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ABSTRACT

Ever increasing bandwidth demands in modern cellular networks are becoming

difficult to meet, as there is no longer room to expand within the current commercial

frequency allocation. As a result, an important part of current and future cellular

protocols, such as LTE-A and 5G, is Carrier Aggregation—the ability to communicate

on multiple channels at once. However, when those channels lie in separate bands,

they can be separated by 100’s of MHz. This complicates the analog front-end design,

since it is difficult for a single ADC to convert such a wide bandwidth, to say nothing

of the inefficiency in converting undesired spectrum along with desired. As a result,

multiple power-hungry front-ends are typically required.

To reduce the need for separate analog front-ends, we introduce a new class of ΔΣ

modulator—the Multi-Band ΔΣ modulator—that uses custom-designed noise shap-

ing to digitize multiple bands simultaneously without wasting valuable noise shaping

resources on undesired portions of the spectrum. The prototype Multi-Band ΔΣ

Modulator (MB-ΔΣM) is fabricated in 40nm Complementary Metal Oxide Semi-

conductor (CMOS) technology and demonstrates two simultaneous bands: one at

baseband and one at bandpass. These two bands are separated by 500MHz, have

an aggregate bandwidth of 90MHz, with up to 55dB measured SNDR. In addition

to reducing the number of ADCs, this new approach promises further system-level

power savings by simplifying the RF front-end. The system-level power savings from

requiring fewer analog mixers, LNAs, filters, and ADC drivers can be even more than

the ADC power reduction.

xii



We further develop two theoretical results that, when taken together, greatly

simplify the design of this complex, high-order modulator. The first result introduces

an easy-to-use, closed-form solution for Continuous-Time (CT) to Discrete-Time (DT)

loop filter conversion which fully accounts for Excess Loop Delay (ELD) and can

be used with all standard ELD compensation techniques. Our solution also allows

for arbitrary Digital to Analog Converter (DAC) pulse shapes and is architecture

agnostic.

The second result shows that any modulator using an ELD compensation path

implemented in CT has limited noise shaping capacity. We also show the types of

noise shaping that are available to such systems, making it possible for the designer

to reliably implement more complex noise shaping.
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CHAPTER 1

Introduction

ΔΣ modulation was introduced as a modification to Δ modulation, a then-common
communication scheme, by Inose et al. in 1962 [5]. While Δ modulation’s out-
put is based on the differentiation of the input signal—which is later integrated to
reconstruct the original signal—ΔΣ modulation brings both the difference and the
integration into the modulator by applying feedback, hence the name ΔΣ. The re-
sult is that the modulation error is “shaped” to high frequencies. A simple analog
low-pass filter can then be used to filter out the shaped noise and reconstruct the
original analog signal. It would be over a decade before James Candy would connect
ΔΣ modulation to analog-to-digital conversion by implementing the low-pass filter
digitally [6].

These early modulators were Continuous-Time (CT)—their loop filters were im-
plemented with CT integrators [5] [7] [6] [8]. While Discrete-Time (DT) modulators
were popular in the 1990s1, CT ΔΣ modulators have stood the test of time in part due
to their tolerance of the low headrooms common in advanced Complementary Metal
Oxide Semiconductor (CMOS) processes, reduced anti-alias filter requirements, and
improved energy efficiency [3] [9]. Bandpass (BP) modulators directly digitize an
Intermediate Frequency (IF) or Radio Frequency (RF) signal and allow digital IQ
mixing, removing the troublesome analog RF or IF mixer.

CT-ΔΣ Analog to Digital Converter (ADC)s are a popular choice for wireless
systems since their resistive input and anti-aliasing properties require significantly
less filtering and power-hungry buffering to drive compared to converters that must
sample their input. To reduce noise, the input sampling capacitor in DT converters
must be large, requiring a fast transient response and high instantaneous current draw
from the driver.

1By the author’s estimation, only 10 out of 55 papers in the Journal of Solid State Circuits
(JSSC) between 1990-1999 were CT.

1



Figure 1.1: (a) Conventional parallel receiver, (b) using power-
hungry wide-band ADC, and (c) Multi-Band CT-ΔΣ ADC reduces
ADC power and simplifies front-end.

To keep up with increasing bandwidth demands, Carrier Aggregation (CA) has
become an essential part of LTE-A and emerging 5G standards. While intra-band
CA is approachable with current technology, inter-band CA is far more challenging
to accomplish efficiently, due to the large band separations of 100’s of MHz required.
Conventional approaches to this problem use parallel receivers [10] (Fig. 1.1(a)) or
digitize a wide range of spectrum encompassing all bands of interest [11] (Fig. 1.1(b)).
However, both of these approaches are power-hungry and area-intensive. We intro-
duce the Multi-Band (MB) CT-ΔΣ ADC to simultaneously and efficiently digitize
only the bands of interest (Fig. 1.1(c)).

1.1 Single-Band Modulation
The idea of bandpass ΔΣ modulation was originally proposed by Richard Schreier
and Martin Snelgrove in 1989 [12]. The earliest work was done in simulation, but the
first physical implementation is due to Thurston, Pearce, and Hawksford in 1991 [13],

2



followed closely by a fully monolithic design from Jantzi, Snelgrove, and Ferguson in
1992 [14]. The implementation due to Thurston had an LC-based, CT loop filter,
while the monolithic version was a switched-capacitor design. Switched capacitor
modulators dominate the literature through the 90s. One notable exception is due to
Tao and Khoury in 1997. Theirs was a hybrid modulator that uses a CT resonator in
front, then mixes to baseband before passing through a switched-capacitor integrator
and on to the quantizer. This allows for the benefits of a CT modulator (resistive
input, anti-aliasing) while still doing direct-conversion at the quantizer.

Toward the end of the 90s, bandpass modulators in RF processes such as SiGe and
InP began to appear [15] [16]. The 2000s also see an increased interest toward CT
modulation, largely focused around direct-RF and IF-sampling wireless applications.
The sub-sampled ΔΣ modulator was proposed in 2000 [17] and demonstrated in 2003
[18] by Hussein. In 2005, Latiri, Aboushady, and Beilleau proposed a sine-shaped
Digital to Analog Converter (DAC) for use with high sample-rate ADCs [19] and
2007 brings an impressive 40GSPS, 2GHz center frequency ADC from Chalvatzis et
al. By the early 2010s, most bandpass modulators in the literature seem to be CT
and finally, in 2012, Chae et al. introduces a new single-amplifier biquad which uses
positive feedback to boost its Q [20], reducing the power requirements for bandpass
modulators (important, since they inherently require twice as many poles as a base-
band modulator). This work builds on this rich history by using Chae’s biquad to
implement multiple simultaneous bands.

1.2 Noise Shaping
At their most basic, all ΔΣ modulators are simply variations on the theme of applying
feedback to a quantizer. That quantizer can be as simple as a 1b flash ADC or
as complex as an N-bit Successive Approximation Register (SAR) ADC, but the
goal is always to reduce the error of the quantizer within some range of frequencies
below the Nyquist frequency. The typical high-level model for this type of system is
shown in Fig. 1.2(a). Roughly speaking, the system’s feedback tends to randomize
the quantizer’s error [3], typically making it a rather good approximation to treat
the quantizer as if it is linearly adding Gaussian white noise to its input, shown in
Fig. 1.3. This is called the Additive Gaussian White Noise (AGWN) approximation,
and it allows us to analyze an otherwise extremely nonlinear system using simple
linear techniques.

The individual transfer functions—from the signal (u[k]) to the output (y[k]), and
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Figure 1.2: Generic block diagram of (a) a Discrete-Time (DT)
ΔΣ modulator, and (b) a Continuous-Time (CT) ΔΣ modulator.

L(z)
u(t) y(t)

-

q(t)

Figure 1.3: The additive gaussian white noise model for a ΔΣ
modulator.
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the noise (q[k]) to the output—are called the Signal Transfer Function (STF) and the
Noise Transfer Function (NTF), respectively. For the system in Fig. 1.3, these are
given, in the z-domain, by:

NTF (z) = 1
1 + L(z)

STF (z) = L(z)
1 + L(z)

(1.1)

When the magnitude of L(z) is large, it is clear that L(z) >> 1 and so the
denominator is: 1 + L(z) ≈ L(z). As a result, the NTF becomes small (1/L(z) ≈ 0)
and the STF becomes 1 (≈ L(z)/L(z) = 1). This is the essence of noise shaping:
because feedback provides for two distinct transfer functions, the signal can be passed,
unaltered, while the quantization noise is filtered out. An example of these transfer
functions can be seen in Fig. 1.4. In this case, L(z) has a pole (infinite gain) at DC
and so the error at DC is being filtered out completely.

Finally, it is common for the DT loop filter to be implemented in CT. This case
is known as CT ΔΣ modulation and is shown in Fig. 1.2(b). In this case, a DAC
drives the CT filter, which is then sampled at its output. The sampling action is
typically an implicit part of the quantizer. This DAC-filter-sampler system has a DT
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input and a DT output, so we can model it as a DT system, making the modulator
equivalent to a fully-DT modulator. For this model, a DT filter is “equivalent” to the
CT filter it is modeling if, for any given DT input, both DT outputs are identical for
all time. Because the systems are linear, this is equivalent to the requirement that
the DT impulse responses be identical. This is called Impulse Invariance and when
this condition is met, the two modulators’ responses to noise will be, by definition,
identical cycle-for-cycle. The process of converting between CT and DT is discussed
at length in Chapter 3.

1.3 Research Contributions
In order to improve the efficiency of inter-band carrier aggregation systems, a more
efficient use of the noise spectrum can be employed: by only suppressing the noise
in the bands-of-interest, a much lower clock rate can be used compared to similar
wide-band ΔΣMs, leading to significant overall power savings—this is a new class of
modulators we call Multi-Band ΔΣ modulators. Having a single ADC interface also
alleviates the need for complex, power-hungry front-ends. This work introduces the
first example of a multi-band ΔΣ ADC, implementing two simultaneous bands: one
at DC and one at 500MHz.

An additional goal of this work is to provide practical tools to make the design
of multi-band ADCs significantly more approachable, given the level of complexity
required to build such an ADC. While the theory used to create these tools may, itself,
feel unapproachable, reference implementations are provided in a GitHub repository
so that practicing engineers need not be familiar with the mathematical tools to use
the results. See Section 6.1 for more details.

The primary tools developed in this work include: (1) a general solution to the
Excess Loop Delay problem and Discrete-Time to Continuous-Time conversion which
is compact & easy-to-use, and (2) a limitation of the noise shaping capacity in CT
modulators due to the finite bandwidth inherent in CT-based Excess Loop Delay
(ELD) compensation methods. (1) makes it possible to synthesize the CT loop filter
directly from an arbitrarily complex NTF without the need for tedious, DAC- and
architecture-specific hand calculations. This significantly improves design time and
makes it possible to generate code to fully automate the system design process. (2)
defines a critical restriction on the designer’s choice of NTF, which allows the NTF
to be designed precisely, with less worry that the finite-bandwidth of the CT filter
will require significant changes to the final design. Taken together, they enable the
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designer to use an NTF-first approach, which greatly simplifies otherwise complex
loop filter calculations.

1.4 Organization
Chapter 2 gives a high-level overview of state-space systems. Next, Chapter 3 dis-
cusses the equivalence of CT and DT systems and the problem of ELD. Chapter 4
introduces an important property of CT-ΔΣ modulators which tends to limit the
noise shaping capacity. Chapter 5 discusses a prototype multi-band ΔΣ modulator
and presents measurement results. The prototype is designed with the theoretical
results in Chapter 3 and Chapter 4 in mind. We finally conclude with Chapter 6.
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CHAPTER 2

An Overview of State Space Systems

Beginning nearly a century ago with Harold Black’s 1934 paper in Bell Labs’ tech-
nical journal [21], the field of classical control theory has grown up primarily around
the description of systems by the way they alter the frequency content of a signal;
with Fourier, Laplace, and Z-transforms as its primary tools. This frequency-based
approach has been immensely successful, giving electrical engineers alone such fun-
damental concepts as the Bode plot, the Miller Effect, and active filtering, just to
name a few. Then, beginning in the 1960s [22], modern control theory began to
introduce an alternate view of systems: by focusing on the time-domain, incredibly
flexible and powerful tools can be developed. Modern and classical approaches have
since complemented each other, greatly expanding on our ability to understand and
design complex dynamical systems.

We do not claim that state-space methods should somehow replace classical meth-
ods, however. Both are merely tools that can be useful in complementary situations.
In particular, we contend that the Impulse Invariance problem—a critical part of
CT-ΔΣ design that is introduced in Chapter 3—is best formulated in state-space
since it is, by definition, a time-domain problem. For this reason, this chapter aims
to provide a high-level, intuitive understanding of the concepts from modern control
theory used in this work. For a more in-depth introduction to state-space control
systems, see [23].

Section 2.1 introduces the abstract fundamentals of linear algebra alongside the
more practical application of these fundamentals in modeling real systems. Using
this foundation, Section 2.2 builds the tools this work employs in Chapter 3 and
Chapter 4.
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2.1 Modern Systems Theory
In state-space, all systems—whether or not they are linear or time-invariant—are
modeled as a set of coupled differential equations, which can be written as:


ẋ1(t)
ẋ2(t)
...

 =


f1(t, x1(t), x2(t), . . . , u1(t), u2(t), . . .)
f2(t, x1(t), x2(t), . . . , u1(t), u2(t), . . .)

...




y1(t)
y2(t)
...

 =


h1(t, x1(t), x2(t), . . . , u1(t), u2(t), . . .)
h2(t, x1(t), x2(t), . . . , u1(t), u2(t), . . .)

...


(2.1)

where each xi(t) is an internal signal acting as memory for the system (known
as its “state”), uj is each input, and yk is each output. The total number of state
variables is the system’s order. For linear, potentially time-varying systems, these
equations take the form:


ẋ1(t)
ẋ2(t)
...

 =


a11(t)x1(t) + a12(t)x2(t) + . . . + b11(t)u1(t) + b12u2(t) + . . .

a21(t)x1(t) + a22(t)x2(t) + . . . + b21(t)u1(t) + b22u2(t) + . . .
...




y1(t)
y2(t)
...

 =


c11(t)x1(t) + c12(t)x2(t) + . . . + d11(t)u1(t) + d12u2(t) + . . .

c21(t)x1(t) + c22(t)x2(t) + . . . + d21(t)u1(t) + d22u2(t) + . . .
...


(2.2)

Where each of the coefficients aij bkl, cnm, and dpq are scalar functions of time.
This is extremely cumbersome on its own, but by rewriting Eq. (2.2) as a matrix
equation, we can apply very powerful tools from linear algebra:


ẋ1(t)
ẋ2(t)
...

 =


a11(t) a12(t) . . .

a21(t) a22(t) . . .
... ... . . .




x1(t)
x2(t)
...

+


b11(t) b11(t) . . .

b11(t) b11(t) . . .
... ... . . .




u1(t)
u2(t)
...


ẋ(t) = A(t)x(t) + B(t)u(t)

(2.3)
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Figure 2.1: (top) The block diagram of a CRFB modulator. (bot)
The block diagram of the modulator’s loop filter by itself.


y1(t)
y2(t)
...

 =


c11(t) c12(t) . . .

c21(t) c22(t) . . .
... ... . . .




x1(t)
x2(t)
...

+


d11(t) d11(t) . . .

d11(t) d11(t) . . .
... ... . . .




u1(t)
u2(t)
...


y(t) = C(t)x(t) + D(t)u(t)

(2.4)
In this work, we only consider the time-invariant case and, for simplicity and

readability, we omit the time variable for the input, state, and output signals. We
are left with a very simple representation of a complex set of equations:

ẋ = Ax + Bu

y = Cx + Du
(2.5)

To illustrate these concepts, throughout this chapter we build on the filter example
shown in figure Fig. 2.1, which shows a block diagram for a standard Cascade of
Resonators with Feedback (CRFB) modulator [3]. The top of Fig. 2.1 is the classic
depiction of the full modulator, while the bottom is a view of the loop filter on its
own.

Considering the loop filter by itself, we can write down the equations at each node
as:

ẋ1 = b0u

ẋ2 = x1 − a1x3 + b1u

ẋ3 = x2 + b2u

y = x3

(2.6)
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Thus, writing this in matrix form:

ẋ1

ẋ2

ẋ3

 =


0 0 0
1 0 −a1

0 1 0



x1

x2

x3

+


b0

b1

b2

u

y =
[
0 0 1

] 
x1

x2

x3


(2.7)

So that:

A =


0 0 0
1 0 −a1

0 1 0



B =


b0

b1

b2


C =

[
0 0 1

]
D = 0

(2.8)

where bi and ai are the ith numerator and denominator coefficients, respectively.

2.1.1 Making it Concrete

An abstract, compact way of representing something is not terribly useful without the
ability to meaningfully interpret it. In Fig. 2.2, we show the general block-diagram
equivalent of Eq. (2.5).

From the block-diagram view, a few things become clear. (1) the most basic unit
of a system is an integrator; (2) the A matrix defines all of the feedback paths in the
system; (3) the B, C, and D matrices define all feed-forward paths, going from the
input to the state and going from the state to the output.

