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Abstract.  Tropical forests challenge us to understand biodiversity, as numerous seemingly
similar species persist on only a handful of shared resources. Recent ecological theory posits
that biodiversity is sustained by a combination of species differences reducing interspecific
competition and species similarities increasing time to competitive exclusion. Together, these
mechanisms counterintuitively predict that competing species should cluster by traits, in con-
trast with traditional expectations of trait overdispersion. Here, we show for the first time that
trees in a tropical forest exhibit a clustering pattern. In a 50-ha plot on Barro Colorado Island
in Panama, species abundances exhibit clusters in two traits connected to light capture strategy,
suggesting that competition for light structures community composition. Notably, we find four
clusters by maximum height, quantitatively supporting the classical grouping of Neotropical
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woody plants into shrubs, understory, midstory, and canopy layers.
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INTRODUCTION

A basic principle of community ecology is that coexis-
tence requires niche differentiation, that is, species differ-
ences that stabilize communities by reducing interspecific
competition. However, the high diversity and seemingly
continuous phenotypic variation of trees in tropical for-
ests raises questions about the importance of niche differ-
entiation as a contributor to species co-occurrence and
patterns of diversity, relative to other community assem-
bly processes such as dispersal and ecological drift (Hub-
bell 2001, Levine and Murrell 2003, Mouquet and
Loreau 2003, Chase and Myers 2011). Indeed, neutral
models reflecting chance events provide a good fit to the
distribution of species abundances in tropical forests
(Hubbell 2001, Volkov et al. 2003), although other studies
have found evidence of niche differentiation (Kraft and
Ackerly 2010, Gotzenberger et al. 2012). One likely rea-
son for these mixed results is a lack of model-validated
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quantitative predictions for how niche-based competition
shapes community trait structure.

Classical theory posits that only species with trait dif-
ferences large enough to lower interspecific competition
sufficiently will stably coexist. Hence, attempts to find
evidence of niche differentiation in nature typically look
for greater-than-chance differences in trait values among
species (Chase and Leibold 2003, Kraft et al. 2008, Lake
and Ostling 2009, Kraft and Ackerly 2010, Gotzen-
berger et al. 2012, D’Andrea and Ostling 2016). How-
ever, competition can produce counterintuitive patterns.
If two resident species are not distant enough from each
other in trait space to allow a third species with an inter-
mediate trait value to invade, the potential invader has
higher fitness if it is similar to one of the residents than
if it is maximally different from both (MacArthur and
Levins 1967). This is because the increase in competition
with the close resident is more than compensated by the
decrease in competition with the other resident. When
this phenomenon is extrapolated to multispecies com-
munities, species are competitively excluded at rates
inversely related to trait distance from the nearest trait
optimum (D’Andrea and Ostling 2017). As competition
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among species proceeds, a transient pattern arises char-
acterized by distinct clusters of species with similar
traits, centered around locally optimal ecological strate-
gies (Scheffer and van Nes 2006). Although competition
among species in each cluster eventually leads to exclu-
sion of all but the most competitive species, the similar
strategies among the species renders their dynamics
near-neutral; indeed, clusters can persist indefinitely
under restorative forces such as immigration (D’Andrea
et al. 2019), environmental fluctuations (Sakavara et al.
2018), and specialist enemies (Scheffer and van Nes
2006, Barabas et al. 2013).

In other words, although classical literature predicts
that niche partitioning will lead to trait overdispersion,
more recent literature suggests trait clusters rather than
overdispersion as evidence of niche partitioning. We
note that the same models that predict overdispersion in
stable equilibrium will predict clusters as transients (Sch-
effer and van Nes 2006, D’Andrea et al. 2019). Further-
more, it has been shown that several ecological forces
can maintain the clusters indefinitely as a stationary
state. Those forces include immigration (D’Andrea et al.
2019), periodic environments (Sakavara et al. 2018), and
“hidden niches”; that is, independent niche axes provid-
ing extra intraspecific regulation, such as specialist ene-
mies (Scheffer and van Nes 2006, Barabds et al. 2013).
Given the widespread influence of these forces in nature,
we expect clusters to be a more general signature of
niche differentiation than the stricter circumstances
under which overdispersion might arise.

