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Abstract

Dorsal root ganglia (DRG), which contain the somata of primary sensory neurons,

have increasingly been considered as novel targets for clinical neural interfaces, both

for neuroprosthetic and pain applications. Effective use of either neural recording or

stimulation technologies requires an appropriate spatial position relative to the target

neural element, whether axon or cell body. However, the internal three-dimensional

spatial organization of human DRG neural fibers and somata has not been quantita-

tively described. In this study, we analyzed 202 cross-sectional images across the

length of 31 human L4 and L5 DRG from 10 donors. We used a custom semi-

automated graphical user interface to identify the locations of neural elements in the

images and normalize the output to a consistent spatial reference for direct compari-

son by spinal level. By applying a recursive partitioning algorithm, we found that the

highest density of cell bodies at both spinal levels could be found in the inner 85% of

DRG length, the outer-most 25–30% radially, and the dorsal-most 69–76%. While

axonal density was fairly homogeneous across the DRG length, there was a distinct

low density region in the outer 7–11% radially. These findings are consistent with

previous qualitative reports of neural distribution in DRG. The quantitative measure-

ments we provide will enable improved targeting of future neural interface technolo-

gies and DRG-focused pharmaceutical therapies, and provide a rigorous anatomical

description of the bridge between the central and peripheral nervous systems.

K E YWORD S

cell density, cross-sectional anatomy, dorsal root ganglion, humans, RRID:AB_2149620,

RRID:SCR_001622, RRID:SCR_003070, RRID:SCR_005043, RRID:SCR_014242

1 | INTRODUCTION

Dorsal root ganglia (DRG) are regions of the posterior spinal roots,

which contain the cell bodies of all primary sensory neurons innervat-

ing a specific dermatome of the body or end organ (Devor, 1999).

Recently, DRG have been increasingly investigated as sources from

which to record control signals for neuroprosthetic devices, for appli-

cations ranging from treating bladder dysfunction to providing limb

prosthetic control and sensory feedback (Bruns, Wagenaar, Bauman,

Gaunt, & Weber, 2013; Holinski, Everaert, Mushahwar, & Stein, 2013;

Ouyang, Sperry, Barrera, & Bruns, 2019; Umeda et al., 2012; Weber,

Stein, Everaert, & Prochazka, 2007). While most studies have used

penetrating electrode arrays to record from neurons in the interior of

the DRG, recent work has demonstrated that afferent signals can be

recorded from neurons near the exterior of DRG using surface
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recording arrays (Kashkoush, Gaunt, Fisher, Bruns, & Weber, 2019;

Sperry et al., 2018) and that microelectrodes can be used for low-

current microstimulation of DRG neurons (Ayers, Fisher, Gaunt, &

Weber, 2016; Bruns, Weber, & Gaunt, 2015; Fisher et al., 2014).

Additionally, dorsal root ganglion stimulation (DRGS) is an emerging

therapy for chronic neuropathic pain (Deer et al., 2017), providing a

nonaddictive alternative to opioids for pain management. Although

these technologies have the potential to provide dramatic improve-

ments in quality of life for a diverse range of patients, preliminary clin-

ical studies have demonstrated limited success thus far. Commonly

reported issues include inconsistencies in the quality of elicited sensa-

tions, and variable amounts of pain relief across patients (Harrison,

Epton, Bojanic, Green, & FitzGerald, 2018). These technologies rely

on either the accurate recording or delivery of electric currents to spe-

cific types of DRG neurons (e.g., recording from bladder afferents,

stimulating sensory inputs to reflex circuits). However, we have a lim-

ited understanding of the three-dimensional (3D) spatial distribution

of primary afferents throughout human DRG. Describing the 3D cellu-

lar anatomy of DRG could inform the clinical implementation of these

technologies (e.g., DRGS electrode placement relative to the ganglion,

selection of penetrating or surface recording arrays to target different

cells), which may lead to improved and more consistent clinical

outcomes.

DRG contains both the cell bodies and portions of the axons of

primary sensory afferents. Neural recording technologies detect neu-

ral activity through the voltages generated by the transmembrane cur-

rents generated by neural signal propagation (Aoyagi, Stein, Branner,

Pearson, & Normann, 2003). The largest transmembrane currents,

which would contribute to the bulk of the recorded signal, are thought

to originate from the cell body and axon initial segment of recordable

cells (Kneist, Kauff, Schröder, Koch, & Lang, 2014). In contrast, extra-

cellular stimulation technologies are thought to primarily induce neu-

ral activation in axons (McIntyre & Grill, 1999), with modeling studies

suggesting that DRGS electrodes primarily activate the axons of large

myelinated tactile afferents (Graham, Bruns, Duan, & Lempka, 2019).

Although the specific roles of subgroups of primary afferents are com-

plex, DRG cells can be roughly broken into functional groups based on

the cell body and axon size (Lee, Chung, Chung, & Coggeshall, 1986).

C-fibers are small unmyelinated cells that typically conduct thermal or

noxious sensation (Dubin & Patapoutian, 2010; Winter, 1971). Mye-

linated A-fibers, which are typically mechanoreceptive or propriocep-

tive, are larger than C-fibers and typically have thinly- to thickly-

myelinated axons. A-fibers can be further stratified into Aα-, Aβ-, and

Aδ-fiber classes, which are listed in order of descending conduction

velocity and fiber size (Gardner & Johnson, 2014). Although this clas-

sification scheme is commonly used throughout the literature, there is

a dearth of studies examining the spatial distribution of these fibers

throughout the DRG.

The effectiveness of both recording and stimulating neural inter-

face technologies relies heavily on the spatial relationship between

the interface electrode and particular neuron types of interest. How-

ever, few studies have examined the spatial organization of neurons

in DRG, and to our knowledge, no studies exist in human literature.

Various studies have discussed a weak functional somatotopy for the

DRG in animal studies based on nerve tracing, with rostral-caudal,

medial-lateral, and ventral-dorsal divisions all present to a certain

degree (Burton & McFarlane, 1986; Kausz & Rethelyi, 1985;

Peyronnard, Messier, Dubreuil, Charron, & Lebel, 1990; Prats-Galino,

Puigdellívol-Sánchez, Ruano-Gil, & Molander, 1999; Puigdellívol-

Sánchez, Prats-Galino, Ruano-Gil, & Molander, 1998; Wessels,

Feirabend, & Marani, 1990a; Wessels, Feirabend, & Marani, 1990b).

Few studies have examined the distribution of neural structures

(e.g., cell bodies, axons) in DRG. Only a few anecdotal references exist,

including studies showing superficial cell bodies or a “central fiber

stream” in the DRG (Bossy, 1970; Sato & Austin, 1961), and a neural

recording study in feline DRG reported the largest density of cell bod-

ies at a depth between 0 and 100 μm (Miletic & Lu, 1993). There is a

general consensus that most cell bodies are found around the circum-

ferential edge of the ganglion. That idea was supported by our previ-

ous study, in which a quantitative analysis of feline lumbosacral DRG

showed that the highest density of cell bodies in medial sections could

be found in the outer 24% radially and on the dorsal-most side of the

ganglion (Ostrowski, Sperry, Kulik, & Bruns, 2017). However, in this

previous study, we only examined neuronal distribution in medial sec-

tions of the DRG, while clinical neurotechnologies would likely act

upon neurons distributed along the entire DRG.

