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17 Abstract

18 Tropical forests challenge us to understand biodiversity, as numerous seemingly similar species 

19 persist on only a handful of shared resources. Recent ecological theory posits that biodiversity is 

20 sustained by a combination of species differences reducing interspecific competition and species 

21 similarities increasing time to competitive exclusion. Together, these mechanisms 

22 counterintuitively predict that competing species should cluster by traits, in contrast with 

23 traditional expectations of trait overdispersion. Here, we show for the first time that trees in a 

24 tropical forest exhibit a clustering pattern. In a 50 ha. plot on Barro Colorado Island in Panama, 

25 species abundances exhibit clusters in two traits connected to light capture strategy, suggesting 

26 that competition for light structures community composition. Notably, we find four clusters by 

27 maximum height, quantitatively supporting the classical grouping of Neotropical woody plants 

28 into shrubs, understory, midstory, and canopy layers.
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34 Introduction

35 A basic principle of community ecology is that coexistence requires niche differentiation, i.e. 

36 species differences that stabilize communities by reducing interspecific competition. However, 

37 the high diversity and seemingly continuous phenotypic variation of trees in tropical forests 

38 raises questions about the importance of niche differentiation as a contributor to species co-

39 occurrence and patterns of diversity, relative to other community assembly processes such as 

40 dispersal and ecological drift (Hubbell 2001, Levine and Murrell 2003, Mouquet and Loreau 

41 2003, Chase and Myers 2011). Indeed, neutral models reflecting chance events provide a good fit 

42 to the distribution of species abundances in tropical forests (Hubbell 2001, Volkov et al. 2003), 

43 although other studies have found evidence of niche differentiation (Kraft and Ackerly 2010, 

44 Götzenberger et al. 2012). One likely reason for these mixed results is a lack of model-validated 

45 quantitative predictions for how niche-based competition shapes community trait structure. 

46 Classical theory posits that only species whose trait differences are large enough to 

47 sufficiently lower interspecific competition will stably coexist. Hence, attempts to find evidence 

48 of niche differentiation in nature typically look for greater-than-chance differences in trait values 

49 among species (Chase and Leibold 2003, Kraft et al. 2008, Lake and Ostling 2009, Kraft and 

50 Ackerly 2010, Götzenberger et al. 2012, D’Andrea and Ostling 2016). However, competition can 

51 produce counterintuitive patterns. If two resident species are not distant enough from each other 

52 in trait space to allow a third species with an intermediate trait value to invade, the potential 

53 invader has higher fitness if it is similar to one of the residents than if it is maximally different 

54 from both (MacArthur and Levins 1967). This is because the increase in competition with the 

55 close resident is more than compensated by the decrease in competition with the other resident. 

56 When this phenomenon is extrapolated to multispecies communities, species are competitively 

57 excluded at rates inversely related to trait distance from the nearest trait optimum (D’Andrea and 

58 Ostling 2017). As competition among species proceeds, a transient pattern arises characterized 

59 by distinct clusters of species with similar traits, centered around locally optimal ecological 

60 strategies (Scheffer and van Nes 2006). While competition among species in each cluster 
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61 eventually leads to exclusion of all but the most competitive species, the similar strategies among 

62 the species renders their dynamics near-neutral; indeed, clusters can persist indefinitely under 

63 restorative forces such as immigration (D’Andrea et al. 2019), environmental fluctuations 

64 (Sakavara et al. 2018), and specialist enemies (Scheffer and van Nes 2006, Barabás et al. 2013). 

65 In other words, while classical literature predicts that niche partitioning will lead to trait 

66 overdispersion, more recent literature suggests trait clusters rather than overdispersion as 

67 evidence of niche partitioning. We note that the same models that predict overdispersion in 

68 stable equilibrium will predict clusters as transients (Scheffer and van Nes 2006, D’Andrea et al. 

69 2019). Furthermore, it has been shown that several ecological forces can maintain the clusters 

70 indefinitely as a stationary state. Those forces include immigration (D’Andrea et al. 2019), 

71 periodic environments (Sakavara et al. 2018), and “hidden niches”, i.e. independent niche axes 

72 providing extra intraspecific regulation such as specialist enemies (Scheffer and van Nes 2006, 

73 Barabás et al. 2013). Given the widespread influence of these forces in nature, we expect clusters 

74 to be a more general signature of niche differentiation than the stricter circumstances under 

75 which overdispersion might arise. 