We can think about the classical transfer function of this system by replacing
each integrator block with 1/s. This system would be made entirely of poles at the
origin, but its feedback paths move these poles to different locations, depending on
the coefficients in A. So, as a consequence of (2), the poles of this system are described
entirely by the A matrix. The role of the B, C, and D matrices is discussed in more
detail in Section 2.2.2.
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Figure 2.2: A block diagram of the state-space representation of a
system.

Finally, we can take the Laplace Transform of the state equation as well, which
becomes sx = Ax + Bu. Solving for x and substituting the result for x in the output
equation, we find that:

Y (s) = C
[
(sI − A)−1BU(s)

]
+ DU(s)

Y (s)
U(s)

= C(sI − A)−1B + D
(2.9)

2.1.2 Discrete-Time State-Space Modeling

Systems in DT are modeled in state-space in the same way as CT systems. The
primary difference is the use of a delay—x[k + 1], with k as the time-variable—
instead of the derivative, ẋ(t). This difference gives “difference equations” as the
fundamental descriptor, rather than differential equations. All the analysis developed
in this chapter is also valid for DT systems.

The system equations in this case are:

x[k + 1] = Ax[k] + Bu[k]

y = Cx[k] + Du[k]
(2.10)
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Figure 2.3: Block diagram of the DT CRFB loop filter.

Returning to the CRFB structure, the CT integrators are replaced with DT in-
tegrators, as shown in Fig. 2.3. Notice that, because the primary building block in
DT systems are unit delays, rather than integrators, the equations for each state are
significantly different from Eq. (2.7):


x+

1

x+
2

x+
3

 =


1 0 0
1 1 −a1

1 1 (1 − a1)



x1

x2

x3

+


b0

b1

b2

u

y =
[
0 0 1

] 
x1

x2

x3


(2.11)

For simplicity, we use x+ in place of x[k + 1] (as opposed to x = x[k]).
It is important to note that these two types of systems behave quite differently

and cannot be easily compared in general, as Chapter 3 explores more deeply.
Finally, a note on Z-domain analysis. When looking at the Z-domain transfer

function of a DT system, it is very common to write it using z−1 as the primary
variable, as in: aN + · · · + a1z

−(N−1) + a0z
−N . This is extremely useful for engineers,

since it directly relates to the filter’s implementation in terms of unit delays—i.e., z−N

is a series of N delays. However, in order to analyze a Z-domain transfer function in
terms of poles and zeros, the transfer function must be written in terms of the variable
z, as in: aNzN + · · · + a1z + a0. We use this form throughout this work, since it is
more useful for the type of analysis required here. However, moving between the two
representations is simply a matter of factoring out the z term, as appropriate. For
example, these two forms are equivalent: a2 + a1z

−1 + a0z
−2 = (a2z

2 + a1z
1 + a0)/z2,

which means this system has two poles at the origin and two zeros which depend on
the coefficients a0, a1, and a2.
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2.2 Tools from Linear Algebra

2.2.1 Signals

One of the most fundamental concepts in linear algebra—one on which the entire
discipline is built—is the concept of Linear Vector Spaces. A Linear Vector Space is
a set of vectors—each of which consists of some set of numbers from a field (e.g., the
real numbers, denoted R, or the complex numbers, denoted C)—in combination with
the vector addition and scalar multiplication operators (vectors add element-wise and
a scalar can be multiplied by each element in the vector). Think of a vector space as
defining all possible vectors and the operations we can do on those vectors.

While these ideas are typically defined in a very abstract way, this chapter focuses
more directly on their application in linear systems. In this context, vectors typically
represent the values of a set of signals together at a particular time; most often, the
overall state of the system itself. If we think of this vector as a point in a coordinate
system, we can represent the values of all the signals in very complex systems with a
single object: this same point in space.

Now consider unit-length vectors on each axis of a typical 2D coordinate system,
which can be thought of as the vectors

[
1 0

]
T and

[
0 1

]
T . We can construct a

vector representing this point by scaling each of these unit vectors and adding them
tip-to-tail. The unit vectors that lie on the euclidean axes are often written as î and
ĵ. We can write this, for example, as:

 2
3

 = 2̂i + 3ĵ

= 2

 1
0

+ 3

 0
1

 (2.12)

This process, and much of linear algebra in general, is often best thought of
geometrically, so the top of Fig. 2.4 illustrates this process.

This construction is, of course, the same operation we do every day when using
coordinates in the Euclidean plane, with the scale factors equal to our usual coordi-
nates. However, by starting with vectors, the axes are no longer fixed—we could just
as easily choose any other set of initial vectors. The vector

[
2 3

]
T describes a point

in space in terms of the “basis” vectors î and ĵ, but there is no preferred starting
point here. We happen to be using î and ĵ, but we could just as easily start with
completely different basis vectors, say e1 and e2.
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Figure 2.4: A visual depiction of constructing vectors using a
particular basis. (top), the basis vectors (̂i, ĵ) are multiplied by the
coefficients a and b and added tip-to-tail, the result of which is the
desired vector. (bot), the same process is applied to a more arbitrary
choice of basis vectors, (e1, e2).
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Since the basis vectors point in different directions this time, we’ll need to scale
them differently to reproduce the same point. After some trial and error, we might
find that:

 2
3

 = 1

 4
2

+ −1

 2
−1


= 1e1 + −1e2

(2.13)

Intuitively, we can think of writing the output vector—which is by necessity in
some basis, in this case (̂i, ĵ)—in terms of some other basis, in this case (e1, e2). This
is known as a change of basis.

For convenience, we can concatenate these basis vectors and write the operation
as a matrix equation:

 2
3

 =
[

e1 e2

]  1
−1


=

 4 2
2 −1

 1
−1

 (2.14)

One way of viewing vector-matrix multiplication, then, is as a linear operation
that changes our viewpoint of the same underlying system state (i.e., the same actual
point in space) from one representation, or basis, to another. Note that the matrix for
(̂i, ĵ) is special, in that it maps any vector to itself. When the vectors are ordered so
that all the 1’s are on the diagonal, the resulting matrix is called the identity matrix
and is denoted with an I. This matrix behaves very similarly to the number 1 in
1-dimensional algebra.

At this point, it is important to emphasize that, in general, a matrix, A and a
vector, x, cannot be swapped when multiplying them; multiplication, in this case, is
“non-commutative”. After all, the operation xA doesn’t even make sense, as we have
defined it so far. Furthermore, multiplying two matrices is also non-commutative.
That is, although the multiplications A1A2 and A2A1 can be calculated, where both
A’s have the same number of rows as columns (i.e., they are both “square” matrices),
the result will, in general, be different. However, multiplication is distributive, as in:
(A1 + A2)x = A1x + A2x.

With that said, the system of constructing arbitrary vectors based on known
basis vectors breaks down in some cases: if the two basis vectors point in the same
direction, we cannot represent any matrix other than a scalar multiple of the two. A
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Figure 2.5: An example of the linear operation of a matrix, A. It
stretches and squishes both axes as well as rotating them both differ-
ently, distorting the original space. Any vector that undergoes this
linear operation appears unchanged with respect to the new, squished
coordinates, but is transformed with respect to the old coordinates.

way of capturing this idea is called “rank.” Formally, a matrix’s rank is a count of the
number of “linearly independent” basis vectors it contains. Two vectors are linearly
independent if they cannot be scaled (with not all scale factors equal to zero) and
added to become the zero vector, as in: α1e1+α2e2 · · · ≠ 0 for all possible values of the
coefficients αi. For example, the vectors

[
2 4

]
T and

[
5 10

]
T are linearly dependent

(with a scale factor of 2.5), whereas
[
2 4

]
T and

[
4 3

]
T are linearly independent.

When all of the vectors constituting a matrix are linearly independent, that is:
when the rank is equal to the number of columns, we say it is “full rank” (or sometimes
“full column rank” if there are more rows than there are columns). When the matrix’s
rank is less than the number of columns, we say that it “loses rank”.

Finally, there is another important way to analyze matrix-vector multiplication:
as a stretching and rotating of the entire vector space, leading to stretching and
rotating the vectors inside it [24]. Fig. 2.5 depicts this process. Notice that, because
the transform is linear, all parallel lines remain parallel. Though it is a central concept
in linear algebra, it is not a viewpoint that is directly featured much in this work,
so this chapter does not spend as much time on it. It is helpful to have this image,
though, when understanding some of the concepts in linear algebra.

17



Solving y=Ax in General

It is often the case that, with the equation y = Ax, A and y are known and we would
like to know X. For example, in Chapter 3, the equations defining the connection
between CT and DT are naturally expressed as going from CT to DT with the
equation: Bd = ΓBc, where Bc and Bd are vectors and Γ is a non-square matrix, in
general. By virtue of having designed the DT system, Bd & Γ are known and, in
order to find the equivalent CT filter, we must find Bc.

Solving this equation requires a matrix inverse, which is defined as a matrix, A−1,
which has the property: A−1A = I (or AA−1 = I). This property is analogous to
the scalar version, a/a = 1 for any scalar a ̸= 0. Such a matrix only exists when: (1)
there are an equal number of columns as rows (it is square), and (2) it is full rank.

When the basis vectors of a matrix (i.e., its “bases”) cannot describe the entire
vector space (say, all possible vectors in 3D space), it is known as a “subspace.” A
subspace is the collection of all vectors the basis can fully describe. Consider 3 basis
vectors in 3D space that all lie on the same plane, but do not all lie on the same line.
In this case, the rank is 2 and subspace would be the plane they are on.

Intuitively, the reason a matrix which loses rank cannot be inverted is because, in
this case, some of the information about the original vector is lost after the transfor-
mation. If two basis vectors point in the same direction, it is impossible to represent a
vector that doesn’t also point in this direction. The closest we can get is to “project”
the vector onto the bases we do have, that is: extend a line from the tip of the desired
vector and intersect the subspace at a right angle. The vector defined by that inter-
section is the component of the desired vector that can be transformed. The subspace
of the desired vector—after it is transformed—is called the range of the matrix, A.
After the transformation, any information in the direction of the projection, which is
orthogonal to the original subspace, becomes 0. In particular, an orthogonal subspace
that describes this new orthogonal vector is called the “null space” of A.

Geometrically, it is clear that the original subspace and the null space, together,
fully describe the vector space that contains the original vector. Because the transfor-
mation is linear (i.e., because of superposition), it must also be the case that what the
transformation does to the components of a vector that lie in each of these subspaces
fully describes the transformation itself. Algebraically, y = Ax being rank-deficient
means that, for xR on the original subspace of A and xN on the null-space of A,
y = A(xR + xN) = AxR + AxN = AxR. So, trying to recover the component xN from
y is impossible.

When there are fewer equations than there are variables (that is, when A is wider
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than it is tall), there exists infinitely many solutions for x. The previous discussion
explains why: because the matrix is wide, it cannot have full column rank and, there-
fore, there must exist some part of the vector space that is lost in the transformation.
We can, however, recover xR, the component that does get transformed. Matrices
that perform such transformations are known as “pseudo-inverses.” The solution that
gives xN = 0 (i.e., returns a vector with no components in the null-space) is given by
the Moore-Penrose pseudo-inverse and, if A has full row-rank, can be written as the
“right pseudo-inverse”: x = AT (AAT )−1y. Note, however, that there are times when
it is useful to include some extra component from the null-space, such as when there
are additional restrictions in the problem statement. This sort of solution is required,
in Chapter 3, to force the use of a particular DAC architecture.

When there are more equations than variables—that is, when A is taller than
it is wide—there may not be any solution that solves all equations at once. The
situation can be thought of as having more samples of a system’s output than there
are variables. If, for example, there is noise in the data or the linear model is slightly
different from reality, the result cannot perfectly fit the data. It is somewhat more
complicated than the wide case but, roughly speaking, the problem is that y may
have components in the null-space of A’s inverse, which makes it impossible for there
to exist an x such that Ax = y (because some components of y go to 0). A solution
is to find the closest y vector that gives an exact solution and choose the value for
x which gives that approximated solution. Again, the pseudo-inverse that chooses
a y with no components on the null-space (i.e., the minimum square solution) is
the Moore-Penrose pseudo-inverse and, if A has full column-rank, can be written as
the “left pseudo-inverse”: x = (AT A)−1AT y. Pseudo-inverses, in general, are a very
complex topic, and more details can be found in [25].

Finally, for a more detailed explanation of the broader theory behind the impor-
tant ideas of ranges and null-spaces, see [26].

2.2.2 Systems

With some basic tools in place, we now return to the discussion at the start of this
section. The fact that we can represent a point in space in different ways, depending
on our choice of basis, means that, as the system’s state moves through its vector
space, it too can be represented with different basis choices. Start with the state’s
trajectory through space represented as, x(t) (the time variable included here for
emphasis), which is in some arbitrary basis. If we know its relationship to another
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basis, (call its state vector x̄), we can change the basis by replacing x with x = V x̄

for some V defined by relating the old and new bases, as in Section 2.2.1. Applying
this transformation to the state equations, we see that:

V ˙̄x = AV x̄ + Bu

˙̄x = V −1AV x̄ + V −1Bu

˙̄x = Āx̄ + B̄u

(2.15)

The A and B matrices have become new matrices, Ā and B̄, but the underlying
system has not changed; we are only looking at it from a different point of view. A

and Ā can be thought of as different implementations of the same filter—they are
two different architectures, both implementing the same transfer function. In fact,
substituting these new matrices into the state-space transfer function (Eq. (2.9)),
and factoring out V , shows that the new transfer function is identical to the old
transfer function (note: the 3rd step makes use of a property of inverses that says
(XY Z)−1 = Z−1Y −1X−1):

C̄(sI − Ā)−1B̄ = CV (sI − V −1AV )−1V −1B

= CV
(
V −1(sV IV −1 − A)V

)−1
V −1B

= CV V −1(sI − A)−1V V −1B

= C(sI − A)−1B

(2.16)

To build on the CRFB example in Fig. 2.1, this same filter could instead be built
using the Cascade of Resonators with Feed-Forward (CRFF) architecture instead
[3]. This is essentially the same system written in a different basis. The CRFF
architecture is shown in Fig. 2.6 and has the following state equations:


˙̄x1

˙̄x2

˙̄x3

 =


0 0 0
1 0 −a1

0 1 0



x̄1

x̄2

x̄3

+


1
0
0

u

y =
[
b2 b1 (b0 − b2a1)

] 
x̄1

x̄2

x̄3


(2.17)

where bi and ai are the ith numerator and denominator coefficients, respectively.
Note that, although the B matrix in the CRFB case consists of only the transfer
function’s numerator coefficients, this is not true for CRFB. It can be shown that
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Figure 2.6: A block diagram for the CRFF loop filter. This
architecture has the same transfer function as the CRFB architecture
in Fig. 2.1 and, therefore, is a different representation of the same
system.

these two systems have the same poles and zeros, and so there must exist some matrix
V such that x = V x̄, or:

Ā = V −1AV

B̄ = V −1B

C̄ = CV

D̄ = D

(2.18)

A method for finding this matrix is introduced at the end of this chapter.
The transformation Ā = V −1AV is known as a similarity transform and is a pow-

erful tool. Reading the function of each matrix from right to left, it first transforms a
vector into a different basis, then applies some linear operation, A, in the new basis,
and finally transforms back to the original basis. This process often makes it easier
to apply a linear operation (i.e., Ā) by choosing an intermediate basis in which the
operation is easy to calculate.

Eigenvalues and System Poles

Some choices for basis vectors have unique properties. One such choice is called the
“eigenbasis.” For many linear transformations, there exist particular lines (through
the origin) for which any vector starting on that line remains on that line after
the transformation. An “eigenvector” is a vector that sits on this line. Its asso-
ciated “eigenvalue” is the amount by which the transformation scales that vector.
Algebraically, this is written as Av = λv, for some scalar λ, NxN matrix A, and
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N-dimensional vector v. Rearranging this equation, it can be said that:

(λI − A)v = 0 (2.19)

where I is the NxN identity matrix. The solution to this equation is to set the
determinant of the matrix on the left-hand side to zero: det(λI − A) = 0. This
solution is called the characteristic equation, and an example is as follows:

det

λ

 1 0
0 1

−

 2 −3
3 2

 = det

 (λ − 2) −3
3 (λ − 2)


= (λ − 2)(λ − 2) − (−3 · 3)

= λ2 − 4λ + 13

(2.20)

Setting this equal to zero, we find that the eigenvalues are at 2 ± 3j.
In general, eigenvalues and eigenvectors can be complex, which generally corre-

spond to vector rotations. There always exists N eigenvalues, where N is the dimen-
sion of the matrix, though there does not always exist N unique eigenvectors. A
simple example of this is the identity matrix: its eigenvalues are all at 1, but none of
the vectors in the vector space move at all, so the eigenvectors are effectively every
possible vector. Another, less trivial, example is when there are multiple, repeated,
eigenvalues. In cases like these, a small modification is possible to make a matrix
block-diagonalizable. Repeated eigenvalues should be placed together with 1’s on the
off-diagonal between them, as follows:


3 0 0 0
0 2 1 0
0 0 2 1
0 0 0 2


In this case, the eigenvalues are 3, 2, 2, and 2. The repeated eigenvalues are in a

3x3 block in the bottom-right corner. This form is called the Jordan Canonical Form
(or Jordan Form) and is always diagonalizable.

