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Abstract 

This paper examines the predictive value of commercial Eurodollar futures trading activity on 

US public equities. The inspiration behind this topic stems from a May 2011 publication by Tom 

McClellan of The McClellan Market Report. In it, McClellan charts the S&P 500 Index and net 

commercial trading position as a percentage of total open interest in the Eurodollar futures 

market (“monthly commercial positioning”) from January 2007 to May 2011. After shifting the 

monthly commercial positioning data forward by 52 weeks, McClellan brings viewers’ attention 

to the strong lagged correlation between the 2 time series. 

In this study, we reproduce this time delayed interaction for the period 2000 through 2019 and 

notice a correlation exceeding 0.8 between monthly commercial positioning and a 52-week 

lagged reproduction of the S&P 500 Index. We then employ a bivariate econometric procedure 

to explore cointegration and short-run and long-run Granger-causality. Specifically, we 

separately measure the forecasting power of monthly commercial positioning on 14 US stock 

market indices (3 broad-based indices and 11 sector-specific indices).  

In a majority of our results, monthly commercial positioning is shown not to be a statistically 

significant indicator of US equity markets. 
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Introduction and Statement of Problem 

A Eurocurrency is a type of fixed interest rate bank money varying between overnight and 6 

months in maturity. Being a term deposit, however, restricts this store of value from being used 

as legal tender. At an asset level, the Eurocurrency is uncollateralized and denominated in a 

currency (e.g. US dollars) noncorresponding to its country of domicile (e.g. United Kingdom). 

In this instance, the Eurocurrency would be titled Eurodollar. As consequences to being issued 

outside the United States, this deposit is neither subject to regulatory oversight by the Federal 

Reserve nor protected by the Federal Deposit Insurance Corporation (FDIC). Moreover, the 

offshore location of this deposit exposes it to sovereign and credit risk associated with the host 

country – in this case, the United Kingdom. These 2 characteristics help explain why a 

Eurocurrency’s yield commands a structural premium over its domestic counterpart.  

A closer look at the Eurodollar reveals that pricing takes place in 2 forms. The Federal funds 

rate, or interest rate at which institutions lend uncollateralized reserve balances to one another, 

guides deposits with overnight to one-week maturities. Separately, longer maturing deposits are 

priced using the London Interbank Offered Rate (LIBOR) – an interest-rate average at which a 

consortium of banks will lend short-term loans to each other. Customarily, deposit sizes exceed 

$100,000, although counterparties will also place lot sizes over $5,000,000, with transactions and 

maturities taking place overnight and the following business day, respectively. Weekends can 

extend this window to 4 days, while transactions maturing more than 6 months out are 

recognized as certificates of deposit (CDs). 

Western Europe is credited with the invention of the Eurocurrency during the 1950s. At the time, 

the (i) installment of the 1948 Marshall Plan and (ii) rise of imports entering the US following 

World War II led to an influx of US dollars in European financial institutions. During this 
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period, it did not take long for newly minted Eurodollars to be repatriated via foreign banks’ 

investments in US money markets (Carlozzi, 1981). However, with a push towards globalization 

and displacement of the Pound sterling by the US Dollar as the universal trade currency from 

1960 onwards, European banks began lending Eurodollars in short duration loans to a variety of 

counterparties (e.g., overseas financial institutions and commercial firms) (Carlozzi, 1981). 

Shortly after, non-USD term deposits also saw an uptick, with London and Paris rapidly 

becoming hubs for Euroyen and Eurosterling markets, respectively. Before long, Eurocurrencies 

began scaling internationally as “one of the fastest-growing as well as […] most vital and 

important capitalist institutions” (Stigum and Crescenzi 2007, p. 209). From 1969-1979, these 

assets – consisting of both loans made to clients and deposits credited at foreign banks – grew at 

a CAGR of 27% (Carlozzi, 1981). Astoundingly, even the largest US commercial banks, over 

the same period, only saw their assets grow 8% annually (Carlozzi, 1981).  

With the onset of the “Decade of Greed” came a momentary pause in worldwide Eurocurrency 

growth. Much of this can be attributed to the arrival of securitization and financial engineering of 

derivatives (Battilossi, Cassis, and Yago, 2019). For the first time in international money 

markets, participants were able to decouple risk factors (e.g., currency fluctuations and interest 

rate hikes), repackage them as short-term liabilities, and speculate with or against them. Among 

one of the first of these off-balance sheet securities was the Eurodollar futures contract (ED) 

introduced in December 1981 (Battilossi, Cassis, and Yago, 2019). This cash-settled agreement’s 

underlying unit is a $1mm USD Eurodollar term deposit maturing in 3 months. Put more simply, 

contract prices are calculated as $100 minus the implied International Monetary Market (IMM) 

3-Month LIBOR, reflecting the interest rate anticipated on the contract’s settlement date. The 

https://www.philadelphiafed.org/-/media/research-and-data/publications/business-review/1981/br81manc.pdf?la=en
https://www.philadelphiafed.org/-/media/research-and-data/publications/business-review/1981/br81manc.pdf?la=en
https://www.philadelphiafed.org/-/media/research-and-data/publications/business-review/1981/br81manc.pdf?la=en
https://www.philadelphiafed.org/-/media/research-and-data/publications/business-review/1981/br81manc.pdf?la=en
https://link.springer.com/referencework/10.1007/978-981-10-0622-7
https://link.springer.com/referencework/10.1007/978-981-10-0622-7
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examples below demonstrate this and how the instrument is frequently used as a hedging vehicle 

against interest rate volatility. 

Example 1: Eurodollar Futures Contract: Pricing and Proceeds from Short Sale 

January (purchase): 

IMM 3-Month LIBOR at time of purchase is 0.25 

Trader buys March contract for $100 – 0.25 = $99.75 

March (settlement): 

IMM 3-Month LIBOR at time of settlement is 0.19 

Trader settles contract for $100 – 0.19 = $99.81 

Basis Point Value (BPV): $1𝑚𝑚 ∗ (
90

360
) 𝑥0.01% = $25 

Proceeds: $99.81 (𝑠𝑎𝑙𝑒) − $99.75 (𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒) = 6 𝑏𝑝𝑠 ∗ $25 = $150 

 

Example 2: Using the Eurodollar Futures Contract to Hedge Interest Rate Risk  

Bank Loan 

Tenor: Borrow loan on 3/14/20. Repay on 6/13/20. 

Rate: 3-Month LIBOR + 1% (3-Month LIBOR set on 3/14/20 for interest payment on 6/13/20) 

Notional Value: $1𝑚𝑚 

Basis Point Value: $1𝑚𝑚 𝑥 
90 𝑑𝑎𝑦𝑠

360 𝑑𝑎𝑦𝑠
 𝑥 1 𝑏𝑝𝑠 = $24.66 

 

Eurodollar Futures Contract 

Tenor: ED: 3-Month LIBOR coverage from 3/14/20 + 90 days 

Rate: ED expires on 6/14/20  

Notional Value: $1 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 per contract per quarter 

Basis Point Value: $25 per Chicago Mercantile Exchange (CME) rulebook  
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Selling the above ED contract (initiating a short position) will result in the following: 

• For every rate increase of 1 bps across the 3-Month forward interval spanned by the loan: 

o profits realized from ED = $25.00 

o loss realized from increase in interest on bank loan = $24.66 

▪ Net Profit = $0.34 

• For every rate decrease of 1 bps across the 3-Month forward interval spanned by the loan: 

o losses realized from ED = $25.00 

o profits realized from decrease in interest on bank loan = $24.66  

▪ Net Loss = $(0.34) 

As a product, the Eurodollar futures contract has benefited considerably from its myriad of uses 

and heterogeneous market participants. Hedge funds routinely use the derivative to speculate on 

Federal Reserve policy revisions, while lenders (e.g., banks and BDCs) and borrowers (e.g., 

governments and corporations) will often take opposite positions to shield against interest rate 

shocks (Osipovich, 2019). By comparison, Eurodollar futures regularly surpasses the 10-Year 

Treasury Note futures, E-Mini S&P 500 futures, and crude oil futures in average daily trading 

volume (Blystone, 2020). In fact, at the end of February 2020, open interest in the Eurodollar 

futures market was tallied at $10.79 trillion – over 20x the size of the next most traded interest rate 

futures product (i.e. SOFR futures) (CME Group, n.d.).  

For a market that transacts $3 trillion daily, CME’s Fred Sturm is accurate in describing 

Eurodollar futures as “one of the largest liquidity pools on God’s green earth” (Osipovich, 2019) 

and Brecht, 2016). This density offers clear benefits. For example, (Tse and Bandyopadhyay, 

2006) noted that the Eurodollar futures market saw bid-ask spreads decline from September 2003 

onwards as liquidity levels steadily rose following the CME’s inauguration of electronic trading. 

https://www.wsj.com/articles/end-of-libor-creates-uncertainty-for-cmes-giant-eurodollar-market-11574341204
https://www.investopedia.com/articles/active-trading/012214/introduction-trading-eurodollar-futures.asp
https://www.cmegroup.com/daily_bulletin/monthly_volume/Web_OI_Report_CME.pdf
https://www.wsj.com/articles/end-of-libor-creates-uncertainty-for-cmes-giant-eurodollar-market-11574341204
https://openmarkets.cmegroup.com/11836/eurodollar-futures-key-barometer-global-money-flows
https://link.springer.com/content/pdf/10.1007/s11156-006-7436-0.pdf
https://link.springer.com/content/pdf/10.1007/s11156-006-7436-0.pdf
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Another side effect was the Eurodollar futures market’s consistently lower friction costs and 

quicker assimilation of new information, or “price discovery”, compared to its cash (spot) market 

counterpart (Cheung and Fung, 1997).  

Something less discussed, however, is the overlap between trading activity in the Eurodollar 

futures market and US stock markets. This observation was first noted by Tom McClellan, editor 

of The McClellan Market Report. In an issue published in May 2011, Tom analyzed the US 

Commodity Futures Trading Commission’s (CFTC) Commitments of Traders (COT) reports. 

These weekly disclosures “provide a breakdown of each Tuesday’s open interest for futures […] 

markets in which 20 or more [commercial or noncommercial] traders hold positions equal to or 

above the reporting levels established by the CFTC” (CFTC, n.d.). Commercial traders – the 

focus of this paper – are recognized as “hedgers” or the “smart money” in the market. They 

typically have a commercial interest in the underlying asset or financial instrument (in this case, 

the interest rate attached to a Eurodollar term deposit maturing in 3 months) and are focused on 

hedging exposure. By contrast, non-commercial traders predominantly consist of large 

speculators (e.g., hedge funds, commodity trading advisors, and money managers) who do not 

have a commercial interest in the underlying asset or financial instrument. These futures traders 

are viewed as profit seekers and are not commercially exposed to the underlying asset or 

financial instrument’s supply and demand characteristics (CFTC, n.d.). An analysis of monthly 

commercial positioning alongside the S&P 500 revealed to Tom McClellan that “the movements 

of the S&P 500 tend to echo what the commercial Eurodollar [futures] traders were doing 

previously” (McClellan, 2011). After experimenting with a range of time delays, he further notes 

that “a one-year lead time gave the best correlation” (McClellan, 2011). Testing this theory for 

https://people.ucsc.edu/~cheung/MFJ/Euro$FuturesSpot_MFJ1997.pdf
https://www.cftc.gov/MarketReports/CommitmentsofTraders/AbouttheCOTReports/index.htm
https://www.cftc.gov/MarketReports/CommitmentsofTraders/AbouttheCOTReports/index.htm
https://www.mcoscillator.com/learning_center/weekly_chart/commercial_traders_foretell_markets_movements/
https://www.mcoscillator.com/learning_center/weekly_chart/commercial_traders_foretell_markets_movements/
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the period 2000 through 2019 reveals a noticeable jump in correlation as displayed numerically 

in Table 1 and visually in Figure 1 and Figure 2. 

