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Abstract 

This study presents a fundamental investigation of gasoline autoignition behavior 

in a compression ignition engine, which is of great importance for next generation engine 

designs that employ low temperature combustion strategies. A total of eleven full boiling 

range gasolines with different octane number and sensitivity have been tested in a 

motored engine and a constant volume combustion chamber at various pressures, 

temperatures, and oxygen concentrations. For quantification of intermediate temperature 

heat release (ITHR) which occur at a temperature range of 950-1170 K, a new method 

was applied to the engine data by examining the maximum value of the second derivative 

of heat release rate.  

First, influence of ITHR on autoignition reactivity of single-stage ignition fuels 

with varying octane sensitivity was investigated in a motored engine. Four full boiling 

range gasolines with research octane number (RON) of 92 and octane sensitivity range of 

0.5 to 11.3 were tested through sweeps of intake temperature, intake oxygen mole 

fraction, and fuel loading. This study provided a new understanding of ITHR behavior 

depending on octane sensitivity and its effects on autoignition reactivity of single-stage 

ignition fuels under various engine operating conditions. Combustion phasing 



xiv 

comparisons of the test fuels showed that the S0.5, which is the lowest octane sensitivity 

fuel, became relatively more reactive as the intake temperature and the simulated exhaust 

gas recirculation (EGR) ratio decreased compared to the fuels with higher octane 

sensitivity. When low temperature heat release (LTHR) was not active, the amount of 

ITHR increased in the range of 2% to 7% of total heat release as the intake temperature 

and the intake oxygen mole fraction increased. These ITHR trends, depending on octane 

sensitivity, were almost identical with the trends of combustion phasing, showing that 

ITHR significantly affects fuel autoignition reactivity and determines octane sensitivity. 

In addition, the strong dependence of ITHR on equivalence ratio enhanced the ϕ-

sensitivity. For the similar combustion phasing, the S11.3 and the S8.7 which were the 

higher octane sensitivity fuels exhibited faster rise rates of ITHR intensity than the S0.5 

and the S4.8 respectively, leading to more advanced hot-ignition phasing with increasing 

equivalence ratio. 

For two-stage ignition fuels, effects of RON, intake pressure, and intake oxygen 

mole fraction on low and intermediate temperature heat release were explored in the 

same motored engine. Three high reactivity gasoline-like fuels with RON range of 60 to 

80 were investigated through compression ratio sweeps to characterize low and 

intermediate temperature oxidation behavior under various engine operating conditions. 

This study provided a new understanding of the correlation between LTHR and ITHR as 

well as the individual effects of pressure and oxygen mole fraction on ITHR. The engine 

experimental results showed that LTHR significantly enhanced ITHR, eventually 

advancing the autoignition timing. As the intake oxygen mole fraction decreased from 

0.21 to 0.14, the LTHR and the ITHR of RON 60 were suppressed by 30% and 38%, 
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respectively. The intake boosting from atmospheric pressure to 1.4 bar absolute increased 

the LTHR by 49% even at a constant fuel loading. For all the test fuels, the average ITHR 

per crank angle also increased with the intake pressure, showing concise and strong 

intermediate temperature reaction. However, the magnitude of ITHR for the lower RON 

fuel, which exhibited a great amount of ITHR, became saturated as the intake pressure 

increased. 

Effects of physical properties and chemical composition on autoignition behavior 

were also investigated in the motored engine and a constant volume combustion chamber. 

This study provided a fundamental investigation of autoignition behavior and physical 

and chemical ignition delay of FACE (fuels for advanced combustion engines) A, C, I, 

and J gasolines and three naphtha blends with RON range of 60 to 80 through sweeps of 

pressure, temperature, and oxygen concentration. With regard to physical property effects, 

higher aromatic content led to lower volatility and higher density, resulting in a slower 

liquid fuel evaporation process. The physical ignition delay was very sensitive to the 

ambient air temperature whereas the oxygen dilution rarely affected the physical ignition 

delay. With regard to chemical property effects at the same RON, the higher aromatic 

content fuels, the FACE J and RON 70 fuels, were more resistant to autoignition at 

boosted pressure and less sensitive to the oxygen dilution whereas the alkane-rich fuel, 

FACE I gasolines, was less sensitive to the temperature due to pronounced negative 

temperature coefficient (NTC) behavior. For the same RON and octane sensitivity, the 

fuel with higher amount of n-alkane, the FACE C gasoline, was less sensitive to the 

oxygen dilution than the FACE A gasoline. Both the FACE A and C gasolines showed 

similar ignition behavior during the ambient temperature sweep, but the gas-phase 
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ignition of FACE A gasoline was more delayed than the FACE C gasoline as the ambient 

oxygen concentration decreased due to more reduced LTHR intensity. 
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          Chapter 1  

 

 

Introduction 

Internal combustion (IC) engines operating on petroleum-derived liquid fuels 

consume about 120 quadrillion Btu, which corresponds to 25% of the total global energy 

and these numbers are expected to increases especially in non-OECD countries [1, 2]. 

These IC engines produce around 23% and 14% of the world’s carbon dioxide (CO2) and 

greenhouse gas (GHG) emissions, respectively [2-4]. Thus, increasing fuel conversion 

efficiency and reducing emissions have been the primary goal of engine manufacturers 

and researchers for a number of years.  

Also in recent years, there have been demands to replace vehicle IC engines with 

electric motors to reduce fuel consumption and vehicle GHG emissions. Many 

governments have announced the policy to ban vehicles powered by IC engines in the 

near future. It is also not clear whether they will forbid all IC engines or only ban IC 

engines without any electrical assistance, but this has led some people to believe that IC 

engines will be disappearing quickly [5].  

Kalghatgi proposed several reasons why fully electric vehicles cannot replace IC 

engine vehicles in the near future [6]. First, battery electric vehicles (BEV) are not zero 
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emission vehicles. Electricity is currently generated from mostly non-renewable energy 

sources because solar is not available at night and wind and hydro power cannot change 

their output at will. Coal, which releases significant amounts of CO2, sulfur dioxide (SO2), 

nitrogen oxide (NOx), and particulate matter (PM), continues to be a major energy source 

especially in developing countries. Second, mining of metals needed for batteries causes 

serious environmental/human toxicity problems. Third, large investments in charging 

infrastructure, extra electricity generation, and grid management will be required for 

rapid growth in the number of BEVs. In addition, recycling large and heavy batteries, 

slow charging speed, and limited payload of heavy-duty vehicles will further hinder the 

deployment of BEVs. For these reasons, combustion engine vehicles will be the dominant 

transportation power source until these barriers are overcome. Many credible projections 

suggest that IC engines powered by petroleum will remain in most vehicles in 2050 as 

shown in Figure 1-1  [1, 2, 7, 8]. 

 

 
 

Figure 1-1 Transportation energy consumption projection [1] 
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Therefore, IC engines need to further improve with regard to combustion, after-

treatment and control systems. Gasoline compression ignition (GCI) is a very promising 

and feasible concept to reduce fuel consumption and GHG and harmful emissions [9]. 

Compared to a diesel engine, a GCI engine produces lower PM and NOx emissions 

because the longer ignition delay of gasoline increases the portion of low temperature 

premixed combustion. Furthermore, well-to-wheels (WTW) GHG emissions from low 

octane fuel in a GCI engine are 22% and 9% lower than those of today’s typical gasoline 

(spark ignition) and diesel (compression ignition) engines, respectively [10]. In addition, 

GCI engines require lower fuel injection pressure and a simpler after-treatment system 

than modern diesel engines. Despite of all these advantages, it is still challenging to bring 

GCI combustion to practical engine applications for several technical reasons, such as 

ignition and combustion phasing controls at cold start and transient conditions and 

excessive pressure rise rate at high load conditions. Thus, the goal of this work is to 

expand the fundamental understanding of autoignition and combustion behavior of 

gasolines with a range of reactivity to overcome the difficulties presented by using 

gasoline fuels in compression ignition engines. The following describes the structure and 

content of the dissertation.  

Chapter 2 presents the experimental setup and the data analysis methods for a 

motored engine and a constant volume combustion chamber. A novel method for 

quantification of intermediate temperature heat release (ITHR) is described. In Chapter 3, 

the effects of intake temperature and oxygen mole fraction on ITHR were investigated 

using the motored engine under the conditions at which low temperature reactivity was 

not active. In addition, the dependence of ITHR behavior on octane sensitivity and its 
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influence on autoignition reactivity were explored. Lastly, the origin of equivalence (ϕ) 

sensitivity and its variation depending on octane sensitivity were identified. The first two 

parts of this chapter were accepted for presentation at the 38th International Symposium 

on Combustion, under the title of “Influence of Intermediate Temperature Heat Release 

on Autoignition Reactivity of Single-stage Ignition Fuels with Varying Octane 

Sensitivity”. In Chapter 4, the correlations between LTHR and ITHR were explored 

through quantification of pre-ignition heat release for two-stage ignition fuels. Effects of 

intake pressure and oxygen mole fraction on LTHR and ITHR were investigated in the 

motored engine. Finally, in Chapter 5, the effects of fuel physical and chemical properties 

on autoignition behavior were studied in the motored engine and the constant volume 

spray combustion chamber. Liquid fuel jet evaporation as well as gas-phasing ignition of 

gasolines with varying RON and octane sensitivity were investigated. 
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          Chapter 2  

 

 

Experimental 

2.1 Cooperative Fuel Research (CFR) Motored Engine 

2.1.1 Motored Engine Setup 

A cooperative fuel research (CFR) octane rating engine used in this study was 

originally modified for homogenous charge compression ignition (HCCI) combustion by 

Szybist et al. [11], and several alterations have been made by previous researchers to 

improve repeatability of experimental results and expand operable conditions [12-16]. 

Recent modification for a simulated exhaust gas recirculation (EGR) system has been 

made by the author to explore ignition and combustion characteristics at various intake 

oxygen mole fractions. Figure 2-1 shows the modified CFR engine setup schematically.  

The engine was motored at constant speed of 600 or 900 rpm throughout this 

study. The compression ratio (CR) of engine can be adjusted from 4.0 to 15.7. Its original 

carbureted fueling system was replaced with a gasoline direct injection (GDI) fuel 

injector located far upstream of the intake valve to provide a premixed fuel-air mixture to 

the engine cylinder. The fuel pressure was maintained at 700 psi using an inert gas, 
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helium for this study. The intake system can deliver dry air up to 3 bar absolute pressure 

using building compressed air and multiple moisture, oil, and particle filters. The intake 

air and fuel flow rates were measured using a Delphi hot-wire mass airflow (MAF) 

sensor and a Max model 213 piston flow meter, respectively. To supply dry complete 

stoichiometric products (CSP) to the intake charge for the simulated exhaust gas 

recirculation (EGR), Brooks mass flow controllers (MFC) for nitrogen (N2) and carbon 

dioxide (CO2) were installed. For massive amount of CSP up to EGR ratio of 55% at 

boosted conditions, a 230 L ultra-high purity (UHP) grade liquid N2 bottle and multiple 

highly pressurized gaseous N2 and CO2 bottles were attached to the intake system. A 

series of electric heaters followed by tape heaters can increase the charge temperature up 

to 280ºC under naturally aspirated as well as boosted conditions. To measure in-cylinder 

pressure data, a Kistler 6052B piezoelectric pressure transducer was installed in place of 

the standard knock meter on the octane rating engine. The signal from the transducer was 

amplified using a Kistler 5010 dual mode amplifier. This in-cylinder pressure data were 

recorded at a resolution of 0.1ºCA in conjunction with an Accu-Coder angular encoder. 

Cylinder wall temperature was obtained using a MEDTHERM coaxial thermocouple 

incorporated in place of the spark plug on the side wall of combustion chamber. For the 

steady state operation, water jacket temperatures for the engine cylinder and the GDI 

injector were maintained at 90±1ºC using 8 L, 1000 W and 6 L, 1100 W refrigerated/ 

heated coolant circulators with a series of radiators, respectively. Gaseous emissions were 

measured using California analytic instruments (CAI) analyzers including non-dispersive 

infrared (NDIR) analyzers for carbon monoxide (CO) and CO2, and paramagnetic 

analyzer for oxygen (O2). For measurement of unburned hydrocarbon such as 
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formaldehyde and acetaldehyde, AVL SESAM i60 FT, a Fourier transform infrared 

(FTIR) multi-component system, was used. The detail CFR engine specifications are 

presented in Table 2-1. All measurement error bars in this study indicate 95% 

confidential interval.  

 

 
 

 

Figure 2-1 Schematic of CFR engine setup 
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Table 2-1 CFR engine specification 

Parameter Value   

Number of cylinders 1 

Engine speed (rpm) 600, 900 

Bore (cm) 8.26 

Stroke (cm) 11.43 

Connecting rod (cm) 25.4 

Displacement volume (cm3) 611.7 

Compression ratio 4.0 – 15.7 

Number of overhead valves 2 

Intake valve open (ºCA aTDC) 28 

Intake valve close (ºCA aBDC) 14 

Exhaust valve open (ºCA bBDC) 27 

Exhaust valve close (ºCA aTDC) 0 
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2.1.2 In-cylinder Pressure Data Analysis 

In-cylinder pressure data were measured at a resolution of 0.1ºCA using the 

piezoelectric pressure transducer as mentioned above. A custom LabVIEW based data 

acquisition program was used to acquire these pressure data for 70 consecutive cycles. 

Using these data, an ensemble-averaged pressure trace was computed, which is then 

smoothed using appropriate band-pass filters to remove only the high-frequency noise 

without altering its basic features. Apparent heat release rate (AHRR) without 

considering heat exchange to cylinder walls was calculated from the pressure trace using 

a zero-dimensional single-zone model as described by Heywood [17].  

 

 𝑑𝑄𝑛𝑒𝑡

𝑑𝑡
=

𝑑𝑄𝑐ℎ

𝑑𝑡
−

𝑑𝑄ℎ𝑡

𝑑𝑡
= 𝑝

𝑑𝑉

𝑑𝑡
+

𝑑𝑈

𝑑𝑡
 

(2.1) 

   

 

Changes in specific heat ratio with temperature and intake composition were also 

considered to calculate the AHRR using polynomial functions fitted from JANAF table 

thermodynamic data [17, 18]. The instantaneous bulk cylinder temperatures were 

computed using the ideal gas law in combination with the measured pressure. It is also 

note that residual gas significantly affects composition of the in-cylinder charge 

especially at low CRs. In this study, the residual gas fraction was estimated using a 

method proposed by Fox et al. [19]. The detail procedure of the in-cylinder combustion 

analysis is discussed in previous work conducted by Zhang [20]. 

The AHRR does not always precisely estimate the actual heat release rate (HRR) 

because of the heat loss to the walls. This is particularly important to quantify low 
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temperature heat release (LTHR) and intermediate temperature heat release (ITHR) 

which are small relative to high temperature heat release (HTHR). To obtain a better 

estimate of the start and end points of LTHR and ITHR, the HRR was computed using an 

ACE-HRA in-house code [21, 22] with a modified Woschni heat transfer model [23].  

 

2.1.3 Quantification of LTHR and ITHR  

In this study, start of combustion (SOC) was defined as when the HRR had 

reached 0.2 J/ºCA [24] to find the point where LTHR for two-stage combustion and 

ITHR for single-stage combustion started to increase, without the influence of noise. For 

two-stage combustion, end point of LTHR was set as the crank angle where the minimum 

value of the HRR between the peak of first stage combustion and the peak of second 

stage combustion.  

