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ABSTRACT

The intricately ordered structure of the human genome is a product of dynamic

interactions between DNA and proteins such as nucleosomes and transcription factors

(TFs), which allow cells to respond to environmental changes while maintaining ro-

bustness of genetic programs. Changes in the non-coding genome can affect gene reg-

ulation and lead to increased disease predisposition, but the underlying mechanisms

are not fully understood. Therefore, understanding how the genome is organized and

regulated is a central question in biomedical research. My thesis aims to develop and

apply novel computational methods to understand general biological mechanisms of

genome regulation, with a focus on TF-DNA interactions.

In the initial part of this thesis, I develop computational methods to quantify

TF-DNA interaction patterns by applying information theory to high-throughput

molecular profiles of chromatin accessibility data (using the assay for transposase-

accessible chromatin followed by high-throughput sequencing, ATAC-seq) to measure

a property which we name chromatin information. To circumvent the requirement

of high-throughput molecular profiles of TF binding (chromatin immunoprecipitation

followed by sequencing, ChIP-seq) to obtain chromatin information measurements, I

develop BMO, a novel algorithm to predict TF binding from chromatin accessibility

data that outperforms current state-of-the-art methods. Using BMO in combination

with the information theoretical approach developed here, I quantify the chromatin

information patterns of hundreds of TF motifs across different human tissues and

xi



cell lines. Only a subset of TFs (10-20%) have high chromatin information, and

are therefore associated with organized chromatin. By integrating multiple layers

of molecular profiles, I find that high chromatin information TFs have longer TF-

DNA residence times, associate with nucleosome phasing, and are enriched to overlap

regions associated with the genetic control of gene expression. I then use genetic

data to find evidence that high chromatin information TFs associate with increased

chromatin accessibility and may therefore act as pioneer TFs.

In the last part of this thesis, I apply TF binding prediction algorithms to charac-

terize the regulatory landscape associated with thymocyte development. The results

from these analyses support that thymocyte development is a highly dynamic process

and help prioritize novel candidate TFs and regulatory elements for future experi-

mental validation.

This work represents a novel fusion of two research domains – information theory

and genomics – which allowed to capture properties of TF-chromatin interactions,

with important implications for gene regulation, cell state dynamics, and under-

standing the pathological mechanisms associated with non-coding disease-associated

genetic variants.
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CHAPTER I

Introduction

1.1 The organization of the human genome

Every cell in an individual human has a nearly identical genetic code, but its

differential interpretation leads to diverse tissues and organs. This common 3.2 billion

bases of genetic information would stretch out to approximately two meters, but

must fit within a few micrometers inside the cell nucleus, requiring the genome to be

compacted by about six orders of magnitude [1]. This dense packaging is facilitated by

a constellation of proteins that simultaneously compact the genetic material and allow

the relevant subset of genes and regulatory circuits to be accessible in a cell-specific

manner. The compact form of DNA and proteins is referred to as chromatin.

Chromatin can be broadly categorized as euchromatin or heterochromatin [2].

Euchromatin is the less condensed form of chromatin and is associated with active

regions of the genome, where genes are expressed. Heterochromatin, on the other

hand, usually corresponds to the repressed sections of the genome. As cells dif-

ferentiate and respond to their environment, different regions become accessible or

repressed [3, 4]. Chromatin organization is, therefore, a highly dynamic process and

understanding its regulation is a central question in biology.

The fundamental unit of chromatin is the nucleosome, an octamer of histone pro-

tein cores. Each nucleosome is wrapped by approximately 147 base-pairs (bp) of DNA,
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and is linked to its neighbors by a stretch of linker DNA forming a “beads-on-a-string”

structure (Figure 1.1) [2]. Each of the histone protein cores can be subject to a myriad

of post-translational modifications at different amino-acid residues (e.g. methylation,

acetylation) affecting nucleosome behavior [5]. These modifications modulate nucle-

osome biophysical parameters (e.g. solubility and mobility [6]) and can lead to more

or less accessible nucleosome arrangements as well as allow binding of specialized

proteins called chromatin remodelers. Chromatin remodeler further affect chromatin

organization by adding or removing other post-translational modifications [5]. The

higher-order organization patterns of chromatin include topologically associated do-

mains (TADs), which correspond to regions of the genome that may or may not be

in close linear proximity, but interact in three-dimensional space through chromatin

loops [7]. TADs separate functionally distinct regions of the genome [8].

1.2 Regulatory domains control gene expression

The genomic regions that regulate gene expression are called regulatory elements.

These regions contain DNA sequences that facilitate recruiting of the transcription

machinery, composed of transcription factors (TFs) and RNA polymerase. Regu-

latory elements can be broadly characterized as promoters and enhancers based on

proximity to their target genes [9]. Promoters are located immediately upstream of

the gene transcription start sites (TSS) and are the most well-studied class of reg-

ulatory elements. Enhancers are located distally to TSS regions, typically tens of

thousands of base-pairs [10, 11], but up to 1 Mbp in the same chromosome [12]. The

only well-described instance of enhancers acting in different chromosomes (in trans)

pertains to the process of determining which copy of the olfactory receptors is ex-

pressed in a given olfactory neuron [13]. Enhancers are responsible for driving more

complex spatio-temporal activation patterns in gene expression [14], and are postu-

lated to act as the effectors of developmental and environmental signals [15, 16]. The
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Figure 1.1: Overview of nucleosome organization. Nucleosomes are composed of
core histone subunits (upper panels) and form nucleosome arrays with genomic DNA
(lower panel). Histones can be post-translationally modified to change their biological
properties. The upper-left panel shows a schematic of the most well-studied post-
translational modifications in the H3 tail lysines. Me, methylation (mono-di-tri); Ac,
acetylation.

most accepted mechanism for enhancer function is through 3-dimensional proximity

to its target gene promoter within TADs (Figure 1.2) [17]. The uncertainty associ-

ated with their target genes requires more complex experimental designs to measure

enhancer activity [18, 19]. Therefore, enhancers are harder to study than promoters.

In contrast to the well-characterized genetic code, which links DNA triplets to amino

acid residues during gene translation, the regulatory grammars encoded by non-coding

DNA elements are much more complex and still remain far from understood.

Only in the last decade has the systematic dissection of the enhancer repertoire

in a given cell type became possible. This was in large part due to advances in high-

throughput molecular profiling techniques, such as chromatin immunoprecipitation
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followed by sequencing (ChIP-seq) of histone modifications, DNase I hypersensitive

site sequencing (DNase-seq) [20], the assay for transposase-accessible chromatin using

sequencing (ATAC-seq) [21], and massively-parallel reporter assays [22] (for an in

depth review of these and other techniques, refer to ref. [23]). In addition, broad

community efforts to characterize epigenomic profiles across tissues and cell lines,

such as the ENCODE [24] and Roadmap Epigenomics [25] projects, have provided a

wealth of datasets serving as a reference for other studies.

The availability of multiple histone modifications ChIP-seq datasets across cell

types enabled the application of statistical techniques to segment the genome into

tissue-specific sub-classes of regulatory elements based on their molecular profiles.

ChromHMM is a tool that uses hidden Markov models to define chromatin states,

which are recurring combinations of specific histone modifications [26]. Repressed

regions of the genome are rich in marks including, but not limited to histone 3 lysine

27 trimethylation (H3K27me3) and histone 3 lysine 9 bi/tri-methylation (H3K9me2

and H3K9me3). Promoters are characterized by histone 3 lysine 4 trimethylation

(H3K4me3) and enhancers by histone 3 lysine 4 mono-methylation (H3K4me1). In

addition, the presence of H3K27ac can distinguish active from poised promoters and

enhancers (Figures 1.1 and 1.2) [26–28].

More recently, the development of high-throughput 3-dimensional interaction map-

ping techniques (e.g. Hi-C [29] and promoter-capture Hi-C [30]) enabled the determi-

nation of candidate target genes for enhancers. In addition, analyses of large cohorts

with dense genotyping data combined with gene expression profiles allowed the as-

signment of target genes to enhancers based on genetic modulation of gene expression

(cis-expression quantitative trait loci - cis-eQTLs) [31–34]. These studies have shown

that the interaction landscape between enhancer and promoters are highly dynamic

across tissues, developmental stages, and environmental perturbations [16, 35–37].

Importantly, disruptions in enhancer activity or interaction patterns can lead to
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Figure 1.2: Schematic of an enhancer and promoter interaction at a chromatin loop
regulating gene expression.

pathological conditions [38–40]. Therefore, understanding the biological principles

determining regulatory element activity and interaction patterns is a promising area

of research.

1.3 Transcription factors are the effectors of gene regulation

TFs are a class of proteins that regulate gene activity by recognizing and bind-

ing specific DNA sequences at regulatory elements, called TF motifs. TFs can act

by recruiting the cell’s transcription machinery to their target genes or by recruit-

ing chromatin remodelers. These chromatin remodelers will then reshape the local

chromatin architecture and modulate binding of other TFs. TFs can be broadly

categorized as activators and repressors based on their effects on the target gene ex-
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pression. Activators can work by directly recruiting the transcriptional machinery

to the gene promoter [2] or by recruiting chromatin remodelers that induce a more

accessible chromatin configuration for other TFs [41]. Repressors can act by com-

peting with activators for the same motif [42] or by recruiting repressive chromatin

remodelers, such as the polycomb complex [4]. The most widely used method for

determining genome-wide TF binding is with ChIP-seq assays. This approach, how-

ever, is limited to one TF at a time. Due to sequencing costs, biological material and

antibody specificity requirements, the application of TF ChIP-seq is limited to cases

where there is some a priori knowledge of the TF(s).

TF motifs are commonly represented as position weight matrices (PWMs). PWMs

encode the probabilities of observing any given base at every position of the TF

binding site [43]. Currently, the most common approach to characterize TF PWMs is

to perform a ChIP-seq experiment for the TF of interest and statistically determine

overrepresented DNA sequences that inform the TF binding preferences [43]. Other

approaches include in vitro assays, such as the systematic evolution of ligands by

exponential enrichment (SELEX) [44, 45]. These in vitro approaches measure pure

TF-DNA binding affinities, but may not be biologically accurate because they do not

account for the myriad of factors modulating TF activity in the cellular environment.

There currently are numerous TF motif databases available that integrate data from

these different experimental sources [24, 46, 47].

1.4 Computational methods to predict TF binding

Due to the resource limitations imposed by TF ChIP-seq experiments, one attrac-

tive area of research is in silico TF binding prediction. The availability of compre-

hensive motif libraries and cell lines with large number of TF ChIP-seq experiments

allowed the development and benchmarking of computational approaches to predict

TF binding using either DNA sequence alone or DNA sequence combined with molec-
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ular profile from the sample of interest. These approaches provide a first-pass iden-

tification of putative TFs relevant to the biological phenomena being studied. These

candidate TFs can then be functionally validated using more specific assays [33].

The most näıve approach to predict TF binding is using TF motifs to determine

all the putative binding sites for the TFs of interest using sequence similarity [48].

The major limitation of this approach is that most motif matches are located in

inaccessible chromatin and are unlikely to be bound [49]. In addition, members of

the same TF family can recognize very similar motifs and many TFs bind DNA

indirectly through co-binding partners, which make motif-TF assignments unreliable

for some TFs. One of the focus of the field is to identify redundancy across databases

[50] and correctly assign motifs to TFs or TF families [46] to mitigate these issues.

To overcome the limitations of using sequence alone to predict TF binding, it is

necessary to include functional genomic data and generate tissue-specific predictions.

The most widely adopted methods to predict TF binding use chromatin accessibility

data (DNase-seq or ATAC-seq) to find small localized regions of protected DNA in

otherwise open and accessible regions that are thought to be due to TF binding, which

are called TF footprints [51–54]. TF footprints are characterized by a stereotypical

pattern of a low accessibility region flanked by high accessibility (Figure 1.3). The

footprint location can then be intersected with motif matches in order to determine

candidate TFs. Other methods, such as CENTIPEDE [49], do not directly search for

footprints and instead model the chromatin accessibility shape around the TF motif

to predict TF binding.

There is evidence suggesting that only a small fraction (10-20%) of TFs associate

with footprints [55]. Therefore, the application of footprinting-based methods may

be restricted. It is hypothesized that TF residence time, which corresponds to the

duration of TF binding on DNA (described in detail in the next section), affects

TF footprints [52]. However, the residence times of most TFs are currently unknown.
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Figure 1.3: Footprints overview. Left: schematic of a TF footprint. Right: Aggre-
gate DNase cut profiles across TF binding sites (based on ChIP-seq data) showing
footprints for three TFs (adapted from [52]). Note that the cut density fluctuations
at the TF binding site reflect assay-specific sequence bias.

Other features, such as the level of chromatin accessibility around the TF motif [56, 57]

and the presence of nearby co-occurring motifs [58], have been shown to positively

correlate with TF binding. These features can provide footprint-independent mea-

surements to predict TF binding, but they have not been as extensively characterized

in this context.

1.5 Nucleosomes positioning has active and passive roles in

gene regulation

Nucleosome positioning is an essential property of chromatin architecture. A sig-

nificant portion of the genome is characterized by highly-ordered (phased) nucleosome

arrays. These regions are enriched to overlap active regulatory regions such as pro-

moters and enhancers [59]. The CCCTC-binding factor (CTCF) is the TF with the

most well-characterized ability to rearrange nucleosomes upon binding [60]. Sequenc-

ing of micrococcal nuclease sensitive sites (MNase-seq) experiments, which inform

nucleosome positioning, show that CTCF binding sites are flanked by >10 evenly-

spaced nucleosomes [59, 61]. Other regions with known well-positioned nucleosomes
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include TSS [62]. Studies in yeast have shown that the positioning of the TSS-flanking

nucleosomes correlates with transcriptional activity [63].

The regulatory mechanisms associated with nucleosome positioning are still not

completely understood. One explanation is that the nucleosome competes with TFs

[64] or acts as a barrier for TF binding [59]. However, recent studies have shown

that TF-nucleosome interactions are more intricate. One such study systematically

characterized TF-nucleosome interactions in vitro and demonstrated that TFs have

widely different nucleosome binding preferences [65], ranging from those that are not

affected by the nucleosome, those that bind at specific regions of nucleosome dyad,

and those that are inhibited by the nucleosome. The nucleosome-binding TFs are

postulated to act as anchors of nucleosome positioning. Another study demonstrated

that the TF SOX2 can only bind its motif if it is either located in the center of the

nucleosome dyad, where it encounters less steric hindrance, or if its binding partner,

OCT4, is bound nearby and evicted the nucleosome. The same study showed that

OCT4, on the other hand, is not affected by nucleosome positioning and therefore

likely act as a facilitator of SOX2 (and possibly other TFs) [54]. Together, these

studies demonstrate that nucleosomes simultaneously affect and are affected by TF

binding.

An increasing body of research indicates that the dynamics of TF-chromatin in-

teractions are a key component of the regulatory element activity. One important

biophysical property of TF-chromatin interactions is TF residence time, which corre-

sponds to the duration of TF binding on DNA [66]. It has been shown that differences

in TF residence time can modulate the target gene expression and induce competi-

tion between TFs [67–69]. Importantly, there is evidence indicating that TF residence

times can be biologically modulated [68, 70], with implications for gene regulation.

However, the methodology to experimentally determine TF residence times is tech-

nically demanding, resulting in data available only for a few dozen TFs. Therefore,
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Figure 1.4: Pioneer TFs help establish the chromatin accessibility landscape in the
cell. In this schematic, the orange TF behaves as a pioneer and the other TFs behave
migrants [51].

developing new methods to investigate TF-chromatin dynamics is a potentially re-

warding area to gain insights into the organization of the genome.

1.6 Pioneer transcription factors define cellular identity

A special class of TFs, called pioneers, has been found to be able to bind DNA in

closed chromatin [71]. It is believed that pioneers help establish cell identity by book-

marking cell-specific regions of the genome where other non-pioneer TFs (migrants

[51]) exert their regulatory activity. Known pioneers include FOXA2, GATA, NF-Y,

SOX2, and OCT4, which are all associated with cellular differentiation [71, 72].

The characteristics that differentiate pioneers from non-pioneers are still not un-

derstood, but seem to result mainly from nucleosome affinity [73, 74]. A recent study

determined the in vitro nucleosome affinities for multiple TFs in order to quantify

their pioneering capabilities [74]. Rather than finding a binary separation between

pioneers and non-pioneers, this study found a continuum of nucleosome affinity asso-
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ciated with different TF families. One interpretation of this result is that some TFs

have intrinsic pioneer activity, while others act as pioneers by combinatorial effects of

TFs with distinct TF-chromatin interaction patterns. This is supported by a previous

study that determined that MYC co-binds with OCT4 in nucleosome-dense regions

[73] and with the previously mentioned SOX2 and OCT4 study [75]. Similarly, an-

other study demonstrated that the glucocorticoid receptor can have “pioneer-like”

properties depending on its oligomerization state [76]. Therefore, future studies aim-

ing to characterize pioneer TFs will need to take into account the biological context

modulating TF activity.