In this work, we sectioned human lumbar DRG specimens at

1 mm increments along the nerve root axis. We stained these sections

with neurofilament and imaged the sections for high-contrast identifi-

cation of neural cell bodies and axons. We developed software to

automatically segment and characterize the spatial location and size

of neural elements. Finally, we used a recursive partitioning algorithm

to model the 3D spatial densities of the neural elements. We also ana-

lyzed high-level donor demographic and anatomical trends in our data

set. These analyses provide key insights for future neural interface

technologies and therapies with human DRG.

2 | MATERIALS AND METHODS

2.1 | Gross tissue processing

This study utilized human tissue donated by de-identified deceased

individuals, and was, therefore, determined to be “Not Regulated” by

the University of Michigan Institutional Review Board

[HUM00109152]. We received bilateral human lumbar spinal roots

(RRID:SCR_005043) from the L4 and/or L5 spinal levels from the

National Disease Research Interchange (NDRI, Philadelphia, PA) from

the deceased donors within 72 hr of aortic cross-clamp. We chose to

study L4 and L5 DRG because these DRG are common DRGS targets

for managing chronic pain in the feet and lower legs (Deer et al.,

2019). We excluded donors that had a history of diabetes, cancer,

herpes zoster, a peripheral nerve condition, spinal cord injury, previ-

ous spine surgery, or opiate abuse. NDRI stored the tissue in 10%

neutral-buffered formalin and shipped it at ambient temperature.

Upon receipt, we used calipers to measure the DRG portion of each
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root at 1 mm increments to determine the gross tissue dimensions.

We then used a razor blade to cut the DRG in half and removed two

1 cm segments constituting the approximate proximal (i.e., nearest the

spinal cord) and distal (i.e., nearest the peripheral nerve) DRG halves

(Figure 1b). We placed the cut sides of each DRG half face-down in a

histology cassette to preserve DRG orientation across slides. If visual

inspection indicated that the remaining tissue contained gray matter,

we removed additional segments to obtain samples of the entire DRG

region. We stored the cassettes in 70% ethanol to halt fixation, and

shipped them to an external histopathology lab (Histowiz Inc., Brook-

lyn, NY) for histological processing.

2.2 | Histological Processing and Imaging

The histopathology lab embedded the tissue samples in paraffin (Leica

EG 1150 H&C) and cut 4–5 μm thick sections at 1 mm steps (~20 sec-

tions per DRG) (Leica RM2235 microtome). They mounted the sec-

tions on slides and stained with a 1:3000 dilution of rabbit

monoclonal antibody for neurofilament heavy polypeptide (NF200,

ab40796, Abcam, Cambridge, UK, RRID:AB_2149620) which stains

both A- and C-type fibers in humans (Rostock, Schrenk-Siemens,

Pohle, & Siemens, 2018; Vega, Humara, Naves, Esteban, & Del Valle,

1994). They also counterstained for hematoxylin to identify nuclei.

They imaged the slides at ×40 with a brightfield slide scanner, with a

resolution of four pixels per micron (Leica Aperio AT2). The resulting

images had neural cell bodies and axons visible in dark brown and cell

nuclei visible in blue (Figure 1c). The nuclei of other DRG cellular

types were also visible, including satellite cells and some endothelial

vascular cells. The neural cellular elements were typically arranged

into at least two fascicular regions. We considered the regions con-

taining cell bodies (or continuous with cell-body containing regions

across images) as DRG. We considered all other regions as the ventral

root (VR). To the extent analyzed, the VR was considered separately

from the DRG. We screened images for quality issues, including

excessive tearing or folding, and poor quality regions were excluded

from analysis.

2.3 | Image processing software

Lumbar DRG contain ~35,000 neurons (Liu, Zhou, Ma, Ge, & Cao,

2015). Therefore, to identify each neural element we developed a cus-

tom semi-automated graphical user interface (GUI) using MATLAB and

its Image Processing Toolbox (MathWorks Inc., Natick, MA, RRID:

SCR_001622). After loading the image, the GUI allows the user to iden-

tify the DRG, VR, and nonneural outer tissue and then calculates an

optimal rotation to align the DRG above the ventral root in the upper

F IGURE 1 (a) Illustration of coordinate system for DRG cross-section images. (b) Initial tissue processing. (c) Representation of sample
locations and NF200-stained samples (dark brown). We counterstained each sample with hematoxylin, resulting in blue cell nuclei (not visible at
displayed image size). (d) Analysis of histological data. (left) DRG cross section after automated processing, with identified axon and soma
locations highlighted. (center) Diagram of polar normalization, demonstrating transformation from perimeter and internal features to unit circle.
(right) Contour plots generated from polar normalization of DRG, with logarithmic color scale at right [Color figure can be viewed at
wileyonlinelibrary.com]
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half of the image. The GUI white-balances the image and converts it to

binary using a series of thresholding steps and morphological operations.

We extracted the shapes and locations of all neural elements in the orig-

inal image from the resulting binary image for analysis.

In order to validate the GUI results, we selected four validation

images pseudo-randomly from the final image set, to balance for inclu-

sion from different donors, spinal levels, and sidedness (i.e., right DRG

or left DRG). We randomly selected a 1 mm square region containing

both axons and cell bodies from each validation image. Following con-

sultation from a neuropathologist, the first three authors each traced

the neural cell elements in the validation sub-images using the ImageJ

(RRID:SCR_003070, https://imagej.nih.gov/ij/) plug-in ObjectJ

(https://sils.fnwi.uva.nl/bcb/objectj/index.html, Vischer, N. & Nastase,

S. University of Amsterdam).

For automated processing, we first converted all validation

images to grayscale, and white balanced each image against back-

ground luminescence for each color channel (red = R, green = G, and

blue = B). These grayscale images were converted to binary (black and

white) using a threshold determined to minimize the difference

between the initially detected object number and the number of

objects determined by each human validator. A threshold of 0.78 mini-

mized the difference between the computer- and human-identified

objects, therefore we used a threshold of 0.78 for all black-white

thresholding steps. We discovered that a simple threshold tended to

split large lightly-stained cell bodies into many smaller objects, but

that intact cell bodies could be recovered by utilizing the ratio

between R and B channels. Specifically, an R/B-B/R threshold of 0.5

consistently returned an image with intact cell bodies. This step was

effective because the neurofilament stain tended to have a high R

value and a low B value, while hematoxylin had a strong B value and

weak R value. This RB ratio transformation was noisy outside of the

cell bodies, so only objects with an area greater than 600 μm2 were

retained (roughly corresponds to circular objects with diameter

14 μm). The logical disjunction of the RB ratio image and the original

binary image (RB Ratio OR Binary), denoised with a morphological

“open” and with holes filled, served as the final image for automated

neural element identification with MATLAB's Image Processing

(MathWorks, Natick, MA) toolbox.