For quantification of ITHR, the hot-ignition point where HTHR reactions start 

should be precisely determined because the variation of HRR near this point is 

considerable. The crank angle corresponding to 10% of the total cumulative heat release 

(CA10) has been widely used as a measure of the ignition timing for qualitative analysis 

of ITHR [25-32]. However, CA10 does not truly represent the hot-ignition point because 

the ITHR percentage of total heat release varies with fuel blends and engine operating 

conditions [33]. Yang et al. suggested that ITHR ends at several CA degrees (3~5º) 

before CA10 [34, 35]. Mehl et al. proposed a temperature range for ITHR of 850 K to 

1000 K where low temperature reactions are no longer dominant [36]. However, the 

exact starting and ending temperatures for ITHR could not be estimated across different 
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fuel types and engine operating conditions [33, 37]. Vuilleumier et al. used a first-order 

derivative of the scaled HRR and an upper limit value of 0.004 (1/deg2) to find the end of 

ITHR [33]. 

For more accurate quantification of the amount of heat released during the ITHR 

period, this study provides a new method to determine the hot-ignition point using the 

maximum value of the second derivative of HRR with respect to the crank angle. The 

maximum value of the second derivative of HRR coincides with the maximum curvature 

of HRR which indicates the point where the HRR changes the most. This method has 

been used to estimate the point where SI combustion converts to HCCI combustion in a 

spark assisted compression ignition (SACI) engine [38]. Katrašnik et al. also proposed 

this method to determine the SOC in diesel engines [39]. Following the idea presented 

above, the hot-ignition point where HTHR reactions start can be defined as Equation 

(2.2). 

 

 
𝜃𝐻𝑇𝐻𝑅 𝑆𝑡𝑎𝑟𝑡 = max (

𝑑3𝑄

𝑑𝜃3
) 

(2.2) 

   

 

Figure 2-2 shows examples of how this method can be applied in the cases of 

single- and two-stage ignition. The second derivative HRR method can precisely find the 

ITHR/HTHR boundary where in-cylinder gas temperature suddenly increases, indicating 

the hot-ignition. Once the starting and ending points of each heat release are established, 

the HRR is integrated between these two points to quantify the amount of heat released 

during each hear release period.    
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(a) Single-stage ignition 

 

 
(b) Two-stage ignition 

 

Figure 2-2 Example of SOC, LTHR/ITHR and ITHR/HTHR boundaries. 
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2.1.4 Critical Compression Ratio Criterion and Repeatability 

The modified CFR engine is able to control the maximum pressure and 

temperature within the combustion chamber dynamically through a CR sweep without 

altering intake conditions. The CR starts at its lowest value of 4.0, where no or less 

reaction is expected. Then, the CR is increased in steps until autoignition occurs or the 

highest CR is reached. The amounts of CO and CO2 are monitored during the CR sweep. 

For two-stage ignition, the CO emissions start to increase with low temperature oxidation 

and exponentially increase with main combustion event. Critical compression ratio (CCR) 

is defined at the CR where CO emissions start to decline from its maximum value, 

indicating the point where autoignition occurs, as presented in Figure 2-3. At this CCR, 

the CO2 emissions simultaneously increase, meaning that more fuel molecules are 

completely oxidized. The higher CCR means more resistance of the fuel to autoignite, 

indicating lower reactivity compared to a fuel with lower CCR. This concept of CCR has 

been widely used by previous researchers to evaluate fuel autoignition reactivity [11, 14, 

15, 40-53] .   

Repeatability of the modified CFR engine was measured in terms of the CCR. 

Figure 2-4 shows the linear regression fit of two trials at each test condition which was 

randomly selected from overall test matrix. The regression result shows a very good fit. 

The maximum repeatability error and its standard deviation were 0.2 and 0.14 among 53 

cases, respectively. The averaged repeatability error was only 0.04 which was lower than 

minimum CR increment in this study, indicating strong repeatability and reliability of the 

engine.   
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Figure 2-3 Critical compression ratio criterion 

 

 
Figure 2-4 Repeatability of critical compression ratio 
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2.2 Cetane Ignition Delay (CID) 510 unit 

2.2.1 Constant volume combustion chamber  

The Cetane Ignition Delay (CID) 510 instrument manufactured by PAC L.P. is 

commercially available for measuring derived cetane number (DCN) of liquid fuels [54]. 

The CID unit equipped with a Bosch light-duty diesel injection can deliver the liquid fuel 

from 300 bar to 1500 bar in order to mimic a modern high-pressure common rail system. 

The entire system is controlled by an internal computer that has the capability to easily 

change operating conditions including chamber pressure, chamber temperature, fuel 

injection pressure, and fuel injection duration.  

The constant volume combustion chamber within the CID unit was modified by 

Mayo et al. [55, 56] to provide optical access to the spray during fuel injection and 

ignition. Three ports were attached to the bottom of the combustion chamber for a high-

speed camera system for physical spray characterization and a photomultiplier tube (PMT) 

system for chemiluminescence detection of excited chemical intermediate species. In this 

study, only the PMT system was utilized. For O2 dilution, a gas mixer system developed 

by Polycontrols was installed to supply air with simulated EGR to the constant volume 

combustion chamber. The dry CSP for the simulated EGR was calculated using a method 

derived by Müller [57]. The detail modification of the constant volume combustion 

chamber can be found in previous work conducted by Mayo [55]. 
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2.2.2 Chemiluminescence detection system (CDS) 

A custom chemiluminescence detection system (CDS) was constructed by Mayo 

et al. [55, 56] to measure the physical and chemical ignition delay times through excited 

state chemical intermediates. An air-cooled, UV/Vis optical probe equipped with a 90º 

wide-angle, quartz observation lens was installed at the bottom of the combustion 

chamber. The photons emitted from excited state chemical intermediates pass through the 

optical probe and fiber to a collimating lens at the CDS as shown in Figure 2-5. The 

collimating lens aligns the light rays in parallel order, leading to homogenous beam of 

light. This light beam is segregated by two dichroic mirrors according to their cut-off 

wavelengths of 340 and 460 nm. The three resulting channels of light are individually 

filtered by wavelength of 307±5 nm, 430±5 nm, and 515±5 nm at each band-pass filter. 

The wavelengths of 307 nm, 430 nm, and 515 nm represent OH*, CH*, and C2* photon 

emissions, respectively [58-60]. Excited formaldehyde (CH2O*) chemiluminescence, 

which is characterized by a broadband emission spectrum, overlaps with the emission 

spectra of CH*, and C2* which is high temperature radical species. Among these species, 

however, only formaldehyde is observed during low temperature oxidation [61, 62]. Each 

PMT module generates an amplified voltage (0-5 V) once the corresponding photons are 

present. A National Instrument high-speed data acquisition (DAQ) system simultaneously 

collect 40,000 to 100,000 samples at a rate of 1 MHz from each of the PMT signal 

channels.  
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Figure 2-5 Schematic of light pathway in chemiluminescence detection system [55] 

 

2.2.3 Ignition delay measurement from PMT data 

The time value at the end of the physical and total ignition delay periods are 

measured through the PMT voltage signals captured by the CDS. An example of PMT 

data, AHRR, and bulk gas temperature during FACE I gasoline ignition under Tc = 600ºC, 

Pc = 20 bar, and XO2 = 0.202 is shown in Figure 2-6. The physical ignition delay (τphy) is 

defined as the onset of low temperature combustion chemistry, where the excited 

formaldehyde chemiluminescence is first observed from the 430±5 nm PMT signal. The 

end of total ignition delay period (τtot) occurs when first significant OH* 

chemiluminescence is measured from the 307±5 nm PMT signal. A 2 kHz low-pass filter 

is applied to smooth the PMT signal for accurate calculation of ignition delay times. 

Figure 2-6 shows that the ignition delay times for low temperature combustion and main 

combustion events are precisely captured form the PMT data. The chemical ignition 
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delay time is calculated as the difference between the total and physical ignition delay 

times. 

 

 
 

Figure 2-6 Example of physical, chemical, total ignition delay measurement. 

 

2.2.3 Chamber Pressure Data Analysis  

The pressure trace collected from a pressure transducer on the bottom of the 

chamber is smoothed using a 2.5 kHz low-pass filter to remove high frequency 

fluctuations created by large pressure-rise rates. As with the motored CFR engine, AHRR 

was calculated from the smoothed chamber pressure trace in the constant volume 

chamber, as shown in Equation (2.3). 
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 𝑑𝑄𝑛𝑒𝑡

𝑑𝑡
=

1

𝛾 − 1
𝑉

𝑑𝑃

𝑑𝑡
 

(2.3) 

   

 

To consider the changes in specific heat ratio as the air mixture temperature varies, 

a correlation of specific heat ratio to temperature was applied as shown in Figure 2-7 [17]. 

The bulk temperature was calculated using the ideal gas law with constant volume of 

0.473 L, air gas constant of 0.287 kJ/kg-K, total fuel-air mass, and smoothed pressure 

data.  

 

 

 
 

Figure 2-7 Specific heat ratio as a function of temperature. 
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          Chapter 3  

 

 

Influence of Intermediate Temperature Heat Release on Autoignition 

Reactivity of Single-stage Ignition Fuels with Varying Octane 

Sensitivity  

3.1 Introduction 

Octane sensitivity, defined as the difference between research octane number 

(RON) and motor octane number (MON), is a measure of how different a fuel’s 

autoignition chemistry is compared to that of a primary reference fuel (PRF) which has 

zero sensitivity. The chemical origin of octane sensitivity has been investigated by 

several researchers. Leppard showed that lack of negative temperature coefficient (NTC) 

behavior of olefins and aromatics caused significant octane sensitivity [63]. Westbrook et 

al. also illustrated that suppressed low temperature reactivity by electron delocalization 

produced high octane sensitivity [64]. Interest in the octane sensitivity in internal 

combustion engines is increasing because of its relevance to knock resistance in spark 

ignition (SI) engines [65-69] and combustion behavior in advanced compression ignition 

(ACI) engines [70-73]. 
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Intermediate temperature heat release (ITHR) is a result of slow exothermic 

reactions which occur at an intermediate temperature range of 950-1170 K before the hot-

ignition (thermal runaway) point where high temperature heat release (HTHR) reactions 

raise the temperature rapidly [28, 74]. The chemical nature of ITHR is remarkably 

different from low temperature heat release (LTHR). The intermediate temperature 

oxidation chemistry was described in the following three reactions by Westbrook [75]. 

 

 H• + O2 + M → HO2• + M 

 
HO2• + RH → H2O2 + R• 

 
H2O2 + M → HO• + HO• 

(3.1) 

  

(3.2) 

 

(3.3) 

   

 

where RH is an alkane, R• is an alkyl radical, and M is a third body. In this regime, 

hydrogen peroxide (H2O2) keeps accumulating via (3.1) and (3.2) until increasing 

temperature from compression and exothermic reactions reaches a threshold where it is 

rapidly dissociated into two hydroxyl radicals (•OH), providing chain branching. Mehl et 

al. also observed that the major contributions to the ITHR are reactions involving the 

formation of hydroperoxyl radicals (HO2•) and H2O2 and oxidation of formaldehyde 

(CH2O) and methyl radicals (•CH3) [36]. These ITHR reactions are more enhanced when 

the LTHR is present, providing positive implications for late-cycle autoignition stability 

[27]. Dec and Yang also showed that intake boosting significantly intensified the ITHR 

using conventional gasoline whereas ethanol yielded no enhancement of the ITHR with 

increasing intake boost pressure [76]. For both single- and two-stage ignition fuels, the 

ITHR plays an important role not only in maintaining combustion stability at retarded 
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combustion phasing [27, 76] but also increasing equivalence ratio (ϕ) sensitivity which 

can enable partial fuel stratification for controlling the heat release rate (HRR) in ACI 

engines [30, 32, 34].  

The fuel stratification is the most promising strategy to create a staged 

combustion event that reduces the maximum pressure rise rate (MPRR) and to control 

combustion phasing using multiple injection strategies in ACI engines. For effective fuel 

stratification, the hot-ignition phasing has to be significantly advanced with increasing 

equivalence ratio [77]. Previous studies found that two-stage ignition fuels showed high 

ϕ-sensitivity at both naturally aspirated and boosted conditions due to their strong ITHR, 

resulting in considerably lower MPRR than a fully premixed charge [34, 35]. Pintor et al. 

showed that ϕ-sensitivity was strongest for fuels capable of exhibiting NTC behavior 

through chemical kinetic simulations [32]. In contrast, single-stage ignition fuels 

exhibited that the hot-ignition timing was relatively insensitive to the local equivalence 

ratio at naturally aspirated conditions [25, 29]. However, Dec et al. observed that 

conventional gasoline, which typically showed single-stage ignition, became highly ϕ-

sensitive with sufficient intake boost due to enhanced ITHR [30]. 

The objective of this study is to expand the understanding of the role of ITHR in 

autoignition reactivity and ϕ-sensitivity of single-stage ignition fuels with varying octane 

sensitivity through intake temperature, oxygen mole fraction, and fuel loading sweeps. 

The primary purposes are: 1) determining a precise method to quantify the ITHR, 2) 

understanding the effects of intake temperature and oxygen mole fraction on ITHR under 

the conditions at which low temperature reactivity is not active, 3) exploring how ITHR 
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varies depending on octane sensitivity and its influence on autoignition reactivity, 4) 

identifying the origin of ϕ-sensitivity and its variation depending on octane sensitivity. 

 

3.2 Fuels and Operating Conditions 

Four full boiling range gasolines with varying octane sensitivity at nearly 

identical RON were investigated, as presented in Table 3-1. In this paper, the test fuels 

are named for their octane sensitivity value (e.g., “S4.8” for a fuel with RON of 91.5 and 

octane sensitivity of 4.8). Heat of vaporization (HoV) was estimated from a detailed 

hydrocarbon analysis (DHA) using a method explained by Chupka et al. [78]. It should 

be noted that S11.3 had an increased HoV relative to the other fuels, as a result of its high 

ethanol content (11.5 vol%). 

To describe fuel anti-knock and autoignition qualities, Kalghatgi proposed an 

octane index (OI), which is a linear function of RON and the octane sensitivity; OI = 

RON – KS [79, 80]. The K-value is a constant depending on engine design and operating 

parameters such as intake pressure and temperature, mixture strength, and EGR fraction 

which all can affect in-cylinder pressure and temperature history. Figure 3-1 shows the 

OI plotted against K-value for the tested fuels. In this study, the K-value was varied from 

about -0.85 to 3.79, showing that the reactivity trend was reversed as K-value increased. 
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Table 3-1 Properties of 92 RON gasolines. 

Property S0.5 S4.8 S8.7 S11.3 

RON 91.0 91.5 92.0 93.0 

MON 90.5 86.7 83.3 81.7 

C/H/O (wt %) 84.0/16.0/0.0 85.1/14.9/0.0 87.3/12.7/0.0 82.4/13.3/4.3 

Molecular weight 106.0 98.8 87.5 82.8 

LHV (kJ/kg) 44627 44006 43634 41416 

HoV at 25ºC (kJ/kg) 313.0 339.8 369.7 435.9 

Composition 

(vol %) 

Aromatics 1.4 15.8 29.3 25.9 

Olefins 0.1 3.9 10.7 21.4 

Naphthenes 0.0 9.1 9.0 12.3 

n-Paraffins 7.1 6.5 9.9 14.2 

i-Paraffins 90.7 64.0 38.5 12.9 

Oxygenates 0.0 0.0 0.0 11.5 

 

 

 
Figure 3-1 Octane Index as a function of K-value for 92 RON gasolines. 
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Table 3-2 Test conditions for single-stage ignition fuels. 