1.7 Complex diseases and the flow of biological information

One of the critical questions currently in biomedical research is how genetic vari-

ation encodes disease predisposition. Over 90% of the genetic signals identified by

genome-wide association studies (GWAS) of type 2 diabetes (T2D) occur in non-

protein-coding regions of the human genome [77]. This observation represents a uni-

fying theme across common diseases [78]. Therefore, determining the mechanisms

of disease predisposition driven by these non-coding genetic variants is central to

biomedical research [79]. In order to understand the complex interactions between

genetics and disease, it is necessary to understand the many layers by which the

genotype propagates into phenotype.

The proposed mechanism by which non-coding genetic variation influences disease

predisposition is through disruption of TF binding sites at key regulatory regions

[78, 81]. Disrupting the DNA sequence at regulatory elements affects TF binding and

chromatin organization at these regions. This, in turn, affects gene expression levels

[40]. The changes in gene expression are reflected in protein levels, which lead to

disrupted protein and metabolomic networks and, ultimately, to phenotypes such as

disease status (Figure 1.5) [80].
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Figure 1.5: A simplified vision of the biological layers that link genotype to phenotype.
Adapted from [80]. In reality, there are bidirectional interactions between layers as
well as interactions that skip one or more layers.
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A landmark study demonstrated that one of the non-coding genetic variants asso-

ciated with obesity disrupts a binding site for the TF ARID5B at the FTO locus. This

disruption leads to increased expression of the IRX3 and IRX5 genes during adipocyte

development. These changes in gene expression, in turn, affect lipid storage and mito-

chondrial function, with affects body weight [82]. Since then, other studies (including

from our group during the progress of this dissertation) have demonstrated the role

of disease-associated genetic variants in altering TF binding (either by disrupting

or creating TF binding sites) [33, 83–85]. These findings underscore that chromatin

organization is the first layer affected by non-coding genetic variation. Therefore,

studying the epigenome can provide important clues about how disease predisposi-

tion is encoded in the genome.

1.8 Information theory and biological information

The publication of A Mathematical Theory of Communication by Claude Shan-

non [86] established the theoretical framework to mathematically quantify informa-

tion. Shannon’s Information Theory principles are based on measuring the amount

of entropy [randomness, S(X)] in a given signal (message). This can be done if one

knows a priori the range of the signal (alphabet) by calculating the probability of the

observed message given the alphabet (Equation 1.1). As a corollary, one can calculate

the information content [I(X)], the amount of information in the signal (Equation

1.2, Figure 1.6).

S(X) = −
!

i

P (xi)logP (xi) (1.1)

I(X) = 1− S(X) (1.2)

Shannon’s Information has been applied to various levels of biological organiza-
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Figure 1.6: Schematic of information content calculation. Left: observed values for
three groups (A-C) across three possible signal bins (i.e. alphabet length = 3). Right:
Information content of groups A-C.

tion - DNA sequences [87], protein-protein interaction networks [88], and ecological

communities [89]. However, few studies used an information theoretical approach to

epigenomic data [90–92]. These studies found that the information content patterns

in DNA methylation could be used to predict higher-order chromatin organization

properties, such as TAD boundaries, and to prioritize genes affecting a phenotype

of interest. It is, therefore, reasonable to expect that applying Information Theory

to other epigenomic modalities will yield important insights in the understanding

of genome organization. Specifically, we reason that chromatin accessibility is an

ideal candidate for this type of analysis because it simultaneously indicates with

high-resolution the location of regions with accessible chromatin and their underlying

chromatin architecture.

1.9 Thesis outline

In this work, I developed and applied novel computational methods to analyze

chromatin accessibility data and provide new insights into genome organization. This

dissertation represents the fusion of two research domains - Information Theory and

genomics. In Chapter II, I describe the work that constitutes the bulk of this thesis.
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First, I describe an information theoretical approach to detect TF-chromatin inter-

action signatures using chromatin accessibility data. I then develop BMO, a new

method for predicting TF binding using chromatin accessibility without relying on

footprints. BMO outperforms current state-of-the-art computational approaches that

rely on TF footprints. I then combine these two methodologies to systematically char-

acterize TF-chromatin interaction patterns across multiple human tissues. Finally, I

integrate these results with new and existing epigenomic molecular profiles to dissect

the biological properties associated with TF-chromatin interactions, describing how

they reflect biophysical and regulatory properties of TF-nucleosome interactions. In

Chapter III, I describe a collaborative effort to characterize the epigenomic changes

during thymocyte differentiation using high-quality chromatin accessibility molecular

profiles. In Chapter IV, I lay out the future applications of my work in advancing

our understanding of genome regulation and complex diseases.

15



CHAPTER II

Information Theoretical Properties of

Transcription Factor and Chromatin Interactions

2.1 Abstract

Interactions between transcription factors (TFs) and chromatin are fundamental

to genome organization and regulation and, ultimately, cell state. Here, we use in-

formation theory to measure signatures of TF-chromatin interactions encoded in the

patterns of the accessible genome, which we term chromatin information enrichment

(CIE). We calculate CIE for hundreds of TF motifs across human tissues and identify

two classes: low and high CIE. The 10-20% of TF motifs with high CIE associate

with higher protein-DNA residence time, including different binding sites subclasses

of the same TF, increased nucleosome phasing, specific protein domains, and the ge-

netic control of both chromatin accessibility and gene expression. These results show

that variations in the information content of chromatin architecture reflects functional

biological variation, with implications for cell state dynamics and memory.

2.2 Introduction

Chromatin is the association between DNA, RNA, and diverse nuclear proteins,

including nucleosomes. It enables the ∼2-meter human genome to be packaged inside
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the nucleus while allowing active genes and their corresponding regulatory elements

to remain accessible [93]. Nucleosome positioning is an essential aspect of chromatin

architecture and has been shown to have both passive and active roles in transcription

factor (TF) binding [65, 67, 94]. Understanding TF-chromatin interactions is there-

fore critical to dissect the regulatory circuits leading to differences in transcriptional

activity across diverse species, tissue, stimulatory, and genetic contexts. Information

theory provides a powerful framework to quantify ordered patterns in data [86] and

has been successfully used to characterize genome-wide DNA methylation patterns

[90]. Here, we hypothesized that chromatin local architecture encodes rich signatures

of TF interactions and developed information-theoretical tools to measure these pat-

terns in human tissues.

2.3 Results

2.3.1 Chromatin information reflects TF-chromatin interaction patterns

We first aimed to quantify patterns of how chromatin accessibility informs TF-

chromatin interactions. We reasoned that TF binding creates a localized impact

on chromatin architecture, which may result in TF-specific signatures. To measure

chromatin architecture, we focused on the assay for transposase-accessible chromatin

using sequencing (ATAC-seq) [21], that can simultaneously quantify both TF and

nucleosome signatures, which are reflected in the ATAC-seq fragment length patterns.

This chromatin architecture can be visualized using V-plots [95], which show the

aggregate ATAC-seq fragment midpoint distribution around TF binding sites and

can result in a stereotyped “V” pattern of points for bound TFs that associate with

nucleosome phasing (evenly positioned nucleosomes around TF binding sites; Figure

2.1A, upper plot). The extent of organization of data in the V-plot can be quantified

using Shannon’s entropy [86]. We calculated the information content of the ATAC-
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Figure 2.1: Information content of TF-chromatin interactions. (A) Upper: TF bind-
ing impacts the chromatin architecture and the observed ATAC-seq fragment distri-
bution around TF binding sites. Middle and bottom: calculation of CIE and f-VICE.
(B-C) V-plots and CIEs of CTCF, AP-1, and NFKB (GM12878 ATAC-seq data gen-
erated in this study). V-plots were downsampled to highlight differences in chromatin
architecture (but not for f-VICE calculation). (D) f-VICEs calculated for TFs with
GM12878 ChIP-seq data. (E) F1 score sum of TF binding prediction algorithms.
Numbers inside bars represent the F1 score sum for TFs in that tertile. F1 scores
reflect precision and recall at the cutoff threshold used to define predicted bound
motif instances. (F) Normalized GM12878 BMO-informed f-VICE distribution.

seq fragment size distribution around TF binding sites as a way to quantify V-plot

organization (Figure 2.1A, middle plot). To adjust for potential bias arising from non-

uniform ATAC-seq coverage across the V-plot, we devised a metric called chromatin

information enrichment (CIE) (Figure 2.1A, middle and lower plots). We summarized

CIE into a single value, named feature V-Plot Information Content Enrichment (f-

VICE), representing the CIE at landmark TF and nucleosomal positions across the

V-plot, which are expected to have high CIE when the nucleosomes are phased around

the TF binding site (Figure 2.1A, lower plot). Therefore f-VICE quantifies the degree

of chromatin architecture organization around a TF. Higher f-VICE values indicate

organized local chromatin around the TF binding site.
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We initially focused on the GM12878 lymphoblastoid cell line, for which there is

high-quality, deeply-sequenced ATAC-seq data [21] and 41 TF chromatin immuno-

precipitation followed by sequencing (ChIP-seq) experiments that pass our inclusion

criteria [24]. To increase our ability to detect TF-chromatin interactions, we gener-

ated an independent GM12878 ATAC-seq dataset with higher signal-to-noise ratio

(Figure 2.4). Using these datasets, we created V-plots and calculated f-VICEs cen-

tered on bound motif instances for 41 TFs. The ATAC-seq fragment pattern was most

ordered around CTCF, a known chromatin organizer [60], where we detected clusters

of fragments distributed periodically in a “V” pattern indicating nucleosome phasing

(Figure 2.1B-C, 2.5). Accordingly, CTCF f-VICE was highest among the tested TFs

(Fig 1D). Other TFs, exemplified by AP-1 and NFKB, had diverse f-VICEs (Figures

2.1B-D, 2.5). These patterns were consistent across ATAC-seq libraries, indicating

the robustness of the f-VICE metric (Figure 2.5). These results indicate extensive

differences in the TF-chromatin interactions, which are captured in the CIE patterns.

2.3.2 Footprint-free prediction of TF binding and chromatin information

One alternative to determine f-VICEs for TFs without ChIP-seq data is to rely

on binding predictions using chromatin accessibility data. This motivated us to first

evaluate the performance of current TF binding prediction algorithms. Most algo-

rithms search for footprints, which are regions of low chromatin accessibility embed-

ded within larger accessible regions, thought to be caused by cleavage protection from

bound TFs [51, 52, 54]. However, a recent report indicated that ∼80% of TFs do

not have footprints [55]. Hence, we developed BMO, an unsupervised method to

predict TF binding without relying on footprints. BMO classify motifs based on two

separate features: 1) motif accessibility (number of ATAC-seq fragments) and 2) the

number of additional co-occurring motifs in the motif vicinity. Both of these signals

were shown to correlate with TF occupancy [56–58, 96]. The hypothesis underlying
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BMO predictions is that genomic regions with many motif instances accessible and

within proximity of each other will act as attractors to TF molecules diffusing in

the nucleus, therefore increasing the likelihood of TF binding. One way to visualize

this concept is to imagine the TF molecules as “Brownian bees” and the TF binding

sites as flowers - the higher the number of open (accessible) flowers in the flower bed,

the more likely the bees will interact with them (hence, bee-model of TF binding -

BMO). We benchmarked BMO and other methods [49, 51, 52, 54] using TF ChIP-seq

data from GM12878 and HepG2. To compare across methods, we used F1 scores,

which account for the precision and recall at the thresholds used to separate between

the predicted bound and unbound classes. Overall, the footprint-agnostic methods

(BMO, CENTIPEDE, and a custom implementation of CENTIPEDE, called ssCEN-

TIPEDE) outperformed footprint-based methods on most tested TFs, particularly

on those with lower f-VICEs (Figures 2.1E, figs. 2.6 to 2.10; Supplementary Results).

These findings indicate that TF binding is more accurately predicted using a simple

chromatin accessibility model tuned to each TF motif and that footprinting-based

methods are more sensitive to the local TF-chromatin architecture.

2.3.3 Chromatin information varies across TFs

Having determined that footprint-based methods are less accurate for predicting

TF binding, we proceeded with BMO predictions to estimate f-VICEs for TFs without

ChIP-seq data. BMO-predicted f-VICEs were significantly correlated with f-VICEs

calculated from TF ChIP-seq data (Pearson’s ρ ! 0.72, p " 1e − 10; Figure 2.11).

We therefore concluded that BMO can be used to estimate f-VICEs without ChIP-

seq data and performed BMO TF binding predictions to calculate f-VICEs for 540

non-redundant TF motifs. We used high-quality ATAC-seq datasets from four ad-

ditional human tissues (pancreatic islets [84], pancreatic islet sorted alpha and beta

cells [97], and CD4+ cells [98]), selected applying a strategy that uses the highly
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stereotyped chromatin architecture in ubiquitous and conserved CTCF/cohesin bind-

ing sites to infer sample quality (Figure 2.12). We normalized f-VICEs within each

sample using linear regression models to control for differences in bound motif pre-

dictions and overall chromatin accessibility (Figure 2.13). The resulting normalized

f-VICE value represents how much the chromatin information deviates from the ex-

pected chromatin information given the motif accessibility and number of predicted

bound instances, with positive values indicating more organized local chromatin. The

majority of the 540 TF motifs followed an approximately normal f-VICE distribution,

but we observed an upper tail with higher f-VICEs resulting from potentially from a

mixture of two separate f-VICE distribution. This motivated us to fit two Gaussian

distributions to the data in order to classify between low or high f-VICE motifs. The

median percentage of motifs associated with high f-VICEs across datasets was 14%

(Figures 2.1G, 2.14), which is comparable to the percentage of motifs associated with

DNase footprint protection across datasets (median=19%) from another study [55]

and supports our conclusion that footprint-based algorithms will not perform well on

most TFs. Together, these results reinforce the use of BMO for accurately calculating

f-VICE and indicate that a minority of TFs associate with high CIE.

2.3.4 Chromatin information is associated with TF-DNA residence times

TF residence time, which corresponds to the duration of DNA binding for a TF,

is an important biophysical measurement that can influence TF activity [67, 68].

Based on the high f-VICEs for CTCF and AP-1 and low f-VICE for NFKB (Figure

2.1C-D), which agree with the known residence times for these TFs (Table 2.1), we

hypothesized that CIE correlates with residence time. We correlated BMO-informed

f-VICEs with previously measured fluorescence recovery after photobleaching (FRAP)

data from mammalian cell lines (Table 2.1), which provide an upper bound of TF

residence time [99, 100]. Using a robust linear regression to protect against outlier
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Figure 2.2: Chromatin information informs residence times and TF-nucleosome in-
teractions. (A) Correlation of FRAP recovery times and GM12878 f-VICEs. Dashed
line, linear model fit. (B) V-plots and CIEs of CTCF/cohesin+ and CTCF/cohesin-

motifs. (C) GM19238 MNase-seq reads per million mapped reads at the same motifs.
(D) CTCF/cohesin+ and CTCF/cohesin- motifs in the sonicated and conventional
GM12878 ATAC-seq data. Colors, differences relative to sonicated. (E) Left: CIE
and MNase-seq profiles (k -means cluster three). Middle: Heatmap of MNase and CIE
Z-score correlations. Right: Example motifs with positive and negative CIE/MNase
correlation. (F) Top 3 motifs with CIE asymmetry Z-scores in GM12878. (G) Scatter
plot of motif-oriented TSS position bias and CIE asymmetry in TSS-proximal motifs.
Enrichments calculated by permuting the signs of observed values (n=10,000).

influence, we found that f-VICE significantly correlated with FRAP recovery times

in all samples (β ! 0.7, Bonferroni adjusted p " 0.001; Figures 2.2A, 2.15). This

suggests that TFs associated with high CIE have longer residence times.

CTCF and cohesin co-bind at CTCF motifs to regulate chromatin loop mainte-

nance [101]. A recent study found that cohesin has a residence time 10- to 20-fold

higher than CTCF [100]. We reasoned this difference reflected in the local chro-

matin architecture and calculated the CIE of GM12878 CTCF binding sites with

and without the presence of cohesin (CTCF/cohesin+ and CTCF/cohesin-), con-

trolling for potential confounding biases from motif strength, ATAC-seq and ChIP-
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seq signal intensities (Figure 2.16A). CTCF/cohesin+ had 1.9-fold higher CIE com-

pared to CTCF/cohesin (Figures 2.2B, 2.16B), indicating these distinct CTCF oc-

cupancy classes have different CIE signatures. We next compared the nucleosome

positioning signals inferred from lymphoblastoid cell line micrococcal nuclease se-

quencing (MNase-seq) profiles . Only the CTCF/cohesin+ class had phased nucleo-

somes around the binding site (Figures 2.2C, 2.16C), consistent with longer residence

times associating with nucleosome phasing. To experimentally validate these results,

we generated chromatin accessibility data using a modified ATAC-seq protocol with

an additional sonication step to disrupt the fragment size information (Figure 2.17).