To compare the automated system and human performance, we

found the pixel overlap between the output images and calculated the

precision and recall of the automated system, using the human seg-

mented images as ground truth. Precision is the ratio between true

positives and total positives (true positives + false positives), and is a

measure of how often the program incorrectly labeled a pixel as

belonging to a neuron. Recall is the ratio between true positives and

ground truth positives (true positives + false negatives), and is a mea-

sure of how often the program missed a neuron pixel it should have

labeled. Both ratios range from 0 to 1, with a higher value being a bet-

ter score (Taha & Hanbury, 2015; Wienert et al., 2012).

The precision of the algorithm was 0.92 ± 0.04 and the recall was

0.81 ± 0.05. While this is short of perfection, these values are consistent

with other well-performing cell segmentation programs (Al-Kofahi,

Lassoued, Lee, & Roysam, 2010; Peikari & Martel, 2016; Wienert et al.,

2012). In comparison, the inter-human precision was 0.84 ± 0.06 (signif-

icantly lower than the human vs. algorithm, Student's t test; p = .0021),

and inter-human recall was 0.86 ± 0.07 (Student's t test; p = .1075).

These values suggest that the algorithm is behaving overall like an aver-

age human validator, and on the basis of precision and recall would likely

be indistinguishable. The absolute difference in object count between

human and algorithm was 5.43 ± 4.21% (nonabsolute difference: 1.45

± 6.89%, not significantly different than zero [Student's t test;

p = .4806]). The standard deviation of inter-human count for a given

image as percentage of the mean was 5.43 ± 4.21%. Ultimately, the goal

of the program was not to perfectly label all cells but to reduce the time

to adequately label an image so that trends could be quantified. Each

human annotation of a 1 mm2 image took ~6–10 hr depending on the

number of objects, and there was considerable variation in duration

between annotators. The same images took only ~1 min for the pro-

gram. Considerable time savings, along with the positive performance

metrics, suggests that the program was a significant improvement over

manual image labeling.

Figure 2 shows a portion of a raw validation image between the

automated and human segmentation for comparison. In the full ver-

sion of this image, the program identified 5277/5359 objects identi-

fied by the average human, a difference of −1.53%. The precision in

this image was 0.95 and recall was 0.80. A note on human versus

automated performance is the tendency of human segmenters to label

an object with a border larger than the actual object (over-

segmentation). This explains the evident difference in some object

sizes between the two images.

2.4 | DRG reconstruction

We reconstructed the 3D profiles of individual ganglia regions by con-

verting manually-traced 2D profiles of DRG, VR, and compact outer

tissue to .svg files in MATLAB, then stacking and interpolating (lofting)

between the curves using the computer-aided design (CAD) program

Audodesk Fusion 360 (Autodesk, San Rafael, CA), slightly adjusting

image alignment as needed (Figure 3). We used these 3D reconstruc-

tions to analyze the mean geometric properties (e.g., aspect ratio,

length, width) of root regions (e.g., dorsal root, ventral root).

2.5 | Image analysis

Following parameter optimization and comparison of GUI results to

human performance, we analyzed each image containing at least

10 visible soma (Offord, Ohta, Oenning, & Dyck, 1974) in the GUI to

determine neural element size, shape, and location. We identified in-

plane axons as elements exceeding a geometric eccentricity of 0.9

(i.e., their shape dramatically deviated from circularity), and excluded

them from population size analysis. We defined a mean diameter as

the average of the major and minor axis. Based on values previously

reported (Gardner & Johnson, 2014), we used a mean diameter cutoff

of 20 μm to distinguish larger axons from smaller cell bodies. We
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found that objects larger than 110 μm in diameter were typically

detritus, and we removed them from the data set.

Note that for the purposes of this study, we will refer to the three

spatial dimensions of the DRG as follows: the axial position refers to

the location of an image along the nerve trajectory, and may be either

spinal (close to the spinal cord) or peripheral (away from the spinal

cord); cross-sections are oriented with the dorsal side up and the ven-

tral side down; the axis perpendicular to both these axes, and horizon-

tal in cross-sections, is the rostral-caudal axis (Figure 1a). We

determined this final label by considering the in situ anatomy of lower

lumbar nerve roots, which exit the spinal cord slightly more perpen-

dicular than parallel (Silverstein et al., 2015), and therefore to align the

third axis with the rostral-caudal bodily axis. If the nerve roots were

parallel to the spinal cord, it would be appropriate to refer to our

rostral-caudal axis as lateral-medial, respectively. A previous computa-

tional modeling study of lower lumbar DRG also used this nomencla-

ture, shown visually in the Coordinate System section of Figure 1

(Graham et al., 2019).

F IGURE 2 (left) Raw portion of validation image. (center) Binarization of human segmented image. (right) Binarization of automatically
segmented image [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 3 Four views of
reconstructed specimens. Dark
red is dorsal root ganglia region,
blue is ventral root, gray is
epineurial tissue. In each group
views are (clockwise from top
left): axial (face closest to spine
[spinal face] visible), isometric
(spinal face right), rostral (spinal
face right), and ventral (spinal face
down). Blocks shown for scale
have 1 mm edges. (a) L4
monoganglia (b) L5 monoganglia
(c) near biganglia (d) full biganglia
[Color figure can be viewed at
wileyonlinelibrary.com]
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2.6 | Cell density mapping

In order to quantify neural cell densities across DRG, we normalized

the location of each identified cell body and axon within an image to

polar coordinates using a method similar to our prior work

(Ostrowski et al., 2017). We set the centroid of the user-defined

DRG region as the origin for determining the polar angle of neuron

n (θn). We defined θn to equal 0 at the vertical (i.e., dorsal) normal

vector calculated from the user-defined DRG region. We determined

radial location (rn) by calculating the ratio of the distance from the

DRG centroid of neuron n and the distance from the DRG centroid

to the DRG edge along θn. The end result is a circular map with the

circumference representing the DRG edge and all neurons located

inside the circle. In cases where we observed multiple ganglionic

regions (i.e., multiple cell body-containing fascicles) in a single slice,

we combined all regions into a single region using built-in MATLAB

image processing functions. To combine all ganglionic regions into a

single region, we first found the perimeter of each ganglionic region

(MATLAB command: bwperim). Then, we calculated the outline of a

shape which formed a boundary encompassing the entirety of each

ganglionic region's perimeter (MATLAB command: boundary). Lastly,

we converted the resulting boundary into a mask (MATLAB com-

mand: poly2mask), which represented the entire cell body-

containing region of the slice.

