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Abstract 
 

Overexpression of the Polycomb group protein EZH2 in estrogen receptor negative 

(ER-) breast cancer promotes metastasis. EZH2 has been mainly studied as a 

transcriptional repressor and an enzymatic component of the Polycomb Repressive 

Complex 2 (PRC2) that trimethylates histone H3 at lysine 27 (H3K27me3). However, how 

EZH2 drives metastasis, despite the low levels of H3K27me3 observed in ER- breast 

cancer, and the function of extranuclear EZH2 are unknown. Here, we report that 

phosphorylation of EZH2 at T367 plays a critical role in breast cancer invasion and 

metastasis. In human invasive carcinomas and distant metastasis, cytoplasmic EZH2 

phosphorylated at T367 is significantly associated with ER- disease and low H3K27me3 

levels. We uncover a previously unrecognized PRC2-independent mechanism by which 

p38-mediated EZH2 phosphorylation at T367 promotes EZH2 cytoplasmic localization 

and potentiates EZH2 binding to vinculin and other cytoskeletal regulators of cell 

migration and invasion. Ectopic expression of a phospho-deficient mutant of EZH2, where 

T367 has been replaced with Ala, is sufficient to inhibit EZH2 cytoplasmic expression, to 

disrupt binding to cytoskeletal regulators, and to reduce EZH2-mediated adhesion, 

migration, invasion, and the development of spontaneous metastasis. These results point 

to a novel non-canonical mechanism for EZH2 pro-metastatic function and suggest a new 

therapeutic approach for metastatic breast cancer. 
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Chapter 1 Introduction 
 

 

1-1 Breast cancer 

1-1.1 Epidemiology of breast cancer 

 Breast cancer is the most common and second deadliest cancer in women in the 

United States. Although improvements in screening, early detection, and treatment have 

contributed in dropping the death rate of breast cancer nearly 40% over the past 30 years 

(1), breast cancer remains a significant clinical challenge. The probability a woman will 

develop an invasive breast cancer over her life is 12.4% in the United States. In 2018, 

there will be an estimated 266,120 new cases of breast cancer diagnosed and an 

estimated 40,920 deaths from breast cancer (1). Globally, breast cancer is both the most 

common and deadliest cancer in women, with 2.4 million incident cases and 733,300 

deaths in 2015 (2). In general, outcomes for breast cancer are good compared to other 

cancers with a 90% five-year survival rate (3). Prognosis drops off significantly, however, 

with higher stage disease; indeed, five-year survival for patients with distant metastases 

at the time of diagnosis has a 6% 5-year survival compared to patients with regional or 

localized cancer (31% and 62%, respectively) (3).   

Outcomes of breast cancer also vary significantly by race and ethnicity (4). These 

differences comprise both biological factors (e.g., inherent differences in tumor grade, 

receptor status, or other features) and non-biological factors (e.g., social, economic, 

demographic, or cultural factors that might contribute to a woman’s access to care (4, 5). 
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Incidence of breast cancer for non-Hispanic black women from 2010-2014 was 2% lower 

than non-Hispanic white women, but death rates were 42% higher in non-Hispanic black 

women (6). These differences are reflected in five-year survival rates as well: for all 

women diagnosed with breast cancer in the United States it is 91% but for black women 

it is 81%. Additionally, for women with stage I breast cancer, the actuarial risk of death at 

seven years is significantly higher for black women than non-Hispanic white women, and 

black women are significantly more likely to die with smaller tumor size after adjusting for 

income and estrogen receptor status (4).   

 

1-1.2 Breast cancer progression and metastasis  

Breast cancer is an umbrella term that refers to many different neoplasms with 

distinct histological patterns, molecular expression profiles, risk factors, and clinical 

courses. The overwhelming majority (>95%) of cancers of the breast are 

adenocarcinomas and arise from the ducts (invasive ductal carcinomas, 80%) or lobules 

(invasive lobular carcinomas 5-15%) (7, 8). Less common are other tumor types such as 

lymphomas, sarcomas, and phyllodes tumors (9). In a simplified model proposed almost 

50 years ago (10), breast cancer follows a linear pattern of progression (Fig. 1.1). Briefly, 

a normal terminal ductal lobular unit (TDLU) undergoes stepwise accumulation of genetic 

and epigenetic aberrations that lead to hyperplasia, atypical hyperplasia, ductal 

carcinoma, and invasive carcinoma in situ. Carcinoma in situ can then develop into an 

invasive carcinoma that metastasizes to distant organs. Progression at any of these 

stages is non-obligatory and time in each stage may last decades (10, 11). It is important 

to note that there is still debate as to whether the sequential breast cancer progression 
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model is broadly applicable; some, for example, have posited a parallel model in which 

breast tumor initiating cells disseminate early, which might suggest that invasion is not a 

prerequisite for metastasis per se (12).  

As one of the hallmarks of cancer (13), metastasis is responsible for the 

overwhelming majority (90%) of cancer-associated deaths (14). A simplified model of 

breast cancer tissue invasion and metastasis is a sequential, three-step process (Fig 1.2). 

In the first step of this process, tumor cells invade locally into surrounding tissues. After 

local invasion, tumor cells intravasate into the circulatory system, through either vessels 

or by way of the lymphatic system. In the vasculature, they undergo arrest and avoid 

immunosurveillance. The third step is extravasation and colonization of distant organs, 

where tumor cells may proliferate to form micrometastases, and later into frank, clinically 

detectable lesions (15). The metastatic process is highly inefficient, with an estimated 

99.98% (16)of all tumor cells failing to reach this step.  

How can breast cells of epithelial origin, confined initially by basement membrane 

and then surrounding stromal architecture, undergo changes necessary to initiate this 

process? One of the prevailing views is that tumor cells are plastic and can co-opt a set 

of developmental programs known as the epithelial-to-mesenchymal transition (EMT). 

The EMT is characterized by the acquisition of a morphological and molecular phenotype 

marked by dysfunctional cell-cell adhesion, loss of apical-basal polarity, increased 

resistance to apoptosis, and gain of motility (17, 18). Both EMT and its reverse process, 

the mesenchymal-to-epithelial transition (MET), are fundamental in normal development 

and formation of the body plan. Loss of cell-cell adhesion is regulated by transcriptional 

repression and relocalization of cadherins, occludins, claudins, and desmoplakin (19), 
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and activation of mesenchymal markers including N-cadherin, vimentin, smooth muscle 

actin, and fibronectin (20). Cells also produce matrix metalloproteinases (MMPs) and the 

urokinase plasminogen activator (uPA) that degrade extracellular matrix (ECM) to allow 

local invasion into stroma (21). This cellular plasticity is governed by a set of transcription 

factors from three families: Snail, Twist, and Zeb (20, 22-25). Lineage tracing experiments 

have supported a role for EMT in mammary tumors driven by MYC (26). However, it is 

worth noting that whether EMT occurs in different cancers and its contribution metastasis 

remains a topic of intense debate (22, 27-31) and in the future may require a more 

nuanced appreciation of markers of EMT transcription factors, of mesenchymal cells, and 

of temporal regulation of this process (32). The underlying premise that breast tumor cells 

can exhibit plasticity, however, is well-supported.  

  Once tumor cells have penetrated the stroma and entered the vasculature, they 

undergo cell cycle arrest and must avoid anoikis (a form of apoptosis due to loss of 

extracellular matrix detachment), immunosurveillance, and shear stress from blood flow 

(33). Similar genes that facilitate the process of intravasation process may promote 

extravasation: MMPs, Epiregulin, COX2, and Fascin promote both angiogenesis and 

vascular remodeling and facilitate the intravasation/extravasation processes (34-36). 

Some organ-specific physical barriers, such as the blood-brain barrier, necessitate the 

activation of additional genes to facilitate their entry (34). The propensity of certain breast 

tumor subtypes to form metastases in certain organs may be explained by their likelihood 

of activating transcription of these additional genes.  
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1-1.3 Classification of breast cancers 

Although breast carcinomas arise from breast epithelial cells, they can display 

significant histological and molecular heterogeneity. Seminal studies from nearly twenty 

years ago profiling the gene expression pattern of breast tumors have shaped how breast 

cancers are classified (37, 38) and how they are managed clinically. In general, breast 

cancer molecular subtyping has been based on expression of estrogen receptor (ER), 

progesterone receptor (PR), and whether the HER2 (ERBB2) gene is amplified. 

Guidelines for clinical diagnosis of receptor positivity is >1% tumor cells are 

immunoreactive by immunohistochemistry (39). This dissertation will focus on triple-

negative breast cancers (TNBCs), which lack ER, PR, and HER2 amplification; however, 

there are many additional methods of clustering breast cancers based on gene 

expression patterns.  

 Indeed, over the past fifteen years, advances in molecular gene expression 

profiling have led to different molecular sub-classification systems with distinct clinical 

outcomes. Initial studies used a 456 cDNA set (427 genes) to classify breast cancers into 

five intrinsic subtypes based on gene expression patterns, each with distinct clinical 

outcomes and histologic staining patterns (37). Luminal A (23.7% of all tumors) and 

luminal B (52.8% of all tumors) express hormone receptors and have good and 

intermediate-poor outcomes, respectively. By immunohistochemistry, luminal A tumors 

are HER2- and Ki67- (a marker of cellular proliferation), while luminal B tumors can be 

HER2+/- and are Ki67+. A third group, HER2+ overexpressing tumors (11.2% of all 

tumors) are hormone receptor negative but show amplification of the HER2 gene and 

tend to have poorer outcomes. Normal-like tumors (7.8%) are hormone receptor positive, 
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HER2-, Ki67-, and have intermediate outcomes. Finally, basal-like tumors (12.3%) are 

hormone receptor and HER2- negative and express a basal marker (40, 41). Others have 

modified or expanded upon these initial group’s gene signatures. A six-group gene 

signature based on 706 cDNA probes classifies breast carcinomas into 3 luminal-like, 1 

HER2-like, and 2 basal-like breast cancers, for example. The PAM50 classification 

system, is a 50-gene classifier (+5 control genes) that identifies luminal A, luminal B, 

HER2-enriched, and basal-like tumors by surveying genes associated with hormone 

receptor, proliferation, and myoepithelial/basal features (40, 42).  

 

1-1.4 Triple negative breast cancer 

 Triple-negative cancers, which lack ER, PR, and HER2 amplification account for 

about 10-20% of all breast cancers (43). In general, prognosis for patients with TNBC is 

poor compared to other subtypes: fifty percent of patients with early stage TNBC will 

experience recurrence, and 37% of patients will die the first five years after surgery (44). 

A study of 15,204 who presented to national comprehensive cancer networks found that 

women who presented with TNBC had significantly worse survival, even after adjusting 

for age, race, TNM, and whether they received chemotherapy (45). Metastatic 

dissemination is more common in patients with TNBC, particularly to the lungs and brain. 

Unlike tumors that express hormone receptor or HER2, there are no specific targeted 

therapies for TNBC (e.g., tamoxifen, trastuzumab, or labitinib). Demographically, TNBC 

patients tend to be younger (46), have higher staged disease at the time of diagnosis, 

and are disproportionately of African/African-American descent (45, 47) . Histologically, 

the majority of TNBCs show an invasive ductal carcinoma not otherwise specified (IDC-
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NOS) pattern, i.e., they have no differentiating histologic patterns. However, rarer 

histologic subtypes of breast cancer such as metaplastic carcinoma (<1% of all breast 

cancers) and medullary breast cancers (<5% of all breast cancers) are overwhelmingly 

triple-negative (48). Additionally, TNBCs tend to show more frequent copy number 

variations, particularly in PTEN, EGFR, VEGFA, suggesting a greater frequency of 

genomic instability in these cancers (48).  

 Based on the intrinsic model of classification discussed above, basal tumors 

account for 60-90% of all TNBCs. Although the terms are used interchangeably, not all 

triple-negative tumors (based on clinical assays of <1% expression of these markers) are 

basal tumors (determined by cDNA array). More recent systems of classification have 

divided TNBC into six groups: basal-like 1, basal-like 2, immunomodulatory, 

mesenchymal, mesenchymal stem-like, and luminal androgen receptor subtype (49). This 

profiling is useful for preclinical modeling in that cognate cell lines have been identified 

for each of these categories. The system also underscores the great degree of molecular 

heterogeneity TNBCs.     

Treatment for TNBCs have remained largely the same in recent years (44). 

Systemic management for both early and late stage TNBCs is sequential, single-agent 

cytotoxic chemotherapy. Adjuvant treatment is typically an anthracycline, an alkylator, 

and a taxane. Neoadjuvant use is the most common in TNBC versus any other subtype. 

These modalities are reviewed in (50). Taken together, the poor outcomes, heterogeneity, 

and lack of targeted therapies for TNBC necessitate a better understanding of the biology 

that underlies these tumors.  
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1-2 Epigenetics  

The German biologist and cytogeneticist Walter Fleming is credited with first 

observing chromatin, a complex of DNA, RNA, histone, and non-histone proteins in his 

studies of eukaryotic mitosis (51). This observation helps explain how billions of base 

pairs of DNA fit compactly in the cell: not linearly, but wrapped around four pairs of histone 

proteins (histones H2A, H2B, H3, and H4). This basic unit, which comprises 147 base 

pairs of DNA is known as a nucleosome (52, 53). Covalent and noncovalent modifications 

of the nucleosome and methylation of DNA underlie the two main mechanisms of 

epigenetics, or heritable changes in gene expression that occur outside of changes in the 

DNA sequence.  

In general, epigenetic modifications, such as these post-translational modifications 

that occur on histone tails, correlate with whether chromatin conforms to an open state 

(euchromatin) associated with active gene transcription, or a closed state that prevents 

gene transcription (heterochromatin). These modifications are broadly associated with 

three classes of proteins: those that place the modifications (writers), those that read the 

modifications (readers), and those that remove the modifications (erasers) (54). The focus 

of this dissertation is on a set of proteins responsible for writing these modifications.  

1-2.1. Polycomb group and Trithorax group proteins 

Polycomb group (PcG) and trithorax group (TrxG) are two of the most well-studied 

protein complexes responsible for post-translational modifications on histone tails, and 

consequently, epigenetic regulation. Our earliest hint at understanding these protein 

complexes dates to 1947, when Pamela Lewis observed that a dominant mutation in 

Drosophila caused additional sex combs to appear on the second and third pairs of legs 
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of adult males instead of only the first pair. This was referred to as Polycomb (Pc) (55). 

Polycomb was believed to negatively regulate Hox genes, which are responsible for 

anterior-posterior patterning (56). Future screens identified regulatory elements that 

would when mutated, would ablate gene expression of Hox genes: trithorax group (TrxG) 

proteins.  

The canonical perspective of PcG and TrxG proteins is that these regulatory 

groups are antagonistic, in which they maintain repressed or active states of homeotic 

patterning, respectively. Both of these protein complexes are evolutionary conserved and 

maintain their chromatin modifying functions in mammals, and their importance in 

mammalian development is underscored by embryonic lethality of mice lacking PcG or 

TrxG genes (57-60). Both PcG and TrxG proteins form multimeric complexes; for the 

purposes of this dissertation, the focus will be on PcG proteins that form PRC2, although 

a brief introduction to another PcG complex, PRC1 is described below.  

 

1-2.2. Polycomb Repressive Complex 1 

In mammals, the PcG proteins form two major complexes responsible for effecting 

transcriptional repression: polycomb repressive complexes 1 and 2 (PRC1 and PRC2). 

Polycomb repressive complexes 1 are generally classified as either canonical or non-

canonical (55), and in general comprise four subunit families homologous to the 

Drosophila Sce, Psc, Pc, and Ph; these are Ring1, PCGF, CBX, and Phc respectively 

(61). Common to both canonical and non-canonical complexes are the histone H2AK119 

E3 ubiquitin ligase Ring1 and a Polycomb ring-finger domain protein (PCGF1-6). 

Canonical PRC1 contains one of the PHC1-3 proteins and one of the chromeobox 
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proteins (CBX2-8), which are responsible for targeting and stabilizing the complex to 

chromatin by binding H3K27me3 (55, 62). That these canonical PRC1 complexes contain 

components that bind histone H3 trimethylated at lysine 27 (H3K27me3) suggest that 

PRC1 functions downstream of PRC2 (discussed below), although there is evidence to 

suggest that PRC1 can function independent of this mark as well (63). A large number of 

possible combinations of PRC1 proteins allow for a diverse set of possible functions of 

PRC1, many of which remain poorly understood. Non-canonical PRC1 members include 

YAF2, KDM2B, or E2F6 proteins (64).  

1-2.3 Polycomb Repressive Complex 2 

In contrast to PRC1, PRC2 mediates gene repression by placing methyl marks on 

lysine 27 of histone H3. (H3K27me, H3K27me2, H3K27me3). Of note, each of these 

modifications is likely functionally distinct, with H3K27me3 being a stable mark (65). The 

PRC2 comprises four subunits: with mutual exclusivity, the SET-domain proteins EZH1 

or EZH2; embryonic ectoderm development (EED); suppressor of zeste 12 (SUZ12); and 

the Retinoblastoma protein associated protein 46/48 (RbAp46/48) (65). While other 

cofactors associate with PRC2, EZH1/2, SUZ12, and EED appear to be minimally 

required for H3K27 methyltransferase activity in vitro and in vivo (66). PRC2 complexes 

with EZH1 versus EZH2 show differences in cell type distribution (mitotic and 

differentiated cells versus mitotic cells, respectively) (65) and methyltransferase activity 

(lower vs. higher) (67), suggesting non-redundant functions, although PRC2-EZH1 can 

restore K27 that has been demethylated (67, 68).  

