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ABSTRACT 

The state of the peripheral arteries is known to be a key physiological indicator of the body’s 

response to both acute and chronic medical conditions.  For example, the body’s vascular tone, 

or constriction of the arteries relative to a maximally dilated state, is a direct indicator of the 

body’s response to cardiovascular stress. However, vascular tone is very difficult to assess using 

existing technologies, especially noninvasively.  Peripheral arterial constriction or dilation is also 

the dominant factor in determining the body’s systemic vascular resistance (SVR), or resistance 

felt by the heart in forcing blood through the circulatory system, and vascular resistance change 

is a major means of compensation to maintain physiological homeostasis. Situations where rapid 

changes in vascular tone and SVR are known to have great importance include shock (septic, 

cardiac, traumatic, etc.), post-surgical recovery, and hemodialysis. 

The candidate proposed a technique for tracking changes in vascular tone by combining a photo 

plethysmography sensor with an adjacent compliant piezoelectric polymer pressure sensor 

(polyvinylidene fluoride). A simple local model for viscoelastic dynamic behavior of the 

underlying artery and surrounding tissue is generated and coupled to the piezoelectric sensor 

model, from which variations in relative amplitude and hysteresis between the piezoelectric and 

photo plethysmograph signals are found to show strong correlations with invasively measured 

SVR data in swine subjects. The mean absolute percentage errors were less than 4.7% and root 

mean square errors were less than 0.037 for all three swine subjects. 



 

 

xiii 

A local nonlinear artery model with extended Kalman filter performed system identification and 

tracking of the radius of the peripheral arteries as well as blood pressure.   In proof-of-concept 

testing on a swine test subject, local vascular resistance calculated from arterial radius estimates 

at the ring location showed good agreement with overall systemic vascular resistance, with a 

2.7% mean absolute percentage error and 0.026 root mean square error, while capturing other 

features of local cardiovascular behavior more noisily. Further validation is performed with 

ultrasound measurements of foreleg arterial radius while measurements with compliant sensors 

are taken. 

Additionally, the candidate introduced a new systemic hemodynamic model, combining vascular 

resistance with heart rate, which may provide substantial insight into cardiovascular response to 

clinical interventions. This work attempted to better understand how estimated changes in local 

peripheral arterial radius obtained from wearable sensors relate to dynamic compensation in the 

full cardiovascular system.  Preliminary human study results show that hemodynamic 

decompensation can be predicted under criteria based on peripheral vascular resistance from 

local EKF estimations and systemic hemodynamic feedback model error.  Under the certain 

criteria, sensitivity to future decompensation was 100% and specificity was 88% for the training 

data set, and 100% and 84% for the full 50 patient sample.    
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Chapter 1 Introduction 

 

1.1 Cardiovascular System and Peripheral Arterial Condition 

The cardiovascular system can be thought of as the transport system of the body. This system has 

three main components: the heart, the blood vessels and the blood itself. The heart is the 

system’s pump and the blood vessels are its delivery routes. Blood can be thought of as a fluid 

which contains the oxygen and nutrients the body requires and which carries the wastes the body 

needs to remove. The following terminology describes the structure and function of the heart and 

the cardiovascular system as a whole. The cardiac cycle is the sequence of events that occurs in 

one complete beat of the heart. The pumping phase of the cycle, also known as systole, occurs 

when the heart muscle contracts. The filling phase, which is known as diastole, occurs when the 

heart muscle relaxes. 

Cardiovascular intensive care refers to special systemic management for those patients with 

severe cardiovascular disease (CVD), which consists of heart disease and vascular disease. CVD 

is one of the leading causes of death in the world [1]. In order to reduce deaths due to CVD, 

intensive care units for severe CVD patients, the so-called cardiovascular intensive care unit 

(CICU), have been developed in many general hospitals. Technological developments of clinical 

cardiology, such as invasive hemodynamic monitoring and intracoronary interventional 

procedures and devices, have resulted in evolution of intensive care for CVDs. As a result, 

severe CVD patients admitted to CICU are increasing year by year. It is necessary for optimal 

patient care to select effective means from various hemodynamic tools and to adjust the usage 

according to the clinical situation such as cardiogenic shock [2] and acute heart failure[3]. 

Furthermore, the patients in the CICU often have various complications such as respiratory 

failure and renal failure [4]. 

The state of the peripheral arteries is known to be a key physiological indicator of the body’s 

response to both acute and chronic medical conditions.  For example, the body’s vascular tone, or 

constriction of the arteries relative to a maximally dilated state, is a direct indicator of the body’s 

https://healthengine.com.au/info/medical-glossary/cardiac-cycle
https://healthengine.com.au/info/medical-glossary/heart
https://healthengine.com.au/info/medical-glossary/systole
https://healthengine.com.au/info/medical-glossary/diastole
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response to cardiovascular stress. However, vascular tone is very difficult to assess using existing 

technologies, especially noninvasively.  Peripheral arterial constriction or dilation is also the 

dominant factor in determining the body’s systemic vascular resistance (SVR), or resistance felt 

by the heart in forcing blood through the circulatory system, and vascular resistance change is a 

major means of compensation to maintain physiological homeostasis. Situations where rapid 

changes in vascular tone and SVR are known to have great importance include shock (sepsis, 

cardiac, traumatic, etc.) [2] [3], post-surgical recovery [5] [6], and dialysis [4], in addition to 

relevance to CVD.   

Despite the potential value of being able to continuously and rapidly monitor vascular tone 

and SVR, existing technology for acquiring this information is severely limited, especially using 

non-invasive technologies. Peripheral artery diameter can be directly measured only through 

biomedical imaging, typically ultrasound [7] [8], which is not available on a continuous basis or 

in most care settings. Acoustic techniques have also been proposed for measuring SVR [9].   The 

gold standard for SVR measurement is invasive monitoring of cardiac output, central venous 

pressure, and arterial pressure through catheterization, available only in intensive care settings, 

and not universally even then.  Researchers have also proposed improvements on vascular 

resistance measurements by applying more complex models to aortic flow data [10] [11]. Non-

invasive systems for estimating cardiac output, and from there inferring SVR, have been 

commercialized based on electrical cardiometry [12] and whole body bioimpedance [13].  

However, these track SVR only weakly [14, 15], since central venous pressure is not measured, 

and are also unavailable outside of acute medical care settings.    

 Researchers have thus pursued methods for estimating SVR and vascular tone using 

simpler instruments. Prior attempts have generally relied on photo plethysmography (PPG) data, 

which tracks changes in artery volume within short-term pulse cycles.   Timing of reflection waves 

as extracted from PPG data has been reported to indicate changes in peripheral arterial resistance, 

but this was only verified through basic correlations with expected trends among hypertension 

subjects, not individualized tracking [16].  Methods for extracting SVR from multiple regression 

of PPG waveform data points have been derived by machine learning techniques, but SVR 

estimation error ranged from 15%-100% for most subjects [17] [18].   Evaluating a vascular tone 

index by matching models for arterial dynamics to pulse transit time (PTT) and blood pressure 

(BP) measurements has also been proposed [19].  However, results could at most be correlated 



 

 

3 

with risk factors for high SVR, rather than SVR itself.  Another report showed PTT correlation 

with SVR over time, but only for two individual cases [20].  Estimates of cardiac output and 

vascular resistance have also been suggested based on ECG and BP cuff data, and used in tracking 

response to physical activity, but these are recognized as only approximate measures [21].   

 

Table 1 Existing techniques for measuring vascular tone and SVR are either highly specialized to intensive 
care settings, non-continuous, or limited in accuracy due to types of sensing available. 

 

1.2 Non-invasive Wearable Devices  

Wearable versions of blood pressure cuffs, PPG sensors, and ECG sensors all exist commercially 

or as research systems, and pulse transit time has been extracted from both combinations of these 

Quantity of Interest Prior Techniques Advantages Limitations 

Peripheral vascular 

tone (relative 

dilation or 

contraction of 

artery) 

  

  

  

  

Ultrasound + Flow 

Mediated Dilation 

Closest to a gold 

standard, agrees with 

measures of closely 

related variables. 

Requires specialized equipment and 

expertise, non-continuous measurement. 

Arterial Tonography + 

Cuff reference 

Absolute volume change 

available using pressure 

reference. 

Specialized hardware, non-continuous 

measurement; testing requires pumps for 

pressure reference and cuff occlusion.   

PPG  amplitude + Flow 

mediated dilation 

Simplified sensing 

elements 

Testing requires pumps for pressure 

reference and cuff occlusion.   

PPG + time reflective 

index 

Readily available 

hardware, simple 

methodology. 

Low resolution for reflective wave timing 

using PPG leads to weak correlation with 

other measures. 

PPG + Pulse transit time 

(PTT) 

Conceptually feasible 

with wearable sensors. 

Very limited validation, dependent on 

assumptions regarding arterial properties. 

Systemic Vascular 

Resistance (SVR) 

  

 

  

  

  

Pulmonary arterial 

catheter 

Gold standard, gives 

central pressure and 

cardiac output. 

Invasive, available only in intensive care 

setting, possibly slow response time. 

Electrical cardiometry 

(also: Whole body 

impedance) 

Non-invasive, 

commercially available. 

Available only in specialized clinical 

settings, correlation with conditions can be 

weak. 

PPG Waveform Analysis Readily available 

hardware. 

Weak correlation with invasive measures 

Wearable BP band + 

ECG 

Continuous monitoring, 

even during physical 

activity 

Uncalibrated, known to provide only rough 

measurement of systemic quantities (i.e. 

cardiac output, SVR). 
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sensors or dedicated sensing elements.    PPG data was heavily used in most prior studies because 

it has traditionally been one of the few non-invasive sensing techniques providing continuous time 

series data on cardiovascular function.  But, due to issues such as electronic drift and ambient light 

sensitivity, a PPG can only directly measure relative change in volume within pulse cycles.   

Longer-term absolute changes in mean artery volume or diameter over minutes or hours must be 

inferred from features of the waveform or correlation with other vital signs.  However, PPG 

resolution and signal complexity are also limited in most circumstances due to heavy filtering 

required to extract volume information by optical methods.  Some of these limitations can be 

compensated for during vascular tone monitoring by adding a reference pressure and directly 

perturbing peripheral blood flow with a pressure cuff, but this reintroduces complexity to these 

systems and prevents continuous monitoring. 

Attempts to perform vascular tone and/or SVR measurements non-invasively form a subset 

of efforts to acquire cardiovascular information from compact, wearable devices.  A number of 

commercial and research systems provide estimates of heart rate and systolic and diastolic blood 

pressure.  Nonetheless, these systems remain relatively large in size, and attempt to suppress 

intervening tissue dynamics to obtain interior pressure waveforms as accurately as possible.   

 Given the desirability of extremely compact cardiovascular monitoring, several researchers 

have developed much smaller, continuously wearable pressure transducers for use at peripheral 

arteries.  The candidate’s research group, for one, have developed a sensor based on a piezoelectric 

polymer (polyvinylidene fluoride, or PVDF) in a polymer laminate, designed to approximately 

match the compliance of tissue and arteries in a human finger.  PVDF films were likewise 

previously used for waveform monitoring at the human wrist by Sur et al. [22] and for pulse and 

respiration monitoring at the chest by Chiu et al. [23]   Even smaller sensing elements have been 

proposed based on thin-film lead-zirconate-titanate (PZT) in a polymer film [24], nanowire-

impregnated polymers [25], and amorphous PZT films [26].  

These sensor technologies have in common: 

1. Sufficient compliance to deform with arteries and tissue, which can accentuate effects of 

changing arterial properties and/or dimensions.  

2. High sensitivity to pressure variations, giving highly-detailed peripheral pressure waveforms. 

3. Much smaller volume, weight, and power requirements than existing technologies, beneficial 

for long-term cardiovascular monitoring and ease-of-use in a wide variety of setting. 
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In contrast, this class of sensing technology lacks the ability to obtain absolute pressure 

measurements if no external reference (i.e. pressure cuff) is available. The influence of intervening 

tissue also distorts pressure waveforms compared to their profile inside the artery.  However, these 

latter effects can potentially prove useful for monitoring tone, as this proposed work will examine. 

1.3 Homeostatic Mechanisms and Cardiovascular System Feedback 

The human body uses multiple mechanisms to maintain cardiovascular hemostasis.  The 

baroreflex reflex is one of the body's homeostatic mechanisms. It helps to maintain blood 

pressure at nearly constant levels, by providing a rapid negative feedback loop in which an 

elevated blood pressure reflexively causes the heart rate to decrease and also causes blood 

pressure to decrease. Decreased blood pressure decreases baroreflex activation and causes heart 

rate to increase and to restore blood pressure levels [27]. Baroreflex adjustments are key factors 

in dealing with postural hypotension, the tendency for blood pressure to decrease on standing 

due to gravity.  

The human body also regulates blood pressure and fluid and electrolyte balance, as well 

as systemic vascular resistance, by the renin–angiotensin system (RAS) [28]. While the 

baroreceptor reflex responds in a short-term manner to decreased arterial pressure, the RAAS is 

responsible for more chronic alterations. It is composed of three major compounds: renin, 

angiotensin II, and aldosterone.  These three compounds act to elevate arterial pressure in 

response to decreased renal blood pressure, decreased salt delivery to the distal convoluted 

tubule, and/or beta-agonism. Through these mechanisms, the body can elevate the blood pressure 

in a prolonged manner, on time scales of hours to days. 

Meanwhile, compensatory dynamic and system model of the cardiovascular system have 

been studied by various researchers. As an example, a theory and model relating pulse transit 

time (PTT) and blood pressure to changes in arterial dynamics have been developed [29]. 

Another example, intended to infer baroreflex feedback mechanisms, has also been proposed 

through a more detailed 3D–0D model [30].  Black box modeling of dynamics at various time 

scales, using similar identification techniques as this work, was reported in [31].    A set of low-

order feedback dynamics with parameters identified from non-invasive measurement was 

previously proposed in [32], without measurements of vascular resistance. 

1.4 Scope of Proposed Work 
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Our primary hypothesis is that arterial and tissue nonlinearities and dynamics that complicate 

standard blood pressure monitoring with wearable sensors can, in fact, be beneficial for tracking 

changes in vascular tone or SVR, in particular when combining information from multiple 

sensing modalities.  Specifically, we propose to use a custom, miniature piezoelectric pressure 

sensing ring in combination with conventional PPG sensing.   We will combine time series 

information provided by these sensors with local mechanical models for static and dynamic 

artery and sensor behavior.  Taking advantage of phenomena characteristic of external pressure 

sensing with a compliant sensor, and by applying appropriate parameter identification 

algorithms, we believe that it will be possible to extract reliable information about changes in 

diameter of the underlying artery, as a continuous monitoring system for vascular tone.    

 

Research Task 1: Assess peripheral artery behavior using non-invasive sensing methods  

Non-invasive methods for measuring peripheral artery behavior have been proposed by 

several methods.   Commercialized systems for estimating cardiac output, and then inferring 

SVR, have been developed based on electrical cardiometry [12] and whole body bioimpedance 

[13], but with weak SVR tracking performance due to lack of venous pressure information [14, 

15].   Other studies have relied on pulse plethysmography (PPG), which tracks short-term 

changes in artery volume, by observing changes in timing of reflection waves in arterial flow 

[17] or applying multiple regression models, but accuracy of these approaches has been limited 

due to relatively low feature resolution in PPG waveforms[18]. Pulse transit time (PTT) has also 

been proposed for evaluating vascular tone [19], but to date these methods have either been 

validated only in comparison to risk factors for high SVR, rather than changing SVR over time, 

or documented for a very small number of patients [20].  

