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Abstract—The increasing adoption of power electronic devices 

may lead to large disturbance and destabilization of future power 

systems. However, stability criteria are still an unsolved puzzle, 

since traditional small-signal stability analysis is not applicable to 

power electronics-enabled power systems when a large 

disturbance occurs, such as a fault, a pulse power load, or load 

switching. To address this issue, this paper presents for the first 

time the rigorous derivation of the sufficient criteria for large-

signal stability in DC microgrids with distributed-controlled DC-

DC power converters. A novel type of closed-loop converter 

controllers is designed and considered. Moreover, this paper is the 

first to prove that the well-known and frequently cited Brayton-

Moser’s mixed potential theory (published in 1964) is incomplete. 

Case studies are carried out to illustrate the defects of Brayton-

Moser’s mixed potential theory and verify the effectiveness of the 

proposed novel stability criteria. 

 
Index Terms—large-signal stability criteria, power electronics-

enabled power systems, distributed-controlled power converters, 

constant power loads, potential theory. 

I. INTRODUCTION 

OWER systems are going through a paradigm shift from 

electric machine-based to power electronics-based, with a 

huge number of different players on the supply side [1]-[3]. 

Nowadays, thousands of distributed energy resources (DERs) 

are being integrated into power systems through power 

electronics components such as solar panels, wind turbines, and 

energy storage systems; however, the integration of numerous 

power electronic components and constant power loads (CPLs) 

destabilizes power systems and leads to critical oscillations. 

Consequently, one of the crucial challenges of this new 

paradigm is to keep the whole power system stable. The 

stability issues faced by DC microgrids are especially severe 

and urgent due to their unique properties. First, the low inertia 

of DC microgrids sharply weakens their stability; and second, 

owing to their advantage of smooth control, DC microgrids are 

unprecedentedly more promising than AC power systems given 

the increasing penetration of DERs. Therefore, the purpose of 

this paper is to solve the stability issues in power-converter-

dominated DC microgrids. 

Recent works related to stability analysis in DC microgrids 

can be categorized according to the type of disturbance and the 

number of converters, as shown in Table I. Most of the stability 

studies of DC microgrids are performed using small-signal and 

linearized models, especially for large-scale DC microgrids 
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with multiple converters and CPLs. However, linearized 

models of microgrids are not always applicable. The first reason 

is that from the perspective of a dynamic system, the power 

converter dynamics can be approximated by a nonlinear state-

space averaging model only if the system bandwidth is well 

below the switching frequency [4]. The challenge here is that 

the feasible region of the averaging model shrinks sharply when 

we perform linearization for nonlinear systems with high 

bandwidth. Moreover, when nonlinear controllers are applied in 

power converters, the system dynamics become even more 

complicated. The second reason is that even though the small-

signal approach is proven to be effective in some cases, it does 

not work well when a large disturbance occurs. The small-

signal-based approach often utilizes classical eigenvalues or 

impedance techniques [5][6], with linearization of nonlinear 

systems and analysis of equilibrium points. The work in [7] 

explores small-signal stability issues in a simplified cascade 

distributed power architecture with a one-line regulating 

converter using phase portraits. Paper [8] analyzes the factors 

that cause the instability of a DC microgrid with multiple 

converters and presents two stabilization methods. In paper [9], 

a converter-based DC microgrid is studied by employing a 

multistage configuration. The authors derive a comprehensive 

small-signal model to analyze the interface power converters in 

each stage and propose virtual impedance-based stabilizers to 

enhance the damping of DC microgrids. 
 

TABLE Ⅰ 
 CLASSIFICATION OF RECENT WORKS ABOUT STABILITY ANALYSIS IN GRIDS  

 

 

Large-signal stability criteria determine the safe operation 

regions of real power systems. A practical application of the 

stability criteria is to ensure safe operation in the event of a large 

disturbance, which is possible in the real operation of DC 

microgrids, such as load switching, pulse power loads, and 

faults. A large-signal stable system is naturally small-signal 

stable; however, the opposite holds only when special 
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disturbance 
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converters 

considered 

Zero/Single 
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[7][10][13] [12][13][14] 

Multiple 

converters 
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prerequisites are satisfied. Some studies covering large-signal 

stability in recent years are discussed as follows. However, 

some large-signal analysis tools introduced in the literature 

either have limited applicable ranges or non-rigorous 

theoretical foundations. In [12], large-signal stability is studied 

in an electrical system with a single converter based on Takagi-

Sugeno multi-modeling [15]. Paper [13] presents the 

destabilizing effect of CPLs on DC microgrids and analyzes 

both their small-signal stability and large-signal stability, 

showing a significant difference between them. That said, only 

one single source and CPL are considered. The work in [14] 

focuses on the large disturbance scenarios in a cascaded system, 

which represents the basic form of a DC microgrid. The authors 

analyze the stability of the cascaded system based on Brayton-

Moser’s mixed potential theory [16] and develop it under the 

consideration of conservatism caused by transient response 

characteristics of the load converter. Paper [17] presents large-

signal stability criteria based on Brayton–Moser’s mixed 

potential of a DC electrical system with multistage LC filters 

and a CPL. However, the conclusions in [14][17] may not be 

sound; our paper verifies that their deployment of Brayton-

Moser’s mixed potential theory actually cannot obtain 

sufficient criteria for nonlinear circuit networks. Moreover, we 

believe that the authors in [18] do not accurately understand 

Brayton-Moser’s mixed potential theory when they apply it to 

deal with large-signal stability issues. Their definition of 

potential is questionable due to its violation of the basic 

property of potential—that is, potential depends only on the 

start point and endpoint, independent of the state trajectories. 

In a nutshell, large-signal stability criteria for DC microgrids 

with multiple converters are still an unsolved puzzle. For the 

first time, this paper presents a systematic and rigorous 

methodology to deal with this problem. The main contributions 

of this paper can be summarized as follows: 

1) To the best of the authors’ knowledge, we are the first to 

present the rigorous derivation of the sufficient criteria for 

large-signal stability in DC microgrids with multiple power 

converters and CPLs. It is worth mentioning that this derivation 

works for many different types of power converters.  

In our DC microgrids model, the novel proposed distributed 

closed-loop converter controllers are considered. It refers to the 

feedback control between converter parameters (e.g., the 

equivalent impedance of converter) and the operation 

parameters of DC microgrids (e.g., node voltage).   
In the real operation of DC microgrids, in order to smooth 

power flow and provide electric power of higher quality, it is 

common to regulate output voltages through the control of 

power converters. Therefore, it is necessary to acquire the 

stability criteria in DC microgrids with controlled power 

converters, which can be treated as a rule of thumb for the stable 

operation of modern DC microgrids. 

2) A novel current-mode control method is proposed to 

regulate node voltages in DC microgrids. It shows superior 

performance over that of droop control in terms of stability and 

steady-state error.  

3) We discuss and debunk the defects of the well-known 

Brayton-Moser’s mixed potential theory [16] and conclude that 

it may not obtain the sufficient criteria of nonlinear circuit 

networks. The findings reveal several flawed studies based on 

this theory since the theory was proposed in 1964.  

4) We investigate the superiority of the proposed large-signal 

stability region over the traditional small-signal stability region 

in DC microgrids. It is observed that the small-signal stability 

region of DC microgrids with high nonlinearity is not reliable 

in our case study. 

The structure of this paper is organized as follows: In section 

Ⅱ, the model of a typical DC microgrid with multiple power 

converters and CPLs is discussed. In section III, we propose a 

novel current-mode converter controller in DC microgrids. 

Section IV presents the sufficient conditions for large-signal 

stability in DC microgrids with distributed-controlled 

converters. In Section V, we reveal the defects of Brayton-

Moser’s potential theory and verify the correctness of our 

methodology. Besides, we compare the large-signal stability 

region solved by the novel proposed methodology and the 

traditional small-signal stability region. The conclusion and 

future work are indicated in section Ⅵ. 

II. MODEL ASSUMPTIONS & PROBLEM DESCRIPTION  

The circuit structure of a generalized DC microgrid with 

multiple converters and CPLs is described in Fig. 1.  
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Fig. 1. The circuit structure of a typical DC microgrid with a CPL. 

 

Without loss of generality, the circuit structure is modeled 

based on the following assumptions: 

1) The power supplies are all constant voltage sources. 

2) The DC-DC converters are employed to step up/down the 

voltage outputs. They can be ideal buck converters or boost 

converters. No parasitic resistance or parasitic capacitance is 

considered. 

3) Every transmission line is modeled as impedance. 

4) The demand side consists of an aggregated CPL and a linear 

resistor. The operation function of the CPL is described as the 

following equation, which is also depicted in Fig. 2. 
 

{

 𝐼𝑃𝐿 = 𝐼𝑚𝑎𝑥 ,  𝑉𝐿 ≤ 𝑉𝑚𝑖𝑛
𝑉𝐿 = 𝑃𝐿/𝐼𝑃𝐿 ,       𝑉𝑚𝑖𝑛 ≤ 𝑉𝐿 ≤ 𝑉𝑚𝑎𝑥
𝑉𝐿 = 𝑉𝑚𝑎𝑥 ,           𝐼𝑃𝐿 <  𝐼𝑚𝑖𝑛

(1) 
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where  𝐼𝑃𝐿  and 𝑉𝐿 are the current and output voltage of the CPL, 

separately. 𝑃𝐿  is the power of the CPL when 𝑉𝑚𝑖𝑛 ≤ 𝑉𝐿 ≤
𝑉𝑚𝑎𝑥. 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 are the lower bound and upper bound of 

output voltage, separately. 𝐼𝑚𝑖𝑛 and  𝐼𝑚𝑎𝑥  are the lower bound 

and upper bound of current, separately. 

A large disturbance often happens when a fault, a pulse 

power load, or load switching occurs in a DC microgrid. 

Unfortunately, traditional small-signal stability analysis cannot 

provide sufficient information to determine the stability of a 

microgrid after such a large disturbance. In this paper, novel 

large-signal stability criteria are proposed to solve this issue. 

Large-signal stability is defined based on the definition of 

Lyapunov global asymptotic stability: There exists at least one 

stable equilibrium point of the dynamic system where any 

subsequent trajectories of the set of initial conditions end up. It 

guarantees that a DC microgrid will always be stable even after 

going through a severe disturbance. 
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Fig. 2. The CPL operation model. 

III. THE MODELING OF DC MICROGRIDS WITH CLOSED-LOOP 

CONVERTER CONTROLLERS  

In DC microgrids, reasonable control of power converters 

enables the regulation of output voltages to smooth the power 

flow and provide electric power with high quality. Recently, 

different schemes of current-mode control for converters have 

been studied due to its unique advantages in current regulation 

[4][19]. Here we suppose that the power converters in the 

microgrid are distributed-controlled in current mode. 

Considering the characteristics of the output port of the switch 

network of the power converters, regardless of whether they are 

buck converters, boost converters, or buck-boost converters, the 

microgrid can be modeled as in Fig. 3, where 𝐼𝑠𝑖(𝑖 = 1,2, … , 𝑁) 
represents a current source. A detailed explanation of the switch 

modeling of power converters can be found in [20].  

The purpose of the distributed control of power converters is 

to regulate capacitor voltage 𝑉𝐶𝑖  to an expected value 𝑉𝑟𝑒𝑓𝑖 , 

through the switching of 𝐼𝑠𝑖  in each branch. Traditionally, 

droop controllers are often utilized to achieve this purpose. 

