTCCCGTAGACAAAATGGT 3’ and Cyclophilin F- 5’ 

TCACAGAATTATTCCAGGATTCATG 3’, R- 5’ TGCCGCCAGTGCCATT 3’.  

Transfection and ROS levels KC; Ink4a-/- cells (line 35) were generated in the 

Bardeesy lab from a KC;Ink4a-/- (as confirmed by PCR) mouse tumor. KPC cells (line 

8041) were isolated in the Pasca di Magliano lab from a p48Cre;LSLKrasG12D;p53R172H 

(as confirmed by PCR) mouse tumor in 2012. For authentication in Fall 2014, 
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genotyping was performed via PCR on DNA isolated from cells growing in culture to 

confirm Cre transgene expression in both cell lines (Figure 2.1). Cells were transfected 

using Lipofectamine according to the manufacturer’s instructions. Control or Bmi1 

knockdown siRNAs were purchased from Dharmacon. Cells were subjected to siRNA 

treatment for 48 hours. Hydrogen peroxide was added directly to the media at a 

concentration of 500uM for 2 hours for ROS analysis. ROS levels were measured using 

the CellROX Green reagent (Life Technologies). After exposure to CellROX Green, five 

high power, non overlapping images were taken from each slide. Fluorescence levels 

were then measured and each group was normalized to the level of the cells without 

H2O2 exposed to scrambled control siRNA. 

 

Chromatin Immunoprecipitation cells were transfected using a siRNA targeting Bmi1 

or control siRNA, 72 hours post-transfection cells were fixed using formaldehyde, lysed 

and processed for ChIP. ChIP was preformed as previously described. (Mathew, Collins 

et al. 2014) 

 

Results 

BMI1+ cells in the mouse pancreas can serve as the cell of origin for pancreatic 

cancer. 

Our first goal was to determine whether BMI1 expressing cells within the mouse 

pancreas could give rise to PanIN lesions. Initially, we set out to identify BMI1 

expression in normal pancreatic tissue. For this purpose, we crossed Bmi1-IRES-CreER 

mice, which express a tamoxifen inducible Cre knocked in to the Bmi1 locus, (Sangiorgi 
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and Capecchi 2008) with Rosa26lacZ mice, expressing beta galactosidase from the 

ubiquitous Rosa26 locus only in cells that are also expressing the Cre (Figure 2.2A) 

(Soriano 1999). Double transgenic mice (Bmi1CreER/+; R26lacZ) were orally gavaged at 3-

6 weeks of age with tamoxifen for three consecutive days to induce Cre-mediated 

recombination. We harvested the pancreata and duodenum from all mice 1 week 

following tamoxifen administration (scheme in Figure 2.2B, n=3). The vast majority of 

LacZ+ cells in the pancreas were single acinar cells, as previously described (Sangiorgi 

and Capecchi 2009) (Figure 2.2C). We also observed isolated LacZ+ cells in the 

pancreatic islets, consistent with the previously described role of BMI1 in β cell 

homeostasis (Dhawan, Tschen et al. 2009) (data not shown). In the duodenum, LacZ+ 

cells lined the mucosal epithelium extending from the crypts to the tips of the villi 

presumably originating from BMI1+ crypt stem cells, as previously described (Figure 

2.2C) (Sangiorgi and Capecchi 2008). Thus, BMI1 is expressed in a subset of 

pancreatic exocrine and endocrine cells. 

To determine whether BMI1+ cells in the pancreas can serve as cells of origin for 

pancreatic cancer, we generated Bmi1CreER/+;KrasLSL-G12D mice, where oncogenic 

KrasG12D expression can be induced specifically in Bmi1-expressing cells upon Cre 

activation (Figure 2.2D). We treated mice at 3-6 weeks of age with tamoxifen as before.  

One week later, we induced acute pancreatitis with intraperitoneal injections of the 

cholecystokinin analog caerulein, as previously described (Collins, Bednar et al. 2012).  

The pancreata were harvested 3 weeks after the induction of pancreatitis (scheme in 

Figure 2.2E, n=4). As expected, control mice had undergone tissue repair within this 

time frame with full recovery of normal pancreatic histology (data not shown). In 
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contrast, in Bmi1CreER/+;KrasLSL-G12D mice, we observed low-grade PanIN lesions, 

positive for mucin accumulation as identified by PAS staining, in a sporadic manner 

through the tissue, consistent with mosaic induction of Cre activation. The lesions were 

also positive for phosphorylated ERK (pERK) and were surrounded by fibro-

inflammatory stroma (Figure 2.2F). Therefore, our data indicates that PanIN lesions can 

arise from BMI1+ cells within the adult mouse pancreas. 

 

Bmi1 is required for pancreatic carcinogenesis. 

To address the requirement for Bmi1 in murine pancreatic neoplasia we crossed 

the Pdx1-Cre;KrasLSL-G12D/+ (KC) mouse model of pancreatic cancer (Hingorani, 

Petricoin et al. 2003) with a novel conditional knockout of Bmi1 (Bmi1fl/fl) (Mich, Signer 

et al. 2014) (Figure 2.3A) to generate Pdx1-Cre;KrasLSL-G12D/+;Bmi1fl/fl (KC; Bmi1fl/fl) 

mice. Recombination of the Bmi1 locus in the pancreas was verified by PCR of 

pancreatic genomic DNA isolated from Pdx1-Cre;Bmi1+/+, Pdx1-Cre;Bmi1fl/+, and Pdx1-

Cre;Bmi1fl/fl mice (Figure 2.4). Additionally, Bmi1 was expressed in PanINs in KC 

pancreata, but not in the pancreas of KC;Bmi1fl/fl mice (Figure 2.3B). Bmi1 expression 

was similarly observed in PanINs in Pdx1Cre;KrasLSLG12D/+;p53R172H/+ (KPC) mice, a 

model that combines Kras and p53 mutations and develops PanINs at an earlier age 

than KC mice (Figure 2.5) (Hingorani, Wang et al. 2005). To investigate PanIN 

formation, we analyzed KC;Bmi1fl/fl mice along with KC and KC;Bmifl/+ littermates at 12 

and 20 weeks after birth (n=4-8mice/genotype/timepoint). KC mice developed PanIN 

lesions with the expected progression: rare lesions were present at 12 weeks, but more 

abundant lesions were observed at 20 weeks (Figure 2.3C). KC;Bmi1fl/+ mice had 



 40 

similar PanIN development to KC animals, with a comparable number and grade of the 

lesions (Figure 2.3D). The vast majority of the lesions were classified as PanIN1A/1B 

and PanIN2 (Figure 2.3F) that presented with characteristic high proliferation index as 

measured by Ki67+ immunostaining (Figures 2.6A and 2.6B) and intracellular 

accumulation of mucin (Figure 2.3G, 2.6D and 2.6E). Strikingly, PanIN formation was 

almost completely abrogated in KC;Bmi1fl/fl mice (Figure  2.3E, 2.3F and Figures 2.6C 

and 2.6F), with a single PanIN1A observed in a single animal. These results implicate 

BMI1 as a key factor in the initiation of murine pancreatic neoplasia. 

The induction of acute pancreatitis synergizes with expression of oncogenic Kras 

to drive PanIN formation (Morris, Cano et al. 2010, Carriere, Young et al. 2011, Guerra, 

Collado et al. 2011). In the next series of experiments, we investigated whether Bmi1 

expression was required in pancreatitis-induced carcinogenesis. For this purpose, we 

induced acute pancreatitis with the cholecystokinin analog caerulein, as previously 

described (Morris, Cano et al. 2010), starting three to four weeks after birth, and 

collected the pancreatic tissues at time points ranging from 24 hours to 3 weeks later 

(n=3-10mice/genotype/timepoint, (scheme in Figure 2.7A). Wild type pancreata 

demonstrated acinar damage and acinar-ductal metaplasia, accompanied by transient 

upregulation of the MAPK signaling pathway 24 hours after pancreatitis (Figure 2.7B), 

and exhibited complete tissue recovery 3 weeks later (Figure 2.7F). Analysis of KC, 

KC;Bmi1fl/+ and KC;Bmi1fl/fl mice 24 hours after pancreatitis induction (Figures 2.7C-E) 

revealed increased acinar damage and elevated p-ERK1/2 staining, consistent with 

previous observations in mice expressing oncogenic Kras (Collins, Bednar et al. 2012). 

The prevalence of inflammatory cell infiltration and of acinar damage, and the induction 
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of phosphorylated-ERK1/2 in the acinar cells did not differ based on the Bmi1 status of 

the tissues. Thus, epithelial Bmi1 expression did not affect the early response to 

caerulein-induced pancreatitis. 

Three weeks after pancreatitis, in both KC and KC;Bmi1fl/+ mice, the pancreas 

parenchyma was largely replaced by low-grade PanIN lesions surrounded by 

desmoplastic stroma (Figures 2.7G, 2.7H, and 2.7J). In contrast, KC;Bmi1fl/fl pancreata 

presented with almost completely normal acinar and ductal architecture (Figures 2.7I 

and 2.7J). Rarely, acinar-ductal metaplasia was observed in isolated areas of a subset 

of the KC;Bmi1fl/fl mice, but frank PanINs were generally absent. These areas of acinar-

ductal metaplasia in KC;Bmi1fl/fl mice stained positive for Bmi1, indicating failure to 

recombine both alleles of Bmi1 rather than an ability to circumvent the requirement of 

Bmi1 in PanIN initiation (Figure 2.8). p-ERK1/2 levels were elevated both within the 

lesions and in the surrounding stroma of KC and KC;Bmi1fl/+ pancreata, as well as in the 

rare areas of ADM in KC;Bmi1fl/fl pancreata (Figures 2.7G-I). Thus, while the 

inflammatory response and the pancreatitis-induced tissue damage was not dependent 

on epithelial BMI1 expression, the subsequent development of PanINs required at least 

one wild type Bmi1 allele. 

 

BMI1 controls pancreatic neoplasia independently of Ink4a/ARF. 

BMI1 has been shown to repress the Ink4a/Arf locus, which encodes for the cell 

cycle regulators p16INK4A and p19ARF (Jacobs, Kieboom et al. 1999). Inactivation of p16 

expression is essential to bypass oncogenic Kras-induced senescence and thus for the 

onset of carcinogenesis (Lee and Bar-Sagi 2010, Guerra, Collado et al. 2011). Thus, we 
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considered the hypothesis that Bmi1 was required to suppress the Ink4a locus therefore 

allowing the onset of pancreatic neoplasia. We used two complementary approaches to 

address this hypothesis.   

First, we utilized primary low passage mouse pancreatic tumor cell lines derived 

from p48/Ptfa-1Cre/+;KrasLSL-G12D/+;Trp53R172H/+ (KPC mice) (Hingorani, Wang et al. 2005) 

and Pdx1Cre/+;KrasLSL-G12D/+;Ink4a-/-, which lack expression of both Ink4a and ARF, 

(KC;Ink4a-/-) (Aguirre, Bardeesy et al. 2003) to determine whether inhibition of Bmi1 

expression led to derepression of the Ink4a locus. Multiple independent cell lines were 

used for each genotype (KPC: 8041, 8206, 65671; KC; Ink4a-/-: 35, 45). We transfected 

two distinct Bmi1-specific siRNAs individually or in combination into the cell lines to 

inhibit Bmi1 expression. The siRNA treatment resulted in a  >60-80% knockdown of 

Bmi1 expression across all of the cell lines, as determined by both qPCR (Figure 2.9A) 

and Western Blot (Figure 2.9B, full blot seen in Figure 2.10). In comparison, the 

expression of Ezh2, a component of the Polycomb repressor complex 2, was not 

affected (Figure 2.9C). We then analyzed the expression of both p16Ink4a and p19Arf in 

the presence and absence of BMI1. Despite robust Bmi1 knockdown, no significant 

changes in p16/p19 expression were noted in the KPC tumor-derived cell lines (Figures 

2.9D and 2.9E). As expected, the cell lines derived from the KC;Ink4a-/- mice did not 

demonstrate any p16/p19 expression regardless of the presence or absence of Bmi1 

(Figure 2.9D and 2.9E). These results suggest that Bmi1 may exert its role in 

pancreatic neoplasia independently of its regulation of the Ink4a locus. 

Second, to determine whether the requirement for Bmi1 during the onset of 

pancreatic carcinogenesis was mediated by its ability to repress the Ink4a locus, we 
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generated KC; Bmi1fl/fl;Ink4a-/- mice. The KC;Ink4a-/-model of pancreatic cancer 

develops advanced neoplastic lesions rapidly even in the absence of pancreatitis 

(Aguirre, Bardeesy et al. 2003, Bardeesy, Aguirre et al. 2006). KC, KC;Ink4a-/-, 

KC;Bmi1fl/fl, and KC;Bmi1fl/fl;Ink4a-/-, mice were treated with caerulein to induce 

pancreatitis, and the pancreata were harvested 3 weeks later (n=3-5 

mice/genotype/timepoint). As expected, KC and KC;Ink4a-/- mice had extensive PanIN 

formation at this time point; however, neither KC;Bmi1fl/fl nor KC;Bmi1fl/fl;Ink4a-/- mice 

presented with lesions (Figure 2.9F). Since Bmi1 inactivation abrogated PanIN 

formation even in Ink4a null animals, this indicates that the requirement for BMI1 during 

the onset of pancreatic carcinogenesis is independent of its regulation of the Ink4a 

locus. 

 

BMI1 deficiency impairs the reactive oxygen species detoxification program in 

pancreatic tumor cells. 

BMI1 regulates the detoxification of reactive oxygen species (ROS) generated in 

the mitochondria and the subsequent induction of the DNA damage response (DDR) 

pathway in hematopoietic stem cells and thymocytes (Liu, Cao et al. 2009). ROS 

detoxification is an essential step during the onset of pancreatic cancer (DeNicola, 

Karreth et al. 2011). To determine whether Bmi1 was required for ROS regulation in 

pancreatic cancer cells, we measured ROS levels in mouse primary pancreatic cancer 

cells upon siRNA-mediated Bmi1 inactivation. We measured the baseline ROS levels 

and those induced by hydrogen peroxide exposure in control and Bmi1-knockdown 

cells. As before, Bmi1 expression was inhibited with high efficiency (Figure 2.11A).  At 
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baseline, before any hydrogen peroxide exposure, the control cells demonstrated a 

trend toward lower levels of ROS compared to cells with Bmi1 knockdown (Figure 

2.11B). Once the cells were exposed to 500mM H2O2, there was a significant increase 

in the production of intracellular ROS within 2 hours of the exposure (Figures 2.11B, 

2.11C, and 2.11D). Under these conditions, the Bmi1 knockdown cells accumulated a 

greater level of intracellular ROS compared to cells transfected with control siRNA.  

These results provide the first evidence that BMI1 is required for the regulation of ROS 

generation in pancreatic tumor cells. 

 Oxidative stress can induce the DNA damage response (DDR) pathway in cells 

to protect the integrity of the genome. Chk2, a DDR pathway component, is activated in 

the thymocytes of Bmi1 knockout mice (Liu, Cao et al. 2009). Furthermore, deletion of 

Chk2 rescued the defect in survival and body size in Bmi1 knockout mice. Thus, at least 

during normal organ maintenance, a key function of Bmi1 is to repress expression of 

Chk2. To determine the effect of Bmi1 loss on Chk2 expression in our system, we 

measured expression levels of Chk2, with or without the induction of ROS. Bmi1 

knockdown did not appreciably increase Chk2 expression in Bmi1 knockdown cells 

compared to control, either without or with exposure to ROS as tested by Western Blot 

(Figure 2.10) or qPCR (Figure 2.10). However, the knockdown of Bmi1 significantly 

reduced the levels of H2AK119Ub at the Chk2 locus. This shows that at the epigenetic 

level we are seeing the changes we would expect as a result of Bmi1 knock down 

(Figures 2.10C-2.10F). Similarly, we did not observe expression changes of the 

antioxidant enzyme Nrf2, in vitro or in vivo (Figure 2.12A and 2.12B), or its binding 

partner Keap1 (Figure 2.12C). Finally, we did not observe significant changes in other 
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proteins involved in the DNA damage response, including ATM and BRCA1 (Figures 

2.12D and 2.12E). Therefore, Bmi1 loss induced ROS generation but did not cause a 

subsequent induction of the DNA damage response pathway. 

 

Discussion 

Our work is the first study addressing the role of Bmi1 during pancreatic 

carcinogenesis in the context of an intact microenvironment. Our results provide the first 

direct evidence that BMI1 is required for pancreatic cancer initiation.  

We used genetically engineered mouse models of pancreatic cancer combined 

with tissue-specific inactivation of Bmi1 to study the role of BMI1 in the initiation and 

progression of pancreatic neoplasia. When Bmi1 was inactivated in the pancreas, 

neoplastic transformation did not occur in either the KC;Bmi1fl/fl or the KC;Bmi1fl/fl;Ink4a-

/- mice. Thus, BMI1 is required for the establishment and survival of KRAS-driven 

neoplastic cells and this process is independent of Bmi1 control of the Ink4a locus.  

Bmi1 requirement in the initiation of neoplasia recapitulates previous observations in a 

KRAS-driven mouse model of lung cancer (Dovey, Zacharek et al. 2008). However, in 

that case, the inhibition of lung neoplastic transformation was dependent on the 

upregulation of p19Arf from the Ink4a/ARF locus. In contrast, we find that the tumor-

promoting role of BMI1 in pancreatic cancer is independent of the status of the Ink4a 

locus. Bmi1 control of cancer initiation independent of Ink4a expression has been 

previously reported in an orthotopic transplantation model of glioma (Bruggeman, 

Hulsman et al. 2007). Therefore, BMI1 may regulate tumorigenesis differently 

depending on the tissue context, indicating the need for tissue specific studies.   
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PRCs play a key role in the regulation of multiple cancers (Sparmann and van 

Lohuizen 2006). One of the other most studied components is EZH2, a member of 

PRC2 that also plays an integral role in gene silencing (Cao, Wang et al. 2002). BMI1 

and EZH2 are classically thought to cooperate in gene silencing. However, our results 

following Bmi1 deletion are in stark contrast with the analysis of p48-Cre, KrasLSL-G12D/+ 

mice where Ezh2 is genetically inactivated (Mallen-St Clair, Soydaner-Azeloglu et al. 

2012). In the KC;Ezh2DSET mice, loss of Ezh2 led to a rapid onset of PanINs and early 

mortality by 12-16 weeks. In this model EZH2 acted at least partially through the Ink4a 

locus, which led to the inability of the acinar compartment to recover from transient 

injury. This effect was compounded by an increased inflammatory infiltrate resulting in 

additional injury and early fibrosis and neoplasia (Mallen-St Clair, Soydaner-Azeloglu et 

al. 2012). In contrast, our Bmi1 knockout mice demonstrated complete abrogation of 

pancreatic neoplasia under both caerulein-induced pancreatitis and quiescent 

conditions. These results highlight the complex roles of the different PRCs in pancreatic 

neoplasia and the need for further exploration of the epigenetic regulation mechanisms 

controlling pancreatic transformation. 

BMI1 plays a role in additional cellular processes, including the dysregulation of 

ROS generation (Liu, Cao et al. 2009). Our experiments revealed increased ROS 

generation in pancreatic cancer cells when Bmi1 expression was inhibited. However, 

ROS accumulation did not correlate with upregulation of CHK2 or other components of 

the DNA damage response pathway, suggesting that lack of BMI1 leads to significant 

oxidative stress without upregulation of the DNA damage response pathway during the 

early stages of pancreatic neoplasia. Here, BMI1 upregulation observed in early PanINs 
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may represent a protective response of transformed cells to the KRAS-driven oxidative 

stress. Interestingly, activation of a ROS detoxification program has been recently 

shown to be an essential step during the onset of pancreatic carcinogenesis (DeNicola, 

Karreth et al. 2011), and inactivation of the key ROS detoxification component Nrf2 was 

sufficient to inhibit carcinogenesis. However, given the complexity of the epigenetic 

regulation in pancreatic cancer, it is likely that Bmi1 exerts its role in carcinogenesis 

though regulation of multiple pathways, warranting further investigation in the future. 

Importantly, recent pre-clinical testing of a Bmi1 inhibitor slowed tumor growth in a colon 

cancer xenograft model, revealing Bmi1’s potential as a therapeutic target (Kreso, van 

Galen et al. 2014). Together with previous work indicating a role for Bmi1 in the growth 

of human pancreatic cancer cells in an orthotopic transplantation model in 

immunocompromised mice (Proctor, Waghray et al. 2013), our observations provide 

rationale for Bmi1 inhibition as a potential therapeutic target for pancreatic cancer.   
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Figure 2.1: Pancreatic cancer cell line validation 
PCR of DNA isolated from KPC – 8041 and KC; Ink4a-/- - 35 cell lines, confirming 
transgene expression  
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Figure 2.3: Bmi1 is required for PanIN formation 
(A) Genetic make up of Pdx1-Cre;KrasLSL-G12D/+;Bmi1fl/fl  (KC; Bmi1fl/fl) mice. (B) IHC staining for 
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mice at 12 and 20 weeks. Histopathological analysis (2-way ANOVA: *p<0.05) (F) and 
quantification of the number of PAS+ lesions (student’s t-test: **p<0.01, *p<0.05) (G) of KC, 
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Figure 2.4: Successful recombination of the Bmi1 locus in the murine pancreas. 
PCR of pancreatic genomic DNA isolated from isolated from Pdx1-Cre; Bmi1+/+, Pdx1-
Cre; Bmi1fl/+, and Pdx1-Cre; Bmi1fl/fl mice. 
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Figure 2.5: Bmi1 is expressed specifically in PanINs in KPC mice. 
Immunohistochemistry for Bmi1 expression in Pdx1-Cre; LSLKrasG12D; p53R172H 
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Figure 2.8: Bmi1 is expressed in areas of ADM in KC; Bmi1fl/fl  mice 
IHC staining for Bmi1 in KC; Bmi1fl/fl mice 3 weeks post pancreatitis. Arrows point to areas 
of Bmi1-positive ductal cells in areas of acinar ductal metaplasia. 
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Figure 2.9: Bmi1-regulated pancreatic carcinogenesis is independent of Ink4a/ARF 
expression 
RT-qPCR (A) and Western Blot (B) for Bmi1. RT-qPCR for (C) EZH2, (D) p16, and (E) p19. (F) 
HE staining for KC, KC;Ink4a/ARF-/-, KC;Bmi1fl/fl, and KC;Bmi1fl/fl; Ink4a/ARF-/- pancreata.  
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Figure 2.10: Chk2 expression is unchanged upon Bmi1 knock down 
(A)Western Blot for Chk2, B-actin, and Bmi1 and (B) RT-PCR analysis for Chk2 in KPC – 
8041 cells, in the presence of scrambled siRNA or Bmi1 knock down siRNA. Chromatin 
immunoprecipitation for H2AK119Ub on the Chk2 promoter in (C) 35 and (D) 8041 cells. 
RT-PCR confirming Bmi1 knock down in (E) 35 and (F) 8041 cells. 
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Figure 2.11: Activation of ROS detoxification is regulated by Bmi1 
(A) RT-qPCR analysis for Bmi1 expression. (B) Quantification of ROS intensity for KPC – 
8041 cells and KC; Ink4a-/- - 35 cells. Brightfield and ROS images for (C) KPC - 8041 cells 
and (D) KC; Ink4a-/-  - 35 cells following siRNA and H2O2 treatments. 
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Figure 2.12: Significant changes are not observed in other ROS detoxification or 
DNA damage repair enzymes in the absence of Bmi1 expression. 
IHC staining for Nrf2 in WT, KC, KC; Bmi1fl/+, and KC; Bmi1fl/fl pancreata at 3 weeks post-
pancreatitis (A). RT-qPCR analysis for Nrf2 (B), Keap1 (C), ATM (D), and BRCA1 (E) in 
KPC – 8041 cells and KC; Ink4a-/- - 35 cells following siRNA and H2O2 treatments. 
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Chapter Three 

The Polycomb Group 1 component Bmi1 is required for HIF1α pathway activation, 

a limiting step for pancreatic carcinogenesis  

 

Introduction 

 Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest human 

malignancies, and is predicted to become the second leading cause of cancer-related 

death by the year 2020 (Rahib, Smith et al. 2014). Notwithstanding current therapeutic 

options, the five-year-survival rate is a dismal 9% (Rahib, Smith et al. 2014). Future 

options for targeted therapy depend on improving our understanding of the biology of 

this disease. 

