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ABSTRACT 

 

Tracking control is a fundamental problem in a wide range of fields such as manufacturing, 

robotics, automotive and aerospace. The objective of tracking control is to force the output 

trajectory of the controlled system to follow a desired trajectory as closely as possible. 

Feedforward control plays a crucial role in many industrial applications, as an alternative or 

complement to feedback control. One example is in the rapidly growing domain of 3D printing 

where feedforward is often entirely responsible for motion control. Perfect tracking control can be 

achieved using model inversion-based feedforward control. However, perfect tracking control 

cannot be realized if the system has: (i) nonminimum phase (NMP) zeros and (ii) model 

uncertainty.  

This dissertation presents and studies the filtered basis functions (FBF) approach as an 

excellent alternative to existing techniques for tracking control of discrete-time linear systems with 

NMP zeros and/or model uncertainty. The FBF approach expresses the control input to the plant 

as a linear combination of user-defined basis functions. The basis functions are forward filtered 

through the plant dynamics and the coefficients are obtained such that the tracking error is 

minimized. Compared to other tracking control approaches in the literature, the FBF approach is 

observed to be very versatile and consistent – it is applicable to all discrete-time linear systems 

and its tracking accuracy does not vary significantly depending on plant dynamics. It also 

possesses a degree of freedom not available to other tracking controllers – i.e., the choice of basis 

functions. 

The FBF approach is shown to almost always result in a time varying controller, even when 

the plant dynamics is time invariant. The conditions for uniqueness and existence of a solution to 

the FBF controller design problem are derived. To analyze the FBF controller, the Frobenius norm 

of the lifted system representation (LSR) of dynamics is proposed as a metric. The proposed metric 

is shown to be effective in characterizing the tracking performance of the FBF controller relative 

to those of other tracking controllers. It is shown that the metric for FBF’s tracking error dynamics 



 xiii 

is independent of the type of basis functions and plant dynamics, while those of other tracking 

controllers are dependent on plant dynamics, in agreement with observations. 

Even though the (nominal) tracking accuracy of the FBF approach does not vary 

significantly with the type of basis functions, its control effort and robustness to model uncertainty 

heavily depend on the type of basis functions used. There is a wide variety of basis functions that 

can be used with the FBF approach but there is no work to date on how to select the best set of 

basis functions. Using the Frobenius norm metric applied to controller dynamics, an optimal set 

of basis functions that minimize the control effort without sacrificing tracking accuracy is 

proposed. Similarly, an optimal set of basis functions that maximizes robustness in the presence 

of plant uncertainty, without sacrificing nominal tracking accuracy and with constraints on the 

required control effort is proposed. The proposed optimal basis functions are shown in simulations 

and experiments on a 3D printer to, in some cases, yield orders of magnitude improvement in 

control efficiency and robustness compared to popular basis functions like B-splines and discrete 

cosine transforms. Besides the choice of basis functions, it is observed that a significant factor 

affecting the robustness of the FBF approach is the nominal model used for filtering the basis 

functions. For selection of the optimal nominal model, this dissertation formulates a robust filter 

using lifted domain optimization. The filter is selected such that a Frobenius norm metric 

dependent on the known uncertainty is minimized. The combination of optimal choice of nominal 

model and basis function is shown in simulations and experiments on a 3D printer to significantly 

improve the robustness of the FBF approach as compared to popular basis functions. 
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Chapter 1 

Introduction and Literature Review 

 

This doctoral dissertation proposes and studies the filtered basis functions (FBF) approach 

for tracking control of discrete-time linear systems with nonminimum phase (NMP) zeros and/or 

model uncertainty, and its application to 3D printing. Section 1.1 provides background and 

motivation for the study, Section 1.2 reviews the literature on tracking control of systems with 

NMP zeros and/or model uncertainty and Section 1.3 discusses the contributions of the dissertation 

and outlines the contents of the dissertation.  

 

1.1 Background and Motivation 

Tracking control is a fundamental problem in a wide range of application domains, 

including manufacturing [1–3], robotics [4–6], automotive [7–9] and aerospace [10–12] (see 

Figure 1.1). The objective of tracking control is to force the output of the controlled system to 

follow a desired trajectory. Tracking control can be achieved using feedforward and/or feedback 

approaches. Feedforward (FF) control uses a priori knowledge about a given system and its 

disturbances to influence the system’s behavior in a pre-defined way. However, unlike feedback 

(FB) control, it does not adjust the control variable in response to how the system actually reacts. 

In other words, FF control is proactive while FB control is reactive. Feedforward approaches are 

very important to tracking control applications, where they are often used to complement feedback 

approaches. Perfect tracking control (PTC) can be achieved using feedforward control by inverting 

a model of the plant (i.e., pole-zero cancellation) [13]. However, such model-inversion based FF 

methods cannot be realized in practice. Two prominent challenges faced by model-inversion based 

FF methods include presence of NMP zeros (i.e., unstable zeros) and uncertainty in the plant model 

[14]. This dissertation focuses on addressing these two challenges and is motivated by several 

applications where feedforward is the only or primary recourse for tracking control, e.g., due to 

technological, practical or economic infeasibility of sensing. Examples include the over $300 
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billion semiconductor industry [15] and the rapidly growing $7 billion additive manufacturing 

industry [16].  

 

  

 

(a) (b) (c) 

   

 

 

 

(d) (e) (f) 

Figure 1.1 Examples of tracking control (a) quadcopter (b) space telescope (c) car (d) milling  

(e) wafer scanning (f) 3D printing   

 

A wafer stage, shown in Figure 1.1(e), is a device used to deliver ultra-precise motion 

needed for the photolithography process in integrated circuit manufacturing [17]. Wafer stages 

must achieve sub-nanometer servo errors in tracking motion trajectories with velocities of up to 1 

m/s and 10 g acceleration [18]. Over 99% of the control effort required for generating the desired 

motion is contributed by FF control [15], because wafer stages are specially designed to minimize 

uncertainties and unknown disturbances. In a typical wafer stage, model-based inversion FF is 

achieved by inverting a rigid body model of the stage of mass (i.e., control input (i.e., force) = 

D
e

s
ir
e

d
 A
c
tu

a
l
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mass × desired acceleration) [18]. However, as the desired acceleration increases, there is a push 

to reduce the mass so that the required control input is not excessive. An unintended result of 

reducing the mass is that the stiffness of the stage reduces, thus invalidating the rigid body 

assumption used for model-inversion based FF. This has given rise to so-called ‘beyond rigid body 

(BRB)’ FF control which considers the flexible modes of the stage in model-inversion based FF 

control of wafer stages [18]. A major concern that arises with the inclusion of flexibilities in model-

inversion based FF control is the presence of NMP zeros [18], which are almost certain to occur 

when sensors and actuators are non-collocated [19], as in wafer stages. Moreover, model 

uncertainties increase as high frequency vibration modes are introduced into model-inversion 

based FF. These issues are further complicated by the fact that the structural dynamics varies from 

location to location on the wafer stage, hence a position (and time) varying model is required for 

model-inversion based FF control [18]. 

To keep their weight and costs low, commercial desktop 3D printers (see Figure 1.2(a)) 

incorporate timing belts and lightweight components, which introduce structural flexibilities into 

their dynamics. Hence, manufactured parts suffer from surface waviness and registration errors 

caused by excess vibration (see Figure 1.2(b)), especially when high-acceleration motions are 

commanded [20], similar to wafer stages described above. Moreover, most 3D printers are driven 

in open loop by stepper motors. Hence, they cannot sense and counteract motion-induced vibration 

via feedback control. Feedforward methods like limited preview filtered B-splines (LPFBS) 

approach [20], a method based on the FBF approach discussed in this dissertation, can mitigate 

these vibrations by modifying the motion commands sent to the 3D printer and improves accuracy 

of the parts, without incurring any additional costs from feedback sensors. Up to 77% lower RMS 

surface roughness of a printed block (see Figure 1.3) and significant reductions in printing time 

(see Table 1.1) are obtained using the LPFBS approach as compared to the baseline case (no 

vibration compensation). This example shows the significant impact feedforward control and 

especially FBF can make in the motion control of 3D printers. Much like wafer stages, NMP zeros 

and model uncertainties (see Figure 1.4) are significant issues in control of 3D printer and need to 

be dealt with. Hence, this dissertation focuses on control of systems with NMP zeros and model 

uncertainties. 
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Figure 1.2 (a) Desktop 3D printer; (b) Scrapped 3D printed part due to excessive vibration of 

printer [20] 

 

 

Figure 1.3 Comparison of photographs and measured surface profiles (h) of the highlighted 

surfaces of blocks printed using (a) baseline approach (no vibration compensation) and (b) 

LPFBS method [20] 

 

Table 1.1 3D printed models of US Capitol using different acceleration limits (which influences 

total printing time). Comparison of LPFBS with no vibration compensation case [20]   

Acc. limit 1 m/s2 3 m/s2 5 m/s2 7 m/s2 10 m/s2 

Printing time 3:59 h 2:42 h 2:22 h 2:12 h 2:06 h 

Baseline 

     

LPFBS 

     

 

x y
z

Stepper
Motors

Flexible
Structure

US capitol

(a)
(b)

(b)(a)

hRMS = 174.7μm hRMS = 40.2 μm
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Figure 1.4 Frequency response functions of the 3D printer for various magnitudes of excitation 

input (acceleration) [20] 

 

1.2 Literature Review 

As discussed in Section 1.1, PTC can ideally be achieved through pole-zero cancellation, 

but in practice NMP zeros and model uncertainties are the two major factors limiting performance 

of model-inversion based FF control [14]. Section 1.2.1 reviews literature on feedforward tracking 

control of NMP systems and Section 1.2.2 reviews literature on feedforward tracking control of 

systems with model uncertainties.    

 

1.2.1 Feedforward Tracking Control of NMP Systems 

When applied to systems with NMP zeros, PTC gives rise to highly oscillatory or unstable 

control trajectories which are unacceptable. NMP zeros are quite prevalent in practice. For 

example, they occur in systems with fast sampling rates [21], as well as in systems with non-

collocated placement of sensors and actuators [19]. Hence a lot of research has been done on 

developing methods for tracking control of systems with NMP zeros. Based on excellent review 

articles like [18,22–24], available approaches can be classified into two broad categories: 

approximate model inversion, e.g., [13,25–33] and direct model inversion with bounded control 

trajectories, e.g., [34–43]. 
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The most-straightforward way of implementing approximate inversion is to cancel all poles 

and cancellable zeros while ignoring the NMP and poorly damped zeros (hereinafter referred to as 

uncancellable zeros). This technique is called stable pole-zero cancelling or nonminimum phase 

zero ignore (NPZ-ignore) [29,31], and it results in a controlled system that exhibits magnitude and 

phase errors between its desired and output trajectories. Zero magnitude error tracking control 

(ZMETC) [24,29,30] focuses on cancelling magnitude errors across all frequencies at the expense 

of phase errors, whereas zero phase error tracking control (ZPETC) [13] focuses on cancelling 

phase errors across all frequencies at the expense of magnitude errors. Depending on the system 

and the performance specifications, NPZ-ignore, ZMETC and ZPETC may not yield satisfactory 

tracking performance due to the approximations involved. For instance, using case studies, 

Butterworth et al. [29,44] showed that the performance of NPZ-ignore, ZMETC and ZPETC is 

highly dependent on the location of the NMP zero in the z-plane; they particularly noted significant 

differences when tracking systems with left-hand-plane (LHP) and right-hand-plane (RHP) NMP 

zeros (see Figure 1.5).    

 

 

Figure 1.5 Left-hand-plane (LHP) and right-hand-plane (RHP) NMP zeros 

 

Various methods have been suggested to improve the tracking performance of the 

aforementioned approximate inversion methods [26–28,32,33]. The most notable is extended 

bandwidth zero phase error tracking control (EBZPETC) [26], which is based on the power series 

expansion of ZPETC. The tracking performance of EBZPETC gets progressively better compared 

to ZPETC as more terms are added to the power series, provided that the series is convergent [28]. 

The problem is that the series is not convergent for RHP NMP zeros, in which case the performance 

of EBZPETC becomes worse compared to that of ZPETC [28]. As an improvement to EBZPETC, 

the truncated series (TS) approximation method [25] uses the power series of the inverse of the 
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uncancellable dynamics to improve the tracking accuracy of the system. The TS method results in 

a convergent series for uncancellable zeros on the right and left half z-plane. However, it fails 

completely (i.e., is undefined) when the uncancellable zeros lie on the unit circle. Moreover, as the 

uncancellable zeros approach the unit circle, the number of terms required to achieve an acceptable 

level of tracking accuracy increases drastically. Another approximate inversion approach is H∞ 

model matching [24,30]. This method finds a controller such that the worst-case frequency domain 

gain deviation between the actual and desired overall dynamics is minimal. One benefit of H∞ 

model matching is it can readily account for model uncertainties. However, it is computationally 

complex [24], and its performance is highly dependent on user-defined weighting filters – which 

must be properly chosen based on NMP zero locations.     

Direct inversion techniques [34–38] can achieve perfect tracking with infinite preview (i.e., 

knowledge of future desired trajectories) or pre-actuation (i.e., actuation applied before a time 

interval without affecting the output during the time interval). The dynamics of the inverse of the 

plant is decomposed into stable and unstable portions. The solution to the stable portion is obtained 

from past information, whereas, the solution to the unstable portion is calculated based on future 

information of desired trajectory and, hence, infinite preview is required.  However, infinite 

preview or pre-actuation is infeasible. Therefore, methods with finite preview or pre-actuation 

have been developed to achieve approximate tracking with reasonable accuracy [39–41,45]. With 

a sufficiently large number of preview steps, the error can be made arbitrarily small. However, 

similar to the TS method, the preview or pre-actuation needed for exact inversion techniques 

[36,39,43] increases as the uncancellable zero approaches the unit circle in the z-plane, and is 

infinite for zeros on the unit circle (i.e., for nonhyperbolic systems) [41]. Methods have been 

proposed to solve this problem [41–43,46,47]. However, such methods are applicable to only a 

restrictive set of systems [47] or desired trajectories [41,46]; alternatively, stable inversion is 

achieved by perturbation of the unstable inverse system, at the cost of tracking accuracy [42]. 

The tracking accuracy of the methods discussed above, for a given desired trajectory, varies 

significantly with the location of the NMP zeros in the z-plane (for a given preview or pre-actuation 

time interval or weighting filter). Most of the methods discussed in this review cannot be applied 

to nonhyperbolic systems. The methods that can be applied for tracking control of nonhyperbolic 

systems have restrictions in terms of the desired trajectories that they can track or in terms of their 

tracking performance.   
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To overcome these shortcomings, Ref. [48] proposed the FBF approach. The FBF approach 

expresses the control input as a linear combination of user-defined basis functions having unknown 

coefficients. The basis functions are forward filtered through the plant dynamics and the 

coefficients are selected such that the tracking error is minimized. The FBF approach finds its 

origins in iterative learning control (ILC) [49] but was not applied to feedforward tracking control 

of NMP systems until recently [20,48,50]. In addition, Lunenburg et al. [18] presented a tracking 

approach based on inversion of the lifted system representation (LSR) of plant dynamics G. This 

method is a special case of FBF where the vector space spanned by the basis functions contains 

the vector space spanned by all possible desired trajectories. Jetto et al. [46] employed a special 

case of FBF based on spline segments as basis functions to track transient portions of desired 

trajectories for NMP systems. However, as noted previously, their method is effective only for 

restrictive class of desired trajectories. In addition, it requires the use of feedback control to be 

effective. The FBF approach is seen in literature to be very versatile and consistent – it is applicable 

to all discrete-time linear systems and its tracking accuracy does not vary significantly depending 

on plant dynamics [20,48,50,51]. However, a fundamental understanding of the FBF approach 

including the role of the basis functions is lacking in the literature [20,48,50,51]. There is a wide 

variety of basis functions that can be used with the FBF approach but there is no work to date on 

how to select the best of basis functions. For example, the approach by Lunenburg et al. [18] (a 

special case of FBF) results in perfect tracking but results in high control input if the system has 

NMP zeros. Hence, a methodology for selecting the best set of basis functions to achieve an 

optimal tradeoff between FBF’s (nominal) tracking accuracy and control effort is required.          

