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Abstract

Polymer electrolyte membrane (PEM) fuel cells are touted as zero-emission alternatives

to internal combustion engines for automotive applications. However, high cost and dura-

bility issues have hindered their commercialization. Therefore, significant research efforts

are underway to better understand the scientific aspects of PEM fuel cell operation and

engineer its components for improved lifetime and reduced cost. Most of the research

in this area has been focused on material development. However, as demonstrated by

Toyota’s fuel cell vehicle, intelligent control strategies may lead to significantly improved

durability of the fuel cell stack even with existing materials. Therefore, it seems that the

outstanding issues can be better resolved through a combination of improved materials

and effective control strategies.

Accordingly, this dissertation aims to develop a model-based control strategy to im-

prove performance and durability of PEM fuel cell systems for automotive applications.

To this end, the dissertation first develops a physics-based and computationally efficient

model for online estimation purposes. The need for such a model arises from the fact that

detailed information about the internal states of the cell is required to develop effective

control strategies for improved performance and durability, and such information is rarely

available from direct measurements. Therefore, a software sensor must be developed to

provide the required signals for a control system. To this end, this work utilizes spatio-

temporal decoupling of the underlying problem to develop a model that can estimate water

and temperature distributions throughout an operating fuel cell in a computationally ef-
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ficient manner. The model is shown to capture a variety of complex physical phenomena,

while running at least an order of magnitude faster than real time for dynamically chang-

ing conditions. The model is also validated with extensive experimental measurements

under different operating conditions that are of interest for automotive applications.

Furthermore, the dissertation extensively explores the sensitivity of the model predic-

tions to a variety of parameters. The sensitivity results are used to study the parameter

identifiability problem in detail. The challenges associated with parameter identification

in such a large-scale physics-based model are highlighted and a model parameterization

framework is proposed to address them. The proposed framework consists of three main

components: (1) selecting a subset of model parameters for identification, (2) optimally

designing experiments that are maximally informative for parameter identification, and

(3) designing a multi-step identification algorithm that ensures sufficient regularization of

the inverse problem. These considerations are shown to lead to effective model parame-

terization with limited experimental measurements.

Finally, the dissertation uses a version of the proposed model to develop a degradation-

conscious model-predictive control (MPC) framework to enhance the performance and

durability of PEM fuel cell systems. In particular, a reduced-order model is developed

for control design, which is then successively linearized about the current operating point

to enable use of linear control design techniques that offer significant computational ad-

vantages. A variety of constraints on system safety and durability are considered and

simulation case studies are conducted to evaluate the framework’s utility in maximizing

performance while respecting the durability constraints. It is also shown that the linear

MPC framework employed here can generate the optimal control commands faster than

real time. Therefore, the proposed framework is expected to be implementable in practical

applications and contribute to extending the lifetime of fuel cell systems.
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Chapter 1

Introduction

1.1 Motivation

A PEM fuel cell is an electrochemical energy conversion device in which hydrogen is

electrochemically combusted to produce electricity, water, and heat. The high energy

density, relatively fast transients, and zero tailpipe emissions make PEM fuel cells a

suitable candidate for automotive applications [1]. However, despite the fact that the

technology has matured significantly over the past two decades, remaining roadblocks still

inhibit widespread use in the automotive industry. High cost of production and limited

lifetime are among such hurdles that have to be overcome for mass market penetration [2].

Enhancing performance and durability of PEM fuel cells requires a thorough under-

standing of transport phenomena and various degradation mechanisms that limit the

stack’s lifetime. Mathematical models have been invaluable towards achieving this goal,

as they have shed light on some of the important aspects of fuel cell performance and

durability [3–5]. Nevertheless, there is still a need for physics-based and quantitatively

predictive models that enable real-time monitoring of unmeasurable variables critical to

system performance and lifetime. Accurate model parameterization and effective control

strategies to mitigate degradation are among other areas that require more attention from
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the fuel cell research community. Fortunately, these problems have been considered ex-

tensively in the battery research community and their results can be utilized to accelerate

similar efforts in fuel cell development.

The overarching goal of this study is to create a model-based framework for degradation-

conscious control of PEM fuel cells, so that the performance and durability trade-offs can

be effectively explored and controlled. Successful implementation of such a control strat-

egy can also lead to considerable balance of plant cost reductions. The system-level

approach to enhancing performance and durability and reducing the system cost is moti-

vated by the fact that innovative system design and control solutions play a significant role

and have great potential in addressing the challenges faced by automotive PEM fuel cells,

as has been demonstrated by the commercialized fuel cell vehicles, such as the Toyota

Mirai [6]. This approach is also expected to be a valuable addition to the material-based

solutions that are commonly sought in the fuel cell research community [7].

To achieve the above-mentioned goal, we first develop a physics-based model of the

PEM fuel cell to act as an online sensor and provide information about the critical vari-

ables inside an operating fuel cell. This is in part necessitated by the fact that sensor

measurement of these variables are difficult, costly, and in many cases impossible to obtain

in an automotive application. We further consider effective parameterization of the devel-

oped model to enable quantitatively predictive modeling of physical phenomena. Lastly,

the developed model is utilized to propose a degradation-conscious control framework

that seeks to enhance performance and durability of the fuel cell system, while exploring

opportunities for system-level cost savings.

To allow an in-depth investigation of the above-mentioned issues and the proposed

framework, the following section takes a closer look at the components of a PEM fuel

cell and their role in the cell’s performance and lifetime. Critical aspects of fuel cell

development are briefly reviewed and the role of mathematical models in improving the

understanding of underlying phenomena and enabling further performance and durability
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Figure 1.1: PEM fuel cell schematics: (a) single cell structure and (b) operational principle.

enhancement is emphasized. This is then followed by a review of the relevant literature

on modeling and control of fuel cell systems.

1.2 PEM Fuel Cell Structure and Operating Princi-

ples

A schematic of a PEM fuel cell is shown in Fig. 1.1. As illustrated in the figure, a

single cell consists of a polymer electrolyte membrane (PEM), catalyst layers (CLs) on

the anode and cathode sides, diffusion media (DM), and two bipolar plates that clamp

the cell together. Each DM consists of a gas diffusion layer (GDL) and an optional

microporous layer (MPL), which is typically found in state-of-the-art DM. The bipolar

plates include machined grooves that provide channels for reactant and coolant transport.

The combination of PEM, CLs, and the DM is sometimes referred to as the membrane

electrode assembly (MEA). Furthermore, in state-of-the-art fuel cells, the catalyst layers

are typically coated on the membrane through a variety of processes. This results in what

is usually known as the catalyst coated membrane (CCM) [8,9].

In a PEM fuel cell hydrogen is fed into the anode channel, whereas air or pure oxygen

is fed into the cathode channel. Hydrogen participates in the hydrogen oxidation reaction
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(HOR) in the anode CL, releasing protons and electrons. The electrons are transported

across the external circuit, while the protons go through the PEM. They are recombined

in the cathode CL during the oxygen reduction reaction (ORR) that generates water and

heat (see Fig. 1.1(b)). The HOR and ORR half reactions are as follows:

HOR : 2H2 → 4H+ + 4e−,

ORR : O2 + 4H+ + 4e− → 2H2O.

The overall reaction is the electrochemical combustion of hydrogen:

2H2 +O2 → 2H2O.

The fuel cell components are designed to facilitate the above electrochemical reactions

in order to generate electrical power with highest possible efficiency. Different cell layers

and their functionalities are described in detail in the following subsections.

1.2.1 Polymer Electrolyte Membrane (PEM)

At the heart of the fuel cell, the PEM enables selective transport of species, thereby cre-

ating the interfaces required for the electrochemical reactions. In particular, the PEM is

conductive to protons released through the HOR, while it inhibits electron and reactant

transport. The hydration state of the PEM determines its proton conductivity; a humidi-

fied PEM has a high proton conductivity and small ohmic resistance, whereas a dry PEM

incurs a large ohmic loss due to lowered proton conductivity. As is explained below, this

also creates a dilemma for water management in the cell: the PEM has to be hydrated

to lower the ohmic resistance, but too much water can be detrimental to performance by

flooding the DM and causing mass transport losses.

The water transport properties of the PEM affect its hydration state and should be

well understood. Specifically, four major transport mechanisms have been identified: (1)
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electro-osmotic drag (EOD), in which water molecules are carried with the ionic current

passing through the PEM [10], (2) diffusion, where water is transported along a con-

centration gradient [11], (3) hydraulic permeation, where water is transported due to a

difference in hydraulic pressure across the membrane [12], and (4) thermo-osmosis (TO),

where water is transported due to a temperature gradient across the PEM to result in a

more thermodynamically favorable state [13]. Each of these transport mechanisms have

been characterized extensively in the literature. However, consensus about the magnitude

of each mechanism’s contribution to the overall water transport has not been reached.

Therefore, both modeling and experimental efforts continue to focus on resolving out-

standing issues regarding water transport in the PEM. In a recent work, Kusoglu et al.

provide an extensive review of the topics relevant to PEM [14], which can be consulted

for further insight into PEM operation.

Another important aspect of the PEM’s utility is its selective transport property,

which is crucial to fuel cell operation and also poses one of the main challenges in design-

ing durable fuel cell stacks. In particular, even the smallest pinholes in the PEM create

a shortcut for gas transport and lead to the exothermic combustion due to the direct

contact between the reactants [15]. Once this shortcut is established, the electrochem-

ical interfaces will no longer participate in the reaction. Therefore, PEM degradation,

which can be in the form of chemical [16], mechanical [17, 18], and thermal degrada-

tion [19,20] as well as synergistic degradation mechanisms [21–23], results in catastrophic

performance deterioration and must be minimized. While a complete understanding of

all possible degradation modes is not available, literature points to hydration, voltage,

and temperature cycling as culprits in PEM degradation [4, 24–26]. For instance, hydra-

tion and dehydration of the PEM result in repeated compressive and tensile stress cycles

that may initiate cracks and pinholes or cause the existing ones to propagate through the

membrane’s thickness [17,27]. Similarly, attacks by radical species formed through electro-
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chemical reactions may compromise the PEM’s chemical composition. To mitigate such

degradation, the fuel cell community has traditionally resorted to material-based solutions,

such as reinforcements for mechanical durability [28–30] or different additives [31–33] for

chemical stability. However, such effects may also be mitigated, to some extent, by effec-

tively controlling the internal conditions of the fuel cell. For example, the hydration state

of the PEM can be maintained within some specified bounds in order to avoid excessive

stresses on the membrane. Such applications require mathematical models [34, 35], first

to define the degradation constraints that ensure target lifetimes are met, and then to be

used in a model-based control framework that respects the identified constraints.

1.2.2 Catalyst Layer (CL)

Catalyst layers are where the electrochemical reactions take place and are arguably the

most complicated components of a PEM fuel cell. Specifically, they provide three-phase

boundaries that allow for electrons, protons, and reactant gases to participate in the re-

action. In conventional PEM fuel cells, catalyst layers typically consist of Platinum (Pt)

particles dispersed on primary carbon particles and (partially) covered by ionomer (see

Fig. 1.2). The Pt particle size is in the range of 2-15 nm, while the primary carbon

particles may have sizes of up to 80 nm based on the type of carbon support used. The

Pt improves reaction kinetics. The carbon support provides an electronically conductive

phase, while allowing a high electrochemically active surface area (ECSA) to be achieved.

The Pt decorated carbon particles are typically bound by an ion-conducting polymer,

which in many cases is the same as that in the PEM. This ionomer phase provides path-

ways for proton transport in the catalyst layers. The pore space in the catalyst layer

allows gaseous reactant to reach the reaction site (see Fig. 1.2). It is worth mentioning

that more recent developments such as the nano-structured thin film (NSTF) catalyst

layers do not necessarily conform to this description [36]. However, such catalysts are
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Figure 1.2: Schematic of gas and charged species transport in the cathode catalyst layer.

beyond the scope of this work and are not considered in this discussion.

Effective performance of the CLs depend on the electron, ion, and reactant gas’ ability

to reach the reaction site. High electronic conductivity of carbon ensures efficient electron

transport. Therefore, the performance of the CL is determined by the balance between

proton and gas transport resistances. In the anode CL, HOR occurs close to the mem-

brane due to high diffusivity of hydrogen and facile HOR kinetics. Therefore, there is

minimal resistance to proton transport in the anode CL and only a small mass transport

resistance. In the cathode CL, however, the trade-off is quite significant due to sluggish

ORR kinetics and the propensity of the cathode side to flooding by product water. Under

dry conditions, the ionomer has low conductivity, which results in considerable proton

transport resistance, and minimal macroscopic mass transport resistance as oxygen can

get to the ionomer surface in the cathode catalyst layer without being blocked by liquid

water. Nonetheless, excessive ionomer drying may lead to mass transport limitations due

to depressed oxygen permeability in the dry ionomer thin film [37, 38]. On the other

hand, the ionomer’s high conductivity under wet conditions results in minimal protonic

resistance. However, liquid water may accumulate in the pore space in the CL and DM

and block oxygen pathways to the active sites. Therefore, such trade-offs have to be
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understood to enable the highest catalyst utilization and optimal performance. Signifi-

cant experimental developments in recent years have helped elucidate the distribution of

different phases in the CL [39–43] and improve the understanding of the factors limit-

ing its performance. Nevertheless, mathematical models that capture the local transport

resistances in the CL continue to be of special interest for further catalyst development.

A major focus in catalyst research is the reduction of Pt loading. Such reductions

are necessitated by the cost and scarcity of Pt [44]. Extensive research in this area

has led to significant improvements. In particular, state-of-the-art cathode CLs have Pt

loadings on the order of 0.15 mg/cm2 while the loading in the anode CLs is as low as 0.05

mg/cm2 [44,45]. The higher loading on the cathode is due to the sluggish ORR kinetics.

Unfortunately, cathode Pt loading below 0.15 mg/cm2 results in increased performance

loss at higher current densities [44, 46]. This issue has received considerable attention

in the literature in recent years, as researchers have tried to identify the root causes of

the observed behavior. Mathematical models have been an indispensable tool in this

endeavor. Nevertheless, they may have led the community astray in some cases [47]. The

debate seems far from settled and further model development is necessary for a better

understanding of the limiting factors.

Catalyst degradation is also of profound significance, as it can dramatically limit the

lifetime of the cell [4]. Corrosion of the carbon support [48–50] and Pt dissolution and

migration [51–54] are among major degradation effects. Various causes of such phenomena

are documented in the literature [4]. However, similar to the PEM degradation, a complete

picture of the synergistic effects has remained elusive. Here again, the mitigation strategies

typically involve material-based solutions, such as adding a catalyst to promote oxygen

evolution reaction over carbon corrosion [55,56]. Nonetheless, system-level strategies have

proven useful in enhancing catalyst durability [57] and model-based control techniques can

potentially extend the durability of the state-of-the-art catalysts even further.
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1.2.3 Diffusion Media (GDL and MPL)

The porous diffusion media consists of GDL and in most cases an MPL. Its role is to

provide pathways for reactant gas transport from the channels to the active sites in the

CLs and transport the product water and heat away from the CLs. The DM must also

provide electronic connection to the backing plates and mechanical support for the PEM

and the CLs. The porous structure of the DM means that the transport pathways are

typically tortuous, which increases the transport resistance. Another important aspect

of the DM design is its propensity to flooding. If the DM cannot effectively remove

the product water, liquid water may build up in the pores and block pathways for gas

transport, thereby increasing the mass transport resistance and incurring performance

losses. As such, many state-of-the-art diffusion layers are coated with a hydrophobic

coating (in most cases PTFE) to repel liquid water.

Heat transfer properties of the DM can play a significant role in water transport,

as well. In particular, a small heat conductivity of the DM results in a considerable

temperature gradient across its thickness. This temperature gradient can promote water

removal in vapor phase, which is known as phase-change-induced (PCI) flow [3,58,59]. In

PCI flow, water evaporates at the high temperature location near the CL, moves across

the DM’s thickness along the vapor pressure gradient, and condenses at the location with

lower temperature near the channel [3]. At higher operating temperatures, this mechanism

is shown to be the dominant mode of water transport. This can be advantageous as PCI

flow minimizes liquid buildup in the pores of the DM, and therefore, mass transport losses

due to flooding will be minimal. However, it induces another type of mass transport loss

due to the fact that the incoming reactant gas has to move in the opposite direction of the

outgoing vapor flux. The degree to which the performance is improved or degraded due

to the PCI flow depends on the properties of the DM as well as the particular operating

conditions under investigation [3]. Overall, the effectiveness of the DM depends on the
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choice of materials, such as the binder and hydrophobic coatings used, as well as its

microstructure [60, 61]. This is another area where mathematical models have proven

useful in improving the understanding of the underlying phenomena and optimizing the

choice of materials and design of the DM [62].

As mentioned above, the DM is typically made up of two layers: a GDL and an

MPL. The GDL has pore sizes on the order of 1-100 microns, whereas the MPL has

smaller pore size on the order of 10-1000 nanometers. In addition to the smaller pore

size, the MPL is typically made to be more hydrophobic than the GDL to drive the water

away from the CL. Experimental results indicate an improvement in performance when

using the MPL [63]. The cause of this improvement is still under debate [62]. Some of

the main mechanisms for performance improvement due to the MPL suggested in the

literature include [62, 64]: (1) improved contact between the layers and lowered ohmic

loss, (2) increased temperature in the CL due to lower thermal conductivity of the MPL,

which enhances water removal in vapor form, (3) forcing more water removal through

the anode and reducing cathode flooding, and (4) providing selected pathways for liquid

water removal through the GDL. Some of these proposed improvements continue to be

contested, and transport models are constantly used to support or rebut such hypotheses.

As for the degradation of the DM, several effects have been discussed in the literature

that result in loss of PTFE content, change in water retention capabilities, and change in

thermal and mass transport properties [25,26]. Nevertheless, such degradation phenomena

are secondary to PEM and CL degradation and are not considered to be the major limiting

factor for PEM fuel cell lifetime. Therefore, they are not considered in this dissertation.

1.2.4 Bipolar Plates and Gas Flow Channels

The bipolar plates serve as current collectors as well as backing layers providing mechanical

support to the cell structure. Therefore, they should be made out of highly conductive
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material with enough mechanical strength that can withstand clamping pressures on the

order of 1-5 MPa [1, 65]. They should also be chemically stable and corrosion resistant

[1,65]. The choice of material for the bipolar plates is a topic that is beyond the scope of

this dissertation and is not further elaborated on.

Another important feature of the bipolar plates is the layout of the gas flow chan-

nels. The size, shape and pattern of the channels can have a significant impact on the

performance of the cell. These parameters can affect pressure drop along the channel,

uniformity of reactant distribution, and water removal capability, all of which affect the

cell performance [1]. In particular, various flow channel patterns have been proposed and

investigated in the literature, ranging from parallel to serpentine and interdigitated flow

channels. While all these configurations have been used in prototypes with some degree

of success, it appears that most high volume production stacks have simple parallel flow

designs to minimize cross-flow effects and liquid accumulation at the bends. The mesh

design in Toyota Mirai is a notable exception [66]. Nevertheless, parallel flow channels are

quite prevalent and are used in this dissertation when a channel model is to be developed.

1.2.5 Modes of Operation

The flow direction in the gas channels is an important operational variable that can have

a profound impact on the performance, especially under drier conditions. In particular,

anode and cathode gas streams may flow in the same direction, i.e., co-flow operation,

or in the opposite direction, i.e., counter-flow operation (see Fig. 1.3). In some cases

the streams flow perpendicular to each other, which is called cross-flow. The models of

PEM fuel cells should have the flexibility to represent these variations in the operation

mode. This dissertation considers co-flow and counter-flow cases, since they are the main

modes of operation for most state-of-the-art fuel cell stacks. It is worth mentioning that

the Toyota Mirai’s design does not conform to this categorization [66] and is beyond the
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Figure 1.3: Common fuel cell flow configurations: (a) Co-flow and (b) Counter-flow.

scope of this work.

Another important operational variable is the fuel utilization scheme. More specif-

ically, the cell may be operated in dead-ended anode (DEA) configuration [67, 68] or a

recirculation system may be used to maximize fuel utilization [69]. Such configurations

can also have an impact on uniformity of current and reactant distributions. Data from

stack suppliers seem to suggest that most of the state-of-the-art fuel cell stacks are now

operated with anode recirculation. Accordingly, the model that is developed in this dis-

sertation is readily applicable to this configuration. DEA operation may be simulated

with some modifications to the proposed model, but is out of the scope of this work.

Having described the components of a PEM fuel cell, we now turn our attention to the

background relevant to the scope of this dissertation. Particularly, we review the relevant

literature on fuel cell modeling, model parameterization, and fuel cell system control in

the following sections.

1.3 Literature on Modeling of PEM Fuel Cells

The previous section examined critical aspects of fuel cell development and emphasized the

important role of modeling in the process. In particular, modeling transport phenomena
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in the cell and the resulting performance is of special interest, since it allows for inspection

of variables of interest inside a cell that might otherwise be unavailable. Such information

can be crucial in understanding the behavior of a fuel cell stack, or characterizing its

performance and lifetime. Accordingly, the interest in modeling transport phenomena in

fuel cells has continuously increased since the seminal works of Springer et al. [11] and

Bernardi et al. [12] in the early 1990s. These studies developed two of the main models

for membrane water transport and remain among the most adopted approaches in more

general models to this date. Throughout the last two decades, many models have been

developed to investigate the different transport phenomena in PEM fuel cells. These

models can be characterized based on the domain of application, the spatial dimension,

and the temporal behavior.

As for the domain of application, many models are developed to study the transport

phenomena in a single layer in the cell. Many models have focused on water transport

inside the PEM [70–72], where contributions from various transport mechanisms, includ-

ing electro-osmotic drag, diffusion, thermo-osmosis, and hydraulic permeation have been

discussed. Models have also been developed for transport in the gas flow channels [73,74]

and DM [75, 76]. Modeling the effects of microstructure on DM transport properties has

also become popular. The first comprehensive model in this regard was the bundle of

capillaries model developed by Weber et al. [77] and later extended to include contact

angle distribution in the DM [78]. Stochastic reconstruction methods have also been pro-

posed in recent years [79]. More recently, driven by the requirement to reduce precious

metal loading in the CLs, models tailored to inspecting transport and reaction kinetics

in the CLs have become the center of attention [80–85] and significant efforts have been

dedicated to understanding the root causes of performance drop at Pt loadings below

0.15 mg/cm2 on the cathode. In addition to these component level models, there are also

numerous models that include transport in the entire cell [86–92]. Moreover, system-level

models have been developed that include the fuel cell stack and the auxiliary equipment
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such as the compressor [93], but not the details of the transport phenomena in a single

cell. While the individual layer models help elucidate different transport mechanisms in

each layer of the cell, the cell-level models help in understanding the behavior of each com-

ponent in an operational cell, and the system-level models determine the overall response

of the fuel cell system by taking the auxiliary equipment into account.

The cell models cover a wide range of spatial dimensions including 0D, 1D, pseudo-

2D, 2D, pseudo-3D, and 3D. In 0D models the spatial distribution of the variables are

ignored [93]. The 1D models usually investigate the transport in one dimension through

the membrane [94–97], albeit some 1D models focus specifically on transport along the flow

channels [98]. The pseudo-2D models investigate the transport in 2D without solving a

fully coupled problem in both spatial dimensions [87]. Such models incorporate transport

in the through-the-membrane and along-the-channel directions in a decoupled manner

with the only coupling stemming from the boundary conditions. This approach has gained

popularity because of its simplicity and computational efficiency. Many 2D models have

also been developed with variations based on the selected dimensions; while some 2D

models include transport along the channels and through the membrane, others only

solve for the through-the-membrane direction while incorporating the land effects and

the channel to channel variations in the third (in-plane) direction [89–91, 99]. The latter

models may be reduced to 1D models through conformal mapping of the domain [100–

102]. Another simplification to such models, called the bi-domain modeling approach, was

proposed by Zaglio et al., who solved the problem as two separate 1D problems; one under

the channel and one under the land [103]. Pseudo-3D models have also been developed

that balance model fidelity and computational efficiency [3,104,105]. In these models the

transport through the membrane is solved as a 2D problem coupled to a 1D channel model

through boundary conditions. Finally, 3D models include transport phenomena in all

physical directions, offering the highest fidelity with highest computational cost [86,106].
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In terms of the temporal behavior, most of the early models developed were steady

state [11, 64]. However, in recent years more dynamic models have been developed due

to the interest in investigating the dynamic behavior of the fuel cell [94, 107, 108]. Nev-

ertheless, researchers continue to develop steady state models that provide a deeper un-

derstanding of the performance limitations by incorporating details of thermal and mass

transport in the complicated structure of PEM fuel cells [62,91,105].

Kinetic models used to describe the HOR and ORR half reaction should also be con-

sidered for fuel cell model development. HOR has facile kinetics and can be modeled with

the usual Butler-Volmer (BV) equation or its simplifications such as the Tafel kinetics very

well [1]. Nevertheless, other HOR kinetic models have been proposed and employed in the

fuel cell literature. Of particular interest is the dual-pathway kinetic model initially pro-

posed by Wang et al. [109] and implemented in some of the recent fuel cell models [89,91].

In contrast to HOR, the ORR has sluggish kinetics and require further attention. Most of

the early fuel cell models resorted to the BV kinetics model or some of its approximations

for ORR. More recently, however, the effects of oxides covering the active Pt sites have

been included in modified Tafel models for ORR [110]. Several other ORR kinetics models

have been proposed, with the double-trap (DT) kinetics model being the most notable

one that has been adopted by many researchers. The DT model was originally proposed

by Wang et al. [111] and later modified by Moore et al. [112]. Further modifications of

the DT model have also been proposed in the last few years [113, 114]. In addition to

these models, there is a rather extensive debate as to how the environmental conditions

in the CL affect ORR kinetics. For instance, the ORR kinetics are believed to be affected

by the relative humidity [115–118]. Moreover, the ionomer thin film is believed to impact

the activity [119–121], therefore, further convolving the in-situ experimental results. The

key observation is that ORR kinetics are far from being fully understood. The situation

is further exacerbated by the fact that the experimental results are often convoluted due

to mass transport limitations at higher currents, the effects of the ionomer thin film on
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the catalyst activity, and the environmental conditions. Therefore, further modeling and

experimental works are required to clarify these kinetics.

Another area of interest is real-time modeling to obtain information about the states

of the cell. This is motivated in part by the desire to reduce the number of sensors in

the system and becomes critical in light of the difficulties associated with measuring mass

and temperature distributions within the components of a cell. Recent advancements

in technologies such as neutron imaging [122–124], magnetic resonance imaging (MRI)

[125], X-ray computed tomography [61, 126], small angle X-ray scattering (SAXS) [127]

and small angle neutron scattering (SANS) [128], as well as novel experimental methods

for measuring gas transport resistance [102, 129, 130] have shed light on the transport

mechanisms such as the intricate two-phase flow behavior in porous layers. Nevertheless,

these measurements cannot be performed on-board a vehicle. As such, real-time modeling

remains the main tool to provide information about the state of temperature and water

throughout the cell. However, most of the high fidelity models developed to date are

computationally expensive and do not lend themselves to real-time applications [89, 90,

131]. On the other hand, existing real-time models do not incorporate the important

physical phenomena that affect the transport in the cell. Therefore, achieving a careful

balance between fidelity and computational efficiency remains a challenge.

One of the popular real-time models that has been extensively used by the controls

community is the work of Pukrushpan et al., who developed a system-level lumped-

parameter (0D) model of the PEM fuel cell [93]. The model does not include any spatial

variations. Furthermore, it relies extensively on empirical relations obtained through curve

fittings and does not describe many of the physical phenomena, such as the two-phase

flow in the cell. Other models for real-time control and estimation of the variables in the

cell have been developed [132–134]. Efforts for modeling PEM fuel cells with equivalent

circuits have also been reported [135]. Acknowledging the significance of distributions

along the cathode channel, Headley and Chen have investigated lumped models with the
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addition of several control volumes in the cathode channel for temperature and humidity

distribution modeling [136]. In spite of such efforts, these models are very simplistic in

nature and do not capture many of the physical aspects of the cell behavior. In addition

to numerical models, analytical modeling has also attracted some interest. Kulikovsky

has worked extensively in this area [137]. The analytical framework benefits from high

computational efficiency, while its main drawback is in the use of limiting assumptions to

arrive at the analytical formulation. Finally, data driven and black-box modeling tech-

niques such as neural networks have been utilized for real-time simulations, as well [138].

Despite low computational expenses of such models, their adoption has been hindered

by the fact that they require a lot of experimental data to achieve reasonable accuracy

and they only provide an input-output map for the system without any insight into or

knowledge about the internal states of the fuel cell.

Efforts have also been made to address the need for higher fidelity physics-based models

that can be used in real time. Grotsch et al. [132], McCain et al. [94, 139], and Siegel et

al. [88] developed 1D through-the-membrane models with two-phase flow in the GDLs to

study the dynamic behavior of the cell. The main drawback of these works lies in the

isothermal assumption and the neglecting of the reactant concentration distribution along

the gas flow channels. Another work in this area is by Promislow et al., who incorporated

thermal transport and the along-the-channel transport into their model [87]. Nevertheless,

the fidelity of such models must be significantly improved by incorporating more intricate

physical phenomena before they can be used to address the durability issues in a fuel cell.

For example, these models typically treat the catalyst layers as interfaces and disregard

the complex nature of transport in these active layers. It is thus evident that despite such

efforts, there remains a gap in the fuel cell modeling literature for models that strike a

balance between fidelity and computational cost.
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1.4 Literature on Model Parameterization

The fuel cell models, similar to those of other electrochemical energy systems, such as

batteries, usually have tens of parameters that may affect their predictions. This is

especially the case for physics-based models that are derived from first principles, as such

models often incorporate various physical attributes of a cell along with detailed kinetics of

electrochemical reactions. Given that the prediction capabilities of these models depend

not only on their structure (i.e., the first principles and assumptions used in deriving

the model), but also on the availability of accurate parameter values, the problem of

parameter identification calls for critical investigation.

Despite its centrality to model accuracy and reliability, parameter identification has

not received much attention in the fuel cell literature, where arbitrarily assigning pa-

rameter values [54, 92, 140], or doing so based on expert knowledge [90, 114, 141], and

citing qualitative agreement with experimental data as evidence for model validity is

common [89, 90, 142]. In other instances, parameter identification is treated as material

characterization [143], wherein the model parameters are obtained through component

characterization techniques. While these methods are crucial to enhance understanding

of fuel cell behavior and improve model performance, they are often costly and require

specialized equipment. Moreover, even extensive characterization efforts could only un-

veil a handful of parameters, typically with considerable uncertainty [144]. For instance,

significant efforts have been aimed at determining thermal conductivity of various layers

in a fuel cell assembly, often resulting in values that vary by orders of magnitude for

the same material set [145, 146]. Lastly, even obtaining all model parameters through

such ex-situ experiments would not guarantee accurate model predictions. This lack of

prediction accuracy is mainly due to the inherent and inevitable simplifications of math-

ematical models. However, this does not indicate that the models do not have predictive

18



power. Rather, it motivates effective parameter identification as a necessary step towards

unleashing the full predictive capability of physics-based models.

The fact that parameter identification remains an understudied subject in the fuel

cell modeling literature can be mostly attributed to the computational cost of available

physics-based models that do not lend themselves to systematic optimization-based model

parameterization, which typically require a large number of model evaluations. However,

some in the fuel cell community have already utilized these techniques. For example,

nonlinear least squares have been used to fit models of oxygen reduction reaction (ORR)

to kinetic data [112, 113]. Others have used polarization data to identify full cell model

parameters with these methods [147, 148]. The utility of having multiple measurements

to improve model predictions has also been pointed out [149]. While these works stand

out in terms of their efforts for systematic parameter identification, they are still limited

in their application. Specifically, they only identify a few of the model parameters us-

ing optimization techniques and rely on literature values for the other parameters. More

importantly, the choice of parameters to be identified through optimization and the op-

erating conditions used to collect experimental data are made arbitrarily or based on the

researchers’ physical intuition about the problems. This amounts to an important gap in

the fuel cell modeling literature, which this dissertation aims to address.

Fortunately, the problem of parameter identification is common among many fields,

some of which offer a vast body of literature on the topic. Most importantly, we note

that the recent battery modeling literature has focused extensively on parameter identifi-

cation and closely related problems. In particular, sensitivities of the well-known models

have been studied [150–152], parameter identifiability of the models have been investi-

gated [153–157], various methods for simultaneous identification of multiple model pa-

rameters have been employed [152,158], bounds on parameter estimates have been devel-

oped [159], and Bayesian statistics have been used to infer parameter distributions [160].

More recently, there has been a move towards optimally designing experiments for param-
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eter identification [161–164]. In addition to this recent battery literature, other studies

in fields ranging from system biology [165, 166] to process industry [167] offer further

basis for systematic parameter identification efforts that may be utilized to enhance the

predictive capability of fuel cell models.

1.5 Literature on Fuel Cell Power Systems Control

Fuel cell power systems need to be controlled to ensure robust and optimal power delivery.

Therefore, the control task is to maximize the fuel cell power output while minimizing

parasitic losses due to auxiliary equipment such as the compressor. Additionally, the

operating conditions of the fuel cell stack can be regulated in order to maximize its

lifetime. These requirements, often in competition with each other, render the task of

controlling the fuel cell power system a critical one. There have been numerous studies

in the literature to address these issues from different perspectives. While most of the

approaches to date are focused on the system-level performance to efficiently regulate

power output [93,98,168,169], some studies have also targeted the cell-level performance

to avoid specific phenomena, such as flooding, membrane dehydration, and local reactant

starvation [170,171].

On the system level, the control objective is to enable power tracking capability by

the fuel cell system. To this end, various control strategies have been utilized. Golbert et

al. [98, 169] designed an adaptive controller as well as a model predictive control (MPC)

architecture for this purpose. Similarly, multivariable linear feedback techniques have been

used [172]. Other studies have aimed at regulating the net power output of the entire

system incorporating the balance of plant while ensuring the safe operation of the fuel

cell stack [93, 173]. Such studies typically incorporate the dynamics of the compressor,

the humidifier, and the supply and return manifolds. These studies also seek to avoid

oxygen starvation by regulating the oxygen stoichiometry (also known as the oxygen
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excess ratio) in the cathode. This is motivated by the fact that oxygen starvation is

known to contribute to the catalyst degradation [4, 25]. More broadly, avoiding reactant

starvation is one of the most common control objectives in the literature that has been

implemented in a variety of forms, including multivariate linear feedback [93, 173–175],

reference governors [176–178], and MPC [168,170,179–184]. Another area of focus in the

literature has been the energy management of hybrid power plants where fuel cell is one

of the power sources. Here again, reference governors [185,186], MPC [168], and optimal

control have been heavily utilized [187].

Generally, the system-level model-based control architectures seek to deliver the max-

imum power while incorporating some system constraints, such as the ability to provide

enough oxygen to the fuel cell stack. However, these architectures are based on simpli-

fied models of the fuel cell that usually neglect thermal and two-phase flow dynamics of

the cell. Therefore, they are limited in their ability to predict the cell behavior under

varying drive cycles encountered in automotive applications. To overcome these issues,

researchers have studied the control problem using more detailed models of fuel cells. Mc-

Cain et al. [171] studied the controllability and observability of liquid water in the GDL

using a 1D two-phase model linearized at three critical conditions. They found that volt-

age measurements are critical to observability of different modes. McKay et al. [188,189]

studied humidity and temperature control of the cell using a controllable membrane hu-

midifier. Additionally, fault diagnosis for fuel cells has been studied and fault tolerant

control strategies have been utilized to protect against potential causes of performance

degradation including flooding and membrane dehydration effects [190], as well as reac-

tant starvation [191]. One of the interesting works in this area is that of Burkholder et

al., who studied voltage instability due to two-phase flow regimes [192] and proposed the

use of Lyapunov exponent of the voltage return map as an instability statistic to design

active stability controllers that induce stabilizing pressure perturbations [193].
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These studies are fundamental to developing control strategies for fuel cell systems.

However, since they rely heavily on mathematical models to represent the system dy-

namics, their performance is determined by the accuracy of the underlying models. The

models used in these studies are generally not descriptive of the intricate two-phase flow

and temperature dynamics in the fuel cell. As such, concentrated efforts on controlling

these fuel cell dynamics are not common in the literature. Nevertheless, experimental re-

sults point to great potential for improvement in this area. For instance, Cho et al. [122]

reported that if proper purge conditions are used, then water removal from the membrane

can, to some extent, be controlled separately from the flow field and the porous media.

This holds great promise for avoiding porous media flooding and membrane dehydra-

tion. However, a systematic approach to synthesize effective controllers that utilize these

potentials is not available in the literature.

