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Abstract 10 

Objectives: To assess the recall of a deep learning (DL) method to automatically detect kidney 11 

stones composition from digital photographs of stones. 12 

Materials and Methods: 63 human kidney stones of varied compositions were obtained from a 13 

stone laboratory including calcium oxalate monohydrate (COM), uric acid (UA), magnesium 14 

ammonium phosphate hexahydrate (MAPH/struvite), calcium hydrogen phosphate dihydrate 15 

(CHPD/brushite) and cystine stones. At least two images of the stones, both surface and inner 16 

core, were captured on a digital camera for all stones. A deep convolutional neural network 17 

(CNN), ResNet-101 [ResNet, Microsoft], was applied as a multi-class classification model, to 18 

each image. This model was assessed using leave-one-out cross validation with the primary 19 

outcome being network prediction recall. 20 

Results: The composition prediction recall for each composition were as follows: UA 94% 21 

(n=17), COM 90% (n=21), MAPH/Struvite 86% (n=7), Cystine 75% (n=4), CHPD/Brushite 22 

71% (n=14). The overall weighted recall of the convolutional neural network’s composition 23 

analysis was 85% for the entire cohort. Specificity and precision for each stone type were as 24 

follows: UA [97.83, 94.12], COM [97.62, 95] struvite [91.84, 71.43] cystine [98.31, 75], and 25 

brushite [96.43, 75]. 26 

Conclusion: Deep convolutional networks can be used to identify kidney stone composition from 27 

digital photos with good recall. Future work is needed to see if deep learning can be used for 28 

detecting stone composition during digital endoscopy. This technology may enable integrated 29 

endoscopic and laser systems that automatically provide laser settings based on stone 30 

composition recognition with the goal to improve surgical efficiency. 31 
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 32 

 33 

Introduction 34 

There is increasing interest on optimizing holmium laser settings and techniques like 35 

Dusting1, as ureteroscopy (URS) and laser lithotripsy has become the predominant surgical 36 

treatment for urinary stones in North America2. Currently, stones are fragmented by selecting 37 

pulse energy and frequency to break stones into either fine powder (dusting) or medium-sized 38 

fragments for extraction. Laser energy needed to ablate stones varies with stone composition and 39 

size 3. Right now, surgeons manually choose laser settings based on a visual recognition of the 40 

stone type and its durility. However, if settings could be automatically calculated based on 41 

recognition of stone composition, this could improve the efficiency of lithotripsy. Furthermore, 42 

because stone samples are often extracted with baskets for composition analysis to guide 43 

management, an endoscopic visualization system reliably determines stone composition would 44 

have benefits in reducing operative time and surgical costs.  45 

Computer vision together with deep learning may offer a solution to these unmet needs. 46 

Current state-of-the-art approaches to the image classification task, a computer vision task where 47 

the computers categorize images, use deep neural networks to extract patterns from an image and 48 

make prediction based on the patterns, permitting automatic prediction of outcomes. To date, 49 

several studies have demonstrated the value of DL for recognizing pathologic features in 50 

diseases such as melanoma and diabetic retinopathy 4,5. With its emergence as a powerful tool for 51 

image-based analysis, we studied the recall of using convolutional neural networks (CNNs) for 52 

detecting the composition of five main categories of human kidney stones. Establishing this 53 

framework during URS could lead to the automatic selection of laser lithotripsy settings based on 54 

real-time stone composition analysis. 55 

Materials and Methods 56 

Human kidney stones of varied compositions were obtained from a stone laboratory in 57 

2018 (Louis C. Herring and Company, Florida) including calcium oxalate monohydrate (COM), 58 

uric acid (UA), magnesium ammonium phosphate hexahydrate (MAPH/struvite), calcium 59 

hydrogen phosphate dihydrate (CHPD/brushite) and cystine stones. All stones included in this 60 

study were preserved in dry conditions in glass vials. Mean stone size was 5.7 mm (±3.5; range 61 

2-18 mm). Dry stones were placed on a green non-reflective background and pictures were taken 62 
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with a DSLR camera fitted with macro lens (55mm). At least two images of the stones, both 63 

surface and inner core, were captured on a digital camera for all stones. Using Photoshop 64 

(Adobe, CA), the green non-reflective background was manually removed from each photo using 65 

the mask function and saved as JPG files. This was followed by randomly generated computer 66 

automated cross-sectional cropping (Figure 1). While a pre-trained segmentation model such as 67 

UNet is powerful, it is more suitable for tasks which require pixel-wise predictions. Since we are 68 

classifying the stone composition, we picked the models that performed well on image 69 

classification. We applied a deep CNN, ResNet-101 [ResNet, Microsoft], as a multi-class 70 

classification model, to classify each image crop6. The average of the classification scores of 30 71 

random crops was used for final prediction. We sampled crops of different sizes from an image 72 

and we resized all of them to size 96 x 96 before we fed them into the deep CNN. We whitened 73 

each crop using the RGB mean and standard deviation. The deep CNN was trained with the 74 

resized and whitened crops to predict stone composition. All stone images used in the training set 75 

were different from those used in the testing set. Since we only had limited amount of data, we 76 

used a ResNet-101 that was pretrained on the ImageNet classification dataset, a large-scale 77 

image classification dataset, to avoid overfitting. We replaced the fully connected layers in 78 

ResNet-101 with a fully connected layer of 128 channels with Batch Normalization and ReLU 79 

followed by another fully connected layer of 128 channels, which are both randomly initialized, 80 

and a softmax layer for predicting the stone composition. Hence, we used the cross-entropy loss 81 

function. During training, we fixed the weights in the convolution layers and only updated the 82 

weights in the fully connected layers. We used stochastic gradient descent (SGD) with a learning 83 

rate of 0.001, a momentum of 0.9 and a weight decay of 0.0001 to optimize the loss function for 84 

