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RANDOMIZATION AND AMBIGUITY AVERSION
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We propose a model of preferences in which the effect of randomization on am-
biguity depends on how the unknown probability law is determined. We adopt the
framework of Anscombe and Aumann (1963) and relax the axioms. In the resulting
representation of the individual’s preference, the individual has a collection of sets of
priors M. She believes that before she moves, nature has chosen an unknown scenario
(a set of priors) from M, and from that scenario, nature will choose a prior after she
moves. The representation illustrates how randomization may partially eliminate the
effect of ambiguity.
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1. INTRODUCTION

IT IS OFTEN ASSUMED in economics that an individual has a unique subjective prior (prob-
ability measure) over states of the world, even though the true probability law—if one
is already determined—is rarely provided. Ellsberg (1961) introduced intuitive thought
experiments to show that, on the contrary, an individual usually faces ambiguity and is
ambiguity-averse; that is, she does not have a unique prior and dislikes betting on an event
without a unique subjective probability assessment. In one experiment, assuming that a
correct bet yields $100 and a wrong bet $0, it is predicted that an individual facing a risky
urn (that contains 50 red and 50 black balls) and an ambiguous urn (with 100 red and
black balls, but in an unknown proportion) will prefer to bet on the color of a randomly
drawn ball from the risky urn over that from the ambiguous urn. Nonetheless, fixing any
urn, the individual will be indifferent between betting on either color of a randomly drawn
ball.1 This prediction is confirmed by many subsequent studies.

In a seminal paper, Gilboa and Schmeidler (1989) introduced the maxmin expected util-
ity (MEU) model to capture ambiguity aversion. In the model, the individual has multiple
priors. To evaluate a choice object, such as a bet, she adopts the prior that minimizes its
utility; to choose from multiple choice objects, she maximizes the minimum utility.2 The

Shaowei Ke: shaoweik@umich.edu
Qi Zhang: qizhang.berkeley@gmail.com
We thank the three anonymous referees, Nemanja Antić, Tilman Börgers, Gabriel Carroll, Xiaoyu Cheng,
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2In the previous experiment, suppose the individual has three priors about the composition of the ambiguous
urn: The number of red balls is either 30, 50, or 70. Then, to evaluate the bet on red (black) drawn from the
ambiguous urn, she believes that there are only 30 red (black) balls.
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interpretation is that with multiple priors in mind, the individual is conservative and fo-
cuses on the worst-case scenario—or, equivalently, it is as if the individual believes that
nature plays against her by choosing the worst probability law from a fixed set of laws.

The MEU model, or more generally the maxmin principle, has been useful in vari-
ous areas of economics: contract theory, mechanism design, macroeconomics, finance,
etc.3 Surprisingly, however, in these applications, it is usually unclear how a basic concept
in economics, randomization/mixed strategies, should be modeled when an individual be-
haves according to the MEU model or any other maxmin criterion.4 Randomization is
modeled differently in different applications or simply ruled out; sometimes a discussion
of the difficulty of introducing randomization and various ways to model randomization
is provided, but there is not yet a general principle that helps us better understand how
randomization should be modeled in a given application.5

In this paper, we introduce a theory of randomization under ambiguity that may help
address this issue. We focus on (randomization under) the MEU model, but the insights
we derive may be applied to other ambiguity models and models with other maxmin cri-
teria.

1.1. How Should Randomization Eliminate the Effect of Ambiguity?

Suppose there are two services, A and B. An individual needs to purchase one of them.
There are two states, sA and sB. In state sA (sB), service A (B) yields payoff 1 and the
other service yields 0. Both services seem equally good to the individual, but similar to
the urn experiment, the individual does not have a unique probability assessment of sA
or sB. Now, suppose the actual probability of sA and sB depends on some details of the
services unknown to the individual. Consider two situations. In the first, those details
are precisely stated in contracts, although the individual never plans to read them. In
the second, service providers do not explain those details in contracts. If the individual
chooses the services randomly, will randomization interact with ambiguity in any way in
either situation?

To understand the answer to this question, we first return to the urn experiment, in
which the individual is indifferent between betting on red and black being drawn from
the ambiguous urn. Raiffa (1961) pointed out that randomization renders ambiguity ir-
relevant. Suppose the individual tosses a fair coin, and bets on red being drawn from the
ambiguous urn if heads and black if tails. Then no matter what the number of red/black
balls is in the ambiguous urn and which color is drawn, the individual will bet on red and
black with equal probability; that is, she always receives a 50–50 lottery between $100
and $0 (see the right-hand side of Figure 1), which is what she will receive if she bets on
red/black being drawn from the risky urn.6 Therefore, if randomization is perceived in
this way, ambiguity becomes irrelevant.

3See, among many others, Hansen and Sargent (2010), Bergemann and Schlag (2011), Antić (2015), Easley,
O’Hara, and Yang (2014), Di Tillio, Kos, and Messner (2017), and Carrasco, Farinha Luz, Kos, Messner,
Monteiro, and Moreira (2018). In the MEU model, minimization is over the individual’s multiple priors. The
maxmin principle has also been adopted when minimization is based on regret, over multiple mechanisms,
over multiple production technologies, over opponents’ preferences, etc.

4In the literature on ambiguity, two types of mixture operations have been studied. Here, by randomization,
we mean the mixture operation implemented before the state is revealed to the individual. In Section 2.1, we
will introduce the other type of mixture operation, statewise randomization.

5See Section 5 for more details.
6The right-hand side of Figure 1 is in fact a simplified version of this idea. See Figure 3.
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FIGURE 1.—There are two states, in which sR (sB) means that red (black) is drawn from the ambiguous urn.
Randomization is represented by solid lines, with “R” (“B”) representing betting on red (black). The number
along a solid line indicates the objective probability of betting on the corresponding color.

However, randomization can be viewed in other ways. A popular alternative view (the
left-hand side of Figure 1) is as follows: Regardless of the outcome of the coin toss, the
individual must bet on either red or black being drawn from the ambiguous urn; that
is, after the coin toss, she always ends up with a bet from the ambiguous urn that she
dislikes in the first place. As Saito (2015) argued, if ambiguity is perceived in this way,
its effect should be unaffected by randomization. To date, in applications that apply the
maxmin principle, if mixed strategies are not ruled out, either the first view or the second
is adopted.7

A few papers have noted that the main difference between the two views lies in sub-
jective timing.8 This is easier to explain under the MEU model. Suppose the individual
believes that the number of red balls in the ambiguous urn is either 30 or 70. Recall that
an as-if interpretation of the MEU model is that the individual believes that nature plays
against her. Does she believe that she randomizes before nature moves or after? If she
believes that she moves first, nature can choose the probability law based on the outcome
of the coin toss: If heads (betting on red), the number of red balls will be 30; otherwise, it
is 70. Either way, the individual’s bet will be correct with only 30% chance. This is con-
sistent with the second view: Regardless of the outcome of the coin toss, the individual is
affected by ambiguity as in the case without the coin.

This is not true, however, if the individual believes that nature moves first. If nature
moves first, although the number of red balls is unknown, it cannot depend on the out-
come of the coin toss. Suppose the fixed number of red balls is 30. If heads, the individual’s
bet will be correct with 30% chance; otherwise, it will be correct with 70% chance. Over-
all, the individual’s bet will be correct with 50% chance. The same applies if the fixed
number of red balls is 70. Therefore, this is consistent with the first view: Fixing an arbi-
trary number of red balls, the coin toss always gives the individual a 50–50 lottery between
$100 and $0. Thus, the interaction between randomization and ambiguity should depend
on the individual’s belief about how the unknown probability law is determined.

Now, return to the service example. In the first situation, before the individual random-
izes, the contracts have pinned down the probability of sA and sB, although the probability
is unknown to the individual. This is similar to the case in which the number of red balls
does not depend on the outcome of the coin toss, and hence the view that randomization

7See Section 5 for a more detailed discussion.
8Among others, see Epstein, Marinacci, and Seo (2007), Bade (2015), Saito (2015), Baillon, Halevy, and Li

(2019), and Oechssler, Rau, and Roomets (2019). Note that subjective timing does not have to be identical to
objective timing (if there is any).
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renders ambiguity irrelevant is more suitable. In the second situation without contracts,
it seems more plausible that the effect of ambiguity is unaffected by randomization: The
individual may worry that after randomization and choosing a service, the details of the
service will still be manipulated in a way against her.

In the service example, first, there is a natural objective timing of when the probability
law is determined. This is often not the case, and even if there is a natural objective timing,
the individual is free to hold a different view. Second, the timing is extreme, in the sense
that the probability law is completely pinned down either before randomization or after.
Again, this rarely happens in practice. For example, in the first situation of the service
example, if contracts use words that can be interpreted in many ways, and “The service
provider reserves all rights for final explanation” is added to both contracts, how does it
change the individual’s view of randomization?

Similarly, consider a stylized investment example in which the individual can either long
or short a firm. Suppose she believes that the probability that the firm succeeds depends
on some unknown long-term factor that has been determined and some unknown short-
term factor that will be determined after she makes a decision. How should randomization
interact with ambiguity?

1.2. Preview of Results

To study randomization under ambiguity, we adopt the choice domain of Anscombe and
Aumann (1963) (henceforth AA) and analyze an individual’s preference.9 The domain
consists of lotteries over acts (lotteries for short henceforth; see Figure 2). A lottery is a
probability measure (mixed strategy) over acts. An act assigns to each state of the world
a prize. A prize is a probability measure over consequences. Note that this domain does
not require that we describe objectively how the probability law is determined; this will be
subjective and revealed from the individual’s preference.

We incorporate ideas from Gilboa and Schmeidler (1989) and first- and second-order
stochastic dominance to relax AA’s axioms. Our main theorem characterizes the following
representation of the individual’s preference over lotteries, the double maxmin expected

FIGURE 2.—A lottery P that yields act f with probability P(f ) and act g with P(g), in which fi (gi) is the
prize associated with state si by f (g).

9We use the original AA choice domain that has two types of mixture operations. In many papers using the
AA choice domain, only one mixture operation, which will be called statewise randomization in our paper, is
involved. See Section 5 for more details.
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FIGURE 3.—There are two scenarios. For example, (0�3�0�7) is the scenario with 30 red balls and 70 black
balls in the ambiguous urn. There is only one prior in each scenario. In state sR (sB), the ball drawn is red
(black). In each scenario, randomization and state revelation constitute a compound lottery that yields $100
and $0 with equal probability.

utility (DMEU) representation: For each lottery P ,

W (P) = min
M∈M

∫
F

(
min
μ∈M

∫
S
u(f )dμ

)
dP�

in which each M ∈M is a set of priors, and u(f (s)) is the utility of the prize that an act f
assigns to state s. Each M ∈M is called a scenario. The individual believes that before she
randomizes, nature, which plays against her, has chosen a scenario (although unknown to
her) from M. After she randomizes, nature will choose a prior μ from that scenario.

Figures 3–5 illustrate how the DMEU representation describes the individual’s belief
about the determination of the unknown probability law and about the interaction be-
tween randomization and ambiguity. Figure 3 depicts the urn experiment assuming that
the individual believes that the number of red balls is determined before she randomizes,
and hence randomization eliminates the effect of ambiguity. This DMEU representa-
tion has two scenarios and each scenario has only one probability law. Figure 4 depicts
the urn experiment assuming that the individual believes that the number of red balls
is determined after she randomizes, and hence the effect of ambiguity is unaffected by
randomization. This DMEU representation has only one scenario and that scenario has
multiple probability laws.

Figure 5 is the investment example, in which the probability that the firm succeeds
depends on some unknown long-term and short-term factors. This example shows that
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FIGURE 4.—The only scenario contains two priors (either 30 or 70 red balls in the ambiguous urn). The
worst prior within the scenario depends on the realization of randomization.

randomization may partially eliminate the effect of ambiguity—it helps eliminate the ef-
fect of ambiguity across scenarios, but not across probability laws within a scenario. The
individual believes that one unknown scenario in M = {MG�MN�MB} has occurred be-
fore she chooses. Scenarios MG (good long-term factor) and MB (bad long-term factor)
are singletons—the long-term factor alone determines the probability law. In scenario
MN , how likely the firm is to succeed also depends on the short-term factor, which is
not yet determined. In this case, randomization eliminates the effect of ambiguity across
scenarios MG and MB, but not within MN .10

Next, we discuss the related literature; additional discussion can be found in Section 5.
The closest paper to ours is Saito (2015). Saito also studied an axiomatic model in which
the ambiguity-averse individual may have a preference for randomization. His model uses
a convex combination to combine the two extreme timing beliefs—the belief that nature
moves completely before the individual randomizes and the belief that nature moves com-
pletely after. We will show that his model is a special case of ours. In addition to models of
ambiguity aversion, there are other models of preference for randomization under differ-
ent choice domains with different motivations, such as Machina (1985), Cerreia-Vioglio,
Dillenberger, and Ortoleva (2015), Fudenberg, Iijima, and Strzalecki (2015), and Cerreia-
Vioglio, Dillenberger, Ortoleva, and Riella (2019), among others.

Several papers have also examined representations of preferences that involve collec-
tions of sets of priors. Lehrer and Teper (2011) studied a representation called the multi-
ple multiple-priors representation, which allows for violations of completeness and transi-
tivity. Frick, Iijima, and Le Yaouanq (2019) proposed the Boolean expected utility repre-
sentation, in which the belief the individual uses to evaluate an act is the most pessimistic
prior from the most optimistic set of priors.

Empirical studies have examined whether individuals strictly prefer to randomize.
For example, Dominiak and Schnedler (2011), Agranov and Ortoleva (2017), Dwenger,
Kübler, and Weizsäcker (2018), and Oechssler, Rau, and Roomets (2019). Many of them
find a nonnegligible number of individuals who strictly prefer to randomize, but some do
not. This is consistent with our theory: The individual may strictly prefer to randomize in

10A more detailed discussion follows Theorem 2.
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FIGURE 5.—In the good scenario MG, the firm will profit (state sp) with probability 1. In the bad scenario
MB , the firm will profit with probability 0. In the neutral scenario MN , the probability that the firm profits is
either 0�3 or 0�7, which will be determined after randomization.

some choice problems but not in others, and how desirable randomization appears to her
depends on her timing beliefs.