Meanwhile, arterial dynamics of the cardiovascular system have been studied by various 

researchers. As an example, a theory and model relating pulse transit time (PTT) and blood 

pressure to changes in arterial dynamics were developed in [7].  Some researchers use simple 

linear or nonlinear constitutive equations to describe the pressure/cross-sectional area 

relationship [8][9][11], although more complex models are available [10]. Sherwin et al. [11] 

also included the effect of vessel tapering by considering a varying initial cross-sectional area of 

the vessel. Vessel collapse was specifically modelled in [9] by adapting the vessel properties and 

considering pressure changes in the collapsed vessel area. Ghasem et al. [17] proposed a model 
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with constant cuff pressure to estimate the central aortic BP waveform from two pulse volume 

signals. Those and other such models illustrate the importance of both longitudinal and radial 

behavior in interpreting arterial motion. 

We first propose a method for estimating peripheral arterial radius by combining a PPG 

sensor with a compliant piezoelectric polymer (polyvinylidene difluoride, or PVDF) pressure 

sensor, worn as a ring or band about the artery being monitored (Chapter 2). Chapter 3 then focuses 

on use of the PPG and PVDF sensors to form a type of input-output relationship across a simple 

dynamic model for local deformation of the artery and other tissue. A local model for viscoelastic 

dynamic behavior of the underlying artery and surrounding tissue is generated and coupled to the 

piezoelectric sensor model, from which variations in relative amplitude and hysteresis between the 

piezoelectric and PPG signals are found to show strong correlations with invasively measured SVR 

data in animal subjects (swine).   Arterial radius is introduced as an augmented state in an extended 

Kalman filter, with the Kalman filter then used to perform system identification and tracking of 

relative changes in arterial radius over time. 

In Chapter 4, the model is expanded to account for the most prominent longitudinal features of 

interaction between underlying tissue and the compliant piezoelectric sensor.  We propose a 2-D 

model for arterial blood pressure, volumetric flow rate and artery radius with a varying outside cuff 

pressure. Here, we attempt to incorporate limited longitudinal behavior with peripheral arterial 

contraction dynamics beneath the PVDF/PPG sensor assembly to interpret variations in sensor 

signal behavior at varying applied external pressure. 

 

Research Task 2: Identify systemic hemodynamics with respect to peripheral vascular resistance. 

Cardiovascular systems of both swine and humans feature several feedback mechanisms that 

aid in regulation of core blood pressure.   Vascular resistance, or the resistance to fluid flow 

experienced by the heart, is considered one of the primary compensatory mechanisms in 

response to cardiovascular stress over short- to medium-term timeframes (seconds to hours) [2], 

managed largely through contraction or dilation of peripheral arteries [13].  However, these 

changes in peripheral arterial radius are difficult to monitor continuously, with imaging-based 

methods [7] available only on an intermittent basis, and indirect measurements based on metric 

such as pulse transit time or waveform analysis of PPG measurements having limited accuracy 

[17]. 
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Here, we expect tracking vascular resistance in combination with heart rate can provide 

substantial insight into cardiovascular response to clinical interventions, at least under very 

controlled circumstances. A new systemic hemodynamic model be able to reproduce oscillatory 

trajectories that appear to arise from different timescales of response to medication, and 

identifiable changes in the system. 

 

Research Task 3: Predict hemodynamic decompensation with the systemic model  

The body’s ability to compensate against stress caused by trauma, illness, and disease can 

substantially complicate diagnosis and detection of complications in many situations.  For 

example, multiple autoregulatory feedback loops exist to maintain sufficient blood pressure at the 

core and vital organs.   As a result, measurements of blood pressure tend to act as a trailing indicator 

of distress, while feedback behaviors that are much more difficult to monitor may be changing 

rapidly.  Thus, early prediction of hemodynamic decompensation, or a rapid decrease in blood 

pressure, has remained difficult to achieve, due to limitations on physiological monitors and 

patient-to-patient variability. 

One clinical situation in which hemodynamic decompensation is relatively common is during 

hemodialysis. Several prior studies have attempted to predict when IDH will occur, either by 

classifying patient risk factors prior to hemodialysis [33] or applying statistical and/or machine 

learning techniques to existing physiological measures taken during hemodialysis, such as blood 

pressure (BP) trends, the electrocardiogram (ECG), pulse photoplethysmogram (PPG), and/or 

heart rate variability (HRV) data [34] [35] [36] [37] [38]. However, sensitivity and specificity of 

these predictors remains limited.  

Here, we hypothesize that incorporating peripheral vascular resistance into feedback models 

for cardiovascular autoregulation can further increase understanding of decompensation and 

improve IDH prediction. This differs from previous attempts to model feedback dynamics 

primarily in the availability of additional feedback signals from non-invasive sources, and also the 

examination of variation in feedback over time during the complex medical intervention of 

hemodialysis. 
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Chapter 2 Sensor Description 

2.1 Piezoelectric Sensor Design 

This chapter describes the sensing apparatus used to collect data from animal and human subjects 

over the course of this work.  The basic sensor designed for this work transforms mechanical 

stress, produced from the pulse in the artery, into an electrical signal. It can be placed over 

arteries that are easy to access, such as those in the wrist, finger, ankle, foot, temple, etc. The 

digital arteries in the finger were chosen as the location for this work because they allow a 

detailed pulse to be captured by the sensor with little intervening tissue.  Therefore, the sensor is 

designed to fit a in a ring that could contact both arteries in the proximal or middle phalanx part 

of the middle or index finger, and to be compliant with certain hospital requirements. 

 

2.1.1  Engineering Specifications 

Ring requirements, based on conversations with clinicians and early testing on human 

volunteers, are summarized as follows: 

• The sensor should fit on standard middle or index finger, with radius of approximately 9 

mm and width of approximately 20 mm. 

Fig.  1 Finger cuff ring and flexible sensor components. 
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• The sensor should deform and experience stress in the sensing material with each pulse. 

• A ground circuit should be present with contact to skin to reduce noise.  

• The sensor should meet hospital standards for materials. 

 

2.1.2 Material Selection 

Piezoelectric materials were chosen as the transduction material in the sensor for their electro-

mechanical properties, which transform the mechanical deformation created by the pulse into an 

electrical signal that can be read by circuitry. Two piezoelectric materials were compared 

Polyvinylidene fluoride (PVDF), which is a thin polymer film, and lead-zirconate-titanate (PZT), 

which is a hard ceramic.  It was assumed that the stress applied to the sensor would be similar to 

a compression force in the radial direction of the ring and/or of the hoop stress in a thin walled 

pressure vessel, due to the change in volume of the finger created by the artery pulse. This 

change results in a change in pressure that creates stress in the tangential direction.  

Both cases were examined using that electro-mechanical coupling factor, which 

compares a material’s piezoelectric constant for stress in a specified direction and dividing it by 

the relative dielectric constant. The PVDF was also considered easier to use in manufacturing 

and considered to be more durable then the PZT; as PZT elements tested were made from a thin 

ceramic, durability came into question during initial testing, often cracking when the ring was 

tightened to adjust pressure. 

A polyimide film, known as Kapton tape, was chosen to create a laminate around the 

PVDF film due to its chemically resistive and electrical insulating properties, ability to be used 

over a wide range of temperatures, small thickness (25.4 µm), durability, and Young’s modulus 

over three times smaller than PVDF, allowing for more stress to be applied to the sensing layer.  

 
Table 2 Sensor materials 

Item Part Manufacturer PN Supplier 

1 PVdF 52 micron uniaxially stretched 

poled with gold on chrome electrodes 

on both sides 

Precision 

Acoustics 

PV52G Precision Acoustics 

2 1 Mil Kapton tape 0.5 ’’ (polyimide 

film) 

Kapton tape KPT-1/2 Kapton Tape 

3 Silver epoxy MG Chemicals 8331S-15G Digikey 

4 Flat cable, 28 AWG, 0.05’’ Pitch 3M 3365/09 100SF Digikey 

5 Copper Tape 3M 1181 X 1/4" Digikey 
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The original sensor size of 50mm by 9mm was chosen to maximize its area of contact on the 

finger and for ease of construction with the Kapton tape.  Through experimental testing it was 

determined that this was too large, making it difficult to put the sensor on many subjects due to its 

length. Thereafter it was shortened to 40mm.  The PVDF film was placed between protective layers 

of polyimide tape (Kapton Tape, Uline Inc.), which was then worn under a Velcro or elastic band.   

A set screw element allows adjustment of the sensor to a relatively consistent level of tension.  The 

sensor is shown applied to a sample swine subject in Fig. 2. Dedicated sensing circuits and a data-

logging microcontroller are available, or the sensors can be connected directly to commercial 

biomedical data acquisition systems (e.g., DA100C, BIOPAC Systems Inc.), with the latter being 

used to acquire data presented in this work. 

An exploded view of the primary sensor model used in this work is Shown in Fig. 1, 

showing locations of key components.  A detailed manufacturing procedure is provided in the 

appendix. 

 

2.3 Wearable Finger Cuff Ring Design 

For the sensor to work properly it needs to be held in place at the correct position and with 

modest pre-pressure that allows it to deform with the pulse from the arteries.  We also had 

interest in integrating several components into its design that might be useful for long term 

stability, including pressure and temperature sensors and a 6 axis accelerometer/ gyroscope. 

These are expected to be used to develop methods to refine signals and improve artifact 

interpretation, though such features have not been implemented at this time.   The full assembly 

is again intended to fit over the proximal phalanx of the middle or index finger holding the 

sensor in place.   The assembly is also used to adjust the pressure between the sensor and finger. 

A ring was also designed to house and properly position all of these components, and 

would later be modified to create a wristband version that could be used for specialized research 

experiments.  Control of applied pressure is obtained by separating two plates using a screw.  

The screw is attached to the top plate and when rotated down pushes on the bottom plate 

decreasing the volume inside the ring and increasing the pressure.  Therefore, by adjusting the 

screw the pre-pressure on the ring can be adjusted to find the optimal signal clarity from the 

sensor for each patient.   
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Cloth and leather were chosen for strap material based on empirical testing, because they 

allowed more details and larger signal output then the other materials that were considered. 

These included solid aluminum backing, copper tape, foam, nylon and elastics. 

A FlexiForce A301 Sensor, rated for 4 Newtons, was evaluated for reading of absolute 

pressure applied to the finger, based on a predicted pressure of 10 to 16 kPa or 1 to 2 newtons of 

force under sensor operating conditions. However, both the FlexiForce and a second candidate 

force sensor (Interlink 400 Short Tail) were found to be unstable at the forces being measured. 

This meant that reference pressure applied to at the ring is not known in most experiments, 

though work described in Chapter 6 will help explain why consistent behavior could be obtained 

across subjects without this information. 

 

2.4 Flexible Piezoelectric and Photoplethysmography Sensor Design 

During the majority of the work described in this thesis, we used the custom-built flexible 

piezoelectric sensor described in Section 2.3 with the ring assembly described above for acquiring 

pressure signals during vascular resistance tracking, together with a separate off-the-shelf PPG 

sensor (OXY200 and BioNomadix, BIOPAC Systems Inc.).  However, a second-generation 

sensing ring was also developed incorporating a PPG directly with the piezoelectric sensor, shown 

in Fig. 2 .   The ring again consists of a polymer laminate with a piezoelectric PVDF sensing layer 

(52 µm thick, silver plated, Precision Acoustics), with an additional flexible printed circuit board 

on which to mount the PPG sensor (SFH 7050).  
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Fig.  2 Compliant polyvinylidene fluoride (PVDF) piezoelectric sensing band for non-invasive 

artery monitoring 

A sample time response of the piezoelectric sensor on the foreleg of a swine subject over 

three cardiac cycles is shown in Fig. 4a.  The unprocessed response of the piezoelectric sensor can 

be considered as approximately the time derivative of pressure at the site, with this differentiation 

resulting from the input impedance of the piezoelectric element.  However, the signal is further 

mediated by tissue and artery motion as they interact with the compliant sensor, in addition to 

some electrical filtering; as a result, integration of the signal (Fig. 4b) returns a similar but not 

identical waveform to non-invasive blood pressure measurements (CNAP Monitor, CNSystems 

Medizintechik AG), in which feedback control holds artery volume constant, or to invasive arterial 

lines.  PPG data from the same swine, shown in Fig. 4c, is comparatively less detailed, which has 

tended to impede its success in monitoring vascular tone in previous studies.  However, as will be 

discussed, the difference in dynamics between PPG and piezoelectric pressure sensor 

measurements as they respond to changes in the internal artery may provide important information 

on artery status. 
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Fig.  4 Sample signals from swine subject of (a)  compliant piezoelectric ring output; (b) 

Integrated piezo signal corresponding to fluctuations in pressure at tissue surface under ring; (c) 

PPG waveforms with less detail but alternate dependence on perturbation. 

 

Fig.  3 (a)Example polyvinylidene fluoride (PVDF) sensor; (b) sensor applied to foreleg of swine test 

subject. 
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Chapter 3 Modeling of Peripheral Arterial Behavior  

In this chapter, a model is derived to account for the most prominent features of interaction 

between underlying tissue and a compliant piezoelectric sensor. A simple local model for 

viscoelastic dynamic behavior of the underlying artery and surrounding tissue is generated and 

coupled to the piezoelectric sensor model, from which variations in relative amplitude and 

hysteresis between the piezoelectric and PPG signals are found to show strong correlations with 

invasively measured SVR data in animal subjects (swine)[39]. 

 

3.1 Pulse Plethysmograph (PPG) 

 The first sensor used in the proposed vascular resistance tracking scheme is a commercial 

PPG.  In a PPG sensor, the change in artery volume is detected by illuminating the skin with the 

light from a light-emitting diode (LED) and then measuring the amount of light transmitted to a 

photodiode. A photodetector converts light energy into an electrical current, which connects to 

low noise electronic circuitry that includes a transimpedance (current-to-voltage) amplifier and 

filtering circuitry.  A high pass filter reduces the size of the dominant DC component and enables 

the pulsatile AC component to be amplified. A low-pass filter is also used to remove the unwanted 

higher frequency noise such as electric interference (i.e. 60 Hz noise).   

The voltage output of the PPG sensor is, ideally, proportional to the change of the artery’s 

volume.  However, due to the transimpedance amplification and need for high-pass filtering to 

obtain the time-varying component of light, PPG sensors do not provide long term tracking of 

mean absolute arterial volume, but rather respond to short term fluctuations in arterial volume 

during cardiac cycles.  In effect, changes in volume are convoluted with amplifier and filter 

dynamics, which include a differentiation, then integrated to return the relative volume fluctuations.  

