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spectively. Mr. Méziane got me hooked on mathematics and made me proud of this

vocation. In the same vein, Mr. Letang’s thorough and ambitious teaching, together

with his constant encouragements, built up the conviction that hard work and math-

ematics can get you anywhere you want. I am also grateful to my physics teachers
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ABSTRACT

Entropy-Stable (ES) schemes have gathered considerable attention over the last

decade, especially in the context of under-resolved simulations of compressible turbu-

lent flows, where achieving both high-order accuracy and robustness is difficult. ES

schemes provide stability in a nonlinear and integral sense: the total entropy of the

discrete solution can be made non-decreasing, in agreement with the second principle

of thermodynamics. Additionally, the amount of entropy produced by the scheme is

known and can be modified, making room for analysis and improvements. This thesis

delves into some of the challenges currently limiting their use in practice.

The current state-of-the-art solves the compressible Navier-Stokes equations for

a single-component perfect gas in chemical and thermal equilibrium. This model is

inappropriate in aerospace engineering applications such as hypersonics and combus-

tion, which typically involve chemically reacting gas mixtures far from equilibrium.

As a first step towards enabling their use for these applications, we formulated ES

schemes for the multicomponent compressible Euler equations. Special care had to

be taken as we found out that the theoretical foundations of ES schemes begin to

crumble in the limit of vanishing partial densities.

The realization that ES schemes can only go as far as their theory led us to review

some of it. A fundamental result supporting the development of limiting strategies

for high-order methods is the minimum entropy principle for the compressible Euler

equations. It states that the specific entropy of the physically relevant weak solution

does not decrease. We proved that the same result holds for the specific entropy of

the gas mixture in the multicomponent case.

xvii



While entropy-stability is a valuable property, it does not imply a well-behaved

solution. One must recall that the second principle is a prescription on the correct

behavior of a system at the global level only. To better understand how ES schemes

may or may not improve the quality of the numerical solution, we revisited two clas-

sical problems encountered in the development of shock-capturing techniques.

First, we studied the receding flow problem, which is a simple setup used to

study the anomalous temperature rise, termed “overheating”, typically observed in

shock reflection and shock interaction calculations. Previous studies showed that the

anomaly can be cured if conservation of entropy is enforced, but at the considerable

price of total energy conservation. Entropy-Conservative (EC) schemes, a particular

instance of ES schemes, can achieve both simultaneously and therefore appeared as

a potential solution. We showed that while the overheating is correlated to entropy

production, entropy conservation does not necessarily prevent it.

Second, we studied the behavior of ES schemes in the low Mach number regime,

where shock-capturing schemes are known to suffer from severe accuracy degrada-

tion issues. A classic remedy to this problem is the flux-preconditioning technique,

which consists in modifying artificial dissipation terms to enforce consistent low Mach

behavior. We showed that ES schemes suffer from the same issues and that the

flux-preconditioning technique can improve their behavior without interfering with

entropy-stability. Furthermore, we demonstrated analytically that these issues stem

from an acoustic entropy production field which scales improperly with the Mach

number, generating spatial fluctuations that are inconsistent with the equations. An

important outgrowth of this effort is the discovery that skew-symmetric dissipation

operators can alter the way entropy is produced or conserved locally.
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CHAPTER I

Introduction

Together with the advent of High-Performance Computing, Computational Fluid

Dynamics (CFD) simulations have significantly contributed to the advancement of

Aerospace Engineering over the last several decades. CFD simulations offer the

prospect of a more efficient alternative to the costly ground-based and in-flight exper-

iments commonly used in Aircraft and Spacecraft Design, which to this date remain

immovable. They can also provide engineers with a more detailed description of the

physics of interest, enabling a more thorough investigation of the design space, mak-

ing more room for creativity and innovation, and fostering fundamental research.

Implementation aspects aside, CFD comprises two fundamental components. The

first component is a physical model, that is a mathematical representation of the

physics of interest. In fluid mechanics and many other fields, the model typically

consists of a system of Partial Differential Equations (PDE) such as the Potential

flow equations, the Navier-Stokes equations or the Euler equations, which for com-

pressible flows in one dimension write:

∂

∂t


ρ

ρu

ρet

+
∂

∂x


ρu

ρu2 + p

(ρet + p)u

 = 0. (1.1)
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In the above system, ρ is the density, u is the velocity, et is the total energy and

the pressure p is determined by an equation of state. Analytical solutions to these

equations are not available in practice, hence the need to develop numerical schemes

(that is the second component) which can solve the chosen model with satisfying

accuracy and speed. In more concrete terms, the governing equations are discretized

in space and time using a variety of techniques such as the finite difference, finite

volume and finite element methods.

There is a plethora of reasons why developing reliable numerical schemes is an

extremely complex task. Many of them can be traced back to the plague of under-

resolution. On one hand, the governing equations are continuous, i.e. they involve

the flow field at every single point in the domain. On the other hand, the numerical

scheme typically seeks a discrete1 solution by solving a finite set of equations for

the flow field at finite locations in space and time with no knowledge of the solution

anywhere else. This limitation comes from cost considerations. The finer the grid, the

more equations to solve and the more expensive and lengthy the simulation becomes.

For a number of discretization techniques2, under-resolution manifests through

the appearance of discontinuities or abrupt changes in the discrete flow field. They

threaten the robustness of the scheme, that is its ability to always predict a flow field

with finite and physical values (the velocity u for instance can be of any sign, but

the density ρ should not be negative). They also challenge its accuracy, that is its

ability to provide the best answer possible for a given resolution. Without getting into

details, the importance of handling discontinuities properly can be comprehended by

simply recalling that our physical models are PDEs which relate the local variations

of the variables of interest in time to their local variations in space. Hence the root

1We acknowledge that the very idea of assuming a discontinuous flow field can be challenged
[156].

2Continuous finite-element methods represent the flow field everywhere. Instead of discontinu-
ities, they have to deal with oscillations or “wiggles” [2] which pose the same threats as discontinu-
ities.
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problem is not that discontinuities exist on the grid, because nothing interesting would

happen otherwise. The problem is that the continuous equations do not tell us how

discrete gradients should drive discrete physics.

1.1 Challenges in compressible flow simulations

1.1.1 Shock-capturing

A lot of the research effort on numerical schemes has been spent on the pre-

diction of shock and contact waves in compressible inviscid flows. While they are

not completely grasped at the moment, there is some consensus about the properties

such shock-capturing3 schemes should have. The leading thread is that the numeri-

cal scheme should remain physically consistent with the governing equations despite

under-resolution. While shocks and contacts discontinuities are not smooth flow phe-

nomena (to the human eye in the very least), they satisfy the Rankine-Hugoniot

conditions which are obtained by leveraging the fact that the model equations de-

scribe conservation of mass, momentum and energy. One of the first requirements is

therefore that the scheme should be conservative [21]. Another requirement stems

from the observation that shocks and contacts are basically disturbances created by

a moving body. These disturbances propagate in the fluid at finite speeds. This

observation is consistent with the governing equations (1.1) which, through their hy-

perbolic nature, naturally describe wave motion. Hence, the scheme should be able

to propagate waves accurately. The linear advection equation for a scalar field u in

one-dimension:

∂u

∂t
+ a

∂u

∂x
= 0, (1.2)

which describes solutions which propagate at a constant speed a, is one of the test-

bed equations to assess the wave propagation capability of a scheme4. It is also one

3Shock-fitting [3, 4] techniques fall outside the scope of this thesis.
4In one dimension that is [1].
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of the systems from which some of the early foundations of CFD, such as Von Neu-

mann analysis [7] and modified PDE analysis [6] and the Courant-Friedrichs-Lewy

(CFL) condition [5] were built. The stability analysis of numerical schemes for linear

systems is now well-established [8, 9], and several methods such as the Lax-Friedrichs

scheme, the Lax-Wendroff scheme, the MacCormack scheme and the upwind scheme

[11], which were developed in that context are now part of the foundations of modern-

shock capturing techniques.

Linear stability analysis shows limits for nonlinear PDEs, where discontinuous so-

lutions can form from smooth initial conditions and are not uniquely determined by

them. Considerable progress towards nonlinear stability was achieved for nonlinear

scalar PDEs, where monotone schemes [16, 17] were shown to always converge to

the physically relevant solution, as a consequence of being consistent with entropy

inequalities [18, 19]. Their limitation to first-order accuracy [15, 16, 17] motivated

the Total-Variation-Diminishing (TVD) algorithms introduced by Harten [13] which

can achieve 2nd-order accuracy and satisfy entropy inequalities. Extensions of TVD

schemes from scalar PDEs to nonlinear PDE systems were obtained using exact Rie-

mann solvers [12, 26], approximate Riemann solvers such as Roe’s [10] and the flux-

vector splitting technique developed by Steger [28] and Van Leer [29]. The TVD

property is no longer provable, but consistency with entropy inequalities can be re-

tained, depending on the Riemann solver [27, 22]. Other TVD-type high-resolution

schemes include the MUSCL scheme of Van Leer [24], the flux-corrected transport

(FCT) scheme of Boris and Book [25] and the Piecewise Parabolic Method of Colella

and Woodward [23]. We refer the interested reader to the review of Yee [20] and the

book of Levecque [14] for more details on the development and applications of TVD

schemes.

The accuracy degradation problems of TVD schemes near extrema motivated the

development of uniformly high-order schemes such as the Essentially Non-Oscillatory

4



(ENO) schemes of Harten et al. [30]. The idea is to achieve high-order accuracy by

wisely choosing the reconstruction stencil, avoiding interpolation across discontinu-

ities. Further improvements in accuracy and efficiency were brought with the class of

Weighted ENO (WENO) schemes introduced by Liu et al. [31] and further developed

by Jiang & Shu [32]. Despite the lack of stability property in the nonlinear systems

case, ENO and WENO schemes have been successfully applied to a wide range of

problems [33].

Another shock-capturing approach that finds its roots in the seminal work of Von

Neumann and Richtmyer [34] is the Artificial Viscosity (AV) method. It consists

in using centered schemes for the convective terms and adding artificial dissipation

terms to stabilize the solution. The magnitude of these dissipation operators is de-

termined by adjustable artificial viscosity coefficients. The AV approach has been

further developed in the spectral context by Tadmor [36] and Guo et al. [37] and in

the finite-difference context by Cook & Cabot [38, 39], Cook [40] and Kawai & Lele

[41]. The foundations of the AV method are not as theoretical as those of monotone

or TVD schemes, but their simplicity and flexibility are attractive. A different per-

spective on the roots of AV methods is given by Mattsson & Rider [35].

While high-order accuracy and robustness are desirable attributes of a shock-

capturing scheme, they do not guarantee a well-behaved solution. There is a number

of situations where the numerical solution exhibits anomalous behavior which can-

not be resolved by either. To give a few examples: -carbuncles in blunt-body flows

[148, 55, 54, 149]; -pressure oscillations in slowly moving shocks [150] and material

interfaces in multicomponent flows [185, 184, 152]; -wall heating in shock reflection

and shock interaction [167, 162]; -excessive damping of acoustic waves [151] and vor-

tical structures [236]. Other anomalies are documented in the work of Quirk [155].

These errors can further complicate the simulation of compressible turbulent flows as

shown by Johnsen et al. [153], Larsson & Lele [154] and Cook [152].
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1.1.2 Turbulence

In addition to properly capturing sharp flow features such as shocks, another

considerable obstacle that has stalled the advance of CFD over the last two decades

is the simulation of turbulent flows. These are characterized by a very wide range of

spatial and temporal scales which cannot be fully solved in acceptable turn around

times for engineering applications. This brings back to the table the problem of

under-resolution, but with the added complexity that there is no a priori knowledge

about their inherent structure. Unlike shocks, they are not observable and they

unfortunately do not come with their own “Rankine-Hugoniot conditions”. The only

thing we know with certainty is that with high-enough resolution these discontinuities

would not exist5.

1.1.2.1 High-resolution methods

The high resolution requirements posed by turbulent flows motivated the devel-

opment of spectral [89, 90] and pseudo-spectral [91] methods. They enabled some of

the first numerical simulations of incompressible turbulent flows by Smagorinsky [94],

Fox & Lilly [95], Rogallo & Moin [97], Kim et al. [98], and Spalart [99], providing a

valuable complement to experimental data in support of the longtime effort to grasp

their physics. When the spatial and temporal scales of the flow are not completely

resolved, the stability of these algorithms is threatened by the appearance of aliasing

errors [96, 91, 92], which induce non-physical kinetic energy transfers between scales.

Several de-aliasing approaches such as high-wavenumber filtering [93] were proposed

to alleviate these issues.

Given the limitation of spectral methods to simple geometries and boundary condi-

tions, various high-order finite difference schemes were developed. Using Fourier anal-

5similar statements could actually be made about shocks, whose thickness is of the order of the
mean free path.
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ysis, Lele [100] developed high-order compact finite difference schemes, which com-

bined with filters can achieve resolution levels comparable to those of spectral meth-

ods. Rai & Moin [101] developed high-order upwind finite difference schemes and high-

lighted their robustness. Their work motivated further use for compressible turbulent

configurations [102, 103]. However, these schemes were also shown to be overly dissi-

pative in more under-resolved configurations [104, 105]. A compromise between accu-

racy and robustness was found in finite-difference schemes which discretize the con-

vective terms of the governing equations in split forms [106, 107, 108, 109, 110] which

can enable discrete consistency with conservation of kinetic energy in incompressible

flows and conservation of entropy [113, 114] in compressible flows. Summation-by-

Parts finite difference operators [79, 80] are key components of these schemes. A

comprehensive review of these techniques can be found in Zang [111] and Morinishi

[115].

The Discontinuous Galerkin (DG) method [117, 118, 116] is currently one of the

flagship high-order discretization techniques [119] under development for turbulent

flow simulations [138, 139, 122, 119]. DG methods combine the attractive resolution

properties of spectral methods with the geometric flexibility of finite-element meth-

ods, which gives them an edge over finite difference methods in flow configurations

which require unstructured meshes. Their compact nature also makes them more

amenable to high-performance computing [122], and adaptive h/p refinement strate-

gies [122, 119].

Despite their geometric flexibility and resolution properties, DG methods suffer

from aliasing issues as well. And while many of the techniques (de-aliasing, filtering,

kinetic energy preservation) used in the spectral and finite difference context have

been successfully adapted to the DG framework [120, 121, 123, 124, 125], they fail

to overcome the robustness issues of DG schemes for compressible turbulent flows at

high Reynolds numbers. That is to say that for such flows, aliasing is not the primary
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cause of instability. The interested reader is referred to the recent studies of Moura

et al. [140], Fernandez et al. [141, 143] and Mengaldo et al. [142].

1.1.2.2 Modeling and numerics

In parallel to developing high-resolution schemes, considerable efforts have been

put into reconsidering the physical model itself. This is where the field of turbulence

modeling begins. Its primary goal is to develop alternatives to classical models such as

the Navier-Stokes equations, which in addition to providing a faithful representation

of the flow physics, should account for the reality of under-resolution and prescribe

some structure to it. These are generally obtained by formal decomposition of the

’exact’ flow field into resolved and unresolved components and by manipulating the

baseline governing equations in such a manner that new equations governing the re-

solved flow field components only are obtained. These equations will also ineluctably

introduce some closure problem to solve. The two most established turbulence ap-

proaches in CFD are Reynolds Averaged Navier-Stokes (RANS) [126] models and

Large Eddy Simulation (LES) [94] models. The former enabled the first affordable

turbulent flow calculations for engineering purposes and is now routinely used in in-

dustry. The latter, enabled by more powerful computers, has been emerging as both

a complement and an alternative to RANS models which show limits in predicting

turbulent flows where unsteady flow features driving design-critical phenomena such

as flow separation must be captured with accuracy. Going into the specifics of each

approach, their developments and applications would take us far beyond the scope of

this thesis. We refer the reader to the comprehensive book of Sagaut et al. [127].

The emphasis turbulence modeling puts on physical model development does not

reduce the importance of numerical scheme development. Much to the contrary, it

amplifies it, and most of the aforementioned high-resolution methods were actually

developed as potential baseline schemes to “realize” these new models. However, the
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successful combination of both, outside the ideal but impractical spectral context

[133, 134, 135], remains elusive to this date.

For the validity of the turbulence model to be properly assessed, the discretization

errors introduced by the scheme need to be small enough. Quantifying these errors

is a complicated task [130, 129]. Spectral analysis techniques are typically used for

that purpose [129, 140, 141, 142] but the insights they provide is limited. Controlling

these errors is even harder. Shock-capturing schemes are known to introduce numer-

ical errors which make turbulence models inactive [105, 104, 128], but they cannot

be easily discarded because the dissipation introduced by turbulence models alone

struggles to stabilize the solution in under-resolved configurations.

Perhaps as a consequence of these complications, the view that physical models

should be rethought in turbulent flow simulations does not have unanimous support

among practitioners. Part of the community actually advocates a no-model or Implicit

LES (ILES) approach [136, 137], where the baseline physical model is left untouched

and the artificial dissipation the shock-capturing scheme introduces is viewed as an

implicit turbulence model. This stance stems from past studies which showed good

results without turbulence models [131, 138, 139]. There has also been work showing

through modified PDE analysis [132, 136] that the equations the scheme effectively

solves do have the markings of a turbulence model.

1.2 Entropy-Stable schemes

1.2.1 A brief overview

A number of systems of conservation laws imply additional conservation equa-

tions for mathematical entropies, namely scalar convex functions of the conserved
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variables. For instance, the compressible Euler equations (1.1) imply:

∂

∂t
(−ρs) +

∂

∂x
(−ρus) = 0, (1.3)

where s = ln(p) − γ ln(ρ) is the specific entropy. In shock calculations, another

well-established guideline is that entropy should be produced across shocks. In more

formal terms, this is equivalent to requiring that the numerical scheme should be

consistent, in an integral sense, with the inequality:

∂

∂t
(−ρs) +

∂

∂x
(−ρus) < 0, (1.4)

Building from extensive theoretical work [42, 43, 44, 45, 46, 47, 48] on the struc-

ture of such systems, Tadmor [49] introduced finite-volume discretizations which are

consistent with either the conservation equation for entropy or the entropy inequality

at the semi-discrete level. The scheme is termed Entropy-Conservative (EC) in the

first case and Entropy-Stable (ES) in the second case. EC fluxes, which are defined

by a scalar EC condition, and ES fluxes, which are obtained by combining an EC flux

with appropriate dissipation operators, are the main two ingredients for this purpose.

Despite some developments in the following years, which include the high-order

fully-discrete entropy-conservative schemes of LeFloch et al. [50] and the fully-discrete

entropy-stability analysis of Tadmor [51], ES schemes did not receive much attention

partially because of the complex form of the first EC fluxes Tadmor proposed, which

did not foster practical applications. Important contributions were subsequently

brought by Roe and Ismail [52, 55, 54] who derived a simple EC flux by solving

the scalar EC condition algebraically, and provided an upwind-type entropy-stable

dissipation operator, leading to the first ‘affordable’ entropy-stable scheme. Their

contributions were made as part of an attempt to cure the longtime carbuncle prob-

lem in hypersonic flows by trying to produce the right amount of entropy across the
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shock structure. The techniques used in the construction of this affordable scheme

can be used for other systems such as the shallow water equations [56] and the ideal

and relativistic MHD equations [57, 58].

ES schemes further gained attention when high-order formulations such as the

TecNO schemes of Fjordholm et al. [60] and the space-time DG scheme of Mishra

& Hiltebrand [67] started to emerge. TecNO schemes leverage the previous work of

LeFloch et al., the entropy-stable dissipation operator of Roe [52] and the sign prop-

erty of the ENO reconstruction proved by Fjordholm et al. [61]. The scheme of Mishra

& Hiltebrand established some of the missing links between Tadmor’s framework [49]

and the space-time DG scheme of Barth [59], which achieves entropy-stability at

the fully-discrete level in a different way. A significant contribution was brought by

Fisher & Carpenter [62] who generalized the constructs of entropy-conservation and

entropy-stability to Summation-By-Parts operators [79, 80, 81, 82, 83, 84] and devel-

oped the first high-order entropy-stable finite-difference scheme for the compressible

Navier-Stokes equations. They also made the first comparisons with existing high-

order schemes, such as the kinetic energy preserving scheme of Subbareddy & Candler

[112], which highlighted the superior robustness of ES schemes in under-resolved sim-

ulations of compressible turbulent flows. Their contribution is largely to credit for

the recognition that, quoting from the NASA CFD Vision 2030 Study [66], “Longer

term, high-risk research should focus on the development of truly enabling technologies

such as monotone or entropy stable schemes in combination with innovative solvers

on large-scale HPC hardware.” Their contribution also set the stage for what is cur-

rently the most actively developed high-order entropy-stable numerical framework

[85, 86, 87, 88, 69].

The superior robustness properties of ES schemes in the severely under-resolved

high-order setting have been further established by the work Diosady & Murman [68],

Pazner & Persson [70] and Fernandez et al. [71], and spurred considerable efforts on
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the development of code infrastructures which build upon this numerical framework.

An example is the eddy [74, 73, 75, 76, 77, 78] solver developed at NASA Ames

Research Center for the simulation of turbulent separated flows.

1.2.2 Stance and goals of the thesis

The naming ‘entropy-stable’ does not exclusively apply to Tadmor’s family of

schemes, even though we use it as such throughout this thesis. It generally applies to

any scheme which is consistent with entropy inequalities such as (1.4) at the discrete

level. Godunov-type schemes, which include the well-known Roe scheme, are built

upon the knowledge of exact and approximate solutions to Riemann problems at in-

terfaces. These schemes can achieve entropy-stability under conditions laid out in the

seminal work of Van Leer, Harten and Lax [27]. The same goes for other schemes

such as the Lax-Friedrichs scheme and the E-schemes of Osher [72]. We should also

mention the schemes recently developed by Guermond and collaborators [176, 177],

which on top of entropy-stability can ensure the positivity of density and pressure.

In view of the challenges posed by the simulation of compressible flows, we find

Tadmor’s approach to be more appealing. This is mainly because entropy-stability is

achieved in a sharper way. Indeed, the user can enforce entropy-conservation, that is

no production of entropy, if deemed necessary, and when entropy-stability is enforced,

it comes with the precise knowledge of how much entropy is being produced at the

discrete level. This contrasts with the other entropy-stable schemes for which the

user only knows that entropy is being produced. This knowledge can aid in better

understanding some of the fundamental problems faced by shock-capturing schemes

(last paragraph of section 1.1.1), as entropy production is often found at the center

of the discussion [52, 55, 35]. This knowledge can also be leveraged in the context

of turbulence, where one of the main challenges is to strike a balance between high-

order accuracy and robustness. Entropy production can serve as a metric for how
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much information is lost because of stabilization, as well as for how unstable the

scheme becomes when the stabilization is modified. What’s more, entropy turns out

to be an important physical quantity in compressible turbulent flow theory as well

[157, 158, 159, 160]. Viewed from this angle, entropy could also provide a common

language enabling the fields of turbulence modeling and numerical analysis to work

together6. In this regard, the fact that Tadmor’s framework leaves to the user the

responsibility of figuring out what is the right way to conserve or produce entropy

is beneficial. The standard entropy-conservative flux and dissipation operator in use

as of now are Roe’s [52], but nothing is set in stone. Upon understanding how

entropy-stable schemes manage entropy at the discrete level, turbulence theoreticians

for instance could propose their own EC/ES discretization. All in all, the stance

of this thesis is that ES schemes could make for a good foundation7 supporting the

development of CFD algorithms for compressible flows.

This thesis has two primary goals. The first one is to further develop this foun-

dation, not towards more advanced high-order discretizations, but towards enabling

applications to more complex physical models. The second goal is to better under-

stand how entropy-stable schemes work. That is not only understanding how they

can be constructed, but also understanding how they may or may not improve the

quality of the numerical solution. We make a conscious effort to use entropy as a lens

in this effort. Not doing so would be counter-intuitive in view of the framework we

chose to work with.

It is important to recognize that entropy-stable schemes have garnered attention

mostly for providing a potential solution to the stability issues of high-order methods

in under-resolved compressible turbulent flow simulations. Putting aside the fact that

6The ILES/no-model approach was mentioned earlier for completeness only. We do not advocate
for it.

7We do not see entropy-stability as a finality or “the holy grail of numerical analysis” [65]. We
see it as a good starting point.
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entropy-stability does not make for an unbreakable code8, entropy-stable schemes do

not enjoy the same popularity and practical interest elsewhere. The reason for that

is simple. The reader will quickly realize that entropy-stability does not guarantee

a well-behaved solution. It is for this precise reason that we decided to investigate

some of the shock-capturing problems mentioned at the end of section 1.1.1, where

stability is not the problem. We believe that there is more to learn about local behav-

ior and numerical error from these problems than from the canonical turbulent flow

configurations typically used to highlight the robustness of entropy-stable schemes.

1.3 Contributions and outline

In chapter 2, the numerical crafts of entropy-stable schemes and the theory be-

hind them are covered. The remaining chapters report on the individual contributions

of the thesis.

In chapter 3, we study the receding flow problem, which is a simple setup used to

study the anomalous temperature rise, termed “overheating”, typically observed in

shock reflection and shock interaction predictions. Previous studies showed that the

anomaly can be cured if conservation of entropy is enforced, but at the considerable

price of total energy conservation. Entropy-Conservative (EC) schemes can achieve

both simultaneously and therefore appeared as a potential solution. We show that

while the overheating is correlated to entropy production, entropy conservation does

not necessarily prevent it.

The current state-of-the-art solves the compressible Navier-Stokes equations for

a single-component perfect gas in chemical and thermal equilibrium. This model is

inappropriate in aerospace engineering applications such as hypersonics and combus-

tion, which typically involve chemically reacting gas mixtures far from equilibrium.

As a first step towards enabling their use for these applications, we formulate, in

8entropy-stability does not guarantee that density for instance will remain positive
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chapter 4, ES schemes for the multicomponent compressible Euler equations. Special

care had to be taken as we found out that the theoretical foundations of ES schemes

begin to crumble in the limit of vanishing partial densities.

The realization that ES schemes can only go as far as their theory led us to review

some of it. A fundamental result supporting the development of limiting strategies

for high-order methods is the minimum entropy principle proved by Tadmor for the

compressible Euler equations. It states that the specific entropy of the physically

relevant weak solution does not decrease. In chapter 5, we prove a minimum entropy

principle for the mixture’s specific entropy in the multicomponent case, which implies

that the aforementioned limiting strategies could be extended to this system.

In chapter 6, we study the behavior of ES schemes in the low Mach number

regime, where shock-capturing schemes are known to suffer from severe accuracy

degradation issues. A classic remedy to this problem is the flux-preconditioning tech-

nique, which consists in modifying artificial dissipation terms to enforce consistent low

Mach behavior. We showed that ES schemes suffer from the same issues and that the

flux-preconditioning technique can improve their behavior without interfering with

entropy-stability. Furthermore, we demonstrated analytically that these issues stem

from an acoustic entropy production field which scales improperly with the Mach

number, generating spatial fluctuations that are inconsistent with the equations. An

important outgrowth of this effort is the discovery that skew-symmetric dissipation

operators can alter the way entropy is conserved or produced locally.
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CHAPTER II

Theoretical and Numerical Background

While in this thesis we only work with the compressible Euler equations and some

of its variants, the concepts and techniques proper to entropy-stable schemes apply

to a broader range of systems. Therefore, we consider general hyperbolic systems of

conservation laws in one dimension as follows:

∂u

∂t
+
∂f

∂x
= 0, (2.1)

where u = u(x, t) is the vector of conserved variables and f = f(u) is the vector of

fluxes.

2.1 Weak solutions, entropy and symmetrization

It is well known that discontinuous solutions to (2.1) can develop from smooth

initial conditions u(x, 0) when the fluxes are nonlinear functions of the conserved

variables. Weak solutions must therefore be sought. Unfortunately, these are not

uniquely defined and one needs additional conditions to hopefully find the right one,

or at least discard the non-physical ones.

It is common practice to view physical solutions as those arising as vanishing vis-

16



cosity limits, u(x, t) = limε→0 uε(x, t), of solutions uε(x, t) to the regularized system.

∂uε

∂t
+
∂f(uε)

∂x
= ε

∂2uε

∂x2
, ε > 0. (2.2)

A number of hyperbolic systems admit a convex extension [46], in the sense that they

imply an additional conservation equation for a mathematical entropy U :

∂U

∂t
+
∂F

∂x
= 0, (2.3)

where the entropy pair (U, F ) = (U(u), F (u)) is such that U(u) is strictly convex and

the compatibility relation

∂U

∂u

∂f

∂u
=
∂F

∂u
, (2.4)

necessary for the system (2.1) to imply (2.3), is satisfied. The compressible Euler

equations qualify with (U, F ) = (−ρs,−ρus) for instance. For systems endowed with

such an entropy structure, one has:

(
∂U

∂uε

)
× (2.2) =⇒ ∂U(uε)

∂t
+
∂F (uε)

∂x
= ε

(
∂U

∂uε

)
∂2uε

∂x2

Using a chain rule on the right hand side term and using the convexity of U , it can

be showed that:

∂U(uε)

∂t
+
∂F (uε)

∂x
≤ ε

∂2U(uε)

∂x2
.

In the limit ε→ 0, this leads to the well-known entropy inequality:

∂U

∂t
+
∂F

∂x
≤ 0, (2.5)

which makes for an indirect way to establish whether a weak solution is physical. For

the compressible Euler equations with (U, F ) = (−ρs, −ρus) the above inequality

leads to the well-known entropy conditions which should be satisfied across shock
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discontinuities [47].

Besides, Mock [45] showed that the existence of an entropy equation (2.3) also

implies the existence of a one-to-one mapping u→ v, with:

v :=

(
∂U

∂u

)T
, (2.6)

which symmetrizes the original system. This means that, starting from the quasi-

linear form of the original system (2.1):

∂u

∂t
+ A

∂u

∂x
= 0, A :=

∂f

∂u
, (2.7)

applying the change of variables u→ v turns (2.7) into a system of the form:

H
∂v

∂t
+B

∂u

∂x
= 0, H :=

∂u

∂v
, B :=

∂f

∂v
= AH, (2.8)

where B and H are symmetric, and H is symmetric positive definite. Such systems

are called symmetric hyperbolic and are appreciated in the analysis of PDEs [46, 172].

The vector v is commonly referred to as the vector of entropy variables. For com-

pleteness, we mention that Godunov showed the converse of Mock’s result [43].

At this point, we draw the attention of the reader to the difference between ther-

modynamic entropy ρs and mathematical entropy U , which is a more general concept.

For the Burgers equation (u = u, f = u2/2) for instance, U = 1
2
u2 is an entropy. In

our context, the mathematical entropy is the opposite of the thermodynamic entropy,

and the statement of integral entropy-stability can be interpreted either as dissipation

of (mathematical) entropy or as production of (thermodynamic) entropy. We adopt

the latter throughout this thesis.

Numerical schemes consistent with the system (2.1) are not necessarily consistent

with the entropy equation (2.3) or the entropy inequality (2.5). The pioneering work
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of Tadmor [49] introduced a class of finite-volume schemes which can achieve such

consistency at the semi-discrete level (and at the fully-discrete level as well, this is

covered in chapter III). In addition to the entropy variables, the construction of these

schemes involve potential functions (U ,F) defined by:

U := vTu− U, F := vT f − F.

The potential functions satisfy the relationships:

u =

(
∂U
∂v

)T
, f =

(
∂F
∂v

)T
.

For the Euler equations, the entropy pair we usually work with is the one introduced

by Hughes et. al [44]:

U = − ρs

γ − 1
, F = − ρus

γ − 1
. (2.9)

This pair belongs to the more general class of entropy pairs derived by Harten [48]

(which is discussed in chapter V). The γ−1 factor in the denominator is introduced so

that the corresponding potential functions write U = ρ,F = ρu. The corresponding

entropy variables are given by:

v =

[
γ − s
γ − 1

− 1

2

ρu2

p
,
ρu

p
, −ρ

p

]T
. (2.10)

.
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2.2 Formulation

In this section we detail the main steps to follow in order to construct semi-discrete

entropy-stable schemes. Consider the finite volume scheme:

d

dt
uj(t) +

1

∆x

(
fj+ 1

2
− fj− 1

2

)
= 0, (2.11)

where fj+ 1
2

is a consistent interface flux. The subscripts j and j + 1
2

refer to cell and

interface indices, respectively. The first and trademark step of Tadmor’s framework

consists in seeking entropy conservation. The finite volume scheme (2.11) is termed

entropy-conservative if it satisfies the equation:

d

dt
U(uj(t)) +

1

∆x

(
Fj+ 1

2
− Fj− 1

2

)
= 0, (2.12)

where Fj+ 1
2

is a consistent entropy interface flux. The second step consists in adding

carefully designed dissipation terms on top of the entropy-conservative scheme to

achieve entropy-stability, that is meeting the inequality:

d

dt
U(uj(t)) +

1

∆x

(
Fj+ 1

2
− Fj− 1

2

)
< 0. (2.13)

2.2.1 Entropy-Conservative Fluxes

By definition of the entropy variables, one has:

vTj
d

dt
uj =

d

dt
U(uj),

therefore the scheme (2.11) is entropy conservative if and only if the interface flux

fj+ 1
2

is such that there exists a consistent entropy interface flux Fj+ 1
2

that satisfies:

vTj
(
fj+ 1

2
− fj− 1

2

)
= Fj+ 1

2
− Fj− 1

2
.
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Tadmor [49] showed that this holds if and only if the entropy conservation condition:

[vj+1 − vj]
T fj+ 1

2
= Fj+1 −Fj, (2.14)

where Fj = F(uj), is satisfied. In this case, fj+ 1
2

is called an entropy-conservative

flux and the corresponding entropy flux Fj+ 1
2

is given by the formula:

Fj+ 1
2

=
1

2
(vj + vj+1)T fj+ 1

2
− 1

2
(Fj + Fj+1). (2.15)

For scalar PDEs, v is a scalar and the entropy conservation condition (2.14) has

only one solution, namely fj+ 1
2

= [F ]j+ 1
2
/[v]j+ 1

2
. For systems, equation (2.14) does

not uniquely determine the interface flux. The first entropy-conservative flux was

introduced by Tadmor [49]:

fj+ 1
2

=

∫ 1

0

f(vj+ 1
2
(ξ))dξ, vj+ 1

2
(ξ) = vj + ξ[v]j+ 1

2
. (2.16)

This elegant flux has the inconvenient property of not having a closed form. Its eval-

uation requires quadrature rules. Later on, Tadmor [51] proposed to use piecewise-

constant paths instead. The resulting flux has an explicit form which depends on the

path decomposition but it did not get much attention.