Parameter Tint sweep EGR sweep Φ sweep 

Engine speed (rpm) 900 

Coolant temperature (ºC) 90±1 

Intake temperature (ºC) CIT to CA50 limit 120, 160 80 

Intake pressure (bar, abs) 1.4 1.4 1.4, 1.6, 1.8 

Intake oxygen mole fraction 0.21, 0.175, 0.14 COF to 0.21 0.14, 0.12 

Fuel loading (J/L/cycle) 635.3 635.3 CFL to MPRR limit 

 

A modified CFR octane rating engine was used for homogeneous charge 

compression ignition (HCCI) combustion. For each fuel, intake temperature, intake 

oxygen mole fraction, and fuel loading sweeps were conducted at a fixed compression 

ratio of 15, as listed in Table 3-2. Critical intake temperature (CIT), critical oxygen mole 

fraction (COF), and critical fuel loading (CFL) are defined at the point where carbon 

monoxide (CO) emissions starts to decline from its maximum value, indicating the point 

where autoignition occurs. The engine operation limits for crank angle at 50% heat 

release (CA50) combustion phasing and MPRR were set to 10ºCA bTDC and 15 bar/ºCA, 

respectively. Charge-mass equivalence ratio (ϕm), defined as an equivalence ratio based 

on total charge mass instead of air, is used to compare data for operating conditions with 

different fuel and EGR levels [34]. For the intake temperature and oxygen mole fraction 

sweeps, the ϕm varied between 0.20 to 0.24 in order to maintain a constant fuel energy 

input. At all the conditions for ITHR quantification, the tested fuels showed no 

appreciable low temperature reactivity because of their low n-paraffins content [63], the 

high intake temperature and the low intake oxygen mole fraction [26, 27]. 
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3.3 Results and Discussion 

3.3.1 Intake temperature effect 

Figure 3-2 shows the CA50 combustion phasing of each fuel as a function of 

intake temperature. For each intake temperature sweep at constant fuel loading, the 

combustion phasing was advanced from the CIT (the first hollow symbol) to the 

operation limit as the intake temperature was increased. The relative gross indicated 

mean effective pressure (IMEPg) instability was consistently evaluated using corrected 

standard deviation (CSD) of IMEPg [81]. The hollow symbol was replaced with the solid 

symbol when CSD of IMEPg became lower than 5%. 

At XO2 = 0.21, the lowest octane sensitivity fuel, S0.5, shows the lowest intake 

temperature for autoignition and the most advanced combustion phasing below intake 

temperature of 120ºC. As intake temperature increases, however, the CA50 of S0.5 

slowly advances and eventually becomes most retarded above intake temperature of 

160ºC, showing the weakest intake temperature sensitivity. The lower octane sensitivity 

fuel is more reactive at lower intake temperature and less reactive at higher intake 

temperature compared to the higher octane sensitivity fuel. Kalghatgi et al. observed that 

the K-value increased as the compression temperature of the charge for a given pressure 

increased [80]. The OI of higher sensitivity fuel is then more reduced and thus the 

reversed reactivity between lower and higher sensitivity fuels can be observed, as shown 

in Figure 3-1.  
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(a) XO2 = 0.21 

 
(b) XO2 = 0.175 

 
(c) XO2 = 0.14 

 

Figure 3-2 CA50 as a function of intake temperature at XO2 = 0.21, 0.175, and 0.14. 
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In moving from XO2 = 0.21 to 0.175 in Figure 3-2, the CIT of lower octane 

sensitivity fuel increases more than that of higher octane sensitivity fuel (S0.5: 50ºC, S4.8: 

25ºC, S8.7: 25ºC, S11.3: 15ºC), meaning that autoignition reactivity difference between 

each fuel is diminished. Risberg et al. showed that the K-value slightly increased with 

cooled external EGR [82]. At our test condition, the K-value approaches from negative to 

zero due to the simulated EGR and this K-value further increases to positive with the 

intake temperature. At XO2 = 0.175, the intake temperature sensitivity of S0.5 becomes 

much stronger than that at XO2 = 0.21, but it is still weaker than that of higher octane 

sensitivity fuels. 

The trends of reactivity variation from XO2 = 0.21 to 0.175 are even steeper for 

XO2 = 0.14, with the greater CIT and higher intake temperature sensitivity of S0.5. At this 

condition, S0.5 requires the highest CIT for autoignition and the highest intake 

temperature to maintain the same CA50 as the higher octane sensitivity fuels. The K-

value is positive throughout the intake temperature sweep at XO2 = 0.14. 

For all the intake oxygen mole fractions, it is observed that CA50 of S11.3 which 

contains 11.5% ethanol does not correspond well to its OI. It shows much higher 

reactivity than other 92 RON fuels even at negative K-value. Liu et al. concluded that OI 

was not applicable for oxygenated fuels in HCCI combustion [83]. In addition, the 

evaporative charge cooling effect which can affect octane number determination was 

excluded in this study because the intake mixture temperature was controlled instead of 

the intake air temperature, which is set to 52ºC upstream of the carburetor in the RON 

test. Only the chemical octane effect contributed to the fuel reactivity, leading to more 
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advanced combustion phasing of S11.3 because it has the highest HoV, as indicated in 

Table 3-1. 

 

  
   (a) XO2 = 0.21          (b) XO2 = 0.14 

 

Figure 3-3 Cumulative ITHR as a function of intake temperature at XO2 = 0.21 and 0.14. 

 

To better understand the sources of these phenomenon at which LTHR is not 

shown, ITHR was quantified only for the cases where the CSD of IMEPg is lower than 

5%. Figure 3-3 presents the correlation between ITHR and intake temperature via a linear 

regression for each fuel. While maintaining constant intake oxygen mole fraction and fuel 

loading, the figure shows that increasing intake temperature enhances the amount of 

ITHR in the range of 2% to 7% of total heat release. This ITHR trend with intake 

temperature is not matched with that of LTHR, which is another pre-ignition exothermic 

reaction sequence. The amount of LTHR decreases as intake temperature increases since 

the in-cylinder pressure in the window of 760 K to 880 K, where LTHR is most active, is 

lower at higher intake temperature compared to that at lower intake temperature [27].  
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(a) HRR, Pcyl, Tcyl 

 

   
 (b) Shifted HRR 

 

Figure 3-4 Heat release rate, and in-cylinder pressure and temperature as a function of 

crank angle for S0.5 at Tint = 125 and 140ºC at XO2 = 0.21. 

 

Figure 3-4 (a) shows the HRR, and in-cylinder pressure and temperature in the 

ITHR range for S0.5 at Tint = 125ºC and 140ºC. These HRR traces have been offset to 

align the hot-ignition point and are illustrated in Figure 3-4 (b). The increasing intake 

temperature advances the onset of ITHR, and then lower in-cylinder pressure and larger 

in-cylinder volume during the ITHR period can reduce molar concentration of the 
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reactants from (3.1) and (3.2). However, the exothermic reactions at higher intake 

temperature grow more rapidly due to the increased rate constant resulting from higher 

in-cylinder temperature, as shown in Figure 3-4. In addition, the hot-ignition requires 

much higher in-cylinder temperature to initiate HTHR at lower in-cylinder pressure. Thus, 

the ITHR duration is also extended as intake temperature rises for high octane sensitivity 

fuels, as demonstrated in Figure 3-5. These factors can contribute to increasing the total 

heat released during the ITHR period as intake temperature rises. More H2O2 

accumulated from the exothermic reactions (3.1) and (3.2) produces more chain-

branching OH radicals through (3.3) near the hot-ignition temperature, leading to faster 

consumption of fuel. This shows that ITHR can significantly affect combustion phasing 

as well as the onset of HTHR. 

 

 

 
   (a) XO2 = 0.21          (b) XO2 = 0.14 

 

Figure 3-5 ITHR duration as a function of intake temperature at XO2 = 0.21 and 0.14. 
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The observed increase of ITHR with intake temperature stands in contrast to 

previous experimental and numerical results which showed reduced ITHR with 

increasing intake temperature while adjusting the amount of EGR to hold the ignition 

timing constant [36, 76]. The different outcome is mainly due to the EGR addition with 

increasing intake temperature to maintain the combustion phasing. The effect of EGR on 

ITHR is discussed in the next section. 

Figure 3-3 (a) also shows that there are distinct differences in how ITHR varies 

with octane sensitivity. As intake temperature increases, the ITHR of higher octane 

sensitivity fuel more steeply increases compared to that of lower octane sensitivity fuel. 

The possible reason is that olefins, alkylbenzenes, and alcohols contain weak C-H bonds 

resulting from electron delocalization due to the effects of the C=C double bond and O-H 

group [64], leading to more H atom abstractions which facilitates the reactions (3.1) and 

(3.2) [84], even though lower octane sensitivity fuel is composed of more H atoms per 

unit fuel energy. This result directly explains the difference in reactivity variation with 

octane sensitivity observed in Figure 3-2. The greater increase of ITHR with intake 

temperature causes more advanced combustion phasing. The same behavior also can be 

seen in Figure 3-3 (b) for XO2 = 0.14. An increased ITHR slope of S0.5 leads to 

substantial CA50 advancement while there is no notable change in the slope of S11.3. 

The ITHR slope nearly coincides with the intake temperature sensitivity to combustion 

phasing. Thus, it appears that the autoignition reactivity variation depending on octane 

sensitivity of a single-stage fuel is mainly attributed to changing ITHR behavior. This 

observation is also confirmed in Figure 3-6, which shows that the ITHR phasing variation 

matches well with the change in CA50. These results clearly show that octane sensitivity 
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is determined not only by the low temperature reactivity but also the intermediate 

temperature reactivity. 

 

   
   (a) XO2 = 0.21          (b) XO2 = 0.14 

 

Figure 3-6 Start and end of ITHR as a function of intake temperature at XO2 = 0.21 and 

0.14. 

 

3.3.2 EGR effect 

The intake temperature sweep for different octane sensitivity fuels shows a 

significant variation in relative reactivity depending on intake oxygen mole fraction. To 

gain a deeper insight into the phenomena that leads to the octane sensitivity-specific 

difference in combustion phasing and ITHR, a simulated EGR sweep was performed at 

constant intake temperature, as shown in Figure 3-7 and Figure 3-8. As with Figure 3-2, 

the solid symbol was replaced with the hollow symbol when CSD of IMEPg became 

higher than 5%. In moving from Tint = 120ºC to 160ºC in Figure 3-7, the CA50 of higher 

octane sensitivity fuels is more advanced than that of S0.5 in the same manner as 

observed for the intake temperature sweep. At both temperature conditions, lower octane 
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sensitivity fuel shows a greater dependence of combustion behavior on the simulated 

EGR than higher octane sensitivity fuel. Sjöberg et al. also compared CA10 of iso-octane 

with S7.4 gasoline (90.8 RON) at various intake oxygen mole fraction conditions. A 

similar high dependence of autoignition timing on simulated and real EGR addition for 

the zero octane sensitivity iso-octane was observed even though these two fuels had 

different RON [26].  

 

 
 (a) Tint = 120ºC       (b) Tint = 160ºC 

 

Figure 3-7 CA50 as a function of intake oxygen mole fraction at Tint = 120 and 160ºC. 

 

 
Figure 3-8 Cumulative ITHR as a function of intake oxygen mole fraction at Tint = 160ºC 
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(a) HRR, Pcyl, Tcyl 

 

 
(b) Shifted HRR 

 

Figure 3-9 Heat release rate, and in-cylinder pressure and temperature as a function of 

crank angle for S0.5 at XO2 = 0.21 and 0.20 at Tint = 160ºC. 

 

Figure 3-9 shows the HRR and its shifted HRR, and in-cylinder pressure and 

temperature during the ITHR period for S0.5 at XO2 = 0.21 and 0.20. The addition of CO2 

decreases the compressed gas temperature, retarding the onset of ITHR. Although the 

intermediate temperature reaction for XO2 = 0.20 mainly occurs at higher in-cylinder 

pressure compared to XO2 = 0.21, a lower oxygen molar concentration and a lower in-
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cylinder temperature inhibit the intermediate temperature reaction. Furthermore, as can 

be seen in Figure 3-10, the hot-ignition at lower in-cylinder temperature shortens the 

ITHR duration as simulated EGR increases, eventually suppressing ITHR.  

 

 
 

Figure 3-10 ITHR duration as a function of intake oxygen mole fraction at Tint = 160ºC. 

 

Figure 3-8 shows that the amount of ITHR for all the fuels is significantly reduced 

by the simulated EGR. Comparing the slopes of the regression lines from this figure, it 

can be concluded that the amount of ITHR for higher octane sensitivity fuel more steadily 

decreases than that of lower octane sensitivity fuel as oxygen mole fraction decreases. 

Then, the CA50 variation trend in Figure 3-7 can be explained by considering the 

changes of ITHR that occur with the addition of simulated EGR. The rapid decrease in 

the amount of ITHR for S0.5 reduces chain-branching radical production which can lead 

to hot-ignition, and eventually decreasing the relative reactivity of S0.5 among the 92 

RON fuels. This ITHR and CA50 trend is consistent with the results from the intake 
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temperature sweep, showing that the ITHR plays a key role in determining autoignition 

reactivity of single-stage ignition fuels. 

 

3.3.3 Fuel loading effect 

In this section, fuel loading sweep was performed at various intake pressure and 

oxygen mole fraction conditions to better understand the causes of ϕ-sensitivity variation 

depending on octane sensitivity and explore the relationship between ϕ-sensitivity and 

ITHR. Figure 3-11 presents the CA50 combustion phasing of each fuel as a function of 

ϕm. As discussed in the previous section, it is clearly observed that the relative reactivity 

of lower octane sensitivity fuel decreases as simulated EGR ratio increases. Unlike EGR 

ratio, intake pressure boosting more advances the combustion phasing of lower octane 

sensitivity fuel than that of higher octane sensitivity fuel, showing higher reactivity 

increment of lower octane sensitivity fuel. Kalghatgi et al. and Risberg et al. observed 

that boost pressure had a much lower K-value than ambient intake pressure [80, 85]. The 

K-value from Figure 3-1 decreases as intake pressure increases, leading to more 

increased relative reactivity of lower octane sensitivity fuel.  
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                 (a) Pint = 1.4 bar, XO2 = 0.14  

 

     
  (b) Pint = 1.6 bar, XO2 = 0.14       (c) Pint = 1.6 bar, XO2 = 0.12 

 

     
  (d) Pint = 1.8 bar, XO2 = 0.14       (e) Pint = 1.8 bar, XO2 = 0.12 

 

Figure 3-11 CA50 as a function of charge mass equivalence ratio at Pint = 1.4, 1.6, and 

1.8 bar at XO2 = 0.14 and 0.12 
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Figure 3-11 compares the combustion phasing advancement as fuel loading 

increases at each operating condition. It is interesting to note that the higher octane 

sensitivity fuels show slightly greater dependence of combustion phasing on equivalence 

ratio than the lower octane sensitivity fuels under the conditions at which they have 

similar combustion phasing, as shown in Figure 3-11 (b) and (e). Figure 3-12 presents the 

hot-ignition phasing, which is directly determined by autoignition chemistry, at these two 

operating conditions. The S11.3 and the S8.7 show more advancement of hot-ignition 

timing with increasing ϕm than the S0.5 and the S4.8 respectively, especially at high ϕm 

above around 0.29. Thus, the higher octane sensitivity fuels are more ϕ-sensitivity than 

the lower octane sensitivity fuels as a result of strong dependence of their pre-ignition 

reactions on the fuel concentration. Recent work by Cho et al. in partially premixed 

compression ignition (PPCI) indicates that the high octane sensitivity fuel is more 

reactive than the low octane sensitivity fuel, leading to more robust and stable PPCI 

combustion [71].  The strong ϕ-sensitivity of higher octane sensitivity fuels suggests that 

fuel stratification will be effective to produce a sequential autoignition event and 

eventually controlling HRR. 
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  (a) Pint = 1.6 bar, XO2 = 0.14       (b) Pint = 1.8 bar, XO2 = 0.12 

 

Figure 3-12 Start of HTHR as a function of charge mass equivalence ratio at similar 

CA50 phasing 

 

To identify the causes of difference in ϕ-sensitivity for the fuels with varying 

octane sensitivity, ITHR intensity change with ϕm at each operating condition are 

presented in Figure 3-13. The ITHR intensity is defined as the contribution of ITHR to 

the total amount of heat released. This figure shows that the ITHR intensity for all the 

fuels is considerably enhanced by increasing ϕm up to around 0.29. Beyond this point, 

further increasing ϕm no longer increases the ITHR intensity, but instead maintains it or 

even decreases it at some cases. Figure 3-14 shows the normalized HRR by total 

cumulative heat release, in-cylinder pressure and temperature in the ITHR range for the 

fuel loading sweep of S11.3 at Pint = 1.6 bar and XO2 = 0.14. The small bump of HRR at 

the end of combustion for high equivalence ratios is due to the pressure fluctuation after 

high and rapid HRR. As the ϕm increases from 0.269 to 0.292, the starting and ending 

points of ITHR advance due to the increased fuel concentration. The intermediate 
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temperature oxidation is also promoted by higher ϕm even though it starts from lower in-

cylinder pressure and temperature. This greater amount of ITHR results in higher hot-

ignition temperature as shown in Figure 3-14. At ϕm = 0.304, however, the hot-ignition 

temperature does not change with increasing ϕm anymore and level off at around 1058 K. 