 Activating mutations in the oncogene Kras are observed in over 90% of human 

pancreatic cancers (Jones, Zhang et al. 2008, Waddell, Pajic et al. 2015, Bailey, Chang 

et al. 2016) and in the precancerous lesion of pancreatic cancer (Kanda, Matthaei et al. 

2012), pancreatic intraepithelial neoplasia (PanIN). Mice that express mutant Kras in the 

pancreas (Pdx1-Cre; LSLKrasG12D, termed KC) develop PanINs that resemble the 

progression of the human disease (Hingorani, Petricoin et al. 2003). Bmi1 is a key 

component of the Polycomb Repressive Complex 1, a group of proteins that modulates 

gene transcription by placing repressive marks on chromatin. Bmi1 is upregulated in 

many types of cancer, including pancreatic, and often a high level of Bmi1 expression 

correlates with a worse prognosis (Song, Tao et al. 2010, Guo, Xu et al. 2014). Bmi1 is 



	 68	

required for the initiation and/or progression of several cancer types using mouse 

models, including lung and medulloblastoma, even in the presence of oncogene 

expression (Dovey, Zacharek et al. 2008, Michael, Westerman et al. 2008, Becker, Korn 

et al. 2009, Fan, Xu et al. 2012, Maynard, Ferretti et al. 2014).  

In vitro, expression of Bmi1 in human pancreatic cancer cell lines that do not 

normally express Bmi1 enhanced invasiveness, migration, and markers of EMT. 

Conversely, Bmi1 knockdown in normally Bmi1-expressing human pancreatic cancer 

cell lines reduced these same properties (Proctor, Waghray et al. 2013). We previously 

showed that deletion of Bmi1 in the presence of oncogenic Kras is sufficient to block the 

onset of pancreatic carcinogenesis (Bednar, Schofield et al. 2015). The mechanism of 

Bmi1 requirement in some cancer types is through its repression of the expression of 

cell cycle regulators Ink4a and ARF (Dovey, Zacharek et al. 2008), which allows 

subsequent escape from senescence and continuation of cell proliferation. In PDAC and 

other cancer types that that are not regulated in this manner the mechanism of Bmi1 

involvement remains unknown (Bruggeman, Hulsman et al. 2007, Douglas, Hsu et al. 

2008). 

In cancer types where Bmi1 was not acting to regulate cancer progression 

through Ink4a and ARF expression, a common characteristic was that lack of Bmi1 

reduced proliferation and tumorigenicity of the cancer cells (Bruggeman, Hulsman et al. 

2007, Douglas, Hsu et al. 2008). A feature of pancreatic cancer known to promote 

tumorigenicity is a hypoxic environment (Duffy, Eibl et al. 2003, Buchler, Reber et al. 

2004). Human pancreatic tumors are extensively hypoxic (Koong, Mehta et al. 2000), a 

feature that contributes to the propensity to metastasize (Duffy, Eibl et al. 2003, Buchler, 
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Reber et al. 2004) and inhibition of hypoxia signaling for the treatment of pancreatic 

cancer is an active area of investigation (Onnis, Rapisarda et al. 2009, Erkan, Kurtoglu 

et al. 2016). Hypoxia signaling is regulated via the HIF pathway. There are three HIF 

family members, HIF1α, HIF2α, and HIF3α. HIF1α is ubiquitously expressed (Semenza 

2007, Triner and Shah 2016). During states of normal oxygen levels, HIF proteins are 

bound with cellular oxygen, which allows their recognition and tagging for degradation in 

the proteasome by the protein VHL. When cellular oxygen levels decrease, lower 

oxygen binding allows HIF protein stabilization via binding with their β-subunit. This 

complex is then translocated to the nucleus and induces expression of downstream 

targets (Semenza 2012). These downstream targets include genes that control 

angiogenesis, glycolysis, and proliferation(Hu, Wang et al. 2003). 

In the pancreas, a high level of HIF1α expression in human tumors correlates to 

faster tumor progression and lower levels of survival (Hoffmann, Mori et al. 2008). 

Deletion of HIF1α in the pancreas in animal models of pancreatic cancer promotes 

tumor initiation, an effect that is mediated, at least in part, through increasing tumor B-

cell accumulation (Lee, Spata et al. 2016). This indicates that hypoxia signaling, 

specifically through HIF1α, may in fact act to restrain tumor growth at least partially 

through controlling the tumor microenvironment. Despite this result, the factors that 

regulate HIF1α expression in pancreatic cancer remain unknown.   

Previous studies showed that Bmi1 is required for the initiation of pancreatic 

cancer in animal models, and that Bmi1 levels control tumorgenicity of human cell lines 

(Proctor, Waghray et al. 2013, Bednar, Schofield et al. 2015). Despite this, the 

mechanism of Bmi1 action in pancreatic cancer remained unknown. Here we 
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demonstrate that HIF1α stabilization recovers the lack of PanIN phenotype observed in 

animals lacking Bmi1, indicating that the reason for Bmi1 requirement in pancreatic 

cancer initiation is due to its control of HIF1α expression. This understanding of the 

interplay between Bmi1 and HIF1α during pancreatic cancer will be increasingly 

important as inhibitors for both proteins are actively being developed for cancer therapy 

(Masoud and Li 2015, Mayr, Wagner et al. 2016, Yin, Zhang et al. 2016).   

  

Results 

HIF1α expression is regulated by Bmi1 in pancreatic cancer cells 

 Bmi1 is required for the initiation of pancreatic cancer, however the mechanism 

for Bmi1 involvement in this process remains unknown (Bednar, Schofield et al. 2015) 

We used siRNA to knock down Bmi1 expression in mouse pancreatic cancer cell lines. 

Analysis of expression levels by qPCR revealed that in pancreatic cancer cells with 

Bmi1 knockdown, levels of HIF1α were significantly decreased (Figure 3.1A). This 

finding indicates that mechanism for Bmi1 action in pancreatic cancer progression may 

be via control of HIF1α expression. 

 The HIF signaling pathway is inactive in cells with normal oxygen levels, and 

becomes activated in response to hypoxia, initiating the transcription of downstream 

target genes. In order to test whether the disruption of Bmi1 expression in pancreatic 

cancer cells caused functional differences in HIF pathway activation, we grew cells in 

hypoxia to induce HIF pathway activation. Cells were treated for 24 hours with siRNA 

for Bmi1 knockdown or control, and then grown overnight in low oxygen conditions. 

Gene expression analysis for levels of HIF pathway target expression revealed that 
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expression of HIF targets was lower in cells with Bmi1 knockdown than control cells 

(Figure 3.1B). This indicates that Bmi1 knockdown in pancreatic cancer cells causes a 

functional downregulation of the HIF pathway. 

 

Pancreata lacking Bmi1 and with stabilized HIF1α fail to recover from pancreatitis 

 

 Given the functional role for Bmi1 control of the HIF pathway in vitro, we next 

explored whether this also applied in vivo. We used mice that express a pancreas 

specific cre recombinase, Pdx1-Cre, in order to look directly at the role of Bmi1 and 

HIF1α in the murine pancreas. Next, to mirror the Bmi1 knockdown used in cells, we 

used animals that lack Bmi1 expression (Bmi1fl/fl) upon cre recombination (Mich, Signer 

et al. 2014, Bednar, Schofield et al. 2015). To evaluate whether re-expressing HIF1α 

would recover the phenotypes seen by Bmi1 knockdown, we used a mouse that 

expresses an oxygen stable form of HIF1α (R26-LSL-HIF1α/+) cre recombination(Kim, 

Safran et al. 2006) (Figure 3.2A). First, we evaluated the histology of normal pancreata 

without treatment. Animals expressing the oxygen stable form of HIF1α, of the genotype 

Pdx1Cre; R26LSL-HIF1α/+, appeared histologically similar to control pancreata at 3 months 

of age (Figure 3.2B), indicating that HIF1α expression does not noticeably disrupt the 

normal pancreas. Similarly, animals lacking Bmi1 expression (Pdx1-Cre; Bmi1fl/fl) had 

no noticeable histological differences when compared to control. Last, Pdx1-Cre; 

Bmi1fl/fl; HIF1α-LSL/+ mice also looked similar to control (Figure 3.2B). Therefore, HIF1α 

stabilization, lack of Bmi1 expression, or both simultaneously, had no affect on the 

normal murine pancreas.     
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 Bmi1 controls proliferation in pancreatic cancer cells (Proctor, Waghray et al. 

2013) and in pancreatic islets (Dhawan, Tschen et al. 2009). Therefore we investigated 

the role of Bmi1 and HIF1a in another proliferative process of the pancreas, the 

recovery from pancreatitis. Animals were administered caerulein in order to induce 

pancreatitis, and tissue was harvested one week later (Figure 3.2C). After one week, 

control animals are expected to display full pancreatic recovery from the injuries 

produced by pancreatitis (Morris, Cano et al. 2010). One week after pancreatitis, 

animals lacking Bmi1 expression had similar histology to control mice, suggesting that 

Bmi1 expression is not required for the recovery from pancreatitis. Similarly, animals 

expressing HIF1α also fully recovered from pancreatitis, indicating that HIF1α 

stabilization during normoxia does not disrupt pancreatic recovery after pancreatitis. 

Animals lacking Bmi1 expression, but with HIF1α stabilization, however did not display 

normal histology one week after pancreatic insult. These animals showed extensive 

fibrosis and inflammatory infiltrates, along with few remaining acinar cells and small 

areas of acinar-ductal metaplasia (Figure 3.2D). Therefore in the pancreas, either lack 

of Bmi1 expression or stabilization of HIF1α expression during normoxia does not 

prevent pancreatic recovery post-pancreatitis. However, Pdx1-Cre; Bmi1fl/fl; HIF1α-

LSL/+ animals, without Bmi1 expression and with HIF1α stabilized, do not recover from 

pancreatic injury, indicating that Bmi1 and HIF1α may play a dual functional role in the 

reaction to pancreatic stress.  

 

HIF1α expression recovers the lack of PanINs seen in mice lacking Bmi1 in a mouse 

model of pancreatic cancer 
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 Our group previously showed that Bmi1 expression is required for the initiation of 

pancreatic cancer (Bednar, Schofield et al. 2015), but the mechanism for Bmi1 control 

of this process remained unknown. Given that Bmi1 knockdown led to reduced levels of 

HIF pathway activation in pancreatic cancer cells, we sought to determine whether Bmi1 

control of HIF1α expression was the reason for Bmi1 requirement in the initiation of 

pancreatic cancer. Mice that express oncogenic Kras specifically in the pancreas, of the 

genotype Pdx1-Cre; LSLKrasG12D reliably model the early stages of pancreatic cancer. 

This animal model is termed KC, and KC mice develop PanIN lesions that resemble 

those seen in human pancreatic cancer. Here we used KC animals to investigate the 

interaction between Bmi1 and HIF1α expression during the initiation of pancreatic 

cancer. KC animals were combined with the Bmi1 floxed allele and HIF1α stabilized 

allele (Figure 3.3A), allowing evaluation of Bmi1 deletion and HIF1α stabilization in the 

context of oncogenic Kras expression. 

 At 12 weeks of age, KC mice developed sporadic PanINs, as expected. These 

PanINs expressed pERK, indicating MAPK pathway activation, and mucins, both 

features that are characteristic for pancreatic precancerous lesions (Figure 3.3B). As 

previously described, KC;Bmi1fl/fl animals do not develop PanIN lesions, highlighting the 

requirement for Bmi1 in the initiation of pancreatic cancer (Figure 3.3C). Pancreata in 

these animals appear histologically normal and do not display pERK or PAS positivity, 

due to lack of pancreatic precancerous lesions (Figure 3.3C). Occasional PanIN lesions 

seen in KC;Bmi1fl/fl animals continue to express Bmi1 and therefore presumably develop 

due to failure of recombination of the Bmi1 floxed allele, as previously 
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described(Bednar, Schofield et al. 2015). KC;HIF1α-LSL/+ animals, expressing both 

oncogenic Kras and stabilized HIF1α also develop PanINs, indicating that HIF1α 

stabilization does not disrupt PanIN formation driven by oncogenic Kras. These lesions 

are positive for pERK and mucin expression (by PAS) (Figure 3.3D). KC; Bmi1fl/fl; 

HIF1α-LSL/+ mice at 12 weeks of age develop PanINs similar to KC animals. These 

lesions display pERK and PAS positivity, helping to confirm their identity as PanINs 

(Figure 3.3E). Therefore, HIF1α stabilization recovers the lack of PanIN phenotype 

observed in the KC;Bmi1fl/fl animals that lack Bmi1 expression. This indicates that the 

reason for the requirement for Bmi1 expression during the initiation of pancreatic 

precancerous lesions may be due to Bmi1 control of HIF pathway activation. Taken 

together with the reaction to pancreatitis, this data indicates that the combination of lack 

of pancreatic Bmi1 expression and stabilization of HIF1α renders the pancreas unable 

to respond to cellular insults, including pancreatitis and Kras activation.  

      

Bmi1 and HIF1α control metabolic enzyme levels in the normal and precancerous 

pancreas 

 

 Given that Bmi1 and HIF1α collaborate in the murine pancreas in the reaction to 

cellular stresses, we questioned which processes were controlled by this interaction. 

HIF pathway stimulation is known to activate many downstream target genes, including 

those involved in angiogenesis, growth and metabolism (Triner and Shah 2016). Both 

the reaction to pancreatitis and the initiation of pancreatic cancer are highly metabolic 

processes (Halbrook and Lyssiotis 2017), therefore we investigated whether Bmi1 and 
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HIF1α control metabolic changes during these pancreatic states. First, we wished to 

define the changes in levels of expression of metabolic enzymes during the reaction to 

pancreatitis. In order to do this we induced pancreatitis, either in normal pancreata or in 

the context of oncogenic Kras, and harvested pancreata after one day, two days or one 

week (Figure 3.4A).   

 In the normal pancreas, there are low levels of the metabolic enzyme Pdk1 in 

untreated animals. These levels increase dramatically one day after the administration 

to pancreatitis, and return to normal after two days, corresponding with the histologic 

injury and recovery timeline in mice (Figure 3.4B). This indicates that metabolic 

enzymes change levels and may play a role during the reaction to pancreatitis in mice. 

To investigate this in the context of Bmi1 and HIF1α expression, we analyzed Pdk1 

expression in our genetically engineered mice. Mice were analyzed one week after 

pancreatitis, where those lacking Bmi1 expression (Pdx1-Cre; Bmi1fl/fl) displayed 

significantly lower levels of Pdk1 expression compared to control animals. However in 

animals additionally having stabilized HIF1α, Pdx1-Cre; Bmi1fl/fl; HIF1α-LSL/+, Pdk1 

expression was recovered to the level seen in control animals (Figure 3.4C). In animals 

lacking Bmi1 expression, lack of Bmi1 may lead to inability of the HIF pathway to 

activate downstream target genes, such as Pdk1. The additional expression of HIF1α in 

this context allows recovery of HIF pathway activation.  

 We performed the same experiments in the context of oncogenic Kras activation. 

12-week-old KC animals were subjected to pancreatitis and tissues were harvested 

after one day, two days or one week (Figure 3.4A). Untreated KC animals expressed a 

similar level of Pdk1 to untreated control mice (Figure 3.4B and Figure 3.4D). Similar to 
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control animals, in KC mice levels of Pdk1 rose one day after pancreatitis and fell back 

to untreated levels by two days after pancreatitis, and persisted at that untreated level 

one week after pancreatitis (Figure 3.4D), indicating that Pdk1 levels also respond to 

pancreatitis in the context of the induction of oncogenic Kras. In order to discern the 

pattern of Pdk1 expression in terms of Bmi1 and HIF1α, we analyzed Pdk1 levels in 12-

week-old pancreata. KC;Bmi1fl/fl mice displayed very low levels of Pdk1 compared to 

control KC animals. These Pdk1 levels were recovered in KC;Bmi1fl/fl; HIF1α-LSL/+ 

animals, indicating that lack of Bmi1 expression is inhibiting HIF pathway activation of 

Pdk1 (Figure 3.4E). This data indicates that Bmi1 expression may play a protective role 

in the pancreas by inhibiting HIF pathway activation of metabolic enzymes, such a 

Pdk1, in reaction to cell stress. When the HIF pathway is additionally activated, the 

levels of Pdk1 recover, which corresponds histologically to lack of pancreatic recovery 

from pancreatitis and the development of PanIN lesions in the context of oncogenic 

Kras expression. 

 

Differential roles for Bmi1 expression in the endocrine and exocrine pancreas  

 

 Mice with full body knockout of Bmi1 have been previously shown to have 

defects in the endocrine pancreas (Dhawan, Tschen et al. 2009). Given that our data 

suggests that the requirement for Bmi1 expression during the initiation of pancreatic 

cancer is through Bmi1 regulation of HIF1α expression, we also investigated this 

relationship in the endocrine pancreas. To test endocrine pancreas function, we 

subjected animals to glucose tolerance testing. In response to glucose injection, control 



	 77	

animals showed a spike in blood glucose levels after 15 minutes, which slowly returned 

to baseline levels after two hours. In contrast, animals lacking Bmi1 expression showed 

impaired glucose tolerance, showing a similar spike in blood glucose in response to 

glucose injection. However, this spike lasted longer than in control animals and Pdx-

Cre;Bmi1fl/fl animals retained the highest levels of blood glucose for 30 minutes, but did 

return to baseline within two hours (Figure 3.5A). Similar to previous observations, this 

indicates that lack of Bmi1 expression in the pancreas leads to endocrine pancreas 

dysfunction. HIF1α expression seemed to rescue this defect, with Pdx1-

Cre;Bmi1fl/fl;HIF1α-LSL/+ animals displaying a similar glucose response to control mice 

(Figure 3.5A). A similar pattern was observed in the context of oncogenic Kras, where 

KC mice that were injected with glucose showed a rapid spike in blood glucose levels 

that then returned to baseline by two hours after injection (Figure 3.5B). KC;Bmi1fl/fl mice 

also displayed a rapid spike in blood glucose in response to glucose injection, and this 

maximum level of blood glucose lasted longer than observed in control, before also 

returning to baseline within two hours (Figure 3.5B). KC;Bmi1fl/fl;HIF1α-LSL/+ mice 

showed a similar response to glucose injection as KC (Figure 3.5B), indicating that 

Bmi1 control of HIF1α in the pancreas may contribute to its role in endocrine function.   

 To investigate the role of Bmi1 in the endocrine pancreas at a cellular level, we 

used Min6 cells, a mouse insulinoma cell line that is composed of β-cells and has 

endocrine function (Ishihara, Asano et al. 1993). Min6 cells with Bmi1 knockdown 

showed lower levels of HIF1α expression than controls, consistent with the pattern seen 

in pancreatic cancer cell lines (Figure 3.5C). However measurement of ROS levels by 

DCFDA analysis showed no difference in ROS accumulation in Min6 cells with or 
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without Bmi1 knockdown (Figure 3.5D), in contrast to previous observations that Bmi1 

knockdown results in higher ROS levels in pancreatic cancer cell lines (Bednar, 

Schofield et al. 2015). This suggests that Bmi1 may be important for the control of 

different cellular processes in the endocrine and the exocrine pancreas. Other work has 

shown that an important role for Bmi1 in many systems is inhibition of the cell cycle 

regulators Ink4a and ARF (Jacobs, Kieboom et al. 1999, Bruggeman, Valk-Lingbeek et 

al. 2005, Molofsky, He et al. 2005, Dhawan, Tschen et al. 2009). Our previous studies 

indicated that the reason for the requirement of Bmi1 expression during the initiation of 

pancreatic cancer was not through control of Ink4a and ARF, suggesting that this 

mechanism is not predominant in the exocrine pancreas (Bednar, Schofield et al. 2015). 

In Min6 cells, gene expression analysis showed that levels of p16 and p19, the genes 

encoding Ink4a and ARF, were increased in response to Bmi1 knockdown (Figure 

3.5E). This indicates that Bmi1 may play differential roles in the pancreas, controlling 

pancreatic cancer initiation through the HIF pathway in the exocrine pancreas and 

inhibiting the cell cycle regulators Ink4a and ARF in the endocrine pancreas.  

 

Discussion 

 Our previous work showed that Bmi1 expression is required for the initiation of 

pancreatic cancer, using a mouse model of the disease with an intact microenvironment 

(Bednar, Schofield et al. 2015). However, which cellular processes Bmi1 controls in this 

context, and therefore the reason for its requirement in pancreatic cancer initiation, 

remained unknown. In this current work, we show that the mechanism for Bmi1 

requirement in the initiation of pancreatic cancer is through its control of HIF pathway 
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activation, providing new insights into the development of the early stages of the 

disease. 

 In vivo we explored the interaction between Bmi1 and HIF1α expression using 

animals that express an oxygen stable form of HIF1α specifically in the pancreas (Kim, 

Safran et al. 2006). During the recovery from pancreatitis, animals that either lack Bmi1 

expression or express stabilized HIF1α recover from their injury in a similar time frame 

to control pancreata. However, mice that both lack Bmi1 and express stabilized HIF1α 

do not recover from pancreatitis, displaying extensive fibrosis and inflammation one 

week after injury. During the initiation of pancreatic cancer, using an oncogenic Kras 

driven mouse model, animals that express KrasG12D but lack Bmi1 do not develop 

PanINs. Additional HIF1α stabilization however recovers this lack of PanIN phenotype, 

allowing pancreatic cancer initiation. These data together indicate that Bmi1 plays in 

important protective role when the pancreas is stressed via its control of HIF1α 

activation. When Bmi1 is inactivated and HIF1α is stabilized, the pancreas is not able to 

recover from insults, which include pancreatitis or oncogenic Kras expression. This 

suggests that Bmi1 control of HIF pathway levels is crucial to maintain a healthy 

pancreas and to prevent disease progression.  