As it turns out, all square matrices have a complete set of eigenvectors (or the
analogous vectors in Jordan Form) which, together, form a matrix which can be used
as a similarity transform. When this transform is applied to the matrix, the resulting
matrix is diagonal with its eigenvalues as each of the entries on the diagonal.

Now, looking back on the characteristic equation, det(λI − A) = 0 (Eq. (2.19)), it
may seem reminiscent of the (sI − A) term in Eq. (2.9) and this is not a coincidence.
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In fact, writing the system in its diagonalized form (with Λ being the diagonalized
form of A) and calculating the transfer function, we find that:

C(sI − Λ)B = C


(s − λ1) 0 0 0

0 (s − λ2) 0 0

0 0 . . . 0
0 0 0 (s − λN)



−1

B

= C


(s − λ1)−1 0 0 0

0 (s − λ2)−1 0 0

0 0 . . . 0
0 0 0 (s − λN)−1

B

= b1c1

s − λ1
+ b2c2

s − λ2
+ · · · + bNcN

s − λN

(2.21)

In other words, the transfer function equation for a diagonalized system directly
gives the partial fraction expansion. Looking at the system from this point of view,
it is clear that the poles of a system are equal to the eigenvalues of its A matrix,
and that the B and C matrices define the numerator of the transfer function (and so,
its zeros). Furthermore, distributing the partial fraction expansion shows that, using
only B and C matrices, there can only be N-1 zeros (since, for any term, the products
in the numerator are always missing the associated pole from the denominator):

C(sI − Λ)B = b1c1

s − λ1
+ b2c2

s − λ2
+ · · · + bNcN

s − λN

=
b1c1

∏
i ̸=1(s − λi) + b2c2

∏
i ̸=2(s − λi) + · · · + bNcN

∏
i≠N(s − λi)

(s − λ1)(s − λ2) . . . (s − λN)
(2.22)

Thus, in order for the system’s transfer function, Y (s)/U(s), to have an equal
number of poles and zeros, D must be nonzero. In that case, the full-order denomi-
nator enters the numerator (multiplied by D) and provides the extra high-order term.
This makes some sense, since a system with an equal number of poles and zeros ef-
fectively has infinite bandwidth (at s = ∞, the numerator and denominator terms
cancel), which would require a direct path from the input to the output.

The last observation we make on the topic is that a matrix is singular if and
only if it has one or more eigenvalues at zero. After all, if we try to invert such a
system in diagonalized form, we would have to divide by zero which, of course, is
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undefined. In DT, a pole at the origin corresponds to a unit delay, z−1, whereas in
CT it corresponds to an integrator, 1/s. This fact puts essential limitations on the
process of equating CT and DT systems, discussed in Chapter 3.

Controllability and Observability

In addition to the eigenbasis, two other useful bases are called the Controllable Canon-
ical Form (CCF) and Observable Canonical Form (OCF). They are based on the ideas
of controllability and observability, which happens to construct a view of the system
that is based entirely on the transfer function’s numerator and denominator coeffi-
cients. Because the transfer function coefficients are directly available in the A, B,
and C matrices, these bases can be instrumental in drawing connections between
Laplace-domain analysis and state-space analysis.

At its core, observability formalizes and answers the question: can we determine
the initial conditions of a system, x0, given the input, u, and the output, y for all
time t > 0? If this is possible, then it is also possible to know the entire evolution
of the internal state of the system by working backward from the current time to a
set of initial times that cover the time window in question. Restating the original
question, then, observability asks: can we see the internal state of the system given
only the external inputs and outputs?

Here, we study this question in DT, since it is significantly simpler and more
instructive. However, the same results can be shown in CT as well. To begin, we
consider the evolution of the DT system’s output, with respect to its state (we can
ignore the input since, if it is known, it can be moved to the left side of the equation
and the form of the problem does not change):

y1 = Cx1

y2 = Cx2

...
yN = CxN

(2.23)

where subscripts are used to denote the time-variable, for simplicity (e.g. xk =
x[k]). Noticing that xk+1 = Axk (ignoring the input for now):

24



y0 = Cx0

y1 = Cx1 = CAx0

y2 = CAx2 = CA2x0

...
yN−1 = CAxN−1 = CAN−1x0

(2.24)

Factoring x0, we can turn this into a matrix equation. This matrix is known as
the Observability Matrix. Since it should only take N samples to take this matrix’s
inverse (making the matrix square), we can define the Observability Matrix, O, as:

y =



C

CA

CA2

...
CAN−1


x0

y = Ox0

(2.25)

where y, in this case, is a vector of the output samples at each point in time. It is
clear from this equation that, in order to invert O (and therefore know x0), O must
be full-rank. When this is the case, we say that the system is “fully observable,” or
just “observable.”

Continuing with the same logic, a related result can be obtained by considering the
Controllability question: can we force the system’s state to follow a desired trajectory
using only its input and initial conditions? As it turns out, when this is possible, the
given system’s open-loop behavior (the set of poles and zeros) can be modified, using
feedback, to make any system behavior we want. This is the foundation of state-
variable feedback techniques (a subject which is, unfortunately, beyond the scope of
this work).

We start by considering the state equations this time:

x1 = Ax0 + Bu1

x2 = Ax1 + Bu2

...
xN = AxN−1 + BuN

(2.26)

Next, substituting the previous state equation for the current state, as before:
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x1 = Ax0 + Bu0

x2 = A(Ax0 + Bu0) + Bu2 = A2x0 + ABu0 + Bu1

x2 = A(Ax1 + Bu2) + Bu2 = A3x0 + A2Bu0 + ABu1 + Bu2

...
xN = A(xN−1 + BuN) = ANx0 + AN−1Bu0 + AN−2Bu1 + · · · + BuN−1

(2.27)

Subtracting the known contribution of x0, we can define the Controllability matrix,
C as:

xN − ANx0 =
[

B AB . . . AN−1B
]

u

xN − ANx0 = Cu
(2.28)

Again, in order to solve this equation and find an input signal that generates the
desired system response, C must be invertible, and therefore full-rank.

Since these matrices are invertible when the system is controllable or observable, it
is possible to use them in a similarity transform. As it turns out, these transformations
are related to the “Controllable Canonical Form” and the “Observable Canonical
Form,” respectively.

Though the following results are equally valid in DT, we now return to CT to
discuss the Observable Canonical Form, for continuity with the rest of this chapter.
The Observable Canonical Form has the following structure:

ẋ =



−aN−1 1 0 . . . 0
−aN−2 0 1 . . . 0

... ... ... . . . ...
−a1 0 0 · · · 1
−a0 0 0 · · · 0


x +



bN−1

bN−2
...
b1

b0


u

y =
[

1 0 0 · · · 0
]

x

(2.29)

where the coefficients ai are coefficients in the denominator of the system’s transfer
function and bj are the coefficients in the transfer function’s numerator. To confirm
that the denominator coefficients are correct, writing out the determinant of this
matrix (and, therefore, the denominator) shows that it takes the form: ∆(sI − A) =
sN + aN−1s

N−1 + aN−2s
N−2 + · · · + a0.

There is a two-step process that can put any system into this form. Using the
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transformation defined by O forces the A matrix to the correct form. However, an
extra transform must be added to ensure that the B matrix contains the numerator
coefficients. Let the subscript “o” denote a matrix written in this basis (e.g. Ao).

Let’s first recognize that the observable form’s observability matrix, O, is equal to
the identity matrix (since C is zero everywhere but its first index). Given this, we must
find the similarity transform, T , that takes the state vector, x, from its original basis
into the observable basis, xo = Tx; which is to say that ẋo = TAT −1xo + TBu and
y = CT−1xo. We can substitute this transform into the observable form’s observability
matrix:

Oo =



CT−1

CT−1(TAT −1)
CT−1(TAT −1)2

...
CT−1(TAT −1)N−1


(2.30)

The T terms inside the parentheses can be factored out, since (TAT −1)2 =
TAT −1TAT −1 · · · = TA2T −1. Canceling the inner T terms and factoring the right-
most T , we see that:

=



CT−1

CT−1T (A)T −1

CT−1T (A)2T −1

...
CT−1T (A)N−1T −1



=



C

CA

CA2

...
CAN−1


T −1

= OT −1

(2.31)

But we already said that Oo = OT −1 = I, so it must be the case that O = T .
Using O as a transform ensures that the A matrix is in the correct form, but we

still need to ensure the form for the B matrix. To do this, we need an additional
transform:
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Wo =



1 0 · · · 0 0 0

aN−1 1 ... 0 0

aN−2 aN−1
. . . 0 ... 0

... aN−2
. . . 1 0 ...

a2
... . . . aN−1 1 0

a1 a2 · · · aN−2 aN−1 1


(2.32)

This new intermediate transform is lower-triangular and has the denominator
coefficients on each of the off-diagonals.

Finally, the transform T = WoO can be used to transform the system from the
original basis into the Observable Canonical Form:

ẋo = TAT −1xo + TBu

y = CT−1xo

(2.33)

The same logic can be applied to the controllable form, which has the following
structure:

ẋ =



−aN−1 −aN−2 · · · −a1 −a0

1 0 · · · 0 0
0 1 · · · 0 0
... ... . . . ... ...
0 0 · · · 1 0


x +



1
0
0
...
0


u

y =
[

bN−1 bN−2 · · · b1 b0

]
x

(2.34)

and with an intermediate transform of:

Wc =



1 aN−1 aN−2 · · · a2 a1

0 1 aN−1
. . . . . . a2

... 0 1 . . . aN−2
...

0 ... 0 . . . aN−1 aN−2

0 0 ... 1 aN−1

0 0 0 · · · 0 1


(2.35)

we can construct the transform, T = CWc, used as follows (note that the inverses
are reversed compared to Eq. (2.33)):
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Figure 2.7: The effective block diagram of a system with uncon-
trollable and unobservable modes. The uncontrollable/unobservable
modes are cutoff from the input/output, respectively.

ẋo = T −1ATxo + T −1Bu

y = CTxo

(2.36)

Finally, though we do not prove it in detail, uncontrollable/unobservable modes
are akin to pole/zero cancellation in classical system analysis. The idea comes from
a basis that is formed by the Kalman Decomposition, which separates unobserv-
able/uncontrollable parts of the system. Though the details are beyond the scope
of this work, the result is that uncontrollable poles are effectively cut off from the
input and unobservable modes are cut off from the output. This has the same effect
as pole/zero cancellation in classical analysis, except that this emphasizes that the
internal dynamics still play a role in the short-term response, if there are initial con-
ditions or disturbances (or the long-term response if those modes are unstable). A
simplified block diagram depicting this situation is shown in Fig. 2.7.

Basis Transformations

Using the CCF, OCF, and eigenbases, it is finally possible to transform between two
arbitrary bases. The main strategy is to use an intermediate basis whose transform is
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known for any given matrix. If the two matrices are similar, then transforming them
in this way gives the same result, which implies:

T −1AT = T̄ −1ĀT̄

A = T T̄ −1ĀT̄ T −1

A = (T̄ T −1)−1ĀT̄ T −1

A = T̄ −1
A ĀT̄A

(2.37)

where T and T̄ are transforms that take A and Ā, respectively, to some shared
basis and the new T̄A = T̄ T −1 is the desired transformation. The shared basis used
for this calculation may be any of the bases discussed here, such as the CCF, OCF,
and eigen (or Jordan) bases.

The Matrix Exponential

An analytic function is one that can be described by a converging power series (such
as its Taylor Series), shown in Eq. (2.38).

f(x) = a0 + a1(x − x0) + a2(x − x0)2 + . . . (2.38)

Since integer powers are simply the repeated multiplication of an argument (A3 =
AAA), this idea can be easily extended to matrices. Consider the fact that (V AV −1)k =
V AkV −1, since:

(V AV −1)k = (V AV −1)(V AV −1)(V AV −1) . . .

= V (A)V −1V (A)V −1V (A)V −1 . . .

= V (AAA . . . )V −1

= V AkV −1

As a result, similarity transforms factor out of the function: eV AV −1 = V eAV −1!
It is important to make clear, however, that a matrix does not generally stay in
the same basis after applying a matrix function. For example, if A is in Observable
Canonical Form, log(A) is generally not. The main exception to this rule is diagonal
matrices. Since diagonal matrices only have elements on the diagonal, raising the
matrix to a power is the same as raising all its elements to the same power; thus,
both input and output are diagonal. This gives a straightforward way to calculate
functions: (1) transform into a diagonalized form, (2) calculate the function on the
individual diagonal elements, (3) transform back.

30



One example that is used frequently in systems theory is the matrix exponential,
eA, which is used to solve for x in the state equations from Eq. (2.2). To show the
response of the system to an input (its forced response), we can follow similar steps
as in the 1-dimensional case. First, move the x term of the state equations to the
left-hand side, then multiply both sides on the left by e−At (to turn it into a known
anti-derivative), and then integrate both sides:

ẋ(t) = Ax(t) + Bu(t)

ẋ(t) − Ax(t) = Bu(t)

e−Atẋ(t) − e−AtAx(t) = e−AtBu(t)∫ t

0

d

dt

(
e−Aτ x(τ)

)
dτ =

∫ t

0
e−Aτ Bu(τ)dτ

e−Atx(t) − e(−A0)x0 =
∫ t

0
e−Aτ Bu(τ)dτ

Solving for x(t) gives the final solution:

x(t) = eAtx0 +
∫ t

0
eA(t−τ)Bu(τ)dτ (2.39)

As we discuss in Chapter 3, a direct result of this equation is that the matrix
exponential (along with its inverse—the matrix form of the natural log) plays a key
role in creating an equivalence between CT and DT filters, which is critical for the
design of CT-ΔΣ modulators.

The DT State Solution

Finally, to round out our discussion, we note that the solution to the DT state equa-
tions (Eq. (2.10)) is simply the generalized version of Eq. (2.27):

x[n] = Anx[0] + An−1Bu[0] + An−2Bu[1] + · · · + Bu[n − 1]

x[n] = x[0] (A)n +
n−1∑
k=0

An−k−1 (B) u[k]
(2.40)
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CHAPTER 3

Continuous-Time to Discrete-Time
Conversion and the ELD Problem

In the late 1980s, it started to become clear that practical limitations in hardware
implementation introduces extra, un-modeled delay in the feedback path which leads
to performance degradation and instability [27]. This effect remains a critical, often
difficult area of research; the problem is tightly coupled with the process of calculating
the CT filter required to implement a given NTF, which has traditionally been a
difficult problem in its own right.

In this chapter, we introduce an easy-to-use, closed-form solution for CT-DT
conversion that fully accounts for Excess Loop Delay (ELD) and can be used with
all standard ELD compensation techniques. Our solution allows for arbitrary DAC
shapes spanning up to the first 2 sample periods, when loop delay is included.

We also introduce a related closed-form solution for the less-common compensa-
tion technique that use multiple DAC shapes, potentially allowing for DACs spanning
>2 sample periods. Longer loop delays could, for example, enable much higher sam-
pling rates, and therefore bandwidth, through the use of interleaved quantizers. The
solution also includes the ability to control how each DAC connects to the filter, all
without the need to tediously derive architecture-specific solutions.

3.1 Defining Impulse Invariance
The design problem introduced by Excess Loop Delay is intrinsically related to the
process of converting between DT and CT loop filters. So, in order to discuss ELD,
we must first elaborate on the ways in which this process can be carried out.

Fig. 3.2 shows the block diagrams of the DT- and CT-ΔΣ modulators. The
DT modulator uses a DT loop filter, keeping the entire system in DT. In the CT
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modulator, however, a DAC is used to drive a CT loop filter, which is finally sampled
at the input to the quantizer. Because the quantizer’s input and output are always
in DT, the noise-shaping behavior of both ΔΣ modulators can be fully described in
DT—any CT loop filter will have an exact DT analog. After all, any black-box filter
with a DT input and DT output is, by definition, a DT system. 1

The relationship between these two systems is described by the Impulse Invariant
transform. It states that: a CT system, when driven by a DAC and sampled at its
output, can be considered equivalent to a DT system when, for a given DT input,
u[n], the two systems have identical DT outputs at the sampling instant, t = nTs. If
yd and yc are the DT and CT outputs, we can say that: yd[n] = yc(nTs) for all n.

3.2 Impulse Invariance in Frequency Space
Traditional approaches to the Impulse Invariance problem are primarily rooted in
the Laplace- and Z-transforms. At their core, they are interested in enforcing the
equivalence between systems using the frequency domain. Let L, Z be the Laplace-
and Z-transforms, respectively, ℓc(t), ℓd[n] be the CT and DT loop filter impulse re-
sponses, and Lc(s), Ld(z) be the transformed versions of ℓc(t), ℓd[n]. The relationship
between DT and CT frequency domains, which must be solved, can be written as:

ℓc(t)|t=nT = ℓd[n]

or
L−1{Lc(s)}|t=nT = Z−1{Ld(z)}

(3.1)

An example of the most common approach to this problem can be found in [1],
which begins with the assumption that the loop filter is of the form:

Ld(z) = bN−1z
N−1 + bN−2z

N−2 · · · + b0

(z − 1)N
(3.2)

and that the DAC driving its input has a simple Return-to-Zero shape (the DAC’s
impulse response is 1 on the interval t = [α, β]). This setup already limits the scope of
the solution significantly, which is necessary due to the difficulty in applying Laplace-
and Z-transforms directly.

