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Introduction

This supporting information contains additional details
for the GIA model used in this study. Texts S1 and S2
describe details of the GIA coupling and a method for esti-
mating the committed uplift remaining at the start of the
simulation. Figure S1 compares methods of approximat-
ing the viscoelastic response of the Earth, showing that the
dominant modes of all three methods agree for small wave-
lengths. Figures S2-S4 show the effect on ice dynamics of
additional components of the solid-earth response: instan-
taneous elastic deformation, perturbations to the geoid, and
committed uplift, respectively. Figure S5 summarizes the
effect on ice mass loss of changing other assumptions.

1. Text S1. GIA-deformation model

We use an adaptation of the 2D FFT-based GIA model
of Bueler, Lingle, and Kallen-Brown (2007) for two- and
three-layer mantles, briefly described here. The model is
an improvement over elastic lithosphere, relaxing astheno-
sphere (ELRA) models (e.g., Le Muir & Huybrechts, 1996
and Huybrechts, 2002), which use only one decay constant
for the viscous relaxation of the underlying mantle, because
long- and short-wavelength loads relax quickly by engaging
more of the mantle in its relaxation and by being supported
elastically by the lithosphere, respectively. The Bueler et
al. (2007) spectral collocation method updates the Fourier
transformed uplift field Ûk (with wavevector k) at each step
using the previously computed uplift and a Fourier trans-
formed load L̂k computed halfway between the two using

Ûn+1
k =

(τ − 1
2
∆t)Ûnk + T∆t(L̂n+1

k )

(τ + 1
2
∆t)

, (1)

where we have recast their original formula (11) in terms
of the transfer function T (units m / Pa) which relates a
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load to the deformation at equilibrium (substituting Ûn+1
k =

Ûnk = Ûeq
k into the above we find Ûeq

k = T L̂k), and a decay
constant τ .

For the two-layer, incompressible, viscous halfspace over-
lain by an infinitesimal elastic sheet described by Bueler et
al. (2007), the transfer function is given by

T = (ρrg + |k|4D)−1, (2)

for a mantle of density ρr and constant gravity g. This is
equivalent to the inverse of their factor β. The first term
in equation 2 is the amount of deformation of a fluid in hy-
drostatic equilibrium (or complete isostatic compensation).
The second term arises from the finite support of the load
due to elastic stresses in the lithosphere, and therefore a
reduction of the possible compensation by buoyancy. The
term is related to the flexural rigidity D of the lithosphere,
which depends on the thickness of the plate he by

D =
Eh3

e

12(1− ν2)
, (3)

for a lithosphere with Young’s modulus E and Poisson’s ra-
tio ν. This T is shown as a function of wavelength in figure
S1(b) for a lithosphere with effective elastic thicknesses of
25 km (solid). An order of magnitude increase in flexu-
ral rigidity (a little over doubling the thickness) results in
elastic stresses that support 90% more of small-wavelength
loads, which thus decreases the total viscous deformation
by an order of magnitude. Note that T goes to zero for
large k, showing that the lithosphere limits the magnitude
of the viscoelastic compensation of small wavelength (large
wavenumber) loads, analogous to a low-pass filter for loads.

The time constant τ for the one- and two-layer viscous
models is given by

τ = 2Tη1|k|R (4)

for a halfspace with viscosity η1 (this decay constant is given
by Bueler et al. (2007) equations 14 and 15). R=R(η2/η1, h)
is a function of the viscosity contrast η2/η1 between a vis-
cous layer with thickness h and the halfspace below it:

R =

2η̃ cosh(hk) sinh(hk) + (1− η̃2)h2k2

+ η̃2 sinh2(hk) + cosh2(hk)

(η̃ + η̃−1) cosh(hk) sinh(hk) + (η̃ − η̃−1)hk
+ sinh2(hk) + cosh2(hk)

, (5)

with η̃ = η2/η1, used to compute model Best2 (η̃Best2 = 0.2).
For η̃ = 1, R = 1. The one-layer decay time constants for a
uniform 1018 Pa s mantle are shown in Figure S1(a) (solid).