76 Clustering by organismal size has been reported in animal (Scheffer and van Nes 2006) 

77 and phytoplankton communities (Sakavara et al. 2018), but is not known to occur in tropical 

78 forests – a focal point for the development and tests of coexistence theory. Furthermore, previous 

79 efforts to detect species clusters have typically ignored species abundances and/or relied on 

80 arbitrary binning of trait space (Scheffer and van Nes 2006, Yan et al. 2012) or temporal data to 

81 distinguish between occasional and permanent species (Vergnon et al. 2009). However, recent 

82 work has proposed a parameter-free method which uses trait and abundance data to identify and 

83 count the clusters, which was validated using population dynamic models of competition with 

84 immigration (D’Andrea et al. 2019). 

85 Here we use this approach to test whether high abundance values tend to be clustered 

86 with respect to trait values in the 50-ha Forest Dynamics Plot on Barro Colorado Island, Panama 

87 (Condit 1998, Hubbell et al. 1999, Condit et al. 2012a) (BCI). We use four morphological traits: 

88 seed mass, maximum tree height, wood density, and leaf mass per area (LMA). Seed mass is 

89 thought to reflect strategies along a tolerance-fecundity tradeoff axis (Muller-Landau 2010), 

90 whereby large-seeded species specialize in surviving stressful environmental conditions at the 

91 cost of low fecundity and vice-versa. Maximum tree height, wood density, and LMA are 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

92 associated with competition for light (Kunstler et al. 2016), and as such may reflect plant 

93 strategies related to partitioning light availability gradients both vertically (i.e. among forest 

94 canopy layers) and horizontally (i.e. across forest patches at different stages of succession). Such 

95 partitioning of light access is central to the forest architecture hypothesis (Kohyama 1993) and 

96 the related successional niche hypothesis (Grime 1979, Tilman 1988). 

97 Trait pattern indicative of a niche mechanism will likely only become evident at a spatial 

98 scale above that of any spatial heterogeneity involved in the mechanisms (Kraft and Ackerly 

99 2010, D’Andrea and Ostling 2016). Therefore, we look for signatures of niche partitioning at the 

100 whole plot (50 ha) scale, large enough to encompass the spatial heterogeneity in patch-age since 

101 disturbance involved in these niche mechanisms (Hubbell et al. 1999). Because immigration can 

102 reinforce local clustering if surrounding forests have species clustered around the same trait-

103 based niche optima, or mask local clustering if surrounding forests have species clustered around 

104 different trait-based niche optima, we compare results at the plot-scale with results from a 

105 combined pool of 40 census plots within 30km of BCI (Condit et al. 2013, 2016) (Fig. 1).

106

107 Methods

108 The Barro Colorado Island Forest Dynamics Plot is a 1,000-by-500 meter tract of tropical forest 

109 on Barro Colorado Island in Panama (Hubbell et al. 1999, Condit et al. 2012b) (Fig. 1). The plot 

110 has been censused for stems above 1 cm diameter at breast height (DBH) in 1982, 1985 and 

111 every five years through 2015. The plot contains approximately 210,000 stems with DBH ≥ 1 

112 cm, and about 300 tree species. Results shown in the main text pertain to the 2000 census; 

113 however, results are consistent across all available censuses (Appendix S1: Table S1, Figs. S3-

114 S6).

115 We used four traits related to plant architecture, leaf structure, and seed size. Trait data, 

116 drawn from Wright et al. (2010), were based on the following protocols: 1) Maximum height 

117 was estimated as the mean height of the six largest (by DBH) individuals, measured using a 

118 rangefinder. 2) Wood density (g/cm3) was measured after drying at 60°C. 3) Leaf mass per area 

119 (g/m2) was measured on leaf laminae, excluding petioles and petiolules, averaged across six 

120 individuals. For species that reach the canopy we used leaves exposed to direct sunlight --- i.e. 

121 sun leaves. For all others we used shade leaves collected from the crowns of the tallest 

122 individuals in the 50 ha plot. 4) Seed mass (g) refers to endosperm plus embryo only and was 
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123 measured after drying at 60°C. Traits with skewed distributions (LMA and seed mass) were log-

124 transformed to reduce the skew. Palms were excluded from wood and leaf trait analyses, due to 

125 their substantial differences in physiology from dicots.

126 We restricted our analysis to reproductive individuals (adults), since population dynamic 

127 models producing emergent clusters do not consider population structure. We consider 

128 individuals to be reproductive when their DBH exceeds half the maximum DBH observed for its 

129 species, a relationship that explains over 80% of interspecific variation in reproductive size 

130 thresholds (see Visser et al. 2016: Fig. S9). Maximum DBH was estimated as the average of the 

131 six largest individuals in the BCI plot in 2005, and an additional 150 ha of mapped tree plots 

132 located within 30 km and mostly within 10 km of BCI (Visser et al. 2016).