We used the normalized circular maps described above to calcu-

late cellular densities. First, we divided the circular map into concen-

tric annular sectors of equal width and increasing radii. Next, we

divided each annular sector into wedges of constant area, to create a

circular grid of wedge sectors defined by a radius from the center of

the circular map, and an angle from the vertical normal vector. To cal-

culate cellular density of a wedge sector, we divided the number of

cellular elements (i.e., somas or axons) in the wedge by the non-

normalized area of that wedge (i.e., the area of the original image rep-

resented by the wedge sector). A shortcoming of the method used

previously was very high variance in calculated densities in sectors at

the center of normalized DRG, the result of very small sectors pro-

duced by using wedges of constant angular size (Ostrowski et al.,

2017). Holding wedge sector area constant, and varying the number

of wedge sectors in each annulus overcame that issue (i.e., annuli with

smaller circumferences closer to the center of the circular map have

fewer wedge sectors, but each wedge sector has the same area).

Given that the largest expected cell bodies in human and other large

mammal DRG have a diameter of about 100 μm (Josephson et al.,

2001; Lee et al., 1986), we chose annulus width and sector area to

accommodate approximately four large cell bodies packed in each sec-

tor. We chose this size after trial and error as a compromise between

fine and coarse resolution for the final maps. Figure 1d shows a sum-

mary of image analysis steps.

To determine axial position of each image, we fit a 3rd-degree

polynomial curve to the DRG fascicle areas considering the known

distance between sequential images. We took the axial position

corresponding to the maximum value of the fit curve as 0 μm (i.e., the

middle of the DRG). We assigned a negative axial position value to

images on the spinal side of the midpoint, and a positive value to

images on the peripheral side. We did not assign an axial position to

images from ganglia without a clear center (i.e., fascicle areas with no

peak value). These images were included only in analyses that did not

rely on axial position.

2.7 | Donor demographic trend analysis

We performed all statistical analyses for this study using JMP Pro

14 statistical software (SAS Institute, Cary, NC, RRID:SCR_014242).

We tested the effect of various donor demographic and anatomical

characteristics on mean neuron count and density in each DRG. We

evaluated the two-factor effects (sex [male/female], side [left/right],

and spinal level [L4/L5]) with a Student's t test. For all tests, we set

the significance threshold at p = .01. We evaluated the effect of donor

size by calculating body mass index (BMI), sorting donors into

“normal,” “overweight,” and “obese” categories (group divisions at

25 and 30 [Flegal, Carroll, Kit, & Ogden, 2012]), then performing an

analysis of variance (ANOVA) test for significance followed by a

Tukey honest significant difference (HSD) test. We evaluated the

effect of donor age by fitting a line to the density (or count) versus

donor age data and assessed the significance of the slope estimate

(Student's t test, H0: slope = 0).

2.8 | Spatial density modeling

The goal of spatial density modeling is to provide a partitioned map of

neural elements throughout a DRG. We used JMP to fit separate par-

tition models for normalized densities by spinal level (L4 and L5), and

neural element type (soma and axons) for a total of four models. We

further stratified the axon models by size (large [≥5 μm diameter] and

small [<5 μm diameter]). Partition models split a distribution of depen-

dent variables (e.g., cell body density) into sub-populations of distribu-

tion based on the values of one or more independent variables

(e.g., axial location). This splitting operation is performed recursively,

and splits distributions at values of independent variables which maxi-

mizes model fit. The result of a partition model is a decision tree that

maximally captures sub-populations of distributions within a depen-

dent variable (e.g., identifying regions of large or small cell body den-

sity based on axial location in the DRG). We used 10-fold cross-

validation of the model at each split to avoid overfitting. We termi-

nated splitting at the stage when 10 additional splits failed to improve

the model R2 by at least 0.05. We additionally restricted the model to

only produce groups containing more than 5% of data points, leading

to a theoretical maximum of 20 groups in the model. As in Ostrowski

et al. (2017) we used radial location and vertical angle as model inputs,

defining vertical angle as the angle measured from the top (dors-

almost) point of the circle reflected across the dorsal-ventral midline

of each image. For our partition models, we also added the axial posi-

tion as model input. We assessed the output models by performing an

ANOVA and Tukey HSD test on the measured densities in the
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identified spatial regions. Where relevant, results are presented as

mean ± standard deviation.

3 | RESULTS

All DRG images, software, summary data, and CAD models referenced

in this study are available online at the Open Science Framework

(Peck-Dimit, Sperry, Graham, Lempka, & Bruns, 2019).

3.1 | Donors and specimens

We collected a total of 34 DRG from 10 human donors. Table 1 pro-

vides demographics for each donor. This included seven males and

three females, of which seven were Caucasian, two Hispanic and one

Black. Ages ranged from 25 to 59 years (47.2 ± 10.3 years). BMI

ranged from 24 to 38 kg/m2 (30.1 ± 4.5 kg/m2). Based on typically-

reported ranges, two of the donor BMIs were considered “Normal,”

four were considered “Overweight,” and four were considered

“Obese.” Seven of the donors died from natural causes (cardiovascular

or stroke), and three died from external causes (trauma or

asphyxiation).

We collected bilateral L5 DRG from all donors, and bilateral L4

DRG from all but three donors (D3, D5, and D8). In all but D10, the

DRG were identifiable as either left or right upon receipt. Therefore,

D10 was excluded from all left–right analyses, but was used when

comparing features across levels (i.e., L4 vs. L5). All but one of the

DRG had images suitable for inclusion in this study. Tissue slices in all

images from Donor 1's Right L5 DRG were torn and therefore

unusable. Table 1 reports the DRG collected and used in this study.

The majority of DRG in our data set (28/33) could be defined as

monoganglia, that is, at some point we observed an image containing

a single compact DRG fascicle. All of these DRG split at either the spi-

nal or peripheral side into multiple fascicles, and in some cases were

split into two primary fascicles throughout most of the region of

interest. The remaining five DRG were biganglia, that is, the mini-

mum number of observed DRG fascicles was two. It is possible that

these DRG had a merged region in between images not captured by

our sectioning, but the maximum length of this region would neces-

sarily be less than 1 mm due to our sampling method. Of the

biganglia, three were L4 DRG and two were L5 DRG. Figure 3 shows

four samples of donor specimens reconstructed from histological

images (one each of monoganglia L4 and L5, a near biganglia, and a

full biganglia).

The number of images used from each DRG ranged from 3 to

10 (6.1 ± 1.8; 202 total), varying due to anatomical differences and

the quality of the final images. Considering both image quality and

inclusion of only cell-body containing images, this represented ~25%

of the overall images acquired. We imaged 17 complete DRG, identi-

fied based on a distinct continuous axial region with soma-containing

images bounded by images with only axon-containing images. An

additional seven DRG were considered “nearly complete,” with the

region of soma-containing images bounded on one side by axon-only

images and on the other by highly fascicular images with few cell bod-

ies. The remaining nine DRG were incomplete (i.e., the DRG image set

did not include a non-soma-containing sample at the outer axial posi-

tions), but still had images useable for the study. Completeness and

number of images used is also reported by DRG in Table 1.