Genome-wide ChIP studies have revealed that PRC2 represses transcription of 

hundreds of genes to maintain pluripotency of embryonic stem cells (69).  The catalytic 
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subunit of the PRC2 are EZH1 or EZH2, the latter of which is better characterized and 

viewed as the canonical PRC2 member (68). The domain structure of EZH2 and its 

functions are shown in Fig 1.4. A 746 amino acid protein, EZH2 contains a C-terminal 

SET domain that is well-conserved common to many lysine methyltransferases (70, 71) 

which catalyzes the exchange of one to three methyl groups from donor SAM onto H3K27. 

The H3K27me3 form of H3K27 is associated with transcriptional repressive functions and 

in most contexts, associated with genome-wide distribution of PRC2. Additional domains 

of EZH2 include its WD-40 binding domain (WDB) responsible for interaction with EED, 

and domains 1 and 2 thought to mediate protein-protein interactions (72). Two SANT 

(Swi3, Ada2, N-CoR, TFIIIB) domains are less well characterized but may be important 

for interaction with histone tails (73). Additionally, a cysteine-rich domain (CXC) sits 

immediately N-terminal to the SET domain, which is important for methyltransferase 

activity (73).   

Other members of PRC2 contribute to the complex’s function. As mentioned 

previously, the SUZ12 and EED are both minimally required for the methyltransferase 

activity of EZH2 (66). Recent crystallography studies reveal that the zinc finger protein 

SUZ12 is also minimally required for the nucleosome binding properties of PRC2. They 

further find that the different cofactors associated with PRC2, such as PHF19 and AEBP2, 

may interact with the C2 domain on SUZ12 (74).  Cryo-electron microscopy studies have 

also recently shown that SUZ12 interacts with all other members of PRC2, thereby likely 

stabilizing the entire complex (75). In contrast, the WD-40 repeat containing protein EED 

binds H3K27me3, resulting in a conformational change in EZH2 that enhances EZH2 

catalytic activity and allows for propagation of the repressive mark (76).  
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A number of cofactors of PRC2 have been found to associate with PRC2 and its 

function. The Jumonji AT-rich interactive domain 2 (Jarid2) has a well-studied, albeit 

complicated role in regulating PRC2 function. On one hand, Jarid2 interacts with PRC2 

and increases its methyltransferase activity in vitro and in embryonic stem cells (51, 77-

80). Jarid2 occupies almost the exact same genomic regions as EZH2, SUZ12, and EED 

in embryonic stem cells (81), and may play a role in recruiting EZH2 to target genes (81), 

mediated by interactions with lncRNAs (82). On the other hand, Jarid2 negatively 

regulates PRC2 methyltransferase activity on core histones from HeLa cells (81). One 

explanation for these differences might be explained by the recent observation that PRC2 

di- and tri-methylates Jarid2 at K116 which allosterically enhances PRC2 

methyltransferase activity (78). High-resolution cryo-EM structures of PRC2 in complex 

with Jarid2 reveal binding of Jarid2 both at allosteric and active sites of PRC2, supporting 

a model in which Jarid2 is both a substrate of PRC2 and can mimic methylated H3 tails 

to activate PRC2 (83-85). Thus, it is possible that depending on the methylation of status 

of Jarid2, it can function to activate or inhibit PRC2 activity.  

Other PRC2 cofactors include Adipocyte Enhancer-Binding Protein (AEBP2), a 

zinc-finger protein that co-occupies a subset of PRC2 genes and enhances PRC2 

enzymatic activity in vitro (66). High-resolution cryo-EM structures of AEBP2 show that it 

interacts with RbAp48 and mimics an unmodified H3 tail (83). A number of other 

interactors with PRC2 have also been described, but their functions are less clear: the 

Polycomb-like proteins PHF1, MTF2, and Pcl3 proteins, which may also modulate PRC2 

activity and were recently shown to be crucial for PRC2 recruitment to CpG islands (86).  
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1-3 Role and regulation of EZH2 in cancer 

Deregulation of epigenetic proteins are commonly seen in cancer. Alterations in 

EZH2 have a complex role, exerting both tumor-suppressive and tumor-promoting 

functions depending on the context. In most cancers where it is deregulated, EZH2 is 

overexpressed, where its overexpression frequently correlates to poor prognosis; indeed, 

overexpression of EZH2 has been observed in tumors of the prostate (72, 87-89), breast 

(89-94), liver (95, 96), lung (97-100), endometrium (89, 101), bladder (102), ovary (103, 

104), skin (89), and brain (105). Beyond its role as a biomarker, EZH2 has a well-

established role as an oncogene; ectopic expression of EZH2 in benign cells promotes 

their proliferation (87, 90, 106, 107), and genetic knockdown of EZH2 reduces the 

proliferation, migration, invasion, and stem properties in multiple cancer cell line and 

xenograft models (91, 93, 108-110).   

How overexpression of EZH2 promotes cancer in each of these individual tumor 

types is only superficially understood. In prostate cancer, a number of putative tumor 

suppressors repressed by EZH2 have been described and include repression of E-

cadherin (88), DAB2IP (111), PSP94 (112), RUNX3 (113), and others (reviewed nicely in 

(114). However, for other tumor types, fewer targets have been identified and their 

regulation by EZH2 may be context-specific, as in the case of tobacco-mediated induction 

of PRC2 repressing the tumor suppressor Dickkopf-1 in lung cancer (115). For the 

purposes of this dissertation, the role of EZH2 overexpression in breast cancer and the 

mechanisms of its action will be explored more fully in the next section.  

Activating somatic heterozygous mutations of EZH2 have been observed in up to 

30% of non-Hodgkin lymphomas of follicular and germinal center diffuse large B-cell 
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(GCB-DLBCL) subtypes (116-121). These predominantly occur within the SET domain 

(hotspot mutations at Y641, A677G, and A687) and alter EZH2 substrate specificity 

towards di- and tri-methylated H3K27 over mono-methylation (119, 122). The resulting 

altered specificity, in the case of Y641 for example, effects both a global increase in 

H3K27me3 and a total redistribution of the repressive mark at PRC2-regulated loci that 

is sufficient for tumorigenesis (123) and is one rationale for clinical use of EZH2 inhibitors; 

indeed, to date, three SAM-competitive EZH2 methyltransferase inhibitors 

(tazemostat/EPZ-6348, GSK2816126, and CPI-1205) have reached phase I/phase II 

clinical trials for patients with follicular lymphomas, DLBCL harboring these gain-of-

function mutations (121). These inhibitors are also being examined in a genetically-

defined set of solid tumors harboring inactivating mutations in members of the ATP-

dependent chromatin remodeling SWI/SNF complex which results in oncogenic 

dependency on EZH2 (124-126). A fourth compound, MAK683, is the only EZH2  inhibitor 

currently in clinical trials that does not target the methyltransferase activity directly, but 

rather disrupts EZH2-EED interaction, the proof of principle for which is described in Kim 

et al. (127)  

As is the case with many oncogenes, EZH2 can also exert tumor-suppressing 

functions depending on the cellular context in which it is expressed. Loss of EZH2 in 

hematopoietic stem cells causes T-cell acute lymphoblastic leukemia in mice (128) and 

in lung epithelial cells promotes carcinoma in a Kras-driven lung adenocarcinoma model 

(129). In an inducible EZH2 shRNA mouse glioblastoma model, short-term inhibition of 

EZH2 is sufficient to reduce glioblastoma tumor growth, but strikingly, long-term depletion 



  

 15 

of EZH2 promotes tumor progression and results in more undifferentiated, aggressive 

tumors, suggesting further context- and temporal-specific roles for EZH2 function (130).   

 

1-3.1 EZH2 in breast cancer  

The first study of EZH2 in breast cancer found that it is overexpressed in 

approximately 55% of invasive breast carcinomas, and its expression is inversely 

correlated with poor breast cancer survival (90), suggesting a role as a potential 

biomarker. Since then, the observation has been replicated in other cohorts and 

supported by meta-analysis (89, 92, 131-134). High expression of EZH2 is significantly 

associated with ER- status, higher histologic grade, and TNBC status (90, 132) of breast 

tumors. Additionally, EZH2 may have a role that actually precedes frank tumor 

dissemination, as higher levels of EZH2 expression in normal breast epithelium correlate 

with increased risk of breast cancer (135). Together, the data have painted a clear picture 

of EZH2 as a potential biomarker of breast cancer development and aggressive breast 

cancers.  

Beyond its role as a prognosticating biomarker in breast cancer, gain- and loss-of-

function studies have convincingly demonstrated that EZH2 exerts oncogenic functions 

in breast cells. Overexpression of EZH2 in benign mammary epithelial cells is sufficient 

to increase their anchorage-independent growth and invasion, and this phenotype is 

dependent on an intact SET domain (90). Conversely, genetic inhibition of EZH2 using 

shRNA is sufficient to reduce the proliferation of estrogen-negative breast cancer cells in 

vitro and in vivo by delaying G2/M cell cycle transition (136). Independent of proliferation 

genetic inhibition with shRNA or pharmacological depletion of EZH2 with 3-
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Deazaneplanocin A (DZNep) is sufficient to reduce migration, invasion, and random 

motility of triple-negative breast cancer cells and is accompanied by the acquisition of an 

MET phenotype and restoration of E-cadherin. (93). EZH2 also appears to contribute to 

PARP inhibitor resistance, and pharmacological inhibition of EZH2 with a specific inhibitor 

can restore PARP inhibitor sensitivity (137). Along these same lines, EZH2 is capable of 

conferring tamoxifen resistance to ER+ breast cancer cells by repressing the estrogen 

receptor alpha cofactor GREB1, which causes a redistribution of other ERα cofactors 

p300 and CBP and explains why tamoxifen can have a paradoxical growth-stimulating 

effect in tamoxifen-resistant ER+ breast cancer cell lines (134). Thus, the data in breast 

cancer alone point to EZH2 having a diverse set of oncogenic functions.  

The role of EZH2 in initiating tumors is not clear. Overexpression of EZH2 in normal 

breast cells is associated with an increased risk of invasive carcinoma (135, 138); 

however, this could just be a consequence, rather than a cause, of increased proliferation.  

Transgenic mouse models of conditional EZH2 overexpression in mammary epithelial 

cells (MMTV LTR-driven EZH2) show disrupted TEB development and precocious 

intraductal epithelial hyperplasia, a precursor to carcinoma in situ. The data also suggest 

that EZH2 overexpression alone is not sufficient for mammary tumor initiation (139).    

A number of putative mechanisms have been posited to explain the precise 

mechanism by which overexpression of EZH2 confers proliferative, migratory, and 

invasive potential to breast cancer cells. These include transcriptional repression of tumor 

suppressors such as RUNX3 (113), CDKN1C (p57) (140), RAD51-paralog proteins (141), 

RKIP (142), and FOXC1 (143). Separately, EZH2 has been shown to promote EMT by 

promoting signaling through pro-tumorigenic kinases, such as by activating the p38 
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MAPK (93). Of note, several recent studies have found that breast cancers display a 

decoupling of EZH2 and H3K27me3. By immunohistochemistry, TNBCs  display  higher 

levels of EZH2 and lower levels of H3K27me3 (144). Stratification of patients by EZH2 

and H3K27me3 has shown that this combination (high EZH2/low H3K27me3) portends 

the worst overall survival in breast cancer patients, irrespsective of ER status (144). 

These observation may suggest some mechanism of EZH2 HMT regulation, or 

alternatively,  H3K27me3-independent functions of EZH2, such as transactivating 

functions and nonhistone methylation.  

 

1-3.2 Transcriptional regulation of EZH2 

 One of the most well-characterized transcriptional regulators of EZH2 across 

multiple contexts is Myc. In embryonic stem cells c-Myc and n-Myc both bind to the 

promoters and activate the transcription of Suz12, and EED. In prostate cancer, bladder 

cancer, and neuroblastoma, Myc binds to the Ezh2 promoter directly and activates 

transcription (145-147), although whether Myc coordinately regulates expression of other 

PcG genes in cancer is not known. In bladder cancer, Bromodomain 4 protein upregulates 

c-myc, and c-myc also binds to the Ezh2 promoter and activates its transcription, and this 

event is abrogated upon inhibition of BRD4 with the small molecule JQ1 or RNA 

interference against BRD4 (147).  

 The E2F transcription factors, which regulate cell cycle, also activate EZH2 

transcription by binding to the Ezh2  promoter of 293T and RAT1 cells (148). In mouse 

models of bladder cancer where the tumor suppressor Rb is inactivated, E2F family 

members and subsequently EZH2 are expressed (149). The EWS/FLI1 chimeric 
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transcription factor pathognomonic of Ewing sarcoma also directly binds to Ezh2 promoter 

and activates its transcription (150). The TCF4 transcription factor similarly binds directly 

to the Ezh2 promoter in HEK293T cells and activates its transcription, suggesting that 

EZH2 is regulated by Wnt/B-catenin signaling (151). In prostate cancers bearing the 

TMPRSS2-ERG gene fusion (~50%), ERG binds directly to the promoter of EZH2 and 

activates its transcription (152, 153). Negative transcriptional regulators include nuclear 

factor IB (NFIB), which binds directly to the Ezh2 promoter and represses Ezh2 

transcription (154).  

 

1-3.3 Post-transcriptional regulation of EZH2 

 Myc also regulates EZH2 post-transcriptionally. In Myc-driven mouse models 

of lymphoma, Myc downregulates mir-26a leading to subsequent upregulation of EZH2 

(155). In prostate cancer, Myc binds to mir-26a and mir-26b promoters and prevents their 

transcription, which offers another mechanism of EZH2 mRNA upregulation. Loss of mir-

101 has also been found to lead to upregulation of EZH2 across a number of cell and 

cancer types (156-159). In skeletal muscle, upregulation of mir-214 during muscle 

differentiation leads to EZH2 mRNA degradation (160).  

 

1-3.4 Post-translational regulation of EZH2 

 A summary of the post-translational modifications of EZH2 and the contexts in 

which they have been studied is shown in Table 1. To date, the most well-studied 

modification is S21 phosphorylation, mediated by AKT. Phosphorylation at S21 

significantly decreases EZH2 methyltransferase activity on H3K27 by decreasing affinity 
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of EZH2 for H3 without affecting EZH2 subcellular localization (161). While canonical 

H3K27me3 activity is reduced, in castration-resistant prostate cancer, S21 

phosphorylation promotes interaction with androgen receptor to drive transcription of a 

number of genes, independent of H3K27me3, and promote growth of castration-resistant 

prostate cancer cells (72). In multiple myeloma, phosphorylation at this same site 

underlies cell-adhesion mediated drug resistance (162), while in glioblastoma, it serves 

as a switch that promotes the non-histone methylation of STAT3 by EZH2, resulting in 

STAT3 activation (163). Whether the properties of S21 phosphorylation are generalizable 

across different cancer types, and the role of S21 phosphorylation in normal cells is not 

known.  

  Another PTM studied uniquely in the setting of myoblasts and satellite cells is 

phosphorylation at T367 by the p38 MAPK. In this setting, activation of the p38 signaling 

pathway via TNFα, as in muscle injury, results in p38α-mediated phosphorylation of EZH2 

at T367, and recruitment of EZH2 to the Pax7 promoter (164). In skeletal muscle 

progenitors, MyoD induces the E3 ubiquitin ligase to ubiquitinate and subsequently 

degrade EZH2 in response to p38-mediated phosphorylation at T367 (165).  

 Curated mass-spectrometry datasets of specific post-translational 

modifications have identified a number of other modifications, including sites of 

ubiquitylation (K61, K461), dimethylation (K505, K509, K510), and phosphorylation, 

including some in the C-terminal SET domain (S690, Y696, T718). The origins and 

functions of these modifications are unknown and therefore require further study (166-

168).  
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1-3.5 Transcriptional activating roles of EZH2 

 Independent of its H3K27me3 activity, EZH2 can transcriptionally activate 

genes. Underscoring the importance of cellular context are the disparate roles of EZH2 

in studies of ER+ vs. ER- breast cancers with regards to this function. In ER- basal-like 

breast cancers, EZH2 activates transcription of NF-kB targets independent of other PRC2 

members (169). In this setting, EZH2 is forms a complex with RelA and RelB on NF-kB 

target genes and is associated with activating H3K4 marks rather than H3K27me3 marks 

(169). Interestingly, EZH2 may itself transcriptionally activate RelB in TNBC, adding an 

additional layer of complexity to the activating functions of EZH2 (170). In contrast to this, 

in ER+ breast cancer cell lines, EZH2 can interact with ERα and B-catenin upon E2 

treatment. In response to estradiol treatment ERα, B-catenin, and EZH2 form a complex 

on the c-Myc promoter and activate its transcription, also independent of the HMT activity 

of EZH2 (171). Furthermore, EZH2 was found to interact with the transcription factor 

TRIM28 and positively regulate transcription of ~100 genes in ER+ cancer cell lines. 

Through ChIP-QPCR, EZH2 and TRIM28 were found to co-occupy regions within 10kb 

of the transcription start site (172).  