Mitigating degradation can be an additional goal of the control design problem. Ac-

cordingly, some recent works have tried to address durability issues with control strategies,

such as MPC [170, 194]. Specifically, Luna et al. utilized an observer-based nonlinear

model predictive controller to avoid fuel and oxidant starvation along the flow chan-

nel [170]. Notably, they also accounted for the membrane hydration state in their MPC

formulation. In a follow-up work, they used a similar architecture to optimize the electro-

chemical surface area (ECSA) during operation [194]. While providing valuable insight

about the controller design, these studies still use rather simplified models of the fuel

cell, only consider one mode of degradation, and are based on some empirical notion of

the degradation process without proper validation. Furthermore, selection of suitable

degradation criteria is still an open challenge that is difficult to address without a mul-

tidisciplinary perspective. For instance, Luna et al. have focused on maintaining an

optimal value for the ECSA during operation, citing the loss of ECSA due to changes

in the liquid water level as a degradation criterion [194]. However, while ECSA loss is

indeed a major concern, it is commonly attributed to Pt dissolution and migration in the
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fuel cell literature [54,195–197] and controlling the liquid water is not expected to have a

significant mitigating impact.

1.6 Research Objectives

The preceding literature review reflects the extensive research activities in various aspects

of PEM fuel cell development. At the same time, it also identifies opportunities for further

progress. In particular, there seems to be a gap between the electrochemical literature

trying to improve the scientific understanding and design of PEM fuel cells, and the fuel

cell control literature, that has focused on output power tracking for the most part with

only minimal consideration of degradation effects. Accordingly, in this dissertation we

take a step towards filling this gap by creating a model-based framework for degradation-

conscious control of PEM fuel cells, where our main research objectives include:

• Developing and validating a computationally efficient physics-based model of PEM

fuel cells that captures the distributions of critical variables throughout an operating

fuel cell in all three physical direction. Such a model can be used as a software sensor

to provide information about internal conditions of automotive PEM fuel cells.

• Developing a framework for effective model parameterization to enable quantitative

predictions. Particularly, the framework should address the challenges of parameter

selection for identification, experimental design, and systematic identification. Such

a framework would allow PEM fuel cell models to be parameterized effectively with

limited non-invasive measurements.

• Developing a model-based degradation-conscious control framework to simultane-

ously enable tacking of a power demand, maximize the overall system efficiency,

and extend the system’s lifetime by ensuring operation in a safe region. Realiza-

tion of such a control framework can lead to enhanced performance and durability
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of the existing PEM fuel cell stacks and enable their widespread adoption in the

automotive industry.

1.7 Dissertation Contributions and Organization

The above-mentioned research objectives of this dissertation are met through several novel

contributions to the fuel cell modeling and control literature as described below.

1.7.1 Model Development and Validation

• A physics-based and computationally efficient pseudo-2D bi-domain model of PEM

fuel is developed.

The model accounts for complex behavior in an operating fuel cell, while taking ad-

vantage of natural time and length scale separations to spatio-temporally decouple

the problem and achieve simulation times that are more than an order of magni-

tude faster than real time. Importantly, the model captures the distributions of

water and temperature along the flow channels and through the membrane, while

distinguishing between the local conditions under the channel and land locations.

Moreover, the catalyst layer is modeled explicitly, where the volume fraction of dif-

ferent phases are taken into account and detailed models for reaction kinetics are

employed. The proton and mass transport trade-offs in the cathode catalyst layer

are effectively captured with a new lumped model that allows for efficient and fast

simulations. Lastly, an iterative scheme is developed for stable and efficient simula-

tion of counter-flow configuration. These measures are detailed in Chapter 2. The

model has also been presented at a number of conferences [198–200] and published

in archival format [201,202].

• The developed model is extensively validated with experimental performance data.
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Experimental voltage and resistance data obtained with two different fuel cell ma-

terial sets at a variety of operating conditions relevant to automotive applications

are used to validate the model. The results of this experimental validation effort are

also presented in Chapter 2 and have been archived in a journal publication [202].

1.7.2 Effective Model Parameterization

• An extensive sensitivity analysis is conducted to examine the impact of the various

model parameters on different outputs of interest.

An extended local sensitivity analysis is used to study the parameter sensitivities

and inspect the potential parameter interactions. In particular, the analysis is car-

ried out under a variety of operating conditions that are designed to cover the entire

range of conditions that are of practical interest. The results of the analysis are used

to highlight the various aspects of parameter identifiability. It is shown that physics-

based models of PEM fuel cells, and more broadly those of electrochemical devices,

are overparameterized with badly conditioned Hessian matrices that diminish the

prospects of successful parameter identification. The methods and results are dis-

cussed in detail in Chapter 3 and have been documented in conference and journal

publications [203,204].

• A framework is developed to robustly select the best parameters for identification,

design robust optimal experiments for this purpose, and identify the selected param-

eters with a systematic approach.

Results from the extended local sensitivity analysis are utilized to develop a frame-

work for effective parameter identification. In particular, the sensitivity data are

used to select an optimal set of parameters that are best suited for model tun-

ing to a given set of measurements. The selection is also robust to assumptions

about nominal parameter values. The same procedures are used for model-based
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experimental design to maximize parameter identifiability prospects with limited

measurements. Lastly, a multi-step identification algorithm is developed to ensure

a well-constrained inverse problem formulation. The framework and its verification

are presented in Chapter 4. These results have also been published in a number of

conference and journal publications [204–207].

1.7.3 Degradation-Conscious Control Framework

• A control-oriented model is derived for use in an MPC setting.

Despite its computational efficiency, the model developed in Chapter 2 is not suitable

for optimization-based control methods, such as MPC. Therefore, further simplifi-

cation is employed to derive a control-oriented model. The result is a 1D through-

the-membrane model that describes the most critical conditions with only 8 state

variables. Three additional states are used to model the reactant supply dynamics

so that the entire fuel cell system can be considered for control formulation. The

rationale behind the fuel cell model simplifications and the modeling equations for

the entire system are presented in Chapter 5. The results in this chapter have also

been presented in conference and archival publications [208,209].

• A linear time-varying MPC (LTV-MPC) framework is developed for degradation-

conscious control of the PEM fuel cell system.

The control-oriented nonlinear model is successively linearized about the current

operating point to obtain a linear model. The linear model is used to formulate the

control problem, where a rate-based MPC formulation is employed. The controller

objective is to ensure offset-free tracking of the power demand, while maximizing

the overall system efficiency and enhancing its durability. To this end, the fuel con-

sumption and the power loss due to auxiliary equipment are minimized. Moreover,

the internal states of the fuel cell stack are constrained to avoid harmful conditions
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that are known stressors of the fuel cell components. Membrane dry-out, rapid

changes in the membrane hydration, and reactant starvation are among the consid-

ered stressors. However, the framework has the flexibility to accommodate further

lifetime indicators as required by the particular application. It is also shown that

the control commands can be generated in real time, allowing practical hardware

implementation. The control problem formulation is presented in Chapter 5 and

documented in conference and archival publications [208–210].
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Chapter 2

A Computationally Efficient Model

for Automotive PEM Fuel Cells

2.1 Introduction

Similar to the state-of-the-art battery management systems that rely on reduced-order

models to make critical decisions that affect the performance and lifetime of the battery

pack [211], a fuel cell management system depends on a model of the fuel cell stack and

the auxiliary components [93,208]. This motivates the need for real-time models that can

run efficiently on-board the vehicle and act as soft sensors, providing information about

the distribution of critical variables in the fuel cell stack.

As mentioned in Chapter 1, despite recent efforts, there remains a gap in the fuel cell

modeling literature for models that strike a balance between fidelity and computational

cost. To fill this gap, the objective of this chapter is to develop a PEM fuel cell model that

is geared toward real-time simulation on-board the vehicle and provides critical informa-

tion for fuel cell management and control systems. To this end, we utilize the disparate

time scales of the involved transient phenomena as well as the large aspect ratio of the

cell components to spatio-temporally decouple the problem and obtain a computationally

28



efficient solution. Development of a new reduced-order model for water balance across

the cell and a simplified method to account for mass and charge transport trade-offs in

the cathode catalyst layer further contribute to the computational efficiency of the model.

Additionally, the bi-domain modeling approach employed here allows for distinguishing

the transport phenomena under the channel and under the land locations. Lastly, a

novel iterative scheme enables efficient counter-flow simulations. Overall, these consid-

erations render the model suitable for real-time monitoring of unmeasured and critical

states within the fuel cell stack. The model is also experimentally validated with perfor-

mance data from a differential cell as well as an automotive short stack under a variety

of operating conditions.

The rest of the chapter is organized as follows. The model formulation is presented in

Section 2.2, which describes the steps for developing the computationally efficient model.

The presented model is then extensively validated with experimental data from two stacks

and shown to provide good agreements with the data with reasonable parameter values in

Section 2.3. Finally, some simulation case studies are presented in Section 2.4 to further

demonstrate the model’s capabilities, followed by a brief summary in Section 2.5. The

description of variables and parameters in this chapter can be found in the nomenclature.

2.2 Model Development

2.2.1 Modeling Domain

The modeling domain is shown in Fig. 2.1. This is a pseudo-2D bi-domain (P2D2) model,

which captures the distributions in all three physical directions in a decoupled manner.

In particular, a 1D through-the-membrane transport model is developed for the MEA.

This 1D model is solved twice, once under the channel and once under the land area.

This bi-domain modeling approach was first proposed by Zaglio et al. [103] to efficiently
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Figure 2.1: Schematic of the modeling approach: (a) the modeling domains under the channel
and under the land, (b) example illustrations of different transport paths under the channel and
under the land, and (c) the pseudo-2D bi-domain (P2D2) modeling approach that decouples
the along-the-channel and the through-the-membrane directions and solves two separate 1D
problems at each location along the channels.

capture the in-plane distributions without the need for a 2D model. Simplifying the 2D

modeling domain to a 1D domain through conformal mapping has also been proposed

in the literature [100, 102]. While this method benefits from the highest computational

efficiency, it would not allow one to distinguish between the local conditions in different

parts of the cell, which can be critical, especially within the context of degradation studies.

Therefore, we use the bi-domain approach here to balance the computational cost and

model fidelity requirements.

The idea underlying the bi-domain modeling approach is that an effective transport

30



length for each of the transport equations can be defined on either domain, i.e., under

the channel or under the land area. This effective length can be used to solve the corre-

sponding transport problems for heat, mass, and charge. This is illustrated in Fig. 2.1.

In particular, the effective mass transport path is longer under the land area, whereas the

regions under the channels have longer charge and heat transport paths. Here we account

for the differences in mass and heat transport paths, while the charge transport problems

are treated similarly in both regions, since the corresponding differences are negligible. In

each case, the effective transport lengths between the channel and the CL are calculated

by:

dtransport =

√(
0.5

(
TP

IP

)
(wCH + wLN)

)2

+ (δDM)2, (2.1)

where δDM is the sum of the thicknesses of the diffusive layers (CL, MPL, and GDL),

wCH is the channel width, and wLN is the land width. The effective length defined above

also accounts for the material anisotropy through the TP
IP

factor, which is the ratio of

the relevant effective transport property in the through-plane (TP) direction to that in

the in-plane (IP) direction. This factor is determined based on the anisotropic mate-

rial properties for each transport problem, which include thermal conductivities, porosity

correction factors, and effective permeabilities for the heat transport, diffusive gas trans-

port, and convective liquid water transport problems, respectively. Finally, the transport

length at any intermediate location within the diffusive layers can be found by scaling of

the above equation accordingly.

The bi-domain MEA model is then extended along the flow channel using a pseudo-2D

(P2D) modeling approach, where the only coupling between the channel and MEA models

are obtained through the channel boundary conditions that account for mass and heat

exchange between the GDLs and flow channels (see Fig. 2.1(c)) [104]. This approach is

suitable for PEM fuel cell modeling due to the large aspect ratio of the cell components,
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as they typically have thicknesses on the micrometer scale while being more than tens of

centimeters in length.

2.2.2 Flow Channel Model

The flow channel model is a set of ordinary differential equations (ODEs) that determine

the flow rates of reactant, nitrogen, and water in each channel. In particular, each ODE

has the form of:

dṀj

dy
= fj(y), (2.2)

where Ṁj denotes the molar flow rate of species j in the channel and the right hand side

term (fj) for each species is given in Table 2.1. In short, the channel model accounts

for reactant consumption, gas crossover through the membrane (see Section 2.2.3.5), and

water exchange with the MEA model.

Table 2.1: Right hand side for the channel model ODEs (equation 2.2)

Species fi(y)
N2 anode [wNN2,mb]CH + [wNN2,mb]LN

N2 cathode − [wNN2,mb]CH − [wNN2,mb]LN

H2 anode −
[
w( idens

2F
+ 2NO2,mb +NH2,mb)

]
CH
−
[
w( idens

2F
+ 2NO2,mb +NH2,mb)

]
LN

O2 cathode −
[
w( idens

4F
+NO2,mb +

NH2,mb

2
)
]

CH
−
[
w( idens

4F
+NO2,mb +

NH2,mb

2
)
]

LN

water [w(Nv,GDL +Nl,GDL)]CH + [w(Nv,GDL +Nl,GDL)]LN

It should be noted that a full model may also resolve the distribution of pressure and

temperature along the flow channels [201]. However, we develop a simplified model here

by assuming the channel temperatures to be identical to the coolant temperature at each

location along the channel. The coolant temperature distribution is obtained from known

inlet and outlet temperatures. Particularly, the temperature distribution is assumed to
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be directly related to the current distribution. This is based on the fact that most of

the heat generated in the cell is due to the reversible and irreversible heat of the ORR,

whose dependence on current density can be approximated to be linear. Therefore, the

variation in coolant temperature from inlet to outlet is assumed to scale linearly with

the local current density. In addition, a linear pressure distribution is assumed from

inlet to outlet in each channel, based on the knowledge of inlet and outlet pressures.

This assumption is valid when slugs of liquid water do not exist in the channels, which

is the case under most robust operating conditions used for automotive stacks. With

these assumptions the model requires further information, i.e., outlet channel pressures

and coolant temperatures. Nevertheless, such information is typically available through

inexpensive and reliable sensor measurements. On the other hand, these assumptions

significantly simplify the model by enabling the use of a coarser grid along the flow channel.

In particular, a priori knowledge of temperature distribution along the flow channel can

be used to estimate the total amount of water vapor that can be accommodated at each

location along the channel. Any amount of water in excess of this maximum allowable

vapor content is assumed to condense immediately due to fast phase change kinetics and

be carried to the next channel segment as liquid water. Therefore, there is no need to

explicitly account for such phase change phenomena that render the channel model stiff

and make the numerical solution difficult to obtain.

2.2.3 Full-Order Through-the-Membrane Mass and Heat Trans-

port Model

In essence, the model solves several partial differential equations (PDEs) on a 1D domain

through the MEA thickness to obtain the distribution of water and temperature. These
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governing equations are as follows:

εg
∂ci
∂t

= ∇ · (Deff
i ∇ci) + Si, (2.3)

ρlε
∂s

∂t
= ∇ · (ρlK

eff
l

µl

∇pl) + Sl, (2.4)∑
α

εαραcp,α
∂T

∂t
= ∇ · (keff

T ∇T ) + ST , (2.5)

εion
ρion

EW

∂λ

∂t
= ∇ · (Nw,mb) + Sλ, (2.6)

Note that the model neglects convective heat and gas transport, as their effects are shown

to be negligible under most operating conditions [212, 213]. The source terms for mass

and energy conservation are given in Table 2.2 and Table 2.3, respectively. We provide an

overview of each equation below. The complete description for the model variables and

parameters can also be found in the nomenclature.

Table 2.2: Mass conservation source terms for governing equations

Domain Srct Sv Sl Sλ

Anode CL (ACL) idens
2F ·δanCL

Spc − Sad −MH2OSpc Sad +
2NO2,mb

δanCL

Cathode CL (CCL) idens
4F ·δcaCL

Spc − Sad −MH2OSpc Sad + idens
2F ·δcaCL

+
NH2,mb

δcaCL

MPL and GDL 0 Spc −MH2OSpc –

Table 2.3: Heat source terms for equation 2.5

Domain ST
Anode CL (ACL) −MH2OSpcHpc + SadHad +HHOR

Cathode CL (CCL) −MH2OSpcHpc + SadHad +HORR +Rca,eff
CL i2dens

Membrane Rmbi
2
dens

MPL and GDL −MH2OSpcHpc

Equation 2.3 describes the diffusive gas phase transport in the porous layers of the

cell (CL, MPL, and GDL), where εg is the layer porosity available for gas transport

(εg = ε(1 − s), with s being the liquid saturation and ε the compressed layer porosity)
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and Deff
i denotes the effective diffusivity for species i (see Section 2.2.3.4). The last term

(Si) is the relevant source term for the specific gas species (see Table 2.2). This equation

applies to vapor and reactant transport on both the anode and cathode sides of the cell.

Equation 2.4 describes the mass conservation for liquid water. Specifically, this equa-

tion models the pressure drop of liquid phase in the CLs, MPLs, and GDLs according to

Darcy’s law. Here, ρl, K
eff
l , µl, and pl denote the density, effective permeability, viscosity,

and pressure of the liquid phase, respectively, and ε denotes the porosity of the layer.

The effective permeability is obtained by multiplying the absolute (Kl,abs) and relative

(Kl,rel) permeability values (i.e., Keff
l = Kl,absKl,rel) and a 5-th order power law is used to

estimate the relative permeability (i.e., Kl,rel = s5). Finally, Sl is the appropriate source

term (see Table 2.2). The liquid saturation (s) that appears on the left hand side of this

equation is a variable that depends on capillary pressure. Therefore, closure equations

that relate the saturation level to the capillary pressure are required. While elaborate

models have been developed for this purpose [78, 89], here we use a simplified approach,

which is described in Section 2.2.3.1.

Equation 2.5 is the energy conservation equation, which governs the temperature dis-

tribution. In this equation, ρα, εα, and cp,α are the density, volume fraction, and specific

heat capacity of phase α, respectively, where α can be the gas, liquid, or solid phase. In

addition, keff
T is the effective thermal conductivity and ST denotes the heat source term

(see Table 2.3).

Finally, equation 2.6 governs water transport in the ionomer phase throughout the

CCM. Therefore, its domain of application is the anode and cathode catalyst layers and

the membrane. In this equation, εion, ρion, and EW denote the ionomer volume fraction,

density, and equivalent weight, respectively, while λ is the dimensionless number that

quantifies the water content in the ionomer, i.e., the number of water molecules per

sulfonic acid group. The last term, Sλ, is the source term accounting for water generation,
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absorption, and desorption (see Table 2.2).

Table 2.4: Ionomer water uptake and transport properties

Property [Units] [Reference] Equation

nd [−] [10] 1.2 tanh( λ
2.5

)

Deff
w,mb [ cm2

s
] [214] 0.0539× (1 +

MH2O
ρion

EW
λ)−2(1 + 0.0027λ2)×[

1 + tanh(λ−2.6225
0.8758

)
]

exp(−3343
T

)

DT,mb [ mol
cm·K ] [13] 1.04×10−4

MH2O
exp(−2362

T
)

Kp,mb [cm2] [215] 10−16 × (−12.57 + 0.06T )

kad [ cm
s

] [216] 1.14× 10−5fv exp
[
2416( 1

303
− 1

T
)
]

for absorption

4.59× 10−5fv exp
[
2416( 1

303
− 1

T
)
]

for desorption

fv(λ) = 18λ
EW
ρion

+18λ
(water volume fraction in ionomer)

κion [ S
cm

] [77] κres + κ0(fv(λ)− fv(λth))1.5 exp
[
Eact,mb

R
( 1

303.15
− 1

T
)
]

λth = 2 is the threshold water content for conductivity

kT,mb [ W
m·K ] [217] 0.177 + 3.7× 10−3λ

The water flux in the ionomer phase across the CCM, Nw,mb, includes the effects of

EOD, diffusion, hydraulic permeation, and thermo-osmosis and is calculated as follows:

Nw,mb = nd
idens

F
− ρion

EW
ξdiff,mbD

eff
w,mb∇λ−

Kp,mb

µlMH2O

∇pl +DT ,mb∇T, (2.7)

where nd is the EOD coefficient, idens denotes the local current density, F is the Faraday’s

constant, Deff
w,mb and Kp,mb are the effective membrane water diffusion and permeability

coefficients, respectively, and DT ,mb is the thermal water diffusivity in the membrane.

Note that thermo-osmosis is shown to drive water from the cold to the hot side for a

hydrophilic membrane [13] and as a convention, a positive flux denotes water flux towards

the cathode. Moreover, a linear liquid water pressure is assumed across the membrane

thickness. The membrane water transport properties are given in Table 2.4. There is

considerable uncertainty surrounding such transport properties. These issues are very

well reviewed by others [14, 218] and the particular choice of the properties used here is
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based on an extensive literature review and can be modified depending on the application.

Nevertheless, the uncertainty in the material properties warrants use of fitting parameters

for membrane water flux, when agreement with experimental data is desired. For this

reason, we have introduced a scaling factor for water diffusion, ξdiff,mb, which is identified

during model parameterization. We also note that a similar model tuning strategy has

been suggested in the literature [67].

We now provide further description for the source terms given in Tables 2.2 and 2.3.

We start with the phase change source term, Spc, which is given by:

Spc =

 kevp(0.05 + s) [csat(T )− cv] if cv < csat(T ) , s > 0

kcnd(0.05 + s) [csat(T )− cv] if cv ≥ csat(T )
, (2.8)

where kevp/cnd denotes the phase change rate, csat(T ) is the temperature dependent sat-

urated vapor concentration, and cv is the vapor concentration. As the pore size gets

smaller, a larger interfacial area is available for phase change [78]. To model this effect,

the phase change rate in the CLs is chosen to be the highest (50000 1/s), followed by

that in the MPLs (1000 1/s) and GDLs (500 1/s). Moreover, we note that high rates are

used to ensure the facile phase change kinetics as suggested in the literature [219]. The

dependency on the liquid saturation is used to model the fact that the interfacial area

available for phase change scales almost linearly with liquid saturation [219]. Finally, 0.05

is used to capture the effects of a hydrophilic pore network that allows for phase change

to occur at very low liquid saturation levels [220]. The rate of phase change is expected

to decline with temperature [221], which is not taken into account here. The saturated

vapor concentration is defined as:

csat(T ) =
psat(T )

RT
, (2.9)

where R denotes the universal gas constant and psat is the temperature dependent satu-
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ration pressure [222]:

psat(T ) = 0.61121 exp

[(
18.678− T − 273.15

234.5

)
T − 273.15

T − 16.01

]
[kPa]. (2.10)

As for water exchange between the ionomer and the adjacent pore space, the water

absorption/desorption source term, Sad, is given by:

Sad =
kad · ρion

δCL · EW
(λ∗ − λ) , (2.11)

where kad is the interfacial water transfer coefficient (see Table 2.4), δCL denotes the CL

thickness, and λ∗ is the dynamic quasi-equilibrium water content for the ionomer, which

is further described in Section 2.2.3.2. Note that both electrochemical (due to ORR) and

chemical (due to direct hydrogen combustion) water productions contribute to Sλ. In

other words, the produced water is assumed to be in absorbed (ionomer) phase. This is

in agreement with the assumed structure for the CL in this dissertation and has also been

used by others [140].

Regarding the heat source terms, Hpc is the enthalpy of phase change:

Hpc =− 2.367× 10−5T 4 + 1.882× 10−2T 3 − 4.672T 2

− 2.098× 103T + 3.178× 106 [kJ/g] . (2.12)

Furthermore, Had denotes the heat of sorption/desorption [107]:

Had =

 MH2OHpc − 28.28× 103
[
erf(

18.68λMH2O

EW
+ 0.4016)− 1

]
sorption,

−MH2OHpc + 55.65× 103
[
erf(

10.39λMH2O

EW
+ 1.116)− 1

]
desorption.

(2.13)

Lastly, denoting the Peltier coefficient for HOR/ORR [223] by ΠHOR/ORR and the reaction
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overpotential by ηHOR/ORR, the heat of reaction, HHOR/ORR, is given by:

HHOR =
idens

δan
CL

(ηHOR + ΠHOR), (2.14)

HORR =
idens

χδca
CL

(ηORR + ΠORR), (2.15)

where χ is the cathode CL effective utilization factor (see Section 2.2.4.2).

2.2.3.1 Liquid Saturation-Capillary Pressure Relations in Porous Layers

With regards to liquid water transport, the model utilizes Darcy’s law to capture pressure

drop in the liquid phase, as shown in equation 2.4. It should be noted that the solution

variable in this equation is the liquid pressure (pl). Assuming constant gas phase pres-

sure in the through-the-membrane direction, the variations in liquid pressure uniquely

determine the variations in the capillary pressure (pc), which is defined as the difference

between the liquid and gas phase pressures, i.e., pc = pl−pg and ∇pc = ∇pl. With known

pc, the liquid saturation (s) that appears in these equations can be determined. For this

purpose, the Leverett J-function is used as the closure equation [224]:

pc = pl − pg = −σl cos(θlayer)√
Kabs/ε

[1.417s− 2.12s2 + 1.263s3], (2.16)

where σl is the liquid water surface tension, θlayer is the contact angle of liquid water on the

layer’s surface, and Kabs denotes the layer’s absolute permeability. It is worth mention-

ing that the Leverett J-function was originally developed for homogeneous sand and its

applicability to fuel cell porous layers is questionable. In light of such observations, more

detailed models for the liquid water transport have been developed in recent years, the

most notable of which is the mixed wettability model [78, 223, 225, 226] that has become

popular [91]. Nevertheless, recent literature also points to the fact that a representa-

tive elementary volume (REV) cannot be clearly defined in the through-plane direction

for fuel cell porous layers [227]. Therefore, even the most advanced macrohomogeneous
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models will not have sufficient fidelity to capture the details of liquid water distribution

in these layers. Accordingly, the Leverett J-function approach is adopted here for sim-

plicity. Indeed, this model can be parameterized to capture the aggregate behavior of

liquid accumulation in the porous layers with acceptable accuracy for real-time modeling

purposes.

2.2.3.2 Ionomer Water Uptake

It is imperative for any transient model of a PEM fuel cell to properly capture the dy-

namics of water sorption, desorption, and transport across the membrane. Historically,

diffusive [11] and hydraulic [12] models have been used for this purpose. However, there

is abundant evidence in the literature suggesting that interfacial transport phenomena as

well as swelling of the polymer backbone may play a significant role in water uptake and

transport dynamics [228, 229]. In particular, the gravimetric water uptake experiments

conducted by Satterfield et al. have shown very long time constants for membrane water

sorption, while the desorption time constants were found to be an order of magnitude

smaller [229]. They suggested that the sorption behavior may be explained through the

contributions of interfacial water transport and stress relaxation in the polymer, whereas

the desorption dynamics are dominated by the interfacial phenomena. Their experiments

included a step in the humidity from fully dry to fully saturated conditions that resulted

in significant relaxation behavior. Other studies have found much less pronounced im-

pact of the relaxation dynamics when the membrane was subjected to smaller changes

in the humidity conditions [230]. Similar results have been reported for ionomer thin

films [231]. Dynamic vapor sorption (DVS) experiments by Kusoglu et al. have also shown

relatively long water uptake times with a time constant that increases with membrane

hydration [232,233]. Their results also indicate that the asymmetry between sorption and

desorption is not as pronounced as that observed in Satterfield et al.’s experiments. Such

significant difference was also challenged by Silverman et al., who found the desorption
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to be only about twice faster than sorption [234]. In-situ measurements of membrane

swelling and hydration by GM researchers have also found the hydration and dehydration

rates to be similar [235].

Based on the preceding discussion, it stands to reason to incorporate the slow ionomer

water uptake process into the model. Silverman et al. have developed a coupled transport

and mechanical model that captures such phenomena [107, 234]. However, adding the

mechanical model will result in additional complexity that must be avoided for the purpose

of performance modeling. Therefore, we simply use a dynamic variable to represent the

quasi-equilibrium water content [198,236,237]:

λ∗ = (1− ϕ)λeq + srelax, (2.17)

where ϕ determines the contribution of relaxation phenomena to the ionomer water uptake

(a value of 0.35 is used for the simulations in this dissertation), and srelax is a variable

accounting for the dynamics of stress relaxation. In particular, its dynamics are assumed

to be first order:

ṡrelax = − 1

τrelax

(srelax − ϕλeq), (2.18)

where λeq is the equilibrium water content given by [238]:

λeq =(1− s)
[
(14.22a3 − 18.92a2 + 13.41a)

(
1 + 0.2325a2

(
T − 303

30

))]
+ s [9.22 + 0.181(T − 273.15)] . (2.19)

In the above equation, a denotes the water activity in the CL, which is equal to the

the relative humidity, and s is the local liquid saturation. Finally, the relaxation time

constant, τrelax, is defined as:

τrelax = exp(2 + 0.2λ), (2.20)

41



where the time constant is chosen to vary with the ionomer water content in accordance

with evidence in the literature for this dependence [232]. The stress relaxation is also

supposedly a thermally activated process [229, 239]. Therefore, it would be reasonable

to assume an Arrehnius type temperature dependence for the associated time constant,

which is not included here. Additionally, the effects of compressive stresses on membrane

water uptake [235, 240], and the much debated discrepancy between water uptake by

ionomer thin film and bulk ionomer [231, 232] are not taken into account in the model.

Future parametric studies can aim at investigating these effects along with the effects of

changes to the relaxation model parameters to understand their impact on the overall

dynamic response of the cell.

2.2.3.3 Local Transport Resistance in the Catalyst Layer

Early models of PEM fuel cells regarded CLs as interfaces with no consideration of their

structural features. However, the significance of these structural features to the cell per-

formance has been established. A particularly important issue that has resulted in signif-

icant efforts in CL modeling is the additional transport resistance observed at lowered Pt

loading or with high loaded electrodes after degradation inducing cycles [241, 242]. The

experimental approach has utilized limiting current measurements with varying gas com-

position and/or pressure to separate the pressure dependent and pressure independent

transport resistances [102]. The transport resistance in the CL is almost entirely indepen-

dent of pressure and can be estimated with such limiting current measurements. Using

this approach, it has been found that the CL transport resistance increases at lower Pt

loadings [130,243–247] and this increase is strongly dependent on the available Pt area for

reaction. Therefore, the resistance appears to be due to the increased flux near each active

site at lower loadings [44]. Temperature sensitivities were used to determine the contribu-

tions of Knudsen diffusion and permeation through the ionomer thin film to the electrode

transport resistance [248]. The ionomer thin film was found to be the dominant cause
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of transport resistance in the CL. More recently, the impact of carbon support and its

porous structure on the local reactant and bulk protonic transport resistances have been

highlighted [45, 249]. Particularly, micro-pores with an opening smaller than 2 nm have

been found to limit the reactant access to the Pt deposited inside the carbon pores. De-

spite such efforts, the root cause of the increased resistance remains largely unknown [46].

Several hypotheses have been made, but neither has been thoroughly validated.

Numerous models have been proposed to investigate the distribution of critical vari-

ables throughout the CLs and unveil the cause of increased transport resistance at lower

loadings. The agglomerate model has been the most popular one for this purpose. In

this model, the Pt particles are assumed to be dispersed on the primary carbon particles,

many of which are assumed to aggregate during the fabrication process to form larger

agglomerates covered by an ionomer thin film. The pore space in the CL is divided into

two parts: the primary pores between carbon particles in each agglomerate, and the sec-

ondary pores formed between the agglomerates. Several variations of this model have been

proposed where the intra-agglomerate space is either filled with water (i.e., water-filled

agglomerates) [250,251] or ionomer (i.e., ionomer-filled agglomerates) [84,252].

Initially, a wide range of agglomerate sizes (100-1000 nm) had been used and signif-

icant variations in the ionomer film thickness (10-100 nm) had been reported to match

the experimental data [82, 148]. Cetinbas et al. have developed a hybrid method for

reconstruction of the CL microstructure [41, 42] and reported an agglomerate size distri-

bution between 25 to 300 nm with most agglomerates having a radius in the range of

75 to 200 nm [42]. However, the upper limit of the modeling values for the agglomerate

size and film thickness is not corroborated by microscopy studies [83]. Therefore, the

validity of this structural picture has come under further scrutiny. In light of these ex-

perimental observations, some have argued that the agglomerates probably do not exist

and have proposed homogeneous models for the electrode [82]. Others have continued

to use the agglomerate models with agglomerate radii as small as 40 nm [85, 90], which
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is close to the size of a carbon primary particle. Of particular interest is the work by

Nissan researchers [85], who showed that the conventional flooded-agglomerate model is

not capable of reproducing experimental results with small agglomerate size and partial

ionomer coverage. They modified the model to incorporate transport resistance near the

electrochemical surface and showed that the modified model successfully predicted the

experimental trends. Generally, more recent models rely on interfacial resistance at either

the ionomer-gas or the Pt-ionomer interface or both to reproduce experimental transport

resistance values. Jinnouchi et al. used molecular dynamics simulations to associate such

resistance with a dense ionomer layer near the Pt surface [37]. Overall, attributing the

additional resistance to interfacial phenomena has become increasingly common in the

literature.

Despite its commonality, the interfacial resistance has not been experimentally veri-

fied. In fact, Liu et al. measured transport resistance in ionomer thin films and found no

evidence of interfacial resistance when 3D diffusion was taken into account [253]. The un-

certainty surrounding ionomer thin film properties, such as water uptake [231, 254–256],

ionic conduction [257], and gas permeation [83], which can be significantly affected by

confinement and substrate interactions [258], has further contributed to the ambiguity

of the source of this increased resistance. Some recent works have disputed the inter-

facial resistances or downplayed its significance. For instance, Darling has proposed an

agglomerate model, in which the increased resistance is mostly attributed to the spherical

diffusion through the agglomerate [259]. Others have investigated the inhomogeneity of

mass fluxes near the Pt particles in agglomerates and the overlap between several agglom-

erates as possible culprits [260,261]. Most recently, Muzaffar et al. [47] have investigated

literature data with a previously developed agglomerate model [262] and found that the

reduction in Pt loading probably leads to higher levels of flooding in both the CL and

GDL due to reduced vaporization capability of the CL with decreased thickness. They

also elevated the fact that both experimental [263] and numerical studies [264,265] show
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only partial coverage of catalyst particles with ionomer, leaving an alternative transport

path for oxygen to reach the active sites without facing the interfacial resistance at the

Pt-ionomer interface. Therefore, they concluded that the increased transport resistance

may be attributable to reduced oxygen diffusivity due to pore blocking effects of liquid

water and the interfacial resistance does not play a significant role. The importance of

water management in successful use of low loaded electrodes was also pointed out by

Srouji et al. [266].

The preceding literature review shows that the structural picture of the electrodes

and the understanding of the factors that contribute to the transport resistance are still

incomplete. Therefore, further model development and experimental investigations are

required. Nevertheless, it should be noted that for the purpose of a full cell simulation,

most of the proposed models can be parameterized to capture the local oxygen transport

resistance, which is the most critical outcome of such models. Moreover, Kulikovsky has

demonstrated that under certain conditions that are most relevant to typical fuel cell

operation, the agglomerate model is not required [267]. Therefore, unless the goal of the

model is to investigate different electrode designs at the nano-scale, a homogeneous model

will be sufficient. Here, we use the model proposed by Hao et al. [82], which was shown

to appropriately capture the increased resistance at lower loadings. The model achieves

this by assuming full ionomer coverage and introducing rather significant interfacial re-

sistances, which, in light of the above discussion, are disputable. Nevertheless, it is the

general trend of the variations in the transport resistance that is required for our purposes.

The model is briefly presented here and the reader is referred to the original publication

for further details [82].

The model assumes Pt particles are deposited on primary carbon particles that are

fully covered by an ionomer thin film. Liquid water in the pores of the electrode forms a

thin film on top of the ionomer. This structural picture is used to derive the volume frac-

tion of each phase (Pt, carbon, ionomer, and pore space) in both the anode and cathode
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Figure 2.2: Local oxygen transport resistance in cathode CL: (a) schematic of various resistances
between the CL pore space and the Pt surface and (b) example transport resistance variations
with Pt loading for three humidity conditions.

CLs. However, the local transport resistance to hydrogen in the anode CL is assumed

negligible and the resistance calculations are only carried out for oxygen transport in the

cathode CL. In particular, the oxygen in the pore space has to (1) dissolve in water, (2)

diffuse through the water film, (3) dissolve in ionomer, (4) diffuse through the ionomer

film, and (5) be adsorbed on the Pt surface, as shown in Fig. 2.2(a). The model does not

account for spherical diffusion, but uses instead a 1D diffusion equation to calculate the

local flux of oxygen:

NO2 =
cO2,pore − cO2,Pt

Rmicro
O2

, (2.21)

where NO2 , cO2,pore, and cO2,Pt are the oxygen flux near the Pt surface, oxygen concentra-

tion in the CL pore space, and its concentration at the Pt surface, respectively. Rmicro
O2

is

the total local transport resistance (see Fig. 2.2):

Rmicro
O2

= Rw,int +Rw,diff +Rion,int +Rion,diff +Reff
Pt,int, (2.22)

where the first, third, and last terms describe the interfacial resistances at the liquid film,
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ionomer film, and Pt surfaces, respectively. The second and fourth terms denote the

diffusional resistances through the water and ionomer thin films:

Rw,diff =
δw

DO2,w

, (2.23)

Rion,diff =
δion

DO2,ion

. (2.24)

A key argument made in developing the model is a geometrical one, where an effective

diffusion length through the ionomer is calculated based on the effective surface area of a

single Pt particle and the effective ionomer surface area available for that particle:

Aeff
Pt = 4πr2

PtθPt, (2.25)

Aeff
ion =

4π(rc + δion)

nPt

, (2.26)

where rPt and rc are the Pt and carbon primary particle radii, respectively, θPt denotes

the fraction of Pt surface not covered with oxide species (see Section 2.2.5), δion is the

ionomer film thickness, and nPt is the number of Pt particles deposited on a single carbon

particle. The effective ionomer film thickness is then calculated by:

δeff
ion =

Aeff
ion

Aeff
Pt

δion. (2.27)

The same scaling factor is used to scale the interfacial resistance at the Pt surface:

Reff
Pt,int =

Aeff
ion

Aeff
Pt

RPt,int. (2.28)

This scaling is one of the most important features of the model, as it compensates for

the fact that 3D spherical diffusion is neglected, and allows for the effects of high fluxes

near sparsely deposited Pt particles to be captured by the model (see Fig. 2.2). It is

imperative, however, to be cautious and not put too much emphasis on the source of the

local transport resistance in this model. As mentioned earlier, the electrode structure

assumed in this model is contentious. Nevertheless, on a macro-level, the predictions
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match the experimental observations, which is the most important aspect for full cell

simulations.