From here, the partial fraction expansion is taken:
1However, as discussed in Section 3.4, the converse is not always true: not all DT systems have

a CT equivalent. This happens when the matrices in Eq. (3.6) are not invertible.
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Figure 3.1: The CT-DT conversion table in [1] used to equate
Laplace- and Z-domain transfer functions. Using such a complex
table is unwieldy and imposes significant limitations for its use, due
to the assumptions required to generate it.

Ld(z) = BN

(z − 1)N
+ BN−1

(z − 1)N−1 · · · + B1

(z − 1)
(3.3)

with Bi as scalars which depend on Ld(z). The Z- to Laplace-domain conversion
is somewhat easier to calculate on the individual terms in this form, allowing the
transform to be applied to each term and the results added together in the Laplace-
domain (thanks to the linearity of the transform). The transform for each term, in
this case, was calculated by using the symbolic math software, Maple, and is shown
in Fig. 3.1 for terms up to 3rd order. This table is unwieldy at best, even with the
quite narrow limitations placed on the problem from the start.

[28] expands on this approach to allow for arbitrary DAC shapes by applying
the definition of integration to integrate over the DAC shape itself. However, any
method based on this approach is, at best, cumbersome; it especially does not scale
well with order and still requires assumptions on the form of the loop filter. In [3], an
approach using state-space methods is described, though it seems to be less common
in the literature. We prefer this method, however, because it is scalable, easily im-
plemented, and makes very few assumptions. Unfortunately, it doesn’t provide any
way to compensate ELD, perhaps partially explaining its minimal use.

This work builds on this state-space method by extending the standard matrix
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equations to include the fast-path and a model for multi-cycle DAC shapes, making
it possible to use impulse invariance with DAC shapes that span up to two cycles,
which accounts for very nearly all examples in the literature. State-space impulse
invariance is described in detail in Section 3.4.

3.3 Generality of Solution
The ΔΣ model investigated in this work is shown in Fig. 3.2. We do not consider any
specific loop filter architectures, as keeping the loop filters abstract allows the result
to be applied to any desired architecture. For that matter, it can quite naturally
accommodate more complex filter models, such as those including excess poles due
to parasitic capacitance or secondary amplifier poles.

The ELD correction method discussed is the classic fast-path around the quan-
tizer, seen as the path c0 in Fig. 3.3. As is discussed in detail in Section 3.5, this
method works by making an extra degree of freedom available when equating the CT
and DT filters, compensating for the complexity introduced when the DAC crosses
into the second sample period.

Although we directly analyze only the fast-path approach, the result obtained can
also be used for other conventional approaches, since all of the standard compensation
techniques can be written as a simple manipulation of the c0 path. Digital ELD
correction [29], for example, is obtained by merely moving c0’s feedback point from
the input of the quantizer to the output; the coefficient does not change. A summary
of other approaches and their relation to the fast-path method can be found in [29].

3.4 Impulse Invariance in State-Space
As discussed in Section 3.1, calculating the loop filter in CT-ΔΣ modulators has typ-
ically been done through direct application of the Laplace- and Z-transforms. While
an immense amount of work has been done on this technique, it can be tedious at
best and downright confounding at worst. We contend that state-space tools can sig-
nificantly simplify the solution and can contribute to a more complete understanding
of the problem.

To restate the definition of impulse-invariance: a CT system, driven by a DAC and
sampled at its output, is equivalent to a DT system when, for a given DT input, u[n],
the two systems have identical DT outputs. That is to say: yd[n] = yc(nTs) for all
time n. As discussed in Section 3.1, directly applying the Laplace- and Z-transforms
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L(s)
Input Output

-

DAC
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Ts

Figure 3.2: Generic model of (a) a discrete-time ΔΣ modulator
and (b) a continuous-time ΔΣ modulator used in this work.

L(s)
Input Output

z-1

c0

- -

Figure 3.3: ΔΣ modulator block diagram including the excess loop
delay compensation path, c0.
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to solve this problem results in large, unwieldy tables of equations that must, at
minimum, be customized for the type of DAC being used. However, a compact
solution in state-space is well-known and is described in [3]. First, let ϕ(t) be the
impulse response of the DAC. An example of ϕ(t) for a Return-to-Zero (Return-to-
Zero (RZ)) DAC is shown in Fig. 3.4.

The state equations for a DT filter are:

xd[k + 1] = Adxd[k] + Bdu[k]

yd[k] = Cdxd[k] + Ddu[k]
(3.4)

and for a CT filter:

ẋc(t) = Acxc(t) + Bcuc(t)

yc(t) = Ccxc(t) + Dcuc(t)
(3.5)

These equations describe the time evolution of any linear, time-invariant system
(DT or CT, respectively) and, because impulse-invariance is defined in the time-
domain, the impulse-invariant relationship between these two system models can be
written as a simple relationship between the A,B,C and D matrices:

Ad = eAcTs

Bd =
∫ Ts

0
eAc(Ts−τ)Bcϕ(τ)dτ

Cd = Cc

Dd = Dc

(3.6)

Derivations of these equations are readily available, as in [3]. To emphasize the
assumptions being made, however, we give an example here. Consider that the so-
lutions to the CT and DT systems, with CT input uc(t) and DT input ud[n], are
(Eq. (2.39), and Eq. (2.40)):

xc(t) = xc(0)eAct +
∫ t

0
eAc(t−τ)Bcuc(τ)dτ

xd[n] = xd[0] (Ad)n +
n−1∑
k=0

An−k−1
d (Bd) ud[k]

(3.7)

The goal of the derivation is to manipulate the CT equation so that it is in the
same form as the DT equation, then pick out the components that stand in for Ad

and Bd in the new equation. Focusing on the CT response, the state of the system
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at time t = nTs is:

xc(nTs) = xc(0)eAc(nTs) +
∫ nTs

0
eAc(nTs−τ)Bcuc(τ)dτ (3.8)

Already, we can see that Ad = eAcTs , since we can write the first term in the
form xc(0)

(
eAcTs

)n
= xd[0] (Ad)n. Now, assuming that ϕ(τ) = 0 outside the interval

[0, Ts], we can break up the integral by sample-period, allowing us to replace uc(τ)
with variables representing the DAC and DT input in the kth sample period, uc(τ) =
ϕ(τ − kTs)ud[k]:

xc(nTs) = xc(0)eAc(nTs)

+
∫ nTs

(n−1)Ts

eAc(nTs−τ)Bcϕ(τ − nTs)ud[n]dτ

...

+
∫ 2Ts

Ts

eAc(nTs−τ)Bcϕ(τ − Ts)ud[1]dτ

+
∫ Ts

0
eAc(nTs−τ)Bcϕ(τ)ud[0]dτ

(3.9)

This allows us to factor out ud[k] from the integral:

xc(nTs) = xc(0)eAc(nTs) +
n−1∑
k=0

∫ (k+1)Ts

kTs

eAc(nTs)−τ)Bcϕ(τ − kTs)dτ ud[k]

(3.10)

After using τ = λ + kTs as a change of variables and factoring out the constant
eAcTs(n−k−1) term from the integral, the equation has the same form as the DT state-
space solution and we can equate the terms in parentheses:

xc(nTs) = xc(0)
(
eAcTs

)n
+

n−1∑
k=0

(
eAcT s

)(n−k−1)
(∫ Ts

0
eAc(Ts−λ)Bcϕ(λ)dλ

)
ud[k]

xd[n] = xd[0] (Ad)n +
n−1∑
k=0

(Ad)n−k−1 (Bd) ud[k]
(3.11)

Notice that, in order to split the integral to a summation of integrals in Eq. (3.10),
ϕ(t) must be zero outside the first sample-period, t = [0, Ts]. As long as the DAC’s
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impulse response—with delay included—stays in that interval, Eq. (3.6) works per-
fectly well, regardless of the delay seen at the DAC. The ELD design problem, then,
is just an effort to expand this limitation to include multiple sample periods, as is
discussed in Section 3.5.

Finally, before moving on, it is useful to make a few simple observations of
Eq. (3.6). These conclusions are not new, but can be helpful in orienting us to
these equations.

1. The integral in Eq. (3.6) is not invertible when the DT system has poles at z=0
(since if Ad = eAc∗Ts has eigenvalues at 0, the integral does too). This implies
that pure DT delays can’t be converted to CT—it would require a pole at −∞!
This isn’t typically a problem, however, since these can be easily implemented
separately in DT as delays at the input to the DAC.

2. The poles of the DT system is always the exponent of the CT poles (since the
matrix exponential of a diagonal matrix is the exponent of its elements and
eAcTs = V eΛcTsV −1, where Λc is a diagonal matrix containing the eigenvalues of
Ac—see Section 2.2.2).

3. The DAC’s only effect is to modify the filter’s zeros (and the overall gain) since
it only appears in the equation relating the B matrices (see Section 2.2.2).

3.5 Extending Impulse Invariance: The ELD De-
sign Problem

As discussed in Section 3.4, loop delay, in and of itself, does not present a problem as
long as the DAC shape + delay (that is, ϕ(t)) remains zero outside the first sample
period, [0, Ts]. An RZ DAC shape, along with a delayed version of it, is shown in
Fig. 3.4 as an example. The problem is introduced when ϕ(t) is allowed to extend
into the second sample period, [Ts, 2Ts] [1]. In this case, the assumptions made when
deriving the equivalence in Eq. (3.6) are no longer upheld, and the transformation
cannot be applied.

In order to apply impulse invariance in this case, [1] considers the system as a
superposition of two different DACs: DAC1 representing the interval [0, Ts], DAC2

representing [Ts, 2Ts]. DAC2 is now 0 for the first cycle, which can be implemented
as a unit delay added before DAC2, as illustrated in Fig. 3.5. As a result, DAC2 only
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has to implement a DAC shape on the interval [0, Ts], and impulse invariance can be
applied as usual.

The problem is, this extra delay results in a filter with one less degree of freedom
than is required to solve for its coefficients. Consider the result of this superposition:
the DT equivalent of the CT filter + DAC system can be thought of as two parallel
DT filters, shown in Fig. 3.6. One filter represents the DT equivalent of the CT filter
using only DAC1 (Ld1(z)); the other represents the conversion using only DAC2, with
the unit delay included before it (z−1Ld2(z)). Algebraically, this means we must solve:

Ld(z) = Ld1(z) + z−1Ld2(z) = Nd1(z)
Dd1(z)

+ Nd2(z)
zDd2(z)

(3.12)

Since the only thing changing is the DAC, the poles of these systems are the same
(Dd1(z) = Dd2(z) = Dd(z)). Therefore, the denominators cancel, and we are left
with:

zNd = zNd1 + Nd2 (3.13)

Eq. (3.13) now relates the numerator of the desired transfer function to the nu-
merators of the impulse-invariant filters due to DAC1 and DAC2. Equating the coef-
ficients on both sides of Eq. (3.13) shows that the constant term in Nd2 must be 0,
since both Nd and Nd1 are being multiplied by a z term. This requirement cannot be
guaranteed, however, since we cannot set the coefficients in Nd2 independently from
Nd1. Therefore, an extra degree of freedom is required so we can set this coefficient
independently.

The solution suggested in [1] is to add an extra path around the quantizer (c0 in
Fig. 3.3), adding a new degree of freedom and making a solution possible—this is the
now-standard fast-path method of ELD Compensation. Our aim in this section is
to follow the method in [1], developing state-space equations in a way that mirrors
their approach and, finally, produce an extended version of Eq. (3.6) that properly
compensates systems with DACs that span 2 cycles.

In state-space, the DT systems can always be written in the Observable Canonical
Form, as discussed in Chapter 2, making the Bd1 and Bd2 matrices (of the state-space
representations of Ld1(z) and Ld2(z), respectively) equal to the coefficients of their
respective numerators. In Eq. (3.13), the coefficients of Nd and Nd1 shift up by one
degree due to the extra z term from DAC2’s delay. Noting this, we can extend the B

matrices—whose elements are these same coefficients—by shifting them up or zero-
padding them, as necessary. Equating the coefficients in Eq. (3.13), we can rewrite

40



Figure 3.4: A return-to-zero DAC shape and the same shape with
small added delay, ∆t.

Figure 3.5: The system equivalent to a DAC that spans two sam-
ple periods. DAC1 implements the portion of the DAC shape that
falls inside the first cycle, and DAC2 implements the second cycle.
Together, they are equivalent to the full DAC pulse shape.
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Figure 3.6: (top) The model of the CT DAC + Filter. (mid)
The DT equivalent of (top). (bot) The desired DT filter. All three
should be made to be equivalent.

the relationship as:
Bd

0

 =

Bd1

0

+

 0
Bd2

 (3.14)

Substituting for Bd1, Bd2 using the state-space Impulse Invariant Transform (Eq. (3.6))
and noting that Bc can be factored out, we see that:

Bd

0

 =

∫ Ts
0 eAcTstϕ(t)dt

0 0 . . . 0

+

 0 0 . . . 0∫ Ts
0 eAcTstϕ(t + Ts)dt

Bc

= ΓBc

(3.15)

Since Γ is (N+1)xN, an exact inverse doesn’t exist. This is the central design
problem for ELD restated: we must find a way to increase the degrees of freedom
in the CT system so that Γ—the matrix relating the CT filter’s unknown Bc matrix
with the known DT Bd matrix—can be inverted.

The fast-path method in [1] solves this by adding an extra path—shown as the
c0 path in Fig. 3.3 and represented by adding a scalar c0 term to the right-hand side
of Eq. (3.12). After distributing the denominators in this modified equation, we see
that: zNumd = zNumd1 + Numd2 + c0Dend, which can now be solved. In the same
way as before, we can rewrite the coefficients of this equation in matrix form:
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Bd

0

 =
[
Dend Γ

]  c0

Bc


= Γaug

 c0

Bc

 (3.16)

where:

Dend =
[
1 aN−1 aN−2 · · · a0

]T
Dend here is a column vector containing the denominator coefficients from highest

degree to lowest. The matrix is now square and, in most practical cases, it is invertible
though it is beyond the scope of this work to prove precisely when it is invertible. In
practice, if a system is found that is non-invertible or nearly non-invertible, making it
invertible typically only requires some small change to the DAC shape or the filter’s
poles.

While this accounts for the most common modulators in the literature, it is not all-
inclusive. It is possible, with other system configurations, for an otherwise convertible
system (no poles on the negative real axis) to be non-convertible because Γaug is not
invertible. If this problem is encountered in practice, choosing a different set of filter
poles or a different DAC shape (which can be as simple as adding delay) is the only
solution. More work should be done to determine the conditions under which this
happens.

Finally, the matrix in Eq. (3.16) is square so, inverting it and combining the result
with the original transformation of Eq. (3.6), we can write the complete transforma-
tion from DT to CT for any system with a DAC that spans two cycles as:

Ac = 1
Ts

ln(Ad) c0

Bc

 =
[
Dend Γ

]−1
Bd

0


Cc = Cd

Dc = Dd

(3.17)

where:

Γ =
∫ Ts

0 eAcTstϕ(t)dt

0 0 . . . 0

+

 0 0 . . . 0∫ Ts
0 eAcTstϕ(t + Ts)dt


and that the discrete-time system is in the Observable Canonical Form.
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Doing the conversion the other way—from CT to DT this time—the order of the
DT system must be increased (to account for DAC2’s delay) and, for most choices
of c0, the higher-order Bd matrix does not have the form in Eq. (3.6). In fact, the
correct choice of c0 (given by Eq. (3.17)) makes the systems equivalent, even though
they are not of the same order, by forcing one of Ld(z)’s zeros to the origin, canceling
the pole created by DAC2’s delay. By augmenting Ad and Bd to include the effects
of DAC2, we see that the CT to DT transformation is:

Ad =

eAcTs Bd2

0 0


Bd =

Bd1

1


Cd =

[
Cc c0

]
Dd = Dc

(3.18)

where:

Bd1 =
∫ Ts

0 eAcTstBcϕ(t)dt

Bd2 =
∫ Ts

0 eAcTstBcϕ(t + Ts)dt

The relatively compact equations given in Eq. (3.17) and Eq. (3.18) represent,
finally, the general solution for classical excess loop delay compensation. Enforcing
these equations guarantees that the response of the sampled CT and DT filter models
are identical, cycle-for-cycle. Symbolic solutions can be found for some DAC shapes,
if necessary. However, numerical solutions are simple to implement, easily automated,
and significantly less cumbersome. A link to open-source examples of these solutions
are given in Section 6.1.

3.6 An Aside: When ELD Correction is
Unnecessary

In general, a designer may wish to use multiple DACs with distinct impulse responses
[30][31][32]. This situation can be represented in state-space by making ϕ(t) a column
vector of functions, each function representing a distinct DAC impulse response. If
R is the number of DACs in ϕ(t) and N is the system’s order, then Bc becomes NxR
rather than Nx1. The ith column of Bc represents the unique connection of the ith

DAC into the filter. A second-order example is shown in Fig. 3.7. When the two
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∫ ∫
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ሶ𝑥2
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Figure 3.7: An example of a 2nd order loop filter with (top) a
single RZ DAC shape and (bot) two distinct DAC shapes—an RZ
and a switched capacitor DAC. The state equations for each case are
given, illustrating the modifications required to account for multiple
DACs.

DACs have the same shape, ϕ(t) is a scalar function, as usual. However, when the
two DAC shapes are distinct, ϕ(t) and Bc must be expanded.