 Another example of this transactivating function is in benign mammary 

epithelial cells in which EZH2 is overexpressed. In this instance, EZH2 binds to the 

proximal Notch promoter with cofactors RelA and RelB to activate transcription. This 

occurs independent of H3K27me3, is associated with activating H3K4 marks, and is HMT 

dispensable (173). Likewise, in intestinal stem cells, the DNA repair protein PAF recruits 
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EZH2 to a B-catenin transcriptional complex to drive transcription of Wnt target genes 

independent of EED, SUZ12, and the HMT activity of EZH2 (174).  

 Finally, in castration-resistant prostate cancer, ChIP-seq of EZH2 and 

H3K27me3 has shown many sites where EZH2 does not colocalize with the repressive 

mark. These “solo” peaks are instead associated with H3K4me2 and 3 and RNA pol II, 

and EZH2 knockdown decreases levels of active mark at these sites. These data are 

interesting because they not only support a transactivating role of EZH2, but also suggest 

that EZH2 might function as both a transcriptional repressor and activator within the same 

type of cell (72). Taken together, these studies paint EZH2 as a complex protein capable 

of exerting repressive and activating functions depending on cellular context.  

 

1-3.6 Nonhistone methylation and extranuclear EZH2 function 

 Histone lysine methyltransferases can also methylate nonhistone substrates 

(175). A number of studies have now demonstrated, with varying degrees of evidence, 

that EZH2 can methylate non-histone substrates (78, 93, 163, 176-184). Table 1 

summarizes these studies. Of note, the 7-amino acid sequence that contains K27 on 

histone H3 (i.e., the potential consensus for EZH2) is AARKSAP. A cursory glance at the 

putative nonhistone substrates presented in 1.4, many discovered empirically, reveals 

sequences that may vary wildly from this H3K27 motif, raising questions on the validity, 

substrate specificity, cellular context, and role of participating cofactors in these studies. 

These questions are especially important in light of a recent study that defined the amino 

acids surrounding K27 required for PRC2 methyltransferase activity by mutation. For 

example, an arginine or a lysine in the -1 position appears absolutely required for 
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methylation at K27 (184). Basic questions—for example, whether EZH2 requires SUZ12 

and EED for methylation of nonhistone targets—remain to be answered.  

 

1-4 Rationale for this dissertation 

 It is clear that triple-negative breast cancers remain a significant clinical challenge. 

The histone methyltransferase EZH2 is overexpressed in ~55% of invasive breast 

carcinomas and is significantly associated with the triple-negative subtype. However, 

many questions about what regulates the diverse set of EZH2 functions in cancer remain. 

Based on observations that p38 binds PRC2 in breast cancer and phosphorylation of 

EZH2 at T367 (93), we hypothesized that it may be important in breast cancer. In the 

following chapters, we define EZH2 phosphorylation at T367 in breast cancer (chapter 2), 

and the functional (chapter 3) and mechanistic (chapter 4) consequences of this 

phosphorylation on breast cancer cells.  
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1-5 Figures 

Adapted with permission from (185) 

Figure 1.1 The Wellings-Jensen model of breast cancer progression. In this model, 
normal breast cells of a terminal ductal lobular unit progressively acquire genetic or 
epigenetic changes, such as gain of oncogene expression (HER2/neu) or loss of tumor 
suppressors (p53) leading to proliferation. Atypical hyperplasia is considered a 
precancerous lesion characterized by dysplastic, monotonous epithelial cells and a 
precursor to ductal carcinoma in situ (DCIS), malignant cells confined to the duct.  
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Reproduced with permission from (186) 
 
Figure 1.2 The metastatic cascade. Tumor cells acquire phenotypes that allow them to 
penetrate the basement membrane and surrounding stroma and intravasate the 
vasculature either directly or via the lymphatic system. In the vasculature, tumor cells 
arrest, evade immunosurveillance, and can extravasate at secondary sites to form 
micrometastases. Some micrometastases will remain dormant while eithers may 
progress to frank, clinically detectable metastases.  
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Adapted with permission from (73, 114) (top, bottom) 
 
Figure 1.3 Top, domain structure of EZH2. EZH2 is a 746 amino acid protein with 
methyltransferase function imparted by its C-terminal SET-domain.  The WD-40 binding 
domain (WDB) is responsible for interaction with EED. Domains 1 and 2 conserved 
domains thought to mediate protein-protein interactions (72). Two SANT (Swi3, Ada2, N-
CoR, TFIIIB) domains are less well characterized but may be important for interaction 
with histone tails (73). A cysteine-rich domain (CXC) sits immediately N-terminal to the 
SET domain important for methyltransferase activity. Bottom, functions of EZH2. The 
canonical function of EZH2 is to mediate gene repression through trimethylation of 
H3K27. Additional functions include a gene activation and methylation of lysine on 
nonhistone targets.  
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Table 1. Non-histone targets of EZH2, summarized. Shown are the putative 
nonhistone targets of EZH2, along with the sequences of the 3 amino acids flanking the 
lysine on either side. The function and cellular context in which this nonhistone 
methylation occurs is also noted. Histone H3K27 motif: AAR(K)SAP 

Substrate Site Peptide Function and notes Ref 

B-catenin K49-me3 LSG(K)GNP Promotes repression of Sox1 and Sox3 

in ESCs, competes with acetylation at 

the same site 

(183) 

EloA K754-me TVK(K)IAP Modulates expression of low-expression 

PRC2 target genes in mouse ESCs.  

(184) 

Fra-2 K104-me, 

K104-me2 

GVI(K)TIG Prevents Fra-2 from transcriptionally 

regulating epidermal differentiation 

genes. The data do not support that 

PRC2 methylates Fra-2 at these 

residues.  

(178) 

GATA4 K299-me LYM(K)LHG Reduces its transcriptional activity by 

preventing p300 acetylation in HL-1 

cardiac muscle cells 

(176) 

Histone 

H2B  

K120-me AVT(K)YTS May compete with H2BK120-ub in vitro 

and in cancer cell lines 

(177) 

Jarid2 K116-me3, 

K116-me2 

AQR(K)FAQ Mimics trimethylated histone tail and 

allosterically activates PRC2 in ESCs  

(78, 

83) 

p38α K139-me3, 

K165-me3  

RGL(K)YIH 

CEL(K)ILD 

Based on unpublished in vitro 

observations from our lab  

(93)  

PLZF K430-me SGM(K)TYG Based only on predictive software, no 

experimental evidence 

(182) 

ROR α K38-me SAR(K)SEP Promotes ubiquitination and degradation 

in HEK293 cells  

(179) 

Stat3 K49-me2 AAS(K)ESH Promotes transcription of STAT3 target 

genes in response to IL-6 in colon 

cancer cells 

(181) 

Stat3 K180-me3 KTL(K)SQG Promotes activation of STAT3 signaling 

in glioblastoma stem-like cells 

(163) 

Talin K2454-me3 EAM(K)RLQ Disrupts binding of Talin to F-actin in 

neutrophils and dendritic cells 

(180) 
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Table 2. Post-translational modifications of EZH2, summarized

Modification Site Modifier Function and notes Ref 

Phosphorylation S21 AKT Suppresses EZH2 HMT activity by impeding affinity of EZH2 for nucleosome substrate (161) 

Phosphorylation S21 AKT Promotes transcriptional activation by EZH2 and androgen-independent growth of castration-resistant 
prostate cancer cells. 

(72) 

Phosphorylation S21 AKT Promotes methylation of STAT3 at K180 in glioblastoma cells (163) 

Phosphorylation Y244 JAK3 Promotes dissociation of PRC2 members; Increases “non-canonical” EZH2 interaction with RNA PolII, 
promotes proliferation of NK/T-cell lymphoma cells 

(187) 

Phosphorylation T261 CDK5-
related 
kinase 

Promotes degradation by F-box and WD repeat domain-containing 7 (188) 

Phosphorylation T311 AMPK Disrupted EZH2 interaction with SUZ12, inhibits EZH2 oncogenic activity and correlates with better survival 
in breast and ovarian cancers 

(189) 

Phosphorylation T345 CDK1/2 Promotes degradation; cell cycle dependent, increases binding to HOTAIR ncRNA and 5’ end of Xist (190) 

Phosphorylation T345 CDK1/2 Promotes recruitment of EZH2 to target gene loci and maintenance of H3K27me3 levels at these target loci 
in prostate cells (191) 

(191) 

Phosphorylation S363 GSK3B Not known (192) 

Phosphorylation T367 p38a Promotes satellite cell differentiation in response to TNFa through PJA1-mediated degradation of EZH2 (164, 
165) 

Phosphorylation T367 GSK3B Reduces H3K27me3 activity and reduces migratory/invasive properties in MCF12A and MDA-MB-231 
overexpressing cells 

(192) 

Phosphorylation T416 CDK2 Enhances migration, invasion, stemness in triple-negative breast cancer cells (193) 

Phosphorylation T416 CDK2 Serves as a docking site for the forkhead-associated domain of NIPP1, which prevents dephosphorylation 
and is required for EZH2 association with proliferation loci 

(194) 

Phosphorylation T487 CDK1 Promotes ubiquitination and degradation by the proteasome; negatively regulates proliferation in PC3 
prostate cancer cells 

(190) 

Phosphorylation T487 CDK1 Disrupts binding with SUZ12 and EED, thereby suppressing H3K27 methyltransferase activity. Promotes 
differentiation of mesenchymal stem cells. 

(195) 

Phosphorylation T487  PKCλ/ι Likely regulates EZH2 stability (196) 

Phosphorylation Y641 JAK2 Promotes B-TrCP (FBXW1)-mediated degradation (197) 

Phosphorylation S652 ATM May negatively regulate interaction with PRC2 members SUZ12 and EED and negatively regulate stability (198) 

Phosphorylation S734 ATM May negatively regulate interaction with PRC2 members SUZ12 and EED and negatively regulate stability (198) 

O-GlcNacylation S75 OGT Likely positively regulates EZH2 protein stability (199) 

Acetylation K348 PCAF Decreases phosphorylation at T345 and T487; may enhance transcriptional silencing of HOXA10 in lung 
carcinoma cells; may enhance lung cancer cell migration and invasion; 

(200) 

Deacetylation K348 SIRT1 Opposite of above (200) 

PARylation D233/
E239 

PARP PRC2 complex dissociation and EZH2 downregulation (137) 
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Chapter 2: EZH2 is phosphorylated at T367 in human tissue and is overexpressed 
in breast cancer 

 
 

2-1 Introduction 

 The overwhelming majority of breast cancer deaths occur due to metastasis. 

Breast cancer patients with distant metastases at the time of diagnosis have significantly 

worse prognosis with a five-year survival rate of 23.4%(3). New effective strategies for 

inhibiting metastatic spread or blocking the growth of established distant metastasis are 

needed. 

  Tumor cells must undergo fundamental changes to their identity to acquire the 

traits needed for dissemination to distant sites. Dysregulation of factors governing cell 

type identity is a common feature of metastatic cancer. Enhancer of zeste homologue 2 

(EZH2) has been shown to regulate these processes through epigenetic silencing. Our 

lab and others have demonstrated that EZH2 is overexpressed in human solid and 

hematopoietic malignancies (87, 90, 114, 117). In breast cancer, EZH2 overexpression 

is significantly associated with the estrogen receptor-negative (ER-) subtype and worse 

clinical outcome(90). As the catalytic subunit of the Polycomb repressive complex 2 

(PRC2), the methyltransferase EZH2 deposits trimethyl marks on histone tails of lysine 

27 of histone H3 (H3K27me3) to effect transcriptional repression. However, the high 

levels of EZH2 observed in ER- tumors are associated with low  H3K27me3(133, 144, 

201), suggesting that the oncogenic function of EZH2 may rely on mechanisms other than 

repression of tumor suppressor genes, which are currently unknown.  
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 Metastatic progression also involves tight regulation of the cellular responses 

elicited by its microenvironment. p38 MAPK proteins are critical in signaling cascades that 

transduce extracellular stimuli—inflammation, hypoxia, growth factors, and cytokine 

stimulation—into biological responses through proline-directed serine/threonine 

phosphorylation of target substrates commonly involved with gene expression regulation. 

The most abundant p38 family member, p38α (also known as MAPK14), has a well-

documented, albeit complex role in cancer, exerting cell-type dependent tumor-

suppressive or tumor-promoting functions (202). In the breast, p38  promotes breast 

cancer progression (203-205), and high levels of active p38 MAPK are biomarkers of poor 

prognosis (202, 206, 207). However, how p38α MAPK activity induces breast cancer 

progression remains ill-defined.   

We have demonstrated that EZH2 and p38α interact in aggressive ER- breast 

cancer cells(93), and EZH2  has been shown to undergo p38α-mediated T367 

phosphorylation during muscle regeneration (164). However, direct demonstration that 

EZH2 is phosphorylated at T367 in solid tumors has not yet been explored. Here, we 

develop and validate a novel rabbit polyclonal antibody that can be used to detect report 

that pEZH2(T367) in tissue. We observe that pEZH2(T367) is upregulated in the 

cytoplasm of cancer cells in clinical samples of invasive breast carcinoma and distant 

metastasis in contrast with normal breast epithelium and that cytoplasmic pEZH2(T367) 

expression is significantly associated with higher histologic grade, ER- status, PR- status, 

and triple-negative status. Taken together, our data point to pEZH2(T367) as a potential 

biomarker of aggressive disease.  
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2-2 Results 

2-2.1 Development and validation of a pEZH2(T367) antibody 

To investigate whether EZH2 is phosphorylated at T367 in breast cancer and study 

its biological relevance, we developed and validated a novel rabbit polyclonal anti-

phosphorylated T367 EZH2 antibody. In dot blot analyses, the anti-pEZH2(T367) 

antibody specifically recognized a peptide corresponding to the phosphorylated T367 site 

but not the unmodified peptide (Figure 1.1A). Demonstrating its specificity for the T367 

phosphorylated form of the EZH2 protein, the anti-pEZH2(T367) antibody failed to detect 

dephosphorylated recombinant EZH2 and dephosphorylated EZH2 from breast cancer 

cell lysate (Figures 1.1B and C). Incubation of the antibody with the phosphorylated 

peptide outcompeted antibody binding in Western blot analysis of whole cell extracts of 

MDA-MB-231 cells and in immunohistochemistry of breast cancer tissue samples, further 

demonstrating specificity of the antibody for this site (Figure 1.1D and E). Finally, the 

antibody failed to recognize an unphosphorylatable threonine to alanine (T367A) mutant 

(Figure 1.1F), suggesting that the antibody is specific for phosphorylation at the T367A 

site.  

 

2-2.2 Phosphorylated EZH2 (T367) is expressed in the cytoplasm of invasive 

breast carcinoma and distant metastasis.  

We evaluated pEZH2(T367) protein expression in situ by immunohistochemistry 

in a wide range of breast tissue samples from 146 patients, including normal breast 

(n=19), invasive carcinomas (n=104), and distant metastasis (n=23) arrayed in high 

density tissue microrrays in triplicate (Table 3). While in normal lobules pEZH2(T367), if 
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present, was localized to the nucleus, pEZH2(T367) was expressed in the cytoplasm of 

invasive breast cancer cells (Figure 1.2A). The frequency of cytoplasmic pEZH2(T367) 

increased significantly with breast cancer progression, as it was absent in normal lobules 

and detected in 57% of invasive carcinomas and in 74% of breast cancer distant 

metastasis (Chi-square p=0.0001, Fig. 1.2B). In the 104 primary invasive carcinomas, 

high cytoplasmic pEZH2(T367) was significantly associated with higher histological grade 

(p=0.028), ER- (p=0.0003), PR- (p=0.0002), and triple negative status (p=0.0006) (Table 

4). 

As is the case for clinical samples of breast cancer, in a panel of breast cell lines, 

we observed that aggressive and metastatic ER- breast cancer cells exhibit higher 

pEZH2(T367), EZH2, and p-p38 proteins compared to benign and less aggressive ER-

positive breast cancer cells and nontumorigenic breast cells (Fig. 1.2C).  

A survey of pEZH2(T367) expression in a cohort of human normal and cancer 

tissues showed that cytoplasmic EZH2(T367) is highly expressed in epithelial 

malignancies including kidney and colon cancer, hepatocellular carcinoma, and thyroid 

carcinoma compared to normal tissues, and to non-epithelial tumors (Fig 1.3A). 

Together, these results demonstrate that cytoplasmic pEZH2(T367) is expressed 

in invasive and metastatic breast carcinomas where it is associated with higher 

histological grade, a measure of tumor aggressiveness, ER- status, and breast cancer 

progression. We observe that pEZH2(T367) is upregulated in several types of human 

carcinoma compared to corresponding normal tissue.  
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2-3 Summary and Discussion 

EZH2 is a bona-fide oncogene in breast cancer, responsible for imparting 

proliferation, migration, invasion, and stem-like abilities to breast cancer cells (90, 91, 93, 

173), but the mechanisms are incompletely understood. As the enzymatic component of 

PRC2, EZH2 has an established transcriptional repression through its catalysis of histone 

H3K27 trimethylation. However, the presence of high EZH2 levels in association with low 

H3K27me3 in aggressive breast cancers suggests that EZH2 may operate via a currently 

unknown H3K27me3-independent mechanism.  