Finally, another important assumption made in the model is that the interfacial re-

sistances are proportional to the diffusional resistances. This is done due the lack of

measured data for the interfacial resistances at various interfaces. In particular, three

fitting parameters k1, k2, and k3 are introduced:

Rion,int = k1
δion

DO2,ion

, RPt,int = k2
δion

DO2,ion

, Rw,int = k3
δw

DO2,w

. (2.29)

Therefore, the various terms contributing to the transport resistance are identified.

It is also important to have a consistent set of structural parameters for the CLs. To

this end, the volume fraction of different phases in the CL, including Pt, carbon, ionomer,

and pore space are calculated as follows [41,252]:

εc =
1

ρc

Lc

δCL

, (2.30)

εPt =
1

ρPt

LPt

δCL

, (2.31)

εion = (IC)εc
ρc

ρion

(
1 +

MH2Oρion

ρlEW
λ

)
, (2.32)

εCL = 1− εc − εPt − εion. (2.33)

where εi is the volume fraction of phase i (carbon, Pt, ionomer, pore space), Lc/Pt is the

carbon/Pt loading, ρi is the density of i, and IC denotes the ionomer to carbon ratio.

The remaining volume not occupied by carbon, Pt, or ionomer constitutes the CL pore

space (εCL). Lastly, the ionomer and liquid water film thicknesses are given by:

δion = rc

[
(
εion

εc

+ 1)(1/3) − 1

]
, (2.34)

δw =

[
sεCL(

r3
c

εc

) + (rc + δion)3

](1/3)

− (rc + δion). (2.35)

This completes the CL model used in this dissertation. The reader is referred to [82] for
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further details about this model.

2.2.3.4 Effective Diffusivity Calculations

To calculate the effective diffusivity for each gaseous species, we start with the binary

molecular diffusivity values that are shown in Table 2.5. Accounting for the Knudsen

diffusion regime, which is especially important for the MPL and CL due to their smaller

pore size [248], the overall diffusivity is estimated with the Bosanquet relation [268]:

Di =

(
1

DKn,i

+
1

Di,j

)−1

, (2.36)

where Di,j is the binary diffusivity of species i in j and DKn,i is the Knudsen diffusion

coefficient for species i, which is given by [268]:

DKn,i =
2rKn

3

√
8RT

πMi

. (2.37)

In the above equation, rKn denotes the Knudsen radius for the porous layer of interest.

Table 2.5: Binary diffusion coefficients

Species [Reference] Binary Diffusivity [cm2/s]
O2 [268] DO2,N2 = 0.181101.325

p
( T

273.2
)1.75

H2 [269] DH2,H2O = 0.915101.325
p

( T
307.1

)1.75

H2O anode [269] DH2O,H2 = 0.915101.325
p

( T
307.1

)1.75

H2O cathode [269] DH2O,N2 = 0.293101.325
p

( T
298.2

)1.75

To derive the effective diffusion coefficients, the tortuosity of transport pathways must

be taken into account. Therefore, the effective diffusivity is given by:

Deff
i =

ε

τ
Di, (2.38)

where τ is the tortuosity factor for the porous layer. The tortuosity factor is often esti-
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mated with a Bruggeman type relation as follows [144]:

τ = ε−nBrugg (2.39)

Additional modifications to the above Bruggeman relation are required for flooded porous

layers. Alternatively, an approximation of the following form may be employed [144]:

Deff
i = f(ε)g(s)Di (2.40)

where f(ε) and g(s) are used to model the effects of porosity reduction and liquid accu-

mulation on increased tortuosity. Here, we use the following relations for f and g [144]:

f(ε) = ε(
ε− 0.11

1− 0.11
)ne , (2.41)

g(s) = (1− s)nv , (2.42)

where nv and ne are used as fitting parameters for the model.

2.2.3.5 Gas Crossover through the Membrane

Gas permeation through the membrane affects the cell performance. Most importantly,

nitrogen buildup in the recirculating anode feed should be taken into account. However,

reactant crossover can also be important, since it results in performance loss [15, 270].

Accordingly, the model accounts for crossover of all gaseous species. It is assumed that

the hydrogen crossing over to the cathode reacts with the available oxygen immediately

to produce water. The same assumption applies to the oxygen that crosses over to the

anode side. Overall, the crossover fluxes are given by:

Ni,mb = Ψi

pca
i,CL − pan

i,CL

δmb

, (2.43)

where p
an/ca
i,CL denotes partial pressure of gas species i (H2, O2, or N2) in the anode/cathode

CL, Ψi denotes the corresponding membrane gas permeability, which is given in Table
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2.6 for different species, and δmb is the membrane thickness. Lastly, the nitrogen partial

pressures can be approximated by their respective values in the flow channels with small

errors. However, partial pressures of oxygen and hydrogen must be evaluated in the CLs

due to their non-negligible fluxes through the thickness of the porous layers.

Table 2.6: Membrane gas permeability

Species [Reference] Permeability [mol/(cm · bar · s)]
H2 [271] 15.70× 10−9 exp(−20280

RT
) + fv × 45.00× 10−9 exp(−18930

RT
)

O2 [271] 6.74× 10−9 exp(−21280
RT

) + fv × 50.50× 10−9 exp(−20470
RT

)

N2 [272] (0.0295 + 1.21fv − 1.93fv
2)× 10−9 exp[24000

R
( 1

303
− 1

T
)]

2.2.4 Transport Model Simplifications

2.2.4.1 Reduced-Order Model for Mass Transport Across the MEA

The coupled system of PDEs presented in equations 2.3-2.6 requires considerable com-

putational effort to solve. Therefore, it should be simplified for real-time modeling. As

a first step in simplifying the solution, we note that the gas phase dynamics are fast.

Therefore, the dynamics for reactant concentration can be safely ignored. Furthermore,

only the reactant concentrations at the active sites are of interest and their distribution

throughout the MPL and GDL thickness is of no critical importance. Assuming that the

local current density is known, a molar flux can be calculated for each reactant. Specif-

ically, NO2 = idens
4F

and NH2 = idens
2F

. This molar flux combined with the known channel

concentration can be utilized to estimate reactant concentration at the active sites and

replace the diffusion PDE for reactants with the following algebraic equations:

cO2,Pt = cO2,CH −RO2

idens

4F
, (2.44)

cH2,Pt =
RT

HH2

(
cH2,CH −RH2

idens

2F

)
, (2.45)
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where Ri is the total transport resistance for reactant i between the channel and the Pt

sites and ci,CH and ci,Pt denote the concentration of i in the flow channel and at the Pt

sites, respectively. Note that the Henry’s law constant, H, appears explicitly for H2 [1],

but is implicitly included in RO2 for O2 [82] (see Section 2.2.3.3). The reactant transport

resistance is calculated as the sum of convective resistance through the flow channel and

diffusive resistances through the different porous layers:

Ri = Ri,CH +Ri,GDL +Ri,MPL +Ri,CL +Rmicro
i,CL . (2.46)

The first term on the right hand side denotes the convective transport resistance at the

GDL-CH interface, while the second to fourth terms describe the diffusional gas transport

resistance through different layers. The last term in equation 2.46 is the local transport

resistance in the CL. In this dissertation, this last term is assumed zero for all gas species

except O2, whose local transport resistance is non-negligible (see Section 2.2.3.3). The

convective resistance is determined by the Sherwood number [3]:

Ri,CH =
Dh

Sh ·Di

. (2.47)

where Dh is the channel hydraulic diameter, Sh is the Sherwood number, and Di is the

diffusivity of species i in free space (i.e., no porosity/tortuosity correction is applied).

The diffusional resistance through each cell layer is given by:

Ri,layer =
δlayer

Deff
i

, (2.48)

where δlayer is the particular layer thickness and Deff
i is the effective diffusivity of species

i in that layer (see Section 2.2.3.4).

The next step in simplifying the governing equations relates to the water transport

problem through the MEA thickness. In particular, we are interested in a reduced-order

model that captures the sorbed water (λ) distribution through the CCM as well as the
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water vapor concentration in the MEA. To this end, we note that although the ionomer

water transport equation (equation 2.6) represents a nonlinear diffusion equation, its

solution usually tends to yield a linear distribution for λ. This is especially the case

for thin membranes, which are typically used in state-of-the-art fuel cell stacks. This

observation allows us to capture the distribution of λ with three states across the CCM

thickness; one for the anode CL, one for the membrane, and one for the cathode CL.

Therefore, equation 2.6 can be replaced by three ODEs:

εan
ion

ρion

EW

dλan
CL

dt
=

1

δan
CL

(
−Nan

w,mb + 2NO2,mb

)
+ San

ad , (2.49)

εca
ion

ρion

EW

dλca
CL

dt
=

1

δca
CL

(
N ca

w,mb +
idens

2F
+NH2,mb

)
+ Sca

ad, (2.50)

εmb
ion

ρion

EW

dλmb

dt
= − 1

δmb

(
N ca

w,mb −Nan
w,mb

)
, (2.51)

where N
an/ca
w,mb denotes the water flux on either side of the membrane (equation 2.7) and

λmb and λCL are the average membrane and CL ionomer water contents, respectively.

This approach is equivalent to using a coarse spatial discretization for the original PDE

with only 3 control volumes across the CCM thickness. The above equation set governs

the dynamics for sorbed water through the CCM by accounting for water transport in the

ionomer phase, electrochemical water production, and water exchange with the pore space.

Additionally, recall that any reactant crossed over through the membrane is assumed to

react immediately to produce water in the ionomer phase.

As for the average vapor concentration in the CLs, the associated dynamics are given

by:

εan
g,CL

dcan
v,CL

dt
=

1

δan
CL

(
−
can

v,CL − can
v,CH

Ran
v

)
+ San

pc − San
ad , (2.52)

εca
g,CL

dcca
v,CL

dt
=

1

δca
CL

(
−
cca

v,CL − cca
v,CH

Rca
v

)
+ Sca

pc − Sca
ad. (2.53)

In the above equations, Ran/ca
v is the total resistance to vapor transport between the CL

53



and the channel, which can be calculated by equation 2.46. These equations account for

vapor diffusion, water exchange with the ionomer, and the phase change process. Similar

to reactant transport, the underlying dynamics are fast and may be ignored. Here, we have

chosen to work with the dynamic equations rather than the steady state approximations

mostly for numerical simplicity. In particular, note that equations 2.49-2.53 must be

solved in a coupled manner to determine the water balance across the CCM. Assuming

quasi-steady state conditions for vapor concentrations would result in replacement of the

above ODEs (equations 2.52 and 2.53) with algebraic counterparts. However, solving

the complete set of ODEs is simpler in terms of the numerical computations, since the

dynamics result in some level of numerical damping and improve convergence speed [273].

Therefore, it is helpful not to disregard the associated dynamics. Nevertheless, the quasi-

steady state assumption is still utilized for vapor concentrations throughout the rest of the

MEA. More specifically, we initially disregard the phase change source term and obtain

a linear distribution of vapor concentration through the thickness of all layers, namely,

the CL, MPL, and GDL. This can be done by utilizing the diffusional resistances in each

layer as well as the known boundary conditions at the CL and channel. In particular,

we can formulate this as the following system of linear equations to be solved for vapor

concentrations at the interfaces of various layers:
1 +

Rv,CL

Rv,MPL
− Rv,CL

Rv,MPL
0

−1 1 +
Rv,MPL

Rv,GDL
−Rv,MPL

Rv,GDL

0 −1 1 +
Rv,GDL

Rv,CH




cv,CL−MPL

cv,MPL−GDL

cv,GDL−CH

 =


cv,CL

0

cv,CH

 (2.54)

The above system is obtained by applying vapor flux continuity conditions across different

layers, i.e., the vapor flux through the CL should be the same as that through the MPL

and GDL. The two known quantities in the above system are the boundary conditions,

i.e., the vapor concentration at the flow channel and the CL (known from initial guess).

The solution of the system will determine the vapor concentrations at the interface of
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the layers. This system is solved for both the anode and cathode sides. Overall, this

allows us to obtain an approximate distribution of vapor concentration through the MEA

thickness. Once this distribution is available, any supersaturated vapor results in liquid

accumulation through condensation and the vapor fluxes are updated accordingly.

A final simplification step is that of decoupling the transport equations for heat and

liquid water from those of gas and sorbed water. Essentially, we assume the temperature

and liquid saturation remain constant for the duration of a single time step. After the

mass transport model is solved and a current and voltage distribution is obtained, the

liquid saturation and cell temperature distributions are updated by calling their respec-

tive subroutines that solve the underlying PDEs. In the case of liquid saturation, this

decoupling results in minimal loss of accuracy, as the dynamics of liquid accumulation

and removal are much slower than other transient phenomena. Therefore, liquid satura-

tion can be assumed to be constant for a short duration. This under-relaxation approach

has also been used in the literature and shown to improve convergence [89, 106]. As for

the temperature updates, the scheme employed here can result in loss of accuracy, since

the temperature dynamics can be fast, on par with the other considered transient phe-

nomena. Nonetheless, it should be noted that for the purpose of on-line estimation, we

are seeking an approximate solution and the significant computational benefits offered

by this approach make it a rational choice. Furthermore, some of the errors brought

about by this decoupling can be compensated for through effective parameterization of

the model, which is in itself a by-product of the computational efficiency offered by these

simplifications.

2.2.4.2 Proton and Gas Transport Trade-off in the Cathode CL

With the structural assumptions and local oxygen transport resistance calculations de-

scribed in Section 2.2.3.3, it remains to efficiently model the trade-off between proton and

reactant mass transport in the cathode CL. It should be noted that a distributed model
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of the CL that solves for the variations of oxygen concentration and ionomer conductivity

through the CL thickness will automatically explore such trade-offs [89]. However, such

an approach will be computationally intensive, as it requires keeping track of a relatively

large number of states through the CL thickness. Therefore, the challenge is in obtain-

ing an approximate solution to this problem with the minimal number of state variables.

Specifically, the aim is to develop a lumped model that requires only average values of

ionomer water content (according to equation 2.50), liquid saturation, and oxygen con-

centration in the cathode CL, rather than their respective distributions. To this end, we

define a new parameter for cathode CL utilization (χ). This parameter is used to explore

the proton and gas transport trade-offs in the cathode CL. Particularly, χ represents the

fraction of the cathode CL that is accessible to both oxygen and protons without signifi-

cant mass or proton transport limitations. To calculate χ, one has to minimize the sum

of ohmic and ORR activation losses in the CL, as shown schematically in Fig. 2.3. This is

done by first estimating the effective proton transport resistance in the cathode CL using

the method proposed by Neyerlin et al. [274]. Shortly, the model calculates this effective

protonic resistance as a function of the total resistance:

Rca
CL =

δca
CL

(εca
ion)nBruggκca

CL

, (2.55)

Rca,eff
CL =

χRca
CL

3 + ζ
+ (1− χ)Rca

CL, (2.56)

where Rca
CL and Rca,eff

CL denote the total and effective cathode CL protonic resistance, re-

spectively, nBrugg is the Bruggeman exponent that is used to model the connectivity of

the ionomer network [14], and ζ is a polynomial fit to the solution obtained by Neyerlin

et al. [274], given by:

ζ = −8.287× 10−3ϑ2 + 7.184× 10−1ϑ− 2.072× 10−3. (2.57)
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Figure 2.3: Schematic for calculation of cathode CL utilization factor: The effective reaction
front, shown with the vertical black line, is defined to be at the location of minimum voltage
loss due to a combination of mass and proton transport limitations. It is assumed that no ORR
takes place to the left of the effective reaction front due to severe mass transport limitations.

In this equation, ϑ =
idensR

ca
CL

b
, where b = 2.303RT

αcaF
is the Tafel slope. It should be noted

that Neyerlin et al. developed their results for effective CL protonic resistance using a

simplified Tafel expression [274]. However, we use a coverage-dependent ORR kinetics

model (see Section 2.2.5), which is expected to impact the estimated resistance to some

extent. This difference is neglected here for simplicity.

If oxygen transport is efficient and imposes no limitations, i.e., χ = 1, then the above

calculation yields the same estimate for the effective protonic resistance in the cathode

CL as that obtained by Neyerlin et al. [274]. In case of oxygen transport limitations, i.e.,

χ < 1, it is assumed that a fraction 1−χ of the CL close to the membrane is not accessible

to oxygen. Therefore, no reaction takes place in this region of the CL and protons coming

through the membrane have to be transferred through this portion of the CL without

participating in the ORR, i.e., (1 − χ)δCL is treated as an extension of the membrane.

This results in an additional protonic resistance in the CL, which is taken into account
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through the second term on the right hand side of equation 2.56. Since the portion of CL

closest to membrane does not participate in the ORR, the effective resistance to oxygen

transport through the CL thickness has to be modified accordingly. In particular, we

modify equation 2.48 for oxygen transport resistance in the CL as follows:

RO2,CL =
χδca

CL

Deff
O2

. (2.58)

As mentioned earlier, χ can be determined by minimizing the sum of activation and

CL proton transport losses. This minimization can be carried out analytically as follows:

d
(
ηORR + idensR

ca,eff
CL

)
dχ

= 0, (2.59)

where ηORR is the ORR activation overpotential, which is affected by mass transport lim-

itations (see Section 2.2.5). The solution is obtained through symbolic calculation, which

yields a rather involved expression that is not presented here due to space considerations.

It should be noted that the solution has to satisfy χ ∈ [0, 1]. In case the computed solu-

tion is out of this range for some conditions, it is simply projected onto this domain. For

instance, χ > 1 yields the intuitive result of χ = 1. This completes the reduced model

formulation for the cathode CL.

2.2.5 Terminal Voltage and Reaction Kinetics

The terminal cell voltage is given by:

Ecell = EOCV − ηHOR − ηORR − idens

(
Rmb +Rca,eff

CL +Relec

)
. (2.60)

The various terms in the above equation are given in Table 2.7. The description of various

parameters can be found in the nomenclature. For any given cell voltage, this equation

is solved iteratively to find the corresponding current density at each location along the

flow channel.
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Table 2.7: Terminal cell voltage and reaction kinetics

Quantity Equation
EOCV 1.229− 8.5× 10−4(T − 298.15) +

(
RT
4F

)
ln (pH2,Pt

2pO2,Pt)

ηORR
RT
αcaF

[
ln
(

idens+ix
i0,caχδcaCLa

ca
Pt

)
+ ωθPtO

RT

]
ηHOR

RT
αanF

(
idens

i0,anδanCLa
an
Pt

)
Rmb

δmb

κmb
(see Table 2.4 for membrane conductivity)

Rca,eff
CL equation 2.56

Relec model parameter (constant)

Auxiliary variables

i0,ca fRH(1− θPtO)iref
0,ca

(
cO2,Pt

crefO2

)γca
exp

(
−Eact,ca

R
( 1
T
− 1

303
)
)

i0,an iref
0,an

(
cH2,Pt

crefH2

)γan
exp

(
−Eact,an

R
( 1
T
− 1

303
)
)

ix 2FNH2,mb

The ORR kinetics model used here is based on the modified Tafel expression proposed

by Subramanian et al. [110] that accounts for coverage of Pt sites with oxide species. The

oxide coverage profile with respect to electrode potential as well as its dynamic growth

are of critical importance in accurately modeling the transient performance of the cell.

Accordingly, we use the following model for oxide growth dynamics, which assumes that

water oxidizes Pt sites [92,241]:

dθPtO

dt
=kPtO

[
RH(1− θPtO) exp

(
αPtOFηPtO − EPtOθPtO

RT

)
−θPtO exp

(
−(1− αPtO)FηPtO

RT

)]
. (2.61)

In this equation kPtO is the oxide formation rate constant and ηPtO is given by:

ηPtO = EOCV − ηORR − Erev,PtO, (2.62)

where Erev,PtO is the reversible potential for PtO formation. Modeling the oxide film
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growth is especially important in capturing the voltage/current transients at higher po-

tentials.

Finally, it should be pointed out that the ORR kinetics are assumed to be RH de-

pendent based on the experimental observations in the literature [116, 117]. Although

the significance of this effect has been questioned [115,118], the approach adopted herein

is still beneficial in capturing the impact of lowered RH on accessibility of Pt particles

deposited inside the inner catalyst pores of high surface area carbon support [275, 276].

This RH dependency is captured through the factor fRH that scales the cathode exchange

current density. This factor depends on the ionomer water content as follows:

fRH = (1− σf )fRH,c + σf , (2.63)

where σf is a sigmoid function defined as:

σf =
1

1 + exp(
fRH,aλsat(T )−λ

fRH,b
)
. (2.64)

In the above equations, fRH,a, fRH,b, and fRH,c are fitting parameters and λsat(T ) denotes

the ionomer water content under saturated condition at any given temperature (see Table

2.4).

2.2.6 Boundary Conditions

The heat equation (equation 2.5) is solved with convective boundary conditions at the

coolant channel interfaces on both the anode and cathode sides. The convection coefficient

(hconv) is treated as a fitting parameter for the model. For liquid water transport (equation

2.4), a zero flux boundary condition is used at the membrane interface with the CL, while
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the channel boundary condition is given by:

pl,CH =

 0 under the channel

min(pN
l , 0.1) under the land

(2.65)

where pN
l denotes the liquid pressure in the control volume adjacent to the flow channel.

Liquid water under the land faces extra resistance in flowing into the channel. The above

boundary conditions are intended to model this additional resistance.

2.2.7 Numerical Implementation

The PDEs for heat and liquid water transport (equations 2.4 and 2.5) are spatially dis-

cretized using the control volume (CV) method. The through-plane direction is discretized

using 20 CVs for each GDL, 4 CVs for each MPL, 4 CVs for each CL, and 1 CV for the

membrane. The Backward Euler method is used for time stepping in both cases. For

the liquid water transport problem, Jacobian linearization is utilized for the nonlinear

terms [277]. The resulting linear system in each case (heat and liquid water transport

problems) is tri-diagonal and is solved using the Thomas algorithm [278]. It should be

pointed out that the relative permeability is zero when no liquid exists within a control

volume. This eliminates the diffusive term and is known to cause stability issues. In recent

PEM fuel cell modeling literature, this issue has been overcome by adding a small artifi-

cial value to the permeability to ensure it never vanishes [90,279]. While this approach is

certainly acceptable given that the added values are much smaller than the uncertainty

in the actual permeability estimates, it is not a consistent stabilization method, since it

increases the permeability artificially. In this work, we utilize permeability upstreaming

as a consistent way of dealing with such instability issues [280]. Upstreaming essentially

amounts to evaluating the relative permeability using the liquid saturation of the control

volume in the upstream, which ensures that the permeability at the advancing front is
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never zero.

As for the water balance problem across the CCM, the set of ODEs given by equations

2.49-2.53 are discretized in time using the Backward Euler method. This was deemed

necessary, as the equation system is stiff and the numerical damping offered by backward

Euler helps in this regard [273]. The discretized system is solved along with the algebraic

equation for the cell voltage (equation 2.60) using the Newton iterations with analytical

Jacobian. Finally, forward Euler is used for the channel model (Table 2.1). Regarding

the spatial discretization along the flow channels, either 12 or 27 nodes are used for

the presented results depending on the channel length, as we have found that a channel

segment that is larger than 1 cm in length, can result in numerical inaccuracies in our

implementation. Finally, a fixed time step size of 100 milliseconds is used for the model.

A version of the model has been implemented in C. The code is then used as an S-

Function block in Simulink in order to simplify the user interface. The P2D2 Simulink

model with co-flow channel configuration and 12 nodes along the flow channel runs about

50 times faster than real time on a laptop computer with a 2.4 GHz processor. The worst

case computation for a given time step typically takes less than 10 milliseconds. The

counter-flow configuration is typically between 2 to 3 times slower than the co-flow case

due to the iterative scheme employed (see Section 2.2.7.2). All of these computation times

are cut in half when the land region is not considered, i.e., a P2D model. This is the case

for the model validation presented in Section 2.3.

2.2.7.1 Potentio-dynamic vs. Galvano-dynamic Simulations

The model is formulated assuming potentio-dynamic mode of operation, i.e., cell voltage is

the input to the model and current density is one of its predicted outputs. This approach

allows us to obtain the current distribution along the flow channels without the need for

an iterative scheme, as the cell voltage at each location can be used directly to estimate

the local current density, while ensuring the electrode potential remains constant along
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Figure 2.4: The numerical scheme used for galvano-dynamic simulations, where a PI controller
is used to find the correct voltage input to the model.

the flow channel. On the other hand, modeling the galvano-dynamic mode of operation

will require an iterative method to ensure that the electrodes are equipotential along the

flow channel and will result in a loss of computational efficiency. To avoid this issue while

simulating galvano-dynamic operation, we close the loop on the potentio-dynamic model

using a simple proportional-integral (PI) controller to adaptively change the set point

for cell voltage so that the predicted current density matches the galvano-dynamic input

current density. This approach, shown in Fig. 2.4, ensures zero steady-state error due to

the integral action. Nevertheless, some transient error exists, which can be minimized by

properly tuning the controller gains. In our simulations we have found that zero tracking

error is achieved within 2 seconds of load change for all of the tested conditions. This

time is in fact less than 1 second for most of the cases. Therefore, the transient loss of

accuracy is minimal and the computational benefits clearly outweigh such losses.

2.2.7.2 Iterative Scheme for Counter-Flow Configuration

The model also has the capability to simulate the counter-flow configuration. This is

achieved by designing a new iterative scheme. In particular, the anode stream flows in

the opposite direction of the cathode and coolant streams under the counter-flow configu-

ration. Therefore, this case cannot be handled easily within the P2D modeling framework,

as this framework relies heavily on the flow of information on both sides of the cell being

in the same direction. This necessitates the need for an iterative scheme. The intuitive ap-

proach would be to guess the concentration values at the anode outlet and solve the model

as if it were co-flow with these values as the anode inlet values. The initial guess can then

63



Guess vapor �ux values at the CH-GDL

interface for each channel segment

(N
v,CH-GDL,guess

)

Calculate total vapor �ow rate in each

channel segment using the inlet

vapor �ow rate and the estimated

vapor �uxes at the CH-GDL interface

Calculate the vapor concentration in

each channel segment

Solve the MEA water balance model

and calculate the vapor �ux at

the CH-GDL interface (N
v,CH-GDL,cal

)

Is
N

v,CH-GDL,cal

N
v,CH-GDL,guess

-N
v,CH-GDL,cal

 < e
tol

?
∞

Start

Finish

N
v,CH-GDL,guess

=α
update
N

v,CH-GDL,guess
+

  (1-α
update

)N
v,CH-GDL,cal

Yes

No

Figure 2.5: Flowchart for the iterative scheme used to simulate counter-flow mode of operation.
etol is the tolerance used for convergence and αupdate ∈ [0, 1] is an iteration parameter that
affects the convergence rate. We use etol = 0.005 and αupdate = 0.5 in the simulations presented
here and solutions from previous time steps are used to warm-start the iterations.

be refined until the calculated anode outlet values match the known inputs. However, this

approach, which is known as the shooting method, creates a positive feedback loop for

the estimation of water flow rates in the anode channel, leading to numerical instabilities.

Instead, we have designed the iterations around the total water flow rate in each segment

of the anode channel: we start with an estimate of the vapor flux at the channel-GDL

interface at each location along the anode channel. These flux values are used to calculate

the total water vapor flow rate and the corresponding vapor concentration in each channel

segment. The vapor concentration values in the anode channel can be used to solve the

model similar to the co-flow case and calculate the vapor fluxes at the anode channel-GDL

interfaces. The calculated values are compared with the initial guessed values and the
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process is repeated until convergence is achieved. This iterative scheme is shown in Fig.

2.5 and is numerically stable and converges (with a relative tolerance of 2%) in less than

10 iterations in most cases. With this number of iterations, the model can still achieve

real-time performance even when the worst case computations are considered.

2.3 Model Validation

2.3.1 Experimental Data

The model is validated against data from two stacks with different material sets and

designs. The detailed operating conditions and stack designs are proprietary. However, a

high level description of each stack and the corresponding dataset is provided below.

The first dataset, denoted by ”Stack A”, contains polarization and high frequency

resistance (HFR) data, measured at 1 kHz, obtained from a cell with a cathode Pt loading

of 0.15 mg/cm2 and a small active area (40 cm2) operated under differential operating

conditions (high stoichiometric ratio). This dataset, which is collected under co-flow

configuration, includes 4 different operating conditions intended to replicate various real-

world scenarios and constitutes a rather wide operating range, covering temperatures

from 40 to 80 ◦C. Importantly, high current densities up to 3 A/cm2 are achieved in each

case, allowing for the model predictions under such high loads to be critically examined.

Due to differential operation setting, no significant transients are observed in the data.

Therefore, model validation is carried out using the steady state polarization and HFR

values from Stack A.

The second dataset, denoted by ”Stack B”, contains only polarization data from an

automotive size stack with a 0.4 mg/cm2 cathode Pt loading and a large active area (about

300 cm2). All of the tests are conducted at 70 ◦C, while the effects of humidity conditions

have been extensively explored. Variations in the reactant stoichiometric ratios and low
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stoichiometry operation allow us to better investigate mass transport limitations.

It should be noted that the plates used in both stacks have very small land/channel

ratio on both the anode and cathode sides. As such, the in-plane distributions are disre-

garded in the model, i.e., the transport equations are only solved under the channel (P2D

model). The role of transport under the land is explored with the P2D2 model in Section

2.4.

2.3.2 Model Parameterization

A set of 20 parameters is chosen to fit the model to the experimental data. This partic-

ular choice was made based on a preliminary sensitivity analysis that showed the model

predictions to be sensitive to variations in these parameters at the experimental operating

conditions. The uncertainty in the morphology of different cell components and the con-

tinuum modeling framework further motivated this choice. The set of fitting parameters

are shown in Table 2.8 along with the identified values for each stack.

The parameters specified in Table 2.8 represent factors that control the kinetic, ohmic,

and mass transport characteristics of the cell response. Therefore, they can be identified

separately using data from different parts of the polarization curve (see Chapter 4). How-

ever, in this chapter we identify all of the parameters together using the entire dataset.

In particular, we seek parameter values that minimize the following cost function:

J(θ) =
‖eV (θ)‖2√

nV
+
‖eR(θ)‖2√

nR
+ r1‖I(|eV (θ)| − 10)� (|eV (θ)| − 10)‖2

+ r2‖I(|eR(θ)| − 10)� (|eR(θ)| − 10)‖2, (2.66)

where � denotes element-wise multiplication, eV is the vector containing nV voltage

prediction errors in mV, eR is the vector of nR HFR prediction errors in mΩ · cm2 (for

Stack A data), r1 and r2 are weight parameters (both set to 100 here), and I(x) denotes
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Table 2.8: Model parameters for identification and the identified values

Parameter [Units] Range Scaling Stack A Stack B
ω [kJ/mol] [10−1, 101] Logarithmic 4.77 5.88

iref
0,an [A/cm2] [10−3, 10−1] Logarithmic 0.1 0.003

iref
0,ca [A/cm2] [10−9, 10−6] Logarithmic 1.29× 10−7 9.7× 10−7

αca [−] [0.5, 1] Linear 0.81 0.55

γca [−] [0.5, 1] Linear 0.99 0.86

Eact,ca [kJ/mol] [30, 80] Linear 53.4 51.1

Erev,PtO [V] [0.75, 0.9] Linear 0.76 0.79

kcross [−] [0.001, 2] Linear 0.0102 0.52

ξdiff,mb [−] [0.1, 10] Logarithmic 1.0 1.18

fRH,a [−] [0.4, 0.9] Linear 0.60 0.53

fRH,b [−] [0.5, 4] Linear 0.58 0.50

fRH,c [−] [0.3, 1] Linear 0.37 0.56

Relec [mΩ · cm2] [30, 60] Linear 54 30.4

κ0 [S/cm] [0.15, 0.55] Linear 0.31 0.41

κres [S/cm] [0.001, 0.006] Linear 0.0026 0.0021

Eact,mb [kJ/mol] [10, 30] Linear 25.2 25.7

kT,scale [−] [0.1, 10] Logarithmic 0.704 0.611

hconv [W/(cm2 ·K)] [0.05, 20] Logarithmic 12.79 0.059

nv [−] [1, 3] Linear 2.59 1.86

ne [−] [1, 3] Linear 1.89 2.93

the indicator function of x, given by:

I(x) =

 1 x > 0

0 x ≤ 0
. (2.67)

With this, the last two terms in equation 2.66 put an additional penalty on voltage errors

exceeding 10 mV or HFR errors exceeding 10 mΩ · cm2. This cost is minimized for

each stack separately, identifying a different parameter set for each stack. Note that the

67



steady state data is used for parameterization. Since the model is transient in nature, it

is allowed enough time to reach the steady state conditions before comparison is made

with the experimental data. Moreover, since the parameters have largely different ranges,

they are all scaled to a unit interval (between 0 and 1) using linear or logarithmic minmax

scaling (see Table 2.8):

θ̄i =
θi − θi,min

θi,max − θi,min

, (2.68)

log θ̄i =
log θi − log θi,min

log θi,max − log θi,min

, (2.69)

where θ̄i is the normalized parameter value and θi,min/max denotes the respective parameter

bound. This scaling was determined to be essential in successfully identifying all of the

parameters together. The identification is carried out using particle swarm optimization

(PSO) [281] in MATLAB, which is a global optimization routine that efficiently explores

the entire parameter space to find the optimal parameter set. A swarm size of 200 was

used and the optimization was terminated after 200 iterations, at which point the cost was

not decreasing any further. The algorithm was executed several times for each dataset

and the results with lowest cost are reported here. It should be noted that due to the

stochastic nature of the algorithm, each run can yield a new parameter set.

2.3.3 Results for Stack A

The polarization curves for the 4 conditions comparing the experimental data and the

model predictions are shown in Fig. 2.6. The corresponding results for the HFR are

provided in Fig. 2.7. It should be noted that each polarization curve consists of 15

points, starting from open-circuit voltage (OCV) and ending at 3 A/cm2. This results in

a total of 60 polarization data points across all 4 operating conditions. As for HFR data,

only 7 measurements were made, shown as filled diamonds in Fig. 2.7. The experimental

trend lines shown in the figure are estimations based on prior measurements using the
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Figure 2.6: Model validation results using Stack A data. Polarization curves for 4 different
operating conditions are considered.

same test stand.

Overall, we observe that the model captures the trends in the data very well. The

maximum error in voltage across all 60 data points is 11.9 mV, while the maximum HFR

error is 10 mΩ·cm2. The fact that these fits are obtained with reasonable parameter values

further highlights the model’s capability to capture the most relevant physical phenomena

critical to performance predictions.

A few comments about the parameterization process are in order. First, we found

that the polarization data alone may be fitted with a variety of parameter combina-

tions. In other words, the model is not structurally identifiable [282] using only voltage

measurements at these 4 operating conditions. The fact that a polarization curve may

be reproduced with different parameter combinations has also been pointed out by oth-
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Figure 2.7: Model validation results using Stack A data. HFR data for 4 different operating
conditions are considered. The measurement points are shown as filled diamonds. The empty di-
amonds are estimates based on prior testing data using the same test stand and do not represent
actual measurements in this particular dataset.

ers [149,283]. Nonetheless, the operating conditions can be optimized to ensure maximum

information is contained in the polarization data. In fact, even in this dataset, having the

polarization data at 40 and 80◦C helps reduce the uncertainty in the identified parame-

ters considerably. Second, as pointed out recently by Vetter et al. [218, 284], most of the

consequential parameters in these types of PEM fuel cell models are related to the mem-

brane water uptake and transport. Therefore, adding the HFR data to the identification

process can considerably increase the confidence in parameter estimates. These issues are

discussed further in Chapters 3 and 4.
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Figure 2.8: Model validation results using Stack B data. Polarization data were collected under
five humidity conditions. Three polarization curves were used for model parameterization (left),
while two curves were used for validation (right).