Table 1: Correlation between (i) S&P 500 and Monthly Commercial Positioning and (ii) S&P 500 (Lagged by 12 Months) 

and Monthly Commercial Positioning 

Variable 1 Variable 2 𝑅 𝑅2 

S&P 500 Monthly Commercial Positioning 0.594 0.353 

S&P 500 (Lagged by 12 Months) Monthly Commercial Positioning 0.820 0.673 
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Figure 1: S&P 500 Index Versus Monthly Commercial Positioning 

 

Figure 2: S&P 500 Index (Lagged by 12 Months) Versus Monthly Commercial Positioning 
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According to Tom and Sherman McClellan, this correlation translates to commercial Eurodollar 

futures traders responding to “immediate banking liquidity conditions”, which are “revealed first 

in the banking  system” before pulsating through the stock market over the following 52 weeks 

(McClellan, 2011). Tom McClellan substantiated this theory with the fact that “commercial 

traders of Eurodollar futures are typically the big banks, who are using these futures contracts to 

manage their asset and fund flows” and hedge against deposit and loan balances (McClellan, 

2011). While (McClellan, 2011) insinuated that this correlation explained liquidity conditions 

across the entire stock market rather than any one index, it did not report (i) other broad-based 

indices and sectors across which this comovement was discernable and (ii) whether there were 

statistically significant unidirectional or bidirectional causal effects running between the 2 

variables. Our study attempted to explain these gaps. Through a bivariate econometric approach, 

we explored the hypothesis of using Monthly Commercial Positioning as a leading indicator of 

directional movements across US public equity indices from 2000 through 2019. These indices 

included the S&P 500 Index and a series of other broad-based and sector-specific market indices. 

Our overall objective was to add more color to Tom McClellan’s initial observation and identify 

exact causal interactions and long-run equilibrium relationships between pairs of variables. 

The period 2000-2019 was selected for examination for several market related reasons. For one, 

this nearly 2-decade long window includes 3 distinct yet considerable United States led stock 

market collapses. Moreover, each collapse varied materially in its pace of decline, loss in market 

value, duration, and speed of recovery. The 2000-2002 Dot-com Bubble, for instance, saw the 

Nasdaq Composite shed nearly 80% of its 5,000+ point peak over 2.5 years, while during the 

more recent 2008 Financial Crisis, the Dow gave back over 50% of its pre-recession 14,000+ 

point peak over 2.25 years (Picardo, 2020) and (Amadeo, 2020). Recovery periods also differed, 

https://www.mcoscillator.com/learning_center/weekly_chart/commercial_traders_foretell_markets_movements/
https://www.mcoscillator.com/learning_center/weekly_chart/commercial_traders_foretell_markets_movements/
https://www.investopedia.com/articles/personal-finance/062315/five-largest-asset-bubbles-history.asp
https://www.thebalance.com/stock-market-crash-of-2008-3305535
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with the Dow and Nasdaq Composites taking another 6 and 8 years, respectively, to reach fresh 

highs (Zach, 2019). In sharp contrast, during the May 6, 2010 Flash Crash, over a trillion dollars 

left and reentered US markets in 36 minutes (Reid, 2020). Each of the 3 domestic market failures 

was also rooted in different issues. Reckless speculation, cheap and highly accessible venture 

capital, and a lack of bottom-line corporate profits to support lofty valuations helped inflate and 

burst the Dot-com Bubble (Hayes, 2019). Years later, record low-interest rates led to frenzied 

home buying by interest-only (subprime) loan borrowers. This, coupled with institutions 

attempting to buy and sell risky mortgage debt while housing prices rapidly depreciated, led to 

the mass defaults, foreclosures, and bank runs that would set the Financial Crisis in motion 

(Amadeo, 2019). This 19-year period also captures 2 short-lived domestic market declines 

triggered by geopolitical and worldwide economic uncertainties. The 2011 “Black Monday” 

selloff saw the Wilshire 5000 drop 7% as markets across Asia, Europe, and the Middle East 

concomitantly deteriorated (Hargreaves, 2011). This reflected, at least in part, US investors’ 

worry of the (i) European sovereign debt crisis contaminating markets in Italy and Spain and (ii) 

possible downgrade of France’s AAA-rated sovereign bonds (Bowley, 2011). In a separate 

incident, turbulence in Chinese markets (including devaluation of the yuan) and Greece’s 

inability to make payments on its sovereign debt fueled the 2015 Dow selloff (Driebusch, 2015 

and Cheng, 2015). Lastly, the 2000-2019 timeframe contains much of the longest-running bull 

market in American history. This expansion, being more than 10 years in length, provides a one-

off opportunity to study when net commercial positioning might align with and decouples from 

the broader market. Given that both national (e.g. FOMC announcements and economic releases) 

and global (e.g., LIBOR rate changes, overseas credit risk, and borrowing demand) components 

guide pricing and trading in the Eurodollar futures market, 2000-2019 proves to be a desirable 

https://fourpillarfreedom.com/heres-how-long-the-stock-market-has-historically-taken-to-recover-from-drops/
https://www.cnbc.com/2020/01/29/flash-crash-trader-navinder-singh-sarao-sentenced-to-home-detention.html
https://www.investopedia.com/terms/d/dotcom-bubble.asp
https://www.thebalance.com/what-caused-the-subprime-mortgage-crisis-3305696
https://money.cnn.com/2011/08/08/markets/stock-market-loss/index.htm
https://www.nytimes.com/2011/08/09/business/global/daily-stock-market-activity.html
https://www.wsj.com/articles/u-s-stocks-set-to-tumble-again-as-global-market-selloff-continues-1440418890
https://www.cnbc.com/2015/02/09/us-stocks-open-lower-on-greece-concerns.html
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period of study given the host of local and foreign factors that have influenced domestic stock 

returns. 

Justification of Problem 

Studying the relationship between Monthly Commercial Positioning and US stock market 

indices from 2000 through 2019 can provide insights widely applicable to academic, 

government, and commercial settings. Research in this space sheds light on a hedging instrument 

that has only recently surfaced yet has gained significant traction among sophisticated money 

managers and global financial institutions. Following its inauguration in the early 1950s, the 

Eurocurrency market, in its entirety, commanded nearly $7.8tn in notional value by 1995, 

making it (at the time) larger than the US’ M2 money supply (Carlozzi, 1981). In effect, this 

study may help academics better understand global implications of a market of this size, its 

effects on smaller, more dependent emerging economies that trade in tandem with the US, and 

the extent that forward-rate expectations are being priced into both global Eurocurrencies and 

their respective futures contracts. In addition to this, a more clear understanding of this space 

offers policymakers the opportunity to recognize how (i) the Federal Reserve’s recent installment 

of Zero Interest-rate Policy (ZIRP) and (ii) LIBOR’s expected replacement may affect trading 

activity and capital allocation. On the other end, buy side traders and investors may find value in 

using this study to investigate similar correlations in emerging and frontier markets. Since these 

economies present severe liquidity constraints, long-term macro investing becomes a more 

attractive way of deploying capital compared to timing the entry and exit of trades. Ultimately, 

this shift in strategy has multiple implications. For one, capital is effectively allocated to the 

most at-need regions. And secondly, investors are able to access new, uncovered opportunities 

and unlock value for limited partners through novel strategies. Although the first may be an 

https://www.philadelphiafed.org/-/media/research-and-data/publications/business-review/1981/br81manc.pdf?la=en
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unintentional consequence for investment firms seeking high yields above everything else, it 

could certainly affect future economic development across markets. 

Literature Review 

(a) Leader-follower Relationships Across Tradeable Assets 

A cursory search reveals how extensively researchers have sought out leader-follower 

connections between seemingly discrete assets, markets, and order flow data. A characteristic 

example is the series of tests carried out by (Bhattacharya and Mukherjee, 2003) to test for 

bidirectional causal relationship(s) between the S&P Bombay Stock Exchange (i.e. BSE 

SENSEX) and several macroeconomic barometers (i.e. exchange rate, foreign exchange 

reserves, and value of trade balance) for the periods 1990-1991 and 2000-2001. The study 

complemented past observations on the correlation between such variables in US capital markets 

(Aggarwal, 1981 and Soenen and Hennigar, 1988). Ultimately, (Bhattacharya and Mukherjee, 

2003) concluded that none of the macroeconomic variables under scrutiny could be dependably 

used as a forecasting mechanism of the BSE SENSEX and vice versa, precluding the two from 

challenging Fama’s Efficient Market Hypothesis (EMH) (Fama, 1970). One-half decade later, 

(Cong, Wei, Jiao, and Fan, 2008) examined the price histories of Brent Crude Oil and 10 

Chinese stock market sector indices from 1996 to 2001 in search of two-way time-delayed 

linkages. Use of a multivariate vector autoregression (VAR) analysis revealed that oil price 

shocks and manufacturing index returns shared the one and only statistically significant 

relationship (Cong, Wei, Jiao, and Fan, 2008). 2 years following concluding remarks, (Arouri 

and Nguyen, 2010) used past Brent crude oil levels and 12 Dow Jones Stoxx (European) sector 

indices to uncover similar relationships on a global level. As a baseline, analogous past works 

detailing connections between oil prices and sectors in Canada and the United Kingdom were 

file:///C:/Users/ankur/Downloads/Causal%20Relationship%20Between%20Stock%20Market%20and%20Exchange%20Rate,%20Foreign%20Exchange%20Reserves,%20and%20Value%20of%20Trade%20Balance.pdf
file:///C:/Users/ankur/Downloads/81ABERFxExpo%20(1).pdf
https://www.econbiz.de/Record/an-analysis-of-exchange-rates-and-stock-prices-the-us-experience-between-1980-and-1986-soenen-luc-aloys/10001085771
file:///C:/Users/ankur/Downloads/Causal%20Relationship%20Between%20Stock%20Market%20and%20Exchange%20Rate,%20Foreign%20Exchange%20Reserves,%20and%20Value%20of%20Trade%20Balance.pdf
file:///C:/Users/ankur/Downloads/Causal%20Relationship%20Between%20Stock%20Market%20and%20Exchange%20Rate,%20Foreign%20Exchange%20Reserves,%20and%20Value%20of%20Trade%20Balance.pdf
https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1540-6261.1970.tb00518.x
https://reader.elsevier.com/reader/sd/pii/S030142150800284X?token=A1A5A091AECBF67594FE770D3FEE801CAFFF7498B6A8051E18D6776CB41551A5C13B9C10BDBD45DC714EB32CE0547648
https://reader.elsevier.com/reader/sd/pii/S030142150800284X?token=A1A5A091AECBF67594FE770D3FEE801CAFFF7498B6A8051E18D6776CB41551A5C13B9C10BDBD45DC714EB32CE0547648
file:///C:/Users/ankur/Downloads/Oil%20Prices%20Stock%20Markets%20and%20Portfolio%20Investment%20(1).pdf
file:///C:/Users/ankur/Downloads/Oil%20Prices%20Stock%20Markets%20and%20Portfolio%20Investment%20(1).pdf


15 

 

 

referenced (Sadorsky, 2001; Boyer and Filion, 2007; El-Sharif, Brown, Burton, Nixon, Russel, 

2005). A multifactor pricing model and Granger causality tests indicated that increases in oil 

prices negatively affected 3 sectors (i.e. Food and Beverages, Health Care, and Technology), 

positively affected 5 sectors (i.e. Financials, Oil and Gas, Industrials, Basic Materials, and 

Consumer Services) and immaterially affected 3 sectors (i.e. Personal and Household Goods, 

Telecommunications, and Utilities) (Arouri and Nguyen, 2010). More recently, (Dritsaki, 2017) 

conducted a formal search for long-run relationships between inflation and nominal interest rates 

(Fisher, 1930) across Germany, United Kingdom, and Switzerland. As an extension to similar 

studies, namely (Mishkin and Simon, 1995) for Australia and (Weidmann, 1997) for Germany, 

this investigation relied on an Autoregressive Distributed Lag (ARDL) model to validate 

existence of cointegration between the 2 variables for all 3 countries. What was more unique at 

the time was the study’s use of the Toda and Yamamoto (1995) no-causality test to establish 

unidirectional causality (flowing from nominal interest rates to inflation) for United Kingdom 

and Switzerland and bidirectional causality for Germany (Dritsaki, 2017). 

