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The presence, configuration, and efficiency of subglacial hydrologic systems has important 

implications for both glacial dynamics and the chemistry of meltwaters. These networks may exist 

in configurations that range from poorly connected and unable to accommodate large volumes of 

water to fast flowing and highly competent in different regions of the glacial bed, simultaneously 

or in different seasons. Direct study of the configuration and development of these networks is 

difficult as they are obscured by ice, yet network configuration is important in glaciological research 

as it controls the spatial distribution and residence time of subglacial water. Subglacial network 

efficiency, or the ability of the network to quickly evacuate water, controls under-ice water-rock 

interaction time affecting chemical weathering reactions and thus solute type and concentration 

expressed in proglacial meltwaters. Previous research into the configuration of subglacial 

hydrologic networks is limited in both temporal and spatial resolution, as field research generally 

occurs during summer months and is limited to more easily accessible glaciers. This dissertation 

investigates seasonal changes in subglacial hydrologic networks as evidenced by changing 

meltwater chemistry in late-summer at both a Canadian alpine glacier and an outlet glacier from 

the Greenland Ice Sheet. I undertook multi-month field campaigns at each location, during which 

I collected samples and made in situ measurements to correlate changes in chemical constituents 

carried within melt to changes in seasonality, improving understanding of this understudied time 

in seasonal glacial development. 

This dissertation uses laboratory experiments with sediment samples collected at glacial 

termini to evaluate the use of radon-222 (222Rn) activity concentrations, an intermediary in the 
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uranium-238 (238U) decay chain, as a proxy for subglacial water residence time. These 

measurements are compared to in field 222Rn activity concentration measurements at sediment 

collection locations. Results show 222Rn activity concentration serves as a subglacial water 

residence time proxy but also reflects mineralogical sources of its parent isotope, radium-226 

(226Ra). Field measurements of 222Rn activity concentrations as a proxy will be more robust and 

reliable if supported with laboratory leachate experiments with site-specific sediment samples, 

addressing likely lithological and sediment-size controls on 226Ra concentrations. 

I undertook a three-month field study of the alpine Athabasca Glacier in the Canadian 

Rockies in August through October, 2014. Both in situ and elemental chemistry of pro-glacial 

meltwaters are investigated relative to water discharge fluxes, air temperatures, and precipitation 

events to see how the subglacial network responds to climatic and glacial variables during the late 

summer-early fall. Different chemical weathering rates in response to changes in weather reveal 

shifts in network configuration, indicating the subglacial environment is dynamic and very 

responsive to climate conditions. Methods used at the Athabasca Glacier were then applied to 

Kiattuut Sermiat, an outlet glacier from the Greenland Ice Sheet to investigate possible differences 

in hydrology between alpine and outlet glaciers. Although environmental conditions are dissimilar 

between locations, the Kiattuut Sermiat results suggest the possible existence of an interannual 

subglacial drainage system capable of evacuating waters sourced from significantly further up into 

the Greenland Ice Sheet concurrent with a well-organized subglacial network configuration. This 

dissertation presents new measurements of glacial chemistry from an understudied period in 

seasonal glacial evolution, with interpretations unique to each glacier investigated. 
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Glacial Systems 

Earth’s glaciers and ice sheets are an important resource, containing 70% of Earth’s 

freshwater (Shiklomanov, 1993). Present and future climate change pose direct threats to their 

existence, with rising global temperatures leading to increased melt and negative annual mass 

balances. Many glaciers that existed only decades ago have melted, and many more are predicted 

to disappear through the 21st century (WGMS, 2017). Glaciers and ice sheets contain enough water 

to raise sea level by ~66 m (Vaughan et al., 2013); a large enough volume of water to submerge 

many of the world’s largest cities. While the Greenland (GrIS) and Antarctic ice sheets would 

require millennia to fully melt, rates of mass loss are increasing in both locations with melt rate 

records being surpassed every few years (Bevis et al., 2019; Nghiem et al., 2012). Changes in melt 

rates have implications for downstream ecosystems through fluctuating water levels, sediment 

concentrations, nutrient availability, and general water chemistry (e.g. pH, alkalinity) (Brown et 

al., 2007; Hannah et al., 2007; Jacobsen et al., 2012; Milner et al., 2017). This dissertation 

investigates changes in the chemistry of outflow water from both a GrIS outlet glacier and an alpine 

glacier in order to learn more about evolution of meltwater routing and storage beneath glaciers 

as average air temperatures decline as the seasons transition from summer to autumn. 

Ice masses broadly exist in two categories: those which are ‘draped’ over topography – ice 

sheets and ice caps, and those which are constrained by topography – glaciers. Ice sheets and ice 

caps flow outward from topographically high central accumulation areas by the weight of their 

own mass, eventually terminating as outlet glaciers where the majority of ice mass is lost. Ice flow 
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in alpine glaciers is not sourced from a larger ice mass and thus these glaciers are more vulnerable 

to mass loss and retreat due to their small mass. Through ice flow, mass is transferred from regions 

where rates of accumulation rates, through densification and metamorphosis of snow precipitation 

to glacial ice, exceed ablation rates to regions where ablation (melting or mass loss) is greater than 

accumulation. Ice sheets and ice caps have convex profiles with a central accumulation area; ice 

mass is lost at their boundaries due to melting and iceberg calving. Alpine glaciers accumulate mass 

at higher elevations characterized by colder temperatures and greater snowfall, losing mass at lower 

elevations with less snowfall and warmer air temperatures. Regardless of size, ice masses grow 

when accumulation exceeds ablation and shrink when the reverse is true.  

Glaciers flow via two primary processes: internal deformation and basal sliding. Ice, while 

solid, behaves viscously and is capable of flowing. Internal deformation, termed ‘creep,’ is a strain 

response within individual ice crystals resulting from the mass of ice overburden; deformation 

occurs through atomic dislocations within the crystal lattice as a response to stress (Hooke, 2005). 

Conversely, basal slip occurs when the glacier moves along the basal substrate, by sliding along 

bedrock, deformation of subglacial sediments, or some combination of both processes (Cuffey and 

Paterson, 2010). Rates of basal sliding vary as a function of bed roughness, proportion of bed frozen 

to the bedrock below, and volume of water present (Davison et al., 2019; Iken and Bindschadler, 

1986; Mair et al., 2003; Meierbachtol et al., 2013). Subglacial melt can lubricate the bed, 

enhancing sliding by decreasing ice-bed contact area and reducing friction (Iken and Bindschadler, 

1986). The distribution of meltwater under the ice, whether contained within a few channels or 

spread over a wide area of the bed, thus has the potential to greatly affect glacial velocity and 

therefore ablation rates.  
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Subglacial Hydrology 

Subglacial drainage networks must accommodate, transport, and eventually evacuate 

meltwater produced by the ice mass. While surficial melting due to insolation and above freezing 

air temperatures generates the largest volume of meltwater, ice is also melted at both the glacier 

base from geothermal heat flux and within the ice mass from friction. Glacial hydrologic systems 

are complex and include many components on, within, and under the ice (Figure I-1). Water 

created through melting of surface ice (supraglacial melt) may be temporarily stored in supraglacial 

lakes, flow off the ice surface in supraglacial streams, or enter the body of ice through crevasses or 

moulins (open conduits) on the ice surface. Englacial channels route water to the glacial bed, where 

it then enters the subglacial drainage network.  

Figure I-1: Schematic diagram illustrating water routes through land terminating ice. Supraglacial melt exists in 
supraglacial lakes, flows off the ice terminus in supraglacial streams, and enters the ice body through moulins and 
crevasses. Englacial water fills fractures and flows through channels, eventually reaching the subglacial system 
where it acquires sediment. Subglacial water emanates from the glacial terminus in proglacial rivers. Figure adapted 
from Chu (2014). 
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Meltwater flows through the subglacial hydrologic network before eventually leaving the 

glacial system at the glacier terminus. Glaciers may be either land- or marine-terminating. 

Sediment-laden meltwaters emerge in proglacial rivers from land-terminating alpine or outlet 

glaciers, whereas meltwater enters the ocean directly in marine-terminating tidewater glaciers or 

ice shelves. Chemical signatures of glacial melt from marine-terminating glaciers are immediately 

mixed immediately with the seawater they enter, complicating chemical interpretation of glacial 

melt. Thus, the chemistry of land-terminating glacial meltwater was selected for this dissertation 

research.  

Subglacial drainage networks change in size and connectivity depending on volume of melt 

they must accommodate. Flowing subglacial meltwater melts ice walls through friction and latent 

heat, enlarging channels to fit the volume of water present (Röthlisberger, 1972). Subglacial 

channels may be incised into basal ice (Röthlisberger, or R-, channels) (Röthlisberger, 1972) or 

into the bedrock below the glacier (Nye, or N-, channels) (Nye, 1976). Because R-channel ice wall 

melt rates increase with increasing water flux, larger subglacial channels will have lower pressures 

than smaller subglacial channels, connecting conduits into an arborescent, or dendritic, 

configuration (Röthlisberger, 1972). Röthlisberger’s (1972) calculations assumed steady-state 

conditions with creep closure exactly matched by channel growth; this condition is unlikely in 

natural glacial systems due to variable diurnal melting. Variable surface melt rates result in variable 

meltwater input volumes to the subglacial drainage system, with larger input volumes during the 

day and smaller volumes at night when air temperatures cool. Change in meltwater flux results in 

changing subglacial water pressure, with high pressures correlated with high input and vice-versa 

(Hubbard et al., 1995). A study at Haut Glacier d’Arolla, an alpine glacier in Switzerland, found 

daytime meltwater volumes above the subglacial drainage network’s capacity flow out of the 

existing network of subglacial drainage channels into the surrounding subglacial bed, then when 
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water input volumes fell, pressure within channels also fell, pulling water back into the network 

from the now-higher pressure surroundings (Hubbard et al., 1995), producing a constantly 

changing and dynamic environment. 

Glacial meltwater volumes display high seasonality in addition to diurnal variability. As 

such, subglacial drainage networks also exhibit changes in configuration on a seasonal basis. These 

configurations are understood in terms of two end members: 1.) a channelized, well connected, 

arborescent network (hereafter referred to as “fast configuration”) (Figure I-2A) and 2.) a 

nonarborescent, less efficient network distributed over a larger area of the glacial bed (hereafter 

referred to as “slow configuration”) (Figure I-2B) (Fountain and Walder, 1998).  

Channelized subglacial hydrologic networks, comprised of R-channels and prevalent in 

summer concurrent with higher melt rates, cover a small area of the subglacial bed, yet can 

accommodate and efficiently evacuate large volumes of meltwater (Figure I-2A) (Fountain and 

Walder, 1998). Efficient subglacial drainage networks are shown to grow up-ice throughout the 

Figure I-2: A.) Idealized channelized, arborescent subglacial 
drainage network. B.) Idealized distributed, slow flowing subglacial 
drainage network. From Fountain and Walder, 1998. 
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melt season (e.g. Bartholomew et al., 2010; Chandler et al., 2013). When melting rates decrease as 

air temperatures cool at summer’s end, existing subglacial channels are no longer filled leaving 

voids. Low pressure within voids allows ice inflow, closing channels and forcing a change in 

subglacial drainage network configuration (Figure I-2B). Distributed subglacial hydrologic 

networks, common in winter, are widely distributed over a large area of the subglacial bed, with 

water existing within thin films, subglacial cavities, and sediment layers (Fountain and Walder, 

1998). Because these different components are not well connected resulting in slow movement of 

water through the system, subglacial water pressures are high (Downs et al., 2018; Gordon et al., 

1998; Hooke et al., 1990). Slow flow rates also result in longer water residence times than in 

summertime fast-flow configurations. Longer residence times, and greater distribution over the 

subglacial bed, allow for longer water-rock interaction times and subsequently more chemical 

weathering reactions are possible than in a channelized system (e.g. Tranter et al., 1997).  

 Change from a connected to a distributed system is not instantaneous as it requires ice 

deformation. Rates of closure depend on ice thickness; the weight of ice overburden is the product 

of g (gravitational acceleration), ice density, and thickness. Weertman (1972) calculated channel 

radius as a function of time: R(t) = R0 exp (-t/τ) , where R0 is the radius at the end of the melt 

season and τ is proportional to ρi-n, where n ≈ 3 and ρi is ice density. Practically, for ice greater 

than 150 m thick, a surviving channel after winter would, even for a primary ‘trunk’ channel, have 

an R0 at the start of the melt season no larger than a few millimeters (Fountain, 1996). Growth, 

however, from a principally distributed (winter) configuration to a more efficient channelized 

configuration occurs much more quickly: above-freezing temperatures generate significant 

volumes of surface melt, which then enters the subglacial hydrologic system. As this system – 

existing in a wintertime distributed configuration – is not yet competent enough to accommodate 

large fluxes, water flows out of the existing drainage network and into larger areas of the glacial 
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bed (Schoof, 2010; Zwally et al., 2002). Subglacial water pressure is high in this scenario, reducing 

the effective pressure of the glacier and enhancing sliding. This process has been documented at 

both alpine and outlet glaciers in the literature through vertical uplift of the surface of 

Unteraargletscher (Switzerland) at the beginning of melt seasons (Iken et al., 2017), increased 

springtime surface velocity measured at Haut glacier d’Arolla (Switzerland) in 1998 and 1999 

(Mair et al., 2003), radar-measured increased surface velocity of a subset of 55 marine-terminating 

GrIS outlet glaciers from 2009 – 2013 (Moon et al., 2014), and in numerically modeled results for 

an idealized ice sheet margin (Hewitt, 2013).  

 Change from a distributed to channelized subglacial drainage network is also evident 

through meltwater chemistry. Longer residence time in subglacial distributed networks results in 

increased elemental concentrations and electrical conductivity because waters are in contact with 

greater mineral surface area for longer durations, allowing more chemical weathering to occur. In 

contrast, shorter residence time in faster flowing summertime configurations have greater dilution 

of weathering products, generating low elemental concentrations and electrical conductivity 

measurements (e.g. Bartholomaus et al., 2011; Hawkings et al., 2016; Stone and Clarke, 1996). 

The timing of this seasonal transition is notable both through glacial hydrochemistry and surface 

velocity, and as such as been the subject of much glaciological research. However, the reverse 

process, the return of the subglacial network to a distributed configuration, is poorly documented. 

As such I will investigate the chemical signatures in meltwater produced when this transition is 

assumed to occur to identify changes in the subglacial hydrology at the end of the summer melt 

season.  
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Approach 

 A primary difference between summertime, channelized, well-connected, fast-flowing 

subglacial drainage configuration (hereafter referred to as ‘fast configuration’) and a wintertime, 

distributed, poorly-connected, slow-flowing configuration (hereafter referred to as ‘slow 

configuration’) is water residence time. Meltwater flows quickly through fast configurations with 

short residence times, and slowly through slow configurations resulting in longer residence times. 

Previously, researchers have injected tracers into the subglacial drainage system, then monitored 

breakthrough at the ice terminus to measure residence time in an attempt to resolve connectivity 

of the subglacial system (e.g. Chandler et al., 2013; Hasnain et al., 2001; Nienow et al., 1998), but 

this method is dependent on possible locations for tracer injection. Tracers can be added to 

meltwater flowing into moulins, but as moulins an input source for surface melt to the en- and 

subglacial systems, these tracers may be added to a drainage configuration that is already partially 

channelized. Drilling boreholes allows access to non-channelized areas of the bed, but is more 

labor intensive and expensive. I employed an alternative method by utilizing the activity 

concentrations of 222Rn in outflow meltwaters as a natural proxy for residence time. 222Rn, an 

intermediary in the 238U decay chain, is produced through natural radioactive decay. Furthermore, 

as Rn is a noble gas so it will not react with other chemical species in the subglacial environment, 

and will dissolve into water. Thus, higher 222Rn activity concentrations imply water was stored in 

the subglacial environment for longer than waters collected from the same location with lower 

222Rn activity concentrations.  

Other hydrochemical parameters (e.g. stable water isotopes, elemental concentrations, and 

in situ aqueous chemistry) were also measured and analyzed from field samples to provide evidence 

of changing subglacial hydrologic configurations as the summer transitioned to autumn. Elemental 

weathering products were used to investigate different occurrence and proportion of different 
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subglacial weathering reactions (e.g. carbonate dissolution vs silicate hydrolysis). Seasonal trends 

in water isotope values allowed qualitative assessment of water source, as well as identifying 

precipitation input to the subglacial system. Data collected for this work was then compared to 

published data from the same glaciers to better understand the annual chemical cycles of the two 

glaciers investigated, Kiattuut Sermiat, a GrIS outlet glacier, and the alpine Athabasca Glacier in 

the Canadian Rocky Mountains. 

Outline of this Dissertation 

Chapter II examines the methods used in this dissertation and explores potential 

complications that impact interpretation. 222Rn activity concentration use as a proxy for subglacial 

meltwater residence time is evaluated by comparing laboratory experiment results to in-field 

measurements. Laboratory experiments leached size-sorted sediments collected in proglacial 

environments with 18.2 MΩ water for until 222Rn was in secular equilibrium with its parent, then 

measured activity concentrations to compare to field measurements from the sediment source 

locations. Results show while 222Rn concentrations may reveal subglacial residence time, there is a 

mineralogical component related to its concentrations that should be measured from source 

sediments for quantitative analysis.  

Chapter III is in review in Hydrological Processes. This chapter presents geochemical results 

from a late melt season field sampling campaign at the Athabasca Glacier, an alpine glacier in the 

Canadian Rocky Mountains, August through October 2014. Changes in elemental concentrations, 

discharge fluxes, stable water isotopes, and 222Rn concentrations show a change in rates of 

carbonate to silicate mineral weathering as air temperatures cool, revealing an immediate response 

in the configuration of the subglacial hydrologic network to seasonal changes. 
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Chapter IV scales up methods used in Chapter III to Kiattuut Sermiat, an outlet glacier from 

the GrIS, during a late summer field campaign in August and September, 2015. Comparison of 

results to geochemical results from the same glacier in previous years reveal annual cyclicity to 

measured parameters, providing a baseline with which to evaluate future hydrochemical changes.  
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Abstract 

Proglacial meltwater samples are used to reconstruct the subglacial environment, making 

sampling location and strategy critical to ensure samples, and subsequent interpretation, represent 

the subglacial environment. Proglacial outflow, especially when sampled near the glacial terminus, 

is assumed to consist solely of glacial melt with negligible input from other water sources. Field 

measurements of radiogenic 222Rn activity concentrations in meltwater from Kiattuut Sermiat 

(KS), an outlet glacier from the southern Greenland Ice Sheet, reveal potential groundwater 

incursion into a proglacial stream. Measured in-field 222Rn activity concentrations were compared 

to activity concentrations generated from laboratory slurry experiments using sediments collected 

from KS, revealing high in-field measurements cannot be generated by sediments collected at the 

glacier terminus. However, measured 222Rn activity concentration from presumed groundwater 

collected near the sampling sites yielded values ~8x higher than proglacial waters sampled from 

the terminus, suggesting a mixing of the two waters.  

When combined with laboratory measurements of maximum possible 222Rn activity 

concentrations using glacial sediments, in-field 222Rn activity concentration measurements may be 

used to qualitatively evaluate subglacial water residence times. As illustrated by samples collected 

from the southwestern Greenland Ice Sheet, this method is applicable only if the subglacial 

lithology contains 226Ra, the parent atom of 222Rn. Finally, comparisons of elemental 

concentrations between Kiattuut Sermiat samples collected in 2013, 2015, and 2018 with leachate 

waters derived from laboratory slurry experiments reveal effects on measurements due to pore size 

 222Rn as a Subglacial Water Residence Time Proxy: Importance of 
Sampling Location for Proglacial Melt 
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of filters used (0.45 μm versus 0.2 μm). As elemental concentrations in glacial meltwater are used 

to calculate fluxes of nutrients to the ocean, filter size used should be an important consideration 

in the design of future glaciochemical research.  

Introduction  

 Polar amplification of global warming (e.g. Bekryaev et al., 2010; Holland and Bitz, 2003; 

Screen and Simmonds, 2010) has accelerated glacial melting. Much recent effort has focused on 

understanding meltwater routes and storage within the Greenland Ice Sheet (GrIS) (Chu, 2014; 

Nienow et al., 2017). Availability, distribution, and volume of GrIS meltwater is positively 

correlated with glacial velocity, resulting in inter-annual rates of mass loss dependent on extent of 

melting (Davison et al., 2019; Schoof, 2010). The generated meltwater can flow over the ice 

surface, or through englacial and subglacial conduits. This water may be rapidly discharged to the 

ocean, stored within the glacial system, or refrozen into the glacier.  

Tracing en- and subglacial hydrologic systems is complicated by their size and large 

volumes of water flowing through the systems, in addition to their obstruction from view. Thus 

investigations of subglacial water fluxes often use tracers (e.g. Chandler et al., 2013; Cowton et al., 

2013), measurements of subglacial water pressure (e.g. L. C. Andrews et al., 2014; Meierbachtol et 

al., 2013), and both measurements and models of ice velocity (e.g. Bartholomew et al., 2010; Zwally 

et al., 2002). Frequently utilized introduced tracers include fluorescent dyes and sulfur hexafluoride 

gas. These compounds yield breakthrough curves that can be used to evaluate connectivity of the 

subglacial hydrologic network: short, broad peaks indicate inefficient distributed networks and tall, 

sharp peaks indicate efficient channelized networks capable of quickly evacuating water (Chandler 

et al., 2013). 
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Evaluations of subglacial hydrologic systems require access to the subglacial environment, 

which can be achieved through moulins and drilled boreholes. Moulins are used for both tracer 

injections and to measure subglacial water pressure through hydraulic head fluctuations (e.g. L. C. 