An entropy-conservative flux that has been more popular for its simplicity com-

pared to the previous two is the one derived by Roe [52] for the compressible Euler

equations. The method used to derive it is general enough to be applied to other

systems (in chapter IV we use it for the multicomponent system). It is also central

to the work of chapter III. We cover it here.

Denote f∗ = [f1, f2, f3] the interface flux separating two adjacent cells. Using
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compact jump notation, the condition (2.14) can be rewritten as:

[v]T f∗ = [F ].

For the entropy pair (2.9), the jump terms in the entropy variables write:

[v]T =

[
−[s]

γ − 1
− 1

2

[
ρu2

p

]
,

[
ρu

p

]
, −
[
ρ

p

]]
.

Define the set of independent variables (z1, z2, z3) = (
√

ρ
p
,
√

ρ
p
u,
√
ρp). Then

ρ = z1z3, p =
z3

z1

,
ρ

p
= z2

1 ,
ρu

p
= z1z2,

ρu2

p
= z2

2 , ρu = z2z3,

S = (1− γ)ln(z3)− (1 + γ)ln(z1).

Using the identities [ab] = ā[b] + b̄[a] and [ln(a)] = [a]/aln, where ā and aln denote

the arithmetic and logarithmic averages, respectively, one can show that:

[s] =
(1− γ)

zln3
[z3]− (1 + γ)

zln1
[z1],

[
ρu2

p

]
= 2z̄2[z2],

[
ρu

p

]
= z̄1[z2] + z̄2[z1],[

ρ

p

]
= 2z̄1[z1], [ρu] = z̄2[z3] + z̄3[z2].

The motivation behind the introduction of the variables zi is to “exactly linearize”

all the jump terms involved in the entropy conservation condition, which now writes:

f1

(
1

zln3
[z3]− 1 + γ

1− γ
1

zln1
[z1]− z̄2[z2]

)
+f2(z̄1[z2]+ z̄2[z1])+f3(−2z̄1[z1]) = z̄2[z3]+ z̄3[z2].

(2.17)

Regrouping, equation (2.17) becomes:

[z1]

(
−f1

1 + γ

1− γ
1

zln1
+f2z̄2−2f3z̄1

)
+[z2]

(
−f1z̄2 +f2z̄1

)
+[z3]

( 1

zln3
f1

)
= [z2]z̄3 +[z3]z̄2.
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The jumps in zi are independent, therefore:

−f1
1 + γ

1− γ
1

zln1
+ f2z̄2 − 2f3z̄1 = 0, −f1z̄2 + f2z̄1 = z̄3,

1

zln3
f1 = z̄2.

The variables zi basically enabled the conversion of the scalar condition (2.14) into a

system of 3 equations that can easily be solved:

f1 = z̄2z
ln
3 , f2 = (z̄3 + f1z̄2)/(z̄1), f3 =

1

2z̄1

(−f1
1 + γ

1− γ
1

zln1
+ f2z̄2).

This is the entropy-conservative flux of Roe. The choice of independent variables

zi is open. Using the same method with the set (z1, z2, z3) = (ρ, u, ρ
2p

) instead,

Chandrasekhar [63] derived the following entropy-conservative flux:

f1 = zln1 z̄2, f2 =
z̄1

2z̄3

+ z̄2f1, f3 =

[
1

2(γ − 1)zln3
− 1

2
z̄2

2

]
f1 + z̄2f2. (2.18)

Jameson [64] showed that an interface flux preserves the kinetic energy of the sys-

tem at the semi-discrete level provided that the density flux f1 and momentum flux

f2 satisfy f2 = p̃ + uf1, where p̃ is any consistent average pressure. The entropy-

conservative flux given by equation (2.18) satisfies this property as well. In contrast

to the conclusions of [63] (section 4.6.), such a flux is not unique. With the set

(z1, z2, z3) = (p, u, ρ
2p

), the resulting entropy-conservative flux:

f1 = 2z̄3z̄2z
ln
1 , f2 =

ρ̄

2z̄3

+ ūf1, f3 = f1(
γ

γ − 1

1

2zln3
− 1

2
z2

2) + f2z̄2 − z̄1z̄2,

is also kinetic energy preserving. The term −z̄1z̄2 of the energy flux f3 is missing in

[63].
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2.2.2 Entropy-Stable Fluxes

The finite-volume scheme (2.11) with the interface flux fj+ 1
2

defined as:

fj+ 1
2

= f∗
j+ 1

2
−Dj+ 1

2
[v]j+ 1

2
.

where f ∗
j+ 1

2

satisfies the entropy conservation condition (2.14), and Dj+ 1
2

is a positive

definite matrix, satisfies

d

dt
U(uj(t)) +

1

∆x
[Fj+ 1

2
− Fj− 1

2
] = −Ej. (2.19)

with Ej given by:

Ej =
1

2∆x

(
[v]T

j+ 1
2
Dj+ 1

2
[v]j+ 1

2
+ [v]T

j− 1
2
Dj− 1

2
[v]j− 1

2

)
> 0, (2.20)

and is therefore entropy-stable. In this case, the interface entropy flux Fj+ 1
2

is given

by:

Fj+ 1
2

= F ∗
j+ 1

2
− 1

2
(vj + vj+1)Dj+ 1

2
[v]j+ 1

2
, (2.21)

where F ∗
j+ 1

2

is the entropy flux associated with f ∗
j+ 1

2

.

Summing over all cells and assuming periodic boundary conditions leads to the

integral entropy-stability statement:

d

dt

∑
j

U(uj) = −
∑
j

Ej < 0. (2.22)

For the compressible Euler equations with the pair (2.9), this writes:

d

dt

∑
j

(ρs)j = (γ − 1)
∑
j

Ej > 0. (2.23)
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This integral stability statement is obtained as a consequence of the local statement

(2.19), which in itself is not a stability statement. It does not necessarily imply for

instance that in every cell:

d

dt
U(uj) < 0 ⇔ d

dt
(ρs)(uj) > 0. (2.24)

Looking at equation (2.19), we see that the local variation of U in time depends on

Ej, which is a positive quantity, but also on the interface entropy flux Fj+ 1
2
, which

according to equation (2.21) is determined by both the entropy-conservative flux and

the dissipation operator. To the best of the author’s knowledge, conditions under

which (2.24) is met have not been examined.

Upwind-type dissipation operator

Let RΛR−1 be an eigendecomposition of A. A popular choice for the dissipation

operator consists of recasting the upwind operator of Roe [10] → 1
2
R|Λ|R−1[u] in

terms of the entropy variables. With the differential relation du = Hdv, this leads

to:

D[v] =
1

2
R|Λ|R−1H[v].

For the compressible Euler equations, Merriam [65] (section 7.3) pointed out that

there exists a scaling of the columns of R such that H = RRT , which leads to a

dissipation matrix D = R|Λ|RT that has the desirable property of being positive

definite. Later on, Barth [59] showed that Merriam’s finding is a direct consequence

of the fact that the entropy variables symmetrize the system. Merriam’s result is

therefore more general, and is recast by Barth as an eigenscaling theorem: for any

diagonalizable matrix A symmetrized on the right by a symmetric positive definite

matrix H, there exists a symmetric positive definite block diagonal matrix T that
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block scales the eigenvectors R of A in such a manner that:

A = (RT )Λ(RT )T and H = (RT )(RT )T . (2.25)

The dimensions of the blocks of T correspond to the multiplicities of the eigenvalues

of A. The second identity in equation (2.25) provides an explicit expression for the

squared scaling matrix T 2 = R−1HR−T .

More details about this dissipation operator can be found in chapters IV and VI.

2.2.3 High-order discretizations

In this section, we cover two high-order entropy-stable formulations: TecNO

schemes [60] and Discontinuous Galerkin [117, 118] (DG) schemes discretizing the

entropy variables [59, 44, 67]. High-order ES schemes are not limited to these two

options. Formulations based on Summation-By-Parts operators [62, 85, 86, 87, 88, 69]

for instance are being actively developed.

Developing high-order entropy-stable schemes is not the purpose of this thesis.

We mostly worked with TecNO schemes as they are relatively easy to implement.

The DG formulation based on entropy variables is discussed to offer some perspective

on what is, to the best of the author’s knowledge, the first high-order entropy-stable

formulation.

2.2.3.1 TecNO schemes

TecNO schemes (Fjordholm et al. [60]) are high-order entropy-stable finite vol-

ume schemes that combine the high-order entropy-conservative flux formulation of

LeFloch et al. [50], the stencil selection procedure of ENO schemes [30] and entropy-

stable dissipation operators [49, 52].

The scheme still writes as (2.11) but differs in the interface flux. The two com-
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ponents, entropy-conservative flux and dissipation operator, are altered to achieve

high-resolution in such a manner that entropy-stability is retained.

The entropy-conservative flux f∗, is replaced with a high-order entropy-conservative

flux f∗2p defined over a centered stencil of 2p points (vj−p+1, . . . , vj+p) by:

f∗2p(vj−p+1, . . . , vj+p) =

p∑
i=1

αi,p

i−1∑
s=0

f∗(vj−s, vj−s+i).

This flux essentially consists of a weighted combination of second-order entropy-

conservative fluxes. The coefficients αi,p need to satisfy [50]:

p∑
i=1

iαi,p = 1,

p∑
i=1

i2s−1αi,p = 0, s = 2 . . . p.

The first equation is for consistency, the second is for 2p-th order accuracy. For p = 2

(4-th order) and p = 3 (6-th order) the coefficients are:

α1,2 =
4

3
, α2,2 = −1

6

α1,3 =
3

2
, α2,3 = − 3

10
, α3,3 =

1

30
.

As we saw earlier, the dissipation term of a first order ES flux typically takes the

form:

D[v] = (RT )|Λ|(RT )T [v],

where R is the matrix of right eigenvectors of A and T is a scaling matrix. The

reconstruction used by TecNO schemes is motivated by the fact that the ENO recon-

struction satisfies a sign property. It was shown [61] that for any vector w ∈ RN , the

TecNO reconstruction satisfies:

〈w〉 = B[w], B = diag([b0, . . . , bN−1]), bi ≥ 0,
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where 〈w〉 and [w] are the reconstructed and initial jumps, respectively. Let w be

such that [w] = (RT )T [v], then the dissipation operator D̃[w] = (RT )|Λ| 〈w〉 is ES

because:

(RT )|Λ| 〈w〉 = (RT )|Λ|B[w] = (RT )(|Λ|B)(RT )T [v]

|Λ|B is a positive diagonal matrix. The high-order dissipation operator D̃[w] thus

achieves entropy-stability by reconstructing jumps in a specific set of variables. Fjord-

holm et al. refer to them as the scaled entropy variables. We will see in chapter VI

that [w] can be interpreted as a vector of wave strengths.

We conclude this section with a reminder that while TecNO schemes do use

non-oscillatory reconstructions, they are not de facto embedded with provable non-

oscillatory properties (see figures 6 and 7 in [60]). In fact, this remark applies to

any similarly termed scheme in the context of nonlinear systems of conservation laws.

TVD schemes [13] are well-grounded in the scalar case and in the linear constant

coefficients case because there is a clear definition of what quantity “total-variation”

points to. Even though many good results have been produced by these schemes

(there have even been efforts to accommodate the TVD framework in the finite-

element context [242, 243]), the theoretical bearings of non-oscillatory schemes are

currently missing for nonlinear systems [13, 20].

2.2.3.2 Discontinuous Galerkin

Tadmor’s pioneering work came out around the same time as when Hughes et. al

[44] showed, under the assumption of exact numerical quadrature, that Continuous

finite element solutions to the compressible Euler equations become consistent with

the entropy equation 1 when the entropy variables are discretized instead of conser-

vative variables.

1the result was actually proved for the more general compressible Navier-Stokes equations, which
we do not cover in this thesis.
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For DG discretizations of the Compressible Euler Equations, the same result im-

mediately follows if entropy-stable fluxes, in the sense of Tadmor [49], are used. Yet,

that is not how Barth approached it [59], even though parallels can be drawn [67].

Consider the more general case of a multi-dimensional system of conservation laws:

∂u

∂t
+
∂fj
∂xj

= 0, (2.26)

which implies the multi-dimensional entropy equation:

∂U(u)

∂t
+
∂Fj
∂xj

= 0.

The weak form associated with a semi-discrete DG discretization of (2.26) typically

writes, for each element K of the mesh and each degree of freedom (dof) i:

RK,i = 0, (2.27)

RK,i =

∫
K

φK,i
du(qK)

dt
dV −

∫
K

fj(q
K)
∂φK,i
∂xj

dV +

∫
δK

φK,if
∗ dS. (2.28)

RK,i denotes the residual associated with the i-th dof in element K. The interface

flux is given by f∗ = f∗(qK ,qK
′
,n) where K ′ denotes the neighboring element on δK

and n = (nj)1≤j≤dim is the vector normal to δK. qK denotes the discrete solution in

element K which consists of a linear combination of polynomial basis functions φK,i:

qK =

Nd∑
i=1

φK,iqK,i.

Using integration by parts on the second term of (2.28), we have:

RK,i =

∫
K

φK,i
∂u(qK)

∂t
dV +

∫
K

φK,i
∂fj(q

K)

∂xj
dV +

∫
δK

φK,i
(

f∗ − fn(qK)
)
dS.
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where fn =
∑d

j=1 njfj. The solution in each element is typically represented as a

polynomial expansion in terms of the conserved variables:

qK := uK =

Nd∑
i

φK,iuK,i.

Discretizing the entropy variables means that it is the entropy variables that are

represented using polynomials instead:

qK := vK =

Nd∑
i

φK,ivK,i. (2.29)

From equation (2.27), it is clear that any linear combination of the residuals Ri,K

is zero. When the entropy variables are discretized, the particular combination∑
i v

T
K,iRK,i gives:

∫
K

(∑
i

vK,iφK,i

)
∂u(qK)

∂t
dV +

∫
K

(∑
i

vK,iφK,i

)
∂fj(q

K)

∂xj
dV

+

∫
δK

(∑
i

vK,iφK,i

)(
f∗ − fn(qK)

)
dS = 0,

which by definition (2.29) writes:

∫
K

(vK)T
∂u(vK)

∂t
dV +

∫
K

(vK)T
∂fj(v

K)

∂xj
dV +

∫
δK

(vK)T ( f∗ − fn(vK) ) dS = 0.

⇔
∫
K

∂U(vK)

∂t
dV +

∫
K

∂Fj(v
K)

∂xj
dV +

∫
δK

(vK)T ( f∗ − fn(vK) ) dS = 0.

⇔
∫
K

∂U(vK)

∂t
dV +

∫
δK

(vK)T f∗ −
(

(vK)T fn(vK)− Fn(vK)
)
dS = 0.

⇔
∫
K

∂U(vK)

∂t
dV +

∫
δK

(
(vK)T f∗ −F(vK)

)
dS = 0. (2.30)

Decomposing the integrand of the second term:

(vK)T f∗ − F(vK) =
1

2
(vK + vK

′
)T f∗ − 1

2
(vK

′ − vK)T f∗ − F(vK),
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it follows that if the interface flux satisfies what is a multi-dimensional version of

Tadmor’s EC condition (2.14):

(vK
′ − vK)T f∗ = F(vK

′
)−F(vK), (2.31)

then the second integrand in (2.30) makes for a consistent entropy flux F ∗(vK ,vK
′
,n)

given by:

F ∗ = (vK)T f∗ − F(vK) =
1

2
(vK + vK

′
)T f∗ − 1

2
(F(vK) + F(vK

′
)), (2.32)

and equation (2.30) becomes a semi-discrete finite volume discretization of the entropy

equation: ∫
K

∂U(vK)

∂t
dV +

∫
δK

F ∗ dS = 0. (2.33)

If the interface flux is of the form:

f∗(vK ,vK
′
,n) = fEC(vK ,vK

′
,n)−D(vK ,vK

′
,n)(vK

′ − vK),

where fEC satisfies (2.31) and D is a positive definite matrix, then equation (2.30)

writes instead:

∫
K

∂U(vK)

∂t
dV +

∫
δK

F ∗ dS = −
∫
δK

E dS = 0. (2.34)

where F ∗ is also given by (2.32) and:

E(vK ,vK
′
,n) =

1

2
(vK

′ − vK)TD(vK ,vK
′
,n)(vK

′ − vK) > 0, (2.35)
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leading to a discretization that is consistent with the entropy inequality:

∂U

∂t
+
∂Fi
∂xi

< 0. (2.36)

Conservation is ensured as long as the constant unity function belongs to the span

of the basis functions φi,K . In this regard, it does not matter which variables are

discretized.

This shows that Tadmor’s framework for first-order finite-volume schemes natu-

rally extends to the DG setting when the entropy variables are discretized. It also

naturally extends to the fully-discrete setting, we refer the reader to [51, 145] for more

details.

In addition to providing more perspective on what discretizing the entropy vari-

ables means and entails, these derivations will allow us to make a clear point that the

entropy production breakdown we introduce in chapter VI in the context of finite-

volume schemes naturally fits in the DG setting. This breakdown can only take place

in Tadmor’s setting where entropy-stability is approached as “entropy conservation”

+ “entropy production”.

32



CHAPTER III

Entropy Conservative Schemes and the Receding

Flow Problem

One of the first questions that arise when studying entropy-stable schemes is:

how much entropy should the scheme produce in the presence of discontinuities?

This question is usually asked with shock discontinuities in mind, because they are

the primary physical phenomenon that needs to be accurately predicted in compress-

ible flows and also because they are entropy-producing discontinuities. But what

about discontinuous flow configurations where entropy is expected to be conserved,

not produced? Should the entropy-stable scheme revert to its entropy-conservative

foundation to make for a good solution in these conditions?

The latter questions arose while investigating a simple one-dimensional Riemann

problem: the receding flow problem (similar to the 123 problem of Toro’s book [168])

extensively studied by Liou [165, 166]. The problem consists of a flow undergoing rar-

efaction caused by two flows receding from each other. It is identified by Liou as an

open numerical problem as many well-known finite-volume/finite-difference schemes

produce an anomalous temperature rise, termed “overheating” or “Wall heating”

[167, 162], at the origin that cannot be fixed by refining the mesh, decreasing the

time-step, or increasing the solution order. He first established a connection between

the overheating and a spurious entropy rise after the first time step [166]. In a more
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recent paper [165], he connected the entropy rise with the pressure component of the

momentum flux. A cure he eventually proposed consists of replacing the conservation

equation for total energy with either the transport equation for the specific entropy s

or the conservation equation for the entropy ρs. The main liability of this approach is

that conservation of total energy is no longer guaranteed and that conserving entropy

is incompatible with shock discontinuities.

In view of these factors, entropy-conservative and entropy-stable schemes appear

as an interesting option, as they enable the conservation or production of entropy

without giving up conservation of mass, momentum and total energy. What’s more,

they were not considered in Liou’s endeavours. An analysis similar to that of Liou

[165] within the framework of Tadmor is therefore worth carrying out. While the

semi-discrete analysis of Liou [165] suggests that the overheating could be avoided

with an EC flux, numerical results say otherwise and this led us to carry out a fully-

discrete analysis of the entropy behavior in this problem.

This chapter is organized as follows. In section 3.1 we introduce the problem. In

section 3.2, we discuss Liou’s analysis and its limits. In section 3.3, we carry out a

fully-discrete analysis of the problem to better understand the generation of specific

entropy and complement it with numerical results in section 3.4.

3.1 Problem description

The receding flow problem [165, 166] is a 1D Riemann problem defined by the

following initial conditions:

uL < 0, uR > 0, ρL = ρR = ρ0, pL = pR = p0. (3.1)

where the subscripts L and R refer to the left and right sides of the domain, respec-

tively. Liou considered the case of equal velocity magnitudes |uL| = |uR| = u0.
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Liou describes this problem as “fundamental” in the sense that the overheating

cannot be overcome by refining the mesh or changing the time step (it is independent

of the CFL number). One of the main findings of his study is that the overheating

originates from an ab initio entropy production at the beginning of the run. Figure

3.1 (Roe flux in space, forward euler in time) illustrates the numerical behavior that

is typically observed with the wide range of fluxes Liou [165, 166] considered. The

pressure is well resolved whereas the density is slightly under-estimated at the center

(see figure 3.1-(a)). That the overheating is generated at the very first instant is in-

tuitive given the nature of rarefaction waves (discontinuities that should vanish after

some time) in contrast to shock waves (discontinuities that persist in time).
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Figure 3.1: Receding flow problem: Numerical solution (full line) and exact solution
(dotted line) at t = 0.18s with the Roe flux and Forward Euler in time.
100 cells and ∆t = 10−3s.
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3.2 Liou’s semi-discrete analysis

To investigate how entropy is initially produced in the discretized conservation

laws, Liou [165] begins with the following equation:

p

Rg

∂s

∂t
= −

(
a2

γ − 1
− u2

2

)
∂ρ

∂t
− u∂ρu

∂t
+
∂ρet

∂t
,

where Rg is the gas constant. This equation relates the temporal variation of the

specific entropy to that of mass, momentum and total energy.

Denote cell “R” as the cell immediately to the right of the interface with index

1 (its interfaces have therefore indices 1/2 and 3/2, respectively). Then integration

over cell R at t = 0 gives:

∮
R

p

Rg

∂s

∂t
dV =

(
(a0)2

γ − 1
− (u0)2

2

)
[(ρu)3/2− (ρu)1/2] + u0[(ρu2 + p)3/2− (ρu2 + p)1/2]

− [(ρuht)3/2 − (ρuht)1/2]. (3.2)

The fluxes at interface 3/2 are determined by the initial conditions:

(ρu)3/2 = ρ0u0, (ρu2 + p)3/2 = ρ0(u0)2 + p0, (ρuht)3/2 = ρ0u0(ht)0. (3.3)

For all the fluxes tested by Liou [165], the values at the interface 1/2 are given by:

(ρu)1/2 = 0, (ρu2 + p)1/2 = m1/2 + p1/2, (ρuht)1/2 = 0. (3.4)
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m1/2 and p1/2 are the momentum and pressure fluxes 1, respectively. Combining

equations (3.2), (3.3) and (3.4) results in the following:

∮
R

p

Rg

∂s

∂t
dV = u0[(p0 − p1/2)−m1/2]. (3.5)

The right-hand side term remains non-zero for all the fluxes Liou considered [165].

An identical result is obtained for the “L” cell immediately to the left of the interface,

meaning that the entropy rise occurs symmetrically about the interface. In light of

equation (3.5), Liou attributed the ab initio generation of entropy to the pressure and

momentum components of the numerical flux. He concluded his study by showing

that replacing the energy equation with the transport equation for specific entropy or

equivalently the conservation equation for entropy cures the overheating. This cure

is not compatible with the simulation of shock discontinuities.

Liou’s study did not consider Tadmor’s family of schemes. If the EC Roe flux is

used, the flux values at interface 1/2 take the values:

(ρu)1/2 = 0, (ρu2 + p)1/2 = p0, (ρuht)1/2 = 0.

and we obtain, for both the R and L cells:

∮
p

Rg

∂s

∂t
dV = 0.

This suggests that the spurious entropy production would be avoided.

Unfortunately, these analytical results are not supported by numerical tests. In fig-

ure 3.2, we show the numerical solution with an EC flux in space together with a first

order explicit time-integration scheme. The solution is oscillatory in all components

and we note (figure 3.2-(d)) that the specific entropy profile is going downwards. In

1this breakdown of the second component of the interface flux is possible for all the schemes Liou
considered. For EC/ES fluxes, it is not always possible but this does not matter in our analysis
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figure 3.3, we show the numerical solution with a first order implicit time-integration

scheme instead. The solution is better than with the explicit time scheme, but it is

still oscillatory. We note that this time the specific entropy profile is going upwards.

These first results suggest that time-integration has a clear impact on the solution

quality. A fully-discrete analysis is necessary.
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Figure 3.2: Receding flow problem: Numerical solution (full line) at t = 0.18s with
the EC Roe flux and Forward Euler in time. 100 cells and ∆t = 10−3s.
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Figure 3.3: Receding flow problem: Numerical solution (full line) at t = 0.18s with
the EC Roe flux and Backward Euler in time. 100 cells and ∆t = 10−3s.

3.3 A fully-discrete analysis

3.3.1 Entropy stability of time schemes

Let’s assume that an EC flux is used in space. What happens at the fully-discrete

level, when time is discretized? If we evolve in time using Forward Euler (FE) for
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instance:

un+1
j − unj + λ[fn

j+ 1
2
− fn

j− 1
2
] = 0, λ =

∆t

∆x
, (3.6)

are we simultaneously evolving in time the entropy equation with Forward Euler? In

other words, is the fully-discrete scheme (3.6) also solving

U(un+1
j )− U(unj ) + λ[F n

j+ 1
2
− F n

j− 1
2
] = 0 ? (3.7)

In equation (3.7) and what follows, the superscript n refers to the time instant. We

know that

(vnj )T [fn
j+ 1

2
− fn

j− 1
2
] = F n

j+ 1
2
− F n

j− 1
2
,

therefore the answer depends on whether

(vnj )T [un+1
j − unj ] = U(un+1

j )− U(unj )

holds. Tadmor [51] showed that, for Forward Euler:

(vnj )T [un+1
j − unj ] = U(un+1

j )− U(unj )− EFE(vnj ,v
n+1
j ), (3.8a)

EFE(vnj ,v
n+1
j ) =

∫ 1
2

− 1
2

(
1

2
+ ξ)(∆v

n+ 1
2

j )TH(v
n+ 1

2
j (ξ))∆v

n+ 1
2

j dξ > 0, (3.8b)

where v
n+ 1

2
j (ξ) =

vn+1
j +vnj

2
+ ξ(vn+1

j − vnj ) and ∆v
n+ 1

2
j = vn+1

j − vnj . This means that

at the fully-discrete level:

U(un+1
j )− U(unj ) + λ[F n

j+ 1
2
− F n

j+ 1
2
] = EFE > 0. (3.9)
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This makes Forward Euler unconditionally entropy unstable. For Backward Euler,

Tadmor [51] showed that:

(vn+1
j )T [un+1

j − unj ] = U(un+1
j )− U(unj ) + EBE(vnj ,v

n+1
j ), (3.10a)

EBE(vnj ,v
n+1
j ) =

∫ 1
2

− 1
2

(
1

2
− ξ)(∆v

n+ 1
2

j )TH(v
n+ 1

2
j (ξ))∆v

n+ 1
2

j dξ > 0. (3.10b)

This means that at the fully-discrete level:

U(un+1
j )− U(unj ) + λ[F n+1

j+ 1
2

− F n+1
j+ 1

2

] = −EBE < 0 (3.11)

This makes Backward Euler unconditionally entropy stable. One may wonder if all

implicit and explicit time-integration schemes are unconditionally entropy stable and

unstable, respectively. To the best of the author’s knowledge, this is an open question.

To support this statement, let’s use the two main results of Tadmor’s analysis, i.e.

eqns. (3.8a) and (3.10a), to derive the entropy production of some well-known time-

integration schemes. Define:

Rf
j (u) = − 1

∆x
(fj+ 1

2
− fj− 1

2
), RF

j (u) = vTj Rf
j (u) = − 1

∆x
(Fj+ 1

2
− Fj− 1

2
).

The implicit 2nd-order backward difference (BDF2) scheme is given by:

un+2
j − 4

3
un+1
j +

1

3
unj =

2

3
∆tRf

j (u
n+2). (3.12)

If we rewrite the scheme (3.12) as:

4

3
(un+2

j − un+1
j )− 1

3
(un+2

j − unj ) =
2

3
∆tRf

j (u
n+2),
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left-multiply by (vn+2
j )T and use equation (3.10a), we obtain the following for the

discrete entropy:

U(un+2
j )− 4

3
U(un+2

j ) +
1

3
U(unj ) =

2

3
∆tRF

j (un+2)− EBDF2

This is basically BDF2 for the discrete entropy, with an additional entropy production

term EBDF2 given by:

EBDF2 =
4

3
EBE(vn+1

j ,vn+2
j )− 1

3
EBE(vnj ,v

n+2
j )

The production term EBE(vnj ,v
n+2
j ) can determine the entropy stability of BDF2.

However, its sign is hard to establish. The explicit Leap-Frog Method is given by:

un+1
j = un−1

j + 2∆tRf
j (u

n).

Subtracting unj on both sides, left-multiplying by (vnj )T , and using eqns. (3.8a) and

(3.10a), we get a Leap-Frog of the entropy

U(un+1
j ) = U(un−1

j ) + 2∆tRF
j (un)− ELF

with an entropy production term ELF given by:

ELF = EBE(vn−1
j ,vnj )− EFE(vnj ,v

n+1
j ).

Here again, it is hard to make a statement about the sign of the entropy production

term ELF . We could derive similar results for other schemes and reach the same

conclusion.

Going back to the receding flow problem, the results observed with EC fluxes can

be now better explained. Let’s assume that Forward Euler is used. We are interested
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in the jump of specific entropy s1− s0 in the cell R after the first time step. We have

the following discrete equation for density:

ρ1 − ρ0 =
∆t

∆x
[(ρu)1/2 − (ρu)3/2] = −∆t

∆x
ρ0u0. (3.13)

Using equation (3.9) with U = −ρs/(γ − 1) we obtain a discrete equation for the

entropy ρs :

(ρs)1 − (ρs)0 =
∆t

∆x
[(ρus)1/2 − (ρus)3/2] + (1− γ)EFE. (3.14)

The interface flux for the entropy is given by equation (2.15). With the EC Roe flux,

we have :

(ρus)1/2 − (ρus)3/2 = −ρ0u0s0.

Eq. (3.14) then becomes:

(ρs)1 − (ρs)0 = −∆t

∆x
ρ0u0s0 + (1− γ)EFE. (3.15)

Combining equations (3.15) and (3.13) gives:

(ρs)1 − (ρs)0 = s0(ρ1 − ρ0) + (1− γ)EFE.

Regrouping, one obtains:

s1 − s0 = (1− γ)EFE/ρ1 < 0. (3.16)

Equation (3.16) is exact and shows that when the EC Roe flux is combined with

Forward Euler in time, the specific entropy at the center is going to decrease after

the first time instant.
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With Backward Euler in time, the fluxes are evaluated at the next state in time

so we cannot derive an exact and concise expression like (3.16). However, if the time

step is small enough we can make reasonable approximations, namely:

ρ1 − ρ0 =
∆t

∆x
[(ρu)1/2 − (ρu)3/2] ≈ −∆t

∆x
ρ1u1, and (ρus)1/2 − (ρus)3/2 ≈ −ρ1u1s1.

Eq. (3.11) with U = −ρs/(γ − 1), then gives a discrete equation for entropy:

(ρs)1−(ρs)0 =
∆t

∆x
[(ρus)1/2−(ρus)3/2]+(γ−1)EBE ≈ s1(ρ1−ρ0)+(γ−1)EBE. (3.17)

Regrouping, equation (3.17)writes:

s1 − s0 ≈ (γ − 1)EBE/ρ0 > 0, (3.18)

and states that when the EC Roe flux is combined with Backward Euler in time, the

specific entropy at the center is going to increase after the first time instant.

Eqs. (3.16) and (3.18) only describe the evolution of the numerical solution at

the very first instant, but along with the specific entropy profiles (3.2)-(d) and (3.3)

they seem to suggest that whether the specific entropy s increases or decreases at

the center is correlated to the discrete entropy (ρs) production caused by the time

scheme.

Ultimately, we should not forget the primary goal of this study that is (attempting)

to prevent the overheating without giving up on conservation of total energy. In

view of equations (3.16) and (3.18), the following question arises: What if a time-

integration scheme that conserves entropy is used?
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3.3.2 Conserving entropy in time

LeFloch et al. [50] (Theorem 3.1.) showed that the following scheme:

un+1
j − unj

∆t
= Rf

j (u(vn+ 1
2 )), (3.19)

with vn+ 1
2 an intermediate state in time given by:

vn+ 1
2 =

∫ 1
2

− 1
2

v

(
un + un+1

2
+ ξ∆un+ 1

2

)
dξ, ∆un+ 1

2 = un+1 − un, (3.20)

is entropy conservative in the sense that the scheme satisfies:

U(un+1
j )− U(unj )

∆t
= RF

j (u(vn+ 1
2 )).

The scheme was also shown to be second-order accurate, in the sense that equation

(3.19) is a second-order approximation to the system (2.1) evaluated at t = tn+1+tn

2
.

Tadmor refers to this scheme as a Generalized Crank-Nicolson scheme in [51]. In

the general nonlinear case, this scheme is impractical to the same extent as the first

EC flux. The intermediate state does not have a closed form and requires quadrature,

just like the first EC flux 2.16 Tadmor proposed.

The similarity between the intermediate state in time (3.20) and the first EC flux

(2.16) is no coincidence. The condition on the intermediate state for the proposed

scheme to be entropy conservative is (see Assumption 2.1. in [50] for q = 1):

(v
n+ 1

2
j )T [un+1

j − unj ] = U(un+1
j )− U(unj ). (3.21)

This equation is a time analog of the Entropy conservation condition in space (2.14).

We can therefore apply the technique used to derive the EC Roe flux to derive an

affordable intermediate state in time. Denote vn+ 1
2 = [v1, v2, v3]. Let’s consider ρ, u
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and p as the independent variables. The jumps in time can be written as:

[ρu] = ρ̄[u] + ū[ρ], [ρet] =
[p]

γ − 1
+

1

2
[ρu2] =

[p]

γ − 1
+

1

2
ū2[ρ] + ρ̄ū[u], (3.22)

[ρs] = ρ̄[s] + s̄[ρ] = ρ̄
[p]

pln
− γρ̄ [ρ]

ρln
+ s̄[ρ]. (3.23)

Injecting equations (3.22) and (3.23) in equation (3.21) and regrouping we obtain:

[ρ](v1 + ūv2 +
1

2
ū2v3) + [u](ρ̄v2 + ūρ̄v3) + [p](

v3

γ − 1
) =

−1

γ − 1
([ρ](s̄− γ ρ̄

ρln
) + [p]

ρ̄

pln
).

The jumps are independent, therefore:

v1 + ūv2 +
1

2
ū2v3 =

1

γ − 1
(γ − s̄ ρ̄

ρln
), ρ̄v2 + ūρ̄v3 = 0, v3 = − ρ̄

pln
.