Following from the observation in Bueler et al. (2007)
that, for a harmonic impulse (Heaviside) load L̂, their model
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results in a deformation (integrating their equation 12)

Û(t) = L̂T (1− e−t/τ ) (6)

we can make a connection to the dynamics of a Maxwell-
viscoelastic material. The relaxation of a Maxwell-
viscoelastic body can be written as the sum of a set of inde-
pendently relaxing exponential modes, called the Viscoelas-
tic Normal Modes (Yuen & Peltier, 1982). The specific num-
ber of modes depends on the structure of the Earth model
(Wolf, 1985), with more layers resulting in more modes. As
with the viscous model above, the response of this material
to the sudden imposition of a constant, harmonic load L̂ (a
Heaviside load) is (Vermeersen & Sabadini, 1997)

Û(t) = L̂

m∑
i=1

T i(1− e−t/τ
i

). (7)

We can thus rewrite equation S1 to include these m modes
by keeping track of each mode’s independent deformation
over time Û i(t), discretized at times tn, Û i,n, and summing
them:

Ûn+1
k =

m∑
i=1

(τ i − 1
2
∆t)Û i,nk + T i∆t(L̂n+1

k )

(τ i + 1
2
∆t)

, (8)

where there is now a transfer function T i and a decay con-
stant τ i associated with each mode.

1.1. GIA model coupling with BISICLES

To couple this model to BISICLES, which is a finite vol-
ume method, and thus written in terms of fluxes, we use
a finite-difference approximation to the bedrock velocity to
update the bedrock at each time-step of the ice evolution,
including elastic deformation:

˙̂
Un+1

k =
Ûn+1

k − Ûnk
∆t

= T el L̂
n+1
k − L̂nk

∆t
+

m∑
i=1

T iL̂n+1
k − Û i,nk

(τ i + 1
2
∆t)

.

(9)
This allows us to update the bedrock velocities at time in-
tervals longer than the short timestep required to resolve
the ice flow, except for the elastic component, which needs
to be updated at every time step to maintain consistency.
For these experiments, however, we coupled all GIA com-
ponents at every timestep as the computational cost of the
uplift calculation was minimal compared to the ice dynamic
solver. The minimum timestep the BISICLES solver used
was 0.015625 years (about 6 days).

1.2. Comparison with other GIA models

We can compare the deformation of a Maxwell-
viscoelastic body with the viscous halfspace overlain by an
elastic lithosphere by comparing the individual modes of de-
formation (Figure S1). For the Maxwell-viscoelastic body
we use the analytical viscoelastic result from Wolf (1984)
(2 viscoelastic modes and one elastic mode) and the modes
computed by the spherically-symmetric, self-gravitating, in-
compressible calculator, TABOO (Spada, 2003). Though
the stability of TABOO does not extend to the short wave-
lengths considered here (Spada, 2003), we can compare over
a small area of overlap. The Bueler mode captures the domi-
nant viscoelastic timescales of both models (Figure S1a) and
where differences occur the magnitude of the mode’s trans-
fer function has diminished by orders of magnitude (Figure
S1b). The computed fluid limit (

∑
i T

i, Figure S1c) is com-
parable for all the methods (TABOO uses a slightly different
density in its layered model) and the elastic mode is slightly

overestimated for wavelengths of interest (Figure S1d). The
resulting difference in ice lost over the 150-year simulation
never exceeds 1% in magnitude (Figure S1e).

2. Text S2. Committed Uplift

For the exponential mode model developed above, the
uplift at time t due to a small harmonic ice mass loss dm
(characterized by relaxation time τ) at time t′ is

du =
dm

ρr
(ρrgT )

(
1− exp−(t−t′)/τ

)
. (10)

For constant thinning starting at t = 0 with velocity v
(v > 0), dm = ρivdt

′, the uplift is

u =

∫ t

0

ρi
ρr

(ρrgT )v
(

1− exp−(t−t′)/τ
)
dt′. (11)

Integrated, this equals

u =
ρi
ρr

(ρrgT )v
{
t+ τ

(
exp−t/τ −1

)}
. (12)

In equilibrium, the total uplift from the mass lost during
this time (ρivt) is u∞ = ρigTvt, thus the remaining uplift
at time t if mass loss ceased, which we can call the commit-
ted uplift, is given by the expression

∆u = u∞ − u =
ρi
ρr

(ρrgT )vτ
(

1− exp−t/τ
)
. (13)

If this constant mass loss has been occurring for a time
t much longer than the decay constant τ , then there is a
steady state committed uplift of

∆uS.S. = u∞ − u = (ρigT )vτ. (14)

Though this assumption does not conserve mass or incorpo-
rate ice dynamics, it is an appropriate order-of-magnitude
estimate, particularly for the small-wavelength loads whose
decay constants τ are small (see figure 1b). It is apparent
from expression 14 that the committed uplift becomes more
important for higher-viscosity mantles (τ larger) and weaker
lithospheres (larger T ).