Here, we propose a novel type of feedback controller and 

deploy it in DC microgrids instead of traditional droop 

controllers. The model of a DC microgrid with the proposed 

converter controllers is depicted in Fig. 4. In each power 

converter, the transfer function of the controller block shown in 

Fig. 5 is specified as follows: 

𝐺(𝑠) =
𝐼𝑠𝑖(𝑠)

𝑉𝑟𝑒𝑓𝑖(𝑠) − 𝑉𝐶𝑖(𝑠)
= 𝑌𝑖𝑛(𝑠) =  

𝑅𝑝𝑖 + 𝑠𝐿𝑞𝑖 + 𝑅𝑞𝑖

𝑅𝑝𝑖(𝑠𝐿𝑞𝑖 + 𝑅𝑞𝑖)

=
1

𝑅𝑝𝑖

𝑠 +
𝑅𝑝𝑖 + 𝑅𝑞𝑖
𝐿𝑞𝑖

𝑠 +
𝑅𝑞𝑖
𝐿𝑞𝑖

(2)

 

 

where 𝑌𝑖𝑛 is the equivalent admittance of the block shown in 

Fig. 5. Usually, 𝑅𝑞𝑖 is designed to be a small resistor, and 𝑅𝑝𝑖 

is designed to be larger than 𝑅𝑞𝑖, i.e., 𝑅𝑝𝑖 ≫ 𝑅𝑞𝑖. 
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Fig. 3. The diagram of a typical DC microgrid under current-mode control. 
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Fig. 5. The equivalent circuit of the proposed converter controller. 
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The DC microgrids with the novel proposed converter 

controllers have the following strengths compared to that with 

traditional droop controllers: 

1) When the microgrid is in steady state, the equivalent 

impedance of the equivalent circuit of the proposed converter 

controllers (i.e. 1/𝑌𝑖𝑛 in Fig. 5) is  
𝑅𝑝𝑖𝑅𝑞𝑖

𝑅𝑝𝑖+𝑅𝑞𝑖
≈ 𝑅𝑞𝑖 due to 𝑅𝑝𝑖 ≫

𝑅𝑞𝑖 . That is to say, the controller can be treated as a small 

resistor, leading to a small steady-state control error compared 

to that of the droop controller with large resistance, e.g. 𝑅𝑝𝑖. 

2) When the microgrid is in transient, the equivalent impedance 

of the equivalent circuit of the proposed controllers (i.e. 1/𝑌𝑖𝑛 

in Fig. 5) is 
𝑅𝑝𝑖(𝑠𝐿𝑞𝑖+𝑅𝑞𝑖)

𝑅𝑝𝑖+𝑠𝐿𝑞𝑖+𝑅𝑞𝑖
, which is nearly as large as 𝑅𝑝𝑖 when 

𝐿𝑞𝑖 is set properly. It leads to the quick attenuation of energy at 

high frequencies, which is beneficial in maintaining the stability 

of the system. This characteristic makes the proposed controller 

superior over the traditional droop controller with small 

resistance, e.g. 𝑅𝑞𝑖. 

Besides the excellent performance of the novel converter 

controller, the similarity in the structure between the novel 

controller and a droop controller also makes it more convenient 

and promising to be developed in DC microgrids in practice. A 

simulation is carried out in section Ⅴ. B to show the superiority 

of the novel proposed controller in detail.  

IV. LARGE-SIGNAL STABILITY CRITERIA IN DC MICROGRIDS 

WITH CLOSED-LOOP CONVERTER CONTROLLERS 

A. Introduction to the Potential of a Complete Circuit 

Definition 1 (Complete circuit [16]) A set of variables 

𝑖1, … , 𝑖𝑟 , 𝑣𝑟+1, … , 𝑣𝑟+𝑠 is called complete if they can be 

independent without leading to a violation of Kirchhoff’s laws 

and if they determine at least one of the two variables, the 

current or the voltage, in each branch. A circuit is called 

complete if the set of variables 𝑖1, … , 𝑖𝑟 , 𝑣𝑟+1, … , 𝑣𝑟+𝑠  is 

complete, where 𝑖1, … , 𝑖𝑟 denote the currents through inductors 

and 𝑣𝑟+1, … , 𝑣𝑟+𝑠 denote the voltage across capacitors. 

Definition 2 (Potential [21]) Define the potential function as 

follows: 

𝑃(𝑖, 𝑣) = ∑ 𝑣𝜇𝑖𝜇

 
 
 
|
 Γ

𝑠

𝜇=𝑟+1

+  ∑   ∫𝑣𝜇𝑑𝑖𝜇

 

Γ

𝑏

𝜇>𝑟+𝑠

(3) 

where 𝑣𝜇  and 𝑖𝜇  are the voltage and the current of the 𝜇 -th 

element, respectively. Regarding the notations of the elements, 

1,2, … , 𝑟  represent inductors; 𝑟 + 1,… , 𝑟 + 𝑠  represent 

capacitors; 𝑟 + 𝑠 + 1,… , 𝑏  represent nonlinear resistors and 

power sources. The integral term is also called current potential. 

The potential of some common elements in circuits is listed in 

the following table. 
TABLE Ⅱ 

THE POTENTIAL OF SEVERAL COMMON ELEMENTS 

 

Capacitor Linear resistor Voltage source 

−𝑣𝜇𝑖𝜇 −1/2𝑖𝜇
2𝑅𝜇 ∫𝑣𝜇𝑑𝑖𝜇

 

Γ

 

 

In the table, 𝑅𝜇  is the resistance of a linear resistor. The 

negative signs come from the generator convention. Besides, 

similar to current potential, the voltage potential is defined as 

follows: 

𝑞(𝑖, 𝑣) = ∑ ∫𝑖𝜇𝑑𝑣𝜇

 

Γ

𝑏

𝜇>𝑟+𝑠

(4) 

A fundamental property of the potential of a circuit is that it 

only depends on the start point and endpoint of the chosen 

integral path whereas it is independent of the path itself, which 

is the same as gravitational potential energy. Moreover, there 

are two facts about the application of circuit potential: 

1) It may not be practical to deal with the stability of a circuit 

with electronic elements with high nonlinearity using potential 

theory. Take the operational amplifier as an example—it 

consists of several highly nonlinear transistors, which causes 

difficulty in solving the equilibria of the system; besides, it has 

a large number of elements aside from the transistors, leading 

to a very complicated potential model. The potential analysis of 

the operational amplifier is questionable and misleading in [18]. 

2) Usually, the potential theory is applied to complete circuits. 

This does not imply that the potential function is not meaningful 

in an incomplete circuit, but sometimes it may not be 

interpreted as conveniently as that in a complete circuit. 

Normally, it is suggested to add capacitors in parallel and 

inductors in series to modify an incomplete circuit to a complete 

circuit. Then the original incomplete circuit can be treated as a 

limiting case of the modified complete circuit. The modification 

and limitation can be justified physically due to existing 

parasitic reactance in circuits.  

B. Sufficient Criteria for Global Asymptotic Stability in DC 

Microgrids with Closed-Loop Converter Controllers   

As mentioned previously, the DC microgrids with the 

proposed closed-loop converter controllers are modeled as Fig. 

4. Since it is an incomplete circuit, we add virtual inductors in 

series to modify it to a complete circuit. Suppose there is a 

virtual inductor 𝐿𝑝𝑖 , whose inductance is zero, in series with 

𝑅𝑝𝑖 in every converter controller. The modified model is shown 

in Fig. 6.  
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Fig. 6. The model of a typical DC microgrid with virtual inductors. 



 

 

5 

Here we consider a simplified CPL model as 

{
𝐼𝑃𝐿 = 𝐼𝑚𝑎𝑥 , 𝑉𝐿 < 𝑉𝑚𝑖𝑛
𝑉𝐿 = 𝑃𝐿/𝐼𝑃𝐿 , 𝑉𝐿 ≥ 𝑉𝑚𝑖𝑛

, where  𝐼𝑃𝐿  and 𝑉𝐿 are the current and 

the output voltage of the CPL, separately. 𝑃𝐿  is the power of the 

CPL when 𝑉𝐿 ≥ 𝑉𝑚𝑖𝑛 . 𝑉𝑚𝑖𝑛 is the lower bound of the output 

voltage.  𝐼𝑚𝑎𝑥  is the upper bound of current. 
 

The potential function of the system in Fig. 6 is written as 

𝑃(𝑖, 𝑣) = {

𝑍(𝑖, 𝑣) + 𝐼𝑚𝑎𝑥(𝑉𝐿 − 𝑉𝑚𝑖𝑛) − 𝑃𝐿 , 𝑉𝐿 < 𝑉𝑚𝑖𝑛

𝑍(𝑖, 𝑣) + ∫
𝑃𝐿
𝑣
𝑑𝑣

𝑉𝐿

𝑉𝑚𝑖𝑛

− 𝑃𝐿 ,                   𝑉𝐿 ≥ 𝑉𝑚𝑖𝑛
(5) 

where 

𝑍(𝑖, 𝑣) = ∑𝑉𝑟𝑒𝑓𝑖

𝑁

𝑖=1

(𝐼𝑝𝑖 + 𝐼𝑞𝑖) −
1

2
∑𝑅𝑝𝑖𝐼𝑝𝑖

2

𝑁

𝑖=1

−
1

2
∑𝑅𝑞𝑖𝐼𝑞𝑖

2

𝑁

𝑖=1

−
1

2
∑𝑅𝑡𝑖𝐼𝑡𝑖

2

𝑁

𝑖=1

−∑𝑉𝐶𝑖(𝐼𝑝𝑖 + 𝐼𝑞𝑖 − 𝐼𝑡𝑖)

𝑁

𝑖=1  

−
𝑉𝐿
2

2𝑅𝐿

−𝑉𝐿 (∑𝐼𝑡𝑖

𝑁

𝑖=1

−
𝑃𝐿
𝑉𝐿
−
𝑉𝐿
𝑅𝐿
)                                                (6)

 

The notations are corresponding to those marked in Fig. 6. The 

dynamic equation of the model in Fig. 6 is described as follows: 

−𝐽
𝑑𝑥

𝑑𝑡
=
𝜕𝑃(𝑥)

𝜕𝑥
(7) 

 

where 𝑥 = [𝑖  𝑣]𝑇,  𝐽 = [
−𝐿 0
0 𝐶

]. 
 

𝑖 = [𝐼𝑝1, 𝐼𝑝2, … , 𝐼𝑝𝑁 , 𝐼𝑞1, 𝐼𝑞2, … , 𝐼𝑞𝑁 , 𝐼𝑡1, 𝐼𝑡2, … , 𝐼𝑡𝑁],  

𝑣 = [𝑉𝐶1, 𝑉𝐶2, … , 𝑉𝐶𝑁 , 𝑉𝐿] , 𝐿  and 𝐶  are diagonal inductance 

matrix and diagonal capacitance matrix, respectively. Under 

this description, whether 𝐽  is positive definite is highly 

dependent on the values of 𝐿 and 𝐶 . Therefore, we prefer to 

seek another expression of this system, which uses (𝑃∗, 𝐽∗) 
instead of (𝑃, 𝐽), such that 

−𝐽∗
𝑑𝑥

𝑑𝑡
=
𝜕𝑃∗(𝑥)

𝜕𝑥
(8) 

 

where 𝐽∗ is always positive definite when the system is stable. 

Through equation transformation and superposition, the pair 

(𝑃∗, 𝐽∗) are obtained as follows: 
 

𝐽∗ = (𝜆𝕀 +
𝜕2𝑃(𝑥)

𝜕𝑥2
𝑀) ∙ 𝐽, 𝑃∗ = 𝜆𝑃 +

1

2
(
𝜕𝑃(𝑥)

𝜕𝑥
,𝑀

𝜕𝑃(𝑥)

𝜕𝑥
)

                                                                                                           (9)

 

where 𝕀 is an identity matrix, 𝑀 is a constant symmetric matrix, 

and 𝜆 is a constant. The derivation of the pair (𝑃∗, 𝐽∗)  is shown 

in Appendix A. 