Clustering by organismal size has been reported in
animal (Scheffer and van Nes 2006) and phytoplankton
communities (Sakavara et al. 2018), but is not known to
occur in tropical forests—a focal point for the develop-
ment and tests of coexistence theory. Furthermore, pre-
vious efforts to detect species clusters have typically
ignored species abundances and/or relied on arbitrary
binning of trait space (Scheffer and van Nes 2006, Yan
et al. 2012) or temporal data to distinguish between
occasional and permanent species (Vergnon et al. 2009).
However, recent work has proposed a parameter-free
method that uses trait and abundance data to identify
and count the clusters, which was validated using popu-
lation dynamic models of competition with immigration
(D’Andrea et al. 2019).

Here we use this approach to test whether high abun-
dance values tend to be clustered with respect to trait val-
ues in the 50-ha Forest Dynamics Plot on Barro
Colorado Island (BCI), Panama (Condit 1998, Hubbell
et al. 1999, Condit et al. 2012a) We use four morphologi-
cal traits: seed mass, maximum tree height, wood density,
and leaf mass per area (LMA). Seed mass is thought to
reflect strategies along a tolerance—fecundity trade-off
axis (Muller-Landau 2010), whereby large-seeded species
specialize in surviving stressful environmental conditions
at the cost of low fecundity and vice versa. Maximum
tree height, wood density, and LMA are associated with
competition for light (Kunstler et al. 2016), and as such
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may reflect plant strategies related to partitioning light-
availability gradients both vertically (i.e., among forest
canopy layers) and horizontally (i.e., across forest
patches at different stages of succession). Such partition-
ing of light access is central to the forest architecture
hypothesis (Kohyama 1993) and the related successional
niche hypothesis (Grime 1979, Tilman 1988).

Trait pattern indicative of a niche mechanism will likely
only become evident at a spatial scale above that of any
spatial heterogeneity involved in the mechanisms (Kraft
and Ackerly 2010, D’Andrea and Ostling 2016). There-
fore, we look for signatures of niche partitioning at the
whole-plot (50 ha) scale, large enough to encompass the
spatial heterogeneity in patch-age since disturbance
involved in these niche mechanisms (Hubbell et al. 1999).
Because immigration can reinforce local clustering if sur-
rounding forests have species clustered around the same
trait-based niche optima, or mask local clustering if sur-
rounding forests have species clustered around different
trait-based niche optima, we compare results at the plot
scale with results from a combined pool of 40 census plots
within 30 km of BCI (Condit et al. 2013, 2016; Fig. 1).

METHODS

The Barro Colorado Island Forest Dynamics Plot is a
1,000 x 500 m tract of tropical forest on Barro Colorado
Island in Panama (Hubbell et al. 1999, Condit et al.
2012b; Fig. 1). The plot has been censused for stems
above l-cm diameter at breast height (dbh) in 1982,
1985, and every 5 yr through 2015. The plot contains
approximately 210,000 stems with dbh > 1 cm, and
about 300 tree species. Results shown in the main text
pertain to the 2000 census; however, results are consis-
tent across all available censuses (Appendix S1:
Table S1, Figs. S3-S6).

We used four traits related to plant architecture, leaf
structure, and seed size. Trait data, drawn from Wright
et al. (2010), were based on the following protocols: (1)
Maximum height was estimated as the mean height of the
six largest (by dbh) individuals, measured using a range-
finder. (2) Wood density (g/cm®) was measured after dry-
ing at 60°C. (3) Leaf mass per area (g/m”) was measured
on leaf laminae, excluding petioles and petiolules, aver-
aged across six individuals. For species that reach the
canopy we used leaves exposed to direct sunlight—that is,
sun leaves. For all others we used shade leaves collected
from the crowns of the tallest individuals in the 50-ha
plot. (4) Seed mass (g) refers to endosperm plus embryo
only and was measured after drying at 60°C. Traits with
skewed distributions (LMA and seed mass) were log-
transformed to reduce the skew. Palms were excluded
from wood and leaf trait analyses, because of their sub-
stantial differences in physiology from dicots.