(b) Leader-follower Relationships Between Monthly Commercial Positioning and Futures 

Prices 

Of late, researchers have also taken efforts to diagnose if such relationships exist within futures 

markets. In doing so, studies have often displayed periods when Monthly Commercial 

Positioning and futures prices move in tandem given a gap between the two variables. (Irwin, 

Sanders, and Merrin, 2009), for instance, studied the usefulness of the CFTC’s Monthly 

Commercial Positioning data in prognosticating returns for 10 agricultural futures markets. 

(Irwin, et al., 2009) noted that past works have often returned mixed results due, in part, to the 

time period under investigation. For example, while (Wang 2001) concluded that Monthly 
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Commercial Positioning reliably foreshadowed reversals (i.e. directional changes during a price 

rally) for 6 futures markets (i.e. corn, soybeans, soymeal, wheat, cotton, and world sugar) from 

1993 to 2000, (Gorton, Hayashi, and Rouwenhorst, 2007) remarked that net commercial position 

data seldom predicted pricing action across 31 agricultural futures markets (including ones 

analyzed by Wang) between 1971 and 2010. Similar to other studies, (Irwin, et al., 2009) first (i) 

employed a bivariate Granger-causality framework to detect any lead-lag relationships and then 

(ii) tested the ordinary least squares (OLS) residuals for autocorrelation, heteroskedasticity, and 

long-term stability. Findings described Monthly Commercial Positioning as having a limited and 

inconsistent ability to lead futures prices from 1995 to 2006. In fact, certain traders enhanced 

their long positions following price increases in the futures market, suggesting the presence of 

“trend following” instead of “trend setting” behavior (Irwin, et al., 2009). Since this recent 

examination, an exhaustive set of observations have been made across Monthly Commercial 

Positioning and corresponding futures markets. (Harris and Buyuksahin, 2011) deemed the use 

of such trader data insufficient in forecasting price fluctuations in West Texas Intermediate 

(WTI) Light Sweet Crude Oil Futures for the period 2000 to 2009. By contrast, (STUDY) 

indicated significant predictive value of X on Y. In yet another instance, (Often and Wisen, 

2013) reported mixed results, concluding that Live Cattle futures routinely followed Monthly 

Commercial Positioning whereas futures markets for Corn, Natural Gas, Copper, and Coffee 

showed no such connectedness (Often and Wisen, 2013).  

(c) Leader-Follower Relationships Between Monthly Commercial Positioning and Spot 

Prices 

Although few and far between, studies measuring the ability of order flow data to forecast spot 

prices have also made appearances in economic literature. A spot price represents the 

https://watermark.silverchair.com/rfs019.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAmgwggJkBgkqhkiG9w0BBwagggJVMIICUQIBADCCAkoGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMJAs8FyI2swS_cnf4AgEQgIICG20yTQLsuIpH0R2rfcsN_hncR3GNKByceBjXBy-DEFlIKFMEk5TtFuNkQGn8EIiuaCpdeN4-Een1joWcbILvKZk_g0N9NK_rC1kKP6kVLiIvjJdyQF59_EzDKl2l_E665V7LiP7QYT8Ta07qyZruT1iq0hSYhZG5vXmp5-EAwnk6QUDLaswJcVrzBOLid13eAK0Mnae_y5Wgfeh7jqdlxSSHzRI6jfh2O2KHWuZk-T2P9_MN7VvQTCxGbDA53Hi5UCH2EqJLrKdRekf0UsatiSAoDwFdvUNV2qxSWAfcnjVZGko-F5BpBg8npCZvrSKTF14G_2Z7xFMy7r2bzH-_yDsjL7d7YhYheEahHQlGcizBANpHg6id30LZugT6iW5GyYf_onKMTNi8wYY-K4jA4QTEok6g2GXIJj06V4XlmeOUuYeNOs1qjfsS0jVD8RbfTbcWGWp-NnXXsQijaUay-KRCMvXh0j7r_iv5HNzZP_LspAt-LPimFwJSVgseNYEBiPeSnjhSn3t_rbfZL6eF2FBStCbuaU5IDMLH8mohv28tW4tspHMfXxNGxFlXV0xvkBp6TGgEKQe4t1ai1k7i8gZk2ZxYaI5hm-dCvCSTu1FP4aUkFU3Wf4AZwvX3KaIjXimdAJPsEwOUoIX7TRZJAWv9aAgsvHsG8tTxXZ4b337efUktpW3eOEWMWLQferRd_dr9F84Ssko5oOAc
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instantaneous cash price that a financial instrument is purchased or sold at for immediate 

delivery/settlement (Chen, 2019). In contrast, a futures contract denotes the price of a financial 

instrument for future delivery/settlement (Chen, 2019). The differential between the 2 prices is 

known as the basis (Chen, 2019). Studies denoting the lagged comovements between Monthly 

Commercial Positioning and spot prices have spanned multiple markets. (Mutafoglu, 2010), for 

example, hypothesized that noncommercial trading activity belonging to currency futures 

markets could be used to foretell movements of their respective spot exchange rates. The paper 

notes that previous macroeconomic models – the use of which was standard at the time – have 

been unsymmetrical in their findings (Mutafoglu, 2010). As such, this study used a 

microstructure model to investigate the cointegration relation between commercial and non-

commercial traders’ net positions and spot exchange rates. Results pointed to long run equilibria 

between noncommercial trading activity and each of the 5 spot exchange rates (i.e. Australian 

Dollar, British Pound, German Mark, Japanese Yen, and Swiss Franc) (Mutafoglu, 2010). This 

was followed-up with a sequence of multivariate Granger-causality tests (Mutafoglu, 2010). 

Unidirectional causality running from noncommercial trading activity in the German Mark and 

Swiss Franc futures to the spot DEM/USD and CHF/USD rates, respectively, was found 

(Mutafoglu, 2010). Reverse causality was also identified between the AUD/USD rate and 

Australian Dollar futures (Mutafoglu, 2010). Moreover, bidirectional causality existed between 

the British Pound and Yen futures and GBP/USD and JPY/USD rates, respectively (Mutafoglu, 

2010). Shortly after Mutafoglu’s paper, (Mutafoglu, Tokat, and Tokat, 2012) detailed the results 

from a similar procedure used to assess gold, silver, and platinum futures markets for the period 

1993 to 2009. To recognize the price rally across all three markets till 2008, a structural break in 

the early 2000s was used to bifurcate the analysis (Mutafoglu, et al., 2012). After fitting a 2-
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variable VAR model and Granger-causality tests to the data, results highlighted that (i) only 

Monthly Commercial Positioning for silver and platinum futures markets had forecasting power 

on pre-break spot prices and (ii) no causal relationships existed in post-break markets 

(Mutafoglu, et al., 2012). Similar to observations made in (Irwin, et al., 2009) and (Mutafoglu, et 

al., 2012), commercial traders were overwhelmingly “trend followers”, with Gold, Silver and 

Platinum pre-break spot prices and Silver and Platinum post-break spot prices leading Monthly 

Commercial Positioning (Mutafoglu, et al., 2012). Possibilities of causal links between Monthly 

Commercial Positioning and deeply traded commodities have also been explored. Among them, 

(Alquist and Gervais, 2013) outlined relationships between Monthly Commercial Positioning 

and WTI Crude Oil spot prices. Through a 3-period study spanning17 years of data, (Alquist, et 

al., 2013) demonstrated that Monthly Commercial Positioning Granger-causes oil prices for only 

1 period – 1993 to 2010 – while the inverse is true for all 3 periods – 1993 to 2010, 2003 to 

2008, and 2003 to 2010. Adjacent findings, notably (Hamilton, 2009) for the period 1997 to 

2008 and (Fattouh, Kilian, and Mahadeva, 2012) for the period 2003 to 2008, have shown 

connections between speculative (noncommercial) demand in oil futures markets and spot 

prices. 

Recent efforts to uncover linkages between trading behavior, assets, and respective derivative 

markets have led researchers to an assortment of conclusions. In large part, this is due to the 

diversity of econometric models used to diagnose relationships, varying time periods under 

consideration, and numerous interpretations of trends, significance, and causality. Unfortunately, 

no literature has yet identified if Monthly Commercial Positioning in the Eurodollar futures 

market can prognosticate any US stock market indices over any time period. Before designing 

our study, we learned about our data and recorded unique characteristics. Then, we used a 

file:///C:/Users/ankur/Downloads/1-s2.0-S0301420712000086-main.pdf
https://www.jstor.org/stable/pdf/41548414.pdf?refreqid=excelsior%3A44d4d72a02b8fb5369368304ae1a265c
file:///C:/Users/ankur/Downloads/1-s2.0-S0301420712000086-main.pdf
file:///C:/Users/ankur/Downloads/1-s2.0-S0301420712000086-main.pdf
file:///C:/Users/ankur/Downloads/1-s2.0-S0301420712000086-main.pdf
file:///C:/Users/ankur/Downloads/The_Role_of_Financial_Speculation_in_Driving_the_P.pdf
file:///C:/Users/ankur/Downloads/The_Role_of_Financial_Speculation_in_Driving_the_P.pdf
file:///C:/Users/ankur/Downloads/The_Role_of_Financial_Speculation_in_Driving_the_P.pdf
https://www.iaee.org/en/publications/init2.aspx?id=0
https://www.researchgate.net/publication/241641622_The_Role_of_Speculation_in_Oil_Markets_What_Have_We_Learned_So_Far


19 

 

 

curated list of past studies to define an appropriate econometric procedure to follow. Lastly, we 

aggregated our results and simultaneously noted areas of interest.  

Data and Methodology 

Data Selection and Scrubbing  

The data samples used in this study include historical (i) price levels of US equity markets and 

(ii) net commercial trading positions as a percentage of total open interest in the Eurodollar 

futures market. Data sets were compiled in monthly increments ranging from 2000 through 

20191. 

Within category (i), 3 major US stock market indices [i.e. S&P 500, Dow Jones Industrial 

Average (DJIA), and Nasdaq Composite] and 11 S&P 500 sector indices (i.e. Consumer 

Discretionary, Consumer Staples, Energy, Financials, Health Care, Industrials, Information 

Technology, Materials, Utilities, and Real Estate) are included to proxy equity market 

performance. Although broad-based in nature, each major market index comprises a unique set 

of companies that vary in volume, type, and weighting. The S&P 500, for instance, pools 

together all companies listed on the New York Stock Exchange (NYSE) and NASDAQ Stock 

Market (NASDAQ), rank orders them by market capitalization, and then selects the largest 500 

firms to include. Those included are weighted by equity value, meaning a 1% move in a large 

stock [e.g. Apple (NASDAQ: AAPL)] would move the index more aggressively than a 1% move 

in a smaller stock [e.g. SVB Financial Group (NASDAQ: SIVB)] (Reiss, 2017). The Nasdaq 

Composite follows a similar methodology. By contrast, however, the Nasdaq Composite draws 

exclusively from approximately 3,300 companies listed on the NASDAQ (Chen, 2019). 