The following theorem is proposed to point out the sufficient 

conditions for global asymptotic stability in nonlinear circuit 

systems. The proof of Theorem 2 is shown in Appendix B.  

Theorem 2 Given a nonlinear circuit 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥), 

a) Let 𝑃∗: ℛ𝑛 → ℛ be of the class 𝐶1 such that: 

i. −𝐽∗
𝑑𝑥

𝑑𝑡
=

𝜕𝑃∗(𝑥)

𝜕𝑥
 where 𝐽∗ ≻ 0 

ii. 𝑃∗(𝑥)  is radially unbounded, i.e., 𝑃∗(𝑥) → ∞  as 

‖𝑥‖ → ∞ 

iii. 𝐸:= {𝑥 ∈ ℛ𝑛|𝑓(𝑥) = 0} , all equilibria of the 

nonlinear circuit are a compact set. 

then every solution starting in ℛ𝑛 approaches 𝐸 as 𝑡 → ∞. 
 

b) For those points on the set 𝐸 where 𝑃∗ is of class 𝐶2, let 𝑀 =

{ 𝑥 ∈ 𝐸|
𝜕2𝑃∗

𝜕𝑥2
⪰ 0} , then every solution starting in ℛ𝑛 

approaches 𝑀 as 𝑡 → ∞. 

Theorem 2-a ensures that any trajectory of the system starting 

in ℛ𝑛 converges to the set 𝐸; however, it does not determine 

the stability of each equilibrium and cannot clarify which 

equilibrium the trajectory will converge to. Theorem 2-b not 

only determines the stability of every equilibrium but also 

shrinks the invariant set further. Next, we present the derivation 

of the large-signal sufficient criteria using Theorem 2. In this 

paper, we focus on the case where all equilibria of a microgrid 

satisfy 𝑉𝐿 ≥ 𝑉𝑚𝑖𝑛 hence the CPL operates as 𝑉𝐿 = 𝑃𝐿/𝐼𝑃𝐿 . 
 

Condition 0: First we show 𝑃∗: ℛ𝑛 → ℛ is of the class 𝐶1. 

a) 𝑃(𝑖, 𝑣) is continuous at 𝑉 = 𝑉𝑚𝑖𝑛  because 

lim
𝑉→𝑉𝑚𝑖𝑛

∫
𝑃𝐿
𝑣
𝑑𝑣

𝑉

𝑉𝑚𝑖𝑛

= lim
𝑉→𝑉𝑚𝑖𝑛

𝐼𝑚𝑎𝑥(𝑉𝐿 − 𝑉𝑚𝑖𝑛) = 0 (10) 

b) ∇𝑃(𝑖, 𝑣) is continuous at 𝑉 = 𝑉𝑚𝑖𝑛 because 

 
𝜕𝑃

𝜕𝑣
|
𝑣=𝑣𝑚𝑖𝑛

=
𝑃𝐿
𝑉𝑚𝑖𝑛

= 𝐼𝑚𝑎𝑥 (11) 

So 𝑃(𝑖, 𝑣) is of the class 𝐶1. Choose 𝑀 = [2𝐴
−1 0
0 0

]. Then it 

can be concluded that 𝑃∗ is also of the class 𝐶1.  

Second, it is verified that 𝑃∗ is of class 𝐶2 on the set 𝐸 except 

for the operation point (𝑉𝐿 , 𝐼𝑃𝐿) = (𝑉𝑚𝑖𝑛 , 𝐼𝑚𝑎𝑥), considering the 

characteristics of all circuit elements in our model.  
 

Condition 1: −𝐽∗
𝑑𝑥

𝑑𝑡
=

𝜕𝑃∗(𝑥)

𝜕𝑥
 where 𝐽∗ ≻ 0. This condition is 

to ensure that the gradient of the potential function 𝑃∗(𝑥) is 

negative, i.e., 𝑃∗̇(𝑥) =
𝜕𝑃∗(𝑥)

𝜕𝑥
∙
𝑑𝑥

𝑑𝑡
< 0. It guarantees that state 

variable 𝑥 goes along the direction in which 𝑃∗(𝑥) decreases. 

Based on this condition, we derive the first condition for global 

asymptotic stability shown as follows.  

𝜎𝑚𝑎𝑥(𝐿
1/2𝐴−1𝛾𝐶−1/2) < 1 (12) 

The derivation can be found in Appendix C. 
 

Condition 2: 𝑃∗(𝑥) is radially unbounded, i.e., 𝑃∗(𝑥) → ∞ as 

‖𝑥‖ → ∞. 
This condition will be checked directly in specific circuits.  
 

Condition 3: 𝐸:= {𝑥 ∈ ℛ𝑛|𝑓(𝑥) = 0} , all equilibria of the 

nonlinear circuit form a compact set. 

Consider the system in equation (8) again. We note that the 

equilibria of the system are exactly the stationary points of 

𝑃∗(𝑥), i.e., 𝜕𝑃∗(𝑥)/𝜕𝑥 = 0. Since the number of the equilibria 

in a circuit system is finite, 𝐸 is a compact set. 

Condition 4: Solve 𝑀 = { 𝑥 ∈ 𝐸|
𝜕2𝑃∗

𝜕𝑥2
⪰ 0}. This condition is 

deployed to distinguish between stable equilibria and unstable 

ones. Then we solve this condition in detail: 

  
𝜕2𝑃∗(𝑥)

𝜕𝑥2
|
𝑥=𝑥𝑒

⪰ 0 (13) 

where 𝑥𝑒 = (𝑖𝑒 , 𝑣𝑒) are equilibria in a microgrid.  
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Rewrite 𝑃 (𝑥) ( 𝑉𝐿 ≥ 𝑉𝑚𝑖𝑛) in equation (5) in this form: 

𝑃(𝑖, 𝑣) = −
1

2
(𝑖, 𝐴𝑖) + 𝐵(𝑣) + (𝑖, 𝛾𝑣 − 𝛼) (14) 

where 𝑖 = [𝐼𝑝1, 𝐼𝑝2, … , 𝐼𝑝𝑁 , 𝐼𝑞1, 𝐼𝑞2, … , 𝐼𝑞𝑁 , 𝐼𝑡1, 𝐼𝑡2, … , 𝐼𝑡𝑁]3𝑁×1,  

𝑣 = [𝑉𝐶1, 𝑉𝐶2, … , 𝑉𝐶𝑁 , 𝑉𝐿](𝑁+1)×1,  

𝛾 = [

−𝕀𝑁×𝑁 0𝑁×1
−𝕀𝑁×𝑁
𝕀𝑁×𝑁

0𝑁×1
−1𝑁×1

]

(3𝑁)×(𝑁+1)

, 

𝐴 = 𝑑𝑖𝑎𝑔[𝑅𝑝1, … , 𝑅𝑝𝑁 , 𝑅𝑞1, … , 𝑅𝑞𝑁 , 𝑅𝑡1, … 𝑅𝑡𝑁] = 

𝑑𝑖𝑎𝑔[𝑅𝑝, 𝑅𝑞 , 𝑅𝑡]. 
 

According to equation (9) we have  

𝑃∗ = 𝜆𝑃 +
1

2
(
𝜕𝑃(𝑥)

𝜕𝑥
,𝑀

𝜕𝑃(𝑥)

𝜕𝑥
) (15) 

 

Therefore, given 𝜆 = 1, 𝑀 = [2𝐴
−1 0
0 0

]， we have 

 

 
𝜕2𝑃∗(𝑥)

𝜕𝑥2
|
𝑥=𝑥𝑒

=   
𝜕2𝑃 (𝑥)

𝜕𝑥2
+
𝑑(
𝜕2𝑃 (𝑥)
𝜕𝑥2

𝑀
𝜕𝑃(𝑥)
𝜕𝑥

)

𝑑𝑥
|

𝑥=𝑥𝑒

(16) 

Since 

𝜕2𝑃 (𝑥)

𝜕𝑥2
|
𝑥=𝑥𝑒

= [

−𝐴 𝛾

𝛾𝑇  
𝜕2𝐵(𝑣)

𝜕𝑣2
]|

𝑣=𝑣𝑒

(17) 

 

 
𝜕𝑃(𝑥)

𝜕𝑥
|
𝑥=𝑥𝑒

= [

−𝐴𝑖 + 𝛾𝑣 − 𝛼

 
𝜕  𝐵(𝑣)

𝜕𝑣
+ 𝛾𝑇𝑖

]|

𝑣=𝑣𝑒

(18) 

 

where 𝑥 = [𝑖  𝑣]𝑇 and 𝑣𝑒  notates 𝑣  in steady state, then 

equation (13) is calculated as: 
 

 
𝜕2𝑃∗(𝑥)

𝜕𝑥2
|
𝑥=𝑥𝑒

=  [

𝐴 −𝛾

−𝛾𝑇
𝜕2𝐵(𝑣)

𝜕𝑣2
+ 2𝛾𝑇𝐴−1𝛾

]|

𝑣=𝑣𝑒

⪰ 0(19) 

 

According to the Schur complement condition for positive 

semi-definiteness, if 𝐴 ≻ 0,  𝑋 is positive semi-definite if and 

only if 𝑋/𝐴 is positive semi-definite, where 𝑋 is a symmetric 

matrix given by 𝑋 = [
𝐴 𝐵
𝐵𝑇 𝐶

] , 𝑋/𝐴 = 𝐶 − 𝐵𝑇𝐴−1𝐵  is the 

Schur complement of 𝐴.  

In equation (19), we know 𝐴 = 𝑑𝑖𝑎𝑔([𝑅𝑝, 𝑅𝑞 , 𝑅𝑡]) ≻ 0. Hence, 

equation (19) can be converted as follows: 
 

 
𝜕2𝐵(𝑣)

𝜕𝑣2
+ 𝛾𝑇𝐴−1𝛾|

𝑣=𝑣𝑒

⪰ 0 (20) 

 

That is to say, condition (13) can be solved by  
 

 
𝜕2𝐵(𝑣)

𝜕𝑣2
+ 𝛾𝑇𝐴−1𝛾|

𝑣=𝑣𝑒

⪰ 0 (21) 

Considering that 

 
𝜕2𝐵(𝑣)

𝜕𝑣2
|
𝑣=𝑣𝑒

= [

0𝑁×𝑁 0𝑁×1

01×𝑁
1

𝑅𝐿
−
𝑃𝐿
𝑣𝑒
2

] (22) 

 𝛾𝑇𝐴−1𝛾|𝑣=𝑣𝑒 =

[
 
 
 
 
 
⋱   

 
1

𝑅𝑝𝑖
+
1

𝑅𝑞𝑖
+
1

𝑅𝑡𝑖
 

  ⋱

⋮

 −
1

𝑅𝑡𝑖
⋮

⋯     −
1

𝑅𝑡𝑖
                ⋯   ∑

1

𝑅𝑡𝑖

𝑁

𝑖=1 ]
 
 
 
 
 

(23) 

 

We notate 𝑈 = 𝑑𝑖𝑎𝑔[
1

𝑅𝑝1
+

1

𝑅𝑞1
+

1

𝑅𝑡1
, … ,

1

𝑅𝑝𝑁
+

1

𝑅𝑞𝑁
+

1

𝑅𝑡𝑁
], 

𝑉 = [−
1

𝑅𝑡1
⋯ −

1

𝑅𝑡𝑁
], 𝑊 =

1

𝑅𝐿
−

𝑃𝐿

𝑣𝑒
2 + ∑

1

𝑅𝑡𝑖

𝑁
𝑖=1 . 