2.3.4 Results for Stack B

The validation results using data obtained from Stack B with co-flow configuration are

shown in Fig. 2.8. Overall, 5 different humidity conditions were tested, ranging from

30% to 100% RH. The RH value indicates humidity conditions in both the anode and

cathode channels. The data at three RH conditions were used in the optimization routine

to parameterize the model. The same parameter values were then used to validate the

model predictions against experimental values for the other two humidity conditions. As

seen in Fig. 2.8, the model predictions match the experimental results closely. The largest

error in voltage prediction is 12.8 mV. This indicates the model’s capability in accurately

predicting the stack performance when parameterized properly. Nevertheless, we note

that during model parameterization, we were able to find several parameter combinations

that yield reasonable model predictions as compared to available voltage measurements.

This further signifies the structural identifiability issues that are common for fuel cell

models and warrants more investigation of the topic that is pursued in Chapters 3 and 4.

The transient behavior for the dry conditions (RH=30%) is shown in Fig. 2.9. The

figure depicts voltage dynamics from experimental data with co-flow configuration along
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Figure 2.9: Voltage dynamics comparing modeling results and measurements obtained on Stack
B at RH=30% (left) and the corresponding model predictions for membrane hydration distri-
bution, current distribution, membrane temperature distribution, and PtO coverage dynamics
(right).

with the corresponding model predictions. It is observed that the model captures most of

the features seen in the transient measurements. In particular, the nonmonotonic voltage

response (seen as overshoot and undershoot) to step changes in the current density is

mostly captured. This response is due to membrane hydration/dehydration at higher

current densities, while Pt oxide coverage dynamics is the main contributing factor at

lower current densities. Note that the model predictions for the immediate response to

current density variations are also affected by the PI controller performance. Therefore,

some discrepancies between the model and measured transients immediately following a

step change in current density are to be expected.

In Fig. 2.9, two sections of the voltage transient response are magnified and provided

in the insets for further discussion. The first part corresponds to the highest load used in

the experiments (1.4 A/cm2). During this time, some voltage swings are observed, which

correspond to variations in the inlet coolant temperature. A decrease in the inlet coolant

temperature is observed to result in an increase in the cell voltage, which is attributable

to better membrane hydration. The voltage sensitivity to these temperature variations
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is accurately captured by the model. The second inset shows the voltage dynamics at

lower loads above 0.8 V. For this case we observe a voltage overshoot followed by a

relatively slow decay in the measured cell voltage after the current density is lowered.

This behavior is mainly due to the formation of oxide species on Pt sites and is partially

captured by the model (see the Pt oxide coverage plot in Fig. 2.9). In particular, the

measurements show signs of a second-order system with two separate time constants; a

fast decay on the order of tens of seconds, followed by slower response that settles on the

order of hundreds of seconds. This behavior may be attributable to formation of different

oxide species [285]. Since the present model only incorporates PtO coverage, the slow

dynamics are not captured accurately. Nonetheless, such behavior rarely has relevance to

performance optimization for it to prompt further model development.

In addition to voltage dynamics, Fig. 2.9 also shows the membrane hydration, average

membrane temperature, and current density distribution along the flow channel, as well

as the oxide coverage dynamics. Membrane hydration, temperature, and current density

are all seen to increase along the flow channels. However, membrane hydration shows

an interesting behavior, where it dramatically increases near the outlet region. This

is especially the case for drier conditions with the co-flow configuration. Under such

conditions, the low inlet humidity results in a dry membrane. But the water produced

near the inlet of the cell humidifies the channel gas streams, which in turn helps improve

hydration near the outlet region.

To finalize our discussion on the modeling results for the experimental conditions, Fig.

2.10 provides the along-the-channel distributions of current density, membrane hydration,

normalized water crossover, and channel and CL RH at a current density of 1.4 A/cm2

(corresponding to Time = 1700 s in Fig. 2.9). The plots also provide a comparison

between distributions for the co-flow and counter-flow configurations. A few observations

are in order. First, we note the close correspondence between the current density and

membrane hydration distributions along the flow channels. Particularly, the membrane
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Figure 2.10: Effects of flow configuration on along-the-channel distributions at 1700 s as pre-
dicted by the model. Current density, membrane hydration, and normalized membrane water
crossover distribution (top), and relative humidity distributions in the anode and cathode chan-
nels and catalyst layers (bottom).

hydration is seen to increase monotonically from inlet to outlet for the co-flow case,

whereas a peak in membrane hydration is observed near the middle of the cell for the

counter-flow configuration. As for the current densities, the distribution for the counter-

flow case aligns with its corresponding membrane hydration. For the co-flow case, the

current density is seen to initially increase from the inlet towards the outlet with improved

membrane hydration. However, near the outlet, the current density drops slightly due

to mass transport limitations. In fact, this current distribution is typical for co-flow

operations and the location of the peak current density is closely related to the inlet

humidity conditions, with higher humidities resulting in a peak current density closer to

the inlet. The figure also shows the normalized membrane water crossover defined as the
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rate of water crossover to the anode side normalized by the local water generation:

β =
Nw,mb

idens/2F
. (2.70)

As is typically the convention, a positive value denotes flow from anode to cathode. This

plot clearly shows the water recirculation mechanism for the counter-flow configuration,

wherein near the cathode inlet the humidified anode outlet stream results in a net water

crossover towards the cathode. However, as we move along the cathode channel and

the cathode stream becomes humidified, the net water crossover changes towards the

anode, humidifying the incoming dry anode stream. This mechanism, which can also be

seen from the channel RH distributions, is the main feature of counter-flow operation

reported in both experimental and modeling literature [86, 104, 286, 287]. The same plot

also shows that the net water crossover is consistently towards the anode side for the

co-flow case, which is in agreement with experimental observations for state-of-the-art

and thin membranes [288]. Finally, the CL RH values are also shown in Fig. 2.10. This

plot highlights the fact that even when the channel streams are saturated, the CL can

experience sub-saturated conditions due to the heat released through the electrochemical

reactions. This has also been observed experimentally in the literature [289].

While measurements for such distributions were not available in our experimental set-

up, their qualitative agreement with experimental results in the literature showcase the

present model’s capabilities in capturing these trends. Overall, the very good quantita-

tive agreement with available measurements, the aforementioned qualitative agreement

with literature data, the robustness of the numerical algorithms in solving the model for

real operating conditions without convergence issues, and the fact that these results are

obtained more than an order of magnitude faster than real time all point to the utility of

the present model and the underlying numerical approach to act as a software sensor for

PEM fuel cell systems.
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2.4 Simulation Case Studies

With the model validated with various experimental data in the previous section, we now

turn our attention to some of its prediction capabilities using some load cycling scenarios.

While a P2D version of the model was used for validation, the P2D2 model is used in

this section to demonstrate the ability of the bi-domain modeling approach in capturing

the in-plane distributions. Here, the current density is cycled between low and high loads

under two distinct conditions. Simulations for each condition are conducted with both

co-flow and counter-flow configurations. The operating conditions are shown in Table 2.9.

When the anode and cathode conditions are not separately identified (e.g., RH), they are

taken to be the same. Each loading condition is maintained for 300 seconds before a step

change in the load. This time allows for the cell dynamics to settle to a quasi steady state.

Moreover, note that the step change in the load is chosen to be large enough to excite the

system dynamics. Similarly, the two sets of operating variables (cold wet and hot dry) are

chosen to show the model’s prediction capabilities under extreme conditions. A complete

list of parameter values used for these simulations is provided in the Appendix Table A1.

Table 2.9: Operating conditions used for simulation case studies

Condition Cold Wet (CW) Cold Wet (CW) Hot Dry (HD) Hot Dry (HD)
Low Load High Load Low Load High Load

idens [A/cm2] 0.6 2 0.6 2

StH2/StO2 [-] 1.5 1.5 1.5 1.5

RH [-] 90 90 30 30

Tcool,in [◦C] 50 50 80 80

∆Tcool [◦C] 6 12 6 12

pin [bar] 2 2 2 2

∆pan [mbar] 35 70 35 70

∆pca [mbar] 80 160 80 160
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Figure 2.11: Average dynamic response of the cell to load cycling. The top row shows average
dynamics for all four simulation case studies, while the bottom row illustrates current density
dynamics under the land and channel regions as well as the cathode liquid saturation for selected
simulations.

The average dynamic responses of the cell under the various simulation scenarios are

shown in Fig. 2.11. As seen in the figure, the step increase in the load results in a very

small undershoot in voltage, which is then followed by a slow decay. The initial undershoot

can be attributed to a combination of EOD that dries out the anode side of the membrane

as well as the existence of the PtO layer that has accumulated at higher voltage. The

slow decay in voltage that follows is seen to be a direct consequence of membrane dry-out.

This can in turn be attributed to the significant heat that is generated at this higher load,

as well as the high EOD. The figure also shows that the flow configuration does not have

a significant impact under cold and wet conditions, whereas counter-flow configuration

considerably improves performance under hot and dry conditions. This is to be expected,

since counter-flow operation yields better membrane hydration conditions as can also be

seen in the figure.
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Fig. 2.11 further shows the average cathode CL utilization (χ) for the different sce-

narios. It is observed that the cold and wet conditions result in lowered CL utilization.

This is due to mass transport losses incurred by the accumulated liquid water under these

conditions. The CL is also not fully utilized under the high load for the hot and dry

conditions with co-flow configuration. Although the average utilization is very close to

unity, this amounts to a very interesting observation, namely, dry ionomer in the cathode

CL can also cause local mass transport losses and reduce the catalyst available for ORR.

Of course, this behavior can already be captured by comprehensive fully coupled mod-

els [89]. Nevertheless, computationally efficient solutions with this level of fidelity are not

commonly pursued in the literature.

Fig. 2.11 also provides the distinct current density profiles under the channel and

land regions for two of the simulated cases. As seen in the figure, the current density

is lower under the land region for the cold and wet condition, which is due to the mass

transport limitations. However, for the hot and dry conditions the current production

under the land is on par with that under the channel, since better hydration under the

land compensates for increased mass transport resistance. Lastly, the figure shows liquid

saturation in the cathode CL and GDL under the land and channel regions for the cold

and wet conditions. Clearly, the land region is more susceptible to flooding due to lower

temperatures and higher mass transport resistance. More interesting, however, is the

dynamics of liquid accumulation in the CL and GDL. The CL shows a tendency to flood

rapidly, within 20 seconds of the load change, whereas liquid accumulation in the GDL is

seen to be much slower not reaching steady state under the land even after 300 seconds.

These disparate time scales are due to differences in porosities of the layers, as well as the

environmental conditions experienced by each layer.

To further demonstrate the model’s prediction capabilities, example distributions ob-

tained from the model for two of the simulated scenarios are shown in Fig. 2.12. The
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(a)

(b)

Figure 2.12: Distributions of temperature, liquid saturation, ionomer water content, current
density, and cathode CL utilization for: (a) cold wet conditions (T = 50 ◦C and RH = 90%)
with counter-flow configuration and (b) hot dry conditions (T = 80 ◦C and RH = 30%) with
co-flow configuration at 990 s.

79



model is seen to capture the main features of the in-plane distributions, namely, higher

mass transport resistance under the lands, which leads to increased flooding and improved

membrane hydration, and the higher temperature under the channels. More specifically,

the distributions for cold and wet conditions with counter-flow configuration (Fig. 2.12(a))

show that liquid accumulates mostly under the land region. In this region, each GDL is

more prone to flooding near the outlet of its respective gas stream. However, the cath-

ode CL is mostly flooded near the cathode inlet, which is due to the significant water

crossover from the anode side in this region. The good hydration on the anode side also

results in improved membrane hydration near the cathode inlet. The figure also shows

the along-the-channel current distributions for both the channel and land regions, where

it is observed that current generation under the land is suppressed due to mass transport

limitations. Another interesting observation relates to cathode CL utilization under the

land and the fact that it is reduced near the cathode inlet due to cathode CL flooding in

this region. Moreover, we observe that this reduced utilization has also resulted in higher

temperatures in this region due to higher volumetric heat generation.

Lastly, Fig. 2.12(b) shows the same distributions for the hot and dry conditions under

co-flow configuration. We observe that no liquid has accumulated anywhere in the cell.

As for the current distributions under the channel and land regions, they go through a

peak as we move along the flow channel. Near the channel inlet, the land region produces

more current due to better hydration. Once the peak current is achieved, the current

under the land region drops more sharply due to more severe mass transport limitations.

These transport limitations also result in reduced cathode CL utilization under the land

near the channel outlet.

These results demonstrate the prediction capabilities of the model presented here. As

mentioned earlier, it is the balance between the fidelity and the low computational cost

of the present modeling framework rather than the specific simulation results that is of

significance. The fact that the model is able to reproduce the behavior that is captured

80



by much more computationally intensive models verifies the approach adopted herein.

Finally, the high fidelity and efficiency of the model offers significant advantages for real-

time estimation as well as the tasks that require repetitive model evaluations such as

optimization of operating conditions.

2.5 Summary and Conclusions

A high fidelity and computationally efficient model of PEM fuel cells is presented. The

model takes advantage of the disparate time and length scales to spatio-temporally decou-

ple the problem and achieve a performance that is more than an order of magnitude faster

than real time. Particularly, the model efficiently captures the in-plane and through-plane

distributions utilizing a pseudo-2D bi-domain modeling approach. Additionally, a novel

reduced-order model for water balance across the MEA is presented and a simple analyt-

ical method is used to model the proton and mass transport trade-offs in the cathode CL

and capture its effective utilization. These novelties further contribute to the efficiency

of the presented model.

An optimization-based approach is used to parameterize the model for two different

fuel cell stacks. The model is validated against a variety of operating conditions for the

two stacks and shown to capture the experimental performance measurements. Finally,

simulation case studies are presented to showcase the model’s prediction capabilities under

different operating scenarios. Based on these results, it is concluded that the fidelity and

computational efficiency of the model make it a suitable tool towards real-time monitoring

of automotive PEM fuel cell systems. The issues faced during model parameterization

efforts presented in this chapter warrant further investigation of the parameter identifica-

tion problem. Accordingly, the next two chapters extensively focus on this problem and

develop a framework for effective model parameterization.
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Chapter 3

Sensitivity Analysis and Parameter

Identifiability

3.1 Introduction

As highlighted in Chapter 1, the fuel cell literature is yet to capitalize on considerable

opportunities for effective model parameterization. Accordingly, our objective in this and

the next chapter is to fill this gap by developing a systematic approach for parameter iden-

tification tailored specifically to fuel cell applications. In particular, we aim to answer

the following questions: How are different model outputs affected by model parameters?

What are the major difficulties associated with large-scale parameter identification prob-

lems? How many and which of the model parameters can be accurately identified given

a particular set of measurements? How can we optimally design the experiments for the

purpose of parameter identification? And finally, how do we ensure that our results are

robust to initial assumptions about the values of model parameters?

To answer these questions, in this and the next chapter we develop a systematic

procedure using as an example the model presented in Chapter 2. Importantly, the low

computational cost of the model enables a large number of model evaluations. Using this
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model as an example, we analyze identifiability of its parameters employing a sensitivity-

based approach. Particularly, we start with an extensive sensitivity analysis that considers

a large number of model parameters. This analysis is conducted considering a variety of

operating conditions that can be used to collect experimental data. Moreover, in order to

make our approach robust to initial assumptions about the parameter values, we carry out

the sensitivity analysis at several points in the parameter space to obtain a more global

picture of the sensitivity results. Using these sensitivity results, we study the identifiability

of the model parameters and examine parameter subset selection for identification.

The rest of the chapter is organized as follows. First, the problem of parameter identi-

fication is explained in Section 3.2. This is followed by the methods for sensitivity analysis

in Section 3.3 and a discussion of the main results in Section 3.4, where sensitivities of var-

ious model outputs to the considered parameters are investigated. Identifiability analysis

and relevant issues are discussed in Section 3.5, before concluding with a brief summary

of the chapter.

3.2 Parameter Identification Problem

The parameter identification problem consists of finding the model parameters given some

measured data, whose behavior is to be captured by the model. To make this more

concrete, first we note that the model can be described using a set of differential-algebraic

equations (DEAs):

ẋ = f(x, z,u,θ), x(0) = x0 (3.1)

0 = g(x, z,u,θ), z(0) = z0 (3.2)

ỹ = h(x, z,u,θ), (3.3)
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where x is the vector containing dynamic states of the model (e.g., membrane temper-

ature and hydration), ỹ is the vector of predicted outputs (e.g., cell voltage), z is the

vector of algebraic variables (e.g., solid phase potential when double layer capacitance

is ignored), u is the vector of inputs (e.g., channel pressure and coolant temperature),

and θ denotes the vector of model parameters (e.g., exchange current density for oxygen

reduction reaction). The vector valued functions f , g, h represent the system dynamics,

algebraic constrains, and output equations, respectively. Note that while fuel cell models

are typically described with PDEs, all such models may be written in DAE format after

proper spatial discretization. Furthermore, while a model can make predictions about

internal states of the cell (i.e., ỹ can contain elements of x), we use ỹ to denote only the

model predictions for which experimental data can be measured. Henceforth, we refer to

ỹ as predicted outputs, with the understanding that the corresponding measurements can

be taken in an actual experimental setting. Given the above generic model description, pa-

rameter identification (also known as parameter tuning) is to find a suitable vector θ such

that the model predictions given by ỹ = h(x, z,u,θ) match the available measurements,

y, as closely as possible.

The parameter identification problem can be solved using a variety of methods, among

which least squares is the most common approach. However, an identifiability analysis

must precede parameter identification. Identifiability can be analyzed in both a local and

a global sense. A parameter is locally identifiable if it can be determined uniquely in a

neighborhood around a nominal parameter value, given a set of measurements [290]; no

two parameter values that are close enough would result in the same model predictions.

On the other hand, global identifiability indicates that no two parameter values, no matter

how far apart, can give the same predictions [290]. This means that among all possible

parameter values, there is only one that can best represent the given measurements.

Given these definitions, an identifiability analysis of model parameters prior to param-
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eter identification is warranted. To carry out such analysis, one must understand what

the root causes of unidentifiability are. Particularly, what can render a model parameter

unidentifiable? An obvious answer is the case where a model parameter has no impact on

the predicted outputs. A more subtle case is when a combination of model parameters

impacts the predicted outputs together. For instance, if a model has two parameters,

a and b, but they always appear as a product (ab) throughout the model, then neither

of these parameters will be identifiable. In fuel cell models, this happens, for example,

with exchange current density and volumetric surface area of Pt in the catalyst, as they

always appear as a product in the BV model of reaction kinetics. These examples amount

to what is known as structural unidentifiability [291]; i.e., the model structure does not

allow for unique identification of these parameters even if every variable of interest could

be measured with perfect precision.

This notion of identifiability, while useful, falls short in practical settings. In particu-

lar, a model parameter might be structurally identifiable but require a lot of measurements

with high precision to be identified. In such cases, the notion of practical identifiability

yields better insight, as it accounts for the limited quantity and precision of the measure-

ments [291]. Readers interested in a more formal treatment of the subject are encouraged

to consult the review paper by Miao et al. and references therein [291].

A variety of methods have been reported in the literature to investigate both practical

and structural identifiability issues. Structural identifiability analysis requires the struc-

ture of the model to be known and, having its roots in control theory [282], usually utilizes

tools such as differential algebra [292] and implicit function theorem [293], to name a few.

One of the more recent developments in this area is the use of extended observability

analysis for this purpose [294, 295]. Despite such rich history, these methods are usually

limited to small problems and do not lend themselves to large-scale models. Fortunately,

practical identifiability analysis does not suffer from such a shortcoming and may be read-

ily applied to large-scale problems. In this respect, Monte Carlo methods [291], correlation
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analysis [296], and sensitivity-based methods [165] have been developed in the literature.

Among these, the methods based on sensitivity analysis are most commonly utilized, as

they scale easily and also provide information about the structure of the model without

the need for a full-blown structural identifiability analysis [291,296]. Accordingly, we use

a sensitivity-based identifiability analysis method to closely investigate the structure of

our model and study the identifiability of its parameters.

Sensitivity analysis is a rich topic in itself with a vast body of literature. A good

sensitivity analysis requires consideration of different aspects of the problem. Therefore,

in the next sections we discuss this in detail and present our sensitivity analysis results

before moving on to identifiability analysis.

3.3 Sensitivity Analysis: Methods

Sensitivity analysis is commonly used as a tool to investigate the impact of different input

factors (e.g., operating conditions or model parameters) on outputs of interest. Examples

of sensitivity analysis in the fuel cell literature usually include perturbing input factors

of interest individually to quantify each factor’s significance [90, 297–299]. More recent

studies have conducted rigorous sensitivity analyses on fuel cell models [284,300,301]. In

this regard, the recent work by Vetter et al. [284] stands out, as they consider a relatively

large set of parameters and also conduct a global sensitivity analysis, where they find

that the parameters impacting membrane water uptake and transport to be of profound

importance. It is based on this important conclusion that they suggest efforts should

be aimed at accurate estimation of such parameters. This statement offers a different

viewpoint for sensitivity analysis: while sensitivity results have been typically used to

guide research efforts in optimizing the design and material properties from a performance

standpoint, they can be interpreted in a different light to enhance the predictive power

of fuel cell models. In other words, in most of the previous cases sensitivity analysis can

86



be considered as a use case for the model to improve fuel cell designs, whereas Vetter et

al.’s suggestion amounts to using sensitivity analysis in order to refine the model itself by

proper parameter identification. In this sense, the analysis presented in this chapter is

similar to that of Vetter et al. [284]. However, we extend their results in several important

ways: (1) the model used in this study is more comprehensive than Vetter et al.’s and

it incorporates transport effects along the flow channels, (2) we consider a larger set of

model parameters, and (3) we extensively analyze the sensitivity results in terms of the

dependencies between the parameters as suggested by sensitivity directions and not only

sensitivity magnitudes that were used in Vetter et al.’s study. For completeness, a detailed

account of our methods is presented after a brief overview of the model and the parameters

considered for this study.

3.3.1 Model Configuration and Parameters

We use the model explained in Chapter 2. Specifically, the P2D version of the model is

used with co-flow configuration. This is to keep the computational cost for the sensitiv-

ity analysis manageable. The model parameters include those that describe geometrical

features of the cell design, reaction kinetics, physical properties of the material set, as

well as several fitting coefficients used to match the model predictions with experimental

data. To conduct the sensitivity analysis, we have chosen 50 of the model parameters

from all the parameter classes mentioned above. Notably, geometrical parameters are

also included, which are usually known for a given fuel cell stack. Nonetheless, the design

geometry can impact the sensitivity of other model parameters. Therefore, to ensure that

our results are not constrained by a specific stack design, we include these parameters

in our sensitivity analysis. The chosen parameters are shown in Table 3.1 along with

their units, and corresponding ranges. We note that a number of parameters are factors

used to scale nominal model parameters. These include kcross, kT,scale, and Kper,scale, which
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scale the membrane gas permeability, and porous layer thermal conductivity and liquid

permeability, respectively.

Table 3.1: Model parameters used for sensitivity analysis.

Parameter Units Range Scaling

ω [kJ/mol] [1, 20] Linear

αan [-] [1.2, 2.0] Linear

αca [-] [0.4, 1.0] Linear

i0,an [A/cm2] [10−3, 10−1] Logarithmic

i0,ca [A/cm2] [10−9, 10−6] Logarithmic

γan [-] [0.5, 1] Linear

γca [-] [0.5, 1] Linear

Eact,an [kJ/mol] [5, 20] Linear

Eact,ca [kJ/mol] [30, 80] Linear

Erev,PtO [V] [0.75, 0.85] Linear

Eact,PtO [kJ/mol] [5, 20] Linear

kcross [-] [0.01, 10] Logarithmic

ξdiff,mb [-] [0.1, 10] Logarithmic

fRH,a [-] [0.4, 0.9] Linear

fRH,b [-] [0.2, 4] Linear

fRH,c [-] [0.3, 1] Linear

Relec [mΩ · cm2] [30, 80] Linear

κ0 [S/cm] [0.2, 0.6] Linear

κres [S/cm] [10−4, 0.006] Linear

Eact,mb [kJ/mol] [5, 30] Linear
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EWmb [g/mol] [600, 1200] Linear

EWCL [g/mol] [600, 1200] Linear

kT,scale [-] [0.1, 10] Logarithmic

hconv [W/(cm2 ·K)] [0.05, 10] Logarithmic

nv [-] [1, 3] Linear

ne [-] [1, 3] Linear

εMPL [-] [0.4, 0.65] Linear

εGDL [-] [0.5, 0.85] Linear

θCL [◦] [90.5, 100] Linear

θMPL [◦] [110, 150] Linear

θGDL [◦] [100, 130] Linear

Kper,scale [-] [0.02, 50] Logarithmic

wch [cm] [0.1, 0.4] Linear

wrib [cm] [0.02, 0.3] Linear

hch [cm] [0.01, 0.1] Linear

Lch [cm] [15, 40] Linear

δmb [µm] [8, 30] Linear

δMPL [µm] [20, 70] Linear

δGDL [µm] [100, 240] Linear

ECSAan [m2/g] [40, 90] Linear

ECSAca [m2/g] [40, 90] Linear

εCL,an [-] [0.3, 0.7] Linear

εCL,ca [-] [0.3, 0.7] Linear
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LPt,an [mg/cm2] [0.05, 0.3] Linear

LPt,ca [mg/cm2] [0.05, 0.4] Linear

ICan [-] [0.6, 1.3] Linear

ICca [-] [0.6, 1.3] Linear

wt%Pt,an [-] [0.2, 0.7] Linear

wt%Pt,ca [-] [0.2, 0.7] Linear

nBrugg [-] [1, 3] Linear

3.3.2 Sensitivity Calculations

A variety of methods have been suggested in the literature to calculate model sensitivities.

Among them, the derivative-based approach is the most commonly used due to its easy

and possibly efficient implementation. This approach estimates the sensitivities as follows:

S =
∂ỹ

∂θ
, (3.4)

where S is the sensitivity matrix, whose (i,j)-th entry denotes the sensitivity of the i-

th predicted output to the j-th parameter. When multiple outputs and parameters are

considered, a scaled version is typically used to ensure the results are not affected by the

choice of units. Naturally, the sensitivity results obtained with this method are only valid

in the immediate neighborhood of the nominal parameter values that are used to evaluate

the model.

To better explore the entire range of individual parameters and obtain sensitivities

that are more representative of the sensitivity values throughout this range, here we

adopt a sample-based approach. In particular, to calculate the sensitivity of parameter

i at any point in the parameter space, we start by mapping the parameter range onto a
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unit interval using linear or logarithmic min-max scaling as done in Chapter 2:

θ̄i =
θi − θi,min

θi,max − θi,min

, (3.5)

log θ̄i =
log θi − log θi,min

log θi,max − log θi,min

, (3.6)

where θ̄i is the scaled parameter value that lies between 0 and 1, and θi,min ≤ θi ≤ θi,max.

Logarithmic scaling is used when the parameter range spans more than two orders of

magnitude, while linear scaling is used otherwise. We then take ns equidistant samples

from the unit interval and evaluate the model outputs using the corresponding parameter

values. The (j, i)-th element of the sensitivity matrix is then given by:

sj,i =

(
ns∑ns
k=1 ỹj,k

)
1

ns − 1

ns−1∑
k=1

ỹj,k+1 − ỹj,k
θ̄i,k+1 − θ̄i,k

, (3.7)

where ỹj,k denotes the j-th output evaluated using the k-th sample and θ̄i,k is the k-th

sample of parameter i. Note that the sensitivity is normalized by the mean of the output

and is therefore dimensionless. We use ns = 7 samples in this chapter.

The above approach to calculating parameter sensitivities is motivated by the fact

that the parameter perturbations during the analysis should be on par with those ap-

plied during parameter identification [302]. However, the successful application of such a

method depends on the particular problem structure. Specifically, if perturbing a param-

eter can result in non-monotonic variations in the model output, then this analysis may

break down. Nonetheless, the outputs of our model vary monotonically in most cases.

Non-monotonic behavior is typically restricted to certain regions in a parameter interval,

which can be effectively captured by increasing the number of samples. This method of

sensitivity calculation allows us to better investigate the entire range of any given param-

eter rather than restricting the analysis to the immediate neighborhood of the nominal

value.

While exploring the entire range of the parameter under consideration, the above
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method keeps the other parameters fixed at their nominal values. Therefore, it still

results in a local analysis. A global analysis is needed to inspect the parameter interaction,

wherein all parameters are varied simultaneously to calculate the sensitivity results [303].

However, global analysis typically utilizes Monte-Carlo methods, which require evaluating

the model at a large number of sampled points in the parameter space for convergence

of the multi-dimensional integrals. Therefore, such analysis becomes computationally

infeasible for large-scale models.

Given the shortcomings of local and global analyses, we seek an approach that strikes

a balance between its validity region and the computational burden associated with it.

Accordingly, we conduct an extended local analysis, wherein sensitivities are analyzed

locally about several sampled points in the parameter space. This extended analysis

yields a more global picture of the model sensitivities. Analogous methods have been

used as efficient screening tools to narrow down the number of parameters [303]. Based

on the result of this extended analysis, the following statistics can be calculated:

s̄i = med
k
‖ski ‖2 (3.8)

s∗i =
√

var
k
‖ski ‖2, (3.9)

where ski denotes the sensitivity vector for the i-th parameter evaluated at the k-th sample

point in the parameter space, s̄i is the median of sensitivity magnitudes for parameter i,

and s∗i denotes the corresponding standard deviation. We use the median, which is chosen

due to its robustness to outliers, as an indicator of the overall parameter sensitivity. On

the other hand, the standard deviation indicates how significantly a given parameter’s

sensitivity depends on other model parameters.

So far, we have focused on the magnitude of the sensitivity vectors. While this is

an informative measure to quantify the impact of each parameter, it does not offer any

insight into parameter interactions. For instance, if two parameters have large sensitivity
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magnitudes but have similar effects on the outputs, they cannot be uniquely identified and

the resulting parameter identification problem is ill-conditioned. Therefore, to quantify

the similarity between two sensitivity vectors, ski and skj evaluated at sample point k in

the parameter space, we use the following collinearity index [304,305]:

ψki,j = cos(φki,j) =

∣∣∣ski Tskj ∣∣∣∥∥ski ∥∥2

∥∥skj∥∥2

, (3.10)

where φki,j denotes the angle between the sensitivity vectors and the collinearity index,

ψki,j, lies between 0 and 1, indicating orthogonal and collinear sensitivity directions, re-

spectively.

It should be noted that if the pair of sensitivity vectors have small magnitudes, this

collinearity index is of limited utility. In such a case, the parameters are non-influential

and even if they are completely independent of one another, they cannot be effectively

identified. Therefore, in our analysis in the next section, we only highlight the collinearity

indices for the influential parameters as characterized by their high sensitivity magnitudes.

Further note that the above definition of collinearity only allows for analyzing pairs of

parameters. Therefore, we only use this definition to inspect parameter pairs and visu-

alize the similarity between the effects of different parameter pairs without the need for

coordinate transformations. However, when selecting parameter subsets for optimal iden-

tification results, we utilize more elaborate methods that allow for analyzing the linear

dependence between a set of selected parameters (see Section 3.5).

3.3.3 Sampling of the Parameter Space for Extended Local Anal-

ysis

As mentioned previously, we conduct local sensitivity analysis about several points in the

parameter space to obtain a more globally valid picture of the model sensitivities. Choos-

ing the appropriate method to sample the parameter space is thus critical. Particularly,
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our emphasis is on efficiently exploring the entire parameter space with the fewest number

of points. This is especially important due the fact that the space under consideration is a

50-dimensional space. To this end, we map this high dimensional parameter space onto a

unit hypercube using min-max scaling as described before. We then use the quasi-random

Sobol sequence to efficiently sample the entire space [303]. The main advantage of this

sequence is that it has low discrepancy, meaning that the gaps between the generated

points are relatively uniform. Using MATLAB built-in function for the Sobol sequence,

we generate 350 samples in the 50-dimensional unit hypercube.

One caveat of generating the points in the parameter space using the Sobol sequence

is that it is physics-agnostic. Therefore, many of the parameter combinations might yield

unreasonable results even if the ranges for each of the parameters were reasonably con-

strained. To remedy this, we use an initial screening step. This step entails simulating

the model for the parameter values generated by the Sobol sequence using the 4 automo-

tive operating conditions that were used for Stack A in Section 2.3.3. The experimental

data obtained under these conditions with state-of-the-art MEA materials are then used

to evaluate the Sobol sample. Particularly, for each sampled point in the parameter

space, the model’s voltage predictions are compared with the corresponding experimental

measurements and the sample is accepted if:

‖eV ‖∞ = ‖Emodel −Edata‖∞ ≤ emax,

where Emodel and Edata are the model predictions and the available measurements, respec-

tively, and emax denotes the error threshold that is chosen to be 300mV. With this choice

of threshold, 55 samples are accepted. Given the high dimensionality of the parameter

space under consideration, this is a very small number of samples, which is constrained

by our computational capabilities. Nonetheless, as is shown in Section 3.4, the particular

structure of the model leads to reasonable convergence of the sensitivity results even with
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this small number of samples.

3.3.4 Library of Operating Conditions

For a complete sensitivity and identifiability analysis, a variety of operating conditions

must be considered. This is especially important, since some operating conditions may be

more informative for parameter identification. Accordingly, we consider the entire space

of potential operating conditions and use a full-factorial design with 3 levels to explore

this space. In particular, we consider variations in the channel pressure (pch), the coolant

inlet temperature (Tcool,in), the anode and cathode relative humidity (RHan, RHca), and

the hydrogen and oxygen stoichiometric ratio (StH2 , StO2) as follows:

pch ∈ {1.5, 2.5, 3.5} [bar],

Tcool,in ∈ {40, 60, 80} [◦C],

RHan ∈ {30, 60, 90} [−],

RHca ∈ {30, 60, 90} [−],

StH2 ∈ {1.5, 2.0, 2.5} [−],

StO2,lcd ∈ {1.5, 3.0, 4.5} [−],

StO2,hcd ∈ {1.5, 2.0, 2.5} [−],

where the oxygen stoichiometry changes based on the load; StO2,lcd values are used at

current densities below 1 A/cm2 and StO2,hcd values are used at higher current densities.

Moreover, a cross-pressure of 0.1 bar is maintained between the anode and cathode, i.e.,

the anode pressure is 0.1 bar higher than the cathode. The current density values (idens)

and the variations in the corresponding coolant temperature (∆Tcool) are the same for all
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Figure 3.1: Current density profile used to collect data for sensitivity analysis and an example
nominal voltage response.

operating conditions:

idens = [0.0, 0.03, 0.05, 0.1, 0.2, 0.6, 1.0, 1.2, 1.5, 1.7, 1.9 2.1, 2.4, 2.7, 3.0] [A/cm2]

∆Tcool = [0.5, 0.5, 0.5, 1.0, 2.0, 5.0, 10, 10, 10, 10, 10, 12, 12, 12, 12] [◦C]

The 15 points chosen on the polarization curve can roughly be divided into the three

regions typically known, namely, the kinetic, ohmic, and mass transport regions. Given

the 6 variable factors that determine the operating conditions and the 3 levels chosen

for each one, a full factorial design yields a total of 729 operating conditions. For each

parameter value, the model is evaluated using all of these operating conditions to generate

the required sensitivity data.

3.3.5 Data Collection Method

For any given set of parameter values and choice of operating conditions, the model is

simulated starting from open-circuit voltage and the load is increased in a step manner

to reach the highest current density at 3 A/cm2 (see Fig. 3.1). Each load is maintained

for 80 seconds and the data for the last 10 seconds are averaged for the quasi-steady state
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Figure 3.2: Example output variations to parameter perturbations. Three output predictions
are considered in this chapter, namely, the cell voltage, high frequency resistance, and membrane
water crossover. The outputs are shown for different GDL porosity values under one operating
condition in the library.

values that are used for the sensitivity calculations. Here, we analyze sensitivity of 3

model outputs to the different parameters. These outputs include cell voltage, HFR, and

membrane water crossover defined by equation 2.70 (see Fig. 3.2). The cell voltage data

is collected for all 15 points on the polarization curve. However, only the last 10 data

points for the HFR and water crossover are used corresponding to the ohmic and mass

transport regions. The data at lower current densities are left out of the analysis due to

considerable uncertainty in the corresponding measurements during actual experiments.
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3.4 Sensitivity Analysis: Results and Discussion

3.4.1 Convergence of Sensitivity Results

An important consideration is the convergence of the sensitivity results given the small

number of points chosen to sample a high-dimensional parameter space. In particular,

the question is whether 55 samples are enough to claim the results are representative of

the sensitivities throughout the parameter space. Since median and standard deviation

are the statistics of choice for our analysis, Fig. 3.3 shows the corresponding results

for increasing number of samples in the parameter space. As seen in the figure, while

the statistics change as we increase the number of samples from 5 to 45, they remain

relatively unchanged when the samples are increased to 55. We therefore conclude that

given the particular structure of the problem, the small number of samples used here

appears to be enough to obtain a valid representation of model sensitivities. Nonetheless,

we acknowledge that further rigorous analysis is required to concretely determine the

number of samples needed for convergence.

3.4.2 Single Measurement

We begin our analysis of the sensitivity results with individual model predictions, i.e.,

we consider the voltage, HFR, and water crossover sensitivities separately. The results

are shown in Fig. 3.4. The figure shows the results for all points in the parameter space

and highlights the median values. Starting with the voltage sensitivity results in Fig.