We previously observed that EZH2 and p38 interact in breast cancer (93), and the 

p38 MAPK was shown to phosphorylate EZH2 at T367 in vitro (164), but whether this 

modification occurs in vivo and how it relates to breast cancer was previously unknown. 

In this chapter, we developed and validated a novel antibody to assess pEZH2(T367) 

across a wide range of clinical specimens of invasive and metastatic breast carcinoma.  

In normal breast lobules, when expressed, pEZH2(T367) was localized to the 

nucleus of epithelial cells. In contrast, 57% of invasive carcinomas and 74% of breast 

cancer metastasis exhibit upregulated pEZH2(T367) in the cytoplasm of breast cancer 

cells (Fig 2.2A). Cytoplasmic pEZH2(T367) was significantly associated with higher 

grade, ER- status, PR- status, and TNBC status, and the pattern of cytoplasmic 

pEZH2(T367) staining seemed to be common to many tumor types, particularly those of 

epithelial origin (Fig 2.3). The data suggest that EZH2 cytoplasmic localization a cancer-

specific phenomenon in epithelial cells. Interestingly, we also observed strong 

cytoplasmic pEZH2 staining in normal alveolar macrophages (Fig 2.3), which may 

support the idea that the cytoplasmic functions of pEZH2 may occur in normal immune 
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cells. This observation is in line with previous studies of cytoplasmic EZH2 in immune 

cells that show that EZH2 can regulate actin polymerization in dendritic cells and 

migration of neutrophils (180).  

Taken together, this chapter establishes the existence of EZH2 phosphorylated 

at T367 across a wide range of tissues and its cytoplasmic localization as a potential 

biomarker of aggressive breast cancer.  

 

2-4 Methods 

2-4.1 pEZH2 antibody development 

Polyclonal pEZH2 (T367) was generated by immunization of KLH-conjugated 

NNSSRPS[Py]tPTINVLE peptide, corresponding to T367 of EZH2. Crude antibody sera 

were subjected to repeat affinity purification with phosphorylated peptide and negative 

adsorption with non-phosphorylated peptide.  

 

2-4.2 Dot Blot 

Increasing amounts of NNSSRPS[Py]tPTINVLE and NNSSRPS[nPy]tPTINVLE 

peptide were added to activated PVDF membrane (GenHunter Cat#B301-50). Membrane 

was stained with Ponceau S (Sigma P7170) to confirm loading. Membrane was blocked 

for 1 hour in 5% BSA (Sigma Aldrich, #A3059) in TBS-T (Bio-Rad, #161-0372 with 0.05% 

Tween 20) and incubated with custom pEZH2(T367) antibody overnight (1:2000), 

followed by incubation with Secondary antibodies used were Amersham ECL anti-rabbit 

IgG HRP-linked (GE Healthcare Life Sciences, #NA934). Signal was visualized using 

Pierce ECL Western Blotting substrate (Pierce Cat#32106).  
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2-4.3 Western Blot and myc-immunoprecipitation 

Western blotting analyses were carried out as previously reported using 50 ug of 

whole cell extract or 2.5ug recombinant His-GST-EZH2 (BPS Bioscience Cat#50279) as 

previously reported (91). western blot using recombinant GST-EZH2. Briefly, cells were 

lysed in RIPA lysis buffer (Pierce #89900) with protease and phosphatase inhibitors 

(Thermo Scientific #1861281). Samples were resolved by SDS-PAGE, transferred onto 

PVDF membranes (GenHunter Cat#B301-50), and membranes were blocked and 

incubated with primary antibodies in 5% BSA (Sigma Aldrich, #A3059) in TBS-T (Bio-

Rad, #161-0372 with 0.05% Tween 20) or 5% milk (Bio-Rad #170-6404) in TBS-T at 4°C 

overnight. Protein signals were detected using enhanced chemiluminescence (Pierce, 

#32106) as per the manufacturer’s instructions. Primary antibodies used in this chapter 

included Cell Signaling antibodies: EZH2 (#5246), myc-tag (#2276), and B-Actin HRP 

(Santa Cruz, #sc47778) was used as for loading control. Secondary antibodies used were 

Amersham ECL anti-rabbit IgG HRP-linked (GE Healthcare Life Sciences, #NA934) or 

Amersham ECL anti-mouse IgG HRP-linked (GE Healthcare Life Sciences, #NA931).  

Immunoprecipitations of myc-tagged proteins were performed using anti c-myc 

agarose resin (Pierce #20168) following the manufacturer’s instructions.  

 

2-4.4 Lambda Phosphatase and peptide competition assay 

For cell lysate dephosphorylation assays, cells were lysed in RIPA buffer and 

lysate was treated with lambda phosphatase (NEB Cat#P0753) following manufacturer’s 
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instructions. For peptide competition assay, lysate was incubated with non-phospho and 

competing phospho peptides (200-fold molar excess). 

 

2-4.5 Cell lines 

Breast cancer cell lines MDA-MB-231, MDA-MB-468 were purchased from the 

American Type Culture Collection and grown under recommended conditions. Stable 

knockdown and rescue of EZH2 was achieved by lentiviral transduction of EZH2 with 

pBabe-myc-EZH2 (wild-type) or pBabe-myc-EZH2 (T367A), both kind gifts from the 

laboratory of PL Puri (164). After transduction, cells were selected for antibiotic resistant 

with 2 ug/ml puromycin (Sigma Aldrich, #P9620), followed by knockdown using stable 

short-hairpin interfering RNA (MISSION shRNA, Sigma Aldrich) targeting the 3’UTR of 

Ezh2 (TRCN0000286227), as previously reported.(91) Oligos in the pLKO.1 vector were 

packaged into lentiviral particles at the University of Michigan Vector Core.  

 

2-4.6 Tissue samples and immunohistochemistry 

Tissues from 104 invasive carcinomas arranged in triplicate samples in a high 

density tissue microarray (TMA), 19 normal breast tissues, and 23 tissue samples of 

distant metastasis, previously characterized by our group were employed (208-210). Five 

micron-thick paraffin-embedded sections were de-paraffinized in xylene and rehydrated 

through graded alcohols to water. Heat Induced Epitope Retrieval (HIER) was performed 

in the Decloaking Chamber (Biocare Medical) with Target Retrieval, pH 6.0 

(DakoCytomation). Slides were incubated in 3% hydrogen peroxide for 5 minutes to 

quench endogenous peroxidases. Anti-pEZH2(T367) (1:8000) developed by our lab and 



  

 36 

anti-H3K27me3 (Cell Signaling Tri-Methyl-Histone H3 (Lys27) (C36B11) Rabbit mAb 

#9733, 1:200) were incubated with the tissue sections for 1.5 hours at room temperature. 

Antibodies were detected with Envision+ HRP Labeled Polymer (DakoCytomation) for 30 

minutes at room temperature. HRP staining was visualized with the DAB+ Kit 

(DakoCytomation). Negative control slides were run. Slides were counterstained in 

hematoxylin, blued in running tap water, dehydrated through graded alcohols, cleared in 

xylene and then mounted with Permount. Expression of pEZH2 (T367) and H3K27me3 

was analyzed blindly by two observers, at least twice. pEZH2 (T367) staining was 

categorized as nuclear or cytoplasmic, and as high and low based on the presence or 

absence of protein expression. The expression of H3K27me3 in the nucleus of cancer 

cells was scored using a four-tiered system based on intensity of staining and percentage 

of staining cells, with scores 1-2 categorized as low, and 3-4 as high (208, 211) 
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2-5. Figures 

 

Figure 2.1 pEZH2(T367) can be detected in vitro and in vivo. a. Dot-blot assays 
performed using increasing quantities of phosphorylated (NSSRPS(pT)PTINVL) or non-
phosphorylated (NSSRPSTPTINVL) peptides after incubation with affinity purified pEZH2 
(T367) antibody. Ponceau stain shown as loading control. b. Western blot of recombinant 
His-GST-EZH2 treated with lambda phosphatase to dephosphorylate protein. c. Western 
blot using MDA-MB-468 and MDA-MB-231 whole cell lysates treated with lambda 
phosphatase to dephosphorylate protein. d. Peptide competition western blot of MDA-
MB-231 whole cell lysates using pEZH2 antibody pre-incubated with 200-fold molar 
excess of either non-phosphorylated or phosphorylated peptide. e. Peptide competition 
immunohistochemistry of an invasive breast carcinoma using pEZH2 antibody pre-
incubated with 200-fold molar excess of either non-phosphorylated or phosphorylated 
peptide. f. Immunoprecipitation myc antibody in MDA-MB-231 cells transduced to express 
myc-WT-EZH2 or myc-T367A-EZH2 followed by western blot with pEZH2(T367) (top), 
with input (bottom).  
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Figure 2.2. Phosphorylated EZH2 (T367) is expressed in the cytoplasm of invasive 
breast carcinoma and distant metastases. a. Immunohistochemical analysis of 
pEZH2(T367) expression using a novel, specific antibody in human tissue samples of 193 
patients. Pictures show a representative invasive breast carcinoma with adjacent normal 
breast (left) and metastasis (right) (400x magnification). Insets show expression of 
pEZH2(T367) in cancer cells (600x magnification). b. Results are tabulated. Cytoplasmic 
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pEZH2 is significantly associated with invasive carcinoma and metastasis compared to 
normal and fibrocystic changes (Chi-square p<0.00001). 
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Table 3. Clinical and pathological characteristics of the invasive carcinomas.  
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Table 4. Associations between pEZH2(T367) cytoplasmic expression and clinical 
and pathological characteristics on the invasive carcinomas.  
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Figure 2.3. Survey of pEZH2(T367) expression in normal and malignant tissue. 
(Table, top) pEZH2(T367) expression in normal and neoplastic tissues of epithelial (left) 
and non-epithelial (right) origin. The presence of cytoplasmic pEZH2(T367) tissue is 
noted. (Bottom) Example immunohistochemical images of pEZH2(T367) expression 
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patterns in normal thyroid, lung, and tonsil, and thyroid follicular carcinoma, lung 
adenocarcinoma, and Hodgkin’s lymphoma. Images taken at 400X magnification. Arrows 
delineate cells with pEZH2 in the cytoplasm.  
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Chapter 3: p38-mediated phosphorylation at T367 induces EZH2 cytoplasmic 
localization to promote breast cancer metastasis 

 

3-1 Introduction 

 In chapter 2, we observed EZH2 phosphorylated at T367 was expressed in the 

cytoplasm of invasive breast carcinomas and that this was associated with higher grade, 

ER- status, PR- status, and TNBC subtype. Here, we establish the functional relevance 

of phosphorylation at this site.   

We have demonstrated that EZH2 and p38α interact in aggressive ER- breast 

cancer cells (93), and EZH2  has been shown to undergo p38α -mediated T367 

phosphorylation during muscle regeneration (164). However, direct demonstration that 

p38α phosphorylates EZH2 in solid tumors, the biological consequences of EZH2 T367 

phosphorylation in breast cancer, and the mechanisms of pEZH2(T367) function are still 

unclear. Despite evidence of cytoplasmic EZH2 in aggressive breast cancers (92), studies 

have focused on the nuclear functions of EZH2, and the functions of EZH2 in the 

cytoplasm have remained elusive.  

Here, we find that phosphorylation of EZH2 at T367 plays a critical role in breast 

cancer invasion and metastasis. In human invasive carcinomas and distant metastasis, 

cytoplasmic EZH2 phosphorylated at T367 is inversely correlated with global levels of 

H3K27me3. We uncover a previously unrecognized PRC2-independent mechanism by 

which phosphorylation of EZH2 at T367 promotes its cytoplasmic localization. 

Cytoplasmic localization is sufficient for conferring the migratory and invasive properties 
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of EZH2. Ectopic expression of a phospho-deficient mutant of EZH2 where T367 has 

been replaced with Ala is sufficient to inhibit EZH2 cytoplasmic expression, to disrupt 

binding to cytoskeletal regulators, and to reduce EZH2-mediated adhesion, migration, 

invasion, and the development of spontaneous metastasis. These results point to a novel 

non-canonical mechanism for EZH2 pro-metastatic function and suggest a new 

therapeutic approach for metastatic breast cancer. 

 

3-2 Results 

3-2.1 p38 phosphorylates EZH2 at T367 in breast cancer.  

 To examine the function and regulation of pEZH2(T367) in breast tumorigenesis, 

we used MDA-MB-231, MDA-MB-468, and SUM159 breast cancer cell lines which exhibit 

p38-EZH2 binding, high endogenous levels of p-p38 (93), and high pEZH2(T367) (Fig 

2.2C). Quantitative Bio-Layer Interferometry (BLI) data with recombinant proteins 

indicated a strong binding affinity of EZH2 for p38α with binding affinity KD of 5.54 nM 

and kinetic constants: association rate of kon = 4.68 x 106 [M-1s-1], and dissociation rate, 

koff = 2.59 x 10-2 [s-1]. Affinity constant obtained from the kinetic analysis was in excellent 

agreement with the steady state analysis, KD of 3.4 nM, confirming the direct and strong 

binding interaction between EZH2 for p38α (Fig. 3.1A).  

We next investigated the effect of p38α -mediated T367 phosphorylation on EZH2 

function, through complementary and independent approaches to inhibit and to activate 

p38MAPK. Both p38α knockdown using stable lentiviral-mediated short hairpin RNA 

interference (shRNA) and chemical inhibition of p38α/β activity with SB202190 

significantly reduced pEZH2(T367) protein in breast cancer cells without affecting total 
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levels of EZH2 and was accompanied by increased H3K27me3 levels (Fig. 3.1B). 

Activation of p38α, the most abundant isoform, occurs through a dual phosphorylation 

event at T180/T182 by upstream kinases MKK3 and MKK6(212). Transduction with an 

inducible, constitutively activated mutant MKK6 (MKK6EE)(213) resulted in increased p-

p38 and pEZH2(T367) (Fig. 3.1C).  

Demonstrating the significance of these results, clinical samples of invasive breast 

carcinoma showed a significant inverse association between cytoplasmic pEZH2(T367) 

and H3K27me3 levels (Chi-square p<0.00001, Figs. 3.1D-E). Taken together, these data 

show a direct interaction between p38α and EZH2, that p38α phosphorylates EZH2 at 

T367 in breast cancer cells and human tissues, and suggest that p38α -mediated 

phosphorylation reduces EZH2-mediated trimethylation of H3K27. 

 

3-2.2 p38α-mediated phosphorylation at T367 is sufficient to promote EZH2 

cytoplasmic localization.  

Dox-induced MKK6 activation of p38α was sufficient to promote cytoplasmic 

localization of GFP-EZH2 expressed in MDA-MB-231 cells compared to controls (Fig. 

3.2A). To directly investigate the relevance of phosphorylation at T367 to the subcellular 

localization of EZH2, we generated a GFP-tagged EZH2 mutant by replacing T367 with 

Ala (T367A). In MDA-MB-231, SUM159, and MDA-MB-468 cells, ectopic GFP-EZH2-

T367A was nuclear and showed reduced localization to the cytoplasm (Fig. 3.2B-C), 

demonstrating that T367 phosphorylation is required for the cytoplasmic expression of 

EZH2. Further supporting this observation, fractionation of MDA-MB-231 and MDA-MB-
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468 cells showed an enrichment of pEZH2(T367) in the cytoplasmic compartment and an 

absence in the chromatin-bound compartment compared to total EZH2 (Fig. 3.2D).  

To test the relevance of cytoplasmic EZH2 to the neoplastic functions of breast 

cancer we developed an EZH2 mutant lacking the nuclear localization domain (ΔNLS-

EZH2) (Fig. 3.3A). To avoid the contribution of endogenous EZH2 we first generated 

MDA-MB-231 cells with stable 3’UTR EZH2 knockdown followed by rescue with full length 

(WT-EZH2) and ΔNLS-EZH2 mutant adenoviral constructs (Fig. 3.3B). Rescue ΔNLS-

EZH2 was sufficient to restore the reduced invasion and migration of MDA-MB-231 

shEZH2 breast cancer cells to similar levels that WT-EZH2 (Fig. 3.3C-D).  ΔNLS-EZH2 

expression was cytoplasmic and retained the ability to interact with SUZ12 and EED but 

had no effect on H3K27me3 (Fig 3.4). Collectively, these data show that T367 

phosphorylation is required for EZH2 cytoplasmic localization in breast cancer cells, and 

reveal that cytoplasmic EZH2 expression is sufficient to promote breast cancer cell 

migration and invasion. 

 

3-2.3 pEZH2(T367) is essential for breast cancer migration and invasion in vitro, 

and metastasis in vivo.  

We hypothesized that in the cytoplasm, pEZH2(T367) may regulate the migratory 

and invasive abilities of breast cancer cells, and set out to rescue the expression of WT-

EZH2 and the phospho-deficient T367A-EZH2 mutant in MDA-MB-231, -468, and 

SUM159 cells with EZH2 3’UTR knockdown (Fig. 4.5A). In contrast with WT-EZH2, 

ectopic expression of T367A-EZH2 was unable to rescue breast cancer cell invasion (Fig. 

4.5B). Based on the observation that T367A-EZH2 expressing cells adhered strongly to 
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the substrate during culture, we reasoned that EZH2 phosphorylation may regulate this 

function. Our studies demonstrate that T367A-EZH2 significantly increased attachment 

of breast cancer cells in adhesion assays compared to WT-EZH2 (Fig. 4.5C).  