We restricted our analysis to reproductive individuals
(adults), because population dynamic models producing
emergent clusters do not consider population structure.
We consider individuals to be reproductive when their
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Field site. Intact tropical forest covers 20% of Panama. Our regional pool is an aggregate of 40 sampling sites within 30

km of BCI. Combined, these sites comprise approximately 850 species, of which trait data were available for 242 species (maximum
height), 219 (wood density), 234 (leaf mass per area), 177 (seed mass), comprising between 9,528 and 13,743 adult trees. Barro Col-
orado Island, spanning roughly 16 km?, sits in an artificial lake in the Panama Canal. The 50-ha Forest Dynamics Plot, located near
its center, is a 1,000 x 500 m patch of forest containing 300 tree species and 21,000 adult trees.

dbh exceeds half the maximum dbh observed for its spe-
cies, a relationship that explains over 80% of interspeci-
fic variation in reproductive size thresholds (see Visser
et al. 2016:Fig. S9). Maximum dbh was estimated as the
average of the six largest individuals in the BCI plot in
2005, and an additional 150 ha of mapped tree plots
located within 30 km and mostly within 10 km of BCI
(Visser et al. 2016).

The regional pool consists of 40 1-ha sampling sites
within 30 km of BCI (Condit et al. 2013, 2016). In 38 of
these sites, individuals with maximum dbh > 1 cm were
censused in 40 x 40 m internal subplots, and individuals
with dbh > 10 cm were censused in the entire plot. In the
remaining two plots, all individuals with maximum dbh
> 10 cm were censused in the entire plot. Hence, we stan-
dardized the counts by the respective sampling area to
estimate densities in these sites. Of the circa 850 species
contained in these sites, trait data were available for
those also found on BCI (see Table 1, caption to Fig. 1).
Although lack of pattern among this subset of species in
the regional pool does not rule out clustering among all
species, it shows that the pattern on BCI is not
simply mirroring regional-scale pattern inherited via
immigration.

Our clustering metric has two foundations: the
k-means clustering algorithm (MacQueen 1967), an
optimization procedure which assigns species to clusters
by minimizing the average trait distance between indi-
viduals in the same cluster, and the gap method (Tibshi-
rani et al. 2001), which compares the observed data
against null distributions, and selects the number of clus-
ters that maximizes the difference between within-cluster
trait dispersion in the observed and null communities.
Specifically, given a candidate number of clusters k, the
k-means algorithm finds the arrangement of species into
k clusters that minimizes within-cluster trait dispersion:

Dk = %Z Z n,»njdijz-,
C

ijeC

where C refers to a cluster (1 < C<k), n; is the abun-
dance of species i, and dj; is the trait distance between
species 7 and j. The algorithm starts with randomly cho-
sen trait values in the local community as possible clus-
ter centers, then puts species into the cluster whose
center is the closest to them, then recalculates cluster
centers, and so on until the algorithm converges or
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TaBLE 1. Clustering results for the 50-ha plot and regional pool.
Species Individuals Clusters (K) z score (Z) P value (P)
50 ha Region 50 ha Region 50 ha Region 50 ha Region 50 ha Region
Maximum height 259 242 20,620 13,743 4* 1* 2.3% 3.4% 0.01* 0.02*
Wood density 229 219 17,139 9,273 5% 20 2.1% 1.6 0.02* 0.06
Leaf mass/area 250 234 18,368 9,528 3 3 0.2 1.5 0.40 0.07
Dry seed mass 185 177 18,259 10,667 15 3 0.2 1.0 0.38 0.16

Notes: For each header, the left column refers to the 50-ha BCI plot (50 ha), and the right column refers to the regional pool
(Region). The total number of species for which trait data were available is listed under Species, and the total number of individuals
represented is listed under Individuals. The number of clusters K is the value at which the gap index peaks. z scores and P-values
were obtained by comparing the gap statistic against 1,000 null communities. In the case of maximum height, in addition to the
peak at K =1 listed, the regional pool also had a significant subpeak at K = 4(Z = 2.0, P = 0.03). Significant results (P < 0.05)

are marked with an asterisk.

changes in Dj fall below a specified threshold. Because
the result can depend on the starting set of cluster cen-
ters, the procedure is repeated with different starting sets,
and the final cluster arrangement with the lowest Dy
across all sets is selected (note that the clusters need not
be equally spaced). We use enough starting sets that lar-
ger numbers do not lower within-cluster dispersion fur-
ther (typically between 1,000 and 10,000).