The committed uplift from 20 years of constant mass loss
of 4 m/yr near the grounding line (Thomas et al., 2004;
Rignot et al., 2014), is shown in figure S4. The steady-
state surface uplift velocity from the loss only depends on
the lithospheric rigidity, and is shown for three rigidities in
figure S4(b-d). For the 25 km lithosphere of the UB model
(1023 N m), the velocities are consistent with the observed
uplift rates (Barletta et al., 2018), shown by the dots. For
higher rigidities, the steady state velocities are smaller, and
would need to be fit by modeling older (e.g., Last Glacial
Maximum) losses more completely. The committed uplift
from the grounding line mass loss is shown in figure S4(e-f)
for viscosity models UB and Best2. The expected uplift is
small (≤ 1 m) for both models, and shows a broader area
for the higher viscosity, higher rigidity model of Best2.
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Figure S1. Comparison of mode decay times (a) and
amplitudes (b-d) for a uniform mantle with viscosity 1018

Pa s overlain by a 25 km elastic lithosphere, computed us-
ing the two-mode Bueler viscous method (Bueler et al.,
2007) (solid), the three-mode Wolf viscoelastic method
(Wolf, 1984) (dashed), and a five mode model from the
spherical, self-gravitating TABOO viscoelastic method
(Spada, 2003) (dotted). Comparing the dominant vis-
coelastic modes (T1 in a,b), the decay times are very
similar over the wavenumbers where the mode’s ampli-
tude is non-negligible (10−2 to 10−1 km−1). Shaded re-
gions show wavelengths larger than our computational
domain. The amplitude of the T1 modes from the flat-
earth models agree in this range. The second mode, T2,
is significantly smaller in amplitude (b, by about three
orders of magnitude). The third and fourth viscoelastic
modes computed by TABOO (T3 and T4) have zero am-
plitude in this domain. c) The fluid (equilibrium) limit.
d) The purely elastic mode. e) The difference over time in
Volume Above Flotation (VAF) for coupled ice-dynamics
simulation using the Bueler modes and Wolf modes.
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Figure S2. The percentage difference in total volume
lost over time between coupling to GIA-related defor-
mation including (equation 6) and omitting (equation 2)
elastic uplift compared for rheological models UB (solid),
“Best2” (dash-dot), and UM (dotted). The elastic com-
ponent results in a large early difference that has mostly
disappeared by 25 years in all models. The additional
stability from including the elastic component beyond
this is never more than 2%, demonstrating that its ef-
fect on mass loss is smaller than that due to viscoelastic
deformation.
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Figure S3. Estimate of the effect of the geoid pertur-
bation to sea level compared to the uplift signal for the
UB (a-e) and Best2 (f-j) models. The change in thickness
above flotation from t = 0 to 150 years ∆TAF (a,f) and
the change in bedrock over the same period ∆U (b, g) are
shown along with their respective changes in geoid: ∆ΦL
(c, h) and ∆ΦU (d, i). The sum of these components
is the total change in geoid computed using equation 8
in the text (e,j) and is approximately the effect that the
perturbations to the geoid have on local sea level. Com-
paring these with the effect on sea level from bedrock
uplift (the negative of b, g) we see that the sea level ef-
fect of the geoid is smaller for both models: 2% for UB
(25 km) to almost 6% for Best2.
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Figure S4. Committed uplift from recent mass loss. a)
The blue box shows a 31 km box experiencing 4 m/yr
thickness loss in the proximity of the grounding line over
the Bedmap2 bathymetry (Fretwell et al., 2013). Black
dots show nearby GPS observation locations (Barletta et
al., 2018). b-d) Initial steady-state bedrock velocities as-
suming this ice-mass loss has occurred indefinitely given
different lithosphere thicknesses: b) 25 km; c) 40 km;
d) 60 km, with nearby GPS data (Barletta et al., 2018)
shown in circles on the same color scale. e-f) The result-
ing committed uplift from this loss for viscosity model e)
UB (25 km), and f) Best2.
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Figure S5. Additional simulations of the percentage dif-
ference in cumulative mass loss for ice dynamics coupled
with viscoelastic uplift alone (with no pure elastic compo-
nent) to the simulation with static bedrock (NoGIA). UB
and Best2 are as in figure 2. UB-Init includes the initial-
ized velocity from steady-state committed uplift (Figure
S4), UB-Ridge uses the modified bedrock from Nias et
al. (2016) with a decreased ridge in front of Pine Island
Glacier, and UB-double doubles the basal melt rate. Note
that the grounding line in the doubled melt rate simu-
lation (UB-Double) reaches the edge of the domain at
close to 100 years, resulting in the decrease in difference
between the models (as the domain is emptied out).