Ectopic expression of T367A-EZH2 was able to restore the proliferative abilities of 

knockdown-rescue cells as effectively as WT-EZH2 (Fig. 4.5D-F), demonstrating that 

T367 phosphorylation is dispensable for EZH2 proliferative functions. Our data also 

reveal that T367 phosphorylation did not significantly affect the stability of EZH2 protein 

or its ability to bind with other PRC2 proteins SUZ12 and EED (Fig 4.6). 

As expected based on our previous results (91), MDA-MB-231 expressing shRNA 

against EZH2 formed smaller tumors than controls. Validating the dispensable role for 

T367 phosphorylation on cell proliferation observed in vitro, primary tumors formed by 

T367-EZH2 and WT-EZH2 were of similar size (Fig. 4.7A). Despite no differences in 

primary tumor growth kinetics (Fig. 4.7B), T367A-EZH2 signficantly reduced the lung 

metastatic burden and ability to metastasize compared to WT-EZH2 (Fig. 4.7C-E). 

Together, these data document that T367 phosphorylation is critical for the metastasis-

promoting function of EZH2 in breast cancer. 

 

3-3. Summary and Discussion 

EZH2 is a bona-fide oncogene in breast cancer, responsible for imparting 

proliferation, migration, and invasion abilities to breast cancer cells(90, 91, 93), but the 

mechanisms are incompletely understood. As the enzymatic component of PRC2, EZH2 

has an established transcriptional repression through its catalysis of histone H3K27 

trimethylation. However, the presence of high EZH2 levels in association with low 
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H3K27me3 in aggressive breast cancers suggests that EZH2 operates via a currently 

unknown H3K27me3-independent mechanism. Here, we discover the presence of 

upregulated phosphorylated EZH2 at T367 in clinical samples of invasive and metastatic 

breast carcinoma. Our study shows that p38-mediated phosphorylation at T367 promotes 

EZH2 cytoplasmic localization and binding to cytoskeletal regulatory proteins and is 

essential for breast cancer metastasis. 

While most studies have focused on the role of EZH2 as a transcriptional repressor 

in cancer, there is mounting evidence that EZH2 has non-canonical functions involving 

transcriptional activation and methylation of non-histone proteins. We recently reported 

that in aggressive ER- breast cancer, EZH2 complexes with RelA/RelB and binds to the 

Notch1 promoter to activate transcription independent of its methyltransferase activity 

(173). In castration-resistant prostate cancer EZH2 was also found to activate 

transcription of genes in a methyltransferase-independent manner(214). EZH2 has also 

been shown to methylate non-histone substrates; EZH2-mediated methylation of STAT3 

leads to STAT3 activation and increased glioblastoma tumorigenicity(215). The present 

study reveals a previously undescribed oncogenic mechanism by which p38-mediated 

EZH2 phosphorylation at T367 promotes breast cancer progression by inducing EZH2 

cytoplasmic function and reducing nuclear EZH2 methyltransferase activity on histone 

H3K27. These conclusions are supported by in vitro and in vivo functional and 

mechanistic studies and are validated in human breast cancer tissue samples. 

Our lab and other investigators have established a role for EZH2 in breast cancer 

proliferation, migration, and invasion. We have demonstrated that EZH2 shRNA 

knockdown reduced the size of primary breast cancer xenografts compared to 
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controls(91). In this study, we show that phosphorylation of EZH2 at T367 specifically 

regulates the adhesive, migratory, and invasive properties of breast cancer cells without 

affecting their proliferation abilities. A phospho-deficient EZH2 mutant promoted 

proliferation to similar levels of wild type EZH2 but failed to promote breast cancer cell 

migration, invasion, and adhesion. Demonstrating an essential role for T367 

phosphorylation on the ability of breast cancer cells to move and invade, mutation of T367 

to alanine resulted in a significant decrease in distant metastatic burden without affecting 

primary tumor volume, and led to significantly improved metastasis free survival of mice.  

In chapter 2 of this dissertation, we observed that in normal breast lobules, when 

expressed, EZH2 phosphorylated at T367 is localized to the nucleus of epithelial cells. In 

contrast, 57% of invasive carcinomas and 74% of breast cancer metastasis exhibited 

upregulated pEZH2 T367 in the cytoplasm of breast cancer cells. In this chapter, we found 

that phosphorylation of EZH2 at T367 is sufficient and necessary for cytoplasmic EZH2 

localization in breast cancer cells in cell lines and clinical samples of invasive carcinoma. 

Cytoplasmic EZH2 has been observed previously in murine fibroblasts where it retains 

methyltransferase activity and regulates actin polymerization(216). In leukocytes, EZH2 

was shown to methylate the cytoplasmic protein talin-1 to enhance migration by inhibiting 

the binding of talin-1 to F-actin (180). In breast cancer, we have reported cytoplasmic 

EZH2 protein in 16% of invasive ER- breast carcinomas from Ghanaian patients(92). 

Likewise, EZH2 expression has been observed in prostate cancer cells(217). Despite 

evidence that EZH2 is expressed in the cytoplasm of human malignancies, the 

mechanism has remained unexplored. Using EZH2 mutants with a deletion in the nuclear 

localization signal and a T367 phosphorylation deficient mutant, we directly demonstrate 
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that cytoplasmic localization and T367 phosphorylation are sufficient for EZH2-mediated 

breast cancer progression. 

In muscle stem cells, injury induced p38-mediated EZH2 T367 phosphorylation 

leads to enhanced recruitment EZH2 to the Pax7 promoter to promote muscle 

differentiation and subsequent EZH2 degradation(164),(165). In breast cancer, however, 

we observe that T367 phosphorylation appears to favor an H3K27me3-independent 

oncogenic mechanism without significantly affecting EZH2 protein stability. Our data are 

in agreement with a recent study showing that inhibition of EZH2 phosphorylation at T367 

resulted in increased levels of H3K27me3 as well as similarly negligible changes in 

proliferation with expression of a T367A mutant. However, the authors observed 

increased migration and invasion with expression of the T367A mutant in MDA-MB-231 

and benign MCF12A cells(192). The discordant functional findings might be explained by 

the approach used as well as the cellular context; the authors overexpressed wild-type or 

T367A EZH2 in MDA-MB-231 cells, which express high endogenous levels of EZH2, 

while we employed a knockdown-rescue approach. The association and mechanistic link 

between p38-mediated phosphorylation of EZH2 at T367, cytoplasmic localization, and 

breast cancer progression was validated in vitro, in vivo, and in human breast cancer 

samples.  

Taken together, the findings in this chapter provide strong evidence for a critical 

function of pEZH2(T367) in breast cancer metastasis and uncover a novel mechanism 

whereby phosphorylation promotes cytoplasmic localization of EZH2 to promote the 

metastatic properties of breast cancer cells. 
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3-4 Methods 

3-4.1 Cell culture.  

Breast cancer cell lines MDA-MB-231, MDA-MB-468, MCF7, and non-tumorigenic 

breast epithelial cells, MCF10A, were purchased from the American Type Culture 

Collection and grown under recommended conditions. The CAL51 breast cancer cell line 

was purchased from German Collection of Microorganism and Cell Cultures (DSMZ 

GmbH; Cat. No. DSMZ ACC 302) and also grown as recommended. The SUM149 breast 

cancer cell line was obtained from the laboratory of S. Either (Karmanos Cancer Institute, 

Detroit) and maintained as reported previously.(218) Cell lines were tested for 

mycoplasma infection using Sigma LookOut Mycoplasma PCR Detection Kit (Cat 

MP0035).  

Stable knockdown and rescue of EZH2 was achieved by lentiviral transduction of 

EZH2 with pBabe-myc-EZH2 (wild-type) or pBabe-myc-EZH2 (T367A), both kind gifts 

from the laboratory of PL Puri (164). After transduction, cells were selected for antibiotic 

resistant with 2 ug/ml puromycin (Sigma Aldrich, #P9620), followed by knockdown using 

stable short-hairpin interfering RNA (MISSION shRNA, Sigma Aldrich) targeting the 

3’UTR of Ezh2 (TRCN0000286227), as previously reported.(91) Oligos in the pLKO.1 

vector were packaged into lentiviral particles at the University of Michigan Vector Core.  

Inducible activation of p38 MAPK was used using the pBabe pSLIK 3xHA-MKK6-

EE neo plasmid, a kind gift from Kevin Janes (Addgene plasmid #47546). Cells were 

lentivirally transduced and selected with Geneticin (Gibco #10131) and treated with 

2ug/ml doxycycline (Sigma Aldrich, #D3072) to induce activation of MKK6 as previously 

reported(164). Cells were treated The p38 inhibitors SB202190 (Cell Signaling #8158) 
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and SB203580 (Cell Signaling #5633) and were used at 20 uM for 48 hours as previously 

reported(93) p38a knockdown was achieved using stable short-hairpin interfering RNA 

(MISSION shRNA, Sigma Aldrich)  (TRCN0000000510).   

 

3-4.2 Western blotting and Immunoprecipitations  

Western blotting analyses were carried out as previously reported using 50ug of 

whole cell extract, as previously reported(91). Briefly, cells were lysed in RIPA lysis buffer 

(Pierce #89900) with protease and phosphatase inhibitors (Thermo Scientific #1861281). 

Samples were resolved by SDS-PAGE, transferred onto PVDF membranes, and 

membranes were blocked and incubated with primary antibodies in 5% BSA (Sigma 

Aldrich, #A3059) in TBS-T (Bio-Rad, #161-0372 with 0.05% Tween 20) or 5% milk (Bio-

Rad #170-6404) in TBS-T at 4°C overnight. Protein signals were detected using 

enhanced chemiluminescence (Pierce, #32106) as per the manufacturer’s instructions. 

Primary antibodies used included Cell Signaling antibodies: EZH2 (#5246), Histone H3 

(#9715), myc-tag (#2276), p38α MAPK (9218), trimethyl-histone H3 (Lys27) (#9733), SP1 

(#9389) SUZ12 (#3737), phospho-p38 MAPK (#4511) phospho-Hsp27 (#2401); Abcam 

antibodies: EED (#ab4469), vinculin (#ab18058); Thermo Antibody: phospho-vinculin 

Y100 (Catalog #44-1074G); B-Actin HRP (Santa Cruz, #sc47778) was used as for loading 

control. Secondary antibodies used were Amersham ECL anti-rabbit IgG HRP-linked (GE 

Healthcare Life Sciences, #NA934) or Amersham ECL anti-mouse IgG HRP-linked (GE 

Healthcare Life Sciences, #NA931).  

Immunoprecipitations of endogenous proteins was performed using magnetic 

Dynabeads following protocol instructions (Invitrogen, #10007D). Briefly, cells were lysed 
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in IP lysis buffer (Pierce #87788) with protease and phosphatase inhibitors (Thermo 

Scientific #1861281). Dynabeads were washed and incubated for 10 minutes with rotation 

with supplied antibody-washing buffer containing antibody for bead-antibody conjugation. 

Antibodies used for immunoprecipitation included EZH2 (Cell Signaling #5246), pEZH2 

(custom antibody), and vinculin (#ab18058). After conjugation, beads were washed with 

supplied antibody-washing buffer and incubated with protein extract overnight at 4C. The 

next day, dynabead-antibody-antigen complexes were washed in stringent conditions and 

eluted with SDS-Laemmli Sample Buffer. Immunoprecipitations of myc-tagged proteins 

were performed using anti c-myc agarose resin (Pierce #20168) following the 

manufacturer’s instructions.  

 For fractionation, the Thermo Subcellular Fractionation Kit for Cultured Cells 

(Catalog 78840) was used.  

 

3-4.5 Wound healing, invasion, microfluidic migration, and cell attachment assays 

 Wound healing assays were performed by seeding cells in complete media a 6-

well plate for 24-48 hours until a confluent monolayer had formed. Linear scratches were 

made using a sterile 200 ul pipette tip. Monolayers were washed three times with PBS to 

remove detached cells, and then complete media was added. Photographs of the wound 

were taken immediately after wound formation and 24h after with phase contrast 

microscopy. Wound area was measured over time using ImageJ.  

In vitro invasion assays were performed using a 24-well matrigel invasion chamber 

(BD Biosciences, #354480), per manufacturer’s instructions. All invasion experiments 

were performed with technical triplicates, and repeated at least three times with biological 
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replicates. Cells that had invaded through the matrigel membrane were fixed with 

methanol, stained with crystal violet, photographed at high resolution, and counted 

manually using ImageJ. The representative whole inserts were imaged under the same 

conditions, and are shown in this paper after increasing brightness by 20% across all 

images in Microsoft Powerpoint.  

Microfluidic migration assays were performed using a previously published 

microfluidic migration platform(219, 220). To achieve higher throughput, the design was 

modified to have 450 migration channels per device, and the migration channel was 

designed to be 5 μm in height, 30 μm in width, and 1 mm in length. Before cell loading, 

collagen solution (1.45 mL Collagen (Collagen Type 1, 354236, BD Biosciences) and 0.1 

mL acetic acid in 50 mL DI Water) was used to prime the device for one hour, and the 

cell culture medium flowed through the channel for one hour for better cell adhesion and 

viability. The cells were trypsinized, centrifuged, and then re-suspended to a 

concentration of 4 X 105 cells/ml for loading into the device. After cell loading, the cell 

suspension in the inlet was replaced by serum-free cell culture media, and 10% FBS 

serum cell culture media was applied to the other inlet to induce chemotactic migration. 

The microfluidic chip was then put into an incubator, and migration distance was 

measured based on the final cell position after 24 hours of incubation without medium 

replenishment. For data collection, cells were stained by LIVE/DEAD® 

Viability/Cytotoxicity Kit (Invitrogen, L3224) to distinguish live and dead cells. To have 

consistent results, we only use the data from central 300 (out of 450) migration channels. 

The images were analyzed by custom MATLAB code automatically (221). Cells were 

identified based on their fluorescence, and debris was ignored by their small size. For all 
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conditions in this work, 4 replicates (a total of 1,200 channels) were performed. Box 

graphs were plotted using Origin 9.0. The bottom and top of the box are the first and third 

quartiles, and the band inside the box is always the second quartile (the median). The 

ends of the whiskers represent the 5th percentile and the 95th percentile. The square 

inside the box indicates the mean, and the x outside the box indicates the minimum and 

maximum of all of the data. 

Cell attachment assays were performed by trypsinizing 70% confluent cell dishes 

and seeding 1 x 105 cells in a 12 well plate. After 30 minutes, non-adherent cells were 

removed by washing wells with PBS three times. Adherent cells were then imaged and 

entire wells were counted using ImageJ.   

 

3-4.6 Determination of binding affinity using Bio-Layer Interferometry (BLI) 

technology 

Recombinant EZH2 (GST-EZH2 aa 2-end; MW = 114kDa; Bioscience) protein was 

biotinylated using the Thermo EZ-link Sulpho-NHS-LC-biotin biotinylation kit (cat. 21435). 

EZH2 protein and biotin were mixed in a 1:1 molar ratio in HBS buffer (10mM HEPES pH 

7.4, 150mM NaCl) on ice for 2 hours. Reaction mixture was dialyzed in HBS buffer to 

remove excess biotin. 

BLI experiments were performed using an OctetRED96 instrument from 

PALL/ForteBio. All assays were run at 30°C using HBS-P buffer (10mM HEPES pH 7.4, 

150mM NaCl, 0.005% tween-20) with continuous 1000 rpm shaking. Biotinylated EZH2 

was immobilized on Super Streptavidin (SSA) biosensors (ForteBio) by dipping sensors 

in 20 µg/mL protein solutions. Biotin labeled streptavidin protein was immobilized on SSA 
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sensors and used as inactive reference controls. Recombinant p38α (His-p38α aa 1-360; 

MW = 43kDa; Abcam) allowed to associate for 2 minutes and dissociate for 2 minutes. 

Collected raw kinetic data collected were processed with the Data Analysis software 

provide by ForteBio using double referencing in which both the buffer only sensors and 

inactive protein sensors were subtracted. Resulting data were analyzed based on the 1:1 

binding model and kinetic parameters kon, koff and Kd were determined as well as steady 

state binding affinity.  

 

3.4-7 Spontaneous metastasis model and xenograft immunohistochemistry 

 Eight-week old severe combined immunodeficiency mice (Jackson Laboratories) 

were used for examining tumorigenicity as previously reported(93). Briefly, GFP-Firefly-

luciferase expressing MDA-MB-231 shVector, shEZH2 + pBabe, shEZH2 + WT-EZH2 or 

shEZH2 + T367A-EZH2 cells were orthotopically injected into the right inguinal mammary 

fat pad of anesthetized mice at a concentration of 106 cells resuspended in 50 ul of 

matrigel (n = 10 mice per group). Primary tumor growth was monitored semiweekly by 

caliper measurement as strong BLI signals quickly become saturated by rapid growth of 

primary MDA-MB-231 tumors. Metastases were monitored using bioluminescence 

imaging as previously described. Briefly, mice were anesthetized and injected i.p. with 75 

mg/kg D-Luciferin (Xenogen) resuspended in PBS. Bioluminescence images were 

acquired using the IVIS imaging system (Xenogen) within approximately 2-5 minutes after 

injection. Analysis was performed using the Living Image software platform (Xenogen) by 

measuring photon flux, measured in photons/s/cm2/sr, by using a region of interest (ROI) 
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drawn around the bioluminescence signal to be measured and subtracting background 

measurements. All mice were sacrificed when the first primary tumor size reached 2 cm3.  