3.4(a), we observe that the ORR kinetic parameters have highest sensitivities. Partic-

ularly, the ORR charge transfer coefficient (αca) has the highest sensitivity among all

parameters followed by the ORR reference exchange current density (i0,ca). Other im-

portant parameters, as characterized by their high sensitivity magnitudes, are those that
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(a)

(b)

Figure 3.3: Convergence of sensitivity results with increasing number of samples in the param-
eter space. The (a) median, and (b) standard deviation of voltage sensitivities are calculated
over multiple sampled points in the parameter space.

control the membrane transport properties. These include parameters impacting water

transport through the membrane (ξdiff,mb), as well as those affecting proton transport

efficiency (Relec, κ0, Eact,mb), which influence the resistance of the cell. Finally, the pa-

rameters controlling the thermal (kT , hconv) and mass transport behavior of the cell (ne,

εMPL, εGDL) also demonstrate relatively high voltage sensitivities. On the other hand,

some of the parameters related to hydrophobicity of the porous layers (θMPL, θGDL) and

some geometrical features (wrib) show negligible sensitivities.

99



(a)

(b)

(c)

Figure 3.4: Parameter sensitivities for individual output predictions: (a) voltage, (b) high
frequency resistance, and (c) membrane water crossover. Results for all points in the parameter
space are shown with gray circles. The sensitivity medians are also shown, where the line color
changes with the sensitivity value.

100



At this point, it is critical to emphasize that all these sensitivity results depend on

the underlying model and are only useful when interpreted with the model structure in

mind. This makes interpretation of the results a crucial step in the overall analysis.

For example, a high sensitivity value for a given parameter does not necessarily mean

that the parameter is also physically important. It only indicates that the particular

structure of the model with all the underlying assumptions and the ranges considered for

the parameter values renders that particular parameter sensitive. The same can be said

of insensitive parameters, where their insensitivity is not always indicative of their lack

of importance in a physical setting. This point cannot be overemphasized, as sensitivity

results are commonly misinterpreted in the literature. For instance, Vetter et al. [284] used

their sensitivity results as a corroborating evidence that contact resistances are important

in fuel cell modeling. While we do not contest this particular claim, we note that these

sensitivity results were generated with a model that promotes the importance of contact

resistances. Therefore, making broad conclusions about the physical importance of a

parameter founded on model-based sensitivities is not always warranted. Accordingly, we

believe that these results are best used to inspect and enhance the model in conjunction

with experiments and expert knowledge. For instance, if the results indicate that the

measurements should be insensitive to a particular parameter, but the actual experimental

data or expert opinion indicate otherwise, this can be used as a basis to revisit the model

assumptions and make the necessary changes to ensure the model sensitivities match those

of the physical system.

Following the above arguments, we note that some of the insensitivities captured in

our results are artifacts of the modeling assumptions. Examples of these include the

contact angle of the porous layers and the landing width. The literature has established

the importance of porous layer water retention capabilities, which are affected by the

layer’s hydrophobicity [306–309]. The lack of voltage sensitivity in our results mostly

stems from the fact that these properties directly affect liquid water distribution in the
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porous layers, which does not have an appreciable impact on the voltage predictions

under dry conditions. However, our results do not show significant voltage sensitivity

to the contact angles even under wetter conditions. This insensitivity indicates that the

continuum Leverett approach used is not sufficient to capture the experimental variations

with only one contact angle as the variable [310]. Therefore, if the application at hand

requires more accurate description of the two-phase flow phenomena, model enhancement

is required. Such improvements may also take the form of reparameterizing the sub-

models. The same can be said of the land width, where experimental evidence and more

detailed models clearly show the importance of this factor [89,311,312]. The insensitivity

observed in our results is due to the fact that the version of the model (P2D) used for

sensitivity analysis does not capture the in-plane transport phenomena, thereby leaving

the landing width as a non-influential parameter.

The HFR sensitivities are shown in Fig. 3.4(b), where fewer parameters have high

sensitivity compared to the voltage. In particular, mostly those parameters that directly

affect the cell resistance are deemed to be sensitive (Relec, κ0, Eact,mb, δmb). Other notably

sensitive parameters are those that control membrane water crossover (ξdiff,mb) and heat

transport across the cell (kT , hconv). Particularly, the thermal conductivity of the cell

layers appears to be one of the most sensitive parameters (kT ). This can be attributed to

the fact that heat transport can profoundly impact the membrane water content, thereby

affecting the cell resistance.

Lastly, the membrane water crossover sensitivities are shown in Fig. 3.4(c), where the

scaling factor for membrane water diffusivity (ξdiff,mb) and the thermal conductivity of the

cell layers (kT ) are found to be the most influential parameters. The high sensitivity of

water crossover to ξdiff,mb is expected, as this parameter directly controls water diffusivity

in the membrane. On the other hand, the high sensitivity of kT may seem counter-

intuitive. However, the thermal balance of the cell is known to contribute significantly to

the overall water balance across the MEA [89,313–315] and this result indicates that the
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model indeed captures such behavior.

Considering all of the 3 output sensitivities at the same time, the voltage seems to be

the richest signal that is affected by many of the model parameters. This represents an

opportunity for parameter identification, as variations in the model parameters can be

observed in the measured voltage. On the other hand, this also amounts to an important

challenge, as many parameters impact voltage simultaneously and their effects are typ-

ically difficult to deconvolute. Fortunately, the other output predictions demonstrate a

rather selective sensitivity to parameter variations, where only a few parameters affect the

HFR and water crossover predictions. Therefore, these additional output predictions can

be used in conjunction with voltage to better deconvolute the impact of different parame-

ters for successful identification. This can be viewed as common knowledge, as additional

measurements are typically known to help with parameter identification. Nonetheless,

the methods presented in this dissertation can be used to quantify how much utility there

is in adding any particular measurement and determine which of the model parameters

can be identified with acceptable precision given the available measurements.

The relative independence of sensitivity vectors is another important measure that

must be taken into account. Accordingly, the collinearity indices based on the 3 output

predictions and defined by equation 3.10 are shown in Figs. 3.5-3.7. The figures are

generated based on local sensitivity data and only highlight the pairs, where the magnitude

of the sensitivity vector for either parameter is non-negligible and the angle between the

corresponding sensitivity vectors is less than 45◦.

Starting with the collinearity between voltage sensitivity vectors in Fig. 3.5, we observe

that many kinetic parameters have similar impacts on the voltage predictions. Specifically,

the ORR reference exchange current density (i0,ca) and charge transfer coefficient (αca)

are seen to have a large collinearity index. This is an expected result, as these two

parameters have very similar effects on the voltage predictions determined by the BV

model. Other highly collinear pairs include (κ0, Eact,mb) and (δmb, Eact,mb). Again, these
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Figure 3.5: Collinearity indices for the voltage sensitivity vectors. The off-diagonal values
that are larger than 0.707 are highlighted, as they indicate an acute angle of less than 45◦

between the corresponding sensitivity vectors, which leads to considerable similarity between
the corresponding parameter effects.

results may be expected, as all these three parameters impact the membrane resistance,

thereby influencing the ohmic voltage loss.

In addition to these expected results, we also observe some counter-intuitive behavior,

where, for example, some of the ohmic parameters are found to be highly correlated with

kinetic parameters as measured by their impact on voltage predictions. Particularly, the

collinearity index for the (κ0, i0,ca) pair is greater than 0.9, while it is about 0.77 for

the (κ0, ECSAca) pair. This does not indicate that these parameter pairs are physically

related to each other; rather, this means that the particular model structure may not
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Figure 3.6: Collinearity of the resistance sensitivity vectors. The off-diagonal values that are
larger than 0.707 are highlighted, as they indicate an acute angle of less than 45◦ between the cor-
responding sensitivity vectors, which leads to considerable similarity between the corresponding
parameter effects.

allow for distinguishing their impact from one another using only voltage data. In other

words, the same polarization curve may be obtained by tweaking either of the parameters

in such correlated pairs. If the experimental results show a clearly distinguishable impact

of such parameter pairs on the voltage measurements, then this result would point to the

deficiency of the model in capturing this behavior and calls for model refinement.

Moving on to the collinearity indices based on HFR sensitivities as shown in Fig. 3.6,

we observe that almost all of the parameters that were determined to impact HFR in

Fig. 3.4(b) appear to be largely collinear when considered in pairs. Therefore, HFR
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Figure 3.7: Collinearity of the water crossover sensitivity vectors. The off-diagonal values
that are larger than 0.707 are highlighted, as they indicate an acute angle of less than 45◦

between the corresponding sensitivity vectors, which leads to considerable similarity between
the corresponding parameter effects.

measurements alone may not be sufficient to identify all of these parameters. As for

membrane water crossover sensitivities, Fig. 3.7 illustrates that many of the catalyst layer

structural properties impact water crossover predictions in the same manner. For example,

the anode catalyst layer Pt loading (LPt,an) and its ionomer to carbon ratio (ICan) have a

collinearity index of 0.96. This is due to the fact that in our model construction, they both

affect the porosity of the catalyst layer; increasing either the Pt loading or the ionomer to

carbon ratio reduces the porosity. Since porosity affects the water retention capabilities

of the catalyst layer, which is adjacent to the membrane, variation in either parameter
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lead to similar impacts on the membrane water crossover predictions.

Finally, we point out that the results presented in Figs. 3.5-3.7 are generated using

all operating conditions from the library discussed earlier. Therefore, even if the results

indicate high similarity between two parameters, there might still be an opportunity of

decorrelating their sensitivities by judiciously selecting the operating conditions. This

is an important motivation for the optimal experimental design that is presented in the

Chapter 4.

3.4.3 Multiple Measurements

Having presented sensitivity results for different outputs individually, we now turn our

attention to the case where multiple output predictions are considered at the same time.

Here we consider three cases. In the first two cases, voltage prediction is considered along

with either the HFR or membrane water crossover. For the last case, all three outputs

are examined simultaneously. For these combined prediction cases, the sensitivity vectors

are obtained by simply concatenating the corresponding sensitivity vectors for each indi-

vidual output prediction. Therefore, the sensitivities to different parameters inherit the

main characteristics of the individual output predictions as seen in Fig. 3.8. Particularly,

we observe that adding HFR prediction to voltage results in increased sensitivity of the

resistance parameters, such as κ0 and Relec, while the sensitivity of the important kinetic

parameters, such as αca, remain high. Similarly, including membrane water crossover pre-

diction alongside voltage promotes the parameters that determine water balance across

the MEA, such as ξdiff,mb. Lastly, considering all three output predictions together pro-

motes the sensitivity of parameters that impact each output individually.

The above discussion shows that adding measurements can make more parameters

sensitive enough for the purpose of identification. However, in addition to having an ob-

servable impact on the output predictions, the effect of parameters should be uniquely
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(a)

(b)

(c)

Figure 3.8: Parameter sensitivities for multiple output predictions: (a) voltage and HFR, (b)
voltage and membrane water crossover, and (c) voltage, HFR, and membrane water crossover.
Results for all points in the parameter space are shown with gray circles. The sensitivity medians
are also shown, where the line color changes with the sensitivity value.
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(a) (b)

(c) (d)

Figure 3.9: Collinearity of sensitivity vectors based on single and multiple predicted outputs:
using (a) voltage, (b) voltage and HFR, (c) voltage and water crossover, and (d) voltage, HFR,
and water crossover as the predicted outputs.

distinguishable from one another for practical identifiability. Therefore, the role of ad-

ditional measurements in deconvoluting parameter effects should be investigated. Ac-

cordingly, Fig. 3.9 shows how the collinearity indices between pairs of sensitivity vectors

change as additional output predictions are considered. We observe that adding measure-

ments generally tends to decorrelate parameter effects. For instance, using only voltage

data (Fig. 3.9 (a)) can lead to correlations between some of the ohmic and kinetic pa-

rameters (e.g., κ0 and i0,ca have a collinearity index of ψ = 0.9). When HFR is used along

with voltage (Fig. 3.9 (b)), these correlations are significantly reduced (e.g., ψ = 0.55 for
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κ0 and i0,ca). Adding the membrane water crossover to the measurements further decor-

relates the effects of certain parameters. For example, the collinearity index is ψ = 0.71

for LPt,an and αca with voltage and HFR measurements (Fig. 3.9 (b)), but reduces to

ψ = 0.41 when membrane water crossover is considered (Fig. 3.9 (d)).

The above analysis shows the magnitude of each parameter’s impact on the model pre-

dictions and its degree of independence from other parameters as additional measurements

are considered. Notably, we’ve seen how adding measurements can promote identifiability

by increasing the sensitivity while decorrelating the effect of different parameters. While

this seems rather intuitive, the significance of these results lies in their quantification of

the parameter sensitivities and their interactions. The methods presented herein can thus

be used to focus the resources on identification of most crucial parameters and help with

effective model parameterization. This is further demonstrated in Chapter 4.

3.4.4 Impact of Operating Conditions

So far, our analysis has been based on data generated using all of the operating conditions

in the library. However, it is conceivable that certain operating conditions can better

reveal the impact of a particular parameter and improve its identifiability. To further

demonstrate this, Fig. 3.10 shows how the sensitivity of model parameters can change

with the operating condition. Particularly, voltage sensitivity to the porous layer thickness

is shown in Fig. 3.10(a) for different operating conditions in the library, where considerable

variations in voltage sensitivity are observed as the operating conditions are varied. One

main trend that is highlighted in the figure is the decreasing sensitivity with increased

cathode flow rate. This is an expected result as the layer’s thickness mostly impacts mass

transport losses, which are heightened at lower stoichiometric ratios.

To further demonstrate the impact of operating conditions, Fig. 3.10(b) shows the

ordered voltage sensitivities for 5 different parameters. Particularly, the sensitivity at
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(a)

(b)

Figure 3.10: Impact of operating conditions on voltage sensitivities: (a) variations in voltage
sensitivity to δGDL with changes in operating conditions, and (b) voltage sensitivities for multiple
parameters shown in a descending order from the best to worst operating condition as measured
by the corresponding parameter sensitivity.

each operating condition is calculated. The results are then ordered in a decreasing

fashion such that the first point on each line indicates the best operating condition at

which the highest sensitivity is obtained for the parameter of interest. This ordering is

done to better illustrate the effect of operating conditions on parameter sensitivities. The

figure clearly shows how operating conditions can increase or diminish the sensitivity of

a parameter. We can also observe that the degree to which the operating conditions

affect the sensitivity varies with the parameter. For instance, the sensitivities of fRH,a,

δmb, and δGDL show considerable dependence on the operating conditions as they can

vary by almost two orders of magnitude based on the condition. The sensitivity of other

parameters on the other hand, may demonstrate moderate to negligible dependence on
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(a)

(b)

Figure 3.11: Variations in (a) voltage and (b) HFR sensitivities as the best operating conditions
are used.

the operating conditions, as is the case for ω and i0,ca.

The observable impact of operating conditions on parameter sensitivities motivates

a closer look at the sensitivity results. Specifically, the question is how much would a

parameter sensitivity increase if only the best operating condition is used to calculate it

rather than using all of the operating conditions. An interesting aspect of this is whether

a parameter that is deemed insignificant as measured by its average sensitivity at all

operating conditions, can have a discernible impact under particular conditions. This is

illustrated in Fig. 3.11, where the voltage and HFR sensitivities based on three calcula-

tions are shown: (1) using all operating conditions, (2) using only the operating condition

that results in highest parameter sensitivity, and (3) using the most sensitive loading
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condition of the best operating condition. For the third case, the voltage and HFR data

at each condition are characterized based on the load region (kinetic, ohmic, and mass

transport regions). Only data from the most sensitive region are then used to calculate

the sensitivity. The figure shows that for most parameters, considering only one partic-

ular operating condition rather than all conditions in the library significantly enhances

the sensitivity. Most notably, if we set a sensitivity threshold of 0.1 for identifiability,

as shown in the figure, we observe that a number of parameters that are unidentifiable

considering all operating conditions, are indeed identifiable at specifically chosen condi-

tions. The channel width (wch) and the residual ionomer conductivity (κres) are examples

of such parameters (see Fig. 3.11(a)). Such discernible impact of operating conditions

on parameter identifiability motivates the need for optimal experimental design that is

addressed in Chapter 4.

3.5 Identifiability Analysis and Parameter Subset Se-

lection

Using the sensitivity results obtained in the previous section, we now turn our attention

to identifiability analysis. Recall that a parameter is identifiable if (1) it has an observable

impact on the model predictions for which measurements are available, and (2) its impact

is unique in the sense that the same behavior cannot be reproduced by variations in

other parameters. To further analyze identifiability, we consider a least-squares setting.

Particularly, assume that y is the vector of available measurements. We further assume,

for the purpose of discussion, that there exists at least one set of parameter values for

which our model predictions, ỹ, exactly match the measurements. We denote such a
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parameter set by θ∗. Therefore, we have:

y = ỹθ∗ = h(x, z,u,θ∗), (3.11)

where the dependence of ỹ on the parameter set is made explicit. The question is whether

θ∗ is unique and how it can be found. To answer this, we formulate a nonlinear least-

squares problem, which minimizes the following cost:

χLS(θ) =
N∑
i=1

(yi − ỹθ,i)2 , (3.12)

where N is the number of available data points. By restricting our analysis to the imme-

diate neighborhood of θ∗, we can use Taylor expansion to evaluate ỹθ:

ỹθ ≈ ỹθ∗ +
∂ỹ

∂θ
(θ − θ∗), (3.13)

where the higher order terms are neglected. Plugging equation 3.13 into 3.12 and using

3.11, we have:

χLS(θ) ≈
N∑
i=1

[
∂ỹi
∂θ

(θ − θ∗)
]2

= (S∆θ)
T

(S∆θ), (3.14)

where ∆θ = θ − θ∗ and the definition of the sensitivity matrix (equation 3.4) is used to

write the last equality. This last equation indicates that the optimal solution is obtained

when (S
T
S)∆θ = 0. If the Hessian (H = S

T
S) has full rank, then ∆θ = 0 is the unique

solution, which indicates that θ = θ∗, meaning that the parameters are locally identifiable

at θ∗. In case the Hessian is rank deficient, there is an infinite number of solutions that

yield a zero least-squares cost (belonging to the null space of S
T
S). This means that

the parameter identification problem does not have a unique solution. Note that rank-

deficiency of the Hessian captures both requirements of identifiability; in theory, a zero

sensitivity vector or one that is linearly dependent on other sensitivity vectors yields a

rank deficient Hessian. In practice, this derivation indicates that a poorly conditioned
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Hessain matrix, which can be caused by small sensitivity magnitudes or highly dependent

sensitivity vectors, can hinder parameter identifiability. Specifically, the condition number

of the sensitivity matrix is defined as:

κH =
λmax(H)

λmin(H)
, (3.15)

where λmax and λmin denote the largest and smallest eigenvalues of the Hessian, respec-

tively. The significance of the condition number and, more generally, the eigenvalues of

the Hessian, lies in the fact that they control the rate of reduction in the least-squares cost

in the direction of each eigenvector: a large (small) eigenvalue means a rapidly (slowly)

decaying cost along the direction of the corresponding eigenvector.

Since the identifiability of the model parameters depend on the eigenvalues of the

Hessian, the spectra of these eigenvalues are shown in Fig. 3.12 for sensitivity matrices

obtained at several points in the parameter space. The figure shows an interesting spectra,

wherein, the eigenvalues are evenly spread over many orders of magnitude. The literature

refers to this phenomenon as “sloppiness” of the model [316–318]. It has been suggested

that accurate parameter identification is impossible under such circumstances and the

focus should instead be on predictive behavior of the model [317]. This assertion has since

been challenged in the literature and it has become clear that sloppiness and identifiability

are two very distinct concepts and neither implies the other [319–321]. Most recently,

Chis et al. have even argued that sloppiness is not a useful concept and the focus should

be on parameter identifiability [319]. Nonetheless, sloppiness can have implications for

identifiability: it is more difficult to distinguish the identifiable parameters from the

unidentifiable ones in a sloppy model. Particularly, note that the eigenvalue spectra in

Fig. 3.12 show no discernible gap between the large and small eigenvalues. Therefore,

the influential eigenvectors cannot be easily selected.

How can one address this difficulty due to model sloppiness? We believe that tools
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Figure 3.12: Sloppiness of the eigenvalue spectra of the least squares cost Hessian.

from the literature on identifiability analysis remain relevant. In particular, we focus on

selecting subsets of parameters that can be identified using the available measurements.

To determine whether the selected subset is identifiable, we use the metric proposed by

Brun et al. [322], which amounts to a threshold on the smallest eigenvalue of the resulting

Hessian:

λmin(HI) ≥ λ̄th,

where HI is the Hessian matrix obtained from the sensitivities of the selected parameters

and λ̄th is the chosen threshold. Recall that the smallest eigenvalue controls the slowest

rate of decay of the least-squares cost. By ensuring that the minimum eigenvalue is greater

than some threshold, we are controlling the decay rate of the cost.

Taking the eigenvalue threshold into account, we rank parameters with two approaches:

(1) based on the sensitivity magnitude and (2) using the orthogonal method [323]. The

orthogonal method uses the Gram-Schmidt orthogonalization procedure and selects the

parameter with the largest sensitivity first. At each following step of the algorithm, the

component of each parameter sensitivity that is orthogonal to the sensitivity vectors of the

116



(a)

(b)

Figure 3.13: The minimum eigenvalue of the Hessian for different number of selected param-
eters: (a) effect of parameter subset selection method (based on voltage sensitivities) and (b)
effect of additional measurements (based on orthogonal method).

previously selected parameters is calculated. The parameter with the largest orthogonal

component is then selected as the next most influential parameter. This is implemented

using the MATLAB QR factorization.

The advantage of orthogonal method over the magnitude based approach is in the

fact that it accounts for linear dependencies between parameter sensitivities. Therefore,

between two parameter subsets of equal size selected with these methods, the one based on
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orthogonal method has less linear dependency and is therefore expected to have a larger

minimum eigenvalue. This is shown in Fig. 3.13(a), which, using sensitivity data at one

of the points in the parameter space, shows the minimum Hessian eigenvalue for different

sizes of selected parameter subsets. The figure clearly shows that parameter selection

based on the orthogonal method yields a better conditioned Hessian. For instance, if we

choose an eigenvalue threshold of λ̄th = 1, and choose a subset of 36 parameters using

the magnitude-based approach, the selected subset would be deemed unidentifiable as the

minimum eigenvalue is 0.92. On the other hand, a subset of the same size obtained with

the orthogonal method yields a minimum eigenvalue of 3.93 and is therefore identifiable

according to the chosen threshold.

To analyze the effect of additional measurements on improvements in parameter iden-

tifiability, Fig. 3.13(b) shows the minimum Hessian eigenvalue using different measure-

ments. It is observed that adding measurements can indeed improve the condition of the

Hessian, thereby enhancing parameter identifiability. We emphasize again, that while the

main results may seem intuitive, it is the quantitative and rigorous treatment of such

behavior that constitutes the main contribution of this work.

To make these results more tangible, Table 3.2 shows the top 10 parameters ranked

based on the voltage sensitivities using both the sensitivity magnitude and the orthogo-

nal method. When using the voltage sensitivity magnitude, the reference ORR exchange

current density (i0,ca) is the second most important parameter. However, the orthogonal

method yields a much lower rank for this parameter, since its sensitivity is highly collinear

with that of the transfer coefficient (αca). The orthogonal method promotes ranking of pa-

rameters that have the largest unique impact, which is independent of previously ranked

parameters. The table also shows parameter rankings based on multiple measurements

using the orthogonal method. We observe that, for instance, using HFR alongside voltage

as the outputs of interest, improves the ranking of parameters that impact the cell resis-

tance (Relec is ranked second when HFR is used as an additional output). Analogously,
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considering membrane water crossover as an additional output of interest promotes the

ranking of parameters that have a profound impact on this output, such as ξdiff,mb.

Table 3.2: Parameter rankings with different methods and multiple measurements

Ranking Voltage Voltage Voltage, HFR Voltage, HFR,
Water Crossover

(Magnitude) (Orthogonal) (Orthogonal) (Orthogonal)
1 αca αca αca αca

2 i0,ca hch Relec Relec

3 ne ne ne ξdiff,mb

4 hch δGDL kT,scale ne

5 εGDL kT,scale hch kT,scale

6 δGDL εGDL hconv Kper

7 i0,an hconv δGDL hch

8 δMPL δMPL Eact,mb hconv

9 Eact,ca i0,ca εGDL εGDL

10 Eact,mb i0,an δmb δGDL

Finally, we emphasize that the analysis in this section was conducted using sensitivity

data obtained locally about one of the sample points in the parameter space. Moreover,

all of the operating conditions in the library are used in the analysis. Therefore, even

though these results might indicate that a large number of model parameters may be

identifiable, such an identification would require a prohibitively large set of experiments.

We discuss these points in more detail in the next chapter, where we refine our analysis

to select a subset of parameters that is expected to be optimal in the entire parameter

space and use experimental design as a tool to improve parameter identification.

Overall, these results underline the importance of rigorous identifiability analysis as

an important tool to complement expert intuition when selecting parameters for identi-

fication. While many of our results might appear intuitive, their significance lies in the

quantitative procedure used to obtain them and such conformation with expert knowl-

edge further verifies the proposed methodology. The rigorous and systematic nature of
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the presented procedure makes it applicable even in the absence of expert knowledge and

could lead to new insights. Due to the very same characteristics of the procedure, even

though the example results are specific to the particular fuel call model considered, the

procedure itself can be applied to other models, as well.

3.6 Summary and Conclusions

A systematic procedure is presented on a pseudo-2D, non-isothermal, and two-phase model

of a PEM fuel cell to study the output sensitivities to a variety of the model parameters.

In particular, three common measurements are considered for the sensitivity analysis,

namely, the cell voltage, HFR, and membrane water crossover. A large set of model

parameters are investigated using an extended local sensitivity analysis, which is carried

out by performing local analyses about several points in the parameter space. The pa-

rameters that have the highest impact on individual output predictions are determined.

Moreover, the collinearity between pairs of parameters is investigated, where some phys-

ically unrelated pairs are found to have similar impacts on model predictions. The effect

of operating conditions on parameter sensitivities is shown, where sensitivity of some pa-

rameters is found to vary considerably with the conditions. It is also shown that a number

of parameters that generally have low sensitivity, can become more sensitive under certain

operating conditions. Finally, the sensitivity results are used to analyze identifiability of

model parameters, where it is found that the parameter selection method and additional

measurements can clearly influence identifiability of the selected subset of parameters.

These results are further expanded in the next chapter, wherein we focus on robust opti-

mal parameter subset selection and experimental design for the purpose of identification.
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Chapter 4

Parameter Subset Selection, Optimal

Experimental Design, and

Multi-Step Identification Algorithm

4.1 Introduction

One of the main challenges associated with parameter identification in a large-scale model

is that such models usually have a large number of parameters, many of which may not

be practically identifiable given the available measurements. Under such circumstances,

it is imperative to select a subset of parameters for identification [324]. Particularly, the

selected subset must only include parameters that can be identified using the available

data. Moreover, the parameters must be selected in a way that ensures the predictive

capability of the model is maintained [325].

These are conflicting requirements that necessitate close inspection of output sensitiv-

ities to different parameters to ensure that the selected subset has the required charac-

teristics. Accordingly, several methods have been proposed in the literature to ensure the

selected subset is optimal [165,291,322,323,326]. Among these, methods that optimize a
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scalar metric of the Fisher information matrix (FIM) to maximize the precision of param-

eter estimates are commonly utilized [304,326,327]. Other approaches that directly focus

on minimizing the model’s prediction error have also been proposed [325, 328]. However,

to date, these methods have not been applied to fuel cell models, which leaves significant

room to improve model parameterization.

Another important aspect of parameter identification is the data used for this purpose.

In particular, the data must contain enough information that allows the effects of different

model parameters to be distinguished. The degree to which a dataset is informative is

controlled by the experimental conditions used to collect the data and the correspond-

ing model sensitivities. Therefore, model-based experimental design approaches have

attracted considerable attention in the literature [329–334]. These techniques seek to find

optimal experiments that are maximally informative for parameter identification. This is

done, for example, by using the model to find conditions that maximize the sensitivity

of the predicted output to model parameters [152]. Other proposed schemes maximize a

scalar measure of the FIM [333,334], similar to parameter subset selection algorithms.

The idea of optimally designing experiments to reveal a parameter of interest is cer-

tainly not new to the fuel cell community. Using differential conditions to achieve uniform

distributions in a cell that allows characterization of MEAs [243] and using low reactant

concentrations to characterize the transport resistances [102, 130] are examples of this

idea. However, these approaches are based on expert knowledge and are typically limited

to specialized studies that focus on a particular behavior of the cell. Moreover, they are

not guaranteed to be optimal for parameter identification. Therefore, there is a need to

adopt the above-mentioned methods to fuel cell applications and rigorously optimize the

experiments for effective model parameterization. We also note that recent battery liter-

ature has extensively utilized model-based optimal experimental design with considerable

success [152, 153, 161–164]. This further highlights the potential benefits of using these
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methods for enhanced modeling of fuel cells, as many of the underlying equations are

similar to battery models.

Once the subset of parameters to be identified is selected and the optimal conditions

are used to collect the experimental data, the parameters can be identified. This last

step is formulated as an optimization problem, whose solution typically minimizes the

output prediction error of the model. Importantly, the structure of the available data

can be utilized to improve identification results. Therefore, formulation of this step also

requires consideration of model sensitivities to ensure the optimal solution is achieved.

Here again, the fuel cell modeling literature is yet to capitalize on such potentials, leaving

an important gap that should be addressed.

The above discussion points to several possibilities to improve parameter identification

in fuel cell models. Accordingly, in this chapter we develop a systematic framework for

effective model parameterization that addresses some of the current shortcomings of the

fuel cell literature. Having investigated the sensitivities of various model predictions to

different parameters in Chapter 3, here we focus on the problems of parameter subset

selection and optimal experimental design. Particularly, we use our extended local sen-

sitivity analysis results to select a subset of parameters for identification that is robust

to initial assumptions about the nominal parameter values. We use similar procedures

for robust optimal experimental design to obtain a set of experiments that are maximally

informative for identification of the selected parameters. Finally, a multi-step parameter

identification approach is proposed and tested with synthetic experimental data generated

by the model.

The rest of the chapter is organized as follows. First, the problem of parameter subset

selection is addressed in Section 4.2. The robust optimal experimental design procedure

is then discussed in Section 4.3 followed by a description of the proposed multi-step

identification algorithm in Section 4.4. The results for an identification case study are

presented in Section 4.5 before closing with a brief summary in Section 4.6.
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4.2 Robust Parameter Subset Selection

Our exclusive focus in this chapter is on parameter identifiability. Accordingly, we note

that while we had considered 50 parameters for sensitivity analysis, many of these pa-

rameters, such as those describing the channel geometry, are known for a given stack.

Although these parameters were included in our sensitivity analysis to ensure that our

results are not constrained to a particular cell design, they are not suitable candidates

for identification. Therefore, we narrow down the list of considered parameters in this

chapter to focus on those that may be considered for model parameterization. Specifically,

we limit our analysis here to a set of 31 parameters that are given in Table 4.1 below.

Regarding the outputs of interest, here we assume that voltage and HFR are measured

in the experiments as they often are in real-world testings. Therefore, our discussion here

is based on the combined sensitivity of the voltage and HFR predictions. A summary of

the sensitivity results is shown in Fig. 4.1 for the 31 parameters that are considered in

this chapter.

Attempting to identify all of the model parameters results in an ill-conditioned in-

verse problem [335]. This necessitates the need for parameter subset selection so that

the identification algorithm can focus exclusively on the parameters that are practically

identifiable with the available measurements. We recall that a parameter is practically

identifiable when it has an observable impact on the output predictions that is uniquely

distinguishable from the impact of other parameters [291]. Therefore, a large sensitiv-

ity magnitude alone does not guarantee identifiability of a parameter; the corresponding

sensitivity vector must also be independent from that of other parameters. Accordingly,

this section provides an algorithm that selects an identifiable subset of parameters. This

subset selection procedure may also be viewed as a regularization technique to alleviate

the ill-conditioning of the inverse problem [166, 336]. Briefly, the proposed method is as
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Table 4.1: Model parameters considered in this chapter

Parameter [Units] Parameter [Units]
ω [kJ/mol] Eact,PtO [kJ/mol]

αan [-] αca [-]

i0,an [A/cm2] i0,ca [A/cm2]

γan [-] γca [-]

Eact,an [kJ/mol] Eact,ca [kJ/mol]

Erev,PtO [V] Eact,mb [kJ/mol]

ξdiff,mb [-] fRH,a [-]

fRH,b [-] fRH,c [-]

κ0 [S/cm] κres [S/cm]

kT,scale [-] hconv [W/(cm2 ·K)]

nv [-] ne [-]

Kper [-] θGDL [◦]

θCL [◦] θMPL [◦]

εMPL [-] εGDL [-]

δMPL [µm] δGDL [µm]

nBrugg [-]

follows:

1. Inspect the parameter set for highly collinear pairs and remove the parameter with

smaller sensitivity magnitude from such pairs.

2. Choose the number of parameters, nI , to be included in the subset. This is done

using singular value decomposition.

3. Find the locally optimal subset of parameters at each point in the parameter space,

for which sensitivity information has been calculated.

4. Find the globally optimal subset of parameters for the entire parameter space. The

local solutions from the previous step are used to guide the optimization.

Below, each step is described in detail.
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Figure 4.1: Summary of the sensitivity results based on voltage and HFR predictions and the
results of the subset selection method presented in Section 4.2. The sensitivities at all sample
points in the parameter space are shown as gray circles and the corresponding median is shown
with the colored line, where the color changes based on the median sensitivity. The parameters
selected by the method of Section 4.2 are highlighted with a light blue shade.

We start by inspecting the parameter sensitivities for highly collinear pairs. Partic-

ularly, we calculate the collinearity index (according to equation 3.10) for all parameter

pairs at sampled points in the parameter space (see Section 3.3.3 for sampling details).

The median of the calculated indices is then used as the representative collinearity index

for each parameter pair over the entire parameter space:

ψi,j = med
k

ψki,j, (4.1)

where k is the index for the sample point in the parameter space and ψi,j is the median

of the collinearity indices. Only one parameter from a pair whose median collinearity

index is high can be practically identified [304]. Therefore, for pairs with ψi,j exceeding

a threshold value of ψth, the parameter with lower sensitivity magnitude is discarded.

Here we use ψth = 0.9, which results in removal of i0,ca and Erev,PtO from the list of

parameters due to their significant collinearity with αca and ω, respectively. Note that

a large threshold is chosen to ensure a certain degree of flexibility is maintained in the
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resulting set of parameters. More specifically, smaller thresholds can lead to removal of

parameters that can have noticeably different impact than their collinear counterparts

only at a few selective operating conditions.

In the second step we determine the number of parameters, nI , that are needed to

capture the variations in the data due to perturbations to the remaining parameters.

Singular value decomposition [337] is a powerful tool for this purpose. In particular, at

each sample point in the parameter space we calculate the singular values of the sensitivity

matrix. Let these singular values be ordered as follows:

σk1 > σk2 > ... > σknθ (4.2)

where σki denotes the i-th largest singular value of the sensitivity matrix obtained at the

k-th sample point in the parameter space and nθ is the number of parameters under

consideration after the lower sensitivity parameters in collinear pairs have been removed

(nθ = 29). We then seek to find the smallest r such that:

σkr =

∑r
j=1 σ

k
j∑nθ

i=1 σ
k
i

≥ σth (4.3)

where σkr monotonically increases with r and provides a measure as to how much of the

total variations in the sensitivity directions are captured by the first r singular values.

Moreover, σth is a threshold value that determines the number of selected singular values.

Choosing a threshold of σth = 0.9, we have found that, on average, 12 singular values

are required to satisfy the above inequality at the sample points in the parameter space.

Accordingly, we focus on selecting a subset of size nI = 12 for identification.

The third step of the algorithm is finding the locally optimal subset of parameters

for identification. To this end, we must determine which of the model parameters have

the largest unique impact on the predicted outcomes. This is done using the sensitivity

matrix defined by equation 3.7. Particularly, to select a parameter subset, we want to
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choose columns of the sensitivity matrix that ensure the corresponding parameters can be

identified with the required precision. The parameter estimation precision is determined

by the corresponding covariance (Σθ), which is constrained by the inverse of the FIM

through the Cramer-Rao bound [159]:

Σθ ≥ (Fk)
−1
, (4.4)

where Fk is the FIM at the k-th sample point in the parameter space, which is given by:

Fk = Sk
T

Sk. (4.5)

Note that the definition of the FIM also includes the covariance of the measurement noise,

which, for the subset selection procedure, can be assumed to be identity without loss of

generality [304]. With the Cramer-Rao bound and the FIM defined, we recall that the

objective of this step is to select a subset of parameters, whose corresponding covariance is

minimal. This can be achieved by minimizing the lower bound given by the inverse of the

FIM. To this end, a scalar metric of the FIM is optimized. A number of scalar metrics have

been suggested based on different criteria [338]. Among them, the D-optimality criterion

is most commonly used [304], which maximizes the determinant of the FIM obtained from

selected columns of the sensitivity matrix. Specifically, such an FIM is given by:

Fk
I = SkI

T

SkI =
(
SkL

)T (
SkL

)
, (4.6)

where L is the selection matrix defined as:

L =
[
ei1 , ei2 , . . . , einI

]
. (4.7)

In the above equation, ej denotes the j-th standard unit vector and {i1, i2, ..., inI} is the

set of selected parameter indices. We can now define the D-optimal selection criterion
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explicitly:

ϕkD
∗

= maxϕD(Fk
I ) = max log det(Fk

I ), (4.8)

where ϕD is the D-optimality criterion. To find the optimal solution, ϕkD
∗
, an integer

program must be solved [304]:

maximize
i1,i2,...,inI

ϕD(Fk
I )

subject to Fk
I =

(
SkL

)T (
SkL

)
L =

[
ei1 , ei2 , ... , einI

]
ij ∈ {1, . . . , nθ}, j = 1, . . . , nI .