 

Then we have 

 
𝜕2𝐵(𝑣)

𝜕𝑣2
+ 𝛾𝑇𝐴−1𝛾|

𝑣=𝑣𝑒

= [𝑈 𝑉𝑇

𝑉 𝑊
] (24) 

 

Use the Schur complement for positive semi-definiteness: 

since 𝑅𝑝1, … , 𝑅𝑝𝑁, 𝑅𝑞1, … , 𝑅𝑞𝑁, 𝑅𝑡1, … , 𝑅𝑡𝑁 are all positive, 

𝑈 ≻ 0 holds. Therefore, we have 
 

 
𝜕2𝐵(𝑣)

𝜕𝑣2
+ 𝛾𝑇𝐴−1𝛾|

𝑣=𝑣𝑒

⪰ 0 ⟺ det(𝑊 − 𝑉𝑈−1𝑉𝑇) ≥ 0(25) 

 

Considering that 

det(𝑊 − 𝑉𝑈−1𝑉𝑇) = 𝑊 −∑
1

𝑅𝑡𝑖
2 (

1
𝑅𝑝𝑖

+
1
𝑅𝑞𝑖

+
1
𝑅𝑡𝑖
)

𝑁

𝑖=1

≥ 0(26) 

condition (13) is solved by  

𝑊 −∑
1

𝑅𝑡𝑖
2 (

1
𝑅𝑝𝑖

+
1
𝑅𝑞𝑖

+
1
𝑅𝑡𝑖
)

𝑁

𝑖=1

≥ 0 (27) 

 

where 𝑊 =
1

𝑅𝐿
−

𝑃𝐿

𝑣𝑒
2 +∑

1

𝑅𝑡𝑖

𝑁
𝑖=1 . 

 

In conclusion, the sufficient criteria for global asymptotic 

stability of a DC microgrid with distributed closed-loop 

converter controllers are shown as follows: 

a). 𝑃∗(𝑥) is radially unbounded, i.e. 
 

 𝑃∗(𝑥) → ∞ as ‖𝑥‖ → ∞. (28) 

b). 

{
 
 

 
 𝜎𝑚𝑎𝑥(𝐿

1/2𝐴−1𝛾𝐶−1/2) < 1

𝑊 −∑
1

𝑅𝑡𝑖
2 (

1
𝑅𝑝𝑖

+
1
𝑅𝑞𝑖

+
1
𝑅𝑡𝑖
)

𝑁

𝑖=1

≥ 0 (29) 

where 𝜎𝑚𝑎𝑥(∙)  is the largest singular value, 𝑊 =
1

𝑅𝐿
−

𝑃𝐿

𝑣𝑒
2 +

∑
1

𝑅𝑡𝑖

𝑁
𝑖=1 .  

To illustrate the difference between our proposed large-

signal stability criteria and that proposed in Brayton-Moser’s 

theory [16], the comparison results are listed in Table Ⅲ. It is 

seen from the table that Brayton-Moser’s theory does not 

consider condition 0, condition 3, and condition 4. Generally, it 

shows two defects: first, it ignores that 𝑃∗ should be defined as 

𝑃∗: ℛ𝑛 → ℛ and be of the class 𝐶1, 𝐶2. Considering the most 

common CPL model which only considers the hyperbolic 

operation function as 𝑉 = 𝑃/𝐼(𝑉 > 0, 𝐼 > 0), it is not defined 

at 𝑉 = 0  or 𝐼 = 0 , which means Brayton-Moser’s theory 
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actually cannot work on it. Besides, 
𝜕2𝑃∗(𝑥)

𝜕𝑥2
 will not exist if 𝑃∗ 

is not guaranteed to be of the class 𝐶1, 𝐶2. Second, Brayton-

Moser’s theory only determines the sufficient conditions for the 

convergence to the set 𝐸 which includes all equilibria; however, 

it does not indicate which equilibrium the system will converge 

to. In the real operation of a microgrid, it is critical to clarify the 

stability of every equilibrium point and to ensure that the 

system converges to the expected equilibrium. Condition 4 

proposed in our method solves this issue. The system will 

converge only to where condition 4 is satisfied.  

 

TABLE Ⅲ 

COMPARISON BETWEEN DIFFERENT STABILITY CRITERIA  

 

Conditions considered 

The 

novel 

proposed 

method 

Brayton-

Moser’s 

method 

Condition 0: 𝑃∗ is of class 𝐶1; 𝑃∗ 

is of class 𝐶2 on the set 𝐸 except 

for the point (𝑉𝐿 , 𝐼𝑃𝐿) =
(𝑉𝑚𝑖𝑛 , 𝐼𝑚𝑎𝑥) 

✓  

Condition 1: 𝐽∗ ≻ 0 ✓ ✓ 

Condition 2:  𝑃∗ is radially 

unbounded 
✓ ✓ 

Condition 3: all equilibrium points 

of the system form a compact set 
✓  

Condition 4:  
𝜕2𝑃∗(𝑥)

𝜕𝑥2
|
𝑥=𝑥𝑒

⪰ 0 ✓  

 

Although the above large-signal stability criteria are 

proposed for the DC microgrids with closed-loop converter 

controllers, it also can be tailored to fit for the DC microgrids 

with open-loop converter controllers. Compared to the closed-

loop converter controller, the open-loop converter controller 

refers to no feedback control between converter parameters and 

operation parameters of a DC microgrid. The derivation is 

skipped here. 

V. CASE STUDY 

The case study consists of four parts, which correspondingly 

verify our four contributions indicated in the introduction of this 

paper. The above derivation obtains the sufficient conditions for 

large-signal stability in a DC microgrid, which benefits the 

design and operation of a stable DC microgrid. The main steps 

of the implementation of the proposed stability analysis in 

practice are shown as follows. 
 

Algorithm 1: The Novel Proposed Stability Analysis of a DC 

microgrid in Practice 

Step 1: Extract a circuit model from a practical DC microgrid 

Step 2: Calculate the potential function of the circuit model 

Step 3: Solve the proposed potential-based sufficient conditions 

for large-signal stability using equation (28)(29) 

Step 4: Obtain the ranges of microgrid parameters for the global 

stability of the DC microgrid 

 

A. Verification of the Proposed Large-Signal Stability 

Criteria in DC Microgrids  

A simulation model is built as depicted in Fig. 7 to verify the 

correctness of our proposed stability criteria. The simulation 

parameters are set as shown in Table Ⅳ. Here, we explore the 

performance of the proposed stability criteria through the 

sensitivity analysis of the power of CPL 𝑃𝐿 . It is determined that 

there exists a theoretical stability boundary around 𝑃𝐿 = 805𝑊 

using our proposed stability criteria. A checklist of parts of data 

points is shown in Table Ⅴ. Then we test these data points using 

Matlab/Simulink to show the correspondence between the 

simulation results and the theoretical results derived from our 

proposed stability criteria. The voltage at PoL is measured to 

reflect the stability of the system, as shown in Fig. 8. 
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Fig. 7. The simulation model of a DC microgrid with distributed converter 

controllers. 
 

TABLE Ⅳ 

SIMULATION PARAMETERS 

(The unit: V, H, F, Ohm, W) 

 

𝐿𝑞1 1.0 𝐿𝑡1 0.5 𝐿𝑞2 1.0 𝐿𝑡2 0.5 𝐶𝐿 1.0 

𝑅𝑞1 0.9 𝑅𝑡1 3.0 𝑅𝑞2 0.9 𝑅𝑡2 3.0 𝑃𝐿 800 

𝑅𝑝1 0.6 𝐶𝑏1 5.0 𝑅𝑝2 0.6 𝐶𝑏2 5.0 𝑅𝐿 2.0 

𝑉𝑠1 100 𝑉𝑠2 100       

 
TABLE Ⅴ 

THE CHECKLIST OF TEST DATA 

 

𝑃𝐿(W) 800 805 810 825 

Check: whether the stability criteria 

(28)(29) are satisfied by the system 

parameters (Yes/No) 

Yes Yes No No 

 

The system starts to operate at 𝑡 = 0𝑠. It is observed from 

Fig. 8 that the voltage at PoL rises quickly from 0V to the 

steady-state value (about 55V) and then keeps stable until the 

CPL is plugged into the system at 𝑡 = 20𝑠. After the CPL is 

plugged in, the system maintains stability when 𝑃𝐿 = 800𝑊 

and 𝑃𝐿 = 805𝑊 , whereas it oscillates severely when 𝑃𝐿 =
825𝑊. Notably, the system is instable but very approaching the 

stable state when 𝑃𝐿 = 810𝑊, which is nearby the critical state. 

The simulation results completely correspond to the theoretical 

results in Table Ⅴ, which verifies the correctness of our 

proposed stability criteria. 
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Fig. 8. The voltage at PoL in the model with different power of CPL. 
 

The above simulation is based on the averaging model of 

power converters. Next, we show another example with the 

switching model of power converters to make the discussion 

more convincing and comprehensive. The diagram of the 

simulation is shown in Fig. 9 and the simulation parameters are 

as shown in Table Ⅵ. The simulation platform is PLECS. The 

system starts to operate at 𝑡 = 0𝑠, and the CPL is plugged in at 

𝑡 = 3𝑠.  
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Fig. 9. The simulation diagram of a DC microgrid with the switching 

model of converters. 

 

TABLE Ⅵ 
SIMULATION PARAMETERS  

(The unit: V, H, F, Ohm, W) 

 

𝑉1 200 𝐿1 10-3 𝐶𝑏1 0.1 𝐿𝑡1 0.5 𝑅𝑡1 4.0 

𝑉2 200 𝐿2 10-3 𝐶𝑏2 0.1 𝐿𝑡2 0.5 𝑅𝑡2 4.0 

𝑉𝑠1 100 𝑉𝑠2 100 𝐶𝐿 0.1 𝑃𝐿 500 𝑅𝐿 20 

 

On one hand, it is theoretically verified that the system is 

stable since the proposed stability criteria are satisfied by the 

simulation parameters in Table Ⅵ. On the other hand, it can be 

concluded from the simulation results that the system is stable 

after going through startup and the plug-in of CPL. The 

dynamic responses of  the load current 𝐼𝐿  and the voltage at PoL 

𝑉𝐿 are shown in Fig. 10 (a).  

 
      (a)                                           (b) 

 

Fig. 10. (a) The dynamic responses of the system with the switching model 

of converters; (b) The dynamic responses of the system with the averaging 

model of converters. 

 

Moreover, we compare the dynamic responses of the system 

using the switching model in Fig. 9 and that using the averaging 

model. The diagram and the simulation parameters of the 

system using the averaging model are shown in Fig. 7 and Table 

VII, respectively. Figure 10 (b) presents the dynamic responses 

of the system using the averaging model, which exhibits an 

excellent agreement with that using the switching model under 

much smaller computational complexities. It can be concluded 

that it is reasonable to employ the averaging model instead of 

the switching model to simplify the model of a DC microgrid.  
 

TABLE Ⅶ 
SIMULATION PARAMETERS   

(The unit: V, H, F, Ohm, W) 

 

𝐿𝑞1 0.01 𝐿𝑡1 0.5 𝐿𝑞2 0.01 𝐿𝑡2 0.5 𝐶𝐿 0.1 

𝑅𝑞1 0.9 𝑅𝑡1 4.0 𝑅𝑞2 0.9 𝑅𝑡2 4.0 𝑅𝐿 20 

𝑅𝑝1 0.6 𝐶𝑏1 0.1 𝑅𝑝2 0.6 𝐶𝑏2 0.1 𝑃𝐿 500 

𝑉𝑠1 100 𝑉𝑠2 100       

B. The Superiority of the Novel Proposed Converter 

Controllers 

In this section, a MATLAB/Simulink-based model of Fig. 4 

is built to demonstrate the superiority of the novel proposed 

closed-loop converter controllers. Here, we choose a traditional 

droop controller as a benchmark. The simulation results of the 

stability analysis of a small-scale microgrid with different 

controllers are presented.  