The solution is:

v1 =
1

γ − 1
(γ

ρ̄

ρln
− s̄)− ūv2 −

1

2
ū2v3, v2 = −ūv3, v3 = − ρ̄

pln
. (3.24)

This intermediate state satisfies condition (3.21) and is consistent. Let’s show that

the resulting scheme is second-order as well. A Taylor expansion about t = tn+tn+1

2

gives:
un+1
j − unj

∆t
= ∂tu

(
xj,

tn + tn+1

2

)
+O(∆t2).

To conclude, let’s show that:

vn+ 1
2 = v

(
tn + tn+1

2

)
+O(∆t2).

Let’s establish a few results first. Let a(t) be a strictly positive time-dependent

quantity and denote an = a(tn), an+1 = a(tn+1) and a∗ = a( t
n+tn+1

2
). Using a Taylor
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analysis about t = tn+tn+1

2
= tn + ∆t

2
= tn+1 − ∆t

2
, one can show that:

ā = a∗ +O(∆t2), ā2 = (a∗)2 +O(∆t2), (3.25)

an+1 − an = ∆ta∗,t +O(∆t3), log(an+1)− log(an) = ∆t
a∗,t
a∗

+O(∆t3). (3.26)

Therefore:

aln =
an+1 − an

log(an+1)− log(an)
=

∆ta∗,t +O(∆t3)

∆t
a∗,t
a∗

+O(∆t3)
=
a∗ +O(∆t2)

1 +O(∆t2)
= a∗ +O(∆t2)

Likewise we show another useful identity:

ā

bln
=
a∗

b∗
+O(∆t2), (3.27)

where b(t) is another strictly positive quantity. With equations (3.25) and (3.27)

we can show that the nonlinear intermediate state vn+ 1
2

= [v1, v2, v3] defined by

equation (3.24) satisfies:

v1 =
γ − s∗

γ − 1
− 1

2

ρ∗(u∗)2

p∗
+O(∆t2), v2 =

ρ∗u∗

p∗
+O(∆t2), v3 = −ρ

∗

p∗
+O(∆t2).

This is not the first time scheme of this type. Ray [161] developed pretty much the

same scheme2 in his thesis, building from Subbareddy & Candler’s work [112] on

fully-discrete kinetic energy preserving schemes

3.4 Numerical results

Figure 3.4 shows the numerical solution with the EC time scheme for a grid of 100

elements and a time-step ∆t = 10−3s. Unfortunately, completely conserving entropy

does not solve the problem. Oscillations are observed again and their magnitude is

2much to the disillusionment of the author, who thought that he came up with something new.
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higher than when Backward Euler in time is used (fig. (3.3)), but lower than with

Forward Euler in time (fig. (3.2)).

Figure 3.5 shows the production of entropy over time in all three cases. It con-

firms the entropy stability properties of Forward Euler and Backward Euler covered

in section 3.3 and the entropy conservation property of the present time scheme. The

rate at which Backward Euler produces entropy decreases with time. This is because,

as time goes by, the oscillations caused by the EC flux in space are damped by the

dissipation of Backward Euler and the numerical solution becomes smoother. On the

other hand, the entropy losses incurred by using Forward Euler in time keep growing

with time. The oscillations keep growing and will eventually lead to unphysical values

of pressure/density. In the fully EC case, the oscillations persist in time, but they do

not grow in magnitude.

If we look at the density, velocity and temperature profiles, the better results are

obtained with Backward Euler, but if we look at the specific entropy profile, the en-

tropy conservative scheme produces the most accurate result.

Figures (3.6) and (3.7) show the numerical solution with Backward Euler and the

EC time scheme, respectively, with finer resolution but same CFL as before. The

Forward Euler calculation crashed. With Backward Euler, pretty much all of the os-

cillations have disappeared. The overheating is visible, and overshoots/undershoots

in the velocity, density and temperature fields can be seen behind the rarefactions.

With the EC time scheme, the magnitude of the oscillations is smaller but their fre-

quency is higher. What is striking is the specific entropy profile (fig. 3.7-(d)) which

displays an intriguing structure. There is a spike at the center which links to two lo-

calized regions behind the rarefaction waves where the specific entropy drops. Figure

3.8, which features snapshots of the specific entropy profile over time, shows that this

structure is conserved over time.

All in all, we conclude that enforcing conservation of entropy, even when it is a
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property of the exact solution, does not necessarily lead to a better behaved numerical

solution.
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Figure 3.4: Receding flow problem: Numerical solution (full line) at t = 0.18s with
the EC Roe flux and the EC scheme in time. 100 cells and ∆t = 10−3s.
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Figure 3.6: Receding flow problem: Numerical solution (full line) at t = 0.18s with
the EC Roe flux and Backward Euler in time. 1000 cells and ∆t = 10−4s.
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Figure 3.7: Receding flow problem: Numerical solution (full line) at t = 0.18s with
the EC Roe flux and our EC scheme in time. 1000 cells and ∆t = 10−4s.

53



0.2 0.4 0.6 0.8

0.692

0.6922

0.6924

0.6926

0.6928

0.693

0.6932

0.6934

0.6936

0.6938

0.694

(a) t = 0.0179s

0.2 0.4 0.6 0.8

0.692

0.6922

0.6924

0.6926

0.6928

0.693

0.6932

0.6934

0.6936

0.6938

0.694

(b) t = 0.0716s

0.2 0.4 0.6 0.8

0.692

0.6922

0.6924

0.6926

0.6928

0.693

0.6932

0.6934

0.6936

0.6938

0.694

(c) t = 0.1253s

0.2 0.4 0.6 0.8

0.692

0.6922

0.6924

0.6926

0.6928

0.693

0.6932

0.6934

0.6936

0.6938

0.694

(d) t = 0.179s

Figure 3.8: Receding flow problem: Snapshots of the specific entropy profile when the
EC Roe flux is used in space and our EC scheme is used in time. 1000
cells and ∆t = 10−4s.

3.5 Summary

In this chapter, we investigated entropy conservative schemes as a possible remedy

in the receding flow problem. This was motivated by Liou’s latest study that showed

the connection between the overheating and a spurious entropy production ab initio.
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Liou’s analysis suggested that the EC flux of Roe would prevent the overheating, but

this was not the case because time-integration was not accounted for. Indeed, a fully-

discrete analysis leveraging entropy-stability theory confirmed it. It appears that

whether the specific entropy spuriously increases or decreases depends on whether

the scheme produces entropy at the fully-discrete level. The analysis also brought the

question of how a fully-discrete entropy conservative scheme would perform. Building

on the analogy between the entropy conservation condition for the spatial fluxes and

the entropy conservation condition of a class of time-integration schemes introduced

by LeFloch et. al [50], we derived an entropy conservative time-integration scheme

which combined with an EC flux in space achieves fully-discrete entropy conservation.

However we observed that it does not cure the overheating problem either. To be

more specific, a better specific entropy profile is obtained but the oscillatory nature

of the numerical solution does not make it a practical option.

Whether all entropy conservative discretizations would have the same unsatisfac-

tory behavior on this type of problem, where one expects the continuous solution to

conserve entropy, is a question that requires further investigation. The EC scheme

that has been developed in this paper is just one way among many to conserve en-

tropy in addition to mass, momentum and energy at the fully-discrete level. Recall

that for systems (N > 1) there is more than one possible EC flux. Likewise, the

intermediate state in time we used in our EC time scheme is just one choice among

many. The time scheme given by equation (3.19) is part of a more general class of

entropy conservative scheme that LeFloch et al. introduced in [50].

While one can arguably take the stance that fully-discrete EC schemes will pro-

duce a similar behavior to that in figures 3.4 and 3.7, it is known from past work

[63, 163] that all EC fluxes do not perform equally. Besides simplicity, one of the

reasons why the EC Roe flux is preferred over the first EC flux of Tadmor is that

the latter does not preserve stationary contact discontinuities. Chandrasekhar [63]

55



introduced an EC flux that has the additional property of discretely preserving, in

the sense of Jameson [64], the kinetic energy of the system. This type of property is

often sought when turbulent flows are simulated [112].

Another metric is how good of a foundation an EC flux constitutes in an ES

scheme. The dissipation component of entropy-stable fluxes is often seen as the com-

plement needed by EC fluxes in the presence of shocks. An EC scheme will produce

non-physical solutions (oscillations) in the presence of shocks because entropy is not

produced. This picture is correct but incomplete. In the presence of rarefaction waves

and moving contact discontinuities, which do not physically require any production of

entropy, EC schemes have the same oscillatory behavior. The receding flow problem

is an illustration. This places an additional burden on the dissipation term which

has to make up for the flaws of its foundation. A case in point can be found in De-

rigs et al. [163] where it was showed that entropy-stable schemes perform better on

high-pressure shock problems if Chandrasekhar’s EC flux is used instead of Roe’s.
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CHAPTER IV

Formulation of an Entropy-Stable Scheme for the

Compressible Multicomponent Compressible Euler

Equations

In this chapter, we consider the multicomponent (N species) compressible Euler

equations consisting of the conservation equations for partial densities, momentum

and total energy. This system can be viewed as the Euler equations (conservation of

total mass, momentum and total energy) complemented with N − 1 species conser-

vation equations. This observation motivated early multicomponent schemes such as

the one by Habbal et al. [183], where the Roe scheme [10] is applied to the Euler

part of the equations and the N − 1 remaining equations are treated separately. In

Larrouturou [182], such approaches are termed uncoupled as opposed to fully coupled

approaches which treat the multicomponent system as a whole. An example of a fully

coupled approach is the extension of the Roe scheme by Fernandez and Larroutouru

[181] and Abgrall [179]. It might be then tempting to use an existing entropy-stable

scheme for the Euler part and evolve the remaining N − 1 species equations with

another scheme. A case in point can be found in Derigs et al. [196] (section 3.8).

While this approach has the benefit of simplicity (minimal programming and compu-

tational effort), it is lacking from a theoretical viewpoint. This approach implicitly
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assumes that the entropy of the single component system is an admissible entropy for

the multicomponent system, meaning that it is a conserved quantity in the smooth

regime and a convex function of the conserved variables. That is not the case. The

necessity of a fully coupled approach to develop entropy-stable schemes, in the sense

of Tadmor [49], for multicomponent flows is motivated by both mathematical and

physical arguments.

At this juncture, it is important to recall that the schemes we are interested in

this thesis achieve entropy-stability in a specific way. That is to say that there is

more than one way that a scheme can be made stable in an entropy sense, and hence

be called ’entropy-stable’. Osher’s family of E-schemes [72] and Barth’s space-time

discontinuous galerkin schemes [59] are conservative schemes which satisfy an entropy

inequality, but their construction is different. There are also non-conservative schemes

which can be designed to conserve or produce entropy [198]. Entropy stability can

be understood in a different way as well. The scheme introduced by Ma et al. [197]

for multicomponent flows is termed entropy-stable because it enforces a minimum

principle of the specific entropy, proved by Tadmor for the Euler equations [175]. In

their work, stability is sought in a point-wise sense (a scheme which preserves the

positivity of density and satisfies the minimum principle cannot crash in principle),

not in an integral sense. Integral stability and point-wise stability are both impor-

tant concepts, and in principle they do not imply each other. In either case, it is

important to emphasize that the correct formulation of these schemes depends on the

structure of the equations they are applied to. Chalot et al. [174] and Giovangigli [172]

demonstrated that the multicomponent compressible Euler equations do possess the

structure that ES schemes require. It is not clear to the author whether these results

extend to the systems considered in [197].

This chapter is organized as follows. In section 4.1, we present the modeling

assumptions, the governing equations and their symmetrization using the entropy
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variables [174, 172]. Section 4.2 is dedicated to the construction of ES schemes for

multicomponent flows. We formulate an EC flux and an ES interface flux based on up-

winding [52] and discuss their definition in the limit of vanishing partial densities. In

section 4.3, we discuss how this limit impacts standard high-order ES discretizations.

In section 4.4, the numerical scheme is tested on one-dimensional and two-dimensional

interface and shock-interface problems.

4.1 Governing equations, entropy variables and symmetriza-

tion

The governing equations describe the conservation of species mass, momentum

and total energy. In 1D, that is system (2.1) with the vector of conserved variables

u and the vector of fluxes f defined by:

u :=

[
ρ1 . . . ρN ρu ρet

]T
, f :=

[
ρ1u . . . ρNu ρu2 + p (ρet + p)u

]T
.

ρk denotes the partial density of species k, ρ :=
∑N

k=1 ρk denotes the total density, u

denotes the velocity and et denotes the specific total energy. The pressure p is given

by the ideal gas law:

p :=
N∑
k=1

ρkrkT, rk =
R

mk

,

where mk is the molar mass of species k, R is the gas constant. The temperature

T is determined by the internal energy ρe := ρet − (ρu)2/(2ρ) which in this work is

modeled following a calorically perfect gas assumption:

ρe =
∑
k

ρkek, ek := e0k + cvkT. (4.1)

For species k, e0k is a constant and cvk is the constant volume specific heat. T is

computed by solving equation (4.1). For later use, we introduce the species mass
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fraction Yk := ρk/ρ, the species constant pressure specific heats cpk := cvk + rk and

the specific heat ratio γ :=
(∑

k Ykcpk
)
/
(∑

k Ykcvk
)
.

An additional conservation equation [174, 172] can be derived from the governing

equations:

∂ρs

∂t
+
∂ρus

∂x
= 0. (4.2)

ρs is the thermodynamic entropy of the mixture given by:

ρs :=
N∑
k=1

ρksk, sk := cvk ln(T )− rk ln(ρk),

s denotes the specific entropy of the mixture and sk denotes the specific entropy

of species k. Equation (4.2) can be rewritten in the form of equation (2.3) with

(U, F ) = (−ρs, −ρus). For ρk > 0 and T > 0, U is a convex function of the

conserved variables and (U, F ) is a valid entropy pair for the multicomponent system

[174, 172] (more details can be found in the next chapter).

In order to derive the flux potentials U and F , we first derive the entropy variables.

Following [174, 172], we use a chain rule:

∂U

∂u
=
∂U

∂Z

(
∂u

∂Z

)−1

, Z :=

[
ρ1 . . . ρN u T

]T
,

where Z denotes the vector of primitive variables. The Gibbs identity can be written

as:

Td(ρs) = d(ρe)−
N∑
k=1

gkdρk, (4.3)

where gk := hk − Tsk is the Gibbs function of species k and hk := ek + rkT is the

specific enthalpy of species k. We have:

d(ρe) =
N∑
k=1

ekdρk + ρcvdT, ρcv :=
N∑
k=1

ρkcvk. (4.4)
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Combining eqs. (4.4) and (4.3), one obtains:

d(ρs) =
1

T

( N∑
k=1

(ek − gk)dρk + ρcvdT

)
.

This gives:

∂U

∂Z
=

1

T

[
(g1 − e1) . . . (gN − eN) 0 −ρcv

]
. (4.5)

The Jacobian of the mapping Z → u is given by:

∂u

∂Z
=



1 0 0 0

. . .
...

...

0 1 0 0

u . . . u ρ 0

e1 + 1
2
u2 . . . eN + 1

2
u2 ρu ρcv


. (4.6)

The inverse of this matrix is given by:

(
∂u

∂Z

)−1

=



1 0 0 0

. . .
...

...

0 1 0 0

−uρ−1 . . . −uρ−1 ρ−1 0

(1
2
u2 − e1)(ρcv)

−1 . . . (1
2
u2 − eN)(ρcv)

−1 −u(ρcv)
−1 (ρcv)

−1


(4.7)

Combining eqs. (4.7) and (4.5) yields the entropy variables [174, 172]:

v =

(
∂U

∂u

)T
=

1

T

[
g1 − 1

2
u2 . . . gN − 1

2
u2 u −1

]T
. (4.8)
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From this expression, the potential functions (U , F) can be derived:

U =
N∑
k=1

rkρk, F =
N∑
k=1

rkρku. (4.9)

We conclude this section with two remarks:

- Denote v = [v1,k . . . v1,N v2 v3]T . In order to derive the mapping from entropy

variables to primitive variables, one can first compute the temperature, velocity,

gibbs functions and specific entropies as:

T := − 1

v3

, u := −v2

v3

, gk := −v1,k

v3

+
1

2

(
v2

v3

)2

, sk(T, ρk) = cpk − v1,k +
1

2

v2
2

v3

The partial densities are inferred from the specific entropies:

ρk := exp

(
mk

R
(cvkln(T )− sk)

)
= exp

(
mk

R

(
− cvkln(v3)− cpk + v1,k −

1

2

v2
2

v3

))
.

The requirement that ρk > 0 and T > 0 manifests in the definition of the entropy

variables, which require the evaluation of ln(ρk) and ln(T ). On the other hand,

it is interesting to note that if one works with the entropy variables instead of

the conservative variables, the requirement that ρk > 0 and T > 0 boils down

to the single requirement that v3 < 0. The remaining entropy variables can be

of any sign in principle. The author is not aware of any physical consideration

which would impose the sign of gk − 1
2
u2, namely the difference between gibbs

energy and kinetic energy.

- In the compressible Euler case with e0k = 0, it is easy to show, using the ideal

gas law p = ρrT and the Mayer relation cp − cv = r that the vector of entropy

variables (4.8) simplifies to :

v = r

[
γ−s̄
γ−1
− ρu2

2p
ρu
p
−ρ
p

]T
, s̄ = ln p− γ ln ρ− ln r.
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This differs by a constant factor r from the expression that is usually used

when designing entropy-stable schemes for the compressible Euler equations.

The trivial difference comes from a different choice of entropy pair (U, F ).

4.2 Formulation

4.2.1 Entropy-conservative flux

In compact notation, the entropy conservation condition (2.14) writes:

[v]T f∗ = [F ], (4.10)

where f∗ = [f1,1 . . . f1,N f2 f3] denotes the interface flux. Define the set of algebraic

variables:

z =

[
ρ1 . . . ρN u 1

T

]
=

[
z1,1 . . . z1,N z2 z3

]
.

The jump in the potential function can be rewritten as:

[F ] =
N∑
k=1

rk[ρku] =

( N∑
k=1

rkz1,k

)
[z2] +

N∑
k=1

rkz2[z1,k]. (4.11)

For the jump in entropy variables, we need to examine the first N components. For

1 ≤ k ≤ N :

1

T
(gk −

1

2
u2) =

e0k

T
+ cvk + rk − cvk lnT + rk ln(ρk)−

1

2

u2

T

= e0kz3 + cvk + rk + cvk ln(z3) + rk ln(z1,k)−
1

2
z2

2z3.

The corresponding jumps then write:

[
1

T
(gk −

1

2
u2)

]
= [z1,k]

rk
zln1,k
− [z2]z2 z3 + [z3](e0k +

cvk
zln3
− 1

2
z2

2) (4.12)
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The remaining jumps are given by:

[
u

T

]
= z3[z2] + z2[z3],−

[
1

T

]
= −[z3]. (4.13)

Using equations (4.11), (4.12) and (4.13), the entropy conservation condition (4.10)

can be rewritten as the requirement that a linear combination of the jumps in the

algebraic variables equals zero:

N∑
k=1

[z1,k]

(
rk
zln1,k

f1,k

)
+ [z2]

(
(−z3 z2)

N∑
k=1

f1,k + z3f2

)
+

[z3]

( N∑
k=1

(e0k + cvk
1

zln3
− 1

2
z2

2)f1,k + z2f2 − f3

)
= [z2]

( N∑
k=1

rkz1,k

)
+

N∑
k=1

[z1,k]rkz2.

This scalar condition leads to the system of N + 3 equations:

rk
1

zln1,k
= rkz2f1,k, 1 ≤ k ≤ N,

(−z3 z2)
N∑
k=1

f1,k + z3f2 =

( N∑
k=1

rkz1,k

)
,

N∑
k=1

(e0k + cvk
1

zln3
− 1

2
z2

2)f1,k + z2f2 − f3 = 0.

The solution under these assumptions is:

f1,k = z2z
ln
1,k,

f2 =
1

z3

( N∑
k=1

rkz1,k

)
+ z2

N∑
k=1

f1,k,

f3 =
N∑
k=1

(e0k + cvk
1

zln3
− 1

2
z2

2)f1,k + z2f2.
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Therefore we obtain::

f1,k = ρlnk u, 1 ≤ k ≤ N

f2 =
1

1/T

( N∑
k=1

rkρk

)
+ u

N∑
k=1

f1,k, (4.14)

f3 =
N∑
k=1

(e0k + cvk
1

(1/T )ln
− 1

2
u2)f1,k + uf2.

This EC flux is the multicomponent version of Chandrasekhar’s EC flux [63] for the

compressible Euler equations. Chandrasekhar’s flux was designed with the additional

property of being Kinetic-Energy Preserving (KEP) in the sense of Jameson [64],

meaning that the kinetic energy equation is satisfied by the finite volume scheme in a

semi-discrete sense (in the same spirit as EC schemes). This property can be useful in

turbulent flow simulations [112]. For the compressible Euler equations, Jameson [64]

showed that this is achieved if the momentum flux fρu has the form fρu = p̃ + ufρ,

where fρ is the mass flux and p̃ is any consistent pressure average. The extension

of Jameson’s analysis to the multicomponent case is straightforward and it can be

showed that if the momentum flux has the same form as in the single component case

(with fρ denoting the total mass flux), the KEP property is achieved. The EC flux

we derived qualifies, with p̃ given by:

p̃ =
1

(1/T )

N∑
k=1

rkρk.

Note in passing that if [p] = 0 across the discontinuity, then p̃ defined above is exactly

the pressure on each side.

The flux (4.14) is well-defined in the limit case ρk = 0, where the entropy variable

v1,k is undefined, but is the entropy conservation condition still met? Equation (2.14)
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writes
N∑
k=1

[v1,k]f1,k + [v2]f2 + [v3]f3 = [F ].

The jumps in v1,k are undefined because they involve jumps in ln(ρk). However, we

note that the first term:

N∑
k=1

[v1,k]f1,k =
N∑
k=1

[
hk
T
− 1

2

u2

T

]
(ρlnk u) −

∑
k

[sk](ρ
ln
k u)

=
N∑
k=1

[
hk
T
− 1

2

u2

T

]
(ρlnk u) −

∑
k

cvk[lnT ](ρlnk u) +
N∑
k=1

rk[ln ρk](ρ
ln
k u)

=
N∑
k=1

[
hk
T
− 1

2

u2

T

]
(ρlnk u) −

∑
k

cvk[lnT ](ρlnk u) +
N∑
k=1

rk[ρk]u

is well-defined at ρk = 0, because the logarithmic averages ρlnk compensate for the

logarithmic jumps [ln ρk]. We thus find that the entropy conservation condition is

satisfied even in the limit ρk = 0.

Note that the EC flux does not transfer mass across an interface separating two

different species.

4.2.2 Entropy-stable flux

4.2.2.1 Upwind-type dissipation operator

We now proceed to derive the scaling matrix for the multicomponent Euler system.

First, the flux Jacobian is given by:

A =



u(1− Y1) . . . −uY1 Y1 0

. . .
... 0

−uYN . . . u(1− YN) YN 0

(γ−3)
2
u2 + d1 . . . (γ−3)

2
u2 + dN u(3− γ) γ − 1

u(d1 − ht + u2

2
(γ − 1)) . . . u(dN − ht + u2

2
(γ − 1)) ht − u2(γ − 1) uγ


,
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where dk = hk − γek and ht = h+ 1
2
u2. We have A = RΛR−1 with:

R =



1 0 Y1 Y1

. . .
...

...

0 1 YN YN

u . . . u u+ a u− a

k − d1
γ−1

. . . k − dN
γ−1

ht + ua ht − ua


,

Λ = diag(u, . . . , u, u+ a, u− a), a2 = γrT,

where k = u2

2
. The Jacobian H of the mapping v→ u is given by [172]:

H =



ρ1/r1 0 uρ1/r1 ρ1e
t
1/r1

. . .
...

...

0 ρN/rN uρN/rN ρNe
t
N/r1

uρ1/r1 . . . uρN/rN ρT + u2S1 u(ρT + S2)

ρ1e
t
1/r1 . . . ρNe

t
N/rN u(ρT + S2) ρT (u2 + cvT ) + S3


, (4.15)

S1 =
∑
k

ρk
rk
, S2 =

∑
k

ρk
rk

(etk), S3 =
∑
k

ρk
rk

(etk)
2

where etk = ek + k. The squared scaling matrix is given by:

T 2 = R−1HR−T =
ρ

γr
diag(T 2Y , 1/2, 1/2), (4.16)

where T 2Y ∈ RN×N is given by:

T 2Y
ii = (γ − 1)Y 2

i +
∑
k 6=i

(γrk/ri)YkYi, 1 ≤ i ≤ N,

T 2Y
ij = − YiYj, 1 ≤ i 6= j ≤ N.
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At this point, the dissipation operator writes:

D[v] =
1

2
R|Λ|T 2RT [v], (4.17)

and qualifies for the ES scheme because the matrix R|Λ|T 2RT is positive definite (T 2

and |Λ| commute). However, as will be seen in section 4.3.2, a scaled form (2.25) of

the dissipation operator is necessary.

For N = 2, we have:

T 2Y =

(γ − 1)Y 2
1 + (γr2/r1)Y1Y2 −Y1Y2

−Y1Y2 (γ − 1)Y 2
2 + (γr1/r2)Y1Y2

 .
T 2Y is symmetric, real-valued with non-negative eigenvalues therefore there exists T Y

with the same properties such that T 2Y = (T Y )2 = T Y (T Y )T (T Y is the square root

of T 2Y ). This matrix can be derived using an eigenvalue decomposition. However the

expression of T Y is quite complicated. The square root of T 2Y is not necessary to

proceed. For N = 2, T 2Y can be rewritten as:

T 2Y = T Y (T Y )T , T Y =

−√Y1Y2

√
γr2/r1 Y1

√
γ − 1

√
Y1Y2

√
γr1/r2 Y2

√
γ − 1

 . (4.18)

T Y is not the square root of T 2Y , however it is enough to obtain a scaled formulation

(2.25) because:

T 2 = T T T , T =

√
ρ

γr
diag(T Y , 1/

√
2, 1/

√
2),

and T commutes with |Λ| therefore the dissipation operator can be rewritten as:

D[v] =
1

2
(RT )|Λ|(RT )T [v]. (4.19)
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For N > 2, the expression for T Y becomes even more complicated. For N = 3, the

alternative (4.18) to T Y we proposed for N = 2 becomes:

T 2Y = T Y (T Y )T ,

T Y =


−
√
Y1Y2

√
γr2/r1 −

√
Y1Y3

√
γr3/r1 0 −Y1

√
γ − 1

√
Y1Y2

√
γr1/r2 0 −

√
Y2Y3

√
γr3/r2 −Y2

√
γ − 1

0
√
Y1Y3

√
γr1/r3

√
Y2Y3

√
γr2/r3 −Y3

√
γ − 1

 .

There is one more column compared to the N = 2 case. The form (4.19) still holds

except that RT ∈ R3×4 instead of R3×3 and |Λ| ∈ R4×4 diagonal with an extra

|u| term. For N species, the ”pseudo” scaling matrix T Y we described will be in

RN×(N(N−1)/2+1).

4.2.2.2 Average state

To complete the definition of the dissipation operator, an average state (referred

to with the superscript ∗) needs to be specified.

We showed in section 4.2.1 that the EC flux (4.14) is well defined in the limit

ρk = 0. What about the dissipation operator R|Λ|T 2RT [v]? At first glance, the

presence of the jump term [v] is problematic, because [v1,k] is undefined. For N = 2,
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the squared scaling matrix can be rewritten as:

T 2 = T
2R, T 2

=
1

γr



(γ − 1)Y1 + γr2/r1Y2 −Y2 0 0

−Y1 (γ − 1)Y2 + γr1/r2Y1 0 0

0 0 1
2

0

0 0 0 1
2


, (4.20)

R =



ρ1 0 0 0

0 ρ2 0 0

0 0 ρ 0

0 0 0 ρ


. (4.21)

Denoting Dk = k − dk
γ−1

, we have:

RRT [v] =



ρ∗1 0 0 0

0 ρ∗2 0 0

0 0 ρ∗ 0

0 0 0 ρ∗





1 0 u∗ D∗1

0 1 u∗ D∗2

Y ∗1 Y ∗2 u∗ + a∗ (ht)∗ + u∗a∗

Y ∗1 Y ∗2 u∗ − a∗ (ht)∗ − u∗a∗





[
v1,1

]
[
v1,2

]
[
v2

]
[
v3

]


=



ρ∗1
[
v1,1

]
+ ρ∗1u

[
v2

]
+ ρ∗1D

∗
1

[
v3

]
ρ∗2
[
v1,2

]
+ ρ∗2u

[
v2

]
+ ρ∗2D

∗
2

[
v3

]
ρ∗1
[
v1,1

]
+ ρ∗2

[
v1,2

]
+ ρ∗(u∗ + a∗)

[
v2

]
+ ρ∗((ht)∗ + u∗a∗)

[
v3

]
ρ∗1
[
v1,1

]
+ ρ∗2

[
v1,2

]
+ ρ∗(u∗ − a∗)

[
v2

]
+ ρ∗((ht)∗ − u∗a∗)

[
v3

]


(4.22)

We can see that RRT [v] is well-defined if ρ∗k[v1,k] is well-defined as well. Given that:

ρ∗k[v1,k] =

(
− cvk[ln(T )]−

[
u2

2T

])
ρ∗k +

R

mk

[ln ρk]ρ
∗
k,

we see that with ρ∗k = ρlnk the dissipation operator is well-defined. For total density,

one might be tempted to take ρ∗ =
∑N

k=1 ρ
∗
k =

∑N
k=1 ρ

ln
k . This definition makes ρ∗ = 0

70



possible, which is undesirable given that Y ∗k = ρ∗k/ρ
∗. ρ∗ = ρln is a safer choice.

The exact resolution of stationary contact discontinuities is a desirable property in

the calculation of boundary and shear layers (even though it might produce carbuncles

on blunt-body calculations, see [155] paragraph 2.4.). In this case, [p] = 0, [u] = u = 0

and the EC flux we derived reduces to:

f1,k = 0, f2 =
1

1/T

( N∑
k=1

R

mk

ρk

)
, f3 = 0.

From the ideal gas law we can state that f2 is exactly the pressure on both sides of

the contact. The dissipation term must therefore cancel out if we want the ES scheme

to exactly preserve stationary contact discontinuities. Since u = 0, we have:

RT =



1 0 0 d∗1/(γ − 1)

. . .
...

...

0 1 0 d∗N/(γ − 1)

Y ∗1 . . . Y ∗N a∗ h∗

Y ∗1 . . . Y ∗N −a∗ h∗


, [v] =

[[
g1
T

]
. . .

[
gN
T

]
0 −

[
1
T

]]T
,

therefore:

RT [v] =



[
g1
T

]
− d∗1/(γ − 1)

[
1
T

]
...[

gN
T

]
− d∗N/(γ − 1)

[
1
T

]
∑N

k=1 Y
∗
k

[
gk
T

]
−
[

1
T

]
h∗∑N

k=1 Y
∗
k

[
gk
T

]
−
[

1
T

]
h∗


.
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|u∗| = 0 so the product of the eigenvalue matrix |Λ| and the squared scaling matrix

T 2 simplifies to:

|Λ|T 2 =
ρ∗a∗

2γ∗r∗



0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1


.

Therefore, the dissipation term R|Λ|T 2RT [v] cancels out if:

N∑
k=1

Y ∗k

[
gk
T

]
−
[

1

T

]
h∗ = 0.

This is equivalent to:

N∑
k=1

ρ∗k

(
e0k

[
1

T

]
−
[
sk
])
−
[

1

T

]
ρ∗h∗ = 0 (4.23)

Using:

−[sk] = cvk

[
1

T

]
1

(1/T )ln
+ rk

[ρk]

ρln
,

equation (4.23) can then be rewritten as:

N∑
k=1

(
ρ∗k
ρlnk

)
rk[ρk]−

[
1

T

](
ρ∗h∗ −

N∑
k=1

ρ∗k

(
e0k + cvk

1

(1/T )ln

))
= 0 (4.24)

The ideal gas law along with the assumption of constant pressure allows us to relate

the jumps in partial densities and temperature:

N∑
k=1

rk[ρk] = p

[
1

T

]
. (4.25)
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If ρ∗k = ρlnk , then using equation (4.25), equation (4.24) simplifies to:

[
1

T

](
p̄+

N∑
k=1

ρ∗k

(
e0k + cvk

1

(1/T )ln

)
− ρ∗h∗

)
= 0.

This leads to the condition:

ρ∗h∗ =
N∑
k=1

ρ∗k

(
e0k + cvk

1

(1/T )ln

)
+ p, ρ∗k = ρlnk . (4.26)

The remaining averages are taken as u∗ = u, T ∗ = 1/(1/T )ln, r∗ = r̄, γ∗ = γ and

a∗ =
√
γ∗r∗T ∗.

4.2.3 Additional considerations

4.2.3.1 Time integration

The first-order finite volume scheme we derived is ES at the semi-discrete level

only. Entropy stability or entropy conservation at the fully-discrete level can be

obtained using a variety of techniques [59, 50, 51, 161, 144, 145, 69] which can be

applied to the multicomponent compressible Euler system. However, this typically

requires implicit time-integration schemes. For simplicity, we use explicit Runge-

Kutta schemes in time, which do not guarantee entropy stability at the fully-discrete

level.

4.2.3.2 Positivity

We showed in sections 4.2.1 and 4.2.2 that despite the fact that the entropy vari-

ables are undefined in the limit ρk → 0, the EC flux is well-defined and that the

ES flux remains well-defined if the averaged partial densities are properly chosen (we

show a similar result for high-order TecNO schemes in section 4.3.2). This does not

guarantee that the resulting scheme will not produce negative densities and/or neg-
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ative pressures. In one-dimensional test problems, the first order semi-discrete ES

scheme fortunately did not produce negative densities or pressure but the high-order

TecNO scheme (section 4.3.2) systematically did. In the original setup of the two-

dimensional shock-bubble interaction problem [194, 191], the first-order scheme had

the same issue. This lack of positivity proof is not unique to ES schemes, but applies

to all schemes which do not strictly enforce local wave propagation.

There are schemes which are conservative, entropy stable and can preserve the cor-

rect sign of density and pressure. The Godunov scheme as well as the Lax-Friedrichs

scheme qualify if an appropriate CFL condition is met [175, 147]. Note also the recent

work of Guermond et al. [176, 177]. A common trait of these schemes is that they

take root in the notion of a Riemann problem and the assumption that there exists a

solution satisfying all entropy inequalities. These schemes also require an algorithm

capable of computing the maximum speed of propagation (or an upper bound) for the

Riemann problem at each interface. One such algorithm is discussed in Guermond &

Popov [178]. We could in principle adopt a hybrid approach where these schemes are

used in areas where the present one fails to maintain positive densities and pressure.