Andrews et al., 2014). A GrIS subglacial hydrologic network was found to develop throughout the 

melt season toward a moulin 41 km up-ice (Chandler et al., 2013). Initial “slow” water velocity of 

0.25 m s-1 in this study is still an order of magnitude faster than water velocities measured from 

tracer injections into a distributed subglacial drainage system at an alpine glacier (South Cascade 

Glacier, Washington, USA) in 1987 (Fountain, 1993), suggesting moulins may connect to an 

already partially channelized network (Gulley et al., 2009). Diurnal variations in borehole 

hydraulic head reveal variations in subglacial channel pressure, but hydraulic head is correlated 

with increases in subglacial pressure in some boreholes and anti-correlated in others (Gordon et 

al., 1998), complicating interpretations. While methods relying on moulins and boreholes are 

naturally limited in spatial distribution, glacial surface velocity measurements integrate velocity-

influencing hydrologic changes across the entirety of the glacier. Field studies have correlated 

surface velocity changes to surface melting rates (e.g. Bartholomew et al., 2010; Shepherd et al., 

2009) supporting computational studies showing increased subglacial water volumes increase ice 

surface velocity (e.g. Parizek and Alley, 2004; Schoof, 2010). Neither field nor computation studies 

however directly address the residence time of subglacial water. 

Subglacial water residence time is a function of subglacial hydrologic network 

configuration: well-connected, arborescent drainages can accommodate large volumes of 

meltwater, efficiently routing it to the terminus. Conversely, poorly-connected drainages are 

distributed over larger areas of the bed, routing smaller volumes of water less efficiently and more 

slowly, requiring longer residence times to reach the terminus. Thus, subglacial water residence 

time may serve as a proxy for the degree of connectivity of the subglacial network, with implications 
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for sliding velocity. Subglacial residence time can be qualitatively evaluated through varying 

concentrations of chemical weathering products. Ice melt initially has low concentrations of solute 

and thus is typically undersaturated with respect to minerals in comminuted sediment in subglacial 

environments. Mineral weathering imparts chemical signatures to melt depending upon minerals 

present and length of reaction time (e.g. Anderson et al., 1997; Hatton et al., 2019; Yde et al., 

2014). This dependence on mineralogical composition as well as grain size and starting meltwater 

compositions complicates the process of using weathering reactions as a tracer for subglacial water 

residence time. An ideal tracer for residence time would behave conservatively, is ubiquitous in the 

subglacial environment, and delivered to subglacial water at rates that depend solely on residence 

time. 

 Uranium (U) is one such conservative tracer as a common radioactive trace element in 

Earth’s crust (Rudnick and Gao, 2003). Its highest abundance isotope (238U), decays through a 

series of short-lived daughter products to stable 206Pb. One daughter isotope, 222Rn is a short lived 

radioactive noble gas (t1/2 = 3.82146 ± 0.00020 days) (Bellotti et al., 2015) derived from the 

radioactive decay of 226Ra (t1/2 = 1600 ± 7 years) (Duchemin et al., 1994). Secular equilibrium 

with 226Ra will thus occur in ~20 days. As a noble gas, 222Rn is not bound by chemical reactions. 

Therefore its concentration in outflow water should depend only on residence time and the 

concentration of 226Ra, making it a potentially powerful tracer for subglacial water residence time. 

 The dependence of 222Rn concentration on parent 226Ra concentration limits its ability to 

provide absolute values of residence times. However, 222Rn activity concentration (hereafter 

referred to as 222Rn concentration) in outflow water from a specific glacier should increase in a 

more distributed network with long residence times and decrease in a more channelized network 

with short residence times. Therefore, 222Rn concentrations in glacial outflow can provide 

qualitative information about subglacial water residence times up to ~20 days (e.g. Arendt et al., 
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2015; Bhatia et al., 2011; Linhoff et al., 2017). Subglacial water requires contact with 226Ra bearing 

sediment to dissolve 222Rn and may exsolve 222Rn when in contact with the atmosphere, ensuring 

measured 222Rn concentrations reflect subglacial, not englacial, storage. Measured 222Rn 

concentrations will depend on (1) water-rock contact time, (2) 226Ra concentrations in subglacial 

bedrock and sediments, and (3) water-rock contact area.  

 Previous work has used 222Rn to trace groundwater inputs to larger water bodies (e.g. 

Burnett and Dulaiova, 2003; Dimova et al., 2013) as 222Rn in present in groundwater in 

concentrations frequently 1000x or greater than 222Rn concentrations in surface waters (Burnett 

and Dulaiova, 2003) As such, aqueous 222Rn concentrations in glacial outflow can reveal 

groundwater input that may not be discernable through other measurements. Water sample 

collected at glacial termini are presumed to consist of only glacial meltwater with chemical 

interpretations then used to reconstruct the subglacial environment. Identifying a groundwater 

component has implications for conclusions made about water history in the subglacial 

environment. In this paper we use aqueous 222Rn concentrations from multiple glaciers in addition 

to results from laboratory experiments to evaluate the use of 222Rn to qualitatively record subglacial 

water residence time, and investigate potential groundwater contributions to glacial outflow. 

Methods 

Sampling Locations 

 222Rn concentrations were measured in the headwaters of the outflow river at the terminus 

of Kiattuut Sermiat (KS), an outlet glacier from the GrIS in south Greenland, in 2013, 2015, and 

2018 with electronic radon detectors (Figure II-1B). Concentrations were measured with Durridge 

RAD7 instruments equipped with a RAD H2O. All RAD7s had been calibrated by the Durridge 

company 2-3 months prior to field sampling. 
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2013 samples were collected on days of year (DOY) 200, 201, 202, 203, and 205 from 

61.20777°N, 45.32942°W and published in (Arendt et al., 2018). The sampling location was the 

closest shoreline access point to the glacial terminus (pers. comm. with Dr. Emily Stevenson). 

Samples from 2015 are comprised of 15 measurements collected between DOY 217 and 266 from 

a rock in the middle of the river (61.20932°N, 45.3299°W) accessed by boat. 2018 samples were 

collected on DOY 209, 210, 211, 213, and 216 from site KS1 (61.20646°N, 45.33051°W) at the 

river bank as close to the KS terminus as possible. Replicate samples were collected on DOY 209, 

213, and 216; time of collection was noted and delayed analyses were multiplied by a 222Rn time-

Figure II-1: Location map of southern Greenland (C.). Pink circle marks 2018 WR9 sampling location; inset 
(A.) shows location between outlet glaciers Isunnguata Sermia and Russell Glacier. Green dot marks KS1 
sampling location used in 2013, 2015, and 2018; inset (B.) shows location at the terminus of Kiattuut 
Sermiat. 
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dependent decay correction factor to account for radioactive decay between collection and 

analysis. 

 Water samples for 222Rn analysis were collected from a ~2.5 km long transect down the 

Kiattuut Sermiat river on July 29 & 30, 2018 (DOY 210 & 211). Sampling occurred at KS1-Toe, 

a sample site as far upstream as physically possible but removed from the thalweg (61.20708°N, 

45.32980°W), KS1 (61.20646°N, 45.33051°W) ~100 m downstream, KS2 (61.19977°N, 

45.33097°W) ~0.75 further km downstream, and KS3 (61.19656°N, 45.35685°W), ~ 1.6 km 

downstream from KS2. KS3 was on a point bar in a river meander; the point bar ground surface 

contained grasses and vegetation. Samples were collected from the bank but as far offshore as 

possible to reach flowing water. At KS3 (61.19656°N, 45.35685°W), an additional sample (KS3-

GW, 61.19656°N, 45.35685°W) was collected as water seeped from the bank into a ~30 cm deep 

hole which was dug into the river bank. After ~30 minutes of flow the water became clear and was 

collected for 222Rn analysis. 

 222Rn was measured on July 15, 16, 18 and August 9, 2018 (DOY 196, 197, 199, 221) in 

meltwater emanating from the GrIS at sample site WR8 at the headwaters of the Watson River 

(67.15735°N, 50.05697°W), between outlet glaciers Isunnguata Sermia and Russell Glacier in west 

Greenland (Figure II-1A).  

Sampling and Analytical Protocol  

Samples were collected by submerging a 250 mL bottle in the river and capping underwater 

to prevent 222Rn diffusion. Samples were visually inspected for bubbles, and discarded and 

recollected if bubbles were present. All analyses began within ~30 minutes of collection. Prior to 

analysis the RAD7 was purged with dried air until internal relative humidity was <10%, then 

samples were run using the pre-programmed WAT250 program. 

Lab 222Rn Experiments  
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 Slurry experiments (e.g. Hammond and Fuller, 1979) were conducted on sediment from 

KS and WR to evaluate potential sedimentary contributions to 222Rn concentrations. KS 

sediments were collected in 2015 as near as possible to the site of the water samples (sample location 

KS1; 61.20646°N, 45.33051°W). Collected sediments were mostly fine-grained, containing <10 

pieces of gravel per kilogram. WR8 sediments were collected in 2018 and were predominately 

sand-sized. For all experiments, sediment size was constrained by first wet sieving through a 500 

μm sieve to remove sparse gravels, then wet sieving <500 μm sediments through a 63 μm sieve. 

For KS samples, fines (< 63 μm) and sand (63 – 500 μm) fractions were sieved into pre-cleaned 

Pyrex dishes, then dried in an oven at 80°C. Fine sample mass from WR8 was too small for 

experiments, so WR8 size fractions used were sand (63 – 500 μm) and bulk (sand plus the small 

mass of fines present). These fractions, in pre-cleaned Pyrex dishes, were dried in an oven at 80°C. 

Once dried, each sediment sample was homogenized by mixing and subsequently divided in half: 

one half remained as-is (specified size fractions) and the other half was crushed in a shatterbox. 

Prior to use, the shatterbox was brushed out, wiped clean with ethanol, and allowed to air dry. A 

small subsample of each sediment fraction was crushed and subsequently discarded to ensure no 

contamination. The remainder of each sample was then crushed to a fine powder. 

 Approximate 26 g of sediments were added to 250 mL glass bottles, which were then filled 

with 18.2 MΩ deionized water (Table II-1). Once filled, bottles were placed on a shaker table and 

left to react for > 20 days, when secular equilibrium with 226Ra was assumed. 222Rn concentrations 

were then measured in each sample using a RAD7 instrument equipped with a RAD H2O using 

the WAT250 program to duplicate methodology for field measurements. Following 

measurements, water lost during the experiment was replaced with 18.2 MΩ deionized water. The 

bottles were recapped ensuring no headspace without adding additional sediment (Table II-1). 

Bottles were again shaken for > 20 days to duplicate the experiment.  
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 Measured 222Rn activity concentrations using the WAT250 program on the RAD7 are 

reported assuming a sample water volume of 250 mL. As 250 mL glass vessels were used as reaction 

chambers and therefore contained < 250 mL of water, measured 222Rn concentrations were 

adjusted to reflect the volume of water present in each bottle. Measured concentrations were scaled 

by the volume of water in each bottle calculated by mass difference (Table II-1), and reported as 

pCi L-1.  

Table II-1: Comparison of experiment design for 222Rn generation from sediments collected at southern Greenland 
outlet glacier KS and sampling location WR8. 

Sample 
Sieved 

Sediment Size 
(μm) 

Sediment 
Mass (g) 

Water 
Mass (g) 

Total 
Mass (g) 

KS-Fines <63 26.68 239.09 265.77 
KS-Sand 63 – 500 26.32 238.71 265.03 
KS-Crushed Sand 63 – 500 26.78 239.28 266.06 
WR8-Bulk < 500 26.25 240.27 266.52 
WR8-Crushed Bulk < 500 26.35 239.83 266.18 
WR8-Crushed Sand 63 – 500 26.25 240.53 266.78 

Experiment 2 – no change in sediments from 
Experiment 1 

Water 
Mass 

Added (g) 
 

KS-Fines   7.79 265.45 
KS-Sand   7.93 265.56 
KS-Crushed Sand   7.53 265.90 
WR8-Bulk   7.32 266.58 
WR8-Crushed Bulk   6.77 266.53 
WR8-Crushed Sand   7.35 266.96 
WR8-Sand 63 – 500 26.56 240.00 266.56 

 

Elemental Concentration Measurements 

 2013 field samples were filtered in-field through 0.2 μm filters and acidified with distilled 

HCl (Aciego et al., 2015). Elemental concentrations were measured from 3 mL samples on a 

Thermo Scientific ELEMENT2 ICP-MS at the University of Michigan, as described in Aciego et 

al., (2015). 2015 samples were also filtered in the field through 0.2 μm filters and acidified to pH 

<2 with distilled HCl. Elemental concentrations were then measured at Cambridge University on 
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a Perkin Elmer Nexion 350D quadrupole-based ICP-MS. Samples were run multiple times on 

subsequent days to ensure replication; bracketing standards and acid blanks were used to ensure 

accurate measurements. 2018 field samples were filtered through 0.45 μm trace metal grade 

canister filters and acidified with Optima HNO3 to pH < 2. Cation concentrations were then 

measured at the University of Florida on a Dionex ICS-1600 ion chromatograph. Calibration 

curves were determined using repeated analyses of a diluted Dionex multi-element standard and 

custom multi-element standards. Results from duplicate samples measured within 5%.  

 Elemental concentrations were measured on water derived from the slurry experiments. 

Slurry water was filtered through two distinct filter sizes: 0.45 μm filters, similar to 2018 field 

samples, and 0.2 μm filters, similar to 2013 and 2015 field samples. Elemental analysis of leachate 

waters from laboratory experiments were measured at the University of Michigan MEAL lab on a 

Thermo Scientific iCAPQ ICP-MS. Subsamples were filtered with either 0.45 μm Millex PVDF 

Durapore filters or 0.22 μm Restek PVDF filters, then acidified with 2% Optima grade nitric acid. 

Samples were analyzed using a collision cell in KED mode with He gas. Mass drift was corrected 

with bracketing standards.  

Results  

222Rn Concentrations in Stream Water 

222Rn activity concentrations from 2013, 2015, and 2018 vary by an order of magnitude, with the 

lowest average and smallest range measured in 2015 mid-river samples (mean = 7.29 pCi L-1) and 

the highest average and largest range from 2018 river edge samples (mean = 106.65 pCi L-1) 

(Figure II-2). 2013 river edge measurements fall between the two other years with a mean of 25.14 

pCi L-1 and an intermediate range (Figure II-2; Table II-2). River transect 222Rn concentrations 

decrease from 106.7 to 104.5 pCi L-1 between KS1-Toe and KS1 and to 92.7 pCi L-1 downstream 
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at sampling location KS2 (Figure II-3). However, 222Rn increased to 244.0 pCi L-1 at KS3 (Figure 

II-3, Table II-3) and 809.0 pCi L-1 at KS3-GW (Figure II-3). 222Rn concentrations at WR8 were 

low with at least one sample measuring 0 pCi L-1 within one standard deviation (Figure II-4A). 

 
 
 
 
  

Figure II-2: Boxplot with 222Rn concentrations from KS outflow. Lower box bounds are drawn at 
the first quartile and upper bounds at the third quartile; mean values are represented by horizontal 
lines within boxes. Whiskers below and above boxes represent the minimum and maximum data 
values, respectively. 2013 data reproduced from Arendt et al., (2018). 2013 data (n = 5, collected 
from DOY 200 – 205) have a mean value of 25.1 pCi L-1, 2015 (n = 15, collected from DOY 217 – 
266) mean is 7.25 pCi L-1, and 2018 (n = 10, collected from DOY 209 – 216) mean is 106.7 pCi L-1. 
Samples were collected from the river edge in 2013 and 2018, and from the center of the outflow 
river in 2015. 
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Table II-2: Measured 222Rn activity concentrations at the KS terminus from 2013, 2015, and 2018. 2013 data 
published in Arendt et al. (2018). 

Year DOY Latitude (° N) Longitude (° W) 
222Rn Activity 

Concentration 
(pCi L-1) 

1σ Standard 
Deviation 

2013 200 61.20777 45.32942 21.00 11.5 
2013 201 61.20777 45.32942 18.10 9.06 
2013 202 61.20777 45.32942 33.80 15.9 
2013 203 61.20777 45.32942 23.00 6.1 
2013 205 61.20777 45.32942 29.80 12.6 
2015 217 61.20932 45.3299 7.55 5.66 
2015 221 61.20932 45.3299 8.16 0.29 
2015 224 61.20932 45.3299 3.22 1.38 
2015 231 61.20932 45.3299 6.15 2.63 
2015 234 61.20932 45.3299 6.00 3.35 
2015 237 61.20932 45.3299 6.13 2.96 
2015 240 61.20932 45.3299 6.13 2.17 
2015 243 61.20932 45.3299 7.24 4.3 
2015 246 61.20932 45.3299 11.10 4.83 
2015 248 61.20932 45.3299 8.00 4.06 
2015 252 61.20932 45.3299 10.30 6.05 
2015 256 61.20932 45.3299 8.16 4.41 
2015 262 61.20932 45.3299 4.45 2.36 
2015 264 61.20932 45.3299 8.32 2.83 
2015 266 61.20932 45.3299 7.86 4.42 
2018 209-A 61.20708 45.3298 103.00 6.94 
2018 209-B 61.20708 45.3298 113.17 11.2 
2018 209-C 61.20708 45.3298 118.99 10.1 
2018 210 61.20646 45.33051 103.00 10.2 
2018 211 61.20646 45.33051 104.57 8.44 
2018 213-A 61.20646 45.33051 108.66 14 
2018 213-B 61.20646 45.33051 120.48 25.8 
2018 214 61.20646 45.33051 108.20 18.6 
2018 216-A 61.20646 45.33051 83.60 4.91 
2018 216-B 61.20646 45.33051 102.81 2.08 
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Table II-3: 222Rn activity concentrations measured at KS terminus and down a transect of the KS proglacial river. 

Sample* Date 
(m/d/y) 

1σ Standard 
Deviation 

222Rn Activity 
Concentration 

(pCi L-1) 

Daily average 222Rn 
Activity 

Concentrations  
(pCi L-1) 

KSToe-1_A 7/28/18 6.94 103.0 
111.7 KSToe-1_B 7/28/18 11.2 113.2 

KSToe-1_C 7/28/18 10.1 119.0 
KS1-1 7/29/18 10.2 103.0 103.0 
KS1-2 7/30/18 8.44 104.6 104.6 
KS1-3_A 8/1/18 14.0 108.7 114.6 KS1-3_B 8/1/18 25.8 120.5 
KS1-4 8/2/18 18.6 108.2 108.2 
KS1-5_A 8/4/18 4.91 83.6 93.2 KS1-5_B 8/4/18 2.08 102.8 
KS2-1 7/29/18 7.94 105.0 105.0 
KS2-2 8/2/18 11.1 80.4 80.4 
KS3-1 7/30/18 26.3 244.0 244.0 
KS3-GW 7/30/18 89.9 809.0 809.0 

 *Naming convention: Sample Location – Sample Number_A,B,C for duplicate samples collected concurrently 

Figure II-3: Location map showing the KS terminus with locations marked for both 
near-terminus (KS1 and KS1-Toe) and down river (KS2, KS3, and KS3-GW) sampling 
locations. 222Rn concentrations measured at each location are marked; reported 
concentrations are averages for sites with multiple measurements (KS1, KS1-toe, and 
KS2). 
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222Rn Concentrations in Slurry Experiments 

 222Rn concentrations produced during the slurry experiments vary as a function of grain 

size (Table II-4). Fines (< 63 μm) generated the highest 222Rn concentrations (Figure II-5) with a 

mean value of 41.96 pCi L-1 and a standard deviation of 19.8. Crushed sand generated the lowest 

222Rn concentrations (Figure II-5) (mean value 10.19 pCi L-1; standard deviation 4.2). Whole sand 

(63 – 500 μm) generated 222Rn concentrations similar to crushed sand values (Figure II-5), but was 

marginally higher with a mean concentration of 13.60 pCi L-1; standard deviation 6.8).  

Figure II-4: A.) 222Rn concentrations 
measured at sampling location WR8 in 
2018; duplicate samples were measured 
each day. Bar tops mark measured 
concentrations, error bars designate 
one standard deviation. B.) Results from 
222Rn laboratory experiments using 
sediments collected at WR8 on August 
9, 2018. Bar tops mark measured 
concentrations, error bars designate 
one standard deviation. Field sediments 
were predominately sand sized with 
few fines. Sieved sizes used in 
experiments were bulk sediments, 
crushed bulk sediments, sand (63 – 500 
μm), and crushed sand. Results of the 
first experiment for bulk and crushed 
bulk sediments are plotted as yellow 
bars; results from crushed sand were 
discarded (see text) and no sand 
fraction was analyzed in experiment 
one. Results from a repeat experiment 
are plotted as blue bars; no changes 
were made to sediments used from the 
first experiment but a new vessel was 
set up to evaluate the sieved sand 
fraction. 
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Table II-4: Comparison of results from 222Rn generation experiments using different grainsizes from the southern 
Greenland outlet glacier, KS and sample location WR8 adjacent to the GrIS. 
 

Sample 
Days 

Reacted 
222Rn 

(pCi L-1) 
1σ 

Standard 
Deviation 

KS-Fines 33 43.92 
40.00* 

10.7 
25.9* 

KS-Sand 33 13.61 
13.58* 

6.42 
7.08* 

KS-Crushed Sand 33 10.66 
9.72* 

3.58 
4.81* 

WR8-Bulk 33 1.94 
1.93* 

2.15 
3.72* 

WR8-Crushed Bulk 33 0.97 
0.97* 

1.86 
1.85* 

WR8-Sand 33 0.97 1.85 

WR8-Crushed Sand 33 30.04† 
1.93 

12.8† 
2.15 

* Second reaction experiment run to compare duplicate results 
† Values excluded; see text 
 

 

Figure II-5: Histogram results 
from 222Rn generation laboratory 
experiments 2015 KS sediments. 
Top of bars note measured 222Rn 
concentrations, error bars show 
one standard deviation. Red bars 
are results from the first 
experiment, green bars are 
results from repeat experiment; 
no change in sediments used 
between experiments. Sediment 
sizes used are fines (< 63 μm), 
sand (63 – 500 μm), and freshly 
crushed sand. Mean 222Rn 
concentrations measured at the 
KS terminus are plotted as 
horizontal lines: 2018 (106.7 pCi 
L-1, dashed line), 2015 (7.25 pCi L-

1, dotted line), and 2013 (25.1 pCi 
L-1, solid line). 
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Excluding the first crushed sand slurry experiment with WR8 sediment, all WR8 222Rn 

equilibration experiments generated little 222Rn regardless of sediment size fraction (Figure II-4B). 