 

3-4.8 Immunohistochemistry, immunofluorescence, and proximity-ligation assays 

 Tumors, lungs, and bones of mice were collected, fixed in 10% neutral buffered 

formalin, and embedded in paraffin for immunohistochemistry. Immunofluorescence was 

performed by seeding cells into 2-well chambered slides (Thermo Fisher Lab-Tek 

#154461). 24 hr after seeding, cells were fixed with 4% PFA diluted in PBS for 15 minutes 

at room temperature, rinsed three times with PBS, and blocked for 1 hour using blocking 

buffer, 5% normal goat serum containing 0.3% Triton X-100 in PBS). After blocking, slides 

were incubated with primary antibody diluted in antibody buffer (5% bovine serum albumin 

containing 0.3% Triton X-100 in PBS) at 4C overnight. Next day, slides were washed 3 

times with PBS and incubated with fluorescent secondary antibodies (Alexafluor goat-anti 

Rabbit 488 Cat # A-11008 or goat anti-mouse 594 Cat A-11005). Slides were washed 3 

times with PBS and coverslipped using ProLong Diamond Antifade Mountant with DAPI 

(Thermo Fisher, Cat# P36962). Slides were imaged using Leica SP5 Inverted 2-Photon 

FLIM Confocal, and image analysis was performed using ImageJ.  

 

3-4.9 Tissue samples and immunohistochemistry 

Tissues from 104 invasive carcinomas arranged in triplicate samples in a high 

density tissue microarray (TMA), 19 normal breast tissues, and 23 tissue samples of 

distant metastasis, previously characterized by our group were employed (208-210). Five 

micron-thick paraffin-embedded sections were de-paraffinized in xylene and rehydrated 
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through graded alcohols to water. Heat Induced Epitope Retrieval (HIER) was performed 

in the Decloaking Chamber (Biocare Medical) with Target Retrieval, pH 6.0 

(DakoCytomation). Slides were incubated in 3% hydrogen peroxide for 5 minutes to 

quench endogenous peroxidases. Anti-pEZH2(T367) (1:8000) developed by our lab and 

anti-H3K27me3 (Cell Signaling Tri-Methyl-Histone H3 (Lys27) (C36B11) Rabbit mAb 

#9733, 1:200) were incubated with the tissue sections for 1.5 hours at room temperature. 

Antibodies were detected with Envision+ HRP Labeled Polymer (DakoCytomation) for 30 

minutes at room temperature. HRP staining was visualized with the DAB+ Kit 

(DakoCytomation). Negative control slides were run. Slides were counterstained in 

hematoxylin, blued in running tap water, dehydrated through graded alcohols, cleared in 

xylene and then mounted with Permount. Expression of pEZH2 (T367) and H3K27me3 

was analyzed blindly by two observers, at least twice. pEZH2 (T367) staining was 

categorized as nuclear or cytoplasmic, and as high and low based on the presence or 

absence of protein expression. The expression of H3K27me3 in the nucleus of cancer 

cells was scored using a four-tiered system based on intensity of staining and percentage 

of staining cells, with scores 1-2 categorized as low, and 3-4 as high (208, 211) 

 

3-4.9 Statistics 

Results are presented as mean ± SD or mean ± SEM, unless otherwise noted. 

Comparisons between two groups were performed using an unpaired two-sided Student’s 

t test for continuous variables or Chi-square test for categorical variables. A p value of < 

0.05 was considered statistically significant.  
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3-4.10 Study Approval 

All procedures using animals were conducted in accordance with the NIH Guide 

for the Care and Use of Laboratory Animals and were approved by the Institutional Animal 

Care and Use Committee at the University of Michigan (UCUCA#PRO 00005009). 
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3-5 Figures  

Figure 3.1. p38 phosphorylates EZH2 in breast cancer. a. Quantitative analysis of the 
direct interaction between recombinant EZH2 and p38α proteins using BLI. EZH2 was 
immobilized on a sensor chip and a concentration series of p38α protein was added. 
Sensorgrams and corresponding fitting curves for kinetics constants and affinity 
determination (left) and corresponding plot of steady state response against 
concentration (right) for determination of binding affinity. b. Western blot of MDA-MB-231 
cells treated with 20uM SB202190 for 48 hr (left panel) or with p38 shRNA (right panel) 
to pharmacologically and genetically inhibit p38 activity, respectively. c. Western blot of 
MDA-MB-231 cells transduced with dox-inducible MKK6EE to activate p38α. d-e. 
Immunohistochemical staining of 118 samples of human invasive breast carcinomas 
using pEZH2(T367) and H3K27me3 antibodies demonstrating a significant inverse 
association (Chi-square, p<0.00001) (400x magnification).  
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Figure 3.2 p38-mediated phosphorylation at T367 promotes EZH2 cytoplasmic 
localization. a. Immunofluorescence images of MDA-MB-231 cells transduced with 
lentiviruses to express GFP-EZH2 and a dox-inducible, constitutively active MKK6 kinase. 
The percentage of non-mitotic cells expressing cytoplasmic EZH2 and cytoplasmic GFP-
EZH2 ≥nuclear expression was quantified. Scale bars, 25 um. b. Immunofluorescence 
images of MDA-MB-231 cells transduced with lentivirus to express GFP-EZH2 wild-type 
or T367A protein. The percentage of non-mitotic cells expressing cytoplasmic EZH2 was 
quantified. Scale bars, 25 um. c.  Immunofluorescence images of SUM159 and MDA-MB-
468 cells transduced with lentivirus to express GFP-EZH2 wild-type, or T367A protein. 
The number of non-mitotic cells expressing cytoplasmic EZH2 was quantified from ≥50 
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cells for each condition in three fields and graphicized on the right. Red, alpha-Tubulin, 
blue, DAPI. Scale bars, 50 um. d. Western blot analysis of MDA-MB-231 and MDA-MB-
468 cell lines subjected to fractionation into cytoplasmic (C), soluble nuclear (SN), and 
chromatin-bound (CB) fractions. SP1, GAPDH, and Histone H3 used as subcellular 
fractionation compartment controls.  
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Figure 3.3 Cytoplasmic localization and is sufficient for migration and invasion of 
breast cancer cells. a. Schematic diagram of myc-tagged EZH2 and nuclear localization 
signal (NLS) mutant (top left). b. Western blot analysis of MDA-MB-231 cells showing 
EZH2 knockdown after lentiviral transduction with control shRNA (shVector) or 3’ UTR 
EZH2-targeting shRNA (shEZH2) and rescue with myc-tagged Ad-EZH2 or Ad-ΔNLS 
mutant (top right). Ad-CMV, adenovirus control vector. c. Cell invasion assay of cells in 
(b) using a reconstituted Boyden basement membrane invasion chamber assay. d. Cell 
migration assays were performed in cells described in (b) using a high-throughput 
microfluidic migration platform to measure migration distance after 24 hr. Data are from 
at least three independent experiments carried out in at least triplicate and are presented 
as mean ± SD *p≤0.05; **p≤0.01 
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Figure 3.4. ΔNLS-EZH2 can incorporate into PRC2. a. Western blot analysis of MDA-
MB-231 transduced with lentivirus to knockdown EZH2 and rescue with Ad-EZH2 or Ad-
ΔNLS EZH2 whole cell lysate (a) and fractionated cells (b). c. Immunoprecipitation of 
myc-tag from MDA-MB-231 cells transduced with adenovirus to express vector, wild-type 
EZH2, or ΔSET, ΔHI, ΔHII, or ΔNLS domain deletion constructs. Western blot performed 
on immunoprecipitated protein for PRC2 members SUZ12 and EED. Right, input.  
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Figure 3.5. pEZH2(T367) promotes breast cancer cell invasion, and adhesion 
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without affecting cell proliferation. a. Western blot analysis of indicated breast cancer 
cells showing EZH2 knockdown after lentiviral transduction with control shRNA (shVector) 
or 3’ UTR EZH2-targeting shRNA (shEZH2) and rescue with myc-tagged WT-EZH2 or 
T367A-EZH2. b. Reconstituted Boyden basement membrane invasive chamber assay of 
cells in (A). Representative chambers after crystal violet staining shown above bars. c. 
Cells described in (A) employed in a cell attachment assay. d. MDA-MB-231 cells 
described in (A) subjected to time course proliferation assay using Hoescht 33258 to 
quantify dsDNA. e. Data are from at least three independent experiments carried out in 
at least triplicate and are presented as mean ± SD. *p≤0.05; **p≤0.01; ***p≤0.005; 
****p≤0.0001 
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Figure 3.6. T367A-EZH2 not associated with stability, and pEZH2 can bind PRC2 
members SUZ12 and EED. Related to Figures 2 and 3. a. Cycloheximide (CHX) pulse 
chase assay in MDA-MB-231 cells transduced with lentivirus to express  myc-WT-EZH2 
or myc-T367A-EZH2. Cells were seeded in a 6-well plate and treated with 100ug/ml CHX 
for 0, 24, and 48 hours. Left, immunoblot of myc-tag. Right, plotted quantified immunoblot, 
with myc-EZH2 stability over time normalized to tubulin expression. b. Co-
immunoprecipitation followed by western blot experiments using the indicated antibodies 
from MDA-MB-231 whole cell lysates showing interaction of pEZH2 with SUZ12 and EED.  
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Figure 3.7. Inhibition of EZH2 T367 phosphorylation reduces breast cancer 
metastasis. a. Representative bioluminescence images of primary tumors at one and 
nine weeks post tumor implantation. b. Primary tumor growth curves of NOD/SCID mice 
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orthotopically-implanted with MDA-MB-231 EZH2 knockdown rescue cells (n=10 per 
condition) expressing GFP-Luciferase. Primary tumor growth as determined by caliper 
measurements, shown as mean ± SD. c. Representative bioluminescence images of 
metastases (primary tumor shielded), imaged at four weeks post tumor implantation (left) 
with representative H&E staining of lung tissue from each of the four groups at nine weeks 
post implantation (right, 600x magnification) d. Metastatic lung burden assessed by 
measuring photon flux measured four weeks post tumor implantation using Live Image 
Pro after shielding primary tumors. Data are presented as means ± SEM. e. Kaplan-Meier 
metastasis-free survival curve of mice as determined by presence of lung metastases 
with bioluminescence imaging showing difference between WT-EZH2 (red) and T367A-
EZH2 (blue) knockdown-rescue groups. *p≤0.05; **p≤0.01 
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Chapter 4: EZH2 phosphorylation at T367 alters its interactome and promotes its 
binding to cytoplasmic partners 

 

4.1 Introduction 

In the previous chapter, we observed that p38-mediated phosphorylation of EZH2 

at T367 contributes to the migration, invasion and metastasis of breast cancer cells. 

Mechanistically, we observed that this phosphorylation promoted a fraction of EZH2 to 

translocate to the cytoplasm. The cytoplasmic localization of EZH2 is sufficient to impart 

these migratory and invasive phenotypes. These data, taken with our observations from 

chapter 1 that cytoplasmic pEZH2(T367) significantly associated with tumor grade, ER- 

status, PR- status, and HER2- status in invasive breast carcinomas suggest that EZH2 

exerts oncogenic functions in the cytoplasm. 

 In order to determine these functions, we employ an unbiased proteomics 

approach and uncover a phosphorylation-dependent ability of EZH2 to interact with 

cytoskeletal regulators in breast cancer cells. The data presented in this chapter pave the 

way for many new potential studies on EZH2 function in breast cancer. 
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4.2 Results 

4.2.1 Phosphorylation at T367 changes the EZH2 interactome in breast cancer to 

promote binding to cytoplasmic proteins.  

 Based on the significant association between cytoplasmic pEZH2(T367) and 

breast cancer invasion and metastasis in clinical samples, and its critical role in promoting 

breast cancer progression, we hypothesized that pEZH2(T367) may interact with 

cytoplasmic and cytoskeletal regulatory proteins. To map pEZH2(T367) interactors, 

whole cell lysates of knockdown-rescue MDA-MB-231 cells expressing FLAG vector, 

FLAG-WT, or FLAG-T367A were affinity purified using FLAG immunoprecipitation. We 

then performed liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis 

of proteins that coprecipitated with wild-type or mutant EZH2 from MDA-MB-231 cell 

lysates. We scored wild-type and mutant EZH2 interactions using MS/MS spectral 

counting to calculate the Significance Analysis of Interactome (SAINT) probability and 

empirical fold-change scores (FC) for each prey protein using the CRAPome 

resource(222). Validating the robustness of the assay, we calculated the SAINT 

probabilities of the three biological replicates for known interactors of EZH2 (Table 5). 

Comparative analyses revealed 45 proteins that coprecipitated significantly more with 

FLAG-EZH2 than with FLAG-T367A, suggesting a requirement for T367 phosphorylation 

in regulating these potential interactions (Fig.  4.1a). Consistent with our subcellular 

localization studies, DAVID functional analysis showed enrichment for FLAG-EZH2 

interactors in the cytoplasm and actin-binding functional annotations compared to FLAG-

T367A (Fig 4.1b), which included important regulators of cell migration, adhesion, and 

invasion (Fig 4.1c).  
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4-2.2 pEZH2(T367) binds with vinculin in a p38-dependent manner in the 

cytoplasm of estrogen receptor-negative breast cancer cells.  

Among the top differential interactors of pEZH2(T367) in the actin-binding set was 

vinculin, a cytoplasmic membrane and cytoskeletal protein found at focal adhesions with 

roles in breast cancer migration and invasion (223, 224). We validated and investigated 

the mechanistic details of the interaction between pEZH2(T367) and vinculin using 

multiple independent and complementary strategies. By immunofluorescence, 

pEZH2(T367) colocalized with vinculin in the cytoplasm of MDA-MB-231, -468, and 

SUM159 cells (Fig 4.2a). These data are further supported by immunofluorescence 

studies using GFP-T367A-EZH2 and ΔNLS-EZH2 in MDA-MB-231 cells (Fig 4.2b-c). 

Using proximity ligation assays (PLA) with confocal imaging, we detected pEZH2(T367)-

vinculin interaction (<40 nm apart) in the cytoplasm of breast cancer cells (Fig 4.2d-e). 

To investigate the details of the novel EZH2-vinculin interaction, we evaluated real-

time interactions and quantified the binding affinity using BLI. Recombinant vinculin 

protein showed strong binding affinity of immobilized EZH2 with KD of 15 nM and kinetic 

constants: association rate of kon = 2.94 x 105 + 3.80 x 105 [1/Ms] and dissociation rate, 

koff = 3.85 x 10-3 + 8.39 x 10-4 [1/s]. Affinity constant obtained from the kinetic analysis 

was in agreement with the steady state analysis with KD value of 42 nM, confirming the 

direct and strong binding interaction between EZH2 and vinculin (Fig. 4.2f).  

 

4-2.3 pEZH2(T367) promotes phosphorylation of vinculin at Y100  

To determine whether p38 activation was required for EZH2-vinculin binding in 

breast cancer cells, we induced p38 MAPK signaling in MDA-MB-231 cells using the 
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tetON-HA-MKK6EE system. Activation of p38 led to an approximate 10-fold increase 

pEZH2(T367)-vinculin binding compared to uninduced controls (Fig. 4.3a).  

We next investigated the consequences of the novel interaction between EZH2 

and vinculin. Although our data demonstrate that pEZH2(T367) binds to PRC2 by co-

immunoprecipitation and PLA studies, we found that vinculin does not interact with EED 

and SUZ12 (Fig 4.2e). Further supporting a PRC2-independent mechanism, we were 

unable to detect vinculin methylation after incubation with PRC2 by mass spectrometry 

(data not shown). These data coupled with the reported role of phosphorylation in vinculin 

activation at sites of focal adhesions (225, 226), suggested the hypothesis that p38-

induced pEZH2(T367)-vinculin interaction may enhance vinculin phosphorylation and 

activation. We observed that induction of p38 activation increased vinculin Y100 

phosphorylation (Fig. 4.3b), and that WT-EZH2 but not EZH2-T367A rescued 

phosphorylated vinculin Y100 levels and localization at sites of focal adhesions in MDA-

MB-231 cells, suggesting that T367 phosphorylation of EZH2 is required for this function 

(Fig. 4.3c).  

Taken together the data suggest that p38-mediated T367 phosphorylation of EZH2 

in ER- breast cancer cells promotes a PRC2-independent interaction with cytoplasmic 

vinculin, leading to phosphorylation of vinculin at Y100 and localization at focal adhesions. 

Our data document that pEZH2(T367) interacts with cytoplasmic proteins in breast cancer 

cells uncovering a largely unexplored oncogenic mechanism in solid tumors. Fig. 4.3d 

shows our working model of pEZH2(T367) oncogenic functions.  
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4-3 Summary and Discussion  

 In this chapter, we investigated potential mechanisms of EZH2 function in the 

cytoplasm. Through an unbiased proteomics approach, we uncovered a phosphorylation-

dependent ability of EZH2 to interact with cytoskeletal regulators in breast cancer cells. 

