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FIGURES 

Fig. S1: Raw frequency distribution of 17 volatiles Fig. S2: 

SNP density 

Fig S3a and S3b: Manhattan plots and the respective quantile-quantile plots 

Fig S4: Distribution of GWAS peaks and percentage of phenotypic variation 

Fig S5: Chromosomal partition of the variance 

Fig S6: Heatmap of the realized genomic matrix Fig S7: 

Boxplot of the predictive abilities 

Fig S8: Linear relationship between PGE and predictive ability  

Fig S9: p-values of the Pearson’s correlation and PCA 

 

TABLES 

Table S1: Annotation of candidate genes underlying and flanking significant SNPs related to volatile 

emission in blueberry (see separate Excel file) 

Table S2: Scenarios for genomic prediction and marker-assisted selection 

Table S3: Number of raw and filtered SNPs used in the GWAS study 

Table S4: Gene ontology (GO) enrichment analyses (see separate Excel file)  

Table S5: Molecular markers used as fixed effects 

Table S6: Metabolite concentration and hedonic ratings of liking, texture, sweetness, sourness and flavor 

intensity of 24 blueberry cultivars from the University of Florida breeding program (see separate Excel file) 
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Fig. S1. Raw frequency distribution of 17 volatiles traits measure in a Southern Highbush Blueberry 

population via gas chromatograph/mass spectrometry (GC/MS) approach. 
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Fig. S2. Distribution of 71,487 filtered single nucleotide polymorphisms (SNPs) in 1 Mb window size 

across the 12 blueberry chromosomes. The x-axis represents the distance in base pairs. 
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Fig. S3a. Manhattan plots and the respective quantile-quantile plots for 6 volatile organic components 

quantified in a a Southern Highbush Blueberry population. A linear mixed model with corrections for 

population structure and cryptic relatedness was used to compute the pvalues. Bonferroni correction 

considering a genome-wide significance level of 0.05 (red line) was used for establishing a p-value 

detection threshold for statistical significance. For the 1-hexanol volatile we found one association with a 

pvalue value at the boundary of the Bonferroni threshold and therefore we maintained it in the subsequent 

analysis of functional mapping. 
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Fig. S3b. Manhattan plots and the respective quantile-quantile plots for 5 volatile organic components 

quantified in a a Southern Highbush Blueberry population. A linear mixed model with corrections for 

population structure and cryptic relatedness was used to compute the pvalues. Bonferroni correction 

considering a genome-wide significance level of 0.05 (red line) was used for establishing a p-value 

detection threshold for statistical significance. 
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Fig. S4. A) Distribution of GWAS peaks across the 10 blueberry chromosomes where significant hits were 

found for 11 volatiles in a Southern Highbush Blueberry breeding population. Squares represent the 

genomic windows defined for functional candidate genes screening. Numbers indicate the number of 

significant associations within regions for each volatile. B) Position and effect of significant SNPs in 

relation to protein coding genes. C) Distribution of the percentage of phenotypic variation explained by 

individual markers. SNPs explaining a large portion of volatile variances are highlighted. 
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Fig. S5. Chromosomal partition of the variance. A linear regression considering the percentage of the 

variance explained per chromosome as response and its length (Mb) as explanatory variable was fitted. The 

slope p-values are reported for each volatile. 
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Fig. S6.. Heatmap of the realized genomic relationship matrix considering individuals from POP1 (886 

genotypes used in the GWAS analysis) and POP2 (552 genotypes used for phenotypic prediction) 
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 Fig. S7. Boxplots of the predictive abilities computed in the Scenario 1 (See also the Supporting Table 

S2.) 
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Fig. S8. Linear regression of the proportion of the variance explained by SNPs with a non-zero effect 

(PGE) as response and the predictive ability as explanatory variable.  
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Fig. S9. a) P-values associated to the Pearson’s correlations between five sensory scores and biochemical 

compounds (asterisks indicate P-values <0.05); b) Principal Component Analysis (PCA) showing the 

dispersion of the 24 blueberry cultivars used in the sensory analysis and the loading vectors associated to 

hedonic scales, volatiles organic components (VOCs) and Sugar and Acid (TA) contents. 
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Table S1: Gene annotation. See separate Excel file. 

 

 

Table S2. Different scenarios for phenotypic predictions and validations of the genome-wide association 

analyses carried out in two independent blueberry breeding populations (POP1 and POP2). 

 

Scenarios 
Training 

data* 

Test 

data* 
CV scheme** Method 

SCE1 POP1 POP1 
Rep TRN-

TST 
GS 

SCE2 POP1 POP2 CV GS 

SCE3*** POP1 POP2 CV GS de novo GWAS 

SCE4*** POP1 POP2 CV MAS 
* Models were fitted to the training data and prediction accuracy was evaluated in the test data. ** Replicated Training-Testing (Rep TRN-TST) 

design was created by randomly splitting the same population into a training (70% of the individuals) and a test data (remaining 30%), this division 

was randomly repeated 30 times. Cross-validation (CV) was designed by training and test the models in different populations. *** Scenarios 
considered as GWAS validation, since the peaks pinpointed in the GWAS analyses were used as fixed effect covariates in the prediction models. 

 

 

Table S3. Number of raw and filtered SNPs used in the GWAS study. 

 
Original 
Scaffold* 

Chr 
Number** 

Original Number of 
SNPs 

Number of filtered 
SNPs 

VaccDscaff1 1 26735 7130 

VaccDscaff2 2 24037 6179 

VaccDscaff4 3 27010 6989 

VaccDscaff6 4 18537 4279 

VaccDscaff7 5 23353 6138 

VaccDscaff11 6 22536 6170 

VaccDscaff12 7 18745 4999 

VaccDscaff13 8 21621 5429 

VaccDscaff17 9 23720 6218 

VaccDscaff20 10 19063 5021 

VaccDscaff21 11 25949 7220 

VaccDscaff22 12 21968 5715 

Total  273274 71487 
* Name of the scaffolds reported in the 12 homoeologous groups of Vaccinium corymbosum cv. ‘Draper’ genome assembly (Colle et al., 2019). 
** Correspondent chromosome number used in this study. 

 

 

 

 

 

Table S4: GO enrichment. See separate Excel file. 
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Table S5. Number of markers and SNP ID (chromosome number followed by the position mapped in the 

blueberry reference genome) used as fixed effect in the genomic selection and marker-assisted selection 

models for phenotype prediction of 11 volatiles in blueberry. 

 

Volatile 
Number of 

Markers 
SNP 

hexanal 6 6_4846100, 6_5833102, 6_6959405, 6_7454411, 6_9154662, 6_9386681 

(E)-2-hexenal 1 6_13287488 

1-hexanol 1 6_2060825 

2-heptanone 10 7_34574576,11_21631622,12_10311433,12_11028656,12_12028430,12_12702802,12_33292888,12_3 
4308331,12_34870953,12_35635231 

D-limonene 3 3_17433758,3_18328987,7_8744566 

eucalyptol 8 1_37745262,2_277880,2_1187948,2_4043577,2_6342036,2_7439106,11_3558907,11_36820996 

2-nonanone 4 2_24531136,2_25024836,2_26348811,3_6335120 

linalool 5 3_17499786,3_18328987,3_23353598,3_24060052,4_34803765 

decanal 7 1_40213749,9_23319804,9_24699848,9_25606761,9_26765897,9_28754698,9_29149685 

2-undecanone 2 2_24668598,2_25796741 

geranyl 

acetone 

6 4_16350874,4_15912982,5_14525661,5_16139756,5_16676640,5_18398135 
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