 

1.2.2 Feedforward Tracking Control of Uncertain Systems 

Model-inversion based FF control can be made more robust by either using some form of 

feedback to complement FF [47,52–58] or without using feedback [14,59–64]. Feedback based 

approaches include real-time feedback [52–54], iterative learning control (ILC) with iteration-level 

feedback [47,55–57], and adaptive control with feedback applied to model parameter estimation 

[58]. ILC typically assumes that the task is repetitive in nature [65] which might not hold true for 

many applications, whereas, adaptive control might not be effective if the control signals used for 

parameter estimation lack sufficient level of persistence of excitation [66,67]. In addition, as 

discussed in Section 1.1, this dissertation is motivated by applications where FF control is the sole 
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or primary recourse for control and hence, the rest of the review will focus on improving the 

robustness of FF controllers. 

The robustness of FF tracking control can be improved by using low pass filters [59,60], 

H∞ model matching approach [14,61] and direct inversion based robust controllers [62–64]. Refs. 

[59,60] append low pass filters to FF controllers to reduce the effect of high frequency uncertainties 

and disturbances on tracking error. However, introduction of low pass filters makes the FF control 

causal, which reduces the controller’s effectiveness for tracking control of NMP systems (as seen 

in Section 1.2.1). In addition, the manner of selection of the low pass filter parameters is quite 

arbitrary, which could make the controller sub-optimal. The limitations of the H∞ model matching 

approach concerning computational complexity and dependence of performance on weighting 

filters have already been discussed in Section 1.2.1 and hold for the robust versions as well. 

Devasia [62] analyzed the effect of uncertainty on direct inversion based tracking control and 

proposed a controller that used direct inversion at frequencies where the magnitude of uncertainty 

is small and does not use FF at other frequencies. Wu and Zou [63] proposed a gain modulated 

direct inversion approach where the gain modulation is obtained by worst case optimization of 

tracking error due to dynamic uncertainty (in the frequency domain) and showed its effectiveness 

as compared to Devasia’s approach [62]. Lunenburg [64] proposed an approach that focused on 

finding an optimal controller using an optimization that minimized the average tracking error over 

the uncertainty (in the frequency domain) and implemented the approach using direct inversion 

[39]. However, similar to the nominal model based direct inversion approach [39], discussed in 

Section 1.2.1, its robust versions [62–64] suffer from dependence of required preview time on zero 

location in the z-plane. In addition, these robust direct inversion-based approaches cannot be used 

if any of the uncertain systems is nonhyperbolic.                      

As discussed in the previous section, FBF overcomes the limitations faced by nominal 

versions of the above robust approaches. Therefore, a robust version of FBF could potentially 

overcome the problems faced by abovementioned robust tracking controllers. Inspired by 

abovementioned robust control approaches, methods to improve robustness of FBF to uncertainties 

have been proposed in the literature [68–70]. Ref. [68] formulated the coefficient selection process 

as a constrained game-type problem where the control objective is to minimize the tracking error 

in the presence of uncertainties and the solution is obtained by solving a set of nonlinear coupled 

equations. This nonlinear solution is cumbersome as compared to the elegant least squares solution 
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of the FBF approach and is not amenable to the LPFBS algorithm (a computationally efficient 

implementation of the FBF method). Hence, Refs. [69,70] proposed an approach that improves the 

robustness of FBF and retains the elegance associated with least squares solution. An optimal FF 

controller that minimizes the tracking error in the frequency domain, in the presence of 

uncertainties, is designed. The inverse of the optimal FF controller is used to filter the basis 

functions and coefficients are selected such that the tracking error is minimized. However, the 

literature has not explored the effect of basis functions on robustness of the FBF approach and 

lacks a methodology for selection of optimal basis functions to improve robustness of the FBF 

approach.        

 

1.3 Dissertation Contributions and Outline 

To address shortcomings faced by other FF tracking controllers and develop a fundamental 

understanding of the FBF approach, this dissertation (based on publications [71–75]) makes the 

following contributions: 

C1.    In Chapter 2, it presents and studies the FBF approach for tracking control of NMP systems. 

Existence and uniqueness of the least squares solution is explored. As compared to other 

methods in the literature, it is shown that the FBF method is effective in tracking any desired 

trajectory, irrespective of the location of NMP zeros in the z-plane (including nonhyperbolic 

systems). Also, FBF maintains consistent tracking accuracy compared to popular linear time 

invariant (LTI) discrete-time tracking controllers irrespective of the location of the NMP zero 

in the z-plane. 

C2.   Also in Chapter 2, it proposes the Frobenius norm of the LSR of the dynamics as a metric 

for comparing the performance of LTI and linear time varying (LTV) controllers, like the 

FBF controller. 

C3.   Also in Chapter 2, it is shown analytically that, for the FBF controller, the metric for FBF’s 

error dynamics is independent of the plant dynamics and choice of basis functions, thus 

explaining the consistent performance of FBF as compared to other methods. 

C4.   In Chapter 3, it is demonstrated that the metric for FBF’s control effort dynamics is 

dependent on the system dynamics and choice of basis functions used. A methodology for 

determining the optimal set of basis functions for achieving a desired level of tracking 

accuracy with minimum control effort is derived analytically. The superior performance of 
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the optimal basis functions as compared to popular basis functions in the literature is 

demonstrated in simulations, and in experiments on a 3D printer.   

C5.   In Chapter 4, it analyzes the effect of basis functions, nominal model used for filtering the 

basis functions and the known model uncertainty on the tracking accuracy of the FBF 

approach. Based on the analysis, a methodology for optimal selection of the nominal model 

and the basis functions is proposed. The superior performance of the proposed optimal 

nominal model and optimal basis functions for robust tracking control, as compared to 

arbitrary selection of nominal model and popular basis functions is demonstrated in 

simulations, and in experiments on a 3D printer.      

Chapter 5 summarizes the dissertation, presents conclusions and discusses 

recommendations for future research.       
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Chapter 2 

Filtered Basis Functions Approach for Tracking Control of NMP Systems 

 

2.1 Overview 

This chapter studies the FBF for feedforward tracking control of NMP systems, presents a 

fundamental study of the tracking accuracy of the FBF approach and compares the FBF approach 

with popular methods in the literature, viz., zero phase error tracking control (ZPETC) and 

truncated series (TS). Since, FBF is an LTV controller, even if the plant is LTI, the Frobenius norm 

of the LSR of the error dynamics is proposed as a metric for evaluation and comparison of tracking 

accuracy of FBF as compared to LTI controllers ZPETC and TS. The analysis is illustrated in 

simulations using a simple first order example.  

This chapter is organized as follows: The tracking control problem is introduced in Section 

2.2 and the FBF approach is presented in Section 2.3. Since the FBF approach depends on the least 

squares solution, conditions for uniqueness and existence of the solution are explored in Section 

2.4. The Frobenius norm metric is proposed in Section 2.5 and Section 2.6 analyzes tracking 

accuracy of the FBF approach using the Frobenius norm metric. Section 2.7 uses simulations to 

validate the discussion in this chapter and Section 2.8 summarizes the chapter.      

 

2.2 Feedforward Tracking Control Problem 

Given a discrete-time linear time invariant (LTI) single input single output (SISO) system 

G(q), as shown in Figure 2.1, which may represent an open loop plant or a closed loop-controlled 

system, we can write 

 

 ( ) ( ) ( )y k G q u k=  (2.1) 
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where k is the time index, q is the forward shift operator, y and u are the output and control input, 

respectively. The objective of tracking control is to design the feedforward controller C(q) or find 

the control input u(k) given by 

 

( ) ( ) ( )du k C q y k=  (2.2) 

 

where yd(k) is the desired trajectory, such that the tracking error e(k)   

 

 

( ) ( ) ( )

      (1 ( ) ( )) ( ) ( ) ( )

( )

d

d ff d

e k y k y k

G q C q y k E q y k

L q

= −

= − =  (2.3) 

 

is minimized, where L(q) and Eff(q) are the overall and the error dynamics of the controlled system, 

respectively.  

For finite time, 0 ≤ k ≤ M (M+1 is the number of discrete points in the trajectory), the 

desired trajectory, control input, tracking error and output trajectory can be expressed using vectors 

 

 

 

 

 

 

T

T

T

T

(0) (1) ( ) ,

(0) (1) ( ) ,

(0) (1) ( ) ,

(0) (1) ( )

d d d dy y y M

u u u M

e e e M

y y y M

=

=

=

=

y

u

e

y

 (2.4) 

 

Accordingly, Eqs. (2.1), (2.2) and (2.3) can be expressed as  

 

 ;   ;   ( )d d

ff

= = = −y Gu u Cy e I L y

E

 
(2.5) 

 

where G, C, L and Eff are the lifted system representations [65] of G, C, L and Eff, respectively 

(see Appendix A for more details), and I is the identity matrix of appropriate size. The use of 

boldface symbols to represent LSR of systems is maintained hereinafter. 
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Figure 2.1 Block diagram for feedforward tracking control 

 

2.3 Filtered Basis Functions (FBF) Approach 

The FBF approach relies on two assumptions: 

• The desired trajectory is known a priori 

• The control input u(k) is expressed as a linear combination of n+1 user-defined basis functions 

φi(k) 

 

 
0

( ) ( )
n

i i

i

u k k 
=

=  (2.6) 

 

where γi are unknown coefficients. Using vectors, Eq. (2.6) can be expressed as 

 

 
 

 

 

0 1

T

T

0 1

;

,

(0) (1) ( ) ,

n

i i i i

n

M  

  

=

=

=

=

u Φγ

Φ φ φ φ

φ

γ

 (2.7) 

 

For a linear system G(q) (with lifted system representation G), y can be expressed as 

 

 

 0 1

;

;   ;i i

n

=

= =

=

y Φγ

Φ GΦ φ Gφ

Φ φ φ φ

 (2.8) 
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where Φ̃ represents the filtered basis functions matrix, obtained by filtering Φ using the model of 

the system G, as shown in Figure 2.2. The control objective is to find the optimal coefficient vector 

γ such that the 2-norm of the tracking error 

 

 ( ) ( )
T

T

d d= − −e e y Φγ y Φγ  (2.9) 

 

is minimized; the optimal solution is given by 

 

 ( )
1

* T T

d

−

=γ Φ Φ Φ y  (2.10) 

 

Based on Eqs. (2.5), (2.7), (2.8) and (2.10), the lifted system representations of the controller and 

error dynamics can be expressed as 

 

 

( )

( )

1
T T

1
T T

,

FBF

ff FBF

FBF

−

−

=

= −

C Φ Φ Φ Φ

E I Φ Φ Φ Φ

L

 (2.11) 

 

 

Figure 2.2 Flow chart of the FBF approach 

 

Remark 2.1: CFBF and Eff,FBF both depend on the system as well as the selected basis functions. 

Both matrices are, in general, non-Toeplitz and non-triangular implying that the FBF controller is, 

in general, LTV and non-causal.  
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Remark 2.2: The LTV system resulting from the FBF approach is bounded input bounded output 

(BIBO) stable for stable G and finite n and M. Interested readers can see Appendix B for more 

details.      

Remark 2.3: Although the above discussion focuses on the FBF approach in the context of LTI 

SISO systems, it is applicable to other types of linear systems such as LTV and MIMO systems. 

Ref. [20] relaxes the assumption on a priori knowledge of the desired trajectory using B-spline 

basis functions. As shown in Section 1.1, this variant of the FBF approach called the limited 

preview filtered B-splines (LPFBS) approach can significantly reduce tracking errors and print 

time in commercial 3D printers (see Figure 1.3 and Table 1.1).  

The FBF approach is observed to be quite effective for a wide range of desired trajectories 

and plants including nonhyperbolic systems, for example, systems with zeros on the unit circle in 

the z-plane [20,48,50], square and non-square multi input multi output (MIMO), linear parameter 

varying (LPV) and LTV systems [51], etc. This versatility of FBF could help control designers to 

effectively track multi-axis systems with significantly different dynamics along its axes using the 

same tracking control method, i.e., FBF, along different axes. However, a fundamental 

understanding of the approach including the role of the basis functions is lacking in the literature 

and is explored in Refs. [71–75]. This dissertation (based on Refs. [71–75]) focuses on 

understanding the FBF approach, and starts with establishing the conditions for existence and 

uniqueness of the least squares solution (Eq. (2.10)), presented in the following section.    

 

2.4 Existence and Uniqueness of Least Squares Solution 

A unique solution to Eq. (2.10) exists if ( )
1

T
−

Φ Φ  exists, i.e., if T
Φ Φ  is invertible. The 

matrix T
Φ Φ  is invertible provided Φ  has linearly independent columns, meaning that the rank 

of the matrix Φ  is equal to n+1 [76]. The linear dependence of filtered basis functions { ( )}i k  

implies the existence of non-zero {ηi} such that 

 

 0

0

( ) ( ) 0;   

( ) ( ) 0

n

i i

i

n

i i

i

y k k

u k k





=

=

= =

= 





 (2.12) 
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given that {φi(k)} are linearly independent by definition. Hence,{ ( )}i k  are linearly dependent if 

there exists a non-zero u(k) such that 

 

 ( ) ( ) 0y k Gu k= =  (2.13) 

 

implying that a non-zero u(k) belongs to the null space of the system.  

For further analysis, the state-space representation of the system G (with state, input, output 

and feedforward matrices denoted by Ad, Bd, Cd and Dd) is used, because it accounts for non-zero 

initial conditions. The output y(k) is composed of a zero input response (ZIR) and a zero state 

response (ZSR) [77], i.e., 

 

 

1
1

0
Zero Input Response (ZIR)

Zero State Response (ZSR)

( ) (0) ( ) ( )
k

k k q

d d d d d d

q

y k u q D u k
−

− −

=

= + +C A x C A B  
(2.14) 

 

Consequently, the linear dependence of the filtered basis functions requires the determination of 

u(k) ≠ 0 and x(0) such that y(k) = 0 for 0 ≤ k ≤ M; i.e., 

 

 

1
1

0

0 (0) ( ) ( )
k

k k q

d d d d d d

q

u q D u k
−

− −

=

= + +C A x C A B  (2.15) 

 

The system of equations given by Eq. (2.15) represents an underdetermined system [77] (with M+1 

equations and M+1+no unknowns) with infinitely many solutions. The solutions to Eq. (2.15) form 

a vector space (denoted as U ) which is no dimensional. If x0(0), x1(0), ..., xn(0) represent the initial 

states used to forward filter basis functions φ0(k), φ1(k), ..., φn(k), respectively, then the filtered 

basis functions are linearly dependent if there exists non-zero {ηi} and 
T

T T (0) U   u x , such 

that 
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0 1

T

0 1

T

;
(0)

(0) (0) (0)

(0) (1) ( )

n

n

u u u M

  

   
=   

   

=

=

=

Φ u
η

X x

X x x x

η

u

 (2.16) 

 

Therefore, the filtered basis functions { ( )}i k  are linearly dependent if and only if the basis 

functions {φi(k)} and filter initial states {xi(0)} satisfy the condition 

 

 rank rank
(0)

      
=      

      

Φ Φ u

X X x
 (2.17) 

 

Note that u  and (0)x  are dependent on the dynamics of a given system whereas Φ and X can be 

freely selected by the user.  