(4.9)

This is a combinatorial problem, whose solution may be obtained by exhaustive search

for small problems [339]. However, the search space grows combinatorially and this

approach becomes infeasible even for moderately-sized problems. Therefore, clustering

methods have been utilized to reduce the size of the problem [304, 340]. Optimization

routines such as genetic algorithm (GA) may also be used, albeit, with no guarantee

of convergence to the true optimal solution [327]. Alternatively, the popular orthogo-

nal method [323, 341, 342], which was discussed in Chapter 3, can be used to obtain a

sub-optimal solution. Particularly, Chu et al. [326] showed that the orthogonal method

is a forward selection algorithm that yields a sub-optimal solution for ϕD. Forward se-

lection in this context refers to the fact that at each iteration, the algorithm only picks

the best parameter to be added to the already selected list of parameters. In that sense,

the orthogonal method leads to a greedy algorithm [343]. Variations of this algorithm

have been suggested to consider multiple parameters at each stage, achieving more op-

timal results [326]. The advantage of the original orthogonal method lies in its simple

implementation. For example, the QR algorithm in MATLAB can be readily used for this

purpose [323]. Accordingly, we use the orthogonal method to find an initial sub-optimal
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solution that is then refined through GA.

Since only local sensitivity data are used in the above process, the resulting subset

of parameters is only locally optimal and not applicable throughout the entire parameter

space. A more robust approach is therefore needed. Two such approaches have been

commonly used in the literature based on the R-optimality and ED-optimality criteria

[333]. In particular, the R-optimal selection criterion is based on a worst-case scenario

and yields a selection that maximizes the minimum of the D-optimality criterion over the

parameter space [332,333]:

ϕ∗R = max min
k

ϕD(Fk
I ) = max min

k
(log det(Fk

I )), (4.10)

On the other hand, the ED-optimality criterion maximizes the expected value of the

D-optimality criterion over the parameter space [331,333]:

ϕ∗ED = max E [ϕD(FI)] = max E [log det(FI)] , (4.11)

Either criterion may be used to select a robust subset of parameters that is less dependent

on the nominal parameter values. We have found the R-optimality criterion to be sensitive

to outlier points in the parameter space. Therefore, we use the ED-optimality criterion

in this chapter. The corresponding optimization problem is an integer program similar to

that presented in equation 4.9, which is solved using GA. In this case, the local solutions

obtained during the previous step are used in the initial GA population to guide the

optimization. The GA algorithm is run multiple times and the best solution is selected.

Using the procedure outlined in this section, we have selected a subset of 12 parameters

for identification, which are shown in Table 4.2 and highlighted in Fig. 4.1. We emphasize

that this selection is optimal in an average sense, meaning that a better solution might

exist in some regions of the parameter space. However, using the ED-optimality criterion

helps ensure some degree of robustness to initial assumptions about the parameter values.
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Table 4.2: Model parameters selected for identification

Parameter [Units] Parameter [Units]
i0,an [A/cm2] αca [-]

Eact,ca [kJ/mol] Eact,mb [kJ/mol]

ξdiff,mb [-] κ0 [S/cm] [-]

kT,scale [-] hconv [W/(cm2 ·K)]

δGDL [µm] ne [-]

εMPL [-] εGDL [-]

4.3 Robust Optimal Experimental Design for Param-

eter Identification

Having selected an identifiable subset of parameters, we now consider the experimental

data used for identification. Importantly, we note that the data used for this purpose must

be informative to ensure successful identification. This requirement motivates model-

based optimal experimental design (OED), wherein the model is used to find the operating

conditions that render the predictions most sensitive to the parameters of interest. This

idea is schematically shown in Fig. 4.2, where a numerical example is also illustrated.

The OED procedure requires solving an optimal control problem to obtain the most

informative inputs. However, this approach is not computationally tractable for a large-

scale model. Accordingly, methods such as input vector parameterization have been

suggested [333], which searches over a discrete number of inputs to find the optimal

solution. Alternatively, selecting an optimal set of conditions from a predefined library

has been proposed as a computationally efficient method to solve the OED problem [161].

Since we have generated sensitivity data for a library of conditions, we use the latter

approach to design maximally informative experiments for parameter identification.

When working with a library of operating conditions, the OED problem is very sim-

ilar to the parameter subset selection discussed earlier and the same procedures apply.
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Figure 4.2: Optimal experimental design concept: (a) Schematic of model prediction errors as
a function of parameter and operating condition, (b) schematic error variations with parameter
for three example conditions, where the prediction error curve has a flat region for condition 1
rendering the parameter unidentifiable, while it is bowl-shaped for condition 3, which is ideal
for parameter identifiability, and (c) example voltage sensitivities to membrane thickness, where
hot and dry conditions are found to lead to increased sensitivity and improved identifiability of
the membrane thickness.

Specifically, the sensitivity matrix obtained using the entire library of operating conditions

consists of blocks that correspond to the individual experiments:

SkI =



(SkI )1

(SkI )2

...

(SkI )nl


(4.12)

Here (SkI )i denotes the sensitivity of the output predictions to the selected subset of

parameters under the i-th set of operating conditions from the library of nl conditions.

We recall that we have nl = 729 conditions in our library.
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With the above block structure in mind, we note that while parameter subset selection

is concerned with optimally choosing the columns of the sensitivity matrix to contain the

most information, the OED focuses on choosing the best (SkI )i blocks of the matrix for that

same purpose. Therefore, D-optimality criterion is also commonly used for experimental

design [161, 163, 164, 329]. The ED-optimality criterion may likewise be used for robust

design [331, 333]. We note, however, that the orthogonal method is no longer applicable,

since we are operating on sub-blocks of the sensitivity matrix rather than its columns.

Instead, the local D-optimal solution can be obtained through convex relaxation of the

underlying integer program [161]:

maximize
η1,η2,...,ηnl

log det(F̃k
I )

subject to F̃k
I =

nl∑
j=1

ηj
(
SkI
)T
j

(
SkI
)
j

0 ≤ ηj ≤
1

nu
, j = 1, . . . , nl

nl∑
j=1

ηj = 1,

(4.13)

where nu is the experimental budget, i.e., the number of experiments to be selected from

the library. Determining the experimental budget requires consideration of the actual

experimental cost, as well as the computational cost required to evaluate the model for

the selected experiments. Additionally, the number of selected experiments must provide

enough information for parameter identification. Taking these into consideration, here we

select nu = 6 from the library.

The solution to the above convex program is a set of nu experiments that are D-

optimal at sample point k in the parameter space. In other words, this solution is only

locally optimal. Therefore, to find an experimental design that is less dependent on the

initial parameter values, the ED-optimality criterion of equation 4.11 is used.

Briefly, the robust OED procedure is as follows:
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1. Choose the number of experiments, nu, to be selected from the library.

2. Solve the convex program 4.13 to obtain the D-optimal design at the sampled points

in the parameter space.

3. Use GA to obtain the ED-optimal design considering all of the sampled points. The

D-optimal designs from the previous step are used in the initial population to guide

the GA.

The experimental design resulting from this procedure is shown in Table 4.3. The

identification results based on this robust OED procedure are compared with another

experimental design using Latin Hypercube Sampling (LHS) with the same number of

experiments (nu = 6). The resulting LHS design is given in Table 4.4 and the identified

parameters using both experimental design procedures are compared in Section 4.5.

Table 4.3: Robust optimal experimental design

Exp # pch Tcool,in RHan RHca StH2 StO2

[bar] [◦C] [-] [-] [-] [-]
1 2.5 80 30 30 2.5 2.0
2 1.5 80 30 90 1.5 2.0
3 1.5 40 90 90 2.0 2.5
4 1.5 80 90 30 2.0 2.5
5 1.5 80 30 30 2.5 2.0
6 1.5 80 90 30 1.5 2.5

Table 4.4: Experimental design using LHS

Exp # pch Tcool,in RHan RHca StH2 StO2

[bar] [◦C] [-] [-] [-] [-]
1 2.68 59 80 72 2.3 2.1
2 2.05 48 54 51 2.3 1.5
3 1.79 62 65 43 1.8 2.2
4 2.85 70 85 83 1.7 1.9
5 3.33 75 48 32 2.1 2.5
6 2.45 43 33 62 1.5 1.7
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4.4 Multi-Step Parameter Identification Algorithm

So far, we have selected a subset of parameters for identification and designed informa-

tive experiments for that purpose. The last critical piece of the model parameterization

framework is the identification algorithm. A good identification algorithm should be

sufficiently constrained. An algorithm with too many degrees of freedom can lead to over-

fitting and poor parameter identification [335]. Regularization methods such as ridge

regression [166, 336] and LASSO [344] are commonly used to constrain the identification

process and formulate a well-conditioned problem. However, in the context of parameter

identification, application of these methods typically requires prior information about the

parameter values. Since we assume such information is not available, here we focus on

using the structure of the data to constrain the identification procedure. We also recall

that the parameter subset selection approach of Section 4.2 indeed regularizes the problem

to a certain extent and the identification algorithm of this section is developed for further

regularization.

The underlying principle of the algorithm proposed here is that the cell response shows

varying sensitivity to parameter perturbations depending on the load as seen in Fig. 4.3.

For instance, a parameter that affects reactant transport resistance might only become

identifiable at higher loads. Therefore, we use this particular sensitivity structure to

identify the selected parameters in multiple steps. Particularly, we divide the polarization

curve and the corresponding HFR data into 3 sections based on the load (see Fig. 4.3):

(1) low current density or kinetic region, (2) medium current density or ohmic region,

and (3) high current density or mass transport region. The selected parameters are then

grouped based on the corresponding sensitivities of the predicted outputs in each region.

Specifically, the first parameter group consists of those parameters that are identifiable in

the low current density region of the polarization curve, while the second and third groups
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Figure 4.3: Sample output variations to changes in the GDL porosity, where different load
regions are identified. The sensitivity of the predicted outputs varies with the load.

include the parameters that become identifiable at medium and high current densities,

respectively. Identifiability in this context is measured by the average output sensitivity

to the parameter of interest; a parameter is deemed identifiable in a particular region if

the corresponding sensitivity is greater than a threshold value Sth, which is chosen to be

0.1 in this work. This grouping procedure based on output sensitivities is shown in Fig.

4.4.

Following the above grouping of parameters, the proposed multi-step identification

algorithm is as follows:

1. Identify the parameters in the first group using data obtained at low current densi-

ties. The parameters in the other two groups are fixed at their nominal values.

136



Figure 4.4: Combined voltage and HFR sensitivity for the entire library of operating conditions
averaged among the samples in the parameter space. The blue, red, and gray bars denote,
respectively, the parameters that are yet to be identified, those that are being identified in the
current step, and those that were identified in a previous step and are being refined in the current
step. The identifiability criterion is based on a sensitivity threshold that is chosen to be 0.1.

2. Identify the parameters in the second group using data obtained at medium current

densities. Parameters in the third group are kept at their nominal values, while

those that were identified in the first step are further refined by allowing them to

vary within a contracted search space.

3. Identify the parameters in the third group using data obtained at high current

densities. Previously identified parameters are allowed to vary, but their respective

search spaces are contracted. Particularly, the search spaces for the parameters in

the first group are shrunken further compared to their ranges in the second step of

the algorithm.

4. Refine all identified parameters using the entire dataset. The search space for all
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parameters are further contracted in this step to constrain the problem. This step

is only used to refine the identified values.

The general idea is that the output sensitivities to parameter perturbations typically

increase as the load is increased. Therefore, it is helpful to start the identification process

by only using the data at low current densities and as our confidence in the parameter

estimates increases, move to higher loads and identify the remaining parameters. The

increased sensitivity at higher loads also means that it is critical to allow previously

identified parameters to be refined as the load is increased. Such cumulative fitting enables

more accurate parameter estimation [152,161].

4.4.1 Alternative Implementations

Modified implementations of the general idea behind the presented multi-step identifica-

tion algorithm are possible. A few potentially useful modifications are highlighted below:

• As we move to higher loads, our implementation disregards lower current density

data points. Alternatively, one may use low current data at later stages of the iden-

tification algorithm along with larger weights for the higher current measurements

(i.e., weighted least squares).

• In our implementation the problem is regularized by contracting the search space

for previously identified parameters. Alternatively, the same effect may be achieved

by penalizing deviations from previously identified parameters. For example, ridge

regression or LASSO formulations can be utilized in later stages of the algorithm.

• We only group the parameters based on their sensitivity variations with the current

density. Alternatively, this grouping can be carried out by considering all of the

operating conditions, such as the humidity and temperature. However, even though
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this approach can lead to better regularized formulation, it is expected to require

more experimental conditions to be effective.

While we do not pursue any of the above modifications in this dissertation, they offer

some directions for further improvement of the proposed identification framework.

4.5 Verification of the Proposed Framework

As described above, the proposed model parameterization framework has three main com-

ponents, namely, parameter subset selection (Section 4.2), optimal experimental design

(Section 4.3), and the multi-step identification procedure (Section 4.4). In this section,

we demonstrate the utility of each of these components. To this end, we use the model to

generate synthetic experimental data with a set of nominal parameter values (θnom). The

synthetic data are then used to identify the model parameters starting from perturbed

values. Particularly, the optimization cost function is the weighted norm of the error:

J(θ) = wV
‖eV (θ)‖2√

nV
+ wR

‖eR(θ)‖2√
nR

, (4.14)

where eV and eR denote the prediction error vectors for voltage (measured in mV) and

HFR (measured in mΩ · cm2), respectively, nV and nR are the number of elements in eV

and eR, and wV and wR are the corresponding weights. Since the HFR varies in a smaller

range compared to voltage, here we use wV = 1 and wR = 10. Given that we apply

large perturbations to the nominal values and the above cost has many local minima, a

gradient-based optimizer would fail to find the optimal solution. Use of a global optimizer

is thus warranted. We have experimented with both GA and PSO algorithms and found

that with the same level of effort to tune the optimizer hyper-parameters, the latter can

find a more optimal solution. Therefore, we use PSO to identify the selected parameters.

To highlight the importance of each part of the framework, we consider 4 different

cases for identification:
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1. Only the selected parameters (Table 4.2) are perturbed from their nominal values.

The OED conditions (Table 4.3) are used along with the multi-step identification

procedure to identify the parameters.

2. Only the selected parameters (Table 4.2) are perturbed from their nominal values.

The LHS conditions (Table 4.4) are used along with the multi-step identification

procedure to identify the parameters.

3. Only the selected parameters (Table 4.2) are perturbed from their nominal values.

The OED conditions (Table 4.3) are used along with a single-step identification pro-

cedure, where all of the selected parameters are identified using the entire dataset.

4. All parameters (Table 4.1), except those that were removed during the collinearity

analysis (i0,ca and Erev,PtO), are perturbed from their nominal values. The OED

conditions (Table 4.3) are used along with the systematic identification procedure

to identify the parameters.

In all of the above cases, the applied parameter perturbations are random. In particular,

the perturbations to the selected parameters are drawn from U(−0.3, 0.3) (i.e., uniform

distribution between -0.3 and 0.3), while the perturbations to the parameters that are

not included in the identification (case 4) are drawn from U(−0.15, 0.15). We also note

that these perturbations are applied to the scaled parameter values and would amount

to significant deviations from the nominal values on the original parameter axes. Addi-

tionally, it should be pointed out that the nominal values do not coincide with any of the

sample points in the parameter space that are used to generate the sensitivity data, select

the parameter subsets, and design the optimal experiments. These measures are taken to

properly examine the robustness of the proposed framework.

The identified parameter values for the first two cases are provided in Table 4.5 along

with the nominal and perturbed values. Moreover, the identification results for all of the
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above scenarios are shown in Fig. 4.5 in terms of the relative absolute error (RAE) of the

identified parameters, which is given by:

RAE =
|θ∗ − θnom|

θnom

× 100, (4.15)

where θ∗ and θnom denote the identified and nominal parameter values, respectively. Fig.

4.5(a) compares the results from the first two scenarios and highlights the utility of OED.

As seen in the figure, the maximum RAE in the parameter estimates is only 8.4% with

the OED (for ne), whereas the LHS design results in a maximum RAE of about 170%

(for ξdiff,mb). Moreover, the means of RAEs are 3.9% and 28.7% for the optimal and LHS

experimental designs, respectively.

Table 4.5: Parameter identification results

Parameter [Units] True Perturbed LHS Robust OED
αca [-] 0.7 0.731 0.713 0.730
i0,an [A/cm2] 0.01 0.0029 0.0109 0.0093
Eact,ca [kJ/mol] 67.0 58.09 64.91 64.53
ξdiff,mb [-] 1.0 0.317 2.698 0.997
κ0 [S/cm] 0.4 0.286 0.356 0.408
Eact,mb [kJ/mol] 15 13.54 14.97 14.54
kT,scale [-] 1.0 0.715 0.542 1.021
hconv [W/(cm2 ·K)] 1.0 0.2413 0.635 1.002
ne [-] 1.8 2.166 1.387 1.649
εMPL [-] 0.60 0.5819 0.520 0.642
εGDL [-] 0.78 0.754 0.674 0.722
δGDL [µm] 135 156 112 137

In addition to the RAEs, the model’s voltage and HFR predictions are shown in Figs.

4.6 and 4.7. Particularly, in Fig. 4.6 comparisons between the model outputs with nomi-

nal and identified parameters are shown for both OED and LHS cases with the data used

in parameter identification. Fig. 4.7 compares the voltage and HFR dynamic trajectories

under two different operating conditions that are not used during parameter identifica-

tion, where model predictions with identified parameters are compared to those obtained
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(a)

(b)

(c)

Figure 4.5: Relative error in parameter estimates obtained using synthetic data. Case 1 is
compared to case: (a) 2, (b) 3, and (c) 4 to demonstrate the effectiveness of optimal experimental
design (Section 4.3), the multi-step parameter identification algorithm (Section 4.4), and the
subset selection method (Section 4.2), respectively.
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with the nominal parameter values. A few observations follow: first we note that the

OED conditions lead to more pronounced variations in the predictions; therefore, they

better explore the space of output predictions and are more informative. Second, we

observe that for both sets of conditions, the identified parameter values reproduce the

synthetic experimental data used for parameter identification very well (see Fig. 4.6).

This result emphasizes that a good fit to experimental data does not readily imply an ac-

curate parameter identification. Lastly, as observed in Fig. 4.7, the identified parameter

values using OED lead to more accurate model predictions on data that are not used dur-

ing parameter identification. These observations, combined with the relative parameter

estimation errors mentioned above, demonstrate the importance of having maximally in-

formative experimental data for parameter identification, which can be obtained through

model-based OED.

To show the effectiveness of the proposed multi-step identification algorithm, Fig.

4.5(b) compares the RAEs obtained using the proposed algorithm with those obtained

from a single-step algorithm. The single-step algorithm uses the entire dataset to identify

all of the selected parameters. Note that in both cases we use the data based on OED

conditions of Table 4.3. The figure shows that the multi-step identification algorithm leads

to smaller RAEs. The maximum and mean RAEs for the single-step case are 33.8% and

10.5%, respectively, which are higher than those obtained with the multi-step algorithm.

This showcases the improved identification capability that is achieved by constraining the

problem using the data structure.

Lastly, the subset selection approach is verified by comparing the identification results

of case 1 with those of case 4, wherein the parameters that are not included in the selected

subset are also perturbed from their nominal values. These results are shown in Fig.

4.5(c). We note that if the subset selection algorithm is successful, then the parameters

that are not included in the selected subset are not expected to have a significant impact

on the output predictions. Therefore, perturbations to these parameters should not lead
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Figure 4.6: Polarization and HFR data obtained using OED and LHS conditions shown in
Tables 4.3 and 4.4, respectively. Results for both the nominal parameter values (markers) and
the identified values (lines) are shown. The identified values are based on case 1 (for OED)
and case 2 (for LHS) and are shown in Table 4.5. Same axes limits are used to allow for direct
comparison of the two experimental design results.

to considerable bias in the identified parameters. We further note that the parameters

that were left out of the selected subset due to their collinearity with another parameter

are not perturbed in case 4, as their perturbations can result in bias in the estimates

of their collinear counterparts. As can be seen in the figure, perturbing the parameters

outside of the selected subset does not have a significant impact on the relative errors in

the parameter estimates. In particular, the maximum and mean RAEs are 11.6% and

3.8%, respectively, which are on par with those of case 1. Therefore, the subset selection

algorithm has been successful.

These results show that regularization techniques such as parameter subset selection
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Figure 4.7: Validation results for identified parameter values using dynamic trajectories of
voltage and resistance. Both OED and LHS results are shown in the figures for comparison. Two
operating conditions are shown as examples, where the corresponding data at these conditions
are not used during parameter identification.

and multi-step identification procedure along with optimal experimental design can signif-

icantly improve parameter identification. Moreover, by extending the analysis beyond the

vicinity of a point in the parameter space, these procedures can be made robust to initial

assumptions about the nominal parameter values. Since effective model parameterization

is crucial to successful predictive modeling, these results can have profound implications

for model-based design and control strategies.
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4.6 Summary and Conclusions

A framework for systematic parameter identification for PEM fuel cell models is devel-

oped. The framework consists of three main components: (1) selecting a robust subset

of parameters for identification, (2) using model-based design of experiments to obtain a

robust set of maximally informative data for identification of the selected parameters, and

(3) using the structure of the data to formulate a regularized identification problem. This

framework is based on the extended local sensitivity analysis that is explained in Chapter

3. Particularly, sensitivities of model predictions to parameter perturbations are used to

determine the parameters that have the largest unique impact on the predicted outputs.

This is formalized through the D-optimality criterion. Importantly, rather than maxi-

mizing the local D-optimality criterion, we maximize its expected value over a number of

sample points in the parameter space to ensure the resulting subset is less dependent on

the nominal parameter values. The same procedure is applied to select the most infor-

mative operating conditions from a predefined library of conditions. Lastly, a multi-step

identification procedure is proposed to regularize the optimization problem. The effective-

ness of each of the components in the framework is verified through a case study, wherein

synthetic experimental data generated with nominal parameter values are used to iden-

tify the selected parameters. The results demonstrate the efficacy of the proposed subset

selection, optimal experimental design, and the multi-step identification procedures in

improving parameter identification results. While the methods of this work are applied

to a full cell model, they can also be utilized for sub-models that focus on a specific

phenomenon. Therefore, it is suggested that fuel cell modelers adopt such methods to

ensure that the models are properly parameterized and their full predictive capabilities

are utilized.
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Chapter 5

Degradation-Conscious Control

5.1 Introduction

The fuel cell durability challenges have prompted researchers to seek material solutions

to ensure robust operation of the fuel cell stacks under a variety of dynamic operating

conditions [25]. Reversal tolerant anode catalysts [55,56] and various membrane additives

and reinforcements [29–33] are examples of such developments. While these efforts have

led to significant lifetime improvements, in most cases the cost and durability targets have

proven too difficult to meet with material solutions alone [44]. Moreover, material-based

solutions for durability enhancement, such as membrane additives, typically result in a

higher fuel cell stack cost. On the other hand, some material-based cost saving measures,

such as reducing Pt loading, have been found to lead to diminished durability [345, 346].

The shortcomings of the material-based approaches thus suggest that these efforts should

be complemented with active control strategies to ensure that the full potential of the

materials are utilized.

To develop a control strategy that can successfully address durability concerns, the

stack materials have to be thoroughly characterized [347]. This characterization should

determine safe bounds for the local environmental conditions for each component that lead
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to prolonged lifetime. For instance, the membrane can be tested to determine the ranges

of hydration, temperature, and hydration rate of change that ensure the membrane’s

longevity [34, 348]. When such information is available, one can develop effective control

strategies that ensure operation within the safe bounds, thereby extending the stack’s

useful lifetime. Here we assume that quantitative bounds for safe operation of each

component are available and develop a control strategy that ensures these bounds are

respected during operation. We also note that determining the safety bounds is an active

area of research, and that the vast body of literature on accelerated stress tests can be

utilized to infer such bounds [349].

The challenge in designing an effective degradation-conscious controller is that the

degradation constraints have to be imposed on the conditions internal to the fuel cell

stack. However, only the channel conditions can be directly manipulated. For example,

one may control the relative humidity of the gas streams in each channel, but cannot

directly control the relative humidity in the catalyst layers. In other words, this is a PDE

boundary value control problem [350]. Nonetheless, the PDEs can be transformed into

ODEs with proper spatial discretization, which allows typical ODE control formulations

to be used. Additionally, given the constrained nature of the problem, MPC is especially

suitable for control design, since it provides a flexible and rigorous way of handling several

types of constraints. Particularly, MPC solves a constrained finite horizon optimal control

problem in a receding horizon manner (see Fig. 5.1) to obtain control inputs that satisfy

various system constraints.

Following the above discussion and to address the existing gaps in the fuel cell control

literature, here we propose a degradation-conscious control framework that can be used

to improve the durability of the fuel cell stack. Specifically, starting with a 1D version of

the fuel cell model presented in Chapter 2, we derive a reduced-order model for control

design purposes. This reduced model is then linearized online about the current operat-

ing point and utilized in an LTV-MPC framework [351–353] that attempts to meet the
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Figure 5.1: Schematic of the receding horizon concept implemented by MPC: At each time
step, a finite horizon optimal control problem is solved. Only the first set of computed inputs in
the sequence, highlighted by the blue oval, is applied to the system. At the next time step, new
measurements or estimates of system states are used to define a new optimal control problem
that is solved over a shifted horizon.

requested power demand, while minimizing the fuel consumption and maximizing the sys-

tem efficiency, to the extent that these objectives do not compromise the system’s safety

or durability. While the particular control formulation is a novel addition to the fuel cell

control literature, the most notable contribution of this chapter is the use of a high-fidelity

physics-based model in our control design process, which allows us to directly account for

local degradation phenomena. Importantly, the LTV-MPC formulation enables such a

high-fidelity model to be used without incurring an excessive computational cost. More-

over, the framework is flexible and readily allows for additional degradation pathways to

be included.

The rest of the chapter is organized as follows. First, the mathematical models used in

this study are described in Section 5.2. The control problem formulation is then presented

in Section 5.3, which discusses the underlying optimization problem for MPC. Next, the
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results from a number of simulation studies are presented in Section 5.4, before closing

with a chapter summary and brief concluding remarks in Section 5.5.

5.2 Mathematical Models

To formulate the control problem, we consider the fuel cell system, consisting of the fuel

cell stack and the reactant and coolant supply subsystems, as shown in Fig. 5.2(a). We

use a physics-based model of the PEM fuel cell to represent the actual fuel cell stack. The

reactant and coolant supply subsystems are represented with a simplified model. Together,

these models represent the entire fuel cell system and their combination is called the plant

model. The plant model is then reduced for the purpose of control design. The reduced

model is linearized online about the current operating point. This linearized reduced

model is called the controller model and used in an LTV-MPC framework to generate the

control commands. In this section, we describe both the plant and controller models. The

parameter values used for simulations in this chapter can be found in Appendix Table

A2.

5.2.1 Plant Model

5.2.1.1 Fuel Cell Model

A 1D version of the model that was presented in Chapter 2 is used here to represent

the fuel cell stack. The state and output equations are briefly presented here for ease of

access. Further modeling details, the functional form of material and transport properties,

closure equations, and validation can be found in Chapter 2.

The fuel cell model has 37 dynamic states. Specifically, the model solves 4 transport

PDEs to obtain the distribution of critical variables through the thickness of a cell. These

critical variables include water vapor concentration, liquid saturation, temperature, and
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Figure 5.2: System schematics: (a) overall fuel cell system architecture and a single cell assem-
bly, where the modeling domain is highlighted with the red plane and (b) control volumes used
to discretize the model’s PDEs.

ionomer water content and are respectively governed by:

εg
∂cv

∂t
= ∇ · (Deff

H2O
∇cv) + Sv, (5.1)

ρlε
∂s

∂t
= ∇ · (ρlK

eff
l

µl

∇pl) + Sl, (5.2)∑
α

εαραcp,α
∂T

∂t
= ∇ · (keff

T ∇T ) + ST , (5.3)

εion
ρion

EW

∂λ

∂t
= ∇ · (Nw,mb) + Sλ, (5.4)

Description of various source terms and effective transport properties for each layer of the

cell can be found in chapter 2. The only difference here is that no spatio-temporal decou-

pling is employed in this chapter, and the above equations are solved in a coupled manner.

Particularly, the PDEs are discretized using the control volume approach. The through-

the-membrane discretization scheme is shown in Fig. 5.2(b), where the membrane, CLs,

and MPLs are each represented with one control volume, whereas three control volumes
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are used for each GDL. This spatial discretization leads to a total of 34 state variables

from the above PDEs: 10 states for water vapor concentration (cv), 10 states for liquid

pressure (pl), 11 states for temperature (T ), and 3 states for ionomer water content (λ).

Three additional state variables are used to account for ionomer stress relaxation and Pt

oxide coverage:

dsrelax

dt
=

1

τrelax

(srelax − ϕλeq), (5.5)

dθPtO

dt
=kPtO

[
RH(1− θPtO) exp

(
αPtOFηPtO − EPtOθPtO

RT

)
−

θPtO exp

(
−(1− αPtO)FηPtO

RT

)]
, (5.6)

Further description for the above equations can be found in Chapter 2. Equation 5.6

along with equations 5.1-5.5 describe the dynamic state equations for the PEM fuel cell

model with 37 states.

Regarding the output predictions, the cell voltage is given by equation 2.60 and the

power output of the stack is determined by:

Pfc = idens · Ecell · Afc · ncell, (5.7)

where Afc is the active area of each cell and ncell denotes the number of cells in the stack.

5.2.1.2 Reactant and Coolant Supply Subsystems Model

To model the reactant supply subsystem, we note that hydrogen is supplied from a high

pressure tank, where the flow rate is controlled with a valve. The high pressure storage

leads to negligible dynamics for the anode volume, where the pressure can be rapidly ad-

justed. Therefore, we neglect the fast dynamics for hydrogen supply and focus exclusively

on the air supply dynamics, where the rotational dynamics of the compressor and the fill-

ing dynamics of cathode volume need to be captured by the model. Proper modeling of

these dynamics allows control design that ensures safe (i.e., no compressor surge or choke)

152



and sufficient (i.e., no starvation) delivery of the oxygen required for the electrochemical

reactions.

The model of the air supply subsystem is adopted from the literature. Particularly,

Pukrushpan et al. developed a control-oriented model for the compressor and manifold

filling dynamics with 9 states [93,174]. The dynamic states of the model include oxygen,

nitrogen, and vapor mass in the cathode, hydrogen and vapor mass in the anode, air mass

in the cathode supply manifold, the pressure in the cathode supply and return manifolds,

and the compressor speed. Later, Suh [354] showed that a reduced-order model with only

4 states can accurately capture the behavior of the model developed by Pukrushpan et

al. [174]. The dynamic states of the reduced-order model developed by Suh [354] are

the oxygen and nitrogen partial pressures in the cathode, the cathode supply manifold

pressure, and the compressor speed. In this work, we use this reduced-order model with

the modification that the states for oxygen and nitrogen partial pressures are lumped

into a single state for the cathode pressure. Therefore, the dynamic states in our model

include the compressor speed (ωcp), the supply manifold pressure (psm), and the cathode

pressure (pca). The corresponding dynamics are given by:

dωcp

dt
=

1

Jcp

(τcm − τcp), (5.8)

dpsm

dt
=

RTcp

Ma,atmVsm

(Wcp −Wca,in), (5.9)

dpca

dt
=
RTCH,avg

Vca

(
WO2,in −WO2,out −WO2,rct

MO2

+

WN2,in −WN2,out

MN2

+
Wv,in −Wv,out −Wv,rct

MH2O

)
, (5.10)

where τcm and τcp are the motor and load torque of the compressor, respectively, Jcp

is the compressor inertia, R is the universal gas constant, Tcp is the compressor flow

temperature, Ma,atm is the molar weight of atmospheric air, Vsm is the supply manifold

volume, TCH,avg is the average temperature in the flow channel, Vca is the cathode volume,
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Wcp is the mass flow rate of air out of the compressor, Wca,in is the air mass flow rate into

the cathode volume, Wi,in and Wi,out denote the mass flow rate of species i into and out of

the cathode, respectively, and Wi,rct is the mass flow rate of species i into the GDL. Note

that WO2,rct is always positive as oxygen is consumed during ORR. However, Wv,rct can be

negative, which indicates that vapor flows from the GDL into the cathode channel. The

static relations for the terms in the above equations are provided in Table 5.1. Further

details can be found in the works of Pukrushpan et al. [174] and Suh [354]. We also note

that the compressor specifications used here, including the compressor efficiency map, are

identical to the ones reported by these earlier works [174,354].

Following the above calculations, the oxygen stoichiometry is given by:

StO2 =
WO2,in

WO2,rct

. (5.11)

Moreover, the power consumed by the compressor motor is determined as follows:

Pcm =
vcm

Rcm

(vcm − kvωcp) , (5.12)

where vcm is the compressor motor voltage, which is an input to the model, and Rcm and

kv are compressor motor parameters.

With regards to the coolant circulation, the relation between the coolant flow rate and

the corresponding change in its temperature is given by:

Qcool = ṁcoolCp,cool∆Tcool

= hconvAcool [TGDL − TCH,avg]

= hconvAcool

[
TGDL −

(
Tcool,in +

1

2
∆Tcool

)]
, (5.13)

where ṁcool, Cp,cool, Tcool,in, and ∆Tcool denote the coolant flow rate, its specific heat

capacity, its inlet temperature, and its temperature change, respectively, hconv is the

convective heat transfer coefficient, Acool is the area available for cooling, and TGDL is the
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Table 5.1: Static relations for air supply subsystem

Variable Equation

τcm ηcm
kt
Rcm

(vcm − kvωcp)

τcp
CpTatm
ηcpωcp

[(
psm
patm

) γ−1
γ − 1

]
Wcp

Tcp Tatm + Tatm
ηcp

[(
psm
patm

) γ−1
γ − 1

]
Wcp Φρa

π
4
d2

cUcpcp,in

√
288
Tcp,in

Wca,in kca,in (psm − pca)

WO2,in
xO2

1+ωca,in
Wca,in

WN2,in
1−xO2

1+ωca,in
Wca,in

Wv,in
ωca,in

1+ωca,in
Wca,in

Wca,out
CDATpca√
RTCH,out

CW

CW =
(
patm
pca

) 1
γ

√
2γ

1−γ

(
1−

(
patm
pca

) γ−1
γ

)
for patm

pca
>
(

2
γ+1

) γ
γ−1

CW =
√
γ
(

2
γ+1

) γ+1
2(γ−1)

for patm
pca
≤
(

2
γ+1

) γ
γ−1

WO2,out
MO2

pO2

MO2
pO2

+MN2
pN2

+MH2O
pv
Wca,out

WN2,out
MN2

pN2

MO2
pO2

+MN2
pN2

+MH2O
pv
Wca,out

Wv,out
MH2O

pv

MO2
pO2

+MN2
pN2

+MH2O
pv
Wca,out

WO2,rct MO2ncellAfc
idens
4F

Wv,rct MH2OncellAfc
cv,CH−cv,GDL3

Rv

temperature in the GDL3 control volume (see Fig. 5.2(b)). The model inputs for the

coolant circulations subsystem include the coolant inlet temperature (Tcool,in) and its flow

rate (ṁcool). Note that we do not explicitly model the heater and radiator for simplicity.

Nonetheless, the dynamics of heating the coolant to a specific temperature is accounted

for in the control formulation (see Section 5.3).

Lastly, here we assume that the compressor motor and all auxiliary equipment are
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powered by the fuel cell system. Therefore, the net power output of the system is given

by:

Pnet = Pfc − Pcm − Paux, (5.14)

where Paux is the total power consumed by all other auxiliary equipment, such as the cool-

ing system and the humidifier. We further assume that this auxiliary power consumption

scales linearly with the current density and the coolant flow rate:

Paux = 0.5 +
idens

idens,max

+
ṁcool

ṁcool,max

[kW], (5.15)

where the maximum power consumption by all auxiliary equipment is assumed to be 2.5

kW. In our control formulation, we also maximize the overall system efficiency. To this

end, we minimize the fraction of net power consumed by the auxiliary components, which

is given by:

Pfrac =
Pcm + Paux

Pnet

. (5.16)

This completes our plant model formulation.