Whether this can effectively be accomplished is left for future work.

4.2.3.3 Construction for thermally perfect gases

Here we briefly discuss the construction of an ES scheme in the case where the

specific heats are not constant but functions of temperature. In this configuration,

the specific internal energies and entropies are defined as:

ek := e0k +

∫ T

0

cvk(τ)dτ, sk :=

∫ T

0

cvk(τ)

τ
dτ − rk ln ρk.

The structure that ES schemes build on [172, 174] is still present. The multicompo-

nent system still admits an additional conservation equation for the thermodynamic
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entropy of the mixture ρs and (U, F ) = (−ρs, −ρus) is a valid entropy pair for

ρk > 0, T > 0. In practice, the specific heats are represented using polynomial

interpolation:

cvk := ck0 +
P∑
j=1

ckjT
j,

where ckj, 0 ≤ j ≤ P are constants. This gives:

ek = e0k + ck0T +

p∑
j=1

ckj
j + 1

T j+1, sk = ck0 lnT +
P∑
j=1

ckj
j
T j − rk ln ρk.

The expressions of the entropy variables and potential functions remain unchanged.

Regarding the construction of the EC flux, we have for 1 ≤ k ≤ N :

[v1,k] =

[
1

T

(
gk −

u2

2

)]
=

[
ek
T
− sk

]
−
[
u2

2T

]
=

e0k

[
1

T

]
− ck0[lnT ]−

P∑
j=1

ckj
j(j + 1)

[T j] + rk[ln ρk]−
u2

2

[
1

T

]
− 1

T
u[u] (4.27)

For a given quantity a, let’s define the product operator a× = aLaR. For a 6= 0, we

have the following identity:

[a] = −a×
[

1

a

]
It can be easily shown, by induction for instance, that for j ≥ 1, there exists an

averaging operator fj(a), consistent with aj−1, such that [aj] = jfj(a)[a] (f1(a) = 1,

f2(a) = a, f3(a) = (2/3)a a+(1/3)a2 and so on using product rules). Equation (4.27)

can therefore be rewritten as:

[v1,k] = e0k

[
1

T

]
− ck0[lnT ] +

P∑
j=1

ckj
(j + 1)

(fj(T )T×)

[
1

T

]
+ rk[ln ρk]−

u2

2

[
1

T

]
− 1

T
u[u]

=

[
1

T

](
e0k + ck0

1

(1/T )ln
+

P∑
j=1

ckj
(j + 1)

(fj(T )T×)− u2

2

)
+ [ρk]

rk
ρlnk
− [u]

(
1

T

)
u
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Repeating the procedure outlined in section 4.2.1, we obtain an EC flux:

f1,k = ρlnk u,

f2 =
1

1/T

( N∑
k=1

rkρk

)
+ u

N∑
k=1

f1,k, (4.28)

f3 =
N∑
k=1

(
e0k + ck0

1

(1/T )ln
+

P∑
j=1

ckj
(j + 1)

(fj(T )T×)− 1

2
u2

)
f1,k + uf2.

which is consistent (fj(T )T× is consistent with T j+1) and differs from the expression

we obtained in the calorically perfect gas case (equation (4.14)) in the total energy

component only.

We will not go into the details of the upwind dissipation operator. Barth’s eigen-

scaling theorem applies because H still symmetrizes A from the right. Therefore the

scaling matrix exists (T 2 = R−1HR−T ) and the dissipation operator constructed in

section 4.2.2 can be constructed for thermally perfect gases as well.

4.2.3.4 Total mass form

Instead of solving the conservation equations for the N partial densities ρk, one

might want to solve for the conservation of the total density ρ and N-1 partial densi-

ties. The state and flux vectors are then:

ũ :=

[
ρ ρ2 . . . ρN ρu ρet

]T
, f̃ :=

[
ρu ρ2u . . . ρNu ρu2 + p (ρet + p)u

]T
.

The entropy variables in this configuration can be easily obtained using a chain rule:

ṽT = −∂ρs
∂ũ

= −∂ρs
∂u

(
∂ũ

∂u

)−1

= vT
(
∂ũ

∂u

)−1

= vT
(
∂u

∂ũ

)
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ũ and u only differ in the first component, ρ1 = ρ−
∑N

k=2 ρk therefore:

∂u

∂ũ
=



1 −1 . . . −1 0 0

1 0 0 0

. . . 0 0 0

0 0 . . . 1 0 0

0 0 . . . 0 1 0

0 0 . . . 0 0 1


,

ṽ =
1

T

[
(g1 − 1

2
u2) (g2 − g1) . . . (gN − g1) u −1

]T
.

The corresponding potential functions are unchanged because:

ṽT f̃ = vT
(
∂u

∂ũ

)(
∂ũ

∂u

)
f = vT f , ṽT ũ = vT

(
∂u

∂ũ

)(
∂ũ

∂u

)
u = vTu

Accordingly, an EC flux f̃EC for the total mass form can simply be obtained by

mapping an EC flux in the first form fEC:

f̃EC =

(
∂ũ

∂u

)
fEC .

Likewise, applying the same mapping to an ES flux f∗ in the first form given by:

f∗ = fEC −D[v]

where D is positive definite, results in a flux f̃∗ given by:

f̃∗ =

(
∂ũ

∂u

)
f∗ = f̃EC −

(
∂ũ

∂u

)
D[v] = f̃EC −

(
∂ũ

∂u

)
D

(
∂ũ

∂u

)T
[ṽ] = f̃EC − D̃[ṽ].

D̃ is positive definite by congruence therefore f̃∗ is entropy stable.
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4.3 High-order discretizations

In this section, we are essentially interested in how the fundamental issues high-

lighted in the previous sections manifest in a high-order setting. We discuss two high-

order ES formulations: TecNO schemes [60] and Discontinuous Galerkin [117, 118]

(DG) schemes discretizing the entropy variables [59, 44, 67]. High-order ES schemes

are not limited to these two options, but the issues their formulation raises are no

different.

4.3.1 Discontinuous Galerkin

The fact that the entropy variables are undefined in the limit ρk → 0 poses a

daunting problem, unless the flow configuration is such that one can expect ρk > 0 at

all times. A way around this issue (other than not discretizing the entropy variables)

has not been found by the author. There might be other entropy functions for which

the corresponding entropy variables are well-defined in this limit. However, in the

context of the multicomponent Navier-Stokes equations (including viscous stresses,

heat conduction, multicomponent diffusion), the a priori entropy stability resulting

from discretizing the entropy variables might be lost [44, 173].

4.3.2 TecNO schemes

The TecNO approach does not need to discretize the entropy variables but it does

require the knowledge of the scaled eigenvectors (RT ). If the dissipation operator is

only known in the form:

D[v] = R|Λ|T 2RT [v],
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then choosing w such that [w] = (T 2RT )[v] for the ENO reconstruction will result in

a high-order dissipation operator:

D̃[w] = R|Λ| 〈w〉 = R(|Λ|BT 2)RT [v].

|Λ|, B and T 2 are all symmetric and at least positive semi-definite, however their

product is not necessarily positive semi-definite. If the squared scaling matrix is di-

agonal then entropy stability is preserved. In the general case of a block-diagonal

scaling matrix, entropy stability is no longer ensured. The same problem would arise

if w was chosen such that [w] = RT [v] (the question would be whether (|Λ|T 2B) is

positive definite).

If the dissipation operator is expressed according to equation (4.19) with the

pseudo-scaling matrix T given by equation (4.18), the vector of reconstructed vari-

ables w such that = [w] = (RT )T [v] will have as many components as the number of

rows of T . For N > 2, the number of rows of T grows as O(N2), so for a large enough

N , one might prefer working with T instead of T and avoid having to reconstruct too

many variables.

In section 4.2.2, we showed that the dissipation term expressed as R|Λ|T 2RT is

well defined in the limit ρk → 0 provided that ρ∗k = ρlnk . This was possible because one

could extract from T 2 a diagonal matrix R (see equation (4.20)) of partial densities.

The TecNO algorithm requires the isolated evaluation of the scaled entropy variables

defined by the jump relation [w] = (RT )T [v] or [w] = (RT )T [v]. The matrix R

that was extracted from the squared scaling matrix, might not be extracted from T

or T without leaving 1/ρ∗k terms behind. However, R1/2 can be extracted from the

pseudo-scaling matrix T and since:

[ln(ρk)] = [2 ln(
√
ρk)] = 2

[
√
ρk]

(
√
ρk)ln

,
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it can be shown that [w] = (RT )T [v] is well-defined in the limit ρk → 0, provided

that ρ∗k = ((
√
ρk)

ln)2. The decomposition:

T 2 = R1/2T̃ 2(R1/2)T , T̃ 2 =
1

γr



(γ − 1)Y1 + γr2/r1Y2 −
√
Y1Y2 0 0

−
√
Y1Y2 (γ − 1)Y2 + γr1/r2Y1 0 0

0 0 1
2

0

0 0 0 1
2


.

(4.29)

suggests that a TecNO reconstruction based on the scaling matrix T would still be

defined in the limit with the same averaging. Note that this average is not compatible

with the stationary contact preservation condition (4.26) we derived in section 4.2.2.

That is because equation (4.26) requires ρ∗k = ρlnk .

4.4 Numerical experiments

In this section, we present and discuss numerical results on 1D (section 4.4.1) and

2D (section 4.4.2) test problems involving interfaces and shocks. A 3D formulation

of the scheme (entropy variables, EC flux, ES flux) is provided in appendix A.

4.4.1 One-dimensional cases

In all three problems, the first-order finite volume scheme with the ES flux in

space and forward Euler in time with a CFL of 0.3 on three grids with 100, 300 and

1000 cells was applied. All figures in this section use the same legend as in figure

4.1-(a).
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4.4.1.1 Moving interface

The first test problem is the advection of a contact discontinuity (constant velocity

and constant pressure) separating two different species. The initial conditions are

given by:


(ρ1, ρ2, u, p) = (0.1, 0.0, 1.0, 1.0), 0 ≤ x ≤ 0.5,

(ρ1, ρ2, u, p) = (0.0, 1.0, 1.0, 1.0), 0.5 < x ≤ 1.

with cp1 = 1.6, cp2 = 1.4, cv1 = cv2 = 1. The velocity and pressure profiles at

t = 0.022s and t = 0.1s are shown in figures 4.1 and 4.2. These profiles show over-

shoots and undershoots that are typically observed with conservative schemes (see

figure 4 in Abgrall & Karni [184] for instance). These anomalies are often termed

oscillations in the literature [184, 185, 186, 194, 195]. Upon closer examination, we

can see three waves propagating at different speeds. The one moving to the left has

the fastest propagation speed, roughly −3. There are two moving to the right, one

with a propagation speed close to 1 (the speed of the contact) and another moving at

a speed that is roughly 2. The speed of sound on the left-hand side of the contact is

a1 = 4. The speed of sound on the right-hand side of the contact is a2 =
√

1.4 ≈ 1.18.

The left-moving and (fastest) right-moving pressure waves propagate at speeds close

to u− a1 and u+ a2 respectively (note the dependence on the grid resolution).

Figure 4.3 shows the total entropy ρs = ρ1s1 + ρ2s2 profiles at t = 0.022s and

t = 0.1s. The wave structure of the pressure and velocity anomalies is more apparent,

and we can see that each wave is carrying an spurious increase in entropy. Figure 4.5

shows the evolution of the total entropy over time (the contributions from the bound-

aries were removed). This shows that the anomalies observed do not violate entropy

stability. On the contrary, it appears that inappropriate production of entropy is the

issue. Additionally, we find that these anomalies are still present when the upwind
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dissipation operator is discarded and the Backward Euler scheme is used to ensure

entropy stability (see appendix B).

In the same vein, we find that these anomalies do not violate a minimum principle

of the specific entropy (see figure 4.4.1.1).

That these anomalies are not linked to entropy stability or the minimum entropy

principle should not come as a surprise. These anomalies were already observed with

the Godunov scheme [184, 185], which is both entropy stable and satisfies a minimum

entropy principle [27, 175, 147].

It is important to understand that this problem is intrinsic to multicomponent

flows. There are no such anomalies on moving contacts in the compressible Euler

equations (B). Furthermore, these anomalies are produced by first-order schemes.

Intrigued readers are strongly encouraged to read early studies of this problem [185,

184, 186].
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(a) t = 0.022 s

(b) t = 0.1 s

Figure 4.1: Moving Interface: velocity profiles.
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(a) t = 0.022 s

(b) t = 0.1 s

Figure 4.2: Moving Interface: pressure profiles.
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(a) t = 0.022 s

(b) t = 0.1 s

Figure 4.3: Moving Interface: entropy (ρs = ρ1s1 + ρ2s2) profiles.
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(a) t = 0.022 s

(b) t = 0.1 s

Figure 4.4: Moving Interface: specific entropy (s = Y1s1 + Y2s2) profiles.
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Figure 4.5: Moving Interface: total entropy ρs over time.

4.4.1.2 Shock-tube problem

We simulate the shock tube problem with two different species across the initial

discontinuity. The initial conditions are given by:


(ρ1, ρ2, u, p) = (1, 0, 0, 1), 0 ≤ x ≤ 0.5,

(ρ1, ρ2, u, p) = (0, 0.125, 0, 0.1), 0.5 < x ≤ 1.0,

with γ1 = 1.4, γ2 = 1.6 and cv1 = cv2 = 1. Figure 4.6 shows the velocity and pressure

profiles at t = 0.2s.
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(a) velocity

(b) pressure

Figure 4.6: 2 species shock tube problem: solution at t = 0.2 s.
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4.4.1.3 Shock-interface interaction

We simulate a test problem from Quirk & Karni [185] which consists of a shock

tube filled with air, where a shock wave moves to the right and eventually meets a

stationary bubble of helium at pressure equilibrium. The initial conditions are given

by:



(ρ1, ρ2, u, p) = (1.3765, 0, 0.3948, 1.57), 0 ≤ x ≤ 0.25, Post-shock, air,

(ρ1, ρ2, u, p) = (1., 0, 0., 1.), 0.25 ≤ x ≤ 0.4, Pre-shock, air,

(ρ1, ρ2, u, p) = (0., 0.139, 0., 1.), 0.4 ≤ x ≤ 0.6, Pre-shock, helium bubble,

(ρ1, ρ2, u, p) = (1., 0, 0., 1.), 0.6 ≤ x ≤ 1, Post-shock, air.

For air cv1 = 0.72, γ1 = 1.4. For helium cv2 = 2.42, γ2 = 1.67. In [191], this is

problem is used to highlight the superiority of Karni’s non-conservative scheme [185]

over a conservative scheme using the Roe flux (see figure 2 in [191]). In a similar

spirit, we compared our semi-discrete ES scheme with the Roe scheme. Figure 4.7

shows the pressure profile at t = 0.35s obtained with each scheme. As expected, the

solution with Roe’s scheme is rife with oscillations unlike the solution with the present

ES scheme which converges to Karni’s solution without a single oscillation. The cause

of this improvement is not entropy stability, but the property of preserving stationary

contact discontinuities. Figure 4.8 shows the pressure profile before the right-moving

shock a couple of instants before it meets the helium bubble. Roe’s scheme does

not preserve stationary contacts and therefore produces pressure anomalies which

eventually pollute the solution at t = 0.35 (figure 4.7). This problem is a good

illustration of the importance of treating interfaces properly in the simulation of

multicomponent compressible flows. The results also suggest that the current will

not produce oscillations on shock-interface interaction problems if the interface is

stationary. This encouraged us to consider the next problem.
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(a) ES flux

(b) Roe flux

Figure 4.7: 1D shock-bubble interaction: Solution at t = 0.35 s.
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(a) ES flux

(b) Roe flux

Figure 4.8: 1D shock-bubble interaction: numerical solutions before the shock reaches
the bubble, t = 0.069 s.
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4.4.2 A two-dimensional case

Shock-bubble interaction

A test case that is commonly used in the development of numerical schemes for

compressible multicomponent flows [192, 194, 195, 191] is the interaction of a shock

wave with a cylindrical gas inhomogeneity. This problem is a two-dimensional analog

of the three-dimensional shock-induced mixing concept proposed by Marble et al.

[190] in the context of supersonic scramjet design. This problem is also used in

experimental and computational investigations of the Richtmyer-Meshkov instability

[187, 188].

Validating the present ES scheme against experimental data is beyond the scope

of the present work. In this section, we are essentially interested in the ability of the

scheme to simulate the physics relevant to this classic problem. For this purpose,

we tried to reproduce the results of Marquina & Mulet [194]. The computational

domain (ABCD) is shown in figure 4.9. A Mach MS = 1.22 shock wave, positioned

at x = 275 mm, moves to the left through quiescent air (species 1, γ1 = 1.4 and

r1 = 0.287 103 J.kg.−1.K−1) and eventually meets a cylindrical bubble, centered

at (x, y) = [225, 0] mm, filled with helium contaminated with 28% of air (γ2 =

1.647, r2 = 1.578 103 J.kg−1.K−1). The flow is assumed to be symmetric about

the shock-tube axis (BC), therefore only the upper half of the physical domain is

considered. Reflecting boundary conditions are applied on the top (AD) and bottom

(BC) boundaries. The boundary conditions upstream (AB) and downstream (CD)

the shock are not crucial in this problem [185] so we simply extrapolate the flow, as

in [194].

Since the current scheme is unable to guarantee positive partial densities and
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pressure, the initial conditions from [194] had to be modified:

Region I: (ρ1, ρ2, u, v, p) = (δρ, 1.225(r1/r2)− δρ, 0., 0., 101325),

Region II: (ρ1, ρ2, u, v, p) = (1.225− δρ, δρ, 0., 0., 101325),

Region III: (ρ1, ρ2, u, v, p) = (1.6861− δρ, δρ, −113.5243, 0., 159060).

with δρ = 0.03 (units for density, velocity and pressure are kg/m3, m/s and Pa,

respectively). This setup differs from the original in two aspects. First, the compo-

sition of the gas in regions I, II and III will not be the same. Second, regions I and

II are in pressure and temperature equilibrium in the original setup whereas in ours,

temperature equilibrium is lost. These differences make quantitative comparisons,

notably with the experimental data of Haas & Sturtevant [193], difficult to carry out.

However, we expect the results to be remain similar qualitatively (see Picone & Boris

[189] who studied this problem using a single gas flow model).

For this simulation, we used a 4-th order TecNO scheme in space with a 4-th order

explicit Runge-Kutta scheme in time. We used a 4000 × 400 grid and set the CFL

number to 0.3. Figure 4.10 shows pseudo-schlieren images of the density gradients

(φ = exp(−ψ|∇ρ|/|∇ρ|max), ψ = 10Y1 + 150Y2) at different times after the shock

reached the bubble. These are in good agreement with those produced by Marquina

& Mulet, figure 7 in [194] (see also Quirk & Karni [191], figure 9). We refer to these

two references for a detailed discussion of the physical mechanisms at work.

In figure 4.12-(a), we show an x–t diagram of the position of the key features of

the shock-bubble interaction. These features are explained in figure 4.12-(b). The

positions of these features are obtained by looking at inflection points of horizontal

sections of the shading function φ used in figure 4.10. The upstream bubble interface

is tracked on a section at a height 20 mm from the axis. The incident shock is tracked

on a section at 5 mm from the top wall. The remaining features are tracked on a
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Figure 4.9: 2D Shock-bubble interaction: Computational domain (not to scale). Only
the top half of the domain (ABCD) is simulated. Lengths in millimeters.
Region I: Bubble. Region II: Pre-shock. Region III: Post-shock.

VS VR VT Vui1 Vui2 Vdi Vj
Gouasmi et al. 422 954 377 185 105 138 228

Marquina and Mulet [194] 414 943 373 176 111 153 229

Table 4.1: Velocities inm/s of the features explained in figure 4.12. The time intervals
in µs for computing each velocity are: VS [3.66, 62.64], VR [3.66, 52.81],
VT [52.81, 141.26], Vui1 [3.66, 141.26], Vui2 [146.18, 254.29], Vdi [141.26,
254.29], Vj [146.18, 254.29].

section along the symmetry line. The x-t diagram from Marquina & Mulet, figure 5

in [194], shows similar trends. The mean velocities of these features are calculated

from their visually straight trajectories using linear regression, and displayed in Table

4.1.
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(a) t = 23.32µs (b) t = 42.98µs

(c) t = 52.81µs (d) t = 67.55µs

(e) t = 77.38µs (f) t = 101.95µs

Figure 4.10: 2D Shock-bubble interaction: Pseudo-Schlieren images of density gradi-
ent.
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(a) t = 259.21µs (b) t = 445.95µs

(c) t = 676.91µs

Figure 4.11: Figure 4.10 continued
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(a) (b)

Figure 4.12: 2D Shock-bubble interaction: (a) x–t diagram of the key features ex-
plained in (b); (b) VS: incident shock, VR: refracted shock VT: trans-
mitted shock, Vui: upstream border of the bubble, Vdi: downstream
border of the bubble, Vj: air jet head

4.5 Summary

We have come across a few obstacles during the course of this work. The first one

is theoretical: the structure required by ES schemes collapses when one of the partial

densities is zero. The entropy U is no longer convex and the entropy variables, which

are key in constructing ES schemes, are no longer defined. Upon closer examination,

we observed that the EC flux we derived is well-defined in this limit and still satisfies

the Entropy Conservation condition. We also found that the dissipation operator

remains defined provided that the averaged partial densities involved in the dissipation

matrix are evaluated in a certain way.
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The second obstacle is that while the overall scheme is always defined, there is no

guarantee that it will not produce negative densities or pressure, even at first order,

at the next time step. This lack of positivity proof is not unique to ES schemes,

but applies to all schemes which do not strictly enforce local wave propagation. Last

but not least, numerical experiments showed that while the ES scheme can handle

shocks and stationary contact discontinuities correctly, it fails to preserve pressure

equilibrium and constant velocity when a moving interface is simulated.

Third and last, it is a well-known issue that conservative schemes are subject

to pressure oscillations on moving interfaces. Numerical experiments showed that

the ES scheme we constructed is no exception. In addition, we stress that these

anomalies, which are not present in the single component case, violate neither entropy

stability nor a minimum principle on the specific entropy of the mixture. Most of the

early remedies to the pressure oscillation problems consist in partially giving up on

conservation of total energy [186, 185, 180, 184] and possibly the ability to properly

capture shocks. A compromise between ensuring entropy stability and the proper

treatment of moving interfaces could perhaps be achieved with the EC/ES schemes

for non-conservative hyperbolic systems developed by Castro et al. [198]. That being

said, non-conservative schemes have their own lot of issues [199, 200].
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CHAPTER V

A Minimum Entropy Principle in the

Multicomponent Compressible Euler Equations

At this point in the thesis, it should be clear that satisfying an entropy inequality

is not a strong enough condition to ensure the quality of the approximate solution.

For good measure, we add [169, 170, 171] to the list of counter-examples.

Recall from chapter II that the entropy inequality (2.5) is only a necessary con-

dition for the weak solution to be a limit solution to the regularized system (2.2).

A more stringent condition one can set is that the weak solution satisfies all entropy

inequalities. Such solutions are called entropy solutions.

For the compressible Euler equations, Harten [48] showed that the pairs (U, F ) =

(−ρh(s),−ρuh(s)) with h
′
> 0, h

′ − γh′′ > 0 are entropy pairs, and building from

these, Tadmor [175] proved that entropy solutions, whether smooth or discrete, must

satisfy a minimum entropy principle1, namely that the spatial minimum of the spe-

cific entropy is an increasing function of time.

This result is also a necessary condition, but unlike the entropy inequality (2.5),

it makes a clear statement about the local behavior of the physical solution. Lim-

iting procedures for high-order schemes have been designed around this property

1This is neither a statement about entropy production nor a statement which applies to any PDE
system with a convex extension. A reviewer suggested referring to this property as a “minimum
principle of the specific entropy” to avoid the confusion.
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[212, 213, 177, 209] for the compressible Euler equations. Schemes which preserve the

positivity of density and the minimum entropy principle automatically preserve the

positivity of pressure.

In this chapter, we seek to extend this result to entropy solutions of the multicom-

ponent compressible Euler equations. In section 5.1, we review the system at hand.

In section 5.2, we recall the original proof and motivate the two families of entropy

functions we investigate in section 5.3. We end up showing a minimum entropy prin-

ciple for the mixture’s specific entropy. In section 5.4, we review numerical schemes

which satisfy this property.

5.1 Governing equations

We consider the compressible multicomponent Euler equations [172] which con-

sist of the conservation of species mass, momentum and total energy. In one dimen-

sion, that is equation (2.1) with the state vector u and flux vector f defined by:

u :=

[
ρ1 . . . ρN ρu ρet

]>
, f :=

[
ρ1u . . . ρNu ρu2 + p (ρet + p)u

]>
,

where ρk is the partial density of species k, ρ :=
∑N

k=1 ρk is the total density, et is

the specific total energy, and u is the fluid velocity. The pressure p is given by the

perfect gas law:

p :=
N∑
k=1

ρkrkT, rk =
R

mk

,

where mk is the molar mass of species k and R is the gas constant. The temperature

T is determined by the internal energy ρe := ρet − (ρu)2/(2ρ) which in this work is

modeled following a thermally perfect gas assumption:

ρe :=
N∑
k=1

ρkek, ek := e0k +

∫ T

0

cvk(τ)dτ.
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For species k, ek is the specific internal energy of species k, e0k is a constant and

cvk = cvk(T ) > 0 is the constant volume specific heat. Other quantities which will be

used in this work are given by:

hk := ek + rkT, ρcv :=
N∑
k=1

ρkcvk, cpk := cvk + rk, ρcp :=
N∑
k=1

ρkcpk, γ :=
cp
cv
, Yk :=

ρk
ρ
.

hk is the specific enthalpy of species k, cv is the constant volume specific heat of

the gas mixture, cp is the constant pressure specific heat of the gas mixture, γ is

the specific heat ratio and Yk is the mass fraction of species k. The thermodynamic

entropy of the gas mixture is given by:

ρs :=
N∑
k=1

ρksk, sk :=

∫ T

0

cvk(τ)

τ
dτ − rk ln(ρk)

Combining the transport equations for total density, species fractions and internal

energy:

Dtρ = −ρ∂xu, DtYk = 0, Dte = −p
ρ
∂xu, (5.1)

with the Gibbs relation:

Tds = de− p

ρ2
dρ−

N∑
k=1

gkdYk, (5.2)

leads to a transport equation for the specific entropy s:

Dts = 0. (5.3)

With total mass conservation, this leads to the conservation equation:

∂t(ρs) + ∂x(ρsu) = 0. (5.4)
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For ρk > 0, T > 0, (U, F ) = (−ρs,−ρus) is a valid entropy-entropy flux pair [174,

172]. The condition (2.4) is met as a consequence of the conservation equation. The

convexity of U is established by looking at the entropy Hessian G given by:

G :=
∂2U

∂u2
=
∂v

∂u
=
∂v

∂Z

(
∂u

∂Z

)−1

.

The entropy variables v for the multicomponent system can be easily derived using

variable changes. Define the vector of primitive variables Z =

[
ρ1 . . . ρN u T

]>
.

The chain rule gives:

∂U

∂u
=
∂U

∂Z

(
∂u

∂Z

)−1

.

The Gibbs identity (5.2) can be written as:

TdU = −dρe+
N∑
k=1

gkdρk, (5.5)

where gk = hk − Tsk is the Gibbs function of species k. From the definition of ρe we

have:

dρe =
N∑
k=1

ekdρk + ρcvdT. (5.6)

Combining eqs. (5.6) and (5.5), one obtains:

dU =
1

T

( N∑
k=1

(gk − ek)dρk − ρcvdT
)
.

This gives:

∂U

∂Z
=

1

T

[
(g1 − e1) . . . (gN − eN) 0 −ρcv

]
. (5.7)
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The Jacobian of the mapping Z → u is given by:

∂u

∂Z
=



1 0 0 0

. . .
...

...

0 1 0 0

u . . . u ρ 0

e1 + k . . . eN + k ρu ρcv


, (5.8)

where k = 1
2
u2. The inverse of this matrix is given by:

(
∂u

∂Z

)−1

=



1 0 0 0

. . .
...

...

0 1 0 0

−uρ−1 . . . −uρ−1 ρ−1 0

(k − e1)(ρcv)
−1 . . . (k − eN)(ρcv)

−1 −u(ρcv)
−1 (ρcv)

−1


. (5.9)

Combining eqs. (5.9) and (5.7) yields the entropy variables [174, 172]:

v =

(
∂U

∂u

)>
=

1

T

[
g1 − k . . . gN − k u −1

]>
. (5.10)

We have:

∂v

∂Z
=



r1/ρ1 0 −u/T (k − e1)/T 2

. . .
...

...

0 rN/ρN −u/T (k − eN)/T 2

0 . . . 0 1/T −u/T 2

0 . . . 0 0 1/T 2


. (5.11)
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therefore the Hessian is given by:

G =
1

ρcvT 2



sym(
ζij
)

−u(k − (e1 − cvT )) . . . −u(k − (eN − cvT )) (u2 + cvT )

−(e1 − k) . . . −(eN − k) −u 1


,

(5.12)

with ζij = (ρcvT
2)
(
δijri/ρi + u2cvT

)
+ (ei − k)(ej − k) for 1 ≤ i, j ≤ N . The positive

definiteness of the Hessian matrix G is not immediately visible because it is dense.

However the matrix H defined by the congruence relation:

H :=

(
∂u

∂Z

)>
G

(
∂u

∂Z

)
=

(
∂u

∂Z

)>
∂v

∂Z
=



r1/ρ1 0 0 0

. . .
...

...

0 rN/ρN 0 0

0 . . . 0 ρ/T 0

0 . . . 0 0 ρcv/T
2


,

(5.13)

is positive definite, therefore G is positive definite. This congruence relation, which

we picked up from [203], will be used as well in section 5.3.

5.2 The minimum entropy principle

In this section, we review the proof of Tadmor [175] for the compressible Euler

equations then discuss how to apply it to the multicomponent system.
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5.2.1 Review

Integrating the inequality (2.5) over any domain Ω which induces no entropy influx

across its boundaries gives:

d

dt

∫
Ω

U(u(x, t))dx ≤ 0 (5.14)

Integrating the above in time gives [202]:

∫
Ω

U(u(x, t))dx ≤
∫

Ω

U(u(x, 0))dx (5.15)

Tadmor [205] showed that a sharper, more local version of the above inequality can

be obtained: ∫
|x|≤R

U(u(x, t))dx ≤
∫
|x|≤R+t·qmax

U(u(x, 0))dx, (5.16)

where qmax is the maximum velocity in the domain at t = 0. For the Euler equations,

Harten [48] sought pairs of the form (Uh, F h) = (−ρh(s),−ρuh(s)) where s = ln(p)−

γ ln(ρ) is the dimensionless specific entropy (divided by the cv, we will use the letter

f instead of h in section 5.3) and h is a smooth function of S. Harten showed that

the pair (Uh, F h) is admissible if and only if h satisfies:

h
′ − γ h′′ > 0, h

′
> 0. (5.17)

For any such function h, the inequality (5.16) with U = Uh gives:

∫
|x|≤R

ρ(x, t) · h(s(x, t)) dx ≥
∫
|x|≤R+t·qmax

ρ(x, 0) · h(s(x, 0)) dx. (5.18)

Tadmor makes a special choice h0 for the function h:

h0(s) = min[s− s0, 0], s0 = Ess inf
|x|≤R+t·qmax

s(x, 0).
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s0 is the essential infimum of the specific entropy in the domain Ω = {x : |x| <

R + t · qmax}. From inequality (5.18), we get:

∫
|x|≤R

ρ(x, t) ·min[s(x, t)− s0, 0] dx ≥
∫
|x|≤R+t·qmax

ρ(x, 0) ·min[s(x, 0)− s0, 0] dx.

(5.19)

The right-hand side drops by definition of s0, so equation (5.19) simplifies to:

∫
|x|≤R

ρ(x, t) ·min[s(x, t)− s0, 0] dx ≥ 0. (5.20)

The integrand on the left-hand side is negative, therefore inequality (5.20) imposes

for |x| ≤ R:

min[s(x, t)− s0, 0] = 0⇔ s(x, t) ≥ Ess inf
|x|≤R+t·qmax

s(x, 0). (5.21)

This is the minimum entropy principle satisfied by entropy solutions to the compress-

ible Euler equations. A similar result holds for discrete solutions uni (the subscript

i and the superscript n refer to the cell index and time instant, respectively) which

satisfy the fully-discrete entropy inequality:

∑
i

U(un+1
i ) ≤

∑
i

U(uni ), (5.22)

for all entropies U . Taking U = −ρh0(s) with s0 defined as the minimum specific

entropy at time instant n leads to:

∑
i

ρ(un+1
i ) ·min[s(un+1

i )− s0, 0] ≥ 0.

If ρ(un+1
i ) > 0, this imposes in every cell:

min[s(un+1
i )− s0, 0] = 0 ⇔ s(un+1

i ) ≥ min
i
s(uni ). (5.23)
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At first glance, injecting U = −ρh0(s) in inequalities (5.16) and (5.22) should not

be allowed because h0 is not a smooth function of s. What makes this step valid

nonetheless is the fact that h0 can be written as the limit of a sequence of smooth

functions which satisfy Harten’s conditions. Without loss of generality, let’s assume

s0 = 0 and consider the convolution defined as:

h(s) =

∫ +∞

−∞
h0(s− s)φ(s)ds.

where φ is a smooth function satisfying:

∫ +∞

−∞
φ(s)ds = 1, φ(s) > 0.

φ should also be such that the convolution is well-defined everywhere. φ(s) =

exp(−s2)/
√
π is a valid choice. By definition of h0, we have:

h(s) =

∫ +∞

s

(s− s)φ(s)ds = s

∫ +∞

s

φ(s)ds−
∫ +∞

s

sφ(s)ds.

h is smooth and satisfies Harten’s conditions because:

h
′
(s) =

∫ +∞

s

φ(s)ds > 0, h
′′
(s) = −φ(s) < 0.

∀ε > 0, the function hε defined by:

hε(s) =

∫ +∞

−∞
h0(s− s)φε(s)ds, φε(s) =

1

ε
φ

(
s

ε

)
, (5.24)

is smooth and satisifies Harten’s conditions as well. What is more, φε converges, in

the sense of distributions, to the Dirac delta function when ε → 0 (classic result).

Therefore, inequality (5.19) is obtained h0 = limε→ hε.