There were no detectable nucleosome phasing patterns in the motif-flanking CIE of

the sonicated sample (Figure 2.2D; see vertical arrows). These results show that CIE

signatures of the two classes of CTCF binding result from differences in TF-chromatin

interactions instead of differences in chromatin accessibility.

2.3.5 High chromatin information TFs associate with nucleosome phasing

To systematically characterize the association between CIE and nucleosome po-

sitioning, we compared GM12878 CIE patterns across TF motifs to lymphoblastoid

MNase-seq profiles. First, we used k -means clustering to divide motifs into broad

CIE shape categories based on their Z-scores. We found three clusters represent-

ing a continuum of CIE at the motif region (Figure 2.18A). Clusters one and two

had “through-shaped” CIE shapes, with lower CIE at the motif compared to motif-

flanking regions, while cluster three had a “peak-shape”, with the highest CIE at the

motif region (Figure 2.2E, 2.18A-B) and encompassed>95% of the high f-VICE motifs

(Figure 2.18C-D). Notably, we observed two distinctly anti-correlated MNase signal

patterns for the motifs in cluster three, corresponding to one group of motifs with

high MNase signal at the motif center and another with high MNase signal at the mo-

tif flanking regions, but not at the motif (Figure 2.2E). This result is consistent with
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TFs binding at the center of the nucleosome dyad or between phased nucleosomes [65]

and further suggest that a subset of the TFs that cannot evict nucleosomes encounter

less steric hindrance and bind at the dyad center, comparably with what has been

observed in SOX2 [75]. CIE and MNase signals were anti-correlated at high f-VICE

motifs (Fig 2.2E; yellow-green heatmap), indicating that the highest CIE TFs asso-

ciate with nucleosome phasing. We quantified nucleosome phasing and found that

it was significantly correlated with f-VICE in clusters two and three (Spearman’s

ρ ! 0.42, p "1e-7 Figure 2.19). These results suggest that TF-chromatin interaction

patterns are driven by TF residence time, resulting in distinct CIE signatures.

2.3.6 Chromatin information asymmetry at TF motifs

Previous reports suggested that a subset of TFs directionally bind DNA, with

potential effects on gene regulation [51, 102, 103]. To investigate this further, we

extended our information content analyses to quantify CIE asymmetry. Of the 540

motifs tested, 150 had significantly asymmetric CIE (Bonferroni corrected p<0.05;

Figures 2.2F, 2.20A). The direction of CIE asymmetry was correlated with the direc-

tion of the nearest TSS relative to each motif instance (Spearman’s ρ=0.66, p=2e-16;

Figure 2.20B). To determine if this result was an artifact of TSS proximity, we cal-

culated CIE asymmetry separately for TSS-proximal (" 1 kb) and TSS-distal (! 10

kb) motif instances. The TSS-distal and TSS-proximal CIE asymmetry directions

agreed more than expected by chance (111/150, binomial test p=4e-9; Figure 2.20C-

D), suggesting that CIE asymmetry is intrinsic to the TF motif. The magnitude of

asymmetry was higher in TSS-proximal motifs (Figure 2.20D), suggesting that TSS

proximity amplifies TF CIE asymmetry. Accordingly, the correlation between nearest

TSS direction and CIE asymmetry was stronger at TSS-proximal motifs (Spearman’s

ρ = 0.88, p=2e-16; Figure 2.2G). These results support that directional binding is a

property of TF-chromatin interactions.
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2.3.7 Chromatin information patterns are tissue-specific and associate

with genetic control of gene expression

We next aimed to investigate cross-tissue differences in CIEs. We performed an

unsupervised hierarchical clustering of motif f-VICEs and found that it recapitulated

the expected tissue grouping (Figure 2.3A). The motifs driving the clustering patterns

included known tissue-specific transcriptional regulators (Figure 2.21), consistent with

CIE reflecting TF activity. A recent study demonstrated that NF-KB (p65) residence

time is determined by its DNA-binding domain (DBD) [104], which motivated us

to ask if DBDs are associated with CIE. We assigned high-confidence DBDs and

protein domains to motifs and designed a permutation-based rank test to calculate

DBD f-VICE enrichments. We observed both common and tissue-specific f-VICE

enrichments, including IRF and ETS in blood-related samples, PAX in islet-related

samples, and HMG/SOX and FOX domains in HepG2 (FDR < 10%; Figures 2.3B,

2.22). Our findings show the landscape of TF-chromatin interactions varies across

tissues and reflects properties of TF biology.

The prevalence of tissue-specific differences in CIEs led us to examine the role

of high f-VICE TFs in regulating gene expression. We calculated the enrichment of

the motifs categorized as high or low f-VICE in GM12878 (Figure 2.1F) to overlap

lymphoblastoid cis-expression quantitative trait loci (cis-eQTLs) datasets [32, 34],

which represent gene expression genetic control regions in these cells. High f-VICE

motifs had 15-30% higher (median=24%) fold-enrichment in cis-eQTLs compared

to low f-VICE motifs (Figures 2.3C, 2.23A), but no differences in eQTL effect sizes

(Figure 2.23B). These results indicate that high f-VICE TFs are more likely to mediate

genetic effects on gene expression, but not their magnitude.
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Figure 2.3: The chromatin information landscape of human tissues. (A) Hierarchical
clustering of f-VICE Z-scores. (B) f-VICE enrichments across DBDs. (C) LCL cis-
eQTLs enrichments. Error bars, effect size SD. (D) Hypothesis schematic. (E) Upper:
Two 6-mers with Hamming distance of 1. Lower: pancreatic islets 6-mer normalized f-
VICE distribution. (F) Range of f-VICE differences associated with 1-bp difference in
6-mer sequence. (G) Predicted f-VICE change associated with rs2997560, which has
ATAC-seq allelic imbalance in pancreatic islets (T is the preferred allele). Horizontal
bars, median. (H) Log2 ratio of f-VICE decile changes associated with the preferred
and non-preferred alleles of imbalanced SNPs versus all tested SNPs in pancreatic
islets.
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2.3.8 High chromatin information TF motifs are associated with chro-

matin accessibility

Given the highly ordered chromatin (Figure 2.1), high predicted residence times

(Figures 2.2A, B, 2.15), and nucleosome phasing properties (Figure 2.2E, 2.19) asso-

ciated with high f-VICE TFs, we hypothesized that their regulatory effects (Figure

2.3C) could result from acting as or recruiting pioneer factors (TFs that induce chro-

matin accessibility) [51, 71]. If true, we would expect increased CIE for single nu-

cleotide polymorphism (SNP) alleles with increased chromatin accessibility (i.e. with

ATAC-seq allelic imbalance; Figure 2.3D). Because we do not have sufficient coverage

at a single locus to detect changes in chromatin information. we first performed a

motif-agnostic approach to calculate the f-VICEs associated with every DNA 6-mer

in the human genome, using linear regression models to control for differences in

chromatin accessibility and number of BMO predicted bound 6-mer instances. This

strategy allows the interrogation of genetic variants by determining the DNA 6-mers

formed by each allele and their corresponding f-VICEs. DNA 6-mers have a distribu-

tion of f-VICEs (Figures 2.3E, 2.23A) and GC-pure 6-mers had the highest f-VICEs

(Figure 2.23B), which is consistent with GC-rich sequences driving enhancer activity

[105] and suggest that high GC-content regions represent anchors of nuclear architec-

ture. Notably, a single base-pair change can lead to large differences in 6-mer f-VICEs

(Figures 2.3E-F, 2.23C-E), suggesting that genetic variation impacts CIE. We sepa-

rated the DNA 6-mers into f-VICE deciles and found that they had different biological

properties (Figure 2.24B-C). Using the f-VICEs obtained from the predicted bound

6-mers, we predicted the f-VICEs changes associated with either allele at SNPs with

significant ATAC-seq allelic imbalance (binomial test p<0.05) in GM12878 and pan-

creatic islets. The preferred ATAC-seq alleles were significantly biased to form higher

f-VICE 6-mers compared to the less favored allele (permutation test p<3e-4; Figure

2.3G-H, 2.25). These findings support a model where TFs with distinct properties
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(pioneers) bookmark regions of the genome to allow binding of other TFs (migrants)

[51, 71]. Notably, TF motifs that are predictive of binding without any chromatin

accessibility data (based solely on the motif match score) have significantly higher

f-VICEs in GM12878 and HepG2 (robust linear regression p " 0.001; Figure 2.25).

This suggests that high f-VICE TFs, like CTCF, are more likely to bind any strong

motif, while the remaining TFs require motifs located in accessible regions.

2.4 Discussion

In this study, we develop and use for the first time, entropy-based algorithms to

analyze chromatin accessibility data and dissect TF-chromatin interaction patterns

across human tissues. TF-chromatin interactions are captured in the information

content patterns of chromatin accessibility and reflect functional properties of TFs,

such as TF-DNA residence times, nucleosome phasing, and protein DNA binding do-

mains. We find that a subset of TFs (10-20%) have high chromatin information and

are more highly associated with the genetic control of both chromatin accessibility and

gene expression, therefore defining cell state. In addition, we show that footprinting-

based algorithms to predict TF binding are sensitive to the TF-chromatin information

landscape we describe. We develop and cross-validate a novel tool for predicting TF

binding based on chromatin accessibility that outperforms footprinting-based meth-

ods. Collectively, our results show a dynamic landscape of TF-chromatin interactions,

with implications for gene regulation and cell state memory.

2.5 Limitations

One of the major limitations from our methodology is the reliance on TF motifs

to calculate chromatin information patterns. This approach does not allow us to

determine whether the observed results reflect the putative TFs binding to the motifs
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or if these are due to other proteins recruited to the motif. One example is the

CTCF and cohesin interactions dissected in this study, which was only possible using

ChIP-seq data to resolve which binding sites were occupied by one or both proteins.

Therefore, additional data will be necessary to address similar scenarios on a case-

by-case basis. Similarly, we did not address issues of motif proximity, which could

potentially affect our interpretation of results from TFs that frequently bind in close

proximity.

2.6 Supplementary Results

BMO builds on previous reports that the degree of chromatin accessibility around

a motif [56, 57, 96] and the presence of co-occurring motifs [58] positively correlates

with TF binding, and uses TF-specific negative binomials of these two signals to esti-

mate the likelihood of a bound instance. We benchmarked the performance of BMO

and other unsupervised TF binding prediction algorithms using ATAC-seq datasets

from the GM12878 and HepG2 [106] cell lines and their corresponding TF ChIP-seq

data (n=41 and n=59, respectively. We compared BMO to three footprinting-based

algorithms (HINT-ATAC [54], DNase2TF [52], PIQ [51]), to CENTIPEDE, which

learns informative DNA cut patterns indicating TF binding [49], and to a baseline

classifier that labels TF motifs within ATAC-seq peaks as bound. To evaluate meth-

ods, we calculated the area under the precision-recall curve (AUC-PR), which informs

the performance of the classifier in ranking bound and unbound motif instances, and

the F1 score, which measures the performance of the threshold used to call bound

motif instances.

BMO outperformed all methods in our high-signal GM12878 dataset (Figure

2.1E), whereas BMO and CENTIPEDE had similarly high performance in lower-

signal datasets (Figures 2.4, 2.6). DNase2TF had lower performance in the lower-

signal datasets (Figure 2.6). PIQ cannot use custom TF motif scans and therefore
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required separate benchmarking, which revealed lower performance compared to BMO

(Figure 2.8). These results were consistent across ATAC-seq replicates and cell lines,

including downsampled data representing shallower sequencing depths (Figure 2.9).

Of note, the AUC-PR of footprinting-based methods was lower overall due to their

inability to classify motifs occurring outside ATAC-seq peaks, which we reason con-

tain true TF binding sites and negatively affect PR-AUCs. While their F1 scores

indicate that this effect is less pronounced when taking into account the thresholds

to call bound motif instances, their performance was still consistently lower than

non footprinting-based methods (Figure 2.6). Overall, the two footprinting-agnostic

methods (BMO and CENTIPEDE) outperformed footprint-based methods on most

tested TFs, indicating that TF binding is more accurately predicted using a simple

chromatin accessibility model tuned to each TF motif.

We next sought to determine if the CENTIPEDE approach relied on spatial DNA

cut patterns, or if the overall accessibility in the region was sufficient for high per-

formance. We devised an alternative implementation of CENTIPEDE that ignores

the DNA cut positions (signal-sum CENTIPEDE; ssCENTIPEDE) and masks any

footprint-like patterns. This ssCENTIPEDE approach performed almost identically

to CENTIPEDE (Figures 2.10, 2.1E), again indicating that footprint patterns in

chromatin profiles are not necessary for high prediction performance. One corollary

expectation from this conclusion is that footprint-based algorithms should perform

comparatively worse when predicting binding for TFs with a low impact on local chro-

matin. To test this, we compared performance across f-VICE tertiles representing low

(tertile one), intermediate (tertile two), and high (tertile three) f-VICEs. Notably,

BMO and (ss)CENTIPEDE had relatively higher performance on lower f-VICE ter-

tiles one and two (Figures 2.1E, 2.6). Our findings indicate that footprinting-based

methods are more sensitive to the local TF-chromatin architecture.
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2.7 Methods

GM12878 cell culture. We cultured GM12878 cells following the ENCODEGM12878

cell culture protocol (www.encodeproject.org/documents/1bb75b62-ac29-4368-

9855-68d410e1963a), with added plasmocin (Invivogen, San Diego, CA; 50 ug/mL)

to the growth media to prevent mycoplasma contamination.

GM12878 ATAC-seq data generation. We conducted ATAC-seq as described

in [107] using a home-made Tn5 that we synthesized as described in [108]. For each

replicate we incubated 250,000 cells with 12.5 µL of 1:1 mix of Tn5 enzyme that

carry 5-methylC-MEDS-A oligos and MEDS-B oligos at 37◦ C for 30 minutes in a 50

µL reaction. We column-purified the tagmented DNA using the Zymo DNA Clean &

Concentrator-5 kit (Zymo Research, Irvine, CA) and constructed Illumina sequencing

library using the Kitzman lab custom indexing primers. We PCR-amplified a total of

11 cycles until amplification curve reached its mid-log phase (1
3
to 1

2
of max signal),

and then purified the PCR products using SPRI beads prepared as in [109] and

eluted in 22 µL of TTE8 buffer. Sequencing was performed on an Illumina HiSeq

4000 platform at the University of Michigan Sequencing Core and a total of ∼33

million paired-end 52 bp reads were generated.

Sonicated GM12878 ATAC-seq data generation. For each replicate we incu-

bated 250,000 cells with three different concentrations of enzyme (0.2X, 1X, and 5X;

1X corresponds to 2.5 µL of Tn5 that carry 5-methylC-MEDS-A oligos) at 37◦ C for

30 minutes in a 50 µL reaction. We column-purified the tagmented DNA using the

Zymo DNA Clean & Concentrator-5 kit (Zymo Research, Irvine, CA), and sonicated

to ∼350 bp using the Covaris M220 sonicator (peak incident power - 50W; duty fac-

tor - 20%; cycles per burst - 200; treatment time - 60 sec). We constructed Illumina

sequencing library using the ACCEL-NGS Methyl-seq DNA Library kit (Swift Bio-
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sciences #DL-ILMMS-12; revision 160106) with the following modifications to the

manufacturer’s protocol: 1) We skipped “Ligation” and “Post-ligation SPRI” steps

(pg. 10-11), as the 5’ end of the fragments had already been tagged during the

transposition step. Accordingly, we eluted DNA with 20 muL of TTE8 (10 mM Tris-

HCl, 0.1 mM EDTA, 0.05% Tween-20, pH 8) for Post-Extension SPRI step (pg. 10),

instead of 15 µL, to adjust for the difference in volume before proceeding to the “In-

dexing PCR” step (pg. 11); 2) We used 2:1 beads:sample ratio for “Post-Extension

SPRI” step (pg. 10) and 1.8:1 beads:sample ratio for “Post-PCR SPRI” step (pg.

12); and 3) For indexing PCR, we used the Kitzman lab custom primers (barcode

plate #5) to prime the P5 end and the “IndexD7XX” primers (Swift Biosciences #DI-

ILMMS-48) to prime the P7 end. We PCR-amplified a total of 14 cycles for 0.2X, 1X

samples and 16 cycles for 5X samples until amplification curve reached its mid-log

phase (1
3
to 1

2
of max signal), and then purified the PCR products using SPRI beads

prepared as in [109] and eluted in 22 µL of TTE8 buffer. Sequencing was performed

on an Illumina HiSeq 2500 platform at the University of Michigan Sequencing Core

and a total of ∼33 million paired-end 126 bp reads were generated.