As a model, this becomes  

 == dtLrhKdtVhKU PPGiPPGPPGiPPGPPGPPG

2
       (1) 

https://en.wikipedia.org/wiki/Light-emitting_diode
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where PPGK  is the gain of the PPG sensor, hPPG  is the a linear dynamic filter response, and Vi is 

volume of oxygenated blood between the LED and photodector, which can alternatively be related 

to the inner radius of the artery ri  and length of artery illuminated by the PPG, LPPG. The length of 

the artery under PPG sensor is assumed to be constant. The exact filter in the PPG sensor is not 

disclosed by the manufacturer, but an approximate model was based on literature reports [27] in 

this work, and experimentally produced a response consistent with information from invasive 

sensors.   The PPG filter model used was  

    6
( )

( 2)(s 100)
PPG

s
H s

s
=

+ +

      (2) 

3.2 Piezoelectric Sensor:  Electrical  

The second sensor used was the piezoelectric PVDF pressure sensing ring.  In the electrical 

domain, the piezoelectric sensor can be modeled as a charge source in parallel with the sensor's 

capacitance.  A high impedance charge mode amplifier, such as the BIOPAC data acquisition 

system used in this work, converts electrical charge to voltage.   To account for interface circuit 

dynamics, a custom-built electrical circuit was designed that provided comparable frequency 

response to the BIOPAC system.  The sensing circuit must compensate for very low current from 

the PVDF sensor, measured around 1-5 nA.  The nominal sensing circuit consists of a first stage 

amplifier, followed by a low pass filter that helps minimize electrical interference and high 

frequency noise. Large resistors were selected because low current signal and low capacitance of 

PVDF sensor, which decrease the high-pass filter cut-off frequency. 

Charge on the PVDF sensor is given by   

      𝑞 = 𝑑31𝐸𝐴휀1     (3) 

where, q is the electrical charge between PVDF surfaces, E is the elastic modulus of PVDF, A is 

the surface area of the PVDF, and 1  is the tangential strain in the PVDF layer.  In this model, 

compressive piezoelectric response (i.e. d11) and coupling effects are neglected as small compared 

to the dominant response from hoop stress around the ring formed by the sensor.  

Transfer function of Fig. 4 was used as a model for PVDF sensor circuit dynamics, which can be 

written as: 

18
( )

( 6)( 178)

s
G s

s s
=

+ +
     (4) 
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 The PVDF sensor output is a convolution of the time-varying charge with the amplifier 

dynamics, hpvdf, to produce a voltage output, which in turn is integrated to obtain the final PVDF 

sensor response, Upvdf, 

18

1( )( 6)( 178)
ovdf pvdf

s
U h qdt qdt

s s s
RC

=  = 
+ + +

 
             (5) 

where R and C is the impedance of the PVDF sensor and the equivalent capacitance, respectively.  

The integration is required because the small charge amplitude and relative impedance of the 

sensor result in a high-pass filter cut-off frequency much higher than the frequency of cardiac 

cycles; integration returns this to an output approximately proportional to blood pressure, but 

mediated by intervening tissue, as discussed below.  

 

3.3 Piezoelectric Sensor: Mechanical 

The piezoelectric sensor responds predominantly to tangential stress or strain in the PVDF ring 

as it stretches in response to fluctuations in pressure and volume inside the underlying arteries.  

However, the pressure experienced by the PVDF ring is not identical to the underlying arterial 

pressure, due to additional tissue dynamics.  To approximate this behavior, a very simple 

mechanical model is used, that also supports dynamic modeling of viscoelastic effects seen to be 

important to artery and sensor behavior. 

  The mechanical model used in this work consists of a thick-walled cylinder for the artery 

including a nonlinear elastic modulus approximation, other soft tissue and skin approximated as a 

compressible volume, and a linear elastic ring approximation for the sensor, as shown in Fig. 5.  

The basic assumption of mechanical model is that the artery is straight and the cross-sectional 

property like tissue and bone are same along the width of PVDF sensors, which is 9mm.  The 

peripheral artery is approximated using a linear thick-walled elastic tube model, 
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Where ir  and or  are the average inner and outer radius of the artery wall, δri and δri are their 

variation in time during a cardiac cycle, E is artery elastic modulus, δpi is pressure change inside 

the artery, and δpo is pressure change as experienced by the sensor, which may differ from δpi due 

to internal stresses in the artery walls and compressibility of intervening tissue but is assumed to 

approximately isotropically resist arterial expansion. 𝑓𝑖𝑖 , 𝑓𝑜𝑖 ,  𝑓𝑖𝑜 , and 𝑓𝑜𝑜  are functions for 

circumferential stress at the inner (i) or outer (o) radius of the artery, as defined for a standard 

thick-walled elastic tube in [28].  

 

 

 

The piezoelectric sensor response is modeled as thin-walled cylinder subject to approximately 

uniform pressure from the underlying tissue ( 𝑝𝑜 ) and an initial tension, T, in the sensor. 

Perturbations of the sensor radius, δR, from its nominal radius, �̅� are modeled in the form 

     
22

o

s s

R R
R p T

E t E t
  = −      (8) 

 

Where Es is the composite modulus of the PVDF and polyimide layers, t is the sensor band 

thickness, and δT represents any external perturbations to tension in the sensor, though in this study 

T is generally held constant.  

Fig.  5 (a) Schematic drawing of finger cross section with free-body diagrams of (b) artery with internal and 

external radii ri and r2 subject to internal and pressures pi and po (c) and ring sensor with radius R under 

tension T constraining artery expansion under simplifying assumption of approximately isotropic pressure 

distribution under ring. 
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Interior artery expansion can be related to deformation of the sensor by a conservation of area 

or volume,  

( ) ( ) oooo pVrrRR  −++=+
22

2     (9) 

 

where oV   is the nominal cross-sectional tissue area enclosed by the sensor, excluding arteries, and 

γ is a measure of net intervening tissue compressibility.  Two major arteries are known to be 

present under the appendage being monitored. 

Combining (6)-(9) and assuming external tension, T, is fixed, a nonlinear function relating sensor 

pressure perturbations, δpo to artery perturbations, δro, can be obtained: 
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3.4 Dynamic Effects 

 It is well known that both artery and skin exhibit viscoelastic behavior that leads to hysteretic 

behavior during phases of increasing versus decreasing pressure during cardiovascular cycles.  

Experimental comparison of the PVDF sensor response to blood pressure measurements using a 

finger cuff, in which pressure is regulated to maintain a constant arterial volume, show a clear 

hysteresis in piezoelectric signal, consistent with hysteresis arising from viscoelastic effects in 

tissue.  To capture this behavior, a simple viscoelasticity model is added to the mechanical model 

from Section 3.C.  The Standard Linear Solid Model, used here, combines Maxwell model 

dynamics and a Hookean spring in parallel to relate a stress, σ, to a strain, ε; a viscous material is 
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modeled as a spring and a dashpot in series, both of which are in parallel with a lone spring, as 

shown in Fig. 6.  

 

For the model in Fig. 6, the governing constitutive relation is:  

1
1
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1 2
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where σ is the applied stress, E1 and E2 are elastic moduli describing the tissue, η is a viscoelasticity 

coefficient, and ε is the strain. Defining 휀(𝑡) = 𝛿𝑟0 �̅�𝑜⁄  and 𝜎(𝑡) =  𝑓𝑜𝑖𝛿𝑝𝑖 − 𝑓𝑜𝑜𝛿𝑝0  from the 

thick wall cylinder model and combining (6), (9), and (11), a constitutive relation between arterial 

variation and inner and outer pressure under the PVDF ring can be obtained accounting for 

viscoelasticity, 
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Changes of inner pressure also be related to other variables by an alternative arrangement of (12), 

i.e. 
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Fig.  6 . The Standard Linear Solid Model uses lumped spring and dashpot elements to relate stress, σ,  to 

strain, ε, in a viscoelastic material using two parameters for elastic modulus, E1 and E2, and a 

viscoelasticity parameter, η. 
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3.5 Model Summary 

To summarize the sensor model, two independent equations are present: a static relationship 

relating perturbations in pressure on the sensor to arterial radius (δpo  vs δro), in (9) and a dynamic 

equation for either artery radius or internal pressure (12) or (13) incorporating basic viscoelastic 

behavior, with variables δpi, δpo, and δro.  Once δpo can be measured, as with the PVDF sensor, 

this is sufficient to solve for the other two variables, with δri also available via (6) and (7).    

 

Fig.  7 During implementation, piezoelectric sensor voltage, uPVDF, is used to infer changes in 

external pressure, po, which is used to calculate perturbations in internal artery pressure, pi, and 

radii, ri and ro via the model from Section 3.4.  These estimates are used to predict what changes 

in internal artery volume, Vi, would be at the nominal artery radius, along with an anticipated 

PPG sensor output, �̂�𝑃𝑃𝐺.   Comparison to the actual PPG sensor output, uPPG is done to estimate 

systemic vascular resistance, SVR, by metrics described in Section 4.2. 

 

 

However, all of the above relationships are dependent on the average arterial radii during the 

cardiac cycle ( ir  and or  ) which in reality will vary over many cycles as vascular resistance 

changes.   Thus, the model is used in inverted fashion for nominal, assumed constant, arterial radii, 

as shown schematically in Fig. 7.  Then, an input-output relationship between PVDF and PPG 

measurements can be established for parameter identification and peripheral vascular 

resistance/SVR estimation.   Short term fluctuations in pressure on the PVDF band, inferred from 

piezoelectric sensor output voltage, are used as an input to the nonlinear state-space models (13) 

for differential arterial pressure.  Pressure is then related to inner and outer arterial radii via (6) 

and (9), with inner radius used to predict blood volume under PPG sensor, which can be compared 

to the measured PPG response, �̂�𝑃𝑃𝐺 .  Discrepancies between predicted and measured PPG 

response are then attributed to changes in arterial radius, as described in the following section. 
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It should be emphasized that much more detailed arterial tissue modeling has been done in 

previous works on artery and tissue mechanics. Tissue modeling in this work draws only the most 

apparent features in observed data, and even then associates behavior such as compressibility and 

hysteresis only with individual model elements, when in reality the tissue structure under the 

sensor band is quite heterogeneous.  In the following sections, model validation is performed by 

comparing invasive measurements of SVR to that implied by changes in estimated arterial radius 

using this model, assuming peripheral vascular resistance and SVR to change effectively 

proportionally. 

 

3.6 Model Parameters  

 In the sensor and artery model from Section 3.5, exact parameters related to arterial radius and 

tissue properties are not directly available unless related solely to the PVDF sensor.  Instead, 

representative values from the literature were selected as approximate values, as listed in Table I.   

In addition, the gain of the pulse plethysmograph was observed to vary substantially from subject 

to subject, and thus was estimated individually by optimizing the fit between the measured PPG 

signal and a predicted PPG signal generated from the PVDF sensor measurement at the onset of 

testing. The first ten cardiac cycles during swine experiments were used to calibrate the PPG gain 

in each of experiment.   

Table 3 Model parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Parameter Value Units 

Nominal values used throughout testing: 

𝑟�̅�  Nominal artery radius 1.5 mm 

�̅� limb radius 50 mm 

Es sensor modulus 2.5 GPa 
t PVDF thickness 52 µm 

T ring tension 2 N 

31d  piezoelectric 

coefficient 
11 × 10−12 C/N 

γ ring compliance 1.5 mm3/𝑃𝑎 

Identified from first 10 cardiac cycles for first swine subject, used in all 

further testing: 

E1 viscoelastic modulus 1 200 kPa 

E2 viscoelastic modulus 2 1 kPa 

ƞ 
viscoelastic damping 

ratio 
1000  

Adjusted for each swine using first 10 cardiac cycles: 

PPGK  PPG gain 2000~5000  
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3.7 SVR Tracking Metrics 

As discussed above, neither PPG nor piezoelectric sensing mechanisms provide absolute 

measurement of arterial radius or pressure, but rather time-varying perturbations from those signals’ 

average values.  However, the sensors’ relative amplitudes and dynamic responses (i.e., relative 

hysteresis) remain dependent on artery radius changes.   Fig. 8 plots modeled PPG vs. PVDF sensor 

output over a single cardiac cycle for two values of mean arterial radius; experimental 

measurements for cycles with an approximately equivalent SVR change (as measured invasively) 

are also shown.  First, the model for local tissue and sensor behavior beneath the piezoelectric ring 

shows acceptable agreement with experimental data, though there is clearly more complexity in 

the true physiology than in the proposed model.   

Second, it is clear that both in the model and experimental behavior, PPG output increases to a 

proportionally greater degree than PVDF output when mean arterial radius increases and SVR 

decreases.   This provides one method by which changes in arterial radius may be inferred from 

relative change in PPG and piezoelectric sensor signals.  

Third, a key observation during swine testing is that the relative amplitude of hysteresis observed 

during arterial expansion and contraction correlates very strongly with SVR, which is also 

observed in Fig. 8: for larger artery radius, the degree of hysteresis changes relative to the total 

amplitude of the signal.  

Based on the observations above, two metrics for estimating changes in peripheral vascular 

resistance/SVR are proposed.  Figure 9 shows a series of hysteresis loops formed by plotting PPG 

sensor output versus PVDF sensor output at series of cardiac cycles occurring over a two-hour 

period. The pulse transit time delay is constant due to the different location of two sensors and had 

been adjusted base on the peak time of two signals.  Solid loops indicate experimentally obtained 

data, with SVR know to be changing and presumed to be accompanied by arterial radius changes.  

Dashed loops are generated using measured piezoelectric sensor data to predict PPG response if 
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arterial radius were constant, using the model from Section III.   Mismatch between the predicted 

and observed sensor behavior is taken to be indicative of changes in arterial radius. 

 

  

Fig.  8 Hysteretic response visible between differential pressure and volume during arterial 

expansion and contraction. 

Fig.  9 Examples of hysteresis behavior and SVR tracking over a two-hour experiment, with 

individual cardiac cycles shown below to demonstrate changes in amplitude and hysteresis behavior, 

aligned with times at which sample hysteresis loops were collected. 
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Two metrics are proposed for quantifying the differences between simulation and experimental 

behavior in order to predict SVR in the current work.  In both cases, during each cardiac cycle an 

ellipse is generated to fit the hysteresis loop between the PPG and piezoelectric sensor outputs for 

both the experimental and projected (hypothetical fixed radius) response.  The long chord of the 

ellipse is used to approximately represent the amplitude of volume change and the ratio of short 

chord to long chord to represent hysteresis.  The estimated SVR metric is obtained by linear 

regression of invasive SVR measurement and relative amplitude or hysteresis from first 10 cardiac 

cycle. The intercept of the two formula are proportionally changed with different PPG gain, which 

also individually calibrated with first ten blood cycles data. 

The first metric for estimated SVR (𝑆𝑉�̂�) is based on relative amplitude, and is formulated 

     𝑆𝑉𝑅1̂ = 0.02(𝐿𝑠 − 𝐿𝑒) + 0.52    (13) 

with L being the long chord of an ellipse fit, where subscript s indicates the simulated PPG output 

given the current PVDF output and subscript e indicates the actual experimental output.    

Effectively, this metric is selected to capture the mismatch increased signal amplitude when 

arterial radius changes from baseline, while the ratio of PPG amplitude to PVDF amplitude 

remains approximately constant if only blood pressure changes at a fixed nominal arterial radius.   

Similarly, when SVR increases, observed experimental hysteresis will be larger than projected 

based on the model with constant nominal radius.   This is quantified as 

𝑆𝑉�̂�2 = −0.166(ℎ𝑠 − ℎ𝑒) + 0.7     (14) 

where h is a hysteresis measurement obtained from  

s,e s,e

s,e

s,e

L S
h

L

−
=         (15) 

where S is the short chord of the ellipse fit to the hysteresis loop. 