We then apply this k-means algorithm to 1,000 null
communities, and define the gap index for k clusters as

1 *
Gy = leOg(Dk) —log(Dy),

nulls

where Dj is the cluster dispersion in a given null com-
munity. This index measures the degree to which trait
dispersion Dy in the observed community differs from
its null expectation for k clusters (see Tibshirani et al.
2001, D’Andrea et al. 2019 for details). Notice that
tighter-than-expected clustering in the data for k£ clus-
ters will lead to a positive gap Gy, and vice versa.
Finally, we find the number of clusters that maximizes
the gap index. We call this maximal value —corre-
sponding to the peak in the gap curves in Figs. 2 and
3—the gap statistic, G = max(Gy), and the value of k
at which it occurs is the estimated number of clusters
K. We note that Tibshirani et al. (2001) refer to the
gap index Gy as the gap statistic, and estimate the
number of clusters using a slightly different approach.
Later studies found deficiencies with that approach
(Dudoit and Fridlyand 2002, Sugar and James 2003),
and modifications have since been proposed (Yan and
Ye 2007). Our method, designed to find whether high
abundances tend to cluster with respect to trait values,
was benchmarked using simulation tests where the
number of clusters is known a priori (see D’Andrea
et al. 2019).

We obtain a null distribution of gap statistics by per-
forming the above routine on each of the null communi-
ties, and from this distribution we extract significance (P
value) and standardized effect size (z score). The z score
is Z=(G — p)/c, where

1
H= mz Guulls

nulls

is the mean of the null gap statistics and

1
2 _ 2
9 —WZ(Gnull 7#) )

nulls

is the variance. The P value is the proportion of null
communities with a higher gap statistic than the
observed community:

1
P = mzl(Gnu]] > (I‘l)7

nulls

where the indicator function 7 is 1 if its argument is true,
and zero otherwise.

Our null communities contain the same set of
observed trait values and abundances, with abundances
randomized across the traits. We therefore test for a non-
random association between traits and abundances, as
opposed to a nonrandom set of traits or abundances.
Although a nonrandom trait distribution has interest in
its own merit, it could be arguably caused by forces
beyond local competitive interactions. Local abundances
reflect the outcome of local competitive interactions and
environmental filtering to a higher degree than a pres-
ence—absence list of locally occurring species, as the lat-
ter is strongly influenced by dispersal from the regional
species pool. Therefore, trait clustering among local spe-
cies without regard for abundance could simply reflect
the clustered trait distribution of the regional pool, leav-
ing it unclear whether local competition is the cause
rather than evolutionary history.

REsuLTS

We found significant clustering of species abundances by
trait values on BCI based on species maximum height
(Fig. 2A, E), with the gap statistic exceeding null expecta-
tions by 2.3 standard deviations (Table 1). There were four
height-based clusters, falling at approximately 8-m
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FiG. 2. Results. Stem plots show trait distribution in the 50-ha plot on BCI for (A) maximum height, (B) wood density, (C) leaf

mass per area, and (D) seed mass. Each stem represents a species, with its trait value plotted on the abscissa and abundance on the
ordinate. Data shown for the 2000 census. The corresponding gap curves (E-H) plot the gap index against the potential number of
clusters. The gap statistic is the highest point on the curve, with the red line indicating the 95th quantile of the expected gap statistic
under no pattern, obtained from 1,000 null sets. The peaks above the red line in (E) and (F) reveal clustering by maximum height, with
four clusters, and wood density, with five. The alternating colors in the respective stem plots show cluster membership of each species.

intervals. Intriguingly, the pattern aligns well with the his-
torical division of humid Neotropical forests into four
strata of about 10 m each: shrubs, understory, midstory,
and canopy (Richards 1952, Terborgh 1985, Condit et al.
1995; Fig. 3, Appendix S1: Fig S1). We also found a signif-
icant pattern of five abundance-by-trait clusters based on
wood density on BCI (Fig. 2F), exceeding null expecta-
tions by 2.1 standard deviations (Table 1). Notably, all spe-
cies on BCI were also significantly clustered around a

single wood density optimum. This occurred because spe-
cies with intermediate wood densities were more common
than those with extremely low or high wood densities
(Fig. 2B), potentially indicating physiological costs or envi-
ronmental filters against extreme trait values. We found no
evidence for clustering based on LMA or seed mass.