 The recovery from pancreatitis and the initiation of pancreatic cancer are both 

processes that involve many changes in tissue metabolism in order to proceed. Here we 

show that HIF pathway activation, via Bmi1 expression, may be crucial to control the 

metabolic state of the pancreas in these contexts. New research has revealed many 

insights into metabolic changes in pancreatic cancer cells, and so it will be crucial going 

forward to understand the pathways that control these changes. Here we show that 
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HIF1α expression is crucial for the initiation of pancreatic cancer, and that this may be 

through its control of downstream metabolic changes. Given that HIF1α inhibitors are 

actively being developed for cancer therapy, it is important to elucidate precisely how 

HIF expression controls cancer development in order to fully understand these future 

therapies. 

 Investigation of the endocrine pancreas revealed different functions for Bmi1 in 

the exocrine and endocrine compartments of the pancreas. Knockdown of Bmi1 did not 

result in increased ROS in β-cells, but it did lead to higher levels of expression of p16 

and p19, similar to previous in vivo studies (Dhawan, Tschen et al. 2009). This indicates 

that Bmi1 may have separate pancreatic functions, controlling the cell cycle through p16 

and p19 expression in the endocrine pancreas and regulating the levels of HIF pathway 

activation in the exocrine pancreas.  

 Here we show that the reason for the requirement of Bmi1 expression during the 

initiation of pancreatic cancer is due to Bmi1 regulation of HIF pathway activation, 

specifically HIF1α. Understanding the mechanisms of HIF pathway activation in 

pancreatic cancer will be increasingly important as HIF1α inhibitors are currently being 

developed for cancer therapy (Onnis, Rapisarda et al. 2009, Burroughs, Kaluz et al. 

2013, Wigerup, Pahlman et al. 2016). Overall, this work will provide a deeper 

understanding of the mechanisms behind the initiation of pancreatic cancer, which will 

help inform future therapeutic options.   

 

Methods 
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Mice 

Mice were housed in the specific pathogen free facilities at the University of Michigan 

Comprehensive Cancer Center. This study was approved by the University of Michigan 

University Committee on Use and Care of Animals (UCUCA) guidelines. Pdx1-Cre, 

Bmi1 floxed, R26-LSLHIF1α, and LSLKrasG12D animals have been previously described 

(Hingorani, Petricoin et al. 2003, Kim, Safran et al. 2006, Mich, Signer et al. 2014). To 

induce pancreatitis, mice were subjected to two consecutive days of 8 hourly 

intraperitoneal injections of caerulein at a concentration of 75ug/kg, as previously 

described (Collins, Bednar et al. 2012).  

 

Histology and Immunohistochemistry 

All histology and immunohistochemistry studies were performed as previously described 

(Collins, Bednar et al. 2012). Embedding and sectioning was performed by the 

University of Michigan Cancer Center Histopathology Core. All antibodies used are 

detailed in Supplemental Materials and Methods.  

 

Cell Culture 

Mouse pancreatic cancer cell lines were maintained as previously described (Bednar, 

Schofield et al. 2015). Bmi1 knockdown was performed using siRNA. Cells were 

transfected using Lipofectamine according to the manufacturer’s instructions. Control or 

Bmi1 specific siRNA (Dharmacon) was applied to the cells for Bmi1 knockdown. Min6 

mouse insulinoma cells were grown in culture as previously described, using DMEM 
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growth media containing FBS, penicillin/streptomycin, sodium pyruvate, and β-

mercaptoethanol(Soleimanpour, Ferrari et al. 2015).  

 

ROS Detection Assay 

Hydrogen peroxide was added directly to the cell media at a concentration of 500uM for 

a time period of two hours preceding ROS analysis. ROS levels were measured by 

DCFDA assay according to the manufacturer’s instructions.  

 

qRT-PCR 

RNA isolation, rt-PCR, and qRT-PCR were performed as previously described (Collins, 

Bednar et al. 2012). Cyclophilin A was used as a control housekeeping gene for 

normalization. All primer sequences used are included in Supplemental Materials and 

Methods. Statistical significance for qRT-PCR was determined by unpaired two-tailed t-

test, with the threshold for significance set at p<0.05.   

 

Glucose Tolerance Test 

Glucose tolerance testing was performed as previously described (Flak, Patterson et al. 

2014). Prior to testing, animals were fasted for four hours during the light cycle. Initial 

blood glucose levels were measured using tail blood sample. Animals were next 

administered glucose by intraperitoneal injection at a dose of 2g glucose per kg body 

weight. Tail blood samples were used for glucose measurement at 15, 30, 60, 90, and 

120 minutes post-glucose injection. Blood glucose was measured using Accu-Chek 

Aviva diabetes monitoring kit and Accu-Chek Aviva Plus testing strips. 
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Figure	3.1	–	HIF1α	expression	is	regulated	by	Bmi1	in	
pancrea=c	cancer	cells	
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(A)	qPCR	analysis	of	KPC	cells	with	Bmi1	knockdown	siRNA	or	scrambled	control.	(B)	qPCR	
analysis	of	KPC	cells	grown	overnight	in	hypoxia	with	or	without	Bmi1	knockdown	siRNA.	
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Figure	3.2	–	Pancreata	lacking	Bmi1	and	with	stabilized	HIF1α	
fail	to	recover	from	pancreaCCs	
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Scheme	for	pancreaCCs	treatment	and	harvesCng.	(D)	H&E	analysis	of	pancreata	one	
week	aOer	pancreaCCs	treatment.		
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Figure	3.3	–	HIF1α	expression	recovers	the	lack	of	PanINs	observed	
in	the	absence	of	Bmi1	
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immunohistochemistry,	and	PAS	staining	in	12	week	old	(B)	KC,	(C)	KC;Bmi1f/f,	(D)	
KC;HIF1α-LSL/+	and	(D)	KC;Bmi1f/f;HIf1α-LSL/+	animals.		
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Figure	3.4	–	Bmi1	and	HIF1α	control	metabolic	enzyme	levels	in	the	
normal	and	precancerous	pancreas	
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Figure	3.5	–	Differen/al	roles	for	Bmi1	expression	in	the	endocrine	
and	exocrine	pancreas		
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Chapter Four 

 

Pancreatic HIF2α stabilization leads to chronic pancreatitis and predisposes to 

mucinous cystic neoplasm 

 

Abstract  

Tissue hypoxia controls cell differentiation in the embryonic pancreas, and promotes 

tumor growth in pancreatic cancer. The cellular response to hypoxia is controlled by the 

HIF proteins, including HIF2α. Here we show that HIF2α is not expressed in the normal 

human pancreas, however it is upregulated in human chronic pancreatitis. Stabilization 

of HIF2α in mouse pancreata leads to the development of chronic pancreatitis. In the 

presence of oncogenic Kras, HIF2α stabilization drives the formation of cysts 

resembling mucinous cystic neoplasm in human. Overall, we demonstrate the 

importance of HIF2α expression in the development of human and murine pancreatic 

disease. 

 

Introduction 

During pancreas development, oxygen levels are primarily ascribed to positive 

control of β-cell differentiation (Heinis, Simon et al. 2010). Pancreatic cancer, the third 

leading cause of cancer related death (Rahib, Smith et al. 2014), is extensively hypoxic, 

with low levels of oxygen throughout tumors (Buchler, Reber et al. 2003). Hypoxia has 
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been shown to promote pancreatic tumor growth, invasion, and metastasis (Shi, 

Abbruzzese et al. 1999, Duffy, Eibl et al. 2003). At the cellular level, the response and 

adaptation to hypoxia is controlled by hypoxia inducible factors, or HIFs. In vertebrates, 

the HIF family contains three isoforms, HIF1α, HIF2α, and HIF3α. The HIF proteins are 

transcription factors, activating genes containing a Hypoxia Response Element in 

response to low levels of cellular oxygen (Semenza and Wang 1992, Wang and 

Semenza 1993). In normal oxygen conditions, HIF proteins are hydroxylated post-

translationally, allowing association with the von Hippel-Lindau tumor suppressor and 

tagging for proteosomal degradation (Triner and Shah 2016).    

Hypoxia induces HIF1α and HIF2α expression in the pancreas (Wiesener, 

Jurgensen et al. 2003). HIF1α expression is induced during the development of 

pancreatic cancer, and its deletion promotes pancreatic tumorigenesis in a Kras driven 

model of pancreatic cancer (Lee, Spata et al. 2016). HIF2α expression is required for 

the development of the pancreas, and a lack of HIF2α expression in developing mice 

leads to smaller pancreata and decreased branching (Chen, Houshmand et al. 2010). In 

the presence of oncogenic Kras, HIF2α inactivation inhibited progression of 

precancerous lesions (Criscimanna, Duan et al. 2013).  

The stress induced by the development of tumors can lead to the activation of 

multiple cellular response pathways in an attempt to restore homeostasis. In fact, while 

the hypoxia that exists in tumors does activate the HIF pathway, it can also activate 

other cell reactions, including the unfolded protein response. Activation of the unfolded 

protein response, via endoplasmic reticulum (ER) stress, and HIF signaling can 

collaborate in order to control the cellular response to tumorigenesis (Bi, Naczki et al. 
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2005, Wouters and Koritzinsky 2008, Hess, Humphrey et al. 2011, Pereira, Frudd et al. 

2014). Given that pancreatic tumors are extensively hypoxic, it is vitally important to 

understand the role that the cellular response to hypoxia plays in the development and 

the progression of this disease. 

 

Here we explored the effects of HIF2α stabilization in the pancreas, both in the 

context of pancreatitis and the initiation of pancreatic cancer.  

 

Results and Discussion 

HIF2α protein expression is not detectable in the normal human pancreas. However, we 

observed abundant HIF2α expression in human samples of chronic pancreatitis (Figure 

4.1A). Since a functional role for HIF2α had not been described in this disease, we 

generated Pdx1-Cre;R26-LSLHIF2α /+ mice. In these animals, an oxygen-stable form of 

HIF2α(Kim, Safran et al. 2006) is expressed in the pancreas upon Cre recombination 

(Figure 4.1B). We observed that pancreata with stabilized HIF2α were smaller than in 

their littermate controls (Figure 4.1C, shown at 9 weeks of age). However, there was no 

difference in total body weight between the controls and HIF2α stabilized mice at all 

ages analyzed. From 7 weeks to 1 year of age HIF2α stabilized animals displayed 

similar total body weight to age-matched littermate control animals  (Figure 4.1D). 

At two weeks of age (n=2), animals expressing HIF2α had atrophic pancreatic 

parenchyma resembling end stage chronic pancreatitis (Figure 4.1E). By 4 weeks of 

age, shortly after weaning, HIF2α stabilized animals had developed further signs of 

chronic pancreatitis (Figure 4.1F). These observed changes progressed over time, with 
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few residual acini and significant inflammatory infiltrates observed at 9 weeks of age 

(n=5) (Figure 4.1G). In older mice, (n=4 analyzed at one year of age), pancreata were 

mostly replaced by adipose tissue with small remnant clusters of acinar cells, dilated 

ducts, and intermixed inflammatory infiltration (Figure 4.1H). These changes were 

quantified in 2-week-old animals using qPCR analysis for gene expression levels of 

pancreatic cell markers. By 2 weeks of age, HIF2α stabilized animals were not 

expressing amylase, indicating a loss of acinar cell function. At the same age, animals 

still expressed similar levels of CK19 compared to littermate controls, indicating that 

their ducts were still functional. Lastly, smooth muscle actin expression was increased 

in HIF2α stabilized mice, indicating an increase in fibroblast activity (Figure 4.1I). Thus, 

HIF2α overexpression in the pancreas resulted in a smaller pancreas with severe 

atrophy and chronic pancreatitis. Importantly, no mouse models of persistent chronic 

pancreatitis currently exist, making HIF2α stabilized mice a potentially useful tool for 

further understanding this condition.  

HIF2α stabilization in experimental animals was confirmed by western blot. 

HIF2α expression was observed in those animals with HIF2α stabilized in the pancreas, 

and was not seen in control littermates (Figure 4.2A). Further, IHC analysis showed 

increased levels of HIF2α in the HIF2α stabilized pancreata, reflecting histologically that 

HIF2α is indeed stabilized in these mice (Figure 4.2B). Gene expression analysis by 

qPCR for HIF target genes revealed upregulation of HIF targets, including Pdk1 (Kim, 

Tchernyshyov et al. 2006), indicating functional upregulation of the HIF signaling 

pathway in HIF2α stabilized animals (Figure 4.2C). Given that there are two prevalent 

HIF proteins, HIF1α and HIF2α, we probed HIF1α protein expression in the same 
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human chronic pancreatitis samples in which we observed HIF2α upregulation. In 

human chronic pancreatitis HIF1α expression was not observed by western blot, 

indicating that HIF2α is upregulated independent of HIF1α in this disease (Figure 4.2D).   

To further define the importance of HIF2α expression in the development of 

chronic pancreatitis, we developed further animals modeling HIF2α stabilization. First, 

we used a second pancreas specific cre recombinase, this time Ptf1a-Cre, to drive the 

same oxygen stable form of HIF2α, R26-HIF2α -LSL/+ (Figure 4.3A). Similar to our previous 

observations, Ptf1a-Cre;R26-HIF2α -LSL/+ animals displayed inflammatory infiltration and 

pancreatic atrophy resembling chronic pancreatitis (Figure 4.3B). The phenotype 

developed more slowly, with small pocket of inflammation at 1 month, progressing to full 

pancreatic involvement by 7 months of age (Figure 4.3B). Differences in the speed of 

phenotype progression may be due to differences between the two different cre 

recombinase alleles. We next sought to determine whether the observed chronic 

pancreatitis phenotype is specific to the HIF pathway by stabilizing HIF2α using a 

different method. We used Ptf1a-Cre along with expression of a floxed allele of VHL 

(Haase, Glickman et al. 2001) (Figure 4.3C). In normoxia, VHL acts to inhibit HIF 

function by tagging HIF proteins for degredation in the proteasome. Therefore, in Ptf1a-

Cre;VHLfl/fl animals, absence of VHL expression leads to HIF stabilization specifically in 

the mouse pancreas. Histologic analysis of Ptf1a-Cre;VHLfl/fl mice revealed a similar 

chronic pancreatitis phenotype that progressed over time, observable from as early as 3 

months of age (Figure 4.3D). Taken together, these data show that pancreatic 

stabilization of HIF2α, through a variety of methods, leads to the development of a 

phenotype resembling human chronic pancreatitis.  
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To determine whether HIF2α expression adversely affected embryonic 

development, we analyzed pancreata from very young animals. At one day of age, we 

observed no major differences in histology between HIF2α stabilized animals and their 

control littermates (n=2) (Figure 4.4A). Both control and HIF2α stabilized animals 

showed high levels of proliferation, as evidenced by positive staining for Ki67. 

Quantification of Ki67 positivity showed no difference in levels of proliferation between 

HIF2α stabilized animals and their control littermates (Figure 4.4B). One-day-old 

animals with HIF2α stabilization and their control littermates both showed low levels of 

cell death, as indicated by cleaved caspase 3 staining and quantified by cleaved 

caspase 3 positivity (Figure 4.4C). HIF2α stabilization was confirmed by IHC, where 

both control and HIF2α stabilized animals showed positive HIF2α expression in the 

developing islets, as expected, and only HIF2α stabilized pancreata displayed positive 

HIF2α staining throughout the pancreas (Figure 4.4D). The similarities in histology as 

well as cell proliferation and death in control and HIF2α stabilized animals at one day of 

age indicate that the HIF2α stabilization did not cause developmental defects. 

We next further analyzed the phenotype of the development of chronic 

pancreatitis in young animals. By two weeks of age, we observed a drastic reduction in 

the numbers of acini, chronic inflammation, and foci of acinar-to-ductal metaplasia. At 

this age, the pancreas is undergoing active proliferation indicated by a high percentage 

of Ki67 positive cells, and, although the acinar cell population was reduced, proliferation 

in this compartment was still elevated as a result of HIF2α stabilization (Figure 4.5A). 

This was quantified by counting Ki67 positivity in both cohorts, showing an increase in 

proliferation in the HIF2α stabilized animals compared to control littermates (Figure 
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4.5A). Additionally, HIF2α expressing pancreata had increased apoptosis indicated by 

cleaved caspase 3 expression in epithelial cells, as seen by IHC and quantified (Figure 

4.5B). Thus, in two-week old animals the chronic pancreatitis phenotype is actively 

developing, with evident loss of acini, cell death, and inflammatory cell infiltration. We 

next analyzed animals shortly after weaning, at 4 weeks of age. At this timepoint we 

observed a continuation of the phenotype that was developing at two weeks of age. 

Proliferation was increased in HIF2α stabilized animals as compared to control 

littermates, shown by staining for Ki67 and subsequent quantification (Figure 4.5C). 

Similarly, cell death, as measured by cleaved caspase 3, was elevated in HIF2α 

animals compared to controls (Figure 4.5D). Therefore, pancreatic HIF2α stabilization 

leads to chronic pancreatitis that actively progresses in developing mice, leading to 

increases in proliferation and cell death at both two weeks and four weeks of age.  

We next sought to further define the identity of the remaining cells in the 

pancreata of HIF2α stabilized animals. Immunohistochemical analysis in nine-week-old 

HIF2α stabilized pancreata revealed individual acinar, ductal, and endocrine cells. 

However, Mist1 expression was reduced in acinar cells compared with control (Figure 

4.6A). This was quantified by analyzing numbers of Mist1 positive cells, with control 

animals displaying much higher Mist1 positivity compared to HIF2α stabilized littermates 

(Figure 4.6A). As for ducts, we observed more Sox9-expressing tubules, indicating 

increased acinar-to-ductal metaplasia, and as quantified by analyzing Sox9 positivity 

(Figure 4.6B). Chromogranin A positivity in HIF2α stabilized animals highlighted the fact 

that islets remain in HIF2α stabilized pancreata  (Figure 4.6C). qPCR analysis revealed 

higher levels of expression of the genes Bip and Chop in HIF2α stabilized animals, 



	 103	

indicating increases in the unfolded protein response due to endoplasmic reticulum (ER) 

stress(Hess, Humphrey et al. 2011) (Figure 4.6D). Previous studies have shown an 

association between ER stress and chronic pancreatitis(Sah, Garg et al. 2014). 

Therefore, HIF2α stabilized animals show higher levels of ductal markers and ER stress 

compared to control littermates, both consistent with chronic pancreatitis.   

To further define the chronic pancreatitis phenotype in HIF2α stabilized mice, we 

analyzed animals for characteristic features of pancreatitis. Immunostaining for CD45 

confirmed the presence of abundant inflammatory infiltrates in HIF2α stabilized 

pancreata, both by histology and quantification (Figure 4.7A). Gomori trichrome staining 

revealed increased levels of fibrosis (Figure 4.7B). Additionally, HIF2α stabilized 

pancreata expressed higher levels of genes that are associated with the fibrosis present 

in chronic pancreatitis, including TGFβ and MMP9 (Venkateshwari, Sri Manjari et al. 

2011) (Branton and Kopp 1999) (Figure 4.7C). Overall, HIF2α stabilized animals display 

characteristic features of chronic pancreatitis, including immune infiltration, increased 

fibrosis and upregulation of expression of cytokines and fibrosis-associated genes. 

These features make HIF2α stabilized animals an exciting new experimental model of 

chronic pancreatitis. 

Given the role of hypoxia in β-cell development, we analyzed the endocrine islets 

in nine-week-old HIF2α-stabilized mice. The islets in HIF2α stabilized pancreata were 

morphologically normal, and β-cells stained for insulin (Figure 4.8A). To measure islet 

function, we subjected nine-week-old animals to glucose tolerance testing. HIF2α 

stabilized animals had impaired glucose tolerance, with a sharper initial rise and 

sustained elevation of blood glucose levels compared to controls (n=5 animals per 
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genotype) (Figure 4.8B). To test for insulin secretion, we measured blood insulin levels 

in animals subjected to a glucose challenge. HIF2α stabilized animals showed no rise in 

blood insulin levels after glucose challenge (Figure 4.8C), indicating β-cell dysfunction 

(n=3 animals per genotype). This finding is consistent with the development of glucose 

intolerance in human chronic pancreatitis patients, termed Type 3c diabetes. (Ewald 

and Hardt 2013, Makuc 2016)  

Chronic pancreatitis is a risk factor for the development of pancreatic cancer 

(Raimondi, Lowenfels et al. 2010). Additionally, animals lacking HIF2α expression in a 

mouse model of pancreatic cancer develop lesions that fail to progress to cancer, 

suggesting a role for HIF2α in pancreatic cancer development (Criscimanna, Duan et al. 

2013). Therefore, we evaluated HIF2α stabilization in the context of pancreatic cancer. 

Mice that express oncogenic Kras in the pancreas, such as Pdx1-Cre; LSL-KrasG12D 

(KC) recapitulate the formation of pancreatic intraepithelial neoplasia (PanIN), a 

precursor lesion to pancreatic cancer (Hingorani, Petricoin et al. 2003). KC mice were 

crossed into mice with stably-expressed HIF2α, generating KC;HIF2α animals (Figure 

4.9A). KC mice have sporadic PanINs within a largely normal pancreas at 9-12 weeks. 

Age-matched KC;HIF2α animals developed large cystic lesions with full penetrance  

(Figure 4.9B, arrows) (n=7 mice). Histologically, at nine to ten weeks of age, KC;HIF2α 

mice presented with a fibrotic pancreas and large cysts, resembling human mucinous 

cystic neoplasm (Figure 4.9C). To further define the KC;HIF2α phenotype, we 

developed multiple models of pancreatic HIF2α stabilization in the context of oncogenic 

Kras expression and analyzed their histology over time. We used another pancreas 

specific cre, Ptf1a-Cre, to express KrasG12D. HIF2α stabilization was achieved either by 
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expressing an oxygen stable form of HIF2α or by deletion of VHL expression. KC 

animals develop PanINs, with their prevalence increasing over time from sporadic at 

one month of age to almost prevalent in the pancreas by 9 months (Figure 4.9D). 

Conversely, KC;HIF2α developed cystic lesions resembling human MCN. These cysts 

were small at one month of age and increased in size over time, up to 9 months (Figure 

4.9E). Similar MCN histology was observed in KC;VHLfl/fl animals, with small, sporadic 

cystic lesions present at one month of age (Figure 4.9F). By 9 months pancreata in 

KC;VHLfl/fl mice were replaced by large cystic lesions similar to human MCN, indicating 

that the development of MCN in the context of oncogenic Kras is specific to the HIF 

pathway.  

Similar to human histology, in KC;HIF2α mice the cystic lesions were lined by flat 

cuboidal epithelial cells with no papillary architecture and surrounded by stroma. Pdx1-

Cre;Hif2a-stabilized mice expressed further histologic features characteristic of MCN, as 

described previously (Izeradjene, Combs et al. 2007). These include apical expression 

of mucin in the cystic epithelial cells, shown by PAS staining (Figure 4.10A).  