Preference for randomization is also an important topic in preference elicitation in ex-
periments. Indeed, our main idea that the individual’s evaluation of a lottery depends
on her belief about how the unknown probability law is determined has also appeared
in the research on random incentive mechanisms. Bade (2015) and Baillon, Halevy, and
Li (2019) argued that ambiguity-averse participants may use the randomization device to
hedge, and thus the incentive compatibility of the random incentive mechanism may be
affected. Kuzmics (2017) also pointed out the difficulty of preference elicitation when in-
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dividuals face ambiguity: Individuals with nonsubjective-expected-utility preferences may
end up behaving as if they are subjective-expected-utility maximizers.

Finally, many papers have studied ambiguity and robustness in different areas of eco-
nomics. As mentioned earlier, how mixed strategies should be introduced and evaluated
has been an issue. Our results offer some new insights into this issue. We leave the de-
tailed discussion to the end of the paper.

The paper proceeds as follows. Section 2 introduces the choice domain, mixture op-
erations, and a variant of AA’s characterization of the subjective expected utility repre-
sentation. Section 3 presents the main axioms, the DMEU representation, and the main
results. Section 4 examines three special cases of the DMEU. Section 5 discusses the re-
lated literature.

2. PRELIMINARIES

The set of consequences is a compact Polish space X .11 Let �(X ) be the set of Borel
probability measures on X , endowed with the topology of weak convergence. Elements of
�(X ) are called prizes. Let S = {s1� � � � � sn} be a finite set of states. An act f : S → �(X ) is
a function that assigns a prize to each state. For each state si, we write fi instead of f (si)
for simplicity. Let F denote the set of all acts, endowed with the product topology. Let
�(F), the set of Borel probability measures on F , denote the set of all lotteries, endowed
with the topology of weak convergence. Henceforth, when we say a set of acts, we mean a
Borel measurable subset of F . The support of a lottery P ∈ �(F), denoted by supp(P), is
the smallest closed set of acts F ⊂F such that P(F) = 1. The individual has a binary rela-
tion/preference � on �(F). We denote the asymmetric part of � by � and the symmetric
part by ∼.

A lottery represents randomization over acts. Following randomization, the individual
receives an act. Next, a state is revealed to the individual, after which the act assigns the
prize associated with the realized state to the individual. Finally, as the prize’s risk re-
solves, the individual receives a consequence (see Figure 2).

Lotteries are denoted by P , Q, R, acts are denoted by f , g, h, and prizes are denoted
by p, q, r. A degenerate lottery that assigns probability 1 to an act f is identified with f . If
an act yields the same prize p in all states, the act is called a constant act, and is identified
with p. If a prize assigns probability 1 to a consequence x, we denote the prize by δx.

We assume throughout the paper that � is nontrivial: There exist some lotteries P and
Q such that P �Q.

2.1. Randomization and Statewise Randomization

We distinguish between two kinds of mixture operations. First, the randomization be-
tween lotteries P and Q with probability α ∈ [0�1], denoted by αP + (1 −α)Q, is a lottery
that assigns probability αP(F)+ (1 −α)Q(F) to each set of acts F ⊂F . The second kind
of mixture operation is state by state and for acts. The statewise randomization between
acts f and g with probability α ∈ [0�1], denoted by αf +sw (1 − α)g, is an act that assigns
the prize αfi + (1 − α)gi to each state si (see Figure 6).12

11A Polish space is a complete separable metric space.
12Here, αfi + (1 − α)gi is the standard mixture between prizes (probability measures over consequences)

used in expected utility theory. With an abuse of notation, this mixture is also denoted by “+.” In most other
places in the paper, however, “+” represents randomization between lotteries.
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FIGURE 6.—Suppose there are two states: s1 and s2. The left-hand lottery is the randomization with prob-
ability α between acts (degenerate lotteries) f and g. The right-hand act is the state-wise randomization with
probability α between acts f and g.

The difference between the two mixture operations is obvious, but one useful way to
understand it is to consider randomization as a mixture performed before the state is
revealed to the individual, and statewise randomization as a mixture performed after the
state is revealed. In the urn experiment, before a ball is drawn, the individual tosses a
fair coin and bets on red being drawn from the ambiguous urn if heads and black if tails.
This is randomization and is done before the color of the drawn ball is revealed to the
individual. As discussed in Section 1, whether such randomization eliminates the effect of
ambiguity depends on the individual’s subjective timing belief.

In contrast, suppose the individual first observes the color of the ball drawn, and then
tosses the coin and bets accordingly. This will generate an act that yields a 50–50 lottery
between $100 and $0 in all states, sR (red is drawn) and sB (black is drawn), which is ex-
actly the 50–50 statewise randomization between betting on red and black (see also the
right-hand side of Figures 1 and 6). Since the prizes are identical in all states, this 50–50
statewise randomization eliminates the effect of ambiguity, regardless of the individual’s
belief about how the unknown probability law is determined. To put it differently, because
the mixture happens after the state is revealed, nature must have determined the proba-
bility law, in which case the individual’s timing belief no longer matters.

From the above discussion, it can also be seen that under the same mixture probability,
statewise randomization should be (weakly) more effective in eliminating the effect of
ambiguity than randomization. Intuitively, under statewise randomization, nature always
moves before the mixture, and hence it is (weakly) harder for nature to play against the
individual than under randomization.

2.2. Subjective Expected Utility

AA provide a characterization of the subjective expected utility (SEU) representation.
We introduce a variant that will be useful in motivating our axioms in Section 3. The first
four axioms are restatements of AA’s axioms and assumptions using our terminology and
notation.

AXIOM 1—Weak Order: The preference � is complete and transitive.

AXIOM 2—Continuity: For any P ∈ �(F), {Q ∈ �(F) :Q� P} and {Q ∈ �(F) : P �Q}
are closed.



1168 S. KE AND Q. ZHANG

The first two axioms are basic. The next three axioms are the ones we want to relax
later.

AXIOM 3—Independence: For any P�Q�R ∈ �(F) and α ∈ (0�1), P �Q if and only if
αP + (1 − α)R� αQ+ (1 − α)R.

AXIOM 4—Statewise Independence: For any f�g�h ∈ F and α ∈ (0�1), f � g if and
only if αf +sw (1 − α)h� αg +sw (1 − α)h.

To state the last axiom, we need the following notation. For each lottery P , let f P denote
the act such that

f P
i (X)=

∫
F
fi(X)dP� (1)

for any i ∈ {1� � � � � n} and measurable set of consequences X ⊂ X . By construction, the
lottery P is converted into an act f P state by state via reduction of compound lotteries.
For example, suppose the support of P is finite. Fixing any state si, f P

i is the mixture of
prizes weighted by P ,

∑
f∈supp(P) P(f ) ·fi, which is a standard compound lottery in expected

utility theory. To put it differently, if we convert all randomization in P into statewise
randomization, we obtain f P .

AXIOM 5—Strong Dominance: For any P�Q ∈ �(F), if f P
i � fQ

i for any i, then P �Q.

This axiom combines AA’s two axioms, Monotonicity in Prizes and Reversal of Order in
Compound Lotteries. Monotonicity in Prizes requires that for any two acts f and g, if fi � gi

for every i, f � g. Reversal of Order in Compound Lotteries requires that f P ∼ P . There-
fore, Strong Dominance requires that the individual be indifferent between randomization
and statewise randomization. The lemma below emphasizes this, and illustrates some ba-
sic relation between Independence, Statewise Independence, and Strong Dominance. All
omitted proofs can be found in the Appendix.

LEMMA 1: Suppose � satisfies Weak Order. The following statements are true:
1. For any P�Q ∈ �(F) and α ∈ [0�1], Strong Dominance implies that αP + (1 − α)Q ∼

f αP+(1−α)Q ∼ αfP + (1 − α)fQ ∼ αf P +sw (1 − α)fQ;
2. Under Strong Dominance, Independence is equivalent to Statewise Independence.

The axioms above characterize the SEU representation. A function u : �(X )→ R is an
expected utility function if for any prize p,

u(p)=
∫
X
u(δx)dp�

Let �(S) denote the set of probability measures on S .

DEFINITION 1: The individual’s preference � has an SEU representation if there exists
a continuous expected utility function u : �(X )→ R and μ ∈ �(S) such that the following
function W represents �:

W (P) =
∫
F

(∫
S
u(f )dμ

)
dP� (2)
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Since we assume that � is nontrivial, implicitly in the definition above, W is not con-
stant. We will not repeat this for our other representations, but similar implicit assump-
tions apply to them as well.

When � has an SEU representation, the individual is indifferent between randomiza-
tion and statewise randomization, which is reflected in the following equations:

W (P) =
∫
F

(∫
S
u(f )dμ

)
dP =

∫
S

(∫
F
u(f )dP

)
dμ=

∫
S
u
(
f P

)
dμ=W

(
f P

)
�

We say that an SEU representation is unique if in (2), u is unique up to a positive affine
transformation and μ is unique. The theorem below restates AA’s main representation
result.

THEOREM 1—Anscombe and Aumann (1963): The individual’s preference � has an
SEU representation if and only if it satisfies Weak Order, Continuity, Independence, State-
wise Independence, and Strong Dominance. Furthermore, the SEU representation is unique.

Because Strong Dominance holds, Lemma 1 implies that one of the two axioms, Inde-
pendence or Statewise Independence, is redundant. Stating the theorem in this way, how-
ever, helps us motivate the relaxations we introduce below.

3. AXIOMS AND THE REPRESENTATION

Three axioms will be relaxed. Observing that statewise randomization may render am-
biguity irrelevant because of hedging (as discussed in Section 2.1), Gilboa and Schmei-
dler (1989) proposed a relaxation of their independence assumption, which is Statewise
Independence in our setting, to capture this. They allow the individual’s preference to be
convex so that she may strictly prefer statewise randomization; meanwhile, constant acts
should continue to satisfy the independence assumption, because constant acts do not
provide hedging opportunities. We relax Statewise Independence in the same way.

We also want to relax Independence so that the individual may strictly prefer random-
ization. In the urn experiment, if the individual agrees with Raiffa’s (1961) argument—
or, in the service example, if the details of the services are precisely stated in contracts
beforehand—randomization can render ambiguity irrelevant. In the investment example
in Figure 5, randomization partially eliminates the effect of ambiguity, which also violates
Independence. We relax Independence following the way Gilboa and Schmeidler (1989)
relax Statewise Independence.

We say that a lottery P preserves Independence if for any lotteries Q, R and α ∈ (0�1),
Q � R if and only if αQ + (1 − α)P � αR + (1 − α)P . We say that an act f preserves
Statewise Independence if for any acts g, h and α ∈ (0�1), g � h if and only if αg +sw (1 −
α)f � αh+sw (1 − α)f .

AXIOM 6—Preference for Randomization:
(i) For any P�Q ∈ �(F) and α ∈ [0�1], P �Q implies αP + (1 − α)Q�Q;

(ii) Every constant act preserves Independence.

AXIOM 7—Preference for Statewise Randomization:
(i) For any f�g ∈F and α ∈ [0�1], f � g implies αf +sw (1 − α)g� g;

(ii) Every constant act preserves Statewise Independence.
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Next, we replace Strong Dominance with three weaker axioms. Strong Dominance re-
quires that the individual be indifferent between randomization and statewise random-
ization, but as discussed earlier, the individual may not agree that randomization is as
useful in eliminating the effect of ambiguity as statewise randomization. For instance,
suppose an individual believes that the effect of ambiguity is unaffected by randomiza-
tion in the urn experiment. Since the 50–50 statewise randomization renders ambiguity
irrelevant in the urn experiment (as discussed in Section 2.1), this individual must have
viewed randomization and statewise randomization differently. Hence, Strong Dominance
is violated.13

Indifference between the two types of mixture operations arises because to compare
two lotteries, P and Q, Strong Dominance first converts them to two acts, state by state, via
reduction of compound lotteries (see (1)). The conversion turns randomization into state-
wise randomization and implicitly identifies the two types of mixture operations. There-
fore, a natural weakening is to compare P and Q without the conversion. We compare
them realization by realization and state by state. The relation between realization-by-
realization comparison of lotteries and first-order stochastic dominance is well known.
Following Lehmann (1955), we say that a set of acts F ⊂ F is increasing if, whenever
fi � gi for any i and g ∈ F , we have f ∈ F .

DEFINITION 2: We say that P first-order stochastically dominates Q if for any increasing
set of acts F ⊂F , P(F) ≥Q(F).

For any two acts f and g, we think of f as an improvement of g if fi � gi for ev-
ery i ∈ {1� � � � � n}. The condition in the above definition implies that we can view P as a
realization-by-realization improvement of Q, similar to the classic results on first-order
stochastic dominance from the theory of risk. The axiom below, FOSD, says that if P is a
realization-by-realization improvement of Q, P is preferred to Q.14

AXIOM 8—FOSD: For any P�Q ∈ �(F), if P first-order stochastically dominates Q, then
P �Q.

The next two axioms compare randomization with statewise randomization. The first is
related to a natural definition of second-order stochastic dominance in our setting. The dis-
cussion in Sections 1 and 2.1 shows that the extent to which randomization eliminates the
effect of ambiguity depends on the individual’s subjective timing belief, while the extent
to which statewise randomization eliminates the effect of ambiguity does not. Moreover,
under the same mixture probability, statewise randomization should be weakly more ef-
fective in eliminating the effect of ambiguity than randomization, regardless of the indi-
vidual’s subjective timing belief. Therefore, given any lottery, the individual should prefer
to replace randomization with statewise randomization whenever possible.

13An individual can simultaneously violate Independence, Statewise Independence, and Strong Dominance. To
see this, consider an individual who believes that randomization eliminates the effect of ambiguity in the service
example with precise contracts (which suggests that Independence is violated), and at the same time believes
that ambiguity is unaffected by randomization in the urn experiment. Since the 50–50 statewise randomization
renders ambiguity irrelevant in the urn experiment, both Statewise Independence and Strong Dominance are
violated.

14One can show that FOSD is weaker than the relaxation of Strong Dominance in Saito (2011). In the context
of social choice, the idea behind the monotonicity conditions in Gajdos and Maurin (2004) and Fleurbaey
(2010) is similar to FOSD.
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What choice behavior reveals that the individual prefers to replace randomization with
statewise randomization? First, we should have αf +sw (1 − α)g � αf + (1 − α)g for any
acts f , g and α ∈ [0�1].