The main takeaway of this review is that not all entropy inequalities need to be
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satisfied for a minimum entropy principle to hold in the compressible Euler equations.

Those involving the ”convolution entropies” U = −ρhε(s),∀ε > 0 defined by equation

(5.24) are enough.

Remark 1: This proof and Harten’s characterization (5.17) are both indepen-

dent of the number of spatial dimensions [48, 175]. Throughout this manuscript, we

worked in one dimension for the sake of simplicity only.

Remark 2: Kroner et al. [207] use a different approach to demonstrate that

bounded entropy solutions to the quasi-1D Euler equations with discontinuous cross-

section satisfy a minimum entropy principle. The inequality (5.18) is used with

h(s) = −(s0 − s)p, p > 1, s0 > s (s0 denotes an upper bound in this context),

raised to the power 1/p and passed to the limit p→∞.

Remark 3: A minimum entropy principle for smooth solutions to well-designed

regularizations of the Euler equations was proved by Guermond and Popov [208] (see

also Delchini et al. [210, 211] for other systems). In this work, we are interested in

the minimum entropy principle as a property of entropy solutions, whether smooth or

discrete, to the multicomponent compressible Euler equations.

5.2.2 Elements of proof for the multicomponent compressible Euler equa-

tions

We need to formulate what a minimum entropy principle would be in the multi-

component case. The first option is a minimum entropy principle involving the specific

entropy of each species :

sk(x, t) ≥ s0k = Ess inf
|x|≤R+t·qmax

sk(x, 0), 1 ≤ k ≤ N.
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Working Tadmor’s proof backwards, this is obtained if we can show that entropy

solutions satisfy the inequality:

∫
|x|≤R

N∑
k=1

ρk(x, t) · fk(sk(x, t)) dx ≥
∫
|x|≤R+t·qmax

N∑
k=1

ρk(x, 0) · fk(sk(x, 0)) dx, (5.25)

and that fk can be taken as f0k(sk) = min[sk − s0k, 0]. This leads us to examine

entropy pairs (U f
I , F

f
I ) of the form:

(U f
I , F

f
I ) =

(
−

N∑
k=1

ρkfk, −
N∑
k=1

ρkufk

)
, fk = fk(sk), (5.26)

and attempt to show that those with fk defined as the convolution (5.24) are valid

entropy pairs. The second option is a minimum entropy principle involving the specific

entropy of the gas mixture:

s(x, t) ≥ s0 = Ess inf
|x|≤R+t·qmax

s(x, 0).

In the same vein, this is obtained if we can show that entropy solutions satisfy the

inequality:

∫
|x|≤R

ρ(x, t) · f(s(x, t)) dx ≥
∫
|x|≤R+t·qmax

ρ(x, 0) · f(s(x, 0)) dx, (5.27)

and that f can be taken as f0(s) = min[s− s0, 0]. This leads us to examine entropy

pairs (U f
II , F

f
II) of the form:

(U f
II , F

f
II) = (−ρf(s),−ρuf(s)), (5.28)

and attempt show that those with f defined as the convolution (5.24) are valid en-

tropy pairs.

These two families are investigated in the next section. The admissibility con-
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ditions will take the form of constraints on the first and second derivatives of fk

(first case) and f (second case). If the first and second derivatives are allowed to be

strictly positive and negative, respectively, then the convolution (5.24) qualifies and

a minimum entropy principle follows.

5.3 Entropy functions in the multicomponent case

For each candidate family of entropy functions, we must check for conservation

and convexity with respect to the conservative variables. For a candidate entropy U f ,

convexity is equivalent to the positive definiteness of its Hessian matrix G:

G =
∂2U f

∂u2
=
∂vf

∂u
, vf =

(
∂U f

∂u

)>
.

vf is the vector of entropy variables associated with the candidate entropy.
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5.3.1 Candidate I

Conservation

Equation (2.3) with (U, F ) = (U f
I , F

f
I ) holds if and only if

∑N
k=1 Ykfk satisfies a

transport equation. We have:

d

( N∑
k=1

Ykfk

)
=

N∑
k=1

Ykdfk +
N∑
k=1

fkdYk

=
N∑
k=1

Ykf
′

kdsk +
N∑
k=1

fkdYk

=
N∑
k=1

Ykf
′

k

(
cvk
T
dT − rk

ρk
dρk

)
+

N∑
k=1

fkdYk

=

( N∑
k=1

Ykf
′

kcvk

)
dT

T
− 1

ρ

N∑
k=1

f
′

krkdρk +
N∑
k=1

fkdYk

=

( N∑
k=1

Ykf
′

kcvk

)
dT

T
−
( N∑

k=1

f
′

kYkrk

)
dρ

ρ
+

N∑
k=1

(fk − rkf
′

k)dYk.

From the differential relation:

de =
N∑
k=1

dYkek +
N∑
k=1

YkcvkdT =
N∑
k=1

dYkek + cvdT,

we obtain the following equation for temperature:

DtT = − p

ρcv
∂xu =

p

ρ2cv
Dtρ. (5.29)

Using equations (5.1) and (5.29), we can show that U f
I is conserved if and only if:

1

T

( N∑
k=1

Ykf
′

kcvk

)
DtT −

1

ρ

( N∑
k=1

f
′

kYkrk

)
Dtρ = 0 ⇔

p

ρT

(∑N
k=1 Ykf

′

kcvk∑N
k=1 Ykcvk

)
−
( N∑

k=1

f
′

kYkrk

)
= 0 (5.30)
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Using the ideal gas law, this condition rewrites:

∑N
k=1 ρkcvkf

′

k∑N
k=1 ρkcvk

=

∑N
k=1 ρkrkf

′

k∑N
k=1 ρkrk

. (5.31)

Convexity

We have:

∂sk
∂ρk

= −rk
ρk
,
∂sk
∂T

=
cvk
T
,
∂fk
∂ρk

= −rk
ρk
f
′

k,
∂fk
∂T

=
cvk
T
f
′

k.

Therefore

∂U f
I

∂Z
=

[
−f1 + r1f

′
1 . . . −fN + rNf

′
N 0 − 1

T

(∑N
k=1 ρkcvkf

′

k

)]
,

and the entropy variables (chain rule) are given by:

vfI =

[
−f1 + r1f

′
1 − β k−e1T

. . . −fN + rNf
′
N − β k−eNT β u

T
−β 1

T

]>
,

β =

∑N
k=1 ρkcvkf

′

k∑N
k=1 ρkcvk

.

For simplicity, let’s assume calorically perfect gases (cvk and cpk constants) and drop

the standard formation constants. To proceed with the Hessian calculation we need

the following:

∂β

∂ρk
=
cvk
ρcv

(f
′

k − rkf
′′

k − β),
∂β

∂T
=
η

T
, η =

∑N
k=1 ρkc

2
vkf

′′

k∑N
k=1 ρkcvk

.

Denote ξk = f
′

k − rkf
′′

k and vfI = [vf1,1 . . . vf1,N vf2 vf3 ]>. The gradients of the last

component are given by:

∂vf3
∂ρk

= − 1

T

cvk
ρcv

(ξk − β),
∂vf3
∂u

= 0,
∂vf3
∂T

=
β − η
T 2

. (5.32)
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The gradients of the before-last component are given by:

∂vf2
∂ρk

=
u

T

cvk
ρcv

(ξk − β),
∂vf2
∂u

=
β

T
,
∂vf2
∂T

= u
η − β
T 2

. (5.33)

The gradient of the l-th component is given by:

∂vf1,l
∂ρk

= δkl
rk
ρk
ξk−(

k

T
−cvl)

cvk
ρcv

(ξk−β),
∂vf1,l
∂u

= −uβ
T
,
∂vf1,l
∂T

= −cvl
T
ξl+

(β − η)k

T 2
+cvl

η

T
.

(5.34)

The chain rule gives for the Hessian GI :

GI =
∂vfI
∂Z

(
∂u

∂Z

)−1

.

The coefficients of the first Jacobian matrix are given by equations (5.32)-(5.34).

The Hessian GI is dense. We establish convexity conditions (G positive definite) by

looking at the congruent matrix HI defined by:

HI =

(
∂u

∂Z

)>
GI

(
∂u

∂Z

)
=

(
∂u

∂Z

)>
∂vfI
∂Z

,

instead. HI is given by:

HI =



r1
ρ1
ξ1 0 0 − cv1

T
(ξ1 − β)

0 r2
ρ2
ξ2 0 − cv2

T
(ξ2 − β)

0 0 ρβ
T

0

− cv1
T

(ξ1 − β) − cv2
T

(ξ2 − β) 0 ρcv
β−η
T 2


HI is positive definite if and only if the determinants of the major blocks of HI are

all positive (from Harten [48]). For the first three major blocks, this is equivalent to
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the requirement that ξ1 > 0, ξ2 > 0 and β > 0 are positive. Last:

det(HI) =
ρβ

T 3
r1r2

(
ρcv(β − η)

ξ1ξ2

ρ1ρ2

− cv1

γ1 − 1
(ξ1 − β)2 ξ2

ρ2

− cv2

γ2 − 1
(ξ2 − β)2 ξ1

ρ1

)
=
ρβr1r2ξ1ξ2

ρ1ρ2T 3

(
ρcv(β − η)− ρ1cv1

γ1 − 1

(ξ1 − β)2

ξ1

− ρ2cv2

γ2 − 1

(ξ2 − β)2

ξ2

)
=
ρβr1r2ξ1ξ2

ρ1ρ2T 3

(
ρ1cv1

(
(β − η)− 1

γ1 − 1

(ξ1 − β)2

ξ1

)
+ ρ2cv2

(
(β − η)− 1

γ2 − 1

(ξ2 − β)2

ξ2

))
=
ρβr1r2ξ1ξ2

ρ1ρ2T 3

(
ρ1cv1

ξ1(γ1 − 1)

(
(β − η)ξ1(γ1 − 1)− (ξ1 − β)2

)
+

ρ2cv2

ξ2(γ2 − 1)

(
(β − η)ξ2(γ2 − 1)− (ξ2 − β)2

))
=
ρβr1r2ξ1ξ2

ρ1ρ2T 3

(
ρ1cv1

ξ1(γ1 − 1)
∆1 +

ρ2cv2

ξ2(γ2 − 1)
∆2

)
,

where ∆k = (β − η)ξk(γk − 1)− (ξk − β)2. For an arbitrary number of species:

HI =



r1
ρ1
ξ1 0 − cv1

T
(ξ1 − β)

. . .
...

...

rN
ρN
ξN 0 − cvN

T
(ξN − β)

0 . . . 0 ρβ
T

0

− cv1
T

(ξ1 − β) . . . − cvN
T

(ξN − β) 0 ρcv
β−η
T 2


, (5.35)

and one can easily show that:

det(HI) =
ρβ

T 3

( N∏
k=1

rkξk
ρk

)( N∑
k=1

ρkcvk
ξk(γk − 1)

∆k

)
. (5.36)

Overall, U f is an admissible entropy for the multicomponent Euler equations if and

only if:

∑N
k=1 ρkcvkf

′

k∑N
k=1 ρkcvk

=

∑N
k=1 ρkrkf

′

k∑N
k=1 ρkrk

, ξk > 0, β > 0,
N∑
k=1

ρkcvk
ξk(γk − 1)

∆k > 0. (5.37)
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While the sufficient conditions f
′

k > 0, f
′′

k < 0 for a minimum entropy principle are

compatible with ξk > 0 and β > 0, it is not clear whether they are compatible with the

last inequality of (5.37) (∆k being the difference of two positive terms). Additionally,

the equality constraint (5.31) which came from the requirement of conservation does

not seem to offer any option other than f
′

k constant. Note that if f
′

k > 0, f
′′

k < 0 were

to violate any of the conditions derived here, it would only mean that we cannot prove

a minimum entropy principle with the approach exposed in section 5.2.1. Disproving

a minimum entropy principle would require a counterexample.

For the compressible Euler equations, HI simplifies to:

HI =


r
ρ
ξ 0 − cv

T
(ξ − β)

0 ρβ
T

0

− cv
T

(ξ − β) 0 ρcv
β−η
T 2

 , ξ = f
′ − rf ′′ , β = f

′
, η = cvf

′′
.

The determinants of the three major blocks are:

det(H11) =
r

ρ
ξ, det(H22) =

ρ

T
β, det(HI) =

ρrcvβ

T 3(γ − 1)

(
(β − η)ξ(γ − 1)− (ξ − β)2

)
.

Using (γ− 1)(β− η) = (γ− 1)f
′ − rf ′′ and ξ− β = −rf ′′ , the determinant simplifies

to:

det(HI) =
ρrcvβ

2

T 3

(
f
′ − cpf

′′
)

The necessary conditions for HI to be positive definite are then:

f
′ − rf ′′ > 0, f

′
> 0, f

′ − cpf
′′
> 0. (5.38)

Since f
′
> 0, the first and third inequality of (5.38) can be rewritten as:

f
′′

f ′
<

1

r
,
f
′′

f ′
<

1

cp
.
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Since cp > r, the first inequality is implied by the second. Therefore, the necessary

conditions (5.38) simplify to:

f
′
> 0, f

′ − cpf
′′
> 0. (5.39)

These are the well-known conditions (5.17) for the Euler equations (note that the

function f in this section and the function h in section 5.2.1 are related by f(s) =

h(s/cv)). The conditions (5.37) are therefore consistent with Harten’s in the Euler

case.

5.3.2 Candidate II

Conservation

Multiplying the transport equation for the specific entropy (5.3) with f
′

leads to

a transport equation for f(s). Conservation of U f
II with the entropy flux F f

II then

follows from the total mass conservation equation.

Convexity

We have:

∂Yj
∂ρk

=
δjk
ρ
− ρj
ρ2
,
∂s

∂ρk
=

1

ρ
(sk − rk − s),

∂s

∂T
=
cv
T
.

This gives:

∂U f
II

∂Z
=

[
f
′
(−s1 + r1 + s)− f . . . f

′
(−sN + rN + s)− f 0 −ρcv

T
f
′

]
, (5.40)

116



and the entropy variables:

vfII =

[
f
′ g1−k
T

+ f
′
s− f . . . f

′ gN−k
T

+ f
′
s− f f

′ u
T
−f ′ 1

T

]>
= f

′
v + (f

′
s− f)

[
1 · · · 1 0 0

]>
. (5.41)

Again, the conditions for convexity are established by looking at the congruent matrix

HII defined by:

HII =

(
∂u

∂Z

)>
GII

(
∂u

∂Z

)
=

(
∂u

∂Z

)>
∂vfII
∂Z

.

We have:

∂vfII
∂Z

= f
′ ∂v

∂Z
+
f
′′

ρ



(g1 − k)/T + s

...

(gN − k)/T + s

u/T

−1/T


[
s1 − r1 − s . . . sN − rN − s 0 ρcv

T

]
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and

(
∂u

∂Z

)>


(g1 − k)/T + s

...

(gN − k)/T + s

u/T

−1/T


=



−s1 + r1 + s

...

−sN + rN + s

0

−ρcv
T


,

(
∂u

∂Z

)>
∂v

∂Z
=



r1/ρ1 0 0 0

. . .
...

...

0 rN/ρN 0 0

0 . . . 0 ρ/T 0

0 . . . 0 0 ρcv/T
2


.

Therefore:

HII = f
′



r1/ρ1 0 0 0

. . .
...

...

0 rN/ρN 0 0

0 . . . 0 ρ/T 0

0 . . . 0 0 ρcv/T
2


−f

′′

ρ



R1

...

RN

0

−ρcv
T


[
R1 . . . RN 0 −ρcv

T

]
,

(5.42)

where Ri = −si + ri + s. We recover Harten’s conditions in the compressible Euler

case. At this point, we immediately note that if f
′
> 0, f

′′
< 0 then HII is positive

definite (as the sum of a positive definite matrix and a positive semi-definite matrix).

Therefore a minimum entropy principle for the gas mixture’s specific entropy holds.
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Continuing on the characterization of convexity, HII writes:

HII =
f
′

ρ



r1/Y1 0 0 0

. . .
...

...

0 rN/YN 0 0

0 . . . 0 ρ2/T 0

0 . . . 0 0 ρ2cv/T
2



− f
′′

ρ



R2
1 R1RN 0 −ρcv

T
R1

. . .
...

...

R1RN R2
N 0 −ρcv

T
RN

0 . . . 0 0 0

−ρcv
T
R1 . . . −ρcv

T
RN 0 ρ2c2v

T 2


.

Let ri = ri/Yi and η = f
′ − cvf

′′
, for two species we have:

HII =
1

ρ



f
′
r1 − f

′′
R2

1 −R1R2f
′′

0 ρcv
T
R1f

′′

−R1R2f
′′

f
′
r2 − f

′′
R2

2 0 ρcv
T
R2f

′′

0 0 ρ2f
′
/T 0

ρcv
T
R1f

′′ ρcv
T
R2f

′′
0 ρ2cv

T 2 η


The determinants of the first three major blocks of H are:

H11 = r1

(
f
′−f ′′R

2
1

r1

)
, H22 = r1r2f

′
(
f
′−f ′′

(
R2

1

r1

+
R2

2

r2

))
, H33 =

ρ2f
′

T
H22. (5.43)
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Last:

det(ρHII) =
ρ2f

′

T

∣∣∣∣∣∣∣∣∣∣
f
′
r1 − f

′′
R2

1 −R1R2f
′′ ρcv

T
R1f

′′

−R1R2f
′′

f
′
r2 − f

′′
R2

2
ρcv
T
R2f

′′

ρcv
T
R1f

′′ ρcv
T
R2f

′′ ρ2cv
T 2 η

∣∣∣∣∣∣∣∣∣∣
=
ρ4cvf

′

T 3

∣∣∣∣∣∣∣∣∣∣
f
′
r1 − f

′′
R2

1 −R1R2f
′′

R1f
′′

−R1R2f
′′

f
′
r2 − f

′′
R2

2 R2f
′′

cvR1f
′′

cvR2f
′′

η

∣∣∣∣∣∣∣∣∣∣
=
ρ4cvf

′

T 3

(
ηH22 − cvR2

2f
′′

∣∣∣∣∣∣∣
f
′
r1 − f

′′
R2

1 −R1f
′′

R1 1

∣∣∣∣∣∣∣−
cvR

2
1f
′′

∣∣∣∣∣∣∣
f
′
r2 − f

′′
R2

2 −R2f
′′

R2 1

∣∣∣∣∣∣∣
)

=
ρ4cvf

′

T 3

(
ηH22 − cvf

′′
f
′
(R2

2r1 +R2
1r2

))
=
ρ4cv(f

′
)2

T 3
r1r2

(
ηf
′ − (η + cv)f

′′
(
R2

1

r1

+
R2

2

r2

))
.

We obtain conditions on f involving terms of the form f
′−αf ′′ , but unlike in the Euler

case, α is not a constant. In section 4.1, the simple structure of the mapped Hessian

HI , given by equation (5.35), allowed us to easily derive the necessary and sufficient

conditions (5.37) for convexity for an arbitrary number of species. Nevertheless, we

were not able to conclude on a minimum entropy principle on the specific entropy

of each species. Here, the mapped Hessian HII , given by equation (5.42), is mostly

dense, which complicates the task of establishing convexity conditions for an arbitrary

number of species. However, we know from equation (5.42) that f
′
> 0 and f

′′
< 0 are

sufficient conditions for admissibility, independently of the number of species, which

is enough to conclude on a minimum entropy principle on the gas mixture’s specific

entropy.
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5.4 Numerical schemes satisfying a minimum entropy prin-

ciple

In this section, we review schemes which, by virtue of satisfying all entropy in-

equalities under some assumptions, satisfy a minimum entropy principle for the com-

pressible multicomponent Euler equations.

We only discuss first-order schemes in one dimension. Extensions to high-order

and multiple dimensions (including unstructured grids) can be found in [212, 213,

176, 177, 209]. These schemes are typically constructed as composite convex combi-

nations of one-dimensional first-order updates. Since entropies are convex functions,

any entropy inequality satisfied by the baseline one-dimensional first-order update

will be satisfied by the whole scheme as well.

5.4.1 Godunov-type schemes

Let w(x/t; uL,uR) be the solution of the Riemann problem:

∂tu + ∂xf = 0, u(x, 0) =

 uL, x < 0,

uR, x > 0,
(5.44)

where uL and uR are constant states. Let aL and aR be the smallest and largest

signal velocities. Then w satisfies:

w(x/t; uL,uR) =

 uL, x/t ≤ aL

uR, x/t ≥ aR

(5.45)

In the Godunov scheme [12], each discontinuity in the discrete field uni gives rise to a

local Riemann problem (5.45). If λ|amax| < 1/2, where amax is the largest signal speed

in the domain, then there is no interaction between neighboring Riemann problems
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and the exact solution wn+1(x) at the next time instant writes:

wn+1(x) = w((x− xi+ 1
2
)/∆t; uni ,u

n
i+1), for |x− xi+ 1

2
| ≤ ∆x/2,

where xi+ 1
2

is the position of the interface between cells i and i + 1. The Godunov

scheme is obtained by averaging wn+1 in each cell:

un+1
i =

1

∆x

∫ x
i+1

2

x
i− 1

2

wn+1(x) dx

=
1

∆x

∫ ∆x/2

0

w(x/∆t; uni−1,u
n
i ) dx+

1

∆x

∫ 0

−∆x/2

w(x/∆t; uni ,u
n
i+1) dx.

This update can be rewritten in conservative form:

un+1
i = uni − λ

(
f(ŵi+ 1

2
)− f(ŵi− 1

2
)
)
, ŵi+ 1

2
= w(0; uni ,u

n
i+1),

with λ = ∆t/∆x. An important assumption from there [27, 176] is that the exact

Riemann solution is an entropy solution. This implies, for all entropies:

1

∆x

∫ x
i+1

2

x
i− 1

2

U(wn+1(x)) dx ≤ U(uni )− λ
(
F (ŵi+ 1

2
)− F (ŵi− 1

2
)
)
.

With Jensen’s inequality:

U

(
1

∆x

∫ x
i+1

2

x
i− 1

2

wn+1(x) dx

)
≤ 1

∆x

∫ x
i+1

2

x
i− 1

2

U(wn+1(x)) dx,

it follows that the Godunov scheme satisfies:

U(un+1
i ) ≤ U(uni )− λ

(
F (ŵi+ 1

2
)− F (ŵi− 1

2
)
)
. (5.46)

122



This shows that the Godunov scheme inherits, by construction, all the entropy in-

equalities that the exact Riemann solution satisfies. This result also applies to schemes

based on approximate Riemann solutions provided that they remain consistent with

the integral forms of the conservation law and the entropy inequality (see Theorem

3.1 in [27]). The bottom line is that full knowledge of the Riemann solution is not

necessary. For instance, the HLL scheme [27] qualifies if the maximum right and left

wave speeds are correctly estimated (from above).

The Godunov scheme satisfies a sharper version of (5.23). Taking U = −ρf0(s)

with s0 = min[s(uni−1), s(uni ), s(uni+1)] in (5.46), and using the fact that the exact so-

lution w is an entropy solution satisfying (5.21), it follows that the Godunov scheme

satisfies:

s(un+1
i ) ≥ min[s(uni−1), s(uni ), s(uni+1)], (5.47)

For the compressible Euler equations, procedures for calculating the exact solution

(see Toro [168]) and estimating the maximum wave speed (see Guermond & Popov

[178]) are available and can be extended to the multicomponent case (a follow-up to

[178] is proposed by Frolov in [204], section 4.5).

It is unclear whether the assumption that the exact Riemann solution satisfies

all entropy inequalities is valid. To the best of the author’s knowledge, there is no

proof that Harten’s entropies [48] are the only entropies of the compressible Euler

equations. The same can be said about the entropies that we explored in section 5.3

for the multicomponent case. This precludes a direct proof where entropy inequalities

are evaluated for the exact Riemann solution. Another way of proving this would be

to show that the exact Riemann solution can be written as a limit solution to the

regularized system (2.2) or any other system which implies all entropy inequalities. As

far as the minimum entropy principle is concerned, showing that the exact Riemann

solution satisfies all entropy inequalities associated with Harten’s family or with the

convolution entropies of section 5.2.1 would be enough.
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5.4.2 The Lax-Friedrichs scheme

The Lax-Friedrichs (LxF) scheme writes:

un+1
i =

uni−1 + uni+1

2
+
λ

2

(
f(uni−1)− f(uni+1)

)
.

Harten (private communication in [206], section 4) observed that if the time step

is small enough, the LxF scheme coincides with the Godunov scheme over a staggered

grid. The solution thus inherits the entropy inequalities that the Riemann solution

satisfies:

U(un+1
i ) ≤

U(uni−1) + U(uni+1)

2
+
λ

2

(
F (uni−1)− F (uni+1)

)
. (5.48)

As in section 5.2.1, inequality (5.48) with U = −ρf0(s) and s0 = min[s(uni−1), s(uni+1)]

leads to a minimum entropy principle:

s(un+1
i ) ≥ min[s(uni−1), s(uni+1)], (5.49)

that is sharper than (5.23).

On the other hand, Lax [201] proved, without invoking Riemann solutions, that

the LxF scheme can be made to satisfy (5.48) for any given entropy pair. We recall

his proof here.

Denote u = un+1
i , v = uni−1 and w = uni+1. The LxF scheme writes:

u(v,w) =
v + w

2
+
λ

2
(f(v)− f(w)),

and the entropy inequality (5.48) can be studied by looking at the sign of the difference

function:

∆S(v,w) =
U(v) + U(w)

2
+
λ

2
(F (v)− F (w))− U(u).

124



Lax [201] used a homotopy approach. Let s ∈ [0 1], and define:

v(s) = sv + (1− s)w, u(s) = u(v(s),w).

Since v(1) = v, v(0) = w, and ∆S(w,w) = 0, the fundamental theorem of calculus

gives:

∆S(v,w) = ∆S(v(1),w)−∆S(v(0),w) =

∫ 1

0

d

ds

(
∆S(v(s),w)

)
ds. (5.50)

u and v satisfy:

dv

ds
= v−w,

du

ds
=

v−w

2
+
λ

2
A(v)(v−w) =

1

2

(
I + λA(v)

)
(v−w),

where A is the flux Jacobian. Using chain rules and the constitutive relation (2.4),

the integrand in equation (5.50) writes:

d

ds

(
∆S(v(s),w)

)
=

1

2

(
dU

du
(v)− dU

du
(u)

)(
I + λA(v)

)
(v−w).

Again, let r ∈ [0 1], and define:

w(r, s) = rv(s) + (1− r)w = rsv + (1− rs)w, u(r, s) = u(v(s),w(r)).

Since u(1, s) = v(s), u(0, s) = u(s), the fundamental theorem of calculus gives:

dU

du
(v)− dU

du
(u) =

∫ 1

0

d

dr

(
dU

du
(u)

)
dr =

∫ 1

0

(
du

dr

)T
G(u) dr, (5.51)

where G is the entropy Hessian. With:

du

dr
=
s

2

(
I − λA(w)

)
(v−w)
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and equations (5.50) - (5.51), the difference function ∆S can finally be rewritten as:

∆S(v,w) =

∫ 1

0

∫ 1

0

s

4

((
I − λA(w)

)
(v−w)

)T
G(u)

((
I + λA(v)

)
(v−w)

)
dsdr.

= 〈z, z〉G − λ(〈A(w)z, z〉G + 〈z, A(v)z〉G)− λ2〈A(w)z, A(v)z〉G.

where z = (v−w) and 〈 , 〉G is the inner product defined by:

〈a, b〉G =

∫ 1

0

∫ 1

0

s

4
aTG(u)b dsdr.

Since G is symmetric positive definite, 〈z, z〉G > 0 and one can expect the entropy

inequality (5.48) to be met if λ is small enough. Within the vector space spanned by

(r, s), let c be the maximum matrix norm of A, m be the minimum eigenvalue of G

and M be the maximum eigenvalue of G. Then, for ||v|| 6= 0, if λ satisfies:

m− 2cλM − c2λ2M > 0 ⇔ λc <
√

1 + (m/M)− 1. (5.52)

then the inequality (5.48) is met. Since U is strictly convex, (m/M) > 0 and the

right-hand side of (5.52) is strictly positive. In other words, for any entropy U , there

will always exist a time step small enough such that the condition (5.52) is met.

While Lax’s proof does not invoke Riemann solutions, it does not completely

support the statement [175] that the LxF scheme can be made to satisfy all entropy

inequalities. The factor m/M in (5.52) is strictly positive, but also depends on the

entropy at hand. The fact that we do not know all the entropies of a hyperbolic

system in general leaves open the possibility that m/M can be arbitrarily small. One

needs to show that there exists a strictly positive and entropy-independent lower

bound K on m/M , so that under the condition:

λc <
√

1 +K − 1 (5.53)
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the LxF scheme will effectively satisfy all entropy inequalities. As far as the minimum

entropy principle is concerned however, we recalled in section 5.2.1 that not all entropy

inequalities need to be satisfied.

5.5 Summary

We proved a minimum entropy principle for entropy solutions to the multicom-

ponent compressible Euler equations, extending Tadmor’s result [175]. The proof

was carried out in one dimension but easily follows in two and three dimensions (the

characterization of the two families in section 5.3 is independent of the number of

dimensions). This principle was proven for the gas mixture’s specific entropy only. It

would be interesting to establish whether this also holds for the specific entropy of

each species. We assumed a mixture of thermally perfect gases governed by an ideal

gas law. The methodology outlined here and in the work of Harten et al. [203], which

extended Harten’s characterization [48] to gases with an arbitrary equation of state,

should provide helpful guidelines for those interested in taking this result farther.

While numerical schemes consistent with the entropy condition (2.5) for a given

pair (U, F ) can be constructed (we constructed one in the previous chapter for the

pair (−ρs,−ρus)), designing numerical schemes which lead to discrete entropy solu-

tions is more challenging. A common trait of these schemes [27, 212, 176, 213] is that

they take root in the notion of a Riemann problem and the existence of solutions

satisfying all entropy inequalities.

While the minimum entropy principle is only a property of entropy solutions,

it provides valuable information about the local behavior of the physical solution.

Limiting procedures for high-order schemes have been designed around this property

[212, 213, 177, 209] for the Euler equations and may henceforth prove useful in mul-

ticomponent flow simulations.

Finally, we emphasize that the present work is not meant to provide a compre-
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hensive review of the symmetrizability of the multicomponent system. We refer the

interested reader to Giovangigli & Matuszewski [173] for instance. The investigation

of entropy functions carried out in section 5.3 was driven by the prospect of proving a

minimum entropy principle. Harten’s pioneering work [48] had broader motivations.
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CHAPTER VI

The Low Mach Regime

A well known issue with numerical schemes for compressible flows is that their

performance degrades in the low Mach number regime [219, 216, 231], most notably in

the incompressible limit, despite the fact that the incompressible Euler equations are

a particular occurrence of the more general compressible Euler equations [215, 214].

The research effort in adapting compressible flow codes to incompressible flow prob-

lems is motivated by two factors. First, it is sometimes more convenient to expand

an existing and validated compressible flow solver instead of developing and validat-

ing an incompressible flow solver and juggling between the two. Second, there are

many flow configurations of engineering interest that exhibit both compressible and

incompressible flow phenomena at the same time. Examples include transonic flow,

subsonic combustion, nozzle flows, and shock-induced shear instabilities.

Steady state calculations, which typically consist in evolving the unsteady system

until a stationary solution is found, require a number of iterations which grows as

the Mach number decreases. This can be explained by the CFL condition which be-

comes more stringent because of the acoustic eigenvalues. Preconditioning methods

[216, 217, 218, 226, 228, 227, 230, 231] have been developed to address this specific

issue. The key idea is to modify the temporal scales of the unsteady system that is

iterated by pre-multiplying the time derivative by a well-chosen preconditioning ma-
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trix P . Ideally, the new CFL condition that arises from this modification should allow

for faster convergence. In addition to stiffness, the converged solution also becomes

less accurate. The root cause of this issue lies in the artificial viscosity or artificial

dissipation introduced by upwind fluxes. Turkel [216, 217, 218] showed that the dis-

sipation matrix of upwind fluxes contains terms which prevent the discrete equations

solving the compressible system to converge to a set of discrete equations solving the

incompressible system. A different perspective is provided in the work of Guillard

& Viozat [226] who recalled that in the incompressible regime, pressure fluctuations

in space typically scale as the square of the Mach number. By writing the discrete

equations for the compressible system, and using asymptotic expansions [229] they

were able to rigorously demonstrate that certain terms in the dissipation matrix of

the upwind flux impose pressure fluctuations in space which scale as the Mach num-

ber instead of its square. The accuracy degradation problems can be alleviated with

Flux-Preconditioning, which consists in modifying the upwind dissipation using ma-

trix operations. Other remedies to this problem, which do not involve preconditioning

matrices, have also been proposed [235, 236, 237, 238, 239]. The stiffness and accuracy

issues are also present in the simulation of unsteady flows. The time-step restriction

imposed by the CFL condition prohibits the use of explicit schemes and motivates the

development of implicit schemes and nonlinear solvers. The losses in accuracy mani-

fest by an excessive dissipation low Mach vortical structures [223, 224, 225, 235, 236],

which in certain configurations need to be properly captured.

In this chapter, we build upon previous theoretical work on this topic to study how

entropy-stable schemes behave in the low Mach regime. We focus on the accuracy

degradation problem in unsteady calculations and analyze it from an entropy produc-

tion perspective. Since entropy-stability is typically achieved by using upwind-type

dissipation operators, we expect the same accuracy degradation to take place. We

also consider the acoustic low Mach limit [228, 240], which has received perhaps less
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attention than the incompressible one but remains of practical interest.

This chapter is organized as follows. Section 6.1 introduces the non-dimensional

compressible Euler equations and the two low Mach limits following [226, 228]. Section

6.2 recaps the root of the accuracy degradation problems and the flux-preconditioning

technique. In section 6.3, we begin analyzing entropy-stable schemes in this context.

We seek to establish whether the flux-preconditioning approach, taking the precon-

ditioner of Miczek et. al [223, 224] and one of Turkel’s [218, 226] as examples, is

compatible with our base requirement of entropy-stability. Numerical experiments

are carried out in section 6.4 and further analyzed in section 6.5, where the ideas of

Guillard & Viozat [226] are used to revisit the accuracy problems from the angle of

entropy production. Section 6.6 offers additional perspectives on those developments.