Constant coefficients in (13) and (14) are selected to scale estimated SVR to normalized 0 to 1 

scale for comparison to changes in the invasively measured SVR.  Normalization was done using 

the first 10 cardiac cycles in each experiment, also removing residual drift from numerical 

integrations if necessary.   In most practical applications, baseline SVR would not be known, 

providing estimates of relative change in SVR from initial baseline would be the key outcome of 

SVR tracking.  Examples of changes in SVR and metric outputs are shown at the top of Fig. 9 for 

the sample cardiac cycles shown.  
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3.8 SVR Tracking Performance 

Proposed metrics for SVR tracking were tested on three swine experimental subjects.   SVR was 

tracked invasively using carotid artery catheterization. Cardiac output and central venous pressure 

were measured using a Swans Ganz catheter having continuous thermodilution capabilities.  The 

combination of data was used to compute the SVR values. The PVDF sensor and PPG sensor were 

placed adjacent to one another on same swine appendage (forearm). All the signals were collected 

and stored using a Biopac MP150 device and analyzed retrospectively. Norepinephrine (a powerful 

arterial vasoconstrictor agent) was infused into the blood to periodically increase SVR during each 

test, and SVR dropped when each infusion stopped.  

SVR estimates obtained by the proposed SVR tracking metrics, using amplitude and hysteresis, 

respectively, of simulated versus observed PPG to PVDF signal relationship, are shown in Fig.  10. 

SVR tracking was most accurate with the first subject, Fig. 10, which showed generally close 

agreement between both amplitude- and hysteresis-based SVR estimates and invasive SVR 

measurements after an initial time period required for parameter identification to converge.    

Greater discrepancies are observed in the second and third tests, but both methods generally 

capture increases and decreases in SVR.  In all three experiments, estimates based on hysteresis 

variation performed better than estimation based on relative PPG to PVDF amplitude.    Worst 

tracking was observed at the conclusion of experiments with Swine 1 and Swine 2, which may 

have indicated further physiological changes accumulating during the testing period. 

For comparison to existing non-invasive SVR estimation, SVR was also estimated using PPG 

waveform analysis by the method proposed by A. Scholze et al [16].   The basic idea of PPG 

waveform analysis is that the ratio of first and second peaks of each cardiac cycle proportional 

related with vascular tone.  Those peaks were chose when the first order derivative of PPG signal 

cross zero.  SVR estimation based on PPG waveform alone was much less consistent than for 

metrics combining PPG and piezoelectric sensor information.  For example, PPG-only estimates 

showed good agreement with invasive SVR in test 1, but very poor tracking of SVR in test 3.   

 

Estimator performance was evaluated based on the mean and maximum absolute percentage 

errors of SVR tracking, as defined by 

    
1

𝑁
∑

|𝑆𝑉�̂�−𝑆𝑉𝑅̅̅ ̅̅ ̅̅ |

𝑆𝑉𝑅̅̅ ̅̅ ̅̅
𝑁
𝑛=1     (16) 

and 

   max
𝑛

|𝑆𝑉�̂�−𝑆𝑉𝑅̅̅ ̅̅ ̅̅ |

𝑆𝑉𝑅̅̅ ̅̅ ̅̅
    (17) 
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respectively, where N is the number of cardiac cycles and SVR  is the invasively measurement value 

for SVR in each cycle. 

 Performance of non-invasive SVR estimation from combined PPG and piezoelectric 

sensing, as well as PPG waveform analysis alone is summarized in Table II.   As can be seen, in 

all three cases the proposed SVR estimator performance was superior to that based on PPG 

waveform analysis, most dramatically with respect to the worst case estimates (maximum absolute 

percentage errors) obtained by each method.    

 

 

 

Fig.  8 SVR tracking results for swine test 1 
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Fig.  9 SVR tracking results for swine test 2 

 

 

 
Fig.  10 SVR tracking results for swine test 3 

 

 

Performance of non-invasive SVR estimation from combined PPG and piezoelectric sensing, as 

well as PPG waveform analysis alone is summarized in Table 4.   As can be seen, in all three cases 



 

 

29 

the proposed SVR estimator performance was superior to that based on PPG waveform analysis, 

most dramatically with respect to the worst case estimates (maximum absolute percentage errors)  

obtained by each method.    

Table 4 SVR estimation performance for different methods: By hysteresis = estimated based on 

variation in PPG vs. PVDF hysteresis; By relative amplitude = estimated based on change in 

relative PPG vs. PVDF amplitude; By PPG wave alone = estimated based on features of PPG 

waveform.  

 

A Bland-Altman plot of estimation results for swine test 2 is shown in Fig. 13.  It shows that the 

estimates based on hysteresis variation performed better than other two methods in absolute 

systematic error and proportional error. 

 
Fig.  11 Bland-Altman plot of SVR tracking results for swine test 2 

 

 

 

 

  

Test Mean absolute percentage error Maximum percentage error 

 

Root mean square error (RMSE) 

By hyst-

eresis 

By relative 

amplitude 

By PPG 

wave 

alone 

By hyst-

eresis 

By relative 

amplitude 

By PPG 

wave 

alone 

By hyst-

eresis 

By relative 

amplitude 

By PPG 

wave 

alone 

1 4.7% 8.7% 10.2% 14% 29% 50% 0.036 0.072 0.074 

2 3.7% 8.0% 9.6% 17% 27% 41% 0.037 0.073 0.093 

3 4.5% 5.6% 12.4% 15% 19% 77% 0.037 0.047 0.112 
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Chapter 4 Estimation of Peripheral Artery Radius via Kalman Filtering 

In this chapter, we proposed a method for estimating peripheral arterial radius based on the 

extended Kalman filter and the local nonlinear artery model in chapter 3. The current work focuses 

on use of the PPG and PVDF sensors to form a type of input-output relationship across a simple 

dynamic model for local deformation of the artery and other tissue.  Arterial radius is introduced 

as an augmented state in an extended Kalman filter, with the Kalman filter then used to perform 

system identification and tracking of relative changes in arterial radius over time on a swine 

subject[40]. 

 

4.1. State Space Model and Estimator Design 

To track arterial radius, the pair of sensors is treated as acting in a fictitious input-output 

relationship, i.e., an “input” exterior pressure (known by the PVDF sensor) is treated as generating 

differential changes in volume at the PPG sensor via the intervening local tissue dynamics.   In 

reality, pressure fluctuations are being driven by the interior pressure in the artery, and techniques 

such as a disturbance observer might also be effective, but the input-output formulation is well-

suited to parameter tracking by system identification methods.   

     For continuous arterial radius tracking, the simple local arterial dynamic model in (13) is 

augmented by the radii to be monitored.  Let the state variables, xi, and the inputs for the system, 

ui, be defined as follows:  

1

1

2

2

3

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )

o o

i o

i

x t r t p t
u t

x t p t dp t
u t

x t r t dt



       

     
      = =               

    (18) 

The inputs to the system are thus quantities that can be extracted directly from PVDF sensor output, 

provided properties of the PVDF ring and piezoelectric sensing circuit are well known, and states 

are a combination of the original dynamic model for the system and parameters for system 

identification.   
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Then, the discretized nonlinear artery state model and output model can be described by  

( ) kkkk wuf += −− 11,xx      (19) 

( ) kkk vhz += x        (20) 

Where wk and vk are process noise and measurement noise, which are assumed to be independent, 

zero mean white Gaussian noise with covariances Qk and Rk respectively. In this model  f(xk-1,uk-

1) is the nonlinear part of the state model, which from (8)-(13) also can be described as: 
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A nonlinear output model, ( )kh x , from (5), can then be written as: 

1

2 2

3 3( ) ( )
k kk PPG PPG PPGh x K h L x x

−
= −     (22) 

The extended Kalman filter linearizes the nonlinear-state model for each new estimate as it 

becomes available. From the above dynamic model the inside radius of artery can be estimated 

by the following extended Kalman filter algorithm. 

1) Prediction of State: 

     ( ) kkkk wuf += −− 11,ˆˆ xx      (23) 

2) Estimation of Error Covariance Matrix: 

     
| 1 1 1| 1 1

T

k k k k k k kP F P F Q   − − − − −= +     (24) 
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3) Computation of Kalman filter gain 

    1

| 1 | 1( )T T
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where 
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4) Update of the Error Covariance Matrix: 

     | | 1( )k k k k k kP I K H P  −= −       (27) 

5) State Estimation: 
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The estimator’s predicted output, | 1
ˆ( )k kh −x  ,can also be considered a prediction of the PPG output, 

and is also referred to as ˆ
PPGU . 

 

4.2. Experimental Setup and Signal Preparation 

Arterial radius estimation was implemented of test data acquired from a swine test subject.  The 

PVDF sensor and PPG sensor were placed adjacent to one another on the same swine foreleg.   All 

signals were collected and stored using a Biopac MP150 device and analyzed retrospectively. 

For validation, arterial radius estimates are compared to invasively-measured SVR, tracked using 

carotid artery catheterization.   It is important to note that while peripheral vascular tone is often 

considered the dominant factor in determining SVR, anticipated to be approximately proportional 

to ri-4 should arterial response be relatively uniform throughout the periphery, SVR and arterial 

radius may potentially diverge under certain cardiovascular scenarios.   SVR was computed from 

Cardiac output and central venous pressure were measured using a Swans Ganz catheter and used 

to compute the SVR values. Changes in SVR were induced by periodic infusion of norepinephrine, 

with SVR increasing during infusion and decreasing when each infusion stopped.  

Prior to Kalman filter implementation, PVDF and PPG sensor data were conditioned to remove 

certain known artifacts.   PVDF sensor output was passed through a band-pass filter to remove 

long term drift and reduce high frequency noise.  The PPG waveform was subject to sudden 

amplitude changes due to an automatic gain controller which adjusts the gain of the amplifier 

automatically based on the amplitude of the input signal; this auto-gain could not be disabled with 
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the existing software.   In this study, when the artery suddenly contracted, it was found that when 

if amplitude of PPG signal dropped to half of its original amplitude, the controller doubled the 

gain. This automatic gain control occurred in the swine test at about 65 minutes. Therefore, we let 

the gain of PPG sensor, KPPG, be multiplied by two when the amplitude of the voltage signals in 

one blood cycle dropped to less than 0.1V.  

 Parameters not identified by the Kalman filter, such as the viscoelastic moduli, E1 and E2 

and viscoelastic damping coefficient, η, were tuned to minimize error between the actual and 

predicted PPG output over the first ten cardiac cycles, while arterial radius was assumed to be 

constant.   The initial arterial inner radius was arbitrarily set as 1.5 mm, based on typical swine 

artery dimensions.  

4.3. SVR and blood pressure estimation 

To assess accuracy of arterial radius estimation, the estimated artery radius is converted to a 

vascular resistance by 

                             
4

8

ˆ( )i

L

r





=            (29) 

where ρ is the estimated local resistance to blood flow, L is the length of the vessel, and η is 

viscosity of blood which was taken to be 33.5 10 Pa s−  .  We compared the simulated vascular 

resistance to invasive SVR measurement, 
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Fig.  12 Estimated vascular resistance at the PVDF and PPG sensor location closely tracks 

changes invasive systemic vascular resistance measurements in proof of concept testing on a 

swine test subject. 

 

normalizing by the real and estimated resistance in the first 10 cardiac cycles.   Vascular resistance 

tracking is shown in Fig. 14.   As can be seen, the local vascular resistance estimate closely track 

SVR through the majority of the testing period.   Large fluctuations in SVR in the test subject are 

caused by starting and stopping infusions of norepinephrine.   The resulting major trends in SVR 

are best matched by the estimated changes in arterial radius.  On the other hand, there are 

indications of additional dynamics present, as in oscillations in predicted radius at very low SVR, 

and the estimated radius is very sensitive to noise. 

As an additional validation given data available from swine testing, Figs. 15(a) and 15(b) show 

estimated systolic and diastolic pressure estimates, respectively, in comparison to invasive arterial 

blood pressure measurements.   It should be emphasized that the PVDF sensor is not intended to 

serve as an absolute pressure measurement system, due to inherent drift of the piezoelectric sensing 

mechanism in absence of an additional reference.   In addition, there are substantial additional un-

modeled fluid dynamics between arterial and PVDF sensor locations.  Nonetheless, use of model-

based state estimation does permit the sensor to capture some major trends in blood pressure 

fluctuation, which provides some additional confidence in the proposed approach for tracking 

vascular behavior.   On the other hand, blood pressure estimation is subject to much more 

substantial non-physical spikes in the state estimates, which is indicative of greater sensitivity of 
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the blood pressure terms in the system model to noise and numerical error, and also reflects the 

fact that PPG output reflects filter states that are directly tied to volume but only indirectly to 

pressure. 

 

 

Fig.  13  Even though no pressure reference is present, estimated blood pressure within the 

PVDF ring roughly tracks blood pressure measured by an arterial line, though with substantially 

greater errors than volume estimation for vascular resistance. 

 

Major limitations of this work include the scope of validation – a single swine subject at present 

– as well as need to calibrate several parameters of the model before radius tracking can be 

performed, such as parameters describing viscoelastic arterial dynamics.  Nonetheless, as a proof-
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of-concept test, vascular resistance tracking results show promise for a simple, non-invasive means 

for tracking changes of vascular resistance at a variety of care settings. 

 

4.4. Validation of Artery Radius Estimation with Ultrasound Videos 

As a further attempt to validate arterial radius estimation, a method was developed to calculate 

the area based on imaging processing of ultrasound videos, as the videos are made by a sequence 

of pictures.  The ultrasound probe was place near the PVDF/PPG sensor, and both units were 

placed on a swine’s foreleg during procedures to manipulate vascular resistance.  

The ultrasound image is formed by millions of pixels, each pixel representing a point in an image. 

For the ultrasound system used in this experiment, each pixel is formed by three different 

components extracted from the ultrasound signal, which are represented light in three colours: red, 

green and blue, at different intensities. As direct ultrasound signal was not available from the 

commercial system, image processing had to be performed using the colorized output video.  As a 

result, each single frame was represented by three matrices (one for each color) that included the 

information on the intensity of each component at every pixel. Knowing this, we were able to 

represent each matrix as a surface on a three-dimensional space. By analysing changes in colour 

intensity, changes in the artery’s area are determined. 

However, not every pixel that is displayed on these videos was subject to study, we focused on 

the area where the radial artery is locaded (inside the red rectangle in Fig. 16).   Because the 

artery occupies only small portion of the field-of-view of a conventional ultrasound monitor 

when imaged at the swine foreleg, several processing steps had to be performed to measure 

motion of the artery walls. 
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For each frame, the image was processed by the following steps: 

a) Obtain the pixel intensity information of the space where the artery is located shown in 

Fig. 17. 

 

Fig.  14 Sample ultrasound video with artery highlighted 

 

Fig.  15 Selected ultrasound image near artery is located 
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b) Eliminate from the matrix the data that is on the right of the centre of the artery. This is 

done using coordinates calculated at the beginning of the analysis. 

 

c) Create the 3D contour of artery, shown in Fig.18.  This is created by the Matlab function 

‘contour(x, y, Z)’, where Z contains light density values on the x-y plane. In order to get a 

closed curve when calculating the contours,  as some of them may not close, the data from 

the matrix  is enclosed in a larger field of view one with dimension (n+2, n+2) that 

surrounds the artery with values higher than any pixels present in the frame.    

 

d) Calculate multiple contour boundaries at varying intensity levels.  This was done as it is 

difficult to determine what the exact boundary of the artery is from the video, and averaging 

of multiple candidate boundaries was expected to provide more accurate measurement. 

These contours are calculated as the intersection between the surface generated with the 

colour intensity data and equidistant planes perpendicular to the Z axis. The distance chosen 

between the planes was 10 (intensity of color). When analysing the final results this will 

be useful to determine which contour represents the real boundary of the artery. 