3.2 | Measurements and reconstructions

Within the complete DRG, there was a nonsignificant trend toward L5

being longer than L4 (p = .0244). L4 DRG had length 5.2 ± 1.9 mm

while L5 DRG had length 7.1 ± 2.4 mm, measured as the length of the

soma-containing region. Within the DRG containing a peak area, there

was no apparent difference between L4 and L5 in maximum rostral-

caudal width, and the overall width was 5.8 ± 1.0 mm. In these same

DRG, there was a nonsignificant trend toward L5 having a larger

TABLE 1 Detailed donor information

Donor Age (y) Sex Wt. (kg) Ht. (m) BMI (kg/m2) Race Cause of death DRG

D1 25 F 70 1.64 24.2 C Cardiovascular LL5(4), RL5(0)

D2 46 M 81 1.67 27.2 C Arrhythmia LL4(5), RL4(5-i), LL5(6), RL5(5-i)

D3 57 M 91 1.62 32.4 C ICH/stroke LL4(6-i), RL4(5-i), LL5(5-i), RL5(5)

D4 49 M 112 1.69 36.5 H Head trauma LL4(3-i), RL4(8), LL5(7), RL5(4-i)

D5 50 F 94 1.52 37.9 C ICH/stroke LL5(6), RL5(6)

D6 54 M 97 1.76 29.0 C ICH/stroke LL4(6), RL4(8), LL5(8), RL5(8)

D7 59 M 93 1.74 28.6 C Head trauma LL4(5), RL4(5), LL5(3), RL5(7)

D8 46 M 88 1.81 24.9 C Head trauma LL5(10), RL5(9)

D9 51 F 92 1.64 31.2 B Cardiovascular LL4(5), RL4(7), LL5(8), RL5(9)

D10 35 M 87 1.67 29.2 H Asphyxiation XL4(4-i), XL4(5), XL5(8-i), XL5(7)

Note: All DRG collected are listed in “DRG” column, first letter is side. Number of images included from each DRG is included in parentheses, with a “-i”
indicating inclusion of an incomplete DRG (i.e., DRG image set did not include a non-soma-containing sample at the extreme axial positions).

Abbreviations: B, black; C, Caucasian; F, female; H, Hispanic; ICH, intracranial hemorrhage; L, left; M, male; R, right; X, not specified.
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maximum dorsal-ventral width than L4 (p = 0.0228). L5 had a maxi-

mum dorsal-ventral width of 4.5 ± 1.2 mm while L4 was

3.7 ± 0.8 mm.

Our polar model transforms the DRG fascicular area to a perfect

circle of radius 1, but it is useful to understand the typical shape of

our actual samples. We found that the actual mean aspect ratio of the

DRG fascicular regions (as rostral-caudal width over dorsal-ventral

width) was 1.52 ± 0.47, significantly different than the unit aspect

ratio of a perfect circle (Student's t test, p < .0001). When considering

the number of DRG fascicles, we found that the mean aspect ratio of

biganglia DRG fascicle cross sections (1.78 ± 0.44) was significantly

higher (p = .0004) than for monoganglia DRG (1.47 ± 0.45). This fea-

ture of the DRG fascicle cross sections does not extend to the full tis-

sue cross-section including VR, which had an aspect ratio of 1.04

± 0.21 which, while significantly greater than one (Student's t test,

p = .0077), is an aspect ratio close to the aspect ratio of a perfect cir-

cle. Our polar model does not rely on any assumptions of aspect ratio,

but these geometric trends may be of interest for future models

of DRG.

3.3 | Neural counts and densities

We observed several trends in cell body and axon count related to spinal

level. L5 DRG had significantly higher mean axon count in each image

(33,643 ± 11,007) as compared to L4 (27,868 ± 10,846), with p = .0002.

However, the mean density of axons did not differ significantly by spinal

level, and the combined mean was 2.36 × 10−3 ± 8.50 × 10−4 axons per

F IGURE 4 Polarized mean (a) cell body (blue) and (b) axon (green) spatial densities in each millimeter of L4 (upper) and L5 (lower) dorsal root
ganglia fascicular region. Inset scale provides reference for color, which is on a logarithmic scale decreasing from maximum density to 1% of
maximum (tile refers to square with given dimension per side) [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Summary of DRG density models by neural element and spinal level

Neural element Spinal level R2 Axial proportion Radial proportion Angular proportion

Cell bodies L4 .0659 .57 .21 .22

L5 .0453 .60 .28 .12

Axons L4 .1399 .04 .61 .35

L5 .0942 .14 .81 .05

Small axons L5 .0835 .17 .76 .07

Large axons .1003 .26 .70 .04

Note: R2 values indicate the amount of variance captured by the partition model for a neural element (i.e., cell bodies or axons) at a given spinal level.

Proportion columns indicate the relative contribution of a given variable (e.g., axial position, radial distance from center) to the overall model on a scale

from 0 to 1; proportions for a given model sum to 1.
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μm2. There was no significant difference in the number of cell bodies in

each image by spinal level, though there was a slightly higher mean cell

body density in L4 (3.78 × 10−5 ± 1.98 × 10−5 cells per μm2) than in L5

(3.24 × 10−5 ± 1.71 × 10−5 cells per μm2), with p = .0492. The combined

mean number of cells per image was 469 ± 303. The apparent disparity

between a difference in fiber count and a non-difference in by-image

cell count appears to be the result of the additional length of L5 to con-

tain the additional cell bodies. From this point, all figures and models will

consider L4 and L5 separately.

Comparing the spinal and peripheral sides of each DRG (splitting

at the center axial location), we observed that the peripheral side had

significantly more axons than the spinal side at both spinal levels (dif-

ference at L4: 6,002 ± 5,917 axons, p = .0033; L5: 7,758 ± 6,398

axons, p = .0002). This trend was true of 24/29 individual DRG where

axial location was determined. For large fibers, this represents a mean

increase of 4,007 ± 4,118 fibers (or 62.16 ± 76.24%) from the spinal

to peripheral side, and an increase of 2,964 ± 2,825 small fibers (15.4

± 15.5%). This trend was not accompanied by a significant increase in

per-image cell body count. However, when considering cell bodies by

size, there was a significant increase in confirmed (nucleated) large cell

bodies on the peripheral side versus the spinal side (9 ± 15 cells, or

51.5 ± 77.7%). The large cell body trend was true of 21/29 DRG,

although there was not enough data to determine if this trend was

related to DRG level.