Moreover, the Nasdaq Composite is much narrower in scope, with nearly 50% of the index 

 
1 The S&P 500 Real Estate Sector Index was launched in October 2001. Monthly market data is included from that 

point through 2019. 

https://money.usnews.com/investing/articles/2017-05-31/what-you-should-know-about-3-major-us-indexes
https://www.investopedia.com/terms/n/nasdaqcompositeindex.asp
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belonging to technology firms, followed by firms representing consumer services, health care, 

and financials (Reiss, 2017 and Chen, 2019). Unlike the two indices mentioned, the DJIA is 

more limited in volume, including only 30 blue-chip companies that represent the economy 

(Ganti, 2020). The DJIA also price-weights its selection, allowing firms with higher priced 

shares to disproportionately influence the index (Ganti, 2020). Table 2 below decomposes S&P 

500 sectors into the industries they represent. Data on all stock market indices were obtained 

using FactSet Research Systems. 

Table 2: Representation of S&P 500 Sectors by Industries Included in Each 

S&P 500 Sector Industries Included 

Communication 

Services 

Diversified Telecommunication Services; Wireless Telecommunication Services; Entertainment; 

Media; Interactive Media & Services 

Consumer 

Discretionary 

Automobile Components; Automobiles; Distributors; Diversified Consumer Services; Hotels; 

Restaurants & Leisure; Household Durables; Leisure Products; Multiline Retail; Specialty Retail; 

Textile; Apparel & Luxury Goods; Internet & Direct Marketing 

Consumer Staples Beverages; Food & Staples Retailing; Food Products; Household Products; Personal Products; Tobacco 

Energy Energy Equipment & Services; Oil, Gas & Consumable Foods 

Financials 
Banking; Capital Markets; Consumer Finance; Diversified Financial Services; Insurance; Mortgage 

Real Estate Investment Trusts (REITs); Thrifts & Mortgage Finance 

Health Care 
Biotechnology; Health Care Equipment & Supplies; Health Care Providers & Services; Health Care 

Technology; Life Sciences Tools & Services; Pharmaceuticals 

Industrials 

Aerospace & Defense; Air Freight & Logistics; Airlines; Building Products; Commercial Services & 

Supplies; Construction & Engineering; Electrical Equipment; Industrial Conglomerates; Machinery; 

Marine; Professional Services; Road & Rail; Trading Companies & Distributors; Transportation 

Infrastructure 

Information 

Technology 

Communications Equipment; Electronic Equipment, Instruments & Components; IT Services; 

Semiconductors & Semiconductor Equipment; Software; Technology Hardware, Storage & Peripherals 

Materials 
Chemicals; Construction Materials; Containers & Packaging; Metals & Mining; Paper & Forest 

Products 

Real Estate Equity Real Estate Investment Trusts; Real Estate Management & Development 

Utilities 
Electric Utilities; Gas Utilities; Independent Power & Renewable Electricity Producers; Multi-Utilities; 

Water Utilities 

 

 

Data contained in category (ii) were extracted from the CFTC’s COT reports described earlier. 

Calculating the monthly average net commercial trading position as a percentage of total open 

interest in the Eurodollar futures market required first locating open interest, long interest, and 

short interest in weekly COT reports. Each week’s net long position (total long interest minus 

total short interest) was then divided by that week’s open interest, resulting in the net commercial 

https://money.usnews.com/investing/articles/2017-05-31/what-you-should-know-about-3-major-us-indexes
https://www.investopedia.com/terms/n/nasdaqcompositeindex.asp
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trading position as a percentage of total open interest for that week (“Weekly Net %”). This 

process was then repeated for each week every month. Results were then used to compute 

Monthly Commercial Positioning by applying a weighted average based on each week’s open 

interest. An example set of calculations is provided in Table 3 below for August 2018. 

Table 3: Monthly Commercial Positioning Calculation for August 2018 

Week 

Ending 

Open Interest 

(mm) 

Long Interest 

(mm) 

Short Interest 

(mm) 

Net Long 

(mm) 

Weekly Net 

% 

Monthly Commercial 

Positioning 

8/7/18 14.039548 10.004922 6.224883 3.780039a 26.92%b 

25.75%c 
8/14/18 13.946092 9.806008 6.255742 3.550266 25.46% 

8/21/18 14.046440 9.848666 6.295344 3.553322 25.30% 

8/28/18 14.141665 9.852561 6.269547 3.583014 25.34% 

Notes: 

(a) 𝐿𝑜𝑛𝑔 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 (𝑚𝑚) − 𝑆ℎ𝑜𝑟𝑡 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 (𝑚𝑚) =  10.004922 − 6.224883 = 3.780039 

(b) 
𝑁𝑒𝑡 𝐿𝑜𝑛𝑔 (𝑚𝑚)

𝑂𝑝𝑒𝑛 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡
=

3.780039

14.039548
≈ 26.92% 

(c) Weighted average of Weekly Net % based on average aggregate open interest 

 

Descriptive Statistics 

Please view market data in Figure 3 and Figure 4. Preliminary analysis was performed on each 

time series with results summarized in Table 4. 
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Figure 3: US Stock Market Indices (Indexed) versus Monthly Commercial Positioning 

 

 
 

 
Figure 4: S&P 500 Sector Indices (Indexed) versus Monthly Commercial Positioning 
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Table 4: Descriptive Statistics of Monthly Commercial Positioning and US Stock Market Indices 

 Mean Median 
Std.  

dev. 
Skewness Kurtosis 

Corr. w/  

Monthly 

Comm. 

Pos. 

Corr. w/  

S&P 500 

Corr. w/  

DJIA 

Corr. w/  

NASDAQ 

Monthly 

Commercial 

Positioning 

0.15% -0.45% 0.13 0.33 2.40 - - - - 

S&P 500 1577.89 1366.22 591.04 0.99 2.95 0.59 - - - 

DJIA 14065.38 12219.74 5244.60 1.14 3.27 0.58 - - - 

NASDAQ 3476.45 2636.31 1917.59 1.11 3.16 0.58 - - - 

Communication 

Services 
147.10 148.91 37.53 1.64 7.59 0.12 0.37 0.28 0.39 

Consumer 

Discretionary 
403.41 289.96 224.77 1.08 2.92 0.59 0.99 0.99 0.98 

Consumer 

Staples 
347.79 288.20 136.27 0.63 1.89 0.58 0.93 0.94 0.91 

Energy 428.91 453.43 143.55 -0.31 2.00 0.49 0.51 0.53 0.45 

Financials 333.49 333.94 95.71 -0.24 2.15 0.31 0.49 0.46 0.41 

Health Care 533.93 391.14 250.74 0.99 2.48 0.57 0.98 0.97 0.96 

Industrials 360.87 312.82 137.10 0.84 2.57 0.63 0.99 0.99 0.96 

Information 

Technology 
552.26 411.80 319.90 1.33 3.93 0.50 0.95 0.94 0.98 

Materials 228.38 225.57 77.75 0.28 1.96 0.63 0.91 0.93 0.86 

Real Estate 146.22 146.36 44.99 0.05 2.10 0.56 0.92 0.90 0.87 

Utilities 189.41 184.90 53.14 0.44 2.67 0.50 0.94 0.92 0.90 

 

Methodology 

At a high level, this study used time domain analysis to uncover possible lead-lag relationships 

between net commercial trading activity in the Eurodollar futures market and a collection of US 

stock market indices. Procedurally, this took the form of a bivariate econometric analysis 

employed through the framework provided in Figure 5. 
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Figure 5: Methodology Framework 
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(Step 1) Checking for Stationarity 

Evaluating stationarity of the time series in question was the first step in executing time domain 

analysis. Over a finite time period, stationary data sets exhibit a constant mean, variance, and 

covariance (Cryer and Chan, 2008). In other words, the time series’ “shape” from 𝑡0 to  𝑡𝑛, 

where 𝑛 > 0, is identical to any data segment of any length within the series (Cryer, et al., 2008).  

Since it is rarely possible to evaluate stationarity using visual cues alone, hypothesis testing (in 

the form of unit root tests) was used as a qualifying step to further analysis. We recognized that 

presence of a unit root could lead to spurious correlation (i.e. unjustifiably high r-squared values 

between data sets) and other unpredictable results (e.g. t-ratios that do not obey a t-distribution) 

(Ducasse, 2016). To avoid this, we used the Augmented Dickey-Fuller (ADF) and Phillips-

Perron (PP) tests to isolate unit roots (Dickey and Fuller, 1979 and Phillips and Perron, 1988) for 

each time series. We performed these tests individually for all data sets (i.e. 3 market indices, 11 

sector indices, and Monthly Commercial Positioning). The null hypothesis, 𝐻𝑜, assumed 

presence of a unit root, while the alternative, 𝐻1, indicated that 𝑌𝑡 was stationary at the given 

difference.  

We used the following ADF test regressions and, on a case by case basis, included deterministic 

elements [i.e. (1) has a constant alone, (2) has a constant and trend, and (3) has neither (Dickey 

and Fuller, 1979)]:  

 ∆𝑌𝑡 = 𝛼 + 𝛿𝑌𝑡−1 + ∑ 𝑚𝑟
𝑠
𝑟=1 ∆𝑌𝑡−𝑟 + 𝑤𝑡 (1)  

 ∆𝑌𝑡 = 𝛼 + 𝛿𝑌𝑡−1 + 𝛾𝑡 + ∑ 𝑚𝑟
𝑠
𝑟=1 ∆𝑌𝑡−𝑟 + 𝑤𝑡 (2)  

 ∆𝑌𝑡 = 𝛿𝑌𝑡−1 + ∑ 𝑚𝑟
𝑠
𝑟=1 ∆𝑌𝑡−𝑟 + 𝑤𝑡 (3)  

where 𝑌𝑡 is the differential form autoregressive equation being examined; 𝛼 denotes presence of 

a constant (i.e. intercept, or “drift”); 𝛿 is the coefficient of the current root (i.e. focus of the t-

chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/http:/homepage.divms.uiowa.edu/~kchan/s156.spring03/chap2.pdf
chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/http:/homepage.divms.uiowa.edu/~kchan/s156.spring03/chap2.pdf
https://www.statisticshowto.com/unit-root/
https://www.jstor.org/stable/2286348?seq=4#metadata_info_tab_contents
chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https:/watermark.silverchair.com/75-2-335.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAnUwggJxBgkqhkiG9w0BBwagggJiMIICXgIBADCCAlcGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMZoFy-NH9wh_n7Cv8AgEQgIICKEH5Cm8YZ68-_eJcP5f7bxTVhmmdzh-ELtTUr3V1rmpXPM9NiN91Ee1e3c_my4RKv02DDFtQ1tSk6yCurqQX1hnFP7SHMXKlLxo_JL2htwLpTjsn90f0MdcFs2lJdwxRqG2mu6-DgK7R9N4h1Gs3lXdUYzIDV9H4SP9y0I4ZBWal7TV53Je_BxD73dVo-BOToq708na4R4vwRbtDitLBuynBMUkaI_qFS4bI_2r-SxU1qgBeDMHBB2ZHNNNCN0kzeJnISRph7LgKSYTdmSzIEf_K8R67OULXaB9tDQKguoaROkXCJau3IgSeWB-FCq9ffDvyVhDIkqzA8bxpoYJ3DgpwIC_llm3lq6sPBgyDEhLGacN_Gtn2O7-ocfo10W1OvG5vqwTn14_uRCjJL4OK-_Cm8bt-sqRMHNuuJvXxmcsaY6RcBR4UnRar-e0Tsw3ftWsHoLYUJSP5tGrMNbyN03nynrsAlTgFnQBNDuJsybmk_fhO7yVup4poBxotjb-c45ng2PJP89ObozKfALuz1mIYOy3T0wSF1OWQ4SuillB7plagrCJ2YsGfGXCudNDeJ_9tOOxwTxnK5Koum1htExFuUDQ6R1kavkqPUcC3nff2h4sfG4WFWjP0Ru1IO8zi2Z6qOOvJ4GdpMr_ReDIdqCm6g6yV2suG6Jqo1xUk9fo-R-BnjVuECjOywhDgRV1RB-Su6SJg41m6wr87EtENyYPn4gLyqHwStA
https://www.jstor.org/stable/2286348?seq=4#metadata_info_tab_contents
https://www.jstor.org/stable/2286348?seq=4#metadata_info_tab_contents
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test); 𝛾 is the coefficient of the trend parameter; 𝑠 are the total lags being regressed upon to test 

for stationarity; and 𝑤𝑡 is white noise (i.e. independent and identically distributed random 

variables).  