133 The regional pool consists of 40 1-ha sampling sites within 30km of BCI (Condit et al. 

134 2013, 2016). In 38 of these sites, individuals with maximum DBH > 1cm were censused in 40m-

135 by-40m internal subplots, while individuals with DBH > 10cm were censused in the entire plot. 

136 In the remaining two plots, all individuals with maximum DBH > 10cm were censused in the 

137 entire plot. Hence, we standardized the counts by the respective sampling area to estimate 

138 densities in these sites. Of the circa 850 species contained in these sites, trait data were available 

139 for those also found on BCI (see Table 1, caption to Fig. 1). While lack of pattern among this 

140 subset of species in the regional pool does not rule out clustering among all species, it shows that 

141 the pattern on BCI is not simply mirroring regional-scale pattern inherited via immigration. 

142 Our clustering metric has two foundations: the k-means clustering algorithm (MacQueen 

143 1967), an optimization procedure which assigns species to clusters by minimizing the average 

144 trait distance between individuals in the same cluster; and the gap method (Tibshirani et al. 

145 2001), which compares the observed data against null distributions, and selects the number of 

146 clusters that maximizes the difference between within-cluster trait dispersion in the observed and 

147 null communities. Specifically, given a candidate number of clusters, , the k-means algorithm �
148 finds the arrangement of species into  clusters that minimizes within-cluster trait dispersion: � ��
149 , where  refers to a cluster ( ),  is the abundance of species , =

1�∑�∑�,� ∈  ������2�� � 1≤ � ≤ � �� �
150 and  is the trait distance between species  and . The algorithm starts with randomly chosen ��� � �
151 trait values in the local community as possible cluster centers, then puts species into the cluster 

152 whose center is the closest to them, then recalculates cluster centers, and so on until the 

153 algorithm converges or changes in  fall below a specified threshold. Because the result can ��
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154 depend on the starting set of cluster centers, the procedure is repeated with different starting sets, 

155 and the final cluster arrangement with the lowest  across all sets is selected (note that the ��
156 clusters need not be equally spaced). We use enough starting sets that larger numbers do not 

157 lower within-cluster dispersion further (typically between 1,000 and 10,000). 

158 We then apply this k-means algorithm to 1,000 null communities, and define the gap 

159 index for  clusters as , where  is the cluster dispersion in � �� =
1

1000
∑

nulls
log (� ∗� )― log (��) � ∗�

160 a given null community. This index measures the degree to which trait dispersion  in the ��
161 observed community differs from its null expectation for  clusters (see Tibshirani et al. 2001, �
162 D’Andrea et al. 2019 for details). Notice that tighter than expected clustering in the data for  �
163 clusters will lead to a positive gap , and vice-versa. Finally, we find the number of clusters that ��
164 maximizes the gap index. We call this maximal value -- corresponding to the peak in the gap 

165 curves in Figs. 2, 3 -- the gap statistic, , and the value of  at which it occurs is the �= max (��) �
166 estimated number of clusters . We note that Tibshirani et al. 2001 refer to the gap index  as � ��
167 the gap statistic, and estimate the number of clusters using a slightly different approach. Later 

168 studies found deficiencies with that approach (Dudoit and Fridlyand 2002, Sugar and James 

169 2003), and modifications have since been proposed (Yan and Ye 2007). Our method, designed to 

170 find whether high abundances tend to cluster with respect to trait values, was benchmarked using 

171 simulation tests where the number of clusters is known a priori (see D’Andrea et al. 2019).

172 We obtain a null distribution of gap statistics by performing the above routine on each of 

173 the null communities, and from this distribution we extract significance (p-value) and 

174 standardized effect size (z-score). The z-score is , where  is the �= (G― μ)/σ μ=
1

1000
∑

nulls
�null

175 mean of the null gap statistics and  is the variance. The p-value is the σ2 =
1

1000
∑

nulls
(�null ― �)2

176 proportion of null communities with a higher gap statistic than the observed community, �=

177 , where the indicator function  is 1 if its argument is true, and zero 
1

1000
∑

nulls
�(Gnull > �) �

178 otherwise. 