The first crushed sand experiment generated 222Rn concentrations of 30.04 pCi L-1 but the same 

sediment during the repeat experiment generated concentrations of only 1.93 pCi/L. We have 

excluded this anomalous sample from further analyses. Bulk sediments and crushed sand (63 – 500 

μm) size fractions had the highest 222Rn concentrations at 1.93 pCi L-1; crushed bulk sediments 

and the sand fraction contained half as much 222Rn with concentrations of 0.97 pCi L-1 (Figure II-

4B). All experimental concentrations were less than one standard deviation from 0 pCi L-1 (Figure 

II-4B).  

Stream Water and Leachate Solute Concentrations 

 Elemental concentrations of meltwater (n = 4) collected in 2013 are more variable than 

meltwater (n = 17) collected in 2015 (Figure II-6), but ratios of different elements are similar (Figure 

II-6). Greatest variations in concentrations occur with Al, P and Fe, which also have the lowest 

concentrations (Figure II-6). Experimental leachate waters display different proportions of 

elements depending on grain size used in each experiment, and differ from proportions observed 

in natural waters (Figure II-6, Table II-5). Ca and Sr concentrations from sand and crushed sand 

experiments are lower than concentrations measured from field samples while other elements in 

all size fractions exhibit higher concentrations than natural waters (Figure II-6).  

  Elemental concentrations in leachate water are greater when filtered through 0.45 μm than 

when filtered through 0.2 μm for both the sand and the crushed sand size fractions (Figure II-7). 

Variation in filter size does not appear to greatly affect elemental concentrations in the fine (<63 

μm) size fraction (Figure II-7). < 0.2 μm elemental concentration derived from the crushed sand 

are up to six times greater than the uncrushed sand experiments and even larger when filtered 

through 0.45 μm filters (Figure II-7, Table II-5).  
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Figure II-6: Concentrations of Na, Mg, Si, K, Ca, Sr, Al, P, and Fe from 2013 (blue lines) and 2015 (red lines) are 
plotted along with concentrations of same elements from leachate waters after laboratory 222Rn generation 
experiments. Leachate water from experiment vessel with fine sediment fraction (< 63 μm) marked in purple with 
square markers, sand sediment fraction (63 – 500 μm) in teal with triangle markers, and crushed sand in black with 
circle markers. 2013 data is reproduced from Aciego et al., (2015). All samples were filtered through 0.45 μm 
filters prior to analysis. 
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Table II-5: Elemental concentrations in leachate waters from 222Rn generation experiments and KS proglacial samples collected in 2013, 2015, and 2018. 

Sample Name* Na 
(uM) 

Mg 
(uM) 

Al 
(uM) 

Si 
(uM) 

P 
(uM) 

K 
(uM) 

Ca 
(uM) 

Fe 
(uM) 

Sr 
(uM) 

Exp 2015 Sand (0.45) 158.1 56.9 77.7 438.3 2.1 75.8 59.5 28.7 0.2 
Exp 2015 Crushed Sand (0.45) 1097.4 71.9 180.3 837.9 18.7 354.5 39.5 56.6 0.3 
Exp 2015 Fines (0.45) 176.9 106.1 20.7 362.9 1.1 109.5 296.6 7.1 1.3 
Exp 2015 Sand (0.2) 175.9 46.3 56.5 385.1 1.8 54.8 56.0 22.3 0.2 
Exp 2015 Crushed Sand (0.2) 1033.5 36.0 81.9 434.0 16.4 300.5 20.2 28.1 0.1 
Exp 2015 Fines (0.2) 224.3 100.8 6.6 351.3 0.7 105.5 297.9 1.8 1.3 
Field 2013-201 (0.2) 22.1 20.8 13.6 36.0 1.3 17.2 94.6 7.0 0.3 
Field 2013-202 (0.2) 26.2 13.5 3.7 19.8 0.2 19.4 90.8 1.0 0.3 
Field 2013-203 (0.2) 22.5 16.5 7.1 25.7 0.6 16.9 93.3 4.2 0.3 
Field 2013-205 (0.2) 118.3 26.9 7.5 24.9 0.7 15.6 83.1 4.1 0.3 
Field 2015-217 (0.2) 12.1 8.5 2.4 16.3 0.1 9.8 60.8 0.1 0.2 
Field 2015-221 (0.2) 14.6 8.9 2.4 14.7 0.0 10.1 64.1 0.1 0.3 
Field 2015-224 (0.2) 14.2 8.4 2.7 15.5 0.1 10.2 59.5 0.1 0.3 
Field 2015-231 (0.2) 13.9 9.4 4.2 14.9 0.4 10.0 61.1 0.6 0.3 
Field 2015-234 (0.2) 14.4 8.2 2.3 15.5 0.1 10.1 57.2 0.1 0.3 
Field 2015-237 (0.2) 14.5 8.4 2.9 15.4 0.1 10.0 59.2 0.1 0.3 
Field 2015-240 (0.2) 14.5 8.5 2.3 14.7 0.2 10.3 59.9 0.1 0.3 
Field 2015-243 (0.2) 14.8 9.0 2.5 16.4 0.2 10.3 61.3 0.1 0.3 
Field 2015-246 (0.2) 14.5 8.6 2.6 16.3 0.1 10.3 61.4 0.1 0.3 
Field 2015-248 (0.2) 14.1 8.4 2.6 14.9 0.1 10.1 57.8 0.1 0.3 
Field 2015-252 (0.2) 12.2 8.0 2.3 15.9 0.1 9.9 56.4 0.1 0.3 
Field 2015-256 (0.2) 14.4 8.9 2.2 15.6 0.1 10.1 61.3 0.1 0.3 
Field 2015-258 (0.2) 16.0 9.5 2.1 15.3 0.1 10.9 63.0 0.0 0.3 
Field 2015-260 (0.2) 15.0 9.4 2.2 17.4 0.1 10.7 61.9 0.1 0.3 
Field 2015-262 (0.2) 15.9 9.8 2.2 16.5 0.1 10.8 63.1 0.1 0.3 
Field 2015-264 (0.2) 16.2 10.2 2.2 18.0 0.1 10.9 67.2 0.1 0.3 
Field 2015-266 (0.2) 14.2 10.2 2.0 18.7 0.1 10.7 67.7 0.0 0.3 
Field 2018-210 (0.45) 17.9 13.6    13.9 80.8   

* Naming Conventions: Exp(erimental) samples, year collected, size fraction (filter pore size). Field data; year collected – DOY collected (filter size in μm).  
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Discussion 

Evidence of Groundwater in Proglacial Rivers Illustrates Importance of Sampling Location Selection 

The geochemistry of proglacial rivers can provide information about subglacial processes 

such as residence times, assuming correlations exist between reaction rates and concentrations of 

Figure II-7: Elemental concentrations of leachate waters from 222Rn generation experiments using KS 
sediments. A.) Leachate results from experiment with sand-sized sediments (63 – 500 μm) – maroon, B.) 
results from experiment with crushed sand – blue, C.) results from experiment with fine sediments (< 63 
μm) – green. Elements plotted are Na (hourglasses), Mg, (bow ties), Al (squares), Si (point-up triangles), P 
(wide diamonds), K (circles), Ca (point-down triangles), and Fe (diamonds). Error bars representing 
relative standard deviation for both X and Y axes are plotted but are smaller than marker size. X-axes 
represent concentrations with waters filtered through 0.2 μm filters; y-axes represent concentrations 
with waters filtered through 0.45 μm filters. Linear regression lines and corresponding R2 values are 
provided in each graph and match the color corresponding various sediment size-fractions used in 
experiments. Black dashed lines are 1:1 lines for comparison. 
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solutes/isotopic ratios (e.g. Graly et al., 2017; Hatton et al., 2019; Stevenson et al., 2017; Yde et 

al., 2014). These relationships may be complicated by water delivered to proglacial rivers from 

other sources (e.g. ground water) or modified by reactions within the stream channels (Deuerling 

et al., 2017). 

 222Rn concentration in glacial outflow water is commonly used to estimate subglacial water 

residence time (e.g. Arendt et al., 2018; Bhatia et al., 2011; Kies et al., 2011). Previous analyses of 

222Rn concentrations across multiple GrIS outlet glaciers showed the highest concentrations at the 

KS outflow (Arendt et al., 2018), which was interpreted to reflect longer residence times at KS 

than elsewhere. Thus at the relatively slow-moving KS (Morlighem et al., 2014), the potential 

existed for a source of meltwater with a longer subglacial residence time, warranting further 

investigation (Arendt et al., 2018). The lower average 222Rn concentrations found in 2015 samples 

relative to 2013 samples (Figure II-2) could imply shorter residence times in 2015 than 2013. 

However, specific conductivity (SPC) is similar between the two sample times, averaging 22.7 μS 

cm-1 (SD = 0.6, n = 5) in 2013 and 21.5 μS cm-1 (SD = 2.2, n = 16) in 2015, suggesting comparable 

residence time (e.g. Collins, 1979; Graly et al., 2017; Stone and Clarke, 1996). The highest 222Rn 

concentrations were measured in 2018 and suggest a substantial increase in subglacial water 

residence time from 2015. Measured SPC at the same collection site was 25.6 μS cm-1, ~4 μS cm-

1 higher than in 2013 or 2015, also supporting a longer water residence time.  

The fine (<63 μm) sediment fraction in the slurry experiments produced a maximum 42.0 

pCi L-1, or about half the value of the 2018 maximum outlet water 222Rn concentration; values 

from crushed and uncrushed sand were even lower at 10.2 and 13.6 pCi L-1, respectively (Figure 

II-5). The elevated KS outlet water 222Rn concentrations suggest a source of 222Rn in addition to 

the sampled KS sediments. Average 2013 in-field 222Rn concentration was also higher than 
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possible from 63 – 500 μm sized sediments, although this concentration is attainable from the fine 

size fraction (Figure II-5).  

The different concentrations generated in experiments can be explained by different size 

fractions likely containing different dominant minerals due to size separation and mineral 

weatherability. 222Rn can only escape mineral lattices to accumulate in water if the parent 226Ra 

atom is located near the mineral surface (Kies et al., 2011), therefore the size of the sediment grains 

may be important. Glacially derived sediment is poorly sorted and contains a significant portion 

of fine-grained glacial flour. Mineral composition differences may occur in different size fractions 

as mineral hardness plays a role in the physical weathering. Equivalent measurements within error 

for whole sand and crushed sand (Figure II-5) compared to the fine fraction measurement support 

mineral composition differences as the primary driver in laboratory determined 222Rn 

concentrations, not 226Ra location within the mineral lattice. However, these mineral composition 

differences in subglacial sediment cannot explain the very high 222Rn measurement during the 

2018 field season. 

Experimental results reveal 2018 in-field 222Rn measurements are higher than possible if 

generated from collected KS sediments alone, requiring another source. 222Rn concentrations were 

observed to increase downstream in the KS outflow river (Figure II-3), even though concentrations 

were expected to decrease downriver due to no additional input, radioactive decay of 222Rn, and 

evasion from water. The downstream increase in 222Rn concentration may be linked to high 222Rn 

concentration groundwater (222Rn concentration = 809.0 pCi L-1) discharging into the proglacial 

river. 222Rn concentrations are frequently elevated in groundwater in relative to surface water due 

to exposure to large total mineral surface areas and limited potential for evasion to the atmosphere. 

This makes 222Rn concentration ideal for tracing groundwater input to larger water bodies (e.g. 

Cecil and Green, 2000; Burnett and Dulaiova, 2003; Dimova et al., 2013).  
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Thus, the additional source is likely groundwater: we did not identify any other potential 

high 222Rn water sources that could mix with glacial outflow, and KS3-GW contained high 222Rn 

concentrations. Groundwater could flow into the pro-glacial river from the bed, making sampling 

location an important factor in future experimental designs. 2018 and 2013 samples were collected 

from the river edge, and thus likely also included a groundwater contribution in addition to the 

pro-glacial river water. The 2013 in-field 222Rn concentrations (Table II-2), while attainable from 

the fine size fraction, are still elevated relative to what the larger size fraction is capable of 

producing. Variability between 2013 and 2018 KS 222Rn measurements (Table II-2) may reflect 

different groundwater inflow, owing to differences in the water table relative to river stage in each 

year. In contrast, low 2015 in-field results (Table II-2) – measured from water collected at the river 

surface in the middle of the channel as far from the wetted perimeter as possible – would be unlikely 

to contain a groundwater contribution. 

Comparisons of elemental concentrations in slurry experiment waters with river water 

elemental concentrations show differing trends depending on grain size (Figure II-6). In the fine 

sediment fraction slurries, variations in elemental concentrations are similar to those from field 

samples, although field sample concentrations are much lower. In contrast, water from sand-sized 

(63 – 500 μm) experiments (both intact and crushed) had lower Ca and Sr concentration than field 

samples while all other elements were higher (Figure II-6). These results imply that chemical 

weathering of fine sediments is the dominant contribution to elemental concentrations in 

meltwater. Different mineral fractions are apt to exist in different size fractions due to cleavage and 

susceptibility to physical weathering in the glacial environment. This idea is supported though 

different 222Rn concentrations generated in slurry experiments. Concentrations of soluble elements 

(Na, Mg, Si, and K) measured in experimental waters are higher than in field samples, likely due 
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to a combination of longer water-rock interaction time and decreased dilution from melted solute-

free ice. 

222Rn concentrations reveal a likely groundwater contribution to the KS proglacial river 

which is not identifiable via elemental concentrations contained in meltwater. In river edge 

samples, 2018 measurements indicate a definite groundwater component while 2013 samples are 

inconclusive. Mid-stream samples from 2015 contain lowest measured 222Rn, in concentrations 

constrained as subglacially feasible from experiments with KS sediments. A groundwater 

contribution to the 2013 field samples remains the most likely explanation for the differences 

between years. These results highlight the potential for compromising estimates of residence time 

through groundwater contributions to meltwater discharge at glacier termini, particularly if 222Rn 

measurements are used. Future work in proglacial environments should carefully consider 

sampling location with thoughts for possible groundwater contamination of discharge.  

Despite Prevalence of U in Crustal Material, 222Rn is Not Always Useful  

Because of the connection between parent and daughter isotope compositions, bedrock and 

subglacial sediment composition must be considered when Rn is used to estimate subglacial water 

residence time. As WR8 is next to the edge of the GrIS and not at an outlet glacier, water sampled 

was inferred to come from under the GrIS itself. The discharge point was characterized by an ~50 

cm tall stream boil, suggesting elevated pressure within the sub-ice system. All samples exhibited 

lower 222Rn concentrations than at KS (Figure II-4A), suggesting very brief residence times for 

these glacial waters. Short residence times could result from flow into a moulin immediately up ice 

which then emerged essentially instantaneously from the outlet. Under this scenario the sediment 

load of the melt should also be low, as the melt would not have been exposed to the subglacial 

environment from which sediment carried in glacial outflow is sourced. However, water emerging 

from the ice sheet at this location was turbid, suggesting non-negligible residence time. 
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Alternatively, water with a long residence time may have low 222Rn concentrations if sediment 

present does not contain its parent radioisotope, 226Ra, and this provides the best explanation for 

our low 222Rn measurements. 

Slurry experiments using WR8 sediment show limited production of 222Rn (Figure II-4B). 

That these results also occur in crushed sediment experiments indicate lack of diffusion is not the 

cause of low 222Rn concentrations. These results reveal a second potential problem with employing 

222Rn as a subglacial residence time proxy: subglacial sediments may not contain 226Ra if the 

bedrock sediment source does not contain appreciable 238U. In this scenario sediments would be 

unable to generate 222Rn and meltwater concentration measurements will indicate erroneous short 

subglacial residence times. These results illustrate a drawback to the use of 222Rn as a proxy for 

subglacial water residence times, particularly if the bedrock under the glacier is unknown. As U is 

a common trace element in Earth’s crust, this proxy has value at most glacial locations, however 

precautions should be taken before use. Laboratory experiments using locally derived glacial 

sediments should be performed to evaluate the maximum 222Rn concentrations possible for 

individual glaciers studied. Additional proxies for residence time estimation should be employed 

alongside Rn to robustly support results from this proxy. 

Filter Pore Size Effects on Measured Elemental Concentrations  

As sampling location selection within an outflow river may have important implications for 

interpreted glacial chemistry, so too does filter pore size matter for measured elemental 

concentrations. 0.45 μm filters are conventionally used to filter suspended particles from water, 

with all filter-passing species then assumed to be aqueous. There are known problems with this 

assumption, as colloids – particles existing in size between suspension and solution – are smaller 

than 0.45 μm and as such are filter-passing (Eby, 2004). Oxyhydroxides, as well as clays and silica, 

commonly exist in colloidal form (Eby, 2004), and as all of these species exist in glacial 
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environments, colloids and subsequent adsorption of metal cations to colloidal surfaces should be 

considered when interpreting geochemical concentrations in glacial meltwater studies. Colloids 

exist in a range of sizes, and as such their presence as suspended or gravitationally settled particles 

is a function of water velocity (Atteia et al., 1998). Subglacial water velocity can vary considerably 

as water may flow quickly through well-connected channels or percolate through linked cavities 

with slow velocities (L. C. Andrews et al., 2014; Bartholomew et al., 2010; Schoof, 2010), possibly 

affecting the size and quantity of colloids present (Atteia et al., 1998).  

Studies of elemental or nutrient fluxes from the GrIS use filtered water samples passed 

through a range of filter sizes from 0.45 μm filters (e.g. M. G. Andrews and Jacobson, 2018; 

Deuerling et al., 2019; Meire et al., 2016), to 0.2 μm filters (e.g. Arendt et al., 2018; Hawley et al., 

2017; Hindshaw et al., 2014), and 0.1 μm filters (e.g. Graly et al., 2017). Explanations are rarely 

provided for the choice of particular pore size. Tepe and Bau (2015) examined distributions of high 

field strength elements from the western GrIS, filtering most samples through a 0.2 μm filter, but 

included one ultra-filtered Watson River sample that was passed through a 10 kDa filter. Rare 

earth element + Y distribution for the ultra-filtered (<10 kDa) sample displayed a different trend 

in enrichment than either the <0.2 μm or the 0.2 μm – 10 kDa fractions (Tepe and Bau, 2015). 

Many major element concentrations were below the lower limit of determination (Tepe and Bau, 

2015), making comparisons between their results and slurry experiment elemental concentrations 

measured through different filter impossible, however, the different trends in relative particle-

reactive element concentrations for differently filtered subsamples illustrate the effects filter 

selection may have on measured elemental concentrations.  

Elemental concentrations from waters used in KS sediment 222Rn experiments were 

analyzed to compare elemental signatures to measured concentrations from field samples. 2013 

and 2015 samples were filtered through 0.2 μm filters while 2018 samples were filtered through 
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0.45 μm filters, so subsamples from each experiment were filtered through 0.2 and 0.45 μm filters 

prior to analysis to identify variability associated with filter size. If all elements measured were truly 

aqueous species, there should be no difference in concentrations from different filter sizes and they 

should plot on a 1:1 line. However, elemental concentrations from each experiment do not plot on 

a 1:1 line (Figure II-7). Best-fit trendlines for sand and crushed sand experiments deviate from a 

1:1 line; waters filtered through 0.45 μm filters have higher elemental concentrations. If differences 

in elemental concentrations are due to colloidal contributions, it is reasonable that more colloids 

could pass through the larger filter pores, explaining observed results. Elements deriving from the 

fine size fraction were well correlated (R2 = 0.9807) and more elements had relatively higher 

concentrations than in the sand experiments. However, the trendline closely matched the 1:1 line, 

deviating only slightly within analytical error towards the 0.2 μm axis. 

Increased elemental concentrations trends in 0.45 μm filtered samples are not observed in 

particle reactive elements (Al, P, and Fe) as some 2013 field-sample concentrations are higher than 

experimental leachate concentrations (Figure II-6). Furthermore, Fe concentrations are variable, 

both between sample years and from field to experimental data: 2013 samples contain more Fe 

than P, but in 2015 65% of the samples contained more P than Fe. All experimental waters 

contained higher concentrations of Fe relative to P (Figure II-6). These discrepancies between 

2013, 2015, and experimental samples may derive from groundwater input to the sampling 

location, the range of possible filter-passing Fe sizes (aqueous, nanoparticulate, and colloidal) 

(Raiswell and Canfield, 2012), differences in Fe-flux from the KS glacier, or a combination of any 

of these possibilities.  

Results reveal differences in measured elemental concentrations from using filters with 

different pore sizes to be considerable. As these data were generated from leaching experiments, 

concentrations measured are much higher than concentrations commonly seen in glacial outflows 
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which are frequently diluted during intervals of high flow. At low concentrations, the presence of 

more or fewer colloids in a water sample may have an even greater effect on measured 

concentrations and elemental ratios, especially when fluxes are extrapolated to ice sheet- elemental 

or nutrient fluxes. Future research in glaciochemistry should carefully consider filter pore size prior 

to measurement to ensure measured values truly reflect intended parameters, taking into 

consideration the impact of expected filter passing particles on elemental concentrations. 

