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Objectives
To assess the recall of a deep learning (DL) method to
automatically detect kidney stones composition from digital
photographs of stones.

Materials and Methods
A total of 63 human kidney stones of varied compositions
were obtained from a stone laboratory including calcium
oxalate monohydrate (COM), uric acid (UA), magnesium
ammonium phosphate hexahydrate (MAPH/struvite), calcium
hydrogen phosphate dihydrate (CHPD/brushite), and cystine
stones. At least two images of the stones, both surface and
inner core, were captured on a digital camera for all stones. A
deep convolutional neural network (CNN), ResNet-101
(ResNet, Microsoft), was applied as a multi-class classification
model, to each image. This model was assessed using leave-
one-out cross-validation with the primary outcome being
network prediction recall.

Results
The composition prediction recall for each composition was
as follows: UA 94% (n = 17), COM 90% (n = 21), MAPH/

struvite 86% (n = 7), cystine 75% (n = 4), CHPD/brushite
71% (n = 14). The overall weighted recall of the CNNs
composition analysis was 85% for the entire cohort.
Specificity and precision for each stone type were as follows:
UA (97.83%, 94.12%), COM (97.62%, 95%), struvite (91.84%,
71.43%), cystine (98.31%, 75%), and brushite (96.43%, 75%).

Conclusion
Deep CNNs can be used to identify kidney stone composition
from digital photographs with good recall. Future work is
needed to see if DL can be used for detecting stone
composition during digital endoscopy. This technology may
enable integrated endoscopic and laser systems that
automatically provide laser settings based on stone
composition recognition with the goal to improve surgical
efficiency.
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Introduction
There is increasing interest on optimising holmium laser
settings and techniques like ‘dusting’ [1], as ureteroscopy
(URS) with laser lithotripsy has become the predominant
surgical treatment for urinary stones in North America [2].
Currently, stones are fragmented by selecting pulse energy
and frequency to break stones into either fine powder
(dusting) or medium-sized fragments for extraction. Laser
energy needed to ablate stones varies with stone composition
and size [3]. Today, surgeons manually choose laser settings
based on a visual recognition of the stone type and its
durability. However, if settings could be automatically
calculated based on recognition of stone composition, this
could improve the efficiency of lithotripsy. Furthermore,
because stone samples are often extracted with baskets for

composition analysis to guide management, an endoscopic
visualisation system that reliably determines stone
composition would have benefits in reducing operative time
and surgical costs.

Computer vision together with deep learning (DL) may offer
a solution to these unmet needs. Current state-of-the-art
approaches to the image classification task, a computer vision
task where the computers categorise images, use deep neural
networks to extract patterns from an image and make
predictions based on the patterns, permitting automatic
prediction of outcomes. To date, several studies have
demonstrated the value of DL for recognising pathological
features in diseases such as melanoma and diabetic
retinopathy [4,5]. With its emergence as a powerful tool for
image-based analysis, we studied the recall of using
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convolutional neural networks (CNNs) for detecting the
composition of five main categories of human kidney stones.
Establishing this framework during URS could lead to the
automatic selection of laser lithotripsy settings based on real-
time stone composition analysis.