ATAC-seq data processing. Reads were trimmed for barcodes and aligned to

the hg19 reference human genome using BWA mem (v. 0.7.15) [110] similarly to

our previous study [33], with additional parameters -I 200,200,5000 to avoid larger

ATAC-seq fragments being discarded. We removed duplicate alignments using Picard

(broadinstitute.github.io/picard) and retained properly paired and uniquely mapped

alignments with high mapping quality using samtools view (v. 1.3.1) [111] with flags

-f 3 -F 4 -F 8 -F 256 -F 1024 -F 2048 -q 30. We called broad and narrow peaks using

MACS2 (v. 2.1.1.20160309) [112] with flags -g hs –nomodel –shift -100 –extsize 200

-B [–broad] –keep-dup all and kept peaks that did not intersect blacklisted regions

(sites.google.com/site/anshulkundaje/projects/blacklists), using bedtools
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(v2.26.0) [113], and that reached 5% FDR. All data was processed uniformly using

Snakemake [114].

Motif processing. We used the PWM scans from [33]. Briefly, we used biallelic

SNPs and short indels from the 1,000 Genomes project (release v5) [115] to gener-

ate comprehensive scans with FIMO [48], using the background nucleotide frequen-

cies from hg19 and a p<1e-4. We only kept motif instances that intersected map-

pable regions and did not intersect blacklisted regions (sites.google.com/site/

anshulkundaje/projects/blacklists). In order to reduce motif redundancy, we

performed PWM clustering in our motif database using the matrix-clustering tool

from RSAT [50], with parameters -lth cor 0.7 -lth Ncor 0.7. For each of the 540 clus-

ters obtained, we retained the motif with the highest total PWM information content

for downstream analyses.

V-plots, chromatin information enrichments, and f-VICEs. V-plots [95]

were generated by creating a matrix of aggregated fragments from the selected set

of genomic features (motifs), removing all instances that overlap within ±500 bp

of each other. We used the script measure signal (using flags -r 500) , which is

part of a suite of tools to analyze ATAC-seq data we developed for this study

(github.com/ParkerLab/atactk). Each cell in the V-plot matrix outputted by mea-

sure signal correspond to the number of fragment midpoints at a position relative to

the feature center (x-axis) and fragment size (y-axis). We binned the matrix in the x-

axis using a sliding window of 10 bp width, with 2-bp overlap, and summed all the val-

ues within the window corresponding to a given fragment size. For each x-axis bin, we

calculated the normalized information content (I) of the corresponding fragment size

distribution (y-axis) using the equation 2.1, where H(x) is the maximum-likelihood

Shannon’s entropy function implemented of the entropy R package [116], and Hmax

is the Shannon’s entropy of the information length (i.e. the range of fragment size
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distribution of the entire V-plot). To calculate the expected normalized information

content, we randomly permuted the position and size labels in the fragments and

repeated the steps outlined above.

I(x) = 1− H(x)

Hmax

(2.1)

Chromatin information enrichment was calculated as the log2 of the observed nor-

malized information content divided by the expected normalized information content.

For Figure 2.1C, V-plots were downsampled to equal number of ATAC-seq fragments

and motifs between TFs by selecting the top n motifs ranked by the number of ATAC-

seq fragments within ±500 bp, and then further downsampling to 250,000 fragments,

where n represents the smallest number of bound motifs among the plotted TFs.

These downsampled V-plots were only used for visualization purposes and not used

for the f-VICE calculations described below.

To obtain the feature V-plot information content enrichment (f-VICE) for each

motif, we summed of the average chromatin information enrichment in the V-plot

regions corresponding to the center (-25 to 25 bp) and proximal (-70 to -50 and 50 to

70 bp) chromatin information enrichment peaks referent to the CTCF V-plot, which

correspond to small fragments spanning the TF binding site and to those positioned

between the TF and the first pair of proximal nucleosomes, respectively (Figure 1A).

This value was then normalized across all motifs using the residuals of the linear

model f-VICE ∼ log10(m)+log10(f), where m corresponds to the number of predicted

bound motif instances for each motif and f corresponds to the total number of ATAC-

seq fragments at the predicted bound motif instances for each motif (Figure 2.13).

Negative values indicate that the feature has less chromatin information information

than expected based on its accessibility. The residuals for each sample were divided

by the corresponding CTCF value in that sample to normalize it to 1. The linear

model normalization was not performed in the ChIP-seq f-VICEs reported in Figures
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2.1D and 2.11 due to lack of data points to accurately fit the linear model.

Additional ATAC-seq samples selection. In addition to the GM12878 ATAC-

seq dataset generated for this study, we analyzed an additional eight publicly available

datasets corresponding to pancreatic islets [84, 97], CD4+ cells [98], GM12878 [21],

and HepG2 [106]. With the exception of HepG2, these datasets were selected from

a survey of all the public ATAC-seq datasets available until the end of 2017. We se-

lected for our analyses datasets with at least 20 million high-quality autosomal reads

and transcription start site (TSS) enrichment ! 6. In addition, we only retained

samples with the stereotypical chromatin information enrichment indicative of nu-

cleosome phasing at ubiquitous and conserved CTCF-cohesin binding sites. These

regions provide a reference V-plot, with expected high accessibility and periodical

chromatin information enrichment patterns in any high-quality sample. The ubiq-

uitous and conserved CTCF-cohesin sites were defined as CTCF motifs overlapping

ENCODE CTCF and Rad21 ChIP-seq peaks in at least in at least 54/59 (CTCF)

and 2 (Rad21) different human tissues, located in bi-directionally mappable regions

between human and mouse using bnMapper [117] that also corresponded to CTCF

motif matches in the mm9 reference genome. To quantify samples, we defined our

high-quality GM12878 dataset as reference and calculated the chromatin information

enrichment correlation " 200 bp from the motif center. Samples with correlation <

0.8 (Spearman) were discarded (Figure 2.12). Finally, we only retained tissues/cells

that had at least two samples that passed our stringent selection criteria.

BMO transcription factor binding prediction. BMO builds on previous re-

ports that the degree of chromatin accessibility around a motif [56, 57, 96] and the

presence of co-occurring motifs [58] positively correlate with TF occupancy. BMO fits

per-motif negative binomial (NB) on these two signals to estimate the likelihood of

a TF motif instance being bound. BMO performs three steps: 1) calculate the back-
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ground ATAC-seq fragment NB distribution, 2) calculate the co-occurring motifs NB

distribution, and 3) combine the p values from the two distributions.

Using all genomic matches for a given motif PWM, we calculated the number of

ATAC-seq fragments overlapping a region ±100 bp from every motif instance. We

ignored fragments that integrated within the motif coordinates in order to mitigate

ATAC-seq bias, as the nucleotide sequence in the motif regions is relatively constant

across features and is more subject to assay-specific bias compared to the motif-

flanking regions. The background ATAC-seq fragments NB distribution was fitted

on 10,000 randomly selected motif instances of the same PWM occurring outside

ATAC-seq peaks. We repeated this step 100 times and used the average mean and

overdispersion as the NB parameters. This sampling approach is 1-2 orders of mag-

nitude faster compared to using all motif instances outside ATAC-seq peaks, yielding

identical results on a representative subset of our data that accounted for the num-

ber of motif matches per PWM. We then used this NB distribution to calculate the

ATAC-seq signal p value of every instance of that motif PWM.

The co-occurring motifs NB was obtained by determining the number of additional

instances of the same motif PWM within ±100 bp of every motif instance. We used

this distribution to to calculate the p value of the number of co-occurring motifs per

motif instance.

The two p values from the ATAC-seq fragment and co-occurring motif negative bi-

nomials were combined by summing their Z scores [118] using the sumz function of the

R package metap. This yielded a single p value representing chromatin accessibility

and number of co-occurring motifs. A given motif instance will have more significant

p values if it is located in accessible chromatin and/or have many instances of the

same motif nearby. Multiple testing correction was performed using the Benjamini-

Yekutieli method [119] and motif instances were considered bound where the adjusted

p value < 0.05. Fitted NB distributions were obtained using the R packages MASS
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[120] and fitdistrplus [121].

CENTIPEDE For each PWM scan result, we generated a strand-specific (relative

to the motif orientation) base-pair resolution matrix encoding the number of Tn5

transposase integration events in a region ±100 bp from each motif occurrence using

make cut matrix with parameters -d -r 100. This matrix and the motif PWM score

were used as input for CENTIPEDE (v. 1.2), and a motif occurrence was considered

bound if the outputted posterior probability was higher than 0.99. To calculate

AUC-PRs, we used the posteriors outputted by the software as scoring metric. We

developed make cut matrix as part of atactk (github.com/ParkerLab/atactk).

Signal-sum CENTIPEDE (ssCENTIPEDE). To run ssCENTIPEDE. we per-

formed CENTIPEDE predictions using the total number of DNA cuts in the vicinity

of each motif instance as input instead of the positions of the DNA cuts. This strat-

egy informs motif accessibility while omitting positional patterns that can be used

by CENTIPEDE as a signature of TF binding. We ran CENTIPEDE similarly as

described above, with the only difference being that we summed across the rows

of the input Tn5 cuts matrix to generate a one-column matrix containing the total

number of Tn5 cuts in the motif vicinity. This ensures that the positional informa-

tion (i.e. where the transposition events occur relative to the motif) is omitted from

CENTIPEDE.

DNase2TF. In order to run DNase2TF (v. 1.0) on ATAC-seq data, we offset all

the cut points calculated using paired end bam2split.r by 4 bp before using them as

input to the software, which was run with default parameters. We intersected the

called footprints with each motif file and considered bound those motif instances that

intersected a footprint with FDR < 0.05.
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HINT. We performed footprinting analyses with HINT-ATAC (RGT v. 1.1.1) using

as input the broad ATAC-seq peaks and filtered BAM file from each sample. In their

methods, the authors used MACS2 narrow peaks, but we found that they had lower

performance compared to broad peaks (Figure 2.7), so we used the latter for the

analyses. We intersected the HINT output file with each motif file and considered

bound every motif instance that intersected a footprint.

PIQ. We performed PWM scans using the pwmmatch.exact.r script included with

PIQ (v. 1.3). BAM files were processed with bam2rdata.r due to an error in the code

of pairedbam2rdata.r which prevented any of our BAM files from being processed.

Footprinting was performed using the pertf.r script. Because PIQ performs its own

PWM scans, we compared PIQ to BMO only on PWM matches that were shared

between PIQ and BMO (using bedtools intersect).

Dataset downsampling. In order to compare the TF binding prediction methods

across multiple sequencing depths, we uniformly downsampled BAM files using the -s

flags of samtools view (v1.9), which downsamples files while maintaining read pairs

intact (this behavior is not present in version 1.3). These downsampled files were

used as input for peak calling and all other steps required prior to running each TF

binding prediction method.

TF binding evaluation. We defined as true positives for a given TF all motif

matches that fully intersected a ChIP-seq ENCODE conservative irreproducible dis-

covery rate (IDR) narrow peak in the respective sample. We only analyzed TFs

that had motifs in our database and at least 1,000 bound motif instances. For TFs

with multiple motifs, we selected the motif with the highest total PWM information.

For TFs with multiple ChIP-seq experiments, we selected the one with the highest

number of bound motifs. To evaluate methods, we calculated the area under the
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precision-recall curve (AUC-PR), which informs the performance of the classifier in

ranking bound and unbound motif instances, and the F1 score, which measures the

performance of the threshold used to call bound motif instances. We did not use

areas under the receiver-operator characteristic curve (AUC-ROC) given the highly

skewed class imbalance between bound and unbound motifs, which makes AUC-ROCs

an unreliable metric to evaluate TF binding predictions [122, 123]. AUC-PRs were

calculated using packages ROCR (v. 1.0-7) and PRROC (v. 1.3) in R [124, 125].

To rank predictions, we used the −log10 adjusted p values for BMO, the number of

reported tags from HINT, the posteriors calculated by CENTIPEDE, the −log10p

values calculated by DNase2TF, the purity score outputted by PIQ, and MACS2

−log10 p values for motifs in peaks. F1 scores were calculated using the equation

2.2 at the following thresholds for each method: BMO adjusted p value<0.05, CEN-

TIPEDE posterior!0.99, any motif instance overlapping a HINT predicted footprint,

any motif instance overlapping a DNase2TF predicted footprint with FDR value <

0.05, and any motif instance called bound by PIQ.

F1 = 2 · precision · recall
precision+ recall

(2.2)

Mixture models for f-VICE distributions. High and low f-VICE distributions

were calculated using the R package mixtools (v. 1.1.0) [126] using as input the

normalized f-VICEs for each ATAC-seq sample, after removing low signal motifs,

where the number of predicted bound instances for the motif was contained in the

lowest decile of that sample. We used as cutoff a posterior probability of 0.5 to split

between the high and low f-VICE distributions.

FRAP/f-VICE robust regression and CTCF-Cohesin regions comparisons.

To measure the correlation between FRAP recovery times and f-VICE, we performed

a literature search of reported FRAP recovery times, which are referenced in Table
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2.1. Robust linear regressions of f-VICE and FRAP recovery times were performed

with the rlm function of the R package MASS (v. 7.3-50) [120]. Te model used was

f-VICE ∼ log10(FRAP recovery time), without scaling or centering of variables. For

each TF with FRAP recovery times, we used the f-VICE from the motif with highest

total PWM information content in our database. f-VICEs for these motifs were

normalized using the same linear regression model described earlier, but including all

the motifs in our database (n=1,850). For each sample, we required that the gene

corresponding to each TF had RNA-seq TPM ! 1 in a related tissue in GTEx (except

for pancreatic islets, where we used the RNA-seq data from [84]).

CTCF-Cohesin regions in GM12878 were obtained by selecting CTCF motifs that

intersected conservative IDR GM12878 CTCF ChIP-seq peaks (ENCODE accessions

ENCFF096AKZ, ENCFF710VEH, and ENCFF963PJY) and the merged GM1287

RAD21 optimal IDR peaks (ENCODE accessions ENCFF753RGL and ENCFF002CPK).

CTCF regions without cohesin were obtained similarly as above, but removing CTCF

motifs that intersected any of the GM12878 RAD21 ChIP-seq peaks. All operations

were performed with bedtools (v. 2.26.0). The choice of optimal IDR peaks for

RAD21 aimed to increase the number of RAD21 peaks are included in the CTCF-

cohesin+ regions, therefore increasing stringency of the comparisons. We performed a

quantile-based downsampling approach to make the CTCF/cohesin+ and CTCF/cohesin-

regions comparable regarding ChIP-seq signal, ATAC-seq signal, and FIMO motif

scores. This was done by selecting all CTCF motifs encompassing the CTCF/cohesin+

and CTCF/cohesin- regions and, for each feature (ATAC-seq fragments, ChIP-seq sig-

nal, or motif scores), calculating quantiles (n=20). The, for every quantile, we counted

the number of motifs belonging to the CTCF/cohesin+ and CTCF/cohesin- regions

and randomly downsampled the group with more motifs instances to have the same

number of motifs as the other in that quantile. This ensured that both regions had

the same number of motifs and comparable distributions of ATAC and ChIP signals
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and motif scores (as an example of this normalization, refer to Figure 2.16A).

Pseudocode:

for feature in ATAC, ChIP, PWM:
split feature in 20 quantiles
for quantile in 1..20:

set1 = CTCF/cohesin+ ∈ featurequantile

set2 = CTCF/cohesin- ∈ featurequantile

smallest set = smallest(set1, set2)
largest set = largest(set1, set2)
n = size(smallest set)
randomly select n items from largest set

For the main figures, we used CTCF and RAD21 experiments ENCFF963PJY and

ENCFF753CPK, respectively (the same comparisons using the other CTCF/RAD21

datasets are presented in Figure 2.17). The quantity labeled as relative chromatin in-

formation enrichment in Figure 2B corresponds to the sum of positive chromatin infor-

mation enrichment (above dashed line) in each V-plot, divided by the CTCF/cohesin

value for normalization.

Clustering. Chromatin information enrichment Z-score clusters were obtained us-

ing the R k -means implementation, using parameters k=3 and 1,000 random starts

(Figure 2.18E). Cross-tissue clustering and dendrograms were calculated using the

euclidean distances of the pairwise Spearman correlation of f-VICEs across samples.

Normalized f-VICE values were converted to motif-wise Z scores before clustering.