Conclusion 

 This study reveals higher concentrations of 222Rn gas present in proglacial outflow from 

the KS glacier in south Greenland than collected KS sediments are capable of producing. In-field 

sampling indicates groundwater may be the source of the high 222Rn concentrations. Groundwater 

appears to contribute to outflow from the KS glacier in south Greenland even at the sampling site 

nearest the glacial terminus, raising questions about nutrient and elemental fluxes previously 

assumed to be derived solely through subglacial weathering. Measuring 222Rn concentrations in 

proglacial meltwaters may help ensure future researchers select sampling locations with minimum 

groundwater input. 

 Use of 222Rn concentrations as a proxy for subglacial water residence time remains a 

promising application as shown in Bhatia et al. (2011) and Kies et al. (2011). However, the method 

can be improved through the addition of laboratory sediment/water 222Rn equilibration 

experiments like those presented here. Experimental results place in-field concentrations in a 

broader context by resolving the maximum 222Rn concentration possible from sediments collected 

at glaciers of interest. Thus in-field measurements can be quantitatively assessed. Furthermore, 

experiment results will reveal if sediments are unable to produce 222Rn, as at sample site WR8 in 

this study. This information will inform future researchers to disregard field measurements 
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implying negligible subglacial water residence time, and to instead find additional residence time 

proxies. Furthermore, laboratory experiments create leachate waters which may then be analyzed 

for elemental concentrations to compare with the composition of proglacial waters. By combining 

these methods, researchers may better understand the complete chemistry of the subglacial 

environment, allowing for more comprehensive interpretations and predictions of the impact of 

ice melt. 

 Finally, this study reveals the necessity carefully selecting filter pore size for sample filtration 

prior to undertaking glaciochemical field work. Filter-passing colloids – and adsorbed metals – may 

be measured as aqueous species, when in actuality these species are not aqueous and as such may 

behave differently in downstream environments. The chemical composition of glacial meltwaters 

has been studied to evaluate the change in potential nutrient fluxes to the ocean with ongoing 

climate change; considering filter pore size in future work will improve scaled-up estimates of 

oceanic nutrient fluxes. Thus this study uses laboratory experiments to evaluate the robustness and 

application of some glaciochemical field measurements to constrain future field sampling 

methodology. By adopting some of the suggestions provided here, researchers will be able to 

improve field sampling strategies and subsequently strengthen conclusions drawn from their 

results. 
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Abstract 

Solutes contained within glacial meltwater establish the initial chemistry for downstream 

fluvial systems. Accordingly, understanding how concentrations of solutes change in response to 

fluctuating glacial conditions on times scales from diurnal to annual improves predictions of the 

environmental impacts of climate change on downstream locations. Glacial seasonal field studies 

are difficult to undertake as many glaciers exist in remote and inaccessible environments. The 

Athabasca Glacier, an outlet glacier from the Columbia Icefield, Alberta, Canada is more easily 

accessible, allowing novel investigation into alpine glacial hydrochemistry during the summer to 

autumn transition. Glacial meltwater samples and in situ data [glacial outflow discharge, water 

conductivity, water pH, dissolved oxygen concentration in outflow, and 222Rn activity] were 

collected at the glacial terminus from August through October, 2014. Changes in observed cation 

concentrations track the evolution of the subglacial drainage network in response to seasonal 

cooling, elucidating chemical weathering trends from summer to early wintertime conditions in 

mid-autumn.  

This study reveals that although dilution primarily controls meltwater hydrochemistry, 

shifts in chemical reactions occur as subglacial flow transitions from a channelized system to a 

distributed network with the advent of colder temperatures in autumn. Increased carbonate 

dissolution relative to silicate weathering early in the study (August) reveals shorter, more efficient 

water routing, likely through channelized drainages. A shift to distributed drainages and longer 

water flow paths at the end of the melt season (October) produces increased silicate weathering 
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and sulfide mineral/organic carbon oxidation, leading to lower dissolved oxygen concentrations, 

higher elemental concentrations relative to Ca, higher conductivity, and lower water pH. End 

season conditions are also associated with the highest concentrations of metals. This hydrologic 

network reorganization is immediately observable within the glacial hydrochemistry, highlighting 

the sensitivity the subglacial hydrologic system to seasonal changes.  

Introduction 

Anthropogenic climate change drives increasing air temperatures around the globe, with 

pronounced increases at high latitudes (IPCC, 2013) where ice sheets, ice caps, and glaciers are 

vulnerable to melting. Changes in timing of meltwater delivery (e.g. Barnett et al., 2005; Singh and 

Kumar, 1997), sediment flux (e.g. Hallet et al., 1996; Wada et al., 2011), water temperature (e.g. 

Brown and Hannah, 2008; Milner and Petts, 1994), river channel stability (e.g. Huisink, 1997), 

and chemical constituents transported by glacial melt (e.g. Hood and Berner, 2009) are all 

anticipated effects, with impacts to downstream aqueous environments ranging from large-scale 

river morphology to microscopic biogeochemistry (e.g. Milner et al., 2017). Understanding how 

the chemical composition of glacial melt changes as melting rates vary will improve predictions of 

climate change impacts on glacial and periglacial environments. 

Meltwater volumes from alpine glaciers fluctuate on a range of timescales from annual 

through seasonal to daily as changes in air temperature and solar insolation impact water storage 

capacity and drainage network efficiency. Although melting rates are highest in summer, glaciers 

can lose mass throughout the entire year due to geothermal heat flux and frictional heating from 

both internal ice deformation and basal sliding (Benn and Evans, 2010). Regardless of time of year 

and volume generated, meltwater is ultimately evacuated from the glacial system. Glacial 

hydrologic networks include supraglacial, englacial, and subglacial drainages; however as liquid 
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water is denser than ice, most melt eventually enters the subglacial drainage network (Fountain 

and Walder, 1998). Subglacial drainage channels exist stably when the hydrostatic pressure of the 

water within the channel is equal to the pressure of the ice overburden (Hooke et al., 1990; 

Hubbard and Nienow, 1997; Röthlisberger, 1972).  

Alpine glacial subglacial drainage network configuration varies throughout the year to 

accommodate changing fluxes of glacial melt (Fountain and Walder, 1998; Hubbard and Nienow, 

1997). For much of the year, cold air temperatures limit melting such that the network needs only 

to accommodate small volumes of water. Resultant poorly-connected, circuitous subglacial 

drainage networks increase water transit times through the network, such that melt takes days to 

weeks to exit the system (Chandler et al., 2013; Fountain and Walder, 1998; Hasnain et al., 2001). 

As warming air temperatures in spring generate greater melt, the network reorganizes to 

accommodate this increased flux (Fountain and Walder, 1998). Cooler autumnal temperatures 

subsequently reduce flow, contracting efficient conduits in the subglacial network and increasing 

sub-ice meltwater transit time. Previous glaciological research has focused on the opening (shift 

from poorly connected to arborescent configurations) of the subglacial drainage network in the 

spring (e.g. Arendt et al., 2016; Bhatia et al., 2011; Chandler et al., 2013; Meierbachtol et al., 2013; 

Nienow et al., 1998; Yde et al., 2005). As yet few studies have investigated the return of these 

networks to low-flow conditions following summer peak melt (e.g. Hindshaw et al., 2011).  

Chemical weathering products – elemental concentrations and ratios – reflect the degree 

of chemical weathering occurring sub-ice and have been used to infer the structure of the subglacial 

drainage network (S. P. Anderson et al., 2003; Collins, 1989; Hubbard and Nienow, 1997; Kumar 

et al., 2019; Mitchell et al., 2006; Tranter et al., 1993; 1996). In inefficient, slowly-draining 

subglacial networks, water is in contact with the subglacial substrate for days to months (Chandler 

et al., 2013) resulting in increased chemical weathering of the substrate and solute acquisition in 
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meltwaters (i.e., higher concentrations of cations in meltwaters) (S. P. Anderson et al., 2003; 1997; 

Graly et al., 2017; Tranter et al., 1993). Efficient drainage networks result in faster meltwater flow 

(hours to days) (Chandler et al., 2013; Hawkings et al., 2015; Hodgkins et al., 2013; Linhoff et al., 

2017; Tranter et al., 1993), therefore in these networks, meltwater cation concentrations are lower 

due to increased water volume (dilution) and shorter contact time with the substrate (less chemical 

weathering) (Fountain and Walder, 1998; Tranter and Wadham, 2014). Thus, meltwater 

elemental concentrations as expressed at the glacial terminus can illuminate general changes in the 

subglacial drainage network and extent of distributed versus channelized systems (Hubbard and 

Nienow, 1997; Mitchell et al., 2006; Tranter et al., 1993; 1997). 

Glacial chemical weathering reactions and rates are also influenced by sediment grain size, 

mineral composition, and temperature (Graly et al., 2018; Tranter et al., 1993; Wadham et al., 

2010). Glacial discharge contains higher Ca concentrations from calcite dissolution and lower Si 

concentrations from hydrolysis of silicate minerals relative to nonglacial rivers, likely due to low 

temperature effects on reaction kinetics (S. P. Anderson et al., 1997; Blum et al., 1998; Singh et al., 

2012). However, although associated with cold environments, the extremely small particles and 

large surface area of finely ground glacial flour leads to enhanced chemical weathering relative to 

the global mean weathering rates, on par with similarly sized non-glacial catchments (S. P. 

Anderson, 2005; S. P. Anderson et al., 1997). 

This study investigates seasonal changes at the Athabasca Glacier (AG) in Alberta, Canada 

from August through October, 2014 through in situ hydrochemistry – specifically major and trace 

elemental concentrations, stable water isotopic composition, and 222Rn concentration. Time-series 

measurements of these parameters provide an improved understanding of subglacial weathering 

and drainage processes as the network transforms from a late-summer channelized network to a 

distributed configuration in autumn with wintertime conditions (frequent snowfall and 
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temperatures below 0ºC). Results reveal nuanced non-linear seasonal changes in expressed 

glaciochemistry owing to evolution of the subglacial environment. These results have implications 

for changes in the timing of elemental and nutrient delivery to downstream ecosystems from other 

alpine glacial systems as climate change affects the seasonal drivers for these hydrochemical 

changes.  

Field Description 

The Columbia Icefield, located in the northern end of Banff National Park and the 

southern end of Jasper National Park in Alberta and British Columbia, Canada, is the hydrologic 

triple drainage divide in the Canadian Rocky Mountains, dispersing glacial meltwater to the 

Atlantic, Pacific, and Arctic Oceans. The icefield covers approximately 325 km2, ranging in 

elevation from 1900 meters to 3400 meters and has eight outlet glaciers (Figure III-1). The AG 

drains the Columbia Icefield to the northeast, extending 6 km with an area of 6.34 km2 (Kucera 

and Henoch, 1978). It joins the Columbia Icefield at an elevation of 2740 meters and terminates 

at an elevation of 1990 meters (Hugenholtz et al., 2008). 

The AG is a land terminating, warm-based glacier with a maximum thickness of 320 meters 

(Brugman and Demuth, 1994; Paterson, 1964). Melt generated from the glacier emanates from 

multiple locations at the terminus into a small glacial lake, subsequently flowing into Sunwapta 

Lake ~0.25 km from the terminus (Figure III-1). The glacier surface is mostly unmarked by rock 

debris, while the sides are bordered by ice-cored lateral moraines rising 150 m above the glacier 

foreland (Hugenholtz et al., 2008). These moraines – reaching >100 m above the present ice 

surface – resulted from the maximum advance of the AG during the Little Ice Age (circa 1840 CE), 

1.6 km beyond its present extent (Luckman, 1988). More recently the AG has been retreating 

several meters per year (Hart, 2006) resulting in a net mass loss. The glacial ice was snow-free for 
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the majority of this study (August - October 2014); infrequent snow precipitation melted within 1-

2 days until end-October, when snow began to accumulate. The ice surface at the terminus was 

colored gray due to deposition of morainal sediment and ash from local fires, lowering albedo.  

Meltwater under the AG encounters the Middle Cambrian Eldon and Stephen Formations 

(Charlesworth and Erdmer, 1989). The shallow marine Eldon Fm. consists of limestone and 

dolostone with interbedded shale layers at the top and bottom of its sequence (Aitken, 1978). 

Meteoric water intrusion along bedding planes in these carbonates created the Castleguard Cave 

Figure III-1: A.) Schematic drawing of the Athabasca Glacier with topographic information and 
detailed plot of the sampling location, modified from Arendt et al., (2015). B.) Satellite 
imagery of the Athabasca Glacier, green circle indicates sampling location. C.) Contextual 
map of North America, green circle indicates sampling location. 
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karst complex, which exists between the AG and the neighboring Saskatchewan Glacier, another 

outflow glacier extending to the southeast (Ford et al., 1983; Smart, 1983). The older Stephen Fm. 

is comprised of shale layers with interbedded thin layers of siltstone, grainstone, and lime-mudstone 

grading into the base of the Eldon (Aitken, 1978). 

Methods 

Cleaning of Sampling Equipment and Consumables: 

Sample containers and plastic tubing were pre-cleaned in an ISO 7 (class 10,000) clean 

room in the Glaciochemistry and Isotope Geochemistry Laboratory at the University of Michigan. 

Plastics were rinsed three times with 18.2 ΜΩ deionized water, leached for 24 hours with double-

distilled 10% nitric acid, rinsed three times with 18.2 ΜΩ deionized water, leached 24 hours with 

10% double-distilled hydrochloric acid, and rinsed again three times with 18.2 ΜΩ deionized 

water, as in Arendt et al., (2015).  

Discharge Measurements, In Situ Data: 

Daily discharge was measured using an Acoustic Doppler Velocimeter (ADV) Flowtracker 

at ~10:00 AM local time. Discharge was measured at the head of the outflow river (52° 12.366’N, 

117° 14.059’W) (Figure III-1) in a section of the channel where water flowed over a single large 

flat dolostone section with few cobbles or boulders to perturb flow lines. River channel width was 

measured daily at this location and the ADV Flowtracker sensor was submerged parallel to water 

flow. Channel width varied from a maximum of 13.41 m on DOY 267 to a minimum of 6.40 m 

on DOY 298. Once calibrated, water depth and velocity were measured in 30 cm intervals across 

the channel section. Velocity was measured continuously for 60 s at each interval; average velocity 

at each interval was used for calculations. Total discharge was calculated using the method of 

Morlock et al. (2002), then converted to m3 s-1.  
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Conductivity, pH, and dissolved oxygen were measured concurrently with a handheld YSI 

Professional Plus multi-probe at the same location. The pH probe was calibrated to pH 4, 7, and 

10, conductivity calibrated with 1413 μS cm-1 solution, and DO calibrated with water-saturated 

air prior to use. pH calibration was checked daily and recalibrated with pH 4, 7, and 10 solutions 

as required. Complete recalibrations were conducted monthly in the field. Precipitation and air 

temperature data were downloaded from the Sunwapta Weather Station, located ~30 km north 

of the sampling location (Government of Alberta). Timing and intensity of precipitation events at 

the weather station generally match field observations of rainfall events. 

Sample Collection for Elemental Data and Stable Water Isotopes: 

Water samples were collected every 1 to 3 days in August, September, and October 2014 

at 10:00 AM at the same location used to measure discharge, ~15 m downstream from the glacier 

terminus. Samples were collected from the thalweg of the meltwater stream to ensure a well-mixed 

sample of all sub-, en-, and supraglacially-routed melt. After rinsing the sample bottle with flowing 

meltwater from the sample site three times, 250 mL water samples were collected at mid-depth 

and immediately analyzed for radon concentrations using a Durridge RAD7 instrument. It was 

outfitted with the RAD H2O accessory and [222Rn] was determined using the factory programmed 

WAT250 protocol. The Rad7 instrument was calibrated by Durridge in May 2014. 

Water samples for oxygen and hydrogen isotope analysis were collected with new 60 mL 

luer-lok syringes that were rinsed with meltwater from the sample location three times prior to 

sample collection. Water was filtered through a 0.45 μm hydrophilic Millex GV PVDF filter 

directly attached to the syringe. Samples for oxygen and hydrogen isotope analysis were filtered 

directly into Kimble 20 mL glass screw-thread scintillation vials with cone caps. Vials were initially 

filled completely without headspace, but temperatures below 0ºC and subsequent sample 

expansion broke a small subset of vials. Succeeding samples were filled mostly full to allow for 
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expansion due to possible freezing in sub-zero temperatures, tightly closed, and remained sealed 

until measurement. Vials were stored at 4ºC prior to measurement to minimize isotopic 

fractionation.  

Meltwater samples for major/trace element analysis were collected every 1 to 3 days and 

immediately filtered in the field to prevent further reaction with suspended sediment. Collected 

meltwater (1 L) was passed through a 0.22 μm Millipore Durapore® membrane filter enclosed in 

a PTFE filter housing via a Masterflex modular peristaltic pump. The water was then stored in 

pre-cleaned HDPE plastic bottles and acidified with Optima grade hydrochloric acid on-site to pH 

< 2.  

Major and trace elemental concentrations were measured in 2 mL field-acidified, filtered 

water samples at the University of Michigan on a Thermo Scientific ELEMENT2 high resolution 

ICP-MS operating in pulse counting mode. Baseline acid blank measurements determined 

detection limits; values are published in (Aciego et al., 2015). A three-point calibration curve was 

used to calculate concentrations. Standards were diluted to bracket the lowest and highest sample 

concentrations and analyzed at the beginning and end of each run. In addition, an acid blank and 

a standard of known concentration were analyzed as unknowns every five samples; acid blanks 

measured below detection limits and standards reproduced within error of the calibration curve. 

Samples were measured in triplicate, and internal analytical errors were <1% with external 

accuracy and reproducibility ensured by recurring measurement of an international reference 

standard (NIST1640a). Reference standard measurements are published in Aciego et al. (2015). 

Oxygen and hydrogen isotopes were measured on a Picarro L2120-I Cavity Ringdown 

Spectrometer with an A0211 high-precision vaporizer, autosampler, and ChemCorrect software 

in the University of Michigan Water Isotopes Laboratory. The water δ18O and δD values were 
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calibrated to VSMOW/VSLAP using three internal laboratory standards. Typical analytical 

precision is better than 0.1‰ for δ18O and 1‰ for δD. 

Results 

During the sampling period from August through October 2014 daily average air 

temperature decreased from ~20 to 0°C at the Athabasca Glacier (Figure III-2A). Three intervals 

where the daily average air temperature fell below 0°C are marked by purple bars (Figure III-2A). 

Precipitation fell as both rain and snow (reported in water equivalency and marked by blue 

overlays) during the study period (Figure III-2B). There were instances of snow at the field site not 

recorded in data from the weather station; these dates are marked with blue overlays, but not 

accompanied by liquid water-equivalency (Figure III-2B). Measured discharge (Q) at the sampling 

site decreased from ~3.5 to 0.1 m3 s-1 over the study period (Figure III-2E, Table III-1) although 

precipitation events and warm periods led to stochastically increased discharge (Figure III-2). 

Colder air temperatures correlate with decreasing discharge (R2 = 0.53), with lowest Q associated 

with air temperatures below 0°C (Figure III-2). As expected, rain events generated increased 

discharge, as did periods of warmer temperatures. Suspended sediment concentrations averaged 

0.039 g L-1 (standard deviation 0.022 g L-1), punctuated by order-of-magnitude increases 

coincident with rapidly warming air temperatures, immediately following low discharge intervals 

on DOY 258 and 280 (associated with freezing air temperatures) (Figure III-2F, Table III-1). Water 

isotopes become more enriched over the course of the study; the precipitation event (rain changing 

to snow) on day 284 was associated with a 2‰ increase in δ18O and a 15‰ increase in δD of the 

glacial meltwater (Figure III-2C, D; Table III-1). 
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Figure III-2: 2014 hydroclimate data from the Athabasca glacier. A.) Daily mean air temperature as 
measured at Environment Canada’s Sunwapta Falls weather station, ~30 km from the sampling location. 
Temperatures below freezing are in-filled and marked with purple bars. B.) mm of accumulated 
precipitation, rain or snow-water equivalency, measured at Sunwapta Falls weather station. Overlaid 
blue bars denote observed instances of in-field snow, including cases not recorded at the weather 
station. C.) δ18O and D.) Deuterium isotopic composition of meltwater collected for sampling. E.) 
Glacial discharge measured at 10 am concurrent with sample collection. F.) Mass of sediment filtered 
from water sample normalized by number of liters filtered. 
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A first-order increase in conductivity is observed from August through October (40 to 200 

µS cm-1), with fluctuations that are in phase with Ca/Q and antiphase to discharge (Figure III-3A, 

B, D; Table III-1). pH varied between 8.7 and 9.3 (Figure III-3C; Table III-1) and is anti-correlated 

with conductivity. Dissolved oxygen (DO) decreased from 11.64 mg L-1 in mid-August to 3.19 mg 

L-1 in end-October, with greater scatter in the first-order trend observed between mid-September 

Figure III-3: 2014 geochemical data from the Athabasca glacier. A.) Repeat of discharge data from Figure 2. B.) 
Measured conductivity, C.) pH, and E.) dissolved oxygen from the glacial outflow channel. D.) Calcium 
concentrations normalized to daily discharge. F.) 222Rn concentrations measured immediately after collecting a 
sample. 
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and mid-October (DOY 258 – 289) (Figure III-3E; Table III-1). DO is saturated at approximately 

11 mg L-1 and reaches those concentrations when Q > ~1 m3 s-1 (Figure III-3E). Water 

temperatures remained at 0-0.1°C over the course of the study, eliminating temperature effects on 

saturation as the cause for varying levels of DO. 222Radon activity concentrations ranged between 

10 and 159 pCi L-1; high Rn occurred with low Q (Figure III-3f). Radon concentrations were low 

(< 20 pCi L-1) when Q was regularly > 1 m3 s-1 (Figure III-3F; Table III-1).  