An OLS estimate of 𝛿 was then computed and a modified T-Statistic (Dickey-Fuller statistic) 

was compared to the corresponding critical value. If it was less than the critical value, the null 

hypothesis was rejected and stationarity at level was accepted. If not, the time series was 

reevaluated at its first difference. 

To execute the PP test, we used the following regressions and also decided to include 

deterministic elements if needed [i.e. (1) has a constant alone, (2) has a constant and trend, and 

(3) has neither (Phillips and Perron, 1988)]. Unlike the ADF regressions above, PP regressions 

do not rely on lagged values of the first difference, as shown:  

 𝑌𝑡 = 𝛼 + 𝛽𝑌𝑡−1 + 𝑤𝑡 (4)  

 𝑌𝑡 = 𝛼 + 𝛾𝑡 + 𝛽𝑌𝑡−1 + 𝑤𝑡 (5)  

 𝑌𝑡 = 𝛽𝑌𝑡−1 + 𝑤𝑡 (6)  

where  

𝑌𝑡 is the time series being examined; 𝛼 denotes presence of a constant (i.e. intercept, or “drift”); 

and 𝛽 is the OLS estimate (for a time series of 𝑛 samples) of the autocorrelation parameter 

computed as: 

 𝛽 =
∑ 𝑌𝑖−1𝑌𝑖−1

𝑛
𝑖=1

∑ 𝑌𝑖
2𝑛

𝑖=1

; (7)  

and 𝑤𝑡 is white noise (i.e. independent and identically distributed random variables).  

The PP test statistic is an augmented version of the Dickey-Fuller test statistic and is capable of 

addressing serial correlation and heteroskedasticity in error terms. If less than the associated 

chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https:/watermark.silverchair.com/75-2-335.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAnUwggJxBgkqhkiG9w0BBwagggJiMIICXgIBADCCAlcGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMZoFy-NH9wh_n7Cv8AgEQgIICKEH5Cm8YZ68-_eJcP5f7bxTVhmmdzh-ELtTUr3V1rmpXPM9NiN91Ee1e3c_my4RKv02DDFtQ1tSk6yCurqQX1hnFP7SHMXKlLxo_JL2htwLpTjsn90f0MdcFs2lJdwxRqG2mu6-DgK7R9N4h1Gs3lXdUYzIDV9H4SP9y0I4ZBWal7TV53Je_BxD73dVo-BOToq708na4R4vwRbtDitLBuynBMUkaI_qFS4bI_2r-SxU1qgBeDMHBB2ZHNNNCN0kzeJnISRph7LgKSYTdmSzIEf_K8R67OULXaB9tDQKguoaROkXCJau3IgSeWB-FCq9ffDvyVhDIkqzA8bxpoYJ3DgpwIC_llm3lq6sPBgyDEhLGacN_Gtn2O7-ocfo10W1OvG5vqwTn14_uRCjJL4OK-_Cm8bt-sqRMHNuuJvXxmcsaY6RcBR4UnRar-e0Tsw3ftWsHoLYUJSP5tGrMNbyN03nynrsAlTgFnQBNDuJsybmk_fhO7yVup4poBxotjb-c45ng2PJP89ObozKfALuz1mIYOy3T0wSF1OWQ4SuillB7plagrCJ2YsGfGXCudNDeJ_9tOOxwTxnK5Koum1htExFuUDQ6R1kavkqPUcC3nff2h4sfG4WFWjP0Ru1IO8zi2Z6qOOvJ4GdpMr_ReDIdqCm6g6yV2suG6Jqo1xUk9fo-R-BnjVuECjOywhDgRV1RB-Su6SJg41m6wr87EtENyYPn4gLyqHwStA
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critical value, the T-Statistic allowed us to reject the null hypothesis. If not, we had to retest the 

variable in question at its first difference. 

If a pair of time series (𝑋, 𝑌) was each 𝐼(0) (integrated of order 0) for the ADF and PP tests at 

the 5% significance level, we employed a vector autoregressive (VAR) model to test for 

interactions. If only one time series was 𝐼(0), we retested the other at its first difference and 

confirmed it was 𝐼(1). If neither time was 𝐼(0), we retested both at their respective first 

differences to verify they were 𝐼(1). In any case, we identified the optimal lag order for each 

variable upon completion of the stationarity tests. The remaining Methodology sections presume 

that no 2 variables being jointly evaluated, (𝑋, 𝑌), were individually 𝐼(0) and no variables were 

integrated of an order greater than 1. 

(Step 2) Selecting Optimal Lag Order 

Following confirmation that all time series were stationary at 𝐼(0) or 𝐼(1), we determined 

appropriate lag orders. This estimation process was crucial since it (i) served as a component in 

future bivariate time series analyses and (ii) directly affected any statistical inferences drawn 

(Liew, 2004). At a high level, the lag for a certain time series indicates how many “turns” of past 

values determine the current value of the series. We chose to use 4 standard screens during the 

selection process – Akaike’s Final Prediction Error (FPE) (Akaike, 1998), Akaike Information 

Criterion (AIC) (Akaike, 1998), Schwarz Information Criterion (SIC) (Schwarz, 1978), and 

Hannan-Quinn Information Criterion (HQ) (Hannan and Quinn, 1978). According to (Liew, 

2004), the Hannan-Quinn Information Criterion (HQ) performs best with large (at least 120 data 

points) time series while the “AIC and FPE are found to produce the least probability of under 

estimation among all criteria […]” Moreover, (Ludden, Beal, and Sheiner, 1994) contended that 

both AIC and SIC can reliably pinpoint an accurate lag order when forced to select from an 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=885505
https://link.springer.com/chapter/10.1007/978-1-4612-1694-0_15
https://link.springer.com/chapter/10.1007/978-1-4612-1694-0_15
chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https:/projecteuclid.org/download/pdf_1/euclid.aos/1176344136
https://www.jstor.org/stable/2985032?seq=1#metadata_info_tab_contents
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=885505
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=885505
https://link.springer.com/article/10.1007/BF02353864
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extensive number of lags. Accordingly, we computed each of the 4 criteria displayed below and 

selected the lag order associated with the minimum value for each. The estimators are as follows: 

 𝐹𝑃𝐸 = 𝜎𝑛
2 ∗ (𝑆 − 𝑛)−1 ∗ (𝑆 + 𝑛) (8) 

 𝐴𝐼𝐶 = −2𝑆[𝑙𝑛(𝜎𝑛
2)] + 2𝑛 (9)  

  𝑆𝐼𝐶 = 𝑙𝑛(𝜎𝑛
2) +

[𝑛∗𝑙𝑛(𝑆)]

𝑆
 (10) 

 𝐻𝑄 = 𝑙𝑛(𝜎𝑛
2) + 2𝑆−1 ∗ 𝑛 ∗ 𝑙𝑛[𝑙𝑛(𝑆)] (11)  

where 𝑆 is the sample size under observation and 𝑛 is the equation minimizing lag operator. 

We then compared results and chose the final lag order based on a majority. Following this step, 

we tested pairs of 𝐼(0) and 𝐼(1) variables for cointegration (Step 3A) and short-run and long-run 

causal interactions (Step 4A). Separately, we tested pairs of 𝐼(1) variables for cointegration 

(Step 3B) and short-run causal interactions (Step 4B). 

(Step 3A) ARDL Long Run Form and Bounds Test 

For several years, researchers have experimented with different methods of establishing linkages 

between variables. (Park, 1990) introduced a variable addition strategy, which was shortly 

followed by a procedure that  used residuals to test the null hypothesis (𝐻0), as first demonstrated 

by (Shin, 1994). Both approaches, however, necessitated that all data sets be 𝐼(1). Even (Stock 

and Watson, 1988) could not circumvent this through a stochastic trends process. In light of this 

obstacle, (Pesaran and Shinn, 1995) developed the ARDL Long-run Form and Bounds Test to 

handle a blend of 𝐼(0), 𝐼(1), or fractionally integrated time series over the short-run and long-

run. The regression is expressed as follows: 

 ∆𝑌𝑡 = 𝛽0 + ∑ 𝛽𝑖
𝑝
𝑖=1 ∆𝑌𝑡−𝑖 + ∑ 𝛿𝑖

𝑞
𝑖=0 ∆𝑍𝑡−𝑞 + 𝜑1𝑌𝑡−1 + 𝜑2𝑍𝑡−1 + 𝑤𝑡 (11)  

where  

https://www.semanticscholar.org/paper/Testing-for-unit-roots-and-cointegration-by-Park/ee4206c6a376dddcf5e7aa8c8af5dffdbf741911
http://www.stat.yale.edu/~lc436/papers/Shin_1994.pdf
https://www.princeton.edu/~mwatson/papers/Stock_Watson_JASA_1988.pdf
https://www.princeton.edu/~mwatson/papers/Stock_Watson_JASA_1988.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.153.3246&rep=rep1&type=pdf
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𝛽0 is a constant term; 𝑌𝑡 is a time series; 𝑍𝑡 is a time series; 𝑝 and 𝑞 are previously selected lag 

operators; and 𝑤𝑡 is white noise (i.e. independent and identically distributed random variables). 

Next, the Form and Bounds approach was applied. The following null and alternative hypotheses 

were used: 

 𝐻0: 𝜑1 = 𝜑2 = 0 (no cointegration) (12)  

 𝐻1: 𝜑1 ≠ 𝜑2 ≠ 0 (cointegration) (13)  

(Pesaran, et al., 1995) used the F-Statistic (Wald Test) through an ordinary Dickey-Fuller (DF) 

regression to ascertain the predictive value of lagged variables on the dependent variable of 

interest. This was done by comparing the F-statistic to the lower and upper bound critical values 

at different significance levels. The lower bound value represents the 𝐼(0) time series, while the 

upper bound value represents the 𝐼(1) time series. If the F-statistic was greater than the upper 

bound, 𝐻0 was rejected, which indicated existence of cointegration. If the F-statistic was lower 

than the lower bound, 𝐻0 could not be rejected. Lastly, if the F-statistic was between the critical 

values, a conclusive inference could not be made.  

If cointegration was established, we would move forth with the Error Correction Model (ECM) 

to identify short-run and long-run causal effects (Step 3B). Otherwise, we proceeded with the 

short-run ARDL model to test for strictly short-run causal effects (Step 4B). 