179 Our null communities contain the same set of observed trait values and abundances, with 

180 abundances randomized across the traits. We therefore test for a nonrandom association between 

181 traits and abundances, as opposed to a nonrandom set of traits or abundances. While a 

182 nonrandom trait distribution has interest in its own merit, it could be arguably caused by forces 
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183 beyond local competitive interactions. Local abundances reflect the outcome of local competitive 

184 interactions and environmental filtering to a higher degree than a presence-absence list of locally 

185 occurring species, as the latter is strongly influenced by dispersal from the regional species pool. 

186 Therefore, trait clustering among local species without regard for abundance could simply reflect 

187 the clustered trait distribution of the regional pool, leaving it unclear whether local competition is 

188 the cause rather than evolutionary history.

189

190 Results

191 We found significant clustering of species abundances by trait values on BCI based on species 

192 maximum height (Fig. 2A; Fig. 2E), with the gap statistic exceeding null expectations by 2.3 

193 standard deviations (Table 1). There were four height-based clusters, falling at approximately 

194 eight-meter intervals. Intriguingly, the pattern aligns well with the historical division of humid 

195 Neotropical forests into four strata of about ten meters each: shrubs, understory, midstory, and 

196 canopy (Paul W Richards 1952, Terborgh 1985, Condit et al. 1995) (Fig. 3, Appendix S1: Fig 

197 S1). We also found a significant pattern of five abundance-by-trait clusters based on wood 

198 density on BCI (Fig. 2F), exceeding null expectations by 2.1 standard deviations (Table 1). 

199 Notably, all species on BCI were also significantly clustered around a single wood density 

200 optimum. This occurred because species with intermediate wood densities were more common 

201 than those with extremely low or high wood densities (Fig. 2B), potentially indicating 

202 physiological costs or environmental filters against extreme trait values. We found no evidence 

203 for clustering based on LMA or seed mass.

204 The similar number of clusters by maximum height and wood density led us to ask if the 

205 two trait-based patterns reflected the same underlying niche axis. Even though maximum height 

206 and wood density did not correlate significantly (Pearson’s , p-value  0.06), �=  ― 0.10 =

207 maximum height clusters correlated with wood density clusters ( -test p-value , �2 = 0.02

208 Cramér’s V  0.20), supporting this tentative hypothesis.=

209 We found significant abundance-by-trait clustering by maximum height at the regional 

210 scale, with the highest gap index occurring at  cluster, and a secondary but still significant �= 1

211 peak at  clusters (Appendix S1: Fig. S2A, B). The existence of four height-based clusters at �= 4

212 both local and regional scales suggests a consistent organization of species into the same four 

213 niches across many tropical forest communities. However, a key difference between local and 
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214 regional height-based patterns is the presence of a significant single cluster at the regional scale. 

215 This single regional peak reflects a unimodal abundance trend along the maximum height axis, 

216 with trees in the second height cluster being consistently the most abundant in their communities. 

217 This abundance trend may result from an interplay of higher light incidence at larger heights and 

218 the potential for a larger number of smaller-sized trees in a given area.

219 As for lack of clustering by wood density in the regional pool, we hypothesize that 

220 differences in environmental or ecological conditions across the region may have created 

221 different trait optima (cluster centroid values) in different communities, leading to the erosion of 

222 cluster structure when the communities are combined.

223

224 Discussion

225 Our results underscore competitive partitioning of light as a major driver of tropical 

226 forest community structure. Specifically, we found cluster-based evidence for niche partitioning 

227 by maximum height, a trait associated with light capture, and wood density, a trait associated 

228 with shade tolerance (Wright et al. 2010). Conventional descriptions of tropical forest structure 

229 have long included references to different strata (sub-canopy, canopy, etc.), but to our knowledge 

230 there has never been any quantitative empirical support for their existence.

231 Testing for trait-based clustering is an appealing approach for the detection of niche 

232 partitioning because it conceptually unites the notions of stable species coexistence via 

233 differences and transient species coexistence via similarity (Holt 2006). Perhaps 

234 counterintuitively, it is precisely because species with similar strategies compete more strongly, 

235 and experience similar competitive effects from the rest of the community, that clusters emerge 

236 (D’Andrea et al. 2018). In other words, clusters reflect the simultaneous advantages of differing 

237 from others while being similar to those favored strategies.