This leads to the saturation of ITHR intensity and the further advancement of hot-ignition 

timing as illustrated in Figure 3-12 and Figure 3-13. This saturation behavior of ITHR 

and hot-ignition temperature can be also found in the other octane sensitivity fuels.  

With this understanding, the ITHR intensity rise rate in Figure 3-13 can be used to 

provide a possible explanation for the difference in ϕ-sensitivity depending on octane 

sensitivity. The fuel with higher octane sensitivity shows a faster rise rate of the ITHR 

intensity and then reach to the saturation level at lower ϕm than the fuel with lower octane 

sensitivity. The rapid increment of ITHR can also contribute the advancement of hot-

ignition timing at above the ϕm where the ITHR intensity starts to saturate. Thus, the 

strong dependence of ITHR of higher octane sensitivity fuel on equivalence ratio 

significantly enhances the ϕ-sensitivity.   
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                 (a) Pint = 1.4 bar, XO2 = 0.14  

 

     
  (b) Pint = 1.6 bar, XO2 = 0.14       (c) Pint = 1.6 bar, XO2 = 0.12 

 

     
  (d) Pint = 1.8 bar, XO2 = 0.14       (e) Pint = 1.8 bar, XO2 = 0.12 

 

Figure 3-13 ITHR intensity as a function of charge-mass equivalence ratio at Pint = 1.4, 

1.6, and 1.8 bar at XO2 = 0.14 and 0.12 
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Figure 3-14 Normalized heat release rate, in-cylinder pressure and temperature as a 

function of crank angle for S11.3 at Pint = 1.6 bar and XO2 = 0.14 

 

As described in previous researches [25, 29, 30, 34, 35, 77], fuel-chemistry effect 

should be isolated from thermal and residual-gas effects on ignition timing for accurate ϕ-

sensitivity test. However, the tested engine for current study is not equipped with in-

cylinder fuel injection system for an alternative firing method explained in [25]. For 

minimizing the effects of wall temperature and residuals, the coolant outlet temperature 

was stabilized at 90±1ºC during the fired conditions. Moreover, the exhaust back pressure 

was maintained lower than ambient pressure and the EVC timing was set to 0ºCA aTDC 

with negative valve overlap to reduce trapped burn gas and eliminate exhaust backflow. 

Although these methods cannot be fully isolate the fuel-chemistry effect, they can 
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minimize the in-cylinder temperature variation prior to autoignition as shown in Figure 

3-14.  

 

3.4 Conclusions 

Four full boiling range gasolines with RON of 92 but different octane sensitivity 

from 0.5 to 11.3 have been investigated in an HCCI engine under the conditions at which 

low temperature reactivity is not active through sweeps of intake temperature, intake 

oxygen mole fraction, and fuel loading. This study provides a new understanding of 

ITHR behavior and its effects on autoignition reactivity of single-stage ignition fuels 

under various engine operating conditions. Significant findings are as follows: 

• The maximum of second derivative of HRR method was firstly applied for 

quantification of ITHR. This novel method accurately predicted the hot-ignition 

point where HRR changes the most and in-cylinder temperature suddenly 

increases.  

• The relative reactivity of investigated fuels with the absence of LTHR varies as 

the intake temperature and the intake oxygen mole fraction change. The S0.5 is 

the most reactive at Tint = 55ºC and XO2 = 0.21 and is the least reactive at Tint = 

220ºC and XO2 = 0.14. This indicates that the relative reactivity of lower octane 

sensitivity fuel increases at lower intake temperature and lower EGR ratio 

conditions, whereas the relative reactivity of higher octane sensitivity fuel 

increases at higher intake temperature and higher EGR ratio conditions. In other 

words, the fuel with lower octane sensitivity is less sensitive to intake temperature 
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and more sensitive to simulated EGR, while the fuel with higher octane sensitivity 

exhibits an opposite trend.  

• The amount of ITHR for the test fuels increases in the range of 2% to 7% of total 

heat release as the intake temperature and the intake oxygen mole fraction 

increase mainly due to increased in-cylinder temperature within the ITHR range 

and longer ITHR duration.  

• The ITHR trends, along with the intake temperature and the intake oxygen mole 

fraction, nearly coincide with the autoignition reactivity variation trends 

depending on octane sensitivity. This indicates that ITHR plays a significant role 

in determining fuel octane sensitivity as well as autoignition reactivity. 

• The strong dependence of ITHR on equivalence ratio considerably enhances the 

ϕ-sensitivity. For the similar combustion phasing, the S11.3 and the S8.7 which 

are the higher octane sensitivity fuels exhibit faster rise rates of ITHR intensity 

than the S0.5 and the S4.8 respectively, leading to more advanced hot-ignition 

phasing with increasing equivalence ratio.  
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          Chapter 4  

 

 

Effects of Octane Number, Pressure, and EGR on Low and 

Intermediate Temperature Heat Release of Two-stage Ignition Fuels  

4.1 Introduction 

Strategies to enable advanced, low temperature combustion in compression 

ignition engines have been widely studied in recent years because of high fuel conversion 

efficiencies and very low nitrogen oxide (NOx) and particulate matter (PM) emissions 

[86-88]. Higher reactivity gasoline fuels are appropriate to obtain autoignition at low load 

and attenuate maximum pressure rise rate (MPRR) at high load in advanced compression 

ignition (ACI) engines. Yang et al. found that the MPRR can be substantially reduced 

with partial fuel stratification using high reactivity two-stage ignition fuels which show 

strong equivalence ratio (ϕ) sensitivity. Several researchers have shown possible 

improvements in efficiency and emissions from the use of naphtha fuels with octane 

number range of 60 under partially premixed compression ignition (PPCI) operating 

conditions [89-92]. Manente et al. achieved a gross indicated efficiency of roughly 53.5% 

throughout full load range PPCI operation using a 70 RON gasoline, but showed high 

MPRR (>15 bar/ºCA) at high load [93, 94]. Hildingsson et al. suggested that the most 
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suitable fuel should have a research octane number (RON) range of 75 to 85 based on the 

results in a single cylinder engine [95]. Kolodziej et al. and Cho et al. concluded that 

RON 80 gasoline exhibited better performance and emissions behavior among fuels with 

RON range of 60 to 92 under PPCI operating conditions [96, 97].  

These lower RON fuels mostly demonstrate a two-stage ignition behavior, with a 

low temperature heat release (LTHR) event followed by the main combustion. The 

LTHR, also known as cool flames, is mainly attributed to n-paraffins [11, 24, 45, 98-100] 

and its behavior is considerably affected by engine operating conditions. Increasing 

engine speed has the effect of reducing the amount of LTHR since the LTHR rate is 

constant on a time basis [101-104]. The low temperature reactivity is also enhanced at 

higher intake pressure and lower intake temperature because the charge passes through 

the active LTHR range (760 - 880 K) at higher pressure [27, 103]. In addition, the LTHR 

is significantly suppressed by lower oxygen concentration  [26, 103] 

Intermediate temperature heat release (ITHR), which occurs at temperatures 

above LTHR and below hot ignition, plays an important role in determining the 

autoignition timing as well as increasing the ϕ-sensitivity. This ITHR also can be 

influenced by engine operating parameters. Yang et al. found that increasing engine 

speed did not modify the ITHR behavior of a two-stage ignition fuel, while maintaining 

CA50 and ringing intensity by reducing the EGR ratio and the equivalence ratio [34]. 

Yang et al. also observed that the ITHR was nearly identical with increasing intake 

pressure, while varying the EGR ratio to keep CA10 constant [35]. However, it could be 

observed that the intake oxygen mole fraction and the equivalence ratio remarkably 

increase or decrease the amount of ITHR from Chapter 3. For high reactivity two-stage 
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ignition fuels, the correlation between LTHR and ITHR as well as the individual effects 

of pressure and oxygen mole fraction on ITHR are still unclear.  

The objective of this study is to expand the understanding of the low and 

intermediate temperature oxidation behavior through compression ratio (CR) sweep at 

various engine operating conditions. The primary purposes are: 1) evaluating a newly 

developed method to quantify the pre-ignition heat release for two-stage ignition fuels, 2) 

exploring the impact of fuel composition on pre-ignition behavior and reactivity, 3) 

understanding the effects of intake oxygen mole fraction and pressure on LTHR and 

ITHR. 

 

4.2 Fuels and Operating Conditions 

Three full boiling range naphtha fuels with relatively low octane number were 

investigated in this study, as presented in Table 4-1. Naphtha, which covers a range of 

light petroleum distillates from 30ºC to 200ºC, is a typical feedstock for conventional 

gasoline. However, it requires much less refinery processing compared to high octane 

conventional gasoline or high cetane diesel fuels. Thus, it can significantly reduce energy 

consumption and greenhouse gas emissions during its production [105]. In addition, 

naphtha will be readily available and also could be in surplus as the demand moves to 

heavier fuels which is used for commercial transport [106]. The high reactivity fuels 

tested in this study were formulated in order to match the target octane numbers; RON 60, 

RON 70, RON 80, and their octane sensitivity.  

 



49 

 

 

 

Table 4-1 Properties of RON 60, 70, and 80 fuels. 

Property RON 60 RON 70 RON 80 

RON 61.0 70.0 80.0 

MON 58.0 67.0 76.9 

S (RON-MON) 3.0 3.0 3.1 

C/H/O (wt %) 84.8/15.2/0.0 85.4/14.6/0.0 85.8/14.2/0.0 

Molecular weight 94.6 91.6 89.1 

Density at 15.56℃ (g/mL) 0.7083 0.7172 0.7241 

LHV (kJ/kg) 43215 43623 43581 

HoV at 25ºC (kJ/kg) 359.1 361.4 367.6 

Composition 

(vol %) 

Aromatics 9.9 14.7 20.3 

Olefins 1.1 3.5 5.9 

Naphthenes 16.5 15.1 13.4 

n-Paraffins 33.0 26.8 20.0 

i-Paraffins 38.1 38.5 38.1 

Oxygenates 0.0 0.0 0.0 
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The octane index (OI) [107] can be also applied to compare the reactivity 

variation depending on engine operating conditions, as shown in Figure 4-1. Due to the 

nearly identical octane sensitivity of the test fuels, the reactivity order would not be 

changed by operating parameters including the current test conditions.  

A modified CFR octane rating engine was used for homogeneous charge 

compression ignition (HCCI) combustion. The engine was motored at a constant speed of 

900 rpm throughout this study. For each fuel, the CR was swept from 4.0 to 15.0 to 

explore not only pre-ignition characteristics but also post-ignition behavior under the test 

conditions listed in Table 4-2. Three intake pressure and three intake oxygen mole 

fraction conditions were chosen to investigate the effects of intake boosting and EGR 

ratio.  

 

 
Figure 4-1 Octane Index as a function of K-value for RON 60, 70, and 80 fuels. 
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Table 4-2 Test conditions for two-stage ignition fuels. 

Parameter Value   

Engine speed (rpm) 900 

Coolant temperature (ºC) 90±1 

Intake temperature (ºC) 40 

Intake pressure (bar, abs) 1.0, 1.2, 1.4 

Intake oxygen mole fraction 0.210, 0.175, 0.140 

Fuel loading (J/L/cycle) 635.3 

 

 

4.3 Results and Discussion 

4.3.1 RON effect 

Carbon monoxide (CO) is known as a representative stable intermediate species 

and a good indicator of the extent of autoignition chemistry. The CO is formed by the 

conversion of aldehydes and their acetyl radicals in both low and high temperature 

hydrocarbon oxidation regimes [108]. The subsequent oxidation of CO to carbon dioxide 

(CO2) through reaction (4.1) is mostly retarded until the high temperature reaction 

produces high levels of OH radical [109]. For this reason, many researchers have 

characterized the reaction process and investigated global oxidation reactivity and 

negative temperature coefficient (NTC) behavior by tracking CO emissions during CR 

sweep [11-15, 40-53, 63, 100, 110-115]. In addition, small aldehydes (formaldehydes and 
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acetaldehyde), which are known as key species in the low temperature oxidation region 

[11], were measured for this study.  

 

 HO• + CO → H• + CO2 (4.1)  

   

 

Figure 4-2 presents the entire reaction processes for the three different RON fuels 

with similar sensitivity at Pint = 1.0 bar and XO2 = 0.21. Figure 4-3 shows their apparent 

heat release rate (AHRR) profiles at selected CRs. Kang et al. observed three distinct 

autoignition characteristics, including low temperature oxidation, NTC, and high 

temperature oxidation, by monitoring CO emissions as CR increases [14]. In this study, 

intermediate temperature oxidation was additionally included in the combustion event. 

Thus, the autoignition process can be classified into four regimes by tracking the 

aldehydes, CO and CO2 emissions and the calculated maximum in-cylinder gas 

temperature. 

At CRs below 6.8, no distinct autoignition chemistry was detectable under the 

current experimental condition due to low in-cylinder temperature (< 700 K). At CR of 7, 

LTHR initially appears only for the RON 60 fuel which is most reactive among the tested 

fuel. The formation of CO, formaldehyde, and acetaldehyde also starts with the onset of 

LTHR. The fuel with lower RON produces LTHR at lower in-cylinder temperature (RON 

60: 710 K, RON 70: 714 K, RON 80: 726 K) mainly due to higher mass percentage of n-

paraffin content which act as radical providers through hydrogen abstraction at low 

temperature. As the in-cylinder temperature increases with the CR, the magnitude of 

LTHR increases, resulting in high concentrations of CO, formaldehyde, and acetaldehyde. 
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The LTHR has been found to produce considerable amounts of formaldehyde and 

acetaldehyde [11, 28, 116]. At CR of 8.5, it is clearly observed that low temperature 

reactivity is higher for the fuels composed of more n-paraffins.  

 

  
Figure 4-2 Maximum in-cylinder bulk temperature, carbon monoxide, carbon dioxide, 

formaldehyde, and acetaldehyde emissions as a function of CR at Pint = 1.0 bar and XO2 = 

0.21. The shading represents the range of CR where ITHR is dominant for each fuel.   
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As the in-cylinder temperature increases over this CR, the formation of 

alkylperoxy radical in reaction R• + O2 → ROO• is no longer favored, resulting in the 

NTC behavior. In the NTC regime, overall reaction rate decreases as in-cylinder 

temperature increases, causing the concentration of CO and aldehydes to level out. Lower 

RON fuels produce less pronounced NTC regions due to the relatively more LTHR, 

which can increase the in-cylinder temperature and produce high concentrations of 

intermediates and radicals prior to the NTC region. This leads to the beginning of 

intermediate temperature reaction at lower CR. 