(Step 3B) Error Correction Model (ECM)  

According to (Engle and Granger, 1987), if 𝐼(0) and 𝐼(1) variables are cointegrated, it is 

possible to abstract this relationship to an error correction form. This representation expresses 

movements in the dependent variable as a function of the (i) independent variable and (ii) extent 

of deviation in the cointegrating relationship, which the Error Correction Term (ECT) captures. 

This procedure begins with an estimation of the following regression: 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.153.3246&rep=rep1&type=pdf
https://www.jstor.org/stable/pdf/1913236.pdf
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 ∆Yt = β0 + ∑ βi
p
i=1 ∆Yt−k + ∑ δi

q
i=0 ∆Zt−k + φECTt−1 + wt (14)  

where  

𝛽0 is a constant term; 𝑌𝑡 is a time series; 𝑍𝑡 is a time series; 𝑝 and 𝑞 are previously selected lag 

operators; 𝜑 is classified as convergence speed, or length of time taken for variable 𝑌𝑡 to revert to 

equilibrium following a shift in 𝑍𝑡; 𝐸𝐶𝑇𝑡−1 is the Error Correction Term equaling the OLS 

residuals from the cointegrating regression below: 

 𝑌𝑡 = 𝛽0 + 𝛽1𝑍1𝑡 + 𝛽2𝑍2𝑡 + 𝑤𝑡  (15)  

 𝑒𝑐𝑡𝑡−1 = y𝑡−1 − β0 − β1 ∗ Y𝑡−1; (16)  

and 𝑤𝑡 is white noise (i.e. independent and identically distributed random variables) 

Next, we determined whether the coefficient of the ECT was significant enough to confirm long-

run Granger-causality. This was done by comparing the T-Statistic to the corresponding critical 

value. Additionally, we checked for short-run Granger-causality by executing the same 

procedure but for short-run coefficients. Following this, we switched the dependent and 

explanatory variables to see if short-run and/or long-run Granger-causality could be established 

in the opposite direction. 

(Step 4A) Johansen Cointegration Test  

We tested pairs of variables that were integrated of order 1, [𝑍𝑡 , 𝑌𝑡~𝐼(1)], for cointegration to 

understand if they shared latent equilibrium, or coexisting parameters, over the long-run. More 

specifically, the objective of this step was to generate a new time series, 𝑅𝑡, that was integrated 

of an order less than 1, or (1 − 𝑐). 𝑅𝑡 can be estimated as follows: 

 𝑅𝑡 = 𝑍𝑡 − β ∗ 𝑌𝑡 (17)  

where 

β denotes a constant; 𝑍𝑡 is an 𝐼(1) variable; and 𝑌𝑡 is an 𝐼(1) variable  
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If successful, 𝑍𝑡 and 𝑋𝑡 in the example above are ascertained to be cointegrated, 

[𝑍𝑡 , 𝑌𝑡~𝐶𝐼(1,1 − 𝑐)]. 

Several techniques help to extract cointegrating equation(s). (Maddala and Kim, 1999) compared 

these methods for repeatability and precision before recommending the Johansen Cointegration 

Test. Related studies, such as (Gonzalo, 1994), (Bilgili, 1998), and (Hubrich, Lutkepohl, and 

Saikkonen, 2007), lend support. (Cheung and Lai, 1993) asserted that the Johansen Cointegration 

Test, in conjunction with AIC and SIC lag order selections, yield the most robust estimates of 

long-run relationships between 𝑋 and 𝑌. Moreover, the Johansen Cointegration Test’s Trace 

Statistic is resilient to variables exhibiting high skewness and kurtosis (Cheung, et al., 1993). 

Since most variables of our interest (i) have varying degrees of positive and negative skewness 

and (ii) are slightly leptokurtic or platykurtic, as shown in Table 4, we proceeded with the 

Johansen Cointegration Test. The first step required estimating the following system: 

 ∆𝐶𝑡 = 𝜔 + ∑ 𝜏∆𝐶𝑡−1
𝑛−1
𝑖=1 + Π𝐶𝑡−1 + 𝑒𝑡 (18)  

where 

∆𝐶𝑡 is a vector of size 𝑝 ∗ 1 stochastic variables (i.e. 𝑍𝑡 and 𝑌𝑡); 𝜔 denotes a constant; 𝑛 is the 

lag length; Π is classified as “rank” and is computed as follows: 

 Π = 𝛼𝛽′ (19)  

 

 where 

𝛽 is a 𝑝 ∗ 𝑟 matrix that holds 𝑟 cointegrating equations and𝛼 is a 𝑝 ∗ 𝑟 matrix that holds 

corresponding adjustment of coefficients; 

and 𝑒𝑡 is white noise (i.e. independent and identically distributed random variables).  

https://www.cambridge.org/core/books/unit-roots-cointegration-and-structural-change/4777D0336B984F0DC9664A793F4156BE
https://www.sciencedirect.com/science/article/pii/0304407694900442
https://mpra.ub.uni-muenchen.de/75967/1/MPRA_paper_75967.pdf
https://www.tandfonline.com/doi/full/10.1081/ETC-100104936
https://www.tandfonline.com/doi/full/10.1081/ETC-100104936
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-0084.1993.mp55003003.x?casa_token=o93pXbaHfAYAAAAA:dn3v8yWAtbBl-1yodHzFtTEuzfjD-zwDGfGhLh35HjBjhK1skoCcKw9fyGf8z453PeGEFY0nfYIWL_Ag
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-0084.1993.mp55003003.x?casa_token=o93pXbaHfAYAAAAA:dn3v8yWAtbBl-1yodHzFtTEuzfjD-zwDGfGhLh35HjBjhK1skoCcKw9fyGf8z453PeGEFY0nfYIWL_Ag


32 

 

 

(Johansen, 1988) proposed the joint usage of the Trace and Maximum Eigenvalue test statistics 

to calculate the number of existing cointegrating vectors.  

For the remainder of the methodology section, we will assume both test statistics jointly confirm 

no cointegration for all 𝐼(1) pairs tested. As such, we continued with a short-run ARDL model 

(Step 4B) to test for strictly short-run causal effects.  

(Step 4B) Short-run ARDL Model 

To employ the short-run ARDL model, we begin with an OLS estimation of the following 

regression: 

 ∆𝑌𝑡 = β0 + ∑ β𝑖
𝑝
𝑘=1 ∆𝑌𝑡−𝑘 + ∑ 𝛿𝑖

𝑞
𝑘=0 ∆𝑍𝑡−𝑞 + 𝑤𝑡 (20)  

where 

𝑌𝑡 is a time series; 𝑍𝑡 is a time series; β0 is a constant term; 𝑝 and 𝑞 are previously selected lag 

operators; and 𝑤𝑡 is white noise (i.e. independent and identically distributed random variables) 

The short-run ARDL model measures the T-Statistic of each explanatory variable’s coefficient at 

the 5% significance level to deduce if that variable Granger-causes the dependent variable. 

Similar to the ARDL Long-run Form and Bounds Test, the model is (i) autoregressive, meaning 

𝑌𝑡 can be rationalized by its own lagged values, and (ii) includes a distributed lag element, which 

uses preceding values of 𝑍𝑡 to explain 𝑌𝑡. This makes the ARDL model dynamic and capable of 

directly approximating short-run characteristics. 

As the final step in our study, we compared the T-Statistic to the corresponding critical value for 

each pair to identify if short-run causal effects were existent. 

Empirical Results 

This segment of the paper applies the methodology above to the time series introduced earlier to 

investigate potential lead-lag relationships. Results are reported in the same chronology as the 

file:///C:/Users/ankur/Downloads/1-s2.0-0165188988900413-main.pdf


33 

 

 

methodology. As such, analysis is performed by first checking all variables for stationarity and 

determining optimal lag lengths. Next, we attempt to establish cointegration and directionality 

using either (i) an ARDL Long-run Form and Bounds Test and ECM or (ii) Johansen 

Cointegration Test and short-run ARDL model. Following the results section is a discussion of 

the presented results, disclosure of limitations, and research angles for future works. 

Findings from the ADF and PP unit root tests are detailed in Table 5 below. All variables were 

examined at level and again at first difference if necessary. To select if the data has an (i) 

intercept and trend, (ii) intercept, or (iii) neither when performing these tests, we observed each 

variable’s visual bias(es) and mean. For instance, clear indication of an upward trend coupled 

with a non-zero mean required use of intercept and trend in both ADF and PP tests. 

Table 5: ADF and PP Unit Root Tests Results 

 Level First Difference 

 ADF PP ADF PP 

Monthly Commercial 

Positioning -2.21 -2.02 -11.85* -11.79* 

S&P 500 -1.01 -0.87 -16.63* -16.66* 

DJIA -0.98 -0.75 -16.96* -17.08* 

NASDAQ -1.66 -1.43 -16.94* -17.17* 

Communication Services -2.03* -2.12* - - 

Consumer Discretionary -0.67 -0.56 -18.63* -19.99* 

Consumer Staples -1.86 -1.60 -16.51* -17.14* 

Energy -1.82 0.62 -15.99* -15.98* 

Financials 0.50 0.36 -15.17* -15.30* 

Health Care -0.72 -0.42 -17.64* -17.77* 

Industrials -1.62 -1.50 -17.49* -17.47* 

Information Technology -0.92 -0.64 -17.07* -17.20* 

Materials -3.11 -3.39 -15.89* -15.88* 

Real Estate -1.93 -2.11 -14.68* -14.70* 

Utilities -1.58 -1.68 -15.18* -15.18* 

Note: All figures represent the ADF or PP T-Statistic associated with the variable either at level or first difference. “ * ” 

indicates that at the 5% significance level, the null hypothesis should be rejected. Hypothesis testing at the first difference was 

omitted for Communication Services. 

Apart from Communication Services, all variables are understood to be nonstationary at level at 

the 5% significance level. Repeating the ADF and PP tests for all nonstationary variables 
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resulted in stationarity at first difference. Therefore, we concluded that Communication Services 

is 𝐼(0) and all other time series are 𝐼(1). 

Following completion of a stationarity check, we determined the lag operator for Monthly 

Commercial Positioning and all market indices. To do so and for precision, we relied on multiple 

information criteria, namely FPE, AIC, SIC, and HQ. Results from the 4 estimators are detailed 

in Table 6.