Additionally, human MCN displays a characteristic ovarian-type stroma, as evidenced 

by positive staining for estrogen receptor (ER) in the stromal cells, which is also found in 

KC;HIF2α animals (Figure 4.10B). Other histologic features characteristic of human 

MCN seen in the KC;HIF2α mice include CK19 expression in the cystic epithelial cells 

and not the stromal cells (Figure 4.10C) and expression of mesenchymal markers, 

including vimentin, in the stroma and not the epithelium (Figure 4.10D). Analysis of 

mucin expression in the animals showed expression of Muc1 in both KC and KC;HIF2α 

animals, as expected in both PanIN and MCN type lesions (Lau, Weiss et al. 2004) 
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(Figure 4.10E). Additionally, both the PanINs in KC animals and the cystic lesions in 

KC;HIF2α mice were positive for Muc5ac expression (Figure 4.10F). This pattern of 

Muc1 and Muc5ac expression has been previously described in MCNs, consistent with 

the pattern seen in KC;HIF2α animals (Matthaei, Schulick et al. 2011). Gene expression 

analysis of pancreatic cell type markers revealed decreased levels of amylase 

expression in KC;HIF2a mice compared to KC, as well as increases in both CK19 and 

SMA expression (Figure 4.10G). Overall, stabilization of HIF2α in the presence of 

oncogenic Kras recapitulated formation of human mucinous cystic neoplasm, a 

precursor lesion of pancreatic cancer.  

MCN is associated with de-regulated Wnt signaling (Sano, Driscoll et al. 2014) 

and was modeled in mice by constitutively activating Wnt signaling (Sano, Driscoll et al. 

2014). Additionally, HIF2α modulates Wnt expression during development of PanINs in 

the KC mouse model (Criscimanna, Duan et al. 2013). Accordingly, our analysis 

showed increased levels of Wnt target genes (Lef1, MYC and Axin) in KC;HIF2α 

animals compared to KC at nine weeks of age (Figure 4.11A). However given the 

significant remodeling of the KC;HIF2α pancreata, it is difficult to discern whether these 

changes in gene expression were caused by, or the cause of the MCN phenotype. 

Therefore, we analyzed expression of Wnt target genes histologically by IHC. Increased 

levels of Lef1 expression were observed in the stroma of MCN of KC;HIF2α animals 

(Figure 4.11B). Importantly, very few mouse models of MCN have been described. 

Given that human MCN is a much less well-understood precursor lesion than PanINs, it 

is vital to develop additional mouse models to probe MCN biology and understand its 

formation and progression. 
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Here we show that HIF2α expression increases in human pancreata with chronic 

pancreatitis. The expression of an oxygen stable form of HIF2α in the mouse pancreas 

results in chronic pancreatitis and atrophy, with loss of acini and increased chronic 

inflammation in the lobule. Additionally, stabilization of HIF2α along with oncogenic Kras 

expression recapitulates human MCN. Thus, we describe two new models of human 

disease, and provide new insight into the role of hypoxia signaling, specifically through 

HIF2α, in the pancreas. 

 

Methods 

Mice 

Mice were housed in the specific pathogen free facility at the University of Michigan 

Comprehensive Cancer Center. This study was approved by the University of Michigan 

Committee on Use and Care of Animals (UCUCA). Pdx1-Cre, Ptf1a-Cre, LSL-KrasG12D, 

R26-LSLHif2a/+ and VHL floxed mice have been described previously (Haase, Glickman et 

al. 2001, Hingorani, Petricoin et al. 2003, Kim, Safran et al. 2006). 

 

Glucose tolerance testing 

Glucose tolerance testing was performed as previously described (Flak, Patterson et al. 

2014). Prior to testing, animals were fasted for four hours during the light cycle. Initial 

blood glucose levels were measured using tail blood samples. Then animals were 

administered glucose at a dose of 2g glucose per kg body weight by intraperitoneal 

injection. Tail blood samples were then measured for blood glucose levels at 15, 30, 60, 
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90, and 120 minutes post-glucose injection. Blood glucose was measured using Accu-

Chek Aviva diabetes monitoring kit and Accu-Chek Aviva Plus testing strips.  

 

Glucose Stimulated Insulin Secretion 

Overnight fasted mice were anesthetized by injecting intraperitoneally with Avertin. 

Anesthetized mice were then injected intraperitoneally with glucose at 3g/kg body 

weight and blood was collected retroorbitally at 0, 2, 7, 15 and 30 minutes. Serum was 

separated by centrifuging the blood at 8,000 rpm for 8 min at 4C. Serum insulin was 

measured using Ultrasensitive mouse insulin ELISA kit (CrystalChem, Downers Grove, 

IL), following manufacturers recommendation. 

 

Immunohistochemistry and Immunofluorescence 

Histology and immunohistochemistry studies, as well as PAS and Gomori Trichrome 

staining, were performed as previously described (Collins, Bednar et al. 2012). To 

prepare for staining, tissue was collected and fixed overnight in 10% neutral buffered 

formalin. Tissue was then embedded in paraffin and sectioned. The University of 

Michigan Cancer Center Histopathology Core performed embedding and sectioning. 

Sections were imaged using an Olympus BX-51 microscope, Olympus DP71 digital 

camera, and CellSens Standard software. Primary antibodies used are included in 

Supplemental Table 1.  

 

qRT-PCR   
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Tissue for RNA extraction was collected in lysis buffer (Ambion) and RNA was isolated 

using the PureLink RNA Mini Kit (Ambion). Reverse transcription was performed using 

the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Primers were 

optimized for amplification conditions of: 95C for 10 minutes, then 40 cycles of 95C for 

15 seconds and 60C for 1 minute. Melt curve analysis was performed for all samples. 

Cyclophilin A was used as the control housekeeping gene for normalization. Primer 

sequences for genes analyzed are: Axin F – GCCAATGGCCAAGTGTCTCT, Axin R – 

GCGTCATCTCCTTGGGCA, Lef1 F – AGTGCAGCTATCAACCAGATCCT, Lef1 – R 

TTTCCGTGCTAGTTCATAGTATTTGG, MYC F – TGAGCCCCTAGTGCTGCAT, MYC 

R – AGCCCGACTCCGACCTCTT, TGFB3 F – CAGGCCAGGGTAGTCAGAG, TGFB3 

R – ATTTCCAGCCTAGATCCTGCC, MMP9 F – CTGGACAGCCAGACACTAAAG, 

MMP9 R – CTCGCGGCAAGTCTTCAGAG.  

 

Western Blot 

Tissue for protein extraction was collected in RIPA buffer with protease inhibitor. Equal 

amounts of protein were added per lane, run by electrophoresis in SDS-PAGE gels, and 

transferred to PVDF membranes. Each membrane was blocked with 5% milk. Primary 

antibody incubation was performed overnight at 4C. Secondary antibody incubation was 

performed for two hours at room temperature. Protein bands were detected using 

Western Lightning Plus Enhanced Chemiluminescence (PerkinElmer, NEL103001EA) 

and film.  

 

Statistics 
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Statistical significance for qRT-PCR results was determined by unpaired two-tailed t 

test, with the threshold for statistical significance determined to be p<0.05.  

 

Study Approval 

The University of Michigan Institutional Review Board (IRB) approved all human 

studies. Informed consent was received from all human patients prior to inclusion in the 

studies detailed in this work. All animal studies were approved by the University of 

Michigan Committee on Use and Care of Animals (UCUCA). 
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Figure 4.1 – HIF2α expression is associated with chronic pancreatitis in human and mouse 
(A) Western blot analysis of HIF2α expression in lysates from human normal and chronic 
pancreatitis pancreata. (B) Transgenic mouse scheme. (C) Gross morphology of control and 
HIF2α stabilized pancreata. (D) Average mouse weight of animals with HIF2α stabilization as 
compared to controls. H&E evaluation of (E) 2 week, (F) 4 week, (G) 9 week and (H) 1 year old 
pancreata. (I) qPCR analysis of Amylase, CK19 and SMA at 2 weeks of age.	
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Figure 4.2– Validation of HIF2α stabilization in mouse pancreata 
(A) Western blot for HIF2α in lysates from control and HIF2α stabilized pancreata, with 
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Figure 4.4– Pancreas histology in 1-day old HIF2α pancreata 
(A) H&E analysis for control and HIF2a stabilized pancreata at one day. 
Immunohistochemistry and quantification for (B) Ki67 and (C) Cleaved Caspase 3 in 1-day-
old animals. (D) Immunohistochemistry for HIF2a.  
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Figure 4.5 – HIF2α stabilization-induced pancreatitis in developing mice 
Immunohistochemistry and quantification for (A) Ki67 and (B) Cleaved Caspase 3 in 2-week-old 
animals. Immunohistochemistry and quantification for (C) Ki67 and (D) Cleaved Caspase 3 in 4-
week-old animals. 
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Figure 4.6 – Immunostaining for lineage markers in 9-week-old HIF2α pancreata 
Immunohistochemistry and quantification for (A) Mist1 and (B) Sox9 in 9-week-old animals. (C) 
Immunohistochemistry for Chromogranin A in 9-week-old animals. (D) qPCR analysis for ER 
stress markers Bip and Chop in 9-week-old animals. 
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Figure 7 – Chronic pancreatitis 9-week-old in HIF2α mice 

Control HIF2α Stabilization 

G
om

or
i T

ric
hr

om
e 

C
D

45
 

A

B

Contro
l

Hif2
α S

tab
iliz

ati
on

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

TGFβ3

R
el

at
iv

e 
Ex

pr
es

si
on

p=0.009

Contro
l

Hif2
α S

tab
iliz

ati
on

0.00

0.02

0.04

0.06

MMP9

R
el

at
iv

e 
Ex

pr
es

si
on

p=0.005

C

Contro
l

Hif2
α S

tab
iliz

ati
on

0

20

40

60

CD45 

C
el

ls
 P

er
 H

FP

p=0.006

Figure 4.7 – Chronic pancreatitis 9-week-old in HIF2α mice 
(A) Immunohistochemistry and quantification for CD45 in 9-week-old mice. (B) Gomori trichrome 
staining in 9-week-old animals. (C) qRT-PCR analysis of control and HIF2α stabilized pancreata.  
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Figure 4.8 – HIF2α stabilization causes endocrine pancreas dysfunction 
(A) Immunofluorescence for Insulin and DAPI in 9-week-old animals. (B) Glucose tolerance test 
and (C) glucose stimulated insulin secretion in 9-week-old animals.  
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Figure 4.9 – HIF2α stabilization during pancreatic cancer initiation mimics Mucinous Cystic 
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(A) Transgenic mouse scheme. (B). Gross morphology of two separate KC;HIF2α animals at 9 
weeks of age. Arrows indicate cysts, arrowhead indicates spleen. (C) H&E evaluation of human 
MCN and KC; HIF2α pancreata. H&E evaluation of (D) KC, (E) KC;HIF2a and (F) KC;VHLfl/fl 
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Figure 4.11 – Wnt pathway is upregulated in KC;HIF2a animals 
(A) qPCR for Wnt pathway targets in KC and KC;HIF2a animals at 9-10 weeks of age. (B) 
Immunohistochemistry for Lef1 in KC and KC;HIF2a animals. 
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Chapter Five 

 

Differential Roles of Mutant p53R270H in Cancer Development Versus Established 

Growth in Pancreatic Cancer 

 

Abstract 

Pancreatic cancer is characterized by nearly universal activating mutations in 

KRAS. Among other somatic mutations, TP53 is mutated in over 75% of human 

pancreatic tumors. Genetically engineered mice have proven instrumental in studies of 

the contribution of individual genes in carcinogenesis. However, current models 

recapitulate just a subset of the mutations observed in human tumors. The most 

common mutation in TP53 in pancreatic cancer is the amino acid substitution R175H. 

However, the most commonly mutated TP53 codon is R273, with R273H being the most 

prevalent substitution. Here we generated a new mouse model that combines 

expression of Trp53R270H (mouse ortholog to human R273H) and oncogenic KrasG12D. 

Trp53R270H expression is regulated by doxycycline administration, so is inducible and 

reversible. Using this model, we recapitulated sequential Kras and p53 mutations in 

pancreatic carcinogenesis. Further, with the reversibility of mutant p53 expression, we 

restored wild type p53 at different stages of carcinogenesis. Continuous mutant p53 

was required for progression of precancerous lesions. Mutant p53 was however not 

required for maintenance of tumor growth, but was critical in the invasive properties of 
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cancer cells. Mutant p53 expression contributed to pancreatic cancer via 

reprogramming of cellular metabolism and induction of signaling pathways that regulate 

proliferation.  

 

Introduction 

 

 Pancreatic cancer is a devastating disease, and is the third leading cause of 

cancer-related death in the United States (Rahib, Smith et al. 2014). Effective therapies 

are currently lacking and the five-year-survival rate is less than 10%. Activating 

(oncogenic) mutations in KRAS are present in over 90% of human pancreatic cancers 

(Kanda, Matthaei et al. 2012). KRAS mutations are present with high frequency in 

pancreatic intraepithelial neoplasias (PanINs), precursor lesions to pancreatic cancer, 

suggesting an initiating role for mutant KRAS. Mutations in the TP53 and INK4A tumor 

suppressor genes are common at later stages of pancreatic cancer development 

(Hruban, Goggins et al. 2000), with TP53 mutations present in up to 75% of pancreatic 

cancers (Jones, Zhang et al. 2008).  

  Cancer-associated missense mutations in the TP53 protein have pleiotropic 

contributions in tumorigenesis, including abrogation of the wild type p53 protein’s ability 

regulate cell cycle checkpoints, apoptosis, and inhibition of angiogenesis. At the same 

time, these missense-mutant P53 proteins can behave as gain-of-function mutants (for 

review see (Oren and Rotter 2010)). In pancreatic cancer, missense mutations are most 

common, although null alleles are occasionally observed (Jones, Zhang et al. 2008, 

Bailey, Chang et al. 2016).  
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Mice expressing a conditionally activated, oncogenic KrasG12D protein in 

pancreatic epithelial cells (Ptf1a-Cre;LSL-KrasG12D, known as KC mice) develop PanINs, 

with features akin to those seen in humans, with incomplete penetrance and long 

latency to malignancy (Hingorani, Petricoin et al. 2003). Combining mutant KrasG12D 

expression with p53R172H mutant protein expression in the mouse pancreas- in the 

model known as KPC - results in the development of metastatic pancreatic cancer  

(Hingorani, Wang et al. 2005). While KPC mice have been essential to establish the role 

of mutant p53 in cancer progression, they only represent one of a range of different 

TP53 mutations seen in human pancreatic cancer. Furthermore, in KPC mice, the 

mutations in Kras and Trp53 are introduced concurrently. In contrast, in human 

pancreatic cancer, activation of Kras is an initiating event present at high frequency in 

PanINs (Kanda, Matthaei et al. 2012), while TP53 mutations occur later during disease 

progression. When a Trp53 null allele was compared to the Trp53R172H missense allele 

in the mouse pancreas model, the mice carrying the Trp53R172H allele had both longer 

disease latency and increased metastatic burden (Morton, Timpson et al. 2010, 

Weissmueller, Manchado et al. 2014). Similarly, different p53 mutant proteins have 

differing contributions to tumorigenesis in mouse lung cancer models (Jackson, Olive et 

al. 2005). Human pancreatic cancer samples contain a spectrum of TP53 mutations. 

While complete loss of function is rare, mutations occur in several codons, with 

potentially variable effects on p53 protein properties (Jones, Zhang et al. 2008). Of the 

point mutations detected in human pancreatic cancer, only Tp53R172H has been 

recapitulated in a mouse model. Here, we set out to study the functional contributions of 

Tp53R270H, the ortholog to human R273H, in the context of mutant Kras. Further, by 
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using an inducible and reversible approach to express mutant Tp53, we model the 

sequence of mutations of the human disease, and explore the role of mutant p53 in the 

maintenance of PanINs and cancer.  

With the advent of precision oncology approaches and the identification of 

different subsets of pancreatic cancer (Collisson, Sadanandam et al. 2011, Moffitt, 

Marayati et al. 2015, Waddell, Pajic et al. 2015, Bailey, Chang et al. 2016, Makohon-

Moore, Zhang et al. 2017), mouse models recapitulating different human cancer 

genotypes are likely to be of increasing relevance. 

 

Results 

 

Mutant p53R270H synergizes with oncogenic Kras to promote pancreatic cancer 

progression 

 

  We assessed the nature of TP53 mutations in human pancreatic cancer using 

publically available data in the Catalog of Somatic Mutations in Cancer (COSMIC) 

database (http://cancer.sanger.ac.uk/cosmic). Similar to many other human 

malignancies, the majority of TP53 mutations in pancreatic cancer are missense 

substitutions in the DNA binding domain of the p53 protein (Jones, Zhang et al. 2008). 

The most common Tp53 missense mutation in this data set was p53R175H, which 

corresponds to mouse p53R172H. The next most commonly mutated codon in human p53 

in all cancer types and the most commonly mutated codon in pancreatic cancer was 

codon 273. Substitution of histidine for arginine (R273H) is the most common 
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substitution at that position. The corresponding change in the mouse gene is R270H 

(Figure 5.1A). 

 To explore the role of p53R270H in pancreatic cancer, we designed a construct to 

express this mutant, as well as the fluorescent reporter dsRed, under the control of a 

Tetracycline Responsive Element (TRE). We initially verified the functionality of the 

TREp53R270H cassette in tissue culture. HEK-293 cells were transfected with individual 

plasmids encoding for rtTa and the TREp53R270H construct. Accumulation of p53 protein 

was observed by immunoblot in doxycycline (dox) treated cells (Figure 5.2A). We then 

generated transgenic mice carrying the TREp53R270H expression construct. Transgenic 

TREp53R270H animals were crossed with the Krt5-tTa mouse strain, which expresses tTa 

in the skin, to establish in vivo regulation of the transgene. Both p53 and dsRed 

expression were observed by IHC in the Krt5-tTa; TREp53R270H animals and not in 

control littermates (Figure 5.2B). Therefore, the TREp53R270H construct allows for 

mutant p53 expression in an inducible manner in vitro and in vivo.  

 To assess the effects of expressing mutant p53 in the context of mutant Kras 

pancreata we generated Ptf1a-Cre;LSL-KrasG12D;TREp53R270H;R26rtTa/rtTa mice, hereby 

designated as KCip53 mice. The Ptf1a-Cre allele expresses the Cre recombinase in the 

pancreatic epithelium, thus leading to expression of both KrasG12D and the reverse 

tetracycline transactivator (rtTa). Administration of dox to the mice induces rtTa-

mediated transcriptional activation of p53R270H. A dsRed reporter is expressed at the 

same time as mutant p53, allowing for a surrogate marker of dox-inducible gene 

expression (Figure 5.1B). KCip53 animals were placed on dox water or chow at 

approximately four weeks of age, and the animals were maintained on continuous dox 
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administration. KC littermates were similarly kept on dox for the duration of the 

experiments, to control for other potential effects of the antibiotic. Starting at 8 months 

of age, KCip53 animals developed large pancreatic tumors with metastases to the liver 

and lung (Figure 5.1C). Accumulation of p53 protein in the tumors was confirmed by 

IHC analysis comparing PanIN lesions in KCip53 mice to lesions in KC mice (Figure 

5.1D). In KC mouse lesions, p53 protein accumulation was rare. In KCip53 lesions we 

observed increased accumulation of p53, although intriguingly only in a subset of cells, 

similar to the Krt5-tTa; TREp53R270H animals (Figure 5.1D and Figure 5.2B). To 

determine whether the expression of mutant p53 in this model affected tumor 

progression we aged the animals until they reached humane endpoints. KCip53 mice 

had a median survival of 275 days, compared to 395 days in KC mice (Figure 5.1E, 

n=60 mice for KCip53, 24 for KC). At necropsy, we determined that KCip53 mice had a 

significant metastatic burden, with a prevalence of liver and lung metastases. Thus, 

expression of p53R270H accelerates tumorigenesis of KC mice and leads to the 

development of metastatic disease. 

 The TREp53R270H allele in the KCip53 animals is a transgene, and therefore the 

animals still retain two wild type alleles of Trp53, potentially mitigating some of the 

effects of mutant p53R270H expression. To mimic the human scenario, where one allele 

of TP53 is mutated and only one wild type allele is present, we generated animals with 

the genotype Pdx1-Cre; LSL-KrasG12D; LSL-Trp53R270H, called KPR270HC here (Figure 

5.3A). In brief, the sequence encoding for P53R270H was inserted in the p53 locus, 

preceded by a floxed stop cassette. Thus, the mutant p53 was expressed upon Cre 

recombination in the pancreas at the same time as mutant Kras, in a model similar to 
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the KPC model (Hingorani, Wang et al. 2005). KPR270HC mice, similar to KCiP53 

animals, have shortened lifespan compared to KC littermates (Figure 5.3B, n=43 

KPR270HC and 39 KC). Histology from mice at necropsy revealed extensive tumor 

burden in the KPR270HC animals, with metastatic lesions in the liver and lungs (Figure 

5.3C). Thus, analysis of this model corroborates the phenotype of the KCip53 mouse.  

 

Mutant p53R270H promotes formation, progression and maintenance of PanINs 

 

 Given that mice expressing mutant p53R270H developed cancer earlier than KC 

littermates, we sought to determine whether this effect was associated with earlier 

PanIN development. KCip53 and KC littermates were placed on dox at four weeks of 

age, activating expression of mutant p53R270H protein. At 10 weeks of age, pancreata 

were harvested and subjected to histopathological analysis (Figure 5.4A). KCip53 

pancreata had more PanINs, and less normal tissue than pancreata from KC littermates 

(Figure 5.4B and quantification in Figure 5.4C, n=3-6 mice per group). The lesions 

displayed characteristic PanIN features, including intracellular mucin accumulation (as 

indicated by PAS staining) and elevated pERK, indicating elevated MAPK signaling 

(Figure 5.4B). Additionally, KCip53 animals had more CD45+ immune cells (Figure 

5.5A) than KC controls. STAT3 activation was previously identified as activated 

downstream of p53R172H in pancreatic cancer cells and a contributing factor in their 

growth(Wormann, Song et al. 2016). However, immunostaining for the active, 

phosphorylated form of STAT3 (pSTAT3), revealed no difference in expression of 
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pSTAT3 between KC and KCip53 PanINs, suggesting that a different mechanism might 

be at play during PanIN formation (Figure 5.5B).  

 KCip53 mice carry two alleles of wild type Trp53, in addition to the mutant 

transgene. Thus, inactivation of mutant expression mimics restoration of wild type 

function. We pursued studies to determine whether mutant p53R270H expression 

regulated the progression and maintenance of PanINs. Mice were placed on dox at four 

weeks of age for 6 weeks. At that point, the animals were randomized in cohorts that 

either stayed on dox or were removed from dox. Pancreata from both groups were 

harvested at 2 days, one week or 3 weeks later (Figure 5.6A, n=3 or more mice per 

group). Inactivation of mutant p53R270H in KCip53 mice effectively re-establishes 

expression of wild type p53, with two copies of wild type p53 present in these animals. 