It should be noted that large cell bodies represented only about

32.4 ± 18.0% of nucleated cell bodies, and that nucleated cells repre-

sented 27.3 ± 8.6% of all cell bodies identified in each image. Medium

and small cells, respectively represented 43.7 ± 12.6% and 23.9

± 11.3% of nucleated cells identified. The mean axon diameter was

4.37 ± 1.79 μm. The mean cell body diameter was 44.94 ± 15.13 μm.

No axial trend was observed in either axon or cell body density (other

than count) at any size. Possible reasons for these observations are

enumerated in Section 4.

The most significant trend related to patient demographics was

that obese donors had a higher L5 DRG axon count (38,298 ± 8,783)

than normal patients (30,934 ± 8,522; p = .0047). Overweight donors

F IGURE 5 Cell body densities (left) and spatial representations of cell body density (right) of (a) L4 and (b) L5 DRG. Density data are
summarized with a violin plot and a mean bar. Letters are unique to each violin plot, although the mean in each group is descending left to right.
The colored bar below each plot represents statistical significance. Groups not connected by the same color (either solid or striped) are

significantly different from each other. For example, in the top left graph, group A is significantly different from all groups other than B and C,
which share its magenta color. The top view of each spatial representation is a view of the DRG with the spinal side left and dorsal side
up. Within each uniquely described axial region, a cross-sectional slice with corresponding number label is shown below, with the dorsal side up
(e.g., for L4, slice 1 represents cell body densities at axial locations between −6.42 and − 2.14 mm from the middle of the ganglion). Values along
the axial axis of the DRG have units of mm [Color figure can be viewed at wileyonlinelibrary.com]
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overlapped both groups (33,113 ± 9,609). This trend was also

observed in L4, although there were no normal BMI L4 donors (obese:

31,171 ± 10,383; overweight 26,499 ± 9,280; p = .0219). Obese

donors had a higher cell body count in each L4 image than overweight

donors (p = .0367), and higher than overweight and normal donors at

L5 (p = .0073 and p = .0404, respectively). There was no significant

cell body count or density trend related to BMI (i.e., the mean cell

body counts and densities were not significantly different between

donors categorized with different BMIs). Female donors had both

higher mean L5 cell body count and cell body density than males in

each image (p = .0179 and p = .0019, respectively).

Figure 4 shows the mean polarized densities of cell bodies and

axons for each spinal level with axial position divisions at 1 mm

intervals. While a full spatial description of VR axons is outside of

the primary scope of this study, a few observations are relevant in

comparison with the DRG. We counted 5,983 ± 1,474 axons in

L4 VR, and 6,417 ± 1,564 axons in L5 VR, although the difference

was not significant. There was no relationship between axon count

and axial location in the VR. In each image, the number of large

axons in the VR was significantly fewer (p < .0001) than the number

of small axons by 37.4 ± 35.8%, with no relationship to spinal level.

The ratio of large-to-small axons was significantly higher

(p < .0001) in VR as compared to the DRG, in which the same pro-

portion was 42.4 ± 16.5% (p < .0001). This matched our qualitative

observation that it was possible to visually discern a VR fascicle

from a DRG fascicle based solely on the different axon

population size.

The axon and cell densities for each level were modeled using a

recursive partition algorithm, which had radial, axial, and angular posi-

tion as inputs. Table 2 summarizes the performance of the partition

models and the contribution of each input variable to the overall

model as a proportion of the total R2. For the cell body models, axial

position was the most important variable, while the radial position

was most important for the axon models. Both the L4 cell body and

axon models had a higher R2 than the corresponding L5 models,

although as in Ostrowski et al., the trends described by the model rep-

resent a relatively small portion of the overall variation (Ostrowski

et al., 2017). The axon models also had higher R2 than the associated

cell body models.

Figure 5 summarizes the measured cell body densities in each

spatial region identified by the recursive partition algorithm models

and describes the statistical relationships between regions. Figure 6

shows the measured axon densities in each spatial region identified

by the same recursive partition algorithm and describes the statistical

relationship between those regions. Each model successfully identi-

fied regions with significantly different neural densities, with a mini-

mum ratio of ~2× between the highest and lowest density regions

(L5 cell bodies) and a maximum ratio of ~7× between the highest and

lowest density regions (L4 axons).

Axial position was the strongest contributor to the cell body

models. In L4, the highest soma densities were in the inner ~4.4 mm,

and in L5 the highest soma densities were within the inner ~6 mm.

These values both correspond to about 85% of the mean full length of

the soma-containing region. For L4, the highest soma density region

F IGURE 6 Axon densities
(left) and spatial representations
of axon density (right) of (a) L4
and (b) L5 DRG. See Figure 5 for
specific information on the types
of figures shown [Color figure
can be viewed at
wileyonlinelibrary.com]
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was in the dorsal-most 76% angularly and the outer-most 30% radi-

ally. The lowest soma density region (in the inner axial portion of the

DRG) was the ventral-most 24% angularly and the outer-most 18%

radially. For L5, the highest soma density region was similarly in the

dorsal-most 69% angularly and the outer-most 25% radially, although

the outer-most 5% radially was characterized by slightly lower soma

density. The lowest soma density region was the ventral-most 31%

angularly and the outer-most 14% radially. For both levels, the interior

was a more homogeneous region. In contrast to the cell body models,

radial position was the most important component of the axon models

at both levels. Taken together, the highest axon density regions in the

model were within 89% (L5) to 93% (L4) radially. The outer 11 and 7%

(respectively) had significantly lower axon densities. In L4, the medial

angles (43�–136�) had the highest density, while in L5 angle played

almost no role in the final model.

We also considered differences in modeled densities with neural

element size. There were not enough nucleated cell bodies to make

size models at either level. At L4, the small and large axon density

models were almost identical to the overall axon density model. In L5,

however, considering fiber sizes separately changed the model in a

few significant ways. The contribution of each input variable to each

model and the density distribution in the large axon model were fairly

similar to the overall axon model (see Table 2 for variable contribu-

tions and model R2). For large axons, the model predicted low density

regions throughout the outer-most 8% radially, particularly in the

dorsal- and ventral-most 30–35% angularly, and a homogeneously

higher density region throughout the inner 92% radially. The small

axon model, while retaining an outer low density region (outer-most

6%), had a unique low-density region at the medial dorsal aspect

(−2.11 to 1.35 mm axially, dorsal-most 25% angularly, 28% radially).

This dorsal region is particularly important for DRGS applications, so a

paucity of small axons in the area may be an important characteristic

for ongoing research in the area. Figure 7 shows both models as violin

plots and spatial models.

4 | DISCUSSION

In this study, we analyzed 202 cross sections across the full span of

33 human L4 and L5 DRG collected from 10 donors. To our knowl-

edge, this represents the largest such collection of human DRG

images included in a single study. Additionally, while this study was

limited to a description of DRG, the full library of images produced

includes over 900 images of human spinal roots, both stained and

unstained, for use in potential future studies. We utilized a custom

semiautomated GUI to aid in this analysis and greatly reduced

processing time compared to manual image segmentation. This GUI,

which relied on the high contrast neural staining provided by the use

of NF200 (rather than hematoxylin & eosin), represented a significant

improvement relative to our previous study of feline DRG (Ostrowski

et al., 2017).