At CR of 11.7 from Figure 4-3, the RON 60 fuel shows a small but distinct 

second peak heat release event which indicates ITHR. Lilik also observed a significant 

second heat release resulted from ITHR through equivalence ratio sweeps of high ignition 

quality fuels [117]. From Figure 4-2, the shaded areas between the onset of the second 

heat release and the hot-ignition temperature represent the range of CR at which 

intermediate temperature oxidation is dominant for each fuel. During this ITHR range, 

formaldehyde reaches its maximum value and then decreases steeply near the hot-ignition 

temperature. Hwang et al. found, through a combination of chemiluminescence 

spectroscopy and chemical kinetic analysis, that formaldehyde is still formed during the 

ITHR phase as well as the LTHR phase [28]. As the maximum in-cylinder temperature 

reaches the hot-ignition temperature during the ITHR period, CO is rapidly produced 

from the aldehydes by removing hydrogen atoms consecutively. Mehl et al. concluded 

that oxidation of formaldehyde through CH2O abstraction followed by HCO• + O2 → CO 

+ HO2 was one of major contribution to the ITHR through detailed chemical kinetic 

modeling simulations. It is also noteworthy that the oxidation of CO to CO2 starts to 
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increase during the ITHR range, indicating that the intermediate temperature oxidation 

produces significant OH radicals through reaction (3.3). 

As with the low temperature oxidation, the intermediate temperature oxidation 

begins at lower CR and lower in-cylinder temperature for the higher reactivity fuel (RON 

60: 945 K, RON 70: 955 K, RON 80: 981 K) even though the clearance volume is larger 

at lower CR. This is mainly due to the greater amount of intermediate species and 

radicals produced by LTHR. Furthermore, a higher concentration of intermediates and 

radicals enhances the intermediate temperature oxidation, causing more rapid temperature 

rise to the hot-ignition temperature during ITHR regime. This indicates that the amount 

of LTHR can significantly affect the ITHR behavior and eventually influence the onset of 

HTHR. 

At CR of 13.0, the reactivity difference is clearly observed in that the RON 60 

fuel is ignited at a CCR of 12.2 and reveals strong HTHR whereas the RON 70 and 80 

fuels exhibit ITHR and NTC behavior, respectively. The hot-ignition temperature for 

lower RON fuel is also lower than that for higher RON fuel (RON 60: 1003 K, RON 70: 

1010 K, RON 80: 1032 K). This shows that the greater magnitude of LTHR leads to 

stronger ITHR, inducing autoignition at lower in-cylinder temperature.  
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   (a) CR = 7.0           (b) CR = 8.5 

     

   (c) CR = 11.0           (d) CR = 11.7 

     

      (e) CR = 13.0 

 

Figure 4-3 Apparent heat release rate as a function of crank angle at Pint = 1.0 bar and XO2 

= 0.21.  
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Figure 4-4 Heat release rate, and in-cylinder pressure and temperature as a function of 

crank angle at Pint = 1.4 bar, XO2 = 0.21, and CR of 15. 

 

To gain a deeper insight into pre-ignition behavior depending on RON for two-

stage ignition fuels, the HRR, in-cylinder pressure and temperature in the LTHR and 

ITHR ranges at Pint = 1.4 bar, XO2 = 0.21, and CR of 15 are presented in Figure 4-4. Table 

4-3 also shows the difference between the low and intermediate temperature oxidation of 

various RON gasoline-like fuels through an examination of the cumulative heat release in 

each region. As observed in Figures 4-2 and 4-3, the lower RON fuel have earlier phasing 

than the higher RON fuel, which is due to the difference in pre-ignition heat release. The 

lower RON fuel produces more LTHR than the higher RON fuels even though it passes 
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through the lower temperature and pressure window at an earlier crank angle. The higher 

amount of LTHR strongly accelerates the temperature rise rate, leading to earlier onset of 

ITHR. More importantly, the stronger LTHR results in more enhancement of ITHR. It 

has been shown that increasing the ITHR can not only improve combustion stability at 

retarded combustion phasing [27] but also increase ϕ-sensitivity to reduce the maximum 

heat release rate and control the combustion phasing using the fuel-injection strategy in 

ACI engines [30, 34, 35].  

 

 

 

Table 4-3 Key phasing parameters of HRR traces at Pint = 1.4 bar, XO2 = 0.21, and CR of 

15. 

 RON 60 RON 70 RON 80 

LTHR start (ºCA aTDC) -33.2 -32.2 -29.6 

ITHR start (ºCA aTDC) -19.4 -16.8 -12.1 

HTHR start (ºCA aTDC) -13.5 -10.2 -4.8 

Cumulative LTHR (J) 42.28 32.97 17.96 

Cumulative ITHR (J) 30.93 27.59 15.78 

Cumulative HTHR (J) 255.81 227.99 185.01 

Average LTHR (J/ºCA) 3.06 2.14 1.03 

Average ITHR (J/ºCA) 5.24 4.18 2.16 
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4.3.2 EGR effect 

This section discusses the low and intermediate temperature oxidation behavior 

under various intake oxygen mole fractions. Figure 4-5 shows the maximum in-cylinder 

temperature and engine-out emissions as a function of CR for RON 60 fuel at three 

different intake oxygen mole fraction conditions. The addition of CO2 remarkably 

reduces in-cylinder gas temperature due to its high specific heat capacity, leading to the 

onset of low temperature oxidation at higher CR. Moreover, the AHRR profiles 

illustrated in Figure 4-6 shows that the LTHR is suppressed as the simulated EGR ratio 

increases. This is because the lower oxygen concentration significantly inhibits the heat 

release during the LTHR period [26, 103, 118] even though the lower charge temperature 

causes more LTHR [27]. The suppressed LTHR less produces formaldehyde, 

acetaldehyde, and CO emissions as shown in Figure 4-5. This lower concentration of 

intermediates, combined with the lower in-cylinder temperature, retards the intermediate 

temperature reaction. From Chapter 3, it has been observed that the amount of ITHR for 

single-stage ignition fuels decreases with increasing the simulated EGR ratio due to a 

lower oxygen molar concentration and a lower in-cylinder temperature. This finding is 

also consistent with the results for two-stage ignition fuels in Figure 4-5 since the 

intermediate temperature oxidation begins at lower in-cylinder temperature for lower 

intake oxygen mole fraction. In addition, the reduced intermediates and radicals from 

LTHR further slows down the development of ITHR as the CR increases. These 

significantly inhibit the autoignition of two-stage ignition fuels as observed from HRR 

profiles in Figure 4-6 (b).  
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Figure 4-5 Maximum in-cylinder bulk temperature, carbon monoxide, formaldehyde, and 

acetaldehyde emissions as a function of CR for RON 60 fuel at Pint = 1.4 bar. The 

shading represents the range of CR where ITHR is dominant for each fuel.  
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      (a) CR = 8.5            (b) CR = 12.0 

 

Figure 4-6 Apparent heat release rate as a function of crank angle for RON 60 fuel at Pint 

= 1.4 bar. 

 

Figure 4-7 presents the variation of HRR, in-cylinder pressure and temperature 

depending on intake oxygen mole fraction at Pint = 1.4 bar and CR of 15. Table 4-4 

provides their quantitative values for key phasing and heat release events. At lower intake 

oxygen mole fraction, the charge passes through much higher pressure window during 

LTHR period and its low temperature reaction starts at a similar in-cylinder temperature 

around 745 K. However, the amount of heat released during this period is lower than that 

at higher intake oxygen mole fraction due to the reduced oxygen concentration. This 

lower LTHR not only retards the onset of ITHR, but also decreases the magnitude of 

ITHR, as listed in Table 4-4. Unlike the LTHR, the ITHR for lower intake oxygen mole 

fraction starts at even lower in-cylinder temperature (XO2 = 0.21: 951 K, XO2 = 0.175: 946 

K, XO2 = 0.14: 922 K). In addition, as observed in Figure 4-5, the lower concentration of 

intermediate products from the first heat release event further decreases the amount of 
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heat released during the ITHR period. The reduced ITHR decreases the temperature rise 

rate, eventually leading to the retarded hot ignition at lower temperature and higher 

pressure for the lower intake oxygen mole fraction.  

 

 

 

 
Figure 4-7 Heat release rate, and in-cylinder pressure and temperature as a function of 

crank angle for RON 60 fuel at Pint = 1.4 bar and CR of 15. 
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Table 4-4 Key phasing parameters of HRR traces for RON 60 fuel at Pint = 1.4 bar and 

CR of 15. 

 0.210 0.175 0.140 

LTHR start (ºCA aTDC) -33.2 -32.1 -29.2 

ITHR start (ºCA aTDC) -19.4 -17.1 -14.0 

HTHR start (ºCA aTDC) -13.5 -10.9 -7.1 

Cumulative LTHR (J) 42.28 38.79 29.78 

Cumulative ITHR (J) 30.93 26.41 19.16 

Cumulative HTHR (J) 255.81 216.85 173.40 

Average LTHR (J/ºCA) 3.06 2.59 1.96 

Average ITHR (J/ºCA) 5.24 4.26 2.78 
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4.3.3 Intake pressure effect 

Figure 4-8 shows the maximum in-cylinder temperature and engine-out emissions 

as a function of CR for RON 60 fuel at three different intake pressure. Increasing intake 

pressure does not significantly change the maximum in-cylinder temperature during the 

pre-ignition period because the charge air mass also increases with the intake pressure. 

The equivalence ratio with fixed fuel loading decreases from 0.29 to 0.20 as the intake 

pressure increases from 1.0 bar to 1.4 bar at CR of 15. The fuel mole fraction at Pint = 1.4 

bar is 0.68 times lower than that at Pint = 1.0 bar, but the ratios of volumetric exhaust 

formaldehyde and acetaldehyde emissions at Pint = 1.4 bar to those at Pint = 1.0 bar are 

much higher than the ratio of fuel mole fraction. Furthermore, the volumetric CO 

emissions at Pint = 1.4 bar even close to that at Pint = 1.0 bar during LTHR and NTC 

periods. This indicates that more intermediate species per unit fuel mass were produced 

during these periods at higher intake pressure. It has been shown that the intake boosting 

increases the reactivity in the low temperature regime at constant equivalence ratio [15, 

103, 119]. At constant fuel flow rate, Figure 4-9 shows that the low temperature reaction 

still becomes enhanced as the intake pressure increases mainly due to the increased 

oxygen molar concentration. This increased LTHR with the intake pressure also advances 

the onset of ITHR, as observed in Figure 4-9 (b). At higher intake pressure, the high 

temperature oxidation also begins at lower CR, but the CO emissions is slowly converted 

to CO2 beyond CCR due to its lower combustion temperature.   
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Figure 4-8 Maximum in-cylinder bulk temperature, carbon monoxide, formaldehyde, and 

acetaldehyde emissions as a function of CR for RON 60 fuel at XO2 = 0.21. The shading 

represents the range of CR where ITHR is dominant for each fuel. 
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     (a) CR = 8.5           (b) CR = 11.3 

 

Figure 4-9 Apparent heat release rate as a function of crank angle for RON 60 fuel at XO2 

= 0.21. 

 
Figure 4-10 Heat release rate, and in-cylinder pressure and temperature as a function of 

crank angle for RON 60 fuel at XO2 = 0.21 and CR of 15. 
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For quantitative analysis of pre-ignition behavior, the boundary points and the 

cumulative heat release of each region at CR of 15 are presented in Figure 4-10 and Table 

4-5. The phasing of each heat release is slightly advanced as intake pressure increases 

due to the promotion of low temperature reaction. In Figures 3-13 (b) and (d) from 

Chapter 3, it was observed that intake boosting can increase the ITHR intensity as well as 

the ITHR magnitude itself, while keeping the equivalence ratio constant. However, the 

amount of ITHR does not noticeably change with increasing intake pressure at constant 

fuel loading. Instead, the ITHR duration becomes shorter as intake pressure increases, 

resulting in more intense intermediate temperature reaction prior to hot ignition. This 

eventually leads to the early onset of HTHR.  

 

Table 4-5 Key phasing parameters of HRR traces for RON 60 fuel at XO2 = 0.21 and CR 

of 15. 

 1.0 bar 1.2 bar 1.4 bar 

LTHR start (ºCA aTDC) -31.3 -32.5 -33.2 

ITHR start (ºCA aTDC) -17.5 -18.6 -19.4 

HTHR start (ºCA aTDC) -10.7 -12.5 -13.5 

Cumulative LTHR (J) 28.34 35.31 42.28 

Cumulative ITHR (J) 30.48 29.88 30.93 

Cumulative HTHR (J) 361.41 318.29 255.81 

Average LTHR (J/ºCA) 2.05 2.54 3.06 

Average ITHR (J/ºCA) 4.48 4.90 5.24 
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Figure 4-11 Cumulative and average ITHR as a function of intake pressure XO2 = 0.21 

and CR of 15.  

 

Figure 4-11 represents the cumulative ITHR and the average ITHR per unit crank 

angle as a function of intake pressure for the test fuels. As with the results in the previous 

section, the fuel with lower RON shows much higher average ITHR as well as higher 

cumulative ITHR. The RON increases from 60 to 80 decreases the amount of ITHR by 

49% at Pint = 1 bar. However, the lower RON fuel reaches a saturated level of cumulative 

ITHR whereas the RON 80 fuel substantially increases the amount of ITHR by 157% 

with increasing the intake pressure from 1 bar to 1.4 bar. Although the cumulative ITHR 

for lower RON fuel almost stays unchanged at a high level, the ITHR duration still 

decreases as the intake pressure increases. This indicates that the HRR during the ITHR 

period becomes enhanced at higher intake pressure.   



69 

4.4 Conclusions 

Three high reactivity gasoline-like fuels with different RON from 60 to 80 have 

been investigated in an HCCI engine through CR sweeps in order to characterize low and 

intermediate temperature oxidation behavior under various engine operating conditions. 

This study provides a new understanding of the correlation between LTHR and ITHR as 

well as the individual effects of pressure and oxygen mole fraction on ITHR. Significant 

findings are as follows: 

• The maximum of second derivative of HRR method can precisely find the hot-

ignition point from two-stage heat release profiles for quantification of ITHR. 

• The amount of LTHR has a significant effect on ITHR behavior and eventually 

influences autoignition reactivity. The RON 60, which is the lowest RON fuel, 

produces the greatest amount of LTHR which can raise in-cylinder temperature 

and generate intermediates and radicals prior to NTC region. This results in more 

enhanced ITHR, inducing autoignition at advanced phasing compared to the 

higher RON fuels.  

• Both the LTHR and the ITHR are suppressed by 30% and 38% respectively as the 

intake oxygen mole fraction decreases from 0.21 to 0.14. As with the single-stage 

ignition fuel, lower oxygen mole concentration and lower in-cylinder temperature 

reduce the magnitude of ITHR. In addition, the reduced intermediates and radicals 

from LTHR further attenuate the intermediate temperature reaction.  

• The intake boosting from atmospheric pressure to 1.4 bar absolute increases the 

LTHR by 49% even at a constant fuel loading of 635.3 J/L/cycle. For all the test 

fuels, the average ITHR per crank angle also increases with the intake pressure, 
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showing concise and strong intermediate temperature reaction. However, the 

magnitude of ITHR for the lower RON fuel, which exhibits a great amount of 

ITHR, becomes saturated as the intake pressure increases. 
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          Chapter 5  

 

 

Effects of Physical Property and Chemical Composition on 

Autoignition of FACE Gasolines and Naphtha Blends 

5.1 Introduction 

Gasoline is a complex blend of several hundred hydrocarbon species including 

linear and branched paraffins, naphthenes, olefins, and aromatics in C4 – C10 boiling 

range [120]. The gasoline has low chemical reactivity and high volatility which can 

enable low temperature combustion by achieving sufficient premixing time prior to 

autoignition. For these reasons, gasoline can be used for the application of advanced 

compression engine (ACI) concepts such as homogenous charge compression ignition 

(HCCI) [86, 121, 122], partially premixed compression ignition (PPCI) [9], and reactivity 

controlled compression ignition (RCCI) [123] to reduce emission without compromise on 

efficiency.  