Remark 2.4: Linear dependence of filtered basis functions is quite rare. However, if the conditions 

given by Eq. (2.17) are satisfied by a given Φ and X, then the control designer can easily modify 

either Φ or X to establish linear independence of the filtered basis functions, as demonstrated using 

an example in Appendix C. For 
T

1n+=X 0 , linear dependence can typically occur if the LSR of the 

system G has very small singular values. Very small singular values are quite prevalent if the 

system has NMP zeros or a relative degree (i.e., more poles than zeros). Selection of basis functions 

Φ (for 
T

1n+=X 0 ) to avoid these small singular values is further explored in Chapter 3.      

 

2.5 Frobenius Norm Metric for Analyzing Performance of Linear Controllers 

As discussed in Section 2.3 (Remark 2.1), the FBF approach results in an LTV controller 

and hence, FBF is fundamentally different than popular LTI control methods in the literature 

(discussed in Section 1.2.1), viz., NPZ-ignore, ZPETC, ZMETC, EBZPETC, TS, direct inversion, 

etc. The tracking performance of these popular methods in the literature has been quantified and 

analyzed using frequency-domain metrics like Bode diagrams [25], magnitude at Nyquist 

frequency [29] and 2-norm of error dynamics [18,25]. However, such frequency-domain metrics 



 19 

are not applicable to the FBF approach because it is an LTV controller. To address this 

shortcoming, this dissertation proposes the following metric based on the LSR of tracking error 

dynamics   

 

 

( )  
2

T

1
;   

1

Tr ( )

e ff F

ff ff ff i ffF
i

J
M



+

= = 

E

E E E E

 (2.18) 

 

The Frobenius norm is selected because it takes into account all singular values/gains (σi) of Eff, 

as opposed to ||Eff||2, which considers only the maximum singular value/gain. The square root of 

(M+1) in the metric ensures that the metric is uniformly bounded as the length of the trajectory 

grows.  

Note that for a normalized desired trajectory (||yd||2 = 1), 

 

 2|| ||

1 1

ff F
RMS eJ

M M
=  =

+ +

Ee
e  (2.19) 

 

The implication is that Je is an upper bound on the RMS tracking error (eRMS). Moreover, it is 

shown in Appendix D, that for an LTI system 

 

 ( )
2

   as 
1

ff F
ffE q M

M
→ →

+

E
 (2.20) 

 

In other words, Je approaches the system error 2-norm criterion (sometimes used in the design and 

analysis of tracking controllers [25]).  

Remark 2.5: The lifted system representation is employed for the proposed metric because it 

applies to both LTI and LTV controllers [65]. Moreover, the lifted system representation is 

applicable to feedforward as well as feedback controllers, SISO as well as multi-input multi-output 

(MIMO) controllers. As a result, the proposed metric is broadly applicable to any linear, discrete-

time tracking controller. 
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2.6 Analysis of Tracking Accuracy of FBF using Frobenius Norm Metric 

This section analyzes the FBF approach using the Frobenius norm metric applied to its 

error dynamics. 

Proposition 2.1: The metric of Eq. (2.18) applied to the FBF error dynamics (i.e., Je,FBF) is given 

by 

 

 ,

1
1

1
e FBF

n
J

M

+
= −

+
 (2.21) 

 

Proof: The filtered basis functions matrix Φ  in Eq. (2.8) can be transformed to the decoupled 

filtered basis functions matrix Ψ  using transformation Ω (for more details see Appendix E) 

 

 
=

=

Φ ΨΩ

Φ ΨΩ
 (2.22) 

 

such that 
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;

;

n
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ff FBF M

+

+
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=
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Ψ Ψ I

C ΨΨ

E I ΨΨ

 (2.23) 

 

Based on Eq. (2.20), it is known that LFBF, which depends on the selected basis functions and the 

plant dynamics, can be expressed as 

 

 

1
T

1

n

FBF i i

i

+

=

=L ψ ψ  (2.24) 

 

where iψ  are the decoupled filtered basis functions that satisfy 
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Hence, 
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(2.26) 

 

(End of proof) 

Remark 2.6: Note that Je,FBF is independent of G(q) and the type of basis functions employed. It 

depends only on the number of basis functions (relative to the number of discrete points in the 

trajectory). As the number of basis functions increases, the tracking accuracy of the FBF approach 

improves. As will be shown in Section 2.7, the independence of Je from G(q) cannot be taken for 

granted with other tracking controllers. The consistent tracking accuracy of FBF stems from the 

unique structure of Eff,FBF and it provides an analytical explanation of the relative independence of 

the FBF method’s tracking accuracy from G(q) observed in Refs. [20,48], and demonstrated in 

Section 2.7. Also, the result of Proposition 2.1 holds for any linear plant dynamics, i.e., it also 

applies to LTV and LPV plants.          

Remark 2.7: Note that, ||Eff,FBF||2 is equal to 1, irrespective of the number of basis functions used, 

which is not a reasonable representation of the tracking accuracy of the FBF method, which varies 
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significantly with n [20,48]. Hence, the proposed metric is more appropriate compared to 2-norm 

metrics like those used in convergence analysis in ILC [78].     

 

2.7 Examples 

To demonstrate the effectiveness of the FBF approach, it is compared with popular 

methods in the literature, viz., zero phase error tracking control (ZPETC) and truncated series (TS), 

using time-domain examples and the proposed Frobenius norm metric applied to their respective 

error dynamics. For comparison a simple first-order plant studied by Butterworth et al. [79] is 

used. 

 

 ( )
q a

G q
q p

−
=

−
 (2.27) 

 

where a (a real number) and p = 0.5 are the zero and pole of the plant, respectively. The ZPETC 

[13] is a widely discussed technique in the literature, and TS [25] is the optimal solution to the 

constrained minimization of weighted integral of squared magnitude of the error dynamics; it is 

one of the most versatile controllers with regards to its ability to deliver excellent tracking 

irrespective of the plant dynamics.  

As shown in the preceding section, the Frobenius norm metric Je for FBF is independent of the 

plant dynamics (see Eq. (2.26)). For ZPETC, the error dynamics Eff(q) and metric Je are given by 
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For TS, the expressions are given by 
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(2.29) 

 

where n1 is the number of terms in the series.  

Remark 2.8: The expressions of Je for ZPETC and TS given by Eqs. (2.28) and (2.29), 

respectively, are valid beyond the first order plant in Eq. (2.27) and hold for all systems with one 

real NMP zero. For ZPETC and TS, the error dynamics depends on the NMP zero and is 

independent of the cancellable (stable) part of the dynamics. This dependence of ZPETC and TS 

error dynamics on NMP zero dynamics holds irrespective of the number of NMP zero(s). The 

value of Je for FBF is independent of the NMP zero(s) location, whereas, for ZPETC and TS it 

depends on the NMP zero(s) location.    

Figure 2.3 compares the FBF approach with ZPETC and TS for a ϵ [−5,5] based on 

parameter values M = 1000, n = 990 and n1 = 5, using the normalized RMS tracking error 

eRMS/yd,RMS. A zero-mean white noise signal, with variance equal to 1, M = 1000 and sampling 

frequency 10 kHz, as the desired trajectory (yd). The white noise nature of the desired trajectory 

ensures that it has equal intensity at different frequencies. There is a wide range of BFs available 

for use with the FBF method. Here, two types of BFs are used: (i) discrete cosine transform (DCT) 

[80] and (ii) B-splines [81]. The DCT is a frequency-based transform that is widely used in signal 

processing [82–84]. B-splines are commonly used to parameterize commands sent to 

manufacturing machines and robots [85]. The mathematical expressions for the basis functions are 

provided in Appendix F. The variation of eRMS/yd,RMS with a seen in Figure 2.3 for FBF, ZPETC 

and TS are in agreement with observations made in the literature; i.e.:  

• The FBF method demonstrates very consistent tracking performance irrespective of plant 

dynamics [20,48]. 
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• The performance of ZPETC for left hand plane (LHP) zeros is better than that for right hand 

plane (LHP) zeros and the worst case is around a = 1 [29]. 

• The performance of TS for RHP and LHP zeros is the same, i.e., its performance is symmetric 

with respect to the imaginary axis. However, its performance degrades drastically as |a| → 1 

for a fixed n1. To improve its performance as |a| → 1, n1 must approach infinity [25]. 

Remark 2.9: For n = M, FBF can achieve perfect tracking in theory. Hence, the relative accuracy 

between FBF and the other methods is not of particular interest, since the accuracy of FBF can 

always be improved by using higher n. 

Remark 2.10: Note that FBF is defined for all zero locations, whereas, ZPETC and TS are not 

applicable for a = 1 and |a| = 1, respectively. It must be pointed out that approximate inversion is 

not generally used for tracking control in the minimum phase (MP) region because C = G−1 can be 

employed (providing a is not poorly damped [13]). However, the MP region is included in Figure 

2.3 for the sake of completeness. 

 

 

Figure 2.3 Effect of zero location on tracking error for FBF (DCT and B-splines), ZPETC and 

TS (M = 1000, n = 990, n1 = 5). ZPETC is not applicable for a = 1 and TS is not applicable for 

|a| = 1. The methods are also simulated for the MP region but the plant can also be inverted in 

this region. 

 

The Je values for FBF, ZPETC and TS are plotted in Figure 2.4, for the same values of 

parameters as used above (M = 1000, n = 990 and n1 = 5). Notice that the trends in Je for the various 

methods are very similar to those observed in Figure 2.3, which validates the effectiveness of the 

proposed metric. It confirms that the tracking performance of FBF does not vary much with zero 
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location and type of basis functions. However, the tracking performances of ZPETC and TS 

change drastically with zero location in the pattern predicted by their respective Je values. It must 

be noted that there might be instances when the performance trends might not exactly follow 

insights drawn from the Frobenius norm metric. For example, FBF might have much better 

tracking performance than predicted by Je if one purposely (or accidently) uses filtered basis 

functions that span the desired trajectory (yd). But, in general, the proposed Frobenius norm metric 

provides good insights about tracking performance and one can expect a more consistent 

performance (with respect to the zero location) with FBF compared to ZPETC and TS.  

  

 

Figure 2.4 Effect of zero location on Frobenius norm metric for FBF, ZPETC and TS (M = 1000, 

n = 990, n1 = 5). ZPETC is not applicable for a = 1 and TS is not applicable for |a| = 1 

 

Remark 2.11: The inconsistent performance of ZPETC and TS shown by eRMS/yd,RMS and Je in 

Figure 2.3 and Figure 2.4, respectively, is faced by most other tracking control methods [29]. 

Therefore, the consistent tracking performance of FBF predicted by Je,FBF and validated in Figure 

2.3, as well as in Refs. [20,48], sets it apart from most other tracking control methods. This 

consistent tracking property of FBF presents an opportunity to effectively track multi-axis systems 

with significantly different dynamics along its axes using the same tracking control method, i.e., 

FBF, along different axes.  
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2.8 Summary 

In this chapter, the proposed filtered basis functions (FBF) approach for tracking control 

of discrete-time linear systems with NMP zeros is studied. In the FBF method, it is assumed that 

the desired trajectory to be tracked is entirely known. Accordingly, the control input is expressed 

as a linear combination of linearly independent basis functions which are forward filtered using 

the system model, and their coefficients selected to minimize the norm of the tracking error. It is 

shown that the FBF solution exists and is unique if the FBFs are linearly independent. A rank test 

is established to ascertain linear independence of FBFs, based on the unfiltered basis functions, 

filter initial states and system parameters.  

The analyses in this chapter show that the FBF method generally results in an LTV system, 

indicating its fundamental difference from methods like ZPETC and TS which always result in 

LTI systems. To evaluate and compare LTV controlled systems such as FBF with LTI controlled 

systems such as ZPETC and TS, this chapter proposes a metric based on the Frobenius norm of 

the LSR of system dynamics. It is shown that the proposed Frobenius norm metric is closely related 

to the 2-norm of the system dynamics; the metric also establishes an upper bound on the 

corresponding output of the system dynamics. It is very interesting that, for FBF, the proposed 

Frobenius norm metric applied to error dynamics is independent of the plant dynamics and the 

type of basis functions, whereas, for ZPETC and TS the metric is dependent on plant dynamics 

(specifically, zero location). The observations made using the proposed metric regarding FBF, 

ZPETC and TS are in agreement with those made in the literature. Analysis and simulations based 

on a plant with varying zero locations are used to validate the effectiveness of the FBF approach 

as compared to popular methods in the literature such as ZPETC and TS, and the proposed metric 

as a tool for evaluating the tracking performance of LTI and LTV discrete-time linear controllers.   
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Chapter 3 

Optimal Selection of Basis Functions for Minimum-Effort Tracking Control 

 

3.1 Overview 

The previous chapter analyzed the tracking error dynamics of FBF using the Frobenius 

norm metric and demonstrated that the tracking accuracy of the FBF approach is independent of 

the type of basis functions and plant dynamics. This chapter applies the Frobenius norm metric to 

FBF’s controller dynamics and shows that the control effort required by the FBF approach depends 

on the basis functions and the plant dynamics. Based on the analysis, an optimal set of basis 

functions that minimize the control effort without sacrificing tracking accuracy is proposed. This 

is especially useful in the context of control of NMP systems which are known to require large 

control effort. Large control efforts are not desirable because of the large amounts of energy that 

needs to be supplied by actuators to achieve them. In many cases where this energy cannot be 

supplied, saturation occurs and the tracking performance suffers. The effectiveness of the proposed 

optimal basis functions as compared to popular basis functions in the literature, viz. DCT and B-

splines is demonstrated using simulations and experiments on a desktop 3D printer.   

This chapter is organized as follows: The problem of optimal basis function selection for 

minimum control effort-based tracking is motivated in Section 3.2 using a simple example. Section 

3.3 applies the Frobenius norm metric to FBF’s controller dynamics and Section 3.4 presents a 

methodology for optimal selection of basis functions. The effectiveness of the proposed optimal 

basis functions is demonstrated in Section 3.5 using simulations and experiments on a 3D printer. 

Section 3.6 summarizes the chapter. 

 

3.2 Motivation 

This section motivates the rest of the chapter using the example from Section 2.7. In 

addition to the tracking accuracy of DCT and B-spline based FBF controllers, this section focuses 
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on their control inputs. Figure 3.1(a) compares the normalized root mean square (RMS) tracking 

error eRMS/yd,RMS for the DCT and B-splines basis functions for various values of a (Figure 3.1(a) 

is identical to Figure 2.3 except for the omission of ZPETC and TS). As discussed in Chapter 2, 

the FBF approach demonstrates consistent tracking accuracy with respect to zero location and the 

type of basis functions. Figure 3.1(b) compares the normalized RMS control effort of the DCT and 

B-splines basis functions applied to the FBF approach. Notice that there is significant variation in 

control effort for various basis functions, even when tracking accuracy is similar. For instance, at 

a = 1.02, both the basis functions achieve similar levels of tracking accuracy, but the control effort 

required by B-splines is 11800 times that required by DCT. In contrast, all the basis functions have 

very similar values of eRMS and uRMS for −1 ≤ a ≤ 1. This suggests that the system dynamics and 

choice of basis functions play a significant role in the control effort required to achieve a desired 

level of tracking accuracy using the FBF approach. Hence, a methodology for determining the best 

set of basis functions for a given plant dynamics and desired level of tracking accuracy is needed.   