5.2.1.3 Plant Model Summary

The plant model has a total of 40 dynamic states:

x =
[
c
T

v, p
T

l , T
T

, λ
T

, θPtO, ωcp, psm, pca

]T
, (5.17)

where bold symbols denote vector-valued variables. The model inputs include relative

humidity in the flow channels, coolant inlet temperature and its flow rate, compressor

motor voltage, and the stack current density. Therefore, the input vector is given by:

u = [RHan, RHca, Tcool,in, vcm, idens, ṁcool]
T

, (5.18)
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whereRHan andRHca denote the channel RH values, which provide the required boundary

conditions for equation 5.1 and also impact the membrane hydration state. Finally, the

two main outputs of the plant model are:

y = [Pnet, Pfrac]
T

. (5.19)

5.2.2 Controller Model

The model described in the previous subsection is not amenable to online computations

required for optimization-based control. Therefore, a reduced-order model is developed for

control design purposes. The plant model for the reactant and coolant supply subsystems

is a lumped parameter model with 3 dynamic states and requires no further simplification.

Accordingly, our focus for model reduction is on the fuel cell model, where we note that the

states critical to both performance and durability are those that describe the conditions

in the membrane and catalyst layers. For instance, the membrane hydration and its

temperature are consequential to its durability [34,355,356] while also affecting the stack

performance. Therefore, the reduced-order model must capture such critical states. On

the other hand, the GDL and MPL conditions lead to intermediate states between the

controlled channel environment and the membrane and catalyst layer states. Many of

these intermediate states may be lumped into effective transport properties that do not

vary considerably over a short time horizon. For example, while the amount of liquid in

the GDL impacts the cell performance, GDL liquid accumulation is typically slow and

significant variations are not expected over the span of a few seconds [89]. Therefore, the

dynamics of corresponding states can be safely neglected in the reduced-order model and

their effects can instead be represented with static transport properties.

Following the above discussion, we develop a reduced-order model for the cell with only

8 states (reduced from the 37 states of the full-order fuel cell model). Our particular focus

is on the membrane hydration and temperature. Since accurate estimation of membrane
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hydration requires the vapor concentrations in the CLs, these concentrations are modeled

with two states. Similarly, the dynamics of liquid accumulation in the CLs are represented

with two additional states. These were determined to be critical, since the low porosity

and small thickness of the CLs can lead to their rapid flooding in a few seconds [89]. The

controller model has to capture this behavior. Otherwise, the controller may generate

inputs that lead to significant flooding of the CLs, from which it may not be able to

recover the required performance.

With these considerations, the resulting control-oriented model of the cell has 8 states

that focus on the membrane and catalyst layer conditions. Since the GDL and MPL

states have been eliminated, the reduced-order model relies on transport parameters that

are obtained from the full-order model. We present the state equations for the reduced-

order model starting with the ionomer hydration dynamics that are similar to those of

the full-order model and are repeated here for accessibility:

εan
ion

ρion

EW

dλan
CL

dt
=

1

δan
CL

(
−Nan

w,mb + 2NO2,mb

)
+ San

ad , (5.20)

εca
ion

ρion

EW

dλca
CL

dt
=

1

δca
CL

(
N ca

w,mb +
i

2F
+NH2,mb

)
+ Sca

ad, (5.21)

εmb
ion

ρion

EW

dλmb

dt
= − 1

δmb

(
N ca

w,mb −Nan
w,mb

)
, (5.22)

The above equations are identical to equations 2.49-2.51 and the descriptions can be found

in Chapter 2. The membrane temperature dynamics are approximated by:

dTmb

dt
=

1

(ρcp)mb

(
Tmb − TCH,avg

δcaRca
T

+
Tmb − TCH,avg

δanRan
T

)

+
ST,mb

(ρcp)mb

+
Sca
T,CL

(ρcp)CL

+
San
T,CL

(ρcp)CL

, (5.23)

where the membrane temperature is affected by heat transport to the gas and coolant

channels and various heat source/sink terms. Specifically, TCH,avg is the average channel

temperature, which is assumed to be equal to the average coolant temperature, i.e.,
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TCH,avg = Tcool,avg = Tcool,in + 1
2
∆Tcool. Moreover, ST ’s denote the corresponding heat

source terms (see Chapter 2 for details and note that the reaction source terms are also

taken into account), δan/ca is the total thickness of the cell layers (CL+MPL+GDL) on

either side, and Ran/ca
T denotes the total heat transport resistance between the membrane

and the channels, which is a summation of conductive and convective heat transport

resistances and is determined as follows:

RT =
δCL

keff
T,CL

+
δMPL

keff
T,MPL

+
δGDL

keff
T,GDL

+
1

hconv

, (5.24)

where keff
T is the effective thermal conductivity of the layer.

Lastly, the dynamics of vapor concentration and liquid saturation in the CLs are given

by:

εan
g,CL

dcan
v,CL

dt
=

1

δan
CL

(
−
can

v,CL − can
v,CH

Ran
v

)
+ San

pc − San
ad , (5.25)

εca
g,CL

dcca
v,CL

dt
=

1

δca
CL

(
−
cca

v,CL − cca
v,CH

Rca
v

)
+ Sca

pc − Sca
ad, (5.26)

ρlε
an
CL

dsan
CL

dt
=
ρlK

eff
l (pan

l,MPL − pan
l,CL)

0.5µl(δan
CL + δan

MPL)δan
CL

−MH2OS
an
pc , (5.27)

ρlε
ca
CL

dsca
CL

dt
=
ρlK

eff
l (pca

l,MPL − pca
l,CL)

0.5µl(δca
CL + δca

MPL)δca
CL

−MH2OS
ca
pc, (5.28)

where the CL vapor concentration is determined by the vapor flux into or out of the

CL, and the source terms due to ionomer water absorption or desorption (Sad) and the

phase change process (Spc). Similarly, the CL liquid accumulation is affected by the

capillary transport of water and its evaporation or condensation. In the above equations,

Rv denotes the total diffusive and convective transport resistance for water vapor:

Rv =
δCL

Deff
H2O,CL

+
δMPL

Deff
H2O,MPL

+
δGDL

Deff
H2O,GDL

+
Dh

Sh ·DH2O

, (5.29)

where the first three terms are diffusive resistances to vapor transport across the cell layers

and the last term is the convective resistance to vapor transport between the channel and
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the GDL. Further calculation details can be found in Chapter 2.

The above state equations describe the reduced-order model of the fuel cell. In addition

to these states, the state vector for the control-oriented model of the entire system includes

the compressor and manifold filling dynamic states and is given by:

x =
[
λan

CL, λ
ca
CL, λmb, Tmb, c

an
v,CL, c

ca
v,CL, s

an
CL, s

ca
CL, ωcp, psm, pca

]T
. (5.30)

The model inputs and outputs are identical to the full-order plant model shown in equa-

tions 5.18 and 5.19, respectively. In addition to the outputs, the following vector of

constrained variables is predicted by the model:

z = [Ecell, zsurge, zchoke, StO2 , ∆Tcool]
T

, (5.31)

where Ecell and StO2 are given by equations 2.60 and 5.11, respectively, ∆Tcool denotes the

change in the coolant temperature (determined by equation 5.13), and zsurge and zchoke

are the linear approximations for compressor surge and choke constraints, respectively,

given by:

zsurge =
psm

patm

− 50Wcp, (5.32)

zsurge =
psm

patm

− 15.27Wcp. (5.33)

The variables contained in z are used to ensure safety constraints for the system operation

(see Section 5.3).

The reduced-order model can be summarized as follows:

ẋ = f(x,u,Λ)

y = g(x,u,Λ)

z = h(x,u,Λ)

(5.34)

where x ∈ IR11×1, u ∈ IR6×1, and y ∈ IR2×1 denote the state, input, and output vectors,
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respectively, and z ∈ IR5×1 is the vector of constrained variables. Moreover, Λ is the

vector containing the varying parameters of the reduced model that are obtained from

the full-order model. In particular, it contains ionomer relaxation parameters (srelax), PtO

coverage (θPtO), diffusion resistances to vapor (Rv) and reactant transport (Rrct), thermal

resistance on both sides of the cell (RT ), and liquid pressure in the MPLs (pl,MPL).

5.3 Control Problem Formulation

As mentioned earlier, our control objective is to track a power demand while maximizing

the overall system efficiency and satisfying constraints that stem from safety or degrada-

tion considerations. Moreover, we aim to keep the computational cost low for feasibility

of online implementation. Accordingly, we use an LTV-MPC framework [351–353], which

allows for handling of various constraints on states and inputs with significantly lower

computational burden compared to nonlinear MPC. The different steps of our formula-

tion are described in detail below.

5.3.1 Linearized Dynamics and Augmented System Formation

We start our control design by linearizing the reduced-order dynamics about the current

operating point to allow for linear quadratic MPC formulation. To this end, we note that

the dynamics are linearized about a non-equilibrium point, (x0,u0,Λ0), which leads to

an additional term as follows:

ẋ = f(x,u,Λ)⇒
.

ξ = Aξ + Bη + f(x0,u0,Λ0) (5.35)

y = g(x,u,Λ)⇒ ∆y = Cξ + Dη (5.36)

z = h(x,u,Λ)⇒ ∆z = Czξ + Dzη (5.37)
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where ξ and η are the state and input deviations from the linearization point, respectively.

We note that the linearization is done analytically offline and the parameterized matrices

are evaluated online to obtain an updated linear model. To time-discretize the continuous

linear model, we use zero-order hold, which yields [357]:

ξk+1 =Adξk + Bdηk + A−1(exp(ATs)− I)f(x0,u0,Λ0) (5.38)

where Ts denotes the sampling time for the system, I is the identity matrix of appropri-

ate size, and the d subscript is used to represent matrices that are obtained after time

discretization.

Following the above linearization, we use the rate-based formulation [358,359] for our

MPC design. This approach enables zero-offset tracking, while allowing for constraints

to be imposed on the rates of change of the inputs and states. Constraining input rate of

change allows us to account for actuator dynamics without the need to explicitly model

them, while the constraints on the rate of change of the states can help reduce degradation.

Accordingly, we form the following augmented system for the rate-based formulation:

xaug =
[
∆ξ

T

, e, Pfrac, ξ
T

, η
T
]T
, (5.39)

where the first element is the change in deviation from the linearization state, the second

element is the power tracking error e = Pcommand − Pnet, the third element denotes the

fraction of generated power consumed by auxiliary components (equation 5.16), the fourth

element is the deviation from the linearization state, and the last element represents the

deviation from the inputs about which the system is linearized. It should be noted that ξ

and η are only included in the augmented system to allow for constraints to be imposed

on the states and inputs. The discretized state and constrained output equations of the
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augmented system are given by:

xaug
k+1 = Aaugxaug

k + Baug∆ηk, (5.40)

∆zk = Caug
z xaug

k . (5.41)

The system matrices are as follows:

Aaug =



Ad 0 0 0

Cd I 0 0

I 0 I 0

0 0 0 I


, Baug =



Bd

Dd

0

I


,

Caug
z = [0, 0, Czd , Dzd ] ,

where 0 and I denote zero and identity matrices of appropriate sizes, respectively.

5.3.1.1 Command Preview

In the above formulation, we assume that the command, i.e., the requested power, remains

constant (at its current value) throughout the prediction horizon of MPC. However, this

is rarely the case in applications, as the command typically varies with time even within

the prediction horizon. While the above approach can successfully track slowly varying

commands, it may fail when the command changes rapidly. To allow for improved tracking

under such circumstances, a command preview can be used [360, 361], where we assume

that the time-varying command is known over a certain time horizon. The augmented

system dynamics can be further modified to enable this command preview. Particularly,

we modify the error dynamics based on the changing command:

ek+1 = Cd,1∆ξk + Dd,1∆ηk + ek −∆rk, (5.42)
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where Cd,1 and Dd,1 represent the first rows of the Cd and Dd matrices, respectively.

Furthermore, ∆rk = rk+1 − rk and rk denote the change in command and the command

at time k, respectively. The command dynamics are then given by:

∆̃rk+1 = Ar∆̃rk, (5.43)

where Ar and ∆̃rk are as follows:

Ar =



0 I 0 . . . 0

0 0 I . . . 0

...
...

. . . . . . 0

0 . . . . . . 0 I

0 . . . . . . 0 I


,

∆̃rk = [∆rk, ∆rk+1, . . . , ∆rk+Nr ]
T

.

In the above relation, Nr denotes the preview horizon, beyond which the command is

assumed to remain constant.

5.3.2 MPC Cost Function

The MPC cost for the rate-based formulation consists of quadratic stage and terminal

costs:

JN =(xaug
Np

)
T

PNx
aug
Np

+

Np−1∑
k=0

[
(xaug

k )
T

Qaugxaug
k

]
+

Nu−1∑
k=0

[
∆η

T

kR∆ηk

]
+ ε

T

µε, (5.44)

where the terminal cost is formulated based on the solution to the discrete algebraic

Riccati equation (DARE) for the [∆ξ
T

, e]
T

subsystem and is used to ensure closed-loop

stability. Specifically, letting P∞ denote the solution to the corresponding DARE, the
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terminal penalty is given by:

PN =

 P∞ 0

0 0

 . (5.45)

In the cost shown in equation 5.44, Qaug and R are weighting matrices of appropriate

size. Particularly, Qaug is given by:

Qaug = diag (0, Qe, QP , 0, Qu) , (5.46)

where diag(·, . . . , ·) denotes a block-diagonal matrix structure composed of the arguments.

Finally, the last term in the cost is used to penalize violation of soft constraints, where ε is

the vector of slack variables (see Section 5.3.3). Additionally, we note that the formulation

allows for different prediction (Np) and control (Nu) horizons to be used (see Fig. 5.1).

This is done to maintain a low computational cost by using a short control horizon while

ensuring stability with a long prediction horizon. Particularly, when the control horizon

is shorter than the prediction horizon, the control inputs remain unchanged beyond the

control horizon and the model is simulated with a constant control input until the end of

the prediction horizon. Therefore, the MPC has to solve for fewer control actions, which

simplifies the optimization.

5.3.3 MPC Constraints

The actuator limits are taken into account by imposing the following input constraints:

30% ≤ RHan ≤ 100%, 30% ≤ RHca ≤ 100%,

65 ◦C ≤ Tcool,in ≤ 80 ◦C, 60 V ≤ vcm ≤ 240 V,

0.05 A/cm2 ≤ idens ≤ 1.75A/cm2, 0.1 kg/s ≤ ṁcool ≤ 4 kg/s.
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The above constraints are motivated by the fuel cell system capabilities. In case of the

current density, we note that the lower bound is used to ensure operation away from

the OCV, which is a known catalyst and membrane stressor [4]. The current density

upper bound is chosen based on the compressor’s capability to maintain a safe oxygen

stoichiometry.

In addition to limits on the inputs, the rates of change of the inputs are also con-

strained. This is done to account for the actuator dynamics that are not explicitly mod-

eled. For instance, the coolant temperature cannot change instantaneously due to the

dynamics associated with the heater and radiator. Therefore, such dynamic limits are

taken into account as follows:

|∆RHan| ≤ 10% 1/s× Ts, |∆RHca| ≤ 10% 1/s× Ts,

|∆Tcool,in| ≤ 0.1 ◦C/s× Ts, |∆vcm| ≤ 10 V/s× Ts,

|∆idens| ≤ 0.5 A/(cm2 · s)× Ts, |∆ṁcool| ≤ 0.2 kg/s2 × Ts,

Note that the above constraints on the actuators are all enforced as hard constraints, i.e.,

no constraint violation is allowed.

We also consider safety and degradation constraints that are imposed on the dynamic

states or their rates of change, as well as the auxiliary z variables in equation 5.31. In

particular, to ensure membrane durability we enforce:

5 ≤ λCL ≤ 14, 7 ≤ λmb ≤ 14,

|∆λmb| ≤ 1 1/s× Ts, Tmb ≤ 87 ◦C.

These constraints are imposed to avoid subjecting the membrane to significant hydration

and dehydration cycles and inhibit its excessive heating. Furthermore, the rate of change

of the membrane hydration is constrained, since it controls the mechanical stresses in the

membrane that can lead to crack initiation or propagation.
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The safe operation of the compressor is guaranteed through the following constraints:

40 kRPM ≤ ωcp ≤ 100 kRPM,

zsurge ≤ −0.1, 0.6 ≤ zchoke,

1.5 bar ≤ psm ≤ 3.5 bar.

Moreover, to ensure robust and sufficient supply of reactants to the active sites in the

CLs we impose the following limits:

1.5 ≤ StO2 , 1.2 bar ≤ pca ≤ 3.0 bar,

sCL ≤ 0.3, 0.2 V ≤ Ecell ≤ 0.9 V,

where the constraints on StO2 and pca are used to ensure sufficient delivery of oxygen to

the cathode channels at a high enough pressure and the constraint on sCL and the lower

bound for Ecell guarantee sufficient reactant concentration at the Pt surfaces. The upper

bound for Ecell is essentially clipping the cell voltage for improved catalyst durability [57].

We also note that the hydrogen stoichiometry is assumed to be constant at 1.5.

Lastly, to avoid excessive heating of the cell, the change in the coolant temperature is

limited:

∆Tcool ≤ 10 ◦C.

We note that the safety and degradation constraints are all imposed as soft constraints

with slack variables (ε) to ensure feasibility of the problem (see equation 5.44).

Overall, these constraints ensure safe and reliable operation of the entire fuel cell

system and are used to extend the useful lifetime of the fuel cell stack. We note that it is

the type of constraints that is of interest in this work rather than the specific numerical

bounds used here, as such numerical values can be updated when the fuel cell system is

extensively characterized based on safety and durability considerations.
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5.3.4 MPC Optimization

To formulate the optimization problem we use the so-called batch approach [362], wherein

the linearized dynamics are utilized to describe all future states in terms of the current

states and future inputs. Following this approach and considering the constraints de-

scribed above, we obtain the optimization problem below, which is a quadratic program

(QP):

minimize
U

JN = (U)
T
HU + 2q

T
U

subject to GU ≤W + Txaug
0

(5.47)

where U is the input vector over the control horizon augmented with the slack variables:

U =
[
∆η

T

1, . . . ∆η
T

Nu , ε
T
]T
. (5.48)

Derivation of the cost and constraint matrices in the above QP is straightforward and can

also be found in the literature [362,363].

5.3.5 MPC Tuning (Weights and Horizons)

The weighting matrices are chosen as follows:

Qe = 50, QP = 10, Qu = diag (0, 2, 0, 0, 5, 0) ,

R = diag (5, 5, 5, 0.05, 1, 2.5) .

These weights are chosen to penalize the tracking error (Qe = 50) and ensure offset-free

tracking of the power demand when possible, while minimizing the power consumption

by auxiliary equipment (QP = 10). Moreover, two of the system inputs are penalized

(nonzero elements in Qu). Specifically, since hydrogen consumption is directly related

to the stack current (assuming constant hydrogen stoichiometry), the current density is
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penalized with a weight of 5 to minimize the fuel consumption. In addition, a small

penalty (weight of 2) is imposed on the cathode channel RH to minimize the humidifica-

tion requirements and explore opportunities for downsizing the humidifier. We also note

that only the cathode RH is penalized, since humidifying the cathode requires a larger

humidifier due to higher air mass flow rates compared to the hydrogen flow rates in the

anode. The rates of change of the inputs are also penalized (R), wherein the weights

are chosen based on the scales of the inputs. Lastly, to obtain the terminal penalty, the

DARE is solved with R∞ = R and:

Q∞ = diag (0, Qe, QP ) .

Regarding the MPC prediction and control horizons, we note that longer horizons

typically improve the controller performance while increasing its computational cost [362].

However, the optimal choice of the prediction horizon depends on the particular problem.

Here, a relatively long prediction horizon is needed to effectively control the membrane

hydration state, since it has slow dynamics compared to other system states. However,

longer prediction horizons may in fact lead to deteriorated performance with the current

formulation. This is due to the fact that the reduced-order model is much simpler than

the plant model and requires frequent updates based on the full-state feedback from the

full-order model. Additionally, the MPC uses a linearized version of this simplified model,

whose deviations from the original nonlinear model become more significant over time.

The fact that linearization is done about a non-equilibrium point further contributes to

this discrepancy.

To determine a good prediction horizon, a number of numerical experiments were

conducted with the step profile shown in Section 5.4. Particularly, values of Np = 10

to Np = 35 were tested. It was found that a prediction horizon of Np = 20 strikes a

good balance between performance and computational cost. The same procedure was
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used to determine the control horizon, where horizons between Nu = 4 and Nu = 10

were studied and a control horizon of Nu = 5 was found to yield good performance with

minimal computational costs. Therefore, we set Np = 20 and Nu = 5 for the simulations

in Section 5.4.

5.3.6 Numerical Implementation

The entire degradation-conscious control framework is implemented in MATLAB. Par-

ticularly, the plant model is integrated with the stiff solver ode23t. The reduced-order

dynamics are analytically linearized using CasADi [364]. The QP matrices are formulated

using in-house MATLAB code and the optimization is solved with the Operator Splitting

Quadratic Program (OSQP) solver [365] that uses the alternating direction method of

multipliers (ADMM) [366]. A tolerance of 10−5 and a maximum number of iterations of

1000 are used. When a number of constraints become active, this iteration limit is reached.

Nevertheless, our numerical experiments show negligible improvements in performance or

constraint satisfaction when the algorithm is allowed to iterate longer to ensure conver-

gence. Therefore, this maximum iteration limit was chosen to balance the algorithm

convergence with its computational requirements. The framework is implemented using

custom-written MATLAB code and run on a computer with a 2.5 GHz processor and 16

GB of RAM.

5.4 Simulation Case Studies

In this section we study the utility of the proposed framework with a variety of power

demand profiles and discuss the robustness to parametric uncertainty and the impact of

command preview.
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5.4.1 Power Profile with Step Changes in the Demand

In the first case study, we consider a power demand profile that consists of several in-

creasing and decreasing step changes in the load as shown in Fig. 5.3. Moreover, the

profile also includes a high power demand that is not feasible for the fuel cell system con-

sidered in this work. This infeasible demand is used to illustrate the controller’s ability

in satisfying the various safety and degradation constraints while pushing the system to

its limits. As can be observed in Fig. 5.3, the controller enables offset-free tracking of

the power demand, where the net power generated by the system rapidly converges to

the demand level after a step change. However, in some cases the controller response is

slower to ensure the constraints are satisfied.

With regards to the fuel cell conditions, Fig. 5.3 illustrates that the controller suc-

cessfully maintains the membrane hydration within the desired range. Similarly, the

membrane temperature is maintained below the critical value, the liquid accumulation

in the cathode catalyst layer is kept below 0.3, and sufficient oxygen delivery is ensured

by sustaining the oxygen stoichiometry above 1.5. The figure also shows the compressor

efficiency map with the trajectory of compressor model states overlaid. The controller

successfully avoids compressor surge and choke and ensures sufficient pressure in the sup-

ply manifold. Moreover, the compressor efficiency is maximized (the efficiency is always

greater than 72%). Lastly, the change in the coolant temperature is controlled to be

below 10 ◦C to ensure the system is not overheated. Slight violations of some of the

constraints are observed, which are due to the fact that these constraints are imposed as

soft constraints to ensure feasibility. In practice, the constraints can be made tighter, if

needed, to ensure safety and longevity are not compromised with such slight violations.

The inputs to the fuel cell system generated by the degradation-conscious controller

are shown in Fig. 5.4. We note that all of the actuation limits are respected. The coolant

flow rate is minimized to reduce the auxiliary power loss. Furthermore, the cathode
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Figure 5.3: Power and system state trajectories for step changes in power demand. The dashed
black lines indicate system constraints. The compressor state trajectories are overlaid on the
compressor efficiency map, where the surge and choke constraints are also shown.

channel RH is minimized to reduce humidification requirements. Particularly, at higher

loads, the membrane is hydrated with ORR product water. It is only at lower current

densities that inlet humidification is deemed necessary to ensure sufficient hydration of

the membrane. Another interesting observation is that after the load is reduced at 210 s,

the controller builds up pressure in the cathode channel by running the compressor faster.

This helps to initially compensate for lack of humidification. Once the cathode feed is

sufficiently humidified, the compressor speed is reduced to minimize compressor power

consumption.
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Figure 5.4: System input trajectories and their computation time for arbitrary power profile of
Fig. 5.3. The input limits are shown as dashed black lines.

Fig. 5.4 also shows the time required to formulate and solve the QP of equation 5.48,

where the computational time is seen to be consistently less than the sampling time.

Note that the computation times shown in the figure also include the time to evaluate

the analytically linearized dynamics and form the QP matrices. Therefore, the problem

can be efficiently formulated and solved in real time on the hardware platform used in

this chapter. Nonetheless, since embedded hardware is typically far less powerful than a

desktop computer, further computational simplifications may be needed in practice.

One approach to reduce the computational burden in practice is to use a longer execu-

tion horizon (Ne), i.e., instead of just using the first move, we can use the first few entries

in the control sequence generated by the optimizer. The results from such an approach

are shown in Fig 5.5, where the execution horizon is increased from 1 to 4 steps. We

observe a slight deterioration in controller performance with increasing execution hori-

zon. Particularly, as shown in the inset for the power dynamics plot, the power tracking

capability is slowed down when longer execution horizons are used. Moreover, the abil-

ity to recover from constraint violation is slightly reduced as shown in the inset of the
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Figure 5.5: Effect of increasing execution horizon. The dashed black lines indicate system
constraints.

membrane hydration plot. Nonetheless, such slight deterioration is not expected to have

significant implications in terms of either the system performance or its durability. There-

fore, longer execution horizons may be utilized in practice to alleviate the computational

burden further, if needed.

Alternatively, a larger sampling time may be used for time-discretization. However, we

have found that the controller performance is diminished more significantly with such an

approach, because the resulting time-discretized linear dynamics are not able to capture

the behavior of the continuous-time system.

5.4.1.1 Robustness to Parametric Uncertainty

Parametric uncertainty can deteriorate the performance of model-based controllers. To

study the robustness of the proposed control framework to such uncertainties, perturba-

tions are applied to the controller model parameters. Three example sets of perturbations

are shown in Table 5.2. Note that all these perturbations are significant and lead to con-

siderable quantitative change in the predictions of the controller model. However, we

assume that the full-state feedback is not affected by these parameter perturbations. In

other words, the parametric uncertainties only affect the predictions by the controller
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Figure 5.6: Robustness to parametric uncertainty under nominal full-state feedback. The
dashed black lines indicate system constraints.

model.

Table 5.2: Considered parametric uncertainties

Case Parameter Perturbations
1 δGDL × 1.5, δMPL × 1.5, αca + 0.2

2 δGDL × 1.5, δMPL × 1.5, αca + 0.2,

εGDL − 0.05, εMPL − 0.05

3 δGDL × 1.5, δMPL × 1.5, αca + 0.2,

εGDL − 0.05, εMPL − 0.05,

kT × 0.5

The results for all three cases of perturbations are shown in Fig. 5.6, where the results

with the nominal parameter values are also shown for comparison. The controller displays

good robustness to such parametric uncertainties. Particularly, the controller performance

is not significantly affected by parameter perturbations as long as such perturbations do

not change the qualitative nature of the predictions. While this is encouraging, we ac-

knowledge that such robustness is mostly due to the perfect full-state feedback conditions

assumed here. If the full-state information is affected by parametric uncertainties, the

controller robustness is indeed compromised. This is illustrated in Fig. 5.7, where the
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Figure 5.7: Robustness to parametric uncertainty under nominal and perturbed full-state feed-
back. The dashed black lines indicate hydration constraints.

membrane hydration under Case 3 perturbations with nominal and compromised feed-

back are compared with the case with no parameter perturbations. The figure clearly

shows that constraint violation is more significant when the state feedback information

is compromised due to parameter uncertainties. Under such circumstances, robust MPC

approaches [367] may be sought to ensure constraint satisfaction and power tracking capa-

bilities are maintained. Similarly, robust observer design techniques [368] can be helpful in

this regard by enabling accurate state estimation despite parametric uncertainties. These

topics are beyond the scope of this dissertation and can be investigated in future research.

5.4.2 Time-Varying Power Profiles

As a final step in evaluating the capabilities of the proposed degradation-conscious control

framework, here we inspect its utility in following time-varying power demands, which is

a more realistic scenario for automotive applications. In particular, we study several drive

cycles in this subsection. To this end, the speed profile in each cycle is transformed into a
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power demand profile using a simple vehicle model. The decelerating portions of a speed

profile would lead to negative power. However, we limit the minimum power demand

to 10 kW here, since we neither consider a hybridization scheme nor a fuel cell start-up

shut-down capability in this work.

We start our analysis with the highway section of the US06 drive cycle (US06-HW).

The power demand profile is shown in Fig. 5.8 along with the net power generated by

the fuel cell system. We note that when no load preview is used, the controller displays

a lag in following the power demand (Fig. 5.8(b)). With a preview horizon of only 5

steps (equivalent to 0.5 seconds), the power tracking capability is enhanced significantly

at lower loads. Considering recent advances in human driver modeling [369] and the

envisioned connected infrastructure of the future [370], it is indeed reasonable to assume

a good-quality short command preview is available in real-world scenarios. Nonetheless,

the system is not able to follow rapid and significant increases in the load even with the

command preview, as seen at around 10 and 165 seconds in Fig. 5.8(a). This is due to the

slow response of the fuel cell system and highlights the fact that hybridization is required

for automotive applications.

Regarding the constraint satisfaction, Fig. 5.8 shows two of the most critical condi-

tions, namely, membrane hydration and the oxygen stoichiometry, where it is observed

that the respective constraints are successfully satisfied both with and without the com-

mand preview. However, the membrane hydration state is better maintained above the

critical value with the command preview, which highlights the utility of the preview when

the load is time-varying. Overall, these results indicate that the proposed framework can

successfully follow time-varying power demands, while ensuring safe and enduring system

operation, as determined by the constraints.

The input profiles for the US06-HW drive cycle calculated by the controller using the

command preview information are shown in Fig. 5.9, where, similar to our earlier discus-

sion, the cathode relative humidity and the coolant flow rate are minimized. Additionally,
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(a)

(b)

(c)

(d)

Figure 5.8: Dynamics for power and example constrained variables for US06 highway drive cycle:
(a) power dynamics, (b) blown-up version of the power dynamics plot, where the effectiveness
of command preview is observed, (c) membrane hydration, and (d) oxygen stoichiometry. The
dashed black lines indicate system constraints.
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Figure 5.9: System input trajectories and their computation time for US06-HW drive cycle.
The input limits are shown as dashed black lines.

the computation times for the control commands are still consistently below the sampling

time.

Finally, the power profiles for four other drive cycles and the corresponding net power

generation of the considered fuel cell system are shown in Fig. 5.10. The figure illus-

trates that the controller is indeed capable of following a variety of power demands, while

satisfying the input and state constraints explained in Section 5.3.3.

Overall, these results highlight several opportunities in enhancing performance and

durability of automotive PEM fuel cell systems through model-based control techniques

and underline the importance of complementing material-based solutions with active con-

trol strategies to meet the cost and durability targets for these systems. Successful imple-

mentation of this framework in real-world applications requires the knowledge of proper

lifetime indicators. The membrane hydration and its rate of change are among the key

lifetime indicators used in this dissertation. Nonetheless, the framework allows for further

such indicators to be included as they are discovered through extensive ongoing degrada-

tion studies. Therefore, the proposed framework offers a flexible strategy to meeting the
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(b)

(c)

(d)

Figure 5.10: Power trajectories for different drive cycles: (a) US06, (b) UDDS, (c) FTP75, and
(d) HWFET drive cycles.
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increasing demands for these fuel cell systems and enabling their widespread commercial-

ization.

5.5 Summary and Conclusions

A framework for degradation-conscious control of PEM fuel cell systems is developed.

The framework employs LTV-MPC to meet a power demand, while maximizing the over-

all system efficiency, ensuring safe operation of the fuel cell system, and extending its

lifetime. The latter two objectives are achieved by enforcing constraints on the compres-

sor and fuel cell conditions. Particularly, these constraints are based on considerations

that stem from compressor safety, membrane mechanical durability and the durability of

the electrocatalyst. Moreover, the system efficiency is maximized by minimizing the fuel

and auxiliary power consumption.

The framework is implemented by first developing a model of the fuel cell system that

serves as the plant for our simulation-based studies. The plant model is then simplified

to derive a reduced-order controller model for MPC optimization. The controller model

is further simplified by linearizing it about the current operating point. This successive

linearization enables the use of linear MPC formulations that lead to significant compu-

tational gains. The particular rate-based MPC formulation employed here allows us to

account for actuator dynamics without the need to explicitly model the actuators. Fur-

thermore, it enables constraint enforcement on the rate of change of the system states,

which can have serious implications for fuel cell durability.

The results indicate that the proposed control framework is able to meet the requested

power demand, even for time-varying profiles. Moreover, it ensures satisfaction of dura-

bility constraints and is thus expected to contribute to extending the system’s lifetime.

Lastly, we show that the results are calculated faster than real time in the computational

hardware used in this chapter and highlight opportunities to further reduce computa-
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tional cost and ensure successful implementation with embedded hardware. Therefore,

the proposed framework offers a promising approach to complement the ongoing research

in developing material-based solutions to address durability concerns in fuel cell systems.
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Chapter 6

Summary and Outlook

6.1 Dissertation Summary

This dissertation develops a model-based degradation-conscious control framework for

enhanced performance and durability of automotive PEM fuel cells. To this end, the

dissertation first proposes a novel computationally efficient model of the fuel cell that can

be used as a software sensor and provide critical information about the internal conditions

of an operating fuel cell stack. To enable quantitatively predictive modeling, the problem

of identifying the model parameters is considered extensively. Lastly, a version of the

proposed model is used to develop a control framework that can be used to extend the

lifetime of the fuel cell stack. Each of the specific contributions is further highlighted

below.

6.1.1 Fuel Cell Modeling

Water and heat management are critical to efficient and durable operation of PEM fuel cell

stacks. Information about the internal distribution of water and temperature throughout

the stack is invaluable in enabling effective management strategies. However, sensor

measurements for such vital information are rarely available, especially in automotive
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applications. This fact motivates the need for a model that can act as software sensor

and provide the much needed information about the internal conditions. Such a model

has to capture the intricate physical phenomena in the fuel cell while maintaining real-

time simulation capabilities that ensure the utility of the model as a software sensor. This

poses a significant challenge as the underlying physical phenomena are typically modeled

with a coupled system of nonlinear PDEs that require extensive computational resources

to solve.

This dissertation addresses the above challenge by developing a physics-based and

computationally efficient model of a PEM fuel cell in Chapter 2. Computational efficiency

is achieved by taking advantage of the natural separation of length and time scales involved

in the problem to spatio-temporally decouple it, developing a new reduced-order model

for water balance across the MEA, and defining a new variable for cathode catalyst

utilization that captures the trade-off between proton and mass transport limitations

with minimal additional computational cost. Together, these considerations result in the

model calculations to be carried out more than an order of magnitude faster than real

time. Moreover, a new iterative scheme allows for simulation of counter-flow operation

and makes the model flexible for different flow configurations. The proposed model is

validated with a wide range of experimental performance measurements from two different

fuel cells, where good quantitative agreement with available measurements is achieved.

Finally, simulation case studies are presented to demonstrate the prediction capabilities

of the model, where the results indicate the efficacy of the model in capturing complex

two-phase and non-isothermal transport phenomena in all three physical direction in

agreement with both experimental and high-fidelity modeling results from the literature.

The combination of the model’s computational efficiency and numerical robustness, as

well as the physical phenomena it captures, render the model a potentially effective tool

for monitoring automotive PEM fuel cell stacks.
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6.1.2 Model Parameterization

Effective model parameterization is critical to enabling quantitatively accurate predic-

tions by physics-based models. Accordingly, this dissertation examines the problem of

identifying model parameters in detail. Particularly, Chapter 3 extensively studies the

sensitivities of the model predictions to different parameters. This is done by conducting

an extended local sensitivity analysis for a variety of model parameters under numerous

operating conditions that can be potentially used in automotive settings. The results

from this extended sensitivity analysis are utilized to examine the parameter identifiabil-

ity problem. It is shown that many of the parameters in such physics-based models of

fuel cells are closely correlated as measured by their impact on the model outputs. The

considered model predictions are consistent with outputs that are commonly measured

in experimental settings, namely, the cell voltage, high frequency resistance, and mem-

brane water crossover. Furthermore, the positive impact of additional measurements in

decorrelating parameter effects is rigorously shown.

The correlation between parameter effects poses a significant challenge to successful

parameter identification. To address this challenge, the dissertation develops a system-

atic framework for parameter identification in PEM fuel cell models in Chapter 4. The

framework utilizes the extended local sensitivity results to find an optimal subset of pa-

rameters for identification. This is achieved through an optimization algorithm that

maximizes the well-known D-optimality criterion. The sensitivity data are then used for

optimal experimental design to ensure that the resulting experiments are maximally in-

formative for the purpose of parameter identification. To make the experimental design

problem computationally tractable, the optimal experiments are chosen from a predefined

library of operating conditions. Finally, a multi-step identification algorithm is proposed

to formulate a regularized and well-conditioned optimization problem. The identification

algorithm benefits from the unique structure of output predictions, wherein sensitivities
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to parameter perturbations typically vary with the load. To verify each component of the

framework, synthetic experimental data generated with the model using nominal param-

eter values are used in an identification case study. The results confirm that each of these

components plays a critical role in successful parameter identification.