When DT system is known, the calculation of Bc must begin by factoring it out
of the integral in Eq. (3.6), allowing the inverse of the NxN matrix to be taken, as in
the simpler single-DAC case:

Bc =
[∫ Ts

0
eAc(Ts−t)ϕ(t)dt

]−1

Bd (3.19)

For systems using multiple DAC responses, however, this is not possible since ϕ(t)
is no longer a scalar function and, therefore, cannot be commuted with Bc. To get
around this, Eq. (3.19) can be re-written, using the linearity of integration, as:
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Bd =
∫ Ts

0
eAc(Ts−t)

[
Iϕ1(t) Iϕ2(t) . . . Iϕk(t)

]


Bc1

Bc2
...

Bck

 dt

=
[∫ Ts

0
eAcTstΦ(t)dt

]
B∗

c

(3.20)

where:

I = the NxN identity matrix
Φ(t) = the expanded matrix of ϕ’s elements
Bci = the ith column of Bc

B∗
c = the vertical concatenation of the columns of Bc.

Finally, we can expand this equation to include the second sample period, as we
did in Section 3.5. If the system is in Observable Canonical Form, we have:

Bd

0

 =

∫ Ts
0 eAcTstΦ(t)dt

0 0 . . . 0

+

 0 0 . . . 0∫ Ts
0 eAcTstΦ(t + Ts)dt

B∗
c

= ΓΦB∗
c

(3.21)

where ΓΦ is defined by the expanded integral matrices in parentheses.
Since the matrix that must be inverted in this case is (N+1)x(R*N), there typically

exists infinitely many choices of Bc that satisfy Eq. (3.21). In fact, if R > 1, an
additional ELD path is not necessary since, as discussed in Section 3.5, the ELD
path is only required to solve the problem of inverting a matrix with more rows than
columns—this one has more columns than rows.

A naive approach to solving this problem might be to try the least-squares solu-
tion, which is given by the well-known Moore-Penrose Pseudoinverse [33]. While this
can work for some designs, architecture choice usually adds restrictions to Bc’s form
(e.g., each DAC must only be connected to a particular part of the filter) that won’t
necessarily be met this way. In order to ensure that Bc is in the form that is desired,
we have to “restrict” the solution space to some subspace defined by the matrix Ps,
consisting of the subspace’s basis-vectors. This is called a Restricted Generalized
Inverse problem, and its solution can be found in [25]. Interpreted for our context,
we see that:

B∗
c = Ps (ΓΦPs)† Bd (3.22)

46



where † denotes a pseudoinverse such as Moore-Penrose. An exact solution is not
always guaranteed, however, in which case the system cannot be compensated. The
designer may have to try different configurations to find the best strategy. Future
work should explore the requirements for an exact solution.

The simplest way to define Ps is as a diagonal matrix with 1’s only on elements
that correspond to elements in B∗

c that should be non-zero. One way to think about
this is that Ps maps an arbitrary vector, x, into a vector with the desired form, B∗

c .
For example, for B∗

c of the form
[
b1 0 b3 0

]T
, Ps we can construct Ps as follows:


b1

0
b3

0

 =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0




b1

b2

b3

b4


= Psx

(3.23)

One further modification must be added to make this solution practical. The
meaning of the state signals change if we change the basis—connecting the DAC to
the inputs of one particular integrator in one filter architecture is vastly different
from connecting to that same integrator in a different architecture. So, specifying
a particular way of connecting the DACs (i.e., restricting B to the subspace defined
by Ps) requires first specifying that the state-space system must directly represent
the desired filter architecture (i.e., it must be in the right basis). The problem is,
the equations we have been using thus far (e.g., Eq. (3.17)) assume the system is
written in Observable Canonical Form (OCF). Since the inversion happens in this
basis, we would only be able to set the DAC connections for the filter architecture
this basis describes, which is very limiting, to say the least. To fix this, we have to
do a change-of-basis on Bc so that the matrix we invert starts in the correct basis.

The goal is to find a change-of-basis matrix, Vc that takes A(des)
c (that is, Ac

written in the desired basis) to the basis that we arrive at after taking ln (A(ocf)
d )/Ts

(Ad in OCF form). Fig. 3.8 shows the relationships between the relevant bases and
their corresponding change-of-basis matrices.

Finding Vc is more straightforward than it seems, once you notice that any change
of basis matrix in DT must also apply to the CT basis, since V factors out of the
equation as in: ln (VdAdV −1

d )/Ts = Vd ln (Ad)V −1
d /Ts = VdAcV

−1
d . Thus, Vc = Vd,

which is simply the OCF transform (Section 2.2.2) for A
(des)
d = ln (A(des)

c )/Ts, which
is already known.
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Figure 3.8: The relationship between each basis used to recon-
struct the desired basis (lower right). It is assumed that Ac in the
desired basis can be calculated from A

(ocf)
d , which is a standard part

of filter design (i.e., calculating circuit components from the transfer
function). The arrows going left and right take each system from
DT to CT (and vice versa), whereas vertical arrows move between
different bases, remaining in either DT or CT.
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Finally, we repeat the conversion from Bc into B∗
c (Eq. (3.20)). Applying the

similarity transform to B, we have: B(ocf,d)
c = VcB

(des,c)
c . Vc is simply multiplied by

each column of B(des)
c so, concatenating the two resulting columns in the same way

as Eq. (3.20) gives:

B∗(ocf)
c =

V B
(des)
c,1

V B
(des)
c,2


=

V 0
0 V

B∗(des)
c

= V ∗(des)B∗(des)
c

(3.24)

where Bc,i is the ith column of Bc. With this, we can rewrite Eq. (3.21):
Bd

0

 = ΓB∗(ocf)
c

= Γ
(
V ∗(des)B∗(des)

c

) (3.25)

Since B∗(des)
c is exposed on the right, inverting everything else with the pseudo-

inverse of Eq. (3.22) gives us an equation that (1) puts Bc into the desired basis and
(2) imposes a restriction on the form of Bc, as defined by the matrix Ps:

B∗(des)
c = Ps

(
ΓV ∗(des)Ps

)†
Bd

0

 (3.26)

This equation, finally, ensures the respective DACs are only connected to certain
parts of the loop filter.

To conclude this discussion, we note that the extra ELD path required in the
classical approach of Section 3.5 has been a considerable focus in the literature over
the last decade, largely because adding a summing node at the input to the quantizer
typically incurs an extra, undesirable amplifier [34] [35]. This approach is a potential
way to bypass the need for that path altogether, avoiding the introduction of the
extra power and area of an amplifier.

3.7 Simulations
In order to demonstrate the proposed impulse-invariance extension derived in Sec-
tion 3.5, several example systems have been simulated using Simulink. A block di-
agram of the approach can be seen in Fig. 3.9. First, since the filters under test
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L(s)

c0
z-1

CT Output
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Feedback Stabilizes 
Filter Responses

Startup
Pulse

Figure 3.9: The structure used to test for impulse-invariance. The
DT filter and CT filter are both given the same DT input and their
outputs are compared at the sampling instant. Since ΔΣ loop filters
are not typically stable by design, feedback is applied to the DT filter
in order to stabilize the output signals and an impulse is injected, in
the first sample, to start the modulation.

are not typically open-loop stable, the ideal DT filter is put in feedback. Next, the
now-stabilized ideal filter’s input signal is applied to the filter under test. Since all
filters being compared are given the same DT input, the filters are equivalent, by the
definition of impulse invariance, only if they have the same DT output for all time.

This equivalency condition is shown for three different loop filters in Fig. 3.10. In
this test, one DT filter is compared with two CT filters, each of which calculated from
the DT filter using Eq. (3.17). Each CT filter uses a different DAC with different
amounts of delay applied, and each is shown to produce identical outputs at each
sample. Fig. 3.10 demonstrates that the outputs of each filter are visually identical,
and this is confirmed numerically (within the error tolerance of the simulation) up to
the first million samples. We conclude that this is sufficient evidence that all three
loop filters are identical, in the impulse invariant sense.

The same test was run to verify the multi-DAC solution from Section 3.6. The
subspace matrix used is:
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Figure 3.10: The output of three equivalent loop filters, each being
driven by the same DT input sequence, as in Fig. 3.9. DAC #1 is
an NRZ DAC with no delay, whereas DAC #2 is an NRZ-DAC with
a 1/2 cycle delay. The markers for each filter are chosen so they can
be distinguished when overlapped, indicating that the filters’ outputs
are overlapped perfectly at every point in time.
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Ps =



1
0 0

1
1

0
1

0 0
1


where the large zeros indicate that all other elements are filled with zeros. Ap-

plying this to Eq. (3.26), the Bc matrix (without any gain equalization) would be:

Bc =


17.9 0

0 −154.3
216.6 0

−133.3 55.9


meaning that DAC1 is only connected to the 1st, 3rd, and 4th integrators, whereas

DAC2 is only connected to the 2nd and 4th integrators. Fig. 3.11 shows the results
of this test, the perfect overlap of both output signals indicating that the delay has
been successfully compensated with no ELD path—only 2 distinct DACs. Again, this
is confirmed numerically up to the first million samples.
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Figure 3.11: The output of a loop filter with a 2-DAC compensa-
tion scheme compared with the ideal DT loop filter, setup as in Fig.
3.9. Both DACs are RZ DACs with pulse width of Ts/2. The delay
is Ts/2 for DAC1 and Ts for DAC2. The markers for each filter are
chosen so they can be distinguished when overlapped, indicating that
the filters’ outputs are overlapped perfectly at every point in time.

53



CHAPTER 4

A Limitation on CT ΔΣ Modulation

In order to push the boundaries of the complexity realizable in a ΔΣ modulator, as
multi-band ΔΣ modulators must, there is little room for approximation and cum-
bersome hand-calculation. In Chapter 3, we improve on the latter by introducing a
compact, generalized, automatable way of making the connection between the con-
tinuous and discrete domains. However, while the performance of CT modulators
in the literature has been quite impressive to date, the measured NTF shapes often
have a lot of non-ideal features, as can be seen in [2] [36] and [37], for example. The
spectrum from [2] is shown in Fig. 4.1. The modulator is incredibly well-designed,
judging by its breakthrough Figure of Merit (FoM), and it is the first modulator
to demonstrate the viability of a two-step quantization/feedback system. Even with
such impressive performance, however, its NTF is significantly different from the type
of NTF typically associated with an ideal DT modulator; in theory, they should be
the same. In the ideal DT case, the out-of-band noise is flat, but in this case, the
lower out-of-band frequencies are significantly boosted while the higher frequencies
roll off. Without access to the original design, it is difficult to be completely certain
of the cause, of course. Part of this deviation can likely be attributed to the reality of
non-ideal amplifier parameters like extra, high-frequency amplifier poles. However,
we contend that ELD introduces a surprising restriction on the shape of the NTF that
can give strikingly similar results, even with perfectly ideal amplifiers. An example
of such an NTF is shown in Section 4.4.3.

In this chapter, we begin by proposing a generalized definition for ideal NTFs, and
provide a method of constructing them. We then use this construction method to show
that CT-ΔΣ modulators with an ELD path implemented in CT can only be ideal if its
NTF is symmetric about fs/4. Furthermore, we show how to construct an NTF that,
while non-ideal, can be used with any modulator with CT-based ELD compensation,
without modification. The Multi-Band NTF in Chapter 5 is constructed with this
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Figure 4.1: The output spectrum from [2]. The hill in the noise
shaping around 500MHz-1GHz and valley above 1GHz frequency
noise shaping is non-ideal.

limitation in mind.

4.1 Fundamental Requirements for NTFs
In order to use a given transfer function as an NTF, it must meet several fundamental
requirements. [3] states that, for an NTF to be realizable, its transfer function must
satisfy: NTF (∞) = ntf [0] = 1 where ntf [k] is the NTF’s impulse response. This
statement is equivalent to the requirement that: (1) NTF (z) must have the same
number of poles and zeros and (2) the gain of H(z) must be 1, since this is the only
set of conditions that makes H(∞) = 1. This is to say that, if H(z) is written in the
following form:

H(z) = HNum(z)
HDen(z)

= bMzM + bM−1z
M−1 · · · + b0

zN + aM−1zN−1 · · · + a0

= bM (z − zM) (z − zM−1) · · · (z − z1)
(z − pN) (z − pN−1) · · · (z − p1)

(4.1)

it must be the case that M = N and bM = 1. This requirement makes the NTF
design process relatively straightforward: (1) choose a desired filter and (2) set the
filter’s gain to 1. However, there is one extra requirement when the NTF is used with
fast-path ELD compensation.

As introduced in Chapter 3, ELD compensation makes it possible to equate a CT
filter with any DT filter (in the impulse-invariant sense) when the DAC’s impulse
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Figure 4.2: Generic block diagram of a ΔΣ-modulator, with fast-
path and multi-cycle DAC model included.

response extends into the next sample period. When this happens, we model the
DAC as two separate DACs, shown in Fig. 4.2. DAC1 represents the portion of the
DAC’s response that falls within the first sample period and DAC2 represents its
response in the second sample period.

The extra pole in the feedback path generated by DAC2’s delay adds a new zero
at the origin, which can be seen by factoring the numerator and denominator of the
NTF equation:

NTF(z) = 1
1 + L1(z) + z−1L2(z) + z−1c0

= zLDen

(z + c0)LDen + zL1,Num(z) + L2,Num(z)

(4.2)

where L1,Num(z) is the numerator of L1(z) and LDen(z) is the denominator of both
L1(z) and L2(z).

The addition of ELD in the DAC adds an extra pole to the NTF, but without
increasing the number of zeros that can be placed—there is effectively one extra pole
that must be placed with no zero to counteract it. As will be shown in Section 4.4,
ideal NTFs must have an equal number of poles and zeros, so this extra pole must
always be placed at the origin, canceling the zero. However, as the remainder of this
section shows, most NTFs with CT loop filters are unable to place this pole at the
origin, meaning that any CT-ΔΣ with CT-based ELD compensation must have a
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non-ideal NTF.

4.2 Requirements for Ideal NTFs
A lot of work has been done to optimize NTFs [3], primarily focused on finding robust
numerical optimization methods.

In contrast to previous optimization efforts, this work focuses on NTFs with a
20N dB/decade slope in the transition band, where N is the order of the loop filter.
“Optimal” NTFs often come with higher transition slopes, depending on how the
optimizer’s cost function is chosen. Higher slopes require placing NTF poles closer
to the unit circle. Since, in this case, the poles don’t have to travel as far to become
unstable, these modulators tend to be more sensitive to small errors in the loop
filter due to effects such as mismatch and passive component variation. Furthermore,
it is typically considered a standard characteristic of an Nth order NTF to have a
20N dB/decade slope. For these reasons, we define an “ideal” NTF (as opposed to a
properly “optimal” NTF) to be one with a transition slope of exactly 20N dB/decade.

This section demonstrates that, for an Nth order NTF with transition-band slope
of 20N dB/decade, any ideal NTF must have a corresponding CT transfer function
(its “prototype,” discussed in Section 4.3) that can be written in the form H(s) =
H0 − Ĥ(s) where H0 is a scalar term defining the maximum gain of the NTF and
Ĥ(s) is an all-pole transfer function which defines the in-band behavior of the NTF.
As a result, the NTF must have an equal number of independent poles and zeros.

4.2.1 Conditions for Ideality

In order to make comparisons between modulators, there should be a measure of their
performance independent of any particular choice in specification. Bode’s Sensitivity
Integral provides a rather effective method—when applied to ΔΣ modulators, it states
that the integral of the NTF’s magnitude, in dB, must be zero:

∫
ω

log |NTF(z)|dz = 0 (4.3)

where the integration path, ω, is the unit circle. This implies that the integral of
the in-band (ib) section(s) of the NTF, in dB, must be equal to the integral of the
out-of-band (oob) section(s):

NB =
∫

oob
log

∣∣∣NTF(ejω)
∣∣∣ dω = −

∫
ib

log
∣∣∣NTF(ejω)

∣∣∣ dω (4.4)
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Figure 4.3: An ideal, brick-wall NTF. The out-of-band gain is
exactly equal to the Lee limit, H∞, and the integral of the out-of-band
region (in dB) is equal to the integral of the in-band region (in dB).

By considering either side of this equation in isolation, we have a quantity that
measures “how much” noise is being removed from the quantizer in question. In this
work, we call this quantity the Noise Budget, and it is written as NB in Eq. (4.4).
An ideal NTF, therefore, maximizes NB for a given set of in-band specifications.

Additionally, Lee’s limit requires that [38], for the modulator to be stable, ||NTF(z)||∞
(the maximum gain at any frequency) must be less than some maximum value, typi-
cally denoted as H∞.

Taking these two requirements together, the maximum possible noise budget, for
a given bandwidth, is given by the brick wall filter in Fig. 4.3. Because this NTF’s
out-of-band gain is equal to the Lee limit at all frequencies, its integral is maximized.
Clearly, then, in order to maximize the noise budget for a finite-order NTF, that NTF
should approach the Lee limit as quickly as is practical—20N dB/decade—and stay
there.
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4.3 Ideal NTFs by Construction
This section demostrates a way to create ideal NTFs. It does not represent a typical
filter-first design approach, which would start by determining the filter architecture
and calculating an NTF based on that architecture. Instead, this section focuses on
creating the best possible NTF (according to our definition of ’ideal’), regardless of
filter architecture.