 

 

 

Fig.  16 3D representation of pixel intensity 
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e) Calculate arterial area, based on coordinates of the points in the contour, the area can be 

now calculated. The area is calculated using the 2-D polygon area equation: 

𝐴 = 0.5 ∑ (𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)
𝑛−1
𝑖=0    (30) 

where the vertices of the polygon under consideration are taken to be 

(𝑥0, 𝑦0), (𝑥1, 𝑦2), … , (𝑥𝑛, 𝑦𝑛) in order. 

 

f) Once contours are calculated for all frames, filter time-domain information.   A band pass 

filter was used to keep the information from the dominant frequency of motion (heartrate) 

and its first four harmonic frequencies; all other frequencies are attenuated. The band 

pass frequency was found by Fourier analysis of all the swine videos. The formulas used 

to design this filter were: 

𝐹0 = √𝐹𝐻 ∗ 𝐹𝐿      (31) 

Fig.  17 Contour representing the boundary of the artery 
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𝜔0 = 2𝜋𝐹0      (32) 

𝑄0 =
𝐹0

𝐹𝐻−𝐹𝐿
      (33) 

𝐺(𝑠) =

𝜔0
𝑄0

∗𝑠

𝑠2+
𝜔0
𝑄0

∗𝑠+𝜔0
2     (34) 

Where 𝐹𝐻 = 10𝐻𝑧, 𝐹𝐿 = 0.01𝐻𝑧 

After all the processing steps, the radius of the artery can be finally analysed from the image. The 

final result of the area calculation from one sample videos is shown in Fig. 20. 

 

 

It can be clearly seen from the result that changes in the area are small during each cardiac cycle, 

which is averaging 8%.  These changes are generated by each heartbeat which increases pressure 

when pumping blood through the arteries. For each video, we 

Fig.  18 Estimated artery area from a sample ultrasound videos. The image processing algorisms can 

capture artery changes from both the cardiac cycle and the respiratory cycle. Here, the area is 

represented by the number of pixels. 
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calculate the mean artery area by averaging the area number for each cardiac cycle and also the 

average of artery area changes in each cycle for later comparisons. 

The beat-to-beat amplitude of the area changes is not constant over time. This is caused primarily 

by the breathing of the swine, or respiratory cycle, but also by changes in mean arterial radius due 

to vascular resistance changes. Respiratory effects arise because the left side of the heart behaves 

differently at different points in the respiratory cycle. During inspiration, expansion of the lungs 

and pulmonary tissues causes pulmonary blood volume to increase, which transiently decreases 

the flow of blood from the lungs to the left atrium. Therefore, left ventricular filling decreases 

during inspiration. In contrast, during expiration, lung deflation causes flow to increase from the 

lungs to the left atrium, which increases left ventricular filling.  The net effect of increased rate 

and depth of respiration, however, is an increase in left ventricular stroke volume and cardiac 

output. 

respiratory cycles respiratory cycles  

cardiac cycles  

Fig.  19 Details of artery area changes during the cardiac and respiratory cycles from a sample ultrasound 

videos. 
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To validate the effectiveness of the estimation method proposed, different videos were evaluated 

on a swine subject. Ten different videos were chosen, these videos were chosen using the 

information of the systolic pressure of the swine obtained during the experiment in moments when 

significant changes in the area were expected, as increases in systolic pressure will increase the 

area of the artery.  

Arterial radius is estimated as an augmented state with the same extended Kalman filtering 

method in the previous sectoins. Then, the area of the artery can be calculated as: 

Â = 𝜋�̂�𝑖
2
        (35) 

The mean average of the estimated artery area is compared with the measurement from 

ultrasound videos, at the same time periods, as shown as Fig.25. As can be seen, the estimation 

results shown a reasonable agreement with ultrasound measurements. However, the absolute 

value is not always perfectly matched between the two method. We believe that the ultrasound 

imaging is likely the less accurate measurement in those time periods, which corresponded to 

some of the smallest arterial radii.  This resulted in the worst quality videos of the small artery 

area, limiting the accuracy of results from the ultrasound.   It is also possible that some 

assumptions from the wearable sensor estimation model lose validity at smaller arterial radii, 

Fig.  20 Systolic blood pressure (blue line) during experiment and ultrasound video 

intervals(orange area) studied 
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though vascular resistance tracking generally continued to follow invasive measurement during 

these time periods. 

The beat-to-beat area oscillations (i.e., expansion and contraction of the artery during a single 

pulse) were also be compared with the data obtained from the non-invasive sensor that was tested 

at the same time. To calculate these oscillations the amplitude from dominant frequency (the one 

corresponding with the heartbeat ~ 1 Hz) from the Fourier analysis was used.  

As it can be seen, the measurements follow the same trend most of the cases, though ultrasound 

data is even noisier over these timeframes. From the data obtained it appears that an increase in 

pressure results in a smaller amplitude change in the artery cross-sectional area. This phenomenon 

can be explained as the result of the arteries’ smooth muscle cells contracting being the primary 

cause of blood pressure increases in these experiments (stimulated by infusion of norepinephrine).  

This reduces the effect of beat-to-beat pressure fluctuations on the artery area.  In other words, the 

Time(hr)  

Fig.  21 Comparison of estimation of artery area (blue line) with EKF and estimated area by 

ultrasound videos (orange line). Normalized PVR (black line) is estimated by artery radius, 

which is inversely related to the area of the artery and available on a continuous basis 
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changes in arterial radii generated by heartbeats are not as significant when blood pressure has 

increased due to vasoconstriction. 

 

4.5. Conclusion 

A model and estimator based on the extended Kalman filter are proposed for tracking radius of 

peripheral arteries, making use of a simple mechanical model of arterial and tissue dynamics to 

account for varying response of a pulse plethysmograph and a piezoelectric pressure sensor.   In 

proof-of-concept testing on a swine test subject, local vascular resistance calculated from arterial 

radius estimates at the ring location show good agreement with overall systemic vascular 

resistance, while capturing more roughly other features of local cardiovascular behavior.   A simple 

image processing algorism is introduced to measure the area of small artery with ultrasound videos, 

also compared with the extend Kalman filtering method result. The ultrasound measurement 

validated the estimation method in both trend and major absolutely value of the artery size in 

different cardiovascular circumstance. In future work, to realize a truly reliable non-invasive 

system for vascular resistance monitoring, substantial additional validation will be required, likely 

requiring further system identification procedures to obtain model parameters in an automated 

fashion. 

Time(hr)  

Fig.  22 Comparison of changes of artery area (blue line) in each cardiac cycle with EKF and estimated 

area changes by ultrasound videos (orange line).  



 

 

45 

 

Chapter 5 Modeling of Peripheral Artery Behavior Subject to Varying Outside Pressure 

This chapter describes a 2-D model derived to account for the most prominent features of 

interaction between underlying tissue and a pair of compliant wearable sensors for peripheral 

artery monitoring, with outside pressure manipulated by a pressurized cuff on a swine test 

subject.  We compare experimental and modeled output from which variations in relative 

amplitude of the PVDF and PPG signals are found to show strong correlations with invasively 

measured systemic vascular resistance (SVR) data in the subject.   Finally, we discuss key 

observations, potential applications, and important limitations of this work, and identify possible 

future works[41]. 

5.1. Model for Local Artery and Tissue with Pressure Cuff 

Blood pressure and flow along arterial vessels are affected by arterial and tissue properties. The 

piezoelectric sensor responds predominantly to tangential stress or strain in the PVDF ring as it 

stretches in response to fluctuations in pressure and volume inside the underlying arteries.  

However, the pressure experienced by the PVDF ring is not identical to the underlying arterial 

pressure, due to intervening tissue dynamics.  The voltage output of the PPG sensor is, ideally, 

proportional to the change of the artery’s volume.  However, due to the varying depth between 

the photodiode and artery, the illumination of light is also related with tissue dynamics. To 

approximate this behavior, a simple 2-D model of local arterial and tissue model is used, which 

to relate outside cuff pressure and artery properties to sensors signals.  
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The mechanical model used in this work consists of an elastic cylinder for the artery 

including a linear elastic modulus approximation, other soft tissue and skin approximated as a 

compressible volume, and a linear cylindrical ring approximation for the sensor, as shown in Fig. 

25.  The pressure cuff is assumed to a 25mm-radius cylinder, and artery is modeled to a distance 

of 100mm upstream and downstream from the sensor location. The cuff is wrapped around the 

foreleg significantly past the artery location on either side. The PPG sensor centered underneath 

the cuff, and PVDF sensor is 8mm upstream from the PPG above the artery 

The pressure outside the artery, 𝑃𝑜𝑢𝑡 , assuming an approximately cylindrical cuff 

geometry, is treated as following a single cosine curve along the length of the artery, with peak 

pressure equal to that inside the cuff. The functional of 𝑃𝑜𝑢𝑡 is written as: 

𝑃𝑜𝑢𝑡(𝑥, 𝑡) = {
𝑃𝑐𝑢𝑓𝑓(𝑡) cos(

𝜋|𝑥−𝐿|

2𝑅
) , |𝑥 − 𝐿| ≤ 𝑅

0 , |𝑥 − 𝐿| > 𝑅
     (36) 

Here, x refers to linear distance along the artery and t to time. R is the cuff radius, and L 

is the position of the midpoint of the cuff along the x-axis. 

0      x 

Pout(x,t) 

Pcuff(t) 

Pin(x,t) 
r(x,t) 
Qin(x,t) 

Pin(0,t) 
r(0,t) 
Qin(0,t) 

L=100mm 

R 

H0 

Fig.  23 schematic of swine arm cross scetion alone arterial line  
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The tissue between the artery and cuff is approximated by a piecewise-linear model: first, 

as a linear compressible volume under low to moderate pressures, then as having negligible 

compression (i.e. solid or rigid behavior) beyond a threshold pressure. Under this hypothesized 

behavior, distance between the PPG sensor and the artery, HPPG, becomes: 

𝐻𝑝𝑝𝑔(𝑡) = {
𝐻0 + 𝑘[𝑃0 − ∆𝑃(𝐿, 𝑡)] , ∆𝑃(𝐿, 𝑡) < 𝑃0

𝐻0 , ∆𝑃(𝐿, 𝑡) ≥ 𝑃0
        (37) 

∆𝑃(𝐿, 𝑡) = 𝑃𝑜𝑢𝑡(𝐿, 𝑡) − 𝑃𝑖𝑛(𝐿, 𝑡)     (38) 

where, 𝐻0 is minimum distance at which the tissue acts as a an incompressible solid, 𝑃0 is the 

threshold pressure, and 𝑘 is an effective spring constant for the tissue in the compressible range.  

𝑃𝑖𝑛(𝑥, 𝑡) is the blood pressure inside artery. 

Similarly, the distance between PVDF sensor and the artery can be written, adjusted just 

by  an 8mm offset along the artery length: 

𝐻𝑝𝑣𝑑𝑓(𝑡) = {
𝐻0 + 𝑘[𝑃0 − ∆𝑃(𝐿 − 8, 𝑡)] , ∆𝑃(𝐿 − 8, 𝑡) < 𝑃0

𝐻0 , ∆𝑃(𝐿 − 8, 𝑡) ≥ 𝑃0
     (39) 

Longitudinally, the arterial vessel is modeled as an elastic cylindrical tube, shown in its 

lengthwise cross-section in Fig. 22. The viscous effects of blood and vessel are neglected in the 

present model due to the comparatively short arterial distance examined in this work; rather, 

emphasis is on distribution of radial artery deformation as a function of position near the sensors. 

The compliance, C, of the tube is defined as the change in tube cross-sectional area, A, divided 

by the change in pressure inside the tube, 𝑃𝑖𝑛: 

𝐴(𝑥, 𝑡) = 𝜋𝑟(𝑥, 𝑡)2      (40) 

𝐶(𝑥, 𝑡) = 𝑑𝐴/𝑑𝑃𝑖𝑛(𝑥, 𝑡)         (41) 
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where r is the internal artery radius.  From LaPlace’s Law for a cylindrical tube, the 

compliance also can be determined by the geometry of the tube in addition to the elastic modulus 

of the tube wall: 

𝐶(𝑥, 𝑡) =
2𝜋𝑟(𝑥,𝑡)3

𝐸(𝑥,𝑡)ℎ
         (42) 

where h is the wall thickness. E, the elastic modulus, increases with the difference 

between inside and outside pressure. For example, E has been shown to be related to 𝑃𝑜𝑢𝑡 and 

𝑃𝑖𝑛for arteries [42] as follows:  

𝐸(𝑥, 𝑡) = 𝐸0𝑒𝛼(𝑃𝑜𝑢𝑡(𝑥,𝑡)−𝑃𝑖𝑛(𝑥,𝑡))     (43) 

where 𝐸0 and α > 0 are specific parameters for different individuals and arteries, and E is 

assumed to only depend on pressure here. By applying conservation of momentum [13], the tube 

can be modeled as following equations:  

𝑄(𝑥, 𝑡) − 𝑄(𝑥 + 𝑑𝑥, 𝑡) +
𝑑(𝐴𝑑𝑥)

𝑑𝑡
= 0    (44a) 

𝐴[𝑃𝑖𝑛(𝑥, 𝑡) − 𝑃𝑖𝑛(𝑥 + 𝑑𝑥, 𝑡)] = 𝜌
𝑑𝑄(𝑥,𝑡)

𝑑𝑡
𝑑𝑥     (44b) 

Here, x and t refer to space and time, Q is volume flow rate, and ρ is blood density. 

Combining (41) and (44a), the tube model can be rewritten as: 

𝑑𝑄(𝑥,𝑡)

𝑑𝑥
+ 𝐶(𝑥, 𝑡)

𝑑𝑃𝑖𝑛(𝑥,𝑡)

𝑑𝑡
= 0 (45a) 

𝐴(𝑥, 𝑡)
𝑑𝑃𝑖𝑛(𝑥,𝑡)

𝑑𝑥
+ 𝜌

𝑑𝑄(𝑥,𝑡)

𝑑𝑡
= 0 (45b) 

Combining (40) to (45), a nonlinear function relating artery radius to blood pressure and 

flow, can be obtained as following equations, in discrete form: 

𝑄(𝑥, 𝑡) − 𝑄(𝑥 + 𝑑𝑥, 𝑡) + 𝐶(𝑥, 𝑡)[𝑃𝑖𝑛(𝑥, 𝑡) − 𝑃𝑖𝑛(𝑥, 𝑡 + 𝑑𝑡)] = 0 (46a) 
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𝑄(𝑥, 𝑡) − 𝑄(𝑥, 𝑡 + 𝑑𝑡) +
𝐴(𝑥,𝑡)

𝜌
[𝑃𝑖𝑛(𝑥, 𝑡) − 𝑃𝑖𝑛(𝑥 + 𝑑𝑥, 𝑡)] = 0 (46b) 

2𝜋𝑟(𝑥, 𝑡)[𝑟(𝑥, 𝑡) − 𝑟(𝑥 + 𝑑𝑥, 𝑡)] =
2𝜋𝑟(𝑥,𝑡)3

𝐸(𝑥,𝑡)ℎ
[𝑃𝑖𝑛(𝑥, 𝑡) − 𝑃𝑖𝑛(𝑥 + 𝑑𝑥, 𝑡)] (46c) 

𝑟(0, 𝑡 + 𝑑𝑡) = 𝑟(𝑑𝑥, 𝑡)  (46d) 

With known inputs of 𝑃𝑖𝑛(0, 𝑡) and 𝑄(0, 𝑡) from invasive catheterization, as well 

𝑃𝑜𝑢𝑡(𝑥, 𝑡) from digital pressure gauge, the discrete equation (46) can be numerically solved with 

an initial value 𝑟(0,1). The integration steps are chosen as  𝑑𝑥 = 0.1mm for space and 𝑑𝑡 =

0.005s for time, the latter the same as the experimental sampling time. 