 

 

Figure 3.1 Effect of basis functions (DCT and B-splines) on: (a) normalized RMS tracking error 

and (b) normalized RMS control input for various values of a (M = 1000, n = 990). 
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3.3 Analysis of Control Effort using Frobenius Norm Metric 

Based on Eq. (2.26), we can see that Je,FBF = 0, i.e., perfect tracking can be achieved at n = 

M. However, n = M implies C = G−1 which might be undesirable if G(q) contains uncancellable 

zeros because such zeros result in very small singular values of G, and large control signals [18]. 

Also, if a system has more poles than zeros, then G has very small singular values. The FBF 

approach is rank constrained minimization of the metric applied to error dynamics (see Appendix 

G). A rank constraint, which in the LSR implies a restricted space of input and output, is used to 

avoid inversion of the full G, while also reducing the computational demands of the control 

problem [80,86,87]. However, the rank constraint does not necessarily result in minimization of 

control input and hence, analysis of FBF controller dynamics (discussed in this section) and 

selection of an optimal set of basis functions (presented in Section 3.4) is necessary.       

The LSR of the plant, G, can be decomposed using singular value decomposition (SVD) 

[88] as follows 
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Without loss of generality, this paper assumes that G has distinct singular values. 

The Frobenius norm of CFBF can be expressed as 
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The implication is that ij  represents the contribution of vi towards jψ  and vice-versa.  Hence, 
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Since, vi and jψ  are unitary vectors 
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Based on Eqs. (2.23) and (3.3) 
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The squared Frobenius norm of the FBF controller dynamics 
2

FBF F
C  is a linear combination of  

the inverse of squared singular values of G, i.e.,   
1

2

1
1

M

i i


+

=
 with coefficients of the linear 

combination 
2

0


=


n

ij

j

 determined by interaction between filtered basis functions jψ  and system 

dynamics G. The coefficients are bounded between 0 and 1 and need to satisfy orthogonality 

condition  
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3.4 Optimal Selection of Basis Functions for Minimal Control Effort 

It has been shown in Section 2.6 that the tracking accuracy of the FBF method (measured 

by Je) is always fixed for a given number of basis functions, irrespective of the type of basis 

functions or the plant dynamics. In addition, as discussed in the preceding section, for a given 

number of basis functions, the control effort of the FBF method (measured by Jc) is dependent on 

the plant dynamics and type of basis functions. In this section, the optimal set of basis functions 

that minimizes Jc for a given Je are presented, i.e., find Ψ such that 

 

 
( )

*

min ,

s.t.  ( )

c

e e

J

J J n=

Ψ G
Ψ  (3.8) 

 

and the resulting controller is called the control effort optimal (CE-Opt) FBF controller. 

Proposition 3.1: For n+1 basis functions, the minimum value of the squared Frobenius norm of 

LSR of FBF controller dynamics, 
2

FBF F
C  , is given by 
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Proof: Proposition 3.1 is substantiated by  
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• proving by contradiction that there is no ij
 such that 
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From Eqs. (2.23) and (3.3), 
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Multiplying Eq. (3.13) by 
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Subtracting Eq. (3.15) from Eq. (3.16) results in 
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which implies that left hand side of Eq. (3.17) is always greater than or equal to zero whereas, the 

right hand side is always less than or equal to zero, which is a contradiction and hence, the 

assumption given by Eq. (3.12) is incorrect.  

The minimum value of Eq. (3.9) 
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can be realized when 
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and hence, 
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The minimum can be achieved at  
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The implication is that the decoupled filtered basis functions iψ  are the left singular vectors (SV) 

of the LSR of the plant, G. Hence, the minimum value of metric Jc,FBF is given by 
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(End of proof) 

For n = M, i.e., the number of basis functions equals the number of trajectory points, the 

value of Je and Jc are independent of the choice of basis functions and given by 
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However, when n = M, the control input is undesirably high if system G contains NMP zero(s) 

[18,89].  

Remark 3.1: The singular vectors (SV) based basis functions (given by Eq. (3.22)) are the optimal 

set of basis functions which result in minimum Jc for given Je. Note that these optimal basis 

functions are system dependent. Inversion of the LSR, G−1 for NMP systems can be realized, 

approximately, by truncating the smallest singular values from the SVD of G [18,89]. The 

truncated SVD-based approximation of G−1 is a special case of the optimal FBF controller (i.e., it 

uses the SVs of G as basis functions with n = M−r, where r is the number of NMP zero(s) of 

system G). 

Remark 3.2: For FBF, the fact that Je is independent of plant dynamics and basis functions, 

whereas, Jc is dependent on the plant dynamics and basis functions permits a sequential two-stage 

design procedure for achieving the optimal FBF controller. In the first stage, the user selects the 

number of basis functions (n+1) to achieve a desired level of tracking accuracy (Je). Then, in the 

second stage, the control effort (Jc) is minimized by selecting n+1 of the highest M+1−r SV 

components of G as the optimal set of basis functions. 

Remark 3.3: While the proposed two-step methodology is general in that it is independent of 

desired trajectory, it can accommodate special cases where information (e.g., frequency spectrum) 

of a specific desired trajectory to be tracked is available. For instance, the dynamics can be pre-

multiplied with a weighting filter that emphasizes the frequency content of the desired trajectory 

and the proposed methodology can be applied to the augmented dynamics. 

 

3.5 Examples 

3.5.1 Simulations 

Section 3.2 motivated Section 3.4 using a first order plant and two different basis functions, 

viz., discrete cosine transform (DCT) and B-splines. This section continues with the same example 

and compares the two basis functions mentioned above, with the optimal basis functions CE-Opt 

proposed in Section 3.4. The desired trajectory and other parameters (M = 1000, n = 990) are same 

as Section 3.2.  
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Figure 3.2 plots Je and Jc for different basis functions and Figure 3.3 plots the normalized 

tracking error eRMS/yd,RMS and normalized control input uRMS/yd,RMS. Note that Figures 3.2 and 3.3 

validate the discussion in Section 3.4. The trend for eRMS/yd,RMS and uRMS/yd,RMS in Figure 3.3 are 

quite similar to those of Je and Jc, respectively, in Figure 3.2, which demonstrates the effectiveness 

of the proposed metric. Note that there might be instances when performance trends may not 

exactly follow the predictions of Je or Jc. For example, FBF might have much better tracking 

accuracy than predicted by Je or smaller control effort than predicted by Jc if one purposely (or 

accidentally) uses filtered basis functions that span the desired trajectory (yd). However, in general, 

the proposed metric provides good insights on the upper limits of RMS tracking performance and 

control effort. As discussed in Section 3.4, all the three basis functions have similar tracking error 

(see Figure 3.3(a)) but different control efforts (see Figure 3.3(b)). Table 3.1 shows the mean 

values of eRMS/yd,RMS and uRMS/yd,RMS over all a. For eRMS/yd,RMS, the values of the mean for different 

basis functions are of the same order of magnitude. This validates the discussion about consistent 

tracking accuracy of the FBF approach.  However, when it comes to uRMS/yd,RMS, the value of the 

mean for B-splines is four orders of magnitude higher than the value of the mean for DCT and the 

value of the mean for DCT is two orders of magnitude higher than the proposed CE-Opt basis 

functions. The example demonstrates the effectiveness of the proposed CE-Opt basis functions, 

proposed in Section 3.4, in tracking the desired trajectory with minimal control effort.        

 

 

Figure 3.2 Effect of basis functions (DCT, B-splines and CE-Opt) on (a) Je and (b) Jc for various 

values of a (M = 1000, n = 990). 
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Figure 3.3 Effect of basis functions (DCT, B-splines and CE-Opt) on: (a) normalized RMS 

tracking error and (b) normalized RMS control input for various values of a (M = 1000, n = 990). 

 

Table 3.1 Mean values of eRMS/yd,RMS and uRMS/yd,RMS over all a for different basis functions 

Attribute DCT B-splines CE-Opt 

eRMS/yd,RMS 7.83 × 10−2 8.14 × 10−2 8.28 × 10−2 

uRMS/yd,RMS 2.76 × 101 1.02 × 105 7.06 × 10−1 

 

3.5.2 Experiments 

This section demonstrates the practical benefits of optimal basis functions in experiments. 

The Lulzbot Taz 6 desktop 3D printer, shown in Figure 3.4, is used for the experiments. For system 

identification and control, motion commands are sent to the printer’s stepper motors at 1 kHz 

sampling rate using a real-time controller (dSPACE 1202) via stepper motor drivers (Pololu 

DRV8825). The relative position of the print head and the bed is observed from their accelerations 

measured using two accelerometers (SparkFun ADXL335 triple-axis).  
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Figure 3.4 Lulzbot Taz 6 desktop 3D printer. 

 

Figure 3.5 shows the frequency response function (FRF) of the dynamics of the x-axis of 

the 3D printer, generated by applying swept sine acceleration inputs to the printer and measuring 

the relative accelerations of the print head and the build platform using the accelerometers. Using 

invfreqs function in MATLAB, the dynamics is modeled as 
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The modeled dynamics has a pair of complex NMP zeros at 0.9924 ± 0.3176j, where j is the unit 

imaginary number. Figure 3.5 shows a good match between the measured and modeled FRFs. 

Based on the methodology discussed in Appendix A, the LSR of the modeled dynamics is 

generated. The position signal shown in Figure H.6(a) is used as desired trajectory. The duration 

of the trajectory is 1 second (i.e., M = 1000, based on 1 kHz sampling frequency). 
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Figure 3.5 Measured and modeled frequency response functions of the x axis of the Taz 6 3D 

printer 

 

For experiments, the optimal basis functions proposed in Section 3.4 are compared with 

popular basis functions DCT and B-splines. Figure 3.6 shows the control input (i.e., modified 

position commands) sent to the x-axis for the two sets of basis functions (for n = 500). Also, shown 

are the resultant tracking errors, which are based on position signals derived from measured 

acceleration signals using an observer.  Note that the B-splines and DCT based control inputs show 

rapid growth in magnitude towards the end of the signal because of the small singular values of 

the LSR corresponding to the NMP zeros and the relative degree. For safety reasons, a limit of ± 

10 mm is placed on the position commands, as shown in Figure 3.6; the B-splines and DCT based 

control inputs saturates at the limits. Notice that, before saturation, the control inputs for the 

proposed optimal basis functions and B-splines are quite similar which results in similar tracking 

errors. In the time interval between 0 and 0.947 s (the first-time saturation occurs), the RMS 

tracking errors for optimal basis functions, B-splines and DCT are 125.52 μm, 131.69 μm and 

126.63 μm, respectively. However, because of saturation, the DCT and B-splines based commands 

generate large tracking errors, as shown in Figure 3.6. Consequently, the overall RMS tracking 

error for B-splines and DCT are respectively, 10% and 83% higher than the RMS tracking error 

for the optimal basis functions (see Table 3.2). In addition, the maximum tracking errors for B-

splines and DCT are respectively, 1.82 and 6.73 times the maximum tracking error for the optimal 

basis functions. Moreover, the optimal basis functions require 5% and 11% lower control effort 
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than B-splines and DCT, respectively. The proposed optimal basis functions track better than B-

splines and DCT and require less control effort.    

 

 

Figure 3.6 Control inputs (i.e., modified position command) signals and tracking errors for 

optimal basis functions, B-splines and DCT (M = 1000, n = 500) 

 

Table 3.2 Summary of tracking error and control effort for experiments 

Basis Functions eRMS/yd,RMS uRMS/yd,RMS max(|e|)/yd,RMS 

Optimal 0.0287 0.9993 0.0699 

B-splines 0.0316 1.0480 0.1270 

DCT 0.0525 1.1227 0.4701 

 

Remark 3.4: The violation of actuator limits by B-splines observed in the results of Figure 3.6 

can be mitigated by formulating the FBF approach as a constrained optimization problem using 

the constraint handling capabilities of B-splines, as done in prior work of the authors [90]. 

However, all things being equal, it is theoretically and practically preferable to avoid large control 

signals altogether than to contain them via constraints. 

Appendix H presents experiments on a biaxial linear motor driven stage. The dynamics of 

the biaxial stage has one real NMP zero along each axis and B-splines based control input 

demonstrates saturation, similar to the example in this section. The proposed optimal basis 

functions are shown to improve the tracking error by up to 19 times as compared to the B-splines 

basis functions.  

limit

limit
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3.6  Summary 

This chapter analyzes the control effort of the FBF approach by applying the Frobenius 

norm metric to FBF’s controller dynamics. Although the metric applied to error dynamics of FBF 

shows independence from plant dynamics and basis functions (shown in Chapter 2), application 

of the metric to FBF’s controller dynamics shows that the control effort depends on the plant 

dynamics as well as the basis functions. Leveraging the analysis, a two-step procedure for selection 

of optimal basis functions that minimize the control effort for a given tracking accuracy is 

proposed.  In the first step, the number of basis functions is selected to satisfy a desired level of 

tracking accuracy regardless of the type of basis functions; in the second step, the optimal set of 

basis functions – which are related to the singular vectors of the controlled system – are determined 

for minimum control effort. Simulations and experiments are used to demonstrate the effectiveness 

of the proposed optimal basis functions. Simple first-order plants with varying zero locations in 

the z-plane are used in simulations and the proposed basis functions are compared with other 

commonly used basis functions (DCT and B-splines). The results demonstrate the effectiveness of 

the proposed metric as well as the superiority of the optimal basis functions as compared to popular 

basis functions. Experiments on a Lulzbot Taz 6 desktop 3D printer, are used to show that the 

proposed basis functions can effectively track a desired trajectory with minimal control effort, as 

compared to popular basis functions DCT and B-splines which require much higher control effort, 

resulting in control saturation and degradation of tracking accuracy.  
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Chapter 4 

Optimal Selection of Basis Functions and Nominal Model for Robust Tracking Control 

 

4.1 Overview 

As discussed in Section 1.1, a key challenge with inversion based feedforward control 

methods, including FBF, is how to improve their tracking accuracy, in the presence of 

uncertainties. Section 1.2.2 presents various methods used in the literature to improve tracking 

accuracy of feedforward control methods, in the presence of uncertainties. Inspired by these 

methods in the literature, various approaches such as optimal selection of coefficients [68] and 

optimal filtering of basis functions [69,70] (also presented in Appendix I with simulation and 

experimental examples) have been explored as avenues to improve the robustness of the FBF 

approach. However, optimal selection of basis functions also presents an opportunity for 

improving the robustness of the FBF approach that is unavailable to other feedforward tracking 

control methods. This chapter proposes a methodology for finding an optimal set of basis functions 

for robust tracking control using the Frobenius norm metric discussed in Chapter 2, in a manner 

similar to the use of the metric to find basis functions for minimum control effort in Chapter 3. 

The proposed methodology for selection of basis functions could be used as an alternative or in 

complement to existing methods. This chapter complements optimal basis functions selection with 

optimal nominal model selection, derived using lifted domain optimization. 

This chapter is organized as follows: Section 4.2 motivates the rest of the chapter. Section 

4.3 analyzes the tracking accuracy of the FBF approach, in the presence of known uncertainties, 

using the Frobenius norm metric. Based on the analysis in Section 4.3, Sections 4.4 and 4.5 propose 

methodologies for optimal selection of basis functions and optimal nominal model, respectively. 