The derivation of DT IIR filters typically begins in the CT domain and is then
transformed into DT. Starting in the CT domain makes defining the filter shapes
much more practical since the transfer function is evaluated along the imaginary
axis, rather than the unit circle (as in: s = jω vs. z = ejω). The downside is that
there does not exist a transform that perfectly maps the CT domain into DT since
frequencies in CT can continue indefinitely, whereas frequencies in DT are limited
by the sample-rate. Increasing the frequency beyond fs/2 in DT causes the transfer
function to repeat, since ejω continues around the unit circle and back to its starting
point over and over again with increasing ω.

s = 2(1 − z−1)
Ts(1 + z−1)

(4.5)

The Bilinear Transform is the result of replacing each s in the CT transfer function
with a function of the DT z variable, shown in Eq. (4.5). It is the most common
method used for generating DT filters from CT prototypes because it guarantees that
the original filter specifications remain met after transformation. That is to say, if a
stop-band of 60dB and Bandwidth (BW) of 1Hz is specified, those specifications will
be unchanged after the transformation. However, it does so by warping the overall
frequency response. In essence, it maps the entire jω axis directly onto the unit circle
by compressing the CT frequencies closer and closer together as frequency increases.
This mapping results in the warped transfer function shown in Fig. 4.4(bot).In the
figure, an example CT prototype with a low Oversample Rate (OSR) is shown along
with the result of the Bilinear Transform of that prototype. It is clear that, although
the original specifications are met for both (note that the stop-band specification is
the difference between the pass-band gain and the stop-band gain), the DT transfer
function has been considerably warped compared to its origin. This warping gets
worse with low OSR NTFs and is unacceptable for our purposes since it does not
result in an NTF with a consistent transition band. Note that the response is warped
in high OSR NTFs as well, but the error is relatively small, as seen in Fig. 4.5(top).

The Matched-Z Transform (MZT), however, does not warp the frequency spec-
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trum the way the bilinear transform does. To apply the MZT transform, all poles
and zeros in the CT filter are mapped into DT with the complex exponential. That
is:

Hc(s) = kc
(s − z1)(s − z2) · · ·
(s − p1)(s − p2) · · ·

⇓

Hd(z) = kd
(z − ez1)(z − ez2) · · ·
(z − ep1)(z − ep2) · · ·

(4.6)

where kd is chosen so that the gain at z = −1 is equal to the gain at s = ∞, kc,
which can be written as:

kd = kc
(−1 − ep1)(−1 − ep2) · · ·
(−1 − ez1)(−1 − ez2) · · ·

(4.7)

Rather than warping the frequency response, as in the Bilinear case, the MZT
transform introduces aliasing by mapping the jω axis onto the unit circle linearly, with
high-frequencies continuing to wrap around the unit circle as many times as necessary.
As a result of this continuous wrapping, any behavior in the CT filter’s transfer
function beyond fs/2 will get aliased down and added to the frequency response in the
Nyquist band. This means that, if the NTF’s out-of-band gain changes significantly
above fs/2, the in-band and transition-band characteristic may not meet the original
specifications, shown in Fig. 4.4(bot). This is not surprising, though; it would be
impossible to, for example, construct an NTF with a 20N dB/decade slope directly
in DT if that slope does not reach its maximum before fs/2.

If the CT transfer function is constant above fs/2, however, the only thing that
is aliased is a constant value overall frequencies, which gets removed when the over-
all gain of the transfer function is normalized to match that of the CT prototype.
Therefore, applying the MZT transform when the NTF is constant above the Nyquist
frequency gives a good match between the CT prototype and the final NTF, shown in
Fig. 4.4(top). As a result, for the rest of this chapter, we will use the MZT transform
with the assumption that the CT prototype is essentially constant above fs/2.

Finally, notice that, in Fig. 4.4(bot), because the Bilinear Transform’s original
specification remains the same (the cutoff frequency is 1/OSR, and the difference
between in-band and out-of-band gain is 80dB), it is tempting to think there is a
very large in-band benefit to using it over MZT. However, this is an artifact of
its much larger H∞, which would likely cross the quantizer’s Lee limit, making it
unstable. If the stop-band rejection for the Bilinear Transform case is reduced so
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Figure 4.4: The effects of applying different CT-DT transforma-
tions to the same CT prototype. (top) A case when the OSR is high
enough that fs/2 (black line) falls well within the out-of-band region
of the CT prototype. (bot) A case when the OSR is low, causing
fs/2 to fall within the transition band of the CT prototype. The pro-
totype shown is used for both MZT and Bilinear transforms. The
sampling frequency is normalized so that the Nyquist frequency is at
1Hz (indicated by the vertical black line.)
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Figure 4.5: Same conditions as in Fig. 4.4(bot), but with the
stop-band-rejection of the Bilinear Transform reduced so that the max
out-of-band gains match. The CT prototype shown is used for the
MZT Transform, whereas the prototype for the Bilinear transform is
the same shape with the stop-band decreased.
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that its H∞ matches that of the MZT, shown in Fig. 4.5, the in-band benefit reduces
to approximately 2.5dB. This benefit is due to the sharper rise in the out-of-band
gain and does not seem to increase at lower OSRs.

4.3.1 Constructing the DT Inverse Chebyshev Filter

The filter construction method used in this work is generalized from the method used
in [39] to derive the Inverse Chebyshev Filter (also known as Chebyshev Type-II).
This is a common NTF choice since it results in the in-band region being as flat as
possible with all its zeros on the unit circle. This section describes the relevant parts
of the derivation and concludes with a brief investigation into its properties, which
reveals that the zero locations are quite close to the optimal locations described in
[3].

First note that, throughout this derivation, the magnitude-squared function is
used as a stand-in for the magnitude. This is just an easier way of working around
the otherwise difficult absolute value operator (since it is inside the square, we can
remove it without changing the result). To find the final equation, we simply choose
half of the poles and zeros, which will be discussed in more detail later. Secondly,
we will work with the real parameter ω, rather than the usual s term to reflect the
original derivation. Substituting ω = −js gives the final transfer function.

Now, the Inverse Chebyshev filter is built from the all-pole Chebyshev Filter
(Type-I), which can be written as:

|Ĥ|2(ω) = H2
0

1 + ϵ2C2
N(ω)

(4.8)

where ϵ is a scalar constant and CN(ω) is the Nth order Chebyshev polynomial of
the first kind. CN(ω) is defined recursively as:

C0(x) = 1

C1(x) = x

CN+1(x) = 2xCN(x) − CN−1

(4.9)

For example, the first five Chebyshev polynomials are:
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Figure 4.6: The construction of an Inverse-Chebyshev filter.
(top) A linear view of the magnitude squared for both the Chebyshev
and Inverse Chebyshev; H0 = 1 and ϵ =

√
0.1. (bot) The Inverse

Chebyshev magnitude response, in dB.

C1 = x

C2 = 2x2 − 1

C3 = 4x3 − 3x

C4 = 8x4 − 8x2 + 1

C5 = 16x5 − 20x3 + 5x

(4.10)

This filter uses the Chebyshev Polynomial to create a ripple in the pass-band,
whose height is defined by ϵ, and which decays as frequency increases. An example
of such a filter is shown in Fig. 4.6(top). Because Ĥ only contains poles, the high-
frequency decay has a slope of 20N dB/decade. When viewed on a linear scale, rather
than dB, it is clear that the ripple in the squared magnitude of this function touches
H2

0 N times, one for each ripple. Therefore, when the function is subtracted from H2
0 ,

those points become zeros, and the size of the ripples define the maximum stop-band
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Figure 4.7: The poles and zeros of H2(ω).

gain of the resulting function, H2(ω):

|H(ω)|2 = H2
0 − Ĥ(ω)

= H2
0 − H2

0
1 + ϵ2C2

N(ω)

= H2
0 ϵ2C2

N(s)
1 + ϵ2C2

N(ω)

(4.11)

Furthermore, since Ĥ2(ω) approaches zero at a rate of 20N dB/decade at high-
frequency, H2(ω) must approach H2

0 at the same rate. H2(ω), therefore, has the
well-known property of the Inverse Chebyshev Filter that its pass-band is maximally
flat and is approached at 20N dB/decade [39].

To complete the construction, we first have to put the function in the s-domain
by replacing ω with −js (this just swaps the real and imaginary axes). Finally, we
can take the square root of |H(s)|2 by using only the poles and zeros on the Left-
Half-Plane (LHP), to ensure stability. The poles and zeros of an example H2(s) is
shown in Fig. 4.7. The zeros on the imaginary axis are repeated, so we take one of
each, along with all of the poles to the left of the imaginary axis. The final transfer
function, H(s), is the combination of the chosen poles and zeros.

Since this filter prototype meets all the criteria for the ideal NTF defined in
Section 4.2 and applying the Matched-Z Transform does not change the shape of the
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Order % Error (each pair)
2 22.5
3 0, 11.8
4 7.3, 12.6
5 0, 5.0, 7.0
6 3.6, 6.9, 8.5
7 0, 2.7, 5.4, 6.9
8 4.4, 2.1, 5.7, 6.4

Table 4.1: The percent error between the optimal zero locations
given by [3] and the zero locations given by the Inverse Chebyshev
filer. Percent error is defined as |zoptimal−zcheby |

|zoptimal|
.

filter (assuming the out-of-band gain settles before fs/2), we conclude that applying
the MZT transform (Eq. (4.6)) to this filter prototype yields an ideal NTF whose
zeros are spread by the Chebyshev polynomials.

Finally, it is worth pointing out that the zeros given by the Chebyshev polynomi-
als are similar to, but not quite the same as, the optimal zeros given in [3]. Chebyshev
zeros guarantee that all the in-band lobes are at the same height, whereas the op-
timal zeros only guarantees minimal total in-band noise. However, comparing the
optimal zero frequencies with the Chebyshev zero frequencies shows (Table 4.1) that
the percent error decreases as order increases. In fact, with the exception of the 2nd

order case, the error between the two is never more than 12.6%.
Of course, the “optimal” zeros are only optimal when the Signal-to-Quantization

Noise (SQNR) is significantly higher than the thermal noise of the implementation.
If, as is more often the case, the SNDR is limited by circuit noise, the extra noise
suppression at low frequencies wastes part of the Noise Budget since it increases the
in-band integral. The preferred choice will depend on the application.

The closed-form equation for the CT Chebyshev zeros are given in [39] and can
be written in DT as follows:

zz,k = ej(π/OSR)/sec(kπ/2N), k = 1, 3, . . . , 2N − 1 (4.12)

where ωc is the CT prototype’s stop-band width. Likewise, the pole locations are:

zp,k = e(σk+jωk)(π/OSR), k = 1, 2, . . . , N (4.13)

where:
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σk = − sinh(a) sin
(

(2k − 1)π
2N

)

ωk = cosh(a) cos
(

(2k − 1)π
2N

)

a = 1
N

sinh−1 1
ϵ

The NTF’s H∞ is:

||NTF(ejω)||∞ = (−1 − zz,1)(−1 − zz,2) · · · (−1 − zz,N)
(−1 − zp,1)(−1 − zp,2) · · · (−1 − zp,N)

(4.14)

4.3.2 Generalizing an NTF Construction Method

Although, to the authors’ knowledge, the previous method is not typically applied
to other filter types (instead, frequency transformations are typically used to create
high-pass filters, for example), there is no reason it can’t be applied to any in-band
shape we would like.

Rather than starting with the all-pole Chebyshev filter, we might choose, for
example, to start with the Butterworth filter. This filter also only contains poles, so
the result will be ideal in the sense described in Section 4.2, and is defined as:

Ĥ2(ω) = H2
0

1 + ω2N
(4.15)

Applying the method from the previous section, subtracting H2
0 gives the follow-

ing:

H2(ω) = H2
0 ω2N

1 + ω2N
(4.16)

Notice that all of this function’s zeros are at the origin. That is, using the But-
terworth filter as a prototype gives the usual ideal NTF for modulators without opti-
mized zeros. In fact, by choosing a 2nd order prototype filter and setting the Nyquist
frequency to 2.45x the Butterworth prototype’s cutoff frequency, we get the same an-
swer as the optimal NTF given on pg. 81 of [3]! The referenced NTF was arrived at
after an exhaustive search of the possible NTFs for 2nd order modulators, maximizing
SQNR in the process. The plot of this NTF is shown in Fig. 4.8. From our analysis
so far, we have a potential explanation for this optimal point: it is likely the highest
cutoff frequency for which the NTF still gets sufficiently close to its maximum value
before fs/2. If the cutoff frequency increased any more, the NTF’s H∞ would follow
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Figure 4.8: The Butterworth NTF with cutoff frequency defined
by the ratio fnyq/fc = 2.45, with fnyq = fs/2. This NTF has the
same coefficients as the optimal NTF given in [3].

the NTF’s gain down, thereby decreasing its noise budget. This is only a conjecture,
of course, but it seems to fit with the magnitude response in Fig. 4.8. Future work
should investigate whether this can be extrapolated to higher-order NTFs.

In general, we can choose any all-pole prototype filter with a desired in-band
shape and, because all-pole filters decay at high-frequency with 20N dB/decade, we
can use this method to determine the ideal NTF for said in-band shape. For example,
modifying the Chebyshev prototype slightly by multiplying H0 by some factor, 0 <

a2 < 1, gives an in-band shape that no longer fully extends to zero:

Ĥ2(ω) = H2
0 (1 − a2) + H2

0 ϵ2C2
N(ω)

1 + ϵ2C2
N(ω)

(4.17)

Making the pass-band ripple small gives a relatively flat in-band shape, shown in
Fig. 4.9. NTF’s zeros, and therefore the CT loop filter’s poles, are moved away from
the imaginary axis, potentially making the CT loop filter less sensitive to small errors
in the loop filter’s transfer function due to process variation, since this sensitivity is
usually proportional to the filter’s Q [39]. Furthermore, if the in-band quantization
noise floor is chosen to be below the thermal noise floor of the modulator, performance
would not be sacrificed.
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Figure 4.9: Magnitude plots for a proposed alternative to standard
Chebyshev NTFs. The NTF’s zeros are pulled off the unit circle,
giving a flatter in-band region and loop filter poles that are potentially
more robust to component variation.

69



4.4 A Limitation on CT-ΔΣ NTFs
Finally, with the ideal NTF well-defined, we illustrate that, a system with an ELD
compensation path implemented in CT cannot have an ideal NTF, due to the finite
BW of CT systems. In particular, we show that the bandwidth restriction requires
that the poles’ center of mass must be the same as the zeros’ center of mass. That
is: 1

N

∑
pi = 1

N

∑
zi, where pi is the location of the ith pole, zi is the location of the

ith zero, and N the order of the NTF. So, if the zeros are not symmetric about the
imaginary axis, then the poles cannot be placed so that the NTF is ideal.

Because of this restriction, the ideal NTFs of Section 4.3 can only be implemented
by bandpass modulators centered on fs/4. In fact, the performance degradation gets
worse the more asymmetrical the NTF is about the imaginary axis, meaning that the
performance of base-band modulators tends to suffer the most. The result is typically
some form of peaking in the out-of-band gain.

4.4.1 Excess CT Poles

Real CT systems will always have limited bandwidth—at a minimum, parasitic ca-
pacitors cause the transfer function to roll-off at high-frequencies. This is the same
as saying its transfer function must have more poles than zeros; after all, poles con-
tribute -20dB/decade roll-off and zeros +20dB/decade, so there must be at least one
extra pole to have a negative slope at frequencies higher than the highest pole or zero.
Typically, it is enough to assume that, when these excess poles are at high enough
frequency, they have no significant effect on the system being analyzed. However, the
sampling operation moves all the poles of the CT system to the unit circle through
the complex exponential function. The real part of a given CT pole becomes the
magnitude of the DT pole, since the real and imaginary parts of the exponential can
be separated into magnitude and phase components—eλ = eσejρ for λ = σ + jρ. As
the CT pole’s real part, σ, becomes more and more negative, the DT pole’s mag-
nitude, eσ, becomes closer and closer to zero. Thus, even for a pole at infinitely
high-frequency, its corresponding DT pole does not disappear, and instead remains
very close to the origin. As a consequence, the root locus of such a loop filter will
remain largely unchanged from one with a pole at a much lower frequency. Another
way to think of it is that, as the real part of the high-frequency pole moves to higher
and higher frequency (e.g., a secondary amplifier pole), it becomes closer and closer
to a delay in DT—extremely destabilizing if not accounted for.

As discussed in Section 2.2.2, the transfer function of a state-space system with a
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non-zero D matrix will have an equal number of poles and zeros. Likewise, a system
with D = 0 is guaranteed to have at least one extra pole. The CT-DT conversion
equations (Eq. (3.18) and Eq. (3.17) in Chapter 3) make it clear that, if Dc = 0, then
Dd = 0 as well. So then, if the CT system has more poles than zeros (discussed in
Section 2.2.2), its DT equivalent must as well.