238 We note there are special cases where competition could allow for coexistence of species 

239 with any trait value (Leimar et al. 2013). Specifically, the function specifying the relationship 

240 between competition and species traits (often referred to as the competition kernel) must have a 

241 strictly positive Fourier transform, which is not a general property of competition based on trait 

242 differences. For example, in the family of exponential kernels, only those with exponent ≤ 2 will 

243 satisfy the condition, and small perturbations of these kernels will break the property and lead to 

244 cluster formation. However, in the absence of empirical evidence that the competition kernels on 
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245 BCI possess those special properties, a more general expectation is for cluster formation rather 

246 than a continuum of traits.

247 The mechanistic origin of clustering may involve environmental selection favoring 

248 certain traits over others. For example, according to Terborgh’s sunfleck model (Terborgh 1985), 

249 light availability below the canopy may peak at various vertical strata due to intersection of light 

250 cones originating from gaps in the canopy. Latitudinal parameters which affect the angle of 

251 incidence, combined with the shape of tree canopies in tropical forests, predict three such strata 

252 below the canopy, for a total of four optimal tree heights based on light availability. 

253 Alternatively, the height-based clusters we identified may arise through tradeoffs between the 

254 light-related advantages of being tall and shading others, and the budgetary constraints that 

255 investment in height impinges on reproductive growth, such as through losses in recruitment or 

256 shade tolerance (Kohyama 1993, Kohyama and Takada 2009). These tradeoffs may result in an 

257 effective relationship between interspecific competition and height similarity. In such a case, the 

258 number of clusters would relate to how quickly competition drops with increasing separation in 

259 maximum height. Regardless of the mechanism, the height-based clusters reflect the existence of 

260 multiple light-related niches, as well as stabilization via light-related niche partitioning.

261 The existence of four clusters by height suggests that only four species can coexist on 

262 BCI based on differences in height alone, but it does not mean that only four species can stably 

263 coexist on BCI. Additional niche axes may support higher coexistence, and in fact may be 

264 responsible for the maintenance of the observed clusters. Barabás et al. (2013) pointed out that 

265 additional niche axes, such as susceptibility to different herbivores and pathogens, are required 

266 for the permanence of clusters in a closed community subject to no temporal variation in the 

267 environment. Though recent empirical studies report a good deal of overlap in enemy host use, 

268 models suggest that small differences in susceptibility to enemies between tree species may still 

269 contribute significantly to diversity maintenance (Sedio and Ostling 2013). Hence, they likely 

270 also contribute to the permanence of clusters along the trait axes we report in our study. Another 

271 example additional niche axis is the successional niche (Tilman 1988): trees sharing the same 

272 height niche may niche-differentiate by shade tolerance. This could be reflected in the 

273 distribution of wood density values and/or other traits related to successional strategy.

274 Wood density in Barro Colorado Island tree species has been found to be a good 

275 predictor of species niche strategies along a tradeoff axis between survival under stressful 
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276 conditions and rapid growth under optimal conditions (Wright et al. 2010). Therefore, the 

277 clustering we found in wood density suggests niche partitioning along a growth-mortality 

278 tradeoff axis, i.e. the successional niche (Tilman 1988). The precise positions of the clusters 

279 could have many interacting causes: the available pool of traits, external filtering from the 

280 environment, resource availability, and the shape of the competition kernel. In the case of wood 

281 density, given its connection to the successional niche, the distribution of light gaps in the forest 

282 may possibly determine the positions of the niches. The number of clusters may also be 

283 influenced by the rate at which competition drops between species of disparate wood density: the 

284 faster the drop, the more niches are allowed. 

285 The wood density results are not fully independent from our maximum height results, as 

286 indicated by the correlation between height and wood density clusters. To fully delineate the 

287 niche space driving pattern on BCI, a multivariate trait treatment would be required. However, 

288 such an approach raises questions of how to best convert trait values along different trait axis 

289 into a good predictor of competition. Moreover, traits could combine in different ways to form 

290 multidimensional niche space (D’Andrea et al. 2018); for example, Euclidean distance may be a 

291 poor predictor of competition, and therefore not be useful for detecting clustering. Determining 

292 how competition maps to multivariate trait space requires mechanistic niche models going 

293 beyond the existing theoretical literature, which typically focuses on contributions of individual 

294 traits.

295 The absence of clustering in LMA and seed mass does not preclude a role for these traits 

296 in niche partitioning on BCI. D’Andrea et al. (2019) showed that a loose connection between 

297 trait value and niche strategy can mask clustering along the relevant niche axis. Seed mass is 

298 linked to dispersal and recruitment ability (Muller-Landau et al. 2008), and is therefore a 

299 candidate for clustering along a niche axis characterizing a competition-colonization tradeoff – 

300 hence its inclusion in our study. However, seed mass alone may be a poor predictor of a species’ 

301 strategy along this niche axis, due for example to the effects of other traits such as drought 

302 tolerance and dispersal mode. LMA is theoretically connected to niche strategies (Wright et al. 