Gasoline compression ignition (GCI) has shown promising potential through both 

PPCI process and mixing controlled combustion (MCC) process using direct fuel 

injection system [124-131]. Under these combustion modes, the combustion phasing is 

controlled by injection strategy and engine operating conditions such as intake pressure, 
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intake temperature, and EGR ratio. Therefore, understanding both the physical and 

chemical ignition behavior of gasolines at various operating conditions is essential for 

optimizing their use in GCI engines. Badra et al. studied the effects of chemical and 

physical properties for different injection timing at part load using low octane gasoline 

fuels (RON = 60 – 65) [132]. The experimental and numerical results showed that the 

impacts of chemical and physical properties on combustion phasing and emissions were 

negligible. However, Naser et al. concluded that physical properties, such as volatility 

and surface tension, became increasingly dominant as injection timing is retarded from 

premixed conditions [133]. Zhang et al. investigated the fuel chemical and physical 

properties effects on GCI in a heavy-duty diesel engine through a computational study 

[134]. It was found that physical properties including heat of vaporization, density, vapor 

pressure, viscosity, and surface tension had little impact on ignition delay and combustion 

phasing at high in-cylinder temperature. For the chemical effect, higher RON primary 

reference fuels (PRF) showed a stronger dependency on temperature than lower RON 

fuels due to reduced NTC behavior. It was also observed that increasing octane 

sensitivity with constant RON resulted in shorter ignition delay at test conditions close to 

the MON test (TSOI = 913 – 1000 K). Vallinayagam et al. tested RON 70 fuels with 

different octane sensitivity and physical properties at low load in a GCI engine [73]. It 

was found that the physical properties of the fuel with same RON and octane sensitivity 

rarely affected combustion phasing and ignition delay at test conditions where 

temperature at TDC was above 1000 K. The higher octane sensitivity gasoline exhibited 

more advanced combustion phasing and shorter ignition delay than the lower octane 

sensitivity fuel at this condition. 
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Several studies were implemented in the past to explore the effect of fuel physical 

and chemical properties on GCI at various operating conditions. However, there is still 

lack of fundamental investigation for engine experiment and ignition delay measurement 

especially at high load boosted conditions where low and intermediate temperature 

oxidation is important. In order to address this gap and expand the understanding of the 

physical and chemical effects on autoignition behavior in GCI engines, liquid fuel jet 

evaporation as well as gas-phasing ignition of gasolines with varying RON and octane 

sensitivity were investigated using a modified CFR variable compression ratio engine and 

a constant volume spray combustion chamber.  

 

5.2 Fuels and Operating Conditions 

FACE (fuels for advanced combustion engines) gasolines were designed to enable 

a detailed understanding of fuel composition effects in ACI engines by providing 

consistent well-characterized properties and compositions. They consist of a total of ten 

fuels and each represent four primary properties of fuels for ACI engines: RON; octane 

sensitivity; aromatic content; and n-paraffin content, as illustrated in Figure 5-1 [135]. 

These FACE gasolines have been widely studied for fuel effects on ignition behavior and 

surrogate validation in many types of combustion research devices such as shock tubes 

[136-139], rapid compression machines (RCM) [136, 138-142], jet-stirred reactors (JSR) 

[143-145], and motored engines [114, 115, 138, 141, 146, 147].   
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Figure 5-1 FACE gasoline matrix [135]. 

 

In this study, FACE A, C, I, and J gasolines and three naphtha blends tested from 

the previous chapter were investigated as presented in Table 5-1. Additional physical 

properties and detailed hydrocarbon analyses (DHA) for the FACE gasolines and naphtha 

blends are available in  [135, 136, 145, 148] and Appendix A, respectively. The FACE A, 

C, and I gasolines are highly paraffinic while the FACE J gasolines and the naphtha 

blends contain considerable amounts of aromatics. As the mass percentage of aromatic 

content in the fuel increases, the liquid fuel density and the final boiling temperature 

increase while the heat of combustion decreases as can be observed in Table 5-1 and 

Figure 5-2. The gray area in the Figure 5-2 represents the distillation range of typical U.S. 

market gasolines [71]. Almost all fuels have higher T10 than the typical gasoline range, 

but the final boiling temperatures are lower than or in the typical range. Derived cetane 

number (DCN) of the test fuels were measured using the CID unit based on ASTM 
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D7668 method [54]. The measured DCNs of FACE gasolines in this study agree well 

with those measured by an ignition quality tester (IQT) [149].   

 

 
 

Figure 5-2 Distillation characteristics of FACE gasolines and naphtha blends. 

 

 

The modified CFR engine was motored at a constant speed of 600 rpm throughout 

this study. For each fuel, the CR was swept from 3.9 to the ignition point to explore pre-

ignition characteristics under both naturally aspirated and boosted conditions, as listed in 

Table 5-2. The constant volume combustion chamber offers a direct injection system to 

study the spray ignition behavior at various ambient air temperatures and oxygen mole 

fractions, as presented in Table 5-3.  
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Table 5-1 Fuel properties of FACE gasolines and naphtha blends. 

Property FACE A FACE C FACE I FACE J RON 80 RON 70 60 RON 

RON 83.5 84.7 70.3 71.8 80.0 70.0 61.0 

MON 83.6 83.6 69.6 68.8 76.9 67.0 58.0 

S (RON-MON) -0.1 1.1 0.7 3.0 3.1 3.0 3.0 

DCN 26.2 25.6 30.0 26.5 23.3 27.8 32.7 

C/H (wt %) 84.0/16.0 84.5/15.5 84.1/15.9 86.2/13.8 85.8/14.2 85.4/14.6 84.8/15.2 

Density at 15.56℃ (g/mL) 0.685 0.691 0.697 0.742 0.724 0.717 0.708 

LHV (kJ/kg) 44778 44792 44717 43568 43581 43623 43215 

RVP (kPa) 55.8 51.0 51.7 51.7 49.6 44.8 44.0 

Composition 

(vol %) 

Aromatics 0.0 3.9 1.2 31.7 20.3 14.7 9.9 

Olefins 0.4 1.3 6.4 0.6 5.9 3.5 1.1 

Naphthenes 1.6 0.4 3.3 2.3 13.4 15.1 16.5 

n-Paraffins 11.7 24.4 14.4 31.6 20.0 26.8 33.0 

i-Paraffins 86.0 69.7 74.5 33.6 38.1 38.5 38.1 

Oxygenates 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Table 5-2 Test conditions for CFR engine 

Parameter Value   

Engine speed (rpm) 600 

Coolant temperature (ºC) 90±1 

Intake temperature (ºC) 190 

Intake pressure (bar, abs) 1.0, 2.0, 3.0 

Intake oxygen mole fraction 0.21 

Equivalence ratio 0.25, 0.50 

 

 

 

Table 5-3 Test conditions for CID 510 

Parameter Temperature sweep EGR sweep 

Injection pressure (bar, abs) 1000 

Injection time (ms) 2.5 

Initial chamber  

pressure (bar, abs) 
20 

Initial chamber  

temperature (ºC) 

540, 560, 580,  

600, 620, 640 
600 

Simulated EGR ratio (%) 0 0, 15, 25, 40, 50, 55 
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5.3 Results and Discussion 

This result section consists of two subsections based on fuel reactivity. The first 

section compares the experimental results of higher RON fuels including FACE A, C, 

and RON 80 fuels. The second section deals with lower RON fuels including FACE I, J, 

RON 70 and 60 fuels. 

 

5.3.1 Higher RON fuels 

To identify the impact of fuel chemical composition on gas-phase combustion 

behavior, the ignition characteristics of fuels with similar RON were explored through 

CR sweeps at various engine operating conditions. Figures 5-3, 5-4, and 5-5 present the 

comparisons of CO emissions, maximum in-cylinder temperature, and critical 

compression ratio (CCR) for FACE A, C, and RON 80 fuels at both naturally aspirated 

and boosted conditions. At Pint = 1 bar and ϕ = 0.25, the resultant CO emissions for the 

test fuels are relatively insignificant during pre-ignition, as compared to those at higher 

intake pressure or higher equivalence ratio. It is because the high intake temperature with 

low intake pressure and the low fuel concentration weaken the chain-branching reactions 

in the low temperature regime [27, 103].   
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   (a) ϕ = 0.25          (b) ϕ = 0.5 

 

Figure 5-3 Carbon monoxide emissions as a function of CR for higher RON fuels at Tint = 

190ºC and XO2 = 0.21. 

 

     
   (a) ϕ = 0.25          (b) ϕ = 0.5 

 

Figure 5-4 Maximum in-cylinder bulk temperature as a function of CR for higher RON 

fuels at Tint = 190ºC and XO2 = 0.21. 

 

The RON 80 fuel, which has the lowest RON and MON among the higher RON 

fuels, produces slightly more CO emissions than the FACE gasolines at both equivalence 

ratios. The RON 80 fuel have a large fraction of aromatics, mostly toluene which acts as 
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a radical scavenger depressing the low temperature reaction [49, 150]. Furthermore, it 

also contains about 5% of cyclopentane which inhibits the LTHR [99]. However, its 

higher concentration of long chain n-alkanes, such as n-heptane and n-octane, and 

relatively lower amount of highly branched alkanes, such as 2,2,4-trimethylpentane and 

2,3-dimethylpentane accelerate the low temperature reaction rate. The isomerization 

reaction rate of RO2 radicals to QOOH radical species is fastest in long, linear alkane fuel 

molecules, and is slowest in highly branched fuel molecules due to less availability of 

secondary hydrogen atoms [75, 151]. The RON 80 fuel also exhibits less pronounced 

NTC behavior as observed in Figure 5-3. It reaches the hot-ignition temperature at lower 

CR which indicates the early onset of high temperature oxidation, eventually resulting in 

lower CCR as shown in Figure 5-5. For the FACE gasolines, both fuels show relatively 

similar ignition behavior throughout all test conditions. The FACE C gasoline exhibits 

marginally earlier hot-ignition timing and lower CCR even though it possesses higher 

RON compared to the FACE A gasoline.  

 
Figure 5-5 Critical compression ratio as a function of intake pressure for higher RON 

fuels at Tint = 190ºC and XO2 = 0.21. 
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        (a) Pint = 1.0 bar, CR = 11.0             (b) Pint = 2.0 bar, CR = 7.0 

 
       (c) Pint = 3.0 bar, CR = 5.3 

 

Figure 5-6 Apparent heat release rate as a function of crank angle for higher RON fuels at 

XO2 = 0.21 and ϕ = 0.25. 

 

Figures 5-6 and 5-7 present the apparent heat release rate (AHRR) profiles during 

ITHR period at ϕ = 0.25 and 0.5, respectively. All the higher RON fuels exhibit single-

stage ignition behavior only at Pint = 1 bar and ϕ = 0.25 since the charge passes through 

the active LTHR range (760 – 880 K) at low pressure. For this condition, the low 

temperature oxidation rarely occurs at in-cylinder pressure range of 6 to 12 bar whereas it 
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is more vigorous at the range of 10 to 17 bar for the higher intake pressure of 2 bar. From 

Figure 5-7, it is clearly observed that the higher fuel concentration at ϕ = 0.5 remarkably 

enhances the overall LTHR. 

 

     
        (a) Pint = 1.0 bar, CR = 8.5             (b) Pint = 2.0 bar, CR = 5.0 

 

Figure 5-7 Apparent heat release rate as a function of crank angle for higher RON fuels at 

XO2 = 0.21 and ϕ = 0.5. 

 

 At Pint = 1 bar and ϕ = 0.25 from Figure 5-6, the RON 80 fuel shows a distinctive 

peak indicating the start of HTHR whereas both the FACE gasolines exhibit weak ITHR 

at CR of 11. This reactivity order is continued despite the presence of LTHR as intake 

pressure increases. The FACE C gasoline, which has the highest RON among the test 

fuels, is more reactive than the FACE A gasoline, resulting in earlier onset of ITHR as 

well as HTHR at any intake pressure, as illustrated in Figures 5-4 and 5-6. It appears that 

the RON metric itself is not sufficient to represent the autoignition behavior even for the 

highly paraffinic fuels. More than twice n-alkane content of FACE C gasoline leads to 

more pronounced LTHR at both equivalence ratios. Through the direct comparison of 
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AHRR profiles from Figure 5-6 (a) and (b), it can be observed that the stronger LTHR of 

FACE C gasoline accelerates the intermediate temperature reaction, causing a greater 

amount ITHR. This finding is also consistent with the experimental results in the 

previous chapter.  

 

      
       (a) Physical ignition delay          (b) Chemical ignition delay 

 

 

 
(c) Total ignition delay 

 

Figure 5-8 Physical, chemical, and total ignition delay as a function of ambient 

temperature for higher RON fuels at XO2 = 0.202. 
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The effects of ambient temperature and oxygen concentration on the physical and 

chemical ignition behavior of the fuels with similar RON were investigated using the 

optically accessible constant volume combustion chamber. Figure 5-8 presents the 

physical, chemical, and total ignition delay times as a function of initial chamber 

temperature for the higher RON fuels at XO2 = 0.202. The overall ignition delay times for 

the test gasolines are much longer and more sensitive to the ambient air temperature as 

compared to previous experiments in this same test facility for conventional diesel, 

biodiesel, and jet fuels, due to lower reactivity of the current test fuels [47, 48, 55, 56, 

152].  

From Figure 5-8, it is interesting to note that the ignition behavior of RON 80 fuel 

is distinctively different from that of FACE gasolines in both physical and chemical 

processes. The RON 80 fuel shows much longer liquid fuel vaporization and quite shorter 

gas-phase ignition than the higher RON FACE gasolines. The lower volatility of RON 80 

fuel, which can be expressed as lower vapor pressure and higher boiling temperature 

from Table 5-1 and Figure 5-2, increases the physical ignition delay times as shown in 

Figure 5-8 (a). The lower volatility leads to slower spray evaporation and decelerates the 

fuel-air mixing [153, 154]. In addition, the higher liquid fuel density of RON 80 fuel 

further prolongs the physical process. It has been shown that increasing liquid fuel 

density extends liquid penetration length in spray experiments. The higher liquid fuel 

density reduces spray jet velocity and plume angle, thereby diminishing the air mixing 

process [153, 155-159]. The time difference between the physical ignition delay of the 

test fuels becomes increasingly large as the air temperature decreases, which means that 

the physical properties are more important at lower temperature. Zhang et al. also found 
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that the effect of the liquid fuel density on the ignition delay process is more pronounced 

when reducing the in-cylinder temperature, through computational fluid dynamic (CFD) 

simulation [134]. Despite the overall longer physical ignition process, the higher gas-

phase oxidation reactivity of RON 80 fuel leads to a faster chemical ignition process than 

for the FACE gasolines, eventually reducing the total ignition delay time.  

Both FACE gasolines provide almost identical physical ignition delay time even 

though the FACE C gasoline has slightly lower vapor pressure, higher boiling 

temperature, and a bit higher fuel density which can hinder the fuel vaporization. Other 

physical properties such as viscosity, surface tension, specific heat, and heat of 

vaporization, which were not explored in this study, also can affect the physical ignition 

process. However, the greater LTHR of FACE C gasoline, as mentioned earlier, can 

offset the delay time difference resulting from the liquid fuel evaporation since the 

physical ignition delay time is measured by the onset of the formation of formaldehyde. 

Although the prevailing processes affecting the physical ignition delay are related to the 

fuel physical properties, the low temperature chemistry is also partially included in the 

physical ignition delay measurement since the formation of formaldehyde is largely 

affected by LTHR. The chemical ignition delay times for these two fuels are also very 

similar each other. This finding is consistent with previous shock tube and RCM 

experimental results of Sarathy et al. and Vuilleumier et al. [136, 141]. 
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Figure 5-9 Apparent heat release rate for higher RON fuels at Tc = 540, 560, 600, 640ºC 

and XO2 = 0.202. 

 

The AHRRs derived from measured pressure trace data at selected ambient 

temperature are plotted in Figure 5-9. For all the test fuels, there appears to be a distinct 

two-stage ignition behavior across the temperature range at initial chamber pressure of 20 

bar. The AHRR profiles of alkane-rich FACE A and C gasolines are almost 
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indistinguishable from each other due to their similar reactivity and physical properties. 