The simulation model is built as depicted in Fig. 11. In two 

different simulation scenarios, we deploy the novel proposed 

controllers and droop controllers in our model separately. The 

steady-state circuit of the model with the proposed controllers 

is kept equivalent to that with droop controllers. The CPL is 

plugged in at 𝑡 = 5𝑠. The simulation parameters are shown in 
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the following table. The dynamic responses of the model using 

different controllers are shown in Fig. 12. 
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Fig. 11.  The simulation model of a DC microgrid with different controllers. 

 

TABLE Ⅷ 
SIMULATION PARAMETERS  

(The unit: V, H, F, Ohm, W) 
 

𝐿𝑞1 2.0 𝐿𝑡1 0.5 𝐿𝑞2 2.0 𝐿𝑡2 0.5 𝐶𝐿 0.05 

𝑅𝑞1 1.25 𝑅𝑡1 0.01 𝑅𝑞2 1.25 𝑅𝑡2 0.01 𝑅𝐿 10 

𝑅𝑝1 5.0 𝐶𝑏1 0.01 𝑅𝑝2 5.0 𝐶𝑏2 0.01 𝑃𝐿 530 

𝑉𝑠1 100 𝑉𝑠2 100 𝑅𝑝𝑑1 1.0 𝑅𝑝𝑑2 1.0   

 

    
 

Fig. 12. The dynamic response of the voltage at PoL in the microgrid model. 

First, during the startup of the system, it is observed that the 

novel proposed controller has quite a lower overshoot than the 

droop controller, which improves the stability of the system 

during its startup. Comparatively, the droop controller is not 

stable until going through more than three cycles, leading to 

severe oscillation. Second, when the CPL is plugged in (𝑡 =
5 𝑠), the voltage drops suddenly to around 78V. During the next 

seconds, the voltage is going back to about 92V with the help 

of different controllers. Compared to the oscillation caused by 

the droop controller, the novel proposed controller realizes a 

smoother dynamic response, a smaller overshoot, and smaller 

deviations in the procedure from 78V to 92V, which shows the 

superiority of the novel proposed controller.  

In conclusion, it can be seen from the simulation that the 

novel proposed controller ensures a smaller voltage overshoot 

and smaller voltage deviations than the droop controller, which 

acquires a smoother and more stable dynamic response of the 

voltage at PoL. The proposed controller successfully 

overcomes the dilemma of a traditional droop controller, which 

has to balance the tradeoff between a large overshoot and large 

steady-state errors. 

C. Defects of Brayton-Moser’s Mixed Potential Theory  

In this section, we present an example where Brayton-

Moser’s mixed potential theory [16] cannot obtain sufficient 

criteria for the stability of nonlinear circuits, using a second-

order RLC circuit as depicted in Fig. 13. Suppose 𝑅𝐿  is a 

constant negative resistor, i.e.,  𝑅𝐿 < 0.  On one hand, the 

constant negative resistor 𝑅𝐿 is different from the property of 

the CPL model, since the CPL model is equivalent to an 

incremental negative resistor; on the other hand, the constant 

negative resistor 𝑅𝐿  has similar characteristics to the CPL––

probably leading to the instability of a circuit. The advantage of 

this model is that it presents similar characteristics to nonlinear 

circuits in terms of instability with lower computational costs. 

+
-

RLC

L R IL

+

-
VC

Vs

 
 

Fig. 13. The model of a second-order RLC circuit. 

 

First of all, we solve the stability region of the circuit in Fig. 

13 using a classic method based on the root analysis of the 

transfer function. The purpose of this step is to provide a correct 

stability region as a benchmark. Although this classic method 

is often utilized to obtain the small-signal stability region, it is 

applicable to determine the large-signal stability region for 

linear systems. In fact, the small-signal stability region is the 

same as the large-signal stability region in linear systems. The 

circuit model in Fig. 13 is a linear system with no doubt.  

The transfer function 𝐻(𝑠) of the circuit model is as follows:  

𝐻(𝑠) =
𝐼𝐿
𝑉𝑠
=

1

𝑅 + 𝑠𝐿 +
1/𝑠𝐶 ∙ 𝑅𝐿
1/𝑠𝐶 + 𝑅𝐿

=
𝐶𝑅𝐿(𝑠 + 1/𝐶𝑅𝐿)

𝑠2𝐿𝐶𝑅𝐿 + 𝑠(𝐿 + 𝐶𝑅𝐿𝑅) + 𝑅𝐿 + 𝑅
(30)

 

 

The sufficient criteria for the stability of circuits are that both 

poles of the transfer function have non-positive real parts (the 

two poles cannot be zero at the same time) .  Since 𝑅𝐿 < 0 , 

according to the characteristics of the quadratic function, we 

obtain 

𝑟𝑒𝑎𝑙(𝑠1) < 0, 𝑟𝑒𝑎𝑙(𝑠2) < 0  ⇒  {
𝐿 + 𝐶𝑅𝐿𝑅 < 0
𝑅𝐿 + 𝑅 < 0

 (31) 
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Then we obtain the stability region as follows: 
𝐿

𝐶|𝑅𝐿|
< 𝑅 < |𝑅𝐿| (32) 

 

This result is treated as a benchmark to show the defects in 

Brayton-Moser’s mixed potential theory. 

Next, we make a comparison between the stability criteria 

derived from Brayton-Moser’s potential theory and that derived 

from our proposed criteria, which is shown in Table Ⅸ. The 

derivation of the stability criteria is in Appendix D. 
 

TABLE Ⅸ 
STABILITY CRITERIA USING DIFFERENT METHODS  

 

Method Stability region 

Root analysis (benchmark) 
𝐿

𝐶|𝑅𝐿|
< 𝑅 < |𝑅𝐿| (33) 

Brayton-Moser’s theory {𝜙} (34) 

The novel proposed criteria  
𝐿

𝐶|𝑅𝐿|
< 𝑅 < |𝑅𝐿| (35) 

 

where {𝜙} represents the empty set. At the beginning of section 

Ⅴ.C, we explain the reason that the root analysis is utilized as a 

benchmark in large-signal stability analysis. It can be seen from 

equation (34) that Brayton-Moser’s mixed potential theory 

cannot provide sufficient conditions for large-signal stability, 

even for a typical linear second-order RLC circuit. Therefore, 

we conclude that Brayton-Moser’s theory cannot solve stability 

criteria in nonlinear circuits, such as the circuits with CPLs. 

Comparatively, condition (35) is the same as the result solved 

in the complex frequency domain.  

In conclusion, Brayton-Moser’s mixed potential theory 

cannot obtain sufficient criteria for stability in linear circuits 

and nonlinear circuits. Besides, considering this illustrative 

example and the simulation in section Ⅴ. A, it is demonstrated 

that the novel proposed method solves the stability criteria 

rigorously and works well on both linear circuits and nonlinear 

circuits. 

D. The Superiority of a Large-Signal Stability Region over a 

Small-Signal Stability Region 

 In this section, we compare the large-signal stability region 

and the small-signal stability region of a microgrid model to 

demonstrate the significance of large-signal stability and its 

superiority over small-signal stability, taking the model shown 

in Fig. 4 as an example.  

First, we formulate the small-signal stability analysis of the 

model in Fig. 4. Notate the current of the inductor 𝐿𝑞𝑖 by 𝐼𝑞𝑖; 

other notations are as marked in Fig. 4. Then the dynamic 

equations 𝐹(… 𝐼𝑞𝑖 … ,… 𝐼𝑡𝑖 … ,…𝑉𝐶𝑖 … , 𝑉𝐿)  of the microgrid 

model in Fig. 4 are as follows: 

 

{
 
 
 
 

 
 
 
 𝐿𝑞𝑖

𝑑𝐼𝑞𝑖

𝑑𝑡
= −𝐼𝑞𝑖𝑅𝑞𝑖 + 𝑉𝑟𝑒𝑓𝑖 − 𝑉𝐶𝑖

𝐶𝑏𝑖
𝑑𝑉𝐶𝑖
𝑑𝑡

=
𝑉𝑟𝑒𝑓𝑖 − 𝑉𝐶𝑖

𝑅𝑃𝑖
+ 𝐼𝑞𝑖 − 𝐼𝑡𝑖

𝑉𝐶𝑖 − 𝑉𝐿 = 𝐿𝑡𝑖
𝑑𝐼𝑡𝑖
𝑑𝑡

+ 𝑅𝑡𝑖𝐼𝑡𝑖

𝐶𝐿
𝑑𝑉𝐿
𝑑𝑡

=∑ 𝐼𝑡𝑖
𝑁

𝑖=1
−
𝑃𝐿
𝑉𝐿
−
𝑉𝐿
𝑅𝐿

 (36) 

 

We notate the steady-state voltage at PoL by 𝑉𝐿
∗ , which is 

solved by the following equations: 
 

 

{
 
 

 
 𝑉𝑟𝑒𝑓𝑖 − 𝐼𝑠𝑖𝑅𝑒𝑞𝑖 =

𝑃𝐿

∑ 𝐼𝑡𝑖 −
𝑉𝐿
∗

𝑅𝐿
𝑁
𝑖=1

𝑅𝑒𝑞𝑖 =
𝑅𝑝𝑖𝑅𝑞𝑖

𝑅𝑝𝑖+𝑅𝑞𝑖
+ 𝑅𝑡𝑖

,         ∀𝑖 ∈ {1,2, … , 𝑁} (37) 

 

Then the stability of the model is determined by  
 

𝜆(𝐽(𝐹(… 𝐼𝑞𝑖 … ,… 𝐼𝑡𝑖 … ,…𝑉𝐶𝑖 … , 𝑉𝐿))|𝑉𝐿=𝑉𝐿∗) (38) 
 

where 𝜆(∙)  represents eigenvalues and 𝐽(∙)  is the Jacobian 

matrix. If all eigenvalues have negative real parts, the system 

will be stable; otherwise, the system will be unstable. 

In small-signal stability analysis, the stability region depends 

on the enormous parameters of the microgrid model, which may 

lead to the curse of high-dimensionality and the difficulty in 

visualization. Therefore, we study the influence of the 

parameters 𝑃𝐿  and 𝐶𝐿 on the stability region as an example to 

illustrate the difference between a small-signal stability region 

and a large-signal stability region. The small-signal stability 

region is shown in Fig. 14(a). The large-signal stability region 

is obtained using the novel proposed stability criteria, as 

depicted in Fig. 14(b). 
 

 
                                        (a)                                      (b) 

 

Fig. 14. (a) The small-signal stability region; (b) large-signal stability 

region. 
 

A simulation is carried out at the data point (𝑃𝐿 , 𝐶𝐿) =
(1500𝑊, 0.07𝐹), which is marked as a green rhombus in Fig. 

14. The dynamic response of the voltage at PoL is shown in Fig. 

15. It is observed that the voltage oscillates severely after the 
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CPL is plugged into the system. The simulation results show 

great correspondence with the theoretical results in Fig. 10 (b). 

We conclude that a small-signal stability region is not reliable 

in a DC microgrid; a large-signal stable system is naturally 

small-signal stable, but the opposite is hard to determine.  

 
 

Fig. 15. The dynamic response of the voltage at PoL in a microgrid model. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we rigorously derive the sufficient criteria for 

large-signal stability in the DC microgrid with distributed-

controlled power converters. To the best of the authors’ 

knowledge, this systematic methodology is proposed for the 

first time. The acquisition of the sufficient criteria for global 

asymptotic stability is derived from Tellegen’s theorem [22] 

and stability theories. Additionally, we present a novel 

distributed control method for power converters in a DC 

microgrid, which exhibits better performance than traditional 

droop control. The proposed controller is studied using its 

equivalent circuit model. Our future work will also investigate 

the performance comparison between our proposed controller 

and more advanced droop controllers such as [23]. Moreover, 

this paper reveals the defects of Brayton-Moser’s mixed 

potential theory, which has been applied extensively since it was 

proposed in 1964. We also mention the important characteristics 

of the potential function, which are often utilized misleadingly 

in previous studies. Hardware tests will be implemented for 

further studies. Lastly, considering the fact that distributed 

generators can work in either current mode or voltage mode in 

practice, we will extend our research to fit for the DC microgrid 

with distributed generators in different operation modes and 

with more complicated interconnections.   
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APPENDIX A. 