Clearly, not all NTFs will produce a loop filter of this form. Solving the NTF’s
transfer function (Eq. (4.2)) for the loop filter gives:

zL1(z) + L2(z) + c0 = zNTFden(z) − zNTFnum(z)
NTFnum(z)

(4.18)

For there to be one less zero on the right-hand side, the first two coefficients in
the NTF’s numerator and denominator must be equal, since the z term from DAC2’s
delay increases the order of the numerator on the RHS and the order of the NTF’s
numerator is the same as the order of its denominator. The first coefficient is the
same as in Section 4.1: bm = 1. The second coefficient, however, can be related to the
NTF’s poles and zeros by using the first of Vieta’s formulas, which can be written as:

−bM−1/bM =
M∑

i=1
zi

−aN−1/aN =
N∑

i=1
pi

(4.19)

Since bN = aN = 1, the requirement that bN−1 = aN−1 implies that:

N∑
i=1

zi =
N∑

j=1
pj (4.20)

Dividing both sides by N gives the relationship described in the beginning of this
section: the zeros’ center-of-mass must be equal to the poles’ center-of-mass.

4.4.2 Symmetric NTFs

It can easily be seen that any NTF whose poles and zeros are symmetric about the
imaginary axis solves this equation with both sides equal to 0. This is an important
observation for bandpass modulators, as it implies that the optimal bandpass modu-
lator is centered at fs/4 since, in this case, the NTF is symmetric about the imaginary
axis.
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NTF(z)

Figure 4.10: Movement of extra pole at the origin to compensate
for moving the primary poles away from the zeros in a purely CT
NTF.

4.4.3 Non-Symmetric NTFs

For non-symmetric NTFs, however, the story is different. Consider a lowpass NTF
with all its zeros near z = 1. In order to satisfy this equation with an equal number of
poles and zeros, all the poles would have to be near z = 1 as well (or else some would
be made unstable to balance the center-of-mass), nearly canceling out the in-band
rejection of the zeros. The only way to move them away from the zeros—and thus
achieve some amount of noise shaping—is to move the pole at the origin to the right.
This action is shown for a simple 2nd order example in Fig. 4.10.

As discussed in Section 4.2, since an ideal NTF should approach a constant in
its out-of-band section, its prototype must also approach a constant—thus, it must
have an equal number of poles and zeros. However, in modulators with ELD, one
zero is fixed at the origin, meaning that one pole should be placed at the origin to
cancel it out and ensure there are an equal number of poles and zeros contributing
to the NTF’s magnitude. However, as we just discussed, when the loop filter is fully
implemented in CT, this pole cannot, in general, be placed at the origin, meaning that
its CT prototype must have one extra pole. Therefore, it will roll off at high-frequency
instead of approaching a constant.

An example solution that attempts to make a flat out-of-band section for as wide
a band as possible is shown in Fig. 4.11. This shape seems to be common in the
literature [2][36][37]. Comparing it to Fig. 4.1, for example, the two are qualitatively
similar.
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Figure 4.11: Example NTF for CT-limited modulator.

4.5 Recovering Ideal Performance
The performance limitation discussed here hinges on the bandwidth limitation of CT
systems. The only way to get around this is to implement the infinite-bandwidth
term, c0, in DT—separately from the CT loop filter. One possible solution to this
is the Digital ELD Compensation technique, where the ELD path is moved from
the input of the quantizer to the output, allowing it to be implemented in DT [27].
This approach has its drawbacks, however. In particular, it is well-known that the
amplitude at the quantizer’s input increases, potentially reducing the maximum signal
amplitude.

Another possible approach is to use a sample-and-hold at the input of the quan-
tizer, with the sampling capacitor implemented as a CDAC. The feedback path can
then be implemented in DT by connecting the top plates of the DAC’s capacitors to
+VREF or -VREF, according to the digital value of the feedback path. The output
of the loop filter is then sampled on the bottom plate. By applying both signals at the
same time, the subtraction required for the ELD path is created and applied in DT.
The ELD path in [40] is an example of this approach. To improve on this, the method
in [4] can be used to reduce the maximum amplitude of the loop filter, in contrast to
digital ELD. A simple example of such an ELD method is shown in Fig. 4.12.

Other approaches are possible. [4] is an example of a fully hybrid CT-DT ADC by
using a noise-shaping SAR for its quantizer. Since the input to the quantizer in this
case is a sample-and-hold, the same method as before is applied to the ELD path,
removing the restriction on its NTF. Additionally, [41] implements the ELD path by
varying the voltage references of its flash ADC.
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Figure 4.12: A simple example of an ELD solution using a quan-
tizer with a sample-and-hold. In this case, the quantizer is a SAR
ADC. It also includes a method from [4] to reduce the maximum
amplitude of the loop filter, implemented as an attenuation cap of
size kC.

74



Figure 4.13: An example of a DAC impulse response that includes
time for delay in the loop, such as from non-zero quantizer decision
time or delay in intermediate logic.

4.6 Excess Loop Delay: An Aside
It is important to emphasize that this limitation only applies to modulators that use
fast-path ELD compensation. As discussed in Chapter 3, this is only required when
the DAC’s impulse response extends into the second sample period. It is perfectly
possible for the DAC to be designed to allow for any loop delay, such as the non-zero
decision time of the quantizer. For example, an RZ DAC can be used where the
start of the pulse is late enough in the sample period to allow the quantizer’s signal
to propagate to the DAC, and the end of the pulse occurs at or before Ts, shown
in Fig. 4.13. In such a system, c0 = 0 and so the NTF is not restricted which is
especially useful for very low-speed ADCs.

The downside of using an RZ DAC in this way is that, as the amount of time the
DAC is zero increases (as a percent of the sample period), the amplitude of the noise
in the loop increases, which can reduce the maximum input amplitude. This noise
increase happens because, when the DAC is zero, the amplitude of the error signal is
equal to the full input signal, rather than being equal to the loop’s estimation error.
The more time the error signal is large, the more the loop filter will integrate this
large error, producing larger internal signals.

Finally, the choice to use a DAC shape that accounts for loop delay without ex-
tending into the second sample period limits the quantizer choice to only the simplest
ADCs such as a flash ADC, in order to minimize the decision time of the quantizer.
When a higher-precision ADC is required, or the previously mentioned increase in
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signal amplitude is unacceptable, implementing the relatively simple sample-and-hold
discussed in Section 4.5 may be preferable.
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CHAPTER 5

A Mutli-Band ADC

With the Continuous-Time to Discrete-Time (CT-DT) conversion tools of Chapter 3
and the NTF design tools of Chapter 4 in place, a widely applicable method of CT-ΔΣ
ADC design can take shape. In this chapter, we discuss an approach to ΔΣ design
that is flexible enough to make complex designs, such as the multi-band modulator
presented here, more straightforward. By starting with the NTF and working linearly
towards the loop filter, the process becomes automatable completely independently
of parameters like loop order and filter type. We also discuss (1) a Feed-Forward (FF)
synthesis method which simplifies the implementation of the high-order loop filter; (2)
a modified single-amplifier biquad which simplifies the DAC design; (3) a modification
to the input resistor network that reduces loop filter nonlinearity and inter-band
distortion; and (4) a method for numerically compensating for non-ideal amplifier
effects in the loop filter. Finally, we employ all these techniques to introduce the first
Multi-Band ΔΣ modulator.

5.1 Multi-Band Architecture
We begin with an overview of the architecture. Fig. 5.1(a) shows a conceptual rep-
resentation of a two-band ΔΣ modulator. In this work, the baseband (BB) is 3rd

order, and the bandpass (BP) is 6th order, resulting in a 9th order loop, overall. In
the loop filter of Fig. 5.1(a), feed-forward (FF) paths bypass each band’s sub-filter.
This isolates the bands from one another, reducing the need for each band to pass
the other’s signals. Instead, the noise is passed through resistive FF paths, which do
not have the linearity and bandwidth limitations of the sub-filters.

Fig. 5.2 shows the fully-realized prototype, in which each sub-filter is synthesized
as a cascade of biquads using the method introduced in Section 5.3. Each filter
block is a single biquad with 2 poles and 1 zero. Since summations are implemented
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Figure 5.1: Conceptual overview block diagram of the modulator.
The BB and BP blocks are 3rd and 6th order filters, respectively.
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Figure 5.2: Detailed block diagram of the modulator. The BB1
block is an integrator, BB2 and all BP blocks are single-amplifier
biquads.
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in current-mode, with the FF resistors feeding into the following biquad’s virtual
ground, the output of these summations cannot be accessed directly to implement a
FF. As a result, FF paths f1 and f2 must be split up into new FF paths to make
an equivalent, implementable signal flow, shown with coefficients f2, f2*b1, and f1*f2
in Fig. 5.2. The NRZ DACs and quantizer are both 12-level, and the sampling rate
is fixed at 2GHz. The final summation before the quantizer is implemented using a
trans-impedance amplifier (Trans-Impedance Amplifier (TIA)). The CT delays are
passive all-pass filters and are discussed in Section 5.5.

5.2 Multi-Band Modulator Design Process
There are three main principles underpinning the design of this multi-band modulator.
(1) NTF-first design calculates the filter in terms of the NTF, as opposed to the more
common filter-first approach in which the NTF is calculated in terms of the loop filter.
This simplifies the process by allowing the DT-CT conversion to be applied directly
to the desired NTF, whether algebraically or numerically, rather than requiring an
algebraic solution linking the CT filter to the DT NTF. (2) The process should be
as automated and NTF-/filter-agnostic as possible. This allows the same tools to be
applied to any design, no matter the complexity or required architecture. (3) Loop
filter non-idealities should be compensated for numerically, with the goal of making
the final transfer function match the ideal transfer function as closely as possible.
This allows more complex amplifier models to be used for compensation and provides
guidance for final post-simulation optimization.

5.2.1 NTF Design

The design process begins by choosing the NTF to be implemented. The NTF used
in this work is shown in Fig. 5.3(a) and (b). The three poles and zeros on top and
bottom of (b) define the bandpass section, while the four poles and three zeros on
the right define the baseband section.

Since there must be one extra pole, per the requirements for CT modulators in
Chapter 4, it is natural to include the primary pole of the TIA in the NTF itself. The
zero near the origin in Fig. 5.3(b) models this high-frequency pole, which is chosen
to be 0.7 Ts. Note that, since it is being accounted for in this step, this pole does not
have to be a large multiple of fs; it is sufficient to place it far away from the baseband
poles (in DT), to minimize any unwanted change to the NTF. Doing this also adds
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Figure 5.3: (a) The transfer function of the target multi-band
NTF. (b) The poles and zeros associated with the target NTF. (c)
The poles and zeros of the loop filter, after conversion to continuous-
time.

an extra pole that can be used to shape the NTF.
The secondary TIA poles, however, are not accounted for and must be at high-

frequency to avoid disturbing the desired NTF. In practice, a small amount of extra
delay (typically 10-20% of a clock cycle) is added to the DAC to compensate for the
extra phase added by these poles.

The NTF’s pole/zero locations are chosen by hand with the goal of creating max-
imally flat out-of-band regions while keeping the H∞ below 16dB, which is near the
maximum for a 12-level quantizer (as determined with simulation[3]). Complicating
this process is the fact that, since this modulator uses CT ELD compensation (i.e.,
a DAC-based fast-path), the NTF must follow the rules described in Chapter 3. In
particular, the sum of the pole locations must be equal to the sum of the zero loca-
tions. The pole on the negative real axis (left of the origin in Fig. 5.3(b)) compensates
for the imbalance in this equation caused by the baseband zeros being farther right
than the poles, by necessity. Unfortunately, because of this limitation, the out-of-
band gain in the inter-band region is significantly higher than the out-of-band gain
at high-frequency, causing a reduction in the amount of noise that can be shaped (de-
tailed discussion in Section 4.2.1). This is an unavoidable consequence of the choice
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to implement the modulator as a fully-CT loop. This design choice was made to
simplify this proof-of-concept design. Future work can avoid this problem by using
hybrid loop architectures, as discussed in Chapter 4.

5.2.2 High-Level Loop Filter Design

Once the NTF is chosen, the DT loop filter can be calculated by solving for L(z) in
the NTF equation (including a unit delay in the quantizer):

NTF(z) = z−1

1 + z−1L(z)

L(z) =
(

1
NTF(z)

− z

) (5.1)

With the DT loop filter known, a direct application of the DT-CT conversion
described in Chapter 3 gives the CT loop filter, Lc(s), required to implement the
target NTF. Note that the precise form of the state-space representations used for
this conversion is not important—the state-space techniques in Chapter 3 can be
primarily treated as an intermediate tool used to find the final pole/zero locations.

To begin implementing Lc(s), we use techniques similar to that discussed in detail
in Section 5.3. First, the TIA pole is removed from Lc(s) and implemented as the TIA
transfer function. This leaves a remainder, Lc1(s), with nine poles and nine zeros.
Next, the two bands are separated by removing the three poles and zeros closest to
DC, which results in a 3-pole, 3-zero baseband section, LBB(s) and a 6-pole, 6-zero
bandpass section, LBP(s). Removing the first zero from each section, finally, results
in the high-level block diagram in Fig. 5.1. Each section is then separately synthesized
by applying the synthesis method in Section 5.3.

From this, finally, we get everything we need to implement the loop filter: the
transfer functions to be implemented by each biquad as well as the FF coefficients.
The block diagram at this point is shown in Fig. 5.4. The final step is to rearrange the
FF paths f1 and f2 so that they do not require forwarding the output of a summing
block. This step is necessary because all summations are implemented in the current-
domain, each current going into the virtual ground node of the biquad it is feeding
into, making it impossible to directly forward the result of the summation. Instead,
the inputs to the summation in question are duplicated and merged with the offending
FF paths, resulting in the final, implementable diagram in Fig. 5.2.
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Figure 5.4: The block diagram of the multi-band modulator before
the last step of the synthesis process.

5.2.3 Compensating for Non-Ideal Amplifiers in Biquads

The passives in each biquad are nominally chosen based on Eq. (5.4). However, non-
ideal op-amp characteristics, such as finite gain and finite gain-bandwidth, inevitably
make these simplistic equations of limited use on their own. Furthermore, deriving an
equivalent equation that includes these non-idealities is very difficult and ultimately
futile since including any model of the amplifier more complex than a single-pole
increases the order of the biquad, making it impossible to equate with the ideal case.

Rather than focus on algebraic solutions, we use a simple machine-learning algo-
rithm to find the filter parameters (R and C values) that give a compensated filter
with poles and zeros at the correct locations. The algorithm works by observing that
the inclusion of an amplifier is, in addition to adding extra poles/zeros, moving the
desired poles/zeros to new locations. The algorithm attempts to reverse this process
by moving the starting positions of the poles and zeros such that adding the amplifier
moves them to the ideal locations. These new poles and zeros can then be used to
calculate the filter parameters as usual. When those parameters are used in the real
filter, the final transfer function will have poles and zeros in the correct place.

To find this new starting point, the algorithm chooses a starting point for each
desired pole/zero equal to the ideal poles/zeros. It then numerically calculates the
filter’s transfer function, from this starting point, after adding the amplifier model
(Fig. 5.5(1)), which is done by merely substituting A(s) into the feedback equation:

Iout(s)
Iin(s)

= A(s)Z∗(s)
1 + A(s)Z∗(s)

ZF B(s)

1
ZFF(s)

(5.2)

where ZF B is the impedance of the feedback network in Fig. 5.8, ZFF is the
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Figure 5.5: The process of compensating a biquad for a non-ideal
amplifier. (1) Ideal poles and zeros are moved to new locations by
the inclusion of a non-ideal amplifier model. (2) The error vectors
between ideal and non-ideal poles and zeros are calculated. (3) A
new starting point is chosen by moving the poles and zeros in the
opposite direction of their error vectors, with a small relative step
size. (4) After adding the non-ideal amplifier model to the new
starting poles and zeros, the resulting non-ideal poles and zeros are
closer to ideal. The process is repeated until the magnitude of the
errors are small, and the final filter parameters are calculated from
the transfer function defined by the final starting poles and zeros.

impedance of the feed-forward network after the amplifier, and Z∗ is the input
impedance in parallel with ZF B.

Next, it then considers the nearest non-ideal poles/zeros to their ideal counter-
parts and calculates the difference between each ideal/non-ideal pair (Fig. 5.5(2)).
This difference can be considered a vector that represents the distance and direction
traveled by each of these poles/zeros after adding the amplifier. In reality, the path
the output poles/zeros travel as the input poles/zeros change is extremely non-linear,
but it can be linearized with sufficiently small step sizes. Thus, a new starting point
is chosen by moving the poles and zeros of the original starting point in the direc-
tion opposite the distance vector, with a distance some small fraction of the actual
distance vector (Fig. 5.5(3)). The filter is then re-calculated as if the new starting
point was the ideal transfer function, repeating the process until the magnitude of the
final pole/zero errors converge. By effectively undoing the movement of the poles and
zeros caused by the non-ideal amplifier, the algorithm approaches a starting transfer
function for which the non-ideal amplifier’s effects create the desired final transfer
function. The implemented filter parameters, then, are those calculated from the
latest starting transfer function.

Using this method allows for arbitrarily complex amplifier models without any
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Figure 5.6: The block diagram for a CRFF loop filter.

increase in analysis difficulty. It should be noted, though, that often the location of
high-frequency poles are more uncertain and can vary with process and layout, so
care should be taken not to overly rely on the precision of the amplifier models used.
For robust design, the addition of high-frequency poles should have a minimal effect
on the final design.