303 2010), but there is substantial ontogenetic variation in its predictive ability of growth, with the 

304 relationship being stronger in the seedling stage. Eventually, other aspects of physiology become 

305 limiting as the plant grows. Hence, LMA may be a noisy predictor of the niche strategy (Wright 
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306 et al. 2010). We conclude that the lack of clustering in these traits may be due to their loose 

307 connection to niche strategies rather than no involvement in niche partitioning.

308 Our study provides a new line of evidence that niche differentiation shapes tropical 

309 forests, notwithstanding neutral theory’s success at fitting species abundance distributions 

310 (Rosindell et al. 2012). Yet, our results go further by identifying specific numbers of niches and 

311 their associated trait optima. Future extensions of clustering analysis could look at other traits 

312 related to defense chemistry or abiotic preferences, further delineating the niches contributing to 

313 coexistence in tropical forests. 
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443 Tables

444 Table 1: Clustering results for the 50-ha plot and regional pool. For each header, the left 

445 column refers to the 50-ha BCI plot (“50 ha.”), and the right column refers to the regional pool 

446 (“Region”). The total number of species for which trait data were available is listed under 

447 “Species”, and the total number of individuals represented is listed under “Individuals.” The 

448 number of clusters  is the value at which the gap index peaks. z-scores and p-values were �
449 obtained by comparing the gap statistic against 1,000 null communities. In the case of maximum 

450 height, in addition to the peak at  listed below, the regional pool also had a significant �= 1

451 subpeak at . Significant results ( ) are marked with an �= 4 (�= 2.0, �= 0.03) �< 0.05

452 asterisk.

Species Individuals Clusters (K) z-score (Z) p-value (P)

50 

ha.

Regio

n

50 ha. Regio

n

50 

ha.

Regio

n

50 

ha.

Regio

n

50 

ha.

Regio

n

Maximum 

height

259 242 20,62

0

13,743 4* 1* 2.3* 3.4* 0.01

*

0.02*

Wood 

density

229 219 17,13

9

9,273 5* 20 2.1* 1.6 0.02

*

0.06
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Leaf 

mass/area

250 234 18,36

8

9,528 3 3 0.2 1.5 0.40 0.07

Dry seed 

mass

185 177 18,25

9

10,667 15 3 0.2 1.0 0.38 0.16

453

454 Figure Legends

455 Figure 1. Field site. Intact tropical forest covers 20% of Panama. Our regional pool is an 

456 aggregate of 40 sampling sites within 30km of BCI. Combined, these sites comprise 

457 approximately 850 species, of which trait data were available for 242 species (max height), 219 

458 (wood density), 234 (leaf mass per area), 177 (seed mass), comprising between 9,528 and 13,743 

459 adult trees. Barro Colorado Island, spanning roughly 16 km2, sits in an artificial lake in the 

460 Panama Canal. The 50-ha Forest Dynamics Plot, located near its center, is a 1,000m by 500m 

461 patch of forest containing 300 tree species and 21,000 adult trees.

462

463 Figure 2. Results. Stem plots show trait distribution in the 50-ha plot on BCI for maximum 

464 height (A), wood density (B), leaf mass per area (C), and seed mass (D). Each stem represents a 

465 species, with its trait value plotted on the abscissa and abundance on the ordinate. Data shown 

466 for the 2000 census. The corresponding gap curves (E-H) plot the gap index against the potential 

467 number of clusters. The gap statistic is the highest point on the curve, with the red line indicating 

468 the 95th quantile of the expected gap statistic under no pattern, obtained from 1,000 null sets. The 

469 peaks above the red line in (E) and (F) reveal clustering by maximum height, with four clusters, 

470 and wood density, with five. The alternating colors in the respective stem plots show cluster 

471 membership of each species.

472

473 Figure 3. Height layers. Visual representation of the forest on Barro Colorado Island, 

474 highlighting the four height-based groups identified by our metric: shrubs (61 2 species; 8,071±

475 712 adult individuals), understory treelets (71 3; 7,308 165), midstory trees (61 1; ± ± ± ±

476 2,957 114), and canopy trees (64 1; 2,836 82), where the numbers represent mean and ± ± ±

477 standard deviation across the 7 censuses. Horizontal lines show maximum height of the dominant 

478 (most abundant) species in each group.
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