 

The original dynamics of a complete circuit system is as 

follows: 

−𝐽
𝑑𝑥

𝑑𝑡
=

𝜕𝑃(𝑥)

𝜕𝑥
(1) 

 

where 𝑥 = [𝐼 𝑉]𝑇 , 𝐽 = [
−𝐿 0
0 𝐶

].  

 

Suppose a pair (𝑃∗, 𝐽∗) satisfies 

 

𝐽∗ = (𝜆𝕀 +
𝜕2𝑃(𝑥)

𝜕𝑥2
𝑀) ∙ 𝐽,  𝑃∗ = 𝜆𝑃 +

1

2
(
𝜕𝑃(𝑥)

𝜕𝑥
,𝑀

𝜕𝑃(𝑥)

𝜕𝑥
) 

(2)

 

where 𝕀 is an identity matrix, 𝑀 is a constant symmetric matrix, 

and 𝜆 is a constant. Then we obtain: 

 

−𝐽∗
𝑑𝑥

𝑑𝑡
= − (𝜆𝕀 +

𝜕2𝑃(𝑥)

𝜕𝑥2
𝑀) ∙ 𝐽

𝑑𝑥

𝑑𝑡

= −𝜆 ∙ 𝐽
𝑑𝑥

𝑑𝑡
−

𝜕2𝑃(𝑥)

𝜕𝑥2
𝑀 ∙ 𝐽

𝑑𝑥

𝑑𝑡
(3)

 

 

𝜕𝑃∗(𝑥)

𝜕𝑥
=

𝜕

𝜕𝑥
[𝜆 ∙ 𝑃(𝑥) +

1

2
(
𝜕𝑃(𝑥)

𝜕𝑥
,𝑀

𝜕𝑃(𝑥)

𝜕𝑥
)]

= 𝜆 ∙
𝜕𝑃(𝑥)

𝜕𝑥
+

𝜕2𝑃(𝑥)

𝜕𝑥2
𝑀

𝜕𝑃(𝑥)

𝜕𝑥

= −𝜆 ∙ 𝐽
𝑑𝑥

𝑑𝑡
−

𝜕2𝑃(𝑥)

𝜕𝑥2
𝑀 ∙ 𝐽

𝑑𝑥

𝑑𝑡
(4)

 

 

Therefore, we can conclude 

−𝐽∗
𝑑𝑥

𝑑𝑡
=

𝜕𝑃∗(𝑥)

𝜕𝑥
(5) 

 

where 𝐽∗  is always positive definite when the system is 

asymptotically stable.  

 

APPENDIX B.  

 

Theorem 2 Given a nonlinear circuit 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥), 

a) Let 𝑃∗: ℛ𝑛 → 𝑅 be of the class 𝐶1 such that 

i. −𝐽∗ 𝑑𝑥

𝑑𝑡
=

𝜕𝑃∗(𝑥)

𝜕𝑥
 where 𝐽∗ ≻ 0 

ii. 𝑃∗(𝑥)  is radially unbounded, i.e., 𝑃∗(𝑥) → ∞  as 

‖𝑥‖ → ∞ 

iii. 𝐸:= {𝑥 ∈ ℛ𝑛|𝑓(𝑥) = 0} , all equilibria of the 

nonlinear circuit are a compact set. 

then every solution starting in ℛ𝑛 approaches 𝐸 as 𝑡 → ∞. 

b) If 𝑃∗ is of class 𝐶2 on the set 𝐸, let 𝑀 = { 𝑥 ∈ 𝐸|
𝜕2𝑃∗

𝜕𝑥2 ⪰ 0}, 

then every solution starting in ℛ𝑛 approaches 𝑀 as 𝑡 → ∞. 

 

Proof of Theorem 2a): 

 

Define: 𝑐 ≜ min
𝑥∈𝐸

𝑃∗(𝑥). Since 𝐸 is a compact set, 𝑐 exists. 

Since 𝑃∗(𝑥) is radially unbounded, given 𝑐, ∃𝛾 > 0, 

𝑠. 𝑡. 𝑃∗(𝑥) >  𝑐 where ‖𝑥‖ > 𝛾. 
By contradiction, we know the 𝑐-level set of 𝑃∗(𝑥)  Ω𝑐 : = {𝑥 ∈
ℛ𝑛|𝑃∗(𝑥) ≤  𝑐}  satisfies Ω𝑐 ⊂ 𝐵𝛾  where 𝐵𝛾 = {𝑥 ∈

ℛ𝑛|‖𝑥‖ ≤ 𝛾}. Hence Ω𝑐 is bounded. 

Because 𝑃∗(𝑥) is defined in ℛ𝑛, by definition, we can easily 

see Ω𝑐 is closed. 

Because 
𝑑𝑃∗(𝑥) 

𝑑𝑡
≤ 0,  Ω𝑐 is a compact and invariant set. 

𝐸 is the set of all points in  Ω𝑐 where 
𝑑𝑃∗(𝑥) 

𝑑𝑡
= 0. 

From Lasalle’s theorem [25], then every solution starting in Ω𝑐 

approaches 𝐸 as 𝑡 → ∞. 

By increasing 𝑐 to infinity, we prove that every solution starting 

in ℛ𝑛 approaches 𝐸 as 𝑡 → ∞. 

 

Proof of Theorem 2b): 

 

We will prove that 𝑀 contains the largest invariant set in 𝐸, i.e., 

∀𝑥𝑒 ∈ 𝐸\𝑀,
𝜕2𝑃∗

𝜕𝑥2 |
𝑥=𝑥𝑒

⪰ 0 does not hold. 

For simplicity, we denote 
𝜕2𝑃∗

𝜕𝑥2 |
𝑥=𝑥𝑒

by 𝐻𝑥𝑒
. 

Assume the eigenvalue decomposition of 𝐻𝑥𝑒
: 𝐻𝑥𝑒

= 𝑈𝑇Λ𝑈 , 

where 𝑈 is an orthogonal matrix and Λ is a diagonal matrix. 

There exists at least an entry 𝜆𝑖 of Λ, 𝜆𝑖 < 0. Without loss of 

generality, we consider 𝜆1 < 0. 

Construct a function 𝑉(𝑥) as 𝑉(𝑥) = 𝑃∗(𝑥𝑒) − 𝑃∗(𝑥). 

The Taylor expansion of 𝑃∗(𝑥) is 

 

𝑃∗(𝑥) = 𝑃∗(𝑥𝑒) + (∇𝑃∗)𝑇|𝑥=𝑥𝑒
𝑥̂ +

1

2
𝑥̂𝑇𝐻𝑥𝑒

𝑥̂ + 𝑔(𝑥̂) (6) 

 

where 𝑥̂ = 𝑥 − 𝑥𝑒 , 𝑔(𝑥̂) = 𝑜(‖𝑥̂‖2). 

 

Substituting to 𝑉(𝑥): 
 

𝑉(𝑥̂) = −
1

2
𝑥̂𝑇𝐻𝑥𝑒

𝑥̂ − 𝑔(𝑥̂) (7) 

𝑉(𝑥̂)|𝑥=0 = 0 (8) 

 

We select a set 𝜁1 = {𝑥̂𝑝|𝑥̂𝑝 = 𝜇𝑈𝑇𝑒1, 𝑒1 = [1,0,0, … ,0]𝑇 , 𝜇 ∈

ℛ, 𝜇 ≠ 0}. 

𝑉(𝑥̂)|𝑥∈𝜁1
= −

1

2
𝜇2(𝑒1

𝑇Λ𝑒1) − 𝑔(𝑥̂𝑝)

= −
𝜆1

2
 ‖𝑥̂𝑝‖

2
− 𝑔(𝑥̂𝑝) (9)

 

 

∃ 𝑟1, 𝑔(𝑥̂) < −
𝜆1

2
 ‖𝑥̂‖2 for all  ‖𝑥̂‖2 ≤ 𝑟1. 

𝑉̇(𝑥̂)|𝑥∈𝜁1
= 𝑥̇̂𝐽∗𝑥̇̂|

𝑥∈𝜁1
= 𝑥̂𝑇𝐻𝑥((𝐽

∗)−1)𝑇𝐽∗(𝐽∗)−1𝐻𝑥𝑥̂|𝑥∈𝜁1

⇒ 𝑉̇(𝑥̂)|𝑥∈𝜁1
= 𝑥̂𝑇𝐻𝑥((𝐽

∗)−1)𝑇𝐻𝑥𝑥̂|𝑥∈𝜁1
(10)

 

 

Denote (𝐻𝑥 − 𝐻𝑥𝑒
)𝑥̂𝑝 = 𝛿𝑦̂𝑝, 𝐻𝑥𝑒

𝑥̂𝑝 = 𝑦̂𝑝. 

 

𝑉̇(𝑥̂)|𝑥∈𝜁1
= (𝑦̂𝑝 + 𝛿𝑦̂𝑝)

𝑇
((𝐽∗)−1)𝑇(𝑦̂𝑝 + 𝛿𝑦̂𝑝) (11) 
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Lemma 1 Matrix 𝐽∗ ∈ ℛ𝑛×𝑛 is positive definite (p.d.), then 

(𝐽∗)𝑇 and (𝐽∗)−1 are also p.d. 

Proof:  𝐽∗ ≻ 0  ⇔ 𝑥𝑇𝐽∗𝑥 > 0 ∀𝑥 ≠ 0 ⇔ (𝑥𝑇𝐽∗𝑥)𝑇 >
0 ∀𝑥 ≠ 0 ⇔ 𝑥𝑇(𝐽∗)𝑇𝑥 > 0 ∀𝑥 ≠ 0 ⇔ (𝐽∗)𝑇 ≻ 0. 

𝑥𝑇(𝐽∗)−1𝑥 > 0 ∀𝑥 ≠ 0 ⇔ 𝑦𝑇(𝐽∗)𝑇(𝐽∗)−1𝐽∗𝑦 > 0 ∀𝑦 ≠ 0
⇔ 𝑦𝑇(𝐽∗)𝑇𝑦 > 0 ∀𝑦 ≠ 0 

 

From Lemma 1, (𝐽∗)−1is positive definite. 

𝑉̇(𝑥̂)|𝑥∈𝜁1
= (𝑦̂𝑝 + 𝛿𝑦̂𝑝)

𝑇𝐾(𝑦̂𝑝 + 𝛿𝑦̂𝑝) (12) 

 

where 𝐾 =
1

2
((𝐽∗)−1 + ((𝐽∗)−1)𝑇) is a p.d symmetric matrix. 

 

𝑦̂𝑝 = 𝐻𝑥𝑒
𝑥̂𝑝 = 𝑈𝑇Λ𝑈(𝜇𝑈𝑇𝑒1) = 𝜇𝜆1𝑈

𝑇𝑒1 (13) 

 

‖𝑦̂𝑝‖ = −𝜆1‖𝑥̂𝑝‖ (14) 

 

𝑦̂𝑝
𝑇𝐾𝑦̂𝑝 ≥ 𝜆𝑚𝑖𝑛(𝐾)‖𝑦̂𝑝‖

2
> 0 (15) 

 

Since 𝐻𝑥 is continuous on 𝐷, 

∃𝑟2, ‖𝐻𝑥 − 𝐻𝑥𝑒
‖

𝑀
 ≤ −𝜆1

𝜆𝑚𝑖𝑛(𝐾)

3𝜆𝑚𝑎𝑥(𝐾)
, ∀‖𝑥‖ ≤ 𝑟2 (16) 

 

where ‖∙‖𝑀 is the induced norm of the matrix. 