The level of p53 protein accumulation was assessed by Western blot of whole pancreas 

lysates. In KC pancreata, p53 protein was undetectable. In KCip53 mice on dox, we 

observed p53 accumulation, which decreased upon dox removal (Figure 5.6B). We then 

compared pancreas histology across the different groups. KCip53 mice that were 

continuously maintained on dox had extensive PanINs and limited acinar clusters. In 

contrast, pancreata from mice that were taken off dox for 3 weeks after the initial 6-

week dosing period had limited, low grade lesions and large areas of normal acinar 

clusters (Figure 5.6C). Within lesions, PAS and pERK1/2 staining were present in both 

on and off dox pancreata, but fewer positive lesions were observed in the animals taken 

off dox (Figure 5.6C). These data are consistent with continuous expression of mutant 

p53R270H being required for maintenance of PanIN lesions and their continued 

progression.  
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Given the dramatic differences seen at the 3-week time point after inactivation of 

mutant p53, we assessed the effects at one week or two days after removing dox and 

the associated mutant p53 expression. No major histological changes were apparent at 

these earlier time points (Figure 5.7). We performed qPCR for selected p53-regulated 

target genes in samples from both cohorts over time. Two days following inactivation of 

mutant p53, KCip53 animals had a higher ratio of pro-apoptotic to anti-apoptotic factors, 

compared to KCip53 animals that remained on dox (Figure 5.6D). Furthermore, animals 

that had been off dox for one week had higher levels of wild type p53-regulated target 

gene expression, including for p21, Thrombospondin1 and E-Cadherin, compared to 

KCip53 animals maintained on dox (Figure 5.6E). These data suggest that once taken 

off dox, wild type p53 function is restored, potentially explaining the reduced PanIN 

progression observed over time.  

 

Expression of mutant p53R270H is not required for growth of invasive cancer 

 

 We next sought to determine whether continued expression of mutant p53R270H 

was required for survival and growth of pancreatic cancer cells. As described above, 

KCip53 mice maintained on dox treatment develop invasive, metastatic tumors with 

variable latency (Figure 5.1C and 5.1E). The disease burden in individual animals is 

heterogeneous, complicating tumor burden analysis at later ages. To study a cohort of 

mice carrying genetically identical tumors, where we could modulate mutant p53 

expression, we established several primary cell lines from cancer-bearing KCip53 mice 

(Figure 5.8A). To establish these cell lines, we generated single cell suspensions from 
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the original primary tumors and sorted the cells by flow cytometry for expression of 

dsRed, as a surrogate marker for cells expressing mutant p53R270H (Figure 5.9A). The 

cell lines were then propagated in culture in presence of dox (Figure 5.8B). We 

performed qPCR to study expression of selected p53-regulated target genes, with the 

goal of determining how changes in expression of mutant p53 affected p53 

transcriptional activity in the cells. In cells treated with dox, we saw a reduction in the 

expression of the wild type p53 target genes p21 and Thrombospondin. Conversely, 

vimentin, a marker of epithelial-mesenchymal transition linked to mutant p53 (Dong, 

Karaayvaz et al. 2013) was upregulated when dox was removed to abrogate p53R270H 

expression (Figure 5.9B).  

 We injected KCip53 cells subcutaneously into immunocompromised (NSG) mice 

and tracked tumor growth over time by caliper measurement. For each cell line, we 

included three conditions: i) animals never given dox (no mutant p53R270H expression – 

termed “No dox”); ii) animals always given dox (continued mutant p53R270H expression, 

“Plus dox”); and iii) animals started on dox and then removed once tumors had become 

palpable (termed “Off dox”) (Figure 5.8C, n=8 or more tumors per group, experiment 

performed at least twice per cell line). No differences in tumor growth were observed 

among these three groups for the KCip53-1 and KCip53-2 cell lines (Figure 5.8D and 

5.8F), and there was no difference in final tumor volume or weight among the groups 

(Figure 5.8E and 5.8G). We did not observe differences in the prevalence of epithelial 

cells within the tumors, as measured by expression of CK19, nor in the levels of 

proliferation (Ki67) or apoptosis (cleaved caspase 3) (Supplemental Figure 5.10A,B,C). 

To verify the modulation of Trp53R270H gene expression following dox removal, we 
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performed immunostaining for dsRed. We did not observe any dsRed staining in the 

tumors from the no dox cohort. In the plus dox cohort, we observed heterogeneous 

accumulation of dsRed, similar to our observations in PanINs. Fewer dsRed-expressing 

cells were observed in tumors from the cohort removed from dox (off dox). Hence, dox 

removal reduced the number of cells expressing the transgene, although a few cells 

appeared to have escaped regulation and continued to express the transgene in the 

absence of dox (Figure 5.10D). Quantification of dsRed expression revealed a 

significantly higher number of cells per high power field being seen in the dox-treated 

cohort (Figure 5.10D).   

Interestingly, comparison of the histology of the tumors from the three groups 

showed differences in the epithelial cell morphology. We observed increased muscle 

invasion in the plus dox group (Figure 5.11A, arrows indicate muscle invasion). 

Immunostaining for CK19 staining highlighted smaller cells with sarcomatoid features in 

the same group (Supplemental Figure 5.10A). Quantification of the phenotype revealed 

muscle invasion in 39.3% of tumors in mice that were never on dox, and 69.7% percent 

of tumors always on dox, suggesting that mutant p53R270H expression promotes tumor 

invasion into the muscle layer (Figure 5.11B). We then measured the expression of 

genes associated with epithelial mesenchymal transition (EMT), namely Zeb1, Vimentin, 

and Twist by qRT-PCR. While the expression of these genes was generally higher in 

tumors that maintained expression of mutant p53R270H, there was not statistical 

significance (Figure 5.11C). Since the interpretation of the in vivo data is confounded by 

differences in the microenvironment, we used an in vitro system for functional studies. 

For this purpose, we performed scratch assays using KCip53 cell lines. After growing 
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the cells in the presence or absence of dox, we scratched the plate and monitored time 

to scratch closure. In both KCip53-1 and KCip53-2 lines, cells grown with dox had 

shorter time to scratch closure, consistent with an increased migration potential (Figure 

5.11D). In previous studies, the ability of mutant p53R172H to promote invasion and 

metastasis of pancreatic cancer cells carrying this specific mutation was mediated by 

mutant-p53 mediated expression of PDGFRβ (Weissmueller, Manchado et al. 2014). 

However, we did not observe any difference in PDGFRβ levels by IHC in subcutaneous 

tumors grown from KCip53-2 cells (Figure 5.12A). Additionally, qRT-PCR for PDGFRβ 

in KCip53 pancreata 3 weeks off dox was actually slightly higher than animals on dox 

(Figure 5.12B). Together, these data indicate that p53R270H likely controls invasive 

behavior through a different mechanism than p53R172H.    

 Given the changes in in vitro migration, and the increased muscle invasion 

observed in subcutaneous models, we implanted KCip53-1 cells orthotopically into the 

pancreata of immunocompromised mice to determine whether mutant p53R270H 

expression conferred increased metastatic potential, as previously described for 

p53R172H(Morton, Timpson et al. 2010, Weissmueller, Manchado et al. 2014). As in the 

subcutaneous experiment, we divided the animals in 3 cohorts (no dox, plus dox, and 

off dox). We then measured tumor growth over time by magnetic resonance imaging 

(MRI), starting two weeks after cell implantation and continuing for three weeks, when 

the tumors were harvested (Figure 5.13A, n=3-4 animals per group). Similar to the 

subcutaneous experiment, there was no difference in tumor growth rate, final tumor 

volume, or metastatic spread between the “no dox” and “plus dox” groups. Tumors in 

the cohort taken off dox were slightly smaller (Figure 5.13B-F). Histology of the tumors 
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across cohorts were similar. We concluded that mutant p53R270H can confer increased 

migration potential to cells in certain contexts, and that it is dispensable for the growth of 

invasive tumors. 

  

Transcriptional profile of genes activated downstream of p53R270H reveals 

alterations in cellular metabolism 

 

 To understand the global effects of expressing p53R270H we performed RNA 

sequencing. We subcutaneously injected KCip53-1 cells in NSG mice and divided the 

injected mice into three experimental groups, as described above: No dox, Plus dox and 

Off dox (Figure 5.14A). RNA sequencing analysis revealed marked differences in gene 

expression profiles among the three treatment groups (n=4 mice/group), with the most 

significant gene expression signature differences between the group that had no mutant 

p53R270H expression and the group of tumors always expressing mutant p53R270H 

(Figure 5.14B). Intriguingly, the gene profile established by p53R270H expression did not 

reverse upon inactivation of the mutant (Figure 5.14B and Table 5.1).  

To analyze the data, we performed pathway analysis and assessed groups of 

genes changed between the “No dox” and “plus dox” groups. We also observed 

changes in cell signaling, cell fate, extracellular matrix modeling, and cell motility (Figure 

5.15, Table 5.2). Mutant p53R270H expression also reduced apoptotic pathways, while 

conversely up-regulating signaling pathways that might reflect the increased growth 

potential of these cells (growth factor activity, regulation of the ERK1/2 cascade and 

regulation of the insulin receptor signaling pathway). Further, mutant p53R270H 



	 140	

expression correlated with increased ECM remodeling pathways, cell mobility pathways, 

and activation of Rho pathway activities which control cytoskeletal dynamics, all linked 

with cell invasion and migration. Among the pathways altered by mutant p53 

expression, we identified several which suggested changes in metabolism (Figure 

5.14C), including regulation of the metabolism of amino acids, carbon sources, fatty 

acids, and autophagy. 

To functionally investigate whether p53R270H regulates PDA metabolism, we 

analyzed intracellular metabolites from primary KCip53 cells with or without doxycycline 

treatment by targeted liquid chromatography-mass spectrometry (LC-MS)-based 

metabolomics (Scheme in Figure 5.16A, Figure 5.17A, Table 5.3). As the pathway 

analysis suggested, we observed profound changes across the metabolome. Among 

these, and consistent with the pathway analysis, we found that intracellular branched 

chain amino acid (BCAA) levels were elevated (Figure 5.14E), which could reflect lower 

catabolism. BCAAs can be used as a carbon source to fuel the tricarboxylic acid (TCA) 

cycle in the mitochondria. Indeed, we also observed lower levels of several metabolites 

in the TCA cycle (Figure 5.14F, Figure 5.17B), which could again reflect lower 

mitochondrial activity. Thus, to assess bioenergetic activity directly, we used the 

Seahorse instrument to measure changes in mitochondrial metabolism and glycolysis, 

as read out by oxygen consumption rate (OCR) and extracellular acidification (ECAR), 

respectively (Figure 5.16C). This was performed for primary KCip53 cell lines and a 

primary cell line isolated from a mouse PDX-Cre;KrasLSL-G12D;p53R172H (KPC) tumor. The 

latter do not depend on DOX for their mutant p53 expression and served as control.  We 

observed a decrease in the levels of OCR in the KCip53 cell lines, but not in the KPC 
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line, upon doxycycline treatment (Figure 5.14D, Figure 5.16B). These functional data 

provide direct evidence that mutant p53 expression impairs mitochondrial activity, which 

may result from decreased BCAA metabolism.  

 

Mutant p53R270H in pancreatic cancer treatment 

 

 Upwards of 90% of pancreatic cancers harbor oncogenic Kras mutations, but no 

targeting agents are currently available (for review see (Cox, Fesik et al. 2014)). 

Attempts to target downstream effector pathways activated by oncogenic Kras, such as 

PI3K/AKT or MAPK signaling (Cox, Fesik et al. 2014) – both important in pancreatic 

carcinogenesis (Ardito, Gruner et al. 2012, Collisson, Trejo et al. 2012, Navas, 

Hernandez-Porras et al. 2012, Eser, Reiff et al. 2013, Collins, Yan et al. 2014)- have 

similarly been unsuccessful (Infante, Somer et al. 2014). To determine whether 

inactivation of Trp53R270H expression, sensitized pancreatic cancer cells to MAPK or 

AKT inhibition, we designed a set of experiments. We injected NSG mice 

subcutaneously with KCip53-1 cells. Initially, all the mice were kept on dox to express 

mutant p53. In our first experiment we tested for MEK sensitivity. Once the tumors were 

palpable (approximately two weeks after injection), we subdivided the mice in four 

groups: i) On dox with vehicle; ii) on dox with MEK inhibitor (PD325901, 5mg/kg 

administered daily by oral gavage); iii) Off dox with vehicle and iv) Off dox with MEK 

inhibitor (Figure 5.18A, n=5 mice per group, two tumors implanted per mouse). We 

measured tumor volume over time by MRI. Similar to previous observations (Collins, 

Yan et al. 2014, Zhang, Velez-Delgado et al. 2017), MEK inhibition slowed, but did not 
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reverse tumor growth; whether or not mutant Trp53R270H was expressed. Abrogation of 

mutant p53 expression slightly decreased tumor growth, while MEK inhibition 

cooperated with abrogation of mutant p53R270H to decrease tumor growth (Figure 

5.18B). By immunostaining and western blot we observed decreased phospho-ERK1/2 

(indicating MAPK activity) in the MEK inhibitor treated samples and expression of 

dsRed (as readout for mutant p53 expression) in samples from mice on dox (Figure 

5.19). We did not observe changes in proliferation (measured by Ki67) or apoptosis (by 

cleaved caspase 3 staining) in any of the groups. The MEK inhibited and off dox group 

displayed higher levels of fibrosis, reflecting the slowing of cell growth in these tumors 

(Figure 5.19). Histological characterization of the tumors showed changes in cellular 

architecture, with more ductal structures and less sarcomatoid appearance in the 

tumors from MEK inhibited groups (Figure 5.18C).  

 Following the MEK inhibition studies, we pursued efforts to study combined 

inhibition of MEK and PI3 kinase (PI3K), an upstream regulator of AKT, in mice 

harboring the KCip53 tumors. We injected NSG mice subcutaneously with KCip53-1 

cells and animals remained on dox, with mutant p53R270H expression, throughout the 

experiment. Once the tumors were palpable, we started drug treatment in all four 

groups: vehicle, MEK inhibition, PI3K inhibition and dual MEK and PI3K inhibition 

(Figure 5.18D, n=4 animals per group, two tumors implanted per animal). The MEK 

inhibitor PD325901 was administered orally, once daily at a dose of 5mg/kg. The PI3K 

inhibitor ZSTK-474 was administered orally once daily at a dose of 100mg/kg. Tumor 

growth was assessed using MRI for exact volume measurements. As expected, tumors 

in the control group grew the fastest, while single MEK or PI3K inhibition had a modest 
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inhibitory effect on growth, which was statistically significant only for PI3K inhibition. The 

combination of MEK and PI3K inhibition potently inhibited tumor growth, with no 

increase in tumor volume seen in 4 out of 8 tumors although no evident regression of 

tumors was observed (Figure 5.18E). We confirmed MEK and PI3K inhibition in the 

respective treatment groups by Western blot; observing downregulation of pERK1/2 in 

the MEK inhibitor treated groups and reduced pAKT in the PI3K inhibitor groups (Figure 

5.20). Interestingly, while vehicle treated tumors presented with sarcomatoid histology, 

consistent with the histology of this cell line, inhibition of either MEK or PI3K led to an 

increase in ductal structures, surrounded by fibrotic stroma (Figure 5.18F). In the dual 

MEK/PI3K inhibitor treated samples we observed ductal structures surrounded by 

stroma with lower cellularity than any of the other groups. Proliferation, measured as 

Ki67 positive nuclei, was lowest in the dual inhibitor-treated tumors. In contrast, we did 

not observe changes in apoptosis (cleaved caspase 3 expression) in any of the groups, 

although it is possible that we missed an earlier wave of cell death (Figure 5.20). Thus 

restoration of wild type p53 function at least partially sensitizes pancreatic tumor cells to 

MEK inhibition; however, expression of the specific Trp53R270H mutant did not change 

response to combined MEK and PI3K inhibition, compared to other pancreatic cancer 

cell lines. These novel KCip53 cell lines constitute a platform for testing the effects of 

wild type p53 restoration in combination with targeted inhibitors. 

  

Discussion 

Mutations in TP53 are detected in about 70% of human pancreatic cancers 

(Jones, Zhang et al. 2008, Waddell, Pajic et al. 2015, Bailey, Chang et al. 2016) making 
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it the second most common mutated gene in this disease. While Kras is mutated in low-

grade PanINs, consistent with its requirement for tumor initiation (Kanda, Matthaei et al. 

2012), p53 mutations accumulate at later stages of disease, and encompass a wide 

spectrum of mutations. In this study, we re-analyzed public sequencing databases 

(COSMIC) to determine the prevalence of individual TP53 mutations in human 

pancreatic cancer. The codon encoding for amino acid 273 of the human protein was 

the most frequent mutation site; at this site, the most common mutation was R273H. 

Interestingly, this mutation is considered a p53 “hotspot” mutation, and is one of the 

most common mutations in human tumors of all types (Olivier, Hollstein et al. 2010). 

This mutation has, however, not been modeled in pancreatic cancer mouse models. 

In human tumors, the majority of TP53 mutations in pancreas cancer lead to the 

expression of a missense mutant p53 protein that can still oligomerize with wild type 

p53 but which fails to function as a sequence-specific DNA transcription factor 

(Hollstein, Sidransky et al. 1991, Hruban, Goggins et al. 2000, Jones, Zhang et al. 

2008). Consistent with the human data, expression of mutant Kras in the pancreas is 

sufficient to initiate carcinogenesis while Trp53 mutations have little effect on their own, 

but promote carcinogenesis in presence of oncogenic Kras (Hingorani, Petricoin et al. 

2003, Hingorani, Wang et al. 2005). Of the spectrum of human mutations, two types 

have been studied in mouse models: p53 deletion and a substitution of histidine for 

arginine at codon 172 of the mouse protein (p53R172H), ortholog to R175H in the human 

p53 protein. Deletion of one or both alleles of p53, in the presence of oncogenic Kras, 

leads to invasive pancreatic tumors with short latency and high penetrance (Bardeesy, 

Aguirre et al. 2006). In the commonly used KPC model, p53R172H is expressed alongside 
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oncogenic Kras; this model has slightly longer latency to invasive disease and, at least 

in some reports, increased metastatic potential (Hingorani, Wang et al. 2005). 

Here, we set out to model the subset of pancreatic cancers expressing TrpR270H, 

the mouse ortholog to human TP53R273H. The KCip53 mouse combines expression of 

oncogenic Kras with TrpR270H, and it is designed to have two unique features: 1) TrpR270H 

expression in this model is inducible, thus allowing sequential activation of mutant 

genes; 2) TrpR270H expression is reversible, thus inactivation of its expression and, 

consequently, restoration of wild type function, can be regulated at will. Similar to 

p53R172H, p53R270H synergizes with oncogenic Kras to promote pancreatic 

carcinogenesis. However, a comparison between KPC mice, expressing p53R172H and 

the KCip53 model revealed slowed progression to malignancy in the latter. Different 

explanations are possible for this finding, including the later time of activation of p53 (in 

adult mice rather than in embryogenesis), as well as the fact that the KCip53 model 

retains two copies of the wild type allele. Interestingly, KCip53 mice develop a highly 

metastatic tumor, which is consistent with a role for p53 in inducing epithelial 

mesenchymal transition (EMT), one of the mechanisms of metastatic disease spread. 

Further, tumors expressing mutant p53 showed increased intramuscular invasion, in the 

subcutaneous setting, reflecting our observation in vitro, where mutant p53 promotes 

cellular migration.  

A unique feature of the KCip53 model is the reversible nature of mutant p53 

expression, which allows us to restore wild type function at will, as well as to understand 

mutant-specific phenotypes. In PanIN lesions, expression of the mutant was 

continuously required for progression, and inactivation of mutant p53 led to an increase 
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of wild type p53 target genes, such as p21, that inhibit growth. The mutant protein also 

facilitated survival of epithelial cells exposed to Kras-driven oncogenic stress, and 

restoration of wild type function increased the ratio of pro-apoptotic to anti-apoptotic 

factors. Accordingly, restoration of wild type p53 in liver and lung tumors limits cancer 

progression by inducing apoptosis (Ventura, Kirsch et al. 2007, Xue, Zender et al. 2007, 

Feldser, Kostova et al. 2010). In those studies, wild type p53 expression was restored to 

autochotonous tumors that had developed in the absence of p53 expression in mutant 

Ras driven liver or lung tumor models. In each of these models, wild type p53 

restoration led to tumor regression. For this reason, restoration of wild type p53 function 

has been hypothesized as a potential therapeutic approach, an attractive prospect given 

that p53 is lost or mutated in the vast majority of human malignancies (Bykov, Issaeva 

et al. 2002)13,32,53-55. Each of the p53 restoration studies relied on models that had lost 

p53 function. Given that p53 mutation, instead of loss of function, is common in human 

cancer development, the KCip53 animals provide a unique system to test questions of 

wild type p53 restoration in tumor therapy. 

Our PanIN studies supported the idea that wild type p53 restoration limits tumor 

progression. Therefore, we extended our studies to invasive tumors. Surprisingly, 

inactivation of mutant p53 did not reduce tumor growth in a transplantation system. To 

understand this finding, we generated RNA from transplanted tumors harvested prior 

and after inactivation of mutant p53 and performed RNAseq to establish a global gene 

expression signature downstream of mutant p53R270H expression. We found that 

expression of p53R270H drastically changed global gene expression in pancreatic tumors, 

compared to tumors that had not expressed mutant p53R270H at all. However, 
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inactivation of p53R270H in established tumors failed to restore the baseline gene 

expression pattern. In other words, expression of mutant p53 altered the transcriptome 

of the tumor cells, but restoration of wild type function failed to restore transcription to 

the baseline pattern. This finding might explain the lack of dependency on mutant p53 of 

the KCip53 cell lines. Pathway analysis illuminated many processes that are perturbed 

by expression of mutant p53R270H, many of which have been previously identified as 

important in pancreatic cancer. Among these, we found changes in the MAPK and Rho 

family signaling pathways, both critical for pancreatic tumorigenesis (Heid, Lubeseder-

Martellato et al. 2011, Collisson, Trejo et al. 2012, Baer, Cintas et al. 2014, Wu, 

Carpenter et al. 2014). Mutant p53R172H expression in pancreatic cancer cells induces 

metastasis, an effect that was attributed to activation of PDGFRβ (Weissmueller, 

Manchado et al. 2014). Analysis of the RNAseq data revealed induction of PDGFRβ 

upon expression of p53R270H, albeit to a modest extent. IHC staining for PDGFRβ 

expression in subcutaneous tumor tissue revealed high levels of PDGFRβ expression 

even in “No dox” tumors, which may explain the only modest increase in the “Plus dox” 

condition. Other mechanisms of invasion, including activation of Rho family members, 

might be at play in our model.   

In addition to the changes in signaling pathways, we also observed changes in 

the cellular metabolism downstream of mutant p53 in pancreatic cancer cells. The 

complex role of p53 in the regulation of cellular metabolism has been described before 

(Berkers, Maddocks et al. 2013), but it has not been studied extensively in the context 

of pancreatic cancer. An interesting observation, based on pancreatic cancer patient 

derived xenografts, is that lack of p53 function sensitizes tumors to inhibition of lactate 
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dehydrogenase (Rajeshkumar, Dutta et al. 2015). It has also been suggested that p53 

function can play a role in the regulation of autophagy in pancreatic tumorigenesis, 

however this result appears to be context dependent on the manner of p53 loss of 

function (Rosenfeldt, O'Prey et al. 2013, Yang, Rajeshkumar et al. 2014). In our gene 

expression analysis, we did identify a connection between the expression of p53R270H 

and regulation of glycolysis and autophagy pathways, and our metabolic profiling 

indicates that there is indeed a regulation of central metabolic pathways by mutant p53. 