Section 4.6 demonstrates the effectiveness of the approach as compared to standard FBF and 

popular basis functions and Section 4.7 summarizes the chapter.       
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4.2 Motivation 

This section motivates the rest of the chapter, using a damped oscillator with parametric 

uncertainty: 
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(4.1) 

 

where ωn and ζ denote the natural frequency and damping ratio, and the subscript ‘nom’ denotes 

the nominal value. The system is sampled at 1 kHz. The set of actual plant dynamics, is generated 

by selecting 410 evenly distributed realizations of the plant defined by Eq. (4.1). The nominal 

values of the plant parameters are used to generate the nominal model for filtering the basis 

functions. Similar to the discussion in Chapters 2 and 3, the desired signal yd is a white noise signal 

with zero mean and unit variance. This example uses popular basis functions DCT and B-splines, 

and CE-Opt basis functions (the optimal basis functions for control effort, proposed in Chapter 3). 

Figure 4.1 shows the normalized RMS tracking error eRMS/yd,RMS for DCT, B-splines and 

CE-Opt basis functions, for various numbers of basis functions (n = 10 to 990), using the 410 

realizations of the actual plant dynamics G, described above. The metrics used for comparison are 

the mean, standard deviation and nominal values (assuming the plant model is perfect) of 

eRMS/yd,RMS. It is observed that for the same n, the nominal tracking accuracy of FBF does not vary 

significantly with the type of basis functions. This observation is in agreement with the discussion 

in Chapter 2. However, it is observed that the tracking accuracy of the FBF approach deteriorates 

in the presence of uncertainty and varies significantly depending on the type of basis functions. 

This example suggests that although different basis functions give the same nominal tracking 

accuracy, their tracking accuracy, in the presence of uncertainties, varies significantly with the 

choice of basis functions used for tracking. Hence, a methodology for selecting an optimal set of 

basis functions for robust tracking control using FBF is needed.     
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Figure 4.1 Comparison of normalized RMS tracking error for DCT, B-splines and CE-Opt basis 

functions, in the absence (nominal) and presence of uncertainty, for various values of number of 

basis functions, n 

 

4.3 Analysis of Robustness of FBF using Frobenius Norm Metric 

Section 2.6 analyzed tracking accuracy of FBF, using the Frobenius norm metric, assuming 

the plant model is perfect. This section analyzes the tracking accuracy of the FBF approach for 

known uncertainty, using the Frobenius norm metric. Assume that the actual plant dynamics 

belongs to the set {Gaj}, j =1, 2, …, l. The set could represent a plant with additive uncertainty, 

multiplicative uncertainty, parametric uncertainty, etc. Without loss of generality, this paper 

assumes that the set is discrete. Sampling of uncertainty has been used in literature [57,64] for 

robust controller design. If the controller C (see Figure 2.1) is designed based on nominal plant 

dynamics Gnom and the error dynamics corresponding to Gaj is given by Effj, then to analyze the 

robustness of tracking controllers, the Frobenius norm metric Je,r can be expressed as 
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where {λj} denotes weights associated with the distribution of the uncertainty. Note that the 

nominal plant dynamics Gnom may or may not belong to the set {Gaj}. 

Remark 4.1: This dissertation focuses on FBF, hence, the modified metric will only be explored 

in the context of FBF in the remainder of this dissertation. However, the metric can be used to 

analyze robustness of other tracking controllers. 

If the FBF controller C is designed using the nominal plant dynamics Gnom, then its LSR C 

is given by 
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Analysis using the pseudoinverse is quite cumbersome and hence, the filtered basis functions 

matrix Φ̃nom= GnomΦ is transformed into the decoupled filtered basis functions matrix Ψ̃nom= 

GnomΨnom (for more details see Appendix E). After transformation, the LSRs C and Effj can be 

expressed as 
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where Ψ̃aj,nom is obtained by filtering Ψnom using LSR of the possible actual plant dynamics Gaj. 

Proposition 4.1: For the set of possible actual plant dynamics {Gaj} and associated weights {λj}, 

j =1, 2, …, l, the metric Je,r can be expressed in terms of the uncertainty and basis functions as 
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Proof: This proof first finds the metric Jej and then finds Je,r using Eq. (4.2). Based on Eqs. (4.2) 

and (4.4) 
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Using the fact that trace is a linear mapping and is invariant under cyclic permutations 
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Substituting Eq. (4.7) in Eq. (4.2) gives 

 



 47 

 
( )

2 2

,

1

2

1

1
     1

1 1

l

e r j ej

j

l
aj nom nom

F
j

j

J J

n

M M





=

=

=

−+
= − +

+ +




G G Ψ

 (4.8) 

 

(End of Proof) 

 

Remark 4.2: The metric can be expressed as 
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The implication is that the metric is the summation of two components – nominal and uncertainty-

related. The nominal component is identical to the value of the metric in the absence of the 

uncertainty (discussed in Section 2.6); it only depends on the number of basis functions and is 

independent of the plant dynamics and the choice of basis functions. However, the uncertainty-

related component depends on the uncertainty, choice of nominal model and the type and number 

of basis functions.  With increase in n, the nominal component decreases monotonically. Whereas, 

the uncertainty-related component generally increases with increase in n. The implication is that 

the tracking error for FBF, in the presence of uncertainty, does not vary monotonically with the 

number of basis functions (as seen in Figure 4.1).     

 

4.4 Optimal Selection of Basis Functions for Robust Tracking Control 

This section finds an optimal set of basis functions that minimize Je,r for a given nominal 

model Gnom and known uncertainty {Gaj}. Towards achieving this objective, this section first finds 

an optimal set of basis functions that minimize the uncertainty-related component of the metric 

Je,unc, for a given value of the nominal component of the metric Je,nom. This objective is achieved 
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while ensuring that the control input does not contain components from the very small singular 

values (a result of NMP zeros and relative degree) of the LSR of nominal model Gnom. 

Mathematically, the problem can be expressed as finding Ψnom such that 
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where the first constraint denotes achieving a desired value of nominal tracking accuracy by 

selecting a particular value of n and the second constraint signifies that the control input does not 

contain the r smallest singular components of Gnom. Proposition 4.2 formulates the problem 

described above and presents a solution. 

Proposition 4.2: For the set of possible actual plant dynamics {Gaj}, associated weights {λj}, j =1, 

2, …, l, and nominal model Gnom (with r very small singular values in its LSR), the n+1 basis 

functions Ψnom that minimize Je,unc are given by 
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where Vnom, Σnom and Wnom denote the left singular vector matrix, singular value matrix and right 

singular vector matrix of Gnom, respectively. Similarly, VΔ̅nom,s
, ΣΔ̅nom,s

 and WΔ̅nom,s
 denote the left 

singular vector matrix, singular value matrix and right singular vector matrix of Δ̅nom,s , 

respectively. Also, Δ̅nom,s  and Δ̅nom,r  are the first M+1−r columns and last r columns of Δ̅nom , 

respectively. 
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Proof: The problem of minimizing Je,unc for a given value of n can be expressed as (using Eqs. 

(4.4) and (4.9)) 
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Note that the constraint is a result of the decoupling process (Eq. (4.4)). The objective of the 

problem, given by Eq. (4.12), can alternatively be expressed as 
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Defining 
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Eq. (4.13) can be expressed as 
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The constraint in Eq. (4.12) can be expressed as 
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Hence, the optimization problem given by Eq. (4.12) can be re-written as 

 

 

2

2

,

T

1

min
1

       s.t.  

nom

nom nom
F

e unc

nom nom n

J
M

+

 
 =
 +
 

=

Ξ

Δ Ξ

Ξ Ξ I

 (4.17) 

 

This optimization problem is similar to the optimization problem for finding CE-Opt basis 

functions (see Section 3.4) and using the methodology described in Proposition 3.1, the optimal 

basis functions for robustness is the set of right singular vectors of the matrix Δ̅nom, corresponding 

to its n+1 smallest singular values. Although, the basis functions obtained by solving Eq. (4.17) 

are optimal in terms of robustness, they might result in large control inputs, especially if Gnom has 

very small singular values. Very small singular values might result in an unrealizable robust 

controller (as seen in Section 3.5.2) and hence, the optimal basis functions should be designed to 
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avoid components corresponding to these very small singular values. Based on the discussion in 

Section 3.3 and Eq. (4.15), the components corresponding to r very small singular values of Gnom 

can be avoided by equating the elements of last r rows of Ξ̃nom to zero: 
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The new constraint can be embedded into the objective and orthogonality constraint by 
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where Δ̅nom,s and Δ̅nom,r are the matrices formed from first M+1−r columns and last r columns of 

Δ̅nom, respectively. The optimization problem, given by Eq. (4.18), can be re-written as 
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The optimal solution to Eq. (4.20), is the set of right singular vectors of the matrix Δ̅nom,s 

corresponding to its n+1 smallest singular values (based on Proposition 3.1).  
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and the corresponding basis functions are 
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(End of Proof) 

Remark 4.3: Since, the choice of basis functions only affects the uncertainty-related component and 

does not affect the nominal component (Remark 4.2), the proposed optimal basis functions are selected 

such that robust tracking is realized without significantly affecting the nominal tracking accuracy of 

FBF (Proposition 4.2). This is unlike many other robust tracking controllers in the literature [63,69], 

whose improved robustness in tracking is achieved at the cost of deterioration in nominal tracking 

accuracy. 

Remark 4.4: For the basis functions given by Eq. (4.22), the value of metric Je,unc is given by 
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where {σΔ̅nom,s,i}, i = 1, 2, …, M+1−r are the singular values of the matrix Δ̅nom,s in the descending 

order. For n = 0 (1 basis function), Je,unc only depends on the smallest singular value of Δ̅nom,s. The 

implication is that in an M+1 dimensional vector space, the basis function is aligned with the most 

robust vector; i.e., the vector that ensures that the uncertainty has the least effect on the tracking 

accuracy of FBF. As n increases, new basis functions are added such that the next higher singular 

values are added to Je,unc and the next most robust vectors in the M+1 dimensional vector space are 

selected. Among all the n+1 dimensional vector spaces (for M+1 length vectors), the effect of the 
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uncertainty on tracking accuracy of FBF is minimum in the vector space created by these n+1 basis 

functions.  

The value of Je,r for the proposed optimal basis functions is given by 
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The difference in values of Je,r
2  as n increases from n = n1 to n = n1+1 is given by 
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where Je,r
2 [n1] denotes the value of Je,r

2  for n = n1. Hence, the value of the metric decreases (i.e., 

tracking accuracy improves) if 𝜎Δ̅nom,s,M-r-n1
< 1 and increases (i.e., tracking accuracy deteriorates) 

if 𝜎Δ̅nom,s,M-r-n1
> 1.     

Remark 4.5: Based on the above discussion, following three scenarios are possible with the 

proposed optimal basis functions: 

(i)     If all singular values {σΔ̅nom,s,i} are less than 1, then Je,r
2  is a non-increasing function of n and 

n = M − r results in the most robust optimal basis functions for known uncertainty and given 

nominal model. 

(ii)    If all singular values {σΔ̅nom,s,i} are greater than 1, then Je,r
2  is a non-decreasing function of n 

and n = 0 results in the most robust optimal basis functions for known uncertainty and given 

nominal model. 

(iii)   If {σΔ̅nom,s,i} has values dispersed on either side of 1, then for lower values of n, Je,r
2  is a non-

increasing function of n, until 𝜎Δ̅nom,s,M+1-r-n < 1 and for higher values of n, Je,r
2  is a non-

decreasing function of n. The most robust optimal basis functions, for known uncertainty and 

given nominal model, are achieved at the highest value of n where 𝜎Δ̅nom,s,M+1-r-n < 1. 



 54 

For a given uncertainty, scenario (i) would be the most desirable, since the optimal value is 

achieved for highest value of n (the most optimal nominal tracking accuracy and spans the entire 

possible trajectory space). This analysis demonstrates that smaller singular values {σΔ̅nom,s,i} are 

desirable.  

Since, the singular values depend on the uncertainty and the nominal model, an ideal way 

to optimize tracking accuracy of FBF, in addition to optimal selection of basis functions, would be 

to optimize the nominal model to minimize the singular values. The following section presents a 

methodology for selecting an optimal nominal model based on minimizing the sum of the square 

of singular values.                  

 

4.5 Optimal Selection of Nominal Model for Robust Tracking Control 

This section finds a nominal model such that the following cost function J is minimized 

(see Eq. (4.15)) 
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The optimal nominal model is obtained by differentiating the cost function J w.r.t. the inverse of 

the nominal model Gnom, and equating the result to zero 
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The optimal nominal model given by Eq. (4.27) might not be realizable if the members of the set 

{Gaj} have very small singular values, which holds true for systems with NMP zeros. Hence, this 

dissertation proposes the following approximate nominal model 
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Remark 4.6: The approach presented in this section for selection of nominal model minimizes the 

sum of the singular values and obtains the solution in one optimization in the lifted domain. 

Whereas, the approach proposed in Ref. [69,70] (also presented in Appendix I) for selection of 

nominal model, focuses on optimizing for each frequency. Since the method presented in this 

section uses a lifted domain approach, the method can be applied to any linear system, including 

time and parameter varying systems. However, the method presented in Appendix I is restricted 

to time invariant systems only.     

Remark 4.7: Since the methodology adopted in this section for selection of nominal model does 

not consider the basis functions used, a robust FBF controller can be designed using a two-step 

procedure: (i) select an optimal nominal model based on the discussion in this section (ii) select 

an optimal set of basis functions for the nominal model obtained in step (i) using Proposition 4.2.    

 

4.6 Examples 

4.6.1 Simulations 

The discussion in this chapter was motivated using a simple example in Section 4.2 and 

this section continues with the same example. The robust optimal basis functions proposed in 

Section 4.4 are compared with DCT, B-splines and CE-Opt basis functions. While DCT and B-

splines are defined independent of the plant dynamics (see Appendix F), the CE-Opt basis 

functions are designed based on the nominal model of the plant dynamics (see Section 3.4) and 

the proposed robust optimal basis functions are designed based on the nominal model as well as 

the known uncertainty in the plant dynamics (see Section 4.4). The system and desired trajectory 

parameters are same as that in Section 4.2. For design of the robust optimal basis functions, the set 
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of possible actual plant dynamics {Gaj}, is generated by selecting l = 410 evenly distributed 

realizations of the plant defined by Eq. (4.1) such that λj = 1/l. Also, the LSRs of members of the 

set of possible actual plant dynamics {Gaj} have one very small singular value and hence, r = 1. 