 

‖𝛿𝑦̂𝑝‖ = ‖(𝐻𝑥 − 𝐻𝑥𝑒
)𝑥̂𝑝‖ ≤ ‖𝐻𝑥 − 𝐻𝑥𝑒

‖
𝑀
‖𝑥̂𝑝‖

≤ −𝜆1‖𝑥̂𝑝‖
𝜆𝑚𝑖𝑛(𝐾)

3𝜆𝑚𝑎𝑥(𝐾)
= ‖𝑦̂𝑝‖

𝜆𝑚𝑖𝑛(𝐾)

3𝜆𝑚𝑎𝑥(𝐾)
(17)

 

 

𝛿𝑦̂𝑝
𝑇𝐾𝑦̂𝑝 + 𝑦̂𝑝𝐾𝛿𝑦̂𝑝

𝑇 + 𝛿𝑦̂𝑝
𝑇𝐾𝛿𝑦̂𝑝

𝑇

≥ −‖𝛿𝑦̂𝑝‖(2‖𝑦̂𝑝‖ + ‖𝛿𝑦̂𝑝‖)𝜆𝑚𝑎𝑥(𝐾)

≥ −
𝜆𝑚𝑖𝑛(𝐾)

3𝜆𝑚𝑎𝑥(𝐾)
‖𝑦̂𝑝‖

2
(2 +

𝜆𝑚𝑖𝑛(𝐾)

3𝜆𝑚𝑎𝑥(𝐾)
) 𝜆𝑚𝑎𝑥(𝐾)

> −𝜆𝑚𝑖𝑛(𝐾)‖𝑦̂𝑝‖
2

(18)

 

 

Therefore, we have 

𝑉̇(𝑥̂)|𝑥∈𝜁1
> 𝜆𝑚𝑖𝑛(𝐾)‖𝑦̂𝑝‖

2
− 𝜆𝑚𝑖𝑛(𝐾)‖𝑦̂𝑝‖

2
= 0 (19) 

 

We define set 𝒰 ≜ 𝜁1 ∩ 𝐵 (min
 

(𝑟1, 𝑟2)), where 𝐵𝛾  represents 

𝐵𝛾 ≜ {𝑥̂ ∈ ℛ𝑛|‖𝑥̂‖ ≤ 𝛾}. 

i. 𝑉(𝑥̂) = 0 at 𝑥̂ = 0 

ii. 𝑉(𝑥̂𝑝) > 0 at some 𝑥̂𝑝 = 𝜇𝑈𝑒1 with arbitrary small 

‖𝑥̂𝑝‖ 

iii. 𝑉̇(𝑥̂) > 0 in 𝒰 

 

From Chetaev’s theorem [26], 𝑥 = 𝑥𝑒  is locally unstable.  

The solution starting at 𝑥(0) = 𝑥𝑒  cannot stay identically in 𝐸; 

hence, 𝑥𝑒  is not included in the largest invariant set in 𝐸 . 

Therefore, 𝑀 includes the largest invariant set in 𝐸. 

From Lasalle’s theorem, every solution starting in Ω𝑐 

approaches 𝑀 as 𝑡 → ∞. 

By increasing 𝑐 to infinity, we prove that every solution starting 

in ℛ𝑛 approaches 𝑀 as 𝑡 → ∞. 

 

APPENDIX C. 

 

The potential function of the system in Fig. 6 is 

 

𝑃(𝑖, 𝑣) = ∑ 𝑉𝑟𝑒𝑓𝑖

𝑁

𝑖=1

(𝐼𝑝𝑖 + 𝐼𝑞𝑖) −
1

2
∑ 𝑅𝑝𝑖𝐼𝑝𝑖

2

𝑁

𝑖=1

−
1

2
∑𝑅𝑞𝑖𝐼𝑞𝑖

2

𝑁

𝑖=1

−
1

2
∑𝑅𝑡𝑖𝐼𝑡𝑖

2

𝑁

𝑖=1

− ∑ 𝑉𝐶𝑖(𝐼𝑝𝑖 + 𝐼𝑞𝑖 − 𝐼𝑡𝑖)

𝑁

𝑖=1  

−
𝑉𝐿

2

2𝑅𝐿

−𝑉𝐿 (∑𝐼𝑡𝑖

𝑁

𝑖=1

−
𝑃𝐿

𝑉𝐿

−
𝑉𝐿

𝑅𝐿

) + ∫
𝑃𝐿

𝑣
𝑑𝑣

𝑉𝐿

𝑉𝑚𝑖𝑛

− 𝑃𝐿 (20)

 

 

where 𝑉𝐿 ≥ 𝑉𝑚𝑖𝑛. It can be simplified as follows: 

 

𝑃(𝑖, 𝑣) = ∑ 𝑉𝑟𝑒𝑓𝑖

𝑁

𝑖=1

(𝐼𝑝𝑖 + 𝐼𝑞𝑖) −
1

2
∑ 𝑅𝑝𝑖𝐼𝑝𝑖

2

𝑁

𝑖=1

−
1

2
∑𝑅𝑞𝑖𝐼𝑞𝑖

2

𝑁

𝑖=1

−
1

2
∑𝑅𝑡𝑖𝐼𝑡𝑖

2

𝑁

𝑖=1

− ∑ 𝑉𝐶𝑖(𝐼𝑝𝑖 + 𝐼𝑞𝑖 − 𝐼𝑡𝑖)

𝑁

𝑖=1  

+
𝑉𝐿

2

2𝑅𝐿

− 𝑉𝐿 ∑𝐼𝑡𝑖

𝑁

𝑖=1

+ ∫
𝑃𝐿

𝑣
𝑑𝑣

𝑉𝐿

𝑉𝑚𝑖𝑛

(21)

 

 

Define the following notations: 

 

𝑅 = d𝑖𝑎𝑔([𝑅𝑝1, … , 𝑅𝑝𝑁, 𝑅𝑞1, … , 𝑅𝑞𝑁 , 𝑅𝑡1, … , 𝑅𝑡𝑁]) 

= 𝑑𝑖𝑎𝑔([𝑅𝑝, 𝑅𝑞 , 𝑅𝑡]), 

𝐿 = 𝑑𝑖𝑎𝑔([𝐿𝑝1, … , 𝐿𝑝𝑁 , 𝐿𝑞1, … , 𝐿𝑞𝑁 , 𝐿𝑡1, … , 𝐿𝑡𝑁]) 

= 𝑑𝑖𝑎𝑔([𝐿𝑝, 𝐿𝑞 , 𝐿𝑡]), 

𝐶 = 𝑑𝑖𝑎𝑔([𝐶𝑏1, 𝐶𝑏2, … , 𝐶𝑏𝑁, 𝐶𝐿]) = 𝑑𝑖𝑎𝑔([𝐶𝑏 , 𝐶𝐿]), 

𝑖 = [𝐼𝑝1, … , 𝐼𝑝𝑁 , 𝐼𝑞1, … , 𝐼𝑞𝑁 , 𝐼𝑡1, … , 𝐼𝑡𝑁]
3𝑁×1

, 

𝑣 = [𝑉𝐶1, 𝑉𝐶2, … , 𝑉𝐶𝑁 , 𝑉𝐿](𝑁+1)×1. 

 

Then we rewrite the potential function in equation (21) in the 

form of   

𝑃(𝑖, 𝑣) = −𝐴(𝑖) + 𝐵(𝑣) + (𝑖, 𝛾𝑣 − 𝑎), (22) 

 

where 𝐴: ℝ3𝑁 → ℝ,𝐵: ℝ 
𝑁+1 → ℝ, 𝛾 is a constant matrix and 𝑎 

is a constant vector, ( ∙ , ∙ ) represents an inner product. Then 

we obtain that 

 

     𝐴 =
1

2
𝑖𝑇𝑅𝑖, 𝛾 = [

−𝕀𝑁×𝑁 0𝑁×1

−𝕀𝑁×𝑁

𝕀𝑁×𝑁

0𝑁×1

−1𝑁×1

]

(3𝑁)×(𝑁+1)

(23) 

 

where 𝕀 is an identity matrix. Therefore, we have 
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𝐿
1
2𝐴−1𝛾𝐶−

1
2 =

[
 
 
 
 −𝐿𝑝

1
2𝑅𝑝

−1𝐶𝑏
−

1
2 0𝑁×1

−𝐿𝑞

1
2𝑅𝑞

−1𝐶𝑏
−

1
2

−𝐿𝑡

1
2𝑅𝑡

−1𝐶𝑏
−

1
2

0𝑁×1

−𝐿𝑡

1
2𝑅𝑡

−1𝐶𝐿
−

1
2]
 
 
 
 

3𝑁×(𝑁+1)

(24)

 

Specifically, considering the virtual inductor 𝐿𝑝 = 0, 

 𝐿1/2𝐴−1𝛾𝐶−1/2 can be simplified as  

 

𝐿
1
2𝐴−1𝛾𝐶−

1
2 =

[
 
 
 

0𝑁×𝑁 0𝑁×1

−𝐿𝑞

1
2𝑅𝑞

−1𝐶𝑏
−

1
2

−𝐿𝑡

1
2𝑅𝑡

−1𝐶𝑏
−

1
2

0𝑁×1

−𝐿𝑡

1
2𝑅𝑡

−1𝐶𝐿
−

1
2]
 
 
 

3𝑁×(𝑁+1)

(25)

 

 

One condition for global stability from the Theorem 3 in [14] is 

 

‖𝐿1/2𝐴−1𝛾𝐶−1/2‖ ≤ 1 − 𝛿, 𝛿 > 0 (26) 

 

Considering that ‖𝐿1/2𝐴−1𝛾𝐶−1/2‖ can be solved by the largest 

singular value of 𝐿1/2𝐴−1𝛾𝐶−1/2, we obtain the first condition 

for large-signal stability as follows:  

 

𝜎𝑚𝑎𝑥 (

[
 
 
 

0𝑁×𝑁 0𝑁×1

−𝐿𝑞

1
2𝑅𝑞

−1𝐶𝑏
−

1
2

−𝐿𝑡

1
2𝑅𝑡

−1𝐶𝑏
−

1
2

0𝑁×1

−𝐿𝑡

1
2𝑅𝑡

−1𝐶𝐿
−

1
2]
 
 
 
) < 1 (27) 

 

where 𝜎𝑚𝑎𝑥(∙) is the largest singular value. 

 

APPENDIX D. 

 

Part Ⅰ. The stability region derived from Brayton-Moser’s 

mixed potential theory  

 

The applied theorem from [14] is introduced first. 

 

Theorem Consider the potential of a dynamic system  

𝑃(𝑖, 𝑣) = −
1

2
(𝑖, 𝐴𝑖) + 𝐵(𝑣) + (𝑖, 𝛾𝑣 − 𝛼) (28) 

 

If 𝐴 is positive definite, 𝐵(𝑣) + |𝛾𝑣| → ∞ as |𝑣| → ∞, and 

 

‖𝐿1/2𝐴−1𝛾𝐶−1/2‖ ≤ 1 − 𝛿, 𝛿 > 0 (29) 

for all 𝑖, 𝑣, then all solutions of the system −𝐽
𝑑𝑥

𝑑𝑡
=

𝜕𝑃(𝑥)

𝜕𝑥
 tend to 

the set of equilibrium points as 𝑡 → ∞. 