Considering our donor demographics, the main effect we found

was that the overall number of axons increases categorically with

increasing BMI. To our knowledge, there is no conclusive evidence

regarding the role of body size on sensory neuron counts. A previous

study in frogs (St. Wecker & Farel, 1994) demonstrated that larger

frogs had more DRG neurons than smaller frogs, however, few studies

have examined the effect of body size or weight on DRG neuron

counts in mammals. One study demonstrated that in male rats, which

continue to grow in body mass throughout adult life, DRG neuron

F IGURE 7 Axon densities
(left) and spatial representations
of axon density (right) of (a) small
and (b) large axon density models
for L5 DRG. See Figure 5 for
specific information on the types
of figures shown [Color figure can
be viewed at
wileyonlinelibrary.com]
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count increases with age and size (Devor & Govrin-Lippmann, 1991).

Other studies in rats refute this (Pover, Barnes, & Coggeshall, 1994),

claiming that DRG neuron counts do not increase with age. However,

that study did not report the sex of their animals, and it is understood

that female rats level off in body size, unlike male rats. Future studies

should examine the role of body size, and the presence of obesity, on

DRG neuron counts in humans. As obesity is a common comorbidity

to chronic pain, obese patients receiving DRGS may have different

neuroanatomical makeups than nonobese patients. It is currently

unclear if increased axon counts would have an impact on DRGS

outcomes.

In contrast to previous studies, we did not find evidence that neu-

ronal numbers increase with age (Devor & Govrin-Lippmann, 1985).

However, our study was likely underpowered to determine this rela-

tionship because our sample only included two donors under the age

of 35. One study in cats (H. H. Aldskogius & Risling, 1989) showed

that DRG neuron count did not increase with age, however, the

authors reported a slight increase in axon counts with age.

A high-level anatomic trend that we observed was the significant

increase in axon and cell body number in peripheral DRG compared to

the spinal side. This trend is likely related to axonal branching of DRG

neurons which has been observed in rat and cat studies, with

branching ratios similar to those in our data (H. Aldskogius & Risling,

1981; Chung & Coggeshall, 1984; Langford & Coggeshall, 1979,

1981). Other explanations may include our underestimation of the

number of small C-fiber axons present in our tissue samples, particu-

larly considering that unmyelinated axons account for approximately

two-thirds of axons in the DRG (Risling, Aldskogius, Hildebrand, &

Remahl, 1983). Alternatively, it has been observed that the peripheral

side of pseudounipolar DRG neuron axons are slightly larger than their

spinal counterparts (Amir & Devor, 2003). Lee and colleagues demon-

strated that nearly 13% of spinal axons in A-fibers have diameters less

than 2 μm, suggesting they would not be detected by our algorithm

(Lee et al., 1986). We found ~22% more fibers on the peripheral side

of the DRG than the spinal side, a slightly larger portion than Lee and

colleagues' findings would suggest. It is possible that because our

analysis could not detect very small fibers, there is a population of

cells, which can only be detected on their peripheral side.

We found a mean 33,643 ± 11,007 axons in L5 DRG and 27,868

± 10,846 in L4 DRG. These counts are consistent with a recent study

by Liu et al. which counted human dorsal root fibers and found

34,455 ± 2,740 in L5 and 31,175 ± 2,740 in L4 (Liu et al., 2015). In

both cases, our mean counts are slightly lower, which may be a result

of the variance in our data or our undercount of small unmyelinated

fibers. However, both our study and Liu et al. stained spinal root tis-

sue with NF200 and used computer programs to determine the num-

ber of fibers present, suggesting Liu and colleagues may have also

underestimated the number of unmyelinated fibers. Davenport and

Bothe reported 59,000 cells in human L3 DRG, with 25,000 unmyelin-

ated fibers contributing to their total population (Davenport & Bothe,

1934). Davenport and Bothe's estimation of the number of unmyelin-

ated fibers in lumbar DRG approximately accounts for the difference

in their estimate of total cellular population with the estimates made

by our study and Liu et al. This suggests that both our study and Liu

et al. accurately captured the population of myelinated axons in DRG,

but underestimated the number of unmyelinated axons. Considering

the sizes of the identified axons, there was a sharp drop-off in coun-

ted axons with mean diameter below 2 μm (only 0.018% of identified

axons). We, therefore, concluded that our imaging and analysis

method was not capable of consistently measuring unmyelinated

C fiber axons, which have a typical diameter < 1.6 μm (Gardner &

Johnson, 2014). We also may be undercounting small myelinated

fibers (Aδ), which have a minimum diameter of 1 μm (Gardner &

Johnson, 2014). This was likely a result of a denoising step in our

image analysis, which could not distinguish very small axons from

other cellular detritus.

For our primary quantification of human DRG spatial organiza-

tion, we utilized a recursive partitioning algorithm to model axon and

soma densities in normalized DRG cross sections by axial, radial, and

angular position. We found that the highest somatic densities were

within about 2 mm of the widest point of L4 DRG and within 3 mm of

the widest point of L5 DRG. Within these regions, both the highest

and lowest cell body densities were found in the outermost 20–25%

radially, with the dorsalmost 75% having the highest overall density

and the ventral-most 25% having the lowest overall density by angle.

We found that axial position had a very minimal effect on axon den-

sity, which was much more affected by radial position. The outer

~10% at either level had a very low axon density, while the interior

~90% was relatively high.

Our findings related to soma density are consistent with our pre-

vious findings in Ostrowski et al. in feline lumbosacral DRG. That

study found the highest density of cell bodies in the outer 25% radi-

ally and on the dorsal aspect (Ostrowski et al., 2017). As this was a

study including DRG from a different spinal region (sacral), it suggests

that our general characterization in human lumbar DRG can poten-

tially be extended to other spinal levels.

4.1 | Implications for clinical neurotechnologies

The location of different types of neurons within the DRG is vital to

designing clinical neurotechnologies with the goal of treating disease.