The voltage output of the PPG and PVDF sensors are modeled as: 

𝑈𝑝𝑝𝑔(𝑡) = 𝐾𝑝𝑝𝑔𝐻𝑝𝑝𝑔(𝑡) ∫ 𝑓1(𝑡)𝜋𝑟(𝐿, 𝑡)2𝐿𝑝𝑝𝑔𝑑𝑡   (47) 

𝑈𝑝𝑣𝑑𝑓(𝑡) = 𝐾𝑝𝑣𝑑𝑓 ∫ 𝑓2(𝑡)𝑑31𝐸1𝐴1{1 +
[2𝑟(𝐿−8,𝑡)+𝐻𝑝𝑣𝑑𝑓(𝑡)]

𝑅𝑎𝑟𝑚
}𝑑𝑡  (48) 

where 𝐾 is the gain for the respective sensor, 𝑓𝑖 is the transfer function of any electronic 

filters, and 𝐿𝑝𝑝𝑔 is the length of the artery segment directly under the PPG sensor, assumed to be 

constant. 𝐸1 is the elastic modulus of PVDF, 𝐴1is the surface area of the PVDF and 𝑑31 is the 

PVDF piezoelectric strain coefficient. The total radius of the limb is a constant value, 𝑅𝑎𝑟𝑚. 

5.2. Model Parameters 

Representative values from the literature[43][44][45] were selected as approximate 

values, as listed in Table I.  In addition, the elastic modulus parameters 𝐸0 and α in (43) are 

observed to vary substantially before and after NE infusion, and thus were estimated individually 

by optimizing the fit between the measured sensors signals and the simulated signal. The first 

cuff pressure tests with or without NE infusion were used to calibrate the parameters. 
Table 5 Model parameters for local artery and tissue with pressure cuff 

Variable 

   Nominal values 

used throughout 
testing: 

Parameter 

Value Units 

𝑟(0,1) 

𝑅𝑎𝑟𝑚  initial artery radius 1.5 mm 

𝐸1 limb radius 50 mm 
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5.3. Experimental setup and signal preparation 

A swine test subject was anesthetized for cardiovascular testing, and maneuvers were 

performed subject to University of Michigan animal protocol. Arterial blood pressure (ABP), 

cardiac output (CO) and volumetric flow were tracked invasively using pulmonary artery 

catheterization.  

A polyvinylidene difluoride (PVDF) pressure sensor and a photo plethysmogram (PPG) were 

placed on the same swine foreleg next to each other. The sensors were covered by an air-filled 

cuff, which controlled the surface pressure on swine foreleg when supplied from an air pump and 

valve. The air pressure inside the bag was measured by a 1.2 MPa pressure transducer. All 

signals were collected and stored using a BIOPAC MP150 data logging system and analyzed 

retrospectively. 

After completion of testing, SVR was computed from cardiac output and mean arterial 

pressure. Changes in SVR were induced by periodic infusion of norepinephrine (NE), with SVR 

increasing during infusion and decreasing when each infusion stopped. The infusion flow rate is 

manually controlled by a valve with a constant NE concentration. The experiment result shows 

that both arterial pressure and SVR were increased with NE infusion. The experimental data 

analyzed in this paper included one NE infusion start/stop with six cuff pressure tests. The first  

t sensor modulus 2.5 GPa 

31d  PVDF thickness 52 µm 

𝐾𝑝𝑝𝑔  
piezoelectric coefficient 

11 × 10−12 C/N 

𝐾𝑝𝑣𝑑𝑓  gain of PPG  2000  

ρ gain of PVDF 200  

𝐿  blood density 1060  kg/m3 

𝐻0 location of cuff 100 mm 

𝑘 initial distance 2 mm 

𝑅 tissue spring constant 1.12 × 10−2 mm/mmHg 

Identified from first 

test, used in two 
further testing: 

cuff radius 

25 mm 

 

E0  w/o NE  w NE  

α elastic modulus 8.4 10.2 kPa 

𝑃0 

rate of elasticity to blood pressure 
10 12.5 kPa/mmHg 

𝑃0 
 

  mmHg 
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Fig.  24 systemic vascular resistance (svr) and mean arterial pressure (map) changes with 

norepinephrine, and cuff pressure trajectories 

three cuff tests were done prior to NE infusion, and the remaining three tests were done 

during NE infusion, as shown in Fig. 26. 

For each cuff pressure test, the cuff was inflated then air in the cuff was slowly released 

using a valve, such that pressure dropped continuously from 350mmHg to 0mmHg. 

Qualitatively, there appeared to be some repeated sensor dynamic characteristics during repeated 

cuff deflation at a given SVR level. However, both PVDF and PPG sensor signals were observed 

to undergo significant changes with the increase of SVR and blood pressure for given cuff 

pressures.  Fig. 27 and Fig. 28 shows sample trajectories of sensor signals and cuff pressure with 

and without NE infusion, respectively. In this study, we explore in more depth the factors 

contributing to the amplitude of the sensors signals for each blood cycle, with respect to external 

cuff pressure. 
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Fig.  25 : sample experimental signal and cuff pressure trajectories without norepinephrine 

infusion 

 
Fig.  26 sample experimental signal and cuff pressure trajectories without norepinephrine infusion 

5.4. Model results 

Results after model fitting are shown in Fig. 23 and Fig. 24, showing experimental and 

modeled sensors signals amplitude as a function of applied external cuff pressure.  Tests 1-3 

(red) were the tests without NE infusion, with 532 mmHg diastolic pressure and 732 mmHg 

systolic pressure. Tests 4-6 (turquoise) were the tests with NE infusion, with 1191 mmHg 
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diastolic pressure and 1573 mmHg systolic pressure. Once identified for a sample test, the 

model provides quantitively prediction in the signals’ responses to the same animal when there 

are not other interventions altering cardiovascular function (i.e., for the nominal cardiovascular 

condition captured in the red curve).   In contrast, a significant change in the arterial dynamics 

and sensors signals are observed after norepinephrine is infused, suggesting possible origin of 

major signal changes in response to changes in cardiovascular and vascular behavior. 

 

Fig.  27 experimental and modeled ppg sensor signal amplitude respect to cuff pressure 
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Fig.  28 experimental and modeled pvdf sensor signal amplitude respect to cuff pressure 

The peak amplitude of the PPG signal is observed when cuff pressure is below diastolic 

pressure, which can be explained by tissue dynamics in the model. Meanwhile, the PPG signal is 

close to zero when cuff pressure is higher than systolic pressure, as would be expected. The 

PVDF signal amplitude reaches its maximum with the cuff pressure close to diastolic pressure.   

This is consistent with maintaining a large proportional change in strain at the PVDF sensor 

when accounting for compression of the tissue, though the degree of agreement given the 

sensor’s offset location may be partly coincidental.  

Results from Fig. 29 and Fig.30 are consistent with previously proposed methods for tracking 

changes in vascular resistance, which found that variations in relative amplitude and hysteresis 

between the PVDF and PPG signals to show strong correlations with invasively measured SVR . 

In those experiments, sensing ring tension was adjusted to maximize amplitude of the PVDF 

signal, which in this case is 50mmHg in cuff pressure, slightly below diastolic pressure prior to 

NE infusion. During NE infusion, the SVR increases from 41353 dyns ∙ s/cm5 to 

956150 dyns ∙ s/cm5 with NE infusion. In this process, the amplitude of PVDF signals 

decreases significantly, from 0.5 to 0.15 V, as reduction in peripheral arterial radius results in 

much reduced motion transmission to the PVDF material, especially when accounting for tissue 
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compressibility.   Meanwhile, the PPG signal in fact increases, from 0.1 to 0.3, reflecting larger 

proportional change in artery radius only as observed by the optical sensor. 

Moreover, the cuff pressure affects the local pulse transit time (PTT)  between the two 

sensors. With more faster cuff pressure, the peripheral vascular resistance increases and the PTT 

decreases, but less than 1ms. Meanwhile, there is no significant effect on PTT from ECG to 

peripheral as cuff pressure changes. The PTT does change in both cases with norepinephrine 

infusion. 

5.6. Conclusion 

In this chapter, a 2-D model is proposed that may be useful for tracking changes in peripheral 

artery behavior when using a photo plethysmograph (PPG) sensor and a piezoelectric (PVDF) 

sensor under a pressure-varying cuff. A simple mechanical model for local artery and tissue 

captures broad features of the PPG and PVDF signals amplitude during cuff deflation cycles. 

Results show possible systolic pressure estimation with PPG sensor and diastolic pressure 

estimation with proper-located PVDF sensor. Perhaps more importantly, changes in sensor 

response to external pressure variation may allow changes in arterial properties (elasticity 

parameters, radius) in response to medical interventions to be inferred. Observed behavior is also 

consistent with systemic vascular resistance (SVR) tracking performed in previous works. 

Naturally, there are several limitations in this study as performed at this time. First, the 

proposed tissue model oversimplifies the complex structure of bone and skin adjacent to 

peripheral artery, and thus cannot capture all details of tissue and sensor behavior. This is most 

clearly seen in the additional complexity of experimental vs. modeled sensors signals.  

Moreover, the model also neglects viscoelastic behavior in artery wall, while in reality there is 

likely to be. The largest limitation of the current work is the small number of tests and the single 

subject, with short monitoring periods.   
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Chapter 6 Feedback Model for Systemic Hemodynamic 

In this chapter, we propose that tracking vascular resistance in combination with heartrate can 

provide substantial insight into cardiovascular response to clinical interventions, at least under 

very controlled circumstances. We hypothesize that a new systemic hemodynamic model 

incorporating peripheral vascular resistance feedback would be able to reproduce oscillatory 

trajectories that appear to arise from different timescales of response to medication, and 

identifiable changes in the system. Experimental results in swine indicate that the model provides 

the ability to generate a closed-loop response for mean-arterial pressure due to an intervention – 

norepinephrine infusion – that is suggestive that feedback mechanisms were captured in 

approximate terms.[46] 

6.1. Systemic Hemodynamic Feedback Model 

Blood pressure is controlled though multiple physiological mechanisms, with two major 

mechanisms being the vascular resistance, estimated from the wearable sensor, and heartrate 

(HR).  Transfer functions between blood pressure, heartrate, and vascular resistance are 

identified during perturbations to cardiovascular function by vasopressor infusion 

(norepinephrine), in varying sequences, and controlled hemorrhage. The norepinephrine is 

assumed to be able to induce changes in both heart rate and vascular resistance as an input signal 

to the full cardiovascular system, while the animal’s compensation to blood pressure changes is 

modeled as a feedback loop to both mechanisms. 

Our proposed model (shown in Fig. 31), includes four time-varying signals. These represent 

the norepinephrine infusion, N(s), heart rate, H(s), peripheral vascular resistance, R(s), and mean 

arterial pressure, P(s), each produced by a partial model of systemic circulation and 

hemodynamic compensation mechanisms. Transfer functions are used to represent of set a linear, 

time- invariant dynamics between the variables, identified experimentally. The peripheral 

vascular resistance and heart rate respond to changes in both norepinephrine infusion rates and 

blood pressure (left two blocks), and those two signals regulate blood pressure through the 

system “plant” (right block). H(s), R(s) and P(s) can be found using Laplace transform from the 
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time-domain measurements: heart rate and PVR were obtained from the nonlinear local artery 

model and non-invasive sensors, while arterial pressure was from invasive measurements. 

Additionally, the N(s) was qualitatively estimated from zero to one, meaning infusion stop and 

maximum infusion speed using valve position, due to a lack of direct flow measurement in the 

experimental setting. 

  

The parameters of the open-loop transfer functions are identified with the first set of NE 

infusion test data before and after hemorrhage, separately, by minimizing the sum of squared 

errors of the model output and measurement. The orders of the transfer functions were selected 

based on the percent overshoot and settling time. Heart rate dynamics presented as an 

overdamped system with no overshoot, acting as though subject to a step input. Meanwhile, the 

PVR and BP dynamics showed large overshoot with a longer settling time, which could typically 

be represented by a 3rd-order underdamped system. 

 

Fig.  29 Feedback model proposed for blood pressure response to norepinephrine infusion 

6.2. Simulation Result 

The result from model fitting is shown in Fig. 32 and Fig. 33, showing experimental and 

modeled changes in heartrate (pink), vascular resistance (blue), and blood pressure (yellow) from 

the sequence of norepinephrine infusion profiles (black, approximate) before and after 

hemorrhage. The simulation result and measurement were normalized by the maximum value of 

heart rate and arterial pressure, 200 bpm and 180 mmHg, respectively. 

It is found that 2nd-order models for heart rate dynamics and 3rd-order models for other transfer 

functions are effective in capturing signal fluctuations. After model order reduction, the model 

hardly captured the dynamics of blood pressure and heart rate. Once identified for a sample 

norepinephrine infusion, the model continues to provide reasonable accuracy in predicting the 

signals’ responses in future infusions applied to the same animal, without other interventions 



 

 

58 

altering cardiovascular function. In contrast, a significant change in the arterial dynamics is 

observed after hemorrhage is performed.  Importantly, regulatory feedback blocks remain 

approximately constant when re-identified after hemorrhage, with changes in the identified 

model occurring predominantly in the “plant,” or model for blood pressure dynamics. Fig. 32 

shows that the model’s response to NE infusion variations before the hemorrhage were close to 

the measurement from the upper raw plots, while the lower plots shows the mismatches between 

blood pressure and PVR. Similar result can be observed in Fig. 33, with the transfer functions 

estimated after hemorrhage test failing to predict the behaviors before hemorrhage. 

 

Fig.  30 Sample experimental and modeled signal trajectories during norepinephrine infusion 

using model fitting before hemorrhage. 
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Fig.  31 . Sample experimental and modeled signal trajectories during norepinephrine infusion 

using model fitting after hemorrhage. 

6.3. Pole-zero Analysis of Different Medical Interventions 

A pole-zero analysis was performed on the identified dynamics to interpret observed behavior in 

a traditional control systems framework.  The pole-zero analysis are illustrated in Fig. 34 and 

Fig. 35, where the left plot shows the pole-zero plots for (left) peripheral vascular resistance 

dynamics (N(s) and P(s) to R(s); (middle) heart rate dynamics (N(s) and P(s) to H(s)); and (right) 

blood pressure dynamics (N(s) and H(s) to P(s). Each of the dynamic including two transfer 

functions, and the pole-zero were the roots of the numerator and denominator of two 

polynomials (blue and yellow). 

All of the transfer functions poles have negative real parts, and the dominant poles of PVR 

and blood pressure transfer functions are very close to imaginary axis. Thus, those two systems 

can be interpreted under damped systems. The dominant poles move away from the real axis 

after hemorrhage, which indicates that the hemodynamic became more under damped and easier 

to oscillate with an input signal.  This meanwhile, a positive zero occurred after hemorrhage 

which makes the PVR response unstable if applied as the model to the before-hemorrhage case, 

shown in Fig. 31 upper row plots. 