35 

 

 

Table 6: Optimal Lag Order Selection Criteria Results 

 S&P 500 DJIA NASDAQ 

Lag FPE AIC SIC HQ FPE AIC SIC HQ FPE AIC SIC HQ 

1 3.732 6.993 7.095 7.034 293.492 11.358 11.460 11.399 30.946 9.108 9.211 9.150 

2 3.427 6.907 7.078 6.977 269.995 11.274 11.445 11.343 28.421 9.023 9.194 9.092 

3 3.563 6.946 7.186 7.043 280.552 11.312 11.552 11.409 29.563 9.062 9.301 9.159 

 Communication Services Consumer Discretionary Consumer Staples Energy 

Lag FPE AIC SIC HQ FPE AIC SIC HQ FPE AIC SIC HQ FPE AIC SIC HQ 

1 0.036 2.356 2.458 2.397 0.425 4.820 4.923 4.862 0.145 3.742 3.845 3.784 0.739 5.374 5.476 5.415 

2 0.034 2.305 2.476 2.374 0.374 4.692 4.863 4.761 0.136 3.684 3.855 3.753 0.676 5.285 5.456 5.354 

3 0.035 2.329 2.569 2.426 0.388 4.730 4.969 4.827 0.139 3.706 3.945 3.803 0.689 5.304 5.543 5.401 

 Financials Health Care Industrials Information Technology 

Lag FPE AIC SIC HQ FPE AIC SIC HQ FPE AIC SIC HQ FPE AIC SIC HQ 

1 0.257 4.316 4.418 4.357 0.524 5.030 5.133 5.072 0.309 4.503 4.605 4.544 0.899 5.569 5.672 5.611 

2 0.232 4.215 4.386 4.284 0.484 4.950 5.121 5.019 0.285 4.420 4.591 4.489 0.833 5.493 5.664 5.562 

3 0.241 4.252 4.492 4.349 0.501 4.984 5.223 5.081 0.294 4.451 4.690 4.548 0.862 5.528 5.767 5.625 

 
Materials Real Estate Utilities 

 

Lag 
FPE AIC SIC HQ FPE AIC SIC HQ FPE AIC SIC HQ 

    

1 
0.151 3.782 3.885 3.824 0.054 2.755   2.866 2.800 0.051 2.703   2.805 2.744 

    

2 
  0.140   3.709   3.880   3.778   0.051   2.692 2.877   2.767   0.049   2.666 2.837   2.735 

    

3 
0.145 3.743 3.982 3.840 0.052 2.724 2.983 2.829 0.051 2.694 2.933 2.790 

    

Note: Lag selection criteria was performed between each variable and Monthly Commercial Positioning. Highlighted figures indicate the minimum score achieved for each test and denote ideal lag 

operators. 
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Based on 52 of the 56 estimators displayed above, the lag order was designated as 2 for all 

variables. From this point onwards, we detail the results from cointegration and Granger-

causality testing. We begin with the ARDL Long-run Form and Bounds Test and ECM followed 

by the Johansen Cointegration Test and short-run ARDL model. 

Executing the ARDL Long-run Form and Bounds Test for sets of 𝐼(0) and 𝐼(1) variables 

required comparing the F-Statistic to lower and upper bound critical values. Cointegration was 

only established if the F-Statistic exceeded the upper bound critical value. Results are provided 

in Table 7.  

Table 7: Autoregressive Distributed Lag (ARDL) Long-run Form and Bounds Test Results 

Variable 1 Variable 2 F-Statistic Significance Level 
Critical Values 

Lower Bound Upper Bound 

Monthly 

Commercial 

Positioning 

Commercial 

Services 
7.744 

10% 4.04 4.78 

5% 4.94 5.73 

1% 6.84 7.84 

 

To assess the pair Monthly Commercial Positioning and Commercial Services for long-run, 

shared parameters, we compared the F-Statistic of 7.744 to the lower bound and upper bound 

critical values at different significance levels. Based on Table 7, we determined that we could 

safely reject 𝐻0 and conclude that the 2 variables are cointegrated at the 5% significance level.  

Next, we used the ECM to deconstruct short-run and long-run Granger-causality between 

variables. Findings are reported in Table 8. 
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Table 8: Error Correction Model (ECM) Results 

Dependent Variable Regressor Coefficient T-Statistic Probability 

Communication 

Services 

N 9.38354 2.31682 0.02140 

D(CommServices(-1)) -0.13146 -2.20240 0.02860 

D(CommServices(-2)) -0.11572 -1.96257 0.05090 

D(N) -19.74344 -1.12271 0.26270 

D(N(-1)) -36.52743 -1.99829 0.04690 

D(N(-2)) -4.94055 -0.27371 0.78460 

ECT(-1) -0.09051 -6.09228 0.00000 

Monthly Commercial 

Positioning 

C -0.00027 -0.14122 0.88780 

D(N(-1)) 0.26612 4.03128 0.00010 

D(N(-2)) 0.02540 0.38047 0.70400 

D(CommServices) -0.00006 -0.24224 0.80880 

D(CommServices(-1)) 0.00003 0.15192 0.87940 

D(CommServices(-2)) -0.00004 -0.17948 0.85770 

ECT(-1) -0.03117 -2.02326 0.04420 

Note: “N” represents Monthly Commercial Positioning 

 

Beginning with short-run causal effects at the 5% significance level, the computed T-Statistic 

demonstrated that Monthly Commercial Positioning Granger-causes Communication Services 

when time delayed by 1 period. Short-term causal effects, however, were absent in the opposite 

direction. Moreover, the significance of the ECTs in both models signaled long-run bidirectional 

Granger-causality between Monthly Commercial Positioning and Communication Services. 

Coefficients for both ECTs indicated that approximately 9.1% and 3.1% of departures from 

long-run equilibrium were corrected each period, respectively.  

As described, use of the Johansen Cointegration Test required determining whether the p-values 

associated with Trace and Maximum Eigenvalue test statistics were significant at the 5% 

significance level. This step was repeated for multiple null hypotheses, beginning first with the 

assertion that there is no cointegrating equation. For this test, if the corresponding Trace Statistic 

and Max-Eigen Statistic exceeded the 5% critical value, we retested 𝐻0 with the claim that there 

is at most 1 cointegrating equations, then at most 2, et cetera. For each case, the alternative (𝐻1) 

was that 𝐻0 is not true. Summarized results from executing this procedure are in Table 9. 
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Table 9: Johansen Cointegration Test Results 

Variable 1 Variable 2 
Trace 

Statistic 

5% Critical 

Value 
Probability 

Max-Eigen 

Statistic 

5% Critical 

Value 
Probability 

Monthly 

Commercial 

Positioning 

S&P 500 10.467 

15.495 

0.247 10.268 

14.265 

0.195 

DJIA 10.475 0.246 10.261 0.195 

NASDAQ 10.167 0.268 9.744 0.229 

Cons. Disc. 11.131 0.204 10.098 0.206 

Cons. Staples 6.539 0.632 6.218 0.585 

Energy 10.545 0.241 7.070 0.481 

Financials 11.162 0.202 8.481 0.332 

Health Care 9.624 0.311 9.371 0.257 

Industrials 7.687 0.500 7.646 0.416 

Info. Tech. 12.057 0.154 11.917 0.114 

Materials 8.031 0.462 7.173 0.469 

Real Estate 14.670 0.066 11.610 0.126 

Utilities 14.610 0.068 12.338 0.099 

 

Findings from Table 9 indicated that none of the market indices are cointegrated with Monthly 

Commercial Positioning at the 5% significance level. For instance, when testing whether 

cointegration exists between S&P 500 and Monthly Commercial Positioning, both the Trace 

Statistic of 10.467 and Max-Eigen Statistic of 10.268 were lower than their corresponding 5% 

critical values, 15.495 and 14.265, respectively. We therefore were unable to reject the null 

hypothesis (𝐻0) that no cointegration equations exist. By implication, this suggested that none of 

the market indices examined in Table 9 shared a long-run relationship with Monthly Commercial 

Positioning. 

Lastly, we used the short-run ARDL model to audit Monthly Commercial Positioning and 𝐼(1) 

variables for short-run Granger-causality. Regression outputs are detailed in Table 10 for causal 

effects running from market index to Monthly Commercial Positioning and Table 11 for causal 

effects in the opposite direction. Results indicated that, given a 1 period lag, Monthly 

Commercial Positioning Granger-causes Consumer Discretionary at the 5% significance level. 

Conversely, S&P 500, Energy, and Materials Granger-cause Monthly Commercial Positioning 
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when lagged 1 period. There are no instances of bidirectional Granger-causality between the 

variables tested. 
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Table 10: Short-run Autoregressive Distributed Lag (ARDL) Model Results 

Dependent 

Variable 
Regressor T-Stat Prob. 

Dependent 

Variable 
Variable T-Stat Prob. 

S
&

P
 5

0
0

 

C 1.795 0.074 

H
ea

lt
h
 C

ar
e 

C 2.498 0.013 

D(S&P500(-1)) -0.706 0.481 D(HealthCare(-1)) -1.609 0.109 

D(S&P500(-2)) 0.363 0.717 D(HealthCare(-2)) 1.134 0.258 

D(N) -0.353 0.725 D(N) -0.462 0.644 

D(N(-1)) -1.271 0.205 D(N(-1)) -1.273 0.204 

D(N(-2)) 0.711 0.478 D(N(-2)) 0.228 0.820 

D
JI

A
 

C 2.198 0.029 

In
d
u
st

ri
al

s 

C 1.631 0.104 

D(DJIA(-1)) -1.009 0.314 D(Industrials(-1)) -1.624 0.106 

D(DJIA(-2)) -0.248 0.804 D(Industrials(-2)) 1.003 0.317 

D(N) -0.413 0.680 D(N) -0.573 0.567 

D(N(-1)) -1.186 0.237 D(N(-1)) -1.049 0.295 

D(N(-2)) 0.762 0.447 D(N(-2)) 1.418 0.158 

N
A

S
D

A
Q

 

C 1.433 0.153 

In
fo

rm
at

io
n
 

T
ec

h
n
o
lo

g
y
 

C 1.208 0.228 

D(NASDAQ(-1)) -0.159 0.874 D(InfoTech(-1)) -0.738 0.461 

D(NASDAQ(-2)) -0.618 0.537 D(InfoTech(-2)) 0.092 0.927 

D(N) 0.088 0.930 D(N) 0.196 0.845 

D(N(-1)) -0.390 0.697 D(N(-1)) -0.718 0.473 

D(N(-2)) 0.406 0.685 D(N(-2)) 0.446 0.656 

C
o
n
su

m
er

 

D
is

cr
et

io
n
ar

y
 

C 2.514 0.013 

M
at

er
ia

ls
 

C 1.277 0.203 

D(ConsDisc(-1)) -2.413 0.017 D(Materials(-1)) -0.396 0.693 

D(ConsDisc(-2)) 0.195 0.845 D(Materials(-2)) 0.547 0.585 

D(N) 0.141 0.888 D(N) -0.502 0.616 

D(N(-1)) -1.968 0.050 D(N(-1)) -0.661 0.509 

D(N(-2)) 0.559 0.577 D(N(-2)) -0.144 0.885 

C
o
n
su

m
er

 S
ta

p
le

s C 2.798 0.006 

R
ea

l 
E

st
at

e 

C 1.389 0.166 

D(ConsStaples(-1)) -1.096 0.274 D(RealEstate(-1)) -0.120 0.904 

D(ConsStaples(-2)) -0.619 0.536 D(RealEstate(-2)) -0.799 0.425 

D(NetMonthly%) -1.513 0.132 D(N) -2.235 0.027 

D(NetMonthly% (-1)) -0.787 0.432 D(N(-1)) -0.263 0.793 

D(NetMonthly% (-2)) 0.344 0.731 D(N(-2)) -1.261 0.209 

E
n
er

g
y
 

C 0.558 0.578 

U
ti

li
ti

es
 

C 1.379 0.169 

D(Energy(-1)) -0.461 0.645 D(Utilities(-1)) 0.267 0.789 

D(Energy(-2)) 1.795 0.074 D(Utilities(-2)) -0.271 0.787 

D(N) -0.320 0.750 D(N) -1.885 0.061 

D(N(-1)) -0.345 0.730 D(N(-1)) 0.925 0.356 

D(N(-2)) 0.923 0.357 D(N(-2)) -0.605 0.546 

F
in

an
ci

al
s 

C 0.648 0.517     

D(Financials(-1)) 0.691 0.490     

D(Financials(-2)) -0.202 0.840     

D(N) -0.053 0.958     

D(N(-1)) -1.420 0.157     

D(N(-2)) 0.565 0.573     

Note: “N” represents Monthly Commercial Positioning 
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Table 11: Short-run Autoregressive Distributed Lag (ARDL) Model Results  

Dependent 

Variable 
Regressor T-Stat Prob. 