The drop in mitochondrial activity could suggest that p53 mutations play a role in the 

metabolic wiring of PDA cells and their respective glycolytic versus lipogeneic behavior, 

which has been previously suggested to be controlled by an epithelial vs. mesenchymal 

cell fate (Daemen, Peterson et al. 2015). 

Interestingly, one of the most significant metabolic pathways identified through 

pathway analysis, and confirmed by measuring metabolite abundance, was the 

downregulation of BCAA metabolism upon expression of p53R270H. Recently Mayers et 

al. demonstrated that the incorporation of BCAA-derived carbon into the TCA cycle is 

decreased in pancreatic tumors harboring a Kras mutation and p53 LOH, relative to 

corresponding normal pancreas (Mayers, Torrence et al. 2016). Similarly, our data show 

that the BCAA degradation pathway is downregulated upon expression of p53R270H, 

where p53 mutation acts similarly to p53 loss. Mayers, et al. suggest that decreased 

mitochondrial BCAA metabolism occurs due to decreased uptake and thus decreased 

intracellular levels. It will be important to determine the role of mutant p53 in nutrient 

acquisition and if this accounts for the decreased BCAA metabolism observed in our 

experiments. 



	 149	

We, and others, have previously shown that pancreatic cancer requires 

continuous oncogenic Kras activity (Collins, Bednar et al. 2012, Collins, Brisset et al. 

2012, Ying, Kimmelman et al. 2012). Two downstream effector pathways of Kras, 

MAPK and PI3K/AKT, are required for formation of pancreatic cancer and, at least at 

early stages, its progression (Ardito, Gruner et al. 2012, Hofmann, Weiss et al. 2012, 

Navas, Hernandez-Porras et al. 2012, Zhong, Sanchez et al. 2013, Collins, Yan et al. 

2014, Watson, Anderson et al. 2014). Inactivation of oncogenic Kras in invasive cancer 

carrying p53 mutations leads to tumor regression, but not to eradication of tumor cells, 

and in fact relapse over time is common (Kapoor, Yao et al. 2014, Viale, Pettazzoni et 

al. 2014, Genovese, Carugo et al. 2017). Further, inhibition of MAPK (via MEK 

inhibitors) or AKT (using inhibitors of PI3K) or even a combination of both has shown 

little efficacy in pancreatic cancer patients (Hofmann, Weiss et al. 2012, Infante, Somer 

et al. 2014). Given the strong anti-apoptotic function ascribed to mutant p53 (Haupt, 

Berger et al. 2003), we hypothesized that its presence might constitute a mechanism 

allowing pancreatic cancer cells to bypass MEK inhibition. Further, a new generation of 

conformational drugs has been developed to restore the wild type function of mutant 

p53 (Bykov, Issaeva et al. 2002, Feldser, Kostova et al. 2010, Bykov and Wiman 2014, 

Liu, Read et al. 2015, Mohell, Alfredsson et al. 2015, Fransson, Glaessgen et al. 2016). 

Conceivably, combined restoration of wild type p53 could be combined with MEK 

inhibition in pancreatic cancer, a concept that has not been tested before. As a proof of 

principle approach for this concept, we treated mice bearing implanted KCip53 cells the 

PD325901 MEK inhibitor and/or the ZSTK-474 PI3K inhibitor. MEK inhibition alone had 

a modest impact on tumor growth in the presence of mutant p53R270H expression. 
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However the combination of MEK inhibition with inactivation of mutant p53R270H 

significantly delayed tumor growth, thus restoration of wild type p53 may be explored as 

an component in combinatorial therapeutic strategies to target pancreatic cancer. In a 

separate set of experiments, we explored whether cells expressing p53R270H have a 

unique sensitivity to combined MEK/PI3K inhibition. While the combination of both 

inhibitors slowed tumor growth compared to each inhibitor alone, the effect was 

comparable to previous studies and failed to highlight a unique susceptibility in cells 

carrying this specific p53 mutation. 

In summary, KCip53 mice represent a new mouse model of pancreatic cancer 

that recapitulates the subset of human tumors that express the R275H mutation of p53. 

Further, this mouse allows us to model the sequential introduction of mutations in the 

pancreas, and, thanks to the reversible nature of mutant p53 expression, to determine 

the role of this tumor suppressor past the initiation stages of carcinogenesis. As new 

personalized medicine approaches are developed, this model may be useful to predict 

clinical responses of patients carrying this specific gene mutation. 

 

Methods 

 

Mice 

Mice were housed in the specific pathogen free facilities at the University of Michigan 

Comprehensive Cancer Center. This study was approved by the University of Michigan 

University Committee on Use and Care of Animals (UCUCA) guidelines. Ptf1a-Cre, 

Pdx1-Cre, LSL-KrasG12D, LSL-Tp53R270H and R26-rtTa animals have been previously 
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described (Hingorani, Petricoin et al. 2003, Olive, Tuveson et al. 2004, Hingorani, Wang 

et al. 2005, Collins, Bednar et al. 2012), and TRE-p53R270H animals were generated at 

the University of Michigan (Eric Fearon). Doxycycline was administered in the drinking 

water (0.2g/L in a 5% sucrose solution) or the chow (1g/kg) and replaced every 3-4 

days. Immunocompromised (NSG) animals were used for all subcutaneous or 

orthotopic tumor growth experiments. For subcutaneous tumors, 500,000 cells were 

injected in a 200uL solution of 50% Matrigel and 50% RPMI media. Each mouse was 

implanted subcutaneously with two tumors, and tumor growth was recorded at least 3X 

weekly until tumors reached a 1.5cm diameter. For orthotopic tumors, mice were 

anesthetized using vaporized isoflurane. 500,000 cells were injected in a 50uL solution 

of 50% Matrigel and 50% RPMI media directly into the pancreas. The incision was 

closed using absorbable sutures and clips. Post-surgical animals were monitored daily 

for ten days, and then at least 3X weekly for the duration of the experiment. For drug 

treatments, animals were treated with PD325901 at a dose of 5mg/kg, ZSTK-474 at a 

dose of 100mg/kg, or vehicle. Combination treatment was given using the same doses 

for single drug treatment. All treatments were given by oral gavage once daily.  

 

Immunohistochemistry 

Histology and immunohistochemistry studies were performed as previously described 

(Collins, Bednar et al. 2012). Primary antibodies used are detailed in Supplemental 

Materials and Methods.   

 

qRT-PCR 



	 152	

RNA isolation, rt-PCR, and qRT-PCR were performed as previously described (Collins, 

Bednar et al. 2012). Cyclophilin A was used as the control housekeeping gene for 

normalization.  Primers used are included in Supplemental Materials and Methods. 

 

Histopathological Analysis 

Histopathological analysis was performed using H&E stained sections, with the 

pathologist being blinded to each animal’s genotype. At least 3 independent animals 

were analyzed from each group, with a minimum of 50 acinar or ductal clusters being 

counted from each animal. Five representative, non-overlapping, high-power images 

were analyzed from each slide, with one slide being analyzed per animal. Each cluster 

was classified as acinar, PanIN1A, 1B, 2, or 3, based on the classification consensus.  

 

Western Blot 

Protein isolation and Western blot were performed as previously described (Collins, 

Bednar et al. 2012). Antibodies used are detailed in Supplemental Materials and 

Methods. 

 

Cell Culture 

KCip53 cell lines were derived from mice of the genotype Ptf1a-Cre; LSL-KrasG12D; 

TRE-p53R270H; R26-rtTa/rtTa. Pancreata or tumors from these animals were minced with 

scissors and digested in 1mg/mL collagenase. Tumor cells were then sorted from these 

cultures using Flourescence Activated Cell Sorting, sorting for the expression of dsRed. 

All cells were cultured in RPMI supplemented with 10% FBS and 1% 
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penicillin/streptomycin (Gibco). Doxycycline was administered to cells at a concentration 

of 2ug/mL. 

 

Scratch Assay 

Cells were plated in a 6 well plate and grown until confluent. Scratches were created 

with a pipet tip. Scratches were then measured in the same location at each timepoint. 

Distance of scratch closure was measured using Image J.  

 

MRI 

Mice were anesthetized with 1%–2% isoflurane/air, and body temperature was 

maintained using a Multistation Temperature Control Unit (Minerve Equipment 

Veterinaire.) MRI scanning was performed using a 3T Translational, Cryogen-free, 

preclinical MRI (MR Solutions; MRS 3000 series) with a quadrature mouse body volume 

coil. Mice were placed supine in the mouse bed. To reduce respiratory motion, surgical 

tape was used to secure the mice below the thoracic cavity on the bed. T2-weighted 

images were acquired using a fast spin echo multi-slice sequence with the following 

parameters: repetition time (TR)/echo time (TE) = 4,500/34 ms, 8 echo trains, 4 

averages, Field of View (FOV) = 35 x 35 mm2, Matrix size = 128 x 128, slice thickness = 

2 mm, number of slices = 30, and no gap. Using in-house software, the tumor boundary 

was manually defined on each slice and then integrated across slices to measure the 

volume. 

 

RNA Sequencing 
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Tissue from subcutaneous tumors was collected in lysis buffer for RNA extraction. RNA 

was isolated using the Qiagen AllPrep DNA/RNA/miRNA Universal kit according to the 

manufacturer’s instructions. PolyA+, non strand specific libraries were prepared by the 

University of Michigan Sequencing Core, and all samples were sequenced on an 

Illumina HiSeq 4000.  

 

RNA-seq data analysis 

50 bp, single-end reads were mapped to the mouse reference genome (mm9) using 

TopHat v 1.4.1 (Trapnell, Pachter et al. 2009).  The NCBI RefSeq transcript isoform 

annotation was condensed to an unstranded, gene-level annotation and quantification 

performed over unambiguous exonic spans per gene. Gene expression was calculated 

as RPKM (using exonic, base-wise coverage, normalized by summed lengths of exons 

and total mapped read count). Differential gene expression was performed using 

DESeq2 v1.12.4 (Love, Huber et al. 2014). Differentially expressed genes were defined 

as being expressed more than 0.25 RPKM (mean value across all samples in a given 

comparison), greater than 250 bp in length, changing more than 1.5 fold, and having an 

adjusted p-value from DESeq2 of less than 0.1. For cluster analysis and heatmap 

generation, gene expression values were log10-transformed and z-score standardized 

across samples. Hierarchical clustering was performed using Euclidean distance and 

complete linkage.   

 

Metabolic Flux Assay 
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To estimate the rate of glycolysis and mitochondrial respiration Seahorse Metabolic Flux 

Analyzer e96 XF instrument (Agilent) was used according to the manufacturer’s manual. 

20 000 cells/well of KPC, KCip53-1 or KCip53-2 cells were seeded in the respective 

culture media the day prior to the assay. The next day media was exchanged to the 

Seahorse assay media, containing 25 mM glucose, adjusted to 7.4 pH. Cell plate was 

allowed to equilibrate for 1 hr in non-CO2 37 C incubator, following 3 sequential 

measurements for the basal respiration, mitostress assay was performed by injections 

of 1 µM Oligomycin, 1µM FCCP, 0.5 µM rotenone/0.5 µM Antimycin A. All the chemicals 

were obtained from Sigma. The cell number adjustment was performed using CyQuant 

NF (Thermo) after the assay. The data is presented as the mean and SD. 

 

Label-free targeted metabolomics and data analysis 

PDAC cells were plated in triplicate and treated with doxycycline containing medium or 

normal RPMI with 5% FBS for 3 days. The medium was removed and the cell lysate 

harvested with ice cold 80% MeOH. The soluble metabolite fractions were cleared by 

centrifugation, dried via speedvac (Thermo Fisher), then resuspended in 50:50 

MeOH:H2O mixture for LC–MS analysis. We performed label-free targeted 

metabolomics using in-house liquid chromatography-mass spectrometry (LC-MS) to 

measure over 200 metabolites. The bioinformatic data analysis was done using 

R/Bioconductor. Further details are provided in Supplemental Materials and Methods. 

 

Acknowledgements 

 



	 156	

The authors thank Kevin Heist for his contribution to MRI measurements. We apologize 

to the authors of any previous work we were not able to cite due to space constraints. 

This project was supported by the following funding sources: HKS is supported by 

National Institutes of Health (NIH) grants T32 GM007315-38 and T32 DK094775-04. 

This project was supported by R01CA151588, by Funding from the Hirshberg 

Foundation for Cancer Research (MPdM) and by The Cancer Center Core Grant 

P30CA46592. CAL is supported by an AACR/Pancreatic Cancer Action Network 

Pathway to Leadership Award (13-70-25-LYSS). JPM is supported by Cancer Research 

UK grants C596/A18076 and C596/A17196 

 

References 

Ardito, C. M., B. M. Gruner, K. K. Takeuchi, C. Lubeseder-Martellato, N. Teichmann, P. 

K. Mazur, K. E. Delgiorno, E. S. Carpenter, C. J. Halbrook, J. C. Hall, D. Pal, T. Briel, A. 

Herner, M. Trajkovic-Arsic, B. Sipos, G. Y. Liou, P. Storz, N. R. Murray, D. W. 

Threadgill, M. Sibilia, M. K. Washington, C. L. Wilson, R. M. Schmid, E. W. Raines, H. 

C. Crawford and J. T. Siveke (2012). "EGF receptor is required for KRAS-induced 

pancreatic tumorigenesis." Cancer Cell 22(3): 304-317. 

Baer, R., C. Cintas, M. Dufresne, S. Cassant-Sourdy, N. Schonhuber, L. Planque, H. 

Lulka, B. Couderc, C. Bousquet, B. Garmy-Susini, B. Vanhaesebroeck, S. Pyronnet, D. 

Saur and J. Guillermet-Guibert (2014). "Pancreatic cell plasticity and cancer initiation 

induced by oncogenic Kras is completely dependent on wild-type PI 3-kinase 

p110alpha." Genes Dev 28(23): 2621-2635. 



	 157	

Bailey, P., D. K. Chang, K. Nones, A. L. Johns, A. M. Patch, M. C. Gingras, D. K. Miller, 

A. N. Christ, T. J. Bruxner, M. C. Quinn, C. Nourse, L. C. Murtaugh, I. Harliwong, S. 

Idrisoglu, S. Manning, E. Nourbakhsh, S. Wani, L. Fink, O. Holmes, V. Chin, M. J. 

Anderson, S. Kazakoff, C. Leonard, F. Newell, N. Waddell, S. Wood, Q. Xu, P. J. 

Wilson, N. Cloonan, K. S. Kassahn, D. Taylor, K. Quek, A. Robertson, L. Pantano, L. 

Mincarelli, L. N. Sanchez, L. Evers, J. Wu, M. Pinese, M. J. Cowley, M. D. Jones, E. K. 

Colvin, A. M. Nagrial, E. S. Humphrey, L. A. Chantrill, A. Mawson, J. Humphris, A. 

Chou, M. Pajic, C. J. Scarlett, A. V. Pinho, M. Giry-Laterriere, I. Rooman, J. S. Samra, 

J. G. Kench, J. A. Lovell, N. D. Merrett, C. W. Toon, K. Epari, N. Q. Nguyen, A. Barbour, 

N. Zeps, K. Moran-Jones, N. B. Jamieson, J. S. Graham, F. Duthie, K. Oien, J. Hair, R. 

Grutzmann, A. Maitra, C. A. Iacobuzio-Donahue, C. L. Wolfgang, R. A. Morgan, R. T. 

Lawlor, V. Corbo, C. Bassi, B. Rusev, P. Capelli, R. Salvia, G. Tortora, D. 

Mukhopadhyay, G. M. Petersen, I. Australian Pancreatic Cancer Genome, D. M. Munzy, 

W. E. Fisher, S. A. Karim, J. R. Eshleman, R. H. Hruban, C. Pilarsky, J. P. Morton, O. J. 

Sansom, A. Scarpa, E. A. Musgrove, U. M. Bailey, O. Hofmann, R. L. Sutherland, D. A. 

Wheeler, A. J. Gill, R. A. Gibbs, J. V. Pearson, N. Waddell, A. V. Biankin and S. M. 

Grimmond (2016). "Genomic analyses identify molecular subtypes of pancreatic 

cancer." Nature 531(7592): 47-52. 

Bardeesy, N., A. J. Aguirre, G. C. Chu, K. H. Cheng, L. V. Lopez, A. F. Hezel, B. Feng, 

C. Brennan, R. Weissleder, U. Mahmood, D. Hanahan, M. S. Redston, L. Chin and R. 

A. Depinho (2006). "Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain 

progression of pancreatic adenocarcinoma in the mouse." Proc Natl Acad Sci U S A 

103(15): 5947-5952. 



	 158	

Berkers, C. R., O. D. Maddocks, E. C. Cheung, I. Mor and K. H. Vousden (2013). 

"Metabolic regulation by p53 family members." Cell Metab 18(5): 617-633. 

Bykov, V. J., N. Issaeva, A. Shilov, M. Hultcrantz, E. Pugacheva, P. Chumakov, J. 

Bergman, K. G. Wiman and G. Selivanova (2002). "Restoration of the tumor suppressor 

function to mutant p53 by a low-molecular-weight compound." Nat Med 8(3): 282-288. 

Bykov, V. J. and K. G. Wiman (2014). "Mutant p53 reactivation by small molecules 

makes its way to the clinic." FEBS Lett 588(16): 2622-2627. 

Collins, M. A., F. Bednar, Y. Zhang, J. C. Brisset, S. Galban, C. J. Galban, S. Rakshit, 

K. S. Flannagan, N. V. Adsay and M. Pasca di Magliano (2012). "Oncogenic Kras is 

required for both the initiation and maintenance of pancreatic cancer in mice." J Clin 

Invest 122(2): 639-653. 

Collins, M. A., J. C. Brisset, Y. Zhang, F. Bednar, J. Pierre, K. A. Heist, C. J. Galban, S. 

Galban and M. P. di Magliano (2012). "Metastatic pancreatic cancer is dependent on 

oncogenic Kras in mice." PLoS One 7(12): e49707. 

Collins, M. A., W. Yan, J. S. Sebolt-Leopold and M. Pasca di Magliano (2014). "MAPK 

signaling is required for dedifferentiation of acinar cells and development of pancreatic 

intraepithelial neoplasia in mice." Gastroenterology 146(3): 822-834 e827. 

Collisson, E. A., A. Sadanandam, P. Olson, W. J. Gibb, M. Truitt, S. Gu, J. Cooc, J. 

Weinkle, G. E. Kim, L. Jakkula, H. S. Feiler, A. H. Ko, A. B. Olshen, K. L. Danenberg, M. 

A. Tempero, P. T. Spellman, D. Hanahan and J. W. Gray (2011). "Subtypes of 

pancreatic ductal adenocarcinoma and their differing responses to therapy." Nat Med 

17(4): 500-503. 



	 159	

Collisson, E. A., C. L. Trejo, J. M. Silva, S. Gu, J. E. Korkola, L. M. Heiser, R. P. 

Charles, B. A. Rabinovich, B. Hann, D. Dankort, P. T. Spellman, W. A. Phillips, J. W. 

Gray and M. McMahon (2012). "A central role for RAF-->MEK-->ERK signaling in the 

genesis of pancreatic ductal adenocarcinoma." Cancer Discov 2(8): 685-693. 

Cox, A. D., S. W. Fesik, A. C. Kimmelman, J. Luo and C. J. Der (2014). "Drugging the 

undruggable RAS: Mission possible?" Nat Rev Drug Discov 13(11): 828-851. 

Daemen, A., D. Peterson, N. Sahu, R. McCord, X. Du, B. Liu, K. Kowanetz, R. Hong, J. 

Moffat, M. Gao, A. Boudreau, R. Mroue, L. Corson, T. O'Brien, J. Qing, D. Sampath, M. 

Merchant, R. Yauch, G. Manning, J. Settleman, G. Hatzivassiliou and M. Evangelista 

(2015). "Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes 

with distinct sensitivities to metabolic inhibitors." Proc Natl Acad Sci U S A 112(32): 

E4410-4417. 

Dong, P., M. Karaayvaz, N. Jia, M. Kaneuchi, J. Hamada, H. Watari, S. Sudo, J. Ju and 

N. Sakuragi (2013). "Mutant p53 gain-of-function induces epithelial-mesenchymal 

transition through modulation of the miR-130b-ZEB1 axis." Oncogene 32(27): 3286-

3295. 

Eser, S., N. Reiff, M. Messer, B. Seidler, K. Gottschalk, M. Dobler, M. Hieber, A. 

Arbeiter, S. Klein, B. Kong, C. W. Michalski, A. M. Schlitter, I. Esposito, A. J. Kind, L. 

Rad, A. E. Schnieke, M. Baccarini, D. R. Alessi, R. Rad, R. M. Schmid, G. Schneider 

and D. Saur (2013). "Selective requirement of PI3K/PDK1 signaling for Kras oncogene-

driven pancreatic cell plasticity and cancer." Cancer Cell 23(3): 406-420. 

Feldser, D. M., K. K. Kostova, M. M. Winslow, S. E. Taylor, C. Cashman, C. A. 

Whittaker, F. J. Sanchez-Rivera, R. Resnick, R. Bronson, M. T. Hemann and T. Jacks 



	 160	

(2010). "Stage-specific sensitivity to p53 restoration during lung cancer progression." 

Nature 468(7323): 572-575. 

Fransson, A., D. Glaessgen, J. Alfredsson, K. G. Wiman, S. Bajalica-Lagercrantz and N. 

Mohell (2016). "Strong synergy with APR-246 and DNA-damaging drugs in primary 

cancer cells from patients with TP53 mutant High-Grade Serous ovarian cancer." J 

Ovarian Res 9(1): 27. 

Genovese, G., A. Carugo, J. Tepper, F. S. Robinson, L. Li, M. Svelto, L. Nezi, D. Corti, 

R. Minelli, P. Pettazzoni, T. Gutschner, C. C. Wu, S. Seth, K. C. Akdemir, E. Leo, S. 

Amin, M. D. Molin, H. Ying, L. N. Kwong, S. Colla, K. Takahashi, P. Ghosh, V. Giuliani, 

F. Muller, P. Dey, S. Jiang, J. Garvey, C. G. Liu, J. Zhang, T. P. Heffernan, C. Toniatti, 

J. B. Fleming, M. G. Goggins, L. D. Wood, A. Sgambato, A. Agaimy, A. Maitra, C. W. 

Roberts, H. Wang, A. Viale, R. A. DePinho, G. F. Draetta and L. Chin (2017). "Synthetic 

vulnerabilities of mesenchymal subpopulations in pancreatic cancer." Nature 542(7641): 

362-366. 

Haupt, S., M. Berger, Z. Goldberg and Y. Haupt (2003). "Apoptosis - the p53 network." J 

Cell Sci 116(Pt 20): 4077-4085. 