 

 

60 

 

Fig.  32 Pole-zero map of hemodynamics before hemorrhage 

 

Fig.  33 Pole-zero map of hemodynamics after hemorrhage. 

6.4. Conclusion 

Results from the combination of local peripheral arterial radius modeling and empirical systemic 

feedback modeling appear to permit insight into the interrelationship of feedback mechanisms 

during cardiovascular compensation.   The results shown at present provide only indirect 

validation of models, but the ability to generate a closed-loop response for mean-arterial pressure 

due to an intervention – norepinephrine infusion – is suggestive that feedback mechanisms are at 

least being captured in approximate terms.    
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Naturally, there are many limitations on this study as performed at the current time.  First, 

norepinephrine infusion rates are recorded in only approximate terms, as exact rate of flow was 

not available from the test setup.  Inaccuracy of norepinephrine infusion rate may limited the 

parameter identification of the transfer functions, though it should not undermine the method and 

results.  More importantly, simulations were found to be very sensitive to proper initial value 

selection, done manually at this time, representing a limitation on model implementation at this 

time.  Furthermore, though we attribute observed behaviors to only two specific feedback 

mechanisms (heart rate and vascular resistance), the empirical model fitting may cause other 

compensatory mechanisms, if present, to be conflated with the measured signals. 

Feedback modeling at this stage of development additionally does not seek to identify 

physiological origins for the dynamics, i.e. 2nd-order vs. 3rd-order responses in the feedback 

dynamics model, or the fluid flow origins of the blood pressure dynamics.  In addition, stability 

and robustness of the feedback model constructed from identified transfer functions could 

receive more thorough study, as these results are limited to tests with specific bounded inputs 

and bounded outputs.  

  Findings from this work suggest that tracking vascular resistance in combination with heart rate 

can provide substantial insight into cardiovascular response to clinical interventions, at least 

under very controlled circumstances.  The proposed sensing technology appears to provide a 

rapid, detailed response to interventions known to alter arterial behavior. Significant results 

include the ability to reproduce oscillatory trajectories that appear to arise from different 

timescales of response to medication, and identifiable changes in the system “plant,” i.e.  blood 

pressure response to regulatory mechanisms, after hemorrhage. However, additional validation 

experiments would be required to fully understand the physiological origins of the dynamics 

identified in this work, or to fully confirm the observed behaviors’ attributions among those 

mechanisms, as they may be conflated with other cardiovascular compensation mechanisms, or 

susceptible to model over-fitting. 
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Chapter 7 Prediction of Hemodynamic Decompensation with the Systemic Model and EKF 

This chapter describes a simple feedback model for cardiovascular autoregulation in 

human subjects, describes how feedback signals were tracked, and performs parameter and state 

estimation for hemodialysis patients.  Certain estimator error behaviors will be associated with 

later decompensation during hemodialysis. This work seeks to isolate various components of 

cardiovascular autoregulation to construct models of interacting feedback dynamics.  Over time 

frames of minutes to hours, major feedback signals regulating BP are considered to include 

heartrate, compression volume, and peripheral vascular resistance.  Importantly, existing sensing 

systems for continuously measuring peripheral vascular resistance are available on a continuous 

basis only in specialized clinical settings.   Our proposed sensor provides an opportunity to more 

readily perform continuous vascular resistance tracking, and also provides high-fidelity tracking 

of small peripheral artery pressure fluctuations, which we have also proposed for analysis in 

predicting IDH or assessing other cardiovascular events such as hemorrhage. 

Here, we hypothesize that incorporating peripheral vascular resistance into feedback 

models for cardiovascular autoregulation can increase understanding of decompensation and 

improve IDH prediction. This effort differs from previous attempts to model feedback dynamics 

primarily in the availability of additional feedback signals from non-invasive sources, and also 

the examination of variation in feedback over time during the complex medical intervention of 

hemodialysis.[47] 

 

7.1. Systemic Feedback Model  
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The body’s ability to compensate against stress caused by trauma, illness, and disease can 

substantially complicate diagnosis and detection of complications in many situations.  For example, 

multiple autoregulatory feedback loops exist to maintain blood pressure at the core and vital organs.   

As a result, measurements of blood pressure tend to act as a trailing indicator of cardiovascular 

distress, while feedback behaviors that are much more difficult to monitor may be changing rapidly. 

Here, the candidate hypothesize that incorporating peripheral vascular resistance into feedback 

models for cardiovascular autoregulation can increase understanding of decompensation and 

improve IDH prediction. This effort differs from previous attempts to model feedback dynamics 

primarily in the availability of additional feedback signals from non-invasive sources, and also the 

examination of variation in feedback over time during the complex medical intervention of 

hemodialysis. The feedback model used for IDH prediction was constructed from a simple 

nonlinear cardiovascular monitor and a set of linear low-pass filters representing feedback 

processes. While a major simplification of full cardiovascular dynamics, the selection of models 

was intended to balance the range of autoregulatory phenomena to be monitored with the number 

of parameters to be identified. 

Fig.  34 Conceptual framework for decompensation prediction during hemodialysis: signals associated with 

blood pressure autoregulation are monitored directly or indirectly using a simple wearable sensor and used to 

identify parameters in an abstracted model for feedback processes within the body; signals from the estimator 

are used to predict later decompensation. 
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The cardiovascular system was modeled as a simple fluidic resistance and capacitance driven by 

a pressure source, with resistance and input pressure influenced by “control inputs” of heart rate, 

u1, mechanical work done per beat by the artery to the sensor (a proxy for compression volume), 

u2, and peripheral vascular resistance, u3, contained in vector u: 

�̇� = 𝑓(𝑃, 𝐮,  𝑑) = 𝑙1𝑢1𝑢2 − 𝑙2
𝑃

𝑢3
+ 𝑙3𝑑    (49) 

where P is blood pressure as would be measure using a conventional blood pressure (BP) cuff or 

arterial line; 𝑙1 is a parameter to scale the combined pressure forcing input of heart rate and 

supposed compression volume; 𝑙2  is a parameter for first order dynamics produced by total 

hemodynamic capacitance and resistance, assumed to be inversely dependent on peripheral 

vascular resistance; and d is a net disturbance from external factor (activity level, hemodialysis 

effects, etc.). 

 Feedback dynamics were modeled as responding to the difference between blood 

pressure and some supposed internal reference pressure, 𝑃𝑟, with a time delay represented as a 

linear low-pass filter.   In addition, the disturbance was assumed to be able to affect the feedback 

signals directly, with comparable response time.    The resulting simple feedback model 

becomes, in Laplace space,      

𝑈𝑖(𝑠) =
𝑏𝑖

𝑠+𝑎𝑖
(𝑃𝑟 − 𝑃(𝑠)) +

𝑐𝑖

𝑠+𝑎𝑖
𝐷(𝑠)          (50) 

where bi is the feedback gain to pressure, 𝑎𝑖 is the first-order filter parameter, and ci is the 

coupling parameter to external disturbance for the i-th control input. 

Measurements 𝑦1, 𝑦2, and 𝑦3 were assumed to be available for each of the three feedback 

signals, though fidelity and sampling rate could differ based on source of measurement, as 

described in more detail in Section III.   In addition, a measure of BP, y4, was assumed to be at 

least intermittently available. The resulting feedback system with measurement locations is 

summarized in block diagram form in Fig. 37. 
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Fig.  35 Individual low-order approximations of cardiovascular behavior are connected via 

feedback between blood pressure variation and supposed autoregulatory (i.e. feedback control) 

signals. 

 

7.2. Experimental Setup and Signal Processing 

Peripheral arterial behavior was monitored using sensor data from a PPG sensor and the 

compliant piezoelectric polymer (polyvinylidene difluoride, or PVDF) sensor worn on the 

fingers.   Details of PVDF sensor design and usage for tracking peripheral vascular resistance 

have been previously reported in swine subjects in Chapters 4 and 5.   In addition to wearable 

sensor information, conventional cuff blood pressure (BP) was recorded approximately every 15 

minutes. 

Sensors were applied to 110 hemodialysis patients in the inpatient dialysis unit at the 

University of Michigan Hospital, from which 91 complete data sets were successfully collected; 

50 data sets have been fully processed at the time of writing and are reported on in this 

manuscript.  The PVDF ring was applied within approximately ten minutes of the beginning of 

hemodialysis, and ring tension was adjusted manually to produce a clear PVDF waveform.  For 

some patients, readjustment was performed if the sensor was dislodged due to patient activity.  

Other than those cases, both patients and care providers were kept blind to signal behavior during 
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the dialysis session.    All data collection was performed under IRB-approved human subject 

protocol UM HUM00112816. 

Raw voltage versus time data from the PVDF and PPG sensors was processed to provide 

measures of relative change in major autoregulatory cardiovascular behaviors.   First, heart rate 

(labeled HR) was extracted from peak values of the PPG signal. Second, a measure was sought 

to approximate compression volume at the heart.   A proxy was selected as the mechanical work 

(labeled MW) done by peripheral arterial motion on the PVDF ring within each cardiac cycle.  

This is only hypothetically related to cardiovascular health but chosen as at least partially 

representative of the heart’s work capacity during individual heartbeats. Third, peripheral 

vascular resistance (labeled pVR for conciseness, not to be confused with pulmonary vascular 

resistance often labeled PVR) was estimated using methods previously in chapter 4. 

It is important to note that peripheral vascular resistance estimation has not yet been previously 

validated on human subjects, so a major assumption in this work is that the methods applied to 

swine subjects would translate to humans.   In brief, a simple model for tissue viscoelasticity 

between the artery and PVDF and PPG sensors is identified using a fast-time-scale (200 Hz 

sampling rate) extended Kalman filter (EKF) to produce state estimates of changes in local artery 

radius and internal blood pressure.   pVR changes are derived from radius change.  This 

approach has shown good agreement (<5% average absolute error) between estimated vascular 

resistance changes and those measured by gold standard arterial catheterization in swine [10].  

An adjustment to prior methods done in this work was to adjust sensor noise weighting fort the 

local artery model EKF based on pulse transit time (PTT) between PPG and PVDF locations.   

When PTT was within a specified margin, PVDF and PPG signals were incorporated into the 

EKF as normal.  When PTT deviated from the expected margin, one or both the sensors was 

assumed to be disturbed by patient movement, and the EKF was applied during that cardiac cycle 

based on a substantially increased noise variance (i.e., placing substantially greater trust in the 

model vs. measurements). 

For each subject, proposed feedback signals were normalized to a 0 to 1 scale based on a set 

maximum (subscript max) and minimum (subscript min) plausible range for those signals, to 

simplify scaling between parameters.   

𝑦1 =
𝐻𝑅−𝐻𝑅𝑚𝑖𝑛

𝐻𝑅𝑚𝑎𝑥−𝐻𝑅𝑚𝑖𝑛
     (51) 
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𝑦2 =
𝑀𝑊−𝑀𝑊𝑚𝑖𝑛

𝑀𝑊𝑚𝑎𝑥−𝑀𝑊𝑚𝑖𝑛
     (52) 

𝑦3 =
𝑝𝑉�̂�−𝑝𝑉𝑅𝑚𝑖𝑛

𝑝𝑉𝑅𝑚𝑎𝑥−𝑝𝑉𝑅𝑚𝑖𝑛
     (53) 

where 𝑦1 is the normalized magnitude of heartrate, 𝑦2 is the normalized magnitude of work 

being transmitted to the compliant sensor, and 𝑦3 is the normalized magnitude of peripheral 

vascular resistance calculated by the local artery model EKF.  Average values for the first 30 

seconds for measured signals were used as initial conditions where relevant during further 

parameter identification. 

A byproduct of the peripheral vascular estimation process is to provide a continuous estimate of 

blood pressure (BP).  While the PVDF sensor cannot directly measure blood pressure, an internal 

state in the vascular resistance model is the fluctuation internal artery pressure over time.  While 

vulnerable to long term drift, when provided with a reference BP measurement (i.e. from a BP 

cuff), the sensor and estimator have been found to track BP measured by conventional means, 

Pcuff, with approximately 10% error over a time period of several hours.  This lower-confidence 

measure, �̂�𝑝𝑉𝑅 , was used to supplement intermittent cuff BP measurements in later 

cardiovascular model state estimation, as BP output, y4:  

𝑦4 = {
𝑃𝑐𝑢𝑓𝑓 + 𝑣4,𝑐𝑢𝑓𝑓 ,              𝑃𝑐𝑢𝑓𝑓 ≠ 0

�̂�𝑝𝑉𝑅 + 𝑣4, 𝑝𝑉𝑅,                  𝑃𝑐𝑢𝑓𝑓 = 0
       (54) 

where v4 is a measure of noise or accuracy error in the signals, varying with the source (cuff vs. 

pVR estimator). 

Finally, “disturbance”, d, to the cardiovascular system was treated as being partially generated by 

activity level.  A crude approximation of patient activity level, labeled �̅�, was taken from the 

unfiltered mean PVDF amplitude as computed from a rolling averaged of 30 seconds, as large 

amplitude variations in PVDF output are associated with motion artifacts.  Standard deviation of 

the PVDF signal over that period was used to compute a disturbance variance for the 

cardiovascular feedback model state estimator, as described in the following sections. 

 

7.3. Parameter Identification and State Estimation 

Parameter identification and state estimation were done simultaneously using an augmented 

extended Kalman filter.   First, dynamics in (49) and (50) were converted to discrete time with 
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states collected in state vector 𝐪 = [𝑃  𝑢1  𝑢2  𝑢3]𝑻 .  Unknown parameters from (49) and (50) 

were collected in a parameter vector, 

  𝛉 = [𝑃𝑟 𝜆1  𝜆2  𝜆3  𝛼1  𝛽1  𝛾1   𝛼2   𝛽2  𝛾2  𝛼3   𝛽3   𝛾3]𝑇       (55) 

where λ1, λ2, and λ3 are discrete-time analogs to l1, l2, and l3 from (49), and αi, βi, and γi terms 

are discrete-time analogs to ai, bi, and ci from (50).   State and parameter vectors were combined 

to create a single plant model for the estimator based on estimated states, �̂�, and estimated 

parameters, 𝛿�̂�, where δ indicates that parameters are estimated as their perturbation from a set 

of nominal baseline values: 

[
 �̂�𝟎(𝑘 + 1)

𝛿�̂�0 (𝑘 + 1)
] = [

𝑓(�̂�(𝑘), �̂�(𝑘), �̅�(𝑘)) 

𝛼𝐈 ∙ 𝛿�̂�(𝑘)
]    (56) 

Here, α is a decay parameter; conceptually, parameters are being treated as though they slowly 

perform a random walk around their nominal values driven by external disturbances, to be tracked 

by this augmented EKF.    

Given the measurements identified in (56), the output vector of the physical system is simply  

y = q + v      (57) 

where v is a vector of the noise in each measurement, and thus the estimated system output is 

simply �̂� = �̂�. 

 A state and parameter updates are then generated in the common observer form  

[
 �̂�(𝑘 + 1)

𝛿�̂� (𝑘 + 1)
]  = [

 �̂�𝟎(𝑘 + 1)

𝛿�̂�0 (𝑘 + 1)
] + 𝐋(�̂�(𝑘) − 𝐲(𝑘))             (58) 

where L is a gain matrix calculated by existing extended Kalman filter methods based on 

linearization of dynamics in (56) about the current state estimates and iterative generation of error 

covariance and estimator gain matrices. 