MNase-seq data processing. Paired-end MNase unmapped reads from the lym-

phoblastoid cell line GM19238 were obtained from SRA, under accession SRR452483

[59]. Reads were mapped to the hg19 reference using BWA and processed in an

identical fashion to the ATAC-seq data, with an additional step to retain only se-

quenced fragments of length 147±2 bp, therefore enriching for mononucleosomal frag-

ments. The MNase aggregate signal plots were generated using ngsplot (github.com/
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shenlab-sinai/ngsplot). For each motif plot, we used for input the BED files cor-

responding to the regions that were used to generate the corresponding V-plot. Motif

MNase Z-scores for the clustering analyses were calculated using the MNase reads per

million mapped reads (RPM) signal tracks outputted by ngsplot and the equation 2.3.

MNase/V-plot correlations were calculated using positions " 150 bp from the motif

center.

Z(x) =
x−mean(X)

sd(X)
(2.3)

V-plot asymmetry. V-plot asymmetry was calculated as the log2 ratio between

the positive information content enrichment in the left and right of the motif center.

To estimate significance, we used a permutation test where each fragment midpoint

had a 50% chance of changing its direction relative to the motif while keeping the

same distance (i.e. multiply its x-axis value by -1). We calculated the asymmetry

of the permuted V-plots (n = 100,000) to generate a null distribution of asymmetry.

Because the null was normally distributed based on Kolmogorov-Smirnof and Shapiro

normality tests, we were able to estimate p values beyond the number of permutations

by calculating the observed asymmetry Z-score relative to the null distribution. To

calculate the nearest TSS directionality bias, we counted the number of active protein-

coding TSS (GENCODE V19) (determined with the presence of LCL Cap analysis

gene expression (CAGE) tag clusters, described in the next session) on either side of

the motif and calculated the log2 ratio of the two. For the proximal and distal motif

V-plots, we restricted our analyses to motifs occurring " 1kb or ! 10kb from the

nearest CAGE-supported TSS of any type (e.g. lincRNAs, pseudogenes; GENCODE

V19). Enrichments of the plots in Figure 2F were calculated by randomly permuting

the signal of the points in the x- and y-axis (n=10,000 permutations).
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CAGE tag cluster identification. We downloaded CAGE data (fastq files) for

154 LCL samples [127] and mapped to hg19 using STAR (version 2.5.4b; default

parameters) [128] and pruned the mapped reads to high quality reads (using samtools

view v. 1.3.1; options -F 4 -q 255). We used the paralu method [129] to identify

clusters of CAGE start sites (CAGE tag clusters). We called TCs in each individual

sample using raw tag counts, requiring at least 2 tags at each included start site and

allowing single base-pair tag clusters (‘singletons’) if supported by >2 tags. We then

merged the tag clusters on each strand across samples. For each resulting segment,

we calculated the number of LCL samples in which TCs overlapped the segment. We

included the segment in the consensus TCs set if it was supported by independent

TCs in at least 10 individual LCL samples, resulting in n=10> tag clusters. We then

filtered out regions blacklisted by the ENCODE consortium due to poor mappability

using bedtools (v. 2.26.0) to obtain the final set of LCL tag cluster regions.

DNA binding domain enrichments. DNA binding domains (DBD) enrichments

were performed using a f-VICE rank sum permutation test. We assigned DBDs to the

non-redundant motifs that mapped between our database and the one reported in [46],

which has manually curated DBD-motif assignments. In order to map motifs between

databases, we used tomtom [130] and selected motif matches with p-value < 0.05

after a conservative Bonferroni adjustment using all comparisons as denominator (i.e.

number of motifs in our database times the number of motifs in the queried database),

which yielded high-confidence DBD assignments for 402 of 540 motifs. We used the f-

VICE rank from each motif to calculate the f-VICE rank sum the DBD and compared

the observed value to a null distribution of 100,000 rank sums obtained from randomly

permuting gene labels. This approach ensures that all the DBD retain their sizes

during each permutation. We retained DBDs with at least 5 motifs and calculated

the f-VICE enrichments for each DBD using the log2 of observed f-VICE rank sum
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divided by the median of the null. FDR was calculated separately per sample, using

the empirical p-value from the 100,000 permutations. We simultaneously performed

a similar analysis using InterPro protein domains (v. 72) [131] (Figure 2.22). In order

to assign domains to motifs, we first mapped our motifs to CIS-BP database (Build

1.02) [132], which has high-confidence motif-gene assignments, and retained genes

that mapped to a single motif using the same approach described above. Each gene

was then linked to a motif f-VICE score (n = 475) and we only retained domains

with at least 5 genes after motif-gene mapping. Permutation and enrichments were

calculated identically as described above.

cis-eQTL enrichments. Feature enrichments in eQTLs were calculated using

GREGOR [133] and QTL tools fenrich [134]. We used the lymphoblastoid cell line

(LCL) eQTLs sets from Geuvadis [32] and GTEX [34] (FDR<5%). GREGOR back-

ground estimations were performed using SNPs with LD 0.99 for eQTL, with a max-

imum distance of 1 Mb from the variants of interest. Variants used as input for

GREGOR were pruned to have maximum linkage disequilibrium r2 of 0.8 with any

other variant. For fenrich, we used the most significant SNP per gene as input.

ATAC-seq allelic imbalance analyses. To determine SNP allelic bias in ATAC-

seq data, we used the publicly available data from Buenrostro et al, the Parker

lab GM12878 sample discussed here, or the ABCU196 islet sample introduced in

[84]. For GM12878 data, adapters were trimmed using cta (v. 0.1.2), and reads

mapped to hg19 using bwa mem (default options except for the -M flag). Bam

files were filtered to high-quality autosomal read pairs using samtools view (-f 3 -

F 4 -F 8 -F 256 -F 2048 -q 30; v. 1.3.1). WASP (v. 0.2.1, commit 5a52185;

python version 2.7) [135] was used to diminish reference bias; for remapping the

reads as part of the WASP pipeline, we used the same mapping and filtering pa-

rameters described above for the initial mapping and filtering. Duplicates were
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removed using WASP’s rmdup pe.py script. We used the phased GM12878 VCF

file downloaded from ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_

HG001/NISTv3.3.1/GRCh37/HG001_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-

Ion-10X-SOLID_CHROM1-X_v.3.3.1_highconf_phased.vcf.gz . To avoid double-

counting alleles, overlapping read pairs were clipped using bamUtil clipOverlap (v.

1.0.14; genome.sph.umich.edu/wiki/BamUtil:_clipOverlap). For the Buenrostro

et al data, the bam files from the samples were then merged to create a single

GM12878 bam file using samtools merge (v. 1.3.1). For each heterozygous auto-

somal SNP, we then counted the number of reads containing each allele, using only

bases with base quality of at least 20. We used a two-tailed binomial test that ac-

counted for reference allele bias to evaluate the significance of the allelic bias at each

SNP (as described in [84]; when calculating the expected fracRef, SNPs in the top

25th percentile of read coverage were downsampled to the 50th percentile coverage

and SNPs with coverage less than 10 were excluded). When performing the binomial

test we downsampled the coverage at each SNP such that each SNP had coverage =

20 (to reduce coverage-related biases). The islet ATAC-seq data was processed and

tested as described in [33], except that we also downsampled coverage at each SNP to

20 when performing the binomial test.. We did not test SNPs in regions blacklisted

by the ENCODE Consortium because of poor mappability (wgEncodeDacMapabil-

ityConsensusExcludable.bed and wgEncodeDukeMapabilityRegionsExcludable.bed).

We retained for downstream analyses all loci with nominally significant binomial p

values (p < 0.05) and at least 2 reads (10%) mapped to any allele.

6-mer f-VICE calculations. We generated a list of all possible DNA 6-mers and

scanned the reference human genome (hg19) to obtain the coordinates for all their

corresponding matches. Similarly to motifs, we only retained 6-mer matches that

were in mappable regions and did not intersect blacklisted regions. We used BMO to
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determine the subset of 6-mer instances that was predicted bound. We calculated the

normalized f-VICE for each 6-mer using the same approach as in the motifs, including

using linear regression to control for chromatin accessibility and number of predicted

bound 6-mer instances. This yielded a table with normalized f-VICEs for every 6-

mer in each analyzed sample. Given that only a small fraction of 6-mers instances

deviate from the reference sequence in any given sample, we reasoned that the effects

from loci that did not match the reference genome would be diluted by all the other

predicted bound 6-mer instances that matched the reference genome. Therefore,

we did not perform haplotype-aware 6-mer scans. For each locus with significant

allelic imbalance, we determined the six 6-mers formed by each allele and obtained

their corresponding normalized f-VICEs values from the corresponding sample f-VICE

table. Because of the sparsity of the ATAC-seq coverage in any individual loci with

ATAC-seq allelic imbalance, it was not possible to directly calculate the chromatin

information changes associated with the preferred and non-preferred alleles.

We used GAT [136] to calculate enrichments across cell-type specific ChromHMM

states (obtained from [84]). We divided the 6-mers into f-VICE deciles and determined

genomic regions populated exclusively by predicted bound 6-mers belonging to each

decile (i.e. no overlap between deciles; bedtools subtract v. 2.26.0). These regions

were used as input for GAT, and the workspace was the union of all regions assigned

to any decile (using bedtools merge).

Data availability. Code and scripts used for the analyses performed in this study

are publicly available at http://github.com/ParkerLab/chromatin_information.

BMO and atactk are publically available at http://github.com/ParkerLab/BMO and

http://github.com/ParkerLab/atactk.
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Table 2.1: FRAP recovery times from literature

Factor Organism Motif FRAP recovery (s) Reference

AHR H. sapiens AHR 1 38 [137]

AP1 H. sapiens MA0476.1 600 [70]

ARNT H. sapiens ARNT 2 41 [137]

CEBP H. sapiens CEBPB known5 32 [137]

CREB H. sapiens CREB3 1 100 [138]

CTCF H. sapiens CTCF known2 660 [139]

FOXA1 M. musculus FOXA known4 300 [140]

MYC H. sapiens MYC known13 37 [137]

NFKB H. sapiens NFKB known5 30 [141]

NR3C1 C. aethiops NR3C1 known18 30 [142]

NR3C2 H. sapiens NR3C2 1 30 [143]

TP53 H. sapiens TP53 4 20 [144]

XBP H. sapiens XBP1 2 30 [137]
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2.9 Appendix: Additional Figures

Figure 2.4: ATAC-seq datasets signal-to-noise comparisons. (a) Scatter plots of the
percent high quality autosomal alignments (%HQAA) in ATAC-seq peaks distribu-
tion and TSS enrichments of GM12878 and HepG2 datasets, obtained using Ataqv
(github.com/ParkerLab/ataqv). (b) Scatter plot of the ATAC-seq signal in the
union of the MACS2 broad peaks called in the two GM12878 datasets. Each point
corresponds to one ATAC-seq peak and the position correspond to its coverage (frag-
ments per kilobase per million, FPKM) in each dataset. Solid diagonal line, identity
(x=y).
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Figure 2.5: GM12878 V-plots. (a) V-plots for the same TFs as in Figure 1B across
GM12878 datasets. Upper: ATAC-seq fragment distribution. Middle: observed (red)
and expected (blue) information content tracks, used to calculate chromatin informa-
tion enrichments (bottom). V-plots were downsampled to equal number of ATAC-seq
fragments and motifs between TFs by selecting the top n motifs, ranked by number
of ATAC-seq fragments, and then further downsampling to 250,000 fragments. n
represents the smallest number of bound motifs among the plotted TFs per sample.
(b) Similar to (A), but randomly downsampling to exactly n motifs (without ranking
by signal or further downsampling the number of ATAC-seq fragments). This was
performed to demonstrate that the differences in chromatin architecture are intrinsic
to the TF and evident regardless of downsampling method.
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Figure 2.6: TF binding prediction methods comparisons across datasets. (a) F1, pos-
itive predictive value (PPV), and AUC-PR scatter plots of BMO versus other TF
binding prediction methods across multiple ATAC-seq datasets. Each point corre-
sponds to a TF with ChIP-seq data. (b) Total F1-score and AUC-PR across datasets,
separated into f-VICE tertiles. Solid diagonal line, identity (x=y).

51



Figure 2.7: HINT-ATAC performance using narrow or broad peak calls. Scatter plots
of AUC-PRs (a) and F1 scores (b) across datasets. Each point corresponds to a TF
with ChIP-seq data. Solid diagonal line, identity (x=y).
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Figure 2.8: BMO and PIQ comparisons. Scatter plots of AUC-PR (a) and F1 scores
(b) across datasets comparing BMO and PIQ. Each point corresponds to a TF with
ChIP-seq data. Solid diagonal line, identity (x=y).
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Figure 2.9: TF binding prediction methods comparisons across sequencing depths.
AUC-PR scatter plots of BMO versus other methods across different sequencing
depths, shown in millions of reads in the top of each facet column. Each point
corresponds to one TF with ChIP-seq data. Solid diagonal lines, identity (x=y).
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Figure 2.10: CENTIPEDE and ssCENTIPEDE perform similarly across datasets.
Scatter plots of ssCENTIPEDE and CENTIPEDE AUC-PRs and F1 scores across
multiple datasets. Each point corresponds to one TF with ChIP-seq data. Solid
diagonal line, identity (x=y).

Figure 2.11: BMO and ChIP-seq f-VICEs are correlated. Correlation of f-VICEs cal-
culated from BMO predictions and from the respective ChIP-seq data across ATAC-
seq datasets. Note that BMO f-VICEs are consistently higher than ChIP-seq f-VICEs.
This is due to a higher number of predicted bound motif instances in BMO, which
motivated us to normalize f-VICEs using the linear regression approach described in
the methods (f-VICEs are not normalized using regression in this figure owing to low
n). Solid diagonal line, identity (x=y). Grey lines and shaded areas, linear model
y ∼ x fit and 95% confidence intervals.
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Figure 2.12: Selection of additional ATAC-seq samples using ubiquitous and con-
served CTCF-cohesin binding sites. (a) Upper: examples of V-plots for the reference
ubiquitous and conserved CTCF-cohesin binding sites indicating a high-quality and
low-quality sample (the latter shown for exemplification purposes and not included
in this study). Lower: chromatin information enrichment correlation between the
CTCF-cohesin binding sites across multiple experiments to a reference sample. (b)
V-plots of the same regions in the other samples selected for this study. Y-axes labels
are the same as the upper plot in panel A.
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Figure 2.13: Normalization of f-VICE. (a) Scatter plots of f-VICE as a function of
number of predicted bound motifs or ATAC-seq signal. (b) Same data after normal-
ization using a linear regression model that accounts for both variables (described in
the Methods section). Each point corresponds to a motif (n=540).
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Figure 2.14: f-VICE distributions across samples. Histograms and density plots of
the empirical (dashed) and high/low f-VICE distributions Gaussian fits (red and blue,
respectively) across all the datasets surveyed in this work. Percentages in the upper
right corner of plots represent the high f-VICE distribution.
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Figure 2.15: f-VICE correlation with FRAP recovery times in multiple datasets.
(a) Scatter plots of mammalian FRAP recovery times and f-VICEs across multiple
datasets. (b) Similar to (a), but showing f-VICE and FRAP ranks (similar to a
Spearman correlation). Solid blue lines in (a) and (b), linear model y ∼ x. (c)
Robust linear regression betas for the plots shown in (a). Robust linear regression
model f-VICE ∼ log10(FRAP) (d) Pearson and Spearman correlations of the plots
shown in (a). All correlations were significant at p<0.05.
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Figure 2.16: GM12878 CTCF/cohesin+ and CTCF/cohesin- regions. (a) Exam-
ple distributions of ATAC-seq signal, ChIP-seq signal, and motif PWM match
score before and after quantile-based downsampling of the CTCF/cohesin+ and
CTCF/cohesin-. Datasets: ENCFF963PJY (CTCF) and ENCFF002CPK (Rad21).
Other CTCF/Rad21 ChIP-seq dataset combinations not shown. Horizontal lines,
median. (b) Chromatin information tracks of CTCF/cohesin+ and CTCF/cohesin-

using genomic regions obtained from different GM12878 CTCF and RAD21 ChIP-seq
datasets combinations. The facet labeled “Union” corresponds to the union of the
two GM12878 RAD21 ChIP-seq datasets. (c) Corresponding MNase signal at the
regions shown in (b).
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Figure 2.17: Sonicated GM12878 ATAC-seq data. (a) Ataqv (github.com/
ParkerLab/ataqv) screenshot showing the fragment size distribution and TSS en-
richments of the conventional and sonicated GM12878 ATAC-seq datasets generated
in this study. HQAA = high-quality autosomal alignments. (b) V-plots of the refer-
ence conserved CTCF-cohesin regions in the two datasets. “Conventional ATAC-seq”
refers to the sample labeled as “GM12878 (this study)” in other figures. However,
this dataset was downsampled to the same depth as the sonicated dataset (3.45 mil-
lion reads) for the analyses presented in this figure and Figure 2a in order to make
datasets directly comparable. Black arrows, CIE peaks in both samples. Gray arrows,
CIE peaks not in the sonicated sample.