The comparison between αf +sw (1 − α)g and αf + (1 − α)g closely resembles the
comparison between δ$(αx+(1−α)y) and αδ$x+(1−α)δ$y (x� y ∈ R) in expected utility theory.
In particular, αf +sw (1−α)g and αf + (1−α)g share the same expected utility (of prizes)
fixing any state, similar to how δ$(αx+(1−α)y) and αδ$x + (1 −α)δ$y share the same expected
amount of money. In expected utility theory, αδ$x + (1 −α)δ$y is a mean-preserving spread
of δ$(αx+(1−α)y) (see Rothschild and Stiglitz (1970)). We define mean-preserving spreads in
our setting following how they are defined in Rothschild and Stiglitz.

DEFINITION 3: We say that Q is a mean-preserving spread of P if P = β[αf +sw (1 −
α)g] + (1 −β)R and Q = β[αf + (1 − α)g] + (1 −β)R for some acts f , g, lottery R, and
α�β ∈ [0�1].

When Q is a mean-preserving spread of P as defined above, some randomization in Q
involving the acts f and g is replaced with statewise randomization in P . According to our
previous discussion, the individual should prefer P to Q, as stated in the axiom below.

AXIOM 9—SOSD: For any P�Q ∈ �(F), if Q is a mean-preserving spread of Q, then
P �Q.

The last axiom states that for constant acts, the individual remains indifferent between
randomization and statewise randomization, as in subjective expected utility theory.15 To
understand this, recall that under SOSD, P � Q if Q = β[αf + (1 − α)g] + (1 − β)R
and P = β[αf +sw (1 − α)g] + (1 − β)R. Strict preference P � Q occurs, however, only
if αf +sw (1 − α)g in P is strictly more effective in eliminating the effect of ambiguity
than αf + (1 −α)g in Q. Following Gilboa and Schmeidler (1989), we have assumed that
when g is a constant act, neither αf +sw (1 − α)g nor αf + (1 − α)g eliminates the effect
of ambiguity (see part (ii) of Preference for Randomization and part (ii) of Preference for
Statewise Randomization). Thus, if g is a constant act, αf +sw (1 − α)g will not be strictly
more effective than αf +(1−α)g in eliminating the effect of ambiguity, and P �Q should
not occur. This observation is stated in our last axiom below.

We say that P can be obtained by modifying Q’s mixture timing of constant acts or Q
can be obtained by modifying P ’s mixture timing of constant acts if

P = β
[
αf +sw (1 − α)p

] + (1 −β)R and Q = β
[
αf + (1 − α)p

] + (1 −β)R

for some act f , constant act p, lottery R, and α�β ∈ [0�1].
AXIOM 10—Indifference to Mixture Timing of Constant Acts: For any P�Q ∈ �(F), if

P can be obtained by modifying Q’s mixture timing of constant acts, then P ∼ Q.

This axiom rules out the possibility that, for example, the individual prefers early risk
resolution or has different risk attitudes before and after the state is revealed. We can
incorporate these possibilities in our analysis, but we leave them out to emphasize that
our findings are not driven by these possibilities.

15A similar idea appears in an axiom called Indifference to Probability Mixture in Saito (2013).
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The following lemma complements Lemma 1 and shows that under some of our new
axioms, Independence and Statewise Independence imply Strong Dominance. Together with
Lemma 1, this means that it is impossible to only violate one axiom among Independence,
Statewise Independence, and Strong Dominance. Any two of those three axioms imply the
third. This finding will be useful later.

LEMMA 2: Suppose � satisfies Weak Order, Continuity, FOSD, and Indifference to Mix-
ture Timing of Constant Acts. Independence and Statewise Independence imply Strong Dom-
inance.

Our main theorem will show that the axioms above are equivalent to the following rep-
resentation of the individual’s preference. Let K(�(S)) be the collection of all nonempty
closed subsets of �(S) endowed with the Hausdorff metric topology. Since �(S) is com-
pact and Polish, K(�(S)) is also compact and Polish (see Theorem 3.85 of Aliprantis and
Border (2006)).

DEFINITION 4: The individual’s preference � has a double maxmin expected utility
(DMEU) representation if there exist a continuous expected utility function u : �(X ) →
R and a compact collection M of compact subsets of �(S) such that � can be represented
by

W (P) = min
M∈M

∫
F

(
min
μ∈M

∫
S
u(f )dμ

)
dP� (3)

If the individual’s preference � has a representation described in the above definition,
we say that � has a DMEU representation (M�u). Below is the main theorem.

THEOREM 2: The individual’s preference � has a DMEU representation if and only if
it satisfies Weak Order, Continuity, Preference for Randomization, Preference for Statewise
Randomization, FOSD, SOSD, and Indifference to Mixture Timing of Constant Acts.

The uniqueness of the representation will be studied in Section 3.2, and we provide
some comparative static results in the Appendix.

In the DMEU representation, each M ∈ M is a set of priors called a scenario. The
interpretation of the representation is that the individual who is conservative and focuses
on the worst case believes that before she randomizes (trivially or not), a scenario M ∈M
unknown to her has occurred, and after the realization of her randomization, an unknown
probability law from M will be determined. Alternatively, the individual believes that
before she randomizes, nature, which plays against her, has chosen a scenario from M,
and after she randomizes, nature will choose a probability law from the scenario based on
the realization of her randomization.

Randomization may only partially eliminate the effect of ambiguity. It may help the in-
dividual hedge across scenarios, but not across probability laws within a scenario. Figure 5
is a simple example. If the individual chooses “Long” deterministically, the worst scenario
will be MB. If she chooses “Short” deterministically, the worst scenario will be MG. Either
way, her utility will be zero. However, if she randomizes between “Long” and “Short”
with equal probability, the effect of ambiguity induced by MG and MB is eliminated: In
scenarios MG and MB, the individual receives the same prize with utility 0�5. The worst
scenario now is MN , which contains two priors. Randomization cannot eliminate the ef-
fect of ambiguity induced by the priors in MN , and the individual’s utility will be 0�3 under
MN .
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For any two acts f and g, randomization between f and g may be strictly preferred only
if f and g have different minimizing scenarios. With trivial randomization—that is, if the
individual chooses an act f with probability 1—(3) becomes

W (f) = min
μ∈M

∫
S
u(f )dμ�

in which M = ⋃
M∈MM pools all priors together.

3.1. Sketch of the Proof

To prove the sufficiency of the axioms, we begin by finding an expected utility represen-
tation for the individual’s preference over constant acts, and use it to construct a utility
representation W (P) for her preference over lotteries.

Next, we define the expected utility core �∗ of �: For any lotteries P , Q, P �∗ Q if for
any R ∈ �(F) and α ∈ (0�1], αP + (1−α)R� αQ+ (1−α)R. Our notion of the expected
utility core is similar to that of Cerreia-Vioglio (2009), Cerreia-Vioglio, Dillenberger, and
Ortoleva (2015), and Cerreia-Vioglio, Maccheroni, and Marinacci (2017).16

We verify that �∗ satisfies the axioms in Dubra, Maccheroni, and Ok (2004) and then
apply their main theorem to find a closed (and convex) set of continuous functions V such
that P �∗ Q if and only if∫

F
V

(
u(f1)� � � � � u(fn)

)
dP ≥

∫
F
V

(
u(f1)� � � � � u(fn)

)
dQ

for every V ∈ V.
We show that if P first-order stochastically dominates Q or Q is a mean-preserving

spread of P , P �∗ Q. In addition, if P can be obtained by modifying Q’s mixture tim-
ing of constant acts, P ∼∗ Q. According to the definition of �∗, these observations imply
that every V ∈ V satisfies properties similar to those in Gilboa and Schmeidler’s (1989,
Lemma 3.3) and, therefore, every V ∈ V has an MEU representation. Then we use the
fact that every V has an MEU representation to establish that V is bounded and equicon-
tinuous. According to the Arzelá–Ascoli theorem, V is compact.

Finally, we show that

W (P) = min
V ∈V

∫
F
V

(
u(f1)� � � � � u(fn)

)
dP; (4)

that is, the representation of the individual’s preference W (P) we initially constructed is
equal to the minimum of

∫
F V (u(f1)� � � � � u(fn))dP .17 Note that for any lotteries P and

Q, P �∗ Q ⇒ P �Q, but the converse is not true in general. However, our axioms ensure
that the converse holds under certain conditions, which is a key property of �∗ for proving
(4): For any lottery P and constant act p,

P � p⇒ P �∗ p�

16Similar concepts have also appeared in earlier papers, including Nehring (2001) and Ghirardato, Mac-
cheroni, and Marinacci (2004), which can be viewed as the dual version of the type of expected utility core that
we use.

17The right-hand side of (4) is similar to the representation in Maccheroni (2002), but our choice domain,
proof strategy, and research questions differ from his.
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A similar property of the expected utility core is also used in Cerreia-Vioglio, Dillen-
berger, and Ortoleva (2015).

3.2. Uniqueness of the DMEU Representation

Suppose the individual’s preference is represented by the DMEU representation W
as in (3). In general, we can add redundant scenarios to M without changing W , and
hence M will not be unique. For example, suppose M = {{μ1�μ2}} for some distinct
μ1�μ2 ∈ �(S). If we replace M with {{μ1�μ2}� {μ1}}, because∫

F

(
min

μ∈{μ1�μ2}

∫
S
u(f )dμ

)
dP ≤

∫
F

(
min
μ∈{μ1}

∫
S
u(f )dμ

)
dP�

the function W will be unaffected. Once we remove the redundant scenarios from M,
however, M will essentially be unique.

Our proof of Theorem 2 in fact shows that the preference � satisfies the axioms if and
only if it has a DMEU representation (M�u) such that M is a compact and convex col-
lection of compact and convex subsets of �(S).18 When a DMEU representation of �
satisfies these additional convexity assumptions, we say that � has a DMEU∗ representa-
tion.

The result below shows that there is a unique DMEU∗ representation whose set of
scenarios is minimal. The uniqueness of the expected utility function u is standard: It is
unique up to a positive affine transformation.

THEOREM 3: Suppose the individual’s preference � satisfies Weak Order, Continuity, Pref-
erence for Randomization, Preference for Statewise Randomization, FOSD, SOSD, and In-
difference to Mixture Timing of Constant Acts. Then � has a DMEU∗ representation (M̂�u)
such that the following statements hold:

1. For any DMEU∗ representation (M� v) of �, M̂ ⊂ M� and v = αu + β for some
α> 0 and β ∈R.

2. The expected utility core �∗ of � satisfies the following: For any P�Q ∈ �(F), P �∗ Q
if and only if ∫

F

(
min
μ∈M

∫
S
u(f )dμ

)
dP ≥

∫
F

(
min
μ∈M

∫
S
u(f )dμ

)
dQ

for every M ∈ M̂.
Moreover, M̂ is unique.

Our notion of uniqueness is similar to that of Cerreia-Vioglio, Dillenberger, and Ortol-
eva (2015). In their continuous cautious expected utility representation, the minimal set
of certainty equivalent functions is unique up to the closed convex hull.

4. SPECIAL CASES OF THE DMEU

We examine three special cases of the DMEU. In the first, it is as if the individual always
believes that nature moves before she randomizes; in the second, it is as if she always

18In the definition of the DMEU representation, we do not impose these additional convexity assumptions.
This will keep our examples and discussion simple. For instance, the simple examples in Figures 3–5 do not
satisfy these convexity assumptions.
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believes that nature moves after she randomizes; and the third is Saito (2015). Epstein,
Marinacci, and Seo (2007), Seo (2009), and Saito (2015) have studied representations
similar to the first two special cases mentioned above.

To obtain the DMEU representation, we simultaneously relax Independence, Statewise
Independence, and Strong Dominance. A natural question is what the representation of the
individual’s preference looks like if we only relax some of them. Lemmas 1 and 2 tell us
that imposing any two of these three axioms is equivalent to imposing all of them, which
leads to the SEU representation. Therefore, the remaining possibility is to impose exactly
one of the three axioms on a preference with a DMEU representation.

First, we show that if Strong Dominance is imposed, it is as if the individual always
believes that nature moves before she randomizes, which corresponds to Raiffa (1961).

THEOREM 4: Suppose the individual’s preference � has a DMEU representation. Then
there exists a continuous expected utility function u : �(X )→R and a compact set M ⊂ �(S)
such that

W ea(P) = min
μ∈M

∫
F

(∫
S
u(f )dμ

)
dP (5)

represents � if and only if � satisfies Strong Dominance.

We call (5) the Ex Ante MEU representation. This representation is equivalent to the
DMEU representation whose scenarios are all singletons, and the union of whose sce-
narios is M. In the Ex Ante MEU representation, for each prior μ ∈ M, the individual
evaluates a lottery P using the standard SEU formula. Therefore, it is as if the individual
believes that before she randomizes, a fixed but unknown probability law has already been
determined.

To understand why the Ex Ante MEU representation satisfies Strong Dominance, recall
that an important consequence of Strong Dominance is P ∼ f P , which is generally not true
in the DMEU representation. However, in the Ex Ante MEU representation, P ∼ f P

always holds:

W ea(P) = min
μ∈M

∫
F

(∫
S
u(f )dμ

)
dP

= min
μ∈M

∫
S

(∫
F
u(f )dP

)
dμ

= min
μ∈M

∫
S
u
(
f P

)
dμ= W ea

(
f P

)
�

Next, we turn to Independence. If Independence is imposed instead, we will obtain a
representation in which it is as if the individual always believes that nature moves after
she randomizes.

THEOREM 5: Suppose the individual’s preference � has a DMEU representation. Then
there exists a continuous expected utility function u : �(X )→R and a compact set M ⊂ �(S)
such that

W ep(P) =
∫
F

(
min
μ∈M

∫
S
u(f )dμ

)
dP (6)

represents � if and only if � satisfies Independence.
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We call (6) the Ex Post MEU representation. This representation is equivalent to the
DMEU representation that has only one scenario, M. In the Ex Post MEU representa-
tion, to evaluate a lottery P , for each act that is a realization of the lottery, the individual
takes the worst prior from M to evaluate the act. Therefore, it is as if the individual be-
lieves that nature moves only after the realization of her randomization.