The similar number of clusters by maximum height
and wood density led us to ask if the two trait-based pat-
terns reflected the same underlying niche axis. Even
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Fic. 3. Height layers. Visual representation of the forest on Barro Colorado Island, highlighting the four height-based groups
identified by our metric: shrubs (61 =+ 2 species; 8,071 + 712 adult individuals), understory treelets (71 £ 3; 7,308 £ 165), midstory
trees (61 £ 1; 2,957 & 114), and canopy trees (64 £ 1; 2,836 + 82), where the numbers represent mean and standard deviation across
the seven censuses. Horizontal lines show maximum height of the dominant (most abundant) species in each group.

though maximum height and wood density did not cor-
relate significantly (Pearson’s p = —0.10, P value =
0.06), maximum height clusters correlated with wood
density clusters (y>-test P value = 0.02, Cramér’s V =
0.20), supporting this tentative hypothesis.

We found significant abundance-by-trait clustering by
maximum height at the regional scale, with the highest
gap index occurring at K =1 cluster, and a secondary
but still significant peak at K = 4 clusters (Appendix S1:
Fig. S2A, B). The existence of four height-based clusters
at both local and regional scales suggests a consistent
organization of species into the same four niches across
many tropical forest communities. However, a key differ-
ence between local and regional height-based patterns is

the presence of a significant single cluster at the regional
scale. This single regional peak reflects a unimodal abun-
dance trend along the maximum height axis, with trees
in the second height cluster being consistently the most
abundant in their communities. This abundance trend
may result from an interplay of higher light incidence at
larger heights and the potential for a larger number of
smaller-sized trees in a given area.

As for lack of clustering by wood density in the regio-
nal pool, we hypothesize that differences in environmen-
tal or ecological conditions across the region may have
created different trait optima (cluster centroid values) in
different communities, leading to the erosion of cluster
structure when the communities are combined.
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DiscussioN

Our results underscore competitive partitioning of
light as a major driver of tropical forest community
structure. Specifically, we found cluster-based evidence
for niche partitioning by maximum height, a trait associ-
ated with light capture, and wood density, a trait associ-
ated with shade tolerance (Wright et al. 2010).
Conventional descriptions of tropical forest structure
have long included references to different strata (sub-
canopy, canopy, etc.), but to our knowledge there has
never been any quantitative empirical support for their
existence.

Testing for trait-based clustering is an appealing
approach for the detection of niche partitioning because
it conceptually unites the notions of stable species coex-
istence via differences and transient species coexistence
via similarity (Holt 2006). Perhaps counterintuitively, it
is precisely because species with similar strategies com-
pete more strongly, and experience similar competitive
effects from the rest of the community, that clusters
emerge (D’Andrea et al. 2018). In other words, clusters
reflect the simultaneous advantages of differing from
others while being similar to those favored strategies.

We note there are special cases where competition
could allow for coexistence of species with any trait
value (Leimar et al. 2013). Specifically, the function
specifying the relationship between competition and spe-
cies traits (often referred to as the competition kernel)
must have a strictly positive Fourier transform, which is
not a general property of competition based on trait dif-
ferences. For example, in the family of exponential ker-
nels, only those with exponent <2 will satisfy the
condition, and small perturbations of these kernels will
break the property and lead to cluster formation. How-
ever, in the absence of empirical evidence that the com-
petition kernels on BCI possess those special properties,
a more general expectation is for cluster formation
rather than a continuum of traits.

The mechanistic origin of clustering may involve envi-
ronmental selection favoring certain traits over others.
For example, according to Terborgh’s sunfleck model
(Terborgh 1985), light availability below the canopy may
peak at various vertical strata because of intersection of
light cones originating from gaps in the canopy. Latitu-
dinal parameters that affect the angle of incidence, com-
bined with the shape of tree canopies in tropical forests,
predict three such strata below the canopy, for a total of
four optimal tree heights based on light availability.
Alternatively, the height-based clusters we identified
may arise through trade-offs between the light-related
advantages of being tall and shading others, and the
budgetary constraints that investment in height impinges
on reproductive growth, such as through losses in
recruitment or shade tolerance (Kohyama 1993,
Kohyama and Takada 2009). These trade-offs may result
in an effective relationship between interspecific compe-
tition and height similarity. In such a case, the number
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of clusters would relate to how quickly competition
drops with increasing separation in maximum height.
Regardless of the mechanism, the height-based clusters
reflect the existence of multiple light-related niches, as
well as stabilization via light-related niche partitioning.