Heid, I., C. Lubeseder-Martellato, B. Sipos, P. K. Mazur, M. Lesina, R. M. Schmid and J. 

T. Siveke (2011). "Early requirement of Rac1 in a mouse model of pancreatic cancer." 

Gastroenterology 141(2): 719-730, 730 e711-717. 

Hingorani, S. R., E. F. Petricoin, A. Maitra, V. Rajapakse, C. King, M. A. Jacobetz, S. 

Ross, T. P. Conrads, T. D. Veenstra, B. A. Hitt, Y. Kawaguchi, D. Johann, L. A. Liotta, 

H. C. Crawford, M. E. Putt, T. Jacks, C. V. Wright, R. H. Hruban, A. M. Lowy and D. A. 



	 161	

Tuveson (2003). "Preinvasive and invasive ductal pancreatic cancer and its early 

detection in the mouse." Cancer Cell 4(6): 437-450. 

Hingorani, S. R., L. Wang, A. S. Multani, C. Combs, T. B. Deramaudt, R. H. Hruban, A. 

K. Rustgi, S. Chang and D. A. Tuveson (2005). "Trp53R172H and KrasG12D cooperate 

to promote chromosomal instability and widely metastatic pancreatic ductal 

adenocarcinoma in mice." Cancer Cell 7(5): 469-483. 

Hofmann, I., A. Weiss, G. Elain, M. Schwaederle, D. Sterker, V. Romanet, T. 

Schmelzle, A. Lai, S. M. Brachmann, M. Bentires-Alj, T. M. Roberts, W. R. Sellers, F. 

Hofmann and S. M. Maira (2012). "K-RAS mutant pancreatic tumors show higher 

sensitivity to MEK than to PI3K inhibition in vivo." PLoS One 7(8): e44146. 

Hollstein, M., D. Sidransky, B. Vogelstein and C. C. Harris (1991). "p53 mutations in 

human cancers." Science 253(5015): 49-53. 

Hruban, R. H., M. Goggins, J. Parsons and S. E. Kern (2000). "Progression model for 

pancreatic cancer." Clin Cancer Res 6(8): 2969-2972. 

Infante, J. R., B. G. Somer, J. O. Park, C. P. Li, M. E. Scheulen, S. M. Kasubhai, D. Y. 

Oh, Y. Liu, S. Redhu, K. Steplewski and N. Le (2014). "A randomised, double-blind, 

placebo-controlled trial of trametinib, an oral MEK inhibitor, in combination with 

gemcitabine for patients with untreated metastatic adenocarcinoma of the pancreas." 

Eur J Cancer 50(12): 2072-2081. 

Jackson, E. L., K. P. Olive, D. A. Tuveson, R. Bronson, D. Crowley, M. Brown and T. 

Jacks (2005). "The differential effects of mutant p53 alleles on advanced murine lung 

cancer." Cancer Res 65(22): 10280-10288. 



	 162	

Jones, S., X. Zhang, D. W. Parsons, J. C. Lin, R. J. Leary, P. Angenendt, P. Mankoo, H. 

Carter, H. Kamiyama, A. Jimeno, S. M. Hong, B. Fu, M. T. Lin, E. S. Calhoun, M. 

Kamiyama, K. Walter, T. Nikolskaya, Y. Nikolsky, J. Hartigan, D. R. Smith, M. Hidalgo, 

S. D. Leach, A. P. Klein, E. M. Jaffee, M. Goggins, A. Maitra, C. Iacobuzio-Donahue, J. 

R. Eshleman, S. E. Kern, R. H. Hruban, R. Karchin, N. Papadopoulos, G. Parmigiani, B. 

Vogelstein, V. E. Velculescu and K. W. Kinzler (2008). "Core signaling pathways in 

human pancreatic cancers revealed by global genomic analyses." Science 321(5897): 

1801-1806. 

Kanda, M., H. Matthaei, J. Wu, S. M. Hong, J. Yu, M. Borges, R. H. Hruban, A. Maitra, 

K. Kinzler, B. Vogelstein and M. Goggins (2012). "Presence of somatic mutations in 

most early-stage pancreatic intraepithelial neoplasia." Gastroenterology 142(4): 730-733 

e739. 

Kapoor, A., W. Yao, H. Ying, S. Hua, A. Liewen, Q. Wang, Y. Zhong, C. J. Wu, A. 

Sadanandam, B. Hu, Q. Chang, G. C. Chu, R. Al-Khalil, S. Jiang, H. Xia, E. Fletcher-

Sananikone, C. Lim, G. I. Horwitz, A. Viale, P. Pettazzoni, N. Sanchez, H. Wang, A. 

Protopopov, J. Zhang, T. Heffernan, R. L. Johnson, L. Chin, Y. A. Wang, G. Draetta and 

R. A. DePinho (2014). "Yap1 activation enables bypass of oncogenic Kras addiction in 

pancreatic cancer." Cell 158(1): 185-197. 

Liu, D. S., M. Read, C. Cullinane, W. J. Azar, C. M. Fennell, K. G. Montgomery, S. 

Haupt, Y. Haupt, K. G. Wiman, C. P. Duong, N. J. Clemons and W. A. Phillips (2015). 

"APR-246 potently inhibits tumour growth and overcomes chemoresistance in preclinical 

models of oesophageal adenocarcinoma." Gut 64(10): 1506-1516. 



	 163	

Love, M. I., W. Huber and S. Anders (2014). "Moderated estimation of fold change and 

dispersion for RNA-seq data with DESeq2." Genome Biol 15(12): 550. 

Makohon-Moore, A. P., M. Zhang, J. G. Reiter, I. Bozic, B. Allen, D. Kundu, K. 

Chatterjee, F. Wong, Y. Jiao, Z. A. Kohutek, J. Hong, M. Attiyeh, B. Javier, L. D. Wood, 

R. H. Hruban, M. A. Nowak, N. Papadopoulos, K. W. Kinzler, B. Vogelstein and C. A. 

Iacobuzio-Donahue (2017). "Limited heterogeneity of known driver gene mutations 

among the metastases of individual patients with pancreatic cancer." Nat Genet 49(3): 

358-366. 

Mayers, J. R., M. E. Torrence, L. V. Danai, T. Papagiannakopoulos, S. M. Davidson, M. 

R. Bauer, A. N. Lau, B. W. Ji, P. D. Dixit, A. M. Hosios, A. Muir, C. R. Chin, E. 

Freinkman, T. Jacks, B. M. Wolpin, D. Vitkup and M. G. Vander Heiden (2016). "Tissue 

of origin dictates branched-chain amino acid metabolism in mutant Kras-driven 

cancers." Science 353(6304): 1161-1165. 

Moffitt, R. A., R. Marayati, E. L. Flate, K. E. Volmar, S. G. Loeza, K. A. Hoadley, N. U. 

Rashid, L. A. Williams, S. C. Eaton, A. H. Chung, J. K. Smyla, J. M. Anderson, H. J. 

Kim, D. J. Bentrem, M. S. Talamonti, C. A. Iacobuzio-Donahue, M. A. Hollingsworth and 

J. J. Yeh (2015). "Virtual microdissection identifies distinct tumor- and stroma-specific 

subtypes of pancreatic ductal adenocarcinoma." Nat Genet 47(10): 1168-1178. 

Mohell, N., J. Alfredsson, A. Fransson, M. Uustalu, S. Bystrom, J. Gullbo, A. Hallberg, 

V. J. Bykov, U. Bjorklund and K. G. Wiman (2015). "APR-246 overcomes resistance to 

cisplatin and doxorubicin in ovarian cancer cells." Cell Death Dis 6: e1794. 

Morton, J. P., P. Timpson, S. A. Karim, R. A. Ridgway, D. Athineos, B. Doyle, N. B. 

Jamieson, K. A. Oien, A. M. Lowy, V. G. Brunton, M. C. Frame, T. R. Evans and O. J. 



	 164	

Sansom (2010). "Mutant p53 drives metastasis and overcomes growth 

arrest/senescence in pancreatic cancer." Proc Natl Acad Sci U S A 107(1): 246-251. 

Navas, C., I. Hernandez-Porras, A. J. Schuhmacher, M. Sibilia, C. Guerra and M. 

Barbacid (2012). "EGF receptor signaling is essential for k-ras oncogene-driven 

pancreatic ductal adenocarcinoma." Cancer Cell 22(3): 318-330. 

Olive, K. P., D. A. Tuveson, Z. C. Ruhe, B. Yin, N. A. Willis, R. T. Bronson, D. Crowley 

and T. Jacks (2004). "Mutant p53 gain of function in two mouse models of Li-Fraumeni 

syndrome." Cell 119(6): 847-860. 

Olivier, M., M. Hollstein and P. Hainaut (2010). "TP53 mutations in human cancers: 

origins, consequences, and clinical use." Cold Spring Harb Perspect Biol 2(1): a001008. 

Oren, M. and V. Rotter (2010). "Mutant p53 gain-of-function in cancer." Cold Spring 

Harb Perspect Biol 2(2): a001107. 

Rahib, L., B. D. Smith, R. Aizenberg, A. B. Rosenzweig, J. M. Fleshman and L. M. 

Matrisian (2014). "Projecting cancer incidence and deaths to 2030: the unexpected 

burden of thyroid, liver, and pancreas cancers in the United States." Cancer Res 74(11): 

2913-2921. 

Rajeshkumar, N. V., P. Dutta, S. Yabuuchi, R. F. de Wilde, G. V. Martinez, A. Le, J. J. 

Kamphorst, J. D. Rabinowitz, S. K. Jain, M. Hidalgo, C. V. Dang, R. J. Gillies and A. 

Maitra (2015). "Therapeutic Targeting of the Warburg Effect in Pancreatic Cancer Relies 

on an Absence of p53 Function." Cancer Res 75(16): 3355-3364. 

Rosenfeldt, M. T., J. O'Prey, J. P. Morton, C. Nixon, G. MacKay, A. Mrowinska, A. Au, 

T. S. Rai, L. Zheng, R. Ridgway, P. D. Adams, K. I. Anderson, E. Gottlieb, O. J. Sansom 



	 165	

and K. M. Ryan (2013). "p53 status determines the role of autophagy in pancreatic 

tumour development." Nature 504(7479): 296-300. 

Trapnell, C., L. Pachter and S. L. Salzberg (2009). "TopHat: discovering splice junctions 

with RNA-Seq." Bioinformatics 25(9): 1105-1111. 

Ventura, A., D. G. Kirsch, M. E. McLaughlin, D. A. Tuveson, J. Grimm, L. Lintault, J. 

Newman, E. E. Reczek, R. Weissleder and T. Jacks (2007). "Restoration of p53 

function leads to tumour regression in vivo." Nature 445(7128): 661-665. 

Viale, A., P. Pettazzoni, C. A. Lyssiotis, H. Ying, N. Sanchez, M. Marchesini, A. Carugo, 

T. Green, S. Seth, V. Giuliani, M. Kost-Alimova, F. Muller, S. Colla, L. Nezi, G. 

Genovese, A. K. Deem, A. Kapoor, W. Yao, E. Brunetto, Y. Kang, M. Yuan, J. M. Asara, 

Y. A. Wang, T. P. Heffernan, A. C. Kimmelman, H. Wang, J. B. Fleming, L. C. Cantley, 

R. A. DePinho and G. F. Draetta (2014). "Oncogene ablation-resistant pancreatic 

cancer cells depend on mitochondrial function." Nature 514(7524): 628-632. 

Waddell, N., M. Pajic, A. M. Patch, D. K. Chang, K. S. Kassahn, P. Bailey, A. L. Johns, 

D. Miller, K. Nones, K. Quek, M. C. Quinn, A. J. Robertson, M. Z. Fadlullah, T. J. 

Bruxner, A. N. Christ, I. Harliwong, S. Idrisoglu, S. Manning, C. Nourse, E. Nourbakhsh, 

S. Wani, P. J. Wilson, E. Markham, N. Cloonan, M. J. Anderson, J. L. Fink, O. Holmes, 

S. H. Kazakoff, C. Leonard, F. Newell, B. Poudel, S. Song, D. Taylor, N. Waddell, S. 

Wood, Q. Xu, J. Wu, M. Pinese, M. J. Cowley, H. C. Lee, M. D. Jones, A. M. Nagrial, J. 

Humphris, L. A. Chantrill, V. Chin, A. M. Steinmann, A. Mawson, E. S. Humphrey, E. K. 

Colvin, A. Chou, C. J. Scarlett, A. V. Pinho, M. Giry-Laterriere, I. Rooman, J. S. Samra, 

J. G. Kench, J. A. Pettitt, N. D. Merrett, C. Toon, K. Epari, N. Q. Nguyen, A. Barbour, N. 

Zeps, N. B. Jamieson, J. S. Graham, S. P. Niclou, R. Bjerkvig, R. Grutzmann, D. Aust, 



	 166	

R. H. Hruban, A. Maitra, C. A. Iacobuzio-Donahue, C. L. Wolfgang, R. A. Morgan, R. T. 

Lawlor, V. Corbo, C. Bassi, M. Falconi, G. Zamboni, G. Tortora, M. A. Tempero, I. 

Australian Pancreatic Cancer Genome, A. J. Gill, J. R. Eshleman, C. Pilarsky, A. 

Scarpa, E. A. Musgrove, J. V. Pearson, A. V. Biankin and S. M. Grimmond (2015). 

"Whole genomes redefine the mutational landscape of pancreatic cancer." Nature 

518(7540): 495-501. 

Watson, A. L., L. K. Anderson, A. D. Greeley, V. W. Keng, E. P. Rahrmann, A. L. 

Halfond, N. M. Powell, M. H. Collins, T. Rizvi, C. L. Moertel, N. Ratner and D. A. 

Largaespada (2014). "Co-targeting the MAPK and PI3K/AKT/mTOR pathways in two 

genetically engineered mouse models of schwann cell tumors reduces tumor grade and 

multiplicity." Oncotarget 5(6): 1502-1514. 

Weissmueller, S., E. Manchado, M. Saborowski, J. P. t. Morris, E. Wagenblast, C. A. 

Davis, S. H. Moon, N. T. Pfister, D. F. Tschaharganeh, T. Kitzing, D. Aust, E. K. 

Markert, J. Wu, S. M. Grimmond, C. Pilarsky, C. Prives, A. V. Biankin and S. W. Lowe 

(2014). "Mutant p53 drives pancreatic cancer metastasis through cell-autonomous 

PDGF receptor beta signaling." Cell 157(2): 382-394. 

Wormann, S. M., L. Song, J. Ai, K. N. Diakopoulos, M. U. Kurkowski, K. Gorgulu, D. 

Ruess, A. Campbell, C. Doglioni, D. Jodrell, A. Neesse, I. E. Demir, A. P. Karpathaki, M. 

Barenboim, T. Hagemann, S. Rose-John, O. Sansom, R. M. Schmid, M. P. Protti, M. 

Lesina and H. Algul (2016). "Loss of P53 Function Activates JAK2-STAT3 Signaling to 

Promote Pancreatic Tumor Growth, Stroma Modification, and Gemcitabine Resistance 

in Mice and Is Associated With Patient Survival." Gastroenterology 151(1): 180-193 

e112. 



	 167	

Wu, C. Y., E. S. Carpenter, K. K. Takeuchi, C. J. Halbrook, L. V. Peverley, H. Bien, J. C. 

Hall, K. E. DelGiorno, D. Pal, Y. Song, C. Shi, R. Z. Lin and H. C. Crawford (2014). 

"PI3K regulation of RAC1 is required for KRAS-induced pancreatic tumorigenesis in 

mice." Gastroenterology 147(6): 1405-1416 e1407. 

Xue, W., L. Zender, C. Miething, R. A. Dickins, E. Hernando, V. Krizhanovsky, C. 

Cordon-Cardo and S. W. Lowe (2007). "Senescence and tumour clearance is triggered 

by p53 restoration in murine liver carcinomas." Nature 445(7128): 656-660. 

Yang, A., N. V. Rajeshkumar, X. Wang, S. Yabuuchi, B. M. Alexander, G. C. Chu, D. D. 

Von Hoff, A. Maitra and A. C. Kimmelman (2014). "Autophagy is critical for pancreatic 

tumor growth and progression in tumors with p53 alterations." Cancer Discov 4(8): 905-

913. 

Ying, H., A. C. Kimmelman, C. A. Lyssiotis, S. Hua, G. C. Chu, E. Fletcher-Sananikone, 

J. W. Locasale, J. Son, H. Zhang, J. L. Coloff, H. Yan, W. Wang, S. Chen, A. Viale, H. 

Zheng, J. H. Paik, C. Lim, A. R. Guimaraes, E. S. Martin, J. Chang, A. F. Hezel, S. R. 

Perry, J. Hu, B. Gan, Y. Xiao, J. M. Asara, R. Weissleder, Y. A. Wang, L. Chin, L. C. 

Cantley and R. A. DePinho (2012). "Oncogenic Kras maintains pancreatic tumors 

through regulation of anabolic glucose metabolism." Cell 149(3): 656-670. 

Zhang, Y., A. Velez-Delgado, E. Mathew, D. Li, F. M. Mendez, K. Flannagan, A. D. 

Rhim, D. M. Simeone, G. L. Beatty and M. Pasca di Magliano (2017). "Myeloid cells are 

required for PD-1/PD-L1 checkpoint activation and the establishment of an 

immunosuppressive environment in pancreatic cancer." Gut 66(1): 124-136. 

Zhong, H., C. Sanchez, D. Spitzer, S. Plambeck-Suess, J. Gibbs, W. G. Hawkins, D. 

Denardo, F. Gao, R. A. Pufahl, A. C. Lockhart, M. Xu, D. Linehan, J. Weber and A. 



	 168	

Wang-Gillam (2013). "Synergistic effects of concurrent blockade of PI3K and MEK 

pathways in pancreatic cancer preclinical models." PLoS One 8(10): e77243. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 169	

 

 

 

 

 

 

 

R17
5

R27
3

0

2

4

6

8

10

P
er

ce
nt

 o
f p

53
 M

ut
at

io
ns

H
C
x

Amino Acid 
Change

Mouse Codon 
R172

Mouse Codon 
R270

Amino Acid

A	 B	

Pancreas	 Liver	C	

D	

Figure 5.1 – KCip53 mice recapitulate the stages of human pancreatic cancer  
(A) Percent of human pancreatic tumor samples with p53R175 or R273 mutations, from the COSMIC 
database. (B) Scheme of Ptf1a-Cre; LSLKrasG12D; TREp53R270H; R26rtTa/rtTa animals, termed 
KCip53 here. (C) H&E from pancreas, liver, and lung from two separate KCip53 animals with tumors. 
(D) IHC for p53 in KC and KCip53 tissue. (E) Survival curve for KC and KCip53 animals. 
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Figure 5.2 – TREp53R270H Validation in vitro and in vivo 
(A) Western Blot for p53 to confirm p53R270H expression upon dox administration. (B) IHC for RFP 
(dsRed) and p53 in Control and Krt5-tTa; TREp53R270H animal epithelium to confirm p53R270H 
expression.   
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Figure 5.3 – KPR270HC animals develop metastatic pancreatic tumors 
(A) Scheme of Pdx1-Cre; LSLKrasG12D; Tp53R270H/+ animals, termed KPR270HC here (B) Survival 
curve for KC and KPR270HC animals. (C) H&E from pancreas, liver and lung from two separate 
KPR270HC animals with tumors.  
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Figure 5.4 – Mutant p53R270H expression promotes PanIN formation 
(A) Scheme for mouse treatment for early timepoint analysis. (B) H&E, PAS and IHC for pERK in 
KC and KCip53 animals at ten weeks of age. (C) Quantification of pancreatic pathology in KC and 
KCip53 animals.  
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20X	

Figure 5.5– KCip53 histology at ten weeks of age 
IHC for (A) CD45 and (B) pSTAT3 in 10-week-old KC or KCip53 animals on dox. 
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Figure 5.6 – Mutant p53R270H expression is required for PanIN maintenance  
(A) Scheme for mouse treatment and dox removal. (B) Western Blot analysis for p53, with each lane 
representing the lysate from an individual animal. * Indicates a non-specific band seen in the B-Actin 
blot. (C) H&E, PAS and IHC for pERK in KCip53 animals either on dox or 3 weeks off dox. (D) qRT-
PCR analysis of pro- and anti-apoptotic factors in KCip53 on dox and KCip53 2 days off dox 
animals. (E) qRT-PCR analysis of targets of wild type p53 in KCip53 on dox and KCip53 1 week off 
dox animals.  
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KC	 KCip53	2	days	off	dox	

Figure 5.7 – KCip53 histology at two days and one week off dox 
(A) Scheme for dox treatment in KCip53 animals. (B) H&E analysis of KC and KCip53 animals 
taken off dox.  
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Figure 5.8 – Tumor growth is not affected by mutant p53R270H expression 
(A) H&E of original tumor from the animal from which cell line KCip53-1 was generated. (B) 
Scheme of cell line generation from KCip53 animals. (C) Scheme for subcutaneous tumor growth 
assay. (D) Subcutaneous tumor growth curve and (E) final tumor volume for KCip53-1 cell line. (F) 
Subcutaneous tumor growth curve and (G) final tumor volume for KCip53-2 cell line. 
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Figure 5.9 – KCip53-1 Cell line validation by dsRed and p53 gene target expression   
(A) Brightfield and dsRed fluorescence images of KCip53-1 cells before and after cell 
sorting for dsRed expression. (B) qRT-PCR analysis for p53 targets in KCip53-1 cells grown 
with or without dox.  
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Figure 5.10 – Histology of final subcutaneous tumors 
from KCip53-1 cells 
IHC analysis of final subcutaneous tumors from KCip53-1 
cells including (A) CK19, (B) Ki67, (C) Cleaved Caspase 3 
and (D) dsRed. Quantification of number of dsRed 
expressing cells per high power field in final subcutaneous 
tumors from KCip53-1 cells.  
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Figure 5.11 – KCip53 Cells on dox display more invasive and migratory characteristics than 
those not on dox 
(A) H&E analysis of final subcutaneous tumors grown from KCip53-1 cells. Arrows indicate some 
muscle fibers within tumor. (B) Quantification of percentage of final tumors that have invasion into 
muscle by H&E. n=33 or 34 tumors per group. (C) qRT-PCR analysis of EMT associated gene 
expression in final subcutaneous tumors grown from KCip53-1 cells. (D) Scratch assay in 
KCip53-1 and KCip53-2 cell lines, shown as percentage original of scratch closed at specified 
timepoints.  
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Figure 5.12 – KCip53 Cells on dox do not display increased levels of PDGFRb compared to 
those not on dox 
(A) IHC analysis for PDGFRβ of final subcutaneous tumors grown from KCip53-2 cells. Arrows 
indicate some muscle fibers within tumor. (B) qRT-PCR analysis of PDGFRβ levels in KCip53 
animals on dox compared to those removed from dox for 3 weeks. 	
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Figure 5.13 - Assessing the effect of mutant p53R270H expression on orthotopic tumor 
growth 
(A) Scheme for orthotopic tumor growth and MRI measurement using KCip53-1 cell lines. (B) 
Orthotopic tumor growth, measured by MRI. (C) Final tumor volume. (D) H&E for final orthotopic 
tumors and representative liver metastases. (E) Quantification of average metastasis size. (F) 
Quantification of average number of metastases. 
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Figure 5.14 – Gene expression profiling of mutant p53R270H tumors 
(A) Scheme for subcutaneous tumor growth and RNA collection for RNA sequencing. (B) Heat map 
showing differential gene expression in tumor groups. (C) Pathway analysis of gene expression 
differences in “No dox” and “Plus dox” conditions. (D) Change is OCR levels as measured by 
mitochondrial stress test in KPC, KCip53-1 and KCip53-2 cells with or without dox. Difference of 
levels of (E) branched chain amino acids and (F) TCA intermediates in KCip53-1 cells grown with or 
without dox.  
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Figure 5.15 – Further Differentially Regulated Pathways in Plus Dox Tumors 
Pathway analysis in “No dox” compared to “Plus dox” tumors. 
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Figure 5.16 – Changes in OCR but not ECAR in KCip53 cell lines with p53R270H expression 
(A) Scheme for cell growth for metabolic flux assay (B) Western blot analysis of KPC, KCip53-1, 
and KCip53-2 cell lines for dsRed expression and p53 expression. (B) Traces showing change in 
OCR and ECAR during a mitochondrial stress test in KCip53-1, KCip53-2, and KPC cells grown 
with or without dox. 	
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Figure 5.17 – Metabolomics Analysis of KCip53 cells  
A. Heatmap of the significant metabolites changed in KCip53-1 cells under  expression on p53R270H 
(Plus dox) or without (No Dox). B.  Summary of TCA intermediates and substrates. 
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Figure 5.18 – Combination of mutant p53R270H inactivation and MEK inhibition results in slower 
tumor growth 
(A) Scheme for subcutaneous tumor growth and drug treatment. (B) Subcutaneous tumor growth 
curve for treatment groups using KCip53-1 cells. (C) H&E analysis of final tumors. (D) Scheme for 
subcutaneous tumor growth and drug treatment. (E) Subcutaneous tumor growth curve for treatment 
groups using KCip53-1 cells. (F) H&E analysis of final tumors.  
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Figure 5.19 – Histology of KCip53-1 subcutaneous 
tumors with MEK inhibition and p53R270H 
expression 
Resulting histology from final tumors from MEK 
inhibition and on and off dox subcutaneous tumor 
growth groups. IHC for pERK1/2, Ki67 and Cleaved 
Caspase 3. IF for dsRed as a surrogate for p53R270H 
expression. Western Blot for pERK1/2 to confirm MEK 
inhibition and dsRed to confirm p53R270H expression. 
Each lane represents lysate from one subcutaneous 
tumor.  
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Figure 5.20 – Histology of KCip53-1 
subcutaneous tumors with MEK and/or PI3K 
inhibition  
Resulting histology from final tumors from MEK and/
or PI3K inhibition in subcutaneous tumor growth 
groups. IHC for pERK1/2, Ki67 and Cleaved 
Caspase 3. Western Blot for pAKT and total AKT to 
confirm PI3K inhibition and pERK1/2 to confirm MEK 
inhibition.  