61

github.com/ParkerLab/ataqv


Figure 2.18: Chromatin information clusters in GM12878. (a) Chromatin informa-
tion enrichment Z-score clusters and (b) their corresponding MNase Z-scores. All
clusters are sorted by f-VICE on the y-axis. (c) Distribution of f-VICEs across chro-
matin information enrichment clusters. (d) Fraction of total high f-VICE TFs per
chromatin information cluster (based on the mixture model distributions). (e) Elbow
plot showing within-cluster variance for different k values in the chromatin informa-
tion enrichment k-means clustering in panel (a).
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Figure 2.19: f-VICE correlation with nucleosome phasing. In this plot, we show two
independent approaches for correlating f-VICE to nucleosome phasing. (a) f-VICE
distributions for motifs with positive and negative correlation between chromatin
information and MNase Z-scores (≤150 bp from motif center) across the different
k-means clusters, labeled 1-3 in the header. GLM = generalized linear model. (b)
Correlation between f-VICE and the log2 ratio of the MNase signal at the motif
vicinity (±125-150 bp from motif center) divided by the MNase signal at the motif
(±25 bp from motif center). Positives ratios indicate nucleosome phasing.
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Figure 2.20: Motifs with information asymmetry in GM12878. (a) Chromatin in-
formation asymmetry distribution in GM12878. Red dashed line represent the Bon-
ferroni p-value cutoff threshold. (b) Relationship between chromatin information
asymmetry and motif-oriented TSS proximity bias based on all motif instances. (c)
Motif-oriented TSS proximity bias chromatin as a function of information asymmetry
and median nearest TSS distance. We performed a regression analysis of nearest TSS
direction bias and chromatin information enrichment asymmetry, controlling for TSS
distance (Methods). Chromatin information enrichment asymmetry remained signif-
icant when controlling for TSS distance. (d) Concordance of chromatin information
asymmetry direction between TSS-distal and TSS-proximal motif instances. Solid
diagonal line, identity (x=y). Dashed black lines, linear model (lm) fit in the data.
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Figure 2.21: Protein domain enrichments. InterPro protein domains f-VICE enrich-
ments across samples.
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Figure 2.22: Enrichment of high and low f-VICE motifs in cis-eQTLs. (a) eQTL
enrichments of different features across GM12878 ATAC-seq and lymphoblastoid cell
lines (LCL) eQTL datasets. Enrichments are shown for GTEx with and without
minor allele frequency (MAF) filtering to demonstrate that the observed results are
not due to disproportionate representation of low MAF variants in any feature. (b)
Enrichments of high and low f-VICE BMO predictions on high and low effect size
GTEx eQTLs (above and below the median, respectively) across the two GM12878
datasets. (c) Geuvadis LCL eQTL enrichment calculated using QTL tools fenrich in
our GM12878 dataset. Error bars in all plots represent the standard deviation of the
effect size.
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Figure 2.23: DNA 6-mers f-VICE analyses. (a) DNA 6-mers normalized f-VICE
distributions across datasets. Horizontal lines represent the normalized f-IVCEs of
the two 6-mers shown in Figure 3e (CGCCCC in blue and CGACCC in red). (b)
6-mer f-VICEs as a function of GC content. (c) Scatter plot of f-VICE differences for
all 6-mers relative to 1bp neighbors in sequence space (i.e. 6-mers with a Hamming
distance of 1). (d) Distribution of the f-VICE range of each 6-mer relative to its
1bp neighbors in sequence space. (e) Distribution of f-VICE range as a function of
GC content. Note that high GC content 6-mers are more likely to have immediate
neighbors in sequence space with lower f-VICEs.
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Figure 2.24: f-VICE allelic imbalance analyses. (a) Proportion of time the preferred
ATAC-seq allele forms a 6-mer belonging to each f-VICE decile in all tested SNPs
(upper) and all SNPs with significant allelic imbalance (lower). (b) Distribution of
6-mer f-VICE difference between the preferred and non-preferred alleles at loci with
significant ATAC-seq imbalance. Each point corresponds to a DNA 6-mer overlap-
ping a locus with allelic imbalance. Red dashed line corresponds to the expectation.
P-values obtained from binomial tests. (c) f-VICE decile transition matrices. Each
square corresponds to the ratio of imbalanced versus all tested SNPs. P-values ob-
tained from permutation tests.
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Figure 2.25: f-VICE and PWM score AUC-PR. Scatter plots of f-VICE and FIMO
position weight matrix (PWM) score AUC-PR relative to ChIP-seq data. Robust
linear regressions calculated using formula AUC-PR ∼ f-VICE.
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CHAPTER III

Analyses of Thymic Precursors Chromatin

Accessibility to Elucidate Thymocyte Development

3.1 Foreword

Even though this chapter is positioned later in the dissertation, the work described

here was performed in parallel with the work from the previous chapter. Note that

we used CENTIPEDE for the TF binding prediction. This was due to BMO being

still under development at the time the manuscript was submitted for peer revision.

3.2 Abstract

In vertebrates, multiple transcription factors (TFs) bind to gene regulatory el-

ements (promoters, enhancers, and silencers) to execute developmental expression

changes. ChIP experiments are often used to identify where TFs bind to regulatory

elements in the genome, but the requirement of TF-specific antibodies hampers anal-

yses of tens of TFs at multiple loci. Here we tested whether TF binding predictions

using ATAC-seq can be used to infer the identity of TFs that bind to functionally

validated enhancers of the Cd4, Cd8, and Gata3 genes in thymocytes. We performed

ATAC-seq at four distinct stages of development in mouse thymus, probing the chro-

matin accessibility landscape in double negative (DN), double positive (DP), CD4
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single positive (SP4) and CD8 SP (SP8) thymocytes. Integration of chromatin ac-

cessibility with TF motifs genome-wide allowed us to infer stage-specific occupied

TF binding sites within known and potentially novel regulatory elements. Our re-

sults provide genome-wide stage-specific T cell open chromatin profiles, and allow the

identification of candidate TFs that drive thymocyte differentiation at each develop-

mental stage.

3.3 Results

3.3.1 Introduction

T cells develop in the thymus, where biologically distinct events driven by the

interplay of multiple transcription factors (TFs) acting in coordination take place at

each thymocyte stage. After migration of thymic seeding progenitors from the bone

marrow and their occupation of supportive niches in the thymic medulla, early thymic

progenitors (ETP) develop through immature double negative (DN; CD4-CD8-) cells

to the double positive (DP; CD4+CD8+) stage, and then mature into either CD4

single-positive (SP4) helper or CD8 SP (SP8) killer T cells. While ETP retain multi-

lineage differentiation capacity, they gradually lose the potential to become non-T

lineage cells and become increasingly restricted to a T lineage fate [145–148]. During

the DN stages, committed, developing T cells undergo immune system-specific DNA

recombination, and must successfully recombine a Trb gene allele (encoding the T cell

β receptor, TCRβ) to then pass the β selection checkpoint (when the formation of

a pre-TCR complex is assessed)[149, 150] in order to survive. At the next DP stage

(where both CD4 and CD8 are expressed on the cell surface), the TCRα receptor

rearranges, and only cells expressing a functional cell surface TCR complex (TCRα

plus TCRβ) that is able to bind with appropriate affinity to the major histocompat-

ibility complex (MHC) survive positive selection [151]. DP cells recognizing MHC
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class I can then mature into SP8 T cells, while DP cells recognizing MHC class II

mature into SP4 T cells. Finally, negative selection eliminates by apoptosis cells that

bind to self-peptides presented by the MHC, and only cells that do not exhibit high

affinity to self-peptides survive [151].

Although T cell developmental stage-specific gene expression profiling has been

previously described [152, 153], the mechanisms that regulate those spatial and tem-

poral expression patterns are far less well understood for all but a handful of genes.

DNA-binding TFs play a central role governing gene expression in each cell, often

eliciting transcriptional responses through specialized regulatory elements, including

promoters, enhancers, and silencers. A widely accepted model for gene expression is

that multiple transcription factors bind to an enhancer, assemble an enhanceosome,

and then recruit co-activators and chromatin-remodeling proteins to the promoter

[154, 155]. Given the limitations of ChIP-seq to detect a single TF per assay, an

alternative approach for detecting TF binding is using open chromatin assays, such

ATAC-seq [33, 84]. The genome is highly compact except within transcribed genes

and regulatory elements, where chromatin is open and sensitive to cleavage by DNa-

seI [156–158] or transposition by Tn5 transposase [21]. The binding of TFs to DNA

affects DNase/transposase cleavage in the vicinity of the bound site, allowing for TF

occupancy to be predicted from the chromatin accessibility data [33, 84, 159]. Thus

DNase/ATAC footprinting can be used to identify TF binding motif sequences within

regulatory elements.

To generate genome-wide profiles of stage-specific chromatin accessibility and TF

binding during thymocyte development, we performed ATAC-seq at four different

stages of adult thymocyte development: DN, DP, SP4 and SP8 stages. The open

chromatin regions identified by ATAC-seq highlighted both known, biologically vali-

dated regulatory elements, as well as many novel potential regulatory elements. Fur-

thermore, footprinting analysis [33, 84] of those open chromatin regions revealed the
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high-resolution landscape of predicted TF-bound motifs within those sequences. Our

ATAC-seq data enabled the discovery of both stage-independent and stage-specific

domains of open chromatin, and the TF footprinting data revealed 10-20 novel protein

bound sequences within the previously validated enhancers of the Cd4, Cd8, Trb and

Gata3 genes. Furthermore, enrichment analyses of TF binding in stage-specific open

chromatin allowed the identification of TF motifs potentially driving each stage of

thymocyte development. These data demonstrate that stage-specific changes in open

chromatin are highly dynamic as thymocytes develop and provide deep insight into

how the stage-specific binding of multiple TFs orchestrate transcriptional regulatory

networks.

3.3.2 Chromatin accessibility varies across thymocyte development

T cell developmental stage-specific genome-wide mapping of accessible chromatin.

To gain insight into developing T cell stage-specific chromatin opening, DN, DP, SP4

and SP8 cells were isolated from adult thymi by flow cytometry (Figure 3.8). 50,000-

100,000 cells were processed for ATAC-library preparation as described [21]. The

ATAC-seq reads were then mapped to mouse reference genome mm10 using BWA

[110] and peaks were called using MACS2 [112]. ATAC-seq signals depicted in the IGB

browser [160] were reproducible in thymocytes recovered from 4 individual animals

(Figure 3.9), and all peaks were highly correlated across biological and technical

replicates (median Spearman correlations: DN = 0.89, DP = 0.87, SP4 = 0.88, SP8 =

0.90; Figure 3.10). ATAC-seq signals at the DP stage (which comprises approximately

85% of total thymocytes, Figure 3.8) reflected profiles that were similar to DNase-seq

peaks of total adult thymocytes [161] (Figure 3.9), as anticipated. On a global scale,

DP ATAC-seq peak signals were highly correlated with DNase-seq peak signals of total

thymocytes (median Spearman correlation = 0.70 to 0.79 Figure 3.10). Based on these

results, we concluded that ATAC-seq provides a biologically reliable strategy to attain
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deeper insights into T cell stage-specific chromatin accessibility and transcription

factor binding.

We identified 150,139 (DN), 107,110 (DP), 115,074 (SP4) and 104,411 (SP8) ge-

nomic open chromatin peaks at 5% FDR (Figure 3.11). These open chromatin do-

mains correspond to 1.63% (DN), 1.22% (DP), 1.32% (DP) and 1.26% (SP4) of the

mouse genome. 73,177 peaks were present at all four stages of thymocyte develop-

ment, while the others were stage-specific. 20% (DN), 27% (DP), 24% (SP4) and

26% (SP8) of the ATAC peaks overlapped with promoter regions (defined as 200 bp

upstream of a gene transcriptional start site). 10% (DN), 9% (DP), 8% (SP4) and 9%

(SP8) of the ATAC peaks overlapped with an exon, but not with a promoter. 73%

(DN), 63% (DP), 68% (SP4) and 65% (SP8) of the ATAC peaks overlapped with

neither an exon nor a promoter (Figure 3.11).

We next sought to quantify the full spectrum (from specific to ubiquitous) of pat-

terns of chromatin accessibility across the analyzed thymocyte developmental stages

in an unbiased manner. We performed k-means clustering using the ATAC-seq signal.

This analysis yielded 6 clusters of accessible regions: four that were specific for each

stage (DN, DP, SP4, SP8), one that was ubiquitous, and one that was a combination

of DN and ubiquitous (Fig. 3.1a, Figure 3.12). The ubiquitous cluster covered more

genomic territory than any of the stage-specific clusters, while the DN-specific cluster

covered more territory than the other stage-specific clusters (Fig. 3.1b), which is

consistent with the previous conclusion that in general differentiated cells maintain a

more compact chromatin architecture than their immature counterparts [162].

We next measured the distance of each peak in the four clusters to the nearest TSS

and found that the ubiquitous cluster was significantly closer to TSS than the other

clusters (p< 10−3, pairwise Kolmogorov-Smirnov tests with Bonferroni correction),

suggestive of it being more associated with promoters and housekeeping genes than

cell-identity features (Fig. 3.1c). Supporting this hypothesis, we found that SP4- and
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Figure 3.1: Analysis of stage-specific and ubiquitous ATAC-seq clusters. (a) k-means
clustering results for the ATAC-seq signal in the four samples. Colors indicate the
mean ATAC-seq signal for each sample in the respective cluster (i.e. the cluster
centers). (b) Fraction of total peaks territory covered by each of the clusters. (c)
TSS distance distribution (in log10 scale) for each of the clusters. Vertical bars in
the violin plots correspond to the median of the dataset. (d) Median GAT footprint
enrichment of all motifs for each dataset in the k-means clusters. GAT footprint
enrichment heatmaps for each motif are shown in Figure 3.13
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SP8-specific clusters were the most enriched for T cell related GO terms using ChIP-

Enrich [163] (Figure 3.2). The DP-specific cluster also had high enrichment for terms

related to T cell differentiation, but to a lesser extent. Conversely, the DN-specific

and ubiquitous clusters were strongly enriched for non-specific developmental terms,

suggesting that these might regulate more general functions. These results form

a comprehensive map of developmental dynamics in the open chromatin landscape

across thymocyte maturation.

3.3.3 TF binding identification by ATAC-seq footprinting

In order to achieve greater insights into genomic DNA sequences that are bound by

TFs, we performed TF footprinting predictions using CENTIPEDE [49]. To validate

the performance of CENTIPEDE footprint calls in our thymocyte data, we first com-

pared our results with GATA3 ChIP-seq data in DN and DP thymocytes (GSE20898)

[164] and CTCF ChIP-seq in total thymocytes (ENCODE, ENCSR000CDZ) [161].

We used the Genomic Annotation Tester (GAT) tool [136] to statistically evaluate

the overlap between footprint calls and ChIP-seq bound motifs, while controlling for

genome and feature sizes, as well as mapability issues (see Methods for details). Tests

on both datasets showed significant overlap between ChIP-seq and footprint data (p

< 10−3), indicating that the footprint predictions recapitulate actual protein binding

events detected by ChIP-seq for the corresponding TF. These data demonstrate the

effectiveness of the footprint calls from these deeply sequenced ATAC-seq data in

order to generate a high confidence catalogue of putative TF-bound sequences in a

thymocyte stage-specific manner.

We next focused on TF binding motifs for T cell activators and repressors that

were predicted by Jojic et al. [165] from stage-specific gene expression profiling. We

predicted the binding for the Jojic factors and their families. As expected, we found

that the footprints called in each sample were enriched both in its own specific cluster
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Figure 3.2: ChIP-Enrich results for the ATAC-seq clusters. GO term enrichment
values for the top 15 terms called in each of the clusters and their corresponding
enrichments for all clusters.
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and the ubiquitous cluster, but depleted in the other sample-specific clusters using

GAT, indicating that CENTIPEDE did not detect bound TF binding sites in regions

that were not active in the sample being analyzed (Fig. 3.1d and Figure 3.13).

We next focused on footprint calls within functionally validated enhancers. The

classic definition of enhancer requires that it must be functionally validated by tests

for both sufficiency and necessity in regulating its specific target gene expression, but

to date only few T cell enhancers have been tested for both in vivo. The ATAC-

seq data identified open chromatin regions within functionally validated regulatory

elements for the Cd4 (Fig. 3.3 and Figure 3.18), Cd8 (Fig. 3.4 and Figure 3.14),

Trb (Figure 3.15) and Gata3 (Fig. 3.5) genes. The fact that the ATAC footprints

recapitulated TF binding to the previously characterized motifs within these regu-

latory elements underscore the robust nature of the footprint approach employed in

this study. Furthermore, our footprint data unveiled 8-20 novel sequences that were

predicted to be bound within each of these regulatory elements (Figures 3.3, 3.4, 3.5,

3.18, 3.14, and 3.15). Based on these data, we propose that TFs bind to these se-

quences to assemble an active structural element that initiates and/or maintains the

activity of each of these regulatory modules.