6.1 The compressible Euler equations in the low Mach limit

In this chapter, we write the dimensional form of the compressible Euler equations

as 1:

∂

∂t̂
(ρ̂) + ∇̂T (ρ̂û) = 0,

∂

∂t̂
(ρ̂û) + ∇̂ · (ρ̂û⊗ û) + ∇̂p̂ = 0, (6.1)

∂

∂t̂
ρ̂(ê+ k̂) + ∇̂ · (û(ρ̂(ê+ k̂) + p̂)) = 0.

ρ̂ is the density, û is the velocity vector, k̂ = 1
2
|û|2 is the kinetic energy, ê is the

internal energy and p̂ is the pressure. The equation of state writes p̂ = (γ − 1)ρ̂ê.

To derive the incompressible system, we follow the same procedure as in Guillard

& Viozat [226]. We first rewrite the equations in non-dimensional form. Let ρr, pr, ur

be reference values for density, pressure and velocity magnitude, respectively, and

1Most the derivations carried out in this work involve the non-dimensional system. We use the
hat notation for the dimensional system to enable a lighter notation for the non-dimensional one.
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define a reference speed of sound ar =
√
pr/ρr. Let lr be a reference length scale and

define the reference time scale as tr = lr/ur. We define the non-dimensional variables

as:

ρ = ρ̂/ρr, u = û/ur, e = ê/(ar)
2, t = t̂/tr, (6.2)

Introducing the non-dimensional differential operator ∇ = lr ∇̂, we obtain the non-

dimensional system:

∂

∂t
(ρ) +∇ · (ρu) = 0,

∂

∂t
(ρu) +∇ · (ρu⊗ u) +

1

M2
r

∇p = 0, (6.3)

∂

∂t
ρ(e+M2

r k) +∇ · (u(ρ(e+M2
r k) + p)) = 0,

where Mr = ur/ar denotes the reference Mach number. The corresponding equation

of state writes p = (γ−1)ρe. The second step towards the incompressible system is to

consider asymptotic expansions [229] of the flow variables in powers of the reference

Mach number:

p = p0 +Mrp1 +M2
r p2 +O(M3

r ), (6.4)

u = u0 +Mru1 +M2
r u2 +O(M3

r ),

ρ = ρ0 +Mrρ1 +M2
r ρ2 +O(M3

r ).

Injecting these expressions into (6.3) and collecting terms of same order, we get:

1. Order 1/M2
r :

∇p0 = 0. (6.5)

2. Order 1/M :

∇p1 = 0. (6.6)
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3. Order 1:

∂

∂t
(ρ0) +∇ · (ρ0u0) = 0, (6.7)

∂

∂t
(ρ0u0) +∇ · (ρ0u0 ⊗ u0) +∇p2 = 0, (6.8)

∂

∂t
(ρ0e0) +∇ · (u0ρ0e0 + p0) = 0. (6.9)

Equations (6.5) and (6.6) imply that pressure variations in space scale as M2
r at least.

The second order expansion thus writes: p(x, t) = p0(t) + Mrp1(t) + M2
r p2(x, t) =

P0(t) +M2
r p2(x, t). If P0 is constant then from the equation of state ρ0e0 is constant

as well and equation (6.9) implies the divergence constraint ∇ · u0 = 0. Injecting

the divergence constraint into equation (6.7) implies that the material derivative of

density is zero. Assuming that all particle paths come from regions of same density

ρ0, we get that density is constant everywhere and equations (6.7), (6.8) and (6.9)

finally reduce to:

ρ0

(
∂

∂t
(u0) +∇ · (u0 ⊗ u0)

)
+∇p2 = 0, (6.10)

∇ · u0 = 0. (6.11)

The divergence constraint also implies that the kinetic energy is conserved.

As recalled in Guillard & Nkonga [228], the incompressible system is not the only

low Mach limit. In the process leading to (6.3) it was assumed that the relevant time

scale was determined by the reference velocity ur. If the time scale is defined in terms

of the reference speed of sound ar instead, that is tr = lr/ar, then instead of (6.3),
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we have:

1

Mr

∂

∂t
(ρ) +∇ · (ρu) = 0,

1

Mr

∂

∂t
(ρu) +∇ · (ρu⊗ u) +

1

M2
r

∇p = 0, (6.12)

1

Mr

∂

∂t
ρ(e+M2

r k) +∇ · (u(ρ(e+M2
r k) + p)) = 0,

Introducing the expansion (6.4) into (6.12) and collecting terms, one gets:

1. Order 1/M2
r :

∇p0 = 0. (6.13)

2. Order 1/Mr:

∂

∂t
(ρ0) = 0, (6.14)

∂

∂t
(ρ0u0) +∇p1 = 0, (6.15)

∂

∂t
p0 = 0. (6.16)

Equations (6.13) and (6.16) imply that the pressure variations in space scale as Mr,

that is one order of magnitude bigger than those in the incompressible limit. With

further assumptions and manipulations (the interested reader is referred to Guillard

& Nkonga [228]), it can be shown that the first order pressure p1 satisfies the wave

equation with propagation speed a0, that is the first order speed of sound.

Overall, there are at least two low Mach limits to the compressible Euler equations,

which can be characterized by how pressure fluctuations scale with the reference Mach

number Mr.

At a later stage in this work, we will need a clear definition of the entropy in the

non-dimensional context. We first recall the dimensional conservation equation for
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entropy ρ̂ŝ:

∂(ρ̂ŝ)

∂t̂
+ ∇̂ · (ρ̂ûŝ) = 0, ŝ = ln p̂− γ ln ρ̂. (6.17)

Since we already have non-dimensional density and pressure variables, we define the

non-dimensional entropy ρs accordingly from:

ρ̂ŝ = ρr(ρs) + ρrsr, sr = ln pr − γ ln sr.

Injecting this expression into (6.17) gives:

∂(ρ̂ŝ)

∂t̂
+ ∇̂ · (ρ̂ûŝ) = ρr

(
∂(ρs)

∂t
+∇ · (ρus)

)
+ ρrsr

(
∂

∂t
(ρ) +∇ · (ρu)

)
= ρr

(
∂(ρs)

∂t
+∇ · (ρus)

)

This gives the non-dimensional equation for entropy:

∂(ρs)

∂t
+∇ · (ρus) = 0, (6.18)

If the time scale is taken as tr = lr/ur, and:

1

Mr

∂(ρs)

∂t
+∇ · (ρus) = 0, (6.19)

if the time scale is taken as tr = lr/ar instead.

6.2 Discrete analysis and flux-preconditioning

To introduce the discretization, we rewrite the non-dimensional compressible

Euler equations (6.3) in conservative form:

∂u

∂t
+
∂fx
∂x

+
∂fy
∂y

+
∂fz
∂z

= 0, (6.20)
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where the state vector u and the flux vectors fx, fy and fz are defined by:

u =

[
ρ ρu ρv ρw ρet

]T
,

fx =

[
ρu ρu2 + p/M2

r ρuv ρuw (ρet + p)u

]T
,

fy =

[
ρv ρuv ρv2 + p/M2

r ρvw (ρet + p)v

]T
,

fz =

[
ρw ρuw ρvw ρw2 + p/M2

r (ρet + p)w

]T
,

with et = e+M2
r k.

The general form of a finite-volume discretization is, in cell Ωi:

dui
dt

+
1

Vi

∫
δΩi

f∗dS = 0, (6.21)

where f∗ = f∗(ui,uj,n) denotes the numerical flux along the interface δΩi (uj is the

neighboring cell state value) whose normal vector writes n = [nx, ny, nz]. A classic

choice is the Roe flux:

f∗(uL,uR,n) =
1

2
(f(uL) + f(uR))− 1

2
|A|(uR − uL), |A| = R|Λ|R−1. (6.22)

where f(u) = nxfx(u) + nyfy(u) + nzfz(u) is the flux in the direction normal to the

interface and A is the corresponding Jacobian:

A = nx
∂fx
∂u

+ ny
∂fy
∂u

+ nz
∂fz
∂u

. (6.23)

In the low-Mach number regime, the accuracy of such a scheme, deteriorates as

the Mach number goes to zero. Turkel [216, 217] explained that it is because that the

dissipation matrix |A| contains terms which prevent the discrete equations solving the

compressible system to converge to a set of discrete equations for the incompressible
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system in the low Mach limit. To illustrate, Turkel considers [216] the simple case of

a 2-by-2 hyperbolic system with the following Jacobian:

A =

 u a/Mr

a/Mr u

 =

1 1

1 −1


u+ a/Mr 0

0 u− a/Mr


1 1

1 −1


−1

. (6.24)

It has eigenvalues u + a/Mr and u − a/Mr. In the subsonic regime, |u + a/Mr| =

u+ a/Mr and |u− a/Mr| = −(u− a/Mr). This change of sign leads to a dissipation

matrix which does not possess the same scaling behavior as the flux Jacobian:

|A| =

a/Mr u

u a/Mr

 =

O(1/Mr) O(1)

O(1) O(1/Mr)

 6=
 O(1) O(1/Mr)

O(1/Mr) O(1)

 .
This difference in scaling behavior is the root cause of the accuracy degradation issues.

The dissipation term is an important component of the flux. It cannot be discarded

because the scheme would be less robust.

The flux-preconditioning technique can be seen a compromise between stability

and correct low-Mach behavior. It consists in replacing the dissipation matrix |A|

with P−1|PA| where P is a preconditioning matrix. The resulting interface flux then

writes:

f∗(uL,uR,n) =
1

2
(f(uL) + f(uR))− 1

2
P−1|PA|(uR − uL). (6.25)

P should correct the asympotic behavior of the dissipation term in the low-Mach

regime and only be active in this regime (P → I as Mr → 1).

The design of such a matrix P is not straightforward, even though it is clear that

the acoustic eigenspace λ = u±a/Mr of the dissipation matrix should be targeted. To

simplify the analysis, similarity transformations are typically used. They amount to

considering the compressible Euler equations expressed in a alternative set of variables
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z. Define:

Az = Q−1AQ, Q =

(
∂u

∂z

)
.

First, a preconditioning matrix Pz is sought so that P−1
z |PzAz| has appropriate Mach

number scalings. The preconditioning matrix P in terms of the conservative variables

u is then derived from the similarity relation P = QPzQ
−1. Indeed, one has:

P−1|PAu| = QP−1
z Q−1|QPzQ

−1QAzQ
−1| = QP−1

z (|PzAz|)Q−1

As a matter of course, this strategy is efficient only if Az has a simpler structure than

A. With the differential entropy variables 2 defined by:

dz = (dp/(ρaMr), du, dv, dw, dp− a2dρ),

the Jacobian writes:

Az =



un nxa/Mr nya/Mr nza/Mr 0

nxa/Mr un 0 0 0

nya/Mr 0 un 0 0

nza/Mr 0 0 un 0

0 0 0 0 un


, un = nxu+ nyv + nzw, (6.26)

2These variables are referred to as the “entropy variables” in the literature [218, 225]. The naming
“differential entropy variables” is introduced to avoid confusion with the entropy variables v that
ES schemes are centered around.
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and has the eigendecomposition Az = RzΛR
−1
z with

Rz =



0 0 0 1 1

0 −nz ny nx nx

nz 0 −nx ny ny

−ny nx 0 nz nz

−nx −ny −nz 0 0


, Λ = diag(un, un, un, un, un+a/Mr, un−a/Mr]).

(6.27)

The 2-by-2 hyperbolic system (6.24) of Turkel in [216] is a specific case of system

(6.26). For this system, Turkel et al. [218, 216] established the following necessary

condition on Pz for convergence in the low Mach limit:

P−1
z |PzAz| =



O(1/M2) O(1/M) O(1/M) O(1/M) 0

O(1/M) O(1) O(1) O(1) 0

O(1/M) O(1) O(1) O(1) 0

O(1/M) O(1) O(1) O(1) 0

0 0 0 0 O(1)


. (6.28)

They also showed that this is achieved with the Turkel preconditioning matrix:

Pz =



p2 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


, (6.29)

where p = min(max(Mr,Mcut), 1). The parameter p is defined in such a way that Pz is

always invertible (the cut-off Mach number Mcut prevents p→ 0 and Pz singular) and

Pz approaches the identity matrix when Mr → 1. Indeed, one has PzAz = RpΛpR
−1
p
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with

Rp =





0 0 0

0 −nz ny

nz 0 −nx

−ny nx 0

−nx −ny −nz


1

(K1−K2)



K1 K2

nx nx

ny ny

nz nz

0 0




,

Λp = diag([un, un, un, un, unp + ap, unp − ap]),

unp =
1

2
un(p2 + 1), ap = (u2

np + p2((a/M)2 − u2
n))1/2,

K1 = (unp − un + ap)Mr/a, K2 = (unp − un − ap)Mr/a.

The modified dissipation matrix thus writes:

P−1
z |PzAz|

=



C0 nxC1 nyC1 nzC1 0

nxC2 n2
xC3 + (1− n2

x)un nxnyC4 nxnzC4 0

nyC2 nynxC4 n2
yC3 + (1− n2

y)un nynzC4 0

nzC2 nznxC4 nznyC4 n3
xC3 + (1− n2

z)un 0

0 0 0 0 un


,

C0 = (a2
p + u2

np − ununp)/(app2), C1 = Mrunp(ap + un − unp)(ap − un + unp)/(aapp
2),

C2 = (aunp)/(Mrap), C3 = ap + unp(un − unp)/ap,

C4 = (ap − unp)(ap − un + unp)/ap,

and meets condition (6.28). A different perspective is provided in the work of Guillard

& Viozat [226] who observed that in the incompressible regime, pressure fluctuations

in space typically scale as M2
r . By applying the process described in section 6.1 to

the discrete equations, they were able to rigorously demonstrate that certain terms
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in the dissipation matrix of the upwind flux impose pressure fluctuations in space

which scale as Mr instead. Additionally, they show that with Turkel’s preconditioner

(6.29), the proper scaling of pressure fluctuations is recovered.

The second preconditioning matrix we consider in this chapter was more recently

introduced by Miczek et al. [223, 224] for insteady calculations. It writes:

Pz =



1 nxp nyp nzp 0

−nxp 1 0 0 0

−nyp 0 1 0 0

−nzp 0 0 1 0

0 0 0 0 1


. (6.30)

with p = 1− 1/δ, δ = min(max(Mr,Mcut), 1). One has PzAz = RpΛpR
−1
p with

Rp =





0 0 0

0 −nz ny

nz 0 −nx

−ny nx 0

−nx −ny −nz


1

(K1−K2)



K1 K2

nx nx

ny ny

nz nz

0 0




,

Λp = diag(un, un, un, un, un + ap, un − ap]),

ap =
√

(p2 + 1)a2/M2
r − p2u2

n,

K1 = (a+Mrpun)/(Mrap − ap), K2 = −(a+Mrpun)/(Mrap + ap).
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The modified dissipation matrix writes:

P−1
z |PzAz|

=



C0 nxC1 nyC1 nzC1 0

nxC2 n2
xC3 + (1− n2

x)un nxnyC4 nxnzC4 0

nyC2 nynxC4 n2
yC3 + (1− n2

y)un nynzC4 0

nzC2 nznxC4 nznyC4 n3
xC3 + (1− n2

z)un 0

0 0 0 0 un


,

C0 = (ap + un)/(p2 + 1) + 2un(K2 − p)/((p2 + 1)(K1 −K2)),

C1 = (p((K2 −K1)ap + (K1 +K2)un)− 2K1K2un)/((p2 + 1)(K1 −K2)),

C2 = (2un + p((K1 −K2)ap + (K1 +K2)un))/((p2 + 1)(K1 −K2)),

C3 = ((K1 −K2)ap − (K1 +K2)un − 2K1K2pun)/((p2 + 1)(K1 −K2)),

C4 = −un + ((K1 −K2)ap − (K1 +K2)un − 2K1K2pun)/((p2 + 1)(K1 −K2)),

and satisfies Turkel’s necessary condition (6.28) as well:

P−1
z |PzAz| =



O(1) O(1/M) O(1/M) O(1/M) 0

O(1/M) O(1) O(1) O(1) 0

O(1/M) O(1) O(1) O(1) 0

O(1/M) O(1) O(1) O(1) 0

0 0 0 0 O(1)


. (6.31)

This flux-preconditioning matrix was designed to meet the more stringent condition

(6.31) that P−1
z |PzAz| has the same Mach number scalings as Az. It is argued [223,

224, 225] that meeting this condition, which implies Turkel’s (6.28), improves the

accuracy of the scheme in the low Mach limit, in particular in the acoustic limit. It

was recently shown by Bruel et al. [240] that while flux-preconditioning with the
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Turkel matrix improves the accuracy in the incompressible limit, it also leads to a

numerical scheme which handles acoustic waves poorly. Acoustic waves are damped

significantly faster than without any flux-preconditioning.

Many other preconditioning matrices have been proposed in the literature [227,

230, 231] with the acceleration of steady state calculations as the primary focus. We

do not cover them in this work.

6.3 Flux-preconditioning and Entropy-stability

We now return to the numerical framework of this thesis. At first-order, the only

difference between conventional finite-volume schemes and entropy-stable schemes is

the choice of interface flux f∗, whose general form is:

f∗(uL,uR,n) = fEC(uL,uR,n)− 1

2
D(vR − vL), (6.32)

where fEC denotes an entropy-conservative flux and D is a positive definite matrix.

The dissipation matrix used in practice is D = R|Λ|RT where the eigenvectors R of

the flux jacobian A are scaled so that RRT = H.

6.3.1 Preliminaries

Since we are working with non-dimensional equations, we need to redefine the

fundamental components of an entropy-stable scheme. The entropy equation writes:

∂U

∂t
+
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

= 0,

U = −ρs/(γ − 1), Fx = −ρus/(γ − 1), Fy = −ρvs/(γ − 1), Fz = −ρws/(γ − 1).

(6.33)
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While the expression of the entropy function U = −ρs/(γ − 1) does not differ from

the usual, the entropy variables do because the vector of conserved variables u now

contains a Mr factor in the total energy component. We have:

v =

(
∂U

∂u

)T
=

[
γ−s
γ−1
−M2

r
ρk
p

M2
r
ρu
p

M2
r
ρv
p

M2
r
ρw
p
−ρ
p

]T
. (6.34)

The mapping from v to u is given by:

u = ρ

[
1 −v2

v5
1
M2
r
−v3
v5

1
M2
r
−v4
v5

1
M2
r
− 1

(γ−1)v5
+ 1

2M2
r

((
v2
v5

)2
+
(
v3
v5

)2
+
(
v4
v5

)2)]T ,
ρ = exp

(
v1 −

γ

γ − 1
− ln(−v5)

γ − 1
− 1

2M2
r v5

(
v2

2 + v2
3 + v2

4

))
.

Let F = nxFx + nyFy + nzFz. The potential function F in space writes:

F = vT f − F =



γ−s
γ−1
−M2

r
ρ
p
k

M2
r
ρu
p

M2
r
ρv
p

M2
r
ρw
p

−ρ
p


·



ρun

ρuun + nx(p/M
2
r )

ρvun + ny(p/M
2
r )

ρwun + nz(p/M
2
r )

un

(
γp

(γ−1)
+M2

r ρk

)


+
ρuns

γ − 1
= ρun.

Last, the temporal Jacobian writes:

H =
∂u

∂v
=

ρ ρu ρv ρw ρet

ρu2 + p
M2
r

ρuv ρuw
(
ρet + p

)
u

ρv2 + p
M2
r

ρvw
(
ρet + p

)
v

ρw2 + p
M2
r

(
ρet + p

)
w

sym ρ(et)2 + p
(

p
(γ−1)ρ

+M2
r (u2 + v2 + w2)

)


.
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6.3.2 Entropy-Conservative fluxes

In conventional finite-volume methods, only the dissipation part of the flux is

modified because the central flux does not introduce terms that introduce inappro-

priate Mach number scalings. What about an entropy-conservative flux? The first

entropy-conservative flux of Tadmor is given by the straight path integral:

fEC =

∫ 1

0

f(v(ξ)) dξ,

therefore it has the same scaling as f . The entropy-conservative flux of Chandrasekhar

[63] has also the correct scaling as it writes, in non-dimensional variables, fEC =[
f1 f2 f3 f4 f5

]
with:

f1 = ρlnun,

f2 = nx
1

M2
r

ρ

ρ/p
+ uf1,

f3 = ny
1

M2
r

ρ

ρ/p
+ vf1,

f4 = nz
1

M2
r

ρ

ρ/p
+ wf1,

f5 =

(
1

(γ − 1)(ρ/p)ln
−M2

r k

)
f1 +M2

r uf2 +M2
r vf3 +M2

rwf4.

We found the same scaling with the non-dimensional form of Roe’s EC flux [52, 53].

Looking at the entropy conservation condition in non-dimensional form:

[v]T fEC = [F ]

⇔
[
γ − s
γ − 1

−M2
r

ρ

p
k

]
f1 + M2

r

([
ρu

p

]
f2 +

[
ρv

p

]
f3 +

[
ρw

p

]
f4

)
−
[
ρ

p

]
f5 = [ρun],

it is not clear whether an entropy-conservative flux would always have the same Mach

number scaling as f . Perhaps one could argue that those constructed in the same way
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as Roe’s and Chandrasekhar’s will always meet this condition.

6.3.3 Entropy-Stable Upwind Dissipation

As explained in chapter 2, the classic upwind dissipation term R|Λ|R−1[u] and

its entropy-stable variant R|Λ|RT [v] are not different in essence. For infinitesimal

variations, one has:

R|Λ|R−1du = |A|du = |A|(Hdv) = (R|Λ|R−1)(RRTdv) = R|Λ|RTdv

From this relation, it is fair to assume that |A|[u] (conventional Roe-type dissipation)

and |A|H[v] (conventional ES dissipation) have the same scaling hence the same

accuracy issues in the low Mach limit. Additionally, from the understanding that

the dissipation matrix in (6.32) also writes D = |A|H, it is fair to define the pre-

conditioned matrix as DP = P−1|PA|H. The modified entropy-stable flux therefore

writes:

f∗(uL,uR,n) = fEC(uL,uR,n)− 1

2
P−1|PA|H(vR − vL). (6.35)

The main question that arises from here is whether this correction is compatible

with the requirement of entropy stability. In other words, can one find P invertible

such that DP = P−1|PA|H is positive definite and P−1|PA| has the same Mach

number scalings as A?

We first seek conditions on P for DP to be positive definite. If P = I, positive

definiteness follows from the eigenscaling theorem because H is symmetric positive

definite and symmetrizes A from the right. Writing H = RRT as before is not helpful

unless the eigenvectors of |PA| are related to the eigenvalues of |A| in a convenient

way. If H symmetrizes PA from the right, then |PA|H is symmetric positive definite

but it is not clear if this matrix would remain positive definite upon multiplication

on the left by P−1. In addition, the condition that H symmetrizes PA might be too
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stringent to work with. Since H symmetrizes A, HP T symmetrizes PA and we can

rewrite DP as:

DP = P−1|PA|H = P−1|PA|HP TP−T = P−1(|PA|HP T )(P−1)T (6.36)

Equation (6.36) shows by congruence that DP is positive definite if and only if

|PA|HP T is positive definite. For the eigenscaling theorem to apply, we need HP T

to be symmetric positive definite. Given that P and H are full matrices, this also

appears as a complicated a condition to work with.

In section 6.2, we recalled that preconditioners are typically developed for a

mapped system first. Let Az = Q−1AQ and Pz be the associated preconditioner,

then P−1|PA| = QP−1
z |PzAz|Q−1. From there, we note that since H symmetrizes A

from the right, then Hz = Q−1HQ−T symmetrizes Az from the right as well. We can

then further decompose DP as:

DP = P−1|PA|H = QP−1
z |PzAz|HzQ

T = (QP−1
z )|PzAz|HzP

T
z (QP−1

z )T (6.37)

Equation (6.37) shows, again by congruence, that DP is positive definite if and only if

|PzAz|HzP
T
z is positive definite. Since HzP

T
z symmetrizes PzAz from the right, then

the eigenscaling theorem applies if HzP
T
z is symmetric positive definite. With the

differential entropy variables dz = (dp/(ρaMr), du, dv, dw, dp−a2dρ), the Jacobian

Az given by equation (6.26) is symmetric and from its structure, we can assume that

Pz will have the general form:

Pz =

P5×5 O5×1

O1×5 1

 .
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Interestingly, the matrix:

Hz =
(a/Mr)

2

γr



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 (aMr)
2(γ − 1)


,

happens to commute with Pz, Az and with |PzAz|, in addition to being symmetric

positive definite. This allows us to ultimately rewrite DP as:

DP = (QP−1
z )|PzAz|HzP

T
z (QP−1

z )T = (QH1/2
z P−1

z )|PzAz|P T
z (QH1/2

z P−1
z )T , (6.38)

and demonstrate that a sufficient condition for DP to be positive definite is that Pz

(equivalently P5×5) is symmetric positive definite. The Turkel preconditioner (6.29)

qualifies. The Miczek preconditioner does not meet this condition.

We now have to integrate in this discussion the requirement that P−1
z |PzAz| has

the same Mach number scaling as Az. Surprisingly, we have not managed to find a

symmetric positive definite matrix Pz which satisfies the scaling requirements. To

simplify the analysis, let’s consider the scenario where the flow and the interface

normal are aligned with the x-direction. This brings us back to the 2-by-2 system

(6.24). Can we find p(Mr), p1(Mr) and p2(Mr) such that:

P−1
z |PzAz| =

 O(1) O(1/Mr)

O(1/Mr) O(1)

 and Pz =

p1 p

p p2

 positive definite?
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We have PzAz = RpΛpR
−1
p with:

Λp = diag([0.5(up + ap), 0.5(up − ap)]), up = (p1 + p2)u+ 2ap/Mr,

ap =
√
u2
p + 4det(P )(a2/M2

r − u2),

Rp =

r1 r2

1 1

 ,
r1 = (Mrap − ap2(p1 − p2)/p)/(2ap2 + 2Mrpu) + (p1 − p2)/(2p),

r2 = (−Mrap − ap2(p1 − p2)/p)/(2ap2 + 2Mrpu) + (p1 − p2)/(2p).

det(P ) = p1p2 − p2 > 0 and trace(P ) = p1 + p2 > 0 impose p1 and p2 to be positive.

det(P ) > 0 and a2/M2
r − u2 > 0 in the subsonic regime, therefore up < ap =⇒

|up − ap| = −(up − ap) and we have:

P−1
z |PzAz| =

a11 a12

a12 a22


a11 =

1

ap

(
u2(p1 − p2) + 2a2p2/M

2
r + 2apu/Mr, a12 =

1

ap
2pu2 + a(p1 + p2)u/Mr

)
,

a21 = a12, a22 =
1

ap

(
− u2(p1 − p2) + 2a2p1/M

2
r + 2apu/Mr

)
.

Looking at the expression of ap, we see that in the limit Mr → 0, ap can scale either

as p/Mr,
√
p1p2/Mr, p1 or p2.

- If ap ≈ p/Mr: a11 ≈ u2(p1 − p2)Mr/p + 2a2p2/(pMr) + 2au = O(1) requires

p2/p to scale as Mr at most. Likewise, p1/p must scale as Mr at most for a22

to be O(1). But then a12 ≈ 2Mru
2 + a(p1/p + p2/p)u = O(Mr) does not scale

as 1/Mr.

- If ap ≈ p1: the second term in a22 scales as 1/M2
r .

- If ap ≈ p2: the second term in a11 scales as 1/M2
r .
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- If ap ≈
√
p1p2/Mr: Denote X =

√
p1/p2. Then a11 ≈ u2(X − 1/X)Mr +

2a2/(XMr) + 2apu/(
√
p1p2) = O(1) imposes that X scales as 1/Mr. But then

the second term in a22 scales at 1/M2
r instead of 1.

In each case, it seems that the Mach number scaling requirements cannot be met.

It is important to recall that we posed Pz symmetric positive definite as a sufficient

condition only. Miczek’s flux-preconditioner can be found by seeking Pz in the form:

Pz =

 1 p

−p 1

 .
Pz is not symmetric but it is positive definite for any p since its symmetric part is

the identity matrix. We have PzAz = RpΛpR
−1
p with:

Λp = diag([u+ ap, u− ap]), ap =
√
u2 + det(P )(a2/M2

r − u2) > up,

Rp =

(−Mrap + ap)/(a−Mrpu) (Mrap + ap)/(a−Mrpu)

1 1

 .
In the subsonic regime, this gives:

P−1
z |PzAz| =

1

ap

 a2/M2
r pu2 + a(Mru− ap)/M2

r

−pu2 + a(Mru− ap)/M2
r a2/M2

r

 .
For the first term to be O(1) we need ap = O(1/M2

r ) which imposes p = O(1/Mr).

The scaling of Az is completely recovered. Miczek takes p = 1 − 1/Mr so that

in the limit Mr → 1, Pz → I. Furthermore, this matrix does conserve entropy

stability. For the 2 × 2 system, the symmetric part of |PzAz|P T
z has a determinant

a2(a2−M2
r a

2)det(P )2/(M4
r a

2
p) and a trace 2a2det(P )/(M2

r ap) that are both positive.

For the general system, this can be proved by constructing a scaled form for DP .
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6.4 Numerical experiments

In this section, we examine four different first-order entropy-stable schemes in

two simple flow configurations which are representative of the incompressible and

acoustic limits. In section 6.4.1, we consider the Gresho vortex (incompressible limit).

In section 6.4.2, we consider a right-moving sound wave (acoustic limit). Periodic

boundary conditions are used in both problems.

In space, we use the classic ES Roe flux, the ES Turkel flux, the ES Miczek flux,

with the EC flux of Chandrasekhar as the base (we observed the same results with

the EC flux of Roe). We also consider the EC flux of Chandrasekhar alone. These

four fluxes are used in conjunction with Backward Euler in time with a CFL of 1.

The calculations are made using a code which solves the dimensional form of the

compressible Euler equations. This does not impact the interpretation of the results

as most of the metrics used are non-dimensional.

6.4.1 Gresho vortex

The Gresho vortex [221, 222, 224] is an exact steady-state solution of the incom-

pressible Euler equations in two dimensions. Let R be the radius of the vortex and r

be the radial coordinate. Density is constant ρ̂ = ρr. The velocity field is given by:

û = uφeφ, uφ = ur


r/R, 0 ≤ r < R

2− r/R, R ≤ r ≤ 2R

0, 2R ≤ r

(6.39)

uφ denotes the tangential velocity, r =
√
x2 + y2, eφ = −sin(φ)ux + cos(φ)uy =

−y/rux + x/ruy. The period of the vortex and reference time scale is defined as
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tr = 2πR/uφ(R) = 2πR/ur. The pressure p̂ must provide the centripetal force:

p̂ = pr +

∫ r

0

ρr
u2
φ(r)

r
dr

= pr + ρru
2
r


(r/R)2/2, 0 ≤ r < R

(r/R)2/2 + 4(1− (r/R) + ln(r/R)), R ≤ r ≤ 2R

−2 + 4 ln 2, 2R ≤ r

pr is a strictly positive constant. The reference Mach number Mr for this setup is

defined as the one at r = R:

Mr =
ur√

γ(pr/ρr + u2
r/2)

.

This equation can be rewritten as:

pr = ρru
2
r

(
1

γM2
r

− 1

2

)
, (6.40)

and shows how the free constants (ρr, ur, pr) relate to the reference Mach number

Mr. Following Miczek et al. [224], we fix the grid size (150 × 150 cells) and run the

schemes at different reference Mach numbers Mr ∈ {3 × 10−1, 3 × 10−2, 3 × 10−3}

until the vortex completes one revolution, that is until t = 1. We take R = 0.2,

ρr = 1.0 and ur = 2πRMr =⇒ tr = 1/Mr. The domain is (x, y) ∈ [0 1]2. The

pressure is determined by equation (6.40). Figure 6.1 shows the initial conditions for

Mr = 3× 10−3.

The central flux alone is not a viable option in the low Mach regime because it

is not stable, even when combined with Backward Euler in time [223, 224]. An illus-

tration is provided in figure 6.2-(b), which shows losses in total entropy, and in figure

6.2-(a), which shows that the central flux leads to total kinetic energy production.

With the EC flux, the total entropy increases and the total kinetic energy fluctuates
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(a) M/Mr

(b) p̂(x, 0.5)

Figure 6.1: Gresho Vortex: Initial solution for Mr = 3× 10−3.
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but does not become bigger than what it was initially.

Figure 6.3 shows snapshots of the solution with each scheme at different Mach

numbers. Figures 6.3-(j), 6.3-(k) and 6.3-(l) provide a clear illustration of the accu-

racy degradation issues in the low Mach regime. The other three schemes do not show

a visible dependency on the reference Mach number. The best results are obtained

with the EC flux, which is hardly surprising considering that the flow configuration

is smooth. The difference between the ES Turkel and ES Miczek fluxes is not clearly

visible from these plots.

Figure 6.4 shows the normalized kinetic energy evolution for all four schemes

at different Mach numbers. For the ES Roe flux, we see that the rate at which the

kinetic energy decays increases with the Mach number. We can also see that the

normalized kinetic energy for Mr = 3× 10−2 becomes bigger than for Mr = 3× 10−3.

This was slightly visible in the previous figure already. Given that the Gresho vortex

is a stationary solution, it is not surprising that numerical solution would eventually

reach a steady state. For the ES Miczek and ES Turkel fluxes, the kinetic energy

decay appears to be independent of the Mach number. In each case, we see that the

Mr = 3 × 10−1 curve is not matching exactly with the Mr = {3 × 10−2, 3 × 10−3}

ones. This figure suggests that the ES Miczek flux performs better than the ES Turkel

flux. This is also supported by figures 6.5(a)-(c) which shows that the ES Turkel flux

produces more entropy than the ES Miczek flux.