Materials and Methods
Human kidney stones of varied compositions were obtained
from a stone laboratory in 2018 (Louis C. Herring and Co.,
Orlando, FL, USA) including calcium oxalate monohydrate
(COM), uric acid (UA), magnesium ammonium phosphate
hexahydrate (MAPH/struvite), calcium hydrogen phosphate
dihydrate (CHPD/brushite), and cystine stones. All stones
included in this study were preserved in dry conditions in
glass vials. The mean (SD, range) stone size was 5.7 (3.5, 2–
18) mm. Dry stones were placed on a green non-reflective
background and pictures were taken with a digital single lens
reflex (DSLR) camera fitted with macro lens (55 mm). At
least two images of the stones, both surface and inner core,
were captured with the digital camera for all stones. Using
Photoshop (Adobe, San Jose, CA, USA), the green non-
reflective background was manually removed from each
photograph using the mask function and saved as JPG files.
This was followed by randomly generated computer
automated cross-sectional cropping (Fig. 1). While a pre-
trained segmentation model such as UNet is powerful, it is
more suitable for tasks that require pixel-wise predictions. As
we were classifying stone composition, we picked the models
that performed well on image classification. We applied a
deep CNN, ResNet-101 (ResNet, Microsoft), as a multi-class
classification model, to classify each image crop [6]. The
average of the classification scores of 30 random crops was
used for final prediction. We sampled crops of different sizes
from an image and we re-sized all of them to size 96 9 96
before we fed them into the deep CNN. We whitened each
crop using the red/green/blue (RGB) mean and standard
deviation. The deep CNN was trained with the re-sized and
whitened crops to predict stone composition. All stone
images used in the training set were different from those used
in the testing set. As we only had a limited amount of data,
we used a ResNet-101 that was pre-trained on the ImageNet
classification dataset, a large-scale image classification dataset,
to avoid overfitting. We replaced the fully connected layers in
ResNet-101 with a fully connected layer of 128 channels with
Batch Normalization and ReLU, followed by another fully
connected layer of 128 channels, which are both randomly
initialised, and a softmax layer for predicting the stone
composition. Hence, we used the cross-entropy loss function.
During training, we fixed the weights in the convolution
layers and only updated the weights in the fully connected
layers. We used stochastic gradient descent (SGD) with a
learning rate of 0.001, a momentum of 0.9 and a weight
decay of 0.0001 to optimise the loss function for 2000

iterations across all stone types. We then reduced the learning
rate to 0.0001 for another 2000 iterations. Hyperparameters
were not chosen based on cross-validation results. We used a
batch size of 128. To account for our small image dataset,
instead of dividing the images into a test and training set, we
assessed recall of the network using leave-one-out cross-
validation method, where we used all stones except one as the
training set and tested the network on the remaining one.
This was repeated until all stones were tested producing recall
averages for each stone type. Because sample size varied
between stone compositions, an overall weighted average was
also calculated.

Results
A total of 63 stones were used including 17 UA, 21 COM,
seven struvite, four cystine, and 14 brushite stones comprising
a total of 127 images (Fig. 2). Stone recognition prediction
recall (sensitivity) varied by composition. UA stones had the
highest recall at 94% followed by COM stones with 90%.
Struvite and cystine stones were classified with moderate
recall, correctly identified 86% and 75%, respectively. Lower
predictive recall was seen for brushite stones (71%). Overall
weighted prediction recall was 85%. Specificity and precision
for each stone type are as follows: UA [97.83, 94.12], COM
[97.62, 95] struvite [91.84, 71.43] cystine [98.31, 75] brushite
[96.43, 75] (Table 1). The receiver operating characteristic
(ROC) curve, precision-recall curve, and our confusion matrix
can be found in Fig. 3. The training loss per iteration plot for
one of the cross-validation experiments is provided in Fig. S1.

In an attempt to understand the accuracy of stone
composition from endoscopic video images, we analysed still
images of three COM stones and one UA stone taken during
a flexible URS case, through our deep CNN. The preliminary
results, demonstrating feasibility, were as follows: recall for
COM = 0.67, precision for COM = 0.71; recall for UA = 1.0,
precision for UA = 0.5.

Discussion
In the present pilot study, we have shown that it is possible
to predict kidney stone composition from digital photographs
using computer vision and DL. Commonly encountered
stones such as UA and COM, had higher accuracies than
stones such as brushite and cystine. These stones have
distinct visual appearances and are often the easiest for
humans to identify. The lower prediction scores for other
stone compositions may be a reflection of the visual
heterogeneity of these stones. Brushite specifically has been
noted as a difficult stone composition to classify with
computer vision methods due to its high level of intraclass
variability [7]. To our knowledge, this is the first report of
using CNNs to predict kidney stone composition, although
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other methods such as Raman spectroscopy and
autofluorescence have been studied [8,9].