Figure 4.2 shows the normalized RMS tracking error eRMS/yd,RMS for DCT, B-splines, CE-

Opt and the proposed robust optimal basis functions, for various numbers of basis functions (n = 

10 to 990), using the 410 realizations of actual plant dynamics G, described above. The metrics 

used for comparison are the mean and standard deviation of eRMS/yd,RMS. It is observed that for all 

values of n, the proposed robust optimal basis functions result in minimum values of mean and 

standard deviation as compared to DCT, B-splines and CE-OPT. For example, at n = 500, 

compared to DCT, B-splines and CE-Opt, the optimal basis functions result in improvements in 

mean and standard deviations of eRMS/yd,RMS by up to 1.5 times and 77 times, respectively. The 

nominal values of eRMS/yd,RMS for DCT, B-splines, CE-Opt and optimal basis functions are 0.6686, 

0.6662, 0.6800 and 0.6794, respectively. This demonstrates that the significant improvement in 

mean and standard deviations of eRMS/yd,RMS is achieved without significantly affecting nominal 

tracking accuracy of the FBF approach. Figure 4.3 shows the singular values of Δ̅nom,s for the 

known uncertainty and nominal model. It is observed that the singular values are dispersed on 

either side of 1 and hence, this case represents scenario (iii) in Remark 4.5. Using the singular 

values, the optimal value of n for the proposed robust optimal basis functions should be achieved 

at n = 891 (see Remark 4.5 for more details). The time-domain simulations (see Figure 4.2) show 

that the minimum value of mean(eRMS/yd,RMS) for proposed robust optimal basis functions is 

achieved at n = 890. The values of mean(eRMS/yd,RMS) for n = 890 and 891 are 0.3935 and 0.394, 

respectively. This small difference in estimation of n could be attributed to the fact that the 

Frobenius norm metric only represents a trend and does not consider the effect of the desired 

trajectory. As compared to the other three basis functions, DCT, B-splines and CE-Opt, the 

proposed robust optimal basis functions achieve improvement in minimum value of 

mean(eRMS/yd,RMS) by up to 1.8 times.        
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Figure 4.2 Comparison of normalized RMS tracking error for proposed robust optimal basis 

functions, DCT, B-splines and CE-Opt basis functions, in the presence of uncertainty, for various 

values of number of basis functions, n 

 

   

Figure 4.3 Singular values of Δ̅nom,s  

 

Figure 4.4 shows the singular values of Δ̅nom,s for the optimized nominal model proposed 

in Section 4.5. The maximum singular value of Δ̅nom,s  is 0.9748, which implies that this case 

represents scenario (i) of Remark 4.5 and optimal tracking control is achieved for the highest 

possible value of n. Figure 4.5 shows the normalized RMS tracking error eRMS/yd,RMS for standard 

(arbitrarily selected in Section 4.2) nominal model and the optimal nominal model (proposed in 

Section 4.5) using DCT, B-splines, CE-Opt and the proposed robust optimal basis functions, for 
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various numbers of basis functions (n = 10 to 990). It is observed that the proposed nominal model 

has improved the tracking accuracy of the FBF approach, both in terms of mean and standard 

deviation of eRMS/yd,RMS, as compared to the standard nominal model, for different types and 

number of basis functions. To quantify the improvement, mean(mean(eRMS/yd,RMS)) over n, for each 

combination of nominal model and type of basis functions, is used as a metric and the values are 

shown in Table 4.1. The proposed nominal model has resulted in improvement in tracking error as 

compared to the standard approach for selection of nominal model. For DCT, B-splines and CE-

Opt, the improvement is significant with the proposed nominal model. However, it is observed 

that the value of mean(mean(eRMS/yd,RMS)) for the above three type of basis functions with the 

proposed nominal model is still higher than the value of  mean(mean(eRMS/yd,RMS)) for the standard 

nominal model combined with the robust optimal basis functions. This demonstrates that the 

proposed robust optimal basis functions have improved the tracking accuracy of the FBF approach 

as compared to popular basis functions, irrespective of the nominal model (standard or proposed) 

used. Among the various combinations of types of basis functions and nominal models, the 

proposed two-step robust controller (Remark 4.7) is the best and the CE-Opt basis functions with 

a standard nominal model are the worst. The proposed two-step robust controller has resulted in 

improvement in tracking error by as much as 32% compared to the popular basis functions with 

the standard nominal model.            

 

 

Figure 4.4 Singular values of Δ̅nom,s for optimized nominal model 
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Figure 4.5 Comparison of the standard (arbitrarily selected) nominal model and proposed 

optimal nominal model for four different types of basis functions, (a) DCT, (b) B-splines, (c) 

CE-Opt, (d) proposed robust optimal basis functions, for various values of number of basis 

functions, n   

 

Table 4.1 Summary of mean(mean(eRMS/yd,RMS)) for different combinations of nominal models 

(Standard and Proposed) and types of basis functions (DCT, B-splines, CE-Opt and Robust) 

Basis Functions Standard Proposed 

DCT 0.88 0.71 

B-splines 0.89 0.72 

CE-Opt 0.99 0.74 

Robust 0.69 0.67 

 

    Figure 4.6 shows the normalized RMS control input uRMS/yd,RMS for the combinations of 

different nominal models and basis functions, for various numbers of basis functions (n = 10 to 

990) and Table 4.2 shows max(uRMS/yd,RMS) over values of n. The CE-Opt basis functions are the 

most optimal in terms of the control effort required. It is observed that the proposed nominal model 

results in lower max(uRMS/yd,RMS) as compared to the standard nominal model, for all types of basis 

functions. Among the basis functions, the value of max(uRMS/yd,RMS) is highest (for both nominal 

models) for B-splines, followed by DCT, proposed robust and CE-Opt. The high values for B-

 1σ band

Mean
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splines and DCT can be attributed to the contribution of the very small singular value, whereas, 

proposed robust and CE-Opt basis functions avoid the small singular values by using constraints 

and optimization, respectively. The maximum control effort required by the proposed robust basis 

functions is 2.58 times and 1.18 times the maximum control effort required by CE-Opt basis 

functions, using standard and proposed nominal models, respectively. This demonstrates that the 

proposed robust FBF controller achieves significant improvement in tracking accuracy without 

unduly sacrificing on control effort, as compared to the popular basis functions like DCT and B-

splines.    

 

(a) 

 

(b) 

 

Figure 4.6 Comparison of normalized RMS control input for (a) standard (b) proposed nominal 

models for different types of basis functions, DCT, B-splines, CE-Opt basis functions and 

proposed robust basis functions, for various values of number of basis functions, n 
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Table 4.2 Summary of max(uRMS/yd,RMS) for different combinations of nominal models and types 

of basis functions 

Basis Functions Standard Proposed 

DCT 1.10 × 103 6.81 × 102 

B-splines 7.64 × 109 1.78 × 109 

CE-Opt 9.26 × 100 7.77 × 100 

Robust 2.39 × 101 9.16 × 100 

 

4.6.2  Experiments 

This section demonstrates the effectiveness of the proposed robust FBF controller as 

compared to CE-Opt basis functions using a Lulzbot Taz 6 desktop 3D printer (see Section 3.5.2). 

The experiments use CE-Opt for comparison because of the potential hazards with the high control 

input values associated with popular basis functions such as DCT and B-splines, as shown in 

Sections 3.5.2 and 4.6.1. The frequency response functions (FRFs) of the 3D printer are obtained 

by applying swept sine acceleration signals (with amplitudes ranging from 2 m/s2 to 5 m/s2 in 

increments of 0.2 m/s2) to the printer’s stepper motors (each having 10 µm stepping resolution) 

and measuring the relative acceleration of the build platform and print head using accelerometers 

(SparkFun ADXL335 triple-axis). Figure 4.7 shows the uncertainty and FRFs for 2 m/s2, 3 m/s2, 

4 m/s2 and 5 m/s2. For robust FBF controller, the set {Gaj} consists of the plant dynamics obtained 

from 16 FRFs (l = 16) described above, λj = 1/l and r = 2, i.e., two very small singular values in 

the LSRs. The proposed robust optimal basis functions and CE-Opt basis functions are designed 

for nominal models based on FRFs corresponding to 2 m/s2, 3 m/s2, 4 m/s2 and 5 m/s2, and the 

proposed robust nominal model. A signal with frequency content distributed between 5 and 50 Hz, 

is used as the desired trajectory. The length of the signal is 2.474 seconds, resulting in 2475 discrete 

points (i.e., M = 2474) based on sampling time Ts = 1 ms. The control inputs generated for various 

combinations of basis functions (n = 125) and nominal models, are scaled and sent to the 3D printer 

to emulate 30 different uncertain plant dynamics.  
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Figure 4.7 Frequency response functions (FRFs) corresponding to uncertainty and  

2 m/s2, 3 m/s2, 4 m/s2 and 5 m/s2   

 

Figure 4.8 shows bee-swarm plots comparing the normalized RMS tracking error 

(eRMS/yd,RMS) for the proposed robust and CE-Opt basis functions using four standard nominal 

models (FRFs corresponding to 2 m/s2, 3 m/s2, 4 m/s2 and 5 m/s2) and the proposed robust nominal 

model. Table 4.3 provides the mean and standard deviation values for the different cases. It is 

observed that the proposed robust basis functions perform better than the CE-Opt basis functions 

in terms of mean as well as standard deviation. The improvement in mean and standard deviation 

with the proposed robust basis functions is as high as 1.58 times and 3.73 times as compared to 

the CE-Opt basis functions. The robust nominal model improves the mean and standard deviation 

for robust basis functions by up to 1.34 times and 2.57 times, respectively, as compared to the 

standard nominal models. Whereas, for CE-Opt basis functions, the improvement in mean and 

standard deviation for robust nominal model as compared to standard nominal models is as high 

as 1.65 times and 2.73 times, respectively. Among all the cases, the proposed two-step robust FBF 

tracking controller performs best in terms of both mean as well as standard deviation. As compared 

to combination of CE-Opt basis functions with standard nominal models, the proposed two-step 

robust controller improves the mean and standard deviation by up to 1.84 times and 7.32 times, 

respectively.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
 

(e) 

 

Figure 4.8 Bee-swarm plots showing comparison of normalized RMS tracking error for proposed 

robust basis functions and CE-Opt basis functions using five different nominal models: 

corresponding to (a) 2 m/s2 FRF (b) 3 m/s2 FRF (c) 4 m/s2 FRF (d) 5 m/s2 FRF, and (e) proposed 

robust nominal model (n = 125, M = 2474) 
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Table 4.3 Summary of mean ± standard deviation of eRMS/yd,RMS for robust basis functions and 

CE-Opt basis functions using five different nominal models: corresponding to (a) 2 m/s2 FRF (b) 

3 m/s2 FRF (c) 4 m/s2 FRF (d) 5 m/s2 FRF, and (e) proposed robust nominal model  

Nominal Models Robust CE-Opt 

2 m/s2 FRF 0.7383 ± 0.0436 0.9858 ± 0.1160 

3 m/s2 FRF 0.5874 ± 0.0681 0.9308 ± 0.2078 

4 m/s2 FRF 0.5756 ± 0.0441 0.8096 ± 0.1646 

5 m/s2 FRF 0.7246 ± 0.0731 1.0137 ± 0.1284 

Proposed Robust 0.5494 ± 0.0284 0.6160 ± 0.0761 

 

4.7 Summary 

This chapter analyzes the effect of known uncertainty, basis functions and nominal model 

on tracking accuracy of the FBF approach using the Frobenius norm metric. Similar to other 

methods for feedforward control, the tracking accuracy of FBF suffers in the presence of 

uncertainty. However, basis functions present a tuning parameter exclusive to FBF, which can be 

used to improve its tracking accuracy in the presence of uncertainty. Based on the Frobenius norm 

metric, a methodology for optimal selection of basis functions is presented. The basis functions 

are selected such that the effect of uncertainty on tracking accuracy is minimized, for known 

uncertainty and nominal model. This minimization is achieved while ensuring that the nominal 

tracking accuracy is not affected, and the control input is not very high due to NMP zeros. In 

addition, a procedure for finding the optimal number of basis functions for robust control is 

presented. The Frobenius norm metric is used to find an optimal nominal model for robustness. 

The distinction between the nominal model presented in this chapter and other similar methods in 

the literature, is its applicability to all types of linear systems, including time and parameter varying 

ones, as compared to other methods which are restricted to LTI systems. Combining the optimal 

selection of basis functions and nominal model, a two-step methodology for design of a robust 

FBF controller is proposed. The effectiveness of the optimal basis functions, optimal nominal 

model and their combination as compared to popular basis functions in the literature, viz. DCT 

and B-splines, and the control effort optimal basis functions (CE-Opt), proposed in Chapter 3, is 

demonstrated in simulations as well as experiments. A simple damped oscillator with uncertainties 
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is used in simulations, to demonstrate the effectiveness of proposed robust FBF controller as 

compared to popular basis functions. Experiments on a Taz 6 desktop 3D printer show that the 

proposed two-step robust controller is more effective than using CE-Opt basis functions with 

different arbitrary nominal models.       
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Chapter 5 

Summary, Conclusions and Future Work 

 

5.1 Summary and Conclusions 

Tracking control is a fundamental problem in control engineering. It has broad practical 

applications in several industries, like manufacturing, automotive, robotics and aerospace. This 

dissertation focuses on feedforward tracking control. It is motivated by applications like 3D 

printing where feedforward techniques are very often the only recourse for tracking control due to 

the absence of feedback sensors. There are also several applications where, relative to feedback 

control, feedforward plays an outsized role in achieving excellent tracking control. 

A major issue in achieving excellent tracking control using feedforward approaches is the 

presence of NMP zeros in the dynamics of the controlled plant. Existing methods for feedforward 

tracking control demonstrate varying levels of effectiveness depending on the location of the NMP 

zeros in the complex plane; several of them are not applicable to non-hyperbolic systems (i.e., 

systems with zeros on the unit circle). This dissertation has demonstrated analytically and 

numerically that the FBF approach overcomes this shortcoming of most existing approaches - i.e., 

its effectiveness is not significantly affected by NMP zero location and it is applicable to non-

hyperbolic systems. These findings are very significant in practice because a feedforward 

controller may have to deal with plants with zeros anywhere in the complex plane, and it is not 

uncommon to have plants with one or more zeros on the unit circle. Having an approach that is 

agnostic to zero location nullifies the need to treat each plant specially, e.g., by designing a 

different controller for each plant. 

Although this dissertation has primarily focused on LTI plants to understand and analyze 

the FBF approach and demonstrate its effectiveness, the FBF approach can easily be applied to 

other types of linear systems, for example, LTV, LPV, MIMO (including non-square systems), 

etc. This is unlike many other tracking control methods in the literature which are restricted to LTI 

systems, SISO systems or square MIMO systems. The versatility of the FBF approach combined 
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with its effectiveness for tracking different plant dynamics (irrespective of the zero location in the 

z-plane) make it suitable for tackling a wide range of tracking control problems and simplifies the 

controller design process.  

To analytically compare the effectiveness of the FBF approach, an LTV control method, 

to that of LTI controllers in the literature, this dissertation (Chapter 2) proposes a metric based on 

the Frobenius norm of the LSR of system dynamics. The Frobenius norm metric is used to evaluate 

and compare the FBF approach with popular control methods in the literature, viz. ZPETC and 

TS. The effectiveness of the metric is validated using observations and analytical results from the 

literature. The metric explains the consistency of the FBF approach by showing that the metric 

applied to FBF’s error dynamics is independent of its plant dynamics and basis functions. Its 

genesis from the LSR allows the Frobenius norm metric to be applied to all types of linear 

dynamics. This is unlike many frequency domain based metrics in the literature which are 

restricted to LTI systems. Hence, the Frobenius norm metric presents an opportunity to design and 

analyze linear controllers for specific control objectives. This dissertation presents examples for 

design of controllers using the Frobenius norm metric by proposing methodologies for optimal 

selection of basis functions for minimal control effort and robust tracking using FBF. 

 In the literature, basis functions are used by various control methods but their selection is 

generally ad-hoc. This dissertation (Chapter 3) presents a systematic optimization-based 

methodology for optimal selection of basis functions for FBF to achieve a desired level of tracking 

accuracy with minimum control effort. In most tracking control methods, perfect tracking while 

ensuring boundedness (stability) of the control input is the objective. Alternatively, the tracking 

error is minimized while subjecting the control input to satisfy some constraint(s). Many times 

these control methods result in perfect tracking or almost perfect tracking and utilize the maximum 

achievable control input. However, many engineering applications do not require perfect tracking. 