Figure 6.6 shows the pressure distribution along the centerline y = 0.5, after one

revolution at Mr = 3× 10−3. The solution with the ES Miczek flux is clearly not in

phase with the exact solution. The same anomaly is observed at different Mach num-

bers. Figures 6.7(a)-(b) suggest that this anomaly is the consequence of a spurious

transient in the early stages of the vortex rotation. We found that the duration of

this transient decreases with the Mach number.
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(a) Total kinetic energy k/k0

(b) Total Entropy (ρs)− (ρs)0

Figure 6.2: Kinetic energy and entropy evolution with the central and EC fluxes in
space and Backward Euler in time for half a rotation of the Gresho vortex
at Mr = 3 × 10−1. k0 and (ρs)0 are the kinetic energy and entropy at
t = 0.
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(a) EC Roe −Mr = 3×10−1 (b) EC Roe −Mr = 3×10−2 (c) EC Roe −Mr = 3×10−3

(d) ES Miczek −Mr = 3 ×
10−1

(e) ES Miczek −Mr = 3 ×
10−2

(f) ES Miczek −Mr = 3 ×
10−3

(g) ES Turkel −Mr = 3 ×
10−1

(h) ES Turkel −Mr = 3 ×
10−2

(i) ES Turkel −Mr = 3 ×
10−3

(j) ES Roe −Mr = 3× 10−1 (k) ES Roe −Mr = 3× 10−2 (l) ES Roe −Mr = 3× 10−3

Figure 6.3: Gresho Vortex: M/Mr profiles at t = 1. Same legend as figure 6.1-(a).
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Figure 6.4: Gresho vortex: Total kinetic energy k/k0 evolution over time for different
ES fluxes at different Mach numbers.
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(a) Mr = 3× 10−1 (b) Mr = 3× 10−2

(c) Mr = 3× 10−3

Figure 6.5: Gresho Vortex: Total entropy (ρs) − (ρs)0 evolution for different fluxes
at different Mach numbers.
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Figure 6.6: Gresho vortex: Centerline pressure profile p̂(x, 0.5) after one rotation at
Mr = 3× 10−3.
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(a) t = 0.04

(b) t = 0.08

Figure 6.7: Gresho Vortex: Centerline pressure profiles at early instants highlighting
the spurious transient observed with the ES Miczek flux. Mr = 3× 10−3.
Same legend as figure 6.6.
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6.4.2 Acoustic wave

One way to set up a right-moving acoustic wave is to consider, as in Bruel et al.

[240], a free stream (ρ∞, u∞) and add density and velocity fluctuations such that the

Riemann invariants associated with the left moving acoustic wave and the entropy

wave are unchanged. In a domain Ω = [−0.5, 0.5], we perturb the density as follows:

ρ̂(x, 0) = ρ∞
(
1 +Mrψ(x)

)
,

where ψ(x) = exp(−αx2) defines a gaussian pulse centered at the center of the do-

main. We set α = ln(103)/0.152 so that ψ(x) < 10−3 for |x| < 0.15. For isentropic

flow we take p̂ = (ρ̂)γ =⇒ â =
√
γ(ρ̂)

γ−1
2 . The corresponding velocity perturbation

must satisfy

(
û(x, 0)− u∞

)
−

2
(
â(x, 0)− a∞

)
γ − 1

= 0 =⇒ û(x, 0) = u∞ +
2
(
â(x, 0)− a∞

)
γ − 1

.

â(x, 0) and p̂(x, 0) are imposed by the density. If the reference Mach number Mr is

small enough, we can write:

û(x, 0) = u∞ +
2a∞
γ − 1

((
1 +Mrψ

) γ−1
2 − 1

)
= u∞ + a∞Mrψ +O(M2

r ). (6.41)

We set u∞ = 0 and a∞ = 1, so that the speed of propagation of the acoustic wave is

one. We take the reference time scale tr = 1, that is the time it takes for the acoustic

wave to do one period. We have ρr = ρ∞ and ur = Mr. Changing the reference Mach

number changes the amplitude of the velocity, density and pressure perturbations.

We tested the four schemes on a grid of 500 cells for Mr ∈ {10−2, 10−3, 10−4}.

Figure 6.8 shows the initial pressure profile for the Mr = 10−2 case. Figures 6.9(a)-

(c) show the numerical solution at t = 1 for different Mach numbers. The reference
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Figure 6.8: Sound wave: Initial pressure distribution for Mr = 10−2.

solution3 is obtained using a 4-th order TecNO scheme on a grid of 1000 cells with a

4-th order Runge-Kutta time integration and a CFL of 0.5. We see that the ES Roe

flux, ES Miczek flux and EC flux lead to a self-similar numerical solution. We can see

that the acoustic wave is almost completely gone with the ES Turkel flux. This is in

agreement with the analysis and results of Bruel et al. [240] for the barotropic Euler

equations. The ES Miczek flux does not have this problem. Furthermore, it seems to

perform just as well as the EC flux. This is also supported by figures (6.10)(a)-(c)

where the total entropy evolution in time is shown.

Figure 6.11 shows the temporal evolution of a normalized sound wave amplitude

which we define as:

A(t) =
maxx p̂(x, t)

maxx p̂(x, 0)
. (6.42)

3An exact solution can be calculated using the method of characteristics, which requires a non-
linear solver [240]. The solution for this problem is simple enough for a fine numerical solution to
be trusted.

162



(a) Mr = 10−2

(b) Mr = 10−3 (c) Mr = 10−4

Figure 6.9: Sound wave: Pressure profiles at t = 1 for different Mach numbers.
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(a) Mr = 10−2 (b) Mr = 10−3

(c) Mr = 10−4

Figure 6.10: Sound wave: Total entropy (ρs) − (ρs)0 over time for different Mach
numbers.
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We can see that the rate at which the ES Turkel flux damps the sound wave increases

as the Mach number decreases, while all other fluxes show a self-similar behavior.

For the ES Miczek flux, we notice slight perturbations in A which seem to occur

around t = {0, 0.5, 1.0}. Figures 6.12 and 6.13 suggest that these perturbations

are caused by a spurious left-moving acoustic wave created at t = 0. It will meet

the right-moving acoustic wave when it reaches the periodic boundary (t ≈ 0.5) and

when it reaches the center of the domain (t ≈ 1).

Figure 6.11: Sound wave: Normalized amplitude evolution for all fluxes at different
Mach numbers.

6.4.3 Summary

So far we have demonstrated, analytically and numerically, that flux-preconditioning

is compatible with entropy-stability to an extent. Numerical tests show that:
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(a) t = 0.1

(b) t = 0.1 (zoom)

Figure 6.12: Sound wave: Pressure profiles showing a spurious wave propagating to
the left is created by the Miczek flux. Mr = 10−2. Same legend as figure
6.9(a).
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(a) t = 0.2

(b) t = 0.3

Figure 6.13: Sound wave: Pressure profiles showing that the spurious wave reported
in figure 6.12 is an acoustic wave propagating at a speed of one. Same
legend as figure 6.9(a).
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S.1 The ES Roe flux suffers from the same accuracy issues in the incompressible low

Mach limit as those previously reported with the classic Roe flux [223, 224, 225].

This does not come as a surprise considering that the dissipation operators are

not fundamentally different. Recall that for infinitesimal variations, we have:

R|Λ|R−1du = R|Λ|RTdv.

These issues are not observed with the sound wave. The temporal variation of

the wave amplitude (6.42) is independent of the Mach number.

S.2 The ES Turkel flux has a more consistent behavior in the incompressible limit,

but at the price of damping acoustic waves harder as the Mach number de-

creases.

S.3 The ES Miczek flux performs well in both limits if we ignore the spurious tran-

sient in the Gresho vortex and the spurious left-moving acoustic wave, none of

which were reported in [223, 224, 225].

S.4 The EC flux performs the best in both cases. This confirms that for ES schemes,

it is the dissipation component that causes the accuracy issues. We note that

there is more dissipation in the acoustic case. This is due to the entropy pro-

duced by the Backward Euler time scheme.

We could have concluded the effort here with the stance that in the low Mach limit,

an entropy-stable scheme should simply revert to an entropy-conservative one. There

are two reasons for not doing so:

1. In both problems, there clearly appears to be a correlation between the amount

of entropy produced by the scheme and its ability to preserve kinetic energy

of the Gresho vortex or the amplitude of the sound wave. Given the frame-

work that we work with, we should be able to explain (S.1), (S.2) and (S.3)
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analytically.

2. The errors observed with the ES Miczek flux are intriguing. For the sound wave

in particular, the spurious left-moving acoustic wave is reminiscent of what we

observed with material interfaces in multicomponent flows. These errors are

also similar to the overheating, which can be described as an anomalous entropy

wave standing at the center (λ = u = 0).

6.5 The accuracy degradation from an entropy production

perspective

Given that the schemes we are interested in are designed to let us control entropy

to an extent, we begin by reinterpreting the theoretical results of section 6.1 on the

low Mach limit in terms of entropy. In the incompressible limit, Guillard & Viozat

[226] showed that pressure fluctuations in space are of order M2. Assuming constant

density ρ = ρ0, we can write:

ρs = ρ0

(
ln(p)− γ ln(ρ0)

)
= ρ0

(
ln
(
p0 +M2

r p2 +O(M3
r )
)
− γ ln(ρ0)

)
= ρ0

(
ln(p0)− γ ln(ρ0) + ln

(
1 +M2

r (p2/p0) +O(M3
r )
))

= ρ0

(
ln(p0)− γ ln(ρ0) +M2

r (p2/p0) +O(M3
r )

)
= ρ0s0 +M2

r ρ0(p2/p0) +O(M3
r ).

Therefore, we state:

E.1 In the incompressible limit, entropy ρs fluctuations in space should be of order

M2
r .

Similarly [228]:
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E.2 In the acoustic limit, entropy ρs fluctuations in space should be of order Mr.

In the incompressible limit, there is the additional requirement that kinetic energy

should be conserved. To precisely and rigorously relate discrete changes in kinetic en-

ergy to discrete changes in entropy is not straightforward. Figures 6.2(a)-(b) suggest

that if there’s any, it is not a straightforward one. Let’s assume periodic bound-

ary conditions so that discrete conservation of total energy implies that it remains

constant globally. We can write:

∆(ρe+M2
r ρk) = 0

⇔ ∆(ρk) = − 1

M2
r

∆(ρe) = − 1

(γ − 1)M2
r

∆(p) = − 1

(γ − 1)M2
r

∆

(
exp

(
ρs− γρ ln(ρ)

ρ

))
,

where ∆ refers to the global change, that is the sum
∑

i ∆i of local changes in each

cell i. Assuming constant density, this relation simplifies to:

∆(ρk) =
−1

exp(ρ)(γ − 1)M2
r

∆
(

exp(ρs)
)
. (6.43)

Equation (6.43) relates the global change in kinetic energy ρk to the global change in

the exponential of the entropy, which entropy-stable schemes do not explicitly control.

It is certainly tempting to say that since the exponential function is monotonically

increasing, ∆(ρs) > 0 =⇒ ∆
(

exp(ρs)
)
> 0. This statement is true locally, but

entropy-stable schemes are not explicitly designed to achieve ∆i(ρs) > 0, because

there are also fluxes (see equation (6.44)). We therefore refrain from making any

hasty interpretation of (6.43). If anything, the minus sign in (6.43) supports the

general intuition that production of entropy implies losses in kinetic energy.
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6.5.1 Breaking down the entropy production of upwind ES fluxes

A remarkable feature of entropy-stable schemes is the relation that holds at the

semi-discrete level for entropy in each cell:

dU(ui)

dt
+

1

Vi

∫
δΩi

F ∗dS = −Ei, Ei =
1

Vi

∫
δΩi

EdS. (6.44)

where the entropy flux F ∗(ui,uj,n) and the entropy production E(ui,uj,n) write:

F ∗(ui,uj,n) =
1

2
(vi + vj)

T f∗(ui,uj,n)− 1

2
(Fi + Fj), (6.45)

E(ui,uj,n) =
1

4
(vj − vi)

TD(vj − vi) > 0. (6.46)

Summing over all cells and assuming periodic boundary conditions lead to the semi-

discrete global entropy stability statement:

d

dt

(∑
i

U(ui)

)
= −

∑
i

Ei < 0 (6.47)

The cell valued field Ei tells us how much entropy is produced in space in response

to the jumps in entropy variables across interfaces. It can also give us an idea of the

magnitude of the entropy fluctuations the scheme creates. To this end, we proceed to

derive a more detailed expression for E . In compact notation, and ignoring the 1/4

factor, we have:

E = [v]TD[v] = [v]TR|Λ|RT [v].

Let R = [r1 . . . rN], |Λ| = diag(|λ1|, . . . |λN |) and µT = [µ1, . . . , µN ] = [v]TR.

Then:

E = µT |Λ|µ =
N∑
i=1

|λi|µ2
i ,

and we can see how the total entropy production is the sum of the positive contri-

butions from each mode ri. This decomposition is inspired by how Roe & Pike [241]
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rewrote the Roe flux:

R|Λ|R−1[u] =
∑
i

|λi|αiri, α = R−1[u]. (6.48)

It is also inspired by the family of closed-form entropy-conservative fluxes Tadmor pro-

posed in [51] (section 6). In that work, Tadmor sought to derive entropy-conservative

and entropy-stable schemes for which qualitative statements about the treatment of

waves could be made. In a way, we are following up on his efforts.

The vector α in equation (6.48) is typically referred to as a vector of wave

strengths. We can interpret µ = RT [v] in our decomposition as a vector of wave

strengths as well, because for infinitesimal disturbances we have:

du = Hdv = RRTdv =⇒ R−1du = RTdv.

For the non-dimensional compressible Euler equations, we have:

E = |un|(µ2
1 + µ2

2 + µ2
3) + |un + (a/Mr)|µ2

4 + |un − (a/Mr)|µ2
5. (6.49)

It breaks down into entropy production due to convective modes (first three terms)

and entropy production due to acoustic modes (remaining two terms). We expect the

latter to be the key in understanding the low Mach problems.

At this point, we remind the reader that all the derivations of this work are made

with the non-dimensional variables. The entropy production field Ê that the code

solving the dimensional system computes is related to E by the simple relation:

Ê = (ρrur)× E . (6.50)
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Given that in both test problems the reference Mach number Mr is adjusted by

changing the the reference velocity ur only, we simply use:

Ê = Mr × E . (6.51)

We also define the global quantity:

〈E〉 =
∑
i

ViEi, (6.52)

which we will subsequently use to visualize the influence of each entropy production

field in (6.49) on the total entropy production in space.

Convective modes

The scaled eigenvectors associated with λ = un are given by r1 = Kq(nxK0r0 +

(a/Mr)rsx), r2 = Kq(nyK0r0 + (a/Mr)rsy) and r3 = Kq(nzK0r0 + (a/Mr)rsz) where:

r0 =



1

u

v

w

M2
r

2
(u2 + v2 + w2)


, rsx =



0

0

nz

−ny

M2
r (nzv − nyw)


, rsy =



0

−nz

0

nx

M2
r (nxw − nzu)


,

rsz =



0

ny

−nx

0

M2
r (nyu− nxv)


, Kq = (ρ/γ)1/2, K0 = (γ − 1)1/2.
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r0 is an entropy wave. Let µ0 = r0
T [v] be the corresponding wave strength. It is

then given by:

µ0 =
−[s]

γ − 1
−M2

r

[
ρ

p
k

]
+M2

r u

[
ρu

p

]
+M2

r v

[
ρv

p

]
+M2

rw

[
ρw

p

]
− M2

r

2
(u2 + v2 + w2)

[
ρ

p

]
=
−[s]

γ − 1
−M2

r

(
ρ

p

)(
[k]− (u[u] + v[v] + w[w])

)
+

M2
r

[
ρ

p

](
uu+ vv + ww − (

1

2
(u2 + v2 + w2) + k)

)

Arithmetic averages are typically used for the velocities. This gives:

µ0 =
−[s]

γ − 1
+M2

r

[
ρ

p

](
1

2
(u2 + v2 +w2)− k

)
=
−[s]

γ − 1
− M2

r

8

[
ρ

p

](
[u]2 + [v]2 + [w]2

)
.

(6.53)

rsx, rsy and rsz are shear waves (they satisfy nxrsx + nyrsy + nzrsz = 0). The cor-

responding wave strengths µsx = rsx
T [v], µsy = rsy

T [v] and µsz = rsz
T [v] are given

by:

µsx = M2
r

(
ρ

p

)
[Vx], µsy = M2

r

(
ρ

p

)
[Vy], µsz = M2

r

(
ρ

p

)
[Vz],

Vx = nzv − nyw, Vz = nxw − nzu, Vz = nyu− nxv,

and the entropy produced by the convective modes is given by:

Eun = |un|(µ2
1 + µ2

2 + µ2
3)

= |un|K2
q

(
(nxK0µ0 + (a/Mr)µsx)

2 + (nyK0µ0 + (a/Mr)µsy)
2 +

(nzK0µ0 + (a/Mr)µsz)
2

)
= |un|K2

q

(
K2

0µ
2
0 + (a/Mr)

2(µ2
sx + µ2

sy + µ2
sz)

)
= |un|

(
(γ − 1)

γ
ρµ2

0 +
ρa2

γM2
r

(µ2
sx + µ2

sy + µ2
sz)

)
.
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That is:

Eun = |un|
(
γ − 1

γ
ρµ2

0 + αρM2
r ([Vx]2 + [Vy]2 + [Vz]2)

)
, α =

a2

γ

(
ρ

p

)2

, (6.54)

which we rewrite as the sum of a contribution due to entropy waves Eun,s (first term)

and a contribution due to shear waves Eun,τ (remaining three terms).

Eun = Eun,s + Eun,τ .

Acoustic modes

The scaled acoustic eigenvectors r4,5 = run±a are given by :

run±a = Ka



1

u± nx(a/Mr)

v ± ny(a/Mr)

w ± nz(a/Mr)

h+M2
r k ± unaMr


, Ka =

(
ρ

2γ

)1/2

.

The acoustic wave strengths µun±a are given by:

µun±a = Ka

(
µ0 − h

[
ρ

p

]
±Mra

(
ρ

p

)
[un]

)
.

The entropy production field due to acoustic modes therefore writes:

Eun±a = |un ± (a/Mr)|K2
a

(
µ0 − h

[
ρ

p

]
±Mra

(
ρ

p

)
[un]

)2

.
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Summary

Overall, the discrete entropy production field E = [v]TD[v] can be decomposed

as:

E = Eun,s + Eun,τ + Eun+a + Eun−a (6.55)

For cartesian grids, which we work with, the normal vectors are along the unitary

directions and the entropy production due to shear can be broken down into 6 terms:

- Along x, shear in y (Eun,τxy = |un|µ2
3) and shear in z (Eun,τxz = |un|µ2

2).

- Along y, shear in z (Eun,τyz = |un|µ2
1) and shear in x (Eun,τyx = |un|µ2

3).

- Along z, shear in y (Eun,τzy = |un|µ2
1) and shear in x (Eun,τzx = |un|µ2

2).

This gives:

E =

(
Eun,s +

(
Eun,τxy + Eun,τxz + Eun,τyx + Eun,τyz + Eun,τzx + Eun,τzy

))
+ Eun+a + Eun−a.

(6.56)

Each one of these entropy production fields can be visualized. Figures 6.14 and

6.15 show them for the Gresho vortex at t = 0. This is, to the best of our knowledge,

the first time that such a concrete view on how an entropy-stable scheme produces

entropy locally is given. We will not delve into the details of why each field is the way

is it (the analytical formulas we just derived would be used for that purpose). What is

striking is that the acoustic entropy production fields are 2 to 5 orders of magnitudes

bigger than the convective ones. Figures 6.16(a)-(c) show that the acoustic entropy

production fields make for most of the entropy produced by the ES Roe flux.

Similarly, figures 6.17(a)-(c) show the entropy production fields at t = 0 for the

acoustic wave. The entropy production field associated with entropy waves (there is

no shear in this one-dimensional setup) and the entropy production field associated

with left-moving acoustic waves are negligible compared to the entropy production
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field associated with right-moving acoustic waves. This makes sense, and over time,

this power difference is sustained as shown in figures 6.18(a)-(c).

(a) Êun,τxy
(b) Êun,τyx

(c) Êun,s

Figure 6.14: Gresho vortex: Entropy production fields associated with the convective
modes at t = 0 and Mr = 3× 10−2. These are common to all ES fluxes.

6.5.1.1 Preconditioned operators

A similar decomposition can be obtained with the preconditioned dissipation

operators DP [v] of Turkel and Miczek, but it requires that they be written in a

scaled form R|Λ|RT . We were not far from one such form in section 6.3. Indeed, from
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(a) Êun+a (b) Êun−a

Figure 6.15: Gresho vortex: Acoustic Entropy production fields at t = 0 of the ES
Roe flux at Mr = 3× 10−2.

equation (6.38), which we rewrite here:

DP = P−1|PA|[v] = (QH1/2
z P−1

z )|PzAz|P T
z (QH1/2

z P−1
z )T ,

it is clear that finding a scaled form for DP is equivalent to finding one for the congru-

ent matrix |PzAz|P T
z . A simple trick to proceed, picked up from Diosady & Murman

[68] (section IV), consists in ”forcing the eigenscaling theorem” by introducing a ma-

trix Tp defined by P T
z = RpTpR

T
p . This gives |PzAz|P T

z = Rp|Λp|TpRT
p and ultimately:

DP = Rp(|Λp|Tp)RT
p , Rp = QH1/2

z P−1
z Rp. (6.57)

From here, one hopes that Tp is diagonal positive.

For Turkel’s flux-preconditioner, that is the case because the eigenscaling theorem

applies. Tp is given by:

Tp = diag([1, 1, 1, K2
2 + p2, K2

1 + p2]).

178



(a) Mr = 3× 10−1 (b) Mr = 3× 10−2

(c) Mr = 3× 10−3

Figure 6.16: Gresho Vortex: Integral of each entropy production field with time at
different Mach numbers for the ES Roe flux.
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(a) Êun+a (b) Êun−a

(c) Êun,s

Figure 6.17: Gresho vortex: Entropy production fields at different Mach numbers at
t = 0 and Mr = 10−2 for the ES Roe flux.

180



(a) Mr = 10−2 (b) Mr = 10−3

(c) Mr = 10−4

Figure 6.18: Sound wave: Integral of each entropy production field with time at dif-
ferent Mach numbers for the ES Roe flux.
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The corresponding entropy production fields will differ from (6.55)-(6.56) in the acous-

tic part. We have:

Ep = [v]TRp(ΛpTp)RT
p [v] = Eun,s + Eun,τ + Eunp+ap + Eunp−ap , (6.58)

Eunp+ap = µ2
unp+ap(K

2
2 + p2)|unp + ap|, Eunp−ap = µ2

unp−ap(K
2
1 + p2)|unp − ap|,

where µunp±ap = rTunp±ap [v] and

runp+ap =

√
ρ

γ

K1

p2(K1 −K2)



1

u+ nx(a/Mr)(p
2/K1)

v + ny(a/Mr)(p
2/K1)

w + nz(a/Mr)(p
2/K1)

ht + unaMr(p
2/K1)


,

runp−ap =

√
ρ

γ

K2

p2(K1 −K2)



1

u+ nx(a/Mr)(p
2/K2)

v + ny(a/Mr)(p
2/K2)

w + nz(a/Mr)(p
2/K2)

ht + unaMr(p
2/K2)


,

unp = 0.5un(p2 + 1), ap = (u2
np + p2(a2/M2

r − u2
n))1/2,

K1 = (unp − un + ap)Mr/a, K2 = (unp − un − ap)Mr/a.

The modified acoustic wave strengths write:

µunp+ap = rTunp+ap [v] =

√
ρ

γ

K1

p2(K1 −K2)

(
µ0 − h

[
ρ

p

]
+
aMrp

2

K1

(
ρ

p

)
[un]

)
,

µunp−ap = rTunp−ap [v] =

√
ρ

γ

K2

p2(K1 −K2)

(
µ0 − h

[
ρ

p

]
+
aMrp

2

K2

(
ρ

p

)
[un]

)
.
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Figures 6.19(a)-(b) show the modified acoustic entropy production fields for the

Gresho vortex at t = 0. The two fields are of the same magnitude and they ap-

pear to be in some sort of symmetry. Figures 6.20(a)-(c) show that the total acoustic

entropy production fields are of the same order as those associated with the shear

waves over time.

For the sound wave, the initial entropy production fields showed in figures 6.21(a)-

(b) illustrate why we refrain from describing the entropy production decomposition

in terms of ”waves”. The preconditioning leads to modified acoustic eigenvectors

which can no longer be tied to right-moving and left-moving moving waves. The flow

consists of a right-moving acoustic wave, yet we see that both entropy production

fields Eunp±ap are active. Figures 6.22(a)-(c) show the overwhelming domination of

both the acoustic entropy production fields.

(a) Êunp+ap (b) Êunp−ap

Figure 6.19: Gresho Vortex: Entropy production fields at t = 0 for the ES Turkel
flux Mr = 3× 10−2.

For Miczek’s flux-preconditioner, the eigenscaling theorem does not apply, but we
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(a) Mr = 3× 10−1

(b) Mr = 3× 10−2 (c) Mr = 3× 10−3

Figure 6.20: Gresho Vortex: Integral of each entropy production field with time at
different Mach numbers for the ES Turkel flux.
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(a) Êunp+ap (b) Êunp−ap

Figure 6.21: Sound wave: Entropy production fields at t = 0 for the ES Turkel flux
Mr = 10−2.

know that Tp is positive definite by congruence. It is given by:

Tp =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 K2
2 + 1 (K2 −K1)p−K1K2 − 1

0 0 0 (K1 −K2)p−K1K2 − 1 K2
1 + 1


.

Upon closer examination, DP can be further reduced by observing that in the subsonic

regime, the last 2-by-2 bloc of |Λp|Tp can be rewritten as:

|un + ap|(K2
2 + 1) 0

0 |un − ap|(K2
1 + 1)

+

 0 −δp

δp 0

 ,
δp = 2p(p2 + 1)(a2 −M2

r u
2
n)/(Mr(a−Mrpun)).
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(a) Mr = 10−2 (b) Mr = 10−3

(c) Mr = 10−4

Figure 6.22: Sound wave: Integral of each entropy production field with time at dif-
ferent Mach numbers for the ES Turkel flux.
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We therefore have DP = Rp(|Λp|T p + ∆p)RT
p with:

T p = diag([1, 1, 1, K2
2 + 1, K2

1 + 1]), ∆p =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −δp

0 0 0 δp 0


Since T p is diagonal positive and ∆p is skew-symmetric, it follows that DP is positive

definite for the Miczek flux-preconditioner as well. The entropy production breakdown

is more subtle than for Turkel’s because of the skew symmetric matrix ∆p. The

acoustic part DA
P [v] of the dissipation operator Rp(ΛpT p + ∆p)RT

p [v] writes:

DA
P [v] =

[
run+ap run−ap

]|un + ap|(1 +K2
2) −δp

δp |un − ap|(1 +K2
1)


µun+ap

µun−ap

 (6.59)
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where:

run+ap =

√
ρ

γ

1

(p2 + 1)(K1 −K2)



(K1 − p)

u(K1 − p) + (a/Mr)nx(K1p+ 1)

v(K1 − p) + (a/Mr)ny(K1p+ 1)

w(K1 − p) + (a/Mr)nz(K1p+ 1)

ht(K1 − p) + un(aMr)(K1p+ 1)


,

run−ap =

√
ρ

γ

1

(p2 + 1)(K1 −K2)



(K2 − p)

u(K2 − p) + (a/Mr)nx(K2p+ 1)

v(K2 − p) + (a/Mr)ny(K2p+ 1)

w(K2 − p) + (a/Mr)nz(K2p+ 1)

ht(K2 − p) + un(aMr)(K2p+ 1)


,

ap =
√

(p2 + 1)a2/M2
r − p2u2

n,

K1 = (a+Mrpun)/(Mrap − ap), K2 = −(a+Mrpun)/(Mrap + ap),

and µun±ap = rTun±ap [v] given by

µun+ap =

√
ρ

γ

1

(p2 + 1)(K1 −K2)

(
(K1 − p)

(
µ0 − h

[
ρ

p

])
+ aMr(K1p+ 1)

(
ρ

p

)
[un]

)
,

µun−ap =

√
ρ

γ

1

(p2 + 1)(K1 −K2)

(
(K2 − p)

(
µ0 − h

[
ρ

p

])
+ aMr(K2p+ 1)

(
ρ

p

)
[un]

)
.

Expanding (6.59), we have:

DA
P [v] = run+ap

(
µun+ap |un + ap|(1 +K2

2)− δpµun−ap
)

+ run−ap

(
µun−ap|un − ap|(1 +K2

1) + δpµun+ap

)
. (6.60)
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Multiplying on the left by [v]T gives an acoustic entropy production field:

[v]TDA
P [v] = Eun+ap + Eun−ap , (6.61)

where the fields Eun±ap break down into contributions {ESun±ap , ∓∆Ep} from the

symmetric and skew-symmetric parts of the dissipation operator:

Eun+ap = ESun+ap −∆Ep, Eun−ap = ESun−ap + ∆Ep, (6.62)

ESun+ap = µ2
un+ap |un + ap|(1 +K2

2), ESun−ap = µ2
un−ap |un − ap|(1 +K2

1), (6.63)

∆Ep = δpµun+apµun−ap . (6.64)

Eun+ap and Eun−ap are no longer positive in principle but their addition is always pos-

itive.

Equations (6.60) and (6.62) suggest that while ∆p does not change the amount of

entropy E produced at an interface, it effects how this amount is distributed locally

among the modes. In this case, the skew-symmetric terms appear to redistribute the

entropy produced through the acoustic modes.

Figures 6.23(a)-(b) show the modified acoustic entropy production fields for the

Gresho vortex at t = 0. They resemble those of the ES Turkel flux. Figures

6.23(c)-(e) show the contributions of the symmetric and skew-symmetric terms. The

skew-symmetric component is not negligible. Figures 6.24(a)-(c) show that the total

acoustic entropy production fields are of the same order as those associated with the

shear waves over time. We also see that the total contribution 〈∆Ep〉 from the skew-

symmetric matrix evolves in time like a damped oscillator, with a characteristic time

that decreases with the Mach number. This suggests that the spurious transient caus-

ing the phase errors we observed earlier has something to do with the skew-symmetric

matrix. A simple way to confirm this is to multiply the skew-symmetric term by a

factor and see how it impacts the solution. This is illustrated in figures 6.25(a)-(b).

189



Taking out the skew-symmetric indeed removes the transient and phase errors. Mak-

ing the skew-symmetric term stronger amplifies them. What’s more, figure 6.26 shows

that the skew-symmetric term does not have a visible impact on the ability of the

scheme to conserve the kinetic energy of the system.

For the sound wave, the initial entropy production fields are showed in figures

6.27(a)-(e). The contribution from the skew-symmetric part is two orders of magni-

tude bigger than the contribution from the symmetric part. This is why, for visibility,

we show the integrated entropy production fields in two parts (figures 6.28 and 6.29).

While the perturbations we observed in figure 6.11 appear in the symmetric parts

ESun±ap of the acoustic entropy production fields, it turns out from figures 6.30(a)-(b)

that it is the skew-symmetric term again that is causing the appearance of a spurious

left-moving acoustic wave.

6.5.2 The discrete low Mach regime revisited

Using the analytical expressions we just derived, we can now determine how the

entropy produced by each ES flux scales with the Mach number in the low Mach

limit and establish whether (E.1) and (E.2) are satisfied. This effort, similar in

spirit to the analysis of Guillard & Viozat [226], Guillard & Nkonga [228] and Bruel

et al. [240], will provide an explanation to (S.1), (S.2) and (S.3) in terms of entropy

production.

To verify the scaling analysis, we computed, for each ES flux, the integrated

(6.52) entropy production fields at t = 0 for the Gresho vortex and the sound wave

at different Mach numbers. These are given in figures 6.31, 6.32 and 6.33.
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(a) Êunp+ap = ÊSunp+ap −∆Êp (b) Êunp−ap = ÊSunp−ap −∆Êp

(c) ÊSunp+ap (d) ÊSunp−ap

(e) ∆Êp

Figure 6.23: Gresho Vortex: Entropy production fields at t = 0 for the ES Miczek
flux Mr = 3× 10−2.
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(a) Mr = 3× 10−1 (b) Mr = 3× 10−2

(c) Mr = 3× 10−3

Figure 6.24: Gresho Vortex: Integral of each entropy production field with time at
different Mach numbers for the ES Miczek flux.
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(a) t = 1

(b) t = 0.04

Figure 6.25: Gresho Vortex: Pressure field at Mr = 3×10−3 for the Miczek flux when
the skew-symmetric term is multiplied by a factor. The phase errors
observed in figures 6.6 and 6.7 disappear if the skew-symmetric term is
removed, and amplified if the skew-symmetric term is made bigger.
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Figure 6.26: Gresho vortex: Total kinetic energy over time. The skew-symmetric
matrix does not strongly impact the ability of the scheme to preserve
the kinetic energy.
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(a) Êunp+ap = ÊSunp+ap −∆Êp (b) Êunp−ap = ÊSunp+ap + ∆Êp

(c) ÊSunp+ap (d) ÊSunp−ap

(e) ∆Êp

Figure 6.27: Sound wave: Entropy production fields at t = 0 for the ES Miczek flux.
Mr = 10−2.
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(a) Mr = 10−2 (b) Mr = 10−3

(c) Mr = 10−4

Figure 6.28: Sound wave: Integral of entropy production fields, omitting the contribu-
tion of the skew-symmetric matrix, with time at different Mach numbers
for the ES Miczek flux.
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(a) Mr = 10−2 (b) Mr = 10−3

(c) Mr = 10−4

Figure 6.29: Sound wave: Integral of entropy production fields, including the con-
tribution of the skew-symmetric matrix, with time at different Mach
numbers for the ES Miczek flux.
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(a) t = 0.03

(b) t = 0.03, zoomed

Figure 6.30: Sound wave: Pressure snapshots showing that the spurious left-moving
acoustic wave is due to the skew-symmetric term in the ES Miczek flux.
Mr = 10−2
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Incompressible limit

For the Gresho vortex, density is constant, pressure and velocity variations are

of order M2
r and 1, respectively. At the discrete level, this translates into:

[ρ] = 0, [p] = O(M2
r ), [u] = O(1), [v] = O(1) =⇒

[s] = O(M2
r ),

[
ρk

p

]
= O(1),

[
ρu

p

]
= O(1),

[
ρv

p

]
= O(1),

[
ρ

p

]
= O(M2

r ).

(6.65)

For the classic entropy-stable upwind dissipation, this gives:

µ0 = O(M2
r ) and µsx = µsy = 0, µsz = O(1) =⇒ Eun,s = O(M4

r ), Eun,τ = O(M2
r ).

(6.66)

µun±a = O(Mr) =⇒ Eun±a = O(Mr). (6.67)

This implies that the overall discrete entropy production scales as Mr, that is one

order of magnitude above what is expected (E.1). This can explain the accuracy

degradation observed.

With the flux-preconditioner of Turkel, we have p = O(Mr), ap, unp = O(1) and

K1, K2, K1 −K2 = O(Mr), therefore:

µunp±ap = O(1) =⇒ Eunp±ap = O(M2
r ).

That is the correct scaling. Hence the consistent behavior.