 

7.3. Peripheral Vascular Resistance Observations 

 Before discussing feedback model estimator results, it is useful to describe representative 

behavior of peripheral vascular resistance tracking as implemented based on the authors’ previous 

methods from chapter 4. It was observed that consistency of inferred peripheral vascular resistance 

alone was a strong negative predictor of intradialytic hypotension.   Among patients where inferred 

vascular resistance varied less than ±50%, only 5% of sessions resulted in substantial 

decompensation (set as a drop >25% of nominal BP) and/or had patient reported symptoms of 

distress.  In contrast, over 30% of cases with large vascular resistance fluctuations were associated 
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with a drop in BP and over 30% with reported symptoms (some cases overlapping).   Examples of 

patients with small and large inferred vascular resistance changes are shown in Fig. 38 with 

corresponding BP fluctuations.    

 Our interpretation of these observations is that fluctuations in peripheral vascular resistance 

may be indicative of compensatory response that will eventually result in decompensation, but 

vascular resistance change alone is not necessarily tied to decompensation.  Rather, vascular  

 

Fig.  36 Mild variation in inferred or estimated peripheral vascular resistance, as in Patient 1 

above, is very rarely associated with large BP fluctuations, while large patients experiencing 

large BP tend to exhibit prior peripheral vascular response, as in Patient 2 above. 
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resistance change may also occur as part of a compensation process that is sustainable, at least 

over the several-hour period of a hemodialysis session, or as a response to other disturbances, such 

as change in activity level.   The need to distinguish unsustainable compensatory response from 

other cases where PVR fluctuated thus partially motivated the feedback modeling described above. 

7.5. Estimator Design and Representative Outputs 

 Several items were calibrated in the model and extended Kalman filter using an initial 

training set of 20 patients (from 50 overall).  These included the selection of 30 seconds for 

averaging of PVDF noise to compute �̅� and nominal values for θ.  Rolling average duration was 

selected to minimize mean absolute error in (�̂� − 𝐲) for this training data set, while nominal values 

for θ were set based by a brute force search to minimize total absolute error (�̂� − 𝐲) across all 20 

subjects with a single set of values, as a starting point from which parameters would then diverge 

on an individual basis during EKF application.  

 Fig. 39 shows a sample set of estimation results for a patient with significant BP variation 

but without decompensation (BP remained above that at the beginning of hemodialysis).   The 

estimator is only modestly effective in predicting blood pressure trends, with errors up to 30 mmHg, 

when comparing estimates for pressure to the intermittent cuff measurements.  This is likely 

because the disturbances that may be perturbing blood pressure are largely unknown.  However, 

the feedback signals are much more closely predicted by the estimator.  This is in part due to 

substantial autocorrelation of those  
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Fig.  37 Blood pressure predictions from the EKF provide only modest tracking of trends in BP 

during hemodialysis, as for this sample patient, though feedback signals are more effectively 

predicted (solid: from EKF; dashed: from physiological sensing).   BP prediction errors tend to 

be associated with sustained error between prediction and measurement of one or more of the 

feedback signals. 

signals with themselves, but also aided by the continuous feedback measurements and their 

interrelationship.   Notably for the sample patient in Fig. 39, “overperformance” of BP relative to 

the model in the latter portion of hemodialysis is associated with an “overperformance” of one of 

the feedback signals:  in this case peripheral vascular resistance remained higher than anticipated 

by the estimator based on feedback parameters being identified since the start of the session. 

 To further evaluate apparent feedback effectiveness, a control chart-like analysis was 

performed, with sample results shown in Fig. 40 for the patients previously discussed in Fig. 35.   

In Fig. 37, solid lines denote the mean error in each of the feedback signals over the time between 

BP cuff measurements (i.e. mean
𝑘𝑝≤𝑘<𝑘𝑝−1

(�̂�𝑖 − 𝑢𝑖) , where kp and kp-1 represent the current and 

previous time steps at which BP cuff data was taken), ◯ and x points indicate the maximum and 

minimum prediction errors at a single time points during each period, and dashed lines represent 

the expected standard deviation in feedback signals, approximated by the mean of corresponding 

diagonal terms in the error covariance matrix. 
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 Among the training data set of 20 patients, it was observed that large but short duration 

errors were not strongly correlated with BP fluctuations.  However, sustained positive error 

(predicted feedback magnitude larger than measured feedback magnitude, or “underperforming” 

expectations) in one or more feedback signals was observed preceding decompensation events.    

For example, for Patient 1, who had little variation in BP cuff measurements, mean feedback error 

was very close to zero; what error was present was also largely negative, implying stronger 

autoregulatory response than predicted by the model, and small relative to the expected range of 

deviation obtained from the EKF.   In contrast, for Patient 2, who experienced large BP drops early 

in the session, feedback error was consistently positive and nearly a full standard deviation above 

that predicted by the estimator throughout the first two hours of hemodialysis.      
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Fig.  38 For patients from Fig. 31, comparison of normalized prediction error (solid lines) for the three 

feedback signals in the dynamic BP model, averaged over time periods between BP cuff measurements, 

compared to worst case single time point prediction errors (◯: maximum,  x: minimum) and 

approximate modeled standard deviation of those signals, as obtained from the EKF error covariance 

matrix.   For Patient 1, error is small relative to anticipated deviation and tends negative (predicted 

response less than observed), while for Patient 2, who experienced large drops in BP, error tended 

positive (measured feedback lagging predicted levels) by nearly a full standard deviation. 
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7.6. Decompensation Prediction 

 Based on qualitative observations in Sections 7.4 and 7.5, decompensation prediction 

criteria were pursued based on thresholds for peripheral vascular resistance, mean feedback signal 

error, and time duration exceeding threshold values.   A crude brute force evaluation of candidate 

thresholds and duration was performed on the 20 patient training set, to maximize the product of 

sensitivity and specificity in predicting decompensation.  Decompensation was formally defined 

as a BP reduction >25% from baseline. 

Best performance was found obtained for thresholds of pVR exceeding 165% of its initial value 

and mean feedback error exceeding 75% of predicted standard deviation, for a duration of 90 

seconds.  Under these criteria, sensitivity to future decompensation was 100% and specificity was 

88% for the training data set, and 100% and 84% for the full 50 patient sample.   Fig. 41 shows a 

sample ROC for the full sample when varying pVR threshold, with feedback error and duration 

are fixed. Area under the curve was 0.904.  On average, thresholds were exceeded 59 minutes prior 

to decompensation measurement with the BP cuff. 

 A sample progression as observed under this approach to decompensation prediction is 

shown in Fig. 42, for a patient experiencing decompensation among the validation data set.   

Inferred peripheral vascular was elevated in this patient almost immediately and remained elevated 

throughout the session.   Prediction error for feedback signals likewise  
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Fig.  39. ROC for prediction of decompensation (25% BP reduction from baseline) for varying 

peripheral vascular resistance thresholds accompanied by violation of feedback signal prediction 

error for at least 90 seconds.     
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Fig.  40 (Top) Ratio of inferred peripheral vascular resistance to its initial value; (Middle) errors 

in measure feedback signals (positive values mean larger predicted value than measured), 

normalized by approximate standard deviation from EKF; (Bottom) BP trajectories, including 

values PVDF sensor as byproduct of pVR estimation and from the feedback model. 

 

gradually increased during the first hour of hemodialysis, exceeding the error threshold criteria 

approximately 30 minutes into the session, at which point future decompensation is predicted to 

occur.  In this case, weak mechanical work done to the sensor, perhaps interpretable as lagging 

pulse pressure, was the primary indicator of insufficient cardiovascular response to blood pressure 

changes, though additional deviation in both PVR and HR occurred approximately 60 minutes into 

the session.   Formal decompensation criteria were not met until 89 minutes into the session, though 

BP decline had likely also begun to occur at approximately 60 minutes.  The patient received a 

fluid bolus shortly thereafter, though if this was responsible for stabilizing BP, the estimator would 

suggest the bolus required tens of minutes to take effect.   
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7.7 Conclusions 

 

This work uses a set of approximate measures of feedback signals important for blood 

pressure autoregulation over minute to hour timeframes to predict future decompensation in 

hemodialysis patients.   Formally, BP drops >25% were predicted with good sensitivity and 

specificity using inferred changes in peripheral vascular resistance combined with prediction 

errors between anticipated magnitude of autoregulatory feedback signals and their measured 

values, as generated by a comparatively simple hemodynamic and autoregulatory dynamics 

model. Parameter identification and state estimation were performed concurrently on the model 

using an extended Kalman filter.  Results are limited by lack of gold standard physiological data 

in the hemodialysis setting to better validate measurement accuracy, model structure, and 

physiological interpretations.  However, relative success in decompensation prediction may 

suggest importance of capturing relative delay and interaction between feedback phenomena at 

an individually-identified level to predict hemodynamic decompensation events.  

Results of this study to date are limited by relative rareness of quantifiable BP 

decompensation (as opposed to diagnosis based on symptoms or subjective observations) and 

reliance on substantial qualitative interpretation as gold standard measures of phenomena used in 

modeling are not available in the hemodialysis setting.  As noted at their introduction, feedback 

measures are not individually validated in humans, and much support for their relevance remains 

subjective.   Furthermore, dynamic models used to represent feedback dynamics are knowingly 

simplistic relative to real physiology.   Even then, the large number of variables substantially limits 

trust in individual identified parameters, though outputs and system states seem to be reasonably 

predictable. 

 Nonetheless, the observed relationships between trends in model and estimator outputs and 

BP behavior for hemodialysis patients suggests to us that there is potential utility in the framework 

of control system analysis to the hemodynamic decompensation problem.   We would interpret 

key features of the approach being the ability to adapt dynamics to individuals and thus account 

for variation and interconnectedness in relative timing of physiological phenomena.  Differing 

delays in different signals for different individuals, in particular, can be hard to capture with other 

statistical methods. Future work will apply these methods to patients with more comprehensive 

physiological monitors, such as arterial lines, and on larger patient populations. 
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Chapter 8 Conclusion 

Research objective 1: Assess peripheral artery behavior using non-invasive sensing methods  

 The candidate proposed a technique for tracking changes in vascular tone by combining a 

photo plethysmography sensor with an adjacent compliant piezoelectric polymer pressure sensor 

(polyvinylidene fluoride). In chapter 3, a simple local model for viscoelastic dynamic behavior of 

the underlying artery and surrounding tissue was generated and coupled to the piezoelectric/PPG 

sensor model, from which variations in relative amplitude and hysteresis between the piezoelectric 

and PPG signals were found to show strong correlations with invasively measured systemic 

vascular resistance data in animal subjects (swine).  

 The candidate then proposed an estimator based on the extended Kalman filter and the local 

nonlinear artery model in chapter 4. This Kalman filter method performs system identification and 

tracking the radius of peripheral arteries as well as blood pressure.   In proof-of-concept testing on 

a swine test subject, local vascular resistance calculated from arterial radius estimates at the ring 

location showed good agreement with overall systemic vascular resistance, while capturing more 

roughly other features of local cardiovascular behavior. Further validation is performed with 

ultrasound measurements of wrist arterial radius while measurements with compliant sensors are 

taken. The radius of the artery is estimated by an edge-finding imaging processing algorithm to 

compensate for low ultrasound resolution, which shows reasonable accuracy of radius estimation 

from extended Kalman filter algorithms over long-term vascular tone changes.  

Additionally, in chapter 5, a 2-D local model for arterial blood pressure, volumetric flow 

rate and artery radius with a varying outside cuff pressure was proposed. This model incorporates 

limited longitudinal behavior with peripheral arterial contraction dynamics beneath the 

PVDF/PPG sensor assembly to interpret variations in sensor signal behavior at varying applied 

external pressure. The experimental and modeled output from which variations in relative 
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amplitude of the signals are found shows strong correlation with invasively measured systemic 

vascular resistance (SVR) data in the swine subject.  

 

 

Research objective 2:  Identify systemic hemodynamic with respect to peripheral vascular 

resistance 

In chapter 6, the candidate introduced a new systemic hemodynamic model, combining vascular 

resistance with heart rate, which may provide substantial insight into cardiovascular response to 

clinical interventions. This work attempted to better understand how estimated changes in local 

peripheral arterial radius obtained from wearable sensors relate to dynamic compensation in the 

full cardiovascular system.   In this model, two compensatory mechanisms, heartrate and inferred 

vascular resistance, were monitored while a swine test subject underwent a series of experimental 

interventions, including various vasopressor infusions and controlled hemorrhage.  Linear, 

empirical dynamic models for feedback and mean arterial pressure responses were identified, then 

assessed for reliability over repeated interventions.  Changes in apparent dynamics after 

hemorrhage are observed and examined in terms of dynamic system stability. Significant results 

include the ability to reproduce oscillatory trajectories that appear to arise from different timescales 

of response to medication, and identifiable changes in the system “plant,” i.e.  blood pressure 

response to regulatory mechanisms, after hemorrhage.  

 

Research objective 3: Predict hemodynamic decompensation with the systemic model 

The candidate proposed using multiple criteria, drawn from local EKF estimations and systemic 

hemodynamic model, to predict decompensation, defined for these purposes as a BP reduction >25% 

from baseline. Human test data had been primarily collected from hemodialysis test subjects with 

a pulse plethysmograph and the compliant piezoelectric polymer (PVDF) worn on adjacent fingers.   

In addition to wearable sensor information, conventional cuff blood pressure (BP) was recorded 

approximately every 15 minutes. Tests were done to 110 hemodialysis patients in the inpatient 

dialysis unit at the University of Michigan Hospital, from which 91 complete data sets were 

successfully collected. Preliminary results show that under criteria based on peripheral vascular 

resistance increase and feedback model error, sensitivity to future decompensation was 100% and 
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specificity was 88% for the training data set, and 100% and 84% for the entire first 50 patients in 

the sample. 

 

Future work 

The candidate’s techniques for tracking changes in vascular resistance by combining photo 

plethysmography sensor with compliant piezoelectric polymer pressure sensor may not only be 

used for non-invasive wearable devices, but also for invasive catherization. The candidate has 

developed an architecture that can extract high bandwidth measurements of blood volume 

fluctuations by reflectance fiber-based PPG methods and of pressure fluctuations from a 

piezoelectric polymer catheter coating. By using similar metrics to those used for SVR 

estimation in first research objectives, cerebral vascular resistance (CVR) is estimated to further 

calculate the cerebral blood flow. The estimated blood flow shows strong correlation with trans-

cranial Doppler and laser Doppler flowmeter measurements on swine subjects.  

For enhancing wearable sensing technology, the 2-D local artery and tissue model with a 

varying outside cuff pressure may eventually increase the accuracy of systolic and diastolic 

blood pressure measurements. More importantly, changes in sensor response to external pressure 

variation may allow changes in arterial properties (elasticity parameters, radius) in response to 

medical interventions to be inferred.   The candidate’s wearable sensor can be also used to assess 

other cardiovascular system characters, such as dynamic arterial elastance. Preliminary results 

suggest that both the piezoelectric and plethysmography sensor could be able to access the 

respiratory changes of blood pressure and cardiac flow.   Non-invasive arterial elastance 

measurements agree with invasive catheterization method during norepinephrine infusions on 

swine subject.  

A final future application of this sensor design is for blood pressure waveform analysis, 

using more detail information from piezoelectrical sensor. One recent study in the candidate’s 

group uses waveform features from the sensor’s signals to estimate absolutely values of systemic 

vascular resistance and blood pressure. A modest accuracy, competitive with prior literature 

results, is achieved on human subjects in cardiac catheterization lab. 
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