Only one prior study assessed image-based methods to
determine kidney stone composition [7]. Serrat et al. [7]
computed hand-crafted features from each image (e.g. local
binary pattern and colour histogram) and applied a
traditional machine-learning approach (random forest) to

classify the features. They found an overall composition
prediction accuracy of 63%. In their model, pH was also
included as an additional feature to improve stone
composition prediction. Using CNNs, we were able to
produce higher accuracies without incorporating any hand-
crafted features. The main advantage of DL is that the CNN
autonomously learns to extract features useful for classifying
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Fig. 1 Samples of the stones depicted before cropping with a schematic for the algorithm used in this study. (A) Sample stone photographs are

manually cropped using photograph editing software. (B) Computer automated cross-sectional crops of the stone’s surface are produced. (C) A deep

CNN (ResNet, Microsoft) is applied to classify each image crop and recall is assessed using leave-one-out cross-validation method. (D) Classification

scores are averaged to get final prediction.
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Fig. 2 Representative samples for each stone composition prior to cropping. A total of 63 stones were used in this study including: 17 UA, 21 COM,

seven struvite, four cystine, and 14 brushite stones consisting of a total of 127 images. Automatic stone composition recall was highest for UA stones at

94%.

Table 1 Recognition performance measures by stone composition type for ResNet-101 CNN.

Stone composition type Recall (sensitivity), % Specificity, % Precision (PPD), %

UA 94.12 97.83 94.12
COM 90.48 97.62 95.00
MAPH/struvite 71.42 91.84 71.43
Cystine 75.00 98.31 75.00
CHPD/brushite 85.71 96.43 75.00
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stone composition directly from the image, eliminating
manual feature extraction and user bias.

Our present study has several limitations. We used only pure
stones and additional studies are needed to predict the
composition of mixed stones. We studied only still images,
whereas during URS, imaging is video-based and includes
body wall movement with blood/debris. Future studies will
include predicting stone composition based on images taken
during URS. Data reported in the present study may serve as
a benchmark for future comparisons of kidney stone
composition detection during URS.

Our work lays the foundation for video-based recognition.
Using CNNs, this would be feasible, as previously shown for
recognising and tracking surgical instruments in robot-
assisted surgery videos [10]. Another area of study is to
determine if computer vision can accurately detect stone size.
Size information can provide feedback on when the optimal
fragment size has been achieved for extraction or dusting.
Lastly, we only had a limited set of stone imaging data. We
hypothesise the recall of stone recognition will improve if the
DL network is able to train on a larger set of data.

In conclusion, we have shown that a DL computer vision
algorithm can be used to detect the composition of
commonly encountered kidney stones. In the future, digital
endoscopic platforms that leverage artificial intelligence (AI)
and DL techniques could provide a cheaper and faster
alternative to traditional stone analysis. Similar systems could
be adapted to smartphones to allow office-based stone
analysis. The ability to intraoperatively determine stone
composition could result in the development of integrated
endoscopic and laser systems that automatically provide laser
settings based on computer vision stone characterisation, with
the goal to improve laser lithotripsy efficiency. One caveat
that must be noted is the need for computer vision result
verification and interpretation by a licensed clinician. While
AI systems such as this have the ability to identify pathology,
these technologies do not possess the capacity to consider

clinical conditions that can impact the pathological state and
therefore should aid, not replace expert opinion.
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Fig. 3 (A) ROC curve (B) precision-recall curve and (C) confusion matrix by stone composition type for ResNet101 CNN.
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Supporting Information
Additional Supporting Information may be found in the
online version of this article:

Fig S1. Training loss per iteration for one of the cross-
validation experiments.
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