3.3.4 Changes in global TF binding during thymocyte development

We next sought to identify higher-resolution differences in predicted TF bind-

ing across samples by measuring the pattern of chromatin accessibility anchored on

footprint motifs. We found striking differences for the footprint motifs across the

samples and clusters in which they were active (Fig. 3.6 and Figure 2.14). CTCF

had strong detectable binding patterns only in the ubiquitous cluster, and a similar

pattern was observed for EGR3. TCF7 (aka TCF-1) had significant binding in all

clusters. TCF4, on the other hand, was detected more strongly in the DP and DN

clusters, was mostly absent in the common clusters, and almost undetectable in SP4
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Figure 3.3: ATAC-seq signal and CENTIPEDE footprint calls around the functionally
validated E4p Cd4 gene enhancer. (a) ATAC-seq signals are shown on the IGB
browser within around 50 kbp of the Cd4 locus; mm10, chr6:124,860,001124,910,000.
The positions of the E4p, E4m enhancers and S4 silencer [166–168] are shown at the
top. (b) ATAC signal and footprint calls around E4p are depicted. CD4-1, CD4-2
and CD4-3 sequences were first identified by DNaseI footprinting in the SL3B T cell
line40. (c) TCF12 (aka HEB) motif footprints in the CD4-1 and CD4-3 sequences.
Footprint calls within S4 and E4m are shown in Figure 3.18.
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Figure 3.4: ATAC-seq signal and footprint calls within functionally validated en-
hancers for the Cd8 gene. (a) ATAC-seq signals are shown on the IGB browser
within around 100 kbp of the Cd8 locus; mm10, chr6:71,300,001-71,400,000. The
positions of the E8I -E8V enhancers [169–171] are depicted at the top (b) ATAC sig-
nals and footprint calls at an ATAC peak identified in E8II are shown. (c) A PATZ1
motif footprint within E8II is shown. Footprint calls within E8I and E8V are shown
in Figure 3.14.
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and SP8 thymocytes, even though it was one of the most significantly enriched motifs

in these two stages (p = 0.001). RUNX patterns were visible in the common and

DN clusters, but not in the more differentiated stages. Although GATA footprints

were enriched in all clusters, we could not detect strong binding patterns, which is

suggestive that it may have weaker interactions with DNA29. Interestingly, we did

not find any SP4- or SP8-specific occupancy patterns, even though some motifs, such

as TCF3 and ID4, had higher enrichment values in the SP4- and SP8-specific clusters

than in the ubiquitous cluster. These different patterns between stages for TCF3 and

ID4 suggest that the availability (expression or protein levels) of these TFs changes

or that different TFs recognize these motifs at each stage.

We finally asked which footprints were enriched in each of the stage-specific open

chromatin clusters defined in Fig. 3.1a. Each cluster showed enrichment of different

TF motif footprints (Fig. 3.7). Of note, we independently performed motif enrich-

ment in the ATAC-seq clusters using HOMER (Figure 3.17), but this approach did

not capture the nuanced enrichments we detected with the footprinting approach, as

HOMER only takes the motif occurrences and not the ATAC-seq signal into account.

These data support the concept that many TFs bind to specific transcriptional regu-

latory elements at each developmental stage to achieve stage-specific gene expression

patterns, and that the binding of these individual factors is reflected in the dynamic

changes in transcriptional networks that must accompany thymocyte developmental

progression from one stage to the next.

These footprinting data identified potential stage-specific regulators. Out of the

34 SOX family TF motifs tested, 10 and 9, respectively, were within the top 20

enrichment scores for DN and DP, but not in in SP4 and SP8, suggesting that a

SOX family TF(s) is important for DN- and DP-specific gene expression. Of 3 PBX

family TF motifs tested, 2 were within the top 20 fold-enrichment scores for the DP-

specific cluster. These data suggest a role for PBX family TFs in DP-specific gene
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Figure 3.5: ATAC-seq signal and footprint calls within the functionally validated
TCE1 Gata3 enhancer. (a) ATAC-seq signals are shown on the IGB browser around
400 kbp of the Gata3 gene; mm10, chr2: 9,500,0019,900,000. (b) ATAC peak and
TF footprint calls at an ATAC peak found in TCE1 core [172, 173]. (c) TCF12 (aka
HEB) motif footprints.
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Figure 3.6: Footprint occupancies across samples and clusters. Normalized occupancy
signals (see Methods) at ±100 bp of motif center for CTCF, EGR3, TCF7 and TCF4.
Horizontal facets correspond to the ATAC-seq samples, and vertical facets correspond
to the k -means clusters.
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Figure 3.7: Individual footprint enrichments in each of the samples. (a) GAT enrich-
ment scores for the top factors that maximize the variance between the stage-specific
clusters of each of the ATAC-seq samples. (b) Similar to (a), but comparing the
enrichments for each ATAC-seq sample in the ubiquitous cluster. Darker red colors
correspond to stronger enrichments, and blue colors correspond to depletions.

expression. Out of 4 PKNOX family TF motifs tested, 3 were within the top 20

enrichment scores for the SP4 and SP8 clusters, indicating that PKNOX family TFs

contribute to SP4- and SP8-specific gene transcription. Finally, out of 7 MAF family

TF motifs tested, 1 and 3 were within the top 20 fold-enrichment scores for the SP4

and SP8 clusters, respectively, supporting the hypothesis that MAF family TFs are

important for SP8-specific gene expression.

3.4 Discussion

We performed ATAC-seq experiments and footprint analyses at four major stages

of thymocyte development in order to compile a catalogue of stage-specific accessi-

ble chromatin sequences as well as to identify specific sequences bound by TFs. We

84



identified ubiquitous and stage-specific open chromatin regions, recapitulating the

identity of functionally validated regulatory elements, as well as revealing novel reg-

ulatory loci. The ATAC-seq footprinting data for predicted αβT cell activators and

repressors highlighted TF-bound motifs within those regulatory regions, as well as

bound motifs that were enriched in each of the thymocyte stage-specific accessible

chromatin clusters, providing an in-depth view into the inner regulatory workings of

thymocyte development. We identified between 8 and 20 novel sequences that were

predicted to be bound by proteins within previously identified regulatory elements for

the Cd4, Cd8, Trb and Gata3 genes, which supports the idea that an approximately

8-20 TFs bind to an enhancer in order to form a TF complex/enhanceosome that is

capable of supporting the initiation and/or activation of enhancer activity. Thus one

future goal is to investigate the ability of individually bound sequences to contribute

to enhancer activity, which can be tested by in vivo ablation or mutation of specific

TF motifs. The genome-wide footprinting approach detailed here is an alternative to

ChIP experiments, but the two are complementary. It is well known and has been

documented that several different proteins can bind to a given sequence motif (e.g.

all six vertebrate GATA factors bind with reasonably high affinity to the AGATAA

sequence motif, so identification of a given cis element in the absence of data re-

garding the tissue specificity of a given family of factors may only be marginally

informative). ChIP experiments, in contrast, can capture indirect binding by virtue

of protein-protein interactions that occur in larger complexes formed with a specific

DNA binding protein [174, 175], potentially complicating assignment of which factor

is genuinely bound to DNA at any given site.

The thymocyte stage-specific open chromatin regions identified here by ATAC-seq

followed by k-means clustering approach highlighted the positions for thousands of

potentially novel developmental stage-specific regulatory elements. The ATAC peaks

provided evidence for the previously predicted closed- or open-chromatin status in
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both the Cd4 and Cd8 loci during thymocyte development [176]. Furthermore, the

identification of two major ATAC peaks within the 7.1 kbp that originally defined

the Gata3 enhancer, TCE1 [172, 173] suggests that one or both of these two open

chromatin domains (of approximately 600 bp and 500 bp) play a major role in the

enhancer activity of TCE1. In agreement with this hypothesis, one of these ATAC-

seq peaks aligns perfectly with a 1.2 kbp “core” sequence that exerts similar reporter

gene activation in thymocytes of transgenic mice that is roughly equivalent to the

whole 7.1 kbp TCE1 sequence [173].

Enrichment of footprints in the stage-specific open chromatin clusters highlighted

TF families binding to the motif as potential stage-specific regulators. These data

provide an additional layer of information to the αβ T cell factors [165] predicted

from lineage specific gene expression profiles. The most immediate future plans fol-

lowing these identifications are to investigate whether or not each bound sequence is

necessary for any specific enhancer/silencer activity, which can be tested by in vivo

genomic DNA mutation of the TF motif. In summary, the genome-wide view of open

chromatin presented here as well as the identification of the sequence motifs bound by

TFs at four different stages of thymocyte development is a useful point from which to

begin to assemble precise models for transcriptional regulation of T cell stage-specific

gene expression.

3.5 Methods

ATAC-seq. ATAC libraries were prepared as described previously [21]. In brief,

50,000 to 100,000 DN, DP, CD4 SP and CD8 SP thymocytes were isolated by flow

cytometry (Figure 3.8). Cells were processed for ATAC reaction, and then the ATAC

libraries were PCR amplified with barcoded primers. The ATAC-seq libraries were

paired end 75 bp sequenced on a HiSeq 4000 at the UM Sequencing Core. Raw reads

were trimmed for barcodes and aligned to the mm10 reference genome using BWA
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[110]; duplicates were removed with Picard and then filtered for high quality (mapq

! 30), properly paired alignments and uniquely mapped as described in our previous

study [33].

Peak calling. In order to account for sequencing depth differences between each

library, we down-sampled reads (keeping read pairs intact) to the median depth of

all libraries after the pruning steps described above. This ensures that sequencing

depth would not confound the analysis. After this step, we combined all replicates

from each stage into a single BAM file to increase sequencing depth (ranging from

120 to 134 million reads per stage) and called peaks using MACS2 [112] with options

-nomodel -shift -50 -extsize 100 -B -keep-dup all. For testing the reproducibility

between samples, we generated a set of regions that were called (narrow) peaks in at

least one of the merged samples, retrieved the number of fragments mapping to these

regions in each replicate and calculated the pairwise Pearson correlations between all

replicates of the same stage.

k-means clustering and functional enrichments. To perform k-means cluster-

ing, we generated a set of genomic regions that were called peaks in at least one of the

samples (master peaks list) by using bedtools merge in the combined MACS2 output

for all samples. For each sample, we calculated the FPKM in each of the master peaks

regions, and normalized the signal by dividing the values by the TSS enrichment of

the sample, which accounts for the signal-to-noise ratio, and then applied robust IQR

scaling:

Xscaled =
(xi −median(X))

IQR(X)
(3.1)

where IQR is the distance between the 1st and 3rd quartiles, to make the val-

ues comparable across samples. This signal was then row-wise normalized by the
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maximum of every sample:

Ynormalized =
yi

max(Y )
(3.2)

Using this matrix of genomic coordinates per samples, we ran the k-means im-

plementation available in R 3.3.1 for k = 1, 2, ..., 15 k values and determined that

k = 6 was suitable for our analyses. Increasing k to higher values only marginally

decreased variance and yielded repetitive clusters patterns, with 1,000 random starts

for robustness. We analyzed the within cluster variances for all (Figure 2.8). In order

to perform functional annotation of the clusters, we used the ChIP-Enrich R package

[163], which allow us to directly compare the enrichment scores and p values for the

same GO terms across samples.

PWM scans and ATAC-seq footprints. In the current study we focused on TF

binding motifs for T cell activators and repressors that were predicted by Jojic et

al. [165] from stage-specific gene expression profiling (171 αβT cell factors, Supple-

mentary Table 10 in ref. [165]). Position weight matrix (PWMs) for each motif was

obtained from ENCODE [177], JASPAR [178] and TF pairs identified by Jolma et al.

[45]. Total 417 binding motifs for 67 out of 171 Jojic αβ T cell factors were derived

from these databases. We scanned the mm10 genome for the PWMs for the 417 mo-

tifs using FIMO [43] with the G-C content back- ground frequency for mm10 (41.7%),

and used the default 10−4 P value threshold, also filtering for motif occurrences in-

tersecting regions with known mapability issues (blacklisted regions). CENTIPEDE

[49] was used to call footprints from the ATAC-seq data as we have done previously

[33, 84]. Briefly, for each PWM scan result we generated a strand-specific (relative to

the motif orientation) single base pair resolution matrix encoding the number of Tn5

transposase integration events in a region ±100 bp from each motif occurrence. A

motif occurrence was considered bound if the CENTIPEDE posterior probability was
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higher than 0.99 and its coordinates were entirely contained by an ATAC-seq peak.

To generate the motif occupancy plots for each factor, we aggregated the signal used

as input for CENTIPEDE for all the predicted bound motifs, as well as an equal num-

ber of motifs with posteriors less than or equal to 0.5 and not intersecting ATAC-seq

peaks in that sample. The normalized signal plotted was obtained by dividing the

bound signal by the unbound.

Overlap of ATAC-seq footprint and ChIP-seq. In order to test the correspon-

dence between foot- print calls and ChIP-seq data for GATA and CTCF, we used

GAT [136] with the workspace set as all the GATA or CTCF motif matches in the

mm10 genome, the respective ChIP-seq peaks as the segments, and the respective

CENTIPEDE footprint calls as the annotation. By limiting the workspace only to

the specific motifs, the data stringently delimit the space for genomic interval over-

lap testing. The footprint enrichments in the ATAC-seq clusters were performed

separately for each sample and for each motif. We used as workspace all the motif

occurrences within the master peaks regions (see k-means clustering above) for the

individual motif being analyzed. As annotations, we used the cluster designations

from the k-means analysis. The segments were all the footprints for that motif in

that sample. Additionally, we used the option -n to 1,000 in order to increase sta-

tistical robustness. This resulted in a table with the GAT results for every motif in

each cluster and in each sample.

Data Availability. ATAC-seq and footprint data have been deposited in GEO

database [179] and are accessible through accession number GSE107076.
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3.7 Appendix: Additional Figures

Figure 3.8: Isolation of staged thymocytes. (a) Individual stages of thymocytes were
isolated using a FACSAria III (BD). Representative dot plots from 1 mouse (out
of 4 animals examined in two different experiments) are shown. Area Scaling was
set with total thymocytes and doublets were gated out using FSC-A vs. FSC-H.
PI was used to discriminate dead from live cells. The gates (blue) are shown for
DN (Lin-CD4-CD8-CD3-), DP (Lin-CD4+CD8+), SP4 (Lin- CD4+CD8-CD3+) and
SP8 (Lin-CD4-CD8+CD3+) cells. The numbers near the boxed areas indicate the
mean percentage of cells in each gate. The lineage cocktail used was a mixture of
e450- conjugated antibodies recognizing TER119 (TER119), B220 (RA2-6B2), CD19
(1D3), Mac1 (M1/70), Gr1 (RB6-8C5), CD11c (N418), NK1.1 (PK136) and gdTCR
(GL3). Cells were also stained with PECy-CD4 (RM4-5), APC-CD8 (53-6.7) and PE-
CD3e (145-2C11) purchased from eBiosciences or BioLegend. (b) A small fraction of
the sorted cells were reanalyzed to check for purity.