	

Vehicle MEK Inhibited  PI3K Inhibited 
MEK and PI3K 

Inhibited 
pE

RK
1/
2	

Ki
67

	
Cl
ea
ve
d	
Ca

sp
as
e	
3	

pAKT	

tAKT	

pERK1/2	

tERK	

Vehicle	 MEKi	 AKTi	
MEKi	and	
AKTi	

Go
m
or
i	



	 189	

Chapter Six 

Discussion and Future Directions  

 Pancreatic cancer is a devastating disease, with a five-year-survival rate of just 

9%(Rahib, Smith et al. 2014). It is crucial to understand the biology of how pancreatic 

cancer develops and progresses in order to identify effective options for future therapy. 

Sequencing information from human tumor samples has provided a picture of the 

genetic changes found in human pancreatic cancer. Using this data, introducing these 

changes into the pancreata of mice creates models that reliably recapitulate the human 

disease(Hingorani, Petricoin et al. 2003, Hingorani, Wang et al. 2005, Collins, Bednar et 

al. 2012, Collins, Brisset et al. 2012). Using mouse models of pancreatic cancer, studies 

can be performed that illuminate the genetic and environmental changes that lead of 

pancreatic cancer progression in ways that could not be achieved in humans, providing 

a more clear picture of the biology of the disease. My thesis work focused on using 

existing mouse models to explore the factors that contribute to the initiation of 

pancreatic cancer, as well as creating new mouse models for use as tools to discover 

new aspects of pancreatic cancer biology.  

 

Defining the role of Bmi1 and HIF1a expression in pancreatic cancer initiation 

Future Experiments 

 In Chapter Two I showed that expression of Bmi1 is required for the formation of 

pancreatic precancerous lesions using an oncogenic Kras driven mouse model of pan
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creatic cancer. Using mouse pancreatic cancer cell lines, I showed that knockdown of 

Bmi1 in these cells led to increased levels of ROS, indicating that the requirement for 

Bmi1 expression during pancreatic cancer initiation may be due to its role in regulating 

ROS accumulation. In Chapter Three I explored the mechanism of Bmi1 requirement in 

the process of pancreatic cancer initiation. I observed that in pancreatic cancer cell lines 

with Bmi1 knockdown, levels of HIF1α were also reduced. Further, re-expression of 

HIF1α in animals lacking Bmi1 led to the formation of PanINs, indicating that Bmi1 

control of HIF1α levels may be the reason for Bmi1 requirement during pancreatic 

cancer initiation.   

 The studies in Chapters Two and Three helped define the role of Bmi1 and its 

control of HIF1α during pancreatic carcinogenesis, however detailed studies of the 

mechanism of Bmi1 action were limited by the reagents used to perform the 

experiments. Mechanistic studies were limited by the fact that Bmi1 knockdown in 

mouse pancreatic cancer cell lines was performed using siRNA, a temporary method 

with knockdown that only lasts for a couple of days. Given this, it was difficult to assess 

the true role of Bmi1 expression in cells. For future experiments, the availability of 

newer reagents will help to change this, and provide further insights into Bmi1 function 

in pancreatic cancer.   

Using the CRISPR/Cas9 system, we have created mouse pancreatic cancer cell 

lines that have permanent deletion of Bmi1 at the genetic level (Figure 6.1A). This 

allows direct comparison of pancreatic cancer cells that have Bmi1 expressed to those 

that do not, and the ability to perform cellular assays to determine Bmi1 function in this 

context. Using these cells, we see that permanent lack of Bmi1 leads to lower levels of 
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HIF1α expression, mirroring what is seen using siRNA and suggesting that the 

CRISPR/Cas9 knockout of Bmi1 recapitulates what we see in other experiments (Figure 

6.1B). Similarly, when grown in hypoxia, pancreatic cancer cells lacking Bmi1 show 

lower levels of expression of HIF1α target genes, suggesting a functional decrease in 

HIF pathway output (Figure 6.1C). Further experiments show that Bmi1 deletion leads 

to lower levels of proliferation compared to control pancreatic cancer cells (Figure 6.2). 

Additionally, when injected subcutaneously into syngeneic mice, pancreatic cancer cells 

with Bmi1 knockdown grow more slowly than those with Bmi1 expressed (Figure 6.3A-

C). Future experiments will test whether re-expression of HIF1α in these cell lines 

lacking Bmi1 rescues these observed phenotypes.  

 The creation of murine pancreatic cancer cell lines that permanently lack Bmi1 

expression creates the opportunity to explore some of the open questions regarding the 

role of Bmi1 and HIF1α during pancreatic cancer initiation. Namely, given the changes 

observed in metabolic enzymes using mouse models, these cell lines will be used to 

further define metabolic changes. Metabolomics analysis comparing pancreatic cancer 

cell lines with and without Bmi1 expression will give a more comprehensive view of the 

difference in metabolite levels caused by Bmi1 knockout. Reintroduction of changed 

metabolites and analysis of whether this results in rescue of observed phenotypes, such 

as cell proliferation, may help elucidate specifically what changes at the cellular level 

are the cause for Bmi1 requirement in pancreatic cancer initiation.  

 

Open Questions 
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 Some remaining questions pertaining to the role of Bmi1 and HIF1α in the 

initiation of pancreatic cancer are not as easily answered using CRISPR/Cas9 knockout 

of Bmi1. Recently, it has been shown that HIF1α expression in pancreatic cancer has 

an impact on immune cell populations(Lee, Spata et al. 2016). This prompts the 

question of whether lack of Bmi1 expression, and its subsequent effects on HIF1α, 

changes the immune microenvironment of the precancerous pancreas. Flow cytometry 

analysis of the pancreata of these animals may reveal differences in immune cell 

populations, which are critical to pancreatic cancer development(Neesse, Algul et al. 

2015). While our current data suggests that Bmi1 and HIF1α interact to control the 

metabolic state of the pancreatic cancer cells, it is possible that this interaction affects 

multiple aspects of carcinogenesis.  

Lastly, it remains unknown whether the Bmi1/HIF1α collaboration gives us any 

valuable insight into pancreatic cancer treatment. Given that Bmi1 is required for 

pancreatic cancer initiation, it is possible that Bmi1 inhibitors may slow pancreatic 

cancer growth. A commercially available Bmi1 inhibitor has been used previously(Mayr, 

Wagner et al. 2016), but in our experiments did not specifically inhibit Bmi1. The 

development of Bmi1 inhibitors is ongoing in other contexts, and when they are 

available could be used to test whether Bmi1 inhibition delays pancreatic cancer growth. 

The effect of inhibiting Bmi1 in established tumors, as would be the case in human 

pancreatic cancer treatment, could be assessed using the newer KPF mouse 

model(Schonhuber, Seidler et al. 2014). KPF mice express oncogenic Kras and mutant 

p53, both driven by flp recombinase. These would be combined with a temporally 

activatable CreERT allele and Bmi1 floxed. When the KPF mice developed tumors, Cre 
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could be activated, deleting Bmi1 expression. Assessment of the resulting tumors over 

time would show the outcome of Bmi1 deletion in established tumors, and provide a 

basis for future drug treatment in human pancreatic cancer.  

Overall, Bmi1 seems to be required in pancreatic cancer through its control of 

HIF1α expression. Newer techniques will provide ways to determine the exact cellular 

mechanisms of Bmi1 and HIF1α action in pancreatic cancer. Additionally, this work 

raises the question of whether Bmi1 inhibition would be a valid therapeutic option in 

human pancreatic cancer, although some experiments remain in order to move forward 

with this strategy.  

 

HIF2a stabilization as a mouse model of pancreatic disease  

A new model of chronic pancreatitis and MCN 

 In Chapter Four of this work, I detail the effects of pancreatic HIF2α stabilization 

on the murine pancreas. I show that stabilization of HIF2α in the pancreas results in a 

phenotype that mimics human chronic pancreatitis, including inflammatory infiltrates and 

extensive fibrosis. With the additional expression of oncogenic Kras, HIF2α stabilization 

results in the development of mucinous cystic neoplasm (MCN), a less common 

precursor lesion of human pancreatic cancer. These observations are very important 

because they detail new mouse models that provide the opportunity to further explore 

these human conditions. Chronic pancreatitis is a common human condition with many 

causes, including alcohol use, autoimmune conditions and tumors(Etemad and 

Whitcomb 2001). Chronic pancreatitis is characterized by irreversible damage to the 

pancreas, distinguishing it from acute pancreatitis, a temporary inflammatory injury from 
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which the pancreas recovers to normal(Banks, Freeman et al. 2006). There are many 

experimental procedures that mimic chronic pancreatitis, including repeated injections 

of caerulein or pancreatic ductal ligation(Lerch and Gorelick 2013). However, at the end 

of each of these procedures the murine pancreas eventually recovers from the insult, in 

contract to human chronic pancreatitis. Importantly, HIF2α stabilized animals are the 

first model of chronic pancreatitis where the pancreas does not eventually recover to 

normal histology, more closely resembling the human condition than other existing 

models. This provides a new tool to use to study the biology of chronic pancreatitis and 

understand the etiology of and potential treatments for this disease.     

 In the context of oncogenic Kras, HIF2α stabilized animals develop MCN, a cystic 

lesion of the pancreas. In humans these lesions can be benign or malignant, 

complicating their prognosis and treatment(Tanaka, Chari et al. 2006, Testini, Gurrado 

et al. 2010). Given this variability in MCN characteristics, it is important to develop 

models of this condition in order to better understand its development and progression. 

Very few other mouse models of MCN have been described(Izeradjene, Combs et al. 

2007, Sano, Driscoll et al. 2014), highlighting the importance of finding new ways to 

model this lesion. KC;HIF2α animals are a new addition to this group, providing further 

insight into the mechanism of MCN development.  

 

Open Questions 

 Given that HIF2α stabilization in the murine pancreas results in the development 

of chronic pancreatitis or MCN (in the context of oncogenic Kras), the question remains 

of whether this role is recapitulated in the human pancreas. Further experiments in 
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human systems or with existing human data can illuminate whether HIF2α expression 

has a causative or prognostic role in human chronic pancreatitis or MCN.  In Chapter 

Four I showed that in lysates from human chronic pancreatitis samples there is 

upregulation of HIF2α compared to the normal human pancreas. This relationship 

however should be explored further. Rare human cases of gain-of-function HIF2α 

mutations have been described(Percy, Furlow et al. 2008, Zhuang, Yang et al. 2012), 

however in these cases no evaluation of the pancreas was performed. It is possible that 

these patients have mild chronic pancreatitis or a condition that develops later in life, 

and histologic analysis of pancreatic biopsies would illuminate whether HIF2α 

expression in humans leads to chronic pancreatitis. Conversely, chronic pancreatitis is 

of idiopathic origin in up to 25% of human cases(Etemad and Whitcomb 2001). Given 

the fact that HIF2α stabilization causes chronic pancreatitis in mice, it is possible that a 

portion of these chronic pancreatitis cases with unknown origin arise from HIF2α 

stabilizing mutations. HIF2α inhibitors are an area of active development(Wallace, Rizzi 

et al. 2016), and so if HIF2α blockade could alleviate some cases of chronic 

pancreatitis, this could help a portion of patients.  

 This work also raises the question of the role of HIF2α in human MCN. Given that 

KC;HIF2α animals develop MCN, it is possible that HIF2α stabilization in the human 

pancreas is a cause of MCN. A first experiment to help determine this relationship 

would be to examine HIF2α expression in human MCN samples. HIF2α expression in 

MCN, but not normal pancreas or other pancreatic lesions, would suggest that HIF2α 

expression plays a role in human MCN development. Another question would be 

whether expression of HIF2α in MCN plays a prognostic role in the disease. MCN is a 
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condition that can be benign or malignant, however the differences between these two 

types are not well understood and therefore treatment decisions can be difficult(Jana, 

Shroff et al. 2015). Evaluation of whether HIF2α expression is a marker for malignancy 

could help differentiate between benign and malignant MCN and help choose more 

appropriate treatment options.  

 Overall, mice with pancreatic stabilization of HIF2α provide an important new 

animal model of two human pancreatic diseases, chronic pancreatitis and mucinous 

cystic neoplasm. Previous to the development of these mice there were no animal 

systems that accurately modeled chronic pancreatitis, and so HIF2α stabilized mice will 

provide an important tool for studying this condition. Similarly, there have been very few 

models of MCN described previously, so KC;HIF2α stabilized mice help understand this 

disease and provide more mechanistic insight into its development. Beyond the role of 

HIF2α stabilization to create animal models, it will next be important to determine 

whether HIF2α has a functional role in human pancreatic disease. Evaluation of humans 

with HIF2α stabilizing mutations will illuminate whether HIF2α expression is a causative 

factor in chronic pancreatitis development. Additional evaluation of HIF2α expression in 

human MCN samples may provide a biomarker for MCN development or progression.  

 

Modeling common p53 point mutations and their role in pancreatic cancer 

initiation and progression  

Future Experiments 

 In Chapter Five I developed a new mouse system to model the effects of 

expression of mutant p53R270H, a mutation commonly found in human pancreatic cancer 
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that has not been explored experimentally in animals. Importantly, this model, termed 

KCip53, permitted for expression of mutant p53R270H in an inducible and reversible 

manner, allowing for specific studies into the role of p53R270H in pancreatic cancer 

initiation and progression. We found that expression of p53R270H, in the context of 

mutant Kras, leads to the formation of metastatic pancreatic tumors. Using KCip53 

animals we found that expression of p53R270H promotes formation of PanINs and its 

continued expression is required for PanIN maintenance. In later tumor stages, use of 

KCip53 cell lines suggested that mutant p53R270H expression does not have an effect on 

tumor growth or metastasis. Further profiling of gene expression signature and levels of 

metabolites revealed differences in cells with or without p53R270H expression at the 

cellular level.  

 Although the use of KCip53 mice has revealed many aspects of mutant p53R270H 

function in pancreatic cancer, questions still remain. One major subject for further 

exploration is the mechanism of p53R270H action in pancreatic cancer initiation and 

progression. Global gene expression analysis using RNA sequencing revealed 

differences in many cellular pathways between subcutaneous tumors grown with or 

without mutant p53R270H expression. However which of these changes causes the 

functional difference in tumor characteristics is still unknown. One candidate is changes 

in metabolism due to mutant p53R270H expression. Metabolomics analysis in cell lines 

grown with or without p53R270H expression revealed different levels of metabolites 

between the two conditions, including those involved in the TCA cycle. It remains to be 

determined whether these changes are the cause for the role of mutant p53R270H in the 

progression of pancreatic cancer. Future experiments may help determine this 
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relationship. Given that metabolomics analysis was performed in cell lines, it will next be 

important to determine whether the same changes occur in tumors. Additionally, re-

addition of changed metabolites to the media of tumor cells and downstream phenotypic 

analysis can help determine whether controlling changes in metabolism is a major role 

for p53R270H in pancreatic cancer. 

 Another remaining question is the surprising finding that p53R270H does not 

promote tumor growth or metastasis. In other cancer systems expression of p53R270H 

promotes cancer progression(Olive, Tuveson et al. 2004, Jackson, Olive et al. 2005) 

and in pancreatic cancer p53 mutation or deletion promotes tumor growth and 

metastasis(Hingorani, Wang et al. 2005, Morton, Timpson et al. 2010). It is possible that 

p53R270H does not have a role in later tumor stages, or it is possible that there are 

limitations to our current experimental system. It is well known that in pancreatic cancer 

interactions between the tumor cells and the immune environment play an important 

role in tumor progression(Olive, Tuveson et al. 2004, Jackson, Olive et al. 2005). Given 

that KCip53 mice were developed on a mixed background, the subcutaneous and 

orthotopic tumor growth experiments were performed in immunocompromised mice, 

removing potential interactions between the tumor cells and immune cells. KCip53 

animals should be backcrossed onto a pure mouse background and new cell lines 

developed so that subcutaneous tumor growth experiments can be performed in 

immunocompetent, syngeneic animals. However, this is a very time consuming process, 

and so alternative methods to access the interaction between the immune environment 

and mutant p53R270H expression should be considered. Preliminary analysis of gene 

expression in KCip53 pancreata suggests changes in macrophage differentiation status 
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and CD8 T-Cell activation in animals with mutant p53R270H turned off, indicating that 

p53R270H expression may induce changes in the immune microenvironment of 

pancreatic cancer (Figure 6.4A,B). Further experiments, including flow cytometry 

analysis of immune cell populations in KCip53 pancreata both with and without p53R270H 

expression, may help reveal a role for p53R270H in pancreatic cancer progression.  

 

Open Questions 

 More generally, KCip53 mice are a model for a common p53 mutation found in 

human pancreatic cancer that has not previously been explored experimentally. Almost 

all experimental models in pancreatic cancer have relied on a very small subset of 

mutations, which is not consistent with the reality of human pancreatic cancer. Given 

that several recent studies have identified subtypes of pancreatic cancer that 

correspond to different genetic signatures(Collisson, Sadanandam et al. 2011, Moffitt, 

Marayati et al. 2015, Waddell, Pajic et al. 2015, Bailey, Chang et al. 2016), it is possible 

that different tumor types have unique responses to therapy. In the future it will become 

important to develop methods to model different combinations of human mutations in 

order to elucidate these differences. New developments in Crispr/Cas9 technology 

should make this process much faster and easier than previous methods, allowing 

creation of many models that recapitulate the wide spectrum of mutations found in 

human pancreatic tumors.  

 

Summary 
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 Overall, this work explored aspects of the initiation and progression of pancreatic 

cancer using both existing and newly developed mouse models of the disease. In 

Chapters Two and Three I found that Bmi1 expression is required for pancreatic cancer 

initiation, and that this is likely due to Bmi1 control of HIF1α expression. In Chapter Four 

I found that pancreatic HIF2α stabilization leads to chronic pancreatitis and MCN in the 

context of oncogenic Kras, providing valuable new models of less well understood 

pancreatic conditions. In Chapter Five I developed a mouse model of mutant p53R270H in 

pancreatic cancer, a mutation found commonly in humans but not previously modeled in 

animals. Taken together, this work demonstrates the wide array of possible uses of 

mouse models in pancreatic cancer research, as well as provides new functional 

insights into the mechanisms of pancreatic cancer initiation and progression. The use of 

mouse models in research is a critical tool to understand the biology of human 

pancreatic cancer, and hopefully provides the basis for the development of future 

effective therapeutic options.  
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Figure	6.1	–	Bmi1	knockout	with	Crispr/Cas9	recapitulates	
phenotype	seen	with	Bmi1	siRNA	
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(A)	Western	blot	in	KPC	and	KPC;Bmi1	sgRNA	cells	for	Bmi1.	(B)	qPCR	analysis	of	mRNA	
levels	in	KPC	and	KPC;Bmi1	sgRNA	cells.	(C)	qPCR	analysis	for	HIF	target	genes	in	KPC	and	
KPC;Bmi1	KO	clonal	cells	grown	for	24	hours	in	hypoxia.		
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Figure	6.2	–	Bmi1	expression	is	required	for	prolifera9on	in	
pancrea9c	cancer	cell	lines	
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Prolifera9on	assay	in	KPC	and	KPC;Bmi1	KO	clonal	cells	as	measured	by	WST-1	reagent.		
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Figure	6.3	–	Lack	of	Bmi1	expression	results	in	slower	tumor	growth	
in	pancrea=c	cancer	cells	
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(A)	Subcutaneous	tumor	growth	rate	in	KPC	and	KPC;Bmi1	KO	cells.	(B)	Final	tumor	mass	in	
KPC	and	KPC;Bmi1	KO	cells.	(C)	Final	gross	subcutaneous	tumors.		
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Figure	6.4	–	Mutant	p53R270H	expression	results	in	changes	in	
macrophage	differenAaAon	markers	and	CD8	T-Cell	acAvaAon	
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B	

qPCR	analysis	of	(A)	macrophage	differentaAon	markers	and	(B)	markers	of	CD8	T-cell	
acAvaAons	in	pancreata	from	KCip53	animals	on	dox	or	off	dox	for	three	weeks.		