Figure III-4: A.) Concentrations as a function of glacial discharge of six soluble cations: calcium, magnesium, 
strontium, silicon, sodium, and potassium. Solid lines show trends of measured concentrations, dashed lines 
show calculated concentrations from pure mathematical dilution of the most concentrated value. B.) 
Concentrations as a function of glacial discharge of three insoluble cations: iron, aluminum, and phosphorous. 
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Table III-1: in situ hydrological parameters (Q, EC, pH, DO), 222Rn activity concentration, δ18O, δD, and suspended 
concentration measurements by 2014 DOY. 

2014 
DOY 

Q 
(m3 s-1) 

EC 
(μS cm-1) 

pH DO 
(mg L-1) 

222Rn 
(pCi L-1) 

δ18O 
(‰) 

δD 
(‰) 

S. Sed 
(mg L-1) 

223 3.53 — — — 0.72 -22.31 -164.41  
226 2.95 35 — 11.64 4.94 -21.22 -157.61 24 
230 3.22 — — — 2.75 -21.21 -156.80 62 
233 1.08 51 — 10.90 9.75 -20.72 -153.35 20 
234 1.21 47 — 11.11 7.41 -21.14 -155.74 — 
235 0.70 55 — 10.66 10.9 -21.09 -156.35 18 
236 0.84 56 8.65 10.62 11.5 -21.20 -156.71 41 
237 1.67 46 8.71 11.37 4.06 -21.24 -157.39 16 
239 3.67 36 9.01 11.60 3.2 — — — 
240 2.08 44 8.81 11.26 13 -20.31 -149.91 — 
242 — 51 8.83 10.52 9.46 -20.80 -153.35 — 
243 0.63 64 8.76 10.17 44.1 -20.67 -153.60 22 
244 0.98 62 8.75 9.78 18.3 -21.00 -155.64 — 
245 0.74 57 8.83 8.70 49 — — 30 
246 0.43 56 8.75 9.48 13.4 -20.77 -153.59 — 
247 0.39 73 8.71 9.53 12.8 -21.16 -156.03 20 
249 0.58 40 8.99 12.22 9.71 -21.08 -154.88 — 
250 1.37 39 9.16 11.27 16 -20.93 -153.35 65 
251 1.38 42 9.11 10.63 8.3 -20.32 -149.51 60 
252 0.45 69 8.83 8.43 7.28 — — — 
253 0.29 79 8.76 9.59 5.07 — — 39 
254 0.25 52 8.89 0.30 40.2 -20.92 -153.99 — 
255 0.18 90 8.70 10.84 29.2 -21.02 -155.64 12 
258 0.26 61 9.01 7.26 23.2 -21.68 -160.51 566 
261 2.59 36 9.19 12.21 24.7 -20.14 -150.81 555 
264 1.10 52 8.97 9.20 21.9 -20.54 -152.10 — 
267 4.51 29 9.30 7.68 5.77 -20.03 -147.19 272 
270 0.71 87 8.84 10.21 34.2 -20.06 -147.87 36 
273 0.43 88 8.83 5.18 105 -20.35 -150.25 — 
276 0.16 98 8.78 9.86 26.8 -20.57 -152.12 — 
278 0.33 62 9.08 4.31 18.4 -20.00 -147.58 44 
280 0.94 58 9.02 6.67 16 -19.61 -143.67 477 
282 0.33 59 8.99 3.74 159 -19.91 -146.67 89 
284 0.91 46 9.14 5.16 137 -17.55 -127.37 — 
286 0.18 92 8.78 3.88 127 -20.00 -146.63 — 
287 0.20 83 8.85 4.65 124 — — 39 
288 0.13 97 8.82 3.35 90.3 -19.72 -145.04 20 
289 0.10 104 8.80 2.99 99.9 — — — 
290 0.07 107 8.77 3.80 75.4 — — 46 
291 0.08 109 8.73 3.53 88.7 — — 14 
292 0.14 81 8.74 3.19 63.2 — — 18 
293 0.22 57 9.03 4.62 32.9 — — 30 
294 0.21 54 9.24 9.99 39.6 — — 58 
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295 0.18 74 8.95 6.07 38.3 — — 41 
296 0.15 92 8.87 3.27 50.6 -19.22 -141.07 97 
297 0.14 101 8.80 3.00 97.2 — — 47 
298 0.10 95 8.91 3.17 27.9 -19.46 -144.64 32 

 

Soluble major and trace cations (Na, Mg, Si, K, Ca, Sr) show lowest measured 

concentrations during high discharge periods and highest measured concentrations with low 

discharge (Figure III-4a). Consequently, as Q decreased from August through October, these 

soluble elements show an inverse trend. Insoluble elements (Fe, Al, P) do not correlate with 

discharge or day of year (Figure III-4b), although concentrations correlate with one another (Figure 

III-5a). Concentrations of insoluble elements also correlate with suspended sediment concentration 

(Figure 5b). 

 

 

  

Figure III-5: A.) Correlations of insoluble elements. Aluminum concentration is plotted as a function of iron 
concentration in blue (R2 = 0.965) and phosphorous concentration is plotted as a function of iron concentration in 
red (R2 = 0.775). B.) Correlations of insoluble elements plotted as a function of suspended sediment concentration. 
Aluminum in blue (R2 = 0.541), phosphorous in red (R2 = 0.874), and iron in green (R2 = 0.630). The three lighter 
colored points with high sediment concentration and low elemental concentrations were from the same day 
immediately following another day with high sediment concentrations and were not included in regression 
calculations. 
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Table III-2: Measured elemental concentrations (Na, Mg, Al, Si, P, K, Ca, Fe, and Sr) in 2014 collected outflow 
samples, organized by 2014 DOY. 

2014 
DOY 

Na 
μM 

Mg 
μM 

Al 
μM 

Si 
μM 

P 
μM 

K 
μM 

Ca 
μM 

Fe 
μM 

Sr 
μM 

223 2.83 35.72 0.24 2.55 0.03 1.00 185.37 0.07 0.22 
226 4.12 73.97 0.19 5.78 0.02 1.52 242.57 0.04 0.40 
230 4.31 62.29 0.20 4.82 0.02 1.22 220.44  0.34 
233 19.39 129.21 0.18 10.43 0.02 2.46 310.19 0.07 0.64 
234 6.18 115.75 0.13 8.91 0.02 1.99 281.92  0.54 
235 7.63 146.67 0.12 11.13 0.02 2.40 340.77 0.19 0.67 
236 7.91 138.86 0.15 10.66 0.01 2.47 316.40  0.67 
237 6.28 123.05 0.12 9.03 0.01 1.95 291.52  0.61 
239 3.02 66.21 0.17 4.63 0.01 1.19 244.17  0.36 
240 4.84 95.54 0.14 6.67 0.01 1.53 289.05  0.47 
242 6.73 131.92 0.13 9.75 0.01 2.08 326.11  0.63 
243 9.24 179.78 0.12 13.14 0.01 2.50 381.29  0.87 
244 13.80 175.60 0.17 13.49 0.01 2.65 373.05  0.85 
245 7.86 142.91 0.17 10.59 0.01 2.11 347.25 0.04 0.73 
246 10.63 186.65 0.14 13.77 0.01 2.69 388.26 0.10 0.89 
247 10.75 201.95 0.13 15.13 0.01 3.07 429.45  0.97 
249 5.63 135.33 0.17 10.06 0.01 1.92 335.79 0.08 0.65 
250 3.42 100.12 2.51 9.17 0.14 1.84 430.47 1.89 0.57 
251 3.27 88.70 0.18 6.50 0.01 1.39 286.33 0.06 0.47 
252 11.64 199.44 0.16 14.55 0.01 2.78 412.50 0.06 1.01 
253 14.10 232.22 0.14 17.05 0.01 3.52 438.39  1.19 
254 14.78 267.44 0.43 19.63 0.02 3.49 489.32 0.26 1.29 
255 20.71 310.23 0.21 23.48 0.01 4.62 555.24  1.41 
258 7.72 210.37 3.93 14.88 0.49 3.24 1044.27 3.34 1.31 
261 3.35 72.95 0.39 5.84 0.02 2.63 228.02 0.07 0.43 
264 9.37 131.50 0.25 10.23 0.02 2.20 303.77 0.07 0.72 
267 2.37 70.33 3.29 6.97 0.25 1.45 432.05 3.49 0.45 
270 13.67 263.23 0.49 20.28 0.04 4.12 493.42 0.46 1.23 
273 15.31 279.77 0.14 19.76 0.01 4.10 508.69 0.04 1.27 
276 19.40 322.92 0.20 23.42 0.02 5.12 534.28 0.04 1.51 
278 9.52 189.05 2.24 15.58 0.09 3.25 455.04 1.45 0.93 
280 6.70 179.22 8.53 20.85 0.30 3.41 769.02 5.92 1.05 
282 18.96 280.54 2.54 24.89 0.09 4.44 559.89 1.42 1.44 
284 4.93 167.26 9.68 18.66 0.32 3.50 791.56 6.21 0.94 
286 19.02 317.35 4.17 27.23 0.13 5.11 641.85 2.34 1.57 
287 16.38 279.43 1.64 22.59 0.07 4.08 554.12 0.85 1.33 
288 18.04 339.79 0.20 23.87 0.01 5.01 542.67 0.07 1.50 
289 19.58 369.15 0.38 27.12 0.03 4.93 585.55 0.16 1.70 
290 23.73 401.10 0.35 29.22 0.03 5.80 619.24 0.11 1.83 
291 22.46 412.31 0.10 29.12 0.01 5.68 632.95  1.87 
292 14.28 267.22 0.13 17.36 0.01 3.70 464.99  1.14 
293 8.22 162.08 0.15 10.67 0.01 2.57 348.18  0.77 
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294 12.25 189.75 3.83 17.22 0.11 5.17 429.05 2.19 0.88 
295 10.38 230.73 1.74 18.88 0.04 3.82 471.21 0.66 1.03 
296 15.76 323.19 5.72 28.04 0.19 5.84 701.86 3.81 1.42 
297 17.91 359.02 0.33 25.16 0.02 5.61 578.31 0.15 1.59 
298 23.00 444.55 0.13 32.27 0.01 6.32 680.84 0.10 2.10 

 

Discussion 

Effects of Dilution on Measured Hydrochemistry 

Measured elemental concentrations are strongly tied to glacial discharge through mixing 

and dilution of different water masses (e.g. Raiswell, 1984; Sharp et al., 1995; Tranter et al., 1997; 

1993). In this multi-month study of AG melt, concentrations of water-soluble elements (Na, Mg, 

Si, K, Ca, Sr) are primarily controlled by dilution with highest concentrations occurring at low 

discharge (Figure III-4a). Chemical weathering reactions (e.g. carbonation, reduction-oxidation, 

and hydrolysis) add solutes to meltwater in the subglacial environment (S. P. Anderson et al., 1997; 

Raiswell, 1984; Tranter et al., 1993). As the AG has predominately carbonate bedrock, the most 

common weathering reactions are carbonation of carbonate minerals and carbonate hydrolysis, 

releasing Ca and Mg. Elements associated with silicate minerals (Na, Si, K) enter AG meltwater 

(Figure III-4a) via chemical weathering of shale layers interbedded with the carbonate bedrock.  

 AG ice originates as inland meteoric snow, and therefore contains few solutes. Surface 

water, supraglacial melt and rainfall, enters the en-/subglacial drainage system via moulins which 

dot the ice surface. As discharge varies with temperature trends and rainfall events (Figure III-2), 

the extent to which subglacial waters and weathering products are subsequently diluted also varies. 

Dilution is evidenced by decreasing elemental concentrations (Figure III-4a) and bulk conductivity 

measurements concurrent with increasing discharge (Figure III-3). 

 If solute production from chemical weathering is constant, it is possible that changing 

solvent (water) volume is the only mechanism affecting cation concentrations. To test this 
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hypothesis, the highest measured concentrations of six soluble elements (Ca, Mg, Sr, Si, Na, K) 

were mathematically diluted (Figure III-4a). The duplicate shape of the measured concentration 

best-fit (solid) lines and the calculated concentration best-fit (dashed) lines reveals dilution to be a 

primary control on elemental concentrations, yet measured concentrations do not reach the 

minima predicted from pure dilution (Figure III-4a). The concentrations measured in AG 

meltwater can be produced by increasing the amount of chemical weathering during intervals of 

low discharge to generate higher solute concentrations (e.g. Mitchell et al., 2006; Mitchell and 

Brown, 2008; Tranter et al., 1993).  

Other Factors Influencing Chemical Weathering 

Chemical weathering product concentrations are affected by: (1) water-rock interaction 

times, (2) availability of reactants (commonly protons and oxygen), (3) freshness of reactive mineral 

surfaces, (4) amount of exposed mineral surface area, and (5) type of minerals present in the 

environment in addition to dilution (Blum et al., 1998; Raiswell, 1984; Tranter et al., 1996; 1993). 

Water-rock interaction time is an important parameter controlling the extent of chemical 

weathering but is difficult to quantify in the obscured subglacial environment. Subglacial water 

residence time approximates water-rock interaction time, or length of time liquid water is present 

in the subglacial system and capable of reacting with sediment. Longer residence in the subglacial 

system provides more time for chemical reactions, allowing a greater number of fast reactions to 

occur and for more kinetically slow reactions to approach equilibrium. Bulk conductivity, water 

turbidity, and geochemical tracers are often used to estimate subglacial water residence time 

(Hubbard and Nienow, 1997; Nienow et al., 1998; Stone and Clarke, 1996). However, high 

meltwater volume dilutes bulk electrical conductivity (EC) making determination of volumes of 

fast- and slow-flow waters impossible (Tranter et al., 1997). Furthermore, EC is not conservative 

in glacial environments, making its use as a defining parameter for a mixing model a poor choice 
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(Bhatia et al., 2011; Sharp et al., 1995). Turbidity is limited by the availability of fine sediment and 

may produce erroneous residence time estimates if previously hydrologically isolated portions of 

the bed are suddenly flushed or if glacial grinding and sediment generation has been minimal. 

Tracer studies measure direct transit time but are limited spatially by moulin location, human 

access, and ability to detect the tracer at the terminus.  

Subglacial water residence time may be revealed by changing 222Rn activity concentrations 

in meltwater (Arendt et al., 2017; Bhatia et al., 2011; Kies et al., 2011). 222Rn is formed by alpha 

decay of 226Ra (t1/2 = 1600 years), an intermediary in the uranium decay series. 222Rn is radioactive 

(t1/2 = 3.8 days), and as such reaches secular equilibrium with 226Ra in five half-lives (> 20 days). 

Prior to secular equilibrium, 222Rn produced in the subglacial environment dissolves into 

meltwater, increasing its concentration as a function of water residence time. 222Rn activity 

concentration ([222Rn]) is useful as a proxy for water residence time as: (1) it ultimately derives from 

238U – a ubiquitous isotope, (2) it is a noble gas and therefore unreactive, and (3) a short half-life 

means its presence establishes recent water-sediment interaction (Bhatia et al., 2011; Kies et al., 

2011). At the AG, [222Rn] was low (<50 pCi L-1) through mid-September (DOY 267) while 

discharge was high, reaching a maximum of 159 pCi L-1 in late October concurrent with low 

discharge (Figure III-3), suggesting increased subglacial water residence time.  

Previous work investigated the seasonal ‘opening’ of alpine subglacial drainage networks in 

spring as slow-flowing disconnected networks shift to efficiently connected, rapidly-flowing 

channelized networks (Fountain and Walder, 1998; Hubbard and Nienow, 1997). This process is 

well documented in alpine glaciers (R. S. Anderson et al., 2004; Iken and Bindschadler, 1986; Mair 

et al., 2003), and has been observed to occur at the AG (Arendt et al., 2015). As subglacial drainage 

networks evolve from slow, inefficient configurations to quick arborescent (channelized) networks 

each spring, a subsequent shift in configuration back to an inefficient (distributed) network logically 
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occurs at a later season. Subglacial drainage channels at alpine glaciers shrink and become less 

efficient as frictional heating driven by liquid water flux decreases, eventually closing through ice 

creep when no longer held open by flowing water (Hubbard and Nienow, 1997; Nye, 1976; 

Röthlisberger, 1972; Shreve, 1972). Subglacial water residence time is therefore hypothesized to 

increase over the study period as air temperatures cooled from 21°C on August 14 to -2°C on 

October 28 and discharge decreased (Figure III-2). 

Unlike spring events where an initial meltwater pulse from melting surface ice overwhelms 

the subglacial drainage network, lubricates the glacial bed, and causes a substantial, measurable 

increase in ice surface velocity for hours to days (R. S. Anderson et al., 2004; Iken and 

Bindschadler, 1986; Mair et al., 2003), subglacial hydrologic network closure is slower and less 

pronounced. Individual air temperature measurements do not follow seasonal trends and 

precipitation events add water stochastically to the system both quickly (rain) and slowly (snow), so 

gradual trends can be obscured in daily noise. Less melt in the system also lowers the liquid pressure 

experienced by melt water, so it does not receive the same ‘push’ through the system as in peak 

melt. Coding the data by DOY reveals that as discharge decreased from August through October, 

[222Rn] increased, DO concentration decreased, and conductivity increased; all parameters 

supporting a transition to a disconnected system with increased water residence time (Figure III-

6). However, as temperature and discharge vary over the study period, daily EC and 222Rn activity 

measurements also fluctuate, reflecting a dynamic subglacial system.  
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Suspended sediment concentrations can reveal changes in hydrologic configuration 

(Gordon et al., 1998; Swift et al., 2005; Haritashya et al., 2010), specifically showing the non-

linearity of the shutdown process and providing context for variability seen in EC and 222Rn 

activity. Abrupt reorganization of subglacial drainage networks at alpine glaciers is frequently 

accompanied by increases in sediment flux (Collins, 1989; 1990; Gordon et al., 1998; Swift et al., 

2005): as subglacial drainage networks become established in a channelized configuration, 

preferential flushing of sediments within channels occurs. At the AG, suspended sediment 

concentrations generally ranged from 10-60 mg L-1 but were an order of magnitude higher on 

DOY 258-261 (566 mg L-1) and 280 (477 mg L-1). These dates are noteworthy as they are both 

Figure III-6: Geochemical parameters A.) 222Rn 
(tri-stars), B.) dissolved oxygen (circles), C.) 
conductivity (triangles) plotted against measured 
discharge fluxes with trendlines. Markers in each 
plot are colored by day of year with August 11, 
2014 represented by the darkest red grading to 
October 25, 2014 represented by purple. 
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associated with warmer air temperatures and increased discharge immediately following days with 

air temperatures < 0°C (Figure III-2). Gordon et al. (1998) observed changes in hydrologic 

connectivity between boreholes drilled at Haut Glacier d’Arolla, Switzerland, finding smaller, 

isolated hydrologic sub-networks disconnected from, then reconnected to, main drainage as water 

input volumes changed. Additional meltwater had the ability to reconnect some of these isolated 

sections back to a more comprehensive configuration as daily temperature and precipitation 

volumes varied (Gordon et al., 1998). This process likely occurred at the AG during this 2014 study 

as air temperature and discharge fluctuated (Figure III-2). DOY 254 and 275 were both days when 

average daily temperature was < 0°C, EC was high, discharge was low, and [222Rn] was above 

background (Figure III-3). DOY 258 and 280, in contrast just 4-5 days later, exhibited positive 

daily temperatures, high discharge, and lower [222Rn] (Figure III-3). If cold air temperatures led to 

isolation of some parts of the bed and consequently a less efficient drainage network, then 

subsequent warmer temperatures generated increased melt, reconnected the isolated sections, and 

forced the network back to an efficient configuration before a final shutdown. These data illustrate 

the non-linearity of subglacial hydrologic network shutdown. 

Abrasion of entrained sediments in glacial ice produces very fine, high surface area–low 

volume rock flour (Benn and Evans, 2010); constant availability of fresh, reactive mineral surfaces 

in subglacial sediment leads to enhanced chemical weathering relative to non-glacial environments 

at similarly cold temperatures. Acidity – a necessary reactant to dissolve carbonate minerals – is 

commonly derived by dissolution of CO2 into water but can be limited by slow kinetics (Fairchild 

et al., 1994). With carbonate bedrock, water pH at the AG is controlled by carbonate equilibrium 

(Fairchild et al., 1994) whereas EC reflects the concentration of bulk ionic products. Over this 

three-month study, pH fluctuated within a half unit 8.85 – 9.3 and EC ranged from 29 – 109 µS 
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cm-1, but there were no occurrences of concurrent high conductivity and low pH (Figure III-7b). 

High EC only occurred with lower pH values regardless of time of year, potentially indicating a 

change in the type of chemical reactions occurring in this system. 

Closing subglacial hydrologic networks are unable to freely exchange CO2 with the 

atmosphere, and as such additional protons may be sourced by pyrite oxidation (Fairchild et al., 

1994; Tranter et al., 2002). At the AG, pyrite is a common accessory mineral in the interbedded 

Stephen Fm. shales (Butterfield, 1995; Gaines et al., 2012); its oxidation is coupled to calcite 

dissolution in equation 1:  

4FeS"($) + 14H"O + 15O" + 16CaCO)

→ 4Fe(OH))($) + 8SO,
"- + 16Ca". + 16HCO)

-						(1) 

DO was saturated (~11 mg L-1) in glacial terminus waters in August but decreased to ~3 mg L-1 in 

October (Figure III-7c), likely due to both decreasing input to the subglacial system and increasing 

consumption en route. In August, higher average daily temperatures generated increased surface 

melt which then drained into crevasses or moulins. This flow was turbulent, increasing DO to 

saturation via diffusion prior to entry into the subglacial network. Once in the subglacial network, 

DO was removed from subglacial water as a reactant in oxidation reactions. Pyrite and organic 

carbon oxidation produced protons – lowering pH – and ionic products (sulfate) – increasing EC, 

explaining the late October observations (Figure III-7b) (Mitchell and Brown, 2008).  