The existence of four clusters by height suggests that
only four species can coexist on BCI based on differ-
ences in height alone, but it does not mean that only four
species can stably coexist on BCI. Additional niche axes
may support higher coexistence, and in fact may be
responsible for the maintenance of the observed clusters.
Barabas et al. (2013) pointed out that additional niche
axes, such as susceptibility to different herbivores and
pathogens, are required for the permanence of clusters
in a closed community subject to no temporal variation
in the environment. Though recent empirical studies
report a good deal of overlap in enemy host use, models
suggest that small differences in susceptibility to enemies
between tree species may still contribute significantly to
diversity maintenance (Sedio and Ostling 2013). Hence,
they likely also contribute to the permanence of clusters
along the trait axes we report in our study. Another
example additional niche axis is the successional niche
(Tilman 1988): trees sharing the same height niche may
niche-differentiate by shade tolerance. This could be
reflected in the distribution of wood density values and/
or other traits related to successional strategy.

Wood density in Barro Colorado Island tree species
has been found to be a good predictor of species niche
strategies along a trade-off axis between survival under
stressful conditions and rapid growth under optimal
conditions (Wright et al. 2010). Therefore, the clustering
we found in wood density suggests niche partitioning
along a growth-mortality trade-off axis, that is, the suc-
cessional niche (Tilman 1988). The precise positions of
the clusters could have many interacting causes: the
available pool of traits, external filtering from the envi-
ronment, resource availability, and the shape of the com-
petition kernel. In the case of wood density, given its
connection to the successional niche, the distribution of
light gaps in the forest may possibly determine the posi-
tions of the niches. The number of clusters may also be
influenced by the rate at which competition drops
between species of disparate wood density: the faster the
drop, the more niches are allowed.

The wood density results are not fully independent
from our maximum height results, as indicated by the
correlation between height and wood density clusters. To
delineate the niche space driving pattern on BCI fully, a
multivariate trait treatment would be required. However,
such an approach raises questions of how to best convert
trait values along different trait axes into a good predic-
tor of competition. Moreover, traits could combine in
different ways to form multidimensional niche space
(D’Andrea et al. 2018); for example, Euclidean distance
may be a poor predictor of competition, and therefore
not be useful for detecting clustering. Determining how
competition maps to multivariate trait space requires
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mechanistic niche models going beyond the existing the-
oretical literature, which typically focuses on contribu-
tions of individual traits.

The absence of clustering in LMA and seed mass does
not preclude a role for these traits in niche partitioning
on BCI. D’Andrea et al. (2019) showed that a loose con-
nection between trait value and niche strategy can mask
clustering along the relevant niche axis. Seed mass is
linked to dispersal and recruitment ability (Muller-Lan-
dau et al. 2008), and is therefore a candidate for cluster-
ing along a niche axis characterizing a competition—
colonization trade-off—hence its inclusion in our study.
However, seed mass alone may be a poor predictor of a
species’ strategy along this niche axis, for example,
because of the effects of other traits such as drought tol-
erance and dispersal mode. LMA is theoretically con-
nected to niche strategies (Wright et al. 2010), but there
is substantial ontogenetic variation in its predictive abil-
ity of growth, with the relationship being stronger in the
seedling stage. Eventually, other aspects of physiology
become limiting as the plant grows. Hence, LMA may
be a noisy predictor of the niche strategy (Wright et al.
2010). We conclude that the lack of clustering in these
traits may be due to their loose connection to niche
strategies rather than no involvement in niche
partitioning.

Our study provides a new line of evidence that niche
differentiation shapes tropical forests, notwithstanding
neutral theory’s success at fitting species abundance dis-
tributions (Rosindell et al. 2012). Yet, our results go fur-
ther by identifying specific numbers of niches and their
associated trait optima. Future extensions of clustering
analysis could look at other traits related to defense
chemistry or abiotic preferences, further delineating the
niches contributing to coexistence in tropical forests.
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