 

Solution: 

The potential function of the circuit model in Fig. 13 is  
 

𝑃(𝐼𝐿 , 𝑉𝐶) = 𝑉𝑠𝐼𝐿 −
1

2
𝑅𝐼𝐿

2 − 𝑉𝐶 (𝐼𝐿 −
𝑉𝐶

𝑅𝐿

) −
𝑉𝐶

2

2𝑅𝐿

= 𝑉𝑠𝐼𝐿 −
1

2
𝑅𝐼𝐿

2 − 𝑉𝐶𝐼𝐿 +
𝑉𝐶

2

2𝑅𝐿

(30)
 

 

Rewrite 𝑃(𝐼𝐿 , 𝑉𝐶) in the following form: 

𝑃(𝑖, 𝑣) = −
1

2
(𝑖, 𝐴𝑖) + 𝐵(𝑣) + (𝑖, 𝛾𝑣 − 𝛼) (31) 

 

where 𝑖 = 𝐼𝐿 , 𝑣 = 𝑉𝐶 , 𝐴 = 𝑅, 𝐵(𝑣) =
𝑉𝐶

2

2𝑅𝐿
, 𝛾 = −1, 𝛼 = −𝑉𝑠 . 

 

We know 𝐴 = 𝑅 ≻ 0. Moreover, we have 

‖𝐿1/2𝐴−1𝛾𝐶−1/2‖ < 1 ⇒
1

𝑅
√

𝐿

𝐶
< 1 (32) 

𝐵(𝑣) + |𝛾𝑣| =
𝑉𝐶

2

2𝑅𝐿

+ 𝑉𝐶 (33) 

 

However, because 𝑅𝐿 < 0, 𝐵(𝑣) + |𝛾𝑣| ↛ ∞ as |𝑉𝐶| → ∞. 

Therefore, the obtained stability region is {𝜙}, i.e. an empty set.  

 

Part Ⅱ. The stability region derived from our proposed 

criteria 

 

Solution: 

The potential function 𝑃(𝐼𝐿 , 𝑉𝐶) of the circuit shown in Fig.13 

is:  

𝑃(𝐼𝐿 , 𝑉𝐶) = 𝑉𝑠𝐼𝐿 −
1

2
𝑅𝐼𝐿

2 − 𝑉𝐶𝐼𝐿 +
𝑉𝐶

2

2𝑅𝐿

(34) 

 

Rewrite 𝑃(𝐼𝐿 , 𝑉𝐶) in the following form: 

 

𝑃(𝑖, 𝑣) = −
1

2
(𝑖, 𝐴𝑖) + 𝐵(𝑣) + (𝑖, 𝛾𝑣 − 𝛼) (35) 

 

where 𝑖 = 𝐼𝐿 , 𝑣 = 𝑉𝐶 , 𝐴 = 𝑅, 𝐵(𝑣) =
𝑉𝐶

2

2𝑅𝐿
, 𝛾 = −1, 𝛼 = −𝑉𝑠 . 

Review the proposed stability criteria in section Ⅳ: 

a. 𝑃∗(𝑥) is radially unbounded, i.e., 𝑃∗(𝑥) → ∞ as ‖𝑥‖ → ∞. 
b. 

{

𝜎𝑚𝑎𝑥(𝐿
1/2𝐴−1𝛾𝐶−1/2) < 1

 
𝜕2𝐵(𝑣)

𝜕𝑣2
+ 𝛾𝑇𝐴−1𝛾|

𝑣=𝑣𝑒

⪰ 0
(36) 

 

where 𝜎𝑚𝑎𝑥(∙) is the largest singular value.  

In the circuit shown in Fig. 13, 

𝜎𝑚𝑎𝑥(𝐿
1/2𝐴−1𝛾𝐶−1/2) < 1 ⇒

1

𝑅
√

𝐿

𝐶
< 1 (37) 

 
𝜕2𝐵(𝑣)

𝜕𝑣2
+ 𝛾𝑇𝐴−1𝛾|

𝑣=𝑣𝑒

⪰ 0 ⇒
1

𝑅𝐿

+
1

𝑅
≥ 0 ⇒ 𝑅 ≤ |𝑅𝐿|(38) 

 

According to equation (38), equation (37) can be converted to 
𝐿

𝐶
< 𝑅 ∙ |𝑅𝐿| (39) 

 

From equations (38)(39), we have  
𝐿

|𝑅𝐿|𝐶
< 𝑅 ≤ |𝑅𝐿| (40) 
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Next, it remains to be proved that 𝑃∗(𝑖, 𝑣) → ∞ as |𝑖| + |𝑣| →
∞. The potential function is 

𝑃(𝐼𝐿 , 𝑉𝐶) = 𝑉𝑠𝐼𝐿 −
1

2
𝑅𝐼𝐿

2 − 𝑉𝐶𝐼𝐿 +
𝑉𝐶

2

2𝑅𝐿

(41) 

 

Choose 𝜆 = 1, 𝑀 = [2𝐴−1 0
0 0

]. Notate 
𝜕 𝑃

𝜕𝑉𝐶
, 

𝜕 𝑃

𝜕𝐼𝐿
 and 

𝜕2𝐵(𝑣)

𝜕𝑣2  by 

𝑃𝑉𝐶
, 𝑃𝐼𝐿 , and 𝐵𝑣𝑣(𝑣) , separately. Suppose 𝜇1  is the smallest 

eigenvalue of the matrix 𝐿−1/2𝐴 (𝑖)𝐿
−1/2 for all 𝑖, and 𝜇2 is the 

smallest eigenvalue of the matrix 𝐶−1/2𝐵𝑣𝑣(𝑣)𝐶−1/2 for all 𝑣. 
Then we have: 

𝑃∗(𝐼𝐿 , 𝑉𝐶) = (
𝜇1 − 𝜇2

2
) 𝑃(𝐼𝐿 , 𝑉𝐶) +

1

2
(𝑃𝐼𝐿

, 𝐿−1𝑃𝐼𝐿
)

+
1

2
(𝑃𝑉𝐶

, 𝐶−1𝑃𝑉𝐶
) (42)

 

where 

𝜇1 = min
 

{𝜆 (𝐿−
1
2𝐴 (𝑖)𝐿

−
1
2)} =

𝑅

𝐿
(43) 

𝜇2 = min
 

{𝜆 (𝐶−
1
2𝐵𝑣𝑣(𝑣)𝐶−

1
2)} =

1

𝐶𝑅𝐿

(44) 

 

Plugging in the value of 𝜇1 and  𝜇2, we have 

 

𝑃∗(𝐼𝐿 , 𝑉𝐶) = (
𝑅

𝐿
−

1

𝐶𝑅𝐿
) (𝑉𝑠𝐼𝐿 −

1

2
𝑅𝐼𝐿

2 − 𝑉𝐶𝐼𝐿 +
𝑉𝐶

2

2𝑅𝐿
)

+
1

2𝐿
(𝑅𝐼𝐿 + 𝑉𝐶 − 𝑉𝑠)

2 +
1

2𝐶
(

𝑉𝐶

𝑅𝐿
− 𝐼𝐿)

2

(45)
 

 

Suppose 𝑃∗ =
1

2
𝑥𝑇𝑃2𝑥 + 𝑃1

𝑇𝑥 + 𝑃0, where 

 

𝑃2 = [

𝑅 1

1
2

𝑅
+

1

𝑅𝐿

] , 𝑃1 = [

−𝑉𝑠

−
2

𝑅
𝑉𝑠

] , 𝑃0 =
𝑉𝑠

2

2𝐿
, 𝑥 = [𝐼𝐿 𝑉𝐶]

𝑇 . 

 

Denote the smallest eigenvalue of 𝑃2  by λ.  Since 
𝜕2𝑃∗(𝑥)

𝜕𝑥2 =

𝑃2 ⪰ 0, we have λ ≥ 0. 
It is proved in the Courant–Fischer–Weyl min-max principle 

that  
(𝐴𝑥, 𝑥)

(𝑥, 𝑥)
≥ 𝜆𝑚𝑖𝑛 (46) 

 

where 𝐴  is a n × n symmetric matrix, 𝜆𝑚𝑖𝑛  is the smallest 

eigenvalue of 𝐴. 

According to the Courant–Fischer–Weyl min-max principle, 

we have 

2(𝑃∗ − 𝑃1
𝑇𝑥 − 𝑃0) ≥ λ(𝐼𝐿

2 + 𝑉𝐶
2) (47) 

Then

𝑃∗ ≥ 𝑃1
𝑇𝑥 + 𝑃0 +

 λ

2
(𝐼𝐿

2 + 𝑉𝐶
2)

=
λ

2
(𝐼𝐿

2 + 𝑉𝐶
2) − 𝑉𝑠(𝐼𝐿 +

2

𝑅
𝑉𝐶) +

𝑉𝑠
2

2𝐿
(48)

 

 

The Cauchy–Schwarz inequality states that for all vectors 𝑢 and 

𝑣 of an inner product space it is true that 
 

‖𝑢‖ ∙ ‖𝑣‖ ≥ |(𝑢, 𝑣)|, (49) 

where ‖∙‖ is the norm of a vector. 

Using Cauchy–Schwarz inequality, we have 

 

‖[
1

2/𝑅
]‖ ∙ ‖[

𝐼𝐿
𝑉𝐶

]‖ ≥ |([
1

2/𝑅
] , [

𝐼𝐿
𝑉𝐶

])| , (50) 

i.e.,  

√1 + (
2

𝑅
)

2

∙ √(𝐼𝐿
2 + 𝑉𝐶

2) ≥ 𝐼𝐿 +
2

𝑅
𝑉𝐶 , (51) 

Since  

 

(|𝐼𝐿| + |𝑉𝐶|)2 = 𝐼𝐿
2 + 𝑉𝐶

2 + 2|𝐼𝐿| ∙ |𝑉𝐶| ≥ 𝐼𝐿
2 + 𝑉𝐶

2, (52) 

 

we have 

|𝐼𝐿| + |𝑉𝐶| ≥ √(𝐼𝐿
2 + 𝑉𝐶

2). (53) 

Therefore,  

 

√1 + (
2

𝑅
)

2

∙ (|𝐼𝐿| + |𝑉𝐶|) ≥ √1 + (
2

𝑅
)

2

∙ √(𝐼𝐿
2 + 𝑉𝐶

2)

≥ (𝐼𝐿 +
2

𝑅
𝑉𝐶) . (54)

 

 

Therefore (48) can be converted to  

 

𝑃∗ ≥
λ

2
(𝐼𝐿

2 + 𝑉𝐶
2) − 𝑉𝑠 (𝐼𝐿 +

2

𝑅
𝑉𝐶) +

𝑉𝑠
2

2𝐿

≥
λ

4
(|𝐼𝐿| + |𝑉𝐶|)

2 − 𝑉𝑠√1 + (
2

𝑅
)

2

∙ (|𝐼𝐿| + |𝑉𝐶|) +
𝑉𝑠

2

2𝐿

= (|𝐼𝐿| + |𝑉𝐶|) ∙ [
λ

4
(|𝐼𝐿| + |𝑉𝐶|) − 𝑉𝑠√1 + (

2

𝑅
)

2

] +
𝑉𝑠

2

2𝐿
(55)

 

 

If 𝛌>0: when |𝐼𝐿| + |𝑉𝐶| → ∞, it is concluded that 𝑃∗ → ∞. 

 

If 𝛌=0:  when |𝐼𝐿| + |𝑉𝐶| → ∞, we cannot conclude 𝑃∗ → ∞. 

 

Therefore, we need to rule out the case that λ = 0 and guarantee 

λ > 0, where λ is the smallest eigenvalue of 𝑃2.  

Let λ > 0 we obtain 

𝑅 < −𝑅𝐿 (56) 

 

Combining equations (40)(56) we have: 

 
𝐿

|𝑅𝐿|𝐶
< 𝑅 < |𝑅𝐿| (57) 

 

In conclusion, the stability region derived from our proposed 

stability criteria is as follows: 

 
𝐿

|𝑅𝐿|𝐶
< 𝑅 < |𝑅𝐿| (58) 

QED. 

 

 

https://en.wikipedia.org/wiki/Inner_product_space