The reason the Ex Post MEU representation satisfies Independence is simple: W ep(P)
is linear in P .

Finally, if we impose Statewise Independence on a preference with a DMEU represen-
tation, we will return to the SEU representation. To see this, recall that in a DMEU
representation, the utility of an act (degenerate lottery) f is W (f) = minμ∈M

∫
S u(f )dμ,

in which M = ⋃
M∈MM pools together all priors from all scenarios. This is the MEU

representation of preferences over acts from Gilboa and Schmeidler (1989). If Statewise
Independence holds, W (f) must be linear. Then there can only be one prior in M, which
means that the DMEU representation must be an SEU representation.

4.1. Saito (2015) and the DMEU Representation

Saito (2015) observed that in the urn experiment, there are two intuitive ways to eval-
uate a lottery. Using our language, the two ways correspond to the two extreme views of
randomization—the view that nature moves completely before the individual randomizes
and the view that nature moves completely after. Saito characterized a representation in
which a lottery P is evaluated by a convex combination of the Ex Ante MEU function and
the Ex Post MEU function; that is, the utility of P is equal to

W (P) = δW ea(P)+ (1 − δ)W ep(P) (7)

for some δ ∈ [0�1] and some Ex Ante MEU function W ea and Ex Post MEU function W ep

that share the same set of priors M. The parameter δ measures how useful randomization
is in the elimination of ambiguity’s effect. Clearly, the main idea of this representation
is closely related to that of our DMEU representation, and we show below that in fact,
Saito’s (2015) representation is a special case of the DMEU representation.

Saito’s (2015) representation generalized the Ex Ante MEU and the Ex Post MEU
representations, but is not flexible enough to capture the following version of the service
example. Suppose there are four service providers. Two are in town A, and the other two
in town B. In town A, the convention is that service providers provide precise contracts,
although no one reads them. In town B, the convention is that no contracts will be pro-
vided. The quality of the services in town B, however, is “as good as” that of town A
and the individual knows that. Specifically, there are four states. In state sij , town A’s ith
provider’s service and town B’s jth provider’s service are identical with payoffs being 1
for the individual, and the payoffs of the other services are 0, i = 1�2, and j = 1�2. Con-
sider two choice problems. In the first, the individual will only consider town A’s services
due, for example, to weather conditions. In the second, she will only consider town B’s.
According to our discussion, in the first problem, randomization eliminates the effect of
ambiguity. In the second, the effect of ambiguity is unaffected by randomization. In (7),
this individual must use δ = 1 in the first problem and δ = 0 in the second. This is not al-
lowed, since δ is fixed in Saito. The DMEU representation, however, allows the individual
to hold a subjective timing belief that is consistent with this example.

In terms of Saito’s (2015) axioms, because he studies preferences over sets of acts, it
is not straightforward to see which of his axioms is violated by this example. Intuitively,
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however, the violated axiom should be Dominance. Denote the 50–50 randomization be-
tween choosing the two service providers in town A by P , and the 50–50 randomization
between choosing the two service providers in town B by Q. Now, imagine that nature
moves before the individual randomizes in both choice problems. In that case, P and Q
will be equally good. Similarly, imagine that nature moves after she randomizes in both
choice problems. In that case, P and Q will again be equally good. Since Saito’s Dom-
inance compares lotteries based only on these two hypothetical extreme timing beliefs,
Dominance should imply that the individual is indifferent between P and Q. According to
our discussion, however, the individual may strictly prefer P to Q.

It is not obvious why the objective function (7) is a special case of the DMEU repre-
sentation. To see this directly from the representation, given a representation as in (7),
for each μ̂ ∈ M, let Mμ̂ := {δμ̂ + (1 − δ)μ′ : μ′ ∈ M}. Let M := {Mμ̂ : μ̂ ∈ M}. Since M

is compact, verifying that M is compact is straightforward. Now, consider the following
DMEU representation:

W (P) = min
Mμ̂∈M

∫
F

(
min
μ∈Mμ̂

∫
S
u(f )dμ

)
dP�

We have

W (P) = min
Mμ̂∈M

∫
F

(
min
μ′∈M

∫
S
u(f )d

(
δμ̂+ (1 − δ)μ′))dP

= δmin
μ̂∈M

∫
F

∫
S
u(f )dμ̂dP + (1 − δ)

∫
F

(
min
μ′∈M

∫
S
u(f )dμ′

)
dP

= δW ea(P)+ (1 − δ)W ep(P)�

Thus, the individual’s objective function in Saito (2015) is a special case of the DMEU
representation.

The observation above proves the following result.

THEOREM 6: Suppose the individual’s preference � can be represented by

W (P) = δmin
μ∈M

∫
F

(∫
S
u(f )dμ

)
dP + (1 − δ)

∫
F

(
min
μ∈M

∫
S
u(f )dμ

)
dP

for some compact and convex set M ⊂ �(S) and δ ∈ [0�1]. Then � has a DMEU represen-
tation (M�u), in which M = {Mμ̂ : μ̂ ∈ M} and Mμ̂ = {δμ̂ + (1 − δ)μ′ : μ′ ∈ M} for each
μ̂ ∈ M.

This finding allows us to use the DMEU representation to offer a new interpretation of
Saito’s (2015) representation. Consider an individual who believes that the set of possible
priors is a convex set M. She believes that before she randomizes, nature has partially
determined the probability law by choosing a subset of M or, equivalently, shrinking M to
some subset of it. In particular, she believes that nature can shrink M by a fixed fraction,
1 − δ, centered at any μ̂ ∈ M. Note that shrinking M by 1 − δ centered at μ̂ ∈ M exactly
generates the scenario Mμ̂ we construct above. Therefore, if an individual’s preference
can be represented by (7), it is as if she holds the above belief about how the probability
law is determined.
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5. DISCUSSION

We have discussed several related papers at the end of the Introduction. We provide
additional discussion in this section. In addition to Saito (2015), Seo (2009) and Saito
(2011) are closely related to our paper. Seo characterized the second-order subjective ex-
pected utility (SOSEU) representation, in which the individual has a probability measure
m ∈ �(�(S)) over probability measures on the state space (μ’s from �(S)), and she eval-
uates a lottery P according to

W (P) =
∫
F

[∫
�(S)

v

(∫
S
u(f )dμ

)
dm(μ)

]
dP�19

In terms of axioms, there are two main differences between the SOSEU representation
and the DMEU representation. First, the former maintains Independence, while the lat-
ter relaxes it. Thus, in Seo, the individual always disagrees with Raiffa’s argument that
randomization renders ambiguity irrelevant and has no preference for randomization.
Second, the DMEU representation satisfies Indifference to Mixture Timing of Constant
Acts, while the SOSEU representation reduces to the SEU representation if a similar ad-
ditional axiom is imposed (see Seo’s Corollary 5.2). Hence, the only intersection between
Seo’s representation and ours is the SEU representation. Finally, as the function v in Seo’s
representation becomes arbitrarily concave, the SOSEU representation will converge to
the Ex Post MEU representation.

Noting that there are two popular ways to evaluate randomization under ambiguity,
which correspond to what we call the Ex Ante MEU and the Ex Post MEU representa-
tions, Saito (2011) introduced a representation that combines them (see (7)). This rep-
resentation later appears in Saito (2015), who, by analyzing preferences over sets of acts,
characterizes the behavior of an individual who anticipates choosing randomly from a set
of acts. Section 4.1 discusses some main differences between Saito’s model and ours. In
particular, since the DMEU representation nests Saito’s representation as a special case,
the latter must also satisfy SOSD. In other words, fixing any mixture probability, state-
wise randomization must be more effective than randomization in eliminating the effect
of ambiguity in Saito’s representation.

The choice domain we use is from AA. By analyzing the individual’s preference in the
choice domain �(F), AA characterize the SEU representation. If their axiom, Reversal of
Order in Compound Lotteries—or, in our version, Strong Dominance—holds, the individ-
ual does not distinguish between randomization and statewise randomization. Then the
choice domain �(F) can be reduced to F , in which case only statewise randomization
needs to be considered. Many papers on ambiguity have been built on this reduced ver-
sion of AA’s domain, either for the reason above or because randomization is not consid-
ered from the beginning; these include Gilboa and Schmeidler (1989), Schmeidler (1989),
Ghirardato and Marinacci (2001), Maccheroni, Marinacci, and Rustichini (2006), Sinis-
calchi (2009), Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio (2011), Lehrer
and Teper (2011), and Frick, Iijima, and Le Yaouanq (2019). In contrast, Seo (2009), Saito
(2011), and our paper adopt the original choice domain of AA without imposing Strong
Dominance.

A large body of research has studied ambiguity and robustness (some maxmin princi-
ples) in various areas of economics. However, how mixed strategies should be introduced

19This representation is similar to the smooth ambiguity representation introduced by Klibanoff, Marinacci,
and Mukerji (2005).
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and evaluated has been an issue. For example, most papers that study monopoly sales
problems have assumed that randomization can help individuals hedge (similar to the
case in the Ex Ante MEU representation).20 On the other hand, most papers on con-
tracts/auctions/mechanisms with ambiguity or robustness concerns have either ruled out
randomization/mixed strategies or assumed that randomization does not help individuals
hedge (similar to the case in the Ex Post MEU representation).21 Some of these papers
point out that randomization should help individuals hedge, but this case will be more
difficult to deal with.22 An exception is Bose and Renou (2014), who examine both ex-
treme cases. Mixed strategies are ruled out in most papers on robustness or ambiguity in
macroeconomics and finance. At least in some of these papers, it is natural to consider
mixed strategies.23

6. CONCLUSION

How randomization/mixed strategies should be modeled in the presence of ambiguity
or when some maxmin principle is used has been an unsettled issue in many research areas
of economics. Two simple yet opposite ways to model randomization are well known. In
the classic urn experiment of Ellsberg (1961), one corresponds to Raiffa (1961)—by which
randomization should render ambiguity irrelevant—and the other argues that the effect
of ambiguity is unaffected by randomization.

We point out that the individual’s belief about how the unknown probability law is
determined is important in answering this question. If the individual believes that before
she randomizes, the probability law—although unknown to her—has been determined,
then the first way to model randomization is reasonable. If, however, she believes that
the probability law is determined only after her randomization, then the second way is
reasonable.

The subjective belief about how the unknown probability law is determined, however, is
usually more complicated than these two extreme cases. For example, the probability that
an investment is successful may depend on some long-term factor and some short-term
factor. The individual may believe that before she makes any decision (possibly random-
ized), the unknown long-term factor has been determined, while the short-term factor will
be determined much later. In this case, neither of these two ways to model randomization
seems appropriate.

To address these issues, we adopt the classic framework of Anscombe and Aumann
(1963) and relax their axioms. A new representation is derived. In the representation, the
individual has a collection of sets of priors, M. She behaves as if she believes that before
she randomizes (trivially or not), nature has chosen an unknown scenario (a set of priors)
M ∈ M, and after the randomization, nature will choose an unknown prior from M .
Thus, the individual’s preference reveals her belief about how the unknown probability
law is determined, and the representation allows randomization to partially eliminate the

20See, among others, Linhart and Radner (1989), Bergemann and Schlag (2008, 2011), Auster (2018), and
Carrasco et al. (2018).

21See, among others, Bose, Ozdenoren, and Pape (2006), Bose and Daripa (2009), Bodoh-Creed (2012),
Carroll (2015, 2017), Wolitzky (2016), de Castro, Liu, and Yannelis (2017a, 2017b), Di Tillio, Kos, and Messner
(2017), de Castro and Yannelis (2018), and Carroll and Segal (2019).

22According to our analysis, some of these papers (e.g., Di Tillio, Kos, and Messner (2017)) should have
assumed that randomization helps individuals hedge due to their timing assumptions, but they do not.

23See, among others, Easley and O’Hara (2010), Epstein and Schneider (2010), Antić (2015), Easley,
O’Hara, and Yang (2014), and Ilut, Kehrig, and Schneider (2018).
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effect of ambiguity: Randomization may help the individual hedge across scenarios, but
not across probability laws within a scenario.

APPENDIX

PROOF OF LEMMA 1: The first statement can be verified using equation (1) and Weak
Order directly. Next, suppose Independence and Strong Dominance hold. Take any acts
f , g, h and α ∈ (0�1) such that f � g. By Independence, we know that αf + (1 − α)h �
αg+(1−α)h. Using the first statement of the lemma, αf +(1−α)h∼ αf +sw (1−α)h and
αg+ (1 −α)h∼ αg+sw (1 −α)h. Therefore, αf +sw (1 −α)h� αg+sw (1 −α)h. Showing
that αf +sw (1 − α)h � αg +sw (1 − α)h implies f � g is similar. Next, suppose Statewise
Independence and Strong Dominance hold. Take any lotteries P , Q, R, and α ∈ (0�1) such
that P �Q. Due to the first statement of the lemma, f P � fQ. By Statewise Independence,
αf P +sw (1 − α)fR � αfQ +sw (1 − α)fR. Applying the first statement of the lemma again,
we know that αf P +sw (1−α)fR ∼ αP + (1−α)R and αfQ +sw (1−α)fR ∼ αQ+ (1−α)R.
Therefore, αP+(1−α)R� αQ+(1−α)R. Showing that αP+(1−α)R� αQ+(1−α)R
implies P �Q is similar. Q.E.D.

PROOF OF LEMMA 2: Consider two lotteries P and Q such that f P
i � fQ

i for each
i ∈ {1� � � � � n}. By FOSD, f P � fQ. For each f ∈ F , by Weak Order and Continuity, we
can find a constant act pf such that f ∼ pf (see Lemma 4 for more details). Let
{Pl}∞

l=1 be a sequence of finite-support lotteries that converges to P . Take an arbi-
trary Pl. By applying Independence finitely many times, we know that the lottery P̄l :=∑

f∈supp(Pl)
Pl(f ) · pf ∈ �(�(X )) is indifferent to Pl = ∑

f∈supp(Pl)
Pl(f ) · f . Similarly, due

to Statewise Independence, statewise randomization
∑

swf∈supp(Pl)
Pl(f ) ·pf is indifferent to∑

swf∈supp(Pl)
Pl(f ) · f = f Pl . Moreover, we can obtain

∑
swf∈supp(Pl)

Pl(f ) · pf by modifying
P̄l’s mixture timing of constant acts finitely many times. Thus, Weak Order and Indiffer-
ence to Mixture Timing of Constant Acts imply that Pl ∼ P̄l ∼ f Pl . Since f Pl converges to
f P according to (1), by Continuity, P ∼ f P . The same arguments apply to Q. Therefore,
P �Q. Q.E.D.