 DO concentrations as a function of EC (Figure III-7a) reveal a linear relationship both in 

the beginning and end of the study, with the simple relationship breaking down during September. 

A more complex relationship coincides with intervals of high suspended sediment concentrations 

when dynamic change and isolation of sections of the hydrologic system occur (Figure III-2f). 

Water stored in isolated areas have longer water-rock interaction times, consequently consuming 
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DO, producing more solutes, and increasing EC (Figure III-7a). Lower water pH at the terminus 

indicates DO consumption (oxidation) (Figure III-7c), supporting a more distributed drainage 

configuration. Resultant proton-driven dissolution of carbonates indicated by the calcium flux, 

normalized to discharge, increases as pH decreases (Figure III-7d). Changing configurations of the 

hydrologic network relink isolated sections, mixing fast- and slow-flowing subglacial waters prior 

to exiting the system. Therefore, while there are broad seasonal trends in water quality data 

(Figures III-6, III-7), daily temperature and weather fluctuations force data from individual days 

closer to or further away from average trends. Notably, the negligible time lag between the shift 

from negative to positive air temperatures and resultant differences in hydrochemistry indicates 

the subglacial hydrologic network is extremely dynamic and responsive to weather fluctuations. 
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 Shifts in Subglacial Weathering Regimes 

Beyond dilution effects and subglacial water residence time, changing the ratio of different 

types of chemical weathering can also influence measured glacial hydrochemistry. The 

heterogeneous bedrock at the AG of carbonates with interbedded shales produces Ca and Mg 

Figure III-7: A.) Dissolved oxygen (circles) plotted as a function of conductivity. B.) pH (bowties) plotted as a 
function of conductivity. C.) Dissolved oxygen (circles) plotted as a function of pH. D.) Calcium normalized 
to discharge (X-boxes) plotted as a function of pH. Markers in each plot are colored by day of year with 
August 11, 2014 represented by the darkest red grading to October 25, 2014 represented by purple. 
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cations (‘CE’ – carbonate elements) while hydrolysis of clay minerals in shales contributes elements 

such as Si, Na, and K (‘SE’ – silicate elements). Seasonal shifts of these two elemental groups in 

meltwater resolve the relative contributions of different weathering reactions in the subglacial 

environment. In addition to the greater relative abundance of carbonates to shales in the AG 

subglacial environment, the order of magnitude difference in concentration of CE compared to SE 

(Figure III-8) also results from reaction kinetics: carbonate dissolution occurs much more rapidly 

than hydrolysis of silicate minerals (Anderson et al., 1997).  

Subglacial water flows through a deformable mixed till layer between the ice and the solid 

bedrock beneath the AG, effectively homogenizing heterogeneous bedrock (Clinger et al., 2016). 

Figure III-8: Silicon concentrations versus calcium concentrations. All points are colored by day of 
year with August 11, 2014 represented by the darkest red grading to October 25, 2014 represented 
by purple. Circular points were included in the trendline calculation; six triangular points were 
excluded. Solid line shows the linear regression (R2 = 0.98) through the circular points. Dashed line 
shows pure mathematical dilution of the most concentrated value. 
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As till is not size sorted, this blended till layer contains a range of silt- to clay-sized particles 

significantly increasing mineral surface area available for weathering reactions relative to bedrock 

(S. P. Anderson et al., 1997; Tranter and Wadham, 2014). This homogenized, high surface area 

layer ensures any observed difference in the proportion of CE to SE within the bulk meltwater is 

likely due to changes in subglacial chemical reactions and is not merely an artifact of water 

encountering a different rock type as its path under the ice changes. 

CE and SE, represented by Ca and Si respectively, are strongly positively correlated (Figure 

III-8, R2 = 0.98), reflecting their simultaneous subglacial production from the till layer. Due to 

dilution, both CE and SE concentrations show exponential decay with increasing discharge (Figure 

III-4a). The sample with highest Ca and Si concentrations was mathematically diluted (Figure 8, 

dashed line) to determine if dilution produced the observed trend in concentration. However, the 

steeper sloped best-fit line of the observed data (Figure III-8, solid line) reveals additional CE 

relative to SE when concentrations of both are low in times of high discharge. As neither dilution 

nor increased water-rock interaction time explain this trend, there is a third factor – conceivably 

reaction kinetics – affecting subglacial chemical concentrations.  

Glacial catchments yield similar total cation denudation rates compared to non-glaciated 

catchments with comparable bedrock (Anderson et al., 1997), but generate a much larger 

proportion of CE relative to SE regardless of bedrock type (S. P. Anderson et al., 1997; Blum et 

al., 1998). In subglacial environments, carbonate mineral weathering reactions are enhanced due 

to high calcite dissolution reaction kinetics and mineral strain caused by glacial abrasion (S. P. 

Anderson et al., 1997; Blum et al., 1998) while chemical weathering rates of silicate minerals are 

reduced. These differences in weathering rates are apparent in the concentrations of Ca and Si 

measured at the AG in this study, but do not explain the divergence of measured concentrations 

(Figure III-8) from the calculated pure-dilution line during periods of high discharge. High 
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discharge occurs in late-August/early-September when air temperatures are above freezing and 

the sub-glacial drainage network is in a well-connected summertime channelized configuration, 

with minimal water residence times. As mineral surfaces chemically weather, meltwater flow 

removes both CE and SE products, leaving the drainage network perpetually undersaturated. 

Undersaturation promotes chemical weathering reactions; faster rates of carbonate weathering 

result in increased CE concentrations, and accounts for the deviation between the measured cation 

concentrations and mathematically diluted concentrations (Figure III-8). The difference between 

CE and SE concentrations decreases in October (Figure III-8) due to lower flow rates and a more 

distributed network: longer water residence times allow time for consumption of all available 

reactants and/or allows the subglacial environment to reach saturation.  

Within the study period, anomalously high Ca concentrations relative to Si were observed 

on six days of the 46 sample collection days in the study period (Figure III-8; triangles). These 

particular samples also displayed higher, but not anomalous, EC measurements, but there are no 

other environmental characteristics unique to these days. These six samples may have become 

enriched in Ca relative to Si because of enhanced Ca weathering explained by greater carbonate 

dissolution – such as may occur within a secondary calcite vein. If subglacial flow paths reorganize 

such that waters are in contact with many small-sized, high surface area grains of crushed limestone 

and not dolostone, the characteristic carbonate fast-weathering rates may explain this increase in 

Ca, but not Mg, concentration. This study is not able to distinguish whether these anomalous Ca 

concentrations are due to exposure of unweathered mineral surfaces on freshly ground glacial 

carbonate flour or exposure of water to previously untouched diagenetic calcite, but either 

possibility may explain these six data points. 
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Particle Reactive (Fe, Al, P) Weathering Product Trends 

Most elemental concentrations within AG meltwater are primarily controlled by dilution 

(Figure III-4a) along with reaction kinetics and water-rock interaction time (Figures III-6, III-8), 

but insoluble elements (Fe, Al, and P) display different behavior (Figure III-4b). Concentrations of 

these elements correlate with each other (Figure III-5a) and with concentrations of suspended 

sediment (Figure III-5b), but do not correlate with other hydrochemical parameters. Particle 

reactive elements such as Fe, P, and Al form oxides on the outside of sedimentary particles and 

thus can be transported as colloids (<1 μm), nanoparticles (<0.1 μm), and in aqueous forms (<0.01 

μm) (Hawkings et al., 2014; Raiswell and Canfield, 2012) in meltwater. Previous work shows 

soluble reactive P sorbs onto reactive Fe (oxy)hydroxide colloids and nanoparticles (Hawkings et 

al., 2014). Aluminum behaves similarly to Fe in that it exists in a variety of sizes beyond simply 

‘dissolved’ and ‘suspended’ forms in filtered waters and depends on the presence, abundance, and 

type of colloidal material (Horowitz et al., 1996). Even though waters were filtered through a 0.22 

μm pore size filter, it is possible that a significant fraction of (colloidal or smaller) Fe, P, and Al was 

filter-passing (Hawkings et al., 2014; Raiswell and Canfield, 2012). Thus, the aqueous fraction 

collected at the AG may have included some of these smaller particles which were then measured 

as ‘dissolved’ forms. Iron, Al, and P concentrations correlate with measured sediment 

concentrations (Figure III-5b), supporting the hypothesis that elemental concentrations are 

controlled primarily by colloidal particle availability.  

Higher concentration (mg L-1) major weathering products such as Ca are not associated 

with colloids (Horowitz et al., 1996), and therefore are not expected to correlate with Fe, P, or Al 

concentrations. However, six samples (Figure III-8, triangles) that show greatly enhanced 

carbonate weathering relative to silicate weathering occur on DOYs that also have high measured 

concentrations of Fe, Al, and P. This relationship may be due to exposure of unweathered mineral 
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surfaces on freshly ground glacial carbonate flour. These six samples may evidence routing changes 

in the subglacial environment, flushing previously isolated and minimally weathered sediments 

with accompanying colloids. 

Annual Glaciochemical Cycling 

Changes in expressed hydrochemistry at the Athabasca Glacier have been observed during 

the opening of the subglacial drainage network in early spring (Arendt et al., 2017; 2015; Niu et 

al., 2017). Comparison of 2014 late season to 2011 early season hydrochemistry reveals cyclic 

trends with implications for downstream aquatic environments. Deuterium isotopes show a 

seasonal evolution of water source: in May, meltwater initially reflects a mix of ice (-140‰) and 

snow (-205‰) melt, with δD shifting more negatively towards pure snowmelt as discharge increases 

in mid-May (Figure III-9) (Arendt et al., 2015). As seasonal snow is not an enduring reservoir, end-

May sees δD move more positively, again with increasing discharge, away from snow towards ice 

melt values (Figure III-9) (Arendt et al., 2015). 2014 initial (August) δD and discharge 

measurements correspond well with published July 2011 values (Arendt et al., 2015), evolving 

through September and October 2014 toward pure ice melt isotopic composition as discharge 

decreases with cooling temperatures (Figure III-9). Here, scatter in isotopic measurements relates 

to stochastic precipitation with significantly more positive δD values (Figure III-9). The final 

sample in 2014 did not match the values from the initial 2011 samples; discharge was too high and 

the δD value more closely resembled ice-, not snow-, melt. We predict as winter transitions to 

spring, discharge would increase as snow melts and δD would approach May 2011 values (Arendt 

et al., 2015).  
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 Combining 2011 (Arendt et al., 2015) and 2014 hydrochemistry allows for the 

reconstruction of an (almost) annual subglacial weathering regime highlighting shifts in proportion 

of carbonate vs. silicate weathering (Figure III-10). An initial increase in SE relative to CE is 

observed as springtime discharge increases, associated with an increase in connectivity tied to a 

spring opening event, flushing out concentrated meltwater previously isolated in winter (Collins, 

Figure III-9: dD plotted against discharge. 2011 dD data (circles) were published in Arendt et 
al. (2015) and correlated with discharge data published in Arendt et al. (2017) by day of year. 
2014 data (triangles) collected in this study. Ice melt dD (dotted line) value is published in 
Arendt et al. (2015). Markers are colored by day of year with May 6 (DOY 126) represented 
by the darkest blue grading to October 25 (DOY 298) represented by green. Solid arrows 
show seasonal evolution of dD; dashed arrow represents a possible path from DOY 298 to 
DOY 126 in the subsequent year. 
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1989; Iken and Bindschadler, 1986; Mair et al., 2003; Nienow et al., 1998). As rates of carbonate 

weathering are much faster than silicate weathering in glacial environments (Blum et al., 1998; 

Jacobson et al., 2002), this observed change in meltwater chemistry likely reflects the evacuation 

of previously isolated waters that were able to weather silicate minerals for an extended period of 

time (Figure III-10). Waters measured in May 2011 exhibit higher 222Rn activity (Arendt et al., 

2017), further supporting a long residence time under the AG. July 2011 weathering products show 

a large increase in CE relative to SE when discharge increases and the system is fast-flowing and 

‘open’ to the atmosphere (Figure III-10). Late summer 2014 data then reveal a gradual decrease 

in CE relative to SE through fall as discharge drops. Closure of the system would limit gas flux to 

the subglacial environment, limiting reactants for dissolution reactions (Raiswell et al., 2008; 

Tranter et al., 1993). Late winter/early spring measurements of CE/SE and discharge are 

predicted to match up with the values measured in 2011 by Arendt et al. (2015).  

Figure III-10: Carbonate 
weathering products (Ca + 
Mg) normalized by a 
representative silicate 
weathering product (K) 
plotted as a function of 
discharge. 2011 data 
(triangles) published in 
Arendt et al. (2017), 2014 
data (circles) collected in this 
study. Markers are colored 
by day of year with May 6 
(DOY 126) represented by 
the darkest blue grading to 
October 25 (DOY 298) 
represented by green. Solid 
arrows show seasonal 
progression. 
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 These trends (Figures III-9, III-10) reveal that seasonal changes both in water source at the 

AG and how meltwater chemically weathers available minerals extend across multiple years. 

Similarities in the data suggest this cycle repeats annually: relatively lower proportions of CE in 

early spring when most water is snowmelt (Arendt et al., 2015), followed by a large increase in CE 

through mid-summer with ice melt greatly contributing to discharge, then a final gradual decrease 

in the ratio of CE to SE concurrent with the shutdown and freezing of the hydrologic network. 

Future climate change will adjust the timing of physical changes in the subglacial hydrologic system 

as wintertime conditions are predicted to occur later in the year.  

Conclusion 

A three-month geochemical timeseries of meltwater discharged from the Athabasca Glacier 

in the Columbia Icefield, Canada documents the seasonal transition from a well-connected 

configuration in August to a poorly-connected, discontinuous subglacial hydrologic system in 

October. Dilution primarily controls cation concentrations in meltwater collected at the glacial 

terminus, although chemical weathering rates and reactant availability are also factors. Late 

August hydrochemistry indicates summertime channelized conditions: high discharge, low 

elemental fluxes, and relatively high proportions of Ca relative to Si. Significantly cooler average 

air temperatures, lower discharge, and higher bulk conductivity measurements marked the end of 

the study in October, suggesting a poorly-connected subglacial hydrologic network.  

Varying ratios of carbonate to silicate weathering products illustrate the existence of more 

nuanced chemistry beyond simple dilution at the AG. Mid-study (September) ratios of Ca to Si, 

sediment flux, and pH variations anticorrelated with conductivity all suggest a stochastic transition 

from a primarily channelized drainage network to a more disconnected distributed system. Slow 

flow waters contained less DO as it was consumed in pyrite and organic matter oxidation; 
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simultaneously longer water-rock contact time imparted more 222Rn to the water. These changes 

occurred as immediate responses to freezing temperatures, marking the subglacial hydrologic 

network as a dynamic environment.  

While the hydrochemistry presented here appears to show shutdown of the 2014 AG 

subglacial drainage network concurrent with the advent of wintertime conditions in autumn, 

measured discharge did not reach the low values measured at the same location in May 2011 

(Arendt et al., 2015). Continued monitoring of the glacier into November and December might 

have shown further geochemical evidence for changes in the subglacial drainage network, but 

winter conditions precluded further measurement in 2014. Future work may build on this study 

by analyzing anion concentrations in addition to cations to better understand the chemical 

weathering reactions occurring. Increased sampling frequency during freezing events could 

improve our understanding of the temporal resolution of subglacial channel reorganization. 

Combined, these approaches could provide a greater understanding of the seasonal evolution of 

the subglacial drainage network at the Athabasca Glacier and its response to changing air 

temperatures.  
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Abstract  

 Here we present data collected in August and September 2015 from a south Greenland 

outlet glacier, Kiattuut Sermiat (KS), providing quantitative measurements of hydrochemical 

parameters which imply the existence of a stable subglacial hydrologic system into early autumn. 

As seen through meltwater elemental concentrations and high-resolution in situ hydrochemical data 

over this two-month period, the existing efficient hydrologic system is capable of routing large 

volumes of meltwater quickly to the glacial terminus. No discernable seasonal change in 

configuration is observed through end-September, 2015. Overlap in early August 2015 pH and 

electrical conductivity data presented here with published 2013 values also measured at KS 

suggests consistent interannual hydrochemical trends in KS outflow. Water source evolved over 

the study period from a mixture of both distal and proximal water in August to a mixture with a 

greater proximal water-source signature in September. Shifts in water source likely derive from 

changes in up-ice conditions, which are conveyed to the KS terminus through the subglacial 

hydrologic system. Finally, these data may establish a baseline with which to evaluate future end-

summer glaciochemical changes at KS. 

Introduction 

More perennial ice exists on Earth than the present climate can support; current research 

suggests previous predictions of ice loss from the Greenland Ice Sheet (GrIS) are likely too 

conservative and rates of future mass loss will increase (Bevis et al., 2019; Trusel et al., 2018). 

 Seasonal Evolution in Subglacial Hydrochemistry at Kiattuut Sermiat, 
South Greenland 
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Satellite data reveal ice mass loss has been dominated by surface mass balance processes (SMB: 

accumulation minus ablation) relative to glacial dynamics (deformation due to gravity and 

subsequent calving) over the past 20 years (Mouginot et al., 2019). As Earth’s climate continues to 

warm, SMB processes – generating vast volumes of meltwater – are predicted to increase ice mass 

loss from the GrIS (Bevis et al., 2019; Trusel et al., 2018). Exactly how increased meltwater 

production is coupled to glacial dynamics on/within the GrIS remains an active and debated 

research topic (e.g. Davison et al., 2019), key to improving current glaciological flow models. As 

in-field research is limited by accessibility, seasonality, and experimental scale; meltwater residence 

time (e.g. Aciego et al., 2015; Bhatia et al., 2011), routes to the glacier bed (e.g. Clason et al., 2015; 

Koziol et al., 2017), and changes in subglacial hydrologic network efficiency (e.g. Chandler et al., 

2013; Schoof, 2010) are poorly understood. This study presents hydrochemical data from outflow 

waters emanating from a south Greenland outlet glacier as summer peak melt season transitions 

to early autumn, providing baseline chemical parameters with which to compare future 

hydrological changes.  

 Meltwater, once generated, is routed through the GrIS supra-, en-, and subglacial 

hydrologic systems, eventually reaching the Atlantic and Arctic Oceans. Water chemistry within 

this melt continuously evolves along its route via chemical weathering reactions with freshly 

comminuted glacial flour. Resultant hydrochemistry is controlled by types of bedrock present, 

subglacial water storage time, erosion rate, availability of reactants (primarily H+ ions and 

dissolved oxygen [DO]), and presence of microbial activity (Anderson et al., 1997; 2003; Raiswell, 

1984; Tranter et al., 1996; 2002; Tranter and Wadham, 2014; Yde et al., 2014). Elemental 

composition of glacial meltwater has been used to infer changes in the subglacial hydrologic 

network configuration as water routed through different conduits is exposed to different minerals 

with disparate chemical weathering rates (e.g. Graly et al., 2018; Yde et al., 2014; 2005). Glacial 
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meltwater, initially undersaturated in solutes as pure ice melt, encounters large volumes of freshly 

comminuted sediment as it flows through the subglacial hydrologic system (Anderson, 2007). 

Despite cold temperatures, significant chemical weathering occurs in glacial environments when 

undersaturated water reacts with freshly broken unweathered mineral surfaces produced through 

glacial grinding, increasing the solute load of the meltwater (Anderson, 2005).  

Subglacial hydrologic systems are dynamic, with the degree of connectivity depending on 

the volumes of water accommodated (Andrews et al., 2014; Bartholomew et al., 2010; Fountain 

and Walder, 1998). Wintertime cold temperatures generate little meltwater and resultant 

hydrologic systems exist in poorly-connected, slow, inefficient systems characterized by long water 

residence times. Increased meltwater volumes in spring from warming temperatures result in an 

“opening” of the hydrologic system, marked by an increase in ice velocity as the water volume 

overwhelms the existing hydrologic configuration, lubricating a large area the bed, and enhancing 

basal ice sliding (Bartholomew et al., 2010; Zwally et al., 2002). This phenomenon is transitory: 

the subglacial hydrologic system increases in connectivity and channels expand in size to 

accommodate the melt such that basal water pressure – and subsequently ice velocity – decrease 

(Bartholomew et al., 2010; 2012; Hoffman et al., 2011). In addition to ice velocity trends, these 

changes in hydrological configuration are also evident in meltwater elemental trends: increased 

spring meltwater volumes dilute solute load and subsequently lower both bulk electrical 

conductivity (EC) and elemental concentrations (Bhatia et al., 2011; Chandler et al., 2013; Moon 

et al., 2014). With the advent of cooler temperatures as summer transitions to autumn, meltwater 

volumes decrease. The resultant decrease in hydrostatic pressure within unfilled subglacial 

channels allows closure via deformation of overlying ice (Shreve, 1972) as part of the transition 

from an efficient channelized system to an inefficient poorly connected system. Seasonal change of 
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the subglacial hydrologic system however is poorly documented outside the warmest seasons as 

harsh glacial environments and difficulty in accessibility frequently prohibit field observation.  

 This study investigates the chemical properties of meltwater discharging from Kiattut 

Sermiat (KS): an accessible land-terminating outlet glacier in southern Greenland in August and 

September 2015. KS has been the site of numerous glaciochemical research studies (e.g. Aciego et 

al., 2015; Hawkings et al., 2016; Hatton et al., 2019) undertaken earlier in the summer melt season. 

Here, we present a high-resolution two-month data set of continuous in situ proglacial stream 

monitoring (water temperature, pH, EC, and DO saturation) and regularly sampled major and 

trace elemental concentrations, water stable isotope values, and radiogenic strontium compositions 

of both proglacial stream water and suspended sediment following peak summertime melt. 