They also exhibit much longer NTC region than the RON 80 fuel as observed in Figure 

5-3. The NTC behavior is dominant in paraffin autoignition chemistry [63]. From the 

previous chapter, it was found that more LTHR leads to a less pronounced NTC region 

by producing a greater amount of intermediates and radicals, consequently resulting in 

early onset of intermediate temperature reaction. This is confirmed in Figure 5-10, where 

the LTHR intensity is shown as a function of initial ambient air temperature for higher 

RON fuels. More LTHR contribution of RON 80 fuel to the total amount of heat released 

decreases the NTC regime at each air temperature. It is also observed that as the air 

temperature increases, the LTHR intensity for the test fuels linearly decreases, which is 

consistent with experimental results of Kang et al. [47]. Increasing the initial air 

temperature reduces the residence time of reactive mixture during the active low 

temperature oxidation regime (760 – 880 K). 

 

 
Figure 5-10 LTHR intensity as a function of ambient temperature for higher RON fuels at 

XO2 = 0.202. 
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      (a) Physical ignition delay           (b) Chemical ignition delay 

 

 
  (c) Total ignition delay 

 

Figure 5-11 Physical, chemical, and total ignition delay as a function of ambient oxygen 

mole fraction for higher RON fuels at Tc = 600ºC. 

 

This part focuses on the effect of ambient oxygen concentration on liquid fuel 

evaporation and gas-phase ignition through an examination of the physical and chemical 

ignition processes of the fuels with similar RON. Figure 5-11 presents the physical, 

chemical, and total ignition delay times as a function of initial oxygen mole fraction for 

the higher RON fuels at Tc = 600ºC. The oxygen dilution using the simulated EGR 
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increases both physical and chemical ignition delay times, but the physical process is 

remarkably less sensitive to the oxygen concentration compared to the chemical process. 

This indicates that the oxygen dilution rarely affects the physical processes such as 

atomization, mixing, and evaporation. Mayo et al. and Kang et al. also found similar 

observation from diesel and jet fuel experiments [47, 56].  

 

 
Figure 5-12 Apparent heat release rate for higher RON fuels at XO2 ≈ 0.202, 0.174, 0.125, 

0.095 and Tc = 600ºC. 
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Figure 5-13 LTHR intensity as a function of ambient oxygen mole fraction for higher 

RON fuels at Tc = 600ºC. 

 

As discussed above for the RON 80 fuel, the lower volatility and higher density 

lead to a longer physical ignition delay while the higher amount of LTHR results in a 

shorter chemical ignition delay compared to the FACE gasolines. This trend is not 

changed under the oxygen diluted conditions. Both the FACE A and C gasolines also 

show almost identical physical ignition delay times across the test conditions. As the 

oxygen concentration decreases, however, the gas-phase ignition of FACE A gasoline is 

more delayed than the FACE C gasoline. This phenomenon can be clearly shown in the 

AHRR profiles from Figure 5-12. The main heat release event of FACE A gasoline is 

more retarded than that of FACE C gasoline as the oxygen concentration decreases. As 

can be seen in Figure 5-13, this is mainly due to the more reduced LTHR intensity of 

FACE A gasoline which possesses less n-alkane content compared to the FACE C 

gasoline. This indicates that the fuel with higher amount of n-alkane is less sensitive to 

the oxygen dilution when the RON and MON are constant. This finding is similar to the 

greater EGR tolerance of fuels with higher n-alkane content when the DCN is constant 

[56, 100]. 
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 The effect of oxygen dilution on low temperature oxidation has been studied in 

depth including this author’s research works in Chapter 4, which concluded that oxygen 

dilution significantly suppresses LTHR [26, 103]. Unlike the ambient temperature sweep, 

the insensitivity of the physical processes and reduced LTHR with the oxygen dilution 

considerably increases the NTC period as observed in Figure 5-13. 

 

5.3.2 Lower RON Fuels 

This section discusses the differences of liquid to gas-phase transition and 

chemical kinetics of high reactivity gasolines using the motored engine and the constant 

volume combustion chamber. Figures 5-14 to 5-18 show the autoignition behavior of 

homogenous mixtures of FACE I, J, RON 70 and 60 fuels at ϕ = 0.25 and 0.5 in the 

motored engine. From Figure 5-14, where the CO emissions are shown as a function of 

CR at both naturally aspirated and boosted conditions, the lower RON fuels produce 

much more CO emissions during pre-ignition than the higher RON fuels, from the above 

section, due to their higher mass percentage of long chain n-alkanes such as n-heptane 

and n-octane.  

The RON 60 fuel, which is the most reactive fuel among all the test fuels, shows 

the earliest onset of low and high temperature reactions and final autoignition, as can be 

seen through the experimental results of CO emissions, maximum in-cylinder gas 

temperature, and CCR from Figures 5-14, 5-15 and 5-16. At Pint = 1 bar from Figure 

5-14, one of interesting observations is that the FACE J and RON 70 fuels, which contain 

considerable aromatic content, begin the low temperature reaction at higher CR than the 
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FACE I gasoline even though they consist of a higher amount of n-alkanes. This behavior 

also can be observed for the RON 80 fuel from the CR sweep test in Figure 5-3. The 

possible reason is that the radical scavenging effect of aromatics, which can reduce the 

chain-propagation reactions, retard the onset of low temperature reaction.  

 
(a) ϕ = 0.25     (b) ϕ = 0.5 

 

Figure 5-14 Carbon monoxide emissions as a function of CR for lower RON fuels at Tint 

= 190ºC and XO2 = 0.21. 

   
    (a) ϕ = 0.25          (b) ϕ = 0.5 

 

Figure 5-15 Maximum in-cylinder bulk temperature as a function of CR for lower RON 

fuels at Tint = 190ºC and XO2 = 0.21. 
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Figure 5-16 Critical compression ratio as a function of intake pressure for lower RON 

fuels at Tint = 190ºC and XO2 = 0.21. 

 

It is also interesting to note that the fuel reactivity trend is reversed as the intake 

pressure increases. The FACE I gasoline, which has almost zero octane sensitivity, 

becomes more reactive at higher intake pressure than the FACE J and RON 70 fuels 

which represent mild octane sensitivity. The earlier hot ignition timing and lower CCR of 

the FACE I gasoline at boosted pressure can be observed in Figure 5-15 and 5-16. Szybist 

et al. found that a fuel with lower octane sensitivity was the most knock resistant at low 

load whereas a fuel with higher octane sensitivity was the most knock resistant at high 

load [67]. Zhang et al. and Vallinayagam et al. also observed that increasing octane 

sensitivity enhanced fuel reactivity and reduced ignition delay at conditions similar to the 

MON test [73, 134]. Figures 5-17 and 5-18, where the AHRR is shown as a function of 

crank angle during ITHR period at both equivalence ratios, explain the reason for this 

phenomenon. As the intake pressure increases, the LTHR of FACE I gasoline more 

rapidly increases compared to the higher octane sensitivity fuels, leading to early start of 
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ITHR, even though the FACE I gasoline contains least amount of n-alkanes. The FACE J 

gasoline, which contains the highest aromatic content, is most reactive at atmospheric 

intake pressure and becomes least reactive at the boosted conditions due to the 

suppression of low temperature reaction by aromatics.  

 

 

 

     
        (a) Pint = 1.0 bar, CR = 9.6             (b) Pint = 2.0 bar, CR = 6.2 

 

 
       (c) Pint = 3.0 bar, CR = 4.8 

 

Figure 5-17 Apparent heat release rate as a function of crank angle for lower RON fuels 

at XO2 = 0.21 and ϕ = 0.25. 
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        (a) Pint = 1.0 bar, CR = 7.3             (b) Pint = 2.0 bar, CR = 4.6 

 

Figure 5-18 Apparent heat release rate as a function of crank angle for lower RON fuels 

at XO2 = 0.21 and ϕ = 0.5. 

 

The physical, chemical, and total ignition delay as a function of initial chamber 

temperature for the lower RON fuels are plotted in Figure 5-19. Consistent with the 

results from the higher RON fuels, the physical property effects on ignition process are 

more important at lower temperature.  

The higher aromatic content increases the liquid fuel density and the final boiling 

temperature as observed in Table 5-1 and Figure 5-2. Therefore, the FACE J and RON 70 

fuels, which consist of more than 20 vol. % of aromatics, produce longer physical 

ignition delay than the FACE I and RON 60 fuels with lower aromatic content, as a result 

of an extend atomization and evaporation process.  
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       (a) Physical ignition delay          (b) Chemical ignition delay 

 

 

 
(c) Total ignition delay 

 

Figure 5-19 Physical, chemical, and total ignition delay as a function of ambient 

temperature for lower RON fuels at XO2 = 0.202. 

 

The Arrhenius plots of chemical ignition delay for all the lower RON fuels reveal 

the NTC behavior despite the narrow temperature range (813 – 913 K) explored in this 

study. The almost zero aromatic content of FACE I gasoline leads to very distinct NTC 

behavior at lower ambient air temperature compared to the other test fuels. Thus, the 
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chemical ignition process of FACE I gasoline becomes less sensitive to the ambient 

temperature above 853 K. The RON 60 gasoline, the highest reactivity fuel, has the 

shortest chemical ignition delay time whereas the highest aromatic content FACE J 

gasoline shows the slowest gas-phase ignition at the current temperature conditions at Pc 

= 20 bar.  

 
Figure 5-20 Apparent heat release rate for lower RON fuels at Tc = 540, 560, 600, 640ºC 

and XO2 = 0.202. 
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Figure 5-20 presents the AHRR at selected ambient air temperature for the lower 

RON fuels. It is observed that both the low and main heat release events are significantly 

advanced as the temperature increases. However, the alkane-rich FACE I gasoline shows 

a slower pace of main heat release advancement compared to the high aromatic content 

fuels, resulting in the reversed ignition delay trend as can be seen in Figure 5-19. Figure 

5-21 shows the LTHR contribution to the total heat release as a function of ambient air 

temperature. This LTHR result can explain the reversed ignition delay trend of the fuels 

with similar RON. The LTHR of FACE I gasoline more rapidly decreases with increasing 

the temperature than the FACE J and RON 70 fuels. This leads to a relatively longer 

NTC period and consequently results in later combustion phasing for FACE I gasoline. In 

conclusion, the LTHR of lower octane sensitivity fuel more rapidly increases with initial 

chamber pressure and decreases with initial chamber temperature than that of higher 

octane sensitivity fuel.  

 

 
Figure 5-21  LTHR intensity as a function of ambient temperature for lower RON fuels at 

XO2 = 0.202. 
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      (a) Physical ignition delay           (b) Chemical ignition delay 

 

 
  (c) Total ignition delay 

 

Figure 5-22 Physical, chemical, and total ignition delay as a function of ambient oxygen 

mole fraction for lower RON fuels at Tc = 600ºC. 

 

Figure 5-22 shows the physical, chemical, and total ignition delay times as a 

function of ambient oxygen mole fraction for the lower RON fuels at Tc = 600ºC. 

Consistent with the results from the tests of higher RON fuels, the oxygen dilution does 

not significantly affect the physical ignition delay. For the chemical process, the FACE I 

gasoline still shows different behavior from the other high aromatic content fuels during 
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the oxygen concentration sweep. The changes in ambient oxygen levels have a much 

greater effect on the chemical ignition delay of the low aromatic content fuel, suggesting 

that the fuel with high aromatic content can tolerate reduced oxygen condition.  

 

 

 
Figure 5-23 Apparent heat release rate for lower RON fuels at XO2 ≈ 0.202, 0.174, 0.125, 

0.095 and Tc = 600ºC. 
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Figure 5-23 presents the AHRR results for each lower RON fuel with various 

simulated EGR conditions. The main heat release rate phasing of FACE I gasoline is 

almost identical with that of RON 70 fuel under the standard 20.2 vol. % oxygen 

condition. However, the phasing of FACE I gasoline is more retarded as less ambient 

oxygen is available. The comparison of LTHR intensity during oxygen concentration 

sweep is shown in Figure 5-24. The RON 70 fuel exhibits much higher LTHR intensity 

than the FACE I gasoline, but there is no visible difference in the trend between these 

two fuels. From Chapters 3 and 4, it was concluded that the oxygen dilution enormously 

influences the ITHR behavior as well as the LTHR characteristics. The amount of ITHR 

for lower octane sensitivity fuel more steeply decreases than for higher octane sensitivity 

fuel with the addition of simulated EGR, leading to greater dependence of gas-phase 

ignition on oxygen dilution for the FACE I gasoline.  

 

 

 
Figure 5-24 LTHR intensity as a function of ambient oxygen mole fraction for lower 

RON fuels at Tc = 600ºC. 
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5.4 Conclusion 

In order to investigate impacts of fuel physical properties and chemical 

composition on GCI, FACE A, C, I, and J gasolines and three naphtha blends with RON 

from 60 to 80 were tested in an HCCI engine and a constant volume combustion chamber 

through sweeps of pressure, temperature, and oxygen concentration. This study provides 

a fundamental investigation of autoignition behavior and physical and chemical ignition 

delay through the comparison of fuels with similar octane number under the condition at 

which low temperature reactivity is active. Significant findings are as follow: 

Physical property effects 

• Higher aromatic content leads to lower volatility and higher density, resulting in 

slower liquid fuel vaporization process. These physical properties become 

increasingly important as the ambient air temperature decreases.  

• Decreasing the air temperature from 640 K to 540 K significantly increases the 

physical ignition delay time by more than 300% whereas the oxygen dilution from 

0.202 to 0.095 rarely increases the physical ignition delay time by less than 47%. 

• Both the FACE A and C gasolines show almost identical physical ignition delay 

during the temperature and oxygen mole fraction sweeps. 

Chemical composition effects 

• For the same RON, the fuels with higher amount of aromatics, the FACE J and 

RON 70 fuels, are more resistant to autoignition than the alkane-rich FACE I 

gasolines at boosted intake pressure.  
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• For the same RON, the fuels with higher amount of aromatics, the FACE J and 

RON 70 fuels, are less sensitive to the oxygen dilution. 

• For the same RON, the alkane-rich fuel, the FACE I gasoline, is less sensitive to 

the temperature due to pronounced NTC behavior.   

• For the same RON and octane sensitivity, the fuel with higher amount of n-

alkane, the FACE C gasoline, is less sensitive to the oxygen dilution than the 

FACE A gasoline. Both the FACE A and C gasolines show similar ignition 

behavior during the ambient temperature sweep, but the gas-phase ignition of 

FACE A gasoline is more delayed than the FACE C gasoline as the ambient 

oxygen concentration decreases due to more reduced LTHR intensity.  

• The FACE I gasoline is much more reactive than the higher octane sensitivity 

FACE J gasoline at the conditions where low temperature reaction is active. 
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          Chapter 6  

 

 

Conclusions and Recommendations 

6.1 Summary of Dissertation 

This dissertation investigated the effects of chemical composition on autoignition 

behavior in a motored engine and a constant volume combustion chamber. A total of 

eleven full boiling range gasolines with different octane number and sensitivity have been 

tested at various pressures, temperatures, and oxygen concentrations. Summaries of these 

studies are presented as follows. 

In Chapter 3, influence of ITHR on autoignition reactivity of single-stage ignition 

fuels with varying octane sensitivity was investigated in a motored engine. Four full 

boiling range gasolines with RON of 92 and octane sensitivity range of 0.5 to 11.3 were 

tested through sweeps of intake temperature, intake oxygen mole fraction, and fuel loading. 

This study provided a new understanding of ITHR behavior depending on octane sensitivity 

and its effects on autoignition reactivity of single-stage ignition fuels under various engine 

operating conditions. Combustion phasing comparisons of the fuels showed that the 

relative reactivity of lower octane sensitivity fuel increased at lower intake temperature 

and lower EGR ratio conditions, whereas the relative reactivity of higher octane 
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sensitivity fuel increased at higher intake temperature and higher EGR ratio conditions. 