5.3 Loop Filter Synthesis for Multi-Band Modula-
tor

A challenge of the MB-ΔΣ Modulator is that the overall filter order is large because
it combines lowpass and bandpass filter responses. High-order modulators are notori-
ously challenging to design; to address this, we adopt a cascaded form and introduce
a new modulator synthesis technique.

The difficulty with high-order modulators is that most practical structures are
not suited for high order modulation due to a high sensitivity to small errors in
the feedback and feed-forward gains. Consider a CT version of the classic CRFF
filter structure from [3], shown in Fig. 5.6. When implementing a 4th-order transfer
function, the open-loop denominator is: s4 + (g1 + g2)s2 + g1g2, with local feedback
paths g1 and g2. While there are many benefits to this architecture, it does not scale
well with order. In essence, the roots of some high-order polynomials become more
sensitive to small perturbations in their coefficients [42], meaning the open-loop pole
locations become equally sensitive to the gain of the feedback paths g1 and g2. To
alleviate this problem, we implement the filter in a cascaded form by constructing each
pair of poles and zeros using biquads. While the use of biquads in a CT-ΔΣ modulator
is not unusual, it is critical to successfully designing very high-order modulators.

In order to design the complex loop filter required for a multi-band modulator, we
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L1(s) = L2(s) Biq1(s)

Figure 5.7: Feed-forward synthesis method. (1) Required filter.
(2) FF removed from L(s). (3) Biquad (with 1 zero) removed from
L1(s). (4) Repeat (2) with L2 (s).

develop a synthesis method to iteratively produce the filter from the desired response.
Our process (Fig. 5.7) is inspired by the passive filter synthesis technique in [39] and
facilitates efficient single-opamp biquads [31], which are limited to two poles and a
single zero. Consider the desired transfer function, L(s), shown as (1) in the figure.
If the transfer function has an equal number of poles and zeros, then subtracting a
constant removes the leading term in the numerator by canceling its coefficient. It
can be said that we have “removed” a zero, since the numerator of the remainder,
L1(s), is now one degree less. This subtraction of a constant can be implemented as
an FF path around L1(s), (2) in the figure. We can now implement (i.e., “remove”)
two of L1(s)’s poles and the (real) zero that has been created using a biquad and we
are left, again, with a transfer function having an equal number of poles and zeros,
L2(s), (3) in the figure. The process is repeated until the last biquad is implemented,
and nothing remains. This filter design process can be easily applied to any desired
loop filter, regardless of its complexity.

5.4 Modified Single-Amplifier Biquad
We implement the poles and zeros for each section using a modified version of the
single-amplifier biquad in [31], shown in Fig. 5.8. A drawback of [31] is that it requires
a complex system of DACs to stabilize the modulator due to insufficient freedom in
the placement of zeros. We add an extra resistive path (Rf2) to the forward network,
which adds a constant term in the numerator of the passive forward path’s transfer
function. This constant term creates the extra degree of freedom needed for the
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Figure 5.8: Modified Biquad; Rf2 added.

biquad to implement any real zero. It alleviates the need for DACs with complex
shapes, reducing power consumption, and simplifying the design process.

For an ideal amplifier, the transfer function can be calculated in the same way as
in [31]:

Iout(s)
Iin(s)

= R1

Rf1

1 + τ2s

(1 + τf1s)
1 + (τf1 + τf2)s

(1 + (τ1 + τ2 − R1C2)s + τ1τ2s2)
(5.3)

where τi = RiCi and τfi = RfiCf . Choosing τf1 = τ2 and factoring out the τ ’s,
we see that:

Iout(s)
Iin(s)

= R1

Rf1

ω1ω2

ωz

s + ωz

s2 + (ω1 + ω2 − 1
R2C1

)s + ω1ω2
(5.4)

where ωi = 1/τi and ωz = 1/(τ2 + τf2). The biquad transfer function’s coefficients
can finally be equated with Eq. (5.4) and the filter parameters solved. For an ideal
transfer function, TF (s), we can write two intermediate variables:

TF (s) = b1s + b0

s2 + a1s + a0

f0 = b0/a0

f1 = b1/ω1 − f0

(5.5)

and use them to solve for each of the filter parameters:
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R1 = given
ω1 =

√
a0/β

ω2 =
√

a0 · β

C1 = R1/ω1

R2 = (ω1 + ω2 − a1)/C1

Rf1 = R1/f0

Rf2 = R1/f1

Cf = Rf1/ω2

(5.6)

There are now two free parameters: β, which chooses the ratio of ω1 and ω2,
and R1. In this prototype, we use R1 =1kΩ. Note that this analysis differs from
[31] with the introduction of the β term. Typically, β is chosen to be 1, as in [31],
but in some cases R2 can become small, requiring more power from the amplifier
to drive. In this case, increasing β increases R2 since ω1 + ω2 can be written as
√

a0(1/β + β) = √
a0(β2 + 1)/β. In the prototype presented here, we use both β = 1

and β = 2.

5.5 Improved Linearity Through Loop-Delay Match-
ing

Digitizing multiple bands with the same ADC has the potential to cause significant
inter-band distortion products. We apply and improve the conventional linearity-
improving input FF technique [3], which allows the input signal to bypass the am-
plifiers through an input FF, as shown in Fig. 5.2(a). Since the FF path is injected
just before the quantizer, any signal distortion from the FF path due to the TIA
is noise-shaped, keeping the two bands well-isolated from each other. However, for
CT modulators, the conventional resistive FF cannot fully cancel the input at high-
frequencies due to extra phase and gain induced by the TIA, loop delay, and DAC,
limiting the linearity benefits. Shown in Fig. 5.9, fully canceling the input requires
that the input signal and its replica, after traveling around the loop, be identical in
both magnitude and phase. To approximate this, we add a first-order model of the
loop delay to the input network by changing the input resistors into passive all-pass
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Figure 5.9: Delay matching all-pass filter in the input network.

filters. This cross-coupled path adds a left-half-plane pole and right-half-plane zero
at the same frequency, set by Cdly. The pole and zero cancel each other’s magnitude
but add 180 degrees of phase shift. The transition of this phase shift is chosen so
that the phase of the input path within the BP region approximates the phase of
the FF path as it returns to the input summing node. This new approach requires
only simple modifications to the existing resistive input and reduces the input signal
present in the high-frequency biquads by >10dB over the bandpass bandwidth.

5.6 Amplifier Design
The amplifiers used in this work use a feed-forward architecture with three gm stages
in the high-gain, low-frequency path and one gm stage in the high-frequency, low
gain path. In the biquad amplifiers, shown in Fig. 5.10(a), cascoded gm-stages are
preferred, especially in the FF path, due to their improved common-mode rejection.
For the TIA, shown in Fig. 5.10(b), inverter-based gm stages are preferred due to
their higher swing, which ultimately limits the modulator’s maximum input amplitude
(since this is the only amplifier that sees the full input signal + quantization noise).

Each amplifier also has a unity-gain output buffer, which uses feedback to isolate
the gain stages from the load, shown on the right side of Fig. 5.10. Feedback in
this stage boosts the frequency of the output pole and provides the previous stages
with the small capacitive load, keeping secondary poles at high-frequencies without
sophisticated compensation techniques. It also makes the transfer function of the
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Figure 5.10: A schematic of (a) the biquad amplifier and (b) the
TIA amplifier.
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amplifier relatively unaffected by the load, allowing for a more straightforward calcu-
lation of the non-ideal amplifier’s affects on the biquad transfer function. Finally, it
simplifies the design process by allowing the compensation (and, therefore, the am-
plifier design) to be consistent across all biquads in a given band. Lastly, it keeps
the load resistors—some of which are 100’s of ohms—from impacting the amplifier’s
DC gain. The output buffers are based on the Common-Source with Error Amplifier
configuration in [43].

With a 1kΩ, 3pF parallel load, the BB amplifiers have a unity-gain frequency
of approximately 1.3fs and a DC gain of 50dB. With a 1kΩ, 600fF load, the BP
amplifiers have a unity-gain frequency of 1.75fs and a DC gain of 52dB. Finally, with
a 2kΩ, 60fF load, the TIA amplifier has a unity-gain frequency of 2.5fs and a DC
gain of 41dB.

5.7 Results
The prototype is fabricated in 40nm CMOS, occupies 0.22mm2 and consumes 45mW
from a 1.2V supply. Shown in Fig. 5.11, the measured Dynamic Range (DR) is 62dB
in the BB and 43dB in the BP. Fig. 5.12, and Fig. 5.13 show the measured spectra
for a single tone in each band, demonstrating a peak Signal-to-Noise and Distortion
Ratio (SNDR) of 54.3dB and 41.4dB for 10MHz and 504MHz inputs, respectively.
Fig. 5.14 shows the spectrum for simultaneous tones in both bands, demonstrating a
peak SNDR of 55dB and 39dB or, at most, 2.4dB less than with single-band operation.
In this test, the tones are at equal power—after compensating for slight differences in
measured STF—and are increased together until instability, using a worst-case choice
of BP frequency: where the 4th and 8th BP harmonics fall in the BB. Note that the
inter-band distortion tones do not contribute significantly to the BB SNDR. The
Spurious-Free Dynamic Range (SFDR) in each band—including inter-band distortion
components—is 64dB and 42dB, respectively.

Fig. 5.15 shows the power distribution and a die photo. The quantizer and digital
buffers in the feedback path are included in the “Digital” category.

Each spectrum is overlaid with a plot of the target NTF. Clearly, the measured
NTF is a good match for the target NTF, demonstrating the accuracy of this design
approach—even with a design as complex as a multi-band modulator. The most
significant exception to the prediction is the in-band noise in the BP section. This
noise is not due to the NTF; it is caused by unintended thermal noise in the BP
biquads. Also, the drop off in the measured NTF at high-frequency is due to error in
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Figure 5.12: Measured spectrum for baseband operation alone.
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Figure 5.15: Power breakdown and die photo of the Multi-Band
ΔΣ Modulator.

the loop filter’s transfer function caused by secondary poles in the TIA.

5.7.1 Modified Figure of Merit

The Schreier Figure of Merit (FoM) is the standard performance measure for ΔΣ
ADCs and can be written as:

FoMS = 10 log10
DR × BW

P

= DRdB + 10 log10
BW

P

(5.7)

However, this equation assumes a single band of interest. In order to compare
this work with the state-of-the-art, the Schreier FoM, must be modified slightly. To
preserve the relationships between dynamic range, bandwidth, and power, each band
should be considered independently and summed linearly:

FoMMS = 10 log10

∑DRiBWi

P
(5.8)

Consider, for example, a modulator with two bands: the second with 2x the BW
but 1/2 the DR (linearly, so 3dB less) of the first. The power of such a modulator
would be twice the single-band case, since the power requirements of each band are
equal. With this figure of merit, the power in the denominator is correctly offset
by the change in the numerator. If instead, each component were summed before
multiplying, the numerator would increase by 4.5x creating an imbalance with the 2x
increase in power.
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Bolatkale 
ISSCC 2011

Huang 
ISSCC 2017

Dong ISSCC 
2016

Lee 
ISSCC 2014

Breems 
ISSCC 2016

Chae 
ISSCC 2012

Architecture CT-ΔΣM CT-ΔΣM 1-2 CT-MASH TI-SAR CT-ΔΣM BP-ΔΣM

Process (nm) 45 16 28 65 65 65

Fs (GHz) 4 2.15 8 1 2.2 0.8

Aggregate OSR 16 8.6 8.6 1 44 16.7

Power (mW) 256 54 930 19.8 41.4 12

Band Type BB 500MHz BP BB BB BB BB BB 200MHz BP

BW (MHz) 40 50 125 125 465 500 25 24

DR (dB) 62 43 70 74.8 69 51.4 77 60

Peak SNR (dB) 57.6 41.6 65 71.9 63 -- -- --

Peak SNDR (dB) 54.3 41.4 65 72.6 64 51.4 77 58

Area (mm^2) 0.9 0.217 1.4 0.78 0.25 0.2

FOM1 (dB) 156.9 168.4 156.0 155.4 164.8 153.0

FOM2 (dB) 156.9 168.4 156.0 155.4 164.8 153.0

This Work

CT-MB-ΔΣM

151.7

0.22

N/A

2

40

11

44

Similar Aggregate BW Similar Frequency Range Similar Individual Bands

Table 5.1: Performance Comparison Table

Unfortunately, this observation makes the dB form somewhat more unwieldy than
the original—the dynamic range must first be converted to its linear value, computed,
then converted back again. Since this is primarily a problem for intuitive calculation,
a shorthand form can be used if the ratios of the DR and BW are easily known.
The following is the result of simply factoring DR1BW1 from the summation in the
numerator:

FoMMS(dB) = DR1(dB) + 10log
(

BW1

P

)
+ 10log

1 +
∑
i ̸=1

DRi

DR1

BWi

BW1


= FoMS1 + 10 log10

1 +
∑
i ̸=1

DRi

DR1

BWi

BW1

 (5.9)

This equation illustrates that the modified FoM can be thought of as simply the
Schreier FoM for one band with a correction factor to account for each additional
band. For a second band with the same FoM as the first, the correction is +3dB;
three bands gives +4.7dB, and four bands gives +6dB.

Using this metric, the prototype has an Aggregate Schreier FoM of 151.7dB. In
Table 5.1, its performance is compared to other ADCs with similar aggregate speci-
fications. Not only is this ADC capable of digitizing signals further apart than any
conventional single-band ΔΣ, its performance is comparable to other state-of-the-art
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converters with similar aggregate specifications. Furthermore, even with multi-band
operation, the area of the prototype is among the smallest.

The prototype’s area is comparable to even the smallest single-band modulator.
Furthermore, using the two single-band ADCs listed here to provide a similar base-
band + bandpass interface would result in higher power consumption, even though
it would only have half the aggregate BW and half the bandpass center frequency.
Finally, the only ΔΣ ADC that is able to convert the full 500 MHz spectrum is [11]
(“Dong ISSCC 2016” in Table 5.1) requires more than 20x the power consumption as
this multi-band prototype.
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CHAPTER 6

Conclusion

We present the first multi-band ΔΣ modulator. Our multi-band CT-ΔΣ prototype
simultaneously digitizes two bands, one at baseband and one at 500MHz, with an
aggregate bandwidth of 90MHz [44] [45].

In addition to reducing the number of ADCs, our multi-band ADC approach
alleviates the need for multiple power-hungry front-ends. By only driving one ADC,
we remove mixers, buffers, and LNAs, since each of the bands-of-interest does not
need to be separated before the ADC. Instead, we efficiently separate the bands as a
natural part of the ADC’s existing digital decimation filtering.

Our multi-band ADC also improves on a single wide-band ADC by making much
more efficient use of the ΔΣ noise-shaping spectrum. By only shaping noise away
from the regions of interest, as opposed to the full spectrum, we can do more with
the same overall OSR, allowing for a much lower clock rate and leading to significant
overall power savings—nearly 900mW, in the case of [11]. Lastly, even though [11]
has the widest BW of any CMOS ΔΣ to-date, it is still not wide enough to capture
the 500MHz band separation used in this work.

To enable this new architecture, we also introduce: (1) a FF synthesis method
which simplifies the implementation of the high-order loop filter; (2) a modified single-
amplifier biquad which simplifies the DAC design; (3) a modification to the input
resistor network that reduces loop filter nonlinearity and inter-band distortion; and
(4) a method for numerically compensating for non-ideal amplifier effects in the loop
filter

This work also introduces several theoretical insights which greatly simplify the de-
sign of highly complex modulators, such as the multi-band modulator. These insights
include: (1) a general solution to the Excess Loop Delay problem and Discrete-Time
to Continuous-Time conversion which is compact & easy-to-use, and (2) a limitation
of the noise shaping capacity in CT modulators due to the finite bandwidth inherent
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in CT-based ELD compensation methods.
Finally, by demonstrating that arbitrary noise-shaping is possible, this work is a

step toward custom, application-driven noise-shaping solutions that provide new tools
to solve challenging design problems. While this prototype is an essential first step,
future work must demonstrate the addition of more than two bands, tunability of
band separations, and must more precisely address the needs of a specific application
areas such as LTE and 5G.

6.1 Open Source Code
One goal of this work is to provide tools that can make replicating the multi-band
ADC presented here more approachable, even with its high degree of complexity. To
that end, MATLAB reference implementations of the CT-DT and Discrete-Time to
Continuous-Time (DT-CT) tools developed in Chapter 3 have been written and are
available in the following GitHub repository:

https://github.com/johnlb-delta-sigma/matlab

6.2 Future Work
The most straightforward improvement would be to use a DT-based ELD compensa-
tion scheme, such as those described in Section 4.5. This would allow the noise budget
to increase and provide the flexibility required to implement tunable bandpass bands,
using the tunability of the biquads along with a few tunable resistors for FF paths.
Demonstrating an ADC with more than two bands would also be useful.

A critical step toward a multi-band ADC that is practical for modern wireless
systems is to refine the STF as well. While this work’s primary focus was on the NTF,
reducing STF peaking, while certainly achievable, is likely non-trivial. Furthermore,
future designs should be made with an eye to specific communication standards, such
as LTE-A or 5G.

Finally, we believe there is the opportunity for as-yet unconsidered, application-
specific noise shaping. ΔΣ modulation has a history of finding surprising applications
and enabling incredible technologies; application-specific noise shaping has the poten-
tial to continue that history into the future.
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