PROOF OF THEOREM 2: We first prove the sufficiency of the axioms. Preference for
Statewise Randomization implies that for any α ∈ (0�1) and p�q� r ∈ �(X ), p � q im-
plies αp+sw (1 −α)r � αq+sw (1 −α)r. Since X is Polish, �(X ) is Polish, and hence F is
closed in �(F) and the set of constant acts is closed in �(F) (see Chapter 15 of Aliprantis
and Border (2006)). Therefore, by Continuity, for any p ∈ �(X ), {q ∈ �(X ) : q � p} and
{q ∈ �(X ) : p� q} are closed. According to expected utility theory, there exists a contin-
uous expected utility function u : �(X ) → R such that p � q if and only if u(p) ≥ u(q),
in which the mixture operation is “+sw.”

Similarly, when restricting � to �(�(X )), � also satisfies Independence.

LEMMA 3: Every lottery in �(�(X )) preserves Independence.

PROOF: We show that for any p�q ∈ �(X ) and α ∈ (0�1), αp + (1 − α)q also pre-
serves Independence. Take any P�Q ∈ �(F). Because p preserves Independence, for any
β ∈ (0�1), P � Q if and only if βP + (1 − β)p � βQ + (1 − β)p. Because q preserves
Independence, for any γ ∈ (0�1), βP + (1 −β)p� βQ+ (1 −β)p if and only if

γ
(
βP + (1 −β)p

) + (1 − γ)q� γ
(
βQ+ (1 −β)p

) + (1 − γ)q� (8)
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In particular, let γ = α
1−β+αβ

, which implies that

γ(1 −β)

1 − γ
= α

1 − α
�

Clearly, γ ∈ (α�1) and

βγ = αβ

1 −β+ αβ

can take any value in (0�1) since α and β are arbitrary numbers in (0�1). Then, (8) be-
comes

βγP + (1 −βγ)
(
αp+ (1 − α)q

)
� βγQ+ (1 −βγ)

(
αp+ (1 − α)q

)
for any βγ ∈ (0�1). Therefore, αp+ (1 − α)q preserves Independence.

A standard induction argument implies that all lotteries in �(�(X )) (randomization
over constant acts �(X )) with finite support preserve Independence. Since X is Polish,
�(X ) is Polish and, therefore, lotteries with finite support are dense in �(�(X )) (Theo-
rem 15.10 of Aliprantis and Border (2006)). By Continuity, all lotteries in �(�(X )) pre-
serve Independence. Q.E.D.

Since �(�(X )) is a closed subset of �(F) (Corollary 15.6 of Aliprantis and Border
(2006)), � on �(�(X )) satisfies the standard continuity axiom. Thus, there exists a con-
tinuous expected utility function uea : �(�(X )) → R such that for any P�Q ∈ �(�(X )),
P �Q if and only if uea(P) ≥ uea(Q), in which the mixture operation is “+.”

Because X is compact, u and uea are both continuous expected utility functions, and
they represent the same preference on �(X ), we must be able to find a best xh and a worst
xl such that u(δxh)= uea(δxh)= 1 and u(δxl)= uea(δxl )= 0, and u(�(X ))= uea(�(X ))=
[0�1].24 For any p ∈ �(X ), we can find a unique αp ∈ [0�1] such that p ∼ αpδxh + (1 −
αp)δxl (see Lemma 4 for more details). By Indifference to Mixture Timing of Constant Acts,
αpδxh + (1 − αp)δxl ∼ αpδxh +sw (1 − αp)δxl . Then we have u(p)= uea(p) any p ∈ �(X ),
which in turn implies that for any P ∈ �(�(X )), u(f P) = uea(P). Therefore, from here
on, with an abuse of notation, we use u to denote uea; that is, u is a continuous expected
utility representation of � restricted to �(�(X )) under the mixture operation “+,” and
also of � restricted to �(X ) under the mixture operation “+sw.” For each act f , let u(f )
denote the n-tuple (u(f1)� � � � � u(fn)) ∈ [0�1]n.

Each lottery P ∈ �(F) induces a Borel probability measure mP on [0�1]n. Take any
Borel set Λ ⊂ [0�1]n. Recall that F is a closed subset of �(F). Since u is continuous,
{f ∈F : u(f ) ∈ Λ} is also Borel in �(F). Then we define mP(Λ) := P({f ∈F : u(f ) ∈ Λ})
for each Borel set Λ⊂ [0�1]n. Verifying that mP is a probability measure is standard. This
definition implies that for any P�Q ∈ �(F), α ∈ (0�1), and Borel set Λ ⊂ [0�1]n,

mαP+(1−α)Q(Λ) = [
αP + (1 − α)Q

]({
f ∈F : u(f ) ∈ Λ

})
= αP

({
f ∈F : u(f ) ∈Λ

}) + (1 − α)Q
({
f ∈F : u(f ) ∈Λ

})
= αmP(Λ)+ (1 − α)mQ(Λ); (9)

that is, mαP+(1−α)Q and αmP + (1 − α)mQ are the same measure.

24Note that u is linear on �(X ), and uea is linear on �(�(X )).
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Clearly, {mP : P ∈ �(F)} is a subset of �([0�1]n), the set of all Borel probability mea-
sures on [0�1]n. The converse also holds. For each (α1� � � � �αn) ∈ [0�1]n, we can find
an act f (α1�����αn) such that f

(α1�����αn)
i = αiδxh + (1 − αi)δxl .

25 By definition, u(f (α1�����αn)) =
(α1� � � � �αn). Note that Fhl := {f (α1�����αn) : (α1� � � � �αn) ∈ [0�1]n} is closed in F� and thus
in �(F). Take an arbitrary m ∈ �([0�1]n). For any Borel measurable set F ⊂ F , define
ΛF := {(α1� � � � �αn) ∈ [0�1]n : (α1� � � � �αn) = u(f ) for some f ∈ F ∩ Fhl}. Since F ∩ Fhl is
Borel and u is continuous, ΛF is Borel measurable. Let Pm(F)= m(ΛF). It is standard to
verify that Pm ∈ �(F). Therefore, {mP : P ∈ �(F)} = �([0�1]n).

For simplicity, for any x ∈ X , we write x instead of δx. Then, x may be treated as a
consequence, a degenerate prize, a constant act, or a degenerate lottery, depending on
the context. Next, we use u to construct a representation of �.

LEMMA 4: There exists a continuous function I : �([0�1]n)→ R+ such that for any P�Q ∈
�(F), (a) P � Q if and only if I(mP) ≥ I(mQ); (b) I(mP) = u(P) if P ∈ �(�(X )); and
(c) I(�([0�1]n))= [0�1].

PROOF: Take any P ∈ �(F). By Continuity, {α ∈ [0�1] : αxh + (1 − α)xl � P} and
{α ∈ [0�1] : P � αxh + (1 − α)xl} are closed in [0�1]. Neither is empty, because FOSD
implies that xh � P � xl, and hence 1 belongs to the former set and 0 belongs to the lat-
ter. Because the union of those two sets is a connected set [0�1], we know that the two
sets cannot have empty intersection. Therefore, for any P , we can find some αP such that

αPxh + (
1 − αP

)
xl ∼ P�

Since � is nontrivial, xh � xl and for any α > α′, αxh + (1 − α)xl � α′xh + (1 − α′)xl.
Therefore, αP is unique for each P ∈ �(F). Define a function Ĩ : �(F)→ [0�1] such that

Ĩ(P) = αP�

For constant acts xh and xl, Ĩ(xh) = 1 = u(xh) and Ĩ(xl) = 0 = u(xl). It is standard to
verify that Ĩ represents �.

Note that if P ∈ �(�(X )), P ∼ αPxh + (1 − αP)xl implies that u(P) = u(αPxh + (1 −
αP)xl). Therefore, Ĩ(P) = u(P) for any P ∈ �(�(X )).

For each m ∈ �([0�1]n), we can find some P ∈ �(F) such that m = mP . Define I(m) =
Ĩ(P) for each m ∈ �([0�1]n). Then we obtain a function I : �([0�1]n)→ [0�1]. Note that I
is well-defined: For any P�Q ∈ �(F) such that mP = mQ, we must have P ∼ Q and hence
Ĩ(P) = Ĩ(Q). This is because when mP = mQ, according to our definition, P first-order
stochastically dominates Q and Q first-order stochastically dominates P . Therefore, by
FOSD, P ∼ Q.

By Continuity, I is continuous. To see this, take any sequence of Borel probability
measures on [0�1]n, {ml}∞

l=1, that converges to m ∈ �([0�1]n). The sequence of lotteries
{Pml}∞

l=1 must converge to Pm. Based on how we define Ĩ, Ĩ(Pml) must converge to Ĩ(Pm).
Last, since I(�([0�1]n)) is connected, I(�([0�1]n))= [0�1]. Q.E.D.

The function I satisfies two additional useful properties.

LEMMA 5: For any P�Q ∈ �(F), and α ∈ [0�1], I(αmP + (1 − α)mQ)≥ αI(mP)+ (1 −
α)I(mQ).

25The mixture used here is the standard mixture operation from expected utility theory.
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PROOF: We know from Lemma 4 that αPxh + (1 − αP)xl ∼ P and αQxh + (1 −
αQ)xl ∼ Q. By Lemma 3, we know that both αPxh + (1 − αP)xl and αQxh + (1 − αQ)xl

preserve Independence. Therefore,

αP + (1 − α)
[
αQxh + (

1 − αQ
)
xl

]
∼ α

[
αPxh + (

1 − αP
)
xl

] + (1 − α)
[
αQxh + (

1 − αQ
)
xl

]
∼ α

[
αPxh + (

1 − αP
)
xl

] + (1 − α)Q�

By part (i) of Preference for Randomization,

1
2
(
αP + (1 − α)

[
αQxh + (

1 − αQ
)
xl

]) + 1
2
(
α
[
αPxh + (

1 − αP
)
xl

] + (1 − α)Q
)

� α
[
αPxh + (

1 − αP
)
xl

] + (1 − α)Q

∼ α
[
αPxh + (

1 − αP
)
xl

] + (1 − α)
[
αQxh + (

1 − αQ
)
xl

]
�

Thus,

1
2
(
αP + (1 − α)

[
αQxh + (

1 − αQ
)
xl

]) + 1
2
(
α
[
αPxh + (

1 − αP
)
xl

] + (1 − α)Q
)

= 1
2
(
αP + (1 − α)Q

) + 1
2
(
α
[
αPxh + (

1 − αP
)
xl

] + (1 − α)
[
αQxh + (

1 − αQ
)
xl

])
� α

[
αPxh + (

1 − αP
)
xl

] + (1 − α)
[
αQxh + (

1 − αQ
)
xl

]
�

which implies that αP+(1−α)Q� α[αPxh+(1−αP)xl]+(1−α)[αQxh+(1−αQ)xl] since
α[αPxh + (1 − αP)xl] + (1 − α)[αQxh + (1 − αQ)xl] preserves Independence. Therefore,
according to parts (a) and (b) of Lemma 4,

I
(
αmP + (1 − α)mQ

) = I
(
mαP+(1−α)Q

)
≥ I

(
mα[αPxh+(1−αP)xl]+(1−α)[αQxh+(1−αQ)xl])

= αI
(
mαPxh+(1−αP)xl

) + (1 − α)I
(
mαQxh+(1−αQ)xl

)
= αI

(
mP

) + (1 − α)I
(
mQ

)
� Q.E.D.

LEMMA 6: For any P ∈ �(�(X )), Q ∈ �(F), and α ∈ [0�1], I(αmP + (1 − α)mQ) =
αu(P)+ (1 − α)I(mQ).

PROOF: According to Lemma 4, Q ∼ αQxh + (1 − αQ)xl. Since P preserves Indepen-
dence (Lemma 3), αP + (1 − α)Q ∼ αP + (1 − α)[αQxh + (1 − αQ)xl]. Then

I
(
αmP + (1 − α)mQ

) = I
(
mαP+(1−α)Q

)
= I

(
mαP+(1−α)[αQxh+(1−αQ)xl])

= I
(
αmP + (1 − α)mαQxh+(1−αQ)xl

)
= αu(P)+ (1 − α)I

(
mαQxh+(1−αQ)xl

)
= αu(P)+ (1 − α)I

(
mQ

)
�
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The fourth equality follows from the fact that both αQxh + (1 − αQ)xl and P are in
�(�(X )), and part (b) of Lemma 4. Q.E.D.

Next, define �∗ on �([0�1]n) as follows: For any P�Q ∈ �(F),

mP �∗ mQ if αP + (1 − α)R� αQ+ (1 − α)R (10)

for any R ∈ �(F) and α ∈ (0�1]. Note that if there is another lottery P ′ such that mP ′ =
mP , by FOSD, αP + (1 − α)R ∼ αP ′ + (1 − α)R. Hence, �∗ is well-defined. We have the
following observations.

LEMMA 7: The following statements are true: (a) �∗ is reflexive and transitive, and for
any m ∈ �([0�1]n), {m′ ∈ �([0�1]n) : m′ �∗ m} and {m′ ∈ �([0�1]n) : m �∗ m′} are closed,
(b) for any P�Q�R ∈ �(F) and α ∈ (0�1), mP �∗ mQ implies αmP + (1 − α)mR �∗ αmQ +
(1 − α)mR, and (c) for any P ∈ �(F) and Q ∈ �(�(X )), P �Q implies mP �∗ mQ.

PROOF: For part (a), reflexivity and transitivity of �∗ are immediate. Since �([0�1]n)
is Polish, to verify the continuity property of �∗, it suffices to show that for any two
sequences of lotteries {Pl} and {Ql} such that Pl converges to P , Ql converges to Q,
and mPl �∗ mQl for any l ∈ N, we have mP �∗ mQ. Fixing any R ∈ �(F) and α ∈ (0�1],
since αPl + (1 − α)R � αQl + (1 − α)R, by Continuity of �, we have αP + (1 − α)R �
αQ+ (1 − α)R.