For all of the single-stage ignition fuels that were tested, the amount of ITHR increased in 

the range of 2% to 7% of total heat release as the intake temperature and the intake 

oxygen mole fraction increased. These ITHR trends, depending on octane sensitivity, 

were almost identical with the trends of combustion phasing, showing that ITHR 

significantly affects fuel autoignition reactivity and determines octane sensitivity. In 

addition, the strong dependence of ITHR on equivalence ratio enhanced the ϕ-sensitivity. 

For the similar combustion phasing, the S11.3 and the S8.7 which were the higher octane 

sensitivity fuels exhibited faster rise rates of ITHR intensity than the S0.5 and the S4.8 

respectively, leading to more advanced hot-ignition phasing with increasing equivalence 

ratio. 

In Chapter 4, effects of octane number, pressure, and EGR on low and 

intermediate temperature heat release of two-stage ignition fuels were explored in the 

motored engine. Three high reactivity gasoline-like fuels with RON range of 60 to 80 

were investigated through CR sweeps to characterize low and intermediate temperature 

oxidation behavior under various engine operating conditions. This study provided a new 

understanding of the correlation between LTHR and ITHR as well as the individual 

effects of pressure and oxygen mole fraction on ITHR. The experimental results showed 

that LTHR significantly enhanced ITHR, eventually advancing the autoignition timing. 

As the intake oxygen mole fraction decreased from 0.21 to 0.14, the LTHR and the ITHR 

of RON 60 were suppressed by 30% and 38%, respectively. The intake boosting from 

atmospheric pressure to 1.4 bar absolute increased the LTHR by 49% even at a constant 

fuel loading. For all the test fuels, the average ITHR per crank angle also increased with 
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the intake pressure, showing concise and strong intermediate temperature reaction. 

However, the magnitude of ITHR for the lower RON fuel, which exhibited a great 

amount of ITHR, became saturated as the intake pressure increased. 

Finally, in Chapter 5, effects of physical properties and chemical composition on 

autoignition behavior of FACE A, C, I, and J gasolines and three naphtha blends with 

RON range of 60 to 80 were investigated in the motored engine and a constant volume 

combustion chamber. This study provided a fundamental investigation of autoignition 

behavior and physical and chemical ignition delay through sweeps of pressure, 

temperature, and oxygen concentration under the condition at which low temperature 

reactivity was active. With regard to physical properties, higher aromatic content led to 

lower volatility and higher density, resulting in slower liquid fuel evaporation process. 

Decreasing the air temperature from 640 K to 540 K significantly increased the physical 

ignition delay time by more than 300% whereas the oxygen dilution from 0.202 to 0.095 

rarely increased the physical ignition delay time by less than 47%. This concluded that 

the physical ignition delay was very sensitive to the ambient air temperature whereas the 

oxygen dilution rarely affected the physical ignition delay. With regard to chemical 

properties at the same RON, the higher aromatic content fuels, the FACE J and RON 70 

fuels, were more resistant to autoignition at boosted pressure and less sensitive to the 

oxygen dilution whereas the alkane-rich fuel, FACE I gasolines, was less sensitive to the 

temperature due to pronounced NTC behavior. For the same RON and octane sensitivity, 

the fuel with higher amount of n-alkane, the FACE C gasoline, was less sensitive to the 

oxygen dilution than the FACE A gasoline. Both the FACE A and C gasolines showed 

similar ignition behavior during the ambient temperature sweep, but the gas-phase 
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ignition of FACE A gasoline was more delayed than the FACE C gasoline as the ambient 

oxygen concentration decreased due to more reduced LTHR intensity. 

 

6.2 Recommendations for Future Work 

This work has been focused on one aspect of GCI combustion control, i.e., fuel 

autoignition kinetics. Another aspect of the control technique is fuel stratification using 

injection strategies. The fuel stratification can provide fast control of combustion phasing 

in GCI engines [160]. The number of direct injections, the injection timing, and the fuel-

fraction split ratio between injections significantly affect the fuel stratification, eventually 

controlling the main combustion event. Therefore, it would be worthwhile to investigate 

the effect of fuel stratification on autoignition behavior and combustion performance of 

various reactivity fuels.  

Another potential topic is to extend the current study to consider the effect of 

charge cooling on autoignition reactivity. The modified CFR engine with an upstream, 

pre-vaporized fuel injection system used in this study is an optimum experimental device 

for studying autoignition characteristics driven by chemical kinetic of fuels over a wide 

range of pressures, temperatures, and oxygen mole fractions. However, heat of 

vaporization (HoV) charge cooling has a significant effect on autoignition behavior 

especially for high ethanol content fuels [161, 162]. This charge cooling effect is 

important for engines with a direct fuel injection system. In order to study both the 

chemical and charge cooling effects, it is recommended to apply an additional port fuel or 

direct injection system to the engine.  
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Appendix 

A. Detailed Hydrocarbon Analysis (DHA) of Test Fuels 

 

Table A-1 DHA for RON 60 (> 0.1 mol%) 

Group Component Wgt% Vol% Mol% 

Paraffin 

n-Butane 1.452 1.78 2.396 

n-Pentane 4.884 5.535 6.495 

n-Hexane 8.506 9.153 9.469 

n-Heptane 8.759 9.091 8.387 

n-Octane 7.023 7.094 5.898 

n-Nonane 0.394 0.39 0.295 

I-Paraffins 

i-Pentane 3.088 3.536 4.106 

2,2-Dimethylbutane 0.227 0.248 0.252 

2,3-Dimethylbutane 0.643 0.69 0.716 

2-Methylpentane 4.818 5.235 5.364 

3-Methylpentane 3.047 3.254 3.392 

2,4-Dimethylpentane 0.555 0.586 0.532 

3,3-Dimethylpentane 0.185 0.19 0.177 

2-Methylhexane 4.73 4.946 4.528 

3-Methylhexane 3.569 3.686 3.417 

2,2-Dimethylhexane 0.195 0.199 0.164 

2,5-Dimethylhexane 0.565 0.578 0.475 

2,4-Dimethylhexane 0.683 0.692 0.574 

3,3-Dimethylhexane 0.208 0.208 0.175 

2,3-Dimethylhexane 0.387 0.386 0.325 

2-Methylheptane 3.478 3.537 2.921 

4-Methylheptane 1.177 1.185 0.989 
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3-Methylheptane 2.734 2.749 2.296 

3-Ethylhexane 1.091 1.085 0.917 

2,4-Dimethylheptane 0.48 0.479 0.359 

2,6-Dimethylheptane 0.929 0.93 0.695 

2,5-Dimethylheptane 1.097 1.089 0.821 

4-Methyloctane 0.599 0.59 0.448 

2-Methyloctane 0.667 0.663 0.499 

3-Methyloctane 0.612 0.603 0.458 

Mono-Aromatics 

Benzene 0.893 0.721 1.097 

Toluene 4.708 3.853 4.902 

Ethylbenzene 0.461 0.377 0.417 

m-Xylene 3.531 2.899 3.191 

p-Xylene 1.55 1.277 1.401 

o-Xylene 0.872 0.703 0.788 

Mono-

Naphthenes 

Cyclopentane 0.297 0.283 0.406 

Methylcyclopentane 2.205 2.091 2.514 

Cyclohexane 2.639 2.405 3.008 

1t,3-Dimethylcyclopentane 0.449 0.426 0.439 

1c,3-Dimethylcyclopentane 0.43 0.409 0.42 

1t,2-Dimethylcyclopentane 0.875 0.826 0.855 

Methylcyclohexane 6.101 5.627 5.961 

1,1,3-Trimethylcyclopentane 0.269 0.255 0.23 

Ethylcyclopentane 0.19 0.176 0.186 

1c,2t,4-Trimethylcyclopentane 0.273 0.254 0.233 

1t,2c,3-Trimethylcyclopentane 0.21 0.194 0.18 

1,3-dimethyl-t-cyclohexane 1.636 1.507 1.399 

Ethylcyclohexane 1.206 1.091 1.031 

1c,2t,4t-Trimethylcyclohexane 0.155 0.141 0.118 

Iso-Olefins 3-Heptene, 4-methyl- 0.56 0.52 0.479 
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Table A-2 DHA for RON 70 (> 0.1 mol%) 

Group Component Wgt% Vol% Mol% 

Paraffin 

n-Butane 0.578 0.712 0.923 

n-Pentane 6.526 7.436 8.401 

n-Hexane 6.596 7.137 7.109 

n-Heptane 6.148 6.417 5.699 

n-Octane 4.452 4.522 3.62 

n-Nonane 0.333 0.331 0.241 

n-Decane 0.217 0.212 0.142 

I-Paraffins 

i-Pentane 7.236 8.333 9.315 

2,2-Dimethylbutane 1.304 1.433 1.405 

2,3-Dimethylbutane 0.736 0.794 0.794 

2-Methylpentane 4.063 4.438 4.378 

3-Methylpentane 2.51 2.696 2.705 

2,4-Dimethylpentane 0.554 0.587 0.513 

3,3-Dimethylpentane 0.136 0.14 0.126 

2-Methylhexane 3.454 3.632 3.201 

3-Methylhexane 2.521 2.618 2.337 

2,2,4-Trimethylpentane 1.358 1.401 1.104 

2,2-Dimethylhexane 0.136 0.14 0.111 

2,5-Dimethylhexane 0.571 0.588 0.464 

2,4-Dimethylhexane 0.617 0.629 0.502 

3,3-Dimethylhexane 0.139 0.14 0.113 

2,3,4-Trimethylpentane 0.557 0.552 0.453 

2,3-Dimethylhexane 0.416 0.416 0.338 

2-Methylheptane 2.262 2.312 1.839 

4-Methylheptane 0.857 0.868 0.697 

3-Methylheptane 1.873 1.893 1.523 

3-Ethylhexane 0.729 0.729 0.593 

2,2,5-Trimethylhexane 0.3 0.302 0.217 

2,4-Dimethylheptane 0.309 0.31 0.224 

2,6-Dimethylheptane 0.577 0.581 0.418 

2,5-Dimethylheptane 0.71 0.709 0.514 

4-Methyloctane 0.375 0.372 0.272 

2-Methyloctane 0.424 0.424 0.307 

3-Methyloctane 0.39 0.386 0.282 

Mono-Aromatics 

Benzene 0.653 0.53 0.776 

Toluene 9.976 8.21 10.055 

Ethylbenzene 0.287 0.236 0.251 

m-Xylene 2.251 1.858 1.969 
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p-Xylene 0.821 0.68 0.718 

o-Xylene 0.7 0.568 0.613 

n-Propylbenzene 0.18 0.149 0.139 

1-Methyl-3-ethylbenzene 0.47 0.388 0.363 

1-Methyl-4-ethylbenzene 0.217 0.18 0.168 

1,3,5-Trimethylbenzene 0.266 0.219 0.205 

1-Methyl-2-ethylbenzene 0.197 0.16 0.152 

1,2,4-Trimethylbenzene 0.837 0.682 0.647 

1,2,3-Trimethylbenzene 0.191 0.153 0.148 

Mono-Naphthenes 

Cyclopentane 2.848 2.726 3.771 

Methylcyclopentane 1.656 1.579 1.828 

Cyclohexane 2.616 2.398 2.887 

1t,3-Dimethylcyclopentane 0.321 0.305 0.303 

1c,3-Dimethylcyclopentane 0.305 0.293 0.289 

1t,2-Dimethylcyclopentane 0.621 0.59 0.588 

Methylcyclohexane 4.26 3.951 4.03 

1,1,3-

Trimethylcyclopentane 
0.183 0.175 0.152 

Ethylcyclopentane 0.134 0.125 0.127 

1c,2t,4-

Trimethylcyclopentane 
0.184 0.172 0.152 

1t,2c,3-

Trimethylcyclopentane 
0.141 0.131 0.117 

1,3-dimethyl-t-cyclohexane 1.022 0.947 0.846 

1c,4-Dimethylcyclohexane 0.316 0.288 0.262 

Ethylcyclohexane 0.76 0.692 0.629 

n-Olefins Hexene-1 2.619 2.756 2.89 

Iso-Olefins 3-Heptene, 4-methyl- 0.369 0.344 0.306 
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Table A-3 DHA for RON 80 (> 0.1 mol%) 

Group Component Wgt% Vol% Mol% 

Paraffin 

n-Butane 0.608 0.758 0.954 

n-Pentane 5.665 6.523 7.16 

n-Hexane 4.455 4.872 4.714 

n-Heptane 4.043 4.264 3.679 

n-Octane 2.613 2.683 2.086 

n-Nonane 0.369 0.371 0.262 

n-Decane 0.424 0.419 0.272 

I-Paraffins 

i-Pentane 10.104 11.76 12.771 

2,2-Dimethylbutane 2.29 2.544 2.423 

2,3-Dimethylbutane 0.745 0.812 0.788 

2-Methylpentane 2.876 3.176 3.044 

3-Methylpentane 1.759 1.909 1.861 

2,4-Dimethylpentane 0.542 0.581 0.494 

2-Methylhexane 2.291 2.435 2.085 

3-Methylhexane 1.6 1.679 1.456 

2,2,4-Trimethylpentane 2.634 2.745 2.103 

2,2,3-Trimethylpentane 0.202 0.204 0.161 

2,5-Dimethylhexane 0.597 0.62 0.476 

2,4-Dimethylhexane 0.586 0.604 0.468 

2,3,4-Trimethylpentane 1.069 1.072 0.853 

2,3-Dimethylhexane 0.42 0.425 0.335 

2-Methylheptane 1.331 1.375 1.062 

4-Methylheptane 0.488 0.499 0.39 

3-Methylheptane 1.106 1.131 0.883 

3-Ethylhexane 0.437 0.442 0.349 

2,2,5-Trimethylhexane 0.479 0.488 0.34 

2,4-Dimethylheptane 0.185 0.188 0.131 

2,6-Dimethylheptane 0.339 0.345 0.241 

2,5-Dimethylheptane 0.433 0.436 0.308 

4-Methyloctane 0.24 0.241 0.171 

2-Methyloctane 0.277 0.28 0.197 

3-Methyloctane 0.264 0.264 0.187 

Mono-Aromatics 

Benzene 0.379 0.311 0.443 

Toluene 15.208 12.649 15.052 

Ethylbenzene 0.17 0.142 0.146 

m-Xylene 1.305 1.089 1.121 

p-Xylene 0.477 0.4 0.41 

o-Xylene 0.605 0.496 0.52 
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n-Propylbenzene 0.351 0.293 0.266 

1-Methyl-3-ethylbenzene 0.918 0.766 0.697 

1-Methyl-4-ethylbenzene 0.427 0.358 0.324 

1,3,5-Trimethylbenzene 0.519 0.433 0.394 

1-Methyl-2-ethylbenzene 0.385 0.316 0.292 

1,2,4-Trimethylbenzene 1.636 1.347 1.241 

1,2,3-Trimethylbenzene 0.379 0.306 0.288 

1-Methyl-3-n-

propylbenzene 
0.218 0.183 0.148 

Naphthalenes 2-Methylnaphthalene 0.198 0.14 0.126 

Mono-Naphthenes 

Cyclopentane 5.271 5.099 6.853 

Methylcyclopentane 1.013 0.976 1.098 

Cyclohexane 2.551 2.363 2.764 

1t,3-Dimethylcyclopentane 0.193 0.186 0.179 

1c,3-Dimethylcyclopentane 0.183 0.177 0.17 

1t,2-Dimethylcyclopentane 0.379 0.364 0.352 

Methylcyclohexane 2.553 2.393 2.371 

1,3-dimethyl-t-cyclohexane 0.604 0.565 0.491 

Ethylcyclohexane 0.45 0.414 0.366 

n-Olefins Hexene-1 5.181 5.511 5.615 
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