From our dataset we infer that phosphorylation promotes binding to proteins associated 

with actin-binding, cell adhesion, and cytosolic functions (Fig. 4.1). Among the top 

pEZH2(T367) actin-binding interactors is vinculin, an F-actin binding protein important for 

cell-cell and cell-matrix interactions through focal adhesion stabilization (227),(228). 

Vinculin is overexpressed in human malignancies, including breast cancer, where it 

regulates cell adhesion and migration (223, 224, 229-232). Through several 

complementary approaches, we find that EZH2 binds with vinculin at high affinity and 

regulates its activation at Y100 in a T367 phosphorylation-dependent manner. 

Phosphorylation of vinculin at this site is one of two events critical for cell spreading (226) 

and cellular transmission of force (225), which likely result from local conformational 

rearrangements that promote a more open and active state of vinculin (233). The data 

suggest one possible mechanism whereby EZH2 regulates this active state through direct 

interaction. How precisely the interaction of EZH2 and vinculin—which appears to be 

SUZ12- and EED- independent—promotes phosphorylation at this site requires further 

study.  

Our proteomics analyses also uncovered other novel pEZH2(T367) interactors in 

breast cancer with roles in cytoskeletal organization that have not been previously studied 

in this context. Among these interactors are SYNE2, EPS8, EPS8 related protein 2, 

MLPH, and DBNL. SYNE2  (nesprin-2), an actin-binding nuclear envelope protein that 
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tethers the nucleus to the cytoskeleton, has been shown to promote pancreatic cancer 

metastasis (234). EPS8 (Epidermal Growth Factor Receptor Pathway Substrate 8) is a 

regulator of actin cytoskeleton dynamics with putative oncogenic functions in breast 

cancer(235). EPS8L2 is an EPS8 related protein which links growth factor signaling to 

actin reorganization(236). MLPH forms a complex with Rab effector proteins and 

regulates the movement of melanosomes in the cytoskeleton. DBNL is a cytosolic adaptor 

protein and putative suppressor of breast cancer metastasis (237). The contribution of 

vinculin and other pEZH2(T367) binding proteins to pEZH2 pro-metastatic functions may 

lead to new diagnostic, prognostic and therapeutic targets, and warrants in depth further 

investigations.  

 

4-4 Methods 

4-4.1 Affinity-Purification Mass Spectrometry 

MDA-MB-231 knockdown rescue cells expressing FLAG-EZH2 or FLAG-T367A 

were washed three times with PBS, harvested, and lysed in Pierce IP Lysis Buffer 

(#87797) containing protease and phosphatase inhibitors (Thermo Scientific #1861281) 

and immunoprecipitated with anti-FLAG antibody beads (Sigma M8823). On-bead 

digestion followed by LC-MS/MS analysis was performed following the protocol optimized 

at the Proteomics Resource Facility at the University of Michigan.  Briefly, the beads were 

resuspended in 50 ml of 100 mM ammonium bicarbonate buffer (pH ~8).  Upon reduction 

(10 mM DTT) and alkylation (65 mM 2-chloroacetamide) of the cysteines, proteins were 

digested with 500 ng of sequencing grade, modified trypsin (Promega).  Resulting 

peptides were resolved on a nano-capillary reverse phase column (Acclaim PepMap C18, 
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2 micron, 50 cm, ThermoScientific) using 0.1% formic acid/acetonitrile gradient at 300 

nl/min (2-25% acetonitrile in 105 min; 25-40% in 20 min, followed by a 90% acetonitrile 

wash for 10 min and a further 25 min re-equilibration with 2% acetonitrile) and directly 

introduced in to Q Exactive HF mass spectrometer (Thermo Scientific, San Jose CA).  

MS1 scans were acquired at 120K resolution.  Data-dependent high-energy C-trap 

dissociation MS/MS spectra were acquired with top speed option (3 sec) following each 

MS1 scan (relative CE ~28%).  Proteins were identified by searching the data against 

Homo sapiens database (UniProtKB, v2014-4-13) using Proteome Discoverer (v2.1, 

Thermo Scientific).  Search parameters included MS1 mass tolerance of 10 ppm and 

fragment tolerance of 0.1 Da; two missed cleavages were allowed; carbamidimethylation 

of cysteine was considered fixed modification and oxidation of methionine; deamidation 

of aspergine and glutamine; phosphorylation of Serine, Threonine and Tyrosine were 

considered as variable modifications.  Percolator algorithm was used for discriminating 

between correct and incorrect identification and peptides/proteins with <1% FDR (false 

discovery rate) were retained for further analysis.    

Interactions with EZH2 and mutant EZH2 were scored using empirical fold-change 

scores (FC) and significance analysis of interactome (SAINT) probabilities for each 

interaction calculated using the CRAPome resource(222). To calculate the FC scores (the 

primary FC-A score) and SAINT probabilities (using SAINTexpress (238)), the three 

FLAG-IP replicates of cells expressing only the empty vector were used as negative 

controls. Replicates were combined in FC scoring and in SAINT probability calculation 

using average values of the three biological replicates. Briefly, the FC scores represent 

the increase (or decrease) in protein abundances (estimated using MS/MS spectral 
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counts) in bait IPs relative to the control samples. SAINT calculates the probability that 

an interaction is a true positive using a model where true-positive and false-positive 

interactions for each bait are modeled statistically as distinct Poisson distributions. A 

value of 1 indicates a high probability of a bona-fide interaction (239). 

PANTHER cellular component (gene ontology) analyses were performed on 

protein sets that were filtered using a SAINT probability cutoff of ≥0.7 and an FC score of 

≥2. DAVID functional analysis was performed using a stricter SAINT cutoff of 0.9. 

(https://david.ncifcrf.gov/content.jsp?file=citation.htm; 

http://pantherdb.org/citePanther.jsp) . The background for these analyses were set as all 

of the proteins identified in the LC-MS/MS experiment (5800 proteins). 

Venn diagrams were generated using the VennDiagram package in R version 

3.3.2. Data-framing was performed using RStudio version 0.98. Graphs of enrichment 

analyses were generated in Prism6. 

 

4-4.2 Western blotting and Immunoprecipitations 

 Western blotting analyses were carried out as previously reported using 50ug of 

whole cell extract, as previously reported(91). Briefly, cells were lysed in RIPA lysis buffer 

(Pierce #89900) with protease and phosphatase inhibitors (Thermo Scientific #1861281). 

Samples were resolved by SDS-PAGE, transferred onto PVDF membranes, and 

membranes were blocked and incubated with primary antibodies in 5% BSA (Sigma 

Aldrich, #A3059) in TBS-T (Bio-Rad, #161-0372 with 0.05% Tween 20) or 5% milk (Bio-

Rad #170-6404) in TBS-T at 4°C overnight. Protein signals were detected using 

enhanced chemiluminescence (Pierce, #32106) as per the manufacturer’s instructions. 

https://david.ncifcrf.gov/content.jsp?file=citation.htm
http://pantherdb.org/citePanther.jsp
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Primary antibodies used included Cell Signaling antibodies: EZH2 (#5246), Histone H3 

(#9715), myc-tag (#2276), p38α MAPK (9218), trimethyl-histone H3 (Lys27) (#9733), SP1 

(#9389) SUZ12 (#3737), phospho-p38 MAPK (#4511) phospho-Hsp27 (#2401); Abcam 

antibodies: EED (#ab4469), vinculin (#ab18058); Thermo Antibody: phospho-vinculin 

Y100 (Catalog #44-1074G);  B-Actin HRP (Santa Cruz, #sc47778) was used as for 

loading control. Secondary antibodies used were Amersham ECL anti-rabbit IgG HRP-

linked (GE Healthcare Life Sciences, #NA934) or Amersham ECL anti-mouse IgG HRP-

linked (GE Healthcare Life Sciences, #NA931).  

Immunoprecipitations of endogenous proteins was performed using magnetic 

Dynabeads following protocol instructions (Invitrogen, #10007D). Briefly, cells were lysed 

in IP lysis buffer (Pierce #87788) with protease and phosphatase inhibitors (Thermo 

Scientific #1861281). Dynabeads were washed and incubated for 10 minutes with rotation 

with supplied antibody-washing buffer containing antibody for bead-antibody conjugation. 

Antibodies used for immunoprecipitation included EZH2 (Cell Signaling #5246), pEZH2 

(custom antibody), and vinculin (#ab18058). After conjugation, beads were washed with 

supplied antibody-washing buffer and incubated with protein extract overnight at 4C. The 

next day, dynabead-antibody-antigen complexes were washed in stringent conditions and 

eluted with SDS-Laemmli Sample Buffer. Immunoprecipitations of myc-tagged proteins 

were performed using anti c-myc agarose resin (Pierce #20168) following the 

manufacturer’s instructions.  
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4-4.3 Immunohistochemistry, immunofluorescence, and proximity-ligation assays 

 Tumors, lungs, and bones of mice were collected, fixed in 10% neutral buffered 

formalin, and embedded in paraffin for immunohistochemistry. Immunofluorescence was 

performed by seeding cells into 2-well chambered slides (Thermo Fisher Lab-Tek 

#154461). 24 hr after seeding, cells were fixed with 4% PFA diluted in PBS for 15 minutes 

at room temperature, rinsed three times with PBS, and blocked for 1 hour using blocking 

buffer, 5% normal goat serum containing 0.3% Triton X-100 in PBS). After blocking, slides 

were incubated with primary antibody diluted in antibody buffer (5% bovine serum albumin 

containing 0.3% Triton X-100 in PBS) at 4C overnight. Next day, slides were washed 3 

times with PBS and incubated with fluorescent secondary antibodies (Alexafluor goat-anti 

Rabbit 488 Cat # A-11008 or goat anti-mouse 594 Cat A-11005). Slides were washed 3 

times with PBS and coverslipped using ProLong Diamond Antifade Mountant with DAPI 

(Thermo Fisher, Cat# P36962). Slides were imaged using Leica SP5 Inverted 2-Photon 

FLIM Confocal, and image analysis was performed using ImageJ. For 

immunofluorescence imaging and quantitation of phospho-vinculin Y100 focal adhesion, 

8-well chambered slides (Thermo Fisher Lab-Tek Cat #154534) were first coated with 

fibronectin (Sigma Fibronectin F0895) per the manufacturer’s coating protocol at a dilution 

of 2 ug/ml, and immunofluorescence was carried out as outlined above. For post-imaging 

analysis, we followed a previously published protocol from Horzum et al., which details a 

step-by-step quantitative analysis of focal adhesions from MDA-MB-231 breast cancer 

cells,(240) quantifying focal adhesions from 70-100 cells per condition across at least 5 

separate fields.  
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For proximity ligation assays, cells were seeded in 8-well chambered slides 

(Thermo Fisher Lab-Tek Cat #154534). 24 hr after seeding, cells were fixed with 4% PFA 

diluted in PBS for 15 minutes at room temperature, rinsed three times with PBS, and 

blocked for 1 hour using blocking buffer, 5% normal goat serum containing 0.3% Triton 

X-100 in PBS). After blocking, slides were incubated with primary antibody diluted in 

antibody buffer (5% bovine serum albumin containing 0.3% Triton X-100 in PBS) at 4C 

overnight. Next day, slides were washed 3 times with PBS and incubated with DuoLink 

PLA probes (Sigma, Cat #DUO92101) and protocol for PLA secondary antibody 

incubation, ligation, amplification, and washes were performed following the 

manufacturer’s protocol. Slides were imaged using Leica SP5 Inverted 2-Photon FLIM 

Confocal. Positive signals were normalized to single-primary antibody control (pEZH2, 

1:500) and image analysis was performed using ImageJ. Images were taken under the 

same conditions, and if manipulated for representative images, brightness was increased 

across all images equally.  

 

4-4.4 Determination of binding affinity using Bio-Layer Interferometry (BLI) 

technology 

Recombinant EZH2 (GST-EZH2 aa 2-end; MW = 114kDa; Bioscience) protein was 

biotinylated using the Thermo EZ-link Sulpho-NHS-LC-biotin biotinylation kit (cat. 21435). 

EZH2 protein and biotin were mixed in a 1:1 molar ratio in HBS buffer (10mM HEPES pH 

7.4, 150mM NaCl) on ice for 2 hours. Reaction mixture was dialyzed in HBS buffer to 

remove excess biotin. 
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BLI experiments were performed using an OctetRED96 instrument from 

PALL/ForteBio. All assays were run at 30°C using HBS-P buffer (10mM HEPES pH 7.4, 

150mM NaCl, 0.005% tween-20) with continuous 1000 rpm shaking. Biotinylated EZH2 

was immobilized on Super Streptavidin (SSA) biosensors (ForteBio) by dipping sensors 

in 20 µg/mL protein solutions. Biotin labeled streptavidin protein was immobilized on SSA 

sensors and used as inactive reference controls. Recombinant human vinculin (His-

vinculin Cat: 10019-H08H) allowed to associate for 2 minutes and dissociate for 2 

minutes. Collected raw kinetic data collected were processed with the Data Analysis 

software provide by ForteBio using double referencing in which both the buffer only 

sensors and inactive protein sensors were subtracted. Resulting data were analyzed 

based on the 1:1 binding model and kinetic parameters kon, koff and Kd were determined 

as well as steady state binding affinity.  
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4-5. Figures  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 4.1. The interactome of pEZH2(T367) reveals new cytoplasmic binding 
proteins. a. Schematic of mass spectrometry experiment to identify binding partners of 
EZH2 in MDA-MB-231 cells. Experiment was performed in triplicate. b. Venn diagram 
displaying interactors overlap in proteins co-immunoprecipitating with WT- or T367A-
EZH2 from the three biological replicates analyzed.  c. DAVID functional annotation 
analysis of processes enriched in WT-EZH2 over T367A-EZH2.  d. List of differential 
interactors identified from actin-binding set with fold-change (FC) scores and normalized 
FC scores based on total EZH2 pulldown. Average WT and T367A spectral counts (SC) 
and SAINT probabilities (SP) are also tabulated.   

a 

d 

c 

70 33 45 

WT 
T367A 

GENE_ID WT_FC_A
T367A_FC

_A

AVERAGE_

WT_SC

AVERAGE_

T367A_SC

AVERAGE_

control_SC
WT_SP T367A_SP

SYNE2 22.9 4.8 27 4 0 1 0.7

EPS8 7.2 0.6 22 0.3 2 0.9 0

MLPH 5.3 1.1 16 2 1.7 1 0.2

MYO1F 5.14 4.97 16 13.3 2 0.94 0.67

VCL 4.2 3.1 26.3 16.7 4 1 0.8

DBNL 3.9 3 3.7 2.3 0 1 0.7

EPS8L2 3.5 1.7 10.3 4 1.3 1 0.5
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Table 5. WT- and T367A-EZH2 known interactors identified by mass spectrometry.  
List of differential interactors identified from actin-binding set with fold-change A (FC-A) 
scores and normalized FC-A scores based on total EZH2 pulldown. Average WT- and 
T367A spectral counts (SC) and SAINT probabilities (SP) are also displayed.   
 

 

 

 

WT-EZH2 and T367A-EZH2 known interactors 
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Figure 4.2. EZH2 and vinculin interact.  a. Immunofluorescence staining of 
pEZH2(T367) and vinculin counterstained with DAPI imaged by confocal microscopy in 
the indicated breast cancer cell lines. Scale bars, 25 um. b. Immunofluorescence 
imaging of MDA-MB-231 cells transduced with Ad-vector, Ad-EZH2, or Ad-ΔNLS 
mutant. Cells were stained for EZH2 (green) and vinculin (red), and counterstained with 
DAPI. Scale bars, 25 uM. c. Immunofluorescence images of MDA-MB-231 cells 
transduced with GFP-WT-EZH2 or GFP-T367A-EZH2 (green); vinculin (red). Scale 
bars, 25 um. d-e. Proximity ligation images depicting co-localization with the indicated 
proteins by red fluorescent dots in the indicated cell lines. Scale bars, 10 um. f. 
Quantitative analysis of the direct interaction between recombinant EZH2 and vinculin 
proteins using BLI. EZH2 was immobilized on a sensor chip, and a concentration series 
of vinculin protein was added. Sensorgrams and corresponding fitting curves for kinetics 
constants and affinity determination (left) and corresponding plot of steady state 
response against concentration (right) for determination of binding affinity.  
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Figure 4.3. pEZH2 promotes vinculin phosphorylation at Y100. a. Co-
immunoprecipitation experiment from whole cell extracts demonstrating interaction 
between endogenous EZH2 and vinculin after treatment with doxycycline to induce p38 
activation.b. Western blot of MDA-MB-231 cells transduced with dox-inducible MKK6EE 
to activate p38α activity. c. Western blot analysis comparing phospho-vinculin(Y100) in 
MDA-MB-231 knockdown-rescue WT-EZH2 and T367A-EZH2 cells  
d.Immunofluorescence imaging of MDA-MB-231 knockdown-rescue cells expressing 
WT-EZH2 or T367-EZH2 and seeded on fibronectin stained with pVinculin (Y100) (left), 
with example threshold image use for quantitation of focal adhesion size. e. The data 
are quantified. *p≤0.05. f. Our working model of pEZH2(T367) function in breast cancer. 
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Chapter 5: Summary and Future Directions 

 

5-1 Summary of work 

Despite improvement in its early detection and treatment, breast cancer remains a 

significant clinical challenge and source of cancer-associated deaths worldwide. The 

majority of deaths occur due to metastatic dissemination to distant sites. The broad aims 

of this dissertation were to examine how the histone methyltransferase EZH2—an 

epigenetic protein significantly associated with metastatic dissemination of breast cancer 

and poor breast cancer outcomes—is regulated. Previous studies find that EZH2 is 

coordinately overexpressed with the activated form of the p38 MAPK in breast cancer 

patients, and p38 phosphorylates EZH2 at T367 in vitro and interacts with EZH2 in breast 

cancer cells (93, 164). However, whether EZH2 is phosphorylated in breast cancer at 

T367 and the biological relevance of this event were previously unknown. This work 

identifies phosphorylation of EZH2 at T367 as a critical event in regulating the metastatic 

functions of EZH2 in breast cancer.  