For example, manufactured parts can tolerate a certain amount of error.  For such applications, the 

two-step optimal FBF controller proposed in this dissertation (Chapter 3) can help achieve optimal 

control effort with desired (tolerable) level of tracking accuracy. In the first step, the number of 

basis functions is selected to achieve a desired level of tracking accuracy and in step two, optimal 

set of basis functions – based on singular vectors of plant dynamics – are determined for minimum 

control effort. Simulations using a simple first order system with varying zero location and 

experiments on a desktop 3D printer are used to demonstrate the effectiveness of the proposed 
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optimal basis functions as compared to popular basis functions such as DCT and B-splines. In 

many cases, it is observed that the proposed basis functions result in orders of magnitude 

improvement in control effort of FBF tracking controller for the same tracking error, as compared 

to popular basis functions in the literature.        

Chapters 2 and 3 assumed that the plant model is known precisely. However, plant 

dynamics always has some uncertainty and the tracking accuracy of feedforward methods such as 

FBF suffers in the presence of such uncertainty. However, unlike other methods in the literature, 

the FBF approach presents an additional tuning parameter, i.e., the basis functions, which can be 

used to improve the robustness of the FBF approach. Using the Frobenius norm metric, this 

dissertation presents an understanding of the effect of the choice of basis functions and uncertainty 

on the tracking accuracy of FBF. It is observed that the metric comprises of two components – 

nominal and uncertainty-related. The nominal component is independent of the type of basis 

functions and plant dynamics, whereas, the uncertainty-related component depends on the known 

uncertainty, nominal model used for filtering and the type of basis functions. An optimal set of 

basis functions that minimize the uncertainty-related component, while maintaining the desired 

level of nominal tracking accuracy and bounds on control effort, are selected. The proposed basis 

functions try to ensure that the deviation between the tracking error due to the uncertainty and the 

nominal tracking error is minimal. In many applications, this property of the proposed basis 

functions could ensure that the uncertainty does not affect tracking accuracy significantly, resulting 

in near consistent tracking even in the presence of uncertainty. In addition, the proposed robust 

basis functions can be complemented with other methods to improve the robustness of the FBF 

approach. This dissertation explores one such approach by proposing an optimal nominal model, 

which is obtained by minimizing a Frobenius norm metric. Combining the proposed basis 

functions and the nominal model, this dissertation proposes a two-step procedure to improve the 

robustness of the FBF approach. In step one, the nominal model is selected to minimize the effect 

of the uncertainty and in step two, the basis functions are selected to minimize the effect of the 

uncertainty. The effectiveness of the proposed two-step robust FBF controller as compared to 

popular basis functions in the literature and arbitrary selection of nominal model, is demonstrated 

using simulation examples and experiments on a desktop 3D printer.      

  The discussion in this dissertation has shown the effectiveness of the FBF approach for 

feedforward tracking control, as compared to popular methods in the literature. Also, the 
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effectiveness of the Frobenius norm metric as a tool for design and evaluation of controllers is 

explored through analysis of the FBF approach and methodologies for selection of basis functions. 

The FBF approach as well as the metric has shown tremendous potential and the following section 

provides some avenues to further explore this potential.    

                

5.2 Recommendations for Future Research 

Chapter 4 proposed an optimal two-step robust FBF controller which avoided large control 

inputs through use of constraints. A possible future research direction could be to find basis 

functions and nominal model such that robustness and control effort are simultaneously optimized. 

This dissertation focused on feedforward control but in many applications feedback is available, 

either in real-time [63] or at regular intervals [47]. Understanding the interaction between FBF FF 

controller and typical FB controllers using the Frobenius norm metric could provide useful insights 

which could be leveraged to improve the design of tracking controllers. This dissertation has 

entirely focused on linear systems but there are many applications in manufacturing [91], robotics 

[92] and aerospace [93] where the dynamics is nonlinear. Many such applications use FF control 

and FF tracking control of nonlinear NMP systems using direct inversion has been explored in the 

literature [94]. A possible future research topic could be application of the FBF approach, 

predicated on linear systems theory, to tracking control of nonlinear systems. As discussed in 

Section 2.3, FBF finds its origins in ILC [49] and basis functions are also used in model predictive 

control (MPC) [95]. Use of the methodology presented in this dissertation for selection of optimal 

basis functions, could be potentially used to address challenges in basis functions based ILC and 

MPC. As discussed in Section 2.3, B-splines are used to relax the assumption on desired trajectory 

of FBF. However, the analysis in Chapters 3 and 4 shows that B-splines result in significant loss 

in control effort and robustness as compared to the optimal basis functions. Although the optimal 

basis functions are efficient, a significant challenge will be implementing them in practice because 

of the associated high computational costs. Addressing this challenge could help in realization of 

practical and efficient FBF controllers.      
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Appendix A 

Lifted System Representation (LSR) 

 

An LTI SISO causal plant G can be expressed as 

 

 
1 2
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where the coefficients gl are the Markov parameters of G. The sequence g0, g1, g2, … also represent 

the impulse response of G. Then 
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For an LTI non-causal controller C 
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the LSR of C can be expressed as 
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Similarly, overall dynamics L and error dynamics Eff can be expressed in LSR as L and Eff. For 

LTI systems, the LSR is Toeplitz. For LTV systems or controllers, the construction of the LSR for 

L and Eff follows a similar process but the resulting matrices are not Toeplitz [65].   
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Appendix B 

BIBO Stability of the FBF Approach 

 

This appendix examines the stability of the LTV system resulting from the FBF method 

using a BIBO stability approach. Let the bound on the desired trajectory, yd(k), be given by 
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 (B.1) 

 

Let us denote the elements of the LSR of FBF’s overall dynamics LFBF as lFBF(j,k)  (0 ≤ j ≤ M, 0 ≤ 

k ≤ M) and hence output y(j) can be expressed as  
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From Eqs. (B.1) and (B.2) one can conclude that 
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Hence, y(k) is bounded by 
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where FBF 
L represents the infinity norm of matrix LFBF. Similarly, u(k) is bounded by 

 

 ( )
dFBF yu k B


 C  (B.5) 

 

The implication is that a bounded desired trajectory, yd(k), results in output, y(k), and 

control trajectories, u(k), which are bounded by the infinity norms of LFBF and CFBF, respectively. 

The bounds on the trajectories depend on matrices LFBF and CFBF, and hence on the system and 

the selected basis functions. This implies that, for BIBO stability, the infinity norms of LFBF and 

CFBF should be bounded. The matrices LFBF and CFBF defined by Eq. (2.11), are quite cumbersome 

to analyze due to the presence of ( )
1

T
−

Φ Φ . As discussed in [49], the analysis can be simplified 

by use of decoupled filtered basis functions  iψ in place of filtered basis functions  iφ . For 

more details on decoupled filtered basis functions, see Appendix E. Based on the discussion in 

Appendix E (Eq. (E.7)), the matrix LFBF can be expressed in terms of decoupled filtered basis 

functions, as [88] 
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where 
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and 
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L is given by 
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The implication of Eqs. (B.7) and (B.8) is that 
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Similarly, for matrix CFBF (based on Appendix E, Eq. (E.7)) 
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For BIBO stability ,  FBF FBF 
   L C . For a finite number of basis functions, this implies 

that 
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The decoupled filtered basis functions ( )i k , k−    , k   ℤ, can be expressed as a 

convolution of corresponding basis function ( )i k  and system G(q) (with a time domain 

representation ( )g k ) as follows 
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Based on Eq. (B.12) 
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The BIBO stability of G(z) implies 

 

 ( )
k

g k


=−

   (B.14) 

 

The implication of Eqs. (B.13) and (B.14) is that 
1iψ  (and hence 

1iφ ) should be bounded for 

BIBO stability, i.e., the basis functions should be absolutely summable.  

The results of this section demonstrate that the LTV system resulting from the FBF method 

is BIBO stable for any finite number of absolutely summable basis functions; basis functions with 

finite length (i.e., for which M   ) will always satisfy these criteria.  
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Appendix C 

Example: Existence and Uniqueness of Solution 

 

This appendix illustrates the rank test (Eq. (2.17)) using an example. Consider the simple 

first order NMP system 
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where K, a and p are the gain, zero and pole of the system, respectively. For the system under 

consideration, ( )u k  and (0)x  can be determined from Eq. (2.15) as  
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Note that ( )u k  is an exponential signal. The initial states are selected as 
T

1n+=X 0 , and for p = 0.5, 

a = 2, n = 50, M = 100, DCT basis functions (defined in Appendix F) 
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implying linearly independent filtered basis functions for the two systems. For a pseudorandom 

binary sequence (PRBS) generated desired trajectory (see Ref. [71] for more details) the RMS 

tracking error for DCT is 2.49 × 10−4 mm. Selecting n = M = 100, for 
T

1n+=X 0  gives 
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implying linear dependence. However, changing the initial states to xi(0) = 10−3 results in  
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 (C.5) 

 

i.e., linearly independent filtered basis functions and the RMS tracking error is 2.37 × 10−15. 

For an NMP system or system with relative degree (more poles than zeros), n = M will 

result in linear dependence because CFBF = G−1, i.e., the FBF controller is obtained by inversion 

of the LSR of plant dynamics, and the LSR of plant dynamics has very small singular values.  
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Appendix D 

Relationship between Metric and System Dynamics 2-norm 

 

Based on the discussion in Appendix A, the squared Frobenius norm of the LSR of Eff can 

be expressed as 
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According to definition of 2-norm of Eff(q) and Parseval’s Theorem [96] 
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Consider 
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and using Eq. (D.1), 
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Re-arrangement of the terms in the equation results in 
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Consider two different values of M, M1 and M2 such that M1 > M2, then 
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where Eff[M1] and Eff[M2] denote the LSRs of Eff(q) for trajectory lengths M1+1 and M2+1, 

respectively. Then 
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The implication is that for M1 > M2 
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i.e., the value of the proposed Frobenius norm metric Je increases as M increases for a given 

dynamics Eff(q).  

Combining Eqs. (D.2) and (D.5) 
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As M→∞, the first two summation terms on right hand side of Eq. (D.9) tend to 0. Assume that 

eff,k is bounded by an exponential function, i.e., 
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where e (on the right hand side) is the Euler’s number and A and µ are positive non-zero constants. 

The implication of the assumption is that the output of dynamics Eff at a particular instant of time 

depends more on input at the current time instant and inputs immediately preceding or succeeding 

the current input as compared to inputs which occurred long time back or will occur after a long 

time in the future. This assumption is true for stable systems. Hence, the third summation term on 

right hand side of Eq. (D.9) is bounded by 
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Consider the bound on the summation, 
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The summation on the right hand side represents summation of an arithmetico-geometric sequence 

[97]. As M→∞ (based on sum of infinite arithmetico-geometric sequence with absolute value of 

common ratio of the geometric part of the sequence bounded by 1, i.e., |e−µ| < 1)   
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which implies that 
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The implication is that (based on Eqs. (D.9) and (D.14)) 

 

 
2

( )   as  
1

ff F
e ffJ E q M

M
= → →

+

E
 (D.15) 



 84 

Appendix E 

Decoupled Filtered Basis Functions 

 

As is evident from Eq. (2.10), the coefficients corresponding to any basis function depend 

on all filtered basis functions which implies that the filtered basis functions are coupled. Hence, 

Eqs. (2.10) and (2.11) require the inversion of an order n+1 matrix, 
T

Φ Φ , which is cumbersome 

numerically and analytically, especially as n increases. The analyses and numerical efficiency of 

the FBF method is therefore facilitated by decoupling the filtered basis functions. 

Let us denote the decoupled filtered basis functions as { ( )}i k  and the corresponding 

unfiltered basis functions as { ( )}i k  such that 
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The coupled and decoupled filtered basis functions are related by the transformation matrix Ω as 

follows 
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where 
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Based on Eqs. (E.1) and (E.3), the matrix 
T

Φ Φ  can be expressed as 

 

 T T T T= =Φ Φ Ω Ψ ΨΩ Ω Ω  (E.5) 

 

Without loss of generality, let us assume that Ω is an upper triangular matrix that can be obtained 

from Cholesky decomposition of 
T

Φ Φ  [98]. Accordingly, Eq. (2.10) can be written as 
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and matrices CFBF and LFBF can be expressed as 
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Note that decoupling has replaced the inversion of 
T

Φ Φ  with the inversion of Ω. The conditions 

for the existence of Ω−1 are the same as those for the existence of ( )
1

T
−

Φ Φ , as discussed in Section 

2.4. 
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Appendix F 

Definition of DCT and B-Spline Basis Functions 

 

The DCT is a frequency-based transform that is widely used in signal processing; its basis 

functions are real-valued cosines defined as [80] 
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For a B-spline of degree m, having n+1 ≤ M+1 control points (same as coefficients of basis 

functions), γ0, γ1, ..., γn, and knot vector [η0 η1 ... ηm+n+1]
T, its real-valued basis functions, φi,m, are 

given by [81] 
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where i = 0, 1, ..., n with ξk  [0,1], representing normalized time, discretized into M+1 points, ξ0, 

ξ1 …ξM,  and ηj is a uniform knot vector, selected such that  
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Appendix G 

Application of Eckart-Young-Mirsky (EYM) Theorem to Tracking Control 

 

This appendix presents the EYM Theorem [99–101] and shows that the FBF controller is 

the optimal solution to rank constrained minimization of the Frobenius norm metric applied to 

tracking error dynamics. 

 

G.1 Eckart-Young-Mirsky (EYM) Theorem  

Consider matrix A (r1×r2, r1 ≤ r2) and 0 < r < r1, r is an integer, SVD of A (assuming full 

rank) is given by 
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then solution to the following problem  
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is given by 
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i.e., a truncated singular value decomposition and 
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The solution is unique if and only if σA,r+1 ≠ σA,r.  

 

G.2 FBF as Solution to the Rank Constrained Optimization Problem 

Consider the rank constrained optimization problem 
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The SVD of I is of the form (the SVD is not unique) 
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For constant M, based on the EYM Theorem, one can conclude that the optimal solution is not 

unique and is of the form 
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Based on Eq. (E.7), it is known that the LSR of FBF overall dynamics, which will vary depending 

on the selected basis functions and the plant, is 
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and based on Eq. (E.1) 
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Every optimal solution of Eq. (G.5) is given by Eqs. (G.7) and (G.8) and every FBF overall 

dynamics can be expressed using Eqs. (G.9) and (G.10). Based on Eqs. (G.7)-(G.10) one can 

conclude that every optimal solution of Eq. (G.5) represents an FBF overall dynamics and every 

FBF overall dynamics is an optimal solution of Eq. (G.5). 
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Appendix H 

Experiments on a Biaxial Linear Motor Driven Stage 

 

This appendix presents the experimental results on optimal selection of basis functions for 

minimum effort tracking control from Ref [73]. The biaxial (X-Y) linear motor driven stage 

(Aerotech ALS 25010), shown in Figure H.1, is used for the experiments. The stage is controlled 

using a P/PI feedback controller, augmented with velocity and acceleration feedforward [102] (see 

Figure H.2). The controller is implemented on a dSPACE 1202 real-time control board with 10 

kHz sampling frequency. A flexible fixture consisting of a block mounted on a slender rod is 

attached to the stage. The block is assumed to represent an apparatus, for example, a tool, a 

workpiece or a measurement device whose position needs to be tracked accurately despite its 

flexible structure. The FBF approach is used as a feedforward tracking controller as shown in the 

block diagram of Figure H.2. The FBF approach takes in the desired position commands yd for 

each axis and generates modified position commands u that are sent to the stage to ensure that the 

actual position of the block y follows yd accurately, in spite of its inherent structural flexibilities. 