Dependent 

Variable 
Variable T-Stat Prob. 

M
o
n
th

ly
 

C
o
m

m
er

ci
al

 

P
o
si

ti
o
n
in

g
 

 
C -0.29002 0.7721 

M
o
n
th

ly
 

C
o
m

m
er

ci
al

 

P
o
si

ti
o
n
in

g
 

 

C -0.097 0.923 

D(N(-1)) 3.887038 0.0001 D(N(-1)) 3.872 0.000 

D(N(-2)) 0.119119 0.9053 D(N(-2)) 0.007 0.995 

D(S&P500) -0.35293 0.7245 D(HealthCare) -0.462 0.644 

D(S&P500(-1)) 1.658635 0.0985 D(HealthCare (-1)) 0.711 0.478 

D(S&P500(-2)) -0.11469 0.9088 D(HealthCare (-2)) -0.634 0.527 

M
o
n
th

ly
 

C
o
m

m
er

ci
al

 

P
o
si

ti
o
n
in

g
 

 

C -0.28608 0.7751 

M
o
n
th

ly
 

C
o
m

m
er

ci
al

 

P
o
si

ti
o
n
in

g
 

 

C -0.230 0.818 

D(N(-1)) 3.872021 0.0001 D(N(-1)) 3.850 0.000 

D(N(-2)) 0.111648 0.9112 D(N(-2)) 0.104 0.918 

D(DJIA) -0.41346 0.6797 D(Industrials) -0.573 0.567 

D(DJIA(-1)) 1.494648 0.1364 D(Industrials(-1)) 1.139 0.256 

D(DJIA(-2)) -0.06797 0.9459 D(Industrials(-2)) 0.153 0.879 

M
o
n
th

ly
 

C
o
m

m
er

ci
al

 

P
o
si

ti
o
n
in

g
 

 

C -0.23835 0.8118 

M
o
n
th

ly
 

C
o
m

m
er

ci
al

 

P
o
si

ti
o
n
in

g
 

 

C -0.249 0.804 

D(N(-1)) 3.896352 0.0001 D(N(-1)) 3.875 0.000 

D(N(-2)) 0.016979 0.9865 D(N(-2)) 0.036 0.971 

D(NASDAQ) 0.088388 0.9296 D(InfoTech) 0.196 0.845 

D(NASDAQ(-1)) 1.496963 0.1358 D(InfoTech(-1)) 1.181 0.239 

D(NASDAQ(-2)) -0.48474 0.6283 D(InfoTech(-2)) -0.104 0.917 

M
o
n
th

ly
 

C
o
m

m
er

ci
al

 

P
o
si

ti
o
n
in

g
 

 

C -0.317 0.751 

M
o
n
th

ly
 

C
o
m

m
er

ci
al

 

P
o
si

ti
o
n
in

g
 

 
C -0.249 0.803 

D(N(-1)) 3.896 0.000 D(N(-1)) 3.929 0.000 

D(N(-2)) 0.123 0.902 D(N(-2)) 0.051 0.959 

D(ConsDisc) 0.141 0.888 D(Materials) -0.502 0.616 

D(ConsDisc(-1)) 1.378 0.170 D(Materials(-1)) 1.832 0.068 

D(ConsDisc(-2)) -0.353 0.725 D(Materials(-2)) -0.213 0.831 

M
o
n
th

ly
 

C
o
m

m
er

ci
al

 

P
o
si

ti
o
n
in

g
 

 

C 0.181 0.856 

M
o
n
th

ly
 

C
o
m

m
er

ci
al

 

P
o
si

ti
o
n
in

g
 

 

C 0.511 0.610 

D(N(-1)) 3.829 0.000 D(N(-1)) 3.178 0.002 

D(N(-2)) -0.058 0.954 D(N(-2)) -0.763 0.446 

D(ConsStaples) -1.513 0.132 D(RealEstate) 0.022 0.982 

D(ConsStaples(-1)) 0.426 0.670 D(RealEstate(-1)) 1.350 0.179 

D(ConsStaples(-2)) -1.008 0.315 D(Realestate(-2)) -0.165 0.869 

M
o
n
th

ly
 

C
o
m

m
er

ci
al

 

P
o
si

ti
o
n
in

g
 

 

C -0.263 0.793 

M
o
n
th

ly
 

C
o
m

m
er

ci
al

 

P
o
si

ti
o
n
in

g
 

 

C 0.106 0.916 

D(N(-1)) 3.872 0.000 D(N(-1)) 3.776 0.000 

D(N(-2)) 0.004 0.997 D(N(-2)) -0.011 0.991 

D(Energy) -0.320 0.750 D(Utilities) -1.885 0.061 

D(Energy(-1)) 2.807 0.005 D(Utilities(-1)) -1.048 0.296 

D(Energy(-2)) 0.348 0.728 D(Utilities(-2)) 0.040 0.968 

M
o
n
th

ly
 

C
o
m

m
er

ci
al

 

P
o
si

ti
o
n
in

g
 

 

C -0.245 0.807     

D(N(-1)) 3.806 0.000     

D(N(-2)) 0.154 0.878     

D(Financials) -0.053 0.958     

D(Financials(-1)) 1.410 0.160     

D(Financials(-2)) 0.472 0.637     

Note: “N” represents Monthly Commercial Positioning 
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Discussion 

Tom McClellan’s May 2011 issue in The McClellan Report serves as the inspiration behind this 

study. In it, McClellan lagged the S&P 500 by 52 weeks and performed a cross-correlation 

analysis between the 2 variables before noting strong synchronous movements for the period 

January 2007 to May 2011. Interestingly, over an even longer time segment of 2000 through 

2019, this correlation exceeds 0.8, making it an exciting one to investigate. 

This paper explores the nexus between net commercial trading activity in the Eurodollar futures 

market and US equity market indices for the period 2000 through 2019. This is examined 

through the lens of a bivariate econometric analysis. More specifically, we used an ARDL Long-

run Form and Bounds Test and the Johansen Cointegration Test to evaluate long-run 

relationships for sets of 𝐼(0) and 𝐼(1) variables and strictly 𝐼(1) variables, respectively. Pursuant 

to this, we employed a dynamic ECM and short-run ARDL model to understand long-run and 

short-run Granger-causality.  

The empirical findings here aim to give the relationship discovered by McClellan more depth. 

First, Communication Services is the only market index that is cointegrated with Monthly 

Commercial Positioning. Furthermore, over the long-run, both variables Granger-cause each 

other. However, this bidirectional relationship disappears in the short-run, during which Monthly 

Commercial Positioning Granger-causes Communication Services given a 1 period lag but not 

vice versa.  

The lack of cointegration between Monthly Commercial Positioning and other market indices 

prohibited us from exploring long-run Granger-causality. Over the short-run, however, we 

observed 1 linkage running from Monthly Commercial Positioning to a market index and 2 

linkages for Granger-causality in the opposite direction. Regarding the former, net commercial 
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trading position in the Eurodollar futures market was found to only Granger-cause the Consumer 

Discretionary index. When observing the latter, S&P 500, Energy, and Materials indices all 

separately Granger-caused the net commercial trading position in the Eurodollar futures market. 

Interestingly, each of these relationships relied on just 1 lag.  

Limitations 

This study’s scope, both in what markets are observed and data are analyzed, introduces 

limitations. For one, mutually exclusive categorization of traders as hedgers or speculators is 

idealistic. Historically, traders who were commercially interested in or exposed to the contract’s 

underlying asset were called hedgers. Those who had no such unit to offset were known to be 

speculators, commonly hedge funds, multi-asset managers, and the like. In practice, however, 

this is not clear cut. In certain unanticipated market conditions, commercial traders may have an 

opinion on futures price levels and speculate accordingly. Separately, they may abandon using 

derivatives altogether, even with exposure to the underlying asset, which would be considered 

speculative in nature. Such behavior was apparent in the NYMEX light sweet crude oil futures 

market for the period 2000 to 2009, as noted in (Buyuksahin and Harris, 2011).  

Data limitations also pose a challenge. The CFTC reports trader positions in weekly intervals. 

This curbs the power of our study’s econometric approach since (i) contract maturity months 

cannot be paired precisely with shifts in Monthly Commercial Positioning and prices and (ii) 

tracing daily changes in Monthly Commercial Positioning is infeasible. This is particularly 

relevant during highly volatile one-day trading sessions (e.g. 2010 Flash Crash), whose price 

swings may not be fully captured. 

Another limitation to consider is the effect an unobserved variable may be having on Monthly 

Commercial Positioning and US stock markets in succession. In one example, this may be the 

effect noncommercial traders have on commercial ones. As mentioned in (Guttmann, 2016), 

https://www.jstor.org/stable/pdf/41323326.pdf?refreqid=excelsior%3A66cbfcdb781306c72f461bbfed890ec5
https://link.springer.com/content/pdf/10.1057%2F9781137529893.pdf
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hedgers sell risk to speculators. (Haigh, Hranaiova, and Overdahl, 2007) found that across US 

energy futures markets, hedge funds were key liquidity providers to other participants. This 

made it seamless for hedgers to transact at their convenience, frequently, and in large volumes 

(Haigh, et al., 2007). In a separate analysis across futures markets for crude oil, natural gas, and 

corn, hedge funds and swap dealers were perceived as liquidity providers and price discoverers 

(Brunetti, Buyuksahin, and Harris, 2015). Periods of sharp pullback among noncommercial 

traders, however, reduced liquidity, inhibited commercial traders from making market entries 

and exits, and distorted price levels (Brunetti, et al., 2015). If such liquidity shocks also led to 

disturbances in equity markets, it is entirely possible that noncommercial traders played a role in 

the movement of both securities. This concept can also be abstracted to any set of variables that a 

coordinate effect on both Monthly Commercial Positioning and any of the US stock market 

indices of interest. 

Future Studies 

Results from this study supplement academic institutions, commercial firms, and the public 

sector in better understanding how trading behavior can affect asset prices. The results from this 

study suggest that commercial traders in the Eurodollar futures market have a minimal effect on 

US stock market activity.  

The conclusion reached in this study raises questions about whether noncommercial trading 

could serve as a more reliable barometer. This class of traders enters positions with a purely 

financial intention. As such, any lagged comovements with US stock market indices could be an 

interesting area to study. Testing this hypothesis could be done using the same methodology 

supplied in this study or an entirely different one guided by past research on noncommercial 

trading.  

https://guides.pm-research.com/content/iijtrading/2007/2/89
https://guides.pm-research.com/content/iijtrading/2007/2/89
https://www.bankofcanada.ca/wp-content/uploads/2015/11/wp2015-42.pdf
https://www.bankofcanada.ca/wp-content/uploads/2015/11/wp2015-42.pdf
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Future studies may also consider analyzing whether trading activity in other Eurocurrency 

futures markets have any lead-lag relationships with equity markets. An example of this would 

be understanding whether any Granger-causality exists between net commercial interest in 

Euroyen futures and the Nikkei 225 index. Similar leader-follower features may be inspected for 

between Euroswiss futures and the Swiss Market Index.  

Another area of further inquiry concerns trading behavior across independently traded interest 

rate derivatives. These studies could span varying lengths of time to see whether relationships 

strengthen or weaken during distinct market episodes. Interest rate futures could include ones 

traded on the CME (e.g., 1-Month SOFR Futures and 30-Day Federal Funds Futures) as well as 

others in overseas markets (e.g. 3-Month Euribor in Europe). Since these securities have unique 

underlying units, researchers may consider testing causal effects with spot markets or a variety of 

other liquid assets.  
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