For part (b), take any R′ ∈ �(F) and β ∈ (0�1]. We want to show that if mP �∗ mQ, we
have

β
(
αP + (1 − α)R

) + (1 −β)R′ � β
(
αQ+ (1 − α)R

) + (1 −β)R′�

To see this, we only need to notice that mP �∗ mQ and

β
(
αP + (1 − α)R

) + (1 −β)R′ = αβP + (1 − αβ)

(
β(1 − α)

1 − αβ
R+ 1 −β

1 − αβ
R′

)

and

β
(
αQ+ (1 − α)R

) + (1 −β)R′ = αβQ+ (1 − αβ)

(
β(1 − α)

1 − αβ
R+ 1 −β

1 − αβ
R′

)
�

To show (c), take any R ∈ �(F). For any α ∈ (0�1], Lemmas 5 and 6 imply that

I
(
mαP+(1−α)R

) = I
(
αmP + (1 − α)mR

)
≥ αI

(
mP

) + (1 − α)I
(
mR

)
≥ αI

(
mQ

) + (1 − α)I
(
mR

)
= I

(
mαQ+(1−α)R

)
� Q.E.D.

Consider the vector space of continuous functions from [0�1]n to R, C([0�1]n), en-
dowed with the sup norm. According to the above lemma and Dubra, Maccheroni, and
Ok (2004), there exist a closed and convex subset V of C([0�1]n) such that m�∗ m′ if and
only if ∫

[0�1]n
V dm≥

∫
[0�1]n

V dm′ for every V ∈V�
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Without loss of generality, assume that for every V ∈ V, V (0� � � � �0) = 0 and V (1� � � � �
1)= 1.

Next, we show that every V in V satisfies a few properties. For any (α1� � � � �αn) ∈ [0�1]n,
let δ(α1�����αn) denote the Dirac measure on (α1� � � � �αn).

LEMMA 8: Every V in V is weakly increasing, concave, and satisfies V (λα1 + (1 −
λ)β� � � � �λαn + (1 − λ)β) = λV (α1� � � � �αn)+ (1 − λ)β for any (α1� � � � �αn) ∈ [0�1]n and
β�λ ∈ [0�1].

PROOF: For any (α1� � � � �αn)� (β1� � � � �βn) ∈ [0�1]n, we can find some f and g such
that u(f ) = (α1� � � � �αn) and u(g) = (β1� � � � �βn). SOSD implies that for any R ∈ �(F),
λ ∈ [0�1], and γ ∈ (0�1],

γ
(
λf +sw (1 − λ)g

) + (1 − γ)R� γ
(
λf + (1 − λ)g

) + (1 − γ)R�

This means that λf +sw (1 − λ)g�∗ λf + (1 − λ)g, and hence δ(λα1+(1−λ)β1�����λαn+(1−λ)βn) �∗

λδ(α1�����αn) + (1 − λ)δ(β1�����βn). Therefore, for any V ∈ V,

V
(
λα1 + (1 − λ)β1� � � � � λαn + (1 − λ)βn

) ≥ λV (α1� � � � �αn)+ (1 − λ)V (β1� � � � �βn)�

Following similar steps, FOSD implies that every V ∈ V is weakly increasing. Finally,
suppose p ∈ �(X ) satisfies u(p) = β. Indifference to Mixture Timing of Constant Acts im-
plies that for any R ∈ �(F) and γ ∈ (0�1],

γ
(
λf +sw (1 − λ)p

) + (1 − γ)R∼ γ
(
λf + (1 − λ)p

) + (1 − γ)R;
that is, δ(λα1+(1−λ)β�����λαn+(1−λ)β) ∼∗ λδ(α1�����αn) + (1 − λ)δ(β�����β). This means that for any V ∈
V,

V
(
λα1 + (1 − λ)β� � � � �λαn + (1 − λ)β

) = λV (α1� � � � �αn)+ (1 − λ)V (β� � � � �β)�

We only need to show that V (β� � � � �β) = β. According to our construction of u,
u(p)= β implies that βxh + (1 −β)xl ∼ p. By Lemma 3, we have βxh + (1 −β)xl ∼∗ p.
Thus, for any V ∈V,

βV (1� � � � �1)+ (1 −β)V (0� � � � �0)= β= V (β� � � � �β)� Q.E.D.

The lemma above implies that every V ∈ V is positively homogeneous (let β = 0) and
V ([0�1]n)= [0�1]. Therefore, V is bounded. Below, we show that V is compact.

LEMMA 9: V is compact.

PROOF: Since [0�1]n is Polish, C([0�1]n) is also Polish (see Chapter 3.19 of Aliprantis
and Border (2006)). Therefore, to show that V is compact, we only need to show that it
is sequentially compact. Since [0�1]n is compact and V is bounded, by the Arzelá–Ascoli
theorem, if we can show that V is equicontinuous, we know that for any sequence in V,
there is a subsequence that converges in sup norm. Of course, the limit is in V, because
C([0�1]n) is complete, V is closed, and hence V is complete.

Suppose V is not equicontinuous. Then there exists some (α1� � � � �αn) ∈ [0�1]n such
that for some ε > 0, for any ω ∈ (0�1), we can find some (βω

1 � � � � �β
ω
n ) and Vω ∈ V such

that ∣∣Vω

(
βω

1 � � � � �β
ω
n

) − Vω(α1� � � � �αn)
∣∣> ε� (11)
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in which (βω
1 � � � � �β

ω
n ) is within the ω-neighborhood of (α1� � � � �αn). Take a sequence of

{(βωj

1 � � � � �β
ωj
n )}j such that (11) holds and ωj converges to zero as j goes to infinity.

Suppose αi = 0 or 1 for some i ∈ {1� � � � � n}. Because we have V (λα1 + (1 − λ)γ� � � � �
λαn + (1 − λ)γ) = λV (α1� � � � �αn) + (1 − λ)γ for every V ∈ V and λ�γ ∈ (0�1), we can
multiply (α1� � � � �αn) and each (β

ωj

1 � � � � �β
ωj
n ) by λ and add some (γ� � � � � γ) to them so

that (i) λαi + (1 − λ)γ ∈ (0�1) for every i ∈ {1� � � � � n} and (ii) we have a new version of
(11) with the right-hand side being λε. Therefore, without loss of generality, assume that
αi ∈ (0�1) for every j ∈ {1� � � � � n}. Then we can also assume without loss of generality that
for any j ∈ N, β

ωj

i > 0 for any i ∈ {1� � � � � n}.
Since V (γ� � � � � γ) = γ and V is weakly increasing for any V ∈ V, we know that

Vωj
(α1� � � � �αn) > 0. Since every V ∈ V is bounded by 1, (11) implies that for each j ∈ N,∣∣Vωj

(α1� � � � �αn)− Vωj

(
β

ωj

1 � � � � �β
ωj
n

)∣∣
Vωj

(α1� � � � �αn)
=

∣∣∣∣Vωj

(
β

ωj

1 � � � � �β
ωj
n

)
Vωj

(α1� � � � �αn)
− 1

∣∣∣∣> ε� (12)

However, because every V ∈ V is positively homogeneous and weakly increasing,

min
i∈{1�����n}

β
ωj

i

αi

≤ V
(
β

ωj

1 � � � � �β
ωj
n

)
V (α1� � � � �αn)

≤ max
i∈{1�����n}

β
ωj

i

αi

�

Therefore, as j goes to infinity, V (β
ωj
1 �����β

ωj
n )

V (α1�����αn)
must converge to 1. We have a contradiction.

Q.E.D.

Note that for any V ∈ V and P ∈ �(F),∫
F
V

(
u(f )

)
dP =

∫
[0�1]n

V dmP�

Next, we show that

I
(
mP

) = min
V ∈V

∫
[0�1]n

V dmP�

If we can show this, according to the proof of Lemma 4,

W (P) = min
V ∈V

∫
F
V

(
u(f )

)
dP (13)

represents �.

LEMMA 10: For any P ∈ �(F), I(mP)= minV ∈V
∫

[0�1]n V dmP .

PROOF: Let α := minV ∈V
∫

[0�1]n V dmP . First, we show that I(mP) ≤ α. If α = 1, the in-
equality holds according to part (c) of Lemma 4. If α < 1, let β be an arbitrary number
such that α < β < 1. We can find some p ∈ �(X ) such that u(p) = β (see the proof of
Lemma 4). Then, for some V ∈ V,∫

[0�1]n
V dmP < β= V (β� � � � �β);
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that is, mP ��∗ δ(β�����β) = mp. By part (c) of Lemma 7, this implies that p � P . Therefore,
I(δ(β�����β))= β> I(mP). Let β converge to α. We have I(mP) ≤ α.

Second, we show that I(mP)≥ α. We can find some q ∈ �(X ) such that u(q) = α. Then,
according to the representation of �∗, mP �∗ δ(α�����α) =mq. According to the definition of
�∗, P � q; that is, I(mP)≥ u(q) = α. Q.E.D.

Notice that each V ∈ V induces a preference over F . Because V is continuous,
weakly increasing, concave, and satisfies V (λα1 + (1 − λ)β� � � � �λαn + (1 − λ)β) =
λV (α1� � � � �αn) + (1 − λ)β, we can follow the steps in Gilboa and Schmeidler (1989) to
show that V (u(f )) = minμ∈M

∫
S u(f )dμ for some unique compact and convex subset of

�(S).

LEMMA 11: For any V ∈ V, there exists a unique compact and convex M ⊂ �(S) such
that V (u(f ))= minμ∈M

∫
S u(f )dμ for any f ∈F .

PROOF: Denote the preference induced by V on F by �V ; that is, f �V g if V (u(f )) ≥
V (u(g)). The only mixture operation considered for �V on F is statewise randomization,
+sw. We know that (F�+sw) is a mixture space. Clearly, �V is complete and transitive,
and for any act f , the sets {g ∈ F : g �V f } and {g ∈ F : f �V g} are closed because V is
continuous and, as shown previously, F is a closed subset of �(F). Concavity of V and
V (λα1 + (1 −λ)β� � � � �λαn + (1 −λ)β) = λV (α1� � � � �αn)+ (1 −λ)β imply that constant
acts preserve Statewise Independence, and that for any f , g, and α ∈ (0�1), f �V g implies
αf +sw (1 − α)g �V g. Lastly, FOSD implies that if for any i ∈ {1� � � � � n}, fi �V gi, then
f �V g. Therefore, we can apply the results of Gilboa and Schmeidler (1989) to show that
there exists a unique compact and convex set MV of probability measures over S such that

V
(
u(f )

) = min
μ∈MV

∫
S
u(f )dμ for any f ∈F � (14)

The compactness of MV follows from the fact that MV is a closed subset of the compact
set �(S). Q.E.D.

The proof of Lemma 11 in fact implies a stronger result: There is a bijection φ (de-
fined by (14)) from the collection of nonempty compact and convex subsets of �(S)
to the set of functions in C([0�1]n) that satisfy properties described in Lemma 8. Let
M = {φ−1(V ) : V ∈ V}. The next lemma is not needed to prove Theorem 2, but will be
useful for Theorem 3.

LEMMA 12: M is convex.

PROOF: Take any λ ∈ [0�1] and M1�M2 ∈ M. Let Vj = φ(Mj), j = 1�2. The following
equality holds:

(
λV1 + (1 − λ)V2

)(
u(f )

) = min
μ∈λM1+(1−λ)M2

∫
S
u(f )dμ

for any f ∈F , in which λM1 + (1 − λ)M2 = {λμ1 + (1 − λ)μ2 : μ1 ∈M1 and μ2 ∈ M2}. We
only need to prove that λM1 + (1 − λ)M2 is convex and compact.

Since M1 and M2 are convex, proving that λM1 + (1 − λ)M2 is convex is straight-
forward. To prove that it is compact, take an arbitrary sequence in λM1 + (1 − λ)M2,
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{λμk
1 + (1 − λ)μk

2 }∞
k=1. Note that M1 and M2 are compact. Since {μk

1 }∞
k=1 has a conver-

gent subsequence, without loss of generality, let {λμk
1 + (1 −λ)μk

2 }∞
k=1 be a sequence such

that {μk
1 }∞

k=1 converges. Then, because {μk
2 }∞

k=1 has a convergent subsequence {μkl
2 }∞

l=1, the
subsequence {λμkl

1 + (1 − λ)μ
kl
2 }∞

l=1 must converge.
Since λV1 + (1 − λ)V2 ∈V, λM1 + (1 − λ)M2 =φ−1(λV1 + (1 − λ)V2) ∈M. Q.E.D.

Because K(�(S)) is compact (Theorem 3.85 of Aliprantis and Border (2006)), if we
can show that M is closed, M is compact. This is implied by the following lemma.

LEMMA 13: M is closed.

PROOF: Take an arbitrary sequence {Mj}∞
j=1 in M that converges to some M ∈

K(�(S)). Since M ∈ K(�(S)), M is a closed subset of the compact set �(S), and hence
M is compact. Verifying that M is convex is standard.

Let Vj = φ(Mj) ∈ V for each j ∈ N. Since V is compact, we know that {Vj}∞
j=1 has a

convergent subsequence {Vjk}∞
k=1 whose limit V is in V.

By definition, for any f ∈F ,

V
(
u(f )

) = min
μ∈φ−1(V )

∫
S
u(f )dμ�

We need to prove that M = φ−1(V ) ∈ M. If this is not true, since M is compact and
convex, according to the uniqueness of the MEU representation, there must be some
g ∈F such that ∣∣∣∣V (

u(g)
) − min

μ∈M

∫
S
u(g)dμ

∣∣∣∣ = ε > 0�

Because Vjk(u(g)) = minμ∈Mjk

∫
S u(g)dμ for each k, Vjk(u(g)) converges to V (u(g)) as

k goes to infinity, and u is a continuous function defined on a compact set, even when k
is large, there must be some μ ∈ M that is sufficiently distant from all priors in Mjk (in
the case of minμ∈M

∫
S u(g)dμ < V (u(g))), or some μjk ∈ Mjk that is sufficiently distant

from all priors in M (in the case of minμ∈M
∫
S u(g)dμ > V (u(g))). Thus, {Mjk}∞

k=1 does
not converge to M . We have a contradiction. Q.E.D.