Through comparison of this new KS data with data collected in previous years, we identify long-

term trends in the hydrochemical behavior of KS and improve the understanding of annual 

chemical trends in Southern Greenland outlet glaciers. 

Site Description 

Kiattuut Sermiat (KS; 61.25ºN, 45.28 ºW) is a land-terminating glacier located in south 

Greenland (Figure IV-1). It branches from Qooqqup Sermia (QS): a larger, faster-flowing outlet 

glacier connected to the GrIS (Figure IV-1). KS is contained within a steep walled valley, limiting 

its possible lateral extent. Differences in digital elevation models reveal a general thinning of the 

whole glacier between 2001 and 2014 (Mätzler et al., 2015). Mean ice velocity at KS is < 60 m yr-

1, with the last few hundred meters closest to the terminus likely dead ice (Rignot and Mouginot, 

2012). KS terminates in a proglacial lake (0.5 km2), which then empties into a braided stream 

flowing ~10 km southwest through a broad, sandy floodplain to Tunulliarfik fjord. Once the glacial 

melt season begins in spring, lake turnover is rapid, taking < 24 hours after DOY 157 (Hatton et 
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al., 2019). Bedrock under KS is primarily 1.8 Ga granite of the Julianehåb Batholith containing 

complexes of diorite and granodiorite, with basaltic intrusions also present (Henriksen et al., 2009; 

Greenland Portal). 

A small second glacier, Sydgletsjer, branches north from KS near its separation from QS, 

terminating in ice-dammed Lake Hullet (Figure IV-1). Hullet drains to the south through KS via 

subglacial outburst floods (Mätzler et al., 2015). Floods usually occur in late summer – typically in 

August or September – and last for two to three weeks (Mätzler et al., 2015). Landsat 7 imagery 

shows this flood to be an annual occurrence from 2000 through 2014 (data are missing for 2002 

and 2006), and an intensive study in 2014 revealed that the lake-draining flood event that year 

occurred over a 23-day period (Mätzler et al., 2015).  

Methods 

Pre-Cleaning Procedures: 

HDPE plastic bottles and tubing were pre-cleaned in an ISO 7 (class 10,000) clean room 

at the University of Michigan prior to the start of the field campaign. Cleaning methodology is 

Figure IV-1: Site location maps. Left panel shows the location of Kiattuut Sermiat relative to Qooqquup 
Sermia and the Greenland Ice Sheet, the town of Narsarsuaq, and glacial lake Hullet. Right panel expands 
the view of the terminus of Kiattuut Sermiat indicating the position of the sampling location and the YSI 
EXO2 sonde in the outflow river. Insert indicates position of site (red circle) in Southern Greenland 
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outlined in detail in Arendt et al. (2015). Briefly, all plastics were rinsed three times with 18.2 

MW deionized water, leached for 24 hours in double-distilled 10% nitric acid, rinsed three 

additional times with 18.2 MW deionized water, leached 24 hours in double-distilled 10% 

hydrochloric acid, and rinsed three final times with 18.2 MW deionized water (Arendt et al., 2015).  

Sample Collection for Elemental and Stable Water Isotope Analysis 

17 bulk meltwater samples were collected at ~13:00 beginning August 5 and ending 

September 23, 2015. To sample waters most representative of bulk glacial outflow, a sample 

location was selected at the origin of the outflow river from the proglacial lake (Figure IV-1). 

Sampling was conducted by boat at a rock protruding from the center of the glacial outflow river 

(61° 12.559’N, 45° 19.794’W) to ensure a consistent sampling location. Sample containers were 

rinsed three times with flowing water immediately prior to sample collection; samples were 

collected upstream of the rock and immediately capped until filtration. Collection occurred at 

~13:00 every 3-4 days from August 5 (DOY 217) to September 9 (DOY 252), and every other day 

from September 9 through the end of the field campaign on September 23 (DOY 266). 

Filtration was completed within three hours post-collection to prevent further chemical 

reaction with suspended sediment. One liter of 18.2 MW deionized water was pumped through a 

0.2µm Millipore Durapore® membrane filter held in a PTFE filter housing by a Masterflex 

modular peristaltic pump to prime the filtration system, then discarded. One L of sample was then 

collected into a pre-cleaned 1L HDPE plastic bottle and acidified with Optima hydrochloric acid 

to a pH < 2. HCl was used instead of nitric acid because HCl was required for iron co-precipitation; 

as Ag was not an element of interest possible Ag-Cl complexes were immaterial. Additionally, 

sample water was passed directly into Kimble 20mL glass screw-thread scintillation vials with cone 
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caps for later oxygen and hydrogen isotope analysis. Filled vials were capped tightly and remained 

sealed until measurement.  

 Elemental concentrations were run on a Perkin Elmer Nexion 350D quadrupole ICP-MS 

at Cambridge University. Duplicates were run on subsequent days to ensure replication; bracketing 

standards and acid blanks were used to ensure accurate measurements. Stable water isotopes were 

run on a Picarro L2130-I Isotopic Liquid Water Analyzer in the stable isotope lab at Iowa State 

University. The instrument was equipped with an autosampler and ChemCorrect software. Each 

sample was measured a total of six times, with only the last three injections used to calculate mean 

isotopic values to account for memory effects from the previous sample. Reference standards (OH-

3, GISP) were used for regression-based isotopic corrections; at least one reference standard was 

analyzed for every five samples. δ18O uncertainty is ± 0.06‰ (VSMOW) and δD uncertainty is ± 

0.23‰ (VSMOW). 

In Situ Data Collection 

 EC, water temperature, DO concentration, and pH were measured simultaneously with 

sample collection using a handheld YSI Professional Plus multi-probe at the mid-stream sampling 

location. The pH probe was calibrated to pH 4, 7, and 10, EC calibrated with 1413 μS cm-1 

solution, and DO calibrated with water-saturated air prior to use. pH calibration was checked daily 

and recalibrated with pH 4, 7, and 10 solutions as required. Complete recalibrations were 

conducted monthly in the field.  

Discharge 

A site was chosen to measure discharge (Q) approximately 500 m downstream from the 

start of the outflow river. All water was contained in a single channel at this location with braided 

channels extending up- and downstream. The far bank was a vertical rock face with a river depth 

of ~6 m. The near bank was gently-sloping, comprised primarily of rounded cobbles extending 2-
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3 meters into the stream, after which the riverbed transitioned to sand and silt. River geometry was 

obtained by rowing out into the current and simultaneously measuring the river depth using a 

sonar fish finder and recording the GPS coordinates of each measurement location. Due to river 

water velocity it was impossible to measure a direct transect; researchers generated a cloud of depth 

data paired with GPS coordinates. The spatial coordinates were input into ArcGIS and projected 

using the North Pole Lambert Equal Area projection. A surface representing the river bottom was 

generated by interpolating between the measured depths using a natural neighbor interpolation 

tool. The 3D profile tool was then used to create a cross section to calculate cross sectional area.  

 River stage, and subsequently cross-sectional area, varied throughout the study. To account 

for these fluctuations, researchers selected and marked a rock at the water’s edge (61° 12.239’N, 

45° 19.825’W). Each sample day, shoreline deviations from this rock and river depth both 10 and 

20 feet away were measured and recorded just before sample collection. The change in river depth 

was modeled as a rectangle that was either added or subtracted to the calculated cross-sectional 

area for that day.  

 Direct, quantitative measurement of Q was impossible during this field campaign: the 

outflow channel was too deep to take depth and velocity measurements in intervals to calculate Q. 

River flow was non-turbulent and floats moved downstream with minimal cross channel mixing. 

Although absolute Q measurements were not collected, relative Q was estimated as follows: 

Maximum stream surface velocity was measured twice during the field campaign: once on 

September 3, 2015 and again three weeks later on September 23, 2015. Floats were released into 

the fastest flowing section of stream, and travel times recorded for distances of 50 and 100 feet. 

Measured stream surface velocities were multiplied by a factor of 0.85 to more accurately reflect 

average stream velocities due to friction along the stream bed. Average stream velocity was 

multiplied by that day’s cross-sectional area to calculate discharge. As it was only possible to 
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measure stream velocity on two days due to extra personnel requirements, the relationship between 

river stage and discharge was assumed to be linear. An equation computing Q as a function of 

river stage was then used to calculate discharge for each of the other sample days. Because of all 

the assumptions employed, Q is reported as relative values rather than as absolute values, and 

water chemistry is never reported relative to Q. Thus while relative Q is less informative than 

absolute Q measurements, these values are included so that other variations in other measured 

parameters may be considered with respect to glacier outflow, allowing for a better understanding 

of the whole system.  

Hullet Sample: 

 One sample was collected from Lake Hullet, the glacial lake retained by Sydgletsjer north 

of KS. This sample was collected before the anticipated approximately annual flood expected in 

late summer/early autumn (Mätzler et al., 2015) to compare to floodwater outflow after flow 

through KS. The same sampling procedures were used as for KS samples; all samples were also 

preserved, stored, and analyzed using the same methods.  

Continuous Monitoring Sonde 

 A YSI EXO2 water quality monitoring sonde equipped with pH, temperature/EC, optical 

DO, and pH/oxidation-reduction potential (ORP) probes was installed in the outflow river from 

the KS glacier (Figure IV-1). The location was selected because (1.) the outflow river was confined 

to a single channel, (2.) it was a bedrock-bounded cutbank in the river channel, so waters were well 

mixed and minimal to no interaction with groundwater was anticipated due to the lack of soil or 

sediment, and (3.) it was accessible by researchers from the bank. Calibrations with pH 4, 7, and 

10 solutions for pH, 1413 μS cm-1 standard for EC, and water saturated air for DO were conducted 

following manufacturer guidelines prior to installation and recalibrated mid-way through the field 
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campaign. Day and time were set on the instrument and it was programmed to measure and record 

all parameters every 15 minutes. Data were downloaded and analyzed weekly for quality control. 

 Instrument consistency was evaluated during recalibrations; the sonde regularly measured 

DO more accurately than the handheld YSI and as such we use sonde measured values for 

interpretations. While absolute DO values measured by the handheld YSI are likely incorrect, the 

trends shown over the study match with sonde trends. DO from both instruments is reported in 

percent saturation to avoid water temperature effects on absolute concentration, yet diurnal 

variations are still observable within sonde data (Figure IV-2). 

Results 

Weather Data 

 Mean daily air temperature decreased from 12°C on August 5 (day of year [DOY] 217) at 

the start of the 2015 study period to 3°C on September 23 (DOY 266) at its conclusion (Figure IV-

2) (Cappelen et al., 2018). The warmest mean daily temperature was 13°C and occurred on 

September 3 (DOY 246), mid-way through the study (Figure IV-2). A trendline fit through daily 

average temperature (R2 = 0.62) produces a slope of -0.14ºC day-1. Daily temperatures exhibited 

strong diurnal cycles, except for a period mid-way through the study (DOY 240 – 249) with 

consistent regular rain (blue shading in Figure IV-2). This is the longest span of daily rain, although 

rain events also occurred on DOY 223, 239, 259-260, and 263-266 (Cappelen et al., 2018).  
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Hydrochemical Data  

 Measurements (river stage and shoreline migration) to model Q were taken concurrently; 

relative Q varied from a high of 1.0 (modeled value 80 m3 sec-1) on DOY 248 to a low of 0.2 

(modeled value 18 m3 sec-1) on DOY 258 and 260 (Figure IV-2). Modeled absolute Q shows a 

much larger range of values than seem likely from field observations, so we instead present relative 

Q for following interpretations of hydrochemical data. 

 Water temperatures collected concurrently with sample collection match well with 

contemporaneous water temperatures logged by the sonde, though in situ temperatures are spot 

Figure IV-2: In situ water quality data recorded at 15-minute intervals (light lines) was used to generate daily 
averages (smaller markers). Measurements taken concurrently with water sampling are superimposed 
(larger markers). (A) Air temperature (blue circles) was recorded at the Narsarsuaq weather station 
(Cappelen et al., 2018). (B),Water temperature (red squares), (C) electrical conductivity (yellow triangles), 
(D) pH (purple diamonds) and (E) dissolved oxygen in percent saturation (green bowties) were recorded 
in 15-minute intervals by an emplaced YSI EXO2 water quality monitoring sonde. (F) Estimated relative 
discharge was calculated (black stars). Vertical blue bars indicate days associated with rainfall. 
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measurements and therefore plot off the sonde daily average temperature line (Figure IV-2). Sonde 

recorded water temperature data reveal diurnal fluctuations in-phase with fluctuations in air 

temperature (Figure IV-2). Trends in in situ EC measurements correlate with sonde-recorded EC 

values, although absolute in situ values are lower ranging from a minimum of 10.6 µS cm-1 (DOY 

252) to a maximum of 12.9 µS cm-1 (DOY 266). Sonde EC measurements initially decreased from 

13.9 µS cm-1 at the start of monitoring (DOY 220) to 12.8 µS cm-1 (DOY 228), then broadly 

increased over the remainder of the study period (Figure IV-2). The recorded sonde first-order EC 

increase is divided into two distinct periods separated by a relatively abrupt decrease from DOY 

245 – 250, falling from a daily average of 13.9 µS cm-1 to 12.6 µS cm-1 (Figure IV-2). This drop 

occurs mid-way through the longest interval of consistent rain (Figure IV-2).  

In situ pH decreased from a high of 9.15 (DOY 217) on the first sampling day to a low of 

8.23 (DOY 262), with a period of increasing pH mid-study on DOY 231 – 248. Sonde-logged pH 

shows a similar trend, but higher resolution sampling reveals more subtle fluctuations. Abrupt 

decreases in pH occur on DOYs 230-231, 233-234, 249, and 261 ranging from -0.5 to -0.8 pH 

units over 7 – 14 hours (Figure IV-2). These decreases are then followed by more gradual (12 – 46 

hour) increases, returning pH to the slowly-decreasing first-order trend (Figure IV-2). Similar to 

pH, in situ DO decreased throughout the study from a high of 494% saturation on DOY 217 to a 

low of 43% saturation on the last day of sampling (DOY 266), with a period of increase from DOY 

224 – 243. DO percent saturation is negatively correlated with DOY (R2 = 0.5). Sonde logged DO 

mirrors the seasonal trends from in situ data, although the magnitude of changes is much smaller. 

Sonde DO is consistently oversaturated and shows a first-order decrease in saturation from a high 

of 135% on DOY 220 to a low of 127% on DOY 262 (Figure IV-2). This decreasing trend is 

interrupted by periods of increasing saturation (DOY 231 – 236) and of relative stability (DOY 
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236 – 242, 253 – 260) (Figure IV-2). DO increases daily beginning at approximately 08:00 and 

peaks between 15:00 – 16:00; this trend is in-phase with daily insolation and therefore with both 

air and water temperatures (Figure IV-2). 

 Major rock-forming elements (Ca, Na, K, Mg) and trace elements (Al, Fe, P) exhibited 

slightly different behavior throughout the study (Figure IV-3). Trace elemental concentrations were 

unchanging except on DOY 231 when Fe and P concentrations increased from an average of 0.1 

μM to 0.4 and 0.6 μM respectively, and Al increased from 2.4 μM to 4.2 μM (Figure IV-3). Mg 

concentration also slightly increased on DOY 231, but not above observed variability (Figure IV-

3). Other major elemental concentrations did not increase on this day (Figure IV-3). Rock-

associated soluble elements displayed little variability in concentration prior to DOY 252. 

Following DOY 252, Ca, Na, K, and Mg all marginally increased in concentration to the end of 

the study period (Figure IV-3).  

Figure IV-3: Elemental 
concentrations outflow river 
samples from the 2015 field 
study by day of year. Note the 
discontinuous y-axis. Calcium 
(teal triangles) is plotted 
between 65-76 µM. Sodium 
(brown squares), potassium 
(green triangles), magnesium 
(blue circles), and aluminum 
(purple diamonds) are plotted 
between 2-16 µM. Iron (yellow 
bowties) and potassium (purple 
right triangles) are plotted 
between 0.0-0.6 µM. Vertical 
blue bars indicate days associated 
with rainfall. 
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 Meltwater δ18O and δD composition changed throughout the season. Initially both δ18O 

and δD decreased until DOY 240: δ18O decreased from -20.9‰ to -21.2‰ and δD decreased 

from -153‰ to -156‰ (Figure IV-4). After DOY 240, the trend reversed and δ18O and δD 

increased throughout the remainder of the field season, with δ18O reaching a maximum of -20.1‰ 

and δD reaching -150‰ in the final sample collected on DOY 266 (Figure IV-4). Rain water 

samples were collected throughout the field season for comparative isotopic composition; the 

average rain δ18O value was -7.2‰ with a δD composition of -56‰. Ice was also collected from 

the KS terminus for isotopic comparison; KS terminus ice δ18O was -18.2‰ and δD was -134‰. 

Figure IV-4: Stable water isotope composition of river outflow samples from the 2015 field 
study by day of year. δ18O (blue squares) is plotted on the left y-axis while δD (red circles) is 
plotted on the right. All values are per mille (‰) relative to Vienna Standard Mean Ocean 
Water (VSMOW). Vertical blue bars indicate days associated with rainfall. 
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Water 87Sr/86Sr composition initially increased from 0.718514 to 0.718789 on DOY 246, 

then decreased to 0.717952 on DOY 262 (Figure IV-5). 87Sr/86Sr composition of the suspended 

sediment displayed much more variability and does not fall within the melt water range, varying 

from a high of 0.724797 on DOY 221 to a low of 0.720939 on the subsequent sample, DOY 224 

(Figure IV-5). Hydrochemistry from Hullet, sampled on DOY 254, was similar to measurements 

at KS. pH was slightly more acidic (8.63) than at KS but EC was consistent with KS measurements 

at 11.80 µS cm-1.   

Discussion 

Part 1: 2015 Chemical Analysis of the Subglacial Hydrologic Environment 

1.1 Evidence for a Well-Established, Highly Efficient Subglacial Drainage Network  

Elemental concentrations in KS outflow water showed little variability throughout this 

study relative to the range observed in 2013 (Hatton et al., 2019), revealing a comparatively 

Figure IV-5: Radiogenic strontium isotopic values for collected water samples (bottom; green 
triangles) and suspended sediment removed from water samples via filtration (top; orange 
triangles) by day of year. Y-axis scales differ; sediments (y-axis range 0.721 – 0.725) are more 
radiogenic than waters (y-axis range 0.7180 – 0.7188). 
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constant solute flux from KS relative to discharge throughout this study (Figure IV-3). As summer 

ends and air temperatures fall below freezing, surface melt rates decrease. This process may be 

evidenced hydrochemically through increasing elemental concentrations owing to less dilution. 

With decreasing meltwater volume, subglacial hydrologic channels are understood to begin to close 

as the pressure of the ice overburden exceeds the pressure within the partially vacated channels 

(Shreve, 1972). While daily mean air temperature decreased throughout the field campaign, 

temperatures did not fall below 0º C (Figure IV-2), and thus there were no large freezing-driven 

changes in the hydrologic system. 

Elemental concentration data presented here imply a stable hydrologic system in balance 

with environmental forcings. Major cation concentrations (Na, K, Mg, Ca) measured in KS 

outflow for 49 days in 2013 following the documented spring event – marked by a large change in 

chemistry – displayed 2-7 times greater range in concentration than our observations from August 

through September 2015 (Hatton et al., 2019). Solute load in glacial meltwater is a function of both 

water residence time, as longer time allows more chemical weathering to occur, and reactivity of 

the specific minerals that the water is exposed to en route to the glacier terminus (Tranter and 

Wadham, 2014). Freshly broken and strained mineral surfaces, prevalent in glaciated terrains, are 

more susceptible to chemical weathering than mineral surfaces previously exposed to, and 

therefore weathered by, water (Anderson et al., 1997). Reaction kinetics also affect mineral 

chemical weathering rates (Stumm and Wollast, 1990). If the network configuration changed in 

drastic ways, water may be routed over freshly ground yet previously inaccessible mineral surfaces, 

which would more easily contribute weathering products (solutes) to the meltwater. Similarly, 

broad changes in network configuration may also affect water residence time by routing previously 

isolated waters to the outlet or merging systems in a more circuitous manner, both of which would 

change the time water has to chemically weather minerals under the ice (Fountain and Walder, 
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1998). Measured cation concentrations for soluble chemical reaction products (Ca, Ma, K, Mg) 

were small (Figure IV-3), never exceeding 25% of saturation for each element in ~1°C water. In 

contrast, measured concentrations for the same suite from April 2013 (Hatton et al., 2019) reached 

~75% saturation. These observations support a less efficient spring hydrologic network, with 

decreased dilution and longer water-rock interaction time, evolving to a more efficient summer 

configuration with increased melt and less time for chemical weathering reactions to proceed.  

Although the total variability was small, EC measurements show a slight increasing trend 

over this 2015 two-month study period (Figure IV-2). EC decreased in early August (DOY 220-

228) reflecting either increased meltwater volume (solvent) or decreased chemical weathering 

products (solutes). Extensive 2015 GrIS surface melt occurred from June 15 to July 28 (DOY 166-

209), with a maximum on July 4 when ~50% of the ice sheet surface contained liquid water 

(Greenland Surface Melt Extent). While peak melt occurred prior to the field campaign, there were 

smaller pulses occurring in both early August (DOY 213-225) and late August/early September 

(DOY 239-252) (Greenland Surface Melt Extent). The initial decrease in EC correlates with the 

early August melt pulse, while the second decrease in EC (DOY 245 – 250) begins seven days after 

the start of the second melt pulse. Both instances of decreasing EC occur without any significant 

change in hydrochemistry, making any significant hydrological reorganization unlikely. Therefore, 

both periods of decreasing EC are interpreted to show the continued existence of a well-connected, 

efficient drainage system remaining after peak-summertime conditions and result from dilution 

rather than a seasonally driven reconfiguration of the network. 