With the preconditioner of Miczek, we have p = O(1/Mr), ap = O(1/M2
r ), K2 =
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O(Mr) and K1 = O(1/Mr) because its denominator writes:

Mrap − ap = Mr

√
(p2 + 1)a2/M2

r − p2u2
n − ap

= ap

(√
1 + 1/p2 −M2

r u
2
n/a

2 − 1

)
= O(Mr).

Therefore:

µun+ap = O(M2
r ), µun−ap = O(M4

r ) =⇒ ESun+ap = O(M2
r ), ESun−ap = O(M4

r ),

δp = O(1/M4
r ) =⇒ ∆Ep = O(M2

r ).

Here again, the discrete entropy production has the correct scaling.

Acoustic limit

For the sound wave configuration, density, velocity and pressure gradients are of

order Mr. The specific entropy is constant. At the discrete level, this translates into:

[ρ] = O(Mr), [p] = O(Mr), [u] = O(1), [s] = 0,

=⇒
[
ρk

p

]
= O(1),

[
ρu

p

]
= O(1),

[
ρ

p

]
= O(Mr). (6.68)

For the classic entropy-stable upwind dissipation, this gives:

µ0 = O(M3
r ) and µsx = µsy = µsz = 0 =⇒ Eun,s = O(M6

r ), Eun,τ = 0. (6.69)

µun±a = O(Mr) =⇒ Eun±a = O(Mr). (6.70)

This implies that the overall discrete entropy production scales as Mr, in agreement

with (E.2).
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With Turkel’s preconditioner, we have:

µunp±ap = O(1/Mr) =⇒ Eunp±ap = O(1),

meaning that entropy fluctuations will be one order of magnitude stronger than what

is expected. This can explain why sound waves are severely damped with this flux.

With Miczek’s preconditioner, we have:

µun+ap = O(M2
r ), µun−ap = O(M3

r )

=⇒ ESun+ap = O(M2
r ), ESun−ap = O(M2

r ), ∆Ep = O(Mr)

The discrete entropy production is one order of magnitude weaker than what is ex-

pected. This can explain why the sound wave is less damped than with the ES Roe

flux.

6.5.3 Connections with other low-Mach fixes

Several alternatives to the flux-preconditioning technique have been proposed,

some of which are discussed in Guillard & Nkonga [228] and can be broken down into

two categories.

There are corrections based on the idea that the excessive dissipation in the low

Mach limit is due to the acoustic eigenvalues scaling as O(1/Mr) and therefore be-

coming infinitely large. Li & Gu [232, 233] introduced an all-speed Roe-type scheme

where the eigenvalues are modified as:

un ± (a/Mr) → un ± f(Mr)(a/Mr),

and f(Mr) is a correction introduced so that f(Mr)(a/Mr) is bounded in the low

Mach limit. This approach can be easily applied in our setting and it is easy to show
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(a) Gresho Vortex

(b) Sound wave

Figure 6.31: Entropy production scalings - ES Roe flux
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(a) Gresho Vortex

(b) Sound wave

Figure 6.32: Entropy production scalings - ES Turkel flux
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(a) Gresho Vortex

(b) Sound wave

Figure 6.33: Entropy production scalings - ES Miczek flux
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that it will lead to a discrete entropy production that has appropriate Mach number

scaling.

Starting with Thornber et al. [235, 236], a number of fixes [238, 237, 239] consisting

in modifying the jump terms in the normal velocity [un] have been proposed. By and

large, they multiply [un] by a correction term of order Mr. These fixes are motivated

in part by the work of Birken & Meister [234], who showed that the flux-preconditioner

of Turkel enforce a more stringent (by a factor Mr) CFL condition. The same result

was proved by Barsukow et al. [225] for the flux-preconditioner of Miczek.

For the ES Roe flux, the acoustic part DA[v] of the dissipation operator writes:

DA[v] =

[
run+a run−a

]|un + (a/Mr)| 0

0 |un − (a/Mr)|


µun+a

µun−a

 (6.71)

where

µun±a = Ka

(
µ0 − h

[
ρ

p

]
±Mra

(
ρ

p

)
[un]

)
.

Let µ̃un±a be the wave strength obtained after applying the correction [un]→Mr[un]:

µ̃un±a = Ka

(
µ0 − h

[
ρ

p

]
±M2

r a

(
ρ

p

)
[un]

)
.

The resulting acoustic entropy production field ẼA becomes:

ẼA = [v]TDA[v] = |un + (a/Mr)|µun+aµ̃un+a + |un − (a/Mr)|µun−aµ̃un−a.

It is not clear whether ẼA > 0, which we would need to maintain entropy-stability.

In the very least, it can be showed that in the incompressible limit, ẼA = O(M2
r ), in

agreement with (E.1).
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6.6 Discussion

6.6.1 The origin of the skew-symmetric term

Given that the Miczek flux-preconditioner was constructed so that P−1|PA| has

the same scaling as A, the appearance of a skew-symmetric term in the scaled form

of the Miczek ES dissipation operator could be explained by examining the acoustic

entropy production field without upwinding, that is with Λ instead of |Λ|. We have:

Eun+a = µ2
un+a(un + (a/Mr)), Eun−a = µ2

un−a(un − (a/Mr)). (6.72)

If we assume µ2
un+a ≈ µ2

un−a ≈ µun+aµun−a, then we can write something similar to

(6.62):

Eun+a ≈ ESun+a + ∆Ea, Eun−a ≈ ESun−a −∆Ea, (6.73)

where:

ESun+a = µ2
un+aun, ∆Ea = µun+aµun−a(a/Mr), ESun−a = µ2

un−aun.

Of course, the resulting dissipation operator is no longer guaranteed to be entropy

stable. The point is that the entropy production balance between acoustic fields

described by equation (6.73) might be what the skew-symmetric matrix ∆p of the

ES Miczek flux tries to reproduce, as a consequence of the requirement that P−1|PA|

should behave like A in the low Mach limit. Whether recovering this balance is key in

ensuring a good low Mach behavior is a different story. The numerical results advise

against it.
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6.6.2 A simple equivalent to the ES Miczek flux

Consider the dissipation operator DP = R(|Λp|+ ∆p)R
T where:

|Λp| =



|un| 0 0 0 0

0 |un| 0 0 0

0 0 |un| 0 0

0 0 0 f1|un + (a/Mr)| 0

0 0 0 0 f2|un − (a/Mr)|


,

∆p = g



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 +δp

0 0 0 −δp 0


, (6.74)

and f1, f2 and g are factors. The eigenvectors R are left untouched. Similarly to

(6.62) and (6.73), we have:

Eun−a = ESun−a − g∆Ep, Eun+a = ESun+a + g∆Ep

ESun−a = µ2
un−af2|un − a|, ∆Ep = δpµun−aµun+a, ESun+a = µ2

un+af1|un + a|).

This dissipation operator is ES as long as f1, f2 ≥ 0, and we can emulate equation

(6.73) by taking f1 = |un|/|un + a/M |, f2 = |un|/|un − a/M |, g = 1 and δp = a/M .

This gives:

ESun−a = µ2
un−a|un|, ∆Ep = µun−aµun+a(a/Mr), ESun+a = µ2

un+a|un|.
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In the incompressible and acoustic limits, we have:

ESun−a = O(M2
r ), ∆Ep = O(Mr), ESun+a = O(M2

r ),

which meets the low Mach requirements (E.1) and (E.2). This dissipation operator

also meets Miczek’s requirement that the dissipation matrix should have exactly the

same Mach number scalings as A. Indeed, we have:

Rz(|Λp|+ ∆p)R
−1
z =



|un| −nxa/Mr −nya/Mr −nza/Mr 0

nxa/Mr |un| 0 0 0

nya/Mr 0 |un| 0 0

nza/Mr 0 0 |un| 0

0 0 0 0 |un|


.

To have DP → R|Λ|RT [v] as Mr → 1, we can set f1 = Mr + (1 −Mr)|un|/|un +

(a/Mr)|, f2 = Mr + (1−Mr)|un|/|un − (a/Mr)|, and g = 1−Mr for instance.

Numerical results (figures 6.34, 6.35, 6.36 and 6.37) show that this “skewed”

dissipation operator behaves just like the ES Miczek dissipation operator for both

the Gresho vortex and the sound wave.

The skewed ES dissipation operator (6.6.2) has not been introduced to compete

with Miczek’s flux or any of the aforementioned schemes (we remind the reader that

the best results were observed with an EC flux in space). We introduced it to assess

our intuition that skew-symmetric dissipation operators change the way entropy is

locally produced.

In appendix C, we show that the skewed dissipation operator induces a O(M2
r )

CFL condition, like the Turkel [234] and Miczek [225] dissipation operators.

208



Figure 6.34: Gresho vortex: Total kinetic energy k/k0 evolution over time at different
Mach numbers. The skewed ES flux and the Miczek ES flux (with two
cut-off Mach numbers) are compared.
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(a) t = 1

(b) t = 0.04

Figure 6.35: Gresho Vortex: Pressure field at Mr = 3× 10−3 for the skewed ES flux
when the skew-symmetric term is multiplied by different factors.
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Figure 6.36: Sound wave: Normalized amplitude evolution for the skewed ES and
Miczek ES (Mcut = Mr, lowering it did not improve the results) fluxes
at different Mach numbers.
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(a) t = 0.03

(b) t = 0.03, zoomed

Figure 6.37: Sound wave: Same pressure profiles as in figure 6.30 with the skewed ES
flux instead. Mr = 10−2.
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6.6.3 Different ways of breaking down the entropy production

It is important to recognize that the entropy production breakdown we intro-

duced in section 6.5.1 is not unique. Consider an ES dissipation operator consisting

of two modes R = [r1, r2]:

R|Λ|RT [v] = |λ1|µ1r1 + |λ2|µ2r2 =⇒ E = [v]TR|Λ|RT [v] = E1 + E2, Ei = µ2
i |Λi|.

Let R = {r̄1, r̄2} be an alternative pair of modes defined by the linear mapping:


r1 = α11r̄1 + α12r̄2,

r2 = α21r̄1 + α22r̄2.

=⇒


µ1 = α11µ̄1 + α12µ̄2,

µ2 = α21µ̄1 + α22µ̄2.

Then the dissipation operator can be expressed in terms of these modes:

R|Λ|RT [v] = |λ1|µ1r1 + |λ2|µ2r2

= |λ1|(α11µ̄1 + α12µ̄2)(α11r̄1 + α12r̄2)

+ |λ2|(α21µ̄1 + α22µ̄2)(α21r̄1 + α22r̄2)

=
(
|λ1|α11(α11µ̄1 + α12µ̄2) + |λ2|α21(α21µ̄1 + α22µ̄2)

)
r̄1

+
(
|λ1|α12(α11µ̄1 + α12µ̄2) + |λ2|α22(α21µ̄1 + α22µ̄2)

)
r̄2

=
(
(|λ1|α2

11 + |λ2|α2
21)µ̄1 + (|λ1|α11α12 + |λ2|α21α22)µ̄2

)
r̄1

+
(
(|λ1|α11α12 + |λ2|α21α22)µ̄1 + (|λ1|α2

12 + |λ2|α2
22)µ̄2

)
r̄2

In more compact notation, this writes:

R|Λ|RT [v] = |λ1|µ1r1+|λ2|µ2r2 =
(
S11µ̄1+S12µ̄2

)
r̄1+

(
S22µ̄2+S21µ̄1

)
r̄2 = RSR

T
[v],
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where S =
(
Sij
)

1≤(i,j)≤2
with:

S11 = (|λ1|α2
11 + |λ2|α2

21) > 0, S22 = (|λ1|α2
12 + |λ2|α2

22) > 0, (6.75)

S12 = S21 = (|λ1|α11α12 + |λ2|α21α22). (6.76)

This gives the alternative decomposition:

E = E1 + E2 = E1 + E2, E i =

(∑
j

Sijµ̄j

)
µ̄i. (6.77)

Unlike the initial decomposition, each individual field E i is no longer guaranteed to

be positive in principle. This does not matter much given that the sign of E will not

change. We also see that depending on the choice of modes, coupling terms within

each field E i may appear. We can write:

E i = ESi +
∑
j 6=i

E ij, E
S

i = Siiµ̄
2
i , E ij = Sijµ̄jµ̄i. (6.78)

Note that ESi > 0 hence the coupling terms, just like the skew-symmetric terms, can,

if needed, be discarded without losing entropy-stability. Also note that the coupling

terms do not cancel each other, i.e. E ij + E ji = 0, j 6= i. In fact, they are equal

E ij = E ji.

If the dissipation operator has a skew-symmetric component, which we can write:

R∆RT [v] = δp(µ2r1 − µ1r2) =⇒ [v]TR∆RT [v] = ∆E −∆E = 0, ∆E = δµ1µ2,
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we can also rewrite it in terms of {r̄1, r̄2} instead:

R∆RT [v] = δ(µ2r1 − µ1r2)

= δ
(
(α21µ̄1 + α22µ̄2)(α11r̄1 + α12r̄2)− (α11µ̄1 + α12µ̄2)(α21r̄1 + α22r̄2)

= δ(α11α22 − α12α21)
(
µ̄2r̄1 − µ̄1r̄2

)
= δ
(
µ̄2r̄1 − µ̄1r̄2

)
= R ∆ R

T
[v]

If the mapping is one-to-one, the skew-symmetric operator R∆RT [v] which trans-

fers entropy between modes {r1, r2} is equivalent to a skew-symmetric operator

R ∆ R
T

[v] which transfers entropy between modes {r1, r2}:

[v]TR ∆ R
T

[v] = ∆E −∆E = 0, ∆E = δµ1µ2.

We can now rewrite the entropy production breakdowns of the ES Turkel and ES

Miczek fluxes in terms of the original acoustic eigenvectors instead of the modified

ones. For Turkel’s flux-preconditioner, we map from {r1, r2} = {runp+ap , runp−ap} to

{r1, r2} = {run+a, run−a} following:

runp+ap =
1√

2p2(K1 −K2)

(
(K1 + p2)run+a + (K1 − p2)run−a

)
,

runp−ap =
1√

2p2(K1 −K2)

(
(K2 + p2)run+a + (K2 − p2)run−a

)
.

The new decomposition (6.77)-(6.78) writes:

Eunp+ap + Eunp−ap =
(
ESun+a + Eun+a,un−a

)
+
(
ESun−a + Eun−a,un+a

)
. (6.79)

The left-hand side term recalls the previous breakdown (equation (6.58)) along the

modified acoustic eigenvectors. The right-hand side term is the new breakdown along
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the acoustic eigenvectors. Figures 6.38 and 6.39 show the initial entropy production

fields for the Gresho vortex and the sound wave using the decomposition (6.79). These

entropy production fields are more similar to those of the classic ES Roe flux (figures

6.15 and 6.17) than the ones along the modified acoustic eigenvectors (figures 6.19

and 6.21). We also see that the coupling term Eun+a,un−a can be negative.

For Miczek’s flux-preconditioner, using:

run+ap =
1√

2(p2 + 1)(K1 −K2)

((
K1(1 + p) + 1− p

)
run+a+

(
K1(1− p)− (1 + p)

)
run−a

)
,

run−ap =
1√

2(p2 + 1)(K1 −K2)

((
K2(1 + p) + 1− p

)
run+a+

(
K2(1− p)− (1 + p)

)
run−a

)
.

The new decomposition (6.77)-(6.78) writes:

(
ESun+ap −∆Ep

)
+
(
ESun−ap + ∆Ep

)
=(

ESun+a + Eun+a,un−a −∆Ea
)

+
(
ESun−a + Eun−a,un+a + ∆Ea

)
. (6.80)

The left-hand side term recalls the previous breakdown (equations (6.61) and (6.62))

along the modified acoustic eigenvectors. The right-hand side term is the new break-

down along the acoustic eigenvectors. Figures 6.40 and 6.41 show the initial entropy

production fields for the Gresho vortex and the sound wave using the decomposition

(6.80). The coupling term Eun+a,un−a is negligible. For the sound wave, figure 6.42

shows the integrated entropy production fields according to (6.80). The culpability

of the skew-symmetric part of the ES Miczek flux in the spurious behavior is more

apparent than with the previous decomposition (figures 6.28-(a) and 6.29-(a)).
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(a) ÊSun+a (b) ÊSun−a

(c) Êun−a,un+a

Figure 6.38: Gresho Vortex: Entropy production fields along the acoustic eigenvectors
at t = 0 for the ES Turkel flux. Mr = 3× 10−2.
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(a) ÊSun+a (b) ÊSun−a

(c) Êun−a,un+a

Figure 6.39: Sound wave: Entropy production fields along the acoustic eigenvectors
at t = 0 for the ES Turkel flux Mr = 10−2.
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(a) ÊSun+a (b) ÊSun−a

(c) Êun−a,un+a (d) ∆Êa

Figure 6.40: Gresho Vortex: Entropy production fields along the acoustic eigenvectors
at t = 0 for the ES Miczek flux. Mr = 3× 10−2.
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(a) ÊSun+a (b) ÊSun−a

(c) Êun−a,un+a (d) ∆Êa

Figure 6.41: Sound wave: Entropy production fields along the acoustic eigenvectors
at t = 0 for the ES Miczek flux Mr = 10−2.
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Figure 6.42: Sound wave: Integral of entropy production fields along the acoustic
eigenvectors with time at Mr = 10−2 for the ES Miczek flux.
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6.6.4 An incomplete picture

We should also recognize that our analysis does not take entropy conservation into

account. One could see the skew-symmetric term in Miczek’s flux as a modification

of the baseline entropy-conservative flux instead of a modification of the dissipation

operator. Roe [53] observed that if f∗ is entropy-conservative then for any skew-

symmetric matrix B, we have:

[v]T
(

f∗ −B[v]

)
= [v]T f∗ − [v]TB[v] = [v]T f∗ = [F ].

In other words, an EC flux with the addition a the skew-symmetric dissipation term

remains EC. However, the corresponding interface entropy flux changes. Equation

(6.45) writes:

F ∗(ui,uj,n) =
1

2
(vi + vj)

T

(
f∗(ui,uj,n)−B(vi − vj)

)
− 1

2
(Fi + Fj).

It could be that the entropy flux (not the entropy production) is responsible for the

spurious transients. Figures 6.43 and 6.44 show the results with the skewed scheme

(6.6.2) without the symmetric part of the dissipation operator (|Λ| ← |Λ|× 0). What

is left is a “skewed” EC flux. The same anomalies are observed.

To complete the picture the entropy production breakdown begins to draw, we

will need to get a grasp of how entropy is conserved as well. The closed form entropy-

conservative fluxes Tadmor developed in [51] (section 6) could provide a good starting

point for this purpose.

The fact that skew-symmetric dissipation operators preserve entropy-conservation

is proof that entropy-conservative fluxes do not necessarily have the correct Mach

number scaling (section 6.3.2).
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Figure 6.43: Gresho Vortex: Pressure field at t = 1 and Mr = 3×10−3 for the skewed
EC flux when the skew-symmetric term is multiplied by different factors.

6.7 Summary

In this chapter, the behavior of entropy-stable schemes in the low Mach regime

was investigated. We showed that standard entropy-stable schemes suffer from the

same accuracy degradation issues as standard upwind schemes. The root cause is in

the upwind-type dissipation operator as well. Using appropriate similarity and con-

gruence transforms, we were able to show analytically that the flux-preconditioning

technique is compatible with entropy-stability to an extent. We derived entropy-

stable counterparts of the modified upwind fluxes of Turkel and Miczek. Numerical

results confirmed the analysis but also highlighted spurious transients with the flux-

preconditioner of Miczek which were not reported until now.

These unexpected anomalies, together with the recent work of Bruel et al. [240] on

the acoustic limit and the failure of the Turkel flux-preconditioner, led us to further

investigate the matter. Leveraging Tadmor’s framework, we introduced an entropy
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(a) t = 0.03

(b) t = 0.03, zoomed

Figure 6.44: Sound wave: Same pressure profiles as in figure 6.30 with the skewed
EC flux instead. Mr = 10−2.
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production breakdown of upwind-type dissipation operators that allowed us to revisit

the accuracy degradation issue in terms of entropy. In the same spirit as Guillard &

Viozat [226] (incompressible limit) and Bruel et al. [240] (acoustic limit), we showed

that the accuracy degradation problems at the discrete level are caused by discrete

entropy fluctuations that are inconsistent with the continuous system. An outgrowth

of the overall effort is the discovery that the spurious transients observed with the ES

Miczek flux are caused by a skew-symmetric dissipation term which appeared when

a scaled form R|Λ|RT [v] of the modified dissipation operator was sought. Analytical

and numerical arguments suggest that this term induces entropy transfers between

acoustic waves, but as discussed in the previous section, the role played by skew-

symmetric terms remains to be fully understood.

Ultimately, the present work only considered first-order entropy-stable schemes on

cartesian grids with two very simple flow configurations. Future work will continue

the analysis in a more complex setting, including unstructured grids [220], high-order

discretizations and mixed flow configurations [236] of practical interest. Efficient

time-integration and preconditioning will be paramount.
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CHAPTER VII

Conclusions

The first goal of this thesis was to extend the field of application of ES schemes

to more complex physical models. We achieved this objective through the formula-

tion of ES schemes for the compressible multicomponent Euler equations and in this

process, we realized that ES schemes can only go as far as their underlying theory.

We were fortunate that Chalot et al. [174] and Giovangigli [172] already laid some of

the ground for us to proceed with the derivations. The limit of vanishing partial den-

sities is intriguing. While the thermodynamic entropy is no longer strictly concave,

the ES scheme can be made well-defined and executed without crashing in certain

configurations. Pursuing the formulation towards the full compressible Navier-Stokes

system, including viscous stresses, heat conduction, and multicomponent diffusion

is the logical next step. It can be shown [172] that each of these term will lead to

entropy production at the continuous level. One of the challenges ahead will thus be

to discretize these terms in a way that is consistent with these results. In the same

vein, the full scope of the minimum entropy principle we proved for the multicompo-

nent system remains to be established. It also remains to be seen whether limiting

strategies can effectively and rigorously be applied to the multicomponent system.

The second goal of this thesis was to better understand how entropy-stable schemes

behave locally. The receding flow problem was more of a toy problem to make our-
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selves familiar with ES schemes. This problem showed us the limits of semi-discrete

analysis. Indeed, Liou’s latest work lured us into thinking that entropy-conservative

schemes could solve this longtime problem. It turned out that the impact of time-

integration was not taken into account. In our setting, the overheating appeared to

be strongly correlated to entropy-stability, and entropy-conservation does not neces-

sarily cure this problem. We believe that there is still insight to be gained in this

problem. In a different context, Noh [167] showed that the overheating can be cured

by introducing an artificial heat flux in the scheme. As previously mentioned, heat

conduction is an entropy-producing physical process and first-order entropy-stable

discretizations have been derived [164]. If Noh’s statement applies in our context,

this would mean that the overheating is not simply about producing or not produc-

ing entropy but rather about how entropy is produced. This should be investigated.

Without a doubt, our endeavours with the low Mach regime have been the most

enriching ones of this thesis. The wealth of past work on this topic is largely to credit

for the progress we made, in particular the work of Turkel [218], Guillard & Viozat

[226], Miczek et al. [224] and Bruel et al. [240]. Using congruence, we were able to

demonstrate that flux-preconditioning and entropy-stability are compatible to some

extent. By leveraging some of the ideas of Roe & Pike [241] and Tadmor [51], we

introduced an entropy production breakdown for the upwind dissipation operator of

Roe which allowed us to revisit the accuracy degradation issues in entropy terms. In

addition, it enabled us to remove the numerical artifacts polluting the numerical solu-

tion obtained with the Miczek ES flux. The finding that skew-symmetric dissipation

operators can alter the way entropy is produced among waves is an important contri-

bution of this thesis. These operators could be used to probe the local behavior of ES

schemes in more details. We could for instance go back to the moving interface prob-

lem and see if the same mechanism is behind the spurious acoustic waves generated.

The same goes for the overheating, which can be seen as a spurious entropy wave.
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Key questions remain to be answered, such as the integration of entropy-conservation

in the analysis, but as it currently stands, the entropy production breakdown can al-

ready provide valuable information guiding the design of more accurate entropy-stable

schemes.

228



APPENDICES

229



APPENDIX A

Entropy-conservative and Entropy-stable fluxes in

three dimensions for the multicomponent system

The three-dimensional multicomponent Euler equations are given by:

∂u

∂t
+
∂f1
∂x1

+
∂f2
∂x2

+
∂f3
∂x3

= 0. (A.1)

The state vector u and flux vectors f1, f2 and f3 are defined by:

u =

[
ρ1 . . . ρN ρu ρv ρw ρet

]T
,

f1 =

[
ρ1u . . . ρNu ρu2 + p ρuv ρuw (ρet + p)u

]T
,

f2 =

[
ρ1v . . . ρNv ρuv ρv2 + p ρvw (ρet + p)v

]T
,

f3 =

[
ρ1w . . . ρNv ρuw ρvw ρw2 + p (ρet + p)w

]T
.

The conservation equation for entropy writes:

∂U

∂t
+
∂F1

∂x1

+
∂F2

∂x2

+
∂F3

∂x3

= 0, U = −ρs, F1 = −uρs, F2 = −vρs, F3 = −wρs. (A.2)
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The vector of entropy variables is:

v =
1

T

[
g1 − 1

2
(u2 + v2 + w2) . . . gN − 1

2
(u2 + v2 + w2) u v w −1

]
=

[
v1,1 . . . v1,N v2 v3 v4 v5

]
. (A.3)

The potential flux in space U is unchanged. There are now three spatial potential

functions Fi = vT fi − Fi to work with. They are given by:

F1 =
N∑
k=1

R

mk

ρku, F2 =
N∑
k=1

R

mk

ρkv, F3 =
N∑
k=1

R

mk

ρkw. (A.4)

An entropy-conservative flux across an interface of normal n = (n1, n2, n3), denoted

f∗ must satisfy:

[v]T f∗ = [n1F1 + n2F2 + n3F3].

Using the same method as in the 1D case, one obtains f∗ = [f1,1 . . . f1,N f2 f3 f4 f5]

with:

f1,k = ρlnk un,

f2 =
n1

1/T

( N∑
k=1

rkρk

)
+ u

N∑
k=1

f1,k,

f3 =
n2

1/T

( N∑
k=1

rkρk

)
+ v

N∑
k=1

f1,k, (A.5)

f4 =
n3

1/T

( N∑
k=1

rkρk

)
+ w

N∑
k=1

f1,k,

f5 =
N∑
k=1

(e0k + cvk
1

(1/T )ln
− 1

2
u2 + v2 + w2)f1,k + uf2 + vf3 + wf4.

un = n1u+n2v+n3w is the velocity normal to the interface. The temporal Jacobian
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[172] is given by:

H =



ρ1
r1

0 ρ1
r1
u ρ1

r1
v ρ1

r1
w ρ1

r1
(et1)

. . .
...

...
...

...

ρN
rN

ρN
rN
u ρN

rN
v ρN

rN
w ρN

rN
(etN)

ρT + u2S1 uvS1 uwS1 u(ρT + S2)

ρT + v2S1 vwS1 v(ρT + S2)

ρT + w2S1 w(ρT + S2)

sym ρT (2k + cvT ) + S3.



,

S1 =
∑
k

ρk
rk
, S2 =

∑
k

ρk
rk

(etk), S3 =
∑
k

ρk
rk

(etk)
2

Next is the scaling matrix. Let An be the flux Jacobian in the normal direction:

An = n1
∂f1
∂u

+ n2
∂f2
∂u

+ n3
∂f3
∂u

.

A general expression for the eigenvector matrix R such that An = RΛR−1 is the

following:

R =



1 0 0 Y1 Y1

. . .
...

...
...

...

1 0 0 YN YN

u . . . u u+ an1 u− an1

v . . . v rI rII v + an2 v − an2

w . . . w w + an3 w − an3

k − d1
γ−1

. . . k − dN
γ−1

ht + una ht − una



,

Λ = diag(

[
un . . . un un un + a un − a

]
),
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where rI, rII ∈ R4×1 are such that rI, rII ∈ span{e1, e2, e3} with:

e1 =



0

−an3

an2

−a(n3v − n2w)


, e2 =



−an3

0

an1

−a(n3u− n1w)


, e3 =



−an2

an1

0

−a(n2u− n1v)


and rank(rI, rII) = 2. If n1 6= 0, take (rI, rII) = (e3, e2). The squared scaling matrix

is given by:

T 2 = R−1HR−T =
ρ

γr
diag(

[
T 2Y T 2N 1/2 1/2

]
), (A.6)

where T Y = T Y (T Y )T ∈ RN×N is the same as in the 1D setting, and T 2N ∈ R2 is

given by:

T 2N =
1

n2
1

n2
1 + n2

3 −n2n3

−n2n3 n2
1 + n2

2

 .
If n2

2 + n2
3 = 0, then T 2N = I2×2, otherwise T 2N = TN(TN)T with:

TN =
1

n1

√
n2

2 + n2
3

−n3 n1n2

n2 n1n3

 .
If n1 = 0, then if n2 6= 0, take (rI, rII) = (e3,−e1). equation (A.6) holds with:

T 2N =
1

n2
2

n2
2 + n2

3 −n1n3

−n1n3 n2
2 + n2

1

 .
Since n1 = 0, this simplifies to T 2N = diag([1 + (n3/n2)2 1]) = (TN)2. If n1 = 0

and n2 = 0, then n3 6= 0. In this last case, take (rI, rII) = (e2, e1). This leads to

T 2N = n2
3diag([1 1]) and TN = n3diag([1 1]).
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In each case, we can write T 2 = T T T with:

T =

√
ρ

γr
diag(

[
T Y TN 1/

√
2 1/

√
2

]
),

and the entropy-stable flux f∗ writes:

f∗ = fEC −
1

2
(RT )|Λ|(RT )T [v].
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APPENDIX B

Additional results and discussion for the moving

interface problem

Single component case

Here we present numerical results for a moving contact discontinuity in the com-

pressible Euler equations. The initial conditions are given by:


(ρ, u, p) = (0.1, 1., 1.), 0 ≤ x ≤ 0.5,

(ρ, u, p) = (1., 1., 1.), 0.5 < x ≤ 1.0,

with γ = 1.4 and cv = 1. The anomalies observed in the multicomponent case are

not present. The velocity and pressure remain constant at all times.
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(a) Velocity

(b) Pressure

Figure B.1: Single-Component Moving Contact: velocity, pressure, entropy and spe-
cific entropy at t = 0.6s.
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(a) Entropy ρs

(b) Specific Entropy s

Figure B.2: Single-Component Moving Contact: Entropy and specific entropy at t =
0.6s.
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Conserving entropy in space, producing entropy in time

The implicit scheme did not converge in the original setup (due to the generation

of negative densities). We therefore considered a different setup for which the pressure

oscillations problem is still present.


(ρ1, ρ2, u, p) = (0.3, 0.15, 1., 1.), 0 ≤ x ≤ 0.5,

(ρ1, ρ2, u, p) = (0.15, 1., 1., 1.), 0.5 < x ≤ 1.0,

with γ1 = 1.4, γ2 = 1.6 and cv1 = cv2 = 1. A computational grid of 200 cells is

used. Figure B.3 show the pressure profiles obtained with an EC flux and an ES flux

in space, respectively, for two different CFL numbers. In the first case, the entropy

production of the scheme only comes from the stabilization of the Backward Euler

time scheme, which grows with ∆t. The high frequency oscillations observed are

typically observed when too little dissipation is added to EC schemes [144, 164]. In

the event that the scheme is EC at the fully discrete level (see [144] for an example),

these oscillations will be present but will not increase in magnitude over time. This

is not desirable.

The main conclusion we draw is that the pressure anomalies remain present when

the upwind dissipation typically used in space is replaced by the dissipation of Back-

ward Euler. The magnitude of the pressure anomalies is higher when both the inter-

face flux and time scheme are ES.
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(a) CFL = 2

(b) CFL = 8

Figure B.3: Moving Interface: pressure profiles at t = 0.1 s with BE in time and
either an EC flux or an ES flux in space
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APPENDIX C

Linear stability analysis of the skewed scheme

For a first-order explicit scheme, linear stability is achieved [234] if the complex

amplification matrix H defined by:

H = I − ν((cos(φ)− 1)D − i sin(φ)A), ν =
∆t

∆x
, i2 = −1,

where D is the dissipation matrix, has a spectral radius ρ(H) ≤ 1, ∀φ. For simplicity,

we work with (6.24):

A =

 u a/Mr

a/Mr u

 = RΛR−1, Λ =

u+ a/Mr 0

0 u− a/Mr

 , R =

1 1

1 −1

 .
The dissipation operator (6.6.2) writes:

DP = R|ΛP |R−1, |ΛP | =

f1(u+ a/Mr) 0

0 f2(a/Mr − u)

+

 0 δ

−δ 0

 .
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Taking f1 = |u|/(u+ a/Mr), |u|/(a/Mr − u), and δ = a/Mr gives:

DP =

 |u| −a/Mr

a/Mr |u|

 ,
which scales like A. To inspect the spectral radius of H we consider the matrix H̃

defined by the similarity transformation:

H̃ = R−1HR = I − ν((c− 1)ΛP − isΛ)

=

1− ν(c− 1)|u|+ iνs(u+ a/Mr) −ν(c− 1)a/Mr

ν(c− 1)a/Mr 1− ν(c− 1)|u|+ iνs(u− a/Mr)

 ,
where c = cos(φ) and s = sin(φ). H̃ has two complex eigenvalues λ1 and λ2 given by:

λ1 = 1 + ν|u|(c− 1) + iν((a/Mr)
√

2(1− c) + su),

λ2 = 1 + ν|u|(c− 1)− iν((a/Mr)
√

2(1− c)− su).

If c = 1, then s = 0 and Λ1,2 = 1. For c 6= 1, we have:

λ2
1,2 = 1− 2(1− c)ν

(
|u| − ν(u2 + (a/Mr)

2 ± s(a/Mr)u
√

2/(1− c))
)
.

λ2
1,2 ≤ 1 imposes:

2(1− c)ν
(
|u| − ν(u2 + (a/Mr)

2 ± s(a/Mr)u
√

2/(1− c))
)
≥ 0

⇔ ν ≤ M2
r |u|

M2
r u

2 + a2 ± sMrau
√

2/(1− c)
= O(M2

r ).

This shows that the linearized scheme with DP has a more restrictive CFL condition

(ν = O(M2
r )) than with the classic upwind operator (ν = O(Mr)). If the skew-
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symmetric component is removed, a similar CFL condition is obtained:

ν <
M2

r |u|
M2

r u
2 + a2(c+ 1)/2± (c+ 1)Mrau

= O(M2
r ).
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