For example, dorsal root ganglion stimulation (DRGS) delivers electri-

cal stimulation to the DRG with the goal of providing patients with

pain relief. Presently, the physiological mechanisms of DRGS-induced

pain relief are unknown, though previous studies have suggested that

DRGS targets large myelinated DRG neurons (Graham et al., 2019),

while other studies have suggested DRGS targets small unmyelinated

afferents (Kent, Min, Hogan, & Kramer, 2018; Koopmeiners, Mueller,

Kramer, & Hogan, 2013). As the mechanisms of DRGS become more

clear, precisely targeting the cells responsible for pain relief, while

avoiding cells that convey painful sensations, will be vital to the suc-

cess of DRGS and to patient livelihood. Our results indicate that large

axons are homogeneously distributed throughout human DRG. How-

ever, our data indicate that the density of smaller myelinated axons is

lowest in the dorsal region of the middle of the DRG. Therefore,
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DRGS applied near the middle of the ganglion may simultaneously tar-

get the pain-relieving large axons, while minimizing the activation of

small myelinated nociceptive fibers (e.g., Aδ-fibers). Furthermore, our

data demonstrate the presence of biganglia in human lower lumbar

DRG, supporting the findings of (Shen, Wang, Chen, & Liang, 2006). It

is currently unclear if the presence of bi- or triganglia would affect the

accurate delivery of electrical stimulation to DRG neurons, or if the

separate ganglia are functionally distinct. We can speculate that dis-

tinct regions of connective tissue between multi-ganglia, which tend

to have higher impedance than the neuron containing region (Hope,

Vanholsbeeck, & McDaid, 2018), could affect the spread of current in

the DRG. Shen and colleagues showed that biganglia are most com-

monly found at L4 (Shen et al., 2006), a common DRGS target to man-

age chronic pain in the foot and lower leg (Deer et al., 2019). Future

studies should explore the existence of functionally-distinct biganglia,

which may inform the placement of the electrode lead for DRGS.

For neurotechnologies that record signals from the DRG, the

location of cell bodies is crucial to obtaining an adequate signal, as cell

bodies and their initial segments produce most of the transmembrane

currents that lead to recordable neural signals. Such technologies

would need to be placed in close proximity to those structures to

ensure obtaining a viable signal (Moffitt & McIntyre, 2005). Our

results support previous findings in cats (Ostrowski et al., 2017) that

cell bodies typically organize around the dorsal aspect of the ganglion.

However, our results further demonstrate that this phenomenon is

present not only at the most medial portion of the DRG, but over a

span of several millimeters around the middle of the ganglion for

human lumbar DRG. Therefore, to maximize the likelihood of achiev-

ing a viable signal, technologies seeking to record signals from the

DRG should target the dorsal-middle portion of the DRG, unless

future work should determine a particular somatotopy for the desired

sensory modality. However, as described above, our method is likely

underestimating the presence of small unmyelinated fibers in DRG.

Many physiological signals of interest to neuroprosthetic technologies

(e.g., bladder signals, nociception) are carried by small fibers (Dubin &

Patapoutian, 2010; Fowler, 2002). Therefore, future implementations

of our method must be mindful of the type of neuron carrying a signal

of interest, and design their identification paradigm to successfully

capture the target neural elements.

4.2 | Limitations and future work

While our results provide a unique quantitative description of human

DRG anatomy, there were several limitations to our study design.

Firstly, we collected a histological slice at 1 mm increments along the

nerve root axis. Human lower lumbar DRG on average range between

7.8 and 11.58 mm in length along the nerve root axis (Haberberger,

Barry, Dominguez, & Matusica, 2019), meaning we were limited to

approximately between 7 and 11 samples per DRG. Ideally, we would

have sectioned an entire DRG with 5 μm slices, to enable a complete

reconstruction of the entire cellular population of a ganglion. How-

ever, this would dramatically increase the cost of processing even a

single DRG, which would have limited us from making comparisons

across lumbar levels and across donors. Therefore, we believe that

sacrificing slice resolution to enable statistical comparisons was an

appropriate choice for our study, as we wanted to gain a rough picture

of the stereotactic distribution of neurons in the DRG. Future studies

should consider sectioning multiple DRG at a higher resolution, as the

monetary and time costs of high-throughput histological processing

decrease. Newer tissue clearing and light sheet microscopy tech-

niques may offer opportunities to image DRG cells with minimal sec-

tioning required.

Secondly, we collected DRG from 10 individual donors. As

described above, we sacrificed spatial resolution along the nerve root

axis to obtain specimens from multiple donors. However, with a sam-

ple size of 10 donors, it is unlikely that we are sufficiently powered to

make strong statistical claims relating demographic data to the num-

ber and distribution of primary afferents in human DRG. Previous

work in rats demonstrated an increased number of DRG neurons with

increased age and body size (Devor & Govrin-Lippmann, 1985, 1991),

and we were able to demonstrate body size differences (but not age

differences) in our human data set. A previous study showed that sen-

sory neuron count in human cervical DRG linearly increased with

DRG volume, but DRG volume was not shown to correlate with any

demographic data (e.g., height, weight) other than a significant sex dif-

ference in DRG volume (West, McKay Hart, Terenghi, & Wiberg,

2012), a parameter that we did not directly quantify.

Staining our slides with only NF200 precluded us from making

strong conclusions about the functional distribution of afferents in

lumbar DRG. NF200 stains for cytoskeletal proteins present in all pri-

mary afferents in humans (Rostock et al., 2018; Vega et al., 1994). We

believe that NF200 was the most appropriate choice in stain, as it pro-

vided sharp contrast between neural elements (which appeared brown

in brightfield microscopy) and background tissue. However, the pres-

ence of NF200 did not assign a specific sensory function to a neuron

(e.g., mechanoreception, nociception). Without information about sen-

sory function, we were unable to make strong claims about the pres-

ence of functional somatotopy in human DRG. Co-staining our slides

with other neurochemical markers more indicative of sensory function

(e.g., TRPV1 or peripherin to stain small nociceptors [Chang et al.,

2018]) would provide more convincing evidence of sensory function,

and would allow us to test for the presence of functional somatotopy.

Future work may utilize co-staining as an opportunity to examine out

both sensory function and anatomical distribution of primary

afferents.

Finally, the morphological operations our algorithm used to iden-

tify cell location may have individually or in tandem limited our ability

to detect the location of very small axon fibers (i.e., < 2 μm in diame-

ter). Unmyelinated C-fiber axons can be as small as 0.2 μm in diameter

in cats (Lee et al., 1986). The morphology operations our algorithm

used to accurately detect the location and diameter of stand-alone

neural structures occasionally filtered out objects below 2 μm. How-

ever, the range of C-fiber axon diameters in humans is currently

unknown. Therefore, it was difficult to estimate how many small neu-

ral structures were not captured by our framework. With algorithmic
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adjustments and images scanned at higher magnification, however, it

may be possible to examine C-fiber population distributions using the

same GUI and methods described herein.

5 | CONCLUSION

The spatial distribution of neural elements in human DRG is important

to clinical neurotechnologies seeking to treat neurological disease.

We developed a semi-automated algorithm to identify the location of

different neural elements in human DRG. We demonstrated that, at

lower-lumbar levels, cell bodies preferentially organize around the

dorsalmost region of the ganglion, while axons are homogeneously

distributed throughout the interior 90% of the ganglion. We also pres-

ented a method to reconstruct 3D-models of human DRG based on

histological images. Future studies could extend our identification

algorithm to probe the presence of functional somatotopy in human

DRG, or use 3D-model reconstructions as an in situ platform for

developing novel DRG-interface technologies.
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