The actual position of the block is observed from its accelerations measured using two 

unidirectional accelerometers (PCB piezotronics 393B05).          

 

  

Figure H.1 Biaxial stage with flexible fixture 
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Figure H.2 Block diagram of the FBF controller and experimental setup 

 

Figure H.3 shows the frequency response function (FRF) of the dynamics of each axis of 

the stage, generated by applying swept sine acceleration inputs to the stage and measuring the 

corresponding accelerations of the block using the accelerometers. Each axis has 4 modes (two 

dominant and two less dominant) and hence, the plant dynamics is eighth-order. Prior work of the 

authors [90] provides more details about a continuous-time model for the system, which indicates 

the presence of one NMP zero in the dynamics of each axis. The Markov parameters of the 

dynamics are obtained from the continuous-time model and are used to construct a finite impulse 

response (FIR) representation of the dynamics along each axis. Figure H.3 shows a good match 

between the measured FRF and the FRF generated using the FIR representations (modeled). Based 

on the methodology discussed in Appendix A, the LSR of the dynamics of each axis is generated 

using the FIR representation. Singular values of the LSRs (for M = 10000) are shown in Figure 

H.4. Note that each axis has two very small singular values which deviate from the cluster and 

these singular values result in large control inputs, if the basis functions are not properly selected. 

One of the two singular values along each axis arises from the NMP zero, whereas, the other small 

singular value is a result of relative degree of one (the first Markov parameter is zero). Figure H.5 
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shows the desired butterfly shaped path, whereas Figure H.6 show the desired paths position along 

the X and Y axes (for more details see [90]). The duration of the trajectory is 1 second (i.e., M = 

10000, based on 10 kHz sampling frequency). 

 

 

Figure H.3 Measured and modeled frequency response functions of the X and Y axes of the 

biaxial stage 

 

 

 

Figure H.4 Singular values of the LSRs of the X and Y axes dynamics 
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Figure H.5 Desired path 

 

 

Figure H.6 Desired position trajectories along the X and Y axes 

 

For experiments, the optimal basis functions proposed in Section 3.4 are compared with B-

splines, because they are often the basis functions of choice for manufacturing and robotics 

applications [20,47,48,81,90]. Figure H.7 shows the control input (i.e., modified position 

commands) sent to the X and Y axes for the two sets of basis functions (for n = 600). Also, shown 

are the resultant tracking errors, which are based on position signals derived from measured 

acceleration signals using an observer.  Note that the B-spline based control input show rapid 

growth in magnitude towards the end of the signal because of the small singular values of the LSR 

corresponding to the NMP zero and the relative degree. For safety reasons, a limit ± 10 mm is 

placed on the position commands for both axes, as shown in Figure H.7; the B-spline control input 

saturates at the limit.  Notice that, before saturation, the control inputs for the proposed optimal 

basis functions and B-splines are quite similar which results in similar tracking errors. In the time 
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interval between 0 and 0.99 s, the RMS tracking errors for optimal basis functions and B-splines 

are 263.31 μm and 250.85 μm, respectively, for the X-axis and between 0 and 0.96 s, 171.29 μm 

and 186.12 μm, respectively, for the Y-axis. However, because of saturation, the B-spline based 

commands generate large tracking errors, as shown in Figure H.7. Consequently, the overall RMS 

tracking error for B-splines, along the X and Y axes, are respectively 3 and 19 times the RMS 

tracking error for the optimal basis functions (see Table H.1). Moreover, the optimal basis 

functions require 3% and 13% lower control effort than B-splines for X-axis and Y-axis, 

respectively. The proposed optimal basis functions track much better than B-splines and require 

less control effort.    

 

 

Figure H.7 X and Y control inputs (i.e., modified position command) signals and tracking errors 

for optimal basis functions and B-splines (M = 10000, n = 600) 

 

Table H.1 Summary of tracking error and control effort for experiments 

Basis Functions 
X axis Y axis 

eRMS/yd,RMS uRMS/yd,RMS eRMS/yd,RMS uRMS/yd,RMS 

Optimal 0.06 1.05 0.05 0.98 

B-splines 0.17 1.08 0.94 1.12 
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Appendix I 

A Frequency Domain-based Optimization Approach for Nominal Model Selection for 

Robust Filtered Basis Functions Approach   

 

This appendix presents a frequency domain-based approach for nominal model selection 

to improve the robustness of the FBF approach [70]. Also, presented are simulations and 

experiments on a desktop 3D printer, to demonstrate the effectiveness of the robust FBF approach 

as compared to the standard FBF approach (presented in Section 2.3). 

 

I.1 Definition of Robust Nominal Model 

The standard FBF controller discussed in Section 2.3 assumes that the (nominal) model, is 

a perfect representation of the actual plant. However, in practice, the nominal model is not an 

accurate representation of the actual plant, due to uncertainty. In this section, we propose a robust 

FBF approach that uses a robust nominal model to improve the robustness of the FBF approach. 

The robust nominal model accounts for known uncertainty in G, and retains the elegance of the 

least squares solution which facilitates limited preview filtered B-splines (LPFBS). 

In the presence of uncertainty in G, the optimal tracking controller has been proposed in 

the literature [64] as the controller that minimizes the following cost function (at each frequency, 

ω) over the uncertainty 
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 (I.1) 

 

where f(Δ) is the distribution of the actual plant G w.r.t. the uncertainty Δ. Note that for simplicity 

of notation, the dependence of f(Δ) and Eff on ω is not explicitly shown in Eq. (I.1) and in the 
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following equations. The optimal controller can be obtained by differentiating Jr w.r.t. C* and 

equating the result to zero, where the superscript * denotes complex conjugate. The optimal 

controller is given by 
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The problem is that Copt as defined in Eq. (I.2) cannot directly be used within the FBF framework 

shown in Figure 2.2; it is a stand-alone controller different from CFBF in Eq. (2.11). However, 

notice that the standard FBF approach assumes that the nominal model matches the plant perfectly. 

Hence, Eff = 1 – CGnom and the minimum Eff can be realized using C = Gnom
–1

 . Therefore, to 

approximate C = Gnom
–1

, the standard FBF approach uses Gnom = C−1 to filter the basis functions. By 

analogy, in the presence of uncertainty in G, we want the FBF controller to approximate Copt. 

Therefore, we propose the robust nominal model, Gr, as 
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 (I.3) 

 

Accordingly, referring to Figure 2.2, the robust FBF approach filters the user-defined basis 

functions φi using Gr (instead of the nominal model used by the standard FBF approach), to obtain 

the filtered basis functions φ
ĩ
. The coefficients are then obtained using the least squares solution 

given by Eq. (2.10). Hence, the proposed robust FBF approach retains the elegance of the least 

squares solution, which facilitates LPFBS. 

 

I.2 Incorporation of Dynamic Uncertainty with Kernel Distribution into Robust Nominal 

Model 

The previous section did not consider the specifics of the uncertainty and its distribution. 

The work by Lunenburg [64] in defining Copt in Eq. (I.2) considered only multiplicative uncertainty 
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with uniform distribution. This section presents the robust filter considering dynamic uncertainty 

with a kernel distribution. 

In the presence of dynamic uncertainty, the actual plant can be expressed as 
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where j is the unit imaginary number, r is magnitude of the actual plant, θ is phase of the actual 

plant, ω is frequency in rad/s and the subscripts ‘max’ and ‘min’ denote upper and lower bounds.  

Figure I.1 illustrates G using the Bode plot and the complex plane.  

 

 

Figure I.1 Illustration of dynamic uncertainty using (a) Bode plot and (b) complex plane. 

 

The distribution of uncertainty f(Δ) = f(r,θ) can take different forms. Prior work [69] 

considered a uniform distribution of uncertainty, which is unlikely to hold in practice. Here, 

without loss of generality, a kernel distribution (with normal kernels) is proposed because of its 

versatility. The kernel distribution is defined as follows (for frequency ω) 
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(I.5) 

 

where the indices i = 1, 2, …, l, denote frequency response functions (FRFs) sampled from G, 

corresponding to the different operating conditions; l is the total number of FRF samples; K is the 

normal kernel with mean values (ri, θi) and standard deviations (σr, σθ). The mean values ri and θi 

are the magnitude and phase of the ith FRF at frequency ω, respectively. For a given frequency ω, 

the standard deviations σr and σθ are identical for all l kernels. Figure I.2 depicts an example of 

individual normal kernels and their summation. Substituting function f(r,θ) defined by Eq. (I.5) 

and uncertainty given by Eq. (I.4) in Eq. (I.3), the robust filter can be expressed as 
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Figure I.2 Illustration of kernel distribution of the dynamic uncertainty. 
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Wu & Zou [63] designed an optimal controller in the presence of dynamic uncertainty 

(given by Eq. (I.4)) using worst-case optimization, but assumed a gain modulated inversion 

structure for their optimal controller. To improve the worst-case tracking error using FBF, the 

inverse of the optimal controller proposed by Wu & Zou [63] can be used as the filter Gr, similar 

to Eq. (I.3). 

 

I.3 Setup for Simulation and Experiments 

This section validates the robust FBF approach using simulations and experiments on a 

Lulzbot TAZ 6 desktop 3D printer, shown in Figure 3.4. For system identification and control, 

motion commands are sent to the printer’s stepper motors at 1 kHz sampling rate using a real-time 

controller (dSPACE 1202) via stepper motor drivers (Pololu DRV8825).  

The frequency response functions (FRFs) of the 3D printer are obtained by applying swept 

sine acceleration signals (with amplitudes ranging from 2 m/s2 to 5 m/s2 in increments of 0.2 m/s2) 

to the printer’s stepper motors (each having 10 µm stepping resolution) and measuring the relative 

acceleration of the build platform and print head using accelerometers (SparkFun ADXL335 triple-

axis). The uncertainty region shown in Figure I.3 represents the variations in magnitude and phase 

of the measured FRFs as functions of input acceleration amplitude.  
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Figure I.3 Frequency response functions (FRFs) corresponding to dynamic uncertainty and 

robust filter (nominal model). 

 

 The standard deviations σr and σθ for the normal kernels are estimated optimally from FRF 

data using the fitdist function in MATLAB®. Using Eq. (I.6), the robust filters for the x- and y-

axes are obtained and their FRFs are shown in Figure I.3. Figure I.4 shows the singular values of 

the lifted system representation (LSR) of the robust filters. Since the highest singular values do 

not deviate from the cluster of singular values, the robust filters are stable. However, the two 

smallest singular values for the x axis deviate from the cluster which implies that the robust filter 

for the x axis has a pair of complex NMP zeros (for details about LSR and its singular values, 

interested readers can see [73,103]). 
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Figure I.4 Singular values of LSR of x and y axes robust nominal models showing NMP behavior 

in x axis. 

 

I.4 Simulations 

This section uses simulations to demonstrate the effectiveness of the robust approach 

presented in Section I.1 as compared to the standard approach presented in Section 2.3, using B-

splines as basis functions. This section uses the B-splines [48] because they are commonly used to 

parameterize commands sent to manufacturing machines and robots [85]. The mathematical 

expressions for B-splines are given in Appendix F. 

For comparison of robust FBF with standard FBF, a signal with frequency content 

uniformly distributed between 5 and 50 Hz, along the x axis, is used as the desired trajectory. The 

length of the desired trajectory is 1 second, resulting in 1001 discrete points (i.e., M = 1000) based 

on sampling time Ts = 1 millisecond. For each acceleration magnitude shown in Figure I.5, the 

basis functions are filtered with the corresponding FRF to generate a standard FBF controller for 

that particular FRF. The robust FBF and each case of the standard FBF approach is simulated for 

10,000 realizations of G (generated using the kernel distribution specified by function f(r,θ)), along 

the x axis. B-splines with parameters m = 5 and n = 200 are used as basis functions. The 

performance of the robust FBF relative to standard FBF approach is quantified by the following 

metric q 
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where eRMS,S and eRMS,R denote the root mean square (RMS) errors corresponding to standard and 

robust FBF, respectively, for the 10,000 realizations of G. Figure I.5 plots q for each FRF 

acceleration magnitude. It is seen that robust FBF outperforms the standard FBF approach by 

factors ranging from 1% to 99%, depending on the FRF acceleration magnitude.  

 

 

Figure I.5 Bar graph showing metric defined in Eq. (I.7) for different FRFs based on simulations 

of 10,000 realizations of the actual plant dynamics of the x axis using B-spline basis functions (n 

= 200, M = 1000). 

 

I.5 Experiments 

The model shown in Figure I.6 is printed using the 3D printer, shown in Figure 3.4, with a 

maximum speed of 130 mm/s and acceleration limits of 3 m/s2, 4 m/s2 and 5 m/s2 imposed 

separately on the desired trajectory. To generate the axis-level commands, the controller reads a 

G-code file (generated using CuraTM software package) and parses the G-code information into 

axis-level commands. The model is printed using robust FBF as well as standard FBFs (using FRFs 

corresponding to 3 m/s2, 4 m/s2 and 5 m/s2). Since, the length of the desired trajectory is large, the 

parts are printed using the limited preview version of FBF using B-splines, i.e., LPFBS. The 

LPFBS parameters are nup = 28, nC = 56, LC = 952, m = 5, L = 17 (for more details about the LPFBS 

approach see [20]). For each printed model, the thickness x of each of the 24 triangles is measured 

using Husky digital calipers (model# 1467H, 10 μm resolution) and compared to desired thickness 
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of the triangles xdes = 4.05 mm.   

 

 

Figure I.6 (a) CAD model of the part and (b) sample of a printed part. 

 

Figure I.7 shows a bee-swarm plot comparing the relative error (Δx/xdes, Δx = |xdes – x|) in 

the triangles for the robust and standard FBF (using FRFs 3 m/s2, 4 m/s2 and 5 m/s2) cases. In an 

average sense, the robust FBF approach improves Δx/xdes w.r.t. 3 m/s2, 4 m/s2 and 5m/s2 standard 

FBFs by 7%, 2% and 12%, respectively. Using the worst-case scenario as a metric, the robust FBF 

approach improves Δx/xdes by 4%, 10% and 16%, respectively, as compared to 3 m/s2, 4m/s2 and 

5 m/s2 standard FBFs.    

 

 

Figure I.7 Bee-swarm plot comparing the relative error in thickness of the total 72 triangles of 3 

printed parts using robust FBF and three cases of standard FBF generated using the FRFs 

corresponding to the acceleration magnitudes shown in the figure. 
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I.6 Summary 

This appendix has presented a robust filtered basis functions approach for feedforward 

tracking control of linear time invariant systems with known uncertainty. The standard filtered 

basis functions approach uses an arbitrarily selected nominal model of the plant for filtering basis 

functions. Conversely, the proposed robust FBF approach substitutes a robust nominal model in 

place of an arbitrary nominal model. As the robust nominal model, this paper proposes the inverse 

of an optimal controller obtained by minimizing a cost function over the range of known plant 

uncertainty. The robust and standard FBF approaches are compared in simulations and 

experiments using a commercial desktop 3D printer as an example. Dynamic uncertainty with a 

kernel distribution is used to model the uncertain 3D printer. The simulations and experiments 

demonstrate the effectiveness of the robust approach as compared to the standard method.  

Ref. [70] also discusses stability issues associated with the robust filter and presents an 

approach for resolving them.  
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