Through the above efforts, this dissertation establishes the considerable challenges as-

sociated with successful parameter identification in the context of physics-based models

of PEM fuel cells. The proposed parameter identification framework is a major contribu-

tion of this dissertation that can be used to parameterize complex fuel cell models more

effectively.

6.1.3 Degradation-Conscious Control

The ultimate aim of this dissertation is to enable model-based control of PEM fuel cell

systems to improve their performance and durability. Accordingly, Chapter 5 utilizes

the modeling work presented in earlier chapters to develop such a control framework.

Particularly, a linear time varying model predictive control framework is developed for

degradation-conscious control of automotive PEM fuel cell systems. This is done by de-

riving a reduced-order nonlinear model of the entire system, including the reactant and

coolant supply subsystems and the fuel cell stack. This nonlinear model is then succes-

sively linearized about the current operating point to obtain a linear model. The linear

model is used to formulate the control problem, where a rate-based MPC formulation is

employed. The particular MPC formulation enables the use of a high-fidelity model in

control design without compromising computational feasibility. Using such a high-fidelity

model to formulate the control problem constitutes one of the major contributions of this

dissertation.

The controller objective is to ensure offset-free tracking of the power demand, while

maximizing the overall system efficiency and enhancing its durability. To this end, the
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fuel consumption and the power loss due to auxiliary equipment are minimized. More-

over, the internal states of the fuel cell stack are constrained to avoid harmful conditions

that are known stressors of the fuel cell components. Membrane dry-out, rapid changes

in the membrane hydration, and reactant starvation are among the stressors considered

in this work. However, the framework has the flexibility to accommodate further life-

time indicators as required by the particular application. Simulation-based studies are

carried out that showcase the utility of the proposed control framework in meeting the

outlined objectives. It is also demonstrated that the control commands can potentially

be generated in real time, allowing practical hardware implementation.

Given the flexibility and efficiency of the proposed degradation-conscious control frame-

work, it is expected to complement the ongoing materials research efforts and contribute

to extending the lifetime and enhancing the performance of automotive PEM fuel cell

stacks.

6.2 List of Conference Presentations and Archival

Publications

The above contributions have resulted in several conference presentations and publica-

tions, as well as a number of journal publications, as noted below.

6.2.1 Conference Presentations and Publications

1. A. Goshtasbi, J. Chen, J.R. Waldecker, S. Hirano, and T. Ersal. “Robust Parameter

Subset Selection and Optimal Experimental Design for Effective Parameterization

of PEM Fuel Cell Models.” 2020 American Control Conference. Submitted. [204]

2. A. Goshtasbi, B.L. Pence, J. Chen, J.R. Waldecker, S. Hirano, and T. Ersal. “Soft

Sensor for Real-Time Monitoring of Automotive PEM Fuel Cell Systems.” 236th
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Meeting of the Electrochemical Society, 2019. [200]

3. A. Goshtasbi, J. Chen, J.R. Waldecker, S. Hirano, and T. Ersal. “Optimal Ex-

perimental Design for Parameter Identification of PEM Fuel Cell Models.” 236th

Meeting of the Electrochemical Society, 2019. [207]

4. A. Goshtasbi, and T. Ersal. “Degradation-Conscious Control for PEM Fuel Cell

Systems.” 236th Meeting of the Electrochemical Society, 2019. [210]

5. A. Goshtasbi, and T. Ersal. “LQ-MPC design for degradation-conscious control of

PEM fuel cells.” 2019 American Control Conference. IEEE, 2019. [208]

6. A. Goshtasbi, J. Chen, J.R. Waldecker, S. Hirano, and T. Ersal. “On Parameteriz-

ing PEM Fuel Cell Models.” 2019 American Control Conference. IEEE, 2019. [206]

7. A. Goshtasbi, B. L. Pence, and T. Ersal. “A Real-Time Pseudo-2D Bi-Domain

Model of PEM Fuel Cells for Automotive Applications.” ASME 2017 Dynamic

Systems and Control Conference. American Society of Mechanical Engineers, 2017.

[198]

8. A. Goshtasbi, B. L. Pence, and T. Ersal. “1+1D Non-Isothermal and Two-Phase

Transient Model of PEM Fuel Cells for Real-Time Estimation and Control.” 229th

Meeting of the Electrochemical Society, 2016. [199]

6.2.2 Journal Publications

1. A. Goshtasbi, and T. Ersal. “Degradation-Conscious Control for Enhanced Lifetime

of Automotive Polymer Electrolyte Membrane Fuel Cells.” 2019, Submitted. [202]

2. A. Goshtasbi, J. Chen, J.R. Waldecker, S. Hirano, and T. Ersal. “Effective Param-

eterization of PEM Fuel Cell Models - Part II: Robust Parameter Subset Selection,
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Robust Optimal Experimental Design, and Multi-Step Parameter Identification Al-

gorithm.” 2019, Submitted. [205]

3. A. Goshtasbi, J. Chen, J.R. Waldecker, S. Hirano, and T. Ersal. “Effective Param-

eterization of PEM Fuel Cell Models - Part I: Sensitivity Analysis and Parameter

Identifiability.” 2019, Submitted. [203]

4. A. Goshtasbi, B.L. Pence, J. Chen, M.A. DeBolt, C. Wang, J.R. Waldecker, S.

Hirano, and T. Ersal. “A Mathematical Model toward Real-Time Monitoring of

Automotive PEM Fuel Cells.” 2019, Submitted. [202]

5. A. Goshtasbi, B. L. Pence, and T. Ersal. “Computationally Efficient Pseudo-2D

non-isothermal modeling of Polymer Electrolyte Membrane Fuel Cells with Two-

Phase Phenomena.” Journal of The Electrochemical Society 163.13 (2016): F1412-

F1432. [201]

6.3 Outlook

This dissertation is an initial contribution to model-based control of PEM fuel cells to-

wards the objective of performance and durability enhancement and enabling the widespread

adoption of the technology in the transportation sector. Future research can build on the

foundation laid out in this work with potential advances on several fronts. Below, some

important future research directions are highlighted.

6.3.1 Fuel Cell Modeling

Capturing the most salient physics with high computational efficiency is expected to

remain an active area of research. Data-driven modeling of the PEM fuel cell system

appears to be a particularly fertile ground for improvements in this regard. Two important
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future directions can be envisioned. First, experimental fuel cell performance data can

be used to construct data-driven models. This is especially useful when large historical

datasets are available (as is the case with test fleet data) and can lead to significant savings

in time and capital investments to develop models from first principles. Recent advances

in physics-aware data-driven modeling [371, 372] are of particular interest as the main

governing physical laws can be incorporated into the data-driven modeling framework.

Moreover, data-driven modeling approaches can also be used to complement existing

physics-based models for improved prediction accuracy.

The second important area in data-driven modeling is the use of such data-driven

techniques to develop surrogate models. This is expected to be a key enabler of future

high-fidelity and efficient simulations for PEM fuel cells. Such data-driven techniques can

be used to model the physical phenomena across multiple time and length scales (i.e.,

multi-scale modeling) [373], which continues to be a major challenge in fuel cell research.

Moreover, surrogate models can be developed to allow for online computations of critical

conditions inside a fuel cell stack on embedded hardware, that would otherwise require

significant computational power.

6.3.2 Model Parameterization

Effective identification of model parameters is expected to remain a major hurdle for

large-scale physics-based models of fuel cells. Several improvements to the identification

framework proposed in this dissertation can be envisioned. First, improved sampling of

the parameter and operating condition spaces can lead to more efficient and accurate

analyses. Second, the proposed framework considers the problems of parameter subset

selection and experimental design sequentially, i.e., a subset of parameters is first selected

for identification and the experiments are designed for this selected subset. It is expected

that an algorithm that finds the optimal subset of parameters and experimental conditions
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simultaneously can potentially lead to improved identification results. This approach was

not pursued in this dissertation, as the resulting optimization problem could not be solved

effectively and the algorithms would find a sub-optimal solution that was worse than the

solution obtained with the sequential method. Novel algorithmic approaches could ad-

dress this challenge and improve the parameter subset selection and optimal experimental

design for identification. Lastly, this dissertation only considers point estimates for the

parameters. However, inferring parameter distributions with statistical methods is ex-

pected to be more informative. This dissertation does not pursue this route due to the

associated computational cost. Future reduction in cost of simulating the models and the

statistical algorithms could render this feasible.

6.3.3 Degradation-Conscious Control

Given the durability challenges of PEM fuel cells and the shortcomings of material-based

solutions, system-level mitigation strategies are expected to play a key role in extending

fuel cell lifetime. While the degradation-conscious control framework proposed in this

dissertation is an initial step towards developing such system-level strategies, future work

should improve it in several ways to ensure robust implementation in practice.

First and foremost, the proposed framework relies on full-state feedback. While the

model may be used to provide such feedback, this method is not robust to modeling

mismatch. Therefore, the framework must be augmented with observers to allow for

output feedback implementation. Robust observers such as sliding mode [368] and high-

gain observers [374] are of particular interest in this regard. Alternatively, moving horizon

estimation [375] can be utilized in conjunction with the MPC framework to allow for

output feedback implementation [376].

Additionally, the demonstrated nominal robustness of the proposed control framework

may not be sufficient for practical implementation with output feedback. Therefore, a
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robust MPC [367] framework should be considered to ensure successful implementation.

The added computational cost of such a framework would be a potential concern and calls

for further improvements on both the system modeling and control formulation fronts.

Moreover, additional research is required to better understand different fuel cell stressors

and develop reliable lifetime indicators that can be used to extend the stack’s longevity.

Lastly, the proposed framework relies on local linearization of a nonlinear model for

MPC design. This offers significant computational advantages, but also results in sub-

optimal solution as the system nonlinearities are not effectively taken into account. While

a nonlinear MPC formulation is not suitable due to significant computational cost, the

recent advances on using Koopman operator theory in conjunction with MPC [377] appear

to offer a solution by allowing development of linear models that capture the nonlinear

system behavior globally. Therefore, further focus on this area is warranted to ensure a

linear MPC framework can be utilized to obtain the true optimal solution.
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Appendix A

Model Parameter Values Used for

Simulations

Complete lists of model parameters used for simulation studies of Chapters 2 and 5 are

provided below in Tables A1 and A2, respectively. Any parameter that is used in Chapter

5 but not reported in Table A2 remains identical to its value in Table A1. Moreover,

the anode and cathode parameters are assumed to be the same unless noted otherwise.

The description for each parameter can be found in the nomenclature and the text of the

dissertation. We also note that the particular choice of units for model parameters is based

on common practices and is made for convenience. For example, the layer thicknesses are

reported in µm whereas the channel dimensions are reported in cm.

Table A1: Model parameters used for simulation case studies of Section 2.4.

Symbol Units Value/Eq.

Structural parameters

Dh [cm] 0.06

hCH [cm] 0.04

wCH [cm] 0.10

wLN [cm] 0.05
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δmb [µm] 20

δCL [µm] 3/6 for an/ca

δMPL [µm] 60

δGDL [µm] 140

εCL [−] Eq. 2.33

εMPL [−] 0.55

εGDL [−] 0.72

Physical constants

F [C/mol] 96485

HH2 [atm ·m3/mol] 4.5× 10−2

MH2 [g/mol] 2

MH2O [g/mol] 18

MN2 [g/mol] 28

MO2 [g/mol] 32

R [J/(mol ·K)] 8.314

Physical properties and local variables

cref
H2

[mol/cm3] 4× 10−5

cref
O2

[mol/cm3] 4× 10−5

Eact,mb [kJ/mol] 15

Eact,an [kJ/mol] 10

Eact,ca [kJ/mol] 67

Erev,PtO [V] 0.81

EPtO [kJ/mol] 10

EW [g/mol] 1000

fRH,a [−] 0.5

fRH,b [−] 2
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fRH,c [−] 0.7

hconv [W/(cm2 ·K)] 0.4

iref
0,an [A/cm2] 0.05

iref
0,ca [A/cm2] 2× 10−7

Kabs,CL [cm2] 1× 10−11

Kabs,MPL [cm2] 3× 10−11

Kabs,GDL [cm2] 10× 10−11

Kl,rel [−] s5

kPtO [1/s] 0.0128

kevp/cnd,CL [1/s] 50000

kevp/cnd,MPL [1/s] 1000

kevp/cnd,GDL [1/s] 500

kT,CL [W/(m ·K)] 0.3

kT,MPL [W/(m ·K)] 0.15

kT,GDL [W/(m ·K)] 0.5

kT,mb [W/(m ·K)] Table 2.4

k1 [−] 8.5

k2 [−] 5.4

k3 [−] 5.4

kcross [−] 1

nv [−] 2.5

ne [−] 1.1

Relec [Ω · cm2] 0.025

Sh [−] 2.693

αan [−] 2

αca [−] 0.7
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αPtO [−] 0.5

εg [−] (1− s)ε

εl [−] sε

γan [−] 1.0

γca [−] 1.0

κres [S/cm] 0.001

κ0 [S/cm] 0.35

µl [Pa · s] 4.05× 10−4

ΠHOR [V] 0.013 T
298

ΠORR [V] 0.24 T
298

ϕ [−] 0.35

ρl [g/cm3] 0.997

(ρcp)g [J/(cm3 ·K)] 0.00125

(ρcp)l [J/(cm3 ·K)] 4.2

(ρcp)s [J/(cm3 ·K)] 2

σl [N/m] 0.0644

θCL [−] 97

θMPL [−] 135

θGDL [−] 115

ω [kJ/mol] 3

ξdiff,mb [−] 1

Catalyst structural parameters

ac [cm2/cm3] 3εc
rc

(rc + δion)2

aPt [cm2/cm3] ECSA·LPt

δCL

ECSA [(m2/g)Pt] 70

IC [−] 1.0/1.3 for an/ca
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Lc [mg/cm2] LPt(1−wt%)
wt%

LPt [mg/cm2] 0.1/0.2 for an/ca

nBrugg [−] 1.5

rc [nm] 40

rPt [nm] 3
ρPt·ECSA

wt% [−] 0.4

x [−] 1

εc [−] Eq. 2.30

εPt [−] Eq. 2.31

εion [−] Eq. 2.32

ρc [g/cm3] 1.95

ρPt [g/cm3] 21.45

ρion [g/cm3] 1.9

Table A2: Model parameters used in Chapter 5.

Symbol Units Value/Eq.

Constant inputs

StH2 [−] 1.5

Physical constants

Ma,atm [g/mol] 28.9647

Structural parameters

Acool [cm2] 280

Afc [cm2] 280

AT [cm2] 17.5

dc [cm] 22.86
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Dh [cm] 0.03

Jcp [kg ·m2] 5× 10−5

ncell [−] 380

Vsm [m3] 0.02

Vca [m3] 0.01

δmb [µm] 20

δCL [µm] 5.5/6.7 for an/ca

δMPL [µm] 30

δGDL [µm] 160

εCL [−] 0.35

εMPL [−] 0.45

εGDL [−] 0.65

Physical properties and local variables

CD [−] 0.0124

EW [g/mol] 1000

hconv [W/(cm2 ·K)] 0.2

iref
0,an [A/cm2] 0.1

iref
0,ca [A/cm2] 1× 10−7

kT,CL [W/(m ·K)] 0.25

kT,MPL [W/(m ·K)] 0.15

kT,GDL [W/(m ·K)] 0.4

kPtO [1/s] 0.0128

kt [N ·m/A] 0.0153

kv [V/(rad/s)] 0.0153

kca,in [kg/(s · Pa)] 3.63× 10−6

nv [−] 2.5
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ne [−] 1.6

Relec [Ω · cm2] 0.05

Rcm [Ω] 0.82

Uc [m/s] Ref. [174]

xO2 [−] 0.233

αan [−] 2

αca [−] 0.6

ηcm [−] 98%

ηcp [V] Ref. [174]

γan [−] 0.5

γca [−] 0.8

γ [−] 1.4

µl [Pa · s] 4.05× 10−4

ϕ [−] 0.35

ρl [g/cm3] 0.997

ρion [g/cm3] 1.9

σl [N/m] 0.0644

Catalyst structural parameters

ECSA [(m2/g)Pt] 55/70 for an/ca

IC [−] 1.1/0.9 for an/ca

LPt [mg/cm2] 0.15/0.2 for an/ca

wt% [−] 0.35
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[227] P. A. Garćıa-Salaberri, I. V. Zenyuk, A. D. Shum, G. Hwang, M. Vera, A. Z. Weber,

and J. T. Gostick, “Analysis of representative elementary volume and through-

plane regional characteristics of carbon-fiber papers: diffusivity, permeability and

electrical/thermal conductivity,” International Journal of Heat and Mass Transfer,

vol. 127, pp. 687–703, 2018.

[228] Q. Zhao, P. Majsztrik, and J. Benziger, “Diffusion and interfacial transport of water

in Nafion,” The Journal of Physical Chemistry B, vol. 115, no. 12, pp. 2717–2727,

2011.

[229] M. B. Satterfield and J. Benziger, “Non-fickian water vapor sorption dynamics

by Nafion membranes,” The Journal of Physical Chemistry B, vol. 112, no. 12,

pp. 3693–3704, 2008.

[230] D. T. Hallinan Jr and Y. A. Elabd, “Diffusion of water in Nafion using time-resolved

fourier transform infrared- attenuated total reflectance spectroscopy,” The Journal

of Physical Chemistry B, vol. 113, no. 13, pp. 4257–4266, 2009.

[231] A. Kongkanand, “Interfacial water transport measurements in Nafion thin films

using a quartz-crystal microbalance,” The Journal of Physical Chemistry C, vol. 115,

no. 22, pp. 11318–11325, 2011.

[232] A. Kusoglu, A. Kwong, K. T. Clark, H. P. Gunterman, and A. Z. Weber, “Water

uptake of fuel-cell catalyst layers,” Journal of The Electrochemical Society, vol. 159,

no. 9, pp. F530–F535, 2012.

230



[233] A. Kusoglu and A. Z. Weber, “Water transport and sorption in Nafion membrane,”

in Polymers for Energy Storage and Delivery: Polyelectrolytes for Batteries and

Fuel Cells, ch. 11, pp. 175–199, 2012.

[234] T. J. Silverman, J. P. Meyers, and J. J. Beaman, “Modeling water transport and

swelling in polymer electrolyte membranes,” Journal of The Electrochemical Society,

vol. 157, no. 10, pp. B1376–B1381, 2010.

[235] Y.-H. Lai, G. W. Fly, and S. Clapham, “In-situ membrane hydration measurement of

proton exchange membrane fuel cells,” Journal of Power Sources, vol. 274, pp. 324–

337, 2015.

[236] L. Onishi, J. Prausnitz, and J. Newman, “Modeling Nafion: Water diffusion and

polymer relaxation,” ECS Transactions, vol. 16, no. 50, pp. 139–153, 2009.

[237] M. Zaglio, Model Based Transient Analysis of Polymer Electrolyte Fuel Cells. PhD

thesis, ETH Zurich, 2011.

[238] C. Mittelsteadt and H. Liu, “Conductivity, permeability, and ohmic shorting of

ionomeric membranes,” Handbook of Fuel Cells, 2010.

[239] P. Mangiagli, C. Ewing, K. Xu, Q. Wang, and M. Hickner, “Dynamic water uptake

of flexible ion-containing polymer networks,” Fuel Cells, vol. 9, no. 4, pp. 432–438,

2009.

[240] A. Kusoglu, B. L. Kienitz, and A. Z. Weber, “Understanding the effects of com-

pression and constraints on water uptake of fuel-cell membranes,” Journal of the

Electrochemical Society, vol. 158, no. 12, pp. B1504–B1514, 2011.

[241] S. Jomori, N. Nonoyama, and T. Yoshida, “Analysis and modeling of PEMFC degra-

dation: Effect on oxygen transport,” Journal of Power Sources, vol. 215, pp. 18–27,

2012.

231



[242] S. Jomori, K. Komatsubara, N. Nonoyama, M. Kato, and T. Yoshida, “An experi-

mental study of the effects of operational history on activity changes in a PEMFC,”

Journal of The Electrochemical Society, vol. 160, no. 9, pp. F1067–F1073, 2013.

[243] J. P. Owejan, J. E. Owejan, and W. Gu, “Impact of platinum loading and catalyst

layer structure on PEMFC performance,” Journal of The Electrochemical Society,

vol. 160, no. 8, pp. F824–F833, 2013.

[244] Y. Ono, T. Mashio, S. Takaichi, A. Ohma, H. Kanesaka, and K. Shinohara, “The

analysis of performance loss with low platinum loaded cathode catalyst layers,” Ecs

Transactions, vol. 28, no. 27, pp. 69–78, 2010.

[245] Y. Ono, A. Ohma, K. Shinohara, and K. Fushinobu, “Influence of equivalent weight

of ionomer on local oxygen transport resistance in cathode catalyst layers,” Journal

of The Electrochemical Society, vol. 160, no. 8, pp. F779–F787, 2013.

[246] M.-J. Choo, K.-H. Oh, J.-K. Park, and H.-T. Kim, “Analysis of oxygen transport in

cathode catalyst layer of low-Pt-loaded fuel cells,” ChemElectroChem, vol. 2, no. 3,

pp. 382–388, 2015.

[247] A. Chowdhury, C. J. Radke, and A. Z. Weber, “Transport resistances in fuel-cell

catalyst layers,” ECS Transactions, vol. 80, no. 8, pp. 321–333, 2017.

[248] N. Nonoyama, S. Okazaki, A. Z. Weber, Y. Ikogi, and T. Yoshida, “Analysis

of oxygen-transport diffusion resistance in proton-exchange-membrane fuel cells,”

Journal of The Electrochemical Society, vol. 158, no. 4, pp. B416–B423, 2011.

[249] N. Ramaswamy and S. Kumaraguru, “Materials and design selection to improve

high current density performance in PEMFC,” ECS Transactions, vol. 85, no. 13,

pp. 835–842, 2018.

232



[250] E. Sadeghi, A. Putz, and M. Eikerling, “Hierarchical model of reaction rate distri-

butions and effectiveness factors in catalyst layers of polymer electrolyte fuel cells,”

Journal of the Electrochemical Society, vol. 160, no. 10, pp. F1159–F1169, 2013.

[251] Q. Wang, M. Eikerling, D. Song, and Z. Liu, “Structure and performance of different

types of agglomerates in cathode catalyst layers of PEM fuel cells,” Journal of

Electroanalytical Chemistry, vol. 573, no. 1, pp. 61–69, 2004.

[252] M. Secanell, K. Karan, A. Suleman, and N. Djilali, “Multi-variable optimization

of PEMFC cathodes using an agglomerate model,” Electrochimica Acta, vol. 52,

no. 22, pp. 6318–6337, 2007.

[253] H. Liu, W. K. Epting, and S. Litster, “Gas transport resistance in polymer elec-

trolyte thin films on oxygen reduction reaction catalysts,” Langmuir, vol. 31, no. 36,

pp. 9853–9858, 2015.

[254] E. M. Davis, C. M. Stafford, and K. A. Page, “Elucidating water transport mech-

anisms in Nafion thin films,” ACS Macro Letters, vol. 3, no. 10, pp. 1029–1035,

2014.

[255] S. A. Eastman, S. Kim, K. A. Page, B. W. Rowe, S. Kang, C. L. Soles, and K. G.

Yager, “Effect of confinement on structure, water solubility, and water transport in

Nafion thin films,” Macromolecules, vol. 45, no. 19, pp. 7920–7930, 2012.

[256] S. C. DeCaluwe, A. M. Baker, P. Bhargava, J. E. Fischer, and J. A. Dura,

“Structure-property relationships at Nafion thin-film interfaces: Thickness effects

on hydration and anisotropic ion transport,” Nano energy, vol. 46, pp. 91–100, 2018.

[257] A. Ohma, T. Mashio, K. Sato, H. Iden, Y. Ono, K. Sakai, K. Akizuki, S. Takaichi,

and K. Shinohara, “Analysis of proton exchange membrane fuel cell catalyst layers

233



for reduction of platinum loading at Nissan,” Electrochimica Acta, vol. 56, no. 28,

pp. 10832–10841, 2011.

[258] S. Holdcroft, “Fuel cell catalyst layers: a polymer science perspective,” Chemistry

of materials, vol. 26, no. 1, pp. 381–393, 2013.

[259] R. M. Darling, “A hierarchical model for oxygen transport in agglomerates in the

cathode catalyst layer of a polymer-electrolyte fuel cell,” Journal of The Electro-

chemical Society, vol. 165, no. 9, pp. F571–F580, 2018.

[260] F. C. Cetinbas, S. G. Advani, and A. K. Prasad, “A modified agglomerate model

with discrete catalyst particles for the PEM fuel cell catalyst layer,” Journal of The

Electrochemical Society, vol. 160, no. 8, pp. F750–F756, 2013.

[261] F. C. Cetinbas, S. G. Advani, and A. K. Prasad, “An improved agglomerate model

for the PEM catalyst layer with accurate effective surface area calculation based

on the sphere-packing approach,” Journal of The Electrochemical Society, vol. 161,

no. 6, pp. F803–F813, 2014.

[262] A. Kulikovsky, “A physically–based analytical polarization curve of a PEM fuel

cell,” Journal of The Electrochemical Society, vol. 161, no. 3, pp. F263–F270, 2014.

[263] H. Iden and A. Ohma, “An in-situ technique for analyzing ionomer coverage in

catalyst layers,” Journal of Electroanalytical Chemistry, vol. 693, pp. 34–41, 2013.

[264] K. Malek, T. Mashio, and M. Eikerling, “Microstructure of catalyst layers in PEM

fuel cells redefined: a computational approach,” Electrocatalysis, vol. 2, no. 2, p. 141,

2011.

[265] K. Malek, M. Eikerling, Q. Wang, T. Navessin, and Z. Liu, “Self-organization in

catalyst layers of polymer electrolyte fuel cells,” The Journal of Physical Chemistry

C, vol. 111, no. 36, pp. 13627–13634, 2007.

234



[266] A. Srouji, L. Zheng, R. Dross, D. Aaron, and M. Mench, “The role of water man-

agement on the oxygen transport resistance in polymer electrolyte fuel cell with

ultra-low precious metal loading,” Journal of Power Sources, vol. 364, pp. 92–100,

2017.

[267] A. Kulikovsky, “How important is oxygen transport in agglomerates in a PEM fuel

cell catalyst layer?,” Electrochimica Acta, vol. 130, pp. 826–829, 2014.

[268] R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport phenomena. John Wiley

& Sons, 2007.

[269] E. L. Cussler, Diffusion: mass transfer in fluid systems. Cambridge university press,

2009.

[270] S. A. Vilekar and R. Datta, “The effect of hydrogen crossover on open-circuit voltage

in polymer electrolyte membrane fuel cells,” Journal of Power Sources, vol. 195,

no. 8, pp. 2241–2247, 2010.

[271] C. K. Mittelsteadt and H. Liu, “Conductivity, permeability, and ohmic shorting of

ionomeric membranes,” Handbook of Fuel Cells, 2009.

[272] R. Ahluwalia and X. Wang, “Buildup of nitrogen in direct hydrogen polymer-

electrolyte fuel cell stacks,” Journal of Power Sources, vol. 171, no. 1, pp. 63–71,

2007.

[273] U. M. Ascher, Numerical methods for evolutionary differential equations, vol. 5.

Siam, 2008.

[274] K. Neyerlin, W. Gu, J. Jorne, A. Clark, and H. A. Gasteiger, “Cathode catalyst

utilization for the ORR in a PEMFC analytical model and experimental validation,”

Journal of The Electrochemical Society, vol. 154, no. 2, pp. B279–B287, 2007.

235



[275] E. Padgett, N. Andrejevic, Z. Liu, A. Kongkanand, W. Gu, K. Moriyama, Y. Jiang,

S. Kumaraguru, T. E. Moylan, R. Kukreja, et al., “Connecting fuel cell catalyst

nanostructure and accessibility using quantitative cryo-STEM tomography,” Jour-

nal of The Electrochemical Society, vol. 165, no. 3, pp. F173–F180, 2018.

[276] F. C. Cetinbas, R. K. Ahluwalia, N. N. Kariuki, V. De Andrade, and D. J. Myers,

“Effects of porous carbon morphology, agglomerate structure and relative humid-

ity on local oxygen transport resistance,” Journal of The Electrochemical Society,

vol. 167, no. 1, p. 013508, 2020.

[277] K. A. Hoffmann and S. T. Chiang, “Computational fluid dynamics volume I,” En-

gineering Education System, 2000.

[278] S. C. Chapra, R. P. Canale, et al., Numerical methods for engineers. Boston:

McGraw-Hill Higher Education,, 2010.

[279] R. Alink and D. Gerteisen, “Coupling of a continuum fuel cell model with a discrete

liquid water percolation model,” International Journal of Hydrogen Energy, vol. 39,

no. 16, pp. 8457–8473, 2014.

[280] A. Szymkiewicz, Modelling water flow in unsaturated porous media: Accounting

for nonlinear permeability and material heterogeneity. Springer Science & Business

Media, 2012.

[281] Y. Shi et al., “Particle swarm optimization: developments, applications and re-

sources,” in Proceedings of the 2001 congress on evolutionary computation (IEEE

Cat. No. 01TH8546), vol. 1, pp. 81–86, IEEE, 2001.

[282] R. Bellman and K. J. Åström, “On structural identifiability,” Mathematical Bio-

sciences, vol. 7, no. 3-4, pp. 329–339, 1970.

236



[283] E. J. Dickinson and G. Hinds, “The Butler-Volmer equation for polymer electrolyte

membrane fuel cell (PEMFC) electrode kinetics: A critical discussion,” Journal of

The Electrochemical Society, vol. 166, no. 4, pp. F221–F231, 2019.

[284] R. Vetter and J. O. Schumacher, “Experimental parameter uncertainty in PEM fuel

cell modeling. Part II: Sensitivity analysis and importance ranking,” arXiv preprint

arXiv:1811.10093, 2018.

[285] S. Arisetty, Y. Liu, W. Gu, and M. Mathias, “Modeling platinum oxide growth of

PEMFC cathode catalysts,” ECS Transactions, vol. 69, no. 17, pp. 273–289, 2015.

[286] K. Nishida, T. Hosotani, and M. Asa, “Evaluation of two water transports through

electrolyte membrane of polymer electrolyte fuel cell based on water visualization

and current measurement,” Fuel Cells, vol. 19, no. 1, pp. 60–70, 2019.

[287] P. Berg, K. Promislow, J. S. Pierre, J. Stumper, and B. Wetton, “Water manage-

ment in PEM fuel cells,” Journal of the Electrochemical Society, vol. 151, no. 3,

pp. A341–A353, 2004.

[288] A. Thomas, G. Maranzana, S. Didierjean, J. Dillet, and O. Lottin, “Thermal effect

on water transport in proton exchange membrane fuel cell,” Fuel Cells, vol. 12,

no. 2, pp. 212–224, 2012.

[289] N. Ge, R. Banerjee, D. Muirhead, J. Lee, H. Liu, P. Shrestha, A. Wong, J. Jankovic,

M. Tam, D. Susac, et al., “Membrane dehydration with increasing current density at

high inlet gas relative humidity in polymer electrolyte membrane fuel cells,” Journal

of Power Sources, vol. 422, pp. 163–174, 2019.

[290] K. Godfrey and J. DiStefano, “Chapter 1 - identifiability of model parameters,”

in Identifiability of Parametric Models (E. WALTER, ed.), pp. 1 – 20, Pergamon,

1987.

237



[291] H. Miao, X. Xia, A. S. Perelson, and H. Wu, “On identifiability of nonlinear ODE

models and applications in viral dynamics,” SIAM review, vol. 53, no. 1, pp. 3–39,

2011.

[292] L. Ljung and T. Glad, “On global identifiability for arbitrary model parametriza-

tions,” Automatica, vol. 30, no. 2, pp. 265–276, 1994.

[293] X. Xia and C. H. Moog, “Identifiability of nonlinear systems with application to

HIV/AIDS models,” IEEE transactions on automatic control, vol. 48, no. 2, pp. 330–

336, 2003.

[294] A. F. Villaverde and J. R. Banga, “Structural properties of dynamic systems biology

models: Identifiability, reachability, and initial conditions,” Processes, vol. 5, no. 2,

p. 29, 2017.

[295] A. F. Villaverde, N. Tsiantis, and J. R. Banga, “Full observability and estimation

of unknown inputs, states and parameters of nonlinear biological models,” Journal

of the Royal Society Interface, vol. 16, no. 156, p. 20190043, 2019.

[296] M. Rodriguez-Fernandez, J. A. Egea, and J. R. Banga, “Novel metaheuristic for pa-

rameter estimation in nonlinear dynamic biological systems,” BMC bioinformatics,

vol. 7, no. 1, p. 483, 2006.

[297] D. Zhao, M. Dou, D. Zhou, and F. Gao, “Study of the modeling parameter effects

on the polarization characteristics of the pem fuel cell,” International Journal of

Hydrogen Energy, vol. 41, no. 47, pp. 22316–22327, 2016.

[298] C. Min, Y. He, X. Liu, B. Yin, W. Jiang, and W. Tao, “Parameter sensitivity

examination and discussion of PEM fuel cell simulation model validation: Part

II: Results of sensitivity analysis and validation of the model,” Journal of power

sources, vol. 160, no. 1, pp. 374–385, 2006.

238



[299] X.-D. Wang, J.-L. Xu, and D.-J. Lee, “Parameter sensitivity examination for a com-

plete three-dimensional, two-phase, non-isothermal model of polymer electrolyte

membrane fuel cell,” International journal of hydrogen energy, vol. 37, no. 20,

pp. 15766–15777, 2012.

[300] D. Zhou, T. T. Nguyen, E. Breaz, D. Zhao, S. Clénet, and F. Gao, “Global
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[331] L. Pronzato and É. Walter, “Robust experiment design via stochastic approxima-

tion,” Mathematical Biosciences, vol. 75, no. 1, pp. 103–120, 1985.
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[377] M. Korda and I. Mezić, “Linear predictors for nonlinear dynamical systems: Koop-

man operator meets model predictive control,” Automatica, vol. 93, pp. 149–160,

2018.

248


	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Nomenclature
	Abstract
	Introduction
	Motivation
	PEM Fuel Cell Structure and Operating Principles
	Polymer Electrolyte Membrane (PEM)
	Catalyst Layer (CL)
	Diffusion Media (GDL and MPL)
	Bipolar Plates and Gas Flow Channels
	Modes of Operation

	Literature on Modeling of PEM Fuel Cells
	Literature on Model Parameterization
	Literature on Fuel Cell Power Systems Control
	Research Objectives
	Dissertation Contributions and Organization
	Model Development and Validation
	Effective Model Parameterization
	Degradation-Conscious Control Framework


	A Computationally Efficient Model for Automotive PEM Fuel Cells
	Introduction
	Model Development
	Modeling Domain
	Flow Channel Model
	Full-Order Through-the-Membrane Mass and Heat Transport Model
	Transport Model Simplifications
	Terminal Voltage and Reaction Kinetics
	Boundary Conditions
	Numerical Implementation

	Model Validation
	Experimental Data
	Model Parameterization
	Results for Stack A
	Results for Stack B

	Simulation Case Studies
	Summary and Conclusions

	Sensitivity Analysis and Parameter Identifiability
	Introduction
	Parameter Identification Problem
	Sensitivity Analysis: Methods
	Model Configuration and Parameters
	Sensitivity Calculations
	Sampling of the Parameter Space for Extended Local Analysis
	Library of Operating Conditions
	Data Collection Method

	Sensitivity Analysis: Results and Discussion
	Convergence of Sensitivity Results
	Single Measurement
	Multiple Measurements
	Impact of Operating Conditions

	Identifiability Analysis and Parameter Subset Selection
	Summary and Conclusions

	Parameter Subset Selection, Optimal Experimental Design, and Multi-Step Identification Algorithm
	Introduction
	Robust Parameter Subset Selection
	Robust Optimal Experimental Design for Parameter Identification
	Multi-Step Parameter Identification Algorithm
	Alternative Implementations

	Verification of the Proposed Framework
	Summary and Conclusions

	Degradation-Conscious Control
	Introduction
	Mathematical Models
	Plant Model
	Controller Model

	Control Problem Formulation
	Linearized Dynamics and Augmented System Formation
	MPC Cost Function
	MPC Constraints
	MPC Optimization
	MPC Tuning (Weights and Horizons)
	Numerical Implementation

	Simulation Case Studies
	Power Profile with Step Changes in the Demand
	Time-Varying Power Profiles

	Summary and Conclusions

	Summary and Outlook
	Dissertation Summary
	Fuel Cell Modeling
	Model Parameterization
	Degradation-Conscious Control

	List of Conference Presentations and Archival Publications
	Conference Presentations and Publications
	Journal Publications

	Outlook
	Fuel Cell Modeling
	Model Parameterization
	Degradation-Conscious Control


	Appendices
	Bibliography