A large flux of water is expected to enter the KS subglacial network during the almost 

annual Hullet flood, impacting the efficiency of the subglacial conduits at KS. Ice-dammed lake 

Hullet (Figure IV-1) regularly floods through/under KS in August or September in a glacial lake 

outburst flood (GLOF) (Mätzler et al., 2015). In 2014, 0.45 km3 drained over 23 days, causing > 3 
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m increase in water level in the outflow river (Mätzler et al., 2015). Adding such a large volume of 

water to the KS hydrologic system in a single short event should have massive effects on the 

connectivity of the subglacial hydrologic system and the size of its conduits. Post-GLOF, we expect 

the hydrologic system is likely comprised of larger-diameter channels relative to pre-GLOF, and is 

then subsequently capable of accommodating any volume of melt smaller than the GLOF volume 

efficiently. However, Hullet did not flood during the 2015 field campaign. Future research is 

needed to measure the effects of the Hullet GLOF on expressed KS hydrochemistry and the effects 

on seasonal change in the KS subglacial system. 

Rain events were observed during the 2015 field season at KS, increasing water flux 

through the hydrologic system through both rain volume and increased melting of the ice surface. 

1- to 3-day rain events at KS resulted only in minor transient changes in in situ chemistry (Figure 

IV-2) and no consistent effects on elemental concentrations across all measured species (Figure IV-

3). Stable measurements through 1- to 3-day rain events imply the existence of a hydrologic system 

capable of accommodating these variable influxes of water.  

The prolonged rain event from DOY 241 – 249 (August 29 – September 6) correlates to 

both highest relative Q and a decrease in electric conductivity (EC) (Figure IV-2). This event also 

corresponds with the second increased surface melt extent over the entire GrIS in late August/early 

September, with ~28% of the ice sheet surface containing liquid water. Some of the discharge 

volume is likely from rain, but meltwater contributions from further up-ice are also possible. 

Continuously measured EC downstream from the terminus reveal a decrease in EC beginning 

mid-way through the rain event (DOY 246) (Figure IV-2). Other rain events at the end of the 

season also generated increased relative Q, revealing effects measurable in bulk outflow but do not 

analogously decrease EC in meltwater (Figure IV-2). Addition of rain and rain-enhanced surface 

melt to the system adds solute-free water, diluting both concentrations of soluble major rock cations 
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(Figure IV-3) and bulk EC. While this rain event was the only event significant enough to produce 

a measurable effect on chemistry, it was unlikely to have forced a reorganization of the subglacial 

hydrologic network. If the flux of water was large enough to overwhelm the existing network, then 

low-solute water would have encountered weatherable minerals outside the existing channels, 

likely resulting in increased chemical weathering. Increased chemical weathering should be evident 

through products carried in meltwater, yet both elemental concentrations and bulk EC decreased 

– showing dilution – instead of increasing as expected with increased weathering (Figure IV-2D).  

While major cation concentrations were relatively stable throughout the field season, 

particle reactive elements show more variability. P, Al, and Fe are insoluble; changes in their 

concentrations may reflect different subglacial processes than soluble elements. P, Al, and Fe all 

exhibit an increase in concentration on DOY 231, unassociated with rain or surface melt events 

and not matched by concurrent increases in soluble element concentrations (Figure IV-3). P, Al, 

and Fe commonly form oxides on the surface of sediments, and may exist in filter-passing sizes 

<0.22 μm (Hawkings et al., 2014; Raiswell and Canfield, 2012). As such, increases in concentration 

may be related to increases in suspended sediment concentration. DOY 231 is marked by both 

increased water and air temperature (Figure IV-2), potentially generating increased local melt, 

without a corresponding GrIS-wide surface melting event. Modeled relative Q does not increase 

from the prior data point at DOY 231, but a week gap between collection of these two samples 

may be too low resolution to observe an increase (Figure IV-2). Higher air temperatures may 

increase melting rates, adding more water to the subglacial system and potentially increasing the 

carrying capacity of subglacial water. Higher carrying capacity could evacuate more sediments 

from the system, including smaller particles with insoluble trace metals. An increase in sediment 

load, including filter-passing non-aqueous metals, would explain the abrupt increase in 
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concentration for these elements on DOY 231 while other elemental concentrations and in situ 

hydrological parameters remained constant. 

1.2 Late Summer Change in Meltwater Source 

 Stable water isotopic composition of river outflow is employed to identify changes in water 

sources in the hydrologic network throughout the melt season as bulk composition represents a 

mixture of all contributing sources. Melt water composition varied over the study, initially with 

both δ18O and δD decreasing until DOY 240, then increasing toward the end of the field season 

(Figure IV-4). The melt water stable isotopic composition was consistently lower than the ice 

collected at the KS terminus, which had a δ18O composition of -18.2‰ SMOW and δD of -134‰ 

SMOW. Ice in the southern portion of the GrIS, ~400 km from KS has a δ18O composition of ~ 

-28‰ (Dansgaard et al., 1982; Mayewski et al., 1986) and the isotopic composition of ice decreases 

towards the center of the GrIS (Vinther et al., 2006). The isotopic composition of rain collected 

throughout the study period averaged to -7.2‰ δ18O and -56‰ δD; significantly higher than the 

meltwater. As meltwater δ18O and δD measured during the field campaign (Figure IV-4) was lower 

than both rain water and KS ice collected at the terminus, outflow water at the KS terminus must 

incorporate melt that originates further up-ice. The KS meltwater isotopic composition reflects 

mixing of more negative distal water and less negative local water, and rain. As meltwater δ18O 

and δD increase through the field season (Figure IV-4), the proportion of more distally sourced 

melt decreases through the late summer.  

The presence of distal melt water in KS outflow requires an efficient to route it to the 

terminus. Outlet glaciers in the southwest portion of the GrIS lost mass through surface melting at 

a progressively increasing rate from 2003 – 2013 in response to increased atmospheric warming 

(Bevis et al., 2019), confirming increasing surface melt over large portions of the GrIS. Seasonal 

development of efficient subglacial hydrologic networks in GrIS outlet glaciers expands up-ice 
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throughout the ablation season, tracking the extent of increased surface melting (Bartholomew et 

al., 2010; Chandler et al., 2013). With increased melt over larger areas, efficient hydrologic 

network development may also extend over larger areas, providing a mechanism to evacuate melt 

with lower isotopic compositions from up-ice in the GrIS.  

 The end-summer shift in outflow water source is present in other measured hydrochemical 

parameters, such as radiogenic Sr isotopes (87Sr/86Sr) in KS meltwater (Figure IV-5). Sr is dissolved 

from minerals into water through chemical weathering reactions. 87Sr/86Sr composition varies 

both in minerals within a given rock unit and between bulk composition of different rock units. 

87Sr is a radiogenic isotope created through radioactive decay of 87Rb over geologic timescales, 

while 86Sr is stable. Both Sr isotopes can substitute for Ca in mineral lattices while Rb substitutes 

for K. As different minerals contain different proportions of Ca to K, and as the amount of 

radiogenic 87Sr present is age dependent, 87Sr/86Sr is a useful tracer to identify which minerals, 

and which rock formations, waters have been in contact with. 87Sr/86Sr may trace changes in 

meltwater flow path (whether water is exposed to different minerals) but not to determine absolute 

flow path (exactly where the water was routed) at KS, because the 87Sr/86Sr composition of 

minerals in the underlying bedrock is unknown and bedrock boundaries are obscured by ice. 

Trends in water 87Sr/86Sr negatively correlate with trends in stable water isotope composition (R2 

= 0.87). 87Sr/86Sr was higher when water isotopes are low, then trends toward less radiogenic 

values as water isotope values increase (Figure IV-5). These data support a shift in water source 

towards more proximal melt and a change in 87Sr/86Sr bulk composition of bedrock that water 

encounters en route to the terminus from higher 87Sr/86Sr to lower 87Sr/86Sr. 

 87Sr/86Sr was also analyzed on suspended sediments filtered from collected meltwaters; 

values are more radiogenic than those of the water itself and no similar trends over the study period 

were observed (Figure IV-5). Suspended sediment 87Sr/86Sr composition broadly became more 
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radiogenic towards the end of the study contrary to trends observed in water. However, whereas 

water 87Sr/86Sr composition reflects weathering of the most easily weathered rock-forming 

minerals, suspended sediments are generated from all of the minerals present in the bedrock 

regardless of their susceptibility to chemical weathering. KS terminates in a proglacial lake with 

slower water velocity than the subsequent outflow river, potentially allowing larger sized sediments 

to settle out to the lake bed. If so, the Sr isotopic composition of the filtered sediment is likely not 

representative of the bulk composition of the bedrock, explaining why these data do not match 

trends from the water. 

 High resolution trends in the solute load (EC) further support the localization of melt in the 

subglacial hydrologic system as the season progressed. Following the solute decrease due to the 

protracted rain and enhanced surface melt period, solute load then increasingly rises throughout 

the rest of the study. While day-to-day air temperature behaved stochastically, mean daily air 

temperature decreased 0.14ºC day-1 (R2 = 0.62), and presumably was lower further up-ice at higher 

elevations. Thus, lower temperatures at more distal locations would decrease melting rates of distal 

ice, leading to both the observed shift in water isotopes and 87Sr/86Sr composition toward more 

local input, which additionally decreased the dilution of the solute load.  

1.3 Biological Effects on pH  

The data presented thus far support a shift in proportion of meltwater source from more 

distal to more proximal to sampling location. Other hydrochemical parameters reveal weathering 

effects. Granitic bedrock under KS, containing silicate minerals, chemically weathers through 

hydrolysis consuming H+ ions. pH decreases from a high of 8.99 (DOY 220) to 8.23 (DOY 265), 

although this first-order trend is marked by four periods of abrupt decreases and subsequent abrupt 

recoveries on DOYs 231, 234, 249, and 261 (Figure IV-2). Brief periods of enhanced weathering 

might be expected if the subglacial hydrologic system was changing routing pathways or 
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connectivity, exposing more weatherable fresh mineral surfaces to meltwater. It is possible that H+ 

ions may be released into meltwater through ion exchange reactions, although the drops observed 

at KS (Figure IV-2) are abrupt. 

Alternatively, the pH changes could be the result of cellular respiration: respiration in 

outflow water would increase in PCO2, decreasing water pH. Furthermore, H+ is also generated 

through both planktic respiration and algal decay:  

C106H263O110N16P + 138O2 →	106CO2 + 16NO3- + HPO42- + 122H2O + 18H+ 

where C106H263O110N16P is the average composition of planktic organic matter (Redfield et al., 

1963) and decay occurs in the presence of O2. DO concentrations were continuously oversaturated 

at the sonde location and fluctuated from a low of 126% to a high of 136%. These values were not 

as high as measured in situ DO saturation, but both instruments registered DO concentrations 

above 100% saturation, allowing for aerobic decay. Continuously measured DO showed a daily 

fluctuation with increases in concentration throughout the day and decreases at night, providing 

evidence for photosynthesis in the outflow river where green algae was observed in the field. Three 

of the four abrupt decreases in pH (DOYs 234, 249, and 261) are correlated with decreases in 

average DO at the sonde, suggesting increased decomposition. However, as an increase in DO 

saturation and a pH drop was observed on DOY 231 (Figure IV-2), it is allowable that the other 

three occurrences are coincidental and not causal.  

 Sonde DO percent saturation measurements exhibit daily fluctuations in-phase with 

daylight hours. Algae was observed in sections of the outflow river; algal photosynthesis could 

explain this observed daily increase in DO. pH variability and DO fluctuations measured by the 

sonde may thus be explained through biological effects in the outflow river. 

Part II: Interannual Variability at KS: Comparing End-Summer 2015 to Early-Summer 2013  
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Observations in this study indicate a well-established, static subglacial hydrologic 

network at KS through end-September 2015, with evidence of up-ice changes in meltwater 

source. pH, generally, displays a slow yet steady decrease throughout the season while EC 

slightly increases toward the end of the field season. Similar hydrochemical data from KS 

outflow exists from spring and early summer 2013 (21 April – 11 August 2013; DOY 111 – 223) 

(Hawkings et al., 2016); when combined the two data sets reveal hydrochemical patterns for the 

full melt season across years (Figure IV-6).  

The opening of the subglacial hydrologic system begins in early June, marked by an 

abrupt increase in pH and decrease in EC (Figure IV-6), magnitude of which is not repeated in 

the record. Total shutdown of the hydrologic network is not evident in this combined data set as 

pH and EC values do not reach 2013 pre-opening measurements. The data sets overlap by 6 

days, allowing a comparison of quantitative values in addition to qualitative seasonal trends. pH 

measurements match almost exactly; the 2015 data published here appear to exactly continue the 

2013 trends although EC values are slightly offset (Figure IV-6). Seasonal trends in solute load 

Figure IV-6: Comparison between hydrochemical data (pH [blue] and electrical conductivity [orange]) 
collected at Kiattuut Sermiat in 2013 (DOY 111 – 222) by Hawkings et al., (2016) and 2015 data (DOY 220 – 
266) presented in this study. Years are differentiated by color; 2013 data is light blue (pH) and light orange 
(EC) while 2015 data is dark blue (pH) and brown (EC). 
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as shown by EC also vary slightly: 2013 data show more short-term deviations from the seasonal 

trend (although not within the last ~15 days of measurement) than the stable 2015 EC 

measurements. 

The similarity between the years data indicates the KS subglacial hydrologic system is 

relatively stable through time. This subglacial network must accommodate a large, practically 

instantaneous volume of water (essentially) annually when Hullet drains, creating large channels 

capable of accommodating this high water flux. Post-flood and into winter the low surface 

velocity of KS (Mätzler et al., 2015)and thinning of the outlet glacier over time (Mouginot et al., 

2019)have implications for the interannual lifespan of this network. Glacial ice creep is 

dependent on ice mass; as KS thins, there is less overburden to drive ice motion. Furthermore, 

flow from accumulation to ablation zone is slow at KS: ice surface velocity shows most of the 

ice flowing from the central GrIS is routed with QS with only a small, slow contribution to KS 

(Figure IV-1) (Mätzler et al., 2015) Slow flowing, thin ice deforms gradually. Thus, depending 

on the magnitude of the annual flood from Hullet, it is possible the deformation rate is too low to 

fully close drainage channels at KS each winter. 

While some aspects of the subglacial system may remain open interannually, others must 

close. The 2013 opening of the drainage network is evident in Figure IV-6; to have an opening 

there must have been a closure. However, if the system is only partially closed by potentially 

isolating sections from the primary drainage and not complete destruction of channels, then the 

annual opening may be a re-opening of the system, instead of the opening/creation of a system. 

This is an important distinction because of the implications for subglacial sediment exposure to 

water, and subsequently the chemical weathering products contained in the proglacial output. 

Meltwaters routed through a hydrologic system with interannually open channels will continue to 
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be exposed to previously weathered minerals instead of encountering freshly ground 

unweathered minerals in other parts of the bed exposed by newly created channels. The similar 

pH and EC trends from 2013 and 2015 suggests the hydrologic system is likely entrenched in the 

KS subglacial environment; an inference further supported by the lack of seasonal variability 

within the 2015 glaciochemistry.  

Conclusions 

 Better understanding of the subglacial hydrologic environment is necessary to both improve 

ice sheet models predicting glacial response to climate change and to improve understanding of 

elemental fluxes to polar oceans. This study attempted to use hydrochemical data to resolve 

changes in subglacial hydrology in response to decreased ice melt following summertime peak 

melting. Observations reveal a well-established hydrologic system relatively unchanged through 

mid-September 2015 with above-freezing temperatures, although the melt source appears to shift 

toward more proximal sources with a smaller distal contribution. Comparison with early- and mid-

season 2013 data reveal similar chemical signatures in glacial outflow between multiple years. If 

the hydrologic system remains connected, or partially connected throughout winter, then the it 

may extend further up-ice more quickly in the following melt season. If so, distal water and distal 

weathering products may be quickly routed to the margin, with the KS hydrologic system 

providing an efficient conduit for this melt.  
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Dissertation Results 

As climate warming is projected to continue to increase (IPCC, 2013), Earth’s glaciers and 

ice sheets will continue to melt. Therefore, understanding the effects of meltwater on both glacial 

dynamics and the downstream environment is critically important (e.g. Flowers, 2018; Nienow et 

al., 2017). Due to the dynamical response of the subglacial environment to seasonal changes in 

meltwater, these impacts can vary temporally and spatially. This dissertation demonstrates the 

value of multi-month, long term field campaigns to monitor changes in chemistry in subglacial 

outflow waters to better understand seasonal evolution of subglacial hydrologic environments. 

Multi-month field campaigns, like those presented here, have advantages over shorter term 

campaigns, or single “spot” samples, in that they allow researchers to observe and monitor seasonal 

trends in glacial hydrochemistry. Results from the Athabasca Glacier show small changes in a 

highly dynamic alpine glacier accrue over a period of three months, cumulatively demonstrating 

partial subglacial hydrologic network reconfiguration, but no individual sample shows this process. 

Changes observed at Kiattuut Sermiat – an outlet glacier of the Greenland Ice Sheet - are more 

nuanced, but the two-month study presented here nevertheless reveals muted changes in up-ice 

water source and impacts of local biology on outlet water chemistry.  

 Laboratory experiments performed during this thesis demonstrate the importance of 

cautious sample site selection in proglacial environments such that local groundwater does not 

affect measurements, and potentially impact interpretations. Sampling locations for shorter 

duration or spot sampling may be selected due to ease of access, with other environmental concerns 

 Conclusions 
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overlooked, or assumed to be negligible. Results of this dissertation reveal this to be untrue at 

Kiattuut Sermiat; as an unexceptional Greenland Ice Sheet outlet glacier, it is possible similar 

processes occur at other land-terminating outlet glaciers. Future field sampling campaigns should 

carefully select sampling locations, with thoughts to possible groundwater incursion. 

Chapter Results 

 Chapter 2 finds 222Rn activity concentration measurements are an effective proxy for 

subglacial water residence time in some, but not all locations. For 222Rn to be present in subglacial 

waters, its radioactive parent 226Ra must exist in the subglacial environment. As both isotopes are 

intermediaries in the uranium decay chain and uranium is a common trace element in Earth’s 

crust, this is at first a reasonable assumption. However, laboratory experiments reveal differences 

in 222Rn production from different size fractions of glacial sediment, likely reflecting mineralogical, 

and therefore 226Ra, differences. In areas where sediment does contain 226Ra, concentrations of its 

daughter 222Rn in outflow waters will be representative of subglacial water residence time. 

Additionally, this chapter illustrates the importance of selecting sampling locations for proglacial 

water sampling. At Kiattuut Sermiat, groundwater input – identifiable by high 222Rn activity 

concentrations – is evident in the proglacial river at all sampling locations.  

 Chapter 3 presents hydrochemical changes at the Athabasca Glacier during the transition 

from summertime peak-melt in August to winter conditions at end-October, 2014. The subglacial 

hydrologic network at this alpine glacier is dynamic, responding rapidly to environmental forcings. 

Different proportions of solute products in meltwater reveal changes in proportions of carbonate 

to silicate mineral weathering in the carbonate-dominated subglacial environment, with enhanced 

relative silicate mineral weathering occurring with low discharge. This is interpreted to reflect 

longer subglacial water residence time and a shift in subglacial drainage configuration to allow 



 121 

these kinetically slower reactions to proceed. Finally, concentrations of insoluble particle reactive 

elements (Fe, Al, P) and suspended sediments reveal likely instances where subglacial water was 

routed over previously isolated sections of the subglacial environment, flushing sediments and 

associated elements into bulk outflow.  

 Chapter 4 demonstrates the relatively stable hydrochemistry of Kiattuut Sermiat 

meltwaters throughout August and September, 2015, revealing the existence of a well-connected, 

highly competent glacial hydrologic network. Concentrations of soluble elements were less variable 

than insoluble elements, which may reflect variable rates of sediment (and associated particle 

reactive elements) flux in the subglacial system. Stable water isotopes reveal a gradual change in 

water source from more distal up-ice sources to sources proximal to the glacier terminus - a shift 

also supported by the radiogenic Sr composition in meltwater. High-resolution water quality data 

collected in 2015 is very similar to data collected in 2013 by Hawkings et al. (2014), suggesting the 

subglacial hydrologic network is either annually recreated in the same configuration, or perhaps 

persists interannually. While environmental forcing during the field campaign did not generate a 

discernable shift in subglacial hydrologic configuration, data are collected and presented to provide 

baseline geochemical measurements with which to evaluate future subglacial hydrologic change. 

Future Work  

In both field campaigns presented in this dissertation, concentrations of insoluble elements 

displayed differing trends from soluble elements, an observation attributed to filter-passing size 

fractions. Additionally, measured elemental concentrations from leachate laboratory experiments 

differed depending on filter pore size, suggesting measured concentrations were not truly dissolved. 

Iron, an insoluble element displaying, is a limiting nutrient in seas by both the north and south 

poles (e.g. Moore et al., 2013) with current research finding Fe is delivered to these locations 
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through melting ice (e.g. Arrigo et al., 2015; Hawkings et al., 2014; Raiswell et al., 2008). Iron 

concentrations from both Athabasca Glacier and Kiattuut Sermiat did not respond to changing 

dilution and subglacial residence time like soluble elements did. Additionally differences in Fe 

concentration were demonstrated to be dependent on filter pore size in laboratory experiments. I 

concluded that the particle-reactive behavior of Fe was impacting measured concentrations as the 

suspended sediment load changed in my field samples – thus sediment size fraction plays an 

important role in transport of Fe from bodies of ice to Fe-limited environments. An intriguing area 

of future research would be to analyze iron concentrations in glacial melt as filtered through a 

variety of pore sizes to then investigate what forms of Fe exist in each size fraction. Examining the 

bioavailability of different forms of Fe could improve our understanding of what extent Fe-bearing 

ice melt may fertilize polar seas, affecting marine productivity and CO2 drawdown. 
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