In the first part of this dissertation (chapter 2), we developed and validated a novel 

antibody to detect for the first time pEZH2(T367) expression across a range of cell lines 

and tissues, normal and malignant. We observed a unique pattern of expression in which 

pEZH2(T367) shows nuclear expression in most normal tissues and cytoplasmic 

expression in tumors of epithelial origin. We find a significant correlation between 

pEZH2(T367) expression and invasive breast carcinoma grade, ER- status, PR- status, 
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and TNBC status. In the second part of this dissertation (chapter 3), we observe 

phosphorylation of EZH2 at T367 specifically regulates the adhesive, migratory, and 

invasive properties of breast cancer cells without affecting their proliferation abilities. A 

phospho-deficient EZH2 mutant promoted proliferation to similar levels of wild type EZH2 

but failed to promote breast cancer cell migration, invasion, and adhesion. Demonstrating 

an essential role for T367 phosphorylation on the ability of breast cancer cells to move 

and invade, mutation of T367 to alanine resulted in a significant decrease in distant 

metastatic burden without affecting primary tumor volume, and led to significantly 

improved metastasis free survival of mice. These findings provide strong evidence for a 

critical function of pEZH2(T367) in breast cancer metastasis. 

Our mechanistic studies (chapter 4) identify novel cytoplasmic EZH2 binding 

partners using proteomics. We validate that the F-actin binding protein vinculin interacts 

with EZH2 and that phosphorylation at T367 is important for vinculin activation. Prior to 

these observations, the existence and role of pEZH2 T367 in the cytoplasm and in the 

metastatic ability of breast cancer were unknown. Our data show that EZH2 is a 

phosphorylation substrate of p38 in breast cancer, and that pEZH2(T367) promotes 

metastasis, at least in part by cytoplasmic localization and interaction with cytoskeletal 

proteins.  

 

5-2 Limitations and considerations from this work 

 There are a number of limitations to the work presented in this dissertation. First, 

we developed a rabbit polyclonal antibody to assess pEZH2(T367) across a wide range 

of normal and malignant tissues and cell lines (Figs 2.1 – 2.3, Tables 3-4). Although we 
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observe pEZH2 expression to varying levels of expression across these tissues, it is still 

not known exactly what percentage of EZH2 is actually phosphorylated at any given time. 

Although proportionally, a higher amount of EZH2 is phosphorylated in more aggressive 

cell lines, this may be a fraction of the total pool of EZH2. Additional LC MS/MS studies 

of the post-translational modifications on EZH2 across different cell lines, such as those 

performed in leukemic stem cell models (241) may help elucidate this problem. The data 

in this dissertation support that abrogating phosphorylation at this threonine significantly 

affects breast cancer cell migration and invasion.  

To support data observed from phosphodeficient mutants, it is common to 

generate phosphomimetic (e.g., aspartic or glutamic acids (242)) mutants. We generated 

both T367D and T367E phosphomimetic mutants to test the hypothesis that constitutive 

phosphorylation of EZH2 at this residue but were unable to detect significant phenotypic 

changes when it was used to rescue EZH2 knockdown (not shown). However, aspartic 

and glutamic acid often fail to fully recapitulate the effects of phosphorylation, particularly 

in facilitating adaptor interactions, due to differences in size, geometry, and degree of 

negative charge between phospho-groups and these amino acids (243). This is 

especially true for instances in which phosphorylation serves as a recognition signal for 

14-3-3-, FHA- (244), and SH2- (245) domain containing proteins (reviewed in (242)). 

Another recent study demonstrated that a phosphoserine, but not a phosphomimetic 

protein, can compete for binding with an adjacent lysine, which results in partial unfolding 

and promotes new protein-protein interactions (246). It is possible that EZH2 is serving 

some adapter function in the cytoplasm, in which case phosphomimetic mutants would 

fail to truly mimic phosphorylation.  
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Phosphorylation of EZH2 at T367 has been observed previously in muscle stem 

cells, where it causes recruitment of EZH2 to the Pax7 promoter to promote muscle 

differentiation and subsequent EZH2 degradation through the E3 ubiquitin ligase Praja-

1(164),(165). In this study, we observed no significant effect of phosphorylation on EZH2 

protein stability. Little is known about Praja1, especially in the setting of cancer, so future 

studies should attempt to reconcile these differences: for example, is the Praja1-mediated 

ubiquitination of EZH2 a muscle-specific phenomenon? Praja1 is MyoD induced, 

suggesting muscle specificity, but do normal breast cells show ubiquitination of EZH2 by 

Praja1, and is there deregulation of the Praja1 pathway in breast cancer?  

Our data are in agreement with a recent study showing that inhibition of EZH2 

phosphorylation at T367 resulted in increased levels of H3K27me3 as well as similarly 

negligible changes in proliferation with expression of a T367A mutant. However, the 

authors observed increased migration and invasion with expression of the T367A mutant 

in MDA-MB-231 and benign MCF12A cells(192). The discordant functional findings might 

be explained by the approach used as well as the cellular context; the authors 

overexpressed wild-type or T367A EZH2 in MDA-MB-231 cells, which express high 

endogenous levels of EZH2, while we employed a knockdown-rescue approach. The 

association and mechanistic link in our study between p38-mediated phosphorylation of 

EZH2 at T367, cytoplasmic localization, and breast cancer progression was validated in 

vitro, in vivo, and in human breast cancer samples. Nevertheless, this warrants future 

studies that employ mutagenesis of endogenous EZH2 (e.g., as in (247, 248)).  
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5-3 Remaining questions and future directions 

 Across all normal tissues stained with our novel pEZH2(T367) antibody, we 

observed predominantly nuclear staining. For our mechanistic studies, we focused on the 

cytoplasmic function of pEZH2 because we found that it was associated with tumor grade, 

ER- status (a marker of more aggressive disease), PR- status, and TNBC status. 

However, there is still a possibility that pEZH2(T367) in the nucleus contributes to EZH2 

function. We observed a near absence of pEZH2(T367) in chromatin bound fractions of 

breast cancer cells in comparison to all EZH2 and an enrichment in soluble nuclear and 

cytoplasmic fraction. In short what is pEZH2(T367) doing in the nucleus, and do ChIP 

studies support the idea that phosphorylation alters EZH2 localization?  

 One immediate mechanistic question that remains from our work is whether 

phosphorylation promotes increased migration and invasion in a mechanism independent 

of the translocation of EZH2? Put another way, does EZH2 need to be phosphorylated 

once it is in the cytoplasm, or is merely the translocation sufficient? Assays similar to 

those used in Fig 3.5 with a double ΔNLS-T367A mutant would answer this question.  

Along similar lines, is the methyltransferase activity required for the cytoplasmic 

functions of EZH2? The H689 amino acid is required for the methyltransferase of EZH2 

(249). Knockdown rescue studies using a genetic approach with a double EZH2 non-

phosphorylatable catalytically dead T367A-H689A mutant may answer this question and 

could be supported by pharmacological inhibition studies with GSK343 (250). 

Furthermore, does pEZH2(T367) retain its methyltransferase activity? Comparison of 

immunoprecipitated WT-EZH2 and T367A-EZH2 in a methyltransferase assay may assist 

in answering this question.  
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Finally, is all of PRC2 sequestered into the cytoplasm in a T367-phosphorylation 

dependent manner? We were unable to detect vinculin colocalization with PRC2 

members EED and SUZ12 (4.2e), but did observe a number of cytosolic interactions 

between pEZH2 and SUZ2/EED. Others have also reported the existence of cytosolic 

PRC2 complexes (216). Comparing the subcellular localization of PRC2 components by 

fractionation or immunofluorescence in cells expressing WT-EZH2 and T367A-EZH2 

would clarify this question. These mechanistic questions are important for delineating how 

exactly EZH2 functions in triple-negative breast cancer. 

 

5-4 Additional EZH2 binding partners 

The data presented from our proteomic studies in chapter 4 opens the door for 

many future studies. As mentioned above, our studies revealed a phosphorylation-

dependent enrichment in F-actin and cytoplasmic proteins. We chose to pursue vinculin 

for validation given its known role in mediating breast cancer cell adhesion and migration. 

However, it is highly unlikely that the phenotypic differences we observe between WT-

EZH2- and T367A-EZH2-expressing cells are solely due to this protein-protein 

interaction. Rather, EZH2 likely interacts with a number of extranuclear proteins to effect 

this change.  

For example, also in the list of differential interactors is nesprin-2 (SYNE2). Nesprin 

2 is a member of the Linker of the Nucleoskeleton and Cytoskeleton (LINC) complex and 

contributes to tethering the nuclear envelope to the cytoskeleton. Nesprin was recently 

demonstrated to interact with the F-actin bundling protein Fascin through F-actin. 

Disrupting this interaction abrogates F-actin binding to the nuclear envelope and 
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abrogates cell movement through confined spaces (251). Knockdown of Nesprin 2 in 

A375 melanoma cells alters the adhesive properties of invadopodia (252). Matsumota et 

al found loss of the LINC complex, including Nesprin 2 in a cohort of breast tissues 

compared to surrounding normal tissues (253). These observations make nesprin-2 a 

promising potential interactor. 

Another target worth pursuing is MYO18A. MYO18A is an unconventional mysosin 

characterized by its N-terminal PDZ domain (254) that may regulate its interactors (255). 

Proteomic and loss-of-function experiments have revealed a diverse set of functions of 

MYO18A, including actin treadmilling and golgi function (256). In myoblasts, MYO18A is 

required for cell adhesion to extracellular-matrix and F-actin organization (255). Higher 

expression of MYO18A correlates with prostate cancer invasiveness, and its genetic 

inhibition using RNA interference significantly decreases directional persistence (257). In 

a quantitative proteomics screen using SILAC affinity purification mass-spectrometry in 

mouse embryonic stem cells, MYO18A was identified as a novel interactor of EZH2 in a 

proteomics screen (258), and MYO18A was also observed as an overlapping interactor 

of EZH2 in our proteomic studies. It is tempting to speculate that EZH2 may regulate 

MYO18A function through this interaction to promote breast cancer cell migration and 

metastasis; however, future studies will be needed to first validate this interaction and 

determine its role in breast cancer.  

Finally, a recent study used a positional screening methyltransferase assay to 

determine which amino acids surrounding H3K27 are essential for EZH2-mediated 

methylation. From this data, they performed a Scansite database search and identified 

339 potential non-histone substrates of EZH2 (184). Interestingly, 12 of these 339 
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substrates were observed in our mass-spectrometry data set. The overlapping potential 

substrates are summarized in Table 6. Of particular interest is the poly ADP ribose 

polymerase PARP1, responsible for single stranded DNA repair. As PARP inhibitors are 

used clinically (MK-4827, olaparib, veliparib), for tumors with BRCA1, BRCA2, or PALB 

mutations, investigating whether PARP is a target of EZH2 could be directly translatable 

(259, 260). Also of biological interest is EXOSC8, a member of the cellular exosome 

complex. This is a conserved complex responsible for processing, degrading, and turning 

over coding and noncoding RNA (261). The concept of PRC2 binding RNA and its 

promiscuity for doing so  (262, 263) has been the subject of several studies, although the 

function is unclear. Many have posited that the function of RNA binding PRC2 is 

recruitment to certain loci (reviewed in (264)), while others have proposed a model in 

which PRC2’s promiscuity allows it to “scan” for genes that have escaped repression 

(262, 263). Additionally, the binding appears to be size-dependent, and it appears to 

prefer short repeats of consecutive guanines (265). We observed phosphorylation-

dependent binding of exosome complex members in our mass spectrometry analysis. It 

is tempting to speculate that PRC2 may play some role in mediating RNA processing 

through the exosome, or that its promiscuity to RNA is functionally enabled by binding 

with the exosome complex and associated RNAs. Many more studies are needed to 

understand the nature of these interactions and the relevance to biology and disease.    

 

5-5 Towards targeting EZH2 in triple-negative breast cancer 

That oncogenic alterations in pathways directly involving EZH2 are frequent across 

multiple types of cancer make targeting EZH2 a tantalizing option for cancer treatment. 
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Indeed, overexpression of EZH2 is commonly observed in a number of solid tumors (87, 

90, 95, 96, 101, 102) , and activating mutations are observed in hematological 

malignancies (116, 119). Inactivation of UTX, an H3K27 demethylase responsible for 

antagonizing EZH2 canonical function is also observed in several cancer types including 

multiple myeloma, esophageal squamous cell carcinomas, renal cell carcinomas (266) 

and pancreatic cancer (114, 267). Recurrent mutations in the chromatin remodeling 

SWI/SNF complex members ARID1A, PBRM1, and SMARCA4 are also common 

(~20%(268, 269)) across multiple tumor types and render tumor cells dependent on EZH2 

catalytic and non-catalytic activity (125, 268). Taken together, these factors make EZH2 

a tantalizing target for the treatment of cancer.  

 Several potent S-adenosylmethionine (SAM)-competitive EZH2 inhibitors have 

been developed over the past five years and have reached phase I-II clinical trials for 

patients with a defined set of genetic alterations in EZH2 or in SWI/SNF complex 

members. EZH2 is overexpressed in ~55% invasive breast carcinomas, and this 

overexpression is significantly associated with the triple-negative subtype (90). Inhibition 

of EZH2 function, assessed by global levels of H3K27me3, using one of these 

compounds at low micromolar concentrations GSK126, appears to have no effect on cell 

proliferation of three triple-negative breast cancer cell lines, despite de-repression of at 

least two canonical EZH2 targets, CDKN1A and CDKN1C, and may even promote 

invasion of breast cancer cells through de-repression of MMPs (270). These data are 

largely in line with unpublished observations from our lab, in which treatment of breast 

cancer cell lines with GSK126 or GSK343 (another potent and selective SAM-competitive 

EZH2 inhibitor (271)) failed to significantly decrease proliferation and showed only minor 
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effects on triple-negative breast cancer cell invasion, suggesting that inhibition of the 

methyltransferase activity of EZH2 alone is not sufficient to abrogate EZH2 oncogenic 

functions in triple-negative breast cancer cell lines. 

Interestingly, Scott et al. recently found that combined treatment of primary chronic 

myeloid leukemia cells with an EZH2 inhibitor and the tyrosine kinase inhibitor (dasatanib 

or nilotinib) significantly decreased leukemic stem cells compared to either treatment 

alone (272). p38 inhibitors have been widely explored in clinical trials for rheumatoid 

arthritis, chronic obstructive pulmonary disease, and cardiovascular disease (273). In our 

proposed model (Fig 4.3f), phosphorylation of EZH2 at T367 promotes its cytoplasmic 

localization, and conversely, inhibition of phosphorylation promotes nuclear retention and 

increased global levels of H3K27me3 (Fig. 3.1b and (192)). It will be exciting to continue 

preliminary studies which show that p38 and EZH2 inhibitors can work in concert to 

abrogate the tumorigenic properties of breast cancer cells.   
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5-6 Figures 

 

Protein 

PRC2 Methylated 

Peptide from (184) 

WT 

FC_B 

T367A 

FC_B 

 

Function 

MYCBP2 AMKQALRKSACRVFA 0.41 0.39 E3 ubiquitin ligase(274) 

STAU2 PNKKIAKKNAAEAML 0.99 0.89 mRNA degradation (275) 

SPO11 DSPKSVKKFALILKV 
1.18 0 

Double-stranded breaks in meiotic 

recombination (276) 

LYAR GTIKAVLKQAPDNEI 1.29 0.63 Cell growth regulation? (277) 

DHX9 RELLPVKKFEAEILE 0.95 0.93 ATP-dependent RNA helicase (278) 

DTX2 EPEQVIRKYTEELKV 

  
1.01 0.62 

Probable E3 ubiquitin ligase (279) 

PARP1 GQMRLSKKMVDPEKP 4.12 1.57 NAD+ ADP-ribosyltransferase 1 (280) 

APTX LESQAVIKMVQEAGR 1.18 0 RNA/DNA deadenylase (281) 

IWS1 QKKPALKKLTLLPTV 
1.27 1.19 

RNA PolII elongation complex and 

mRNA processing (282) 

WRN IIYCPSRKMTEQVTA 1.27 1.19 RecQ DNA helicase (283) 

EXOSC8 SRDICLKKFVKPIFT 
0.49 0.44 

Exosome complex member, RNA 

processing (284) 

DEF6 FYDRVSKKEAKPQIC 
3.29 1.33 

Guanine exchange factor for RAC 

and CDC42 (285) 

 

Table 6. List of potential EZH2 substrates. Based on hits overlapping from (131) and 
our own mass spectrometry data set. Shown are the gene name, the lysine methylated, 
WT and T367A fold change scores, and a description of gene function.    
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