2000 iterations across all stone types. We then reduced the learning rate to 0.0001 for another 85 

2000 iterations. Hyperparameters were not chosen based on cross validation results. We used a 86 

batch size of 128. To account for our small image dataset, instead of dividing the images into test 87 

and train set, we assessed recall of the network using leave-one-out cross validation method, 88 

where we used all stones except one as the training set and tested the network on the remaining 89 

one. This was repeated until all stones were tested producing recall averages for each stone type. 90 

Because sample size varied between stone compositions, an overall weighted average was also 91 

calculated. 92 

Results 93 
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 A total of 63 stones were used including 17 UA, 21 COM, 7 struvite, 4 cystine, and 14 94 

brushite stones comprising a total of 127 images (figure 2). Stone recognition prediction recall 95 

(sensitivity) varied by composition. UA stones had the highest recall at 94% followed by COM 96 

stones with 90%. Struvite and cystine stones were classified with moderate recall, correctly 97 

identified 86% and 75%, respectively. Lower predictive recall was seen for brushite stones 98 

(71%). Overall weighted prediction recall was 85%. Specificity and precision for each stone type 99 

are as follows: UA [97.83, 94.12], COM [97.62, 95] struvite [91.84, 71.43] cystine [98.31, 75] 100 

brushite [96.43, 75] (table 1). ROC curve, precision-recall curve, and our confusion matrix can 101 

be found in figure 3. The training loss per iteration plot for one of the cross-validation 102 

experiments is provided as a supplementary figure.  103 

In an attempt to understand the accuracy of stone composition from endoscopic video 104 

images, we analyzed still images of 3 COM stones and 1 UA stone taken during a flexible URS 105 

case, through our deep CNN. The preliminary results, demonstrating feasibility, were as follows: 106 

recall for COM=0.67, precision for COM=0.71; recall for UA=1.0, precision for UA= 0.5. 107 

 108 

Discussion 109 

In this pilot study, we have shown that it is possible to predict kidney stone composition 110 

from digital photos using computer-vision and DL. Commonly encountered stones such as UA 111 

and COM, had higher accuracies than stones such as brushite and cystine. These stones have 112 

distinct visual appearances and are often the easiest for humans to identify. The lower prediction 113 

scores for other stone compositions may be a reflection of the visual heterogeneity of these 114 

stones. Brushite specifically has been noted as a difficult stone composition to classify with 115 

computer vision methods due to its high level of intraclass variability7. To our knowledge, this is 116 

the first report of using CNNs to predict kidney stone composition though other methods such as 117 

Raman spectroscopy and autofluorescence have been studied 8,9. 118 

Only one prior study assessed image-based methods to determine kidney stone 119 

composition 7. Serrat et al computed hand-crafted features from each image (e.g. local binary 120 

pattern and color histogram) and applied a traditional machine learning approach (random forest) 121 

to classify the features. They found an overall composition prediction accuracy of 63%. In their 122 

model, pH was also included as an additional feature to improve stone composition prediction. 123 

Using CNNs, we were able to produce higher accuracies without incorporating any hand-crafted 124 
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features. The main advantage of DL is that the CNN autonomously learns to extract features 125 

useful for classifying stone composition directly from the image, eliminating manual feature 126 

extraction and user bias. 127 

Our study has several limitations. We used only pure stones and additional studies are 128 

needed to predict the composition of mixed stones. We studied only still images, whereas during 129 

URS, imaging is video-based and includes body wall movement with blood/debris. Future 130 

studies will include predicting stone composition based on images taken during URS. Data 131 

reported in this study may serve as a benchmark for future comparisons of kidney stone 132 

composition detection during URS.  133 

Our work lays the foundation for video-based recognition. Using CNNs, this would be 134 

feasible, as previously shown for recognizing and tracking surgical instruments in robotic 135 

surgery videos 10. Another area of study is to determine if computer-vision can accurately detect 136 

stone size. Size information can provide feedback on when the optimal fragment size has been 137 

achieved for extraction or dusting. Lastly, we only had a limited set of stone imaging data. We 138 

hypothesize the recall of stone recognition will improve if the DL network is able to train on a 139 

larger set of data.   140 

In conclusion, we have shown that a DL computer-vision algorithm can be used to detect 141 

the composition of commonly encountered kidney stones. In the future, digital endoscopic 142 

platforms that leverage AI and DL techniques could provide a cheaper and faster alternative to 143 

traditional stone analysis. Similar systems could be adapted to smartphones to allow office-based 144 

stone analysis. The ability to intraoperatively determine stone composition could result in the 145 

development of integrated endoscopic and laser systems that automatically provide laser settings 146 

based on computer-vision stone characterization with the goal to improve laser lithotripsy 147 

efficiency. One caveat that must be noted is the need for computer vision result verification and 148 

interpretation by a licensed clinician. While AI systems such as this have the ability to identify 149 

pathology, these technologies do not possess the capacity to consider clinical conditions that can 150 

impact the pathologic state and therefore should aid, not replace expert opinion.  151 
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Table 1. Recognition performance measures by stone composition type for ResNet-101 CNN. 

 

Recognition Performance for ResNet-101 by Composition Type 

Stone Composition Type 
Recall 

(Sensitivity) 
Specificity 

Precision 
(PPD) 

Uric Acid 94.12 97.83 94.12 

Calcium Oxalate Monohydrate 90.48 97.62 95.00 

Struvite 71.42 91.84 71.43 

Cystine 75.00 98.31 75.00 

Brushite 85.71 96.43 75.00 
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