91



Figure 3.9: ATAC-seq profiles of thymocytes. ATAC-seq signals (MACS2 bedgraph
converted to bigwig format) and peaks (MACS2 broad peak calling) surrounding
the Cd4 (a), Cd8 (b) and Trb (c, encoding TCRβ), Gata3 (d) loci and TCE1 en-
hancer for Gata3 gene (e). Data are on the IGB browser around 50 kbp of the
Cd4 locus (a, mm10, chr6:124,860,001- 124,910,000), around 100 kbp of the Cd8
locus (b, chr6:71,300,001-71,400,000), around 50 kbp of Trb gene beta enhancer
(c, Eβ, chr6:41,520,001-41,570,000), within +/- 1.2 Mbp of the Gata3 gene (d,
chr2: 8,600,001-11,000,000) and around TCE1 enhancer for Gata3 gene (e). (Top)
ATAC- seq peaks were generated in quadruplicate in order to analyze chromatin
accessibility in DN (orange), DP (green), SP4 (pink) and SP8 (blue) stage thymo-
cytes. (Bottom) ATAC-seq peaks in DP stage (green), which compose approximately
85% of total thymocytes, were compared with DNase-seq (DHS, middle, ENCODE,
ENCSR000COB, isogenic replicate 1 and 2) and H3K27ac ChIP-seq (bottom, EN-
CODE, ENCSR000CCH, isogenic replicate 1 and 2) in thymocytes.
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Figure 3.10: Correlation of the ATAC-seq signal between replicates. (a) Cor-
relation between ATAC-seq libraries. (b) Correlation between DP ATAC-seq li-
braries and adult thymocytes DNase-seq data from total adult thymocytes (EN-
CODE,ENCSR000COB). Bottom facets: each data point corresponds to an ATAC-
seq peak that was called in at least one sample (see Methods). The values plotted are
the number of fragments in each peak in the corresponding samples (labelled on the
diagonal), and the red and black lines correspond, respectively to the linear model
fit from the two datasets and the identity (i.e. x = y). Upper facets: Spearman
correlation values for the comparisons.
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Figure 3.11: Open chromatin regions defined by ATAC-seq peaks. (a) Number of
ATAC-seq peaks in DN (orange), DP (green), SP4 (pink) and SP8 (blue) stage thy-
mocytes. (b) Total length of ATAC-seq peaks assigned by MACS2 (narrow peak
calling) is shown as a fraction of the whole mouse genome length. (c) The overlap
among ATAC-seq peak calls at the four stages examined in this study is shown as
a Venn diagram. (d) ATAC-seq peaks that overlap within 200 bp 5’ to a gene were
characterized as promoters (left). The peaks that overlap with exons, but are not
with the promoters, are shown as exons (middle). The peaks that overlap with nei-
ther promoters nor exons are characterized as distal (right). The gene annotations
were downloaded from the UCSC Table Browser. Annotations for RefSeq genes and
UCSC genes are combined.
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Figure 3.12: Additional information on k-means clustering. Distribution of the
ATAC-seq signal in the master peaks before (a) and after (b) normalization. (c)
Elbow plot showing variances within clusters for each value of k.
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Figure 3.13: Footprint enrichment results from GAT. Heatmaps showing GAT en-
richments of each of the motifs for the individual k-means clusters in (a) DN, (b) DP,
(c) SP4, and (d) SP8 samples.
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Figure 3.14: CENTIPEDE footprint calls within functionally validated enhancers for
the Cd8 gene. Related to Fig. 3.4. ATAC signals and footprint calls within peaks
found in E8I silencer (a,b) and E8V enhancer (c,d). Transgenic reporter analysis
showed that expression of the Cd8 genes is regulated by multiple enhancers (E8I,
E8II, E8III, E8IV and E8V) [33, 154, 155]. Removal of either E8I/E8II or E8V
from the mouse genome results in reduced CD8 expression [84, 156]. In the present
analysis, open chromatin regions were identified in the E8 enhancers and exons, but
also revealed the presence of possibly novel and previously undetected regulatory el-
ements (Fig. 3.4). The footprint data recapitulated TF binding to IKAROS motifs
15, RUNT motifs [157] and PATZ1 [158] motifs within the known Cd8 enhancers. We
conclude that experimental information obtained at the Cd4 and Cd8 loci by ATAC
demonstrate agreement between protein binding to previously well characterized en-
hancers (and one silencer) and our footprint predictions, supporting the hypothesis
that TF footprints revealed by ATAC-seq provide a reliable complement to exper-
imental ChIP-qPCR and ChIP-seq data. This highlights the use of ATAC-seq to
generate highly informative predictions of TF binding to regulatory elements prior to
experimental validation.

97



Figure 3.15: ATAC-seq signal and CENTIPEDE footprint calls around functionally
validated β E enhancer for the Trb gene. (a) ATAC-seq signals are shown on the
IGB browser within around 50 kbp of the Trb locus (encoding TCRβ); mm10, chr6:
41,520,001-41,570,000. Eβ enhancer, DJC and Trbv31 regions are shown at the top.
(b) ATAC signals and footprint calls around Eβ are shown. Deletion of Eβ enhancer
from mouse genome blocks αβT cell development [110, 159]
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Figure 3.16: Footprint occupancies across samples and clusters. Normalized occu-
pancy signals (see Methods) at ±100 bp of motif center for RUNX1, GATA, TCF3,
and ID4. Horizontal facets correspond to the ATAC-seq samples, and vertical facets
correspond to the k-means clusters.
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Figure 3.17: HOMER motif enrichment analysis. HOMER known motifs that were
called as significant in each of the clusters are plotted with their enrichment values
in the color scale.
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Figure 3.18: CENTIPEDE footprint calls within functionally validated regulatory
elements for the Cd4 gene. Related to Figure 3.3. ATAC signals and footprint calls
around S4 silencer (a) and E4m enhancer (b). Transgenic reporter analyses have
shown that Cd4 transcription is regulated by at least two proximal enhancers (E4p
and E4m) and a silencer (S4) [146–148]. In mice ablated for E4p only, CD4 expression
was reduced in pre-selection DP thymocytes 5 but was completely abrogated when
both E4p and E4m were deleted [150]; . Removal of S4 from the mouse genome
resulted in ectopic Cd4 expression in DN and SP8 cells, which are both CD4-negative
in wild type mice [151–153]. We identified ATAC-seq open chromatin regions in the
Cd4 locus E4p, E4m and S4 (Fig. 3.3). The ATAC-peak at E4p belongs to DP-specific
cluster shown in Fig. 3.1a, while the ATAC-peak found in E4m belongs to SP4-specific
cluster, in keeping with its developmental function [149, 150]. The open chromatin at
S4 belongs to SP8-specific cluster, as would be expected from its Cd4 gene silencing
function. Minor open chromatin regions were also found approximately 3 kbp 5’ to
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E4p, as well proximal to the Cd4 1st and 2nd exons. Our digital footprint data in
mouse primary thymocytes identified approximately 10 sequences bound by protein
within E4p, S4 and E4m, respectively. Based on known and novel protein binding
found here, we propose that approximately 10 proteins shown in bind to/around E4p,
S4 and E4m in order to contribute to activity of the enhancers/silencer.
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CHAPTER IV

Implications and Future Directions

This dissertation is based on the overarching principle that the interactions be-

tween TFs and chromatin are fundamental to understand genome regulation and the

genetic causes of disease predisposition. The body of work described here emerges

from analyses of several modalities of high-throughput molecular profiles with a focus

on applying an information theoretical perspective to genomic data. My work aimed

to improve our understanding of genome organization and regulation by developing

novel computational methods to quantify the interactions between transcription fac-

tors and chromatin. During the course of this dissertation, several themes emerged

with implications for future studies of genome organization.

4.1 In vivo TF-chromatin interaction signatures are dynamic

and reflect biophysical and regulatory properties of TFs

Previous studies have determined interaction patterns between TFs and nucleo-

somes in vitro using protein binding microarrays, affinity purification, and optical

tweezers [65, 75, 94]. However, these studies were performed using purified nucleo-

somes and TFs, therefore not taking into account for the complex set of biological

factors regulating TF-chromatin interactions in their native cellular environment. Us-

ing the information theoretical approach developed during this dissertation, we were
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able to determine TF-chromatin interaction patterns by measuring the organization

of the chromatin accessibility signals around TF binding sites. This metric, which we

called chromatin information, quantifies the underlying local chromatin architecture

(nucleosome positioning) from the information content patterns in ATAC-seq frag-

ments. This allowed the determination of in vivo TF-chromatin interaction patterns

for hundreds of TF motifs, thus enabling the dissection of tissue-specific patterns that

cannot be captured in the aforementioned in vitro studies.

We present evidence that the TF-chromatin interaction patterns are associated

with biophysical aspects of TF biology, such as TF-DNA residence times and specific

DNA binding domains. By measuring the local chromatin organization associated

with TF binding, we provide for the first time a method to estimate TF-DNA res-

idence times for hundreds of TFs simultaneously using sequencing data. This rep-

resents an important technological advance. We hope these tools will be useful for

researchers interested in understanding TF biophysics.

Our work shows that TF-chromatin interaction patterns vary widely between TFs,

and even between subclasses of the same TFs (as exemplified by the CTCF/cohesin

results described in Chapter II). We found that the majority of TFs (up to 90%)

do not associate with organized chromatin. We therefore hypothesize that these low

chromatin information TFs have less active roles in chromatin organization. Impor-

tantly, we find differences in TF-chromatin interaction patterns across tissues and

cell types, indicating that different subsets of TFs drive these chromatin information

patterns. Interestingly, some of the TF families associated with the highest chro-

matin information in each tissue are associated with development and include known

tissue-specific TF families (Figure 2.1). This suggests that the chromatin information

metric we developed here can be used to nominate candidate tissue-specific regulators

of chromatin organization. Supporting this, our results show that the subset of TFs

associated with organized chromatin are more enriched to overlap regions associated
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with the genetic control of gene expression (cis-eQTLs), consistent with these high

chromatin information TFs having a prominent regulatory role in the cell types in

which they are expressed.

4.2 TF-chromatin interaction patterns identify candidate pi-

oneer TFs

Given the enrichment of high chromatin information TF motifs overlapping cis-

eQTLs compared to other TFs, we hypothesized that high chromatin information TF

could act by establishing the conditions for other TFs regulate gene expression. One

mechanism for this would be if high chromatin information TFs acted as pioneer TFs.

Pioneer TFs are a special class of TFs that are postulated to bind closed chromatin

and induce chromatin accessibility to enable binding of other TFs [71]. While some

studies published during the course of this work provided clues about what differen-

tiates pioneers from non-pioneer TFs [73, 74], determining which TFs act as pioneers

in any given tissue remains an open question. During this work, we sought to tackle

this question by using a genetics-based approach to estimate chromatin information

at heterozygous loci. Our results showed that genetic variants associated with higher

chromatin accessibility were more likely to form binding sites for TFs associated with

organized chromatin. This result is consistent with high chromatin information TFs

acting as pioneer TFs. Supporting this, motifs associated with known pioneer TFs

such as OCT, SOX, KLF, and FOXA2, are among the highest in chromatin informa-

tion. While it will be necessary to experimentally validate this claim, our chromatin

information framework provides an approach to determine candidate pioneer TFs in a

given biological sample. Importantly, this methodology does not rely on time-course

or in vitro TF-nucleosome dynamics experiments, which demand more resources. An

exciting future direction from this work is to determine how the repertoire of these
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putative pioneer TFs vary as a function of development or in response to exper-

imental perturbations. Addressing this question has the potential to increase our

understanding of genome regulation.

4.3 TF binding prediction methods are affected by TF-chromatin

interactions

Determining genome-wide TF binding sites is critical to understand gene reg-

ulatory networks. TF ChIP-seq experiments, however, are expensive and a priori

knowledge of the TF(s) to be profiled. Therefore, a viable alternative is to predict

TF binding using chromatin accessibility data. In Chapter III of this dissertation,

we demonstrated the use of CENTIPEDE [49], a TF binding prediction method, to

characterize the dynamics of TF binding during thymocyte development. By finding

known and potentially novel TFs involved in thymocyte development, we present a

proof-of-concept that TF binding prediction algorithms can be used to dissect the

complex dynamics associated with biological processes.

The most widely used methods to predict TF binding from chromatin accessibil-

ity data rely on the presumed local protection the TF confers to DNA cleavage (TF

footprints). Previous studies, however, suggested that not all TFs associate with foot-

prints [52, 55]. As part of this dissertation, we evaluated TF footprint-based binding

prediction algorithms and determined that they are sensitive to the local chromatin

architecture associated with the TF-chromatin interaction. Footprinting-based meth-

ods had high prediction power of TFs associated with highly organized chromatin,

such as CTCF, but were less accurate for TFs that did not associate with organized

chromatin. BMO, the method we developed in this study, is less sensitive to local TF-

chromatin interaction patterns. BMO outperformed footprinting-based algorithms in

the majority of TFs. Using BMO, we were able to calculate the TF-chromatin in-
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teraction patterns for hundreds of TFs. Our results show that the majority TFs do

not associate with organized chromatin. Most TFs, therefore, are not suitable for

footprint-based algorithms. This represents an important advance in the field of ge-

nomics, as not only do we demonstrate that the current framework of TF binding

prediction is limited, but we also provide an alternative to circumvent these limita-

tions. We hope that the use of BMO or other non footprint-based algorithms will

become the standard for TF binding predictions. An important future direction for

this work is to develop a statistical framework that allow to use BMO across multi-

ple replicates. This will be advantageous for studies analyzing cohorts where large

numbers of chromatin accessibility profiles are available.

4.4 Chromatin information as a novel metric of ATAC-seq

quality control

One of the most important steps in analyzing any high-throughput molecular

profile is assessing data quality, which requires well-established quality control (QC)

metrics. Because of its relatively young age at the start of this work, ATAC-seq had a

limited set of QC tools available. In particular, we felt the need for a tool that could

compare multiple samples simultaneously and provide metrics to quantify relevant dif-

ferences between samples that could affect downstream comparisons (e.g. fragment

length distribution and signal-to-noise ratio). To address this issue, our group devel-

oped ataqv (https://github.com/ParkerLab/ataqv), a QC tool for ATAC-seq data.

Ataqv which was used extensively during this work. The metrics analyzed by ataqv

were sufficient for broadly categorizing samples as higher or lower quality. However,

ataqv did not assess the finer information content patterns indicative of TF-chromatin

interactions. As part of this work, we leveraged the highly ordered chromatin architec-

ture around constitutive and evolutionarily conserved CTCF-cohesin binding sites to
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provide a known quantity (a “standard candle”, in astronomical jargon) of chromatin

organization to be used as a QC metric. By generating a V-plot of the ATAC-seq

signal around these ubiquitous CTCF-cohesin binding sites, it is possible to obtain

important information regarding sample quality from a single plot. This approach is

complementary to the other QC metrics provided by ataqv, as it provides an intuitive

way to evaluate multiple samples (see Figure 2.5 as an example). The CTCF-cohesin

V-plot visually informs metrics such as signal-to-noise ratio and ATAC-seq fragment

size distribution. In addition, it can also be analyzed quantitatively by calculating

the correlation of the chromatin information between the sample of interest and a

reference high-quality sample. We expect that including the CTCF-cohesin V-plots

as part of the ataqv package will help other researchers more easily assess the quality

of their ATAC-seq experiments.

4.5 Concluding remarks

The work performed during this dissertation highlights the necessity of interdis-

ciplinary approaches to analyze biological data. By applying techniques from the

information theory and signal processing fields to high-throughput molecular profiles,

we obtained a unique perspective on the organization and regulation of the human

genome. We demonstrate that applying information theoretical principles to chro-

matin accessibility data allows for a powerful readout of different aspects related to

genome organization and TF biology. These aspects include nucleosome position-

ing and TF-DNA residence times. The methodology developed here provides the

groundwork for future studies that aim to characterize TFs in their native biological

context, as well as measure the effect of biological perturbations on the TF-chromatin

interaction landscape.

During the course of this dissertation, my work supported studies which aimed to

determine the molecular mechanisms underlying T2D GWAS variants in human skele-
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tal muscle [33] and pancreatic islets [84]. These studies advanced our understanding

of T2D by not only nominating the causal variants and identifying the respective

effector TFs in these tissues, but also proposing a novel mechanism for T2D etiol-

ogy in pancreatic islets involving independent genetic variants potentially acting in

confluence to disrupt binding sites of RFX6. RFX6 is a key pancreatic islet TF. In

addition, the work developed here helped support other studies characterizing the

understanding T2D pathophysiology [181–183].

The expected decrease in sequencing costs will enable larger chromatin accessibil-

ity datasets across large genetically diverse cohorts, which will allow dissection of the

effects of genetic variation on modulating chromatin organization patterns. By inte-

grating these chromatin accessibility profiles with existing 3-dimensional chromatin

organization reference datasets, it will be possible to determine how genetic pertur-

bations affect the chromatin information patterns locally and within higher-order

chromatin domains (Figure 4.1A). We hypothesize that some genetic variants can act

by disrupting chromatin organization, therefore increasing or decreasing the entropy

levels at the chromatin domain level (chromatin information quantitative trait loci –

ciQTLs). This could provide a novel mechanism by which genetic variation affects

disease predisposition.

Another exciting future direction is the use of single-nuclei resolution molecular

profiles (snATAC-seq and snRNA-seq) as a platform for genomic information theory

tool development. This will enable the dissection of genome organization across the

individual cell types that form bulk tissue samples, which will not only increase our

understanding of the underlying tissue biology, but also allow the identification of

relevant cell types associated with disease predisposition. Single-nuclei assays are

ideal for the inference of tissue-specific co-accessibility [36] and can potentially be

used for co-expression [184] networks. By applying these methodologies to groups

of nuclei representing the different cell types in each sample, it will be possible to
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Figure 4.1: Future directions. (A) Chromatin information quantitative trait loci
(ciQTLs) analyses across cell types. (B) Calculating the impact of disease-associated
genetic variants on gene regulatory networks inferred from co-expression and co-
accessibility data.

decrease the noise associated with analyzing bulk samples. The use of graph theory to

analyze these networks will provide powerful tools to dissect the molecular pathways

associated with disease predisposition in each cell type (Figure 4.1B). Together, these

technological and analytical advances will help improve our understanding of the

human genome, with implications for biomedical research.
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