To summarize, we have shown that if � satisfies the axioms in Theorem 2, � has a
DMEU representation (M�u) in which M is a compact and convex collection of compact
and convex subsets of �(S). This will be called a DMEU∗ representation in Theorem 3.

Proving the necessity of the axioms is standard. We only verify FOSD and SOSD below.
Suppose

W (P) = min
M∈M

∫
F

(
min
μ∈M

∫
S
u(f )dμ

)
dP

represents � such that V = {minμ∈M
∫
S u(f )dμ :M ∈M} is compact.

We verify FOSD for a more general representation described in (13), in which V is
compact and every V ∈ V is continuous and weakly increasing. This representation nests
the DMEU representation as a special case. Thus, if we can show that every � that has
such a representation satisfies FOSD, then whenever � has a DMEU representation,
FOSD must also hold.
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Suppose P first-order stochastically dominates Q. For each V ∈ V,
∫
V (u(f ))dP ≥∫

V (u(f ))dQ because V is weakly increasing (see Lehmann (1955)). Therefore,

min
V ∈V

∫
V

(
u(f )

)
dP =

∫
V P

(
u(f )

)
dP ≥

∫
V P

(
u(f )

)
dQ ≥ min

V ∈V

∫
V

(
u(f )

)
dQ�

which means that FOSD holds.
Next, let Q be a mean-preserving spread of P ; that is, P = β[αf +sw (1−α)g]+(1−β)R

and Q = β[αf + (1−α)g]+ (1−β)R for some β ∈ [0�1] and R ∈ �(F). We need to verify
that W (P) ≥W (Q). We have

W (P) = min
M∈M

{
β

(
min
μ∈M

∫
S
u
((
αf +sw (1 − α)g

))
dμ

)

+ (1 −β)

∫
F

(
min
μ∈M

∫
S
u(h)dμ

)
dR

}

= min
M∈M

{
β

(
min
μ∈M

∫
S

[
αu(f )+ (1 − α)u(g)

]
dμ

)

+ (1 −β)

∫
F

(
min
μ∈M

∫
S
u(h)dμ

)
dR

}
�

and

W (Q) = min
M∈M

{
αβ

(
min
μ∈M

∫
S
u(f )dμ

)
+ (1 − α)β

(
min
μ∈M

∫
S
u(g)dμ

)

+ (1 −β)

∫
F

(
min
μ∈M

∫
S
u(h)dμ

)
dR

}
�

Notice that for each M ∈M,

min
μ∈M

∫
S

[
αu(f )+ (1 − α)u(g)

]
dμ≥ α

(
min
μ∈M

∫
S
u(f )dμ

)
+ (1 − α)

(
min
μ∈M

∫
S
u(g)dμ

)
�

Therefore, W (P) ≥W (Q). Q.E.D.

PROOF OF THEOREM 3: The proof of Theorem 2 shows that we can find a continuous
expected utility function u : �(X )→ R and a compact and convex set V̂ ⊂ C([0�1]n) such
that (i) for any m�m′ ∈ �([0�1]n), m�∗ m′ if and only if∫

[0�1]n
V dm≥

∫
[0�1]n

V dm′ for every V ∈ V̂;

(ii) for each V ∈ V̂, there exists a unique compact and convex set φ−1(V ) ⊂ �(S) such
that V (u(f )) = minμ∈φ−1(V )

∫
S u(f )dμ; and (iii) (M̂�u) is a DMEU∗ representation of �

in which M̂ = {φ−1(V ) : V ∈ V̂}. The function φ is the bijection defined in the proof of
Theorem 2.

Note that �∗ defined in (10) is different from the expected utility core we define in
Section 3.1, because �∗ is a binary relation on �([0�1]n) and the expected utility core is
a binary relation on �(F). However, with an abuse of notation, letting �∗ also denote
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the expected utility core of �, we immediately have P �∗ Q ⇐⇒ mP �∗ mQ for any
P�Q ∈ �(F), according to the definition of the expected utility core.

We know that for any V ∈ V̂ and P ∈ �(F),
∫
F V (u(f ))dP = ∫

[0�1]n V dmP . Therefore,
for any P�Q ∈ �(F), P �∗ Q if and only if for every V ∈ V̂,∫

F
V

(
u(f )

)
dP ≥

∫
F
V

(
u(f )

)
dQ�

∫
F

(
min
μ∈MV

∫
S
u(f )dμ

)
dP ≥

∫
F

(
min
μ∈MV

∫
S
u(f )dμ

)
dQ�

which means that the DMEU∗ representation (M̂�u) of � satisfies part 2 of the theorem.
Suppose there is another DMEU∗ representation (M� v) of �. Since both u and v are

expected utility representations of � on �(X ), there exist α > 0 and β ∈ R such that
v = αu+β. Because

WM�v(P) = min
M∈M

∫
F

(
min
μ∈M

∫
S
v(f )dμ

)
dP

= α min
M∈M

∫
F

(
min
μ∈M

∫
S
u(f )dμ

)
dP +β

= αWM�u(P)+β�

(M� v) is a DMEU∗ representation of � if and only if (M�u) is a DMEU∗ representation
of �. Thus, without loss of generality, let v = u. Let

V = {
φ(M) ∈C

([0�1]n) :M ∈M
}
�

Using arguments similar to the proof of Lemmas 12 and 13, we can verify that V is com-
pact and convex.

We first prove that M̂ is unique. Suppose (M�u) also satisfies part 2 of the theo-
rem. Then, for any P�Q ∈ �(F), the following three statements are equivalent: (i) P �∗

Q; (ii) for every V ∈ V̂,
∫
F V (u(f ))dP ≥ ∫

F V (u(f ))dQ; and (iii) for every V ∈ V,∫
F V (u(f ))dP ≥ ∫

F V (u(f ))dQ. According to the uniqueness result from Dubra, Mac-
cheroni, and Ok (2004), we know that

cl
(
cone(V̂)+ {γ1[0�1]n}γ∈R

) = cl
(
cone(V)+ {γ1[0�1]n}γ∈R

)
� (15)

Note that V′ := cl(cone(V) + {γ1[0�1]n}γ∈R) ∩ {V ∈ C([0�1]n) : V (λ� � � � �λ) = λ for any
λ ∈ [0, 1]} = co(V) = V. To show this, since V ⊂ V

′, we only need to show that V ∈ V
′ ⇒

V ∈ V. Suppose V is the limit of a sequence {θkVk + γk1[0�1]n}∞
k=1, in which θk ≥ 0, γk ∈ R,

and Vk ∈ co(V) for each k ∈ N. Because V ∈ V
′, it satisfies V (λ� � � � �λ) = λ for any λ ∈

[0�1]. Then V (0� � � � �0) = 0 implies that γk must converge to 0. This together with the
fact that V (1� � � � �1) = 1 implies that θk must converge to 1. Therefore, it must be true
that V ∈ co(V). Since V is compact and convex, co(V) = V. The same arguments hold
for V̂. Then, (15) implies that V̂ =V. Since φ is a bijection, M̂=M.

Next, without assuming that the DMEU∗ representation (M�u) of � satisfies part 2 of
the theorem, we show that M̂⊂M. First, define �′ on �(F) as follows: P �′ Q if∫

F
V

(
u(f )

)
dP ≥

∫
F
V

(
u(f )

)
dQ for every V ∈V�
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Note that P �′ Q implies

min
M∈M

∫
F

(
min
μ∈M

∫
S
u(f )dμ

)
dP

=
∫
F

(
min

μ∈M(P)

∫
S
u(f )dμ

)
dP

≥
∫
F

(
min

μ∈M(P)

∫
S
u(f )dμ

)
dQ

≥ min
M∈M

∫
F

(
min
μ∈M

∫
S
u(f )dμ

)
dQ�

in which M(P) ∈ M is a worst-case scenario for P . Therefore, P �′ Q ⇒ P � Q. By
Proposition 22 of Cerreia-Vioglio (2009), V̂ ⊂ V. Since φ is a bijection, this implies
M̂⊂M. Q.E.D.

PROOF OF THEOREM 4: We only prove the sufficiency of the axioms. Part 1 of Lemma 1
shows that for any lottery P , P ∼ f P . Therefore, for any DMEU representation of �,

W (P) = min
M∈M

∫
F

(
min
μ∈M

∫
S
u(f )dμ

)
dP�

it must be true that W (P) =W (f P). For an act f , we know that

W (f) = min
μ∈M

∫
S
u(f )dμ�

in which M = cl(
⋃

M∈MM). Therefore,

W (P) = W
(
f P

)
= min

μ∈M

∫
S

(∫
F
u(f )dP

)
dμ

= min
μ∈M

∫
F

(∫
S
u(f )dμ

)
dP�

Since �(S) is compact, M is compact. Q.E.D.

PROOF OF THEOREM 5: We only show that if � has a DMEU representation and satis-
fies Independence, then it has an Ex Post MEU representation. Since Weak Order, Continu-
ity, and Independence hold, there exists a continuous expected utility function V ′ :F → R

such that

W ep(P) =
∫
F
V ′(f )dP

represents �.
Define u(p) = W ep(p) for any p ∈ �(X ). In the proof of Theorem 2, we use xl to de-

note one of the worst lotteries and xh one of the best lotteries. Since FOSD holds, when-
ever two acts f and g satisfy W ep(fi) ≥ W ep(gi) for any i, W ep(f ) ≥ W ep(g). Therefore,
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there exists a function V ∗ : [u(xl)�u(xh)]n →R such that

V ∗(u(f1)� � � � � u(fn)
) = V ′(f )

for each f ∈F . Notice that for any p ∈ �(X ),

V ∗(u(p)� � � � � u(p)) = V ′(p)=W ep(p)= u(p)� (16)

Furthermore, due to Continuity and Indifference to Mixture Timing of Constant Acts, for
any p ∈ �(X ),

W ep(p)= W ep

(∫
X
δx dp

)
=

∫
X
V ′(δx)dp=

∫
X
u(δx)dp� (17)

in which W ep(p) is the utility of a degenerate lottery that yields the constant act p with
certainty, and W ep(

∫
X δx dp) is the utility of the randomization over consequences accord-

ing to p. To show that (17) holds, we first verify that it holds when p has finite support,
and then we apply Continuity to the case in which p may not have finite support. Since W
is continuous, (16) and (17) imply that u is a continuous expected utility representation
of � on �(X ).

We know that � has a DMEU representation (M� v). Since both u and v are expected
utility representations of � on �(X ), v is equal to some positive affine transformation
of u. Therefore, without loss of generality, we can assume that �’s DMEU representation
is (M�u); that is,

W (P) = min
M∈M

∫
F

(
min
μ∈M

∫
S
u(f )dμ

)
dP

represents �. Note that for any P , αPxh + (1 − αP)xl ∼ P , as shown in the proof of
Lemma 4. We have W (P) = αPu(xh) + (1 − αP)u(xl) = W ep(P). In particular, for any
f ∈F ,

W ep(f ) = V ∗(f )=W (f) = min
μ∈M

∫
S
u(f )dμ�

in which M = cl(
⋃

M∈MM); that is, W ep(P) = ∫
(minμ∈M

∫
S u(f )dμ)dP . Since �(S) is

compact, M is compact. Q.E.D.

COMPARATIVE STATICS: Below is some comparative static result for the DMEU rep-
resentation. Suppose there are two individuals whose preferences over lotteries are �1

and �2, respectively. If �i has a DMEU representation (Mi� ui), we use Mi to denote⋃
M∈Mi

M , i = 1�2. The proposition below provides a sufficient condition for when the
individual with �2 always thinks that randomization is less effective in eliminating the
effect of ambiguity than the individual with �1. The necessary condition may also be es-
tablished, but we will need to focus on DMEU∗ representations with the unique minimal
set of scenarios.

PROPOSITION 1: Suppose �1 and �2 have DMEU representations (M1�u) and (M2�u),
respectively, and M1 =M2. If for any M1 ∈M1, there exists an M2 ∈M2 such that M1 ⊂M2,
then P �2 f implies P �1 f for any lottery P and act f .
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PROOF OF PROPOSITION 1: For each lottery P , let M(P) denote an element of M1 that
minimizes

∫
F(minμ∈M

∫
S u(f )dμ)dP . For each M1 ∈M1, let M2(M1) denote an element

of M2 that contains M1. Since the two individuals share the same u and M1 = M2, they
must also share the same evaluation of every act. Then the proposition follows from

W1(P) = min
M∈M1

∫
F

(
min
μ∈M

∫
S
u(f )dμ

)
dP

=
∫
F

(
min

μ∈M(P)

∫
S
u(f )dμ

)
dP

≥
∫
F

(
min

μ∈M2

(
M(P)

)
∫
S
u(f )dμ

)
dP

≥ min
M∈M2

∫
F

(
min
μ∈M

∫
S
u(f )dμ

)
dP

= W2(P)� Q.E.D.
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ANTIĆ, N. (2015): “Contracting With Unknown Technologies,” Unpublished Manuscript. [1160,1179]
AUSTER, S. (2018): “Robust Contracting Under Common Value Uncertainty,” Theoretical Economics, 13 (1),

175–204. [1179]
BADE, S. (2015): “Randomization Devices and the Elicitation of Ambiguity-Averse Preferences,” Journal of

Economic Theory, 159 (A), 221–235. [1161,1165]
BAILLON, A., Y. HALEVY, AND C. LI (2019): “Experimental Elicitation of Ambiguity Attitude Using the Ran-

dom Incentive System,” Unpublished Manuscript. [1161,1165]
BERGEMANN, D., AND K. SCHLAG (2008): “Pricing Without Priors,” Journal of the European Economic Asso-

ciation, 6 (2/3), 560–569. [1179]
(2011): “Robust Monopoly Pricing,” Journal of Economic Theory, 146 (6), 2527–2543. [1160,1179]

BODOH-CREED, A. (2012): “Ambiguous Beliefs and Mechanism Design,” Games and Economic Behavior, 75
(2), 518–537. [1179]

BOSE, S., AND A. DARIPA (2009): “A Dynamic Mechanism and Surplus Extraction Under Ambiguity,” Journal
of Economic Theory, 144 (5), 2084–2114. [1179]

BOSE, S., AND L. RENOU (2014): “Mechanism Design With Ambiguous Communication Devices,” Economet-
rica, 82 (5), 1853–1872. [1179]

BOSE, S., E. OZDENOREN, AND A. PAPE (2006): “Optimal Auctions With Ambiguity,” Theoretical Economics,
1 (4), 411–438. [1179]

CARRASCO, V., V. FARINHA LUZ, N. KOS, M. MESSNER, P. MONTEIRO, AND H. MOREIRA (2018): “Optimal
Selling Mechanisms Under Moment Conditions,” Journal of Economic Theory, 177, 245–279. [1160,1179]

CARROLL, G. (2015): “Robustness and Linear Contracts,” American Economic Review, 105 (2), 536–563. [1179]
(2017): “Robustness and Separation in Multidimensional Screening,” Econometrica, 85 (2), 453–488.

[1179]
CARROLL, G., AND I. SEGAL (2019): “Robustly Optimal Auctions With Unknown Resale Opportunities,” Re-

view of Economic Studies, 86 (4), 1527–1555. [1179]
CERREIA-VIOGLIO, S. (2009): “Maxmin Expected Utility on a Subjective State Space: Convex Preferences

Under Risk,” Unpublished Manuscript. [1173,1191]
CERREIA-VIOGLIO, S., D. DILLENBERGER, AND P. ORTOLEVA (2015): “Cautious Expected Utility and the Cer-

tainty Effect,” Econometrica, 83 (2), 693–728. [1164,1173,1174]

http://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/AgranovOrtoleva17&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/AliprantisBorder06&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/AA63&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:5/Auster18&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:6/Bade15&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/BergemannSchlag08&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/BergemannSchlag11&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/Bodoh-Creed12&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/BoseDaripa09&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:12/BoseRenou14&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:13/BoseOzdenorenPape06&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:14/CarrascoFarinhaLuzKosEtAl18&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:15/Carroll15&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/Carroll17&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:17/CarrollSegal18&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:19/Cerreia-VioglioDillenbergerOrtoleva15&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/AgranovOrtoleva17&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/AliprantisBorder06&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/AA63&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:5/Auster18&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:6/Bade15&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/BergemannSchlag08&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/BergemannSchlag11&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/Bodoh-Creed12&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/BoseDaripa09&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:12/BoseRenou14&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:13/BoseOzdenorenPape06&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:14/CarrascoFarinhaLuzKosEtAl18&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/Carroll17&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:17/CarrollSegal18&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:19/Cerreia-VioglioDillenbergerOrtoleva15&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P


1194 S. KE AND Q. ZHANG

CERREIA-VIOGLIO, S., D. DILLENBERGER, P. ORTOLEVA, AND G. RIELLA (2019): “Deliberately Stochastic,”
American Economic Review, 109 (7), 2425–2445. [1164]

CERREIA-VIOGLIO, S., F. MACCHERONI, M. MARINACCI, AND L. MONTRUCCHIO (2011): “Uncertainty Averse
Preferences,” Journal of Economic Theory, 146 (4), 1275–1330. [1178]

CERREIA-VIOGLIO, S., F. MACCHERONI, AND M. MARINACCI (2017): “Stochastic Dominance Analysis Without
the Independence Axiom,” Management Science, 63 (4), 1097–1109. [1173]

DE CASTRO, L., AND N. YANNELIS (2018): “Uncertainty, Efficiency and Incentive Compatibility: Ambiguity
Solves the Conflict Between Efficiency and Incentive Compatibility,” Journal of Economic Theory, 177, 678–
707. [1179]

DE CASTRO, L., Z. LIU, AND N. YANNELIS (2017)a: “Ambiguous Implementation: The Partition Model,” Eco-
nomic Theory, 63 (1), 233–261. [1179]

(2017)b: “Implementation Under Ambiguity,” Games and Economic Behavior, 101, 20–33. [1179]
DI TILLIO, A., N. KOS, AND M. MESSNER (2017): “The Design of Ambiguous Mechanisms,” Review of Eco-

nomic Studies, 84 (1), 237–276. [1160,1179]
DOMINIAK, A., AND W. SCHNEDLER (2011): “Attitudes Toward Uncertainty and Randomization: An Experi-

mental Study,” Economic Theory, 48 (2–3), 289–312. [1164]
DUBRA, J., F. MACCHERONI, AND E. OK (2004): “Expected Utility Theory Without the Completeness Axiom,”

Journal of Economic Theory, 115 (1), 118–133. [1173,1184,1190]
DWENGER, N., D. KÜBLER, AND G. WEIZSÄCKER (2018): “Flipping a Coin: Evidence From Laboratory and

Field,” Journal of Public Economics, 167, 240–250. [1164]
EASLEY, D., AND M. O’HARA (2010): “Microstructure and Ambiguity,” Journal of Finance, 65 (5), 1817–1846.

[1179]
EASLEY, D., M. O’HARA, AND L. YANG (2014): “Opaque Trading, Disclosure, and Asset Prices: Implications

for Hedge Fund Regulation,” Review of Financial Studies, 27 (4), 1190–1237. [1160,1179]
ELLSBERG, D. (1961): “Risk, Ambiguity, and the Savage Axioms,” Quarterly Journal of Economics, 75 (4),

643–669. [1159,1179]
EPSTEIN, L., AND M. SCHNEIDER (2010): “Ambiguity and Asset Markets,” Annual Review of Financial Eco-

nomics, 2, 315–346. [1179]
EPSTEIN, L., M. MARINACCI, AND K. SEO (2007): “Coarse Contingencies and Ambiguity,” Theoretical Eco-

nomics, 2 (4), 355–394. [1161,1175]
FLEURBAEY, M. (2010): “Assessing Risky Social Situations,” Journal of Political Economy, 118 (4), 649–680.

[1170]
FRICK, M., R. IIJIMA, AND Y. LE YAOUANQ (2019): “Boolean Representations of Preferences Under Ambigu-

ity,” Unpublished Manuscript. [1164,1178]
FUDENBERG, D., R. IIJIMA, AND T. STRZALECKI (2015): “Stochastic Choice and Revealed Perturbed Utility,”

Econometrica, 83 (6), 2371–2409. [1164]
GAJDOS, T., AND E. MAURIN (2004): “Unequal Uncertainties and Uncertain Inequalities: An Axiomatic Ap-

proach,” Journal of Economic Theory, 116 (1), 93–118. [1170]
GHIRARDATO, P., AND M. MARINACCI (2001): “Risk, Ambiguity and the Separation of Utility and Beliefs,”

Mathematics of Operations Research, 26 (4), 864–890. [1178]
GHIRARDATO, P., F. MACCHERONI, AND M. MARINACCI (2004): “Differentiating Ambiguity and Ambiguity

Attitude,” Journal of Economic Theory, 118 (2), 133–173. [1173]
GILBOA, I., AND D. SCHMEIDLER (1989): “Maxmin Expected Utility With Non-Unique Prior,” Journal of Math-

ematical Economics, 18 (2), 141–153. [1159,1162,1169,1171,1173,1176,1178,1187]
HANSEN, L., AND T. SARGENT (2010): “Wanting Robustness in Macroeconomics,” in Handbook of Monetary

Economics, Vol. 3B. North Holland, Chapter 20, 1097–1157. [1160]
ILUT, C., M. KEHRIG, AND M. SCHNEIDER (2018): “Slow to Hire, Quick to Fire: Employment Dynamics With

Asymmetric Responses to News,” Journal of Political Economy, 126 (5), 2011–2071. [1179]
KLIBANOFF, P., M. MARINACCI, AND S. MUKERJI (2005): “A Smooth Model of Decision Making Under Am-

biguity,” Econometrica, 73 (6), 1849–1892. [1178]
KUZMICS, C. (2017): “Abraham Wald’s Complete Class Theorem and Knightian Uncertainty,” Games and

Economic Behavior, 104, 666–673. [1165]
LEHMANN, E. (1955): “Ordered Families of Distributions,” Annals of Mathematical Statistics, 26 (3), 399–419.

[1170,1189]
LEHRER, E., AND R. TEPER (2011): “Justifiable Preferences,” Journal of Economic Theory, 146 (2), 762–774.

[1164,1178]
LINHART, P., AND R. RADNER (1989): “Minimax-Regret Strategies for Bargaining Over Several Variables,”

Journal of Economic Theory, 48 (1), 152–178. [1179]
MACCHERONI, F. (2002): “Maxmin Under Risk,” Economic Theory, 19 (4), 823–831. [1173]

http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/Cerreia-VioglioDillenbergerOrtolevaEtAl19&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/CMMM11&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:22/Cerreia-VioglioMaccheroniMarinacci17&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:23/CastroYannelis18&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:24/CastroLiuYannelis17a&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:25/CastroLiuYannelis17b&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:26/DiTillioKosMessner17&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:27/DominiakSchnedler11&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:28/DubraMaccheroniOk04&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:29/DwengerKublerWeizsacker16&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:30/EasleyOHara10&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:31/EasleyOHaraYang14&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:32/Ellsberg61&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:33/EpsteinSchneider10&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:34/EpsteinMarinacciSeo07&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:35/Fleurbaey10&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:37/FudenbergIijimaStrzalecki15&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:38/GajdosMaurin04&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:39/GhirardatoMarinacci01&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:40/GhirardatoMaccheroniMarinacci04&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:41/GilboaSchmeidler89&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:43/IlutKehrigSchneider17&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:44/KlibanoffMarinacciMukerji05&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:45/Kuzmics17&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:46/Lehmann55&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:47/LehrerTeper11&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:48/LinhartRadner89&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:49/Maccheroni02&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/Cerreia-VioglioDillenbergerOrtolevaEtAl19&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/CMMM11&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:22/Cerreia-VioglioMaccheroniMarinacci17&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:23/CastroYannelis18&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:23/CastroYannelis18&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:24/CastroLiuYannelis17a&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:25/CastroLiuYannelis17b&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:26/DiTillioKosMessner17&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:27/DominiakSchnedler11&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:28/DubraMaccheroniOk04&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:29/DwengerKublerWeizsacker16&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:31/EasleyOHaraYang14&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:32/Ellsberg61&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:33/EpsteinSchneider10&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:34/EpsteinMarinacciSeo07&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:37/FudenbergIijimaStrzalecki15&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:38/GajdosMaurin04&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:39/GhirardatoMarinacci01&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:40/GhirardatoMaccheroniMarinacci04&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:41/GilboaSchmeidler89&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:43/IlutKehrigSchneider17&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:44/KlibanoffMarinacciMukerji05&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:45/Kuzmics17&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:48/LinhartRadner89&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P


RANDOMIZATION AND AMBIGUITY AVERSION 1195

MACCHERONI, F., M. MARINACCI, AND A. RUSTICHINI (2006): “Ambiguity Aversion, Robustness, and the
Variational Representation of Preferences,” Econometrica, 74 (6), 1447–1498. [1178]

MACHINA, M. (1985): “Stochastic Choice Functions Generated From Deterministic Preferences Over Lotter-
ies,” Economic Journal, 95, 575–594. [1164]

MACHINA, M., AND D. SCHMEIDLER (1992): “A More Robust Definition of Subjective Probability,” Economet-
rica, 60 (4), 745–780. [1159]

NEHRING, K. (2001): “Ambiguity in the Context of Probabilistic Beliefs,” Unpublished Manuscript. [1173]
OECHSSLER, J., H. RAU, AND A. ROOMETS (2019): “Hedging, Ambiguity, and the Reversal of Order Axiom,”

Games and Economic Behavior, 117, 380–387. [1161,1164]
RAIFFA, H. (1961): “Risk, Ambiguity, and the Savage Axioms: Comment,” Quarterly Journal of Economics, 75

(4), 690–694. [1160,1175,1179]
ROTHSCHILD, M., AND J. STIGLITZ (1970): “Increasing Risk: I. A Definition,” Journal of Economic Theory, 2

(3), 225–243. [1171]
SAITO, K. (2011): “Preference for Randomization and Ambiguity Aversion,” Unpublished Manuscript. [1170,

1178]
(2013): “Social Preferences Under Risk: Equality of Opportunity versus Equality of Outcome,” Amer-

ican Economic Review, 103 (7), 3084–3101. [1171]
(2015): “Preferences for Flexibility and Randomization Under Uncertainty,” American Economic

Review, 105 (3), 1246–1271. [1161,1164,1175-1178]
SCHMEIDLER, D. (1989): “Subjective Probability and Expected Utility Without Additivity,” Econometrica, 57

(3), 571–587. [1178]
SEO, K. (2009): “Ambiguity and Second-Order Belief,” Econometrica, 77 (5), 1575–1605. [1175,1178]
SINISCALCHI, M. (2009): “Vector Expected Utility and Attitudes Toward Variation,” Econometrica, 77 (3),

801–855. [1178]
WOLITZKY, A. (2016): “Mechanism Design With Maxmin Agents: Theory and an Application to Bilateral

Trade,” Theoretical Economics, 11 (3), 971–1004. [1179]

Co-editor Itzhak Gilboa handled this manuscript.

Manuscript received 14 March, 2017; final version accepted 28 January, 2020; available online 5 February, 2020.

http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:50/MaccheroniMarinacciRustichini06&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:51/Machina85&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:52/MachinaSchmeidler92&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:54/OechsslerRauRoomets19&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:55/Raiffa61&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:56/RothschildStiglitz70&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:58/Saito13&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:59/Saito15&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:60/Schmeidler89&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:61/Seo09&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:62/Siniscalchi09&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:63/Wolitzky16&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:50/MaccheroniMarinacciRustichini06&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:51/Machina85&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:52/MachinaSchmeidler92&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:54/OechsslerRauRoomets19&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:55/Raiffa61&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:56/RothschildStiglitz70&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:58/Saito13&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:58/Saito13&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:59/Saito15&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:59/Saito15&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:60/Schmeidler89&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:62/Siniscalchi09&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:63/Wolitzky16&rfe_id=urn:sici%2F0012-9682%282020%2988%3A3%3C1159%3ARAAA%3E2.0.CO%3B2-P

	Introduction
	How Should Randomization Eliminate the Effect of Ambiguity?
	Preview of Results

	Preliminaries
	Randomization and Statewise Randomization
	Subjective Expected Utility

	Axioms and the Representation
	Sketch of the Proof
	Uniqueness of the DMEU Representation

	Special Cases of the DMEU
	Saito (2015) and the DMEU Representation

	Discussion
	